gen_common.cc revision a014776f4474579d4dfc72e3374ba45c6f6e5f35
1/*
2 * Copyright (C) 2012 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16#include "dex/compiler_ir.h"
17#include "dex/compiler_internals.h"
18#include "dex/quick/arm/arm_lir.h"
19#include "dex/quick/mir_to_lir-inl.h"
20#include "entrypoints/quick/quick_entrypoints.h"
21#include "mirror/array.h"
22#include "mirror/object_array-inl.h"
23#include "mirror/object-inl.h"
24#include "verifier/method_verifier.h"
25#include <functional>
26
27namespace art {
28
29// Shortcuts to repeatedly used long types.
30typedef mirror::ObjectArray<mirror::Object> ObjArray;
31typedef mirror::ObjectArray<mirror::Class> ClassArray;
32
33/*
34 * This source files contains "gen" codegen routines that should
35 * be applicable to most targets.  Only mid-level support utilities
36 * and "op" calls may be used here.
37 */
38
39/*
40 * Generate a kPseudoBarrier marker to indicate the boundary of special
41 * blocks.
42 */
43void Mir2Lir::GenBarrier() {
44  LIR* barrier = NewLIR0(kPseudoBarrier);
45  /* Mark all resources as being clobbered */
46  DCHECK(!barrier->flags.use_def_invalid);
47  barrier->u.m.def_mask = ENCODE_ALL;
48}
49
50void Mir2Lir::GenDivZeroException() {
51  LIR* branch = OpUnconditionalBranch(nullptr);
52  AddDivZeroCheckSlowPath(branch);
53}
54
55void Mir2Lir::GenDivZeroCheck(ConditionCode c_code) {
56  LIR* branch = OpCondBranch(c_code, nullptr);
57  AddDivZeroCheckSlowPath(branch);
58}
59
60void Mir2Lir::GenDivZeroCheck(RegStorage reg) {
61  LIR* branch = OpCmpImmBranch(kCondEq, reg, 0, nullptr);
62  AddDivZeroCheckSlowPath(branch);
63}
64
65void Mir2Lir::AddDivZeroCheckSlowPath(LIR* branch) {
66  class DivZeroCheckSlowPath : public Mir2Lir::LIRSlowPath {
67   public:
68    DivZeroCheckSlowPath(Mir2Lir* m2l, LIR* branch)
69        : LIRSlowPath(m2l, m2l->GetCurrentDexPc(), branch) {
70    }
71
72    void Compile() OVERRIDE {
73      m2l_->ResetRegPool();
74      m2l_->ResetDefTracking();
75      GenerateTargetLabel(kPseudoThrowTarget);
76      if (Is64BitInstructionSet(m2l_->cu_->instruction_set)) {
77        m2l_->CallRuntimeHelper(QUICK_ENTRYPOINT_OFFSET(8, pThrowDivZero), true);
78      } else {
79        m2l_->CallRuntimeHelper(QUICK_ENTRYPOINT_OFFSET(4, pThrowDivZero), true);
80      }
81    }
82  };
83
84  AddSlowPath(new (arena_) DivZeroCheckSlowPath(this, branch));
85}
86
87void Mir2Lir::GenArrayBoundsCheck(RegStorage index, RegStorage length) {
88  class ArrayBoundsCheckSlowPath : public Mir2Lir::LIRSlowPath {
89   public:
90    ArrayBoundsCheckSlowPath(Mir2Lir* m2l, LIR* branch, RegStorage index, RegStorage length)
91        : LIRSlowPath(m2l, m2l->GetCurrentDexPc(), branch),
92          index_(index), length_(length) {
93    }
94
95    void Compile() OVERRIDE {
96      m2l_->ResetRegPool();
97      m2l_->ResetDefTracking();
98      GenerateTargetLabel(kPseudoThrowTarget);
99      if (Is64BitInstructionSet(m2l_->cu_->instruction_set)) {
100        m2l_->CallRuntimeHelperRegReg(QUICK_ENTRYPOINT_OFFSET(8, pThrowArrayBounds),
101                                      index_, length_, true);
102      } else {
103        m2l_->CallRuntimeHelperRegReg(QUICK_ENTRYPOINT_OFFSET(4, pThrowArrayBounds),
104                                      index_, length_, true);
105      }
106    }
107
108   private:
109    const RegStorage index_;
110    const RegStorage length_;
111  };
112
113  LIR* branch = OpCmpBranch(kCondUge, index, length, nullptr);
114  AddSlowPath(new (arena_) ArrayBoundsCheckSlowPath(this, branch, index, length));
115}
116
117void Mir2Lir::GenArrayBoundsCheck(int index, RegStorage length) {
118  class ArrayBoundsCheckSlowPath : public Mir2Lir::LIRSlowPath {
119   public:
120    ArrayBoundsCheckSlowPath(Mir2Lir* m2l, LIR* branch, int index, RegStorage length)
121        : LIRSlowPath(m2l, m2l->GetCurrentDexPc(), branch),
122          index_(index), length_(length) {
123    }
124
125    void Compile() OVERRIDE {
126      m2l_->ResetRegPool();
127      m2l_->ResetDefTracking();
128      GenerateTargetLabel(kPseudoThrowTarget);
129
130      m2l_->OpRegCopy(m2l_->TargetReg(kArg1), length_);
131      m2l_->LoadConstant(m2l_->TargetReg(kArg0), index_);
132      if (Is64BitInstructionSet(m2l_->cu_->instruction_set)) {
133        m2l_->CallRuntimeHelperRegReg(QUICK_ENTRYPOINT_OFFSET(8, pThrowArrayBounds),
134                                      m2l_->TargetReg(kArg0), m2l_->TargetReg(kArg1), true);
135      } else {
136        m2l_->CallRuntimeHelperRegReg(QUICK_ENTRYPOINT_OFFSET(4, pThrowArrayBounds),
137                                      m2l_->TargetReg(kArg0), m2l_->TargetReg(kArg1), true);
138      }
139    }
140
141   private:
142    const int32_t index_;
143    const RegStorage length_;
144  };
145
146  LIR* branch = OpCmpImmBranch(kCondLs, length, index, nullptr);
147  AddSlowPath(new (arena_) ArrayBoundsCheckSlowPath(this, branch, index, length));
148}
149
150LIR* Mir2Lir::GenNullCheck(RegStorage reg) {
151  class NullCheckSlowPath : public Mir2Lir::LIRSlowPath {
152   public:
153    NullCheckSlowPath(Mir2Lir* m2l, LIR* branch)
154        : LIRSlowPath(m2l, m2l->GetCurrentDexPc(), branch) {
155    }
156
157    void Compile() OVERRIDE {
158      m2l_->ResetRegPool();
159      m2l_->ResetDefTracking();
160      GenerateTargetLabel(kPseudoThrowTarget);
161      if (Is64BitInstructionSet(m2l_->cu_->instruction_set)) {
162        m2l_->CallRuntimeHelper(QUICK_ENTRYPOINT_OFFSET(8, pThrowNullPointer), true);
163      } else {
164        m2l_->CallRuntimeHelper(QUICK_ENTRYPOINT_OFFSET(4, pThrowNullPointer), true);
165      }
166    }
167  };
168
169  LIR* branch = OpCmpImmBranch(kCondEq, reg, 0, nullptr);
170  AddSlowPath(new (arena_) NullCheckSlowPath(this, branch));
171  return branch;
172}
173
174/* Perform null-check on a register.  */
175LIR* Mir2Lir::GenNullCheck(RegStorage m_reg, int opt_flags) {
176  if (Runtime::Current()->ExplicitNullChecks()) {
177    return GenExplicitNullCheck(m_reg, opt_flags);
178  }
179  return nullptr;
180}
181
182/* Perform an explicit null-check on a register.  */
183LIR* Mir2Lir::GenExplicitNullCheck(RegStorage m_reg, int opt_flags) {
184  if (!(cu_->disable_opt & (1 << kNullCheckElimination)) && (opt_flags & MIR_IGNORE_NULL_CHECK)) {
185    return NULL;
186  }
187  return GenNullCheck(m_reg);
188}
189
190void Mir2Lir::MarkPossibleNullPointerException(int opt_flags) {
191  if (!Runtime::Current()->ExplicitNullChecks()) {
192    if (!(cu_->disable_opt & (1 << kNullCheckElimination)) && (opt_flags & MIR_IGNORE_NULL_CHECK)) {
193      return;
194    }
195    MarkSafepointPC(last_lir_insn_);
196  }
197}
198
199void Mir2Lir::MarkPossibleStackOverflowException() {
200  if (!Runtime::Current()->ExplicitStackOverflowChecks()) {
201    MarkSafepointPC(last_lir_insn_);
202  }
203}
204
205void Mir2Lir::ForceImplicitNullCheck(RegStorage reg, int opt_flags) {
206  if (!Runtime::Current()->ExplicitNullChecks()) {
207    if (!(cu_->disable_opt & (1 << kNullCheckElimination)) && (opt_flags & MIR_IGNORE_NULL_CHECK)) {
208      return;
209    }
210    // Force an implicit null check by performing a memory operation (load) from the given
211    // register with offset 0.  This will cause a signal if the register contains 0 (null).
212    RegStorage tmp = AllocTemp();
213    // TODO: for Mips, would be best to use rZERO as the bogus register target.
214    LIR* load = Load32Disp(reg, 0, tmp);
215    FreeTemp(tmp);
216    MarkSafepointPC(load);
217  }
218}
219
220void Mir2Lir::GenCompareAndBranch(Instruction::Code opcode, RegLocation rl_src1,
221                                  RegLocation rl_src2, LIR* taken,
222                                  LIR* fall_through) {
223  DCHECK(!rl_src1.fp);
224  DCHECK(!rl_src2.fp);
225  ConditionCode cond;
226  switch (opcode) {
227    case Instruction::IF_EQ:
228      cond = kCondEq;
229      break;
230    case Instruction::IF_NE:
231      cond = kCondNe;
232      break;
233    case Instruction::IF_LT:
234      cond = kCondLt;
235      break;
236    case Instruction::IF_GE:
237      cond = kCondGe;
238      break;
239    case Instruction::IF_GT:
240      cond = kCondGt;
241      break;
242    case Instruction::IF_LE:
243      cond = kCondLe;
244      break;
245    default:
246      cond = static_cast<ConditionCode>(0);
247      LOG(FATAL) << "Unexpected opcode " << opcode;
248  }
249
250  // Normalize such that if either operand is constant, src2 will be constant
251  if (rl_src1.is_const) {
252    RegLocation rl_temp = rl_src1;
253    rl_src1 = rl_src2;
254    rl_src2 = rl_temp;
255    cond = FlipComparisonOrder(cond);
256  }
257
258  rl_src1 = LoadValue(rl_src1);
259  // Is this really an immediate comparison?
260  if (rl_src2.is_const) {
261    // If it's already live in a register or not easily materialized, just keep going
262    RegLocation rl_temp = UpdateLoc(rl_src2);
263    if ((rl_temp.location == kLocDalvikFrame) &&
264        InexpensiveConstantInt(mir_graph_->ConstantValue(rl_src2))) {
265      // OK - convert this to a compare immediate and branch
266      OpCmpImmBranch(cond, rl_src1.reg, mir_graph_->ConstantValue(rl_src2), taken);
267      return;
268    }
269  }
270  rl_src2 = LoadValue(rl_src2);
271  OpCmpBranch(cond, rl_src1.reg, rl_src2.reg, taken);
272}
273
274void Mir2Lir::GenCompareZeroAndBranch(Instruction::Code opcode, RegLocation rl_src, LIR* taken,
275                                      LIR* fall_through) {
276  ConditionCode cond;
277  DCHECK(!rl_src.fp);
278  rl_src = LoadValue(rl_src);
279  switch (opcode) {
280    case Instruction::IF_EQZ:
281      cond = kCondEq;
282      break;
283    case Instruction::IF_NEZ:
284      cond = kCondNe;
285      break;
286    case Instruction::IF_LTZ:
287      cond = kCondLt;
288      break;
289    case Instruction::IF_GEZ:
290      cond = kCondGe;
291      break;
292    case Instruction::IF_GTZ:
293      cond = kCondGt;
294      break;
295    case Instruction::IF_LEZ:
296      cond = kCondLe;
297      break;
298    default:
299      cond = static_cast<ConditionCode>(0);
300      LOG(FATAL) << "Unexpected opcode " << opcode;
301  }
302  OpCmpImmBranch(cond, rl_src.reg, 0, taken);
303}
304
305void Mir2Lir::GenIntToLong(RegLocation rl_dest, RegLocation rl_src) {
306  RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
307  if (rl_src.location == kLocPhysReg) {
308    OpRegCopy(rl_result.reg, rl_src.reg);
309  } else {
310    LoadValueDirect(rl_src, rl_result.reg.GetLow());
311  }
312  OpRegRegImm(kOpAsr, rl_result.reg.GetHigh(), rl_result.reg.GetLow(), 31);
313  StoreValueWide(rl_dest, rl_result);
314}
315
316void Mir2Lir::GenIntNarrowing(Instruction::Code opcode, RegLocation rl_dest,
317                              RegLocation rl_src) {
318  rl_src = LoadValue(rl_src, kCoreReg);
319  RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
320  OpKind op = kOpInvalid;
321  switch (opcode) {
322    case Instruction::INT_TO_BYTE:
323      op = kOp2Byte;
324      break;
325    case Instruction::INT_TO_SHORT:
326       op = kOp2Short;
327       break;
328    case Instruction::INT_TO_CHAR:
329       op = kOp2Char;
330       break;
331    default:
332      LOG(ERROR) << "Bad int conversion type";
333  }
334  OpRegReg(op, rl_result.reg, rl_src.reg);
335  StoreValue(rl_dest, rl_result);
336}
337
338template <size_t pointer_size>
339static void GenNewArrayImpl(Mir2Lir* mir_to_lir, CompilationUnit* cu,
340                            uint32_t type_idx, RegLocation rl_dest,
341                            RegLocation rl_src) {
342  mir_to_lir->FlushAllRegs();  /* Everything to home location */
343  ThreadOffset<pointer_size> func_offset(-1);
344  const DexFile* dex_file = cu->dex_file;
345  CompilerDriver* driver = cu->compiler_driver;
346  if (cu->compiler_driver->CanAccessTypeWithoutChecks(cu->method_idx, *dex_file,
347                                                      type_idx)) {
348    bool is_type_initialized;  // Ignored as an array does not have an initializer.
349    bool use_direct_type_ptr;
350    uintptr_t direct_type_ptr;
351    bool is_finalizable;
352    if (kEmbedClassInCode &&
353        driver->CanEmbedTypeInCode(*dex_file, type_idx, &is_type_initialized, &use_direct_type_ptr,
354                                   &direct_type_ptr, &is_finalizable)) {
355      // The fast path.
356      if (!use_direct_type_ptr) {
357        mir_to_lir->LoadClassType(type_idx, kArg0);
358        func_offset = QUICK_ENTRYPOINT_OFFSET(pointer_size, pAllocArrayResolved);
359        mir_to_lir->CallRuntimeHelperRegMethodRegLocation(func_offset, mir_to_lir->TargetReg(kArg0),
360                                                          rl_src, true);
361      } else {
362        // Use the direct pointer.
363        func_offset = QUICK_ENTRYPOINT_OFFSET(pointer_size, pAllocArrayResolved);
364        mir_to_lir->CallRuntimeHelperImmMethodRegLocation(func_offset, direct_type_ptr, rl_src,
365                                                          true);
366      }
367    } else {
368      // The slow path.
369      func_offset = QUICK_ENTRYPOINT_OFFSET(pointer_size, pAllocArray);
370      mir_to_lir->CallRuntimeHelperImmMethodRegLocation(func_offset, type_idx, rl_src, true);
371    }
372    DCHECK_NE(func_offset.Int32Value(), -1);
373  } else {
374    func_offset = QUICK_ENTRYPOINT_OFFSET(pointer_size, pAllocArrayWithAccessCheck);
375    mir_to_lir->CallRuntimeHelperImmMethodRegLocation(func_offset, type_idx, rl_src, true);
376  }
377  RegLocation rl_result = mir_to_lir->GetReturn(kRefReg);
378  mir_to_lir->StoreValue(rl_dest, rl_result);
379}
380
381/*
382 * Let helper function take care of everything.  Will call
383 * Array::AllocFromCode(type_idx, method, count);
384 * Note: AllocFromCode will handle checks for errNegativeArraySize.
385 */
386void Mir2Lir::GenNewArray(uint32_t type_idx, RegLocation rl_dest,
387                          RegLocation rl_src) {
388  if (Is64BitInstructionSet(cu_->instruction_set)) {
389    GenNewArrayImpl<8>(this, cu_, type_idx, rl_dest, rl_src);
390  } else {
391    GenNewArrayImpl<4>(this, cu_, type_idx, rl_dest, rl_src);
392  }
393}
394
395template <size_t pointer_size>
396static void GenFilledNewArrayCall(Mir2Lir* mir_to_lir, CompilationUnit* cu, int elems, int type_idx) {
397  ThreadOffset<pointer_size> func_offset(-1);
398  if (cu->compiler_driver->CanAccessTypeWithoutChecks(cu->method_idx, *cu->dex_file,
399                                                      type_idx)) {
400    func_offset = QUICK_ENTRYPOINT_OFFSET(pointer_size, pCheckAndAllocArray);
401  } else {
402    func_offset = QUICK_ENTRYPOINT_OFFSET(pointer_size, pCheckAndAllocArrayWithAccessCheck);
403  }
404  mir_to_lir->CallRuntimeHelperImmMethodImm(func_offset, type_idx, elems, true);
405}
406
407/*
408 * Similar to GenNewArray, but with post-allocation initialization.
409 * Verifier guarantees we're dealing with an array class.  Current
410 * code throws runtime exception "bad Filled array req" for 'D' and 'J'.
411 * Current code also throws internal unimp if not 'L', '[' or 'I'.
412 */
413void Mir2Lir::GenFilledNewArray(CallInfo* info) {
414  int elems = info->num_arg_words;
415  int type_idx = info->index;
416  FlushAllRegs();  /* Everything to home location */
417  if (Is64BitInstructionSet(cu_->instruction_set)) {
418    GenFilledNewArrayCall<8>(this, cu_, elems, type_idx);
419  } else {
420    GenFilledNewArrayCall<4>(this, cu_, elems, type_idx);
421  }
422  FreeTemp(TargetReg(kArg2));
423  FreeTemp(TargetReg(kArg1));
424  /*
425   * NOTE: the implicit target for Instruction::FILLED_NEW_ARRAY is the
426   * return region.  Because AllocFromCode placed the new array
427   * in kRet0, we'll just lock it into place.  When debugger support is
428   * added, it may be necessary to additionally copy all return
429   * values to a home location in thread-local storage
430   */
431  LockTemp(TargetReg(kRet0));
432
433  // TODO: use the correct component size, currently all supported types
434  // share array alignment with ints (see comment at head of function)
435  size_t component_size = sizeof(int32_t);
436
437  // Having a range of 0 is legal
438  if (info->is_range && (elems > 0)) {
439    /*
440     * Bit of ugliness here.  We're going generate a mem copy loop
441     * on the register range, but it is possible that some regs
442     * in the range have been promoted.  This is unlikely, but
443     * before generating the copy, we'll just force a flush
444     * of any regs in the source range that have been promoted to
445     * home location.
446     */
447    for (int i = 0; i < elems; i++) {
448      RegLocation loc = UpdateLoc(info->args[i]);
449      if (loc.location == kLocPhysReg) {
450        Store32Disp(TargetReg(kSp), SRegOffset(loc.s_reg_low), loc.reg);
451      }
452    }
453    /*
454     * TUNING note: generated code here could be much improved, but
455     * this is an uncommon operation and isn't especially performance
456     * critical.
457     */
458    RegStorage r_src = AllocTemp();
459    RegStorage r_dst = AllocTemp();
460    RegStorage r_idx = AllocTemp();
461    RegStorage r_val;
462    switch (cu_->instruction_set) {
463      case kThumb2:
464        r_val = TargetReg(kLr);
465        break;
466      case kX86:
467      case kX86_64:
468        FreeTemp(TargetReg(kRet0));
469        r_val = AllocTemp();
470        break;
471      case kMips:
472        r_val = AllocTemp();
473        break;
474      default: LOG(FATAL) << "Unexpected instruction set: " << cu_->instruction_set;
475    }
476    // Set up source pointer
477    RegLocation rl_first = info->args[0];
478    OpRegRegImm(kOpAdd, r_src, TargetReg(kSp), SRegOffset(rl_first.s_reg_low));
479    // Set up the target pointer
480    OpRegRegImm(kOpAdd, r_dst, TargetReg(kRet0),
481                mirror::Array::DataOffset(component_size).Int32Value());
482    // Set up the loop counter (known to be > 0)
483    LoadConstant(r_idx, elems - 1);
484    // Generate the copy loop.  Going backwards for convenience
485    LIR* target = NewLIR0(kPseudoTargetLabel);
486    // Copy next element
487    LoadBaseIndexed(r_src, r_idx, r_val, 2, k32);
488    StoreBaseIndexed(r_dst, r_idx, r_val, 2, k32);
489    FreeTemp(r_val);
490    OpDecAndBranch(kCondGe, r_idx, target);
491    if (cu_->instruction_set == kX86 || cu_->instruction_set == kX86_64) {
492      // Restore the target pointer
493      OpRegRegImm(kOpAdd, TargetReg(kRet0), r_dst,
494                  -mirror::Array::DataOffset(component_size).Int32Value());
495    }
496  } else if (!info->is_range) {
497    // TUNING: interleave
498    for (int i = 0; i < elems; i++) {
499      RegLocation rl_arg = LoadValue(info->args[i], kCoreReg);
500      Store32Disp(TargetReg(kRet0),
501                    mirror::Array::DataOffset(component_size).Int32Value() + i * 4, rl_arg.reg);
502      // If the LoadValue caused a temp to be allocated, free it
503      if (IsTemp(rl_arg.reg)) {
504        FreeTemp(rl_arg.reg);
505      }
506    }
507  }
508  if (info->result.location != kLocInvalid) {
509    StoreValue(info->result, GetReturn(kRefReg));
510  }
511}
512
513//
514// Slow path to ensure a class is initialized for sget/sput.
515//
516class StaticFieldSlowPath : public Mir2Lir::LIRSlowPath {
517 public:
518  StaticFieldSlowPath(Mir2Lir* m2l, LIR* unresolved, LIR* uninit, LIR* cont, int storage_index,
519                      RegStorage r_base) :
520    LIRSlowPath(m2l, m2l->GetCurrentDexPc(), unresolved, cont), uninit_(uninit),
521               storage_index_(storage_index), r_base_(r_base) {
522  }
523
524  void Compile() {
525    LIR* unresolved_target = GenerateTargetLabel();
526    uninit_->target = unresolved_target;
527    if (Is64BitInstructionSet(cu_->instruction_set)) {
528      m2l_->CallRuntimeHelperImm(QUICK_ENTRYPOINT_OFFSET(8, pInitializeStaticStorage),
529                                 storage_index_, true);
530    } else {
531      m2l_->CallRuntimeHelperImm(QUICK_ENTRYPOINT_OFFSET(4, pInitializeStaticStorage),
532                                 storage_index_, true);
533    }
534    // Copy helper's result into r_base, a no-op on all but MIPS.
535    m2l_->OpRegCopy(r_base_,  m2l_->TargetReg(kRet0));
536
537    m2l_->OpUnconditionalBranch(cont_);
538  }
539
540 private:
541  LIR* const uninit_;
542  const int storage_index_;
543  const RegStorage r_base_;
544};
545
546template <size_t pointer_size>
547static void GenSputCall(Mir2Lir* mir_to_lir, bool is_long_or_double, bool is_object,
548                        const MirSFieldLoweringInfo* field_info, RegLocation rl_src) {
549  ThreadOffset<pointer_size> setter_offset =
550      is_long_or_double ? QUICK_ENTRYPOINT_OFFSET(pointer_size, pSet64Static)
551          : (is_object ? QUICK_ENTRYPOINT_OFFSET(pointer_size, pSetObjStatic)
552              : QUICK_ENTRYPOINT_OFFSET(pointer_size, pSet32Static));
553  mir_to_lir->CallRuntimeHelperImmRegLocation(setter_offset, field_info->FieldIndex(), rl_src,
554                                              true);
555}
556
557void Mir2Lir::GenSput(MIR* mir, RegLocation rl_src, bool is_long_or_double,
558                      bool is_object) {
559  const MirSFieldLoweringInfo& field_info = mir_graph_->GetSFieldLoweringInfo(mir);
560  cu_->compiler_driver->ProcessedStaticField(field_info.FastPut(), field_info.IsReferrersClass());
561  OpSize store_size = LoadStoreOpSize(is_long_or_double, is_object);
562  if (!SLOW_FIELD_PATH && field_info.FastPut() &&
563      (!field_info.IsVolatile() || SupportsVolatileLoadStore(store_size))) {
564    DCHECK_GE(field_info.FieldOffset().Int32Value(), 0);
565    RegStorage r_base;
566    if (field_info.IsReferrersClass()) {
567      // Fast path, static storage base is this method's class
568      RegLocation rl_method = LoadCurrMethod();
569      r_base = AllocTempRef();
570      LoadRefDisp(rl_method.reg, mirror::ArtMethod::DeclaringClassOffset().Int32Value(), r_base);
571      if (IsTemp(rl_method.reg)) {
572        FreeTemp(rl_method.reg);
573      }
574    } else {
575      // Medium path, static storage base in a different class which requires checks that the other
576      // class is initialized.
577      // TODO: remove initialized check now that we are initializing classes in the compiler driver.
578      DCHECK_NE(field_info.StorageIndex(), DexFile::kDexNoIndex);
579      // May do runtime call so everything to home locations.
580      FlushAllRegs();
581      // Using fixed register to sync with possible call to runtime support.
582      RegStorage r_method = TargetReg(kArg1);
583      LockTemp(r_method);
584      LoadCurrMethodDirect(r_method);
585      r_base = TargetReg(kArg0);
586      LockTemp(r_base);
587      LoadRefDisp(r_method, mirror::ArtMethod::DexCacheResolvedTypesOffset().Int32Value(), r_base);
588      int32_t offset_of_field = ObjArray::OffsetOfElement(field_info.StorageIndex()).Int32Value();
589      LoadRefDisp(r_base, offset_of_field, r_base);
590      // r_base now points at static storage (Class*) or NULL if the type is not yet resolved.
591      if (!field_info.IsInitialized() &&
592          (mir->optimization_flags & MIR_IGNORE_CLINIT_CHECK) == 0) {
593        // Check if r_base is NULL or a not yet initialized class.
594
595        // The slow path is invoked if the r_base is NULL or the class pointed
596        // to by it is not initialized.
597        LIR* unresolved_branch = OpCmpImmBranch(kCondEq, r_base, 0, NULL);
598        RegStorage r_tmp = TargetReg(kArg2);
599        LockTemp(r_tmp);
600        LIR* uninit_branch = OpCmpMemImmBranch(kCondLt, r_tmp, r_base,
601                                          mirror::Class::StatusOffset().Int32Value(),
602                                          mirror::Class::kStatusInitialized, NULL);
603        LIR* cont = NewLIR0(kPseudoTargetLabel);
604
605        AddSlowPath(new (arena_) StaticFieldSlowPath(this, unresolved_branch, uninit_branch, cont,
606                                                     field_info.StorageIndex(), r_base));
607
608        FreeTemp(r_tmp);
609        // Ensure load of status and load of value don't re-order.
610        GenMemBarrier(kLoadLoad);
611      }
612      FreeTemp(r_method);
613    }
614    // rBase now holds static storage base
615    RegisterClass reg_class = RegClassForFieldLoadStore(store_size, field_info.IsVolatile());
616    if (is_long_or_double) {
617      rl_src = LoadValueWide(rl_src, reg_class);
618    } else {
619      rl_src = LoadValue(rl_src, reg_class);
620    }
621    if (field_info.IsVolatile()) {
622      // There might have been a store before this volatile one so insert StoreStore barrier.
623      GenMemBarrier(kStoreStore);
624      StoreBaseDispVolatile(r_base, field_info.FieldOffset().Int32Value(), rl_src.reg, store_size);
625      // A load might follow the volatile store so insert a StoreLoad barrier.
626      GenMemBarrier(kStoreLoad);
627    } else {
628      StoreBaseDisp(r_base, field_info.FieldOffset().Int32Value(), rl_src.reg, store_size);
629    }
630    if (is_object && !mir_graph_->IsConstantNullRef(rl_src)) {
631      MarkGCCard(rl_src.reg, r_base);
632    }
633    FreeTemp(r_base);
634  } else {
635    FlushAllRegs();  // Everything to home locations
636    if (Is64BitInstructionSet(cu_->instruction_set)) {
637      GenSputCall<8>(this, is_long_or_double, is_object, &field_info, rl_src);
638    } else {
639      GenSputCall<4>(this, is_long_or_double, is_object, &field_info, rl_src);
640    }
641  }
642}
643
644template <size_t pointer_size>
645static void GenSgetCall(Mir2Lir* mir_to_lir, bool is_long_or_double, bool is_object,
646                        const MirSFieldLoweringInfo* field_info) {
647  ThreadOffset<pointer_size> getter_offset =
648      is_long_or_double ? QUICK_ENTRYPOINT_OFFSET(pointer_size, pGet64Static)
649          : (is_object ? QUICK_ENTRYPOINT_OFFSET(pointer_size, pGetObjStatic)
650              : QUICK_ENTRYPOINT_OFFSET(pointer_size, pGet32Static));
651  mir_to_lir->CallRuntimeHelperImm(getter_offset, field_info->FieldIndex(), true);
652}
653
654void Mir2Lir::GenSget(MIR* mir, RegLocation rl_dest,
655                      bool is_long_or_double, bool is_object) {
656  const MirSFieldLoweringInfo& field_info = mir_graph_->GetSFieldLoweringInfo(mir);
657  cu_->compiler_driver->ProcessedStaticField(field_info.FastGet(), field_info.IsReferrersClass());
658  OpSize load_size = LoadStoreOpSize(is_long_or_double, is_object);
659  if (!SLOW_FIELD_PATH && field_info.FastGet() &&
660      (!field_info.IsVolatile() || SupportsVolatileLoadStore(load_size))) {
661    DCHECK_GE(field_info.FieldOffset().Int32Value(), 0);
662    RegStorage r_base;
663    if (field_info.IsReferrersClass()) {
664      // Fast path, static storage base is this method's class
665      RegLocation rl_method  = LoadCurrMethod();
666      r_base = AllocTempRef();
667      LoadRefDisp(rl_method.reg, mirror::ArtMethod::DeclaringClassOffset().Int32Value(), r_base);
668    } else {
669      // Medium path, static storage base in a different class which requires checks that the other
670      // class is initialized
671      DCHECK_NE(field_info.StorageIndex(), DexFile::kDexNoIndex);
672      // May do runtime call so everything to home locations.
673      FlushAllRegs();
674      // Using fixed register to sync with possible call to runtime support.
675      RegStorage r_method = TargetReg(kArg1);
676      LockTemp(r_method);
677      LoadCurrMethodDirect(r_method);
678      r_base = TargetReg(kArg0);
679      LockTemp(r_base);
680      LoadRefDisp(r_method, mirror::ArtMethod::DexCacheResolvedTypesOffset().Int32Value(), r_base);
681      int32_t offset_of_field = ObjArray::OffsetOfElement(field_info.StorageIndex()).Int32Value();
682      LoadRefDisp(r_base, offset_of_field, r_base);
683      // r_base now points at static storage (Class*) or NULL if the type is not yet resolved.
684      if (!field_info.IsInitialized() &&
685          (mir->optimization_flags & MIR_IGNORE_CLINIT_CHECK) == 0) {
686        // Check if r_base is NULL or a not yet initialized class.
687
688        // The slow path is invoked if the r_base is NULL or the class pointed
689        // to by it is not initialized.
690        LIR* unresolved_branch = OpCmpImmBranch(kCondEq, r_base, 0, NULL);
691        RegStorage r_tmp = TargetReg(kArg2);
692        LockTemp(r_tmp);
693        LIR* uninit_branch = OpCmpMemImmBranch(kCondLt, r_tmp, r_base,
694                                          mirror::Class::StatusOffset().Int32Value(),
695                                          mirror::Class::kStatusInitialized, NULL);
696        LIR* cont = NewLIR0(kPseudoTargetLabel);
697
698        AddSlowPath(new (arena_) StaticFieldSlowPath(this, unresolved_branch, uninit_branch, cont,
699                                                     field_info.StorageIndex(), r_base));
700
701        FreeTemp(r_tmp);
702        // Ensure load of status and load of value don't re-order.
703        GenMemBarrier(kLoadLoad);
704      }
705      FreeTemp(r_method);
706    }
707    // r_base now holds static storage base
708    RegisterClass reg_class = RegClassForFieldLoadStore(load_size, field_info.IsVolatile());
709    RegLocation rl_result = EvalLoc(rl_dest, reg_class, true);
710
711    int field_offset = field_info.FieldOffset().Int32Value();
712    if (field_info.IsVolatile()) {
713      LoadBaseDispVolatile(r_base, field_offset, rl_result.reg, load_size);
714      // Without context sensitive analysis, we must issue the most conservative barriers.
715      // In this case, either a load or store may follow so we issue both barriers.
716      GenMemBarrier(kLoadLoad);
717      GenMemBarrier(kLoadStore);
718    } else {
719      LoadBaseDisp(r_base, field_offset, rl_result.reg, load_size);
720    }
721    FreeTemp(r_base);
722
723    if (is_long_or_double) {
724      StoreValueWide(rl_dest, rl_result);
725    } else {
726      StoreValue(rl_dest, rl_result);
727    }
728  } else {
729    FlushAllRegs();  // Everything to home locations
730    if (Is64BitInstructionSet(cu_->instruction_set)) {
731      GenSgetCall<8>(this, is_long_or_double, is_object, &field_info);
732    } else {
733      GenSgetCall<4>(this, is_long_or_double, is_object, &field_info);
734    }
735    if (is_long_or_double) {
736      RegLocation rl_result = GetReturnWide(LocToRegClass(rl_dest));
737      StoreValueWide(rl_dest, rl_result);
738    } else {
739      RegLocation rl_result = GetReturn(LocToRegClass(rl_dest));
740      StoreValue(rl_dest, rl_result);
741    }
742  }
743}
744
745// Generate code for all slow paths.
746void Mir2Lir::HandleSlowPaths() {
747  int n = slow_paths_.Size();
748  for (int i = 0; i < n; ++i) {
749    LIRSlowPath* slowpath = slow_paths_.Get(i);
750    slowpath->Compile();
751  }
752  slow_paths_.Reset();
753}
754
755template <size_t pointer_size>
756static void GenIgetCall(Mir2Lir* mir_to_lir, bool is_long_or_double, bool is_object,
757                        const MirIFieldLoweringInfo* field_info, RegLocation rl_obj) {
758  ThreadOffset<pointer_size> getter_offset =
759      is_long_or_double ? QUICK_ENTRYPOINT_OFFSET(pointer_size, pGet64Instance)
760          : (is_object ? QUICK_ENTRYPOINT_OFFSET(pointer_size, pGetObjInstance)
761              : QUICK_ENTRYPOINT_OFFSET(pointer_size, pGet32Instance));
762  mir_to_lir->CallRuntimeHelperImmRegLocation(getter_offset, field_info->FieldIndex(), rl_obj,
763                                              true);
764}
765
766void Mir2Lir::GenIGet(MIR* mir, int opt_flags, OpSize size,
767                      RegLocation rl_dest, RegLocation rl_obj, bool is_long_or_double,
768                      bool is_object) {
769  const MirIFieldLoweringInfo& field_info = mir_graph_->GetIFieldLoweringInfo(mir);
770  cu_->compiler_driver->ProcessedInstanceField(field_info.FastGet());
771  OpSize load_size = LoadStoreOpSize(is_long_or_double, is_object);
772  if (!SLOW_FIELD_PATH && field_info.FastGet() &&
773      (!field_info.IsVolatile() || SupportsVolatileLoadStore(load_size))) {
774    RegisterClass reg_class = RegClassForFieldLoadStore(load_size, field_info.IsVolatile());
775    DCHECK_GE(field_info.FieldOffset().Int32Value(), 0);
776    rl_obj = LoadValue(rl_obj, kRefReg);
777    GenNullCheck(rl_obj.reg, opt_flags);
778    RegLocation rl_result = EvalLoc(rl_dest, reg_class, true);
779    int field_offset = field_info.FieldOffset().Int32Value();
780    if (field_info.IsVolatile()) {
781      LoadBaseDispVolatile(rl_obj.reg, field_offset, rl_result.reg, load_size);
782      MarkPossibleNullPointerException(opt_flags);
783      // Without context sensitive analysis, we must issue the most conservative barriers.
784      // In this case, either a load or store may follow so we issue both barriers.
785      GenMemBarrier(kLoadLoad);
786      GenMemBarrier(kLoadStore);
787    } else {
788      LoadBaseDisp(rl_obj.reg, field_offset, rl_result.reg, load_size);
789      MarkPossibleNullPointerException(opt_flags);
790    }
791    if (is_long_or_double) {
792      StoreValueWide(rl_dest, rl_result);
793    } else {
794      StoreValue(rl_dest, rl_result);
795    }
796  } else {
797    if (Is64BitInstructionSet(cu_->instruction_set)) {
798      GenIgetCall<8>(this, is_long_or_double, is_object, &field_info, rl_obj);
799    } else {
800      GenIgetCall<4>(this, is_long_or_double, is_object, &field_info, rl_obj);
801    }
802    if (is_long_or_double) {
803      RegLocation rl_result = GetReturnWide(LocToRegClass(rl_dest));
804      StoreValueWide(rl_dest, rl_result);
805    } else {
806      RegLocation rl_result = GetReturn(LocToRegClass(rl_dest));
807      StoreValue(rl_dest, rl_result);
808    }
809  }
810}
811
812template <size_t pointer_size>
813static void GenIputCall(Mir2Lir* mir_to_lir, bool is_long_or_double, bool is_object,
814                        const MirIFieldLoweringInfo* field_info, RegLocation rl_obj,
815                        RegLocation rl_src) {
816  ThreadOffset<pointer_size> setter_offset =
817      is_long_or_double ? QUICK_ENTRYPOINT_OFFSET(pointer_size, pSet64Instance)
818          : (is_object ? QUICK_ENTRYPOINT_OFFSET(pointer_size, pSetObjInstance)
819              : QUICK_ENTRYPOINT_OFFSET(pointer_size, pSet32Instance));
820  mir_to_lir->CallRuntimeHelperImmRegLocationRegLocation(setter_offset, field_info->FieldIndex(),
821                                                         rl_obj, rl_src, true);
822}
823
824void Mir2Lir::GenIPut(MIR* mir, int opt_flags, OpSize size,
825                      RegLocation rl_src, RegLocation rl_obj, bool is_long_or_double,
826                      bool is_object) {
827  const MirIFieldLoweringInfo& field_info = mir_graph_->GetIFieldLoweringInfo(mir);
828  cu_->compiler_driver->ProcessedInstanceField(field_info.FastPut());
829  OpSize store_size = LoadStoreOpSize(is_long_or_double, is_object);
830  if (!SLOW_FIELD_PATH && field_info.FastPut() &&
831      (!field_info.IsVolatile() || SupportsVolatileLoadStore(store_size))) {
832    RegisterClass reg_class = RegClassForFieldLoadStore(store_size, field_info.IsVolatile());
833    DCHECK_GE(field_info.FieldOffset().Int32Value(), 0);
834    rl_obj = LoadValue(rl_obj, kRefReg);
835    if (is_long_or_double) {
836      rl_src = LoadValueWide(rl_src, reg_class);
837    } else {
838      rl_src = LoadValue(rl_src, reg_class);
839    }
840    GenNullCheck(rl_obj.reg, opt_flags);
841    int field_offset = field_info.FieldOffset().Int32Value();
842    if (field_info.IsVolatile()) {
843      // There might have been a store before this volatile one so insert StoreStore barrier.
844      GenMemBarrier(kStoreStore);
845      StoreBaseDispVolatile(rl_obj.reg, field_offset, rl_src.reg, store_size);
846      MarkPossibleNullPointerException(opt_flags);
847      // A load might follow the volatile store so insert a StoreLoad barrier.
848      GenMemBarrier(kStoreLoad);
849    } else {
850      StoreBaseDisp(rl_obj.reg, field_offset, rl_src.reg, store_size);
851      MarkPossibleNullPointerException(opt_flags);
852    }
853    if (is_object && !mir_graph_->IsConstantNullRef(rl_src)) {
854      MarkGCCard(rl_src.reg, rl_obj.reg);
855    }
856  } else {
857    if (Is64BitInstructionSet(cu_->instruction_set)) {
858      GenIputCall<8>(this, is_long_or_double, is_object, &field_info, rl_obj, rl_src);
859    } else {
860      GenIputCall<4>(this, is_long_or_double, is_object, &field_info, rl_obj, rl_src);
861    }
862  }
863}
864
865template <size_t pointer_size>
866static void GenArrayObjPutCall(Mir2Lir* mir_to_lir, bool needs_range_check, bool needs_null_check,
867                               RegLocation rl_array, RegLocation rl_index, RegLocation rl_src) {
868  ThreadOffset<pointer_size> helper = needs_range_check
869        ? (needs_null_check ? QUICK_ENTRYPOINT_OFFSET(pointer_size, pAputObjectWithNullAndBoundCheck)
870                            : QUICK_ENTRYPOINT_OFFSET(pointer_size, pAputObjectWithBoundCheck))
871        : QUICK_ENTRYPOINT_OFFSET(pointer_size, pAputObject);
872  mir_to_lir->CallRuntimeHelperRegLocationRegLocationRegLocation(helper, rl_array, rl_index, rl_src,
873                                                                 true);
874}
875
876void Mir2Lir::GenArrayObjPut(int opt_flags, RegLocation rl_array, RegLocation rl_index,
877                             RegLocation rl_src) {
878  bool needs_range_check = !(opt_flags & MIR_IGNORE_RANGE_CHECK);
879  bool needs_null_check = !((cu_->disable_opt & (1 << kNullCheckElimination)) &&
880      (opt_flags & MIR_IGNORE_NULL_CHECK));
881  if (Is64BitInstructionSet(cu_->instruction_set)) {
882    GenArrayObjPutCall<8>(this, needs_range_check, needs_null_check, rl_array, rl_index, rl_src);
883  } else {
884    GenArrayObjPutCall<4>(this, needs_range_check, needs_null_check, rl_array, rl_index, rl_src);
885  }
886}
887
888void Mir2Lir::GenConstClass(uint32_t type_idx, RegLocation rl_dest) {
889  RegLocation rl_method = LoadCurrMethod();
890  RegStorage res_reg = AllocTemp();
891  RegLocation rl_result = EvalLoc(rl_dest, kRefReg, true);
892  if (!cu_->compiler_driver->CanAccessTypeWithoutChecks(cu_->method_idx,
893                                                   *cu_->dex_file,
894                                                   type_idx)) {
895    // Call out to helper which resolves type and verifies access.
896    // Resolved type returned in kRet0.
897    if (Is64BitInstructionSet(cu_->instruction_set)) {
898      CallRuntimeHelperImmReg(QUICK_ENTRYPOINT_OFFSET(8, pInitializeTypeAndVerifyAccess),
899                              type_idx, rl_method.reg, true);
900    } else {
901      CallRuntimeHelperImmReg(QUICK_ENTRYPOINT_OFFSET(4, pInitializeTypeAndVerifyAccess),
902                              type_idx, rl_method.reg, true);
903    }
904    RegLocation rl_result = GetReturn(kRefReg);
905    StoreValue(rl_dest, rl_result);
906  } else {
907    // We're don't need access checks, load type from dex cache
908    int32_t dex_cache_offset =
909        mirror::ArtMethod::DexCacheResolvedTypesOffset().Int32Value();
910    LoadRefDisp(rl_method.reg, dex_cache_offset, res_reg);
911    int32_t offset_of_type = ClassArray::OffsetOfElement(type_idx).Int32Value();
912    LoadRefDisp(res_reg, offset_of_type, rl_result.reg);
913    if (!cu_->compiler_driver->CanAssumeTypeIsPresentInDexCache(*cu_->dex_file,
914        type_idx) || SLOW_TYPE_PATH) {
915      // Slow path, at runtime test if type is null and if so initialize
916      FlushAllRegs();
917      LIR* branch = OpCmpImmBranch(kCondEq, rl_result.reg, 0, NULL);
918      LIR* cont = NewLIR0(kPseudoTargetLabel);
919
920      // Object to generate the slow path for class resolution.
921      class SlowPath : public LIRSlowPath {
922       public:
923        SlowPath(Mir2Lir* m2l, LIR* fromfast, LIR* cont, const int type_idx,
924                 const RegLocation& rl_method, const RegLocation& rl_result) :
925                   LIRSlowPath(m2l, m2l->GetCurrentDexPc(), fromfast, cont), type_idx_(type_idx),
926                   rl_method_(rl_method), rl_result_(rl_result) {
927        }
928
929        void Compile() {
930          GenerateTargetLabel();
931
932          if (Is64BitInstructionSet(cu_->instruction_set)) {
933            m2l_->CallRuntimeHelperImmReg(QUICK_ENTRYPOINT_OFFSET(8, pInitializeType), type_idx_,
934                                          rl_method_.reg, true);
935          } else {
936            m2l_->CallRuntimeHelperImmReg(QUICK_ENTRYPOINT_OFFSET(4, pInitializeType), type_idx_,
937                                                      rl_method_.reg, true);
938          }
939          m2l_->OpRegCopy(rl_result_.reg,  m2l_->TargetReg(kRet0));
940
941          m2l_->OpUnconditionalBranch(cont_);
942        }
943
944       private:
945        const int type_idx_;
946        const RegLocation rl_method_;
947        const RegLocation rl_result_;
948      };
949
950      // Add to list for future.
951      AddSlowPath(new (arena_) SlowPath(this, branch, cont, type_idx, rl_method, rl_result));
952
953      StoreValue(rl_dest, rl_result);
954     } else {
955      // Fast path, we're done - just store result
956      StoreValue(rl_dest, rl_result);
957    }
958  }
959}
960
961void Mir2Lir::GenConstString(uint32_t string_idx, RegLocation rl_dest) {
962  /* NOTE: Most strings should be available at compile time */
963  int32_t offset_of_string = mirror::ObjectArray<mirror::String>::OffsetOfElement(string_idx).
964                                                                                      Int32Value();
965  if (!cu_->compiler_driver->CanAssumeStringIsPresentInDexCache(
966      *cu_->dex_file, string_idx) || SLOW_STRING_PATH) {
967    // slow path, resolve string if not in dex cache
968    FlushAllRegs();
969    LockCallTemps();  // Using explicit registers
970
971    // If the Method* is already in a register, we can save a copy.
972    RegLocation rl_method = mir_graph_->GetMethodLoc();
973    RegStorage r_method;
974    if (rl_method.location == kLocPhysReg) {
975      // A temp would conflict with register use below.
976      DCHECK(!IsTemp(rl_method.reg));
977      r_method = rl_method.reg;
978    } else {
979      r_method = TargetReg(kArg2);
980      LoadCurrMethodDirect(r_method);
981    }
982    LoadRefDisp(r_method, mirror::ArtMethod::DexCacheStringsOffset().Int32Value(),
983                TargetReg(kArg0));
984
985    // Might call out to helper, which will return resolved string in kRet0
986    LoadRefDisp(TargetReg(kArg0), offset_of_string, TargetReg(kRet0));
987    LIR* fromfast = OpCmpImmBranch(kCondEq, TargetReg(kRet0), 0, NULL);
988    LIR* cont = NewLIR0(kPseudoTargetLabel);
989
990    {
991      // Object to generate the slow path for string resolution.
992      class SlowPath : public LIRSlowPath {
993       public:
994        SlowPath(Mir2Lir* m2l, LIR* fromfast, LIR* cont, RegStorage r_method, int32_t string_idx) :
995          LIRSlowPath(m2l, m2l->GetCurrentDexPc(), fromfast, cont),
996          r_method_(r_method), string_idx_(string_idx) {
997        }
998
999        void Compile() {
1000          GenerateTargetLabel();
1001          if (Is64BitInstructionSet(cu_->instruction_set)) {
1002            m2l_->CallRuntimeHelperRegImm(QUICK_ENTRYPOINT_OFFSET(8, pResolveString),
1003                                          r_method_, string_idx_, true);
1004          } else {
1005            m2l_->CallRuntimeHelperRegImm(QUICK_ENTRYPOINT_OFFSET(4, pResolveString),
1006                                          r_method_, string_idx_, true);
1007          }
1008          m2l_->OpUnconditionalBranch(cont_);
1009        }
1010
1011       private:
1012         const RegStorage r_method_;
1013         const int32_t string_idx_;
1014      };
1015
1016      AddSlowPath(new (arena_) SlowPath(this, fromfast, cont, r_method, string_idx));
1017    }
1018
1019    GenBarrier();
1020    StoreValue(rl_dest, GetReturn(kRefReg));
1021  } else {
1022    RegLocation rl_method = LoadCurrMethod();
1023    RegStorage res_reg = AllocTempRef();
1024    RegLocation rl_result = EvalLoc(rl_dest, kRefReg, true);
1025    LoadRefDisp(rl_method.reg, mirror::ArtMethod::DexCacheStringsOffset().Int32Value(), res_reg);
1026    LoadRefDisp(res_reg, offset_of_string, rl_result.reg);
1027    StoreValue(rl_dest, rl_result);
1028  }
1029}
1030
1031template <size_t pointer_size>
1032static void GenNewInstanceImpl(Mir2Lir* mir_to_lir, CompilationUnit* cu, uint32_t type_idx,
1033                               RegLocation rl_dest) {
1034  mir_to_lir->FlushAllRegs();  /* Everything to home location */
1035  // alloc will always check for resolution, do we also need to verify
1036  // access because the verifier was unable to?
1037  ThreadOffset<pointer_size> func_offset(-1);
1038  const DexFile* dex_file = cu->dex_file;
1039  CompilerDriver* driver = cu->compiler_driver;
1040  if (driver->CanAccessInstantiableTypeWithoutChecks(
1041      cu->method_idx, *dex_file, type_idx)) {
1042    bool is_type_initialized;
1043    bool use_direct_type_ptr;
1044    uintptr_t direct_type_ptr;
1045    bool is_finalizable;
1046    if (kEmbedClassInCode &&
1047        driver->CanEmbedTypeInCode(*dex_file, type_idx, &is_type_initialized, &use_direct_type_ptr,
1048                                   &direct_type_ptr, &is_finalizable) &&
1049                                   !is_finalizable) {
1050      // The fast path.
1051      if (!use_direct_type_ptr) {
1052        mir_to_lir->LoadClassType(type_idx, kArg0);
1053        if (!is_type_initialized) {
1054          func_offset = QUICK_ENTRYPOINT_OFFSET(pointer_size, pAllocObjectResolved);
1055          mir_to_lir->CallRuntimeHelperRegMethod(func_offset, mir_to_lir->TargetReg(kArg0), true);
1056        } else {
1057          func_offset = QUICK_ENTRYPOINT_OFFSET(pointer_size, pAllocObjectInitialized);
1058          mir_to_lir->CallRuntimeHelperRegMethod(func_offset, mir_to_lir->TargetReg(kArg0), true);
1059        }
1060      } else {
1061        // Use the direct pointer.
1062        if (!is_type_initialized) {
1063          func_offset = QUICK_ENTRYPOINT_OFFSET(pointer_size, pAllocObjectResolved);
1064          mir_to_lir->CallRuntimeHelperImmMethod(func_offset, direct_type_ptr, true);
1065        } else {
1066          func_offset = QUICK_ENTRYPOINT_OFFSET(pointer_size, pAllocObjectInitialized);
1067          mir_to_lir->CallRuntimeHelperImmMethod(func_offset, direct_type_ptr, true);
1068        }
1069      }
1070    } else {
1071      // The slow path.
1072      DCHECK_EQ(func_offset.Int32Value(), -1);
1073      func_offset = QUICK_ENTRYPOINT_OFFSET(pointer_size, pAllocObject);
1074      mir_to_lir->CallRuntimeHelperImmMethod(func_offset, type_idx, true);
1075    }
1076    DCHECK_NE(func_offset.Int32Value(), -1);
1077  } else {
1078    func_offset = QUICK_ENTRYPOINT_OFFSET(pointer_size, pAllocObjectWithAccessCheck);
1079    mir_to_lir->CallRuntimeHelperImmMethod(func_offset, type_idx, true);
1080  }
1081  RegLocation rl_result = mir_to_lir->GetReturn(kRefReg);
1082  mir_to_lir->StoreValue(rl_dest, rl_result);
1083}
1084
1085/*
1086 * Let helper function take care of everything.  Will
1087 * call Class::NewInstanceFromCode(type_idx, method);
1088 */
1089void Mir2Lir::GenNewInstance(uint32_t type_idx, RegLocation rl_dest) {
1090  if (Is64BitInstructionSet(cu_->instruction_set)) {
1091    GenNewInstanceImpl<8>(this, cu_, type_idx, rl_dest);
1092  } else {
1093    GenNewInstanceImpl<4>(this, cu_, type_idx, rl_dest);
1094  }
1095}
1096
1097void Mir2Lir::GenThrow(RegLocation rl_src) {
1098  FlushAllRegs();
1099  if (Is64BitInstructionSet(cu_->instruction_set)) {
1100    CallRuntimeHelperRegLocation(QUICK_ENTRYPOINT_OFFSET(8, pDeliverException), rl_src, true);
1101  } else {
1102    CallRuntimeHelperRegLocation(QUICK_ENTRYPOINT_OFFSET(4, pDeliverException), rl_src, true);
1103  }
1104}
1105
1106// For final classes there are no sub-classes to check and so we can answer the instance-of
1107// question with simple comparisons.
1108void Mir2Lir::GenInstanceofFinal(bool use_declaring_class, uint32_t type_idx, RegLocation rl_dest,
1109                                 RegLocation rl_src) {
1110  // X86 has its own implementation.
1111  DCHECK(cu_->instruction_set != kX86 && cu_->instruction_set != kX86_64);
1112
1113  RegLocation object = LoadValue(rl_src, kRefReg);
1114  RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
1115  RegStorage result_reg = rl_result.reg;
1116  if (result_reg == object.reg) {
1117    result_reg = AllocTypedTemp(false, kCoreReg);
1118  }
1119  LoadConstant(result_reg, 0);     // assume false
1120  LIR* null_branchover = OpCmpImmBranch(kCondEq, object.reg, 0, NULL);
1121
1122  RegStorage check_class = AllocTypedTemp(false, kRefReg);
1123  RegStorage object_class = AllocTypedTemp(false, kRefReg);
1124
1125  LoadCurrMethodDirect(check_class);
1126  if (use_declaring_class) {
1127    LoadRefDisp(check_class, mirror::ArtMethod::DeclaringClassOffset().Int32Value(), check_class);
1128    LoadRefDisp(object.reg,  mirror::Object::ClassOffset().Int32Value(), object_class);
1129  } else {
1130    LoadRefDisp(check_class, mirror::ArtMethod::DexCacheResolvedTypesOffset().Int32Value(),
1131                check_class);
1132    LoadRefDisp(object.reg,  mirror::Object::ClassOffset().Int32Value(), object_class);
1133    int32_t offset_of_type = ClassArray::OffsetOfElement(type_idx).Int32Value();
1134    LoadRefDisp(check_class, offset_of_type, check_class);
1135  }
1136
1137  LIR* ne_branchover = NULL;
1138  // FIXME: what should we be comparing here? compressed or decompressed references?
1139  if (cu_->instruction_set == kThumb2) {
1140    OpRegReg(kOpCmp, check_class, object_class);  // Same?
1141    LIR* it = OpIT(kCondEq, "");   // if-convert the test
1142    LoadConstant(result_reg, 1);     // .eq case - load true
1143    OpEndIT(it);
1144  } else {
1145    ne_branchover = OpCmpBranch(kCondNe, check_class, object_class, NULL);
1146    LoadConstant(result_reg, 1);     // eq case - load true
1147  }
1148  LIR* target = NewLIR0(kPseudoTargetLabel);
1149  null_branchover->target = target;
1150  if (ne_branchover != NULL) {
1151    ne_branchover->target = target;
1152  }
1153  FreeTemp(object_class);
1154  FreeTemp(check_class);
1155  if (IsTemp(result_reg)) {
1156    OpRegCopy(rl_result.reg, result_reg);
1157    FreeTemp(result_reg);
1158  }
1159  StoreValue(rl_dest, rl_result);
1160}
1161
1162void Mir2Lir::GenInstanceofCallingHelper(bool needs_access_check, bool type_known_final,
1163                                         bool type_known_abstract, bool use_declaring_class,
1164                                         bool can_assume_type_is_in_dex_cache,
1165                                         uint32_t type_idx, RegLocation rl_dest,
1166                                         RegLocation rl_src) {
1167  // X86 has its own implementation.
1168  DCHECK(cu_->instruction_set != kX86 && cu_->instruction_set != kX86_64);
1169
1170  FlushAllRegs();
1171  // May generate a call - use explicit registers
1172  LockCallTemps();
1173  LoadCurrMethodDirect(TargetReg(kArg1));  // kArg1 <= current Method*
1174  RegStorage class_reg = TargetReg(kArg2);  // kArg2 will hold the Class*
1175  if (needs_access_check) {
1176    // Check we have access to type_idx and if not throw IllegalAccessError,
1177    // returns Class* in kArg0
1178    if (Is64BitInstructionSet(cu_->instruction_set)) {
1179      CallRuntimeHelperImm(QUICK_ENTRYPOINT_OFFSET(8, pInitializeTypeAndVerifyAccess),
1180                           type_idx, true);
1181    } else {
1182      CallRuntimeHelperImm(QUICK_ENTRYPOINT_OFFSET(4, pInitializeTypeAndVerifyAccess),
1183                           type_idx, true);
1184    }
1185    OpRegCopy(class_reg, TargetReg(kRet0));  // Align usage with fast path
1186    LoadValueDirectFixed(rl_src, TargetReg(kArg0));  // kArg0 <= ref
1187  } else if (use_declaring_class) {
1188    LoadValueDirectFixed(rl_src, TargetReg(kArg0));  // kArg0 <= ref
1189    LoadRefDisp(TargetReg(kArg1), mirror::ArtMethod::DeclaringClassOffset().Int32Value(),
1190                 class_reg);
1191  } else {
1192    // Load dex cache entry into class_reg (kArg2)
1193    LoadValueDirectFixed(rl_src, TargetReg(kArg0));  // kArg0 <= ref
1194    LoadRefDisp(TargetReg(kArg1), mirror::ArtMethod::DexCacheResolvedTypesOffset().Int32Value(),
1195                class_reg);
1196    int32_t offset_of_type = ClassArray::OffsetOfElement(type_idx).Int32Value();
1197    LoadRefDisp(class_reg, offset_of_type, class_reg);
1198    if (!can_assume_type_is_in_dex_cache) {
1199      // Need to test presence of type in dex cache at runtime
1200      LIR* hop_branch = OpCmpImmBranch(kCondNe, class_reg, 0, NULL);
1201      // Not resolved
1202      // Call out to helper, which will return resolved type in kRet0
1203      if (Is64BitInstructionSet(cu_->instruction_set)) {
1204        CallRuntimeHelperImm(QUICK_ENTRYPOINT_OFFSET(8, pInitializeType), type_idx, true);
1205      } else {
1206        CallRuntimeHelperImm(QUICK_ENTRYPOINT_OFFSET(4, pInitializeType), type_idx, true);
1207      }
1208      OpRegCopy(TargetReg(kArg2), TargetReg(kRet0));  // Align usage with fast path
1209      LoadValueDirectFixed(rl_src, TargetReg(kArg0));  /* reload Ref */
1210      // Rejoin code paths
1211      LIR* hop_target = NewLIR0(kPseudoTargetLabel);
1212      hop_branch->target = hop_target;
1213    }
1214  }
1215  /* kArg0 is ref, kArg2 is class. If ref==null, use directly as bool result */
1216  RegLocation rl_result = GetReturn(kRefReg);
1217  if (cu_->instruction_set == kMips) {
1218    // On MIPS rArg0 != rl_result, place false in result if branch is taken.
1219    LoadConstant(rl_result.reg, 0);
1220  }
1221  LIR* branch1 = OpCmpImmBranch(kCondEq, TargetReg(kArg0), 0, NULL);
1222
1223  /* load object->klass_ */
1224  DCHECK_EQ(mirror::Object::ClassOffset().Int32Value(), 0);
1225  LoadRefDisp(TargetReg(kArg0),  mirror::Object::ClassOffset().Int32Value(), TargetReg(kArg1));
1226  /* kArg0 is ref, kArg1 is ref->klass_, kArg2 is class */
1227  LIR* branchover = NULL;
1228  if (type_known_final) {
1229    // rl_result == ref == null == 0.
1230    if (cu_->instruction_set == kThumb2) {
1231      OpRegReg(kOpCmp, TargetReg(kArg1), TargetReg(kArg2));  // Same?
1232      LIR* it = OpIT(kCondEq, "E");   // if-convert the test
1233      LoadConstant(rl_result.reg, 1);     // .eq case - load true
1234      LoadConstant(rl_result.reg, 0);     // .ne case - load false
1235      OpEndIT(it);
1236    } else {
1237      LoadConstant(rl_result.reg, 0);     // ne case - load false
1238      branchover = OpCmpBranch(kCondNe, TargetReg(kArg1), TargetReg(kArg2), NULL);
1239      LoadConstant(rl_result.reg, 1);     // eq case - load true
1240    }
1241  } else {
1242    if (cu_->instruction_set == kThumb2) {
1243      RegStorage r_tgt = Is64BitInstructionSet(cu_->instruction_set) ?
1244          LoadHelper(QUICK_ENTRYPOINT_OFFSET(8, pInstanceofNonTrivial)) :
1245          LoadHelper(QUICK_ENTRYPOINT_OFFSET(4, pInstanceofNonTrivial));
1246      LIR* it = nullptr;
1247      if (!type_known_abstract) {
1248      /* Uses conditional nullification */
1249        OpRegReg(kOpCmp, TargetReg(kArg1), TargetReg(kArg2));  // Same?
1250        it = OpIT(kCondEq, "EE");   // if-convert the test
1251        LoadConstant(TargetReg(kArg0), 1);     // .eq case - load true
1252      }
1253      OpRegCopy(TargetReg(kArg0), TargetReg(kArg2));    // .ne case - arg0 <= class
1254      OpReg(kOpBlx, r_tgt);    // .ne case: helper(class, ref->class)
1255      if (it != nullptr) {
1256        OpEndIT(it);
1257      }
1258      FreeTemp(r_tgt);
1259    } else {
1260      if (!type_known_abstract) {
1261        /* Uses branchovers */
1262        LoadConstant(rl_result.reg, 1);     // assume true
1263        branchover = OpCmpBranch(kCondEq, TargetReg(kArg1), TargetReg(kArg2), NULL);
1264      }
1265      RegStorage r_tgt = Is64BitInstructionSet(cu_->instruction_set) ?
1266          LoadHelper(QUICK_ENTRYPOINT_OFFSET(8, pInstanceofNonTrivial)) :
1267          LoadHelper(QUICK_ENTRYPOINT_OFFSET(4, pInstanceofNonTrivial));
1268      OpRegCopy(TargetReg(kArg0), TargetReg(kArg2));    // .ne case - arg0 <= class
1269      OpReg(kOpBlx, r_tgt);    // .ne case: helper(class, ref->class)
1270      FreeTemp(r_tgt);
1271    }
1272  }
1273  // TODO: only clobber when type isn't final?
1274  ClobberCallerSave();
1275  /* branch targets here */
1276  LIR* target = NewLIR0(kPseudoTargetLabel);
1277  StoreValue(rl_dest, rl_result);
1278  branch1->target = target;
1279  if (branchover != NULL) {
1280    branchover->target = target;
1281  }
1282}
1283
1284void Mir2Lir::GenInstanceof(uint32_t type_idx, RegLocation rl_dest, RegLocation rl_src) {
1285  bool type_known_final, type_known_abstract, use_declaring_class;
1286  bool needs_access_check = !cu_->compiler_driver->CanAccessTypeWithoutChecks(cu_->method_idx,
1287                                                                              *cu_->dex_file,
1288                                                                              type_idx,
1289                                                                              &type_known_final,
1290                                                                              &type_known_abstract,
1291                                                                              &use_declaring_class);
1292  bool can_assume_type_is_in_dex_cache = !needs_access_check &&
1293      cu_->compiler_driver->CanAssumeTypeIsPresentInDexCache(*cu_->dex_file, type_idx);
1294
1295  if ((use_declaring_class || can_assume_type_is_in_dex_cache) && type_known_final) {
1296    GenInstanceofFinal(use_declaring_class, type_idx, rl_dest, rl_src);
1297  } else {
1298    GenInstanceofCallingHelper(needs_access_check, type_known_final, type_known_abstract,
1299                               use_declaring_class, can_assume_type_is_in_dex_cache,
1300                               type_idx, rl_dest, rl_src);
1301  }
1302}
1303
1304void Mir2Lir::GenCheckCast(uint32_t insn_idx, uint32_t type_idx, RegLocation rl_src) {
1305  bool type_known_final, type_known_abstract, use_declaring_class;
1306  bool needs_access_check = !cu_->compiler_driver->CanAccessTypeWithoutChecks(cu_->method_idx,
1307                                                                              *cu_->dex_file,
1308                                                                              type_idx,
1309                                                                              &type_known_final,
1310                                                                              &type_known_abstract,
1311                                                                              &use_declaring_class);
1312  // Note: currently type_known_final is unused, as optimizing will only improve the performance
1313  // of the exception throw path.
1314  DexCompilationUnit* cu = mir_graph_->GetCurrentDexCompilationUnit();
1315  if (!needs_access_check && cu_->compiler_driver->IsSafeCast(cu, insn_idx)) {
1316    // Verifier type analysis proved this check cast would never cause an exception.
1317    return;
1318  }
1319  FlushAllRegs();
1320  // May generate a call - use explicit registers
1321  LockCallTemps();
1322  LoadCurrMethodDirect(TargetReg(kArg1));  // kArg1 <= current Method*
1323  RegStorage class_reg = TargetReg(kArg2);  // kArg2 will hold the Class*
1324  if (needs_access_check) {
1325    // Check we have access to type_idx and if not throw IllegalAccessError,
1326    // returns Class* in kRet0
1327    // InitializeTypeAndVerifyAccess(idx, method)
1328    if (Is64BitInstructionSet(cu_->instruction_set)) {
1329      CallRuntimeHelperImmReg(QUICK_ENTRYPOINT_OFFSET(8, pInitializeTypeAndVerifyAccess),
1330                              type_idx, TargetReg(kArg1), true);
1331    } else {
1332      CallRuntimeHelperImmReg(QUICK_ENTRYPOINT_OFFSET(4, pInitializeTypeAndVerifyAccess),
1333                              type_idx, TargetReg(kArg1), true);
1334    }
1335    OpRegCopy(class_reg, TargetReg(kRet0));  // Align usage with fast path
1336  } else if (use_declaring_class) {
1337    LoadRefDisp(TargetReg(kArg1), mirror::ArtMethod::DeclaringClassOffset().Int32Value(),
1338                class_reg);
1339  } else {
1340    // Load dex cache entry into class_reg (kArg2)
1341    LoadRefDisp(TargetReg(kArg1), mirror::ArtMethod::DexCacheResolvedTypesOffset().Int32Value(),
1342                class_reg);
1343    int32_t offset_of_type = ClassArray::OffsetOfElement(type_idx).Int32Value();
1344    LoadRefDisp(class_reg, offset_of_type, class_reg);
1345    if (!cu_->compiler_driver->CanAssumeTypeIsPresentInDexCache(*cu_->dex_file, type_idx)) {
1346      // Need to test presence of type in dex cache at runtime
1347      LIR* hop_branch = OpCmpImmBranch(kCondEq, class_reg, 0, NULL);
1348      LIR* cont = NewLIR0(kPseudoTargetLabel);
1349
1350      // Slow path to initialize the type.  Executed if the type is NULL.
1351      class SlowPath : public LIRSlowPath {
1352       public:
1353        SlowPath(Mir2Lir* m2l, LIR* fromfast, LIR* cont, const int type_idx,
1354                 const RegStorage class_reg) :
1355                   LIRSlowPath(m2l, m2l->GetCurrentDexPc(), fromfast, cont), type_idx_(type_idx),
1356                   class_reg_(class_reg) {
1357        }
1358
1359        void Compile() {
1360          GenerateTargetLabel();
1361
1362          // Call out to helper, which will return resolved type in kArg0
1363          // InitializeTypeFromCode(idx, method)
1364          if (Is64BitInstructionSet(m2l_->cu_->instruction_set)) {
1365            m2l_->CallRuntimeHelperImmReg(QUICK_ENTRYPOINT_OFFSET(8, pInitializeType), type_idx_,
1366                                          m2l_->TargetReg(kArg1), true);
1367          } else {
1368            m2l_->CallRuntimeHelperImmReg(QUICK_ENTRYPOINT_OFFSET(4, pInitializeType), type_idx_,
1369                                                      m2l_->TargetReg(kArg1), true);
1370          }
1371          m2l_->OpRegCopy(class_reg_, m2l_->TargetReg(kRet0));  // Align usage with fast path
1372          m2l_->OpUnconditionalBranch(cont_);
1373        }
1374
1375       public:
1376        const int type_idx_;
1377        const RegStorage class_reg_;
1378      };
1379
1380      AddSlowPath(new (arena_) SlowPath(this, hop_branch, cont, type_idx, class_reg));
1381    }
1382  }
1383  // At this point, class_reg (kArg2) has class
1384  LoadValueDirectFixed(rl_src, TargetReg(kArg0));  // kArg0 <= ref
1385
1386  // Slow path for the case where the classes are not equal.  In this case we need
1387  // to call a helper function to do the check.
1388  class SlowPath : public LIRSlowPath {
1389   public:
1390    SlowPath(Mir2Lir* m2l, LIR* fromfast, LIR* cont, bool load):
1391               LIRSlowPath(m2l, m2l->GetCurrentDexPc(), fromfast, cont), load_(load) {
1392    }
1393
1394    void Compile() {
1395      GenerateTargetLabel();
1396
1397      if (load_) {
1398        m2l_->LoadRefDisp(m2l_->TargetReg(kArg0), mirror::Object::ClassOffset().Int32Value(),
1399                          m2l_->TargetReg(kArg1));
1400      }
1401      if (Is64BitInstructionSet(m2l_->cu_->instruction_set)) {
1402        m2l_->CallRuntimeHelperRegReg(QUICK_ENTRYPOINT_OFFSET(8, pCheckCast), m2l_->TargetReg(kArg2),
1403                                      m2l_->TargetReg(kArg1), true);
1404      } else {
1405        m2l_->CallRuntimeHelperRegReg(QUICK_ENTRYPOINT_OFFSET(4, pCheckCast), m2l_->TargetReg(kArg2),
1406                                              m2l_->TargetReg(kArg1), true);
1407      }
1408
1409      m2l_->OpUnconditionalBranch(cont_);
1410    }
1411
1412   private:
1413    const bool load_;
1414  };
1415
1416  if (type_known_abstract) {
1417    // Easier case, run slow path if target is non-null (slow path will load from target)
1418    LIR* branch = OpCmpImmBranch(kCondNe, TargetReg(kArg0), 0, NULL);
1419    LIR* cont = NewLIR0(kPseudoTargetLabel);
1420    AddSlowPath(new (arena_) SlowPath(this, branch, cont, true));
1421  } else {
1422    // Harder, more common case.  We need to generate a forward branch over the load
1423    // if the target is null.  If it's non-null we perform the load and branch to the
1424    // slow path if the classes are not equal.
1425
1426    /* Null is OK - continue */
1427    LIR* branch1 = OpCmpImmBranch(kCondEq, TargetReg(kArg0), 0, NULL);
1428    /* load object->klass_ */
1429    DCHECK_EQ(mirror::Object::ClassOffset().Int32Value(), 0);
1430    LoadRefDisp(TargetReg(kArg0), mirror::Object::ClassOffset().Int32Value(), TargetReg(kArg1));
1431
1432    LIR* branch2 = OpCmpBranch(kCondNe, TargetReg(kArg1), class_reg, NULL);
1433    LIR* cont = NewLIR0(kPseudoTargetLabel);
1434
1435    // Add the slow path that will not perform load since this is already done.
1436    AddSlowPath(new (arena_) SlowPath(this, branch2, cont, false));
1437
1438    // Set the null check to branch to the continuation.
1439    branch1->target = cont;
1440  }
1441}
1442
1443void Mir2Lir::GenLong3Addr(OpKind first_op, OpKind second_op, RegLocation rl_dest,
1444                           RegLocation rl_src1, RegLocation rl_src2) {
1445  RegLocation rl_result;
1446  if (cu_->instruction_set == kThumb2) {
1447    /*
1448     * NOTE:  This is the one place in the code in which we might have
1449     * as many as six live temporary registers.  There are 5 in the normal
1450     * set for Arm.  Until we have spill capabilities, temporarily add
1451     * lr to the temp set.  It is safe to do this locally, but note that
1452     * lr is used explicitly elsewhere in the code generator and cannot
1453     * normally be used as a general temp register.
1454     */
1455    MarkTemp(TargetReg(kLr));   // Add lr to the temp pool
1456    FreeTemp(TargetReg(kLr));   // and make it available
1457  }
1458  rl_src1 = LoadValueWide(rl_src1, kCoreReg);
1459  rl_src2 = LoadValueWide(rl_src2, kCoreReg);
1460  rl_result = EvalLoc(rl_dest, kCoreReg, true);
1461  // The longs may overlap - use intermediate temp if so
1462  if ((rl_result.reg.GetLowReg() == rl_src1.reg.GetHighReg()) || (rl_result.reg.GetLowReg() == rl_src2.reg.GetHighReg())) {
1463    RegStorage t_reg = AllocTemp();
1464    OpRegRegReg(first_op, t_reg, rl_src1.reg.GetLow(), rl_src2.reg.GetLow());
1465    OpRegRegReg(second_op, rl_result.reg.GetHigh(), rl_src1.reg.GetHigh(), rl_src2.reg.GetHigh());
1466    OpRegCopy(rl_result.reg.GetLow(), t_reg);
1467    FreeTemp(t_reg);
1468  } else {
1469    OpRegRegReg(first_op, rl_result.reg.GetLow(), rl_src1.reg.GetLow(), rl_src2.reg.GetLow());
1470    OpRegRegReg(second_op, rl_result.reg.GetHigh(), rl_src1.reg.GetHigh(), rl_src2.reg.GetHigh());
1471  }
1472  /*
1473   * NOTE: If rl_dest refers to a frame variable in a large frame, the
1474   * following StoreValueWide might need to allocate a temp register.
1475   * To further work around the lack of a spill capability, explicitly
1476   * free any temps from rl_src1 & rl_src2 that aren't still live in rl_result.
1477   * Remove when spill is functional.
1478   */
1479  FreeRegLocTemps(rl_result, rl_src1);
1480  FreeRegLocTemps(rl_result, rl_src2);
1481  StoreValueWide(rl_dest, rl_result);
1482  if (cu_->instruction_set == kThumb2) {
1483    Clobber(TargetReg(kLr));
1484    UnmarkTemp(TargetReg(kLr));  // Remove lr from the temp pool
1485  }
1486}
1487
1488
1489template <size_t pointer_size>
1490static void GenShiftOpLongCall(Mir2Lir* mir_to_lir, Instruction::Code opcode, RegLocation rl_src1,
1491                               RegLocation rl_shift) {
1492  ThreadOffset<pointer_size> func_offset(-1);
1493
1494  switch (opcode) {
1495    case Instruction::SHL_LONG:
1496    case Instruction::SHL_LONG_2ADDR:
1497      func_offset = QUICK_ENTRYPOINT_OFFSET(pointer_size, pShlLong);
1498      break;
1499    case Instruction::SHR_LONG:
1500    case Instruction::SHR_LONG_2ADDR:
1501      func_offset = QUICK_ENTRYPOINT_OFFSET(pointer_size, pShrLong);
1502      break;
1503    case Instruction::USHR_LONG:
1504    case Instruction::USHR_LONG_2ADDR:
1505      func_offset = QUICK_ENTRYPOINT_OFFSET(pointer_size, pUshrLong);
1506      break;
1507    default:
1508      LOG(FATAL) << "Unexpected case";
1509  }
1510  mir_to_lir->FlushAllRegs();   /* Send everything to home location */
1511  mir_to_lir->CallRuntimeHelperRegLocationRegLocation(func_offset, rl_src1, rl_shift, false);
1512}
1513
1514void Mir2Lir::GenShiftOpLong(Instruction::Code opcode, RegLocation rl_dest,
1515                             RegLocation rl_src1, RegLocation rl_shift) {
1516  if (Is64BitInstructionSet(cu_->instruction_set)) {
1517    GenShiftOpLongCall<8>(this, opcode, rl_src1, rl_shift);
1518  } else {
1519    GenShiftOpLongCall<4>(this, opcode, rl_src1, rl_shift);
1520  }
1521  RegLocation rl_result = GetReturnWide(kCoreReg);
1522  StoreValueWide(rl_dest, rl_result);
1523}
1524
1525
1526void Mir2Lir::GenArithOpInt(Instruction::Code opcode, RegLocation rl_dest,
1527                            RegLocation rl_src1, RegLocation rl_src2) {
1528  DCHECK(cu_->instruction_set != kX86 && cu_->instruction_set != kX86_64);
1529  OpKind op = kOpBkpt;
1530  bool is_div_rem = false;
1531  bool check_zero = false;
1532  bool unary = false;
1533  RegLocation rl_result;
1534  bool shift_op = false;
1535  switch (opcode) {
1536    case Instruction::NEG_INT:
1537      op = kOpNeg;
1538      unary = true;
1539      break;
1540    case Instruction::NOT_INT:
1541      op = kOpMvn;
1542      unary = true;
1543      break;
1544    case Instruction::ADD_INT:
1545    case Instruction::ADD_INT_2ADDR:
1546      op = kOpAdd;
1547      break;
1548    case Instruction::SUB_INT:
1549    case Instruction::SUB_INT_2ADDR:
1550      op = kOpSub;
1551      break;
1552    case Instruction::MUL_INT:
1553    case Instruction::MUL_INT_2ADDR:
1554      op = kOpMul;
1555      break;
1556    case Instruction::DIV_INT:
1557    case Instruction::DIV_INT_2ADDR:
1558      check_zero = true;
1559      op = kOpDiv;
1560      is_div_rem = true;
1561      break;
1562    /* NOTE: returns in kArg1 */
1563    case Instruction::REM_INT:
1564    case Instruction::REM_INT_2ADDR:
1565      check_zero = true;
1566      op = kOpRem;
1567      is_div_rem = true;
1568      break;
1569    case Instruction::AND_INT:
1570    case Instruction::AND_INT_2ADDR:
1571      op = kOpAnd;
1572      break;
1573    case Instruction::OR_INT:
1574    case Instruction::OR_INT_2ADDR:
1575      op = kOpOr;
1576      break;
1577    case Instruction::XOR_INT:
1578    case Instruction::XOR_INT_2ADDR:
1579      op = kOpXor;
1580      break;
1581    case Instruction::SHL_INT:
1582    case Instruction::SHL_INT_2ADDR:
1583      shift_op = true;
1584      op = kOpLsl;
1585      break;
1586    case Instruction::SHR_INT:
1587    case Instruction::SHR_INT_2ADDR:
1588      shift_op = true;
1589      op = kOpAsr;
1590      break;
1591    case Instruction::USHR_INT:
1592    case Instruction::USHR_INT_2ADDR:
1593      shift_op = true;
1594      op = kOpLsr;
1595      break;
1596    default:
1597      LOG(FATAL) << "Invalid word arith op: " << opcode;
1598  }
1599  if (!is_div_rem) {
1600    if (unary) {
1601      rl_src1 = LoadValue(rl_src1, kCoreReg);
1602      rl_result = EvalLoc(rl_dest, kCoreReg, true);
1603      OpRegReg(op, rl_result.reg, rl_src1.reg);
1604    } else {
1605      if ((shift_op) && (cu_->instruction_set != kArm64)) {
1606        rl_src2 = LoadValue(rl_src2, kCoreReg);
1607        RegStorage t_reg = AllocTemp();
1608        OpRegRegImm(kOpAnd, t_reg, rl_src2.reg, 31);
1609        rl_src1 = LoadValue(rl_src1, kCoreReg);
1610        rl_result = EvalLoc(rl_dest, kCoreReg, true);
1611        OpRegRegReg(op, rl_result.reg, rl_src1.reg, t_reg);
1612        FreeTemp(t_reg);
1613      } else {
1614        rl_src1 = LoadValue(rl_src1, kCoreReg);
1615        rl_src2 = LoadValue(rl_src2, kCoreReg);
1616        rl_result = EvalLoc(rl_dest, kCoreReg, true);
1617        OpRegRegReg(op, rl_result.reg, rl_src1.reg, rl_src2.reg);
1618      }
1619    }
1620    StoreValue(rl_dest, rl_result);
1621  } else {
1622    bool done = false;      // Set to true if we happen to find a way to use a real instruction.
1623    if (cu_->instruction_set == kMips || cu_->instruction_set == kArm64) {
1624      rl_src1 = LoadValue(rl_src1, kCoreReg);
1625      rl_src2 = LoadValue(rl_src2, kCoreReg);
1626      if (check_zero) {
1627        GenDivZeroCheck(rl_src2.reg);
1628      }
1629      rl_result = GenDivRem(rl_dest, rl_src1.reg, rl_src2.reg, op == kOpDiv);
1630      done = true;
1631    } else if (cu_->instruction_set == kThumb2) {
1632      if (cu_->GetInstructionSetFeatures().HasDivideInstruction()) {
1633        // Use ARM SDIV instruction for division.  For remainder we also need to
1634        // calculate using a MUL and subtract.
1635        rl_src1 = LoadValue(rl_src1, kCoreReg);
1636        rl_src2 = LoadValue(rl_src2, kCoreReg);
1637        if (check_zero) {
1638          GenDivZeroCheck(rl_src2.reg);
1639        }
1640        rl_result = GenDivRem(rl_dest, rl_src1.reg, rl_src2.reg, op == kOpDiv);
1641        done = true;
1642      }
1643    }
1644
1645    // If we haven't already generated the code use the callout function.
1646    if (!done) {
1647      FlushAllRegs();   /* Send everything to home location */
1648      LoadValueDirectFixed(rl_src2, TargetReg(kArg1));
1649      RegStorage r_tgt = Is64BitInstructionSet(cu_->instruction_set) ?
1650          CallHelperSetup(QUICK_ENTRYPOINT_OFFSET(8, pIdivmod)) :
1651          CallHelperSetup(QUICK_ENTRYPOINT_OFFSET(4, pIdivmod));
1652      LoadValueDirectFixed(rl_src1, TargetReg(kArg0));
1653      if (check_zero) {
1654        GenDivZeroCheck(TargetReg(kArg1));
1655      }
1656      // NOTE: callout here is not a safepoint.
1657      if (Is64BitInstructionSet(cu_->instruction_set)) {
1658        CallHelper(r_tgt, QUICK_ENTRYPOINT_OFFSET(8, pIdivmod), false /* not a safepoint */);
1659      } else {
1660        CallHelper(r_tgt, QUICK_ENTRYPOINT_OFFSET(4, pIdivmod), false /* not a safepoint */);
1661      }
1662      if (op == kOpDiv)
1663        rl_result = GetReturn(kCoreReg);
1664      else
1665        rl_result = GetReturnAlt();
1666    }
1667    StoreValue(rl_dest, rl_result);
1668  }
1669}
1670
1671/*
1672 * The following are the first-level codegen routines that analyze the format
1673 * of each bytecode then either dispatch special purpose codegen routines
1674 * or produce corresponding Thumb instructions directly.
1675 */
1676
1677// Returns true if no more than two bits are set in 'x'.
1678static bool IsPopCountLE2(unsigned int x) {
1679  x &= x - 1;
1680  return (x & (x - 1)) == 0;
1681}
1682
1683// Returns true if it added instructions to 'cu' to divide 'rl_src' by 'lit'
1684// and store the result in 'rl_dest'.
1685bool Mir2Lir::HandleEasyDivRem(Instruction::Code dalvik_opcode, bool is_div,
1686                               RegLocation rl_src, RegLocation rl_dest, int lit) {
1687  if ((lit < 2) || ((cu_->instruction_set != kThumb2) && !IsPowerOfTwo(lit))) {
1688    return false;
1689  }
1690  // No divide instruction for Arm, so check for more special cases
1691  if ((cu_->instruction_set == kThumb2) && !IsPowerOfTwo(lit)) {
1692    return SmallLiteralDivRem(dalvik_opcode, is_div, rl_src, rl_dest, lit);
1693  }
1694  int k = LowestSetBit(lit);
1695  if (k >= 30) {
1696    // Avoid special cases.
1697    return false;
1698  }
1699  rl_src = LoadValue(rl_src, kCoreReg);
1700  RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
1701  if (is_div) {
1702    RegStorage t_reg = AllocTemp();
1703    if (lit == 2) {
1704      // Division by 2 is by far the most common division by constant.
1705      OpRegRegImm(kOpLsr, t_reg, rl_src.reg, 32 - k);
1706      OpRegRegReg(kOpAdd, t_reg, t_reg, rl_src.reg);
1707      OpRegRegImm(kOpAsr, rl_result.reg, t_reg, k);
1708    } else {
1709      OpRegRegImm(kOpAsr, t_reg, rl_src.reg, 31);
1710      OpRegRegImm(kOpLsr, t_reg, t_reg, 32 - k);
1711      OpRegRegReg(kOpAdd, t_reg, t_reg, rl_src.reg);
1712      OpRegRegImm(kOpAsr, rl_result.reg, t_reg, k);
1713    }
1714  } else {
1715    RegStorage t_reg1 = AllocTemp();
1716    RegStorage t_reg2 = AllocTemp();
1717    if (lit == 2) {
1718      OpRegRegImm(kOpLsr, t_reg1, rl_src.reg, 32 - k);
1719      OpRegRegReg(kOpAdd, t_reg2, t_reg1, rl_src.reg);
1720      OpRegRegImm(kOpAnd, t_reg2, t_reg2, lit -1);
1721      OpRegRegReg(kOpSub, rl_result.reg, t_reg2, t_reg1);
1722    } else {
1723      OpRegRegImm(kOpAsr, t_reg1, rl_src.reg, 31);
1724      OpRegRegImm(kOpLsr, t_reg1, t_reg1, 32 - k);
1725      OpRegRegReg(kOpAdd, t_reg2, t_reg1, rl_src.reg);
1726      OpRegRegImm(kOpAnd, t_reg2, t_reg2, lit - 1);
1727      OpRegRegReg(kOpSub, rl_result.reg, t_reg2, t_reg1);
1728    }
1729  }
1730  StoreValue(rl_dest, rl_result);
1731  return true;
1732}
1733
1734// Returns true if it added instructions to 'cu' to multiply 'rl_src' by 'lit'
1735// and store the result in 'rl_dest'.
1736bool Mir2Lir::HandleEasyMultiply(RegLocation rl_src, RegLocation rl_dest, int lit) {
1737  if (lit < 0) {
1738    return false;
1739  }
1740  if (lit == 0) {
1741    RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
1742    LoadConstant(rl_result.reg, 0);
1743    StoreValue(rl_dest, rl_result);
1744    return true;
1745  }
1746  if (lit == 1) {
1747    rl_src = LoadValue(rl_src, kCoreReg);
1748    RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
1749    OpRegCopy(rl_result.reg, rl_src.reg);
1750    StoreValue(rl_dest, rl_result);
1751    return true;
1752  }
1753  // There is RegRegRegShift on Arm, so check for more special cases
1754  if (cu_->instruction_set == kThumb2) {
1755    return EasyMultiply(rl_src, rl_dest, lit);
1756  }
1757  // Can we simplify this multiplication?
1758  bool power_of_two = false;
1759  bool pop_count_le2 = false;
1760  bool power_of_two_minus_one = false;
1761  if (IsPowerOfTwo(lit)) {
1762    power_of_two = true;
1763  } else if (IsPopCountLE2(lit)) {
1764    pop_count_le2 = true;
1765  } else if (IsPowerOfTwo(lit + 1)) {
1766    power_of_two_minus_one = true;
1767  } else {
1768    return false;
1769  }
1770  rl_src = LoadValue(rl_src, kCoreReg);
1771  RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
1772  if (power_of_two) {
1773    // Shift.
1774    OpRegRegImm(kOpLsl, rl_result.reg, rl_src.reg, LowestSetBit(lit));
1775  } else if (pop_count_le2) {
1776    // Shift and add and shift.
1777    int first_bit = LowestSetBit(lit);
1778    int second_bit = LowestSetBit(lit ^ (1 << first_bit));
1779    GenMultiplyByTwoBitMultiplier(rl_src, rl_result, lit, first_bit, second_bit);
1780  } else {
1781    // Reverse subtract: (src << (shift + 1)) - src.
1782    DCHECK(power_of_two_minus_one);
1783    // TUNING: rsb dst, src, src lsl#LowestSetBit(lit + 1)
1784    RegStorage t_reg = AllocTemp();
1785    OpRegRegImm(kOpLsl, t_reg, rl_src.reg, LowestSetBit(lit + 1));
1786    OpRegRegReg(kOpSub, rl_result.reg, t_reg, rl_src.reg);
1787  }
1788  StoreValue(rl_dest, rl_result);
1789  return true;
1790}
1791
1792void Mir2Lir::GenArithOpIntLit(Instruction::Code opcode, RegLocation rl_dest, RegLocation rl_src,
1793                               int lit) {
1794  RegLocation rl_result;
1795  OpKind op = static_cast<OpKind>(0);    /* Make gcc happy */
1796  int shift_op = false;
1797  bool is_div = false;
1798
1799  switch (opcode) {
1800    case Instruction::RSUB_INT_LIT8:
1801    case Instruction::RSUB_INT: {
1802      rl_src = LoadValue(rl_src, kCoreReg);
1803      rl_result = EvalLoc(rl_dest, kCoreReg, true);
1804      if (cu_->instruction_set == kThumb2) {
1805        OpRegRegImm(kOpRsub, rl_result.reg, rl_src.reg, lit);
1806      } else {
1807        OpRegReg(kOpNeg, rl_result.reg, rl_src.reg);
1808        OpRegImm(kOpAdd, rl_result.reg, lit);
1809      }
1810      StoreValue(rl_dest, rl_result);
1811      return;
1812    }
1813
1814    case Instruction::SUB_INT:
1815    case Instruction::SUB_INT_2ADDR:
1816      lit = -lit;
1817      // Intended fallthrough
1818    case Instruction::ADD_INT:
1819    case Instruction::ADD_INT_2ADDR:
1820    case Instruction::ADD_INT_LIT8:
1821    case Instruction::ADD_INT_LIT16:
1822      op = kOpAdd;
1823      break;
1824    case Instruction::MUL_INT:
1825    case Instruction::MUL_INT_2ADDR:
1826    case Instruction::MUL_INT_LIT8:
1827    case Instruction::MUL_INT_LIT16: {
1828      if (HandleEasyMultiply(rl_src, rl_dest, lit)) {
1829        return;
1830      }
1831      op = kOpMul;
1832      break;
1833    }
1834    case Instruction::AND_INT:
1835    case Instruction::AND_INT_2ADDR:
1836    case Instruction::AND_INT_LIT8:
1837    case Instruction::AND_INT_LIT16:
1838      op = kOpAnd;
1839      break;
1840    case Instruction::OR_INT:
1841    case Instruction::OR_INT_2ADDR:
1842    case Instruction::OR_INT_LIT8:
1843    case Instruction::OR_INT_LIT16:
1844      op = kOpOr;
1845      break;
1846    case Instruction::XOR_INT:
1847    case Instruction::XOR_INT_2ADDR:
1848    case Instruction::XOR_INT_LIT8:
1849    case Instruction::XOR_INT_LIT16:
1850      op = kOpXor;
1851      break;
1852    case Instruction::SHL_INT_LIT8:
1853    case Instruction::SHL_INT:
1854    case Instruction::SHL_INT_2ADDR:
1855      lit &= 31;
1856      shift_op = true;
1857      op = kOpLsl;
1858      break;
1859    case Instruction::SHR_INT_LIT8:
1860    case Instruction::SHR_INT:
1861    case Instruction::SHR_INT_2ADDR:
1862      lit &= 31;
1863      shift_op = true;
1864      op = kOpAsr;
1865      break;
1866    case Instruction::USHR_INT_LIT8:
1867    case Instruction::USHR_INT:
1868    case Instruction::USHR_INT_2ADDR:
1869      lit &= 31;
1870      shift_op = true;
1871      op = kOpLsr;
1872      break;
1873
1874    case Instruction::DIV_INT:
1875    case Instruction::DIV_INT_2ADDR:
1876    case Instruction::DIV_INT_LIT8:
1877    case Instruction::DIV_INT_LIT16:
1878    case Instruction::REM_INT:
1879    case Instruction::REM_INT_2ADDR:
1880    case Instruction::REM_INT_LIT8:
1881    case Instruction::REM_INT_LIT16: {
1882      if (lit == 0) {
1883        GenDivZeroException();
1884        return;
1885      }
1886      if ((opcode == Instruction::DIV_INT) ||
1887          (opcode == Instruction::DIV_INT_2ADDR) ||
1888          (opcode == Instruction::DIV_INT_LIT8) ||
1889          (opcode == Instruction::DIV_INT_LIT16)) {
1890        is_div = true;
1891      } else {
1892        is_div = false;
1893      }
1894      if (HandleEasyDivRem(opcode, is_div, rl_src, rl_dest, lit)) {
1895        return;
1896      }
1897
1898      bool done = false;
1899      if (cu_->instruction_set == kMips || cu_->instruction_set == kArm64) {
1900        rl_src = LoadValue(rl_src, kCoreReg);
1901        rl_result = GenDivRemLit(rl_dest, rl_src.reg, lit, is_div);
1902        done = true;
1903      } else if (cu_->instruction_set == kX86 || cu_->instruction_set == kX86_64) {
1904        rl_result = GenDivRemLit(rl_dest, rl_src, lit, is_div);
1905        done = true;
1906      } else if (cu_->instruction_set == kThumb2) {
1907        if (cu_->GetInstructionSetFeatures().HasDivideInstruction()) {
1908          // Use ARM SDIV instruction for division.  For remainder we also need to
1909          // calculate using a MUL and subtract.
1910          rl_src = LoadValue(rl_src, kCoreReg);
1911          rl_result = GenDivRemLit(rl_dest, rl_src.reg, lit, is_div);
1912          done = true;
1913        }
1914      }
1915
1916      if (!done) {
1917        FlushAllRegs();   /* Everything to home location. */
1918        LoadValueDirectFixed(rl_src, TargetReg(kArg0));
1919        Clobber(TargetReg(kArg0));
1920        if (Is64BitInstructionSet(cu_->instruction_set)) {
1921          CallRuntimeHelperRegImm(QUICK_ENTRYPOINT_OFFSET(8, pIdivmod), TargetReg(kArg0), lit,
1922                                  false);
1923        } else {
1924          CallRuntimeHelperRegImm(QUICK_ENTRYPOINT_OFFSET(4, pIdivmod), TargetReg(kArg0), lit,
1925                                  false);
1926        }
1927        if (is_div)
1928          rl_result = GetReturn(kCoreReg);
1929        else
1930          rl_result = GetReturnAlt();
1931      }
1932      StoreValue(rl_dest, rl_result);
1933      return;
1934    }
1935    default:
1936      LOG(FATAL) << "Unexpected opcode " << opcode;
1937  }
1938  rl_src = LoadValue(rl_src, kCoreReg);
1939  rl_result = EvalLoc(rl_dest, kCoreReg, true);
1940  // Avoid shifts by literal 0 - no support in Thumb.  Change to copy.
1941  if (shift_op && (lit == 0)) {
1942    OpRegCopy(rl_result.reg, rl_src.reg);
1943  } else {
1944    OpRegRegImm(op, rl_result.reg, rl_src.reg, lit);
1945  }
1946  StoreValue(rl_dest, rl_result);
1947}
1948
1949template <size_t pointer_size>
1950static void GenArithOpLongImpl(Mir2Lir* mir_to_lir, CompilationUnit* cu, Instruction::Code opcode,
1951                               RegLocation rl_dest, RegLocation rl_src1, RegLocation rl_src2) {
1952  RegLocation rl_result;
1953  OpKind first_op = kOpBkpt;
1954  OpKind second_op = kOpBkpt;
1955  bool call_out = false;
1956  bool check_zero = false;
1957  ThreadOffset<pointer_size> func_offset(-1);
1958  int ret_reg = mir_to_lir->TargetReg(kRet0).GetReg();
1959
1960  switch (opcode) {
1961    case Instruction::NOT_LONG:
1962      if (cu->instruction_set == kArm64 || cu->instruction_set == kX86_64) {
1963        mir_to_lir->GenNotLong(rl_dest, rl_src2);
1964        return;
1965      }
1966      rl_src2 = mir_to_lir->LoadValueWide(rl_src2, kCoreReg);
1967      rl_result = mir_to_lir->EvalLoc(rl_dest, kCoreReg, true);
1968      // Check for destructive overlap
1969      if (rl_result.reg.GetLowReg() == rl_src2.reg.GetHighReg()) {
1970        RegStorage t_reg = mir_to_lir->AllocTemp();
1971        mir_to_lir->OpRegCopy(t_reg, rl_src2.reg.GetHigh());
1972        mir_to_lir->OpRegReg(kOpMvn, rl_result.reg.GetLow(), rl_src2.reg.GetLow());
1973        mir_to_lir->OpRegReg(kOpMvn, rl_result.reg.GetHigh(), t_reg);
1974        mir_to_lir->FreeTemp(t_reg);
1975      } else {
1976        mir_to_lir->OpRegReg(kOpMvn, rl_result.reg.GetLow(), rl_src2.reg.GetLow());
1977        mir_to_lir->OpRegReg(kOpMvn, rl_result.reg.GetHigh(), rl_src2.reg.GetHigh());
1978      }
1979      mir_to_lir->StoreValueWide(rl_dest, rl_result);
1980      return;
1981    case Instruction::ADD_LONG:
1982    case Instruction::ADD_LONG_2ADDR:
1983      if (cu->instruction_set != kThumb2) {
1984        mir_to_lir->GenAddLong(opcode, rl_dest, rl_src1, rl_src2);
1985        return;
1986      }
1987      first_op = kOpAdd;
1988      second_op = kOpAdc;
1989      break;
1990    case Instruction::SUB_LONG:
1991    case Instruction::SUB_LONG_2ADDR:
1992      if (cu->instruction_set != kThumb2) {
1993        mir_to_lir->GenSubLong(opcode, rl_dest, rl_src1, rl_src2);
1994        return;
1995      }
1996      first_op = kOpSub;
1997      second_op = kOpSbc;
1998      break;
1999    case Instruction::MUL_LONG:
2000    case Instruction::MUL_LONG_2ADDR:
2001      if (cu->instruction_set != kMips) {
2002        mir_to_lir->GenMulLong(opcode, rl_dest, rl_src1, rl_src2);
2003        return;
2004      } else {
2005        call_out = true;
2006        ret_reg = mir_to_lir->TargetReg(kRet0).GetReg();
2007        func_offset = QUICK_ENTRYPOINT_OFFSET(pointer_size, pLmul);
2008      }
2009      break;
2010    case Instruction::DIV_LONG:
2011    case Instruction::DIV_LONG_2ADDR:
2012      if (cu->instruction_set == kArm64 || cu->instruction_set == kX86_64) {
2013        mir_to_lir->GenDivRemLong(opcode, rl_dest, rl_src1, rl_src2, /*is_div*/ true);
2014        return;
2015      }
2016      call_out = true;
2017      check_zero = true;
2018      ret_reg = mir_to_lir->TargetReg(kRet0).GetReg();
2019      func_offset = QUICK_ENTRYPOINT_OFFSET(pointer_size, pLdiv);
2020      break;
2021    case Instruction::REM_LONG:
2022    case Instruction::REM_LONG_2ADDR:
2023      if (cu->instruction_set == kArm64 || cu->instruction_set == kX86_64) {
2024        mir_to_lir->GenDivRemLong(opcode, rl_dest, rl_src1, rl_src2, /*is_div*/ false);
2025        return;
2026      }
2027      call_out = true;
2028      check_zero = true;
2029      func_offset = QUICK_ENTRYPOINT_OFFSET(pointer_size, pLmod);
2030      /* NOTE - for Arm, result is in kArg2/kArg3 instead of kRet0/kRet1 */
2031      ret_reg = (cu->instruction_set == kThumb2) ? mir_to_lir->TargetReg(kArg2).GetReg() :
2032          mir_to_lir->TargetReg(kRet0).GetReg();
2033      break;
2034    case Instruction::AND_LONG_2ADDR:
2035    case Instruction::AND_LONG:
2036      if (cu->instruction_set == kX86 || cu->instruction_set == kX86_64 ||
2037          cu->instruction_set == kArm64) {
2038        return mir_to_lir->GenAndLong(opcode, rl_dest, rl_src1, rl_src2);
2039      }
2040      first_op = kOpAnd;
2041      second_op = kOpAnd;
2042      break;
2043    case Instruction::OR_LONG:
2044    case Instruction::OR_LONG_2ADDR:
2045      if (cu->instruction_set == kX86 || cu->instruction_set == kX86_64 ||
2046          cu->instruction_set == kArm64) {
2047        mir_to_lir->GenOrLong(opcode, rl_dest, rl_src1, rl_src2);
2048        return;
2049      }
2050      first_op = kOpOr;
2051      second_op = kOpOr;
2052      break;
2053    case Instruction::XOR_LONG:
2054    case Instruction::XOR_LONG_2ADDR:
2055      if (cu->instruction_set == kX86 || cu->instruction_set == kX86_64 ||
2056          cu->instruction_set == kArm64) {
2057        mir_to_lir->GenXorLong(opcode, rl_dest, rl_src1, rl_src2);
2058        return;
2059      }
2060      first_op = kOpXor;
2061      second_op = kOpXor;
2062      break;
2063    case Instruction::NEG_LONG: {
2064      mir_to_lir->GenNegLong(rl_dest, rl_src2);
2065      return;
2066    }
2067    default:
2068      LOG(FATAL) << "Invalid long arith op";
2069  }
2070  if (!call_out) {
2071    mir_to_lir->GenLong3Addr(first_op, second_op, rl_dest, rl_src1, rl_src2);
2072  } else {
2073    mir_to_lir->FlushAllRegs();   /* Send everything to home location */
2074    if (check_zero) {
2075      RegStorage r_tmp1 = RegStorage::MakeRegPair(mir_to_lir->TargetReg(kArg0),
2076                                                  mir_to_lir->TargetReg(kArg1));
2077      RegStorage r_tmp2 = RegStorage::MakeRegPair(mir_to_lir->TargetReg(kArg2),
2078                                                  mir_to_lir->TargetReg(kArg3));
2079      mir_to_lir->LoadValueDirectWideFixed(rl_src2, r_tmp2);
2080      RegStorage r_tgt = mir_to_lir->CallHelperSetup(func_offset);
2081      mir_to_lir->GenDivZeroCheckWide(RegStorage::MakeRegPair(mir_to_lir->TargetReg(kArg2),
2082                                                              mir_to_lir->TargetReg(kArg3)));
2083      mir_to_lir->LoadValueDirectWideFixed(rl_src1, r_tmp1);
2084      // NOTE: callout here is not a safepoint
2085      mir_to_lir->CallHelper(r_tgt, func_offset, false /* not safepoint */);
2086    } else {
2087      mir_to_lir->CallRuntimeHelperRegLocationRegLocation(func_offset, rl_src1, rl_src2, false);
2088    }
2089    // Adjust return regs in to handle case of rem returning kArg2/kArg3
2090    if (ret_reg == mir_to_lir->TargetReg(kRet0).GetReg())
2091      rl_result = mir_to_lir->GetReturnWide(kCoreReg);
2092    else
2093      rl_result = mir_to_lir->GetReturnWideAlt();
2094    mir_to_lir->StoreValueWide(rl_dest, rl_result);
2095  }
2096}
2097
2098void Mir2Lir::GenArithOpLong(Instruction::Code opcode, RegLocation rl_dest,
2099                             RegLocation rl_src1, RegLocation rl_src2) {
2100  if (Is64BitInstructionSet(cu_->instruction_set)) {
2101    GenArithOpLongImpl<8>(this, cu_, opcode, rl_dest, rl_src1, rl_src2);
2102  } else {
2103    GenArithOpLongImpl<4>(this, cu_, opcode, rl_dest, rl_src1, rl_src2);
2104  }
2105}
2106
2107void Mir2Lir::GenConst(RegLocation rl_dest, int value) {
2108  RegLocation rl_result = EvalLoc(rl_dest, kAnyReg, true);
2109  LoadConstantNoClobber(rl_result.reg, value);
2110  StoreValue(rl_dest, rl_result);
2111  if (value == 0) {
2112    Workaround7250540(rl_dest, rl_result.reg);
2113  }
2114}
2115
2116template <size_t pointer_size>
2117void Mir2Lir::GenConversionCall(ThreadOffset<pointer_size> func_offset,
2118                                RegLocation rl_dest, RegLocation rl_src) {
2119  /*
2120   * Don't optimize the register usage since it calls out to support
2121   * functions
2122   */
2123  DCHECK_EQ(pointer_size, GetInstructionSetPointerSize(cu_->instruction_set));
2124
2125  FlushAllRegs();   /* Send everything to home location */
2126  CallRuntimeHelperRegLocation(func_offset, rl_src, false);
2127  if (rl_dest.wide) {
2128    RegLocation rl_result;
2129    rl_result = GetReturnWide(LocToRegClass(rl_dest));
2130    StoreValueWide(rl_dest, rl_result);
2131  } else {
2132    RegLocation rl_result;
2133    rl_result = GetReturn(LocToRegClass(rl_dest));
2134    StoreValue(rl_dest, rl_result);
2135  }
2136}
2137template void Mir2Lir::GenConversionCall(ThreadOffset<4> func_offset,
2138                                         RegLocation rl_dest, RegLocation rl_src);
2139template void Mir2Lir::GenConversionCall(ThreadOffset<8> func_offset,
2140                                         RegLocation rl_dest, RegLocation rl_src);
2141
2142class SuspendCheckSlowPath : public Mir2Lir::LIRSlowPath {
2143 public:
2144  SuspendCheckSlowPath(Mir2Lir* m2l, LIR* branch, LIR* cont)
2145      : LIRSlowPath(m2l, m2l->GetCurrentDexPc(), branch, cont) {
2146  }
2147
2148  void Compile() OVERRIDE {
2149    m2l_->ResetRegPool();
2150    m2l_->ResetDefTracking();
2151    GenerateTargetLabel(kPseudoSuspendTarget);
2152    if (Is64BitInstructionSet(cu_->instruction_set)) {
2153      m2l_->CallRuntimeHelper(QUICK_ENTRYPOINT_OFFSET(8, pTestSuspend), true);
2154    } else {
2155      m2l_->CallRuntimeHelper(QUICK_ENTRYPOINT_OFFSET(4, pTestSuspend), true);
2156    }
2157    if (cont_ != nullptr) {
2158      m2l_->OpUnconditionalBranch(cont_);
2159    }
2160  }
2161};
2162
2163/* Check if we need to check for pending suspend request */
2164void Mir2Lir::GenSuspendTest(int opt_flags) {
2165  if (Runtime::Current()->ExplicitSuspendChecks()) {
2166    if (NO_SUSPEND || (opt_flags & MIR_IGNORE_SUSPEND_CHECK)) {
2167      return;
2168    }
2169    FlushAllRegs();
2170    LIR* branch = OpTestSuspend(NULL);
2171    LIR* cont = NewLIR0(kPseudoTargetLabel);
2172    AddSlowPath(new (arena_) SuspendCheckSlowPath(this, branch, cont));
2173  } else {
2174    if (NO_SUSPEND || (opt_flags & MIR_IGNORE_SUSPEND_CHECK)) {
2175      return;
2176    }
2177    FlushAllRegs();     // TODO: needed?
2178    LIR* inst = CheckSuspendUsingLoad();
2179    MarkSafepointPC(inst);
2180  }
2181}
2182
2183/* Check if we need to check for pending suspend request */
2184void Mir2Lir::GenSuspendTestAndBranch(int opt_flags, LIR* target) {
2185  if (Runtime::Current()->ExplicitSuspendChecks()) {
2186    if (NO_SUSPEND || (opt_flags & MIR_IGNORE_SUSPEND_CHECK)) {
2187      OpUnconditionalBranch(target);
2188      return;
2189    }
2190    OpTestSuspend(target);
2191    FlushAllRegs();
2192    LIR* branch = OpUnconditionalBranch(nullptr);
2193    AddSlowPath(new (arena_) SuspendCheckSlowPath(this, branch, target));
2194  } else {
2195    // For the implicit suspend check, just perform the trigger
2196    // load and branch to the target.
2197    if (NO_SUSPEND || (opt_flags & MIR_IGNORE_SUSPEND_CHECK)) {
2198      OpUnconditionalBranch(target);
2199      return;
2200    }
2201    FlushAllRegs();
2202    LIR* inst = CheckSuspendUsingLoad();
2203    MarkSafepointPC(inst);
2204    OpUnconditionalBranch(target);
2205  }
2206}
2207
2208/* Call out to helper assembly routine that will null check obj and then lock it. */
2209void Mir2Lir::GenMonitorEnter(int opt_flags, RegLocation rl_src) {
2210  FlushAllRegs();
2211  if (Is64BitInstructionSet(cu_->instruction_set)) {
2212    CallRuntimeHelperRegLocation(QUICK_ENTRYPOINT_OFFSET(8, pLockObject), rl_src, true);
2213  } else {
2214    CallRuntimeHelperRegLocation(QUICK_ENTRYPOINT_OFFSET(4, pLockObject), rl_src, true);
2215  }
2216}
2217
2218/* Call out to helper assembly routine that will null check obj and then unlock it. */
2219void Mir2Lir::GenMonitorExit(int opt_flags, RegLocation rl_src) {
2220  FlushAllRegs();
2221  if (Is64BitInstructionSet(cu_->instruction_set)) {
2222    CallRuntimeHelperRegLocation(QUICK_ENTRYPOINT_OFFSET(8, pUnlockObject), rl_src, true);
2223  } else {
2224    CallRuntimeHelperRegLocation(QUICK_ENTRYPOINT_OFFSET(4, pUnlockObject), rl_src, true);
2225  }
2226}
2227
2228/* Generic code for generating a wide constant into a VR. */
2229void Mir2Lir::GenConstWide(RegLocation rl_dest, int64_t value) {
2230  RegLocation rl_result = EvalLoc(rl_dest, kAnyReg, true);
2231  LoadConstantWide(rl_result.reg, value);
2232  StoreValueWide(rl_dest, rl_result);
2233}
2234
2235}  // namespace art
2236