quick_trampoline_entrypoints.cc revision 42fcd9838a87abaf7a2ef86853a5287f86dbe391
1/*
2 * Copyright (C) 2012 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include "callee_save_frame.h"
18#include "common_throws.h"
19#include "dex_file-inl.h"
20#include "dex_instruction-inl.h"
21#include "entrypoints/entrypoint_utils.h"
22#include "gc/accounting/card_table-inl.h"
23#include "interpreter/interpreter.h"
24#include "mirror/art_method-inl.h"
25#include "mirror/class-inl.h"
26#include "mirror/dex_cache-inl.h"
27#include "mirror/object-inl.h"
28#include "mirror/object_array-inl.h"
29#include "object_utils.h"
30#include "runtime.h"
31#include "scoped_thread_state_change.h"
32
33namespace art {
34
35// Visits the arguments as saved to the stack by a Runtime::kRefAndArgs callee save frame.
36class QuickArgumentVisitor {
37  // Number of bytes for each out register in the caller method's frame.
38  static constexpr size_t kBytesStackArgLocation = 4;
39#if defined(__arm__)
40  // The callee save frame is pointed to by SP.
41  // | argN       |  |
42  // | ...        |  |
43  // | arg4       |  |
44  // | arg3 spill |  |  Caller's frame
45  // | arg2 spill |  |
46  // | arg1 spill |  |
47  // | Method*    | ---
48  // | LR         |
49  // | ...        |    callee saves
50  // | R3         |    arg3
51  // | R2         |    arg2
52  // | R1         |    arg1
53  // | R0         |    padding
54  // | Method*    |  <- sp
55  static constexpr bool kQuickSoftFloatAbi = true;  // This is a soft float ABI.
56  static constexpr size_t kNumQuickGprArgs = 3;  // 3 arguments passed in GPRs.
57  static constexpr size_t kNumQuickFprArgs = 0;  // 0 arguments passed in FPRs.
58  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset = 0;  // Offset of first FPR arg.
59  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset = 8;  // Offset of first GPR arg.
60  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset = 44;  // Offset of return address.
61  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_FrameSize = 48;  // Frame size.
62  static size_t GprIndexToGprOffset(uint32_t gpr_index) {
63    return gpr_index * GetBytesPerGprSpillLocation(kRuntimeISA);
64  }
65#elif defined(__aarch64__)
66  // The callee save frame is pointed to by SP.
67  // | argN       |  |
68  // | ...        |  |
69  // | arg4       |  |
70  // | arg3 spill |  |  Caller's frame
71  // | arg2 spill |  |
72  // | arg1 spill |  |
73  // | Method*    | ---
74  // | LR         |
75  // | X28        |
76  // |  :         |
77  // | X19        |
78  // | X7         |
79  // | :          |
80  // | X1         |
81  // | D15        |
82  // |  :         |
83  // | D0         |
84  // |            |    padding
85  // | Method*    |  <- sp
86  static constexpr bool kQuickSoftFloatAbi = false;  // This is a hard float ABI.
87  static constexpr size_t kNumQuickGprArgs = 7;  // 7 arguments passed in GPRs.
88  static constexpr size_t kNumQuickFprArgs = 8;  // 8 arguments passed in FPRs.
89  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset =16;  // Offset of first FPR arg.
90  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset = 144;  // Offset of first GPR arg.
91  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset = 296;  // Offset of return address.
92  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_FrameSize = 304;  // Frame size.
93  static size_t GprIndexToGprOffset(uint32_t gpr_index) {
94    return gpr_index * GetBytesPerGprSpillLocation(kRuntimeISA);
95  }
96#elif defined(__mips__)
97  // The callee save frame is pointed to by SP.
98  // | argN       |  |
99  // | ...        |  |
100  // | arg4       |  |
101  // | arg3 spill |  |  Caller's frame
102  // | arg2 spill |  |
103  // | arg1 spill |  |
104  // | Method*    | ---
105  // | RA         |
106  // | ...        |    callee saves
107  // | A3         |    arg3
108  // | A2         |    arg2
109  // | A1         |    arg1
110  // | A0/Method* |  <- sp
111  static constexpr bool kQuickSoftFloatAbi = true;  // This is a soft float ABI.
112  static constexpr size_t kNumQuickGprArgs = 3;  // 3 arguments passed in GPRs.
113  static constexpr size_t kNumQuickFprArgs = 0;  // 0 arguments passed in FPRs.
114  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset = 0;  // Offset of first FPR arg.
115  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset = 4;  // Offset of first GPR arg.
116  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset = 60;  // Offset of return address.
117  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_FrameSize = 64;  // Frame size.
118  static size_t GprIndexToGprOffset(uint32_t gpr_index) {
119    return gpr_index * GetBytesPerGprSpillLocation(kRuntimeISA);
120  }
121#elif defined(__i386__)
122  // The callee save frame is pointed to by SP.
123  // | argN        |  |
124  // | ...         |  |
125  // | arg4        |  |
126  // | arg3 spill  |  |  Caller's frame
127  // | arg2 spill  |  |
128  // | arg1 spill  |  |
129  // | Method*     | ---
130  // | Return      |
131  // | EBP,ESI,EDI |    callee saves
132  // | EBX         |    arg3
133  // | EDX         |    arg2
134  // | ECX         |    arg1
135  // | EAX/Method* |  <- sp
136  static constexpr bool kQuickSoftFloatAbi = true;  // This is a soft float ABI.
137  static constexpr size_t kNumQuickGprArgs = 3;  // 3 arguments passed in GPRs.
138  static constexpr size_t kNumQuickFprArgs = 0;  // 0 arguments passed in FPRs.
139  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset = 0;  // Offset of first FPR arg.
140  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset = 4;  // Offset of first GPR arg.
141  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset = 28;  // Offset of return address.
142  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_FrameSize = 32;  // Frame size.
143  static size_t GprIndexToGprOffset(uint32_t gpr_index) {
144    return gpr_index * GetBytesPerGprSpillLocation(kRuntimeISA);
145  }
146#elif defined(__x86_64__)
147  // The callee save frame is pointed to by SP.
148  // | argN            |  |
149  // | ...             |  |
150  // | reg. arg spills |  |  Caller's frame
151  // | Method*         | ---
152  // | Return          |
153  // | R15             |    callee save
154  // | R14             |    callee save
155  // | R13             |    callee save
156  // | R12             |    callee save
157  // | R9              |    arg5
158  // | R8              |    arg4
159  // | RSI/R6          |    arg1
160  // | RBP/R5          |    callee save
161  // | RBX/R3          |    callee save
162  // | RDX/R2          |    arg2
163  // | RCX/R1          |    arg3
164  // | XMM7            |    float arg 8
165  // | XMM6            |    float arg 7
166  // | XMM5            |    float arg 6
167  // | XMM4            |    float arg 5
168  // | XMM3            |    float arg 4
169  // | XMM2            |    float arg 3
170  // | XMM1            |    float arg 2
171  // | XMM0            |    float arg 1
172  // | Padding         |
173  // | RDI/Method*     |  <- sp
174  static constexpr bool kQuickSoftFloatAbi = false;  // This is a hard float ABI.
175  static constexpr size_t kNumQuickGprArgs = 5;  // 3 arguments passed in GPRs.
176  static constexpr size_t kNumQuickFprArgs = 8;  // 0 arguments passed in FPRs.
177  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset = 16;  // Offset of first FPR arg.
178  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset = 80;  // Offset of first GPR arg.
179  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset = 168;  // Offset of return address.
180  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_FrameSize = 176;  // Frame size.
181  static size_t GprIndexToGprOffset(uint32_t gpr_index) {
182    switch (gpr_index) {
183      case 0: return (4 * GetBytesPerGprSpillLocation(kRuntimeISA));
184      case 1: return (1 * GetBytesPerGprSpillLocation(kRuntimeISA));
185      case 2: return (0 * GetBytesPerGprSpillLocation(kRuntimeISA));
186      case 3: return (5 * GetBytesPerGprSpillLocation(kRuntimeISA));
187      case 4: return (6 * GetBytesPerGprSpillLocation(kRuntimeISA));
188      default:
189        LOG(FATAL) << "Unexpected GPR index: " << gpr_index;
190        return 0;
191    }
192  }
193#else
194#error "Unsupported architecture"
195#endif
196
197 public:
198  static mirror::ArtMethod* GetCallingMethod(mirror::ArtMethod** sp)
199      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
200    DCHECK((*sp)->IsCalleeSaveMethod());
201    byte* previous_sp = reinterpret_cast<byte*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_FrameSize;
202    return *reinterpret_cast<mirror::ArtMethod**>(previous_sp);
203  }
204
205  // For the given quick ref and args quick frame, return the caller's PC.
206  static uintptr_t GetCallingPc(mirror::ArtMethod** sp)
207      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
208    DCHECK((*sp)->IsCalleeSaveMethod());
209    byte* lr = reinterpret_cast<byte*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_LrOffset;
210    return *reinterpret_cast<uintptr_t*>(lr);
211  }
212
213  QuickArgumentVisitor(mirror::ArtMethod** sp, bool is_static,
214                       const char* shorty, uint32_t shorty_len)
215      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) :
216      is_static_(is_static), shorty_(shorty), shorty_len_(shorty_len),
217      gpr_args_(reinterpret_cast<byte*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset),
218      fpr_args_(reinterpret_cast<byte*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset),
219      stack_args_(reinterpret_cast<byte*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_FrameSize
220                  + StackArgumentStartFromShorty(is_static, shorty, shorty_len)),
221      gpr_index_(0), fpr_index_(0), stack_index_(0), cur_type_(Primitive::kPrimVoid),
222      is_split_long_or_double_(false) {
223    DCHECK_EQ(kQuickCalleeSaveFrame_RefAndArgs_FrameSize,
224              Runtime::Current()->GetCalleeSaveMethod(Runtime::kRefsAndArgs)->GetFrameSizeInBytes());
225  }
226
227  virtual ~QuickArgumentVisitor() {}
228
229  virtual void Visit() = 0;
230
231  Primitive::Type GetParamPrimitiveType() const {
232    return cur_type_;
233  }
234
235  byte* GetParamAddress() const {
236    if (!kQuickSoftFloatAbi) {
237      Primitive::Type type = GetParamPrimitiveType();
238      if (UNLIKELY((type == Primitive::kPrimDouble) || (type == Primitive::kPrimFloat))) {
239        if ((kNumQuickFprArgs != 0) && (fpr_index_ + 1 < kNumQuickFprArgs + 1)) {
240          return fpr_args_ + (fpr_index_ * GetBytesPerFprSpillLocation(kRuntimeISA));
241        }
242        return stack_args_ + (stack_index_ * kBytesStackArgLocation);
243      }
244    }
245    if (gpr_index_ < kNumQuickGprArgs) {
246      return gpr_args_ + GprIndexToGprOffset(gpr_index_);
247    }
248    return stack_args_ + (stack_index_ * kBytesStackArgLocation);
249  }
250
251  bool IsSplitLongOrDouble() const {
252    if ((GetBytesPerGprSpillLocation(kRuntimeISA) == 4) || (GetBytesPerFprSpillLocation(kRuntimeISA) == 4)) {
253      return is_split_long_or_double_;
254    } else {
255      return false;  // An optimization for when GPR and FPRs are 64bit.
256    }
257  }
258
259  bool IsParamAReference() const {
260    return GetParamPrimitiveType() == Primitive::kPrimNot;
261  }
262
263  bool IsParamALongOrDouble() const {
264    Primitive::Type type = GetParamPrimitiveType();
265    return type == Primitive::kPrimLong || type == Primitive::kPrimDouble;
266  }
267
268  uint64_t ReadSplitLongParam() const {
269    DCHECK(IsSplitLongOrDouble());
270    uint64_t low_half = *reinterpret_cast<uint32_t*>(GetParamAddress());
271    uint64_t high_half = *reinterpret_cast<uint32_t*>(stack_args_);
272    return (low_half & 0xffffffffULL) | (high_half << 32);
273  }
274
275  void VisitArguments() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
276    // This implementation doesn't support reg-spill area for hard float
277    // ABI targets such as x86_64 and aarch64. So, for those targets whose
278    // 'kQuickSoftFloatAbi' is 'false':
279    //     (a) 'stack_args_' should point to the first method's argument
280    //     (b) whatever the argument type it is, the 'stack_index_' should
281    //         be moved forward along with every visiting.
282    gpr_index_ = 0;
283    fpr_index_ = 0;
284    stack_index_ = 0;
285    if (!is_static_) {  // Handle this.
286      cur_type_ = Primitive::kPrimNot;
287      is_split_long_or_double_ = false;
288      Visit();
289      if (!kQuickSoftFloatAbi || kNumQuickGprArgs == 0) {
290        stack_index_++;
291      }
292      if (kNumQuickGprArgs > 0) {
293        gpr_index_++;
294      }
295    }
296    for (uint32_t shorty_index = 1; shorty_index < shorty_len_; ++shorty_index) {
297      cur_type_ = Primitive::GetType(shorty_[shorty_index]);
298      switch (cur_type_) {
299        case Primitive::kPrimNot:
300        case Primitive::kPrimBoolean:
301        case Primitive::kPrimByte:
302        case Primitive::kPrimChar:
303        case Primitive::kPrimShort:
304        case Primitive::kPrimInt:
305          is_split_long_or_double_ = false;
306          Visit();
307          if (!kQuickSoftFloatAbi || kNumQuickGprArgs == gpr_index_) {
308            stack_index_++;
309          }
310          if (gpr_index_ < kNumQuickGprArgs) {
311            gpr_index_++;
312          }
313          break;
314        case Primitive::kPrimFloat:
315          is_split_long_or_double_ = false;
316          Visit();
317          if (kQuickSoftFloatAbi) {
318            if (gpr_index_ < kNumQuickGprArgs) {
319              gpr_index_++;
320            } else {
321              stack_index_++;
322            }
323          } else {
324            if ((kNumQuickFprArgs != 0) && (fpr_index_ + 1 < kNumQuickFprArgs + 1)) {
325              fpr_index_++;
326            }
327            stack_index_++;
328          }
329          break;
330        case Primitive::kPrimDouble:
331        case Primitive::kPrimLong:
332          if (kQuickSoftFloatAbi || (cur_type_ == Primitive::kPrimLong)) {
333            is_split_long_or_double_ = (GetBytesPerGprSpillLocation(kRuntimeISA) == 4) &&
334                ((gpr_index_ + 1) == kNumQuickGprArgs);
335            Visit();
336            if (!kQuickSoftFloatAbi || kNumQuickGprArgs == gpr_index_) {
337              if (kBytesStackArgLocation == 4) {
338                stack_index_+= 2;
339              } else {
340                CHECK_EQ(kBytesStackArgLocation, 8U);
341                stack_index_++;
342              }
343            }
344            if (gpr_index_ < kNumQuickGprArgs) {
345              gpr_index_++;
346              if (GetBytesPerGprSpillLocation(kRuntimeISA) == 4) {
347                if (gpr_index_ < kNumQuickGprArgs) {
348                  gpr_index_++;
349                } else if (kQuickSoftFloatAbi) {
350                  stack_index_++;
351                }
352              }
353            }
354          } else {
355            is_split_long_or_double_ = (GetBytesPerFprSpillLocation(kRuntimeISA) == 4) &&
356                ((fpr_index_ + 1) == kNumQuickFprArgs);
357            Visit();
358            if ((kNumQuickFprArgs != 0) && (fpr_index_ + 1 < kNumQuickFprArgs + 1)) {
359              fpr_index_++;
360              if (GetBytesPerFprSpillLocation(kRuntimeISA) == 4) {
361                if ((kNumQuickFprArgs != 0) && (fpr_index_ + 1 < kNumQuickFprArgs + 1)) {
362                  fpr_index_++;
363                }
364              }
365            }
366            if (kBytesStackArgLocation == 4) {
367              stack_index_+= 2;
368            } else {
369              CHECK_EQ(kBytesStackArgLocation, 8U);
370              stack_index_++;
371            }
372          }
373          break;
374        default:
375          LOG(FATAL) << "Unexpected type: " << cur_type_ << " in " << shorty_;
376      }
377    }
378  }
379
380 private:
381  static size_t StackArgumentStartFromShorty(bool is_static, const char* shorty,
382                                             uint32_t shorty_len) {
383    if (kQuickSoftFloatAbi) {
384      CHECK_EQ(kNumQuickFprArgs, 0U);
385      return (kNumQuickGprArgs * GetBytesPerGprSpillLocation(kRuntimeISA))
386          + GetBytesPerGprSpillLocation(kRuntimeISA) /* ArtMethod* */;
387    } else {
388      // For now, there is no reg-spill area for the targets with
389      // hard float ABI. So, the offset pointing to the first method's
390      // parameter ('this' for non-static methods) should be returned.
391      return GetBytesPerGprSpillLocation(kRuntimeISA);  // Skip Method*.
392    }
393  }
394
395  const bool is_static_;
396  const char* const shorty_;
397  const uint32_t shorty_len_;
398  byte* const gpr_args_;  // Address of GPR arguments in callee save frame.
399  byte* const fpr_args_;  // Address of FPR arguments in callee save frame.
400  byte* const stack_args_;  // Address of stack arguments in caller's frame.
401  uint32_t gpr_index_;  // Index into spilled GPRs.
402  uint32_t fpr_index_;  // Index into spilled FPRs.
403  uint32_t stack_index_;  // Index into arguments on the stack.
404  // The current type of argument during VisitArguments.
405  Primitive::Type cur_type_;
406  // Does a 64bit parameter straddle the register and stack arguments?
407  bool is_split_long_or_double_;
408};
409
410// Visits arguments on the stack placing them into the shadow frame.
411class BuildQuickShadowFrameVisitor FINAL : public QuickArgumentVisitor {
412 public:
413  BuildQuickShadowFrameVisitor(mirror::ArtMethod** sp, bool is_static, const char* shorty,
414                               uint32_t shorty_len, ShadowFrame* sf, size_t first_arg_reg) :
415    QuickArgumentVisitor(sp, is_static, shorty, shorty_len), sf_(sf), cur_reg_(first_arg_reg) {}
416
417  void Visit() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) OVERRIDE;
418
419 private:
420  ShadowFrame* const sf_;
421  uint32_t cur_reg_;
422
423  DISALLOW_COPY_AND_ASSIGN(BuildQuickShadowFrameVisitor);
424};
425
426void BuildQuickShadowFrameVisitor::Visit()  {
427  Primitive::Type type = GetParamPrimitiveType();
428  switch (type) {
429    case Primitive::kPrimLong:  // Fall-through.
430    case Primitive::kPrimDouble:
431      if (IsSplitLongOrDouble()) {
432        sf_->SetVRegLong(cur_reg_, ReadSplitLongParam());
433      } else {
434        sf_->SetVRegLong(cur_reg_, *reinterpret_cast<jlong*>(GetParamAddress()));
435      }
436      ++cur_reg_;
437      break;
438    case Primitive::kPrimNot: {
439        StackReference<mirror::Object>* stack_ref =
440            reinterpret_cast<StackReference<mirror::Object>*>(GetParamAddress());
441        sf_->SetVRegReference(cur_reg_, stack_ref->AsMirrorPtr());
442      }
443      break;
444    case Primitive::kPrimBoolean:  // Fall-through.
445    case Primitive::kPrimByte:     // Fall-through.
446    case Primitive::kPrimChar:     // Fall-through.
447    case Primitive::kPrimShort:    // Fall-through.
448    case Primitive::kPrimInt:      // Fall-through.
449    case Primitive::kPrimFloat:
450      sf_->SetVReg(cur_reg_, *reinterpret_cast<jint*>(GetParamAddress()));
451      break;
452    case Primitive::kPrimVoid:
453      LOG(FATAL) << "UNREACHABLE";
454      break;
455  }
456  ++cur_reg_;
457}
458
459extern "C" uint64_t artQuickToInterpreterBridge(mirror::ArtMethod* method, Thread* self,
460                                                mirror::ArtMethod** sp)
461    SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
462  // Ensure we don't get thread suspension until the object arguments are safely in the shadow
463  // frame.
464  FinishCalleeSaveFrameSetup(self, sp, Runtime::kRefsAndArgs);
465
466  if (method->IsAbstract()) {
467    ThrowAbstractMethodError(method);
468    return 0;
469  } else {
470    DCHECK(!method->IsNative()) << PrettyMethod(method);
471    const char* old_cause = self->StartAssertNoThreadSuspension("Building interpreter shadow frame");
472    MethodHelper mh(method);
473    const DexFile::CodeItem* code_item = mh.GetCodeItem();
474    DCHECK(code_item != nullptr) << PrettyMethod(method);
475    uint16_t num_regs = code_item->registers_size_;
476    void* memory = alloca(ShadowFrame::ComputeSize(num_regs));
477    ShadowFrame* shadow_frame(ShadowFrame::Create(num_regs, NULL,  // No last shadow coming from quick.
478                                                  method, 0, memory));
479    size_t first_arg_reg = code_item->registers_size_ - code_item->ins_size_;
480    BuildQuickShadowFrameVisitor shadow_frame_builder(sp, mh.IsStatic(), mh.GetShorty(),
481                                                      mh.GetShortyLength(),
482                                                      shadow_frame, first_arg_reg);
483    shadow_frame_builder.VisitArguments();
484    // Push a transition back into managed code onto the linked list in thread.
485    ManagedStack fragment;
486    self->PushManagedStackFragment(&fragment);
487    self->PushShadowFrame(shadow_frame);
488    self->EndAssertNoThreadSuspension(old_cause);
489
490    if (method->IsStatic() && !method->GetDeclaringClass()->IsInitializing()) {
491      // Ensure static method's class is initialized.
492      SirtRef<mirror::Class> sirt_c(self, method->GetDeclaringClass());
493      if (!Runtime::Current()->GetClassLinker()->EnsureInitialized(sirt_c, true, true)) {
494        DCHECK(Thread::Current()->IsExceptionPending()) << PrettyMethod(method);
495        self->PopManagedStackFragment(fragment);
496        return 0;
497      }
498    }
499
500    JValue result = interpreter::EnterInterpreterFromStub(self, mh, code_item, *shadow_frame);
501    // Pop transition.
502    self->PopManagedStackFragment(fragment);
503    // No need to restore the args since the method has already been run by the interpreter.
504    return result.GetJ();
505  }
506}
507
508// Visits arguments on the stack placing them into the args vector, Object* arguments are converted
509// to jobjects.
510class BuildQuickArgumentVisitor FINAL : public QuickArgumentVisitor {
511 public:
512  BuildQuickArgumentVisitor(mirror::ArtMethod** sp, bool is_static, const char* shorty,
513                            uint32_t shorty_len, ScopedObjectAccessUnchecked* soa,
514                            std::vector<jvalue>* args) :
515    QuickArgumentVisitor(sp, is_static, shorty, shorty_len), soa_(soa), args_(args) {}
516
517  void Visit() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) OVERRIDE;
518
519  void FixupReferences() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
520
521 private:
522  ScopedObjectAccessUnchecked* const soa_;
523  std::vector<jvalue>* const args_;
524  // References which we must update when exiting in case the GC moved the objects.
525  std::vector<std::pair<jobject, StackReference<mirror::Object>*> > references_;
526
527  DISALLOW_COPY_AND_ASSIGN(BuildQuickArgumentVisitor);
528};
529
530void BuildQuickArgumentVisitor::Visit() {
531  jvalue val;
532  Primitive::Type type = GetParamPrimitiveType();
533  switch (type) {
534    case Primitive::kPrimNot: {
535      StackReference<mirror::Object>* stack_ref =
536          reinterpret_cast<StackReference<mirror::Object>*>(GetParamAddress());
537      val.l = soa_->AddLocalReference<jobject>(stack_ref->AsMirrorPtr());
538      references_.push_back(std::make_pair(val.l, stack_ref));
539      break;
540    }
541    case Primitive::kPrimLong:  // Fall-through.
542    case Primitive::kPrimDouble:
543      if (IsSplitLongOrDouble()) {
544        val.j = ReadSplitLongParam();
545      } else {
546        val.j = *reinterpret_cast<jlong*>(GetParamAddress());
547      }
548      break;
549    case Primitive::kPrimBoolean:  // Fall-through.
550    case Primitive::kPrimByte:     // Fall-through.
551    case Primitive::kPrimChar:     // Fall-through.
552    case Primitive::kPrimShort:    // Fall-through.
553    case Primitive::kPrimInt:      // Fall-through.
554    case Primitive::kPrimFloat:
555      val.i = *reinterpret_cast<jint*>(GetParamAddress());
556      break;
557    case Primitive::kPrimVoid:
558      LOG(FATAL) << "UNREACHABLE";
559      val.j = 0;
560      break;
561  }
562  args_->push_back(val);
563}
564
565void BuildQuickArgumentVisitor::FixupReferences() {
566  // Fixup any references which may have changed.
567  for (const auto& pair : references_) {
568    pair.second->Assign(soa_->Decode<mirror::Object*>(pair.first));
569    soa_->Env()->DeleteLocalRef(pair.first);
570  }
571}
572
573// Handler for invocation on proxy methods. On entry a frame will exist for the proxy object method
574// which is responsible for recording callee save registers. We explicitly place into jobjects the
575// incoming reference arguments (so they survive GC). We invoke the invocation handler, which is a
576// field within the proxy object, which will box the primitive arguments and deal with error cases.
577extern "C" uint64_t artQuickProxyInvokeHandler(mirror::ArtMethod* proxy_method,
578                                               mirror::Object* receiver,
579                                               Thread* self, mirror::ArtMethod** sp)
580    SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
581  DCHECK(proxy_method->IsProxyMethod()) << PrettyMethod(proxy_method);
582  DCHECK(receiver->GetClass()->IsProxyClass()) << PrettyMethod(proxy_method);
583  // Ensure we don't get thread suspension until the object arguments are safely in jobjects.
584  const char* old_cause =
585      self->StartAssertNoThreadSuspension("Adding to IRT proxy object arguments");
586  // Register the top of the managed stack, making stack crawlable.
587  DCHECK_EQ(*sp, proxy_method) << PrettyMethod(proxy_method);
588  self->SetTopOfStack(sp, 0);
589  DCHECK_EQ(proxy_method->GetFrameSizeInBytes(),
590            Runtime::Current()->GetCalleeSaveMethod(Runtime::kRefsAndArgs)->GetFrameSizeInBytes())
591      << PrettyMethod(proxy_method);
592  self->VerifyStack();
593  // Start new JNI local reference state.
594  JNIEnvExt* env = self->GetJniEnv();
595  ScopedObjectAccessUnchecked soa(env);
596  ScopedJniEnvLocalRefState env_state(env);
597  // Create local ref. copies of proxy method and the receiver.
598  jobject rcvr_jobj = soa.AddLocalReference<jobject>(receiver);
599
600  // Placing arguments into args vector and remove the receiver.
601  MethodHelper proxy_mh(proxy_method);
602  DCHECK(!proxy_mh.IsStatic()) << PrettyMethod(proxy_method);
603  std::vector<jvalue> args;
604  BuildQuickArgumentVisitor local_ref_visitor(sp, proxy_mh.IsStatic(), proxy_mh.GetShorty(),
605                                              proxy_mh.GetShortyLength(), &soa, &args);
606
607  local_ref_visitor.VisitArguments();
608  DCHECK_GT(args.size(), 0U) << PrettyMethod(proxy_method);
609  args.erase(args.begin());
610
611  // Convert proxy method into expected interface method.
612  mirror::ArtMethod* interface_method = proxy_method->FindOverriddenMethod();
613  DCHECK(interface_method != NULL) << PrettyMethod(proxy_method);
614  DCHECK(!interface_method->IsProxyMethod()) << PrettyMethod(interface_method);
615  jobject interface_method_jobj = soa.AddLocalReference<jobject>(interface_method);
616
617  // All naked Object*s should now be in jobjects, so its safe to go into the main invoke code
618  // that performs allocations.
619  self->EndAssertNoThreadSuspension(old_cause);
620  JValue result = InvokeProxyInvocationHandler(soa, proxy_mh.GetShorty(),
621                                               rcvr_jobj, interface_method_jobj, args);
622  // Restore references which might have moved.
623  local_ref_visitor.FixupReferences();
624  return result.GetJ();
625}
626
627// Read object references held in arguments from quick frames and place in a JNI local references,
628// so they don't get garbage collected.
629class RememberForGcArgumentVisitor FINAL : public QuickArgumentVisitor {
630 public:
631  RememberForGcArgumentVisitor(mirror::ArtMethod** sp, bool is_static, const char* shorty,
632                               uint32_t shorty_len, ScopedObjectAccessUnchecked* soa) :
633    QuickArgumentVisitor(sp, is_static, shorty, shorty_len), soa_(soa) {}
634
635  void Visit() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) OVERRIDE;
636
637  void FixupReferences() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
638
639 private:
640  ScopedObjectAccessUnchecked* const soa_;
641  // References which we must update when exiting in case the GC moved the objects.
642  std::vector<std::pair<jobject, StackReference<mirror::Object>*> > references_;
643  DISALLOW_COPY_AND_ASSIGN(RememberForGcArgumentVisitor);
644};
645
646void RememberForGcArgumentVisitor::Visit() {
647  if (IsParamAReference()) {
648    StackReference<mirror::Object>* stack_ref =
649        reinterpret_cast<StackReference<mirror::Object>*>(GetParamAddress());
650    jobject reference =
651        soa_->AddLocalReference<jobject>(stack_ref->AsMirrorPtr());
652    references_.push_back(std::make_pair(reference, stack_ref));
653  }
654}
655
656void RememberForGcArgumentVisitor::FixupReferences() {
657  // Fixup any references which may have changed.
658  for (const auto& pair : references_) {
659    pair.second->Assign(soa_->Decode<mirror::Object*>(pair.first));
660    soa_->Env()->DeleteLocalRef(pair.first);
661  }
662}
663
664
665// Lazily resolve a method for quick. Called by stub code.
666extern "C" const void* artQuickResolutionTrampoline(mirror::ArtMethod* called,
667                                                    mirror::Object* receiver,
668                                                    Thread* self, mirror::ArtMethod** sp)
669    SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
670  FinishCalleeSaveFrameSetup(self, sp, Runtime::kRefsAndArgs);
671  // Start new JNI local reference state
672  JNIEnvExt* env = self->GetJniEnv();
673  ScopedObjectAccessUnchecked soa(env);
674  ScopedJniEnvLocalRefState env_state(env);
675  const char* old_cause = self->StartAssertNoThreadSuspension("Quick method resolution set up");
676
677  // Compute details about the called method (avoid GCs)
678  ClassLinker* linker = Runtime::Current()->GetClassLinker();
679  mirror::ArtMethod* caller = QuickArgumentVisitor::GetCallingMethod(sp);
680  InvokeType invoke_type;
681  const DexFile* dex_file;
682  uint32_t dex_method_idx;
683  if (called->IsRuntimeMethod()) {
684    uint32_t dex_pc = caller->ToDexPc(QuickArgumentVisitor::GetCallingPc(sp));
685    const DexFile::CodeItem* code;
686    {
687      MethodHelper mh(caller);
688      dex_file = &mh.GetDexFile();
689      code = mh.GetCodeItem();
690    }
691    CHECK_LT(dex_pc, code->insns_size_in_code_units_);
692    const Instruction* instr = Instruction::At(&code->insns_[dex_pc]);
693    Instruction::Code instr_code = instr->Opcode();
694    bool is_range;
695    switch (instr_code) {
696      case Instruction::INVOKE_DIRECT:
697        invoke_type = kDirect;
698        is_range = false;
699        break;
700      case Instruction::INVOKE_DIRECT_RANGE:
701        invoke_type = kDirect;
702        is_range = true;
703        break;
704      case Instruction::INVOKE_STATIC:
705        invoke_type = kStatic;
706        is_range = false;
707        break;
708      case Instruction::INVOKE_STATIC_RANGE:
709        invoke_type = kStatic;
710        is_range = true;
711        break;
712      case Instruction::INVOKE_SUPER:
713        invoke_type = kSuper;
714        is_range = false;
715        break;
716      case Instruction::INVOKE_SUPER_RANGE:
717        invoke_type = kSuper;
718        is_range = true;
719        break;
720      case Instruction::INVOKE_VIRTUAL:
721        invoke_type = kVirtual;
722        is_range = false;
723        break;
724      case Instruction::INVOKE_VIRTUAL_RANGE:
725        invoke_type = kVirtual;
726        is_range = true;
727        break;
728      case Instruction::INVOKE_INTERFACE:
729        invoke_type = kInterface;
730        is_range = false;
731        break;
732      case Instruction::INVOKE_INTERFACE_RANGE:
733        invoke_type = kInterface;
734        is_range = true;
735        break;
736      default:
737        LOG(FATAL) << "Unexpected call into trampoline: " << instr->DumpString(NULL);
738        // Avoid used uninitialized warnings.
739        invoke_type = kDirect;
740        is_range = false;
741    }
742    dex_method_idx = (is_range) ? instr->VRegB_3rc() : instr->VRegB_35c();
743
744  } else {
745    invoke_type = kStatic;
746    dex_file = &MethodHelper(called).GetDexFile();
747    dex_method_idx = called->GetDexMethodIndex();
748  }
749  uint32_t shorty_len;
750  const char* shorty =
751      dex_file->GetMethodShorty(dex_file->GetMethodId(dex_method_idx), &shorty_len);
752  RememberForGcArgumentVisitor visitor(sp, invoke_type == kStatic, shorty, shorty_len, &soa);
753  visitor.VisitArguments();
754  self->EndAssertNoThreadSuspension(old_cause);
755  bool virtual_or_interface = invoke_type == kVirtual || invoke_type == kInterface;
756  // Resolve method filling in dex cache.
757  if (called->IsRuntimeMethod()) {
758    SirtRef<mirror::Object> sirt_receiver(soa.Self(), virtual_or_interface ? receiver : nullptr);
759    called = linker->ResolveMethod(dex_method_idx, caller, invoke_type);
760    receiver = sirt_receiver.get();
761  }
762  const void* code = NULL;
763  if (LIKELY(!self->IsExceptionPending())) {
764    // Incompatible class change should have been handled in resolve method.
765    CHECK(!called->CheckIncompatibleClassChange(invoke_type))
766        << PrettyMethod(called) << " " << invoke_type;
767    if (virtual_or_interface) {
768      // Refine called method based on receiver.
769      CHECK(receiver != nullptr) << invoke_type;
770      if (invoke_type == kVirtual) {
771        called = receiver->GetClass()->FindVirtualMethodForVirtual(called);
772      } else {
773        called = receiver->GetClass()->FindVirtualMethodForInterface(called);
774      }
775      // We came here because of sharpening. Ensure the dex cache is up-to-date on the method index
776      // of the sharpened method.
777      if (called->GetDexCacheResolvedMethods() == caller->GetDexCacheResolvedMethods()) {
778        caller->GetDexCacheResolvedMethods()->Set<false>(called->GetDexMethodIndex(), called);
779      } else {
780        // Calling from one dex file to another, need to compute the method index appropriate to
781        // the caller's dex file. Since we get here only if the original called was a runtime
782        // method, we've got the correct dex_file and a dex_method_idx from above.
783        DCHECK(&MethodHelper(caller).GetDexFile() == dex_file);
784        uint32_t method_index =
785            MethodHelper(called).FindDexMethodIndexInOtherDexFile(*dex_file, dex_method_idx);
786        if (method_index != DexFile::kDexNoIndex) {
787          caller->GetDexCacheResolvedMethods()->Set<false>(method_index, called);
788        }
789      }
790    }
791    // Ensure that the called method's class is initialized.
792    SirtRef<mirror::Class> called_class(soa.Self(), called->GetDeclaringClass());
793    linker->EnsureInitialized(called_class, true, true);
794    if (LIKELY(called_class->IsInitialized())) {
795      code = called->GetEntryPointFromQuickCompiledCode();
796    } else if (called_class->IsInitializing()) {
797      if (invoke_type == kStatic) {
798        // Class is still initializing, go to oat and grab code (trampoline must be left in place
799        // until class is initialized to stop races between threads).
800        code = linker->GetQuickOatCodeFor(called);
801      } else {
802        // No trampoline for non-static methods.
803        code = called->GetEntryPointFromQuickCompiledCode();
804      }
805    } else {
806      DCHECK(called_class->IsErroneous());
807    }
808  }
809  CHECK_EQ(code == NULL, self->IsExceptionPending());
810  // Fixup any locally saved objects may have moved during a GC.
811  visitor.FixupReferences();
812  // Place called method in callee-save frame to be placed as first argument to quick method.
813  *sp = called;
814  return code;
815}
816
817
818
819/*
820 * This class uses a couple of observations to unite the different calling conventions through
821 * a few constants.
822 *
823 * 1) Number of registers used for passing is normally even, so counting down has no penalty for
824 *    possible alignment.
825 * 2) Known 64b architectures store 8B units on the stack, both for integral and floating point
826 *    types, so using uintptr_t is OK. Also means that we can use kRegistersNeededX to denote
827 *    when we have to split things
828 * 3) The only soft-float, Arm, is 32b, so no widening needs to be taken into account for floats
829 *    and we can use Int handling directly.
830 * 4) Only 64b architectures widen, and their stack is aligned 8B anyways, so no padding code
831 *    necessary when widening. Also, widening of Ints will take place implicitly, and the
832 *    extension should be compatible with Aarch64, which mandates copying the available bits
833 *    into LSB and leaving the rest unspecified.
834 * 5) Aligning longs and doubles is necessary on arm only, and it's the same in registers and on
835 *    the stack.
836 * 6) There is only little endian.
837 *
838 *
839 * Actual work is supposed to be done in a delegate of the template type. The interface is as
840 * follows:
841 *
842 * void PushGpr(uintptr_t):   Add a value for the next GPR
843 *
844 * void PushFpr4(float):      Add a value for the next FPR of size 32b. Is only called if we need
845 *                            padding, that is, think the architecture is 32b and aligns 64b.
846 *
847 * void PushFpr8(uint64_t):   Push a double. We _will_ call this on 32b, it's the callee's job to
848 *                            split this if necessary. The current state will have aligned, if
849 *                            necessary.
850 *
851 * void PushStack(uintptr_t): Push a value to the stack.
852 *
853 * uintptr_t PushSirt(mirror::Object* ref): Add a reference to the Sirt. This _will_ have nullptr,
854 *                                          as this might be important for null initialization.
855 *                                          Must return the jobject, that is, the reference to the
856 *                                          entry in the Sirt (nullptr if necessary).
857 *
858 */
859template <class T> class BuildGenericJniFrameStateMachine {
860 public:
861#if defined(__arm__)
862  // TODO: These are all dummy values!
863  static constexpr bool kNativeSoftFloatAbi = true;
864  static constexpr size_t kNumNativeGprArgs = 4;  // 4 arguments passed in GPRs, r0-r3
865  static constexpr size_t kNumNativeFprArgs = 0;  // 0 arguments passed in FPRs.
866
867  static constexpr size_t kRegistersNeededForLong = 2;
868  static constexpr size_t kRegistersNeededForDouble = 2;
869  static constexpr bool kMultiRegistersAligned = true;
870  static constexpr bool kMultiRegistersWidened = false;
871  static constexpr bool kAlignLongOnStack = true;
872  static constexpr bool kAlignDoubleOnStack = true;
873#elif defined(__aarch64__)
874  static constexpr bool kNativeSoftFloatAbi = false;  // This is a hard float ABI.
875  static constexpr size_t kNumNativeGprArgs = 8;  // 6 arguments passed in GPRs.
876  static constexpr size_t kNumNativeFprArgs = 8;  // 8 arguments passed in FPRs.
877
878  static constexpr size_t kRegistersNeededForLong = 1;
879  static constexpr size_t kRegistersNeededForDouble = 1;
880  static constexpr bool kMultiRegistersAligned = false;
881  static constexpr bool kMultiRegistersWidened = false;
882  static constexpr bool kAlignLongOnStack = false;
883  static constexpr bool kAlignDoubleOnStack = false;
884#elif defined(__mips__)
885  // TODO: These are all dummy values!
886  static constexpr bool kNativeSoftFloatAbi = true;  // This is a hard float ABI.
887  static constexpr size_t kNumNativeGprArgs = 0;  // 6 arguments passed in GPRs.
888  static constexpr size_t kNumNativeFprArgs = 0;  // 8 arguments passed in FPRs.
889
890  static constexpr size_t kRegistersNeededForLong = 2;
891  static constexpr size_t kRegistersNeededForDouble = 2;
892  static constexpr bool kMultiRegistersAligned = true;
893  static constexpr bool kMultiRegistersWidened = true;
894  static constexpr bool kAlignLongOnStack = false;
895  static constexpr bool kAlignDoubleOnStack = false;
896#elif defined(__i386__)
897  // TODO: Check these!
898  static constexpr bool kNativeSoftFloatAbi = false;  // Not using int registers for fp
899  static constexpr size_t kNumNativeGprArgs = 0;  // 6 arguments passed in GPRs.
900  static constexpr size_t kNumNativeFprArgs = 0;  // 8 arguments passed in FPRs.
901
902  static constexpr size_t kRegistersNeededForLong = 2;
903  static constexpr size_t kRegistersNeededForDouble = 2;
904  static constexpr bool kMultiRegistersAligned = false;       // x86 not using regs, anyways
905  static constexpr bool kMultiRegistersWidened = false;
906  static constexpr bool kAlignLongOnStack = false;
907  static constexpr bool kAlignDoubleOnStack = false;
908#elif defined(__x86_64__)
909  static constexpr bool kNativeSoftFloatAbi = false;  // This is a hard float ABI.
910  static constexpr size_t kNumNativeGprArgs = 6;  // 6 arguments passed in GPRs.
911  static constexpr size_t kNumNativeFprArgs = 8;  // 8 arguments passed in FPRs.
912
913  static constexpr size_t kRegistersNeededForLong = 1;
914  static constexpr size_t kRegistersNeededForDouble = 1;
915  static constexpr bool kMultiRegistersAligned = false;
916  static constexpr bool kMultiRegistersWidened = false;
917  static constexpr bool kAlignLongOnStack = false;
918  static constexpr bool kAlignDoubleOnStack = false;
919#else
920#error "Unsupported architecture"
921#endif
922
923 public:
924  explicit BuildGenericJniFrameStateMachine(T* delegate) : gpr_index_(kNumNativeGprArgs),
925                                                           fpr_index_(kNumNativeFprArgs),
926                                                           stack_entries_(0),
927                                                           delegate_(delegate) {
928    // For register alignment, we want to assume that counters (gpr_index_, fpr_index_) are even iff
929    // the next register is even; counting down is just to make the compiler happy...
930    CHECK_EQ(kNumNativeGprArgs % 2, 0U);
931    CHECK_EQ(kNumNativeFprArgs % 2, 0U);
932  }
933
934  virtual ~BuildGenericJniFrameStateMachine() {}
935
936  bool HavePointerGpr() {
937    return gpr_index_ > 0;
938  }
939
940  void AdvancePointer(void* val) {
941    if (HavePointerGpr()) {
942      gpr_index_--;
943      PushGpr(reinterpret_cast<uintptr_t>(val));
944    } else {
945      stack_entries_++;         // TODO: have a field for pointer length as multiple of 32b
946      PushStack(reinterpret_cast<uintptr_t>(val));
947      gpr_index_ = 0;
948    }
949  }
950
951
952  bool HaveSirtGpr() {
953    return gpr_index_ > 0;
954  }
955
956  void AdvanceSirt(mirror::Object* ptr) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
957    uintptr_t sirtRef = PushSirt(ptr);
958    if (HaveSirtGpr()) {
959      gpr_index_--;
960      PushGpr(sirtRef);
961    } else {
962      stack_entries_++;
963      PushStack(sirtRef);
964      gpr_index_ = 0;
965    }
966  }
967
968
969  bool HaveIntGpr() {
970    return gpr_index_ > 0;
971  }
972
973  void AdvanceInt(uint32_t val) {
974    if (HaveIntGpr()) {
975      gpr_index_--;
976      PushGpr(val);
977    } else {
978      stack_entries_++;
979      PushStack(val);
980      gpr_index_ = 0;
981    }
982  }
983
984
985  bool HaveLongGpr() {
986    return gpr_index_ >= kRegistersNeededForLong + (LongGprNeedsPadding() ? 1 : 0);
987  }
988
989  bool LongGprNeedsPadding() {
990    return kRegistersNeededForLong > 1 &&     // only pad when using multiple registers
991        kAlignLongOnStack &&                  // and when it needs alignment
992        (gpr_index_ & 1) == 1;                // counter is odd, see constructor
993  }
994
995  bool LongStackNeedsPadding() {
996    return kRegistersNeededForLong > 1 &&     // only pad when using multiple registers
997        kAlignLongOnStack &&                  // and when it needs 8B alignment
998        (stack_entries_ & 1) == 1;            // counter is odd
999  }
1000
1001  void AdvanceLong(uint64_t val) {
1002    if (HaveLongGpr()) {
1003      if (LongGprNeedsPadding()) {
1004        PushGpr(0);
1005        gpr_index_--;
1006      }
1007      if (kRegistersNeededForLong == 1) {
1008        PushGpr(static_cast<uintptr_t>(val));
1009      } else {
1010        PushGpr(static_cast<uintptr_t>(val & 0xFFFFFFFF));
1011        PushGpr(static_cast<uintptr_t>((val >> 32) & 0xFFFFFFFF));
1012      }
1013      gpr_index_ -= kRegistersNeededForLong;
1014    } else {
1015      if (LongStackNeedsPadding()) {
1016        PushStack(0);
1017        stack_entries_++;
1018      }
1019      if (kRegistersNeededForLong == 1) {
1020        PushStack(static_cast<uintptr_t>(val));
1021        stack_entries_++;
1022      } else {
1023        PushStack(static_cast<uintptr_t>(val & 0xFFFFFFFF));
1024        PushStack(static_cast<uintptr_t>((val >> 32) & 0xFFFFFFFF));
1025        stack_entries_ += 2;
1026      }
1027      gpr_index_ = 0;
1028    }
1029  }
1030
1031
1032  bool HaveFloatFpr() {
1033    return fpr_index_ > 0;
1034  }
1035
1036  template <typename U, typename V> V convert(U in) {
1037    CHECK_LE(sizeof(U), sizeof(V));
1038    union { U u; V v; } tmp;
1039    tmp.u = in;
1040    return tmp.v;
1041  }
1042
1043  void AdvanceFloat(float val) {
1044    if (kNativeSoftFloatAbi) {
1045      AdvanceInt(convert<float, uint32_t>(val));
1046    } else {
1047      if (HaveFloatFpr()) {
1048        fpr_index_--;
1049        if (kRegistersNeededForDouble == 1) {
1050          if (kMultiRegistersWidened) {
1051            PushFpr8(convert<double, uint64_t>(val));
1052          } else {
1053            // No widening, just use the bits.
1054            PushFpr8(convert<float, uint64_t>(val));
1055          }
1056        } else {
1057          PushFpr4(val);
1058        }
1059      } else {
1060        stack_entries_++;
1061        if (kRegistersNeededForDouble == 1 && kMultiRegistersWidened) {
1062          // Need to widen before storing: Note the "double" in the template instantiation.
1063          PushStack(convert<double, uintptr_t>(val));
1064        } else {
1065          PushStack(convert<float, uintptr_t>(val));
1066        }
1067        fpr_index_ = 0;
1068      }
1069    }
1070  }
1071
1072
1073  bool HaveDoubleFpr() {
1074    return fpr_index_ >= kRegistersNeededForDouble + (DoubleFprNeedsPadding() ? 1 : 0);
1075  }
1076
1077  bool DoubleFprNeedsPadding() {
1078    return kRegistersNeededForDouble > 1 &&     // only pad when using multiple registers
1079        kAlignDoubleOnStack &&                  // and when it needs alignment
1080        (fpr_index_ & 1) == 1;                  // counter is odd, see constructor
1081  }
1082
1083  bool DoubleStackNeedsPadding() {
1084    return kRegistersNeededForDouble > 1 &&     // only pad when using multiple registers
1085        kAlignDoubleOnStack &&                  // and when it needs 8B alignment
1086        (stack_entries_ & 1) == 1;              // counter is odd
1087  }
1088
1089  void AdvanceDouble(uint64_t val) {
1090    if (kNativeSoftFloatAbi) {
1091      AdvanceLong(val);
1092    } else {
1093      if (HaveDoubleFpr()) {
1094        if (DoubleFprNeedsPadding()) {
1095          PushFpr4(0);
1096          fpr_index_--;
1097        }
1098        PushFpr8(val);
1099        fpr_index_ -= kRegistersNeededForDouble;
1100      } else {
1101        if (DoubleStackNeedsPadding()) {
1102          PushStack(0);
1103          stack_entries_++;
1104        }
1105        if (kRegistersNeededForDouble == 1) {
1106          PushStack(static_cast<uintptr_t>(val));
1107          stack_entries_++;
1108        } else {
1109          PushStack(static_cast<uintptr_t>(val & 0xFFFFFFFF));
1110          PushStack(static_cast<uintptr_t>((val >> 32) & 0xFFFFFFFF));
1111          stack_entries_ += 2;
1112        }
1113        fpr_index_ = 0;
1114      }
1115    }
1116  }
1117
1118  uint32_t getStackEntries() {
1119    return stack_entries_;
1120  }
1121
1122  uint32_t getNumberOfUsedGprs() {
1123    return kNumNativeGprArgs - gpr_index_;
1124  }
1125
1126  uint32_t getNumberOfUsedFprs() {
1127    return kNumNativeFprArgs - fpr_index_;
1128  }
1129
1130 private:
1131  void PushGpr(uintptr_t val) {
1132    delegate_->PushGpr(val);
1133  }
1134  void PushFpr4(float val) {
1135    delegate_->PushFpr4(val);
1136  }
1137  void PushFpr8(uint64_t val) {
1138    delegate_->PushFpr8(val);
1139  }
1140  void PushStack(uintptr_t val) {
1141    delegate_->PushStack(val);
1142  }
1143  uintptr_t PushSirt(mirror::Object* ref) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1144    return delegate_->PushSirt(ref);
1145  }
1146
1147  uint32_t gpr_index_;      // Number of free GPRs
1148  uint32_t fpr_index_;      // Number of free FPRs
1149  uint32_t stack_entries_;  // Stack entries are in multiples of 32b, as floats are usually not
1150                            // extended
1151  T* delegate_;             // What Push implementation gets called
1152};
1153
1154class ComputeGenericJniFrameSize FINAL {
1155 public:
1156  ComputeGenericJniFrameSize() : num_sirt_references_(0), num_stack_entries_(0) {}
1157
1158  uint32_t GetStackSize() {
1159    return num_stack_entries_ * sizeof(uintptr_t);
1160  }
1161
1162  // WARNING: After this, *sp won't be pointing to the method anymore!
1163  void ComputeLayout(mirror::ArtMethod*** m, bool is_static, const char* shorty, uint32_t shorty_len,
1164                     void* sp, StackIndirectReferenceTable** table, uint32_t* sirt_entries,
1165                     uintptr_t** start_stack, uintptr_t** start_gpr, uint32_t** start_fpr,
1166                     void** code_return, size_t* overall_size)
1167      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1168    ComputeAll(is_static, shorty, shorty_len);
1169
1170    mirror::ArtMethod* method = **m;
1171
1172    uint8_t* sp8 = reinterpret_cast<uint8_t*>(sp);
1173
1174    // First, fix up the layout of the callee-save frame.
1175    // We have to squeeze in the Sirt, and relocate the method pointer.
1176
1177    // "Free" the slot for the method.
1178    sp8 += kPointerSize;
1179
1180    // Add the Sirt.
1181    *sirt_entries = num_sirt_references_;
1182    size_t sirt_size = StackIndirectReferenceTable::GetAlignedSirtSize(num_sirt_references_);
1183    sp8 -= sirt_size;
1184    *table = reinterpret_cast<StackIndirectReferenceTable*>(sp8);
1185    (*table)->SetNumberOfReferences(num_sirt_references_);
1186
1187    // Add a slot for the method pointer, and fill it. Fix the pointer-pointer given to us.
1188    sp8 -= kPointerSize;
1189    uint8_t* method_pointer = sp8;
1190    *(reinterpret_cast<mirror::ArtMethod**>(method_pointer)) = method;
1191    *m = reinterpret_cast<mirror::ArtMethod**>(method_pointer);
1192
1193    // Reference cookie and padding
1194    sp8 -= 8;
1195    // Store Sirt size
1196    *reinterpret_cast<uint32_t*>(sp8) = static_cast<uint32_t>(sirt_size & 0xFFFFFFFF);
1197
1198    // Next comes the native call stack.
1199    sp8 -= GetStackSize();
1200    // Now align the call stack below. This aligns by 16, as AArch64 seems to require.
1201    uintptr_t mask = ~0x0F;
1202    sp8 = reinterpret_cast<uint8_t*>(reinterpret_cast<uintptr_t>(sp8) & mask);
1203    *start_stack = reinterpret_cast<uintptr_t*>(sp8);
1204
1205    // put fprs and gprs below
1206    // Assumption is OK right now, as we have soft-float arm
1207    size_t fregs = BuildGenericJniFrameStateMachine<ComputeGenericJniFrameSize>::kNumNativeFprArgs;
1208    sp8 -= fregs * sizeof(uintptr_t);
1209    *start_fpr = reinterpret_cast<uint32_t*>(sp8);
1210    size_t iregs = BuildGenericJniFrameStateMachine<ComputeGenericJniFrameSize>::kNumNativeGprArgs;
1211    sp8 -= iregs * sizeof(uintptr_t);
1212    *start_gpr = reinterpret_cast<uintptr_t*>(sp8);
1213
1214    // reserve space for the code pointer
1215    sp8 -= kPointerSize;
1216    *code_return = reinterpret_cast<void*>(sp8);
1217
1218    *overall_size = reinterpret_cast<uint8_t*>(sp) - sp8;
1219
1220    // The new SP is stored at the end of the alloca, so it can be immediately popped
1221    sp8 = reinterpret_cast<uint8_t*>(sp) - 5 * KB;
1222    *(reinterpret_cast<uint8_t**>(sp8)) = method_pointer;
1223  }
1224
1225  void ComputeSirtOffset() { }  // nothing to do, static right now
1226
1227  void ComputeAll(bool is_static, const char* shorty, uint32_t shorty_len)
1228      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1229    BuildGenericJniFrameStateMachine<ComputeGenericJniFrameSize> sm(this);
1230
1231    // JNIEnv
1232    sm.AdvancePointer(nullptr);
1233
1234    // Class object or this as first argument
1235    sm.AdvanceSirt(reinterpret_cast<mirror::Object*>(0x12345678));
1236
1237    for (uint32_t i = 1; i < shorty_len; ++i) {
1238      Primitive::Type cur_type_ = Primitive::GetType(shorty[i]);
1239      switch (cur_type_) {
1240        case Primitive::kPrimNot:
1241          sm.AdvanceSirt(reinterpret_cast<mirror::Object*>(0x12345678));
1242          break;
1243
1244        case Primitive::kPrimBoolean:
1245        case Primitive::kPrimByte:
1246        case Primitive::kPrimChar:
1247        case Primitive::kPrimShort:
1248        case Primitive::kPrimInt:
1249          sm.AdvanceInt(0);
1250          break;
1251        case Primitive::kPrimFloat:
1252          sm.AdvanceFloat(0);
1253          break;
1254        case Primitive::kPrimDouble:
1255          sm.AdvanceDouble(0);
1256          break;
1257        case Primitive::kPrimLong:
1258          sm.AdvanceLong(0);
1259          break;
1260        default:
1261          LOG(FATAL) << "Unexpected type: " << cur_type_ << " in " << shorty;
1262      }
1263    }
1264
1265    num_stack_entries_ = sm.getStackEntries();
1266  }
1267
1268  void PushGpr(uintptr_t /* val */) {
1269    // not optimizing registers, yet
1270  }
1271
1272  void PushFpr4(float /* val */) {
1273    // not optimizing registers, yet
1274  }
1275
1276  void PushFpr8(uint64_t /* val */) {
1277    // not optimizing registers, yet
1278  }
1279
1280  void PushStack(uintptr_t /* val */) {
1281    // counting is already done in the superclass
1282  }
1283
1284  uintptr_t PushSirt(mirror::Object* /* ptr */) {
1285    num_sirt_references_++;
1286    return reinterpret_cast<uintptr_t>(nullptr);
1287  }
1288
1289 private:
1290  uint32_t num_sirt_references_;
1291  uint32_t num_stack_entries_;
1292};
1293
1294// Visits arguments on the stack placing them into a region lower down the stack for the benefit
1295// of transitioning into native code.
1296class BuildGenericJniFrameVisitor FINAL : public QuickArgumentVisitor {
1297 public:
1298  BuildGenericJniFrameVisitor(mirror::ArtMethod*** sp, bool is_static, const char* shorty,
1299                              uint32_t shorty_len, Thread* self) :
1300      QuickArgumentVisitor(*sp, is_static, shorty, shorty_len), sm_(this) {
1301    ComputeGenericJniFrameSize fsc;
1302    fsc.ComputeLayout(sp, is_static, shorty, shorty_len, *sp, &sirt_, &sirt_expected_refs_,
1303                      &cur_stack_arg_, &cur_gpr_reg_, &cur_fpr_reg_, &code_return_,
1304                      &alloca_used_size_);
1305    sirt_number_of_references_ = 0;
1306    cur_sirt_entry_ = reinterpret_cast<StackReference<mirror::Object>*>(GetFirstSirtEntry());
1307
1308    // jni environment is always first argument
1309    sm_.AdvancePointer(self->GetJniEnv());
1310
1311    if (is_static) {
1312      sm_.AdvanceSirt((**sp)->GetDeclaringClass());
1313    }
1314  }
1315
1316  void Visit() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) OVERRIDE;
1317
1318  void FinalizeSirt(Thread* self) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
1319
1320  jobject GetFirstSirtEntry() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1321    return reinterpret_cast<jobject>(sirt_->GetStackReference(0));
1322  }
1323
1324  void PushGpr(uintptr_t val) {
1325    *cur_gpr_reg_ = val;
1326    cur_gpr_reg_++;
1327  }
1328
1329  void PushFpr4(float val) {
1330    *cur_fpr_reg_ = val;
1331    cur_fpr_reg_++;
1332  }
1333
1334  void PushFpr8(uint64_t val) {
1335    uint64_t* tmp = reinterpret_cast<uint64_t*>(cur_fpr_reg_);
1336    *tmp = val;
1337    cur_fpr_reg_ += 2;
1338  }
1339
1340  void PushStack(uintptr_t val) {
1341    *cur_stack_arg_ = val;
1342    cur_stack_arg_++;
1343  }
1344
1345  uintptr_t PushSirt(mirror::Object* ref) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1346    uintptr_t tmp;
1347    if (ref == nullptr) {
1348      *cur_sirt_entry_ = StackReference<mirror::Object>();
1349      tmp = reinterpret_cast<uintptr_t>(nullptr);
1350    } else {
1351      *cur_sirt_entry_ = StackReference<mirror::Object>::FromMirrorPtr(ref);
1352      tmp = reinterpret_cast<uintptr_t>(cur_sirt_entry_);
1353    }
1354    cur_sirt_entry_++;
1355    sirt_number_of_references_++;
1356    return tmp;
1357  }
1358
1359  // Size of the part of the alloca that we actually need.
1360  size_t GetAllocaUsedSize() {
1361    return alloca_used_size_;
1362  }
1363
1364  void* GetCodeReturn() {
1365    return code_return_;
1366  }
1367
1368 private:
1369  uint32_t sirt_number_of_references_;
1370  StackReference<mirror::Object>* cur_sirt_entry_;
1371  StackIndirectReferenceTable* sirt_;
1372  uint32_t sirt_expected_refs_;
1373  uintptr_t* cur_gpr_reg_;
1374  uint32_t* cur_fpr_reg_;
1375  uintptr_t* cur_stack_arg_;
1376  // StackReference<mirror::Object>* top_of_sirt_;
1377  void* code_return_;
1378  size_t alloca_used_size_;
1379
1380  BuildGenericJniFrameStateMachine<BuildGenericJniFrameVisitor> sm_;
1381
1382  DISALLOW_COPY_AND_ASSIGN(BuildGenericJniFrameVisitor);
1383};
1384
1385void BuildGenericJniFrameVisitor::Visit() {
1386  Primitive::Type type = GetParamPrimitiveType();
1387  switch (type) {
1388    case Primitive::kPrimLong: {
1389      jlong long_arg;
1390      if (IsSplitLongOrDouble()) {
1391        long_arg = ReadSplitLongParam();
1392      } else {
1393        long_arg = *reinterpret_cast<jlong*>(GetParamAddress());
1394      }
1395      sm_.AdvanceLong(long_arg);
1396      break;
1397    }
1398    case Primitive::kPrimDouble: {
1399      uint64_t double_arg;
1400      if (IsSplitLongOrDouble()) {
1401        // Read into union so that we don't case to a double.
1402        double_arg = ReadSplitLongParam();
1403      } else {
1404        double_arg = *reinterpret_cast<uint64_t*>(GetParamAddress());
1405      }
1406      sm_.AdvanceDouble(double_arg);
1407      break;
1408    }
1409    case Primitive::kPrimNot: {
1410      StackReference<mirror::Object>* stack_ref =
1411          reinterpret_cast<StackReference<mirror::Object>*>(GetParamAddress());
1412      sm_.AdvanceSirt(stack_ref->AsMirrorPtr());
1413      break;
1414    }
1415    case Primitive::kPrimFloat:
1416      sm_.AdvanceFloat(*reinterpret_cast<float*>(GetParamAddress()));
1417      break;
1418    case Primitive::kPrimBoolean:  // Fall-through.
1419    case Primitive::kPrimByte:     // Fall-through.
1420    case Primitive::kPrimChar:     // Fall-through.
1421    case Primitive::kPrimShort:    // Fall-through.
1422    case Primitive::kPrimInt:      // Fall-through.
1423      sm_.AdvanceInt(*reinterpret_cast<jint*>(GetParamAddress()));
1424      break;
1425    case Primitive::kPrimVoid:
1426      LOG(FATAL) << "UNREACHABLE";
1427      break;
1428  }
1429}
1430
1431void BuildGenericJniFrameVisitor::FinalizeSirt(Thread* self) {
1432  // Initialize padding entries.
1433  while (sirt_number_of_references_ < sirt_expected_refs_) {
1434    *cur_sirt_entry_ = StackReference<mirror::Object>();
1435    cur_sirt_entry_++;
1436    sirt_number_of_references_++;
1437  }
1438  sirt_->SetNumberOfReferences(sirt_expected_refs_);
1439  DCHECK_NE(sirt_expected_refs_, 0U);
1440  // Install Sirt.
1441  self->PushSirt(sirt_);
1442}
1443
1444extern "C" void* artFindNativeMethod();
1445
1446uint64_t artQuickGenericJniEndJNIRef(Thread* self, uint32_t cookie, jobject l, jobject lock) {
1447  if (lock != nullptr) {
1448    return reinterpret_cast<uint64_t>(JniMethodEndWithReferenceSynchronized(l, cookie, lock, self));
1449  } else {
1450    return reinterpret_cast<uint64_t>(JniMethodEndWithReference(l, cookie, self));
1451  }
1452}
1453
1454void artQuickGenericJniEndJNINonRef(Thread* self, uint32_t cookie, jobject lock) {
1455  if (lock != nullptr) {
1456    JniMethodEndSynchronized(cookie, lock, self);
1457  } else {
1458    JniMethodEnd(cookie, self);
1459  }
1460}
1461
1462/*
1463 * Initializes an alloca region assumed to be directly below sp for a native call:
1464 * Create a Sirt and call stack and fill a mini stack with values to be pushed to registers.
1465 * The final element on the stack is a pointer to the native code.
1466 *
1467 * On entry, the stack has a standard callee-save frame above sp, and an alloca below it.
1468 * We need to fix this, as the Sirt needs to go into the callee-save frame.
1469 *
1470 * The return of this function denotes:
1471 * 1) How many bytes of the alloca can be released, if the value is non-negative.
1472 * 2) An error, if the value is negative.
1473 */
1474extern "C" ssize_t artQuickGenericJniTrampoline(Thread* self, mirror::ArtMethod** sp)
1475    SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1476  mirror::ArtMethod* called = *sp;
1477  DCHECK(called->IsNative()) << PrettyMethod(called, true);
1478
1479  // run the visitor
1480  MethodHelper mh(called);
1481
1482  BuildGenericJniFrameVisitor visitor(&sp, called->IsStatic(), mh.GetShorty(), mh.GetShortyLength(),
1483                                      self);
1484  visitor.VisitArguments();
1485  visitor.FinalizeSirt(self);
1486
1487  // fix up managed-stack things in Thread
1488  self->SetTopOfStack(sp, 0);
1489
1490  self->VerifyStack();
1491
1492  // Start JNI, save the cookie.
1493  uint32_t cookie;
1494  if (called->IsSynchronized()) {
1495    cookie = JniMethodStartSynchronized(visitor.GetFirstSirtEntry(), self);
1496    if (self->IsExceptionPending()) {
1497      self->PopSirt();
1498      // A negative value denotes an error.
1499      return -1;
1500    }
1501  } else {
1502    cookie = JniMethodStart(self);
1503  }
1504  uint32_t* sp32 = reinterpret_cast<uint32_t*>(sp);
1505  *(sp32 - 1) = cookie;
1506
1507  // Retrieve the stored native code.
1508  const void* nativeCode = called->GetNativeMethod();
1509
1510  // There are two cases for the content of nativeCode:
1511  // 1) Pointer to the native function.
1512  // 2) Pointer to the trampoline for native code binding.
1513  // In the second case, we need to execute the binding and continue with the actual native function
1514  // pointer.
1515  DCHECK(nativeCode != nullptr);
1516  if (nativeCode == GetJniDlsymLookupStub()) {
1517    nativeCode = artFindNativeMethod();
1518
1519    if (nativeCode == nullptr) {
1520      DCHECK(self->IsExceptionPending());    // There should be an exception pending now.
1521
1522      // End JNI, as the assembly will move to deliver the exception.
1523      jobject lock = called->IsSynchronized() ? visitor.GetFirstSirtEntry() : nullptr;
1524      if (mh.GetShorty()[0] == 'L') {
1525        artQuickGenericJniEndJNIRef(self, cookie, nullptr, lock);
1526      } else {
1527        artQuickGenericJniEndJNINonRef(self, cookie, lock);
1528      }
1529
1530      return -1;
1531    }
1532    // Note that the native code pointer will be automatically set by artFindNativeMethod().
1533  }
1534
1535  // Store the native code pointer in the stack at the right location.
1536  uintptr_t* code_pointer = reinterpret_cast<uintptr_t*>(visitor.GetCodeReturn());
1537  *code_pointer = reinterpret_cast<uintptr_t>(nativeCode);
1538
1539  // 5K reserved, window_size + frame pointer used.
1540  size_t window_size = visitor.GetAllocaUsedSize();
1541  return (5 * KB) - window_size - kPointerSize;
1542}
1543
1544/*
1545 * Is called after the native JNI code. Responsible for cleanup (SIRT, saved state) and
1546 * unlocking.
1547 */
1548extern "C" uint64_t artQuickGenericJniEndTrampoline(Thread* self, mirror::ArtMethod** sp,
1549                                                    jvalue result, uint64_t result_f)
1550    SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1551  uint32_t* sp32 = reinterpret_cast<uint32_t*>(sp);
1552  mirror::ArtMethod* called = *sp;
1553  uint32_t cookie = *(sp32 - 1);
1554
1555  jobject lock = nullptr;
1556  if (called->IsSynchronized()) {
1557    StackIndirectReferenceTable* table =
1558        reinterpret_cast<StackIndirectReferenceTable*>(
1559            reinterpret_cast<uint8_t*>(sp) + kPointerSize);
1560    lock = reinterpret_cast<jobject>(table->GetStackReference(0));
1561  }
1562
1563  MethodHelper mh(called);
1564  char return_shorty_char = mh.GetShorty()[0];
1565
1566  if (return_shorty_char == 'L') {
1567    return artQuickGenericJniEndJNIRef(self, cookie, result.l, lock);
1568  } else {
1569    artQuickGenericJniEndJNINonRef(self, cookie, lock);
1570
1571    switch (return_shorty_char) {
1572      case 'F':  // Fall-through.
1573      case 'D':
1574        return result_f;
1575      case 'Z':
1576        return result.z;
1577      case 'B':
1578        return result.b;
1579      case 'C':
1580        return result.c;
1581      case 'S':
1582        return result.s;
1583      case 'I':
1584        return result.i;
1585      case 'J':
1586        return result.j;
1587      case 'V':
1588        return 0;
1589      default:
1590        LOG(FATAL) << "Unexpected return shorty character " << return_shorty_char;
1591        return 0;
1592    }
1593  }
1594}
1595
1596template<InvokeType type, bool access_check>
1597static uint64_t artInvokeCommon(uint32_t method_idx, mirror::Object* this_object,
1598                                mirror::ArtMethod* caller_method,
1599                                Thread* self, mirror::ArtMethod** sp);
1600
1601template<InvokeType type, bool access_check>
1602static uint64_t artInvokeCommon(uint32_t method_idx, mirror::Object* this_object,
1603                                mirror::ArtMethod* caller_method,
1604                                Thread* self, mirror::ArtMethod** sp) {
1605  mirror::ArtMethod* method = FindMethodFast(method_idx, this_object, caller_method, access_check,
1606                                             type);
1607  if (UNLIKELY(method == nullptr)) {
1608    FinishCalleeSaveFrameSetup(self, sp, Runtime::kRefsAndArgs);
1609    const DexFile* dex_file = caller_method->GetDeclaringClass()->GetDexCache()->GetDexFile();
1610    uint32_t shorty_len;
1611    const char* shorty =
1612        dex_file->GetMethodShorty(dex_file->GetMethodId(method_idx), &shorty_len);
1613    {
1614      // Remember the args in case a GC happens in FindMethodFromCode.
1615      ScopedObjectAccessUnchecked soa(self->GetJniEnv());
1616      RememberForGcArgumentVisitor visitor(sp, type == kStatic, shorty, shorty_len, &soa);
1617      visitor.VisitArguments();
1618      method = FindMethodFromCode<type, access_check>(method_idx, this_object, caller_method, self);
1619      visitor.FixupReferences();
1620    }
1621
1622    if (UNLIKELY(method == NULL)) {
1623      CHECK(self->IsExceptionPending());
1624      return 0;  // failure
1625    }
1626  }
1627  DCHECK(!self->IsExceptionPending());
1628  const void* code = method->GetEntryPointFromQuickCompiledCode();
1629
1630  // When we return, the caller will branch to this address, so it had better not be 0!
1631  DCHECK(code != nullptr) << "Code was NULL in method: " << PrettyMethod(method) << " location: "
1632      << MethodHelper(method).GetDexFile().GetLocation();
1633#ifdef __LP64__
1634  UNIMPLEMENTED(FATAL);
1635  return 0;
1636#else
1637  uint32_t method_uint = reinterpret_cast<uint32_t>(method);
1638  uint64_t code_uint = reinterpret_cast<uint32_t>(code);
1639  uint64_t result = ((code_uint << 32) | method_uint);
1640  return result;
1641#endif
1642}
1643
1644// Explicit artInvokeCommon template function declarations to please analysis tool.
1645#define EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(type, access_check)                                \
1646  template SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)                                          \
1647  uint64_t artInvokeCommon<type, access_check>(uint32_t method_idx,                             \
1648                                               mirror::Object* this_object,                     \
1649                                               mirror::ArtMethod* caller_method,                \
1650                                               Thread* self, mirror::ArtMethod** sp)            \
1651
1652EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kVirtual, false);
1653EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kVirtual, true);
1654EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kInterface, false);
1655EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kInterface, true);
1656EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kDirect, false);
1657EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kDirect, true);
1658EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kStatic, false);
1659EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kStatic, true);
1660EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kSuper, false);
1661EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kSuper, true);
1662#undef EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL
1663
1664
1665// See comments in runtime_support_asm.S
1666extern "C" uint64_t artInvokeInterfaceTrampolineWithAccessCheck(uint32_t method_idx,
1667                                                                mirror::Object* this_object,
1668                                                                mirror::ArtMethod* caller_method,
1669                                                                Thread* self,
1670                                                                mirror::ArtMethod** sp)
1671    SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1672  return artInvokeCommon<kInterface, true>(method_idx, this_object, caller_method, self, sp);
1673}
1674
1675
1676extern "C" uint64_t artInvokeDirectTrampolineWithAccessCheck(uint32_t method_idx,
1677                                                             mirror::Object* this_object,
1678                                                             mirror::ArtMethod* caller_method,
1679                                                             Thread* self,
1680                                                             mirror::ArtMethod** sp)
1681    SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1682  return artInvokeCommon<kDirect, true>(method_idx, this_object, caller_method, self, sp);
1683}
1684
1685extern "C" uint64_t artInvokeStaticTrampolineWithAccessCheck(uint32_t method_idx,
1686                                                             mirror::Object* this_object,
1687                                                             mirror::ArtMethod* caller_method,
1688                                                             Thread* self,
1689                                                             mirror::ArtMethod** sp)
1690    SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1691  return artInvokeCommon<kStatic, true>(method_idx, this_object, caller_method, self, sp);
1692}
1693
1694extern "C" uint64_t artInvokeSuperTrampolineWithAccessCheck(uint32_t method_idx,
1695                                                            mirror::Object* this_object,
1696                                                            mirror::ArtMethod* caller_method,
1697                                                            Thread* self,
1698                                                            mirror::ArtMethod** sp)
1699    SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1700  return artInvokeCommon<kSuper, true>(method_idx, this_object, caller_method, self, sp);
1701}
1702
1703extern "C" uint64_t artInvokeVirtualTrampolineWithAccessCheck(uint32_t method_idx,
1704                                                              mirror::Object* this_object,
1705                                                              mirror::ArtMethod* caller_method,
1706                                                              Thread* self,
1707                                                              mirror::ArtMethod** sp)
1708    SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1709  return artInvokeCommon<kVirtual, true>(method_idx, this_object, caller_method, self, sp);
1710}
1711
1712// Determine target of interface dispatch. This object is known non-null.
1713extern "C" uint64_t artInvokeInterfaceTrampoline(mirror::ArtMethod* interface_method,
1714                                                 mirror::Object* this_object,
1715                                                 mirror::ArtMethod* caller_method,
1716                                                 Thread* self, mirror::ArtMethod** sp)
1717    SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1718  mirror::ArtMethod* method;
1719  if (LIKELY(interface_method->GetDexMethodIndex() != DexFile::kDexNoIndex)) {
1720    method = this_object->GetClass()->FindVirtualMethodForInterface(interface_method);
1721    if (UNLIKELY(method == NULL)) {
1722      FinishCalleeSaveFrameSetup(self, sp, Runtime::kRefsAndArgs);
1723      ThrowIncompatibleClassChangeErrorClassForInterfaceDispatch(interface_method, this_object,
1724                                                                 caller_method);
1725      return 0;  // Failure.
1726    }
1727  } else {
1728    FinishCalleeSaveFrameSetup(self, sp, Runtime::kRefsAndArgs);
1729    DCHECK(interface_method == Runtime::Current()->GetResolutionMethod());
1730    // Determine method index from calling dex instruction.
1731#if defined(__arm__)
1732    // On entry the stack pointed by sp is:
1733    // | argN       |  |
1734    // | ...        |  |
1735    // | arg4       |  |
1736    // | arg3 spill |  |  Caller's frame
1737    // | arg2 spill |  |
1738    // | arg1 spill |  |
1739    // | Method*    | ---
1740    // | LR         |
1741    // | ...        |    callee saves
1742    // | R3         |    arg3
1743    // | R2         |    arg2
1744    // | R1         |    arg1
1745    // | R0         |
1746    // | Method*    |  <- sp
1747    DCHECK_EQ(48U, Runtime::Current()->GetCalleeSaveMethod(Runtime::kRefsAndArgs)->GetFrameSizeInBytes());
1748    uintptr_t* regs = reinterpret_cast<uintptr_t*>(reinterpret_cast<byte*>(sp) + kPointerSize);
1749    uintptr_t caller_pc = regs[10];
1750#elif defined(__i386__)
1751    // On entry the stack pointed by sp is:
1752    // | argN        |  |
1753    // | ...         |  |
1754    // | arg4        |  |
1755    // | arg3 spill  |  |  Caller's frame
1756    // | arg2 spill  |  |
1757    // | arg1 spill  |  |
1758    // | Method*     | ---
1759    // | Return      |
1760    // | EBP,ESI,EDI |    callee saves
1761    // | EBX         |    arg3
1762    // | EDX         |    arg2
1763    // | ECX         |    arg1
1764    // | EAX/Method* |  <- sp
1765    DCHECK_EQ(32U, Runtime::Current()->GetCalleeSaveMethod(Runtime::kRefsAndArgs)->GetFrameSizeInBytes());
1766    uintptr_t* regs = reinterpret_cast<uintptr_t*>(reinterpret_cast<byte*>(sp));
1767    uintptr_t caller_pc = regs[7];
1768#elif defined(__mips__)
1769    // On entry the stack pointed by sp is:
1770    // | argN       |  |
1771    // | ...        |  |
1772    // | arg4       |  |
1773    // | arg3 spill |  |  Caller's frame
1774    // | arg2 spill |  |
1775    // | arg1 spill |  |
1776    // | Method*    | ---
1777    // | RA         |
1778    // | ...        |    callee saves
1779    // | A3         |    arg3
1780    // | A2         |    arg2
1781    // | A1         |    arg1
1782    // | A0/Method* |  <- sp
1783    DCHECK_EQ(64U, Runtime::Current()->GetCalleeSaveMethod(Runtime::kRefsAndArgs)->GetFrameSizeInBytes());
1784    uintptr_t* regs = reinterpret_cast<uintptr_t*>(reinterpret_cast<byte*>(sp));
1785    uintptr_t caller_pc = regs[15];
1786#else
1787    UNIMPLEMENTED(FATAL);
1788    uintptr_t caller_pc = 0;
1789#endif
1790    uint32_t dex_pc = caller_method->ToDexPc(caller_pc);
1791    const DexFile::CodeItem* code = MethodHelper(caller_method).GetCodeItem();
1792    CHECK_LT(dex_pc, code->insns_size_in_code_units_);
1793    const Instruction* instr = Instruction::At(&code->insns_[dex_pc]);
1794    Instruction::Code instr_code = instr->Opcode();
1795    CHECK(instr_code == Instruction::INVOKE_INTERFACE ||
1796          instr_code == Instruction::INVOKE_INTERFACE_RANGE)
1797        << "Unexpected call into interface trampoline: " << instr->DumpString(NULL);
1798    uint32_t dex_method_idx;
1799    if (instr_code == Instruction::INVOKE_INTERFACE) {
1800      dex_method_idx = instr->VRegB_35c();
1801    } else {
1802      DCHECK_EQ(instr_code, Instruction::INVOKE_INTERFACE_RANGE);
1803      dex_method_idx = instr->VRegB_3rc();
1804    }
1805
1806    const DexFile* dex_file = caller_method->GetDeclaringClass()->GetDexCache()->GetDexFile();
1807    uint32_t shorty_len;
1808    const char* shorty =
1809        dex_file->GetMethodShorty(dex_file->GetMethodId(dex_method_idx), &shorty_len);
1810    {
1811      // Remember the args in case a GC happens in FindMethodFromCode.
1812      ScopedObjectAccessUnchecked soa(self->GetJniEnv());
1813      RememberForGcArgumentVisitor visitor(sp, false, shorty, shorty_len, &soa);
1814      visitor.VisitArguments();
1815      method = FindMethodFromCode<kInterface, false>(dex_method_idx, this_object, caller_method,
1816                                                     self);
1817      visitor.FixupReferences();
1818    }
1819
1820    if (UNLIKELY(method == nullptr)) {
1821      CHECK(self->IsExceptionPending());
1822      return 0;  // Failure.
1823    }
1824  }
1825  const void* code = method->GetEntryPointFromQuickCompiledCode();
1826
1827  // When we return, the caller will branch to this address, so it had better not be 0!
1828  DCHECK(code != nullptr) << "Code was NULL in method: " << PrettyMethod(method) << " location: "
1829      << MethodHelper(method).GetDexFile().GetLocation();
1830#ifdef __LP64__
1831  UNIMPLEMENTED(FATAL);
1832  return 0;
1833#else
1834  uint32_t method_uint = reinterpret_cast<uint32_t>(method);
1835  uint64_t code_uint = reinterpret_cast<uint32_t>(code);
1836  uint64_t result = ((code_uint << 32) | method_uint);
1837  return result;
1838#endif
1839}
1840
1841}  // namespace art
1842