1/*
2 * Copyright (C) 2012 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include "callee_save_frame.h"
18#include "common_throws.h"
19#include "dex_file-inl.h"
20#include "dex_instruction-inl.h"
21#include "entrypoints/entrypoint_utils-inl.h"
22#include "gc/accounting/card_table-inl.h"
23#include "instruction_set.h"
24#include "interpreter/interpreter.h"
25#include "mirror/art_method-inl.h"
26#include "mirror/class-inl.h"
27#include "mirror/dex_cache-inl.h"
28#include "mirror/object-inl.h"
29#include "mirror/object_array-inl.h"
30#include "runtime.h"
31#include "scoped_thread_state_change.h"
32
33namespace art {
34
35// Visits the arguments as saved to the stack by a Runtime::kRefAndArgs callee save frame.
36class QuickArgumentVisitor {
37  // Number of bytes for each out register in the caller method's frame.
38  static constexpr size_t kBytesStackArgLocation = 4;
39  // Frame size in bytes of a callee-save frame for RefsAndArgs.
40  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_FrameSize =
41      GetCalleeSaveFrameSize(kRuntimeISA, Runtime::kRefsAndArgs);
42#if defined(__arm__)
43  // The callee save frame is pointed to by SP.
44  // | argN       |  |
45  // | ...        |  |
46  // | arg4       |  |
47  // | arg3 spill |  |  Caller's frame
48  // | arg2 spill |  |
49  // | arg1 spill |  |
50  // | Method*    | ---
51  // | LR         |
52  // | ...        |    callee saves
53  // | R3         |    arg3
54  // | R2         |    arg2
55  // | R1         |    arg1
56  // | R0         |    padding
57  // | Method*    |  <- sp
58  static constexpr bool kQuickSoftFloatAbi = true;  // This is a soft float ABI.
59  static constexpr size_t kNumQuickGprArgs = 3;  // 3 arguments passed in GPRs.
60  static constexpr size_t kNumQuickFprArgs = 0;  // 0 arguments passed in FPRs.
61  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset =
62      arm::ArmCalleeSaveFpr1Offset(Runtime::kRefsAndArgs);  // Offset of first FPR arg.
63  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset =
64      arm::ArmCalleeSaveGpr1Offset(Runtime::kRefsAndArgs);  // Offset of first GPR arg.
65  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset =
66      arm::ArmCalleeSaveLrOffset(Runtime::kRefsAndArgs);  // Offset of return address.
67  static size_t GprIndexToGprOffset(uint32_t gpr_index) {
68    return gpr_index * GetBytesPerGprSpillLocation(kRuntimeISA);
69  }
70#elif defined(__aarch64__)
71  // The callee save frame is pointed to by SP.
72  // | argN       |  |
73  // | ...        |  |
74  // | arg4       |  |
75  // | arg3 spill |  |  Caller's frame
76  // | arg2 spill |  |
77  // | arg1 spill |  |
78  // | Method*    | ---
79  // | LR         |
80  // | X29        |
81  // |  :         |
82  // | X20        |
83  // | X7         |
84  // | :          |
85  // | X1         |
86  // | D7         |
87  // |  :         |
88  // | D0         |
89  // |            |    padding
90  // | Method*    |  <- sp
91  static constexpr bool kQuickSoftFloatAbi = false;  // This is a hard float ABI.
92  static constexpr size_t kNumQuickGprArgs = 7;  // 7 arguments passed in GPRs.
93  static constexpr size_t kNumQuickFprArgs = 8;  // 8 arguments passed in FPRs.
94  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset =
95      arm64::Arm64CalleeSaveFpr1Offset(Runtime::kRefsAndArgs);  // Offset of first FPR arg.
96  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset =
97      arm64::Arm64CalleeSaveGpr1Offset(Runtime::kRefsAndArgs);  // Offset of first GPR arg.
98  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset =
99      arm64::Arm64CalleeSaveLrOffset(Runtime::kRefsAndArgs);  // Offset of return address.
100  static size_t GprIndexToGprOffset(uint32_t gpr_index) {
101    return gpr_index * GetBytesPerGprSpillLocation(kRuntimeISA);
102  }
103#elif defined(__mips__)
104  // The callee save frame is pointed to by SP.
105  // | argN       |  |
106  // | ...        |  |
107  // | arg4       |  |
108  // | arg3 spill |  |  Caller's frame
109  // | arg2 spill |  |
110  // | arg1 spill |  |
111  // | Method*    | ---
112  // | RA         |
113  // | ...        |    callee saves
114  // | A3         |    arg3
115  // | A2         |    arg2
116  // | A1         |    arg1
117  // | A0/Method* |  <- sp
118  static constexpr bool kQuickSoftFloatAbi = true;  // This is a soft float ABI.
119  static constexpr size_t kNumQuickGprArgs = 3;  // 3 arguments passed in GPRs.
120  static constexpr size_t kNumQuickFprArgs = 0;  // 0 arguments passed in FPRs.
121  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset = 0;  // Offset of first FPR arg.
122  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset = 4;  // Offset of first GPR arg.
123  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset = 60;  // Offset of return address.
124  static size_t GprIndexToGprOffset(uint32_t gpr_index) {
125    return gpr_index * GetBytesPerGprSpillLocation(kRuntimeISA);
126  }
127#elif defined(__i386__)
128  // The callee save frame is pointed to by SP.
129  // | argN        |  |
130  // | ...         |  |
131  // | arg4        |  |
132  // | arg3 spill  |  |  Caller's frame
133  // | arg2 spill  |  |
134  // | arg1 spill  |  |
135  // | Method*     | ---
136  // | Return      |
137  // | EBP,ESI,EDI |    callee saves
138  // | EBX         |    arg3
139  // | EDX         |    arg2
140  // | ECX         |    arg1
141  // | EAX/Method* |  <- sp
142  static constexpr bool kQuickSoftFloatAbi = true;  // This is a soft float ABI.
143  static constexpr size_t kNumQuickGprArgs = 3;  // 3 arguments passed in GPRs.
144  static constexpr size_t kNumQuickFprArgs = 0;  // 0 arguments passed in FPRs.
145  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset = 0;  // Offset of first FPR arg.
146  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset = 4;  // Offset of first GPR arg.
147  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset = 28;  // Offset of return address.
148  static size_t GprIndexToGprOffset(uint32_t gpr_index) {
149    return gpr_index * GetBytesPerGprSpillLocation(kRuntimeISA);
150  }
151#elif defined(__x86_64__)
152  // The callee save frame is pointed to by SP.
153  // | argN            |  |
154  // | ...             |  |
155  // | reg. arg spills |  |  Caller's frame
156  // | Method*         | ---
157  // | Return          |
158  // | R15             |    callee save
159  // | R14             |    callee save
160  // | R13             |    callee save
161  // | R12             |    callee save
162  // | R9              |    arg5
163  // | R8              |    arg4
164  // | RSI/R6          |    arg1
165  // | RBP/R5          |    callee save
166  // | RBX/R3          |    callee save
167  // | RDX/R2          |    arg2
168  // | RCX/R1          |    arg3
169  // | XMM7            |    float arg 8
170  // | XMM6            |    float arg 7
171  // | XMM5            |    float arg 6
172  // | XMM4            |    float arg 5
173  // | XMM3            |    float arg 4
174  // | XMM2            |    float arg 3
175  // | XMM1            |    float arg 2
176  // | XMM0            |    float arg 1
177  // | Padding         |
178  // | RDI/Method*     |  <- sp
179  static constexpr bool kQuickSoftFloatAbi = false;  // This is a hard float ABI.
180  static constexpr size_t kNumQuickGprArgs = 5;  // 5 arguments passed in GPRs.
181  static constexpr size_t kNumQuickFprArgs = 8;  // 8 arguments passed in FPRs.
182  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset = 16;  // Offset of first FPR arg.
183  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset = 80 + 4*8;  // Offset of first GPR arg.
184  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset = 168 + 4*8;  // Offset of return address.
185  static size_t GprIndexToGprOffset(uint32_t gpr_index) {
186    switch (gpr_index) {
187      case 0: return (4 * GetBytesPerGprSpillLocation(kRuntimeISA));
188      case 1: return (1 * GetBytesPerGprSpillLocation(kRuntimeISA));
189      case 2: return (0 * GetBytesPerGprSpillLocation(kRuntimeISA));
190      case 3: return (5 * GetBytesPerGprSpillLocation(kRuntimeISA));
191      case 4: return (6 * GetBytesPerGprSpillLocation(kRuntimeISA));
192      default:
193      LOG(FATAL) << "Unexpected GPR index: " << gpr_index;
194      return 0;
195    }
196  }
197#else
198#error "Unsupported architecture"
199#endif
200
201 public:
202  // Special handling for proxy methods. Proxy methods are instance methods so the
203  // 'this' object is the 1st argument. They also have the same frame layout as the
204  // kRefAndArgs runtime method. Since 'this' is a reference, it is located in the
205  // 1st GPR.
206  static mirror::Object* GetProxyThisObject(StackReference<mirror::ArtMethod>* sp)
207      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
208    CHECK(sp->AsMirrorPtr()->IsProxyMethod());
209    CHECK_EQ(kQuickCalleeSaveFrame_RefAndArgs_FrameSize, sp->AsMirrorPtr()->GetFrameSizeInBytes());
210    CHECK_GT(kNumQuickGprArgs, 0u);
211    constexpr uint32_t kThisGprIndex = 0u;  // 'this' is in the 1st GPR.
212    size_t this_arg_offset = kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset +
213        GprIndexToGprOffset(kThisGprIndex);
214    uint8_t* this_arg_address = reinterpret_cast<uint8_t*>(sp) + this_arg_offset;
215    return reinterpret_cast<StackReference<mirror::Object>*>(this_arg_address)->AsMirrorPtr();
216  }
217
218  static mirror::ArtMethod* GetCallingMethod(StackReference<mirror::ArtMethod>* sp)
219      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
220    DCHECK(sp->AsMirrorPtr()->IsCalleeSaveMethod());
221    byte* previous_sp = reinterpret_cast<byte*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_FrameSize;
222    return reinterpret_cast<StackReference<mirror::ArtMethod>*>(previous_sp)->AsMirrorPtr();
223  }
224
225  // For the given quick ref and args quick frame, return the caller's PC.
226  static uintptr_t GetCallingPc(StackReference<mirror::ArtMethod>* sp)
227      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
228    DCHECK(sp->AsMirrorPtr()->IsCalleeSaveMethod());
229    byte* lr = reinterpret_cast<byte*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_LrOffset;
230    return *reinterpret_cast<uintptr_t*>(lr);
231  }
232
233  QuickArgumentVisitor(StackReference<mirror::ArtMethod>* sp, bool is_static, const char* shorty,
234                       uint32_t shorty_len) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) :
235          is_static_(is_static), shorty_(shorty), shorty_len_(shorty_len),
236          gpr_args_(reinterpret_cast<byte*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset),
237          fpr_args_(reinterpret_cast<byte*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset),
238          stack_args_(reinterpret_cast<byte*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_FrameSize
239                      + StackArgumentStartFromShorty(is_static, shorty, shorty_len)),
240          gpr_index_(0), fpr_index_(0), stack_index_(0), cur_type_(Primitive::kPrimVoid),
241          is_split_long_or_double_(false) {}
242
243  virtual ~QuickArgumentVisitor() {}
244
245  virtual void Visit() = 0;
246
247  Primitive::Type GetParamPrimitiveType() const {
248    return cur_type_;
249  }
250
251  byte* GetParamAddress() const {
252    if (!kQuickSoftFloatAbi) {
253      Primitive::Type type = GetParamPrimitiveType();
254      if (UNLIKELY((type == Primitive::kPrimDouble) || (type == Primitive::kPrimFloat))) {
255        if ((kNumQuickFprArgs != 0) && (fpr_index_ + 1 < kNumQuickFprArgs + 1)) {
256          return fpr_args_ + (fpr_index_ * GetBytesPerFprSpillLocation(kRuntimeISA));
257        }
258        return stack_args_ + (stack_index_ * kBytesStackArgLocation);
259      }
260    }
261    if (gpr_index_ < kNumQuickGprArgs) {
262      return gpr_args_ + GprIndexToGprOffset(gpr_index_);
263    }
264    return stack_args_ + (stack_index_ * kBytesStackArgLocation);
265  }
266
267  bool IsSplitLongOrDouble() const {
268    if ((GetBytesPerGprSpillLocation(kRuntimeISA) == 4) || (GetBytesPerFprSpillLocation(kRuntimeISA) == 4)) {
269      return is_split_long_or_double_;
270    } else {
271      return false;  // An optimization for when GPR and FPRs are 64bit.
272    }
273  }
274
275  bool IsParamAReference() const {
276    return GetParamPrimitiveType() == Primitive::kPrimNot;
277  }
278
279  bool IsParamALongOrDouble() const {
280    Primitive::Type type = GetParamPrimitiveType();
281    return type == Primitive::kPrimLong || type == Primitive::kPrimDouble;
282  }
283
284  uint64_t ReadSplitLongParam() const {
285    DCHECK(IsSplitLongOrDouble());
286    uint64_t low_half = *reinterpret_cast<uint32_t*>(GetParamAddress());
287    uint64_t high_half = *reinterpret_cast<uint32_t*>(stack_args_);
288    return (low_half & 0xffffffffULL) | (high_half << 32);
289  }
290
291  void VisitArguments() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
292    // This implementation doesn't support reg-spill area for hard float
293    // ABI targets such as x86_64 and aarch64. So, for those targets whose
294    // 'kQuickSoftFloatAbi' is 'false':
295    //     (a) 'stack_args_' should point to the first method's argument
296    //     (b) whatever the argument type it is, the 'stack_index_' should
297    //         be moved forward along with every visiting.
298    gpr_index_ = 0;
299    fpr_index_ = 0;
300    stack_index_ = 0;
301    if (!is_static_) {  // Handle this.
302      cur_type_ = Primitive::kPrimNot;
303      is_split_long_or_double_ = false;
304      Visit();
305      if (!kQuickSoftFloatAbi || kNumQuickGprArgs == 0) {
306        stack_index_++;
307      }
308      if (kNumQuickGprArgs > 0) {
309        gpr_index_++;
310      }
311    }
312    for (uint32_t shorty_index = 1; shorty_index < shorty_len_; ++shorty_index) {
313      cur_type_ = Primitive::GetType(shorty_[shorty_index]);
314      switch (cur_type_) {
315        case Primitive::kPrimNot:
316        case Primitive::kPrimBoolean:
317        case Primitive::kPrimByte:
318        case Primitive::kPrimChar:
319        case Primitive::kPrimShort:
320        case Primitive::kPrimInt:
321          is_split_long_or_double_ = false;
322          Visit();
323          if (!kQuickSoftFloatAbi || kNumQuickGprArgs == gpr_index_) {
324            stack_index_++;
325          }
326          if (gpr_index_ < kNumQuickGprArgs) {
327            gpr_index_++;
328          }
329          break;
330        case Primitive::kPrimFloat:
331          is_split_long_or_double_ = false;
332          Visit();
333          if (kQuickSoftFloatAbi) {
334            if (gpr_index_ < kNumQuickGprArgs) {
335              gpr_index_++;
336            } else {
337              stack_index_++;
338            }
339          } else {
340            if ((kNumQuickFprArgs != 0) && (fpr_index_ + 1 < kNumQuickFprArgs + 1)) {
341              fpr_index_++;
342            }
343            stack_index_++;
344          }
345          break;
346        case Primitive::kPrimDouble:
347        case Primitive::kPrimLong:
348          if (kQuickSoftFloatAbi || (cur_type_ == Primitive::kPrimLong)) {
349            is_split_long_or_double_ = (GetBytesPerGprSpillLocation(kRuntimeISA) == 4) &&
350                ((gpr_index_ + 1) == kNumQuickGprArgs);
351            Visit();
352            if (!kQuickSoftFloatAbi || kNumQuickGprArgs == gpr_index_) {
353              if (kBytesStackArgLocation == 4) {
354                stack_index_+= 2;
355              } else {
356                CHECK_EQ(kBytesStackArgLocation, 8U);
357                stack_index_++;
358              }
359            }
360            if (gpr_index_ < kNumQuickGprArgs) {
361              gpr_index_++;
362              if (GetBytesPerGprSpillLocation(kRuntimeISA) == 4) {
363                if (gpr_index_ < kNumQuickGprArgs) {
364                  gpr_index_++;
365                } else if (kQuickSoftFloatAbi) {
366                  stack_index_++;
367                }
368              }
369            }
370          } else {
371            is_split_long_or_double_ = (GetBytesPerFprSpillLocation(kRuntimeISA) == 4) &&
372                ((fpr_index_ + 1) == kNumQuickFprArgs);
373            Visit();
374            if ((kNumQuickFprArgs != 0) && (fpr_index_ + 1 < kNumQuickFprArgs + 1)) {
375              fpr_index_++;
376              if (GetBytesPerFprSpillLocation(kRuntimeISA) == 4) {
377                if ((kNumQuickFprArgs != 0) && (fpr_index_ + 1 < kNumQuickFprArgs + 1)) {
378                  fpr_index_++;
379                }
380              }
381            }
382            if (kBytesStackArgLocation == 4) {
383              stack_index_+= 2;
384            } else {
385              CHECK_EQ(kBytesStackArgLocation, 8U);
386              stack_index_++;
387            }
388          }
389          break;
390        default:
391          LOG(FATAL) << "Unexpected type: " << cur_type_ << " in " << shorty_;
392      }
393    }
394  }
395
396 private:
397  static size_t StackArgumentStartFromShorty(bool is_static, const char* shorty,
398                                             uint32_t shorty_len) {
399    if (kQuickSoftFloatAbi) {
400      CHECK_EQ(kNumQuickFprArgs, 0U);
401      return (kNumQuickGprArgs * GetBytesPerGprSpillLocation(kRuntimeISA))
402          + sizeof(StackReference<mirror::ArtMethod>) /* StackReference<ArtMethod> */;
403    } else {
404      // For now, there is no reg-spill area for the targets with
405      // hard float ABI. So, the offset pointing to the first method's
406      // parameter ('this' for non-static methods) should be returned.
407      return sizeof(StackReference<mirror::ArtMethod>);  // Skip StackReference<ArtMethod>.
408    }
409  }
410
411 protected:
412  const bool is_static_;
413  const char* const shorty_;
414  const uint32_t shorty_len_;
415
416 private:
417  byte* const gpr_args_;  // Address of GPR arguments in callee save frame.
418  byte* const fpr_args_;  // Address of FPR arguments in callee save frame.
419  byte* const stack_args_;  // Address of stack arguments in caller's frame.
420  uint32_t gpr_index_;  // Index into spilled GPRs.
421  uint32_t fpr_index_;  // Index into spilled FPRs.
422  uint32_t stack_index_;  // Index into arguments on the stack.
423  // The current type of argument during VisitArguments.
424  Primitive::Type cur_type_;
425  // Does a 64bit parameter straddle the register and stack arguments?
426  bool is_split_long_or_double_;
427};
428
429// Returns the 'this' object of a proxy method. This function is only used by StackVisitor. It
430// allows to use the QuickArgumentVisitor constants without moving all the code in its own module.
431extern "C" mirror::Object* artQuickGetProxyThisObject(StackReference<mirror::ArtMethod>* sp)
432    SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
433  return QuickArgumentVisitor::GetProxyThisObject(sp);
434}
435
436// Visits arguments on the stack placing them into the shadow frame.
437class BuildQuickShadowFrameVisitor FINAL : public QuickArgumentVisitor {
438 public:
439  BuildQuickShadowFrameVisitor(StackReference<mirror::ArtMethod>* sp, bool is_static,
440                               const char* shorty, uint32_t shorty_len, ShadowFrame* sf,
441                               size_t first_arg_reg) :
442      QuickArgumentVisitor(sp, is_static, shorty, shorty_len), sf_(sf), cur_reg_(first_arg_reg) {}
443
444  void Visit() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) OVERRIDE;
445
446 private:
447  ShadowFrame* const sf_;
448  uint32_t cur_reg_;
449
450  DISALLOW_COPY_AND_ASSIGN(BuildQuickShadowFrameVisitor);
451};
452
453void BuildQuickShadowFrameVisitor::Visit() {
454  Primitive::Type type = GetParamPrimitiveType();
455  switch (type) {
456    case Primitive::kPrimLong:  // Fall-through.
457    case Primitive::kPrimDouble:
458      if (IsSplitLongOrDouble()) {
459        sf_->SetVRegLong(cur_reg_, ReadSplitLongParam());
460      } else {
461        sf_->SetVRegLong(cur_reg_, *reinterpret_cast<jlong*>(GetParamAddress()));
462      }
463      ++cur_reg_;
464      break;
465    case Primitive::kPrimNot: {
466        StackReference<mirror::Object>* stack_ref =
467            reinterpret_cast<StackReference<mirror::Object>*>(GetParamAddress());
468        sf_->SetVRegReference(cur_reg_, stack_ref->AsMirrorPtr());
469      }
470      break;
471    case Primitive::kPrimBoolean:  // Fall-through.
472    case Primitive::kPrimByte:     // Fall-through.
473    case Primitive::kPrimChar:     // Fall-through.
474    case Primitive::kPrimShort:    // Fall-through.
475    case Primitive::kPrimInt:      // Fall-through.
476    case Primitive::kPrimFloat:
477      sf_->SetVReg(cur_reg_, *reinterpret_cast<jint*>(GetParamAddress()));
478      break;
479    case Primitive::kPrimVoid:
480      LOG(FATAL) << "UNREACHABLE";
481      break;
482  }
483  ++cur_reg_;
484}
485
486extern "C" uint64_t artQuickToInterpreterBridge(mirror::ArtMethod* method, Thread* self,
487                                                StackReference<mirror::ArtMethod>* sp)
488    SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
489  // Ensure we don't get thread suspension until the object arguments are safely in the shadow
490  // frame.
491  FinishCalleeSaveFrameSetup(self, sp, Runtime::kRefsAndArgs);
492
493  if (method->IsAbstract()) {
494    ThrowAbstractMethodError(method);
495    return 0;
496  } else {
497    DCHECK(!method->IsNative()) << PrettyMethod(method);
498    const char* old_cause = self->StartAssertNoThreadSuspension(
499        "Building interpreter shadow frame");
500    const DexFile::CodeItem* code_item = method->GetCodeItem();
501    DCHECK(code_item != nullptr) << PrettyMethod(method);
502    uint16_t num_regs = code_item->registers_size_;
503    void* memory = alloca(ShadowFrame::ComputeSize(num_regs));
504    // No last shadow coming from quick.
505    ShadowFrame* shadow_frame(ShadowFrame::Create(num_regs, nullptr, method, 0, memory));
506    size_t first_arg_reg = code_item->registers_size_ - code_item->ins_size_;
507    uint32_t shorty_len = 0;
508    const char* shorty = method->GetShorty(&shorty_len);
509    BuildQuickShadowFrameVisitor shadow_frame_builder(sp, method->IsStatic(), shorty, shorty_len,
510                                                      shadow_frame, first_arg_reg);
511    shadow_frame_builder.VisitArguments();
512    // Push a transition back into managed code onto the linked list in thread.
513    ManagedStack fragment;
514    self->PushManagedStackFragment(&fragment);
515    self->PushShadowFrame(shadow_frame);
516    self->EndAssertNoThreadSuspension(old_cause);
517
518    if (method->IsStatic() && !method->GetDeclaringClass()->IsInitialized()) {
519      // Ensure static method's class is initialized.
520      StackHandleScope<1> hs(self);
521      Handle<mirror::Class> h_class(hs.NewHandle(method->GetDeclaringClass()));
522      if (!Runtime::Current()->GetClassLinker()->EnsureInitialized(h_class, true, true)) {
523        DCHECK(Thread::Current()->IsExceptionPending()) << PrettyMethod(method);
524        self->PopManagedStackFragment(fragment);
525        return 0;
526      }
527    }
528
529    StackHandleScope<1> hs(self);
530    MethodHelper mh(hs.NewHandle(method));
531    JValue result = interpreter::EnterInterpreterFromStub(self, mh, code_item, *shadow_frame);
532    // Pop transition.
533    self->PopManagedStackFragment(fragment);
534    // No need to restore the args since the method has already been run by the interpreter.
535    return result.GetJ();
536  }
537}
538
539// Visits arguments on the stack placing them into the args vector, Object* arguments are converted
540// to jobjects.
541class BuildQuickArgumentVisitor FINAL : public QuickArgumentVisitor {
542 public:
543  BuildQuickArgumentVisitor(StackReference<mirror::ArtMethod>* sp, bool is_static,
544                            const char* shorty, uint32_t shorty_len,
545                            ScopedObjectAccessUnchecked* soa, std::vector<jvalue>* args) :
546      QuickArgumentVisitor(sp, is_static, shorty, shorty_len), soa_(soa), args_(args) {}
547
548  void Visit() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) OVERRIDE;
549
550  void FixupReferences() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
551
552 private:
553  ScopedObjectAccessUnchecked* const soa_;
554  std::vector<jvalue>* const args_;
555  // References which we must update when exiting in case the GC moved the objects.
556  std::vector<std::pair<jobject, StackReference<mirror::Object>*>> references_;
557
558  DISALLOW_COPY_AND_ASSIGN(BuildQuickArgumentVisitor);
559};
560
561void BuildQuickArgumentVisitor::Visit() {
562  jvalue val;
563  Primitive::Type type = GetParamPrimitiveType();
564  switch (type) {
565    case Primitive::kPrimNot: {
566      StackReference<mirror::Object>* stack_ref =
567          reinterpret_cast<StackReference<mirror::Object>*>(GetParamAddress());
568      val.l = soa_->AddLocalReference<jobject>(stack_ref->AsMirrorPtr());
569      references_.push_back(std::make_pair(val.l, stack_ref));
570      break;
571    }
572    case Primitive::kPrimLong:  // Fall-through.
573    case Primitive::kPrimDouble:
574      if (IsSplitLongOrDouble()) {
575        val.j = ReadSplitLongParam();
576      } else {
577        val.j = *reinterpret_cast<jlong*>(GetParamAddress());
578      }
579      break;
580    case Primitive::kPrimBoolean:  // Fall-through.
581    case Primitive::kPrimByte:     // Fall-through.
582    case Primitive::kPrimChar:     // Fall-through.
583    case Primitive::kPrimShort:    // Fall-through.
584    case Primitive::kPrimInt:      // Fall-through.
585    case Primitive::kPrimFloat:
586      val.i = *reinterpret_cast<jint*>(GetParamAddress());
587      break;
588    case Primitive::kPrimVoid:
589      LOG(FATAL) << "UNREACHABLE";
590      val.j = 0;
591      break;
592  }
593  args_->push_back(val);
594}
595
596void BuildQuickArgumentVisitor::FixupReferences() {
597  // Fixup any references which may have changed.
598  for (const auto& pair : references_) {
599    pair.second->Assign(soa_->Decode<mirror::Object*>(pair.first));
600    soa_->Env()->DeleteLocalRef(pair.first);
601  }
602}
603
604// Handler for invocation on proxy methods. On entry a frame will exist for the proxy object method
605// which is responsible for recording callee save registers. We explicitly place into jobjects the
606// incoming reference arguments (so they survive GC). We invoke the invocation handler, which is a
607// field within the proxy object, which will box the primitive arguments and deal with error cases.
608extern "C" uint64_t artQuickProxyInvokeHandler(mirror::ArtMethod* proxy_method,
609                                               mirror::Object* receiver,
610                                               Thread* self, StackReference<mirror::ArtMethod>* sp)
611    SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
612  DCHECK(proxy_method->IsProxyMethod()) << PrettyMethod(proxy_method);
613  DCHECK(receiver->GetClass()->IsProxyClass()) << PrettyMethod(proxy_method);
614  // Ensure we don't get thread suspension until the object arguments are safely in jobjects.
615  const char* old_cause =
616      self->StartAssertNoThreadSuspension("Adding to IRT proxy object arguments");
617  // Register the top of the managed stack, making stack crawlable.
618  DCHECK_EQ(sp->AsMirrorPtr(), proxy_method) << PrettyMethod(proxy_method);
619  self->SetTopOfStack(sp, 0);
620  DCHECK_EQ(proxy_method->GetFrameSizeInBytes(),
621            Runtime::Current()->GetCalleeSaveMethod(Runtime::kRefsAndArgs)->GetFrameSizeInBytes())
622      << PrettyMethod(proxy_method);
623  self->VerifyStack();
624  // Start new JNI local reference state.
625  JNIEnvExt* env = self->GetJniEnv();
626  ScopedObjectAccessUnchecked soa(env);
627  ScopedJniEnvLocalRefState env_state(env);
628  // Create local ref. copies of proxy method and the receiver.
629  jobject rcvr_jobj = soa.AddLocalReference<jobject>(receiver);
630
631  // Placing arguments into args vector and remove the receiver.
632  mirror::ArtMethod* non_proxy_method = proxy_method->GetInterfaceMethodIfProxy();
633  CHECK(!non_proxy_method->IsStatic()) << PrettyMethod(proxy_method) << " "
634                                       << PrettyMethod(non_proxy_method);
635  std::vector<jvalue> args;
636  uint32_t shorty_len = 0;
637  const char* shorty = proxy_method->GetShorty(&shorty_len);
638  BuildQuickArgumentVisitor local_ref_visitor(sp, false, shorty, shorty_len, &soa, &args);
639
640  local_ref_visitor.VisitArguments();
641  DCHECK_GT(args.size(), 0U) << PrettyMethod(proxy_method);
642  args.erase(args.begin());
643
644  // Convert proxy method into expected interface method.
645  mirror::ArtMethod* interface_method = proxy_method->FindOverriddenMethod();
646  DCHECK(interface_method != NULL) << PrettyMethod(proxy_method);
647  DCHECK(!interface_method->IsProxyMethod()) << PrettyMethod(interface_method);
648  jobject interface_method_jobj = soa.AddLocalReference<jobject>(interface_method);
649
650  // All naked Object*s should now be in jobjects, so its safe to go into the main invoke code
651  // that performs allocations.
652  self->EndAssertNoThreadSuspension(old_cause);
653  JValue result = InvokeProxyInvocationHandler(soa, shorty, rcvr_jobj, interface_method_jobj, args);
654  // Restore references which might have moved.
655  local_ref_visitor.FixupReferences();
656  return result.GetJ();
657}
658
659// Read object references held in arguments from quick frames and place in a JNI local references,
660// so they don't get garbage collected.
661class RememberForGcArgumentVisitor FINAL : public QuickArgumentVisitor {
662 public:
663  RememberForGcArgumentVisitor(StackReference<mirror::ArtMethod>* sp, bool is_static,
664                               const char* shorty, uint32_t shorty_len,
665                               ScopedObjectAccessUnchecked* soa) :
666      QuickArgumentVisitor(sp, is_static, shorty, shorty_len), soa_(soa) {}
667
668  void Visit() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) OVERRIDE;
669
670  void FixupReferences() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
671
672 private:
673  ScopedObjectAccessUnchecked* const soa_;
674  // References which we must update when exiting in case the GC moved the objects.
675  std::vector<std::pair<jobject, StackReference<mirror::Object>*> > references_;
676
677  DISALLOW_COPY_AND_ASSIGN(RememberForGcArgumentVisitor);
678};
679
680void RememberForGcArgumentVisitor::Visit() {
681  if (IsParamAReference()) {
682    StackReference<mirror::Object>* stack_ref =
683        reinterpret_cast<StackReference<mirror::Object>*>(GetParamAddress());
684    jobject reference =
685        soa_->AddLocalReference<jobject>(stack_ref->AsMirrorPtr());
686    references_.push_back(std::make_pair(reference, stack_ref));
687  }
688}
689
690void RememberForGcArgumentVisitor::FixupReferences() {
691  // Fixup any references which may have changed.
692  for (const auto& pair : references_) {
693    pair.second->Assign(soa_->Decode<mirror::Object*>(pair.first));
694    soa_->Env()->DeleteLocalRef(pair.first);
695  }
696}
697
698// Lazily resolve a method for quick. Called by stub code.
699extern "C" const void* artQuickResolutionTrampoline(mirror::ArtMethod* called,
700                                                    mirror::Object* receiver,
701                                                    Thread* self,
702                                                    StackReference<mirror::ArtMethod>* sp)
703    SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
704  FinishCalleeSaveFrameSetup(self, sp, Runtime::kRefsAndArgs);
705  // Start new JNI local reference state
706  JNIEnvExt* env = self->GetJniEnv();
707  ScopedObjectAccessUnchecked soa(env);
708  ScopedJniEnvLocalRefState env_state(env);
709  const char* old_cause = self->StartAssertNoThreadSuspension("Quick method resolution set up");
710
711  // Compute details about the called method (avoid GCs)
712  ClassLinker* linker = Runtime::Current()->GetClassLinker();
713  mirror::ArtMethod* caller = QuickArgumentVisitor::GetCallingMethod(sp);
714  InvokeType invoke_type;
715  const DexFile* dex_file;
716  uint32_t dex_method_idx;
717  if (called->IsRuntimeMethod()) {
718    uint32_t dex_pc = caller->ToDexPc(QuickArgumentVisitor::GetCallingPc(sp));
719    const DexFile::CodeItem* code;
720    dex_file = caller->GetDexFile();
721    code = caller->GetCodeItem();
722    CHECK_LT(dex_pc, code->insns_size_in_code_units_);
723    const Instruction* instr = Instruction::At(&code->insns_[dex_pc]);
724    Instruction::Code instr_code = instr->Opcode();
725    bool is_range;
726    switch (instr_code) {
727      case Instruction::INVOKE_DIRECT:
728        invoke_type = kDirect;
729        is_range = false;
730        break;
731      case Instruction::INVOKE_DIRECT_RANGE:
732        invoke_type = kDirect;
733        is_range = true;
734        break;
735      case Instruction::INVOKE_STATIC:
736        invoke_type = kStatic;
737        is_range = false;
738        break;
739      case Instruction::INVOKE_STATIC_RANGE:
740        invoke_type = kStatic;
741        is_range = true;
742        break;
743      case Instruction::INVOKE_SUPER:
744        invoke_type = kSuper;
745        is_range = false;
746        break;
747      case Instruction::INVOKE_SUPER_RANGE:
748        invoke_type = kSuper;
749        is_range = true;
750        break;
751      case Instruction::INVOKE_VIRTUAL:
752        invoke_type = kVirtual;
753        is_range = false;
754        break;
755      case Instruction::INVOKE_VIRTUAL_RANGE:
756        invoke_type = kVirtual;
757        is_range = true;
758        break;
759      case Instruction::INVOKE_INTERFACE:
760        invoke_type = kInterface;
761        is_range = false;
762        break;
763      case Instruction::INVOKE_INTERFACE_RANGE:
764        invoke_type = kInterface;
765        is_range = true;
766        break;
767      default:
768        LOG(FATAL) << "Unexpected call into trampoline: " << instr->DumpString(NULL);
769        // Avoid used uninitialized warnings.
770        invoke_type = kDirect;
771        is_range = false;
772    }
773    dex_method_idx = (is_range) ? instr->VRegB_3rc() : instr->VRegB_35c();
774  } else {
775    invoke_type = kStatic;
776    dex_file = called->GetDexFile();
777    dex_method_idx = called->GetDexMethodIndex();
778  }
779  uint32_t shorty_len;
780  const char* shorty =
781      dex_file->GetMethodShorty(dex_file->GetMethodId(dex_method_idx), &shorty_len);
782  RememberForGcArgumentVisitor visitor(sp, invoke_type == kStatic, shorty, shorty_len, &soa);
783  visitor.VisitArguments();
784  self->EndAssertNoThreadSuspension(old_cause);
785  bool virtual_or_interface = invoke_type == kVirtual || invoke_type == kInterface;
786  // Resolve method filling in dex cache.
787  if (UNLIKELY(called->IsRuntimeMethod())) {
788    StackHandleScope<1> hs(self);
789    mirror::Object* dummy = nullptr;
790    HandleWrapper<mirror::Object> h_receiver(
791        hs.NewHandleWrapper(virtual_or_interface ? &receiver : &dummy));
792    called = linker->ResolveMethod(self, dex_method_idx, &caller, invoke_type);
793  }
794  const void* code = NULL;
795  if (LIKELY(!self->IsExceptionPending())) {
796    // Incompatible class change should have been handled in resolve method.
797    CHECK(!called->CheckIncompatibleClassChange(invoke_type))
798        << PrettyMethod(called) << " " << invoke_type;
799    if (virtual_or_interface) {
800      // Refine called method based on receiver.
801      CHECK(receiver != nullptr) << invoke_type;
802
803      mirror::ArtMethod* orig_called = called;
804      if (invoke_type == kVirtual) {
805        called = receiver->GetClass()->FindVirtualMethodForVirtual(called);
806      } else {
807        called = receiver->GetClass()->FindVirtualMethodForInterface(called);
808      }
809
810      CHECK(called != nullptr) << PrettyMethod(orig_called) << " "
811                               << PrettyTypeOf(receiver) << " "
812                               << invoke_type << " " << orig_called->GetVtableIndex();
813
814      // We came here because of sharpening. Ensure the dex cache is up-to-date on the method index
815      // of the sharpened method.
816      if (called->HasSameDexCacheResolvedMethods(caller)) {
817        caller->SetDexCacheResolvedMethod(called->GetDexMethodIndex(), called);
818      } else {
819        // Calling from one dex file to another, need to compute the method index appropriate to
820        // the caller's dex file. Since we get here only if the original called was a runtime
821        // method, we've got the correct dex_file and a dex_method_idx from above.
822        DCHECK_EQ(caller->GetDexFile(), dex_file);
823        StackHandleScope<1> hs(self);
824        MethodHelper mh(hs.NewHandle(called));
825        uint32_t method_index = mh.FindDexMethodIndexInOtherDexFile(*dex_file, dex_method_idx);
826        if (method_index != DexFile::kDexNoIndex) {
827          caller->SetDexCacheResolvedMethod(method_index, called);
828        }
829      }
830    } else if (invoke_type == kStatic) {
831      const auto called_dex_method_idx = called->GetDexMethodIndex();
832      // For static invokes, we may dispatch to the static method in the superclass but resolve
833      // using the subclass. To prevent getting slow paths on each invoke, we force set the
834      // resolved method for the super class dex method index if we are in the same dex file.
835      // b/19175856
836      if (called->GetDexFile() == dex_file && dex_method_idx != called_dex_method_idx) {
837        called->GetDexCache()->SetResolvedMethod(called_dex_method_idx, called);
838      }
839    }
840    // Ensure that the called method's class is initialized.
841    StackHandleScope<1> hs(soa.Self());
842    Handle<mirror::Class> called_class(hs.NewHandle(called->GetDeclaringClass()));
843    linker->EnsureInitialized(called_class, true, true);
844    if (LIKELY(called_class->IsInitialized())) {
845      code = called->GetEntryPointFromQuickCompiledCode();
846    } else if (called_class->IsInitializing()) {
847      if (invoke_type == kStatic) {
848        // Class is still initializing, go to oat and grab code (trampoline must be left in place
849        // until class is initialized to stop races between threads).
850        code = linker->GetQuickOatCodeFor(called);
851      } else {
852        // No trampoline for non-static methods.
853        code = called->GetEntryPointFromQuickCompiledCode();
854      }
855    } else {
856      DCHECK(called_class->IsErroneous());
857    }
858  }
859  CHECK_EQ(code == NULL, self->IsExceptionPending());
860  // Fixup any locally saved objects may have moved during a GC.
861  visitor.FixupReferences();
862  // Place called method in callee-save frame to be placed as first argument to quick method.
863  sp->Assign(called);
864  return code;
865}
866
867/*
868 * This class uses a couple of observations to unite the different calling conventions through
869 * a few constants.
870 *
871 * 1) Number of registers used for passing is normally even, so counting down has no penalty for
872 *    possible alignment.
873 * 2) Known 64b architectures store 8B units on the stack, both for integral and floating point
874 *    types, so using uintptr_t is OK. Also means that we can use kRegistersNeededX to denote
875 *    when we have to split things
876 * 3) The only soft-float, Arm, is 32b, so no widening needs to be taken into account for floats
877 *    and we can use Int handling directly.
878 * 4) Only 64b architectures widen, and their stack is aligned 8B anyways, so no padding code
879 *    necessary when widening. Also, widening of Ints will take place implicitly, and the
880 *    extension should be compatible with Aarch64, which mandates copying the available bits
881 *    into LSB and leaving the rest unspecified.
882 * 5) Aligning longs and doubles is necessary on arm only, and it's the same in registers and on
883 *    the stack.
884 * 6) There is only little endian.
885 *
886 *
887 * Actual work is supposed to be done in a delegate of the template type. The interface is as
888 * follows:
889 *
890 * void PushGpr(uintptr_t):   Add a value for the next GPR
891 *
892 * void PushFpr4(float):      Add a value for the next FPR of size 32b. Is only called if we need
893 *                            padding, that is, think the architecture is 32b and aligns 64b.
894 *
895 * void PushFpr8(uint64_t):   Push a double. We _will_ call this on 32b, it's the callee's job to
896 *                            split this if necessary. The current state will have aligned, if
897 *                            necessary.
898 *
899 * void PushStack(uintptr_t): Push a value to the stack.
900 *
901 * uintptr_t PushHandleScope(mirror::Object* ref): Add a reference to the HandleScope. This _will_ have nullptr,
902 *                                          as this might be important for null initialization.
903 *                                          Must return the jobject, that is, the reference to the
904 *                                          entry in the HandleScope (nullptr if necessary).
905 *
906 */
907template<class T> class BuildNativeCallFrameStateMachine {
908 public:
909#if defined(__arm__)
910  // TODO: These are all dummy values!
911  static constexpr bool kNativeSoftFloatAbi = true;
912  static constexpr size_t kNumNativeGprArgs = 4;  // 4 arguments passed in GPRs, r0-r3
913  static constexpr size_t kNumNativeFprArgs = 0;  // 0 arguments passed in FPRs.
914
915  static constexpr size_t kRegistersNeededForLong = 2;
916  static constexpr size_t kRegistersNeededForDouble = 2;
917  static constexpr bool kMultiRegistersAligned = true;
918  static constexpr bool kMultiRegistersWidened = false;
919  static constexpr bool kAlignLongOnStack = true;
920  static constexpr bool kAlignDoubleOnStack = true;
921#elif defined(__aarch64__)
922  static constexpr bool kNativeSoftFloatAbi = false;  // This is a hard float ABI.
923  static constexpr size_t kNumNativeGprArgs = 8;  // 6 arguments passed in GPRs.
924  static constexpr size_t kNumNativeFprArgs = 8;  // 8 arguments passed in FPRs.
925
926  static constexpr size_t kRegistersNeededForLong = 1;
927  static constexpr size_t kRegistersNeededForDouble = 1;
928  static constexpr bool kMultiRegistersAligned = false;
929  static constexpr bool kMultiRegistersWidened = false;
930  static constexpr bool kAlignLongOnStack = false;
931  static constexpr bool kAlignDoubleOnStack = false;
932#elif defined(__mips__)
933  // TODO: These are all dummy values!
934  static constexpr bool kNativeSoftFloatAbi = true;  // This is a hard float ABI.
935  static constexpr size_t kNumNativeGprArgs = 0;  // 6 arguments passed in GPRs.
936  static constexpr size_t kNumNativeFprArgs = 0;  // 8 arguments passed in FPRs.
937
938  static constexpr size_t kRegistersNeededForLong = 2;
939  static constexpr size_t kRegistersNeededForDouble = 2;
940  static constexpr bool kMultiRegistersAligned = true;
941  static constexpr bool kMultiRegistersWidened = true;
942  static constexpr bool kAlignLongOnStack = false;
943  static constexpr bool kAlignDoubleOnStack = false;
944#elif defined(__i386__)
945  // TODO: Check these!
946  static constexpr bool kNativeSoftFloatAbi = false;  // Not using int registers for fp
947  static constexpr size_t kNumNativeGprArgs = 0;  // 6 arguments passed in GPRs.
948  static constexpr size_t kNumNativeFprArgs = 0;  // 8 arguments passed in FPRs.
949
950  static constexpr size_t kRegistersNeededForLong = 2;
951  static constexpr size_t kRegistersNeededForDouble = 2;
952  static constexpr bool kMultiRegistersAligned = false;  // x86 not using regs, anyways
953  static constexpr bool kMultiRegistersWidened = false;
954  static constexpr bool kAlignLongOnStack = false;
955  static constexpr bool kAlignDoubleOnStack = false;
956#elif defined(__x86_64__)
957  static constexpr bool kNativeSoftFloatAbi = false;  // This is a hard float ABI.
958  static constexpr size_t kNumNativeGprArgs = 6;  // 6 arguments passed in GPRs.
959  static constexpr size_t kNumNativeFprArgs = 8;  // 8 arguments passed in FPRs.
960
961  static constexpr size_t kRegistersNeededForLong = 1;
962  static constexpr size_t kRegistersNeededForDouble = 1;
963  static constexpr bool kMultiRegistersAligned = false;
964  static constexpr bool kMultiRegistersWidened = false;
965  static constexpr bool kAlignLongOnStack = false;
966  static constexpr bool kAlignDoubleOnStack = false;
967#else
968#error "Unsupported architecture"
969#endif
970
971 public:
972  explicit BuildNativeCallFrameStateMachine(T* delegate)
973      : gpr_index_(kNumNativeGprArgs),
974        fpr_index_(kNumNativeFprArgs),
975        stack_entries_(0),
976        delegate_(delegate) {
977    // For register alignment, we want to assume that counters (gpr_index_, fpr_index_) are even iff
978    // the next register is even; counting down is just to make the compiler happy...
979    CHECK_EQ(kNumNativeGprArgs % 2, 0U);
980    CHECK_EQ(kNumNativeFprArgs % 2, 0U);
981  }
982
983  virtual ~BuildNativeCallFrameStateMachine() {}
984
985  bool HavePointerGpr() {
986    return gpr_index_ > 0;
987  }
988
989  void AdvancePointer(const void* val) {
990    if (HavePointerGpr()) {
991      gpr_index_--;
992      PushGpr(reinterpret_cast<uintptr_t>(val));
993    } else {
994      stack_entries_++;  // TODO: have a field for pointer length as multiple of 32b
995      PushStack(reinterpret_cast<uintptr_t>(val));
996      gpr_index_ = 0;
997    }
998  }
999
1000  bool HaveHandleScopeGpr() {
1001    return gpr_index_ > 0;
1002  }
1003
1004  void AdvanceHandleScope(mirror::Object* ptr) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1005    uintptr_t handle = PushHandle(ptr);
1006    if (HaveHandleScopeGpr()) {
1007      gpr_index_--;
1008      PushGpr(handle);
1009    } else {
1010      stack_entries_++;
1011      PushStack(handle);
1012      gpr_index_ = 0;
1013    }
1014  }
1015
1016  bool HaveIntGpr() {
1017    return gpr_index_ > 0;
1018  }
1019
1020  void AdvanceInt(uint32_t val) {
1021    if (HaveIntGpr()) {
1022      gpr_index_--;
1023      PushGpr(val);
1024    } else {
1025      stack_entries_++;
1026      PushStack(val);
1027      gpr_index_ = 0;
1028    }
1029  }
1030
1031  bool HaveLongGpr() {
1032    return gpr_index_ >= kRegistersNeededForLong + (LongGprNeedsPadding() ? 1 : 0);
1033  }
1034
1035  bool LongGprNeedsPadding() {
1036    return kRegistersNeededForLong > 1 &&     // only pad when using multiple registers
1037        kAlignLongOnStack &&                  // and when it needs alignment
1038        (gpr_index_ & 1) == 1;                // counter is odd, see constructor
1039  }
1040
1041  bool LongStackNeedsPadding() {
1042    return kRegistersNeededForLong > 1 &&     // only pad when using multiple registers
1043        kAlignLongOnStack &&                  // and when it needs 8B alignment
1044        (stack_entries_ & 1) == 1;            // counter is odd
1045  }
1046
1047  void AdvanceLong(uint64_t val) {
1048    if (HaveLongGpr()) {
1049      if (LongGprNeedsPadding()) {
1050        PushGpr(0);
1051        gpr_index_--;
1052      }
1053      if (kRegistersNeededForLong == 1) {
1054        PushGpr(static_cast<uintptr_t>(val));
1055      } else {
1056        PushGpr(static_cast<uintptr_t>(val & 0xFFFFFFFF));
1057        PushGpr(static_cast<uintptr_t>((val >> 32) & 0xFFFFFFFF));
1058      }
1059      gpr_index_ -= kRegistersNeededForLong;
1060    } else {
1061      if (LongStackNeedsPadding()) {
1062        PushStack(0);
1063        stack_entries_++;
1064      }
1065      if (kRegistersNeededForLong == 1) {
1066        PushStack(static_cast<uintptr_t>(val));
1067        stack_entries_++;
1068      } else {
1069        PushStack(static_cast<uintptr_t>(val & 0xFFFFFFFF));
1070        PushStack(static_cast<uintptr_t>((val >> 32) & 0xFFFFFFFF));
1071        stack_entries_ += 2;
1072      }
1073      gpr_index_ = 0;
1074    }
1075  }
1076
1077  bool HaveFloatFpr() {
1078    return fpr_index_ > 0;
1079  }
1080
1081  void AdvanceFloat(float val) {
1082    if (kNativeSoftFloatAbi) {
1083      AdvanceInt(bit_cast<float, uint32_t>(val));
1084    } else {
1085      if (HaveFloatFpr()) {
1086        fpr_index_--;
1087        if (kRegistersNeededForDouble == 1) {
1088          if (kMultiRegistersWidened) {
1089            PushFpr8(bit_cast<double, uint64_t>(val));
1090          } else {
1091            // No widening, just use the bits.
1092            PushFpr8(bit_cast<float, uint64_t>(val));
1093          }
1094        } else {
1095          PushFpr4(val);
1096        }
1097      } else {
1098        stack_entries_++;
1099        if (kRegistersNeededForDouble == 1 && kMultiRegistersWidened) {
1100          // Need to widen before storing: Note the "double" in the template instantiation.
1101          // Note: We need to jump through those hoops to make the compiler happy.
1102          DCHECK_EQ(sizeof(uintptr_t), sizeof(uint64_t));
1103          PushStack(static_cast<uintptr_t>(bit_cast<double, uint64_t>(val)));
1104        } else {
1105          PushStack(bit_cast<float, uintptr_t>(val));
1106        }
1107        fpr_index_ = 0;
1108      }
1109    }
1110  }
1111
1112  bool HaveDoubleFpr() {
1113    return fpr_index_ >= kRegistersNeededForDouble + (DoubleFprNeedsPadding() ? 1 : 0);
1114  }
1115
1116  bool DoubleFprNeedsPadding() {
1117    return kRegistersNeededForDouble > 1 &&     // only pad when using multiple registers
1118        kAlignDoubleOnStack &&                  // and when it needs alignment
1119        (fpr_index_ & 1) == 1;                  // counter is odd, see constructor
1120  }
1121
1122  bool DoubleStackNeedsPadding() {
1123    return kRegistersNeededForDouble > 1 &&     // only pad when using multiple registers
1124        kAlignDoubleOnStack &&                  // and when it needs 8B alignment
1125        (stack_entries_ & 1) == 1;              // counter is odd
1126  }
1127
1128  void AdvanceDouble(uint64_t val) {
1129    if (kNativeSoftFloatAbi) {
1130      AdvanceLong(val);
1131    } else {
1132      if (HaveDoubleFpr()) {
1133        if (DoubleFprNeedsPadding()) {
1134          PushFpr4(0);
1135          fpr_index_--;
1136        }
1137        PushFpr8(val);
1138        fpr_index_ -= kRegistersNeededForDouble;
1139      } else {
1140        if (DoubleStackNeedsPadding()) {
1141          PushStack(0);
1142          stack_entries_++;
1143        }
1144        if (kRegistersNeededForDouble == 1) {
1145          PushStack(static_cast<uintptr_t>(val));
1146          stack_entries_++;
1147        } else {
1148          PushStack(static_cast<uintptr_t>(val & 0xFFFFFFFF));
1149          PushStack(static_cast<uintptr_t>((val >> 32) & 0xFFFFFFFF));
1150          stack_entries_ += 2;
1151        }
1152        fpr_index_ = 0;
1153      }
1154    }
1155  }
1156
1157  uint32_t getStackEntries() {
1158    return stack_entries_;
1159  }
1160
1161  uint32_t getNumberOfUsedGprs() {
1162    return kNumNativeGprArgs - gpr_index_;
1163  }
1164
1165  uint32_t getNumberOfUsedFprs() {
1166    return kNumNativeFprArgs - fpr_index_;
1167  }
1168
1169 private:
1170  void PushGpr(uintptr_t val) {
1171    delegate_->PushGpr(val);
1172  }
1173  void PushFpr4(float val) {
1174    delegate_->PushFpr4(val);
1175  }
1176  void PushFpr8(uint64_t val) {
1177    delegate_->PushFpr8(val);
1178  }
1179  void PushStack(uintptr_t val) {
1180    delegate_->PushStack(val);
1181  }
1182  uintptr_t PushHandle(mirror::Object* ref) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1183    return delegate_->PushHandle(ref);
1184  }
1185
1186  uint32_t gpr_index_;      // Number of free GPRs
1187  uint32_t fpr_index_;      // Number of free FPRs
1188  uint32_t stack_entries_;  // Stack entries are in multiples of 32b, as floats are usually not
1189                            // extended
1190  T* delegate_;             // What Push implementation gets called
1191};
1192
1193// Computes the sizes of register stacks and call stack area. Handling of references can be extended
1194// in subclasses.
1195//
1196// To handle native pointers, use "L" in the shorty for an object reference, which simulates
1197// them with handles.
1198class ComputeNativeCallFrameSize {
1199 public:
1200  ComputeNativeCallFrameSize() : num_stack_entries_(0) {}
1201
1202  virtual ~ComputeNativeCallFrameSize() {}
1203
1204  uint32_t GetStackSize() {
1205    return num_stack_entries_ * sizeof(uintptr_t);
1206  }
1207
1208  uint8_t* LayoutCallStack(uint8_t* sp8) {
1209    sp8 -= GetStackSize();
1210    // Align by kStackAlignment.
1211    sp8 = reinterpret_cast<uint8_t*>(RoundDown(reinterpret_cast<uintptr_t>(sp8), kStackAlignment));
1212    return sp8;
1213  }
1214
1215  uint8_t* LayoutCallRegisterStacks(uint8_t* sp8, uintptr_t** start_gpr, uint32_t** start_fpr) {
1216    // Assumption is OK right now, as we have soft-float arm
1217    size_t fregs = BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize>::kNumNativeFprArgs;
1218    sp8 -= fregs * sizeof(uintptr_t);
1219    *start_fpr = reinterpret_cast<uint32_t*>(sp8);
1220    size_t iregs = BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize>::kNumNativeGprArgs;
1221    sp8 -= iregs * sizeof(uintptr_t);
1222    *start_gpr = reinterpret_cast<uintptr_t*>(sp8);
1223    return sp8;
1224  }
1225
1226  uint8_t* LayoutNativeCall(uint8_t* sp8, uintptr_t** start_stack, uintptr_t** start_gpr,
1227                            uint32_t** start_fpr) {
1228    // Native call stack.
1229    sp8 = LayoutCallStack(sp8);
1230    *start_stack = reinterpret_cast<uintptr_t*>(sp8);
1231
1232    // Put fprs and gprs below.
1233    sp8 = LayoutCallRegisterStacks(sp8, start_gpr, start_fpr);
1234
1235    // Return the new bottom.
1236    return sp8;
1237  }
1238
1239  virtual void WalkHeader(BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize>* sm)
1240      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {}
1241
1242  void Walk(const char* shorty, uint32_t shorty_len) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1243    BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize> sm(this);
1244
1245    WalkHeader(&sm);
1246
1247    for (uint32_t i = 1; i < shorty_len; ++i) {
1248      Primitive::Type cur_type_ = Primitive::GetType(shorty[i]);
1249      switch (cur_type_) {
1250        case Primitive::kPrimNot:
1251          sm.AdvanceHandleScope(
1252              reinterpret_cast<mirror::Object*>(0x12345678));
1253          break;
1254
1255        case Primitive::kPrimBoolean:
1256        case Primitive::kPrimByte:
1257        case Primitive::kPrimChar:
1258        case Primitive::kPrimShort:
1259        case Primitive::kPrimInt:
1260          sm.AdvanceInt(0);
1261          break;
1262        case Primitive::kPrimFloat:
1263          sm.AdvanceFloat(0);
1264          break;
1265        case Primitive::kPrimDouble:
1266          sm.AdvanceDouble(0);
1267          break;
1268        case Primitive::kPrimLong:
1269          sm.AdvanceLong(0);
1270          break;
1271        default:
1272          LOG(FATAL) << "Unexpected type: " << cur_type_ << " in " << shorty;
1273      }
1274    }
1275
1276    num_stack_entries_ = sm.getStackEntries();
1277  }
1278
1279  void PushGpr(uintptr_t /* val */) {
1280    // not optimizing registers, yet
1281  }
1282
1283  void PushFpr4(float /* val */) {
1284    // not optimizing registers, yet
1285  }
1286
1287  void PushFpr8(uint64_t /* val */) {
1288    // not optimizing registers, yet
1289  }
1290
1291  void PushStack(uintptr_t /* val */) {
1292    // counting is already done in the superclass
1293  }
1294
1295  virtual uintptr_t PushHandle(mirror::Object* /* ptr */) {
1296    return reinterpret_cast<uintptr_t>(nullptr);
1297  }
1298
1299 protected:
1300  uint32_t num_stack_entries_;
1301};
1302
1303class ComputeGenericJniFrameSize FINAL : public ComputeNativeCallFrameSize {
1304 public:
1305  ComputeGenericJniFrameSize() : num_handle_scope_references_(0) {}
1306
1307  // Lays out the callee-save frame. Assumes that the incorrect frame corresponding to RefsAndArgs
1308  // is at *m = sp. Will update to point to the bottom of the save frame.
1309  //
1310  // Note: assumes ComputeAll() has been run before.
1311  void LayoutCalleeSaveFrame(StackReference<mirror::ArtMethod>** m, void* sp, HandleScope** table,
1312                             uint32_t* handle_scope_entries)
1313      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1314    mirror::ArtMethod* method = (*m)->AsMirrorPtr();
1315
1316    uint8_t* sp8 = reinterpret_cast<uint8_t*>(sp);
1317
1318    // First, fix up the layout of the callee-save frame.
1319    // We have to squeeze in the HandleScope, and relocate the method pointer.
1320
1321    // "Free" the slot for the method.
1322    sp8 += kPointerSize;  // In the callee-save frame we use a full pointer.
1323
1324    // Under the callee saves put handle scope and new method stack reference.
1325    *handle_scope_entries = num_handle_scope_references_;
1326
1327    size_t handle_scope_size = HandleScope::SizeOf(num_handle_scope_references_);
1328    size_t scope_and_method = handle_scope_size + sizeof(StackReference<mirror::ArtMethod>);
1329
1330    sp8 -= scope_and_method;
1331    // Align by kStackAlignment.
1332    sp8 = reinterpret_cast<uint8_t*>(RoundDown(
1333        reinterpret_cast<uintptr_t>(sp8), kStackAlignment));
1334
1335    uint8_t* sp8_table = sp8 + sizeof(StackReference<mirror::ArtMethod>);
1336    *table = reinterpret_cast<HandleScope*>(sp8_table);
1337    (*table)->SetNumberOfReferences(num_handle_scope_references_);
1338
1339    // Add a slot for the method pointer, and fill it. Fix the pointer-pointer given to us.
1340    uint8_t* method_pointer = sp8;
1341    StackReference<mirror::ArtMethod>* new_method_ref =
1342        reinterpret_cast<StackReference<mirror::ArtMethod>*>(method_pointer);
1343    new_method_ref->Assign(method);
1344    *m = new_method_ref;
1345  }
1346
1347  // Adds space for the cookie. Note: may leave stack unaligned.
1348  void LayoutCookie(uint8_t** sp) {
1349    // Reference cookie and padding
1350    *sp -= 8;
1351  }
1352
1353  // Re-layout the callee-save frame (insert a handle-scope). Then add space for the cookie.
1354  // Returns the new bottom. Note: this may be unaligned.
1355  uint8_t* LayoutJNISaveFrame(StackReference<mirror::ArtMethod>** m, void* sp, HandleScope** table,
1356                              uint32_t* handle_scope_entries)
1357      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1358    // First, fix up the layout of the callee-save frame.
1359    // We have to squeeze in the HandleScope, and relocate the method pointer.
1360    LayoutCalleeSaveFrame(m, sp, table, handle_scope_entries);
1361
1362    // The bottom of the callee-save frame is now where the method is, *m.
1363    uint8_t* sp8 = reinterpret_cast<uint8_t*>(*m);
1364
1365    // Add space for cookie.
1366    LayoutCookie(&sp8);
1367
1368    return sp8;
1369  }
1370
1371  // WARNING: After this, *sp won't be pointing to the method anymore!
1372  uint8_t* ComputeLayout(StackReference<mirror::ArtMethod>** m, bool is_static, const char* shorty,
1373                         uint32_t shorty_len, HandleScope** table, uint32_t* handle_scope_entries,
1374                         uintptr_t** start_stack, uintptr_t** start_gpr, uint32_t** start_fpr)
1375      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1376    Walk(shorty, shorty_len);
1377
1378    // JNI part.
1379    uint8_t* sp8 = LayoutJNISaveFrame(m, reinterpret_cast<void*>(*m), table, handle_scope_entries);
1380
1381    sp8 = LayoutNativeCall(sp8, start_stack, start_gpr, start_fpr);
1382
1383    // Return the new bottom.
1384    return sp8;
1385  }
1386
1387  uintptr_t PushHandle(mirror::Object* /* ptr */) OVERRIDE;
1388
1389  // Add JNIEnv* and jobj/jclass before the shorty-derived elements.
1390  void WalkHeader(BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize>* sm) OVERRIDE
1391      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
1392
1393 private:
1394  uint32_t num_handle_scope_references_;
1395};
1396
1397uintptr_t ComputeGenericJniFrameSize::PushHandle(mirror::Object* /* ptr */) {
1398  num_handle_scope_references_++;
1399  return reinterpret_cast<uintptr_t>(nullptr);
1400}
1401
1402void ComputeGenericJniFrameSize::WalkHeader(
1403    BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize>* sm) {
1404  // JNIEnv
1405  sm->AdvancePointer(nullptr);
1406
1407  // Class object or this as first argument
1408  sm->AdvanceHandleScope(reinterpret_cast<mirror::Object*>(0x12345678));
1409}
1410
1411// Class to push values to three separate regions. Used to fill the native call part. Adheres to
1412// the template requirements of BuildGenericJniFrameStateMachine.
1413class FillNativeCall {
1414 public:
1415  FillNativeCall(uintptr_t* gpr_regs, uint32_t* fpr_regs, uintptr_t* stack_args) :
1416      cur_gpr_reg_(gpr_regs), cur_fpr_reg_(fpr_regs), cur_stack_arg_(stack_args) {}
1417
1418  virtual ~FillNativeCall() {}
1419
1420  void Reset(uintptr_t* gpr_regs, uint32_t* fpr_regs, uintptr_t* stack_args) {
1421    cur_gpr_reg_ = gpr_regs;
1422    cur_fpr_reg_ = fpr_regs;
1423    cur_stack_arg_ = stack_args;
1424  }
1425
1426  void PushGpr(uintptr_t val) {
1427    *cur_gpr_reg_ = val;
1428    cur_gpr_reg_++;
1429  }
1430
1431  void PushFpr4(float val) {
1432    *cur_fpr_reg_ = val;
1433    cur_fpr_reg_++;
1434  }
1435
1436  void PushFpr8(uint64_t val) {
1437    uint64_t* tmp = reinterpret_cast<uint64_t*>(cur_fpr_reg_);
1438    *tmp = val;
1439    cur_fpr_reg_ += 2;
1440  }
1441
1442  void PushStack(uintptr_t val) {
1443    *cur_stack_arg_ = val;
1444    cur_stack_arg_++;
1445  }
1446
1447  virtual uintptr_t PushHandle(mirror::Object* ref) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1448    LOG(FATAL) << "(Non-JNI) Native call does not use handles.";
1449    return 0U;
1450  }
1451
1452 private:
1453  uintptr_t* cur_gpr_reg_;
1454  uint32_t* cur_fpr_reg_;
1455  uintptr_t* cur_stack_arg_;
1456};
1457
1458// Visits arguments on the stack placing them into a region lower down the stack for the benefit
1459// of transitioning into native code.
1460class BuildGenericJniFrameVisitor FINAL : public QuickArgumentVisitor {
1461 public:
1462  BuildGenericJniFrameVisitor(StackReference<mirror::ArtMethod>** sp, bool is_static,
1463                              const char* shorty, uint32_t shorty_len, Thread* self)
1464     : QuickArgumentVisitor(*sp, is_static, shorty, shorty_len),
1465       jni_call_(nullptr, nullptr, nullptr, nullptr), sm_(&jni_call_) {
1466    ComputeGenericJniFrameSize fsc;
1467    uintptr_t* start_gpr_reg;
1468    uint32_t* start_fpr_reg;
1469    uintptr_t* start_stack_arg;
1470    uint32_t handle_scope_entries;
1471    bottom_of_used_area_ = fsc.ComputeLayout(sp, is_static, shorty, shorty_len, &handle_scope_,
1472                                             &handle_scope_entries, &start_stack_arg,
1473                                             &start_gpr_reg, &start_fpr_reg);
1474
1475    handle_scope_->SetNumberOfReferences(handle_scope_entries);
1476    jni_call_.Reset(start_gpr_reg, start_fpr_reg, start_stack_arg, handle_scope_);
1477
1478    // jni environment is always first argument
1479    sm_.AdvancePointer(self->GetJniEnv());
1480
1481    if (is_static) {
1482      sm_.AdvanceHandleScope((*sp)->AsMirrorPtr()->GetDeclaringClass());
1483    }
1484  }
1485
1486  void Visit() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) OVERRIDE;
1487
1488  void FinalizeHandleScope(Thread* self) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
1489
1490  StackReference<mirror::Object>* GetFirstHandleScopeEntry()
1491      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1492    return handle_scope_->GetHandle(0).GetReference();
1493  }
1494
1495  jobject GetFirstHandleScopeJObject() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1496    return handle_scope_->GetHandle(0).ToJObject();
1497  }
1498
1499  void* GetBottomOfUsedArea() {
1500    return bottom_of_used_area_;
1501  }
1502
1503 private:
1504  // A class to fill a JNI call. Adds reference/handle-scope management to FillNativeCall.
1505  class FillJniCall FINAL : public FillNativeCall {
1506   public:
1507    FillJniCall(uintptr_t* gpr_regs, uint32_t* fpr_regs, uintptr_t* stack_args,
1508                HandleScope* handle_scope) : FillNativeCall(gpr_regs, fpr_regs, stack_args),
1509                                             handle_scope_(handle_scope), cur_entry_(0) {}
1510
1511    uintptr_t PushHandle(mirror::Object* ref) OVERRIDE SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
1512
1513    void Reset(uintptr_t* gpr_regs, uint32_t* fpr_regs, uintptr_t* stack_args, HandleScope* scope) {
1514      FillNativeCall::Reset(gpr_regs, fpr_regs, stack_args);
1515      handle_scope_ = scope;
1516      cur_entry_ = 0U;
1517    }
1518
1519    void ResetRemainingScopeSlots() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1520      // Initialize padding entries.
1521      size_t expected_slots = handle_scope_->NumberOfReferences();
1522      while (cur_entry_ < expected_slots) {
1523        handle_scope_->GetHandle(cur_entry_++).Assign(nullptr);
1524      }
1525      DCHECK_NE(cur_entry_, 0U);
1526    }
1527
1528   private:
1529    HandleScope* handle_scope_;
1530    size_t cur_entry_;
1531  };
1532
1533  HandleScope* handle_scope_;
1534  FillJniCall jni_call_;
1535  void* bottom_of_used_area_;
1536
1537  BuildNativeCallFrameStateMachine<FillJniCall> sm_;
1538
1539  DISALLOW_COPY_AND_ASSIGN(BuildGenericJniFrameVisitor);
1540};
1541
1542uintptr_t BuildGenericJniFrameVisitor::FillJniCall::PushHandle(mirror::Object* ref) {
1543  uintptr_t tmp;
1544  Handle<mirror::Object> h = handle_scope_->GetHandle(cur_entry_);
1545  h.Assign(ref);
1546  tmp = reinterpret_cast<uintptr_t>(h.ToJObject());
1547  cur_entry_++;
1548  return tmp;
1549}
1550
1551void BuildGenericJniFrameVisitor::Visit() {
1552  Primitive::Type type = GetParamPrimitiveType();
1553  switch (type) {
1554    case Primitive::kPrimLong: {
1555      jlong long_arg;
1556      if (IsSplitLongOrDouble()) {
1557        long_arg = ReadSplitLongParam();
1558      } else {
1559        long_arg = *reinterpret_cast<jlong*>(GetParamAddress());
1560      }
1561      sm_.AdvanceLong(long_arg);
1562      break;
1563    }
1564    case Primitive::kPrimDouble: {
1565      uint64_t double_arg;
1566      if (IsSplitLongOrDouble()) {
1567        // Read into union so that we don't case to a double.
1568        double_arg = ReadSplitLongParam();
1569      } else {
1570        double_arg = *reinterpret_cast<uint64_t*>(GetParamAddress());
1571      }
1572      sm_.AdvanceDouble(double_arg);
1573      break;
1574    }
1575    case Primitive::kPrimNot: {
1576      StackReference<mirror::Object>* stack_ref =
1577          reinterpret_cast<StackReference<mirror::Object>*>(GetParamAddress());
1578      sm_.AdvanceHandleScope(stack_ref->AsMirrorPtr());
1579      break;
1580    }
1581    case Primitive::kPrimFloat:
1582      sm_.AdvanceFloat(*reinterpret_cast<float*>(GetParamAddress()));
1583      break;
1584    case Primitive::kPrimBoolean:  // Fall-through.
1585    case Primitive::kPrimByte:     // Fall-through.
1586    case Primitive::kPrimChar:     // Fall-through.
1587    case Primitive::kPrimShort:    // Fall-through.
1588    case Primitive::kPrimInt:      // Fall-through.
1589      sm_.AdvanceInt(*reinterpret_cast<jint*>(GetParamAddress()));
1590      break;
1591    case Primitive::kPrimVoid:
1592      LOG(FATAL) << "UNREACHABLE";
1593      break;
1594  }
1595}
1596
1597void BuildGenericJniFrameVisitor::FinalizeHandleScope(Thread* self) {
1598  // Clear out rest of the scope.
1599  jni_call_.ResetRemainingScopeSlots();
1600  // Install HandleScope.
1601  self->PushHandleScope(handle_scope_);
1602}
1603
1604#if defined(__arm__) || defined(__aarch64__)
1605extern "C" void* artFindNativeMethod();
1606#else
1607extern "C" void* artFindNativeMethod(Thread* self);
1608#endif
1609
1610uint64_t artQuickGenericJniEndJNIRef(Thread* self, uint32_t cookie, jobject l, jobject lock) {
1611  if (lock != nullptr) {
1612    return reinterpret_cast<uint64_t>(JniMethodEndWithReferenceSynchronized(l, cookie, lock, self));
1613  } else {
1614    return reinterpret_cast<uint64_t>(JniMethodEndWithReference(l, cookie, self));
1615  }
1616}
1617
1618void artQuickGenericJniEndJNINonRef(Thread* self, uint32_t cookie, jobject lock) {
1619  if (lock != nullptr) {
1620    JniMethodEndSynchronized(cookie, lock, self);
1621  } else {
1622    JniMethodEnd(cookie, self);
1623  }
1624}
1625
1626/*
1627 * Initializes an alloca region assumed to be directly below sp for a native call:
1628 * Create a HandleScope and call stack and fill a mini stack with values to be pushed to registers.
1629 * The final element on the stack is a pointer to the native code.
1630 *
1631 * On entry, the stack has a standard callee-save frame above sp, and an alloca below it.
1632 * We need to fix this, as the handle scope needs to go into the callee-save frame.
1633 *
1634 * The return of this function denotes:
1635 * 1) How many bytes of the alloca can be released, if the value is non-negative.
1636 * 2) An error, if the value is negative.
1637 */
1638extern "C" TwoWordReturn artQuickGenericJniTrampoline(Thread* self,
1639                                                      StackReference<mirror::ArtMethod>* sp)
1640    SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1641  mirror::ArtMethod* called = sp->AsMirrorPtr();
1642  DCHECK(called->IsNative()) << PrettyMethod(called, true);
1643  uint32_t shorty_len = 0;
1644  const char* shorty = called->GetShorty(&shorty_len);
1645
1646  // Run the visitor.
1647  BuildGenericJniFrameVisitor visitor(&sp, called->IsStatic(), shorty, shorty_len, self);
1648  visitor.VisitArguments();
1649  visitor.FinalizeHandleScope(self);
1650
1651  // Fix up managed-stack things in Thread.
1652  self->SetTopOfStack(sp, 0);
1653
1654  self->VerifyStack();
1655
1656  // Start JNI, save the cookie.
1657  uint32_t cookie;
1658  if (called->IsSynchronized()) {
1659    cookie = JniMethodStartSynchronized(visitor.GetFirstHandleScopeJObject(), self);
1660    if (self->IsExceptionPending()) {
1661      self->PopHandleScope();
1662      // A negative value denotes an error.
1663      return GetTwoWordFailureValue();
1664    }
1665  } else {
1666    cookie = JniMethodStart(self);
1667  }
1668  uint32_t* sp32 = reinterpret_cast<uint32_t*>(sp);
1669  *(sp32 - 1) = cookie;
1670
1671  // Retrieve the stored native code.
1672  void* nativeCode = called->GetEntryPointFromJni();
1673
1674  // There are two cases for the content of nativeCode:
1675  // 1) Pointer to the native function.
1676  // 2) Pointer to the trampoline for native code binding.
1677  // In the second case, we need to execute the binding and continue with the actual native function
1678  // pointer.
1679  DCHECK(nativeCode != nullptr);
1680  if (nativeCode == GetJniDlsymLookupStub()) {
1681#if defined(__arm__) || defined(__aarch64__)
1682    nativeCode = artFindNativeMethod();
1683#else
1684    nativeCode = artFindNativeMethod(self);
1685#endif
1686
1687    if (nativeCode == nullptr) {
1688      DCHECK(self->IsExceptionPending());    // There should be an exception pending now.
1689
1690      // End JNI, as the assembly will move to deliver the exception.
1691      jobject lock = called->IsSynchronized() ? visitor.GetFirstHandleScopeJObject() : nullptr;
1692      if (shorty[0] == 'L') {
1693        artQuickGenericJniEndJNIRef(self, cookie, nullptr, lock);
1694      } else {
1695        artQuickGenericJniEndJNINonRef(self, cookie, lock);
1696      }
1697
1698      return GetTwoWordFailureValue();
1699    }
1700    // Note that the native code pointer will be automatically set by artFindNativeMethod().
1701  }
1702
1703  // Return native code addr(lo) and bottom of alloca address(hi).
1704  return GetTwoWordSuccessValue(reinterpret_cast<uintptr_t>(visitor.GetBottomOfUsedArea()),
1705                                reinterpret_cast<uintptr_t>(nativeCode));
1706}
1707
1708/*
1709 * Is called after the native JNI code. Responsible for cleanup (handle scope, saved state) and
1710 * unlocking.
1711 */
1712extern "C" uint64_t artQuickGenericJniEndTrampoline(Thread* self, jvalue result, uint64_t result_f)
1713    SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1714  StackReference<mirror::ArtMethod>* sp = self->GetManagedStack()->GetTopQuickFrame();
1715  uint32_t* sp32 = reinterpret_cast<uint32_t*>(sp);
1716  mirror::ArtMethod* called = sp->AsMirrorPtr();
1717  uint32_t cookie = *(sp32 - 1);
1718
1719  jobject lock = nullptr;
1720  if (called->IsSynchronized()) {
1721    HandleScope* table = reinterpret_cast<HandleScope*>(reinterpret_cast<uint8_t*>(sp)
1722        + sizeof(StackReference<mirror::ArtMethod>));
1723    lock = table->GetHandle(0).ToJObject();
1724  }
1725
1726  char return_shorty_char = called->GetShorty()[0];
1727
1728  if (return_shorty_char == 'L') {
1729    return artQuickGenericJniEndJNIRef(self, cookie, result.l, lock);
1730  } else {
1731    artQuickGenericJniEndJNINonRef(self, cookie, lock);
1732
1733    switch (return_shorty_char) {
1734      case 'F': {
1735        if (kRuntimeISA == kX86) {
1736          // Convert back the result to float.
1737          double d = bit_cast<uint64_t, double>(result_f);
1738          return bit_cast<float, uint32_t>(static_cast<float>(d));
1739        } else {
1740          return result_f;
1741        }
1742      }
1743      case 'D':
1744        return result_f;
1745      case 'Z':
1746        return result.z;
1747      case 'B':
1748        return result.b;
1749      case 'C':
1750        return result.c;
1751      case 'S':
1752        return result.s;
1753      case 'I':
1754        return result.i;
1755      case 'J':
1756        return result.j;
1757      case 'V':
1758        return 0;
1759      default:
1760        LOG(FATAL) << "Unexpected return shorty character " << return_shorty_char;
1761        return 0;
1762    }
1763  }
1764}
1765
1766// We use TwoWordReturn to optimize scalar returns. We use the hi value for code, and the lo value
1767// for the method pointer.
1768//
1769// It is valid to use this, as at the usage points here (returns from C functions) we are assuming
1770// to hold the mutator lock (see SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) annotations).
1771
1772template<InvokeType type, bool access_check>
1773static TwoWordReturn artInvokeCommon(uint32_t method_idx, mirror::Object* this_object,
1774                                     mirror::ArtMethod* caller_method,
1775                                     Thread* self, StackReference<mirror::ArtMethod>* sp);
1776
1777template<InvokeType type, bool access_check>
1778static TwoWordReturn artInvokeCommon(uint32_t method_idx, mirror::Object* this_object,
1779                                     mirror::ArtMethod* caller_method,
1780                                     Thread* self, StackReference<mirror::ArtMethod>* sp) {
1781  mirror::ArtMethod* method = FindMethodFast(method_idx, this_object, caller_method, access_check,
1782                                             type);
1783  if (UNLIKELY(method == nullptr)) {
1784    FinishCalleeSaveFrameSetup(self, sp, Runtime::kRefsAndArgs);
1785    const DexFile* dex_file = caller_method->GetDeclaringClass()->GetDexCache()->GetDexFile();
1786    uint32_t shorty_len;
1787    const char* shorty = dex_file->GetMethodShorty(dex_file->GetMethodId(method_idx), &shorty_len);
1788    {
1789      // Remember the args in case a GC happens in FindMethodFromCode.
1790      ScopedObjectAccessUnchecked soa(self->GetJniEnv());
1791      RememberForGcArgumentVisitor visitor(sp, type == kStatic, shorty, shorty_len, &soa);
1792      visitor.VisitArguments();
1793      method = FindMethodFromCode<type, access_check>(method_idx, &this_object, &caller_method,
1794                                                      self);
1795      visitor.FixupReferences();
1796    }
1797
1798    if (UNLIKELY(method == NULL)) {
1799      CHECK(self->IsExceptionPending());
1800      return GetTwoWordFailureValue();  // Failure.
1801    }
1802  }
1803  DCHECK(!self->IsExceptionPending());
1804  const void* code = method->GetEntryPointFromQuickCompiledCode();
1805
1806  // When we return, the caller will branch to this address, so it had better not be 0!
1807  DCHECK(code != nullptr) << "Code was NULL in method: " << PrettyMethod(method)
1808                          << " location: "
1809                          << method->GetDexFile()->GetLocation();
1810
1811  return GetTwoWordSuccessValue(reinterpret_cast<uintptr_t>(code),
1812                                reinterpret_cast<uintptr_t>(method));
1813}
1814
1815// Explicit artInvokeCommon template function declarations to please analysis tool.
1816#define EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(type, access_check)                                \
1817  template SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)                                          \
1818  TwoWordReturn artInvokeCommon<type, access_check>(uint32_t method_idx,                        \
1819                                                    mirror::Object* this_object,                \
1820                                                    mirror::ArtMethod* caller_method,           \
1821                                                    Thread* self,                               \
1822                                                    StackReference<mirror::ArtMethod>* sp)      \
1823
1824EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kVirtual, false);
1825EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kVirtual, true);
1826EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kInterface, false);
1827EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kInterface, true);
1828EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kDirect, false);
1829EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kDirect, true);
1830EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kStatic, false);
1831EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kStatic, true);
1832EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kSuper, false);
1833EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kSuper, true);
1834#undef EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL
1835
1836// See comments in runtime_support_asm.S
1837extern "C" TwoWordReturn artInvokeInterfaceTrampolineWithAccessCheck(
1838    uint32_t method_idx, mirror::Object* this_object,
1839    mirror::ArtMethod* caller_method, Thread* self,
1840    StackReference<mirror::ArtMethod>* sp)
1841        SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1842  return artInvokeCommon<kInterface, true>(method_idx, this_object,
1843                                           caller_method, self, sp);
1844}
1845
1846extern "C" TwoWordReturn artInvokeDirectTrampolineWithAccessCheck(
1847    uint32_t method_idx, mirror::Object* this_object,
1848    mirror::ArtMethod* caller_method, Thread* self,
1849    StackReference<mirror::ArtMethod>* sp)
1850        SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1851  return artInvokeCommon<kDirect, true>(method_idx, this_object, caller_method,
1852                                        self, sp);
1853}
1854
1855extern "C" TwoWordReturn artInvokeStaticTrampolineWithAccessCheck(
1856    uint32_t method_idx, mirror::Object* this_object,
1857    mirror::ArtMethod* caller_method, Thread* self,
1858    StackReference<mirror::ArtMethod>* sp)
1859        SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1860  return artInvokeCommon<kStatic, true>(method_idx, this_object, caller_method,
1861                                        self, sp);
1862}
1863
1864extern "C" TwoWordReturn artInvokeSuperTrampolineWithAccessCheck(
1865    uint32_t method_idx, mirror::Object* this_object,
1866    mirror::ArtMethod* caller_method, Thread* self,
1867    StackReference<mirror::ArtMethod>* sp)
1868        SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1869  return artInvokeCommon<kSuper, true>(method_idx, this_object, caller_method,
1870                                       self, sp);
1871}
1872
1873extern "C" TwoWordReturn artInvokeVirtualTrampolineWithAccessCheck(
1874    uint32_t method_idx, mirror::Object* this_object,
1875    mirror::ArtMethod* caller_method, Thread* self,
1876    StackReference<mirror::ArtMethod>* sp)
1877        SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1878  return artInvokeCommon<kVirtual, true>(method_idx, this_object, caller_method,
1879                                         self, sp);
1880}
1881
1882// Determine target of interface dispatch. This object is known non-null.
1883extern "C" TwoWordReturn artInvokeInterfaceTrampoline(mirror::ArtMethod* interface_method,
1884                                                      mirror::Object* this_object,
1885                                                      mirror::ArtMethod* caller_method,
1886                                                      Thread* self,
1887                                                      StackReference<mirror::ArtMethod>* sp)
1888    SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1889  mirror::ArtMethod* method;
1890  if (LIKELY(interface_method->GetDexMethodIndex() != DexFile::kDexNoIndex)) {
1891    method = this_object->GetClass()->FindVirtualMethodForInterface(interface_method);
1892    if (UNLIKELY(method == NULL)) {
1893      FinishCalleeSaveFrameSetup(self, sp, Runtime::kRefsAndArgs);
1894      ThrowIncompatibleClassChangeErrorClassForInterfaceDispatch(interface_method, this_object,
1895                                                                 caller_method);
1896      return GetTwoWordFailureValue();  // Failure.
1897    }
1898  } else {
1899    FinishCalleeSaveFrameSetup(self, sp, Runtime::kRefsAndArgs);
1900    DCHECK(interface_method == Runtime::Current()->GetResolutionMethod());
1901
1902    // Find the caller PC.
1903    constexpr size_t pc_offset = GetCalleeSavePCOffset(kRuntimeISA, Runtime::kRefsAndArgs);
1904    uintptr_t caller_pc = *reinterpret_cast<uintptr_t*>(reinterpret_cast<byte*>(sp) + pc_offset);
1905
1906    // Map the caller PC to a dex PC.
1907    uint32_t dex_pc = caller_method->ToDexPc(caller_pc);
1908    const DexFile::CodeItem* code = caller_method->GetCodeItem();
1909    CHECK_LT(dex_pc, code->insns_size_in_code_units_);
1910    const Instruction* instr = Instruction::At(&code->insns_[dex_pc]);
1911    Instruction::Code instr_code = instr->Opcode();
1912    CHECK(instr_code == Instruction::INVOKE_INTERFACE ||
1913          instr_code == Instruction::INVOKE_INTERFACE_RANGE)
1914        << "Unexpected call into interface trampoline: " << instr->DumpString(NULL);
1915    uint32_t dex_method_idx;
1916    if (instr_code == Instruction::INVOKE_INTERFACE) {
1917      dex_method_idx = instr->VRegB_35c();
1918    } else {
1919      DCHECK_EQ(instr_code, Instruction::INVOKE_INTERFACE_RANGE);
1920      dex_method_idx = instr->VRegB_3rc();
1921    }
1922
1923    const DexFile* dex_file = caller_method->GetDeclaringClass()->GetDexCache()
1924        ->GetDexFile();
1925    uint32_t shorty_len;
1926    const char* shorty = dex_file->GetMethodShorty(dex_file->GetMethodId(dex_method_idx),
1927                                                   &shorty_len);
1928    {
1929      // Remember the args in case a GC happens in FindMethodFromCode.
1930      ScopedObjectAccessUnchecked soa(self->GetJniEnv());
1931      RememberForGcArgumentVisitor visitor(sp, false, shorty, shorty_len, &soa);
1932      visitor.VisitArguments();
1933      method = FindMethodFromCode<kInterface, false>(dex_method_idx, &this_object, &caller_method,
1934                                                     self);
1935      visitor.FixupReferences();
1936    }
1937
1938    if (UNLIKELY(method == nullptr)) {
1939      CHECK(self->IsExceptionPending());
1940      return GetTwoWordFailureValue();  // Failure.
1941    }
1942  }
1943  const void* code = method->GetEntryPointFromQuickCompiledCode();
1944
1945  // When we return, the caller will branch to this address, so it had better not be 0!
1946  DCHECK(code != nullptr) << "Code was NULL in method: " << PrettyMethod(method)
1947                          << " location: " << method->GetDexFile()->GetLocation();
1948
1949  return GetTwoWordSuccessValue(reinterpret_cast<uintptr_t>(code),
1950                                reinterpret_cast<uintptr_t>(method));
1951}
1952
1953}  // namespace art
1954