1/*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include "method_verifier-inl.h"
18
19#include <iostream>
20
21#include "base/logging.h"
22#include "base/mutex-inl.h"
23#include "class_linker.h"
24#include "compiler_callbacks.h"
25#include "dex_file-inl.h"
26#include "dex_instruction-inl.h"
27#include "dex_instruction_visitor.h"
28#include "field_helper.h"
29#include "gc/accounting/card_table-inl.h"
30#include "indenter.h"
31#include "intern_table.h"
32#include "leb128.h"
33#include "method_helper-inl.h"
34#include "mirror/art_field-inl.h"
35#include "mirror/art_method-inl.h"
36#include "mirror/class.h"
37#include "mirror/class-inl.h"
38#include "mirror/dex_cache-inl.h"
39#include "mirror/object-inl.h"
40#include "mirror/object_array-inl.h"
41#include "register_line-inl.h"
42#include "runtime.h"
43#include "scoped_thread_state_change.h"
44#include "handle_scope-inl.h"
45#include "verifier/dex_gc_map.h"
46
47namespace art {
48namespace verifier {
49
50static constexpr bool kTimeVerifyMethod = !kIsDebugBuild;
51static constexpr bool gDebugVerify = false;
52// TODO: Add a constant to method_verifier to turn on verbose logging?
53
54void PcToRegisterLineTable::Init(RegisterTrackingMode mode, InstructionFlags* flags,
55                                 uint32_t insns_size, uint16_t registers_size,
56                                 MethodVerifier* verifier) {
57  DCHECK_GT(insns_size, 0U);
58  register_lines_.reset(new RegisterLine*[insns_size]());
59  size_ = insns_size;
60  for (uint32_t i = 0; i < insns_size; i++) {
61    bool interesting = false;
62    switch (mode) {
63      case kTrackRegsAll:
64        interesting = flags[i].IsOpcode();
65        break;
66      case kTrackCompilerInterestPoints:
67        interesting = flags[i].IsCompileTimeInfoPoint() || flags[i].IsBranchTarget();
68        break;
69      case kTrackRegsBranches:
70        interesting = flags[i].IsBranchTarget();
71        break;
72      default:
73        break;
74    }
75    if (interesting) {
76      register_lines_[i] = RegisterLine::Create(registers_size, verifier);
77    }
78  }
79}
80
81PcToRegisterLineTable::~PcToRegisterLineTable() {
82  for (size_t i = 0; i < size_; i++) {
83    delete register_lines_[i];
84    if (kIsDebugBuild) {
85      register_lines_[i] = nullptr;
86    }
87  }
88}
89
90// Note: returns true on failure.
91ALWAYS_INLINE static inline bool FailOrAbort(MethodVerifier* verifier, bool condition,
92                                             const char* error_msg, uint32_t work_insn_idx) {
93  if (kIsDebugBuild) {
94    // In a debug build, abort if the error condition is wrong.
95    DCHECK(condition) << error_msg << work_insn_idx;
96  } else {
97    // In a non-debug build, just fail the class.
98    if (!condition) {
99      verifier->Fail(VERIFY_ERROR_BAD_CLASS_HARD) << error_msg << work_insn_idx;
100      return true;
101    }
102  }
103
104  return false;
105}
106
107MethodVerifier::FailureKind MethodVerifier::VerifyClass(mirror::Class* klass,
108                                                        bool allow_soft_failures,
109                                                        std::string* error) {
110  if (klass->IsVerified()) {
111    return kNoFailure;
112  }
113  bool early_failure = false;
114  std::string failure_message;
115  const DexFile& dex_file = klass->GetDexFile();
116  const DexFile::ClassDef* class_def = klass->GetClassDef();
117  mirror::Class* super = klass->GetSuperClass();
118  std::string temp;
119  if (super == nullptr && strcmp("Ljava/lang/Object;", klass->GetDescriptor(&temp)) != 0) {
120    early_failure = true;
121    failure_message = " that has no super class";
122  } else if (super != nullptr && super->IsFinal()) {
123    early_failure = true;
124    failure_message = " that attempts to sub-class final class " + PrettyDescriptor(super);
125  } else if (class_def == nullptr) {
126    early_failure = true;
127    failure_message = " that isn't present in dex file " + dex_file.GetLocation();
128  }
129  if (early_failure) {
130    *error = "Verifier rejected class " + PrettyDescriptor(klass) + failure_message;
131    if (Runtime::Current()->IsCompiler()) {
132      ClassReference ref(&dex_file, klass->GetDexClassDefIndex());
133      Runtime::Current()->GetCompilerCallbacks()->ClassRejected(ref);
134    }
135    return kHardFailure;
136  }
137  StackHandleScope<2> hs(Thread::Current());
138  Handle<mirror::DexCache> dex_cache(hs.NewHandle(klass->GetDexCache()));
139  Handle<mirror::ClassLoader> class_loader(hs.NewHandle(klass->GetClassLoader()));
140  return VerifyClass(&dex_file, dex_cache, class_loader, class_def, allow_soft_failures, error);
141}
142
143MethodVerifier::FailureKind MethodVerifier::VerifyClass(const DexFile* dex_file,
144                                                        Handle<mirror::DexCache> dex_cache,
145                                                        Handle<mirror::ClassLoader> class_loader,
146                                                        const DexFile::ClassDef* class_def,
147                                                        bool allow_soft_failures,
148                                                        std::string* error) {
149  DCHECK(class_def != nullptr);
150  const byte* class_data = dex_file->GetClassData(*class_def);
151  if (class_data == nullptr) {
152    // empty class, probably a marker interface
153    return kNoFailure;
154  }
155  ClassDataItemIterator it(*dex_file, class_data);
156  while (it.HasNextStaticField() || it.HasNextInstanceField()) {
157    it.Next();
158  }
159  size_t error_count = 0;
160  bool hard_fail = false;
161  ClassLinker* linker = Runtime::Current()->GetClassLinker();
162  int64_t previous_direct_method_idx = -1;
163  while (it.HasNextDirectMethod()) {
164    uint32_t method_idx = it.GetMemberIndex();
165    if (method_idx == previous_direct_method_idx) {
166      // smali can create dex files with two encoded_methods sharing the same method_idx
167      // http://code.google.com/p/smali/issues/detail?id=119
168      it.Next();
169      continue;
170    }
171    previous_direct_method_idx = method_idx;
172    InvokeType type = it.GetMethodInvokeType(*class_def);
173    mirror::ArtMethod* method =
174        linker->ResolveMethod(*dex_file, method_idx, dex_cache, class_loader,
175                              NullHandle<mirror::ArtMethod>(), type);
176    if (method == nullptr) {
177      DCHECK(Thread::Current()->IsExceptionPending());
178      // We couldn't resolve the method, but continue regardless.
179      Thread::Current()->ClearException();
180    }
181    MethodVerifier::FailureKind result = VerifyMethod(method_idx,
182                                                      dex_file,
183                                                      dex_cache,
184                                                      class_loader,
185                                                      class_def,
186                                                      it.GetMethodCodeItem(),
187                                                      method,
188                                                      it.GetMethodAccessFlags(),
189                                                      allow_soft_failures,
190                                                      false);
191    if (result != kNoFailure) {
192      if (result == kHardFailure) {
193        hard_fail = true;
194        if (error_count > 0) {
195          *error += "\n";
196        }
197        *error = "Verifier rejected class ";
198        *error += PrettyDescriptor(dex_file->GetClassDescriptor(*class_def));
199        *error += " due to bad method ";
200        *error += PrettyMethod(method_idx, *dex_file);
201      }
202      ++error_count;
203    }
204    it.Next();
205  }
206  int64_t previous_virtual_method_idx = -1;
207  while (it.HasNextVirtualMethod()) {
208    uint32_t method_idx = it.GetMemberIndex();
209    if (method_idx == previous_virtual_method_idx) {
210      // smali can create dex files with two encoded_methods sharing the same method_idx
211      // http://code.google.com/p/smali/issues/detail?id=119
212      it.Next();
213      continue;
214    }
215    previous_virtual_method_idx = method_idx;
216    InvokeType type = it.GetMethodInvokeType(*class_def);
217    mirror::ArtMethod* method =
218        linker->ResolveMethod(*dex_file, method_idx, dex_cache, class_loader,
219                              NullHandle<mirror::ArtMethod>(), type);
220    if (method == nullptr) {
221      DCHECK(Thread::Current()->IsExceptionPending());
222      // We couldn't resolve the method, but continue regardless.
223      Thread::Current()->ClearException();
224    }
225    MethodVerifier::FailureKind result = VerifyMethod(method_idx,
226                                                      dex_file,
227                                                      dex_cache,
228                                                      class_loader,
229                                                      class_def,
230                                                      it.GetMethodCodeItem(),
231                                                      method,
232                                                      it.GetMethodAccessFlags(),
233                                                      allow_soft_failures,
234                                                      false);
235    if (result != kNoFailure) {
236      if (result == kHardFailure) {
237        hard_fail = true;
238        if (error_count > 0) {
239          *error += "\n";
240        }
241        *error = "Verifier rejected class ";
242        *error += PrettyDescriptor(dex_file->GetClassDescriptor(*class_def));
243        *error += " due to bad method ";
244        *error += PrettyMethod(method_idx, *dex_file);
245      }
246      ++error_count;
247    }
248    it.Next();
249  }
250  if (error_count == 0) {
251    return kNoFailure;
252  } else {
253    return hard_fail ? kHardFailure : kSoftFailure;
254  }
255}
256
257MethodVerifier::FailureKind MethodVerifier::VerifyMethod(uint32_t method_idx,
258                                                         const DexFile* dex_file,
259                                                         Handle<mirror::DexCache> dex_cache,
260                                                         Handle<mirror::ClassLoader> class_loader,
261                                                         const DexFile::ClassDef* class_def,
262                                                         const DexFile::CodeItem* code_item,
263                                                         mirror::ArtMethod* method,
264                                                         uint32_t method_access_flags,
265                                                         bool allow_soft_failures,
266                                                         bool need_precise_constants) {
267  MethodVerifier::FailureKind result = kNoFailure;
268  uint64_t start_ns = kTimeVerifyMethod ? NanoTime() : 0;
269
270  MethodVerifier verifier(dex_file, &dex_cache, &class_loader, class_def, code_item,
271                           method_idx, method, method_access_flags, true, allow_soft_failures,
272                           need_precise_constants);
273  if (verifier.Verify()) {
274    // Verification completed, however failures may be pending that didn't cause the verification
275    // to hard fail.
276    CHECK(!verifier.have_pending_hard_failure_);
277    if (verifier.failures_.size() != 0) {
278      if (VLOG_IS_ON(verifier)) {
279          verifier.DumpFailures(VLOG_STREAM(verifier) << "Soft verification failures in "
280                                << PrettyMethod(method_idx, *dex_file) << "\n");
281      }
282      result = kSoftFailure;
283    }
284  } else {
285    // Bad method data.
286    CHECK_NE(verifier.failures_.size(), 0U);
287    CHECK(verifier.have_pending_hard_failure_);
288    verifier.DumpFailures(LOG(INFO) << "Verification error in "
289                                    << PrettyMethod(method_idx, *dex_file) << "\n");
290    if (gDebugVerify) {
291      std::cout << "\n" << verifier.info_messages_.str();
292      verifier.Dump(std::cout);
293    }
294    result = kHardFailure;
295  }
296  if (kTimeVerifyMethod) {
297    uint64_t duration_ns = NanoTime() - start_ns;
298    if (duration_ns > MsToNs(100)) {
299      LOG(WARNING) << "Verification of " << PrettyMethod(method_idx, *dex_file)
300                   << " took " << PrettyDuration(duration_ns);
301    }
302  }
303  return result;
304}
305
306MethodVerifier* MethodVerifier::VerifyMethodAndDump(std::ostream& os, uint32_t dex_method_idx,
307                                                    const DexFile* dex_file,
308                                                    Handle<mirror::DexCache> dex_cache,
309                                                    Handle<mirror::ClassLoader> class_loader,
310                                                    const DexFile::ClassDef* class_def,
311                                                    const DexFile::CodeItem* code_item,
312                                                    mirror::ArtMethod* method,
313                                                    uint32_t method_access_flags) {
314  MethodVerifier* verifier = new MethodVerifier(dex_file, &dex_cache, &class_loader, class_def,
315                                                code_item, dex_method_idx, method,
316                                                method_access_flags, true, true, true, true);
317  verifier->Verify();
318  verifier->DumpFailures(os);
319  os << verifier->info_messages_.str();
320  verifier->Dump(os);
321
322  return verifier;
323}
324
325MethodVerifier::MethodVerifier(const DexFile* dex_file, Handle<mirror::DexCache>* dex_cache,
326                               Handle<mirror::ClassLoader>* class_loader,
327                               const DexFile::ClassDef* class_def,
328                               const DexFile::CodeItem* code_item, uint32_t dex_method_idx,
329                               mirror::ArtMethod* method, uint32_t method_access_flags,
330                               bool can_load_classes, bool allow_soft_failures,
331                               bool need_precise_constants, bool verify_to_dump)
332    : reg_types_(can_load_classes),
333      work_insn_idx_(-1),
334      dex_method_idx_(dex_method_idx),
335      mirror_method_(method),
336      method_access_flags_(method_access_flags),
337      return_type_(nullptr),
338      dex_file_(dex_file),
339      dex_cache_(dex_cache),
340      class_loader_(class_loader),
341      class_def_(class_def),
342      code_item_(code_item),
343      declaring_class_(nullptr),
344      interesting_dex_pc_(-1),
345      monitor_enter_dex_pcs_(nullptr),
346      have_pending_hard_failure_(false),
347      have_pending_runtime_throw_failure_(false),
348      new_instance_count_(0),
349      monitor_enter_count_(0),
350      can_load_classes_(can_load_classes),
351      allow_soft_failures_(allow_soft_failures),
352      need_precise_constants_(need_precise_constants),
353      has_check_casts_(false),
354      has_virtual_or_interface_invokes_(false),
355      verify_to_dump_(verify_to_dump) {
356  Runtime::Current()->AddMethodVerifier(this);
357  DCHECK(class_def != nullptr);
358}
359
360MethodVerifier::~MethodVerifier() {
361  Runtime::Current()->RemoveMethodVerifier(this);
362  STLDeleteElements(&failure_messages_);
363}
364
365void MethodVerifier::FindLocksAtDexPc(mirror::ArtMethod* m, uint32_t dex_pc,
366                                      std::vector<uint32_t>* monitor_enter_dex_pcs) {
367  StackHandleScope<2> hs(Thread::Current());
368  Handle<mirror::DexCache> dex_cache(hs.NewHandle(m->GetDexCache()));
369  Handle<mirror::ClassLoader> class_loader(hs.NewHandle(m->GetClassLoader()));
370  MethodVerifier verifier(m->GetDexFile(), &dex_cache, &class_loader, &m->GetClassDef(),
371                          m->GetCodeItem(), m->GetDexMethodIndex(), m, m->GetAccessFlags(), false,
372                          true, false);
373  verifier.interesting_dex_pc_ = dex_pc;
374  verifier.monitor_enter_dex_pcs_ = monitor_enter_dex_pcs;
375  verifier.FindLocksAtDexPc();
376}
377
378void MethodVerifier::FindLocksAtDexPc() {
379  CHECK(monitor_enter_dex_pcs_ != nullptr);
380  CHECK(code_item_ != nullptr);  // This only makes sense for methods with code.
381
382  // Strictly speaking, we ought to be able to get away with doing a subset of the full method
383  // verification. In practice, the phase we want relies on data structures set up by all the
384  // earlier passes, so we just run the full method verification and bail out early when we've
385  // got what we wanted.
386  Verify();
387}
388
389mirror::ArtField* MethodVerifier::FindAccessedFieldAtDexPc(mirror::ArtMethod* m,
390                                                           uint32_t dex_pc) {
391  StackHandleScope<2> hs(Thread::Current());
392  Handle<mirror::DexCache> dex_cache(hs.NewHandle(m->GetDexCache()));
393  Handle<mirror::ClassLoader> class_loader(hs.NewHandle(m->GetClassLoader()));
394  MethodVerifier verifier(m->GetDexFile(), &dex_cache, &class_loader, &m->GetClassDef(),
395                          m->GetCodeItem(), m->GetDexMethodIndex(), m, m->GetAccessFlags(), true,
396                          true, false);
397  return verifier.FindAccessedFieldAtDexPc(dex_pc);
398}
399
400mirror::ArtField* MethodVerifier::FindAccessedFieldAtDexPc(uint32_t dex_pc) {
401  CHECK(code_item_ != nullptr);  // This only makes sense for methods with code.
402
403  // Strictly speaking, we ought to be able to get away with doing a subset of the full method
404  // verification. In practice, the phase we want relies on data structures set up by all the
405  // earlier passes, so we just run the full method verification and bail out early when we've
406  // got what we wanted.
407  bool success = Verify();
408  if (!success) {
409    return nullptr;
410  }
411  RegisterLine* register_line = reg_table_.GetLine(dex_pc);
412  if (register_line == nullptr) {
413    return nullptr;
414  }
415  const Instruction* inst = Instruction::At(code_item_->insns_ + dex_pc);
416  return GetQuickFieldAccess(inst, register_line);
417}
418
419mirror::ArtMethod* MethodVerifier::FindInvokedMethodAtDexPc(mirror::ArtMethod* m,
420                                                            uint32_t dex_pc) {
421  StackHandleScope<2> hs(Thread::Current());
422  Handle<mirror::DexCache> dex_cache(hs.NewHandle(m->GetDexCache()));
423  Handle<mirror::ClassLoader> class_loader(hs.NewHandle(m->GetClassLoader()));
424  MethodVerifier verifier(m->GetDexFile(), &dex_cache, &class_loader, &m->GetClassDef(),
425                          m->GetCodeItem(), m->GetDexMethodIndex(), m, m->GetAccessFlags(), true,
426                          true, false);
427  return verifier.FindInvokedMethodAtDexPc(dex_pc);
428}
429
430mirror::ArtMethod* MethodVerifier::FindInvokedMethodAtDexPc(uint32_t dex_pc) {
431  CHECK(code_item_ != nullptr);  // This only makes sense for methods with code.
432
433  // Strictly speaking, we ought to be able to get away with doing a subset of the full method
434  // verification. In practice, the phase we want relies on data structures set up by all the
435  // earlier passes, so we just run the full method verification and bail out early when we've
436  // got what we wanted.
437  bool success = Verify();
438  if (!success) {
439    return nullptr;
440  }
441  RegisterLine* register_line = reg_table_.GetLine(dex_pc);
442  if (register_line == nullptr) {
443    return nullptr;
444  }
445  const Instruction* inst = Instruction::At(code_item_->insns_ + dex_pc);
446  const bool is_range = (inst->Opcode() == Instruction::INVOKE_VIRTUAL_RANGE_QUICK);
447  return GetQuickInvokedMethod(inst, register_line, is_range);
448}
449
450bool MethodVerifier::Verify() {
451  // If there aren't any instructions, make sure that's expected, then exit successfully.
452  if (code_item_ == nullptr) {
453    if ((method_access_flags_ & (kAccNative | kAccAbstract)) == 0) {
454      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "zero-length code in concrete non-native method";
455      return false;
456    } else {
457      return true;
458    }
459  }
460  // Sanity-check the register counts. ins + locals = registers, so make sure that ins <= registers.
461  if (code_item_->ins_size_ > code_item_->registers_size_) {
462    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad register counts (ins=" << code_item_->ins_size_
463                                      << " regs=" << code_item_->registers_size_;
464    return false;
465  }
466  // Allocate and initialize an array to hold instruction data.
467  insn_flags_.reset(new InstructionFlags[code_item_->insns_size_in_code_units_]());
468  // Run through the instructions and see if the width checks out.
469  bool result = ComputeWidthsAndCountOps();
470  // Flag instructions guarded by a "try" block and check exception handlers.
471  result = result && ScanTryCatchBlocks();
472  // Perform static instruction verification.
473  result = result && VerifyInstructions();
474  // Perform code-flow analysis and return.
475  result = result && VerifyCodeFlow();
476  // Compute information for compiler.
477  if (result && Runtime::Current()->IsCompiler()) {
478    result = Runtime::Current()->GetCompilerCallbacks()->MethodVerified(this);
479  }
480  return result;
481}
482
483std::ostream& MethodVerifier::Fail(VerifyError error) {
484  switch (error) {
485    case VERIFY_ERROR_NO_CLASS:
486    case VERIFY_ERROR_NO_FIELD:
487    case VERIFY_ERROR_NO_METHOD:
488    case VERIFY_ERROR_ACCESS_CLASS:
489    case VERIFY_ERROR_ACCESS_FIELD:
490    case VERIFY_ERROR_ACCESS_METHOD:
491    case VERIFY_ERROR_INSTANTIATION:
492    case VERIFY_ERROR_CLASS_CHANGE:
493      if (Runtime::Current()->IsCompiler() || !can_load_classes_) {
494        // If we're optimistically running verification at compile time, turn NO_xxx, ACCESS_xxx,
495        // class change and instantiation errors into soft verification errors so that we re-verify
496        // at runtime. We may fail to find or to agree on access because of not yet available class
497        // loaders, or class loaders that will differ at runtime. In these cases, we don't want to
498        // affect the soundness of the code being compiled. Instead, the generated code runs "slow
499        // paths" that dynamically perform the verification and cause the behavior to be that akin
500        // to an interpreter.
501        error = VERIFY_ERROR_BAD_CLASS_SOFT;
502      } else {
503        // If we fail again at runtime, mark that this instruction would throw and force this
504        // method to be executed using the interpreter with checks.
505        have_pending_runtime_throw_failure_ = true;
506      }
507      break;
508      // Indication that verification should be retried at runtime.
509    case VERIFY_ERROR_BAD_CLASS_SOFT:
510      if (!allow_soft_failures_) {
511        have_pending_hard_failure_ = true;
512      }
513      break;
514      // Hard verification failures at compile time will still fail at runtime, so the class is
515      // marked as rejected to prevent it from being compiled.
516    case VERIFY_ERROR_BAD_CLASS_HARD: {
517      if (Runtime::Current()->IsCompiler()) {
518        ClassReference ref(dex_file_, dex_file_->GetIndexForClassDef(*class_def_));
519        Runtime::Current()->GetCompilerCallbacks()->ClassRejected(ref);
520      }
521      have_pending_hard_failure_ = true;
522      break;
523    }
524  }
525  failures_.push_back(error);
526  std::string location(StringPrintf("%s: [0x%X] ", PrettyMethod(dex_method_idx_, *dex_file_).c_str(),
527                                    work_insn_idx_));
528  std::ostringstream* failure_message = new std::ostringstream(location, std::ostringstream::ate);
529  failure_messages_.push_back(failure_message);
530  return *failure_message;
531}
532
533std::ostream& MethodVerifier::LogVerifyInfo() {
534  return info_messages_ << "VFY: " << PrettyMethod(dex_method_idx_, *dex_file_)
535                        << '[' << reinterpret_cast<void*>(work_insn_idx_) << "] : ";
536}
537
538void MethodVerifier::PrependToLastFailMessage(std::string prepend) {
539  size_t failure_num = failure_messages_.size();
540  DCHECK_NE(failure_num, 0U);
541  std::ostringstream* last_fail_message = failure_messages_[failure_num - 1];
542  prepend += last_fail_message->str();
543  failure_messages_[failure_num - 1] = new std::ostringstream(prepend, std::ostringstream::ate);
544  delete last_fail_message;
545}
546
547void MethodVerifier::AppendToLastFailMessage(std::string append) {
548  size_t failure_num = failure_messages_.size();
549  DCHECK_NE(failure_num, 0U);
550  std::ostringstream* last_fail_message = failure_messages_[failure_num - 1];
551  (*last_fail_message) << append;
552}
553
554bool MethodVerifier::ComputeWidthsAndCountOps() {
555  const uint16_t* insns = code_item_->insns_;
556  size_t insns_size = code_item_->insns_size_in_code_units_;
557  const Instruction* inst = Instruction::At(insns);
558  size_t new_instance_count = 0;
559  size_t monitor_enter_count = 0;
560  size_t dex_pc = 0;
561
562  while (dex_pc < insns_size) {
563    Instruction::Code opcode = inst->Opcode();
564    switch (opcode) {
565      case Instruction::APUT_OBJECT:
566      case Instruction::CHECK_CAST:
567        has_check_casts_ = true;
568        break;
569      case Instruction::INVOKE_VIRTUAL:
570      case Instruction::INVOKE_VIRTUAL_RANGE:
571      case Instruction::INVOKE_INTERFACE:
572      case Instruction::INVOKE_INTERFACE_RANGE:
573        has_virtual_or_interface_invokes_ = true;
574        break;
575      case Instruction::MONITOR_ENTER:
576        monitor_enter_count++;
577        break;
578      case Instruction::NEW_INSTANCE:
579        new_instance_count++;
580        break;
581      default:
582        break;
583    }
584    size_t inst_size = inst->SizeInCodeUnits();
585    insn_flags_[dex_pc].SetLengthInCodeUnits(inst_size);
586    dex_pc += inst_size;
587    inst = inst->Next();
588  }
589
590  if (dex_pc != insns_size) {
591    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "code did not end where expected ("
592                                      << dex_pc << " vs. " << insns_size << ")";
593    return false;
594  }
595
596  new_instance_count_ = new_instance_count;
597  monitor_enter_count_ = monitor_enter_count;
598  return true;
599}
600
601bool MethodVerifier::ScanTryCatchBlocks() {
602  uint32_t tries_size = code_item_->tries_size_;
603  if (tries_size == 0) {
604    return true;
605  }
606  uint32_t insns_size = code_item_->insns_size_in_code_units_;
607  const DexFile::TryItem* tries = DexFile::GetTryItems(*code_item_, 0);
608
609  for (uint32_t idx = 0; idx < tries_size; idx++) {
610    const DexFile::TryItem* try_item = &tries[idx];
611    uint32_t start = try_item->start_addr_;
612    uint32_t end = start + try_item->insn_count_;
613    if ((start >= end) || (start >= insns_size) || (end > insns_size)) {
614      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad exception entry: startAddr=" << start
615                                        << " endAddr=" << end << " (size=" << insns_size << ")";
616      return false;
617    }
618    if (!insn_flags_[start].IsOpcode()) {
619      Fail(VERIFY_ERROR_BAD_CLASS_HARD)
620          << "'try' block starts inside an instruction (" << start << ")";
621      return false;
622    }
623    for (uint32_t dex_pc = start; dex_pc < end;
624        dex_pc += insn_flags_[dex_pc].GetLengthInCodeUnits()) {
625      insn_flags_[dex_pc].SetInTry();
626    }
627  }
628  // Iterate over each of the handlers to verify target addresses.
629  const byte* handlers_ptr = DexFile::GetCatchHandlerData(*code_item_, 0);
630  uint32_t handlers_size = DecodeUnsignedLeb128(&handlers_ptr);
631  ClassLinker* linker = Runtime::Current()->GetClassLinker();
632  for (uint32_t idx = 0; idx < handlers_size; idx++) {
633    CatchHandlerIterator iterator(handlers_ptr);
634    for (; iterator.HasNext(); iterator.Next()) {
635      uint32_t dex_pc= iterator.GetHandlerAddress();
636      if (!insn_flags_[dex_pc].IsOpcode()) {
637        Fail(VERIFY_ERROR_BAD_CLASS_HARD)
638            << "exception handler starts at bad address (" << dex_pc << ")";
639        return false;
640      }
641      insn_flags_[dex_pc].SetBranchTarget();
642      // Ensure exception types are resolved so that they don't need resolution to be delivered,
643      // unresolved exception types will be ignored by exception delivery
644      if (iterator.GetHandlerTypeIndex() != DexFile::kDexNoIndex16) {
645        mirror::Class* exception_type = linker->ResolveType(*dex_file_,
646                                                            iterator.GetHandlerTypeIndex(),
647                                                            *dex_cache_, *class_loader_);
648        if (exception_type == nullptr) {
649          DCHECK(Thread::Current()->IsExceptionPending());
650          Thread::Current()->ClearException();
651        }
652      }
653    }
654    handlers_ptr = iterator.EndDataPointer();
655  }
656  return true;
657}
658
659bool MethodVerifier::VerifyInstructions() {
660  const Instruction* inst = Instruction::At(code_item_->insns_);
661
662  /* Flag the start of the method as a branch target, and a GC point due to stack overflow errors */
663  insn_flags_[0].SetBranchTarget();
664  insn_flags_[0].SetCompileTimeInfoPoint();
665
666  uint32_t insns_size = code_item_->insns_size_in_code_units_;
667  for (uint32_t dex_pc = 0; dex_pc < insns_size;) {
668    if (!VerifyInstruction(inst, dex_pc)) {
669      DCHECK_NE(failures_.size(), 0U);
670      return false;
671    }
672    /* Flag instructions that are garbage collection points */
673    // All invoke points are marked as "Throw" points already.
674    // We are relying on this to also count all the invokes as interesting.
675    if (inst->IsBranch() || inst->IsSwitch() || inst->IsThrow()) {
676      insn_flags_[dex_pc].SetCompileTimeInfoPoint();
677    } else if (inst->IsReturn()) {
678      insn_flags_[dex_pc].SetCompileTimeInfoPointAndReturn();
679    }
680    dex_pc += inst->SizeInCodeUnits();
681    inst = inst->Next();
682  }
683  return true;
684}
685
686bool MethodVerifier::VerifyInstruction(const Instruction* inst, uint32_t code_offset) {
687  bool result = true;
688  switch (inst->GetVerifyTypeArgumentA()) {
689    case Instruction::kVerifyRegA:
690      result = result && CheckRegisterIndex(inst->VRegA());
691      break;
692    case Instruction::kVerifyRegAWide:
693      result = result && CheckWideRegisterIndex(inst->VRegA());
694      break;
695  }
696  switch (inst->GetVerifyTypeArgumentB()) {
697    case Instruction::kVerifyRegB:
698      result = result && CheckRegisterIndex(inst->VRegB());
699      break;
700    case Instruction::kVerifyRegBField:
701      result = result && CheckFieldIndex(inst->VRegB());
702      break;
703    case Instruction::kVerifyRegBMethod:
704      result = result && CheckMethodIndex(inst->VRegB());
705      break;
706    case Instruction::kVerifyRegBNewInstance:
707      result = result && CheckNewInstance(inst->VRegB());
708      break;
709    case Instruction::kVerifyRegBString:
710      result = result && CheckStringIndex(inst->VRegB());
711      break;
712    case Instruction::kVerifyRegBType:
713      result = result && CheckTypeIndex(inst->VRegB());
714      break;
715    case Instruction::kVerifyRegBWide:
716      result = result && CheckWideRegisterIndex(inst->VRegB());
717      break;
718  }
719  switch (inst->GetVerifyTypeArgumentC()) {
720    case Instruction::kVerifyRegC:
721      result = result && CheckRegisterIndex(inst->VRegC());
722      break;
723    case Instruction::kVerifyRegCField:
724      result = result && CheckFieldIndex(inst->VRegC());
725      break;
726    case Instruction::kVerifyRegCNewArray:
727      result = result && CheckNewArray(inst->VRegC());
728      break;
729    case Instruction::kVerifyRegCType:
730      result = result && CheckTypeIndex(inst->VRegC());
731      break;
732    case Instruction::kVerifyRegCWide:
733      result = result && CheckWideRegisterIndex(inst->VRegC());
734      break;
735  }
736  switch (inst->GetVerifyExtraFlags()) {
737    case Instruction::kVerifyArrayData:
738      result = result && CheckArrayData(code_offset);
739      break;
740    case Instruction::kVerifyBranchTarget:
741      result = result && CheckBranchTarget(code_offset);
742      break;
743    case Instruction::kVerifySwitchTargets:
744      result = result && CheckSwitchTargets(code_offset);
745      break;
746    case Instruction::kVerifyVarArgNonZero:
747      // Fall-through.
748    case Instruction::kVerifyVarArg: {
749      if (inst->GetVerifyExtraFlags() == Instruction::kVerifyVarArgNonZero && inst->VRegA() <= 0) {
750        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid arg count (" << inst->VRegA() << ") in "
751                                             "non-range invoke";
752        return false;
753      }
754      uint32_t args[Instruction::kMaxVarArgRegs];
755      inst->GetVarArgs(args);
756      result = result && CheckVarArgRegs(inst->VRegA(), args);
757      break;
758    }
759    case Instruction::kVerifyVarArgRangeNonZero:
760      // Fall-through.
761    case Instruction::kVerifyVarArgRange:
762      if (inst->GetVerifyExtraFlags() == Instruction::kVerifyVarArgRangeNonZero &&
763          inst->VRegA() <= 0) {
764        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid arg count (" << inst->VRegA() << ") in "
765                                             "range invoke";
766        return false;
767      }
768      result = result && CheckVarArgRangeRegs(inst->VRegA(), inst->VRegC());
769      break;
770    case Instruction::kVerifyError:
771      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected opcode " << inst->Name();
772      result = false;
773      break;
774  }
775  if (inst->GetVerifyIsRuntimeOnly() && Runtime::Current()->IsCompiler() && !verify_to_dump_) {
776    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "opcode only expected at runtime " << inst->Name();
777    result = false;
778  }
779  return result;
780}
781
782bool MethodVerifier::CheckRegisterIndex(uint32_t idx) {
783  if (idx >= code_item_->registers_size_) {
784    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "register index out of range (" << idx << " >= "
785                                      << code_item_->registers_size_ << ")";
786    return false;
787  }
788  return true;
789}
790
791bool MethodVerifier::CheckWideRegisterIndex(uint32_t idx) {
792  if (idx + 1 >= code_item_->registers_size_) {
793    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "wide register index out of range (" << idx
794                                      << "+1 >= " << code_item_->registers_size_ << ")";
795    return false;
796  }
797  return true;
798}
799
800bool MethodVerifier::CheckFieldIndex(uint32_t idx) {
801  if (idx >= dex_file_->GetHeader().field_ids_size_) {
802    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad field index " << idx << " (max "
803                                      << dex_file_->GetHeader().field_ids_size_ << ")";
804    return false;
805  }
806  return true;
807}
808
809bool MethodVerifier::CheckMethodIndex(uint32_t idx) {
810  if (idx >= dex_file_->GetHeader().method_ids_size_) {
811    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad method index " << idx << " (max "
812                                      << dex_file_->GetHeader().method_ids_size_ << ")";
813    return false;
814  }
815  return true;
816}
817
818bool MethodVerifier::CheckNewInstance(uint32_t idx) {
819  if (idx >= dex_file_->GetHeader().type_ids_size_) {
820    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad type index " << idx << " (max "
821                                      << dex_file_->GetHeader().type_ids_size_ << ")";
822    return false;
823  }
824  // We don't need the actual class, just a pointer to the class name.
825  const char* descriptor = dex_file_->StringByTypeIdx(idx);
826  if (descriptor[0] != 'L') {
827    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "can't call new-instance on type '" << descriptor << "'";
828    return false;
829  }
830  return true;
831}
832
833bool MethodVerifier::CheckStringIndex(uint32_t idx) {
834  if (idx >= dex_file_->GetHeader().string_ids_size_) {
835    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad string index " << idx << " (max "
836                                      << dex_file_->GetHeader().string_ids_size_ << ")";
837    return false;
838  }
839  return true;
840}
841
842bool MethodVerifier::CheckTypeIndex(uint32_t idx) {
843  if (idx >= dex_file_->GetHeader().type_ids_size_) {
844    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad type index " << idx << " (max "
845                                      << dex_file_->GetHeader().type_ids_size_ << ")";
846    return false;
847  }
848  return true;
849}
850
851bool MethodVerifier::CheckNewArray(uint32_t idx) {
852  if (idx >= dex_file_->GetHeader().type_ids_size_) {
853    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad type index " << idx << " (max "
854                                      << dex_file_->GetHeader().type_ids_size_ << ")";
855    return false;
856  }
857  int bracket_count = 0;
858  const char* descriptor = dex_file_->StringByTypeIdx(idx);
859  const char* cp = descriptor;
860  while (*cp++ == '[') {
861    bracket_count++;
862  }
863  if (bracket_count == 0) {
864    /* The given class must be an array type. */
865    Fail(VERIFY_ERROR_BAD_CLASS_HARD)
866        << "can't new-array class '" << descriptor << "' (not an array)";
867    return false;
868  } else if (bracket_count > 255) {
869    /* It is illegal to create an array of more than 255 dimensions. */
870    Fail(VERIFY_ERROR_BAD_CLASS_HARD)
871        << "can't new-array class '" << descriptor << "' (exceeds limit)";
872    return false;
873  }
874  return true;
875}
876
877bool MethodVerifier::CheckArrayData(uint32_t cur_offset) {
878  const uint32_t insn_count = code_item_->insns_size_in_code_units_;
879  const uint16_t* insns = code_item_->insns_ + cur_offset;
880  const uint16_t* array_data;
881  int32_t array_data_offset;
882
883  DCHECK_LT(cur_offset, insn_count);
884  /* make sure the start of the array data table is in range */
885  array_data_offset = insns[1] | (((int32_t) insns[2]) << 16);
886  if ((int32_t) cur_offset + array_data_offset < 0 ||
887      cur_offset + array_data_offset + 2 >= insn_count) {
888    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid array data start: at " << cur_offset
889                                      << ", data offset " << array_data_offset
890                                      << ", count " << insn_count;
891    return false;
892  }
893  /* offset to array data table is a relative branch-style offset */
894  array_data = insns + array_data_offset;
895  /* make sure the table is 32-bit aligned */
896  if ((reinterpret_cast<uintptr_t>(array_data) & 0x03) != 0) {
897    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unaligned array data table: at " << cur_offset
898                                      << ", data offset " << array_data_offset;
899    return false;
900  }
901  uint32_t value_width = array_data[1];
902  uint32_t value_count = *reinterpret_cast<const uint32_t*>(&array_data[2]);
903  uint32_t table_size = 4 + (value_width * value_count + 1) / 2;
904  /* make sure the end of the switch is in range */
905  if (cur_offset + array_data_offset + table_size > insn_count) {
906    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid array data end: at " << cur_offset
907                                      << ", data offset " << array_data_offset << ", end "
908                                      << cur_offset + array_data_offset + table_size
909                                      << ", count " << insn_count;
910    return false;
911  }
912  return true;
913}
914
915bool MethodVerifier::CheckBranchTarget(uint32_t cur_offset) {
916  int32_t offset;
917  bool isConditional, selfOkay;
918  if (!GetBranchOffset(cur_offset, &offset, &isConditional, &selfOkay)) {
919    return false;
920  }
921  if (!selfOkay && offset == 0) {
922    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "branch offset of zero not allowed at"
923                                      << reinterpret_cast<void*>(cur_offset);
924    return false;
925  }
926  // Check for 32-bit overflow. This isn't strictly necessary if we can depend on the runtime
927  // to have identical "wrap-around" behavior, but it's unwise to depend on that.
928  if (((int64_t) cur_offset + (int64_t) offset) != (int64_t) (cur_offset + offset)) {
929    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "branch target overflow "
930                                      << reinterpret_cast<void*>(cur_offset) << " +" << offset;
931    return false;
932  }
933  const uint32_t insn_count = code_item_->insns_size_in_code_units_;
934  int32_t abs_offset = cur_offset + offset;
935  if (abs_offset < 0 ||
936      (uint32_t) abs_offset >= insn_count ||
937      !insn_flags_[abs_offset].IsOpcode()) {
938    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid branch target " << offset << " (-> "
939                                      << reinterpret_cast<void*>(abs_offset) << ") at "
940                                      << reinterpret_cast<void*>(cur_offset);
941    return false;
942  }
943  insn_flags_[abs_offset].SetBranchTarget();
944  return true;
945}
946
947bool MethodVerifier::GetBranchOffset(uint32_t cur_offset, int32_t* pOffset, bool* pConditional,
948                                  bool* selfOkay) {
949  const uint16_t* insns = code_item_->insns_ + cur_offset;
950  *pConditional = false;
951  *selfOkay = false;
952  switch (*insns & 0xff) {
953    case Instruction::GOTO:
954      *pOffset = ((int16_t) *insns) >> 8;
955      break;
956    case Instruction::GOTO_32:
957      *pOffset = insns[1] | (((uint32_t) insns[2]) << 16);
958      *selfOkay = true;
959      break;
960    case Instruction::GOTO_16:
961      *pOffset = (int16_t) insns[1];
962      break;
963    case Instruction::IF_EQ:
964    case Instruction::IF_NE:
965    case Instruction::IF_LT:
966    case Instruction::IF_GE:
967    case Instruction::IF_GT:
968    case Instruction::IF_LE:
969    case Instruction::IF_EQZ:
970    case Instruction::IF_NEZ:
971    case Instruction::IF_LTZ:
972    case Instruction::IF_GEZ:
973    case Instruction::IF_GTZ:
974    case Instruction::IF_LEZ:
975      *pOffset = (int16_t) insns[1];
976      *pConditional = true;
977      break;
978    default:
979      return false;
980      break;
981  }
982  return true;
983}
984
985bool MethodVerifier::CheckSwitchTargets(uint32_t cur_offset) {
986  const uint32_t insn_count = code_item_->insns_size_in_code_units_;
987  DCHECK_LT(cur_offset, insn_count);
988  const uint16_t* insns = code_item_->insns_ + cur_offset;
989  /* make sure the start of the switch is in range */
990  int32_t switch_offset = insns[1] | ((int32_t) insns[2]) << 16;
991  if ((int32_t) cur_offset + switch_offset < 0 || cur_offset + switch_offset + 2 >= insn_count) {
992    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid switch start: at " << cur_offset
993                                      << ", switch offset " << switch_offset
994                                      << ", count " << insn_count;
995    return false;
996  }
997  /* offset to switch table is a relative branch-style offset */
998  const uint16_t* switch_insns = insns + switch_offset;
999  /* make sure the table is 32-bit aligned */
1000  if ((reinterpret_cast<uintptr_t>(switch_insns) & 0x03) != 0) {
1001    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unaligned switch table: at " << cur_offset
1002                                      << ", switch offset " << switch_offset;
1003    return false;
1004  }
1005  uint32_t switch_count = switch_insns[1];
1006  int32_t keys_offset, targets_offset;
1007  uint16_t expected_signature;
1008  if ((*insns & 0xff) == Instruction::PACKED_SWITCH) {
1009    /* 0=sig, 1=count, 2/3=firstKey */
1010    targets_offset = 4;
1011    keys_offset = -1;
1012    expected_signature = Instruction::kPackedSwitchSignature;
1013  } else {
1014    /* 0=sig, 1=count, 2..count*2 = keys */
1015    keys_offset = 2;
1016    targets_offset = 2 + 2 * switch_count;
1017    expected_signature = Instruction::kSparseSwitchSignature;
1018  }
1019  uint32_t table_size = targets_offset + switch_count * 2;
1020  if (switch_insns[0] != expected_signature) {
1021    Fail(VERIFY_ERROR_BAD_CLASS_HARD)
1022        << StringPrintf("wrong signature for switch table (%x, wanted %x)",
1023                        switch_insns[0], expected_signature);
1024    return false;
1025  }
1026  /* make sure the end of the switch is in range */
1027  if (cur_offset + switch_offset + table_size > (uint32_t) insn_count) {
1028    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid switch end: at " << cur_offset
1029                                      << ", switch offset " << switch_offset
1030                                      << ", end " << (cur_offset + switch_offset + table_size)
1031                                      << ", count " << insn_count;
1032    return false;
1033  }
1034  /* for a sparse switch, verify the keys are in ascending order */
1035  if (keys_offset > 0 && switch_count > 1) {
1036    int32_t last_key = switch_insns[keys_offset] | (switch_insns[keys_offset + 1] << 16);
1037    for (uint32_t targ = 1; targ < switch_count; targ++) {
1038      int32_t key = (int32_t) switch_insns[keys_offset + targ * 2] |
1039                    (int32_t) (switch_insns[keys_offset + targ * 2 + 1] << 16);
1040      if (key <= last_key) {
1041        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid packed switch: last key=" << last_key
1042                                          << ", this=" << key;
1043        return false;
1044      }
1045      last_key = key;
1046    }
1047  }
1048  /* verify each switch target */
1049  for (uint32_t targ = 0; targ < switch_count; targ++) {
1050    int32_t offset = (int32_t) switch_insns[targets_offset + targ * 2] |
1051                     (int32_t) (switch_insns[targets_offset + targ * 2 + 1] << 16);
1052    int32_t abs_offset = cur_offset + offset;
1053    if (abs_offset < 0 ||
1054        abs_offset >= (int32_t) insn_count ||
1055        !insn_flags_[abs_offset].IsOpcode()) {
1056      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid switch target " << offset
1057                                        << " (-> " << reinterpret_cast<void*>(abs_offset) << ") at "
1058                                        << reinterpret_cast<void*>(cur_offset)
1059                                        << "[" << targ << "]";
1060      return false;
1061    }
1062    insn_flags_[abs_offset].SetBranchTarget();
1063  }
1064  return true;
1065}
1066
1067bool MethodVerifier::CheckVarArgRegs(uint32_t vA, uint32_t arg[]) {
1068  if (vA > Instruction::kMaxVarArgRegs) {
1069    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid arg count (" << vA << ") in non-range invoke)";
1070    return false;
1071  }
1072  uint16_t registers_size = code_item_->registers_size_;
1073  for (uint32_t idx = 0; idx < vA; idx++) {
1074    if (arg[idx] >= registers_size) {
1075      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid reg index (" << arg[idx]
1076                                        << ") in non-range invoke (>= " << registers_size << ")";
1077      return false;
1078    }
1079  }
1080
1081  return true;
1082}
1083
1084bool MethodVerifier::CheckVarArgRangeRegs(uint32_t vA, uint32_t vC) {
1085  uint16_t registers_size = code_item_->registers_size_;
1086  // vA/vC are unsigned 8-bit/16-bit quantities for /range instructions, so there's no risk of
1087  // integer overflow when adding them here.
1088  if (vA + vC > registers_size) {
1089    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid reg index " << vA << "+" << vC
1090                                      << " in range invoke (> " << registers_size << ")";
1091    return false;
1092  }
1093  return true;
1094}
1095
1096bool MethodVerifier::VerifyCodeFlow() {
1097  uint16_t registers_size = code_item_->registers_size_;
1098  uint32_t insns_size = code_item_->insns_size_in_code_units_;
1099
1100  if (registers_size * insns_size > 4*1024*1024) {
1101    LOG(WARNING) << "warning: method is huge (regs=" << registers_size
1102                 << " insns_size=" << insns_size << ")";
1103  }
1104  /* Create and initialize table holding register status */
1105  reg_table_.Init(kTrackCompilerInterestPoints,
1106                  insn_flags_.get(),
1107                  insns_size,
1108                  registers_size,
1109                  this);
1110
1111
1112  work_line_.reset(RegisterLine::Create(registers_size, this));
1113  saved_line_.reset(RegisterLine::Create(registers_size, this));
1114
1115  /* Initialize register types of method arguments. */
1116  if (!SetTypesFromSignature()) {
1117    DCHECK_NE(failures_.size(), 0U);
1118    std::string prepend("Bad signature in ");
1119    prepend += PrettyMethod(dex_method_idx_, *dex_file_);
1120    PrependToLastFailMessage(prepend);
1121    return false;
1122  }
1123  /* Perform code flow verification. */
1124  if (!CodeFlowVerifyMethod()) {
1125    DCHECK_NE(failures_.size(), 0U);
1126    return false;
1127  }
1128  return true;
1129}
1130
1131std::ostream& MethodVerifier::DumpFailures(std::ostream& os) {
1132  DCHECK_EQ(failures_.size(), failure_messages_.size());
1133  for (size_t i = 0; i < failures_.size(); ++i) {
1134      os << failure_messages_[i]->str() << "\n";
1135  }
1136  return os;
1137}
1138
1139extern "C" void MethodVerifierGdbDump(MethodVerifier* v)
1140    SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1141  v->Dump(std::cerr);
1142}
1143
1144void MethodVerifier::Dump(std::ostream& os) {
1145  if (code_item_ == nullptr) {
1146    os << "Native method\n";
1147    return;
1148  }
1149  {
1150    os << "Register Types:\n";
1151    Indenter indent_filter(os.rdbuf(), kIndentChar, kIndentBy1Count);
1152    std::ostream indent_os(&indent_filter);
1153    reg_types_.Dump(indent_os);
1154  }
1155  os << "Dumping instructions and register lines:\n";
1156  Indenter indent_filter(os.rdbuf(), kIndentChar, kIndentBy1Count);
1157  std::ostream indent_os(&indent_filter);
1158  const Instruction* inst = Instruction::At(code_item_->insns_);
1159  for (size_t dex_pc = 0; dex_pc < code_item_->insns_size_in_code_units_;
1160      dex_pc += insn_flags_[dex_pc].GetLengthInCodeUnits()) {
1161    RegisterLine* reg_line = reg_table_.GetLine(dex_pc);
1162    if (reg_line != nullptr) {
1163      indent_os << reg_line->Dump() << "\n";
1164    }
1165    indent_os << StringPrintf("0x%04zx", dex_pc) << ": " << insn_flags_[dex_pc].ToString() << " ";
1166    const bool kDumpHexOfInstruction = false;
1167    if (kDumpHexOfInstruction) {
1168      indent_os << inst->DumpHex(5) << " ";
1169    }
1170    indent_os << inst->DumpString(dex_file_) << "\n";
1171    inst = inst->Next();
1172  }
1173}
1174
1175static bool IsPrimitiveDescriptor(char descriptor) {
1176  switch (descriptor) {
1177    case 'I':
1178    case 'C':
1179    case 'S':
1180    case 'B':
1181    case 'Z':
1182    case 'F':
1183    case 'D':
1184    case 'J':
1185      return true;
1186    default:
1187      return false;
1188  }
1189}
1190
1191bool MethodVerifier::SetTypesFromSignature() {
1192  RegisterLine* reg_line = reg_table_.GetLine(0);
1193  int arg_start = code_item_->registers_size_ - code_item_->ins_size_;
1194  size_t expected_args = code_item_->ins_size_;   /* long/double count as two */
1195
1196  DCHECK_GE(arg_start, 0);      /* should have been verified earlier */
1197  // Include the "this" pointer.
1198  size_t cur_arg = 0;
1199  if (!IsStatic()) {
1200    // If this is a constructor for a class other than java.lang.Object, mark the first ("this")
1201    // argument as uninitialized. This restricts field access until the superclass constructor is
1202    // called.
1203    RegType& declaring_class = GetDeclaringClass();
1204    if (IsConstructor() && !declaring_class.IsJavaLangObject()) {
1205      reg_line->SetRegisterType(arg_start + cur_arg,
1206                                reg_types_.UninitializedThisArgument(declaring_class));
1207    } else {
1208      reg_line->SetRegisterType(arg_start + cur_arg, declaring_class);
1209    }
1210    cur_arg++;
1211  }
1212
1213  const DexFile::ProtoId& proto_id =
1214      dex_file_->GetMethodPrototype(dex_file_->GetMethodId(dex_method_idx_));
1215  DexFileParameterIterator iterator(*dex_file_, proto_id);
1216
1217  for (; iterator.HasNext(); iterator.Next()) {
1218    const char* descriptor = iterator.GetDescriptor();
1219    if (descriptor == nullptr) {
1220      LOG(FATAL) << "Null descriptor";
1221    }
1222    if (cur_arg >= expected_args) {
1223      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected " << expected_args
1224                                        << " args, found more (" << descriptor << ")";
1225      return false;
1226    }
1227    switch (descriptor[0]) {
1228      case 'L':
1229      case '[':
1230        // We assume that reference arguments are initialized. The only way it could be otherwise
1231        // (assuming the caller was verified) is if the current method is <init>, but in that case
1232        // it's effectively considered initialized the instant we reach here (in the sense that we
1233        // can return without doing anything or call virtual methods).
1234        {
1235          RegType& reg_type = ResolveClassAndCheckAccess(iterator.GetTypeIdx());
1236          if (!reg_type.IsNonZeroReferenceTypes()) {
1237            DCHECK(HasFailures());
1238            return false;
1239          }
1240          reg_line->SetRegisterType(arg_start + cur_arg, reg_type);
1241        }
1242        break;
1243      case 'Z':
1244        reg_line->SetRegisterType(arg_start + cur_arg, reg_types_.Boolean());
1245        break;
1246      case 'C':
1247        reg_line->SetRegisterType(arg_start + cur_arg, reg_types_.Char());
1248        break;
1249      case 'B':
1250        reg_line->SetRegisterType(arg_start + cur_arg, reg_types_.Byte());
1251        break;
1252      case 'I':
1253        reg_line->SetRegisterType(arg_start + cur_arg, reg_types_.Integer());
1254        break;
1255      case 'S':
1256        reg_line->SetRegisterType(arg_start + cur_arg, reg_types_.Short());
1257        break;
1258      case 'F':
1259        reg_line->SetRegisterType(arg_start + cur_arg, reg_types_.Float());
1260        break;
1261      case 'J':
1262      case 'D': {
1263        if (cur_arg + 1 >= expected_args) {
1264          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected " << expected_args
1265              << " args, found more (" << descriptor << ")";
1266          return false;
1267        }
1268
1269        RegType& lo_half = descriptor[0] == 'J' ? reg_types_.LongLo() : reg_types_.DoubleLo();
1270        RegType& hi_half = descriptor[0] == 'J' ? reg_types_.LongHi() : reg_types_.DoubleHi();
1271        reg_line->SetRegisterTypeWide(arg_start + cur_arg, lo_half, hi_half);
1272        cur_arg++;
1273        break;
1274      }
1275      default:
1276        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected signature type char '"
1277                                          << descriptor << "'";
1278        return false;
1279    }
1280    cur_arg++;
1281  }
1282  if (cur_arg != expected_args) {
1283    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected " << expected_args
1284                                      << " arguments, found " << cur_arg;
1285    return false;
1286  }
1287  const char* descriptor = dex_file_->GetReturnTypeDescriptor(proto_id);
1288  // Validate return type. We don't do the type lookup; just want to make sure that it has the right
1289  // format. Only major difference from the method argument format is that 'V' is supported.
1290  bool result;
1291  if (IsPrimitiveDescriptor(descriptor[0]) || descriptor[0] == 'V') {
1292    result = descriptor[1] == '\0';
1293  } else if (descriptor[0] == '[') {  // single/multi-dimensional array of object/primitive
1294    size_t i = 0;
1295    do {
1296      i++;
1297    } while (descriptor[i] == '[');  // process leading [
1298    if (descriptor[i] == 'L') {  // object array
1299      do {
1300        i++;  // find closing ;
1301      } while (descriptor[i] != ';' && descriptor[i] != '\0');
1302      result = descriptor[i] == ';';
1303    } else {  // primitive array
1304      result = IsPrimitiveDescriptor(descriptor[i]) && descriptor[i + 1] == '\0';
1305    }
1306  } else if (descriptor[0] == 'L') {
1307    // could be more thorough here, but shouldn't be required
1308    size_t i = 0;
1309    do {
1310      i++;
1311    } while (descriptor[i] != ';' && descriptor[i] != '\0');
1312    result = descriptor[i] == ';';
1313  } else {
1314    result = false;
1315  }
1316  if (!result) {
1317    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected char in return type descriptor '"
1318                                      << descriptor << "'";
1319  }
1320  return result;
1321}
1322
1323bool MethodVerifier::CodeFlowVerifyMethod() {
1324  const uint16_t* insns = code_item_->insns_;
1325  const uint32_t insns_size = code_item_->insns_size_in_code_units_;
1326
1327  /* Begin by marking the first instruction as "changed". */
1328  insn_flags_[0].SetChanged();
1329  uint32_t start_guess = 0;
1330
1331  /* Continue until no instructions are marked "changed". */
1332  while (true) {
1333    // Find the first marked one. Use "start_guess" as a way to find one quickly.
1334    uint32_t insn_idx = start_guess;
1335    for (; insn_idx < insns_size; insn_idx++) {
1336      if (insn_flags_[insn_idx].IsChanged())
1337        break;
1338    }
1339    if (insn_idx == insns_size) {
1340      if (start_guess != 0) {
1341        /* try again, starting from the top */
1342        start_guess = 0;
1343        continue;
1344      } else {
1345        /* all flags are clear */
1346        break;
1347      }
1348    }
1349    // We carry the working set of registers from instruction to instruction. If this address can
1350    // be the target of a branch (or throw) instruction, or if we're skipping around chasing
1351    // "changed" flags, we need to load the set of registers from the table.
1352    // Because we always prefer to continue on to the next instruction, we should never have a
1353    // situation where we have a stray "changed" flag set on an instruction that isn't a branch
1354    // target.
1355    work_insn_idx_ = insn_idx;
1356    if (insn_flags_[insn_idx].IsBranchTarget()) {
1357      work_line_->CopyFromLine(reg_table_.GetLine(insn_idx));
1358    } else if (kIsDebugBuild) {
1359      /*
1360       * Sanity check: retrieve the stored register line (assuming
1361       * a full table) and make sure it actually matches.
1362       */
1363      RegisterLine* register_line = reg_table_.GetLine(insn_idx);
1364      if (register_line != nullptr) {
1365        if (work_line_->CompareLine(register_line) != 0) {
1366          Dump(std::cout);
1367          std::cout << info_messages_.str();
1368          LOG(FATAL) << "work_line diverged in " << PrettyMethod(dex_method_idx_, *dex_file_)
1369                     << "@" << reinterpret_cast<void*>(work_insn_idx_) << "\n"
1370                     << " work_line=" << *work_line_ << "\n"
1371                     << "  expected=" << *register_line;
1372        }
1373      }
1374    }
1375    if (!CodeFlowVerifyInstruction(&start_guess)) {
1376      std::string prepend(PrettyMethod(dex_method_idx_, *dex_file_));
1377      prepend += " failed to verify: ";
1378      PrependToLastFailMessage(prepend);
1379      return false;
1380    }
1381    /* Clear "changed" and mark as visited. */
1382    insn_flags_[insn_idx].SetVisited();
1383    insn_flags_[insn_idx].ClearChanged();
1384  }
1385
1386  if (gDebugVerify) {
1387    /*
1388     * Scan for dead code. There's nothing "evil" about dead code
1389     * (besides the wasted space), but it indicates a flaw somewhere
1390     * down the line, possibly in the verifier.
1391     *
1392     * If we've substituted "always throw" instructions into the stream,
1393     * we are almost certainly going to have some dead code.
1394     */
1395    int dead_start = -1;
1396    uint32_t insn_idx = 0;
1397    for (; insn_idx < insns_size; insn_idx += insn_flags_[insn_idx].GetLengthInCodeUnits()) {
1398      /*
1399       * Switch-statement data doesn't get "visited" by scanner. It
1400       * may or may not be preceded by a padding NOP (for alignment).
1401       */
1402      if (insns[insn_idx] == Instruction::kPackedSwitchSignature ||
1403          insns[insn_idx] == Instruction::kSparseSwitchSignature ||
1404          insns[insn_idx] == Instruction::kArrayDataSignature ||
1405          (insns[insn_idx] == Instruction::NOP && (insn_idx + 1 < insns_size) &&
1406           (insns[insn_idx + 1] == Instruction::kPackedSwitchSignature ||
1407            insns[insn_idx + 1] == Instruction::kSparseSwitchSignature ||
1408            insns[insn_idx + 1] == Instruction::kArrayDataSignature))) {
1409        insn_flags_[insn_idx].SetVisited();
1410      }
1411
1412      if (!insn_flags_[insn_idx].IsVisited()) {
1413        if (dead_start < 0)
1414          dead_start = insn_idx;
1415      } else if (dead_start >= 0) {
1416        LogVerifyInfo() << "dead code " << reinterpret_cast<void*>(dead_start)
1417                        << "-" << reinterpret_cast<void*>(insn_idx - 1);
1418        dead_start = -1;
1419      }
1420    }
1421    if (dead_start >= 0) {
1422      LogVerifyInfo() << "dead code " << reinterpret_cast<void*>(dead_start)
1423                      << "-" << reinterpret_cast<void*>(insn_idx - 1);
1424    }
1425    // To dump the state of the verify after a method, do something like:
1426    // if (PrettyMethod(dex_method_idx_, *dex_file_) ==
1427    //     "boolean java.lang.String.equals(java.lang.Object)") {
1428    //   LOG(INFO) << info_messages_.str();
1429    // }
1430  }
1431  return true;
1432}
1433
1434bool MethodVerifier::CodeFlowVerifyInstruction(uint32_t* start_guess) {
1435  // If we're doing FindLocksAtDexPc, check whether we're at the dex pc we care about.
1436  // We want the state _before_ the instruction, for the case where the dex pc we're
1437  // interested in is itself a monitor-enter instruction (which is a likely place
1438  // for a thread to be suspended).
1439  if (monitor_enter_dex_pcs_ != nullptr && work_insn_idx_ == interesting_dex_pc_) {
1440    monitor_enter_dex_pcs_->clear();  // The new work line is more accurate than the previous one.
1441    for (size_t i = 0; i < work_line_->GetMonitorEnterCount(); ++i) {
1442      monitor_enter_dex_pcs_->push_back(work_line_->GetMonitorEnterDexPc(i));
1443    }
1444  }
1445
1446  /*
1447   * Once we finish decoding the instruction, we need to figure out where
1448   * we can go from here. There are three possible ways to transfer
1449   * control to another statement:
1450   *
1451   * (1) Continue to the next instruction. Applies to all but
1452   *     unconditional branches, method returns, and exception throws.
1453   * (2) Branch to one or more possible locations. Applies to branches
1454   *     and switch statements.
1455   * (3) Exception handlers. Applies to any instruction that can
1456   *     throw an exception that is handled by an encompassing "try"
1457   *     block.
1458   *
1459   * We can also return, in which case there is no successor instruction
1460   * from this point.
1461   *
1462   * The behavior can be determined from the opcode flags.
1463   */
1464  const uint16_t* insns = code_item_->insns_ + work_insn_idx_;
1465  const Instruction* inst = Instruction::At(insns);
1466  int opcode_flags = Instruction::FlagsOf(inst->Opcode());
1467
1468  int32_t branch_target = 0;
1469  bool just_set_result = false;
1470  if (gDebugVerify) {
1471    // Generate processing back trace to debug verifier
1472    LogVerifyInfo() << "Processing " << inst->DumpString(dex_file_) << "\n"
1473                    << *work_line_.get() << "\n";
1474  }
1475
1476  /*
1477   * Make a copy of the previous register state. If the instruction
1478   * can throw an exception, we will copy/merge this into the "catch"
1479   * address rather than work_line, because we don't want the result
1480   * from the "successful" code path (e.g. a check-cast that "improves"
1481   * a type) to be visible to the exception handler.
1482   */
1483  if ((opcode_flags & Instruction::kThrow) != 0 && CurrentInsnFlags()->IsInTry()) {
1484    saved_line_->CopyFromLine(work_line_.get());
1485  } else if (kIsDebugBuild) {
1486    saved_line_->FillWithGarbage();
1487  }
1488
1489
1490  // We need to ensure the work line is consistent while performing validation. When we spot a
1491  // peephole pattern we compute a new line for either the fallthrough instruction or the
1492  // branch target.
1493  std::unique_ptr<RegisterLine> branch_line;
1494  std::unique_ptr<RegisterLine> fallthrough_line;
1495
1496  switch (inst->Opcode()) {
1497    case Instruction::NOP:
1498      /*
1499       * A "pure" NOP has no effect on anything. Data tables start with
1500       * a signature that looks like a NOP; if we see one of these in
1501       * the course of executing code then we have a problem.
1502       */
1503      if (inst->VRegA_10x() != 0) {
1504        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "encountered data table in instruction stream";
1505      }
1506      break;
1507
1508    case Instruction::MOVE:
1509      work_line_->CopyRegister1(inst->VRegA_12x(), inst->VRegB_12x(), kTypeCategory1nr);
1510      break;
1511    case Instruction::MOVE_FROM16:
1512      work_line_->CopyRegister1(inst->VRegA_22x(), inst->VRegB_22x(), kTypeCategory1nr);
1513      break;
1514    case Instruction::MOVE_16:
1515      work_line_->CopyRegister1(inst->VRegA_32x(), inst->VRegB_32x(), kTypeCategory1nr);
1516      break;
1517    case Instruction::MOVE_WIDE:
1518      work_line_->CopyRegister2(inst->VRegA_12x(), inst->VRegB_12x());
1519      break;
1520    case Instruction::MOVE_WIDE_FROM16:
1521      work_line_->CopyRegister2(inst->VRegA_22x(), inst->VRegB_22x());
1522      break;
1523    case Instruction::MOVE_WIDE_16:
1524      work_line_->CopyRegister2(inst->VRegA_32x(), inst->VRegB_32x());
1525      break;
1526    case Instruction::MOVE_OBJECT:
1527      work_line_->CopyRegister1(inst->VRegA_12x(), inst->VRegB_12x(), kTypeCategoryRef);
1528      break;
1529    case Instruction::MOVE_OBJECT_FROM16:
1530      work_line_->CopyRegister1(inst->VRegA_22x(), inst->VRegB_22x(), kTypeCategoryRef);
1531      break;
1532    case Instruction::MOVE_OBJECT_16:
1533      work_line_->CopyRegister1(inst->VRegA_32x(), inst->VRegB_32x(), kTypeCategoryRef);
1534      break;
1535
1536    /*
1537     * The move-result instructions copy data out of a "pseudo-register"
1538     * with the results from the last method invocation. In practice we
1539     * might want to hold the result in an actual CPU register, so the
1540     * Dalvik spec requires that these only appear immediately after an
1541     * invoke or filled-new-array.
1542     *
1543     * These calls invalidate the "result" register. (This is now
1544     * redundant with the reset done below, but it can make the debug info
1545     * easier to read in some cases.)
1546     */
1547    case Instruction::MOVE_RESULT:
1548      work_line_->CopyResultRegister1(inst->VRegA_11x(), false);
1549      break;
1550    case Instruction::MOVE_RESULT_WIDE:
1551      work_line_->CopyResultRegister2(inst->VRegA_11x());
1552      break;
1553    case Instruction::MOVE_RESULT_OBJECT:
1554      work_line_->CopyResultRegister1(inst->VRegA_11x(), true);
1555      break;
1556
1557    case Instruction::MOVE_EXCEPTION: {
1558      // We do not allow MOVE_EXCEPTION as the first instruction in a method. This is a simple case
1559      // where one entrypoint to the catch block is not actually an exception path.
1560      if (work_insn_idx_ == 0) {
1561        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "move-exception at pc 0x0";
1562        break;
1563      }
1564      /*
1565       * This statement can only appear as the first instruction in an exception handler. We verify
1566       * that as part of extracting the exception type from the catch block list.
1567       */
1568      RegType& res_type = GetCaughtExceptionType();
1569      work_line_->SetRegisterType(inst->VRegA_11x(), res_type);
1570      break;
1571    }
1572    case Instruction::RETURN_VOID:
1573      if (!IsConstructor() || work_line_->CheckConstructorReturn()) {
1574        if (!GetMethodReturnType().IsConflict()) {
1575          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "return-void not expected";
1576        }
1577      }
1578      break;
1579    case Instruction::RETURN:
1580      if (!IsConstructor() || work_line_->CheckConstructorReturn()) {
1581        /* check the method signature */
1582        RegType& return_type = GetMethodReturnType();
1583        if (!return_type.IsCategory1Types()) {
1584          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected non-category 1 return type "
1585                                            << return_type;
1586        } else {
1587          // Compilers may generate synthetic functions that write byte values into boolean fields.
1588          // Also, it may use integer values for boolean, byte, short, and character return types.
1589          const uint32_t vregA = inst->VRegA_11x();
1590          RegType& src_type = work_line_->GetRegisterType(vregA);
1591          bool use_src = ((return_type.IsBoolean() && src_type.IsByte()) ||
1592                          ((return_type.IsBoolean() || return_type.IsByte() ||
1593                           return_type.IsShort() || return_type.IsChar()) &&
1594                           src_type.IsInteger()));
1595          /* check the register contents */
1596          bool success =
1597              work_line_->VerifyRegisterType(vregA, use_src ? src_type : return_type);
1598          if (!success) {
1599            AppendToLastFailMessage(StringPrintf(" return-1nr on invalid register v%d", vregA));
1600          }
1601        }
1602      }
1603      break;
1604    case Instruction::RETURN_WIDE:
1605      if (!IsConstructor() || work_line_->CheckConstructorReturn()) {
1606        /* check the method signature */
1607        RegType& return_type = GetMethodReturnType();
1608        if (!return_type.IsCategory2Types()) {
1609          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "return-wide not expected";
1610        } else {
1611          /* check the register contents */
1612          const uint32_t vregA = inst->VRegA_11x();
1613          bool success = work_line_->VerifyRegisterType(vregA, return_type);
1614          if (!success) {
1615            AppendToLastFailMessage(StringPrintf(" return-wide on invalid register v%d", vregA));
1616          }
1617        }
1618      }
1619      break;
1620    case Instruction::RETURN_OBJECT:
1621      if (!IsConstructor() || work_line_->CheckConstructorReturn()) {
1622        RegType& return_type = GetMethodReturnType();
1623        if (!return_type.IsReferenceTypes()) {
1624          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "return-object not expected";
1625        } else {
1626          /* return_type is the *expected* return type, not register value */
1627          DCHECK(!return_type.IsZero());
1628          DCHECK(!return_type.IsUninitializedReference());
1629          const uint32_t vregA = inst->VRegA_11x();
1630          RegType& reg_type = work_line_->GetRegisterType(vregA);
1631          // Disallow returning uninitialized values and verify that the reference in vAA is an
1632          // instance of the "return_type"
1633          if (reg_type.IsUninitializedTypes()) {
1634            Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "returning uninitialized object '"
1635                                              << reg_type << "'";
1636          } else if (!return_type.IsAssignableFrom(reg_type)) {
1637            if (reg_type.IsUnresolvedTypes() || return_type.IsUnresolvedTypes()) {
1638              Fail(VERIFY_ERROR_NO_CLASS) << " can't resolve returned type '" << return_type
1639                  << "' or '" << reg_type << "'";
1640            } else {
1641              Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "returning '" << reg_type
1642                  << "', but expected from declaration '" << return_type << "'";
1643            }
1644          }
1645        }
1646      }
1647      break;
1648
1649      /* could be boolean, int, float, or a null reference */
1650    case Instruction::CONST_4: {
1651      int32_t val = static_cast<int32_t>(inst->VRegB_11n() << 28) >> 28;
1652      work_line_->SetRegisterType(inst->VRegA_11n(),
1653                                  DetermineCat1Constant(val, need_precise_constants_));
1654      break;
1655    }
1656    case Instruction::CONST_16: {
1657      int16_t val = static_cast<int16_t>(inst->VRegB_21s());
1658      work_line_->SetRegisterType(inst->VRegA_21s(),
1659                                  DetermineCat1Constant(val, need_precise_constants_));
1660      break;
1661    }
1662    case Instruction::CONST: {
1663      int32_t val = inst->VRegB_31i();
1664      work_line_->SetRegisterType(inst->VRegA_31i(),
1665                                  DetermineCat1Constant(val, need_precise_constants_));
1666      break;
1667    }
1668    case Instruction::CONST_HIGH16: {
1669      int32_t val = static_cast<int32_t>(inst->VRegB_21h() << 16);
1670      work_line_->SetRegisterType(inst->VRegA_21h(),
1671                                  DetermineCat1Constant(val, need_precise_constants_));
1672      break;
1673    }
1674      /* could be long or double; resolved upon use */
1675    case Instruction::CONST_WIDE_16: {
1676      int64_t val = static_cast<int16_t>(inst->VRegB_21s());
1677      RegType& lo = reg_types_.FromCat2ConstLo(static_cast<int32_t>(val), true);
1678      RegType& hi = reg_types_.FromCat2ConstHi(static_cast<int32_t>(val >> 32), true);
1679      work_line_->SetRegisterTypeWide(inst->VRegA_21s(), lo, hi);
1680      break;
1681    }
1682    case Instruction::CONST_WIDE_32: {
1683      int64_t val = static_cast<int32_t>(inst->VRegB_31i());
1684      RegType& lo = reg_types_.FromCat2ConstLo(static_cast<int32_t>(val), true);
1685      RegType& hi = reg_types_.FromCat2ConstHi(static_cast<int32_t>(val >> 32), true);
1686      work_line_->SetRegisterTypeWide(inst->VRegA_31i(), lo, hi);
1687      break;
1688    }
1689    case Instruction::CONST_WIDE: {
1690      int64_t val = inst->VRegB_51l();
1691      RegType& lo = reg_types_.FromCat2ConstLo(static_cast<int32_t>(val), true);
1692      RegType& hi = reg_types_.FromCat2ConstHi(static_cast<int32_t>(val >> 32), true);
1693      work_line_->SetRegisterTypeWide(inst->VRegA_51l(), lo, hi);
1694      break;
1695    }
1696    case Instruction::CONST_WIDE_HIGH16: {
1697      int64_t val = static_cast<uint64_t>(inst->VRegB_21h()) << 48;
1698      RegType& lo = reg_types_.FromCat2ConstLo(static_cast<int32_t>(val), true);
1699      RegType& hi = reg_types_.FromCat2ConstHi(static_cast<int32_t>(val >> 32), true);
1700      work_line_->SetRegisterTypeWide(inst->VRegA_21h(), lo, hi);
1701      break;
1702    }
1703    case Instruction::CONST_STRING:
1704      work_line_->SetRegisterType(inst->VRegA_21c(), reg_types_.JavaLangString());
1705      break;
1706    case Instruction::CONST_STRING_JUMBO:
1707      work_line_->SetRegisterType(inst->VRegA_31c(), reg_types_.JavaLangString());
1708      break;
1709    case Instruction::CONST_CLASS: {
1710      // Get type from instruction if unresolved then we need an access check
1711      // TODO: check Compiler::CanAccessTypeWithoutChecks returns false when res_type is unresolved
1712      RegType& res_type = ResolveClassAndCheckAccess(inst->VRegB_21c());
1713      // Register holds class, ie its type is class, on error it will hold Conflict.
1714      work_line_->SetRegisterType(inst->VRegA_21c(),
1715                                  res_type.IsConflict() ? res_type
1716                                                        : reg_types_.JavaLangClass(true));
1717      break;
1718    }
1719    case Instruction::MONITOR_ENTER:
1720      work_line_->PushMonitor(inst->VRegA_11x(), work_insn_idx_);
1721      break;
1722    case Instruction::MONITOR_EXIT:
1723      /*
1724       * monitor-exit instructions are odd. They can throw exceptions,
1725       * but when they do they act as if they succeeded and the PC is
1726       * pointing to the following instruction. (This behavior goes back
1727       * to the need to handle asynchronous exceptions, a now-deprecated
1728       * feature that Dalvik doesn't support.)
1729       *
1730       * In practice we don't need to worry about this. The only
1731       * exceptions that can be thrown from monitor-exit are for a
1732       * null reference and -exit without a matching -enter. If the
1733       * structured locking checks are working, the former would have
1734       * failed on the -enter instruction, and the latter is impossible.
1735       *
1736       * This is fortunate, because issue 3221411 prevents us from
1737       * chasing the "can throw" path when monitor verification is
1738       * enabled. If we can fully verify the locking we can ignore
1739       * some catch blocks (which will show up as "dead" code when
1740       * we skip them here); if we can't, then the code path could be
1741       * "live" so we still need to check it.
1742       */
1743      opcode_flags &= ~Instruction::kThrow;
1744      work_line_->PopMonitor(inst->VRegA_11x());
1745      break;
1746
1747    case Instruction::CHECK_CAST:
1748    case Instruction::INSTANCE_OF: {
1749      /*
1750       * If this instruction succeeds, we will "downcast" register vA to the type in vB. (This
1751       * could be a "upcast" -- not expected, so we don't try to address it.)
1752       *
1753       * If it fails, an exception is thrown, which we deal with later by ignoring the update to
1754       * dec_insn.vA when branching to a handler.
1755       */
1756      const bool is_checkcast = (inst->Opcode() == Instruction::CHECK_CAST);
1757      const uint32_t type_idx = (is_checkcast) ? inst->VRegB_21c() : inst->VRegC_22c();
1758      RegType& res_type = ResolveClassAndCheckAccess(type_idx);
1759      if (res_type.IsConflict()) {
1760        // If this is a primitive type, fail HARD.
1761        mirror::Class* klass = (*dex_cache_)->GetResolvedType(type_idx);
1762        if (klass != nullptr && klass->IsPrimitive()) {
1763          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "using primitive type "
1764              << dex_file_->StringByTypeIdx(type_idx) << " in instanceof in "
1765              << GetDeclaringClass();
1766          break;
1767        }
1768
1769        DCHECK_NE(failures_.size(), 0U);
1770        if (!is_checkcast) {
1771          work_line_->SetRegisterType(inst->VRegA_22c(), reg_types_.Boolean());
1772        }
1773        break;  // bad class
1774      }
1775      // TODO: check Compiler::CanAccessTypeWithoutChecks returns false when res_type is unresolved
1776      uint32_t orig_type_reg = (is_checkcast) ? inst->VRegA_21c() : inst->VRegB_22c();
1777      RegType& orig_type = work_line_->GetRegisterType(orig_type_reg);
1778      if (!res_type.IsNonZeroReferenceTypes()) {
1779        if (is_checkcast) {
1780          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "check-cast on unexpected class " << res_type;
1781        } else {
1782          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "instance-of on unexpected class " << res_type;
1783        }
1784      } else if (!orig_type.IsReferenceTypes()) {
1785        if (is_checkcast) {
1786          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "check-cast on non-reference in v" << orig_type_reg;
1787        } else {
1788          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "instance-of on non-reference in v" << orig_type_reg;
1789        }
1790      } else {
1791        if (is_checkcast) {
1792          work_line_->SetRegisterType(inst->VRegA_21c(), res_type);
1793        } else {
1794          work_line_->SetRegisterType(inst->VRegA_22c(), reg_types_.Boolean());
1795        }
1796      }
1797      break;
1798    }
1799    case Instruction::ARRAY_LENGTH: {
1800      RegType& res_type = work_line_->GetRegisterType(inst->VRegB_12x());
1801      if (res_type.IsReferenceTypes()) {
1802        if (!res_type.IsArrayTypes() && !res_type.IsZero()) {  // ie not an array or null
1803          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "array-length on non-array " << res_type;
1804        } else {
1805          work_line_->SetRegisterType(inst->VRegA_12x(), reg_types_.Integer());
1806        }
1807      } else {
1808        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "array-length on non-array " << res_type;
1809      }
1810      break;
1811    }
1812    case Instruction::NEW_INSTANCE: {
1813      RegType& res_type = ResolveClassAndCheckAccess(inst->VRegB_21c());
1814      if (res_type.IsConflict()) {
1815        DCHECK_NE(failures_.size(), 0U);
1816        break;  // bad class
1817      }
1818      // TODO: check Compiler::CanAccessTypeWithoutChecks returns false when res_type is unresolved
1819      // can't create an instance of an interface or abstract class */
1820      if (!res_type.IsInstantiableTypes()) {
1821        Fail(VERIFY_ERROR_INSTANTIATION)
1822            << "new-instance on primitive, interface or abstract class" << res_type;
1823        // Soft failure so carry on to set register type.
1824      }
1825      RegType& uninit_type = reg_types_.Uninitialized(res_type, work_insn_idx_);
1826      // Any registers holding previous allocations from this address that have not yet been
1827      // initialized must be marked invalid.
1828      work_line_->MarkUninitRefsAsInvalid(uninit_type);
1829      // add the new uninitialized reference to the register state
1830      work_line_->SetRegisterType(inst->VRegA_21c(), uninit_type);
1831      break;
1832    }
1833    case Instruction::NEW_ARRAY:
1834      VerifyNewArray(inst, false, false);
1835      break;
1836    case Instruction::FILLED_NEW_ARRAY:
1837      VerifyNewArray(inst, true, false);
1838      just_set_result = true;  // Filled new array sets result register
1839      break;
1840    case Instruction::FILLED_NEW_ARRAY_RANGE:
1841      VerifyNewArray(inst, true, true);
1842      just_set_result = true;  // Filled new array range sets result register
1843      break;
1844    case Instruction::CMPL_FLOAT:
1845    case Instruction::CMPG_FLOAT:
1846      if (!work_line_->VerifyRegisterType(inst->VRegB_23x(), reg_types_.Float())) {
1847        break;
1848      }
1849      if (!work_line_->VerifyRegisterType(inst->VRegC_23x(), reg_types_.Float())) {
1850        break;
1851      }
1852      work_line_->SetRegisterType(inst->VRegA_23x(), reg_types_.Integer());
1853      break;
1854    case Instruction::CMPL_DOUBLE:
1855    case Instruction::CMPG_DOUBLE:
1856      if (!work_line_->VerifyRegisterTypeWide(inst->VRegB_23x(), reg_types_.DoubleLo(),
1857                                              reg_types_.DoubleHi())) {
1858        break;
1859      }
1860      if (!work_line_->VerifyRegisterTypeWide(inst->VRegC_23x(), reg_types_.DoubleLo(),
1861                                              reg_types_.DoubleHi())) {
1862        break;
1863      }
1864      work_line_->SetRegisterType(inst->VRegA_23x(), reg_types_.Integer());
1865      break;
1866    case Instruction::CMP_LONG:
1867      if (!work_line_->VerifyRegisterTypeWide(inst->VRegB_23x(), reg_types_.LongLo(),
1868                                              reg_types_.LongHi())) {
1869        break;
1870      }
1871      if (!work_line_->VerifyRegisterTypeWide(inst->VRegC_23x(), reg_types_.LongLo(),
1872                                              reg_types_.LongHi())) {
1873        break;
1874      }
1875      work_line_->SetRegisterType(inst->VRegA_23x(), reg_types_.Integer());
1876      break;
1877    case Instruction::THROW: {
1878      RegType& res_type = work_line_->GetRegisterType(inst->VRegA_11x());
1879      if (!reg_types_.JavaLangThrowable(false).IsAssignableFrom(res_type)) {
1880        Fail(res_type.IsUnresolvedTypes() ? VERIFY_ERROR_NO_CLASS : VERIFY_ERROR_BAD_CLASS_SOFT)
1881            << "thrown class " << res_type << " not instanceof Throwable";
1882      }
1883      break;
1884    }
1885    case Instruction::GOTO:
1886    case Instruction::GOTO_16:
1887    case Instruction::GOTO_32:
1888      /* no effect on or use of registers */
1889      break;
1890
1891    case Instruction::PACKED_SWITCH:
1892    case Instruction::SPARSE_SWITCH:
1893      /* verify that vAA is an integer, or can be converted to one */
1894      work_line_->VerifyRegisterType(inst->VRegA_31t(), reg_types_.Integer());
1895      break;
1896
1897    case Instruction::FILL_ARRAY_DATA: {
1898      /* Similar to the verification done for APUT */
1899      RegType& array_type = work_line_->GetRegisterType(inst->VRegA_31t());
1900      /* array_type can be null if the reg type is Zero */
1901      if (!array_type.IsZero()) {
1902        if (!array_type.IsArrayTypes()) {
1903          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid fill-array-data with array type "
1904                                            << array_type;
1905        } else {
1906          RegType& component_type = reg_types_.GetComponentType(array_type,
1907                                                                      class_loader_->Get());
1908          DCHECK(!component_type.IsConflict());
1909          if (component_type.IsNonZeroReferenceTypes()) {
1910            Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid fill-array-data with component type "
1911                                              << component_type;
1912          } else {
1913            // Now verify if the element width in the table matches the element width declared in
1914            // the array
1915            const uint16_t* array_data = insns + (insns[1] | (((int32_t) insns[2]) << 16));
1916            if (array_data[0] != Instruction::kArrayDataSignature) {
1917              Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid magic for array-data";
1918            } else {
1919              size_t elem_width = Primitive::ComponentSize(component_type.GetPrimitiveType());
1920              // Since we don't compress the data in Dex, expect to see equal width of data stored
1921              // in the table and expected from the array class.
1922              if (array_data[1] != elem_width) {
1923                Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "array-data size mismatch (" << array_data[1]
1924                                                  << " vs " << elem_width << ")";
1925              }
1926            }
1927          }
1928        }
1929      }
1930      break;
1931    }
1932    case Instruction::IF_EQ:
1933    case Instruction::IF_NE: {
1934      RegType& reg_type1 = work_line_->GetRegisterType(inst->VRegA_22t());
1935      RegType& reg_type2 = work_line_->GetRegisterType(inst->VRegB_22t());
1936      bool mismatch = false;
1937      if (reg_type1.IsZero()) {  // zero then integral or reference expected
1938        mismatch = !reg_type2.IsReferenceTypes() && !reg_type2.IsIntegralTypes();
1939      } else if (reg_type1.IsReferenceTypes()) {  // both references?
1940        mismatch = !reg_type2.IsReferenceTypes();
1941      } else {  // both integral?
1942        mismatch = !reg_type1.IsIntegralTypes() || !reg_type2.IsIntegralTypes();
1943      }
1944      if (mismatch) {
1945        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "args to if-eq/if-ne (" << reg_type1 << ","
1946                                          << reg_type2 << ") must both be references or integral";
1947      }
1948      break;
1949    }
1950    case Instruction::IF_LT:
1951    case Instruction::IF_GE:
1952    case Instruction::IF_GT:
1953    case Instruction::IF_LE: {
1954      RegType& reg_type1 = work_line_->GetRegisterType(inst->VRegA_22t());
1955      RegType& reg_type2 = work_line_->GetRegisterType(inst->VRegB_22t());
1956      if (!reg_type1.IsIntegralTypes() || !reg_type2.IsIntegralTypes()) {
1957        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "args to 'if' (" << reg_type1 << ","
1958                                          << reg_type2 << ") must be integral";
1959      }
1960      break;
1961    }
1962    case Instruction::IF_EQZ:
1963    case Instruction::IF_NEZ: {
1964      RegType& reg_type = work_line_->GetRegisterType(inst->VRegA_21t());
1965      if (!reg_type.IsReferenceTypes() && !reg_type.IsIntegralTypes()) {
1966        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "type " << reg_type
1967                                          << " unexpected as arg to if-eqz/if-nez";
1968      }
1969
1970      // Find previous instruction - its existence is a precondition to peephole optimization.
1971      uint32_t instance_of_idx = 0;
1972      if (0 != work_insn_idx_) {
1973        instance_of_idx = work_insn_idx_ - 1;
1974        while (0 != instance_of_idx && !insn_flags_[instance_of_idx].IsOpcode()) {
1975          instance_of_idx--;
1976        }
1977        if (FailOrAbort(this, insn_flags_[instance_of_idx].IsOpcode(),
1978                        "Unable to get previous instruction of if-eqz/if-nez for work index ",
1979                        work_insn_idx_)) {
1980          break;
1981        }
1982      } else {
1983        break;
1984      }
1985
1986      const Instruction* instance_of_inst = Instruction::At(code_item_->insns_ + instance_of_idx);
1987
1988      /* Check for peep-hole pattern of:
1989       *    ...;
1990       *    instance-of vX, vY, T;
1991       *    ifXXX vX, label ;
1992       *    ...;
1993       * label:
1994       *    ...;
1995       * and sharpen the type of vY to be type T.
1996       * Note, this pattern can't be if:
1997       *  - if there are other branches to this branch,
1998       *  - when vX == vY.
1999       */
2000      if (!CurrentInsnFlags()->IsBranchTarget() &&
2001          (Instruction::INSTANCE_OF == instance_of_inst->Opcode()) &&
2002          (inst->VRegA_21t() == instance_of_inst->VRegA_22c()) &&
2003          (instance_of_inst->VRegA_22c() != instance_of_inst->VRegB_22c())) {
2004        // Check the type of the instance-of is different than that of registers type, as if they
2005        // are the same there is no work to be done here. Check that the conversion is not to or
2006        // from an unresolved type as type information is imprecise. If the instance-of is to an
2007        // interface then ignore the type information as interfaces can only be treated as Objects
2008        // and we don't want to disallow field and other operations on the object. If the value
2009        // being instance-of checked against is known null (zero) then allow the optimization as
2010        // we didn't have type information. If the merge of the instance-of type with the original
2011        // type is assignable to the original then allow optimization. This check is performed to
2012        // ensure that subsequent merges don't lose type information - such as becoming an
2013        // interface from a class that would lose information relevant to field checks.
2014        RegType& orig_type = work_line_->GetRegisterType(instance_of_inst->VRegB_22c());
2015        RegType& cast_type = ResolveClassAndCheckAccess(instance_of_inst->VRegC_22c());
2016
2017        if (!orig_type.Equals(cast_type) &&
2018            !cast_type.IsUnresolvedTypes() && !orig_type.IsUnresolvedTypes() &&
2019            cast_type.HasClass() &&             // Could be conflict type, make sure it has a class.
2020            !cast_type.GetClass()->IsInterface() &&
2021            (orig_type.IsZero() ||
2022                orig_type.IsStrictlyAssignableFrom(cast_type.Merge(orig_type, &reg_types_)))) {
2023          RegisterLine* update_line = RegisterLine::Create(code_item_->registers_size_, this);
2024          if (inst->Opcode() == Instruction::IF_EQZ) {
2025            fallthrough_line.reset(update_line);
2026          } else {
2027            branch_line.reset(update_line);
2028          }
2029          update_line->CopyFromLine(work_line_.get());
2030          update_line->SetRegisterType(instance_of_inst->VRegB_22c(), cast_type);
2031          if (!insn_flags_[instance_of_idx].IsBranchTarget() && 0 != instance_of_idx) {
2032            // See if instance-of was preceded by a move-object operation, common due to the small
2033            // register encoding space of instance-of, and propagate type information to the source
2034            // of the move-object.
2035            uint32_t move_idx = instance_of_idx - 1;
2036            while (0 != move_idx && !insn_flags_[move_idx].IsOpcode()) {
2037              move_idx--;
2038            }
2039            if (FailOrAbort(this, insn_flags_[move_idx].IsOpcode(),
2040                            "Unable to get previous instruction of if-eqz/if-nez for work index ",
2041                            work_insn_idx_)) {
2042              break;
2043            }
2044            const Instruction* move_inst = Instruction::At(code_item_->insns_ + move_idx);
2045            switch (move_inst->Opcode()) {
2046              case Instruction::MOVE_OBJECT:
2047                if (move_inst->VRegA_12x() == instance_of_inst->VRegB_22c()) {
2048                  update_line->SetRegisterType(move_inst->VRegB_12x(), cast_type);
2049                }
2050                break;
2051              case Instruction::MOVE_OBJECT_FROM16:
2052                if (move_inst->VRegA_22x() == instance_of_inst->VRegB_22c()) {
2053                  update_line->SetRegisterType(move_inst->VRegB_22x(), cast_type);
2054                }
2055                break;
2056              case Instruction::MOVE_OBJECT_16:
2057                if (move_inst->VRegA_32x() == instance_of_inst->VRegB_22c()) {
2058                  update_line->SetRegisterType(move_inst->VRegB_32x(), cast_type);
2059                }
2060                break;
2061              default:
2062                break;
2063            }
2064          }
2065        }
2066      }
2067
2068      break;
2069    }
2070    case Instruction::IF_LTZ:
2071    case Instruction::IF_GEZ:
2072    case Instruction::IF_GTZ:
2073    case Instruction::IF_LEZ: {
2074      RegType& reg_type = work_line_->GetRegisterType(inst->VRegA_21t());
2075      if (!reg_type.IsIntegralTypes()) {
2076        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "type " << reg_type
2077                                          << " unexpected as arg to if-ltz/if-gez/if-gtz/if-lez";
2078      }
2079      break;
2080    }
2081    case Instruction::AGET_BOOLEAN:
2082      VerifyAGet(inst, reg_types_.Boolean(), true);
2083      break;
2084    case Instruction::AGET_BYTE:
2085      VerifyAGet(inst, reg_types_.Byte(), true);
2086      break;
2087    case Instruction::AGET_CHAR:
2088      VerifyAGet(inst, reg_types_.Char(), true);
2089      break;
2090    case Instruction::AGET_SHORT:
2091      VerifyAGet(inst, reg_types_.Short(), true);
2092      break;
2093    case Instruction::AGET:
2094      VerifyAGet(inst, reg_types_.Integer(), true);
2095      break;
2096    case Instruction::AGET_WIDE:
2097      VerifyAGet(inst, reg_types_.LongLo(), true);
2098      break;
2099    case Instruction::AGET_OBJECT:
2100      VerifyAGet(inst, reg_types_.JavaLangObject(false), false);
2101      break;
2102
2103    case Instruction::APUT_BOOLEAN:
2104      VerifyAPut(inst, reg_types_.Boolean(), true);
2105      break;
2106    case Instruction::APUT_BYTE:
2107      VerifyAPut(inst, reg_types_.Byte(), true);
2108      break;
2109    case Instruction::APUT_CHAR:
2110      VerifyAPut(inst, reg_types_.Char(), true);
2111      break;
2112    case Instruction::APUT_SHORT:
2113      VerifyAPut(inst, reg_types_.Short(), true);
2114      break;
2115    case Instruction::APUT:
2116      VerifyAPut(inst, reg_types_.Integer(), true);
2117      break;
2118    case Instruction::APUT_WIDE:
2119      VerifyAPut(inst, reg_types_.LongLo(), true);
2120      break;
2121    case Instruction::APUT_OBJECT:
2122      VerifyAPut(inst, reg_types_.JavaLangObject(false), false);
2123      break;
2124
2125    case Instruction::IGET_BOOLEAN:
2126      VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Boolean(), true, false);
2127      break;
2128    case Instruction::IGET_BYTE:
2129      VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Byte(), true, false);
2130      break;
2131    case Instruction::IGET_CHAR:
2132      VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Char(), true, false);
2133      break;
2134    case Instruction::IGET_SHORT:
2135      VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Short(), true, false);
2136      break;
2137    case Instruction::IGET:
2138      VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Integer(), true, false);
2139      break;
2140    case Instruction::IGET_WIDE:
2141      VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.LongLo(), true, false);
2142      break;
2143    case Instruction::IGET_OBJECT:
2144      VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.JavaLangObject(false), false,
2145                                                    false);
2146      break;
2147
2148    case Instruction::IPUT_BOOLEAN:
2149      VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Boolean(), true, false);
2150      break;
2151    case Instruction::IPUT_BYTE:
2152      VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Byte(), true, false);
2153      break;
2154    case Instruction::IPUT_CHAR:
2155      VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Char(), true, false);
2156      break;
2157    case Instruction::IPUT_SHORT:
2158      VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Short(), true, false);
2159      break;
2160    case Instruction::IPUT:
2161      VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Integer(), true, false);
2162      break;
2163    case Instruction::IPUT_WIDE:
2164      VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.LongLo(), true, false);
2165      break;
2166    case Instruction::IPUT_OBJECT:
2167      VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.JavaLangObject(false), false,
2168                                                    false);
2169      break;
2170
2171    case Instruction::SGET_BOOLEAN:
2172      VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Boolean(), true, true);
2173      break;
2174    case Instruction::SGET_BYTE:
2175      VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Byte(), true, true);
2176      break;
2177    case Instruction::SGET_CHAR:
2178      VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Char(), true, true);
2179      break;
2180    case Instruction::SGET_SHORT:
2181      VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Short(), true, true);
2182      break;
2183    case Instruction::SGET:
2184      VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Integer(), true, true);
2185      break;
2186    case Instruction::SGET_WIDE:
2187      VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.LongLo(), true, true);
2188      break;
2189    case Instruction::SGET_OBJECT:
2190      VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.JavaLangObject(false), false,
2191                                                    true);
2192      break;
2193
2194    case Instruction::SPUT_BOOLEAN:
2195      VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Boolean(), true, true);
2196      break;
2197    case Instruction::SPUT_BYTE:
2198      VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Byte(), true, true);
2199      break;
2200    case Instruction::SPUT_CHAR:
2201      VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Char(), true, true);
2202      break;
2203    case Instruction::SPUT_SHORT:
2204      VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Short(), true, true);
2205      break;
2206    case Instruction::SPUT:
2207      VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Integer(), true, true);
2208      break;
2209    case Instruction::SPUT_WIDE:
2210      VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.LongLo(), true, true);
2211      break;
2212    case Instruction::SPUT_OBJECT:
2213      VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.JavaLangObject(false), false,
2214                                                    true);
2215      break;
2216
2217    case Instruction::INVOKE_VIRTUAL:
2218    case Instruction::INVOKE_VIRTUAL_RANGE:
2219    case Instruction::INVOKE_SUPER:
2220    case Instruction::INVOKE_SUPER_RANGE: {
2221      bool is_range = (inst->Opcode() == Instruction::INVOKE_VIRTUAL_RANGE ||
2222                       inst->Opcode() == Instruction::INVOKE_SUPER_RANGE);
2223      bool is_super = (inst->Opcode() == Instruction::INVOKE_SUPER ||
2224                       inst->Opcode() == Instruction::INVOKE_SUPER_RANGE);
2225      mirror::ArtMethod* called_method = VerifyInvocationArgs(inst, METHOD_VIRTUAL, is_range,
2226                                                              is_super);
2227      RegType* return_type = nullptr;
2228      if (called_method != nullptr) {
2229        Thread* self = Thread::Current();
2230        StackHandleScope<1> hs(self);
2231        Handle<mirror::ArtMethod> h_called_method(hs.NewHandle(called_method));
2232        MethodHelper mh(h_called_method);
2233        mirror::Class* return_type_class = mh.GetReturnType(can_load_classes_);
2234        if (return_type_class != nullptr) {
2235          return_type = &reg_types_.FromClass(h_called_method->GetReturnTypeDescriptor(),
2236                                              return_type_class,
2237                                              return_type_class->CannotBeAssignedFromOtherTypes());
2238        } else {
2239          DCHECK(!can_load_classes_ || self->IsExceptionPending());
2240          self->ClearException();
2241        }
2242      }
2243      if (return_type == nullptr) {
2244        uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
2245        const DexFile::MethodId& method_id = dex_file_->GetMethodId(method_idx);
2246        uint32_t return_type_idx = dex_file_->GetProtoId(method_id.proto_idx_).return_type_idx_;
2247        const char* descriptor = dex_file_->StringByTypeIdx(return_type_idx);
2248        return_type = &reg_types_.FromDescriptor(class_loader_->Get(), descriptor, false);
2249      }
2250      if (!return_type->IsLowHalf()) {
2251        work_line_->SetResultRegisterType(*return_type);
2252      } else {
2253        work_line_->SetResultRegisterTypeWide(*return_type, return_type->HighHalf(&reg_types_));
2254      }
2255      just_set_result = true;
2256      break;
2257    }
2258    case Instruction::INVOKE_DIRECT:
2259    case Instruction::INVOKE_DIRECT_RANGE: {
2260      bool is_range = (inst->Opcode() == Instruction::INVOKE_DIRECT_RANGE);
2261      mirror::ArtMethod* called_method = VerifyInvocationArgs(inst, METHOD_DIRECT,
2262                                                                   is_range, false);
2263      const char* return_type_descriptor;
2264      bool is_constructor;
2265      RegType* return_type = nullptr;
2266      if (called_method == nullptr) {
2267        uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
2268        const DexFile::MethodId& method_id = dex_file_->GetMethodId(method_idx);
2269        is_constructor = strcmp("<init>", dex_file_->StringDataByIdx(method_id.name_idx_)) == 0;
2270        uint32_t return_type_idx = dex_file_->GetProtoId(method_id.proto_idx_).return_type_idx_;
2271        return_type_descriptor =  dex_file_->StringByTypeIdx(return_type_idx);
2272      } else {
2273        is_constructor = called_method->IsConstructor();
2274        return_type_descriptor = called_method->GetReturnTypeDescriptor();
2275        Thread* self = Thread::Current();
2276        StackHandleScope<1> hs(self);
2277        Handle<mirror::ArtMethod> h_called_method(hs.NewHandle(called_method));
2278        MethodHelper mh(h_called_method);
2279        mirror::Class* return_type_class = mh.GetReturnType(can_load_classes_);
2280        if (return_type_class != nullptr) {
2281          return_type = &reg_types_.FromClass(return_type_descriptor,
2282                                              return_type_class,
2283                                              return_type_class->CannotBeAssignedFromOtherTypes());
2284        } else {
2285          DCHECK(!can_load_classes_ || self->IsExceptionPending());
2286          self->ClearException();
2287        }
2288      }
2289      if (is_constructor) {
2290        /*
2291         * Some additional checks when calling a constructor. We know from the invocation arg check
2292         * that the "this" argument is an instance of called_method->klass. Now we further restrict
2293         * that to require that called_method->klass is the same as this->klass or this->super,
2294         * allowing the latter only if the "this" argument is the same as the "this" argument to
2295         * this method (which implies that we're in a constructor ourselves).
2296         */
2297        RegType& this_type = work_line_->GetInvocationThis(inst, is_range);
2298        if (this_type.IsConflict())  // failure.
2299          break;
2300
2301        /* no null refs allowed (?) */
2302        if (this_type.IsZero()) {
2303          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unable to initialize null ref";
2304          break;
2305        }
2306
2307        /* must be in same class or in superclass */
2308        // RegType& this_super_klass = this_type.GetSuperClass(&reg_types_);
2309        // TODO: re-enable constructor type verification
2310        // if (this_super_klass.IsConflict()) {
2311          // Unknown super class, fail so we re-check at runtime.
2312          // Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "super class unknown for '" << this_type << "'";
2313          // break;
2314        // }
2315
2316        /* arg must be an uninitialized reference */
2317        if (!this_type.IsUninitializedTypes()) {
2318          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Expected initialization on uninitialized reference "
2319              << this_type;
2320          break;
2321        }
2322
2323        /*
2324         * Replace the uninitialized reference with an initialized one. We need to do this for all
2325         * registers that have the same object instance in them, not just the "this" register.
2326         */
2327        work_line_->MarkRefsAsInitialized(this_type);
2328      }
2329      if (return_type == nullptr) {
2330        return_type = &reg_types_.FromDescriptor(class_loader_->Get(),
2331                                                 return_type_descriptor, false);
2332      }
2333      if (!return_type->IsLowHalf()) {
2334        work_line_->SetResultRegisterType(*return_type);
2335      } else {
2336        work_line_->SetResultRegisterTypeWide(*return_type, return_type->HighHalf(&reg_types_));
2337      }
2338      just_set_result = true;
2339      break;
2340    }
2341    case Instruction::INVOKE_STATIC:
2342    case Instruction::INVOKE_STATIC_RANGE: {
2343        bool is_range = (inst->Opcode() == Instruction::INVOKE_STATIC_RANGE);
2344        mirror::ArtMethod* called_method = VerifyInvocationArgs(inst,
2345                                                                     METHOD_STATIC,
2346                                                                     is_range,
2347                                                                     false);
2348        const char* descriptor;
2349        if (called_method == nullptr) {
2350          uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
2351          const DexFile::MethodId& method_id = dex_file_->GetMethodId(method_idx);
2352          uint32_t return_type_idx = dex_file_->GetProtoId(method_id.proto_idx_).return_type_idx_;
2353          descriptor = dex_file_->StringByTypeIdx(return_type_idx);
2354        } else {
2355          descriptor = called_method->GetReturnTypeDescriptor();
2356        }
2357        RegType& return_type = reg_types_.FromDescriptor(class_loader_->Get(), descriptor,
2358                                                               false);
2359        if (!return_type.IsLowHalf()) {
2360          work_line_->SetResultRegisterType(return_type);
2361        } else {
2362          work_line_->SetResultRegisterTypeWide(return_type, return_type.HighHalf(&reg_types_));
2363        }
2364        just_set_result = true;
2365      }
2366      break;
2367    case Instruction::INVOKE_INTERFACE:
2368    case Instruction::INVOKE_INTERFACE_RANGE: {
2369      bool is_range =  (inst->Opcode() == Instruction::INVOKE_INTERFACE_RANGE);
2370      mirror::ArtMethod* abs_method = VerifyInvocationArgs(inst,
2371                                                                METHOD_INTERFACE,
2372                                                                is_range,
2373                                                                false);
2374      if (abs_method != nullptr) {
2375        mirror::Class* called_interface = abs_method->GetDeclaringClass();
2376        if (!called_interface->IsInterface() && !called_interface->IsObjectClass()) {
2377          Fail(VERIFY_ERROR_CLASS_CHANGE) << "expected interface class in invoke-interface '"
2378              << PrettyMethod(abs_method) << "'";
2379          break;
2380        }
2381      }
2382      /* Get the type of the "this" arg, which should either be a sub-interface of called
2383       * interface or Object (see comments in RegType::JoinClass).
2384       */
2385      RegType& this_type = work_line_->GetInvocationThis(inst, is_range);
2386      if (this_type.IsZero()) {
2387        /* null pointer always passes (and always fails at runtime) */
2388      } else {
2389        if (this_type.IsUninitializedTypes()) {
2390          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "interface call on uninitialized object "
2391              << this_type;
2392          break;
2393        }
2394        // In the past we have tried to assert that "called_interface" is assignable
2395        // from "this_type.GetClass()", however, as we do an imprecise Join
2396        // (RegType::JoinClass) we don't have full information on what interfaces are
2397        // implemented by "this_type". For example, two classes may implement the same
2398        // interfaces and have a common parent that doesn't implement the interface. The
2399        // join will set "this_type" to the parent class and a test that this implements
2400        // the interface will incorrectly fail.
2401      }
2402      /*
2403       * We don't have an object instance, so we can't find the concrete method. However, all of
2404       * the type information is in the abstract method, so we're good.
2405       */
2406      const char* descriptor;
2407      if (abs_method == nullptr) {
2408        uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
2409        const DexFile::MethodId& method_id = dex_file_->GetMethodId(method_idx);
2410        uint32_t return_type_idx = dex_file_->GetProtoId(method_id.proto_idx_).return_type_idx_;
2411        descriptor =  dex_file_->StringByTypeIdx(return_type_idx);
2412      } else {
2413        descriptor = abs_method->GetReturnTypeDescriptor();
2414      }
2415      RegType& return_type = reg_types_.FromDescriptor(class_loader_->Get(), descriptor,
2416                                                             false);
2417      if (!return_type.IsLowHalf()) {
2418        work_line_->SetResultRegisterType(return_type);
2419      } else {
2420        work_line_->SetResultRegisterTypeWide(return_type, return_type.HighHalf(&reg_types_));
2421      }
2422      just_set_result = true;
2423      break;
2424    }
2425    case Instruction::NEG_INT:
2426    case Instruction::NOT_INT:
2427      work_line_->CheckUnaryOp(inst, reg_types_.Integer(), reg_types_.Integer());
2428      break;
2429    case Instruction::NEG_LONG:
2430    case Instruction::NOT_LONG:
2431      work_line_->CheckUnaryOpWide(inst, reg_types_.LongLo(), reg_types_.LongHi(),
2432                                   reg_types_.LongLo(), reg_types_.LongHi());
2433      break;
2434    case Instruction::NEG_FLOAT:
2435      work_line_->CheckUnaryOp(inst, reg_types_.Float(), reg_types_.Float());
2436      break;
2437    case Instruction::NEG_DOUBLE:
2438      work_line_->CheckUnaryOpWide(inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
2439                                   reg_types_.DoubleLo(), reg_types_.DoubleHi());
2440      break;
2441    case Instruction::INT_TO_LONG:
2442      work_line_->CheckUnaryOpToWide(inst, reg_types_.LongLo(), reg_types_.LongHi(),
2443                                     reg_types_.Integer());
2444      break;
2445    case Instruction::INT_TO_FLOAT:
2446      work_line_->CheckUnaryOp(inst, reg_types_.Float(), reg_types_.Integer());
2447      break;
2448    case Instruction::INT_TO_DOUBLE:
2449      work_line_->CheckUnaryOpToWide(inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
2450                                     reg_types_.Integer());
2451      break;
2452    case Instruction::LONG_TO_INT:
2453      work_line_->CheckUnaryOpFromWide(inst, reg_types_.Integer(),
2454                                       reg_types_.LongLo(), reg_types_.LongHi());
2455      break;
2456    case Instruction::LONG_TO_FLOAT:
2457      work_line_->CheckUnaryOpFromWide(inst, reg_types_.Float(),
2458                                       reg_types_.LongLo(), reg_types_.LongHi());
2459      break;
2460    case Instruction::LONG_TO_DOUBLE:
2461      work_line_->CheckUnaryOpWide(inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
2462                                   reg_types_.LongLo(), reg_types_.LongHi());
2463      break;
2464    case Instruction::FLOAT_TO_INT:
2465      work_line_->CheckUnaryOp(inst, reg_types_.Integer(), reg_types_.Float());
2466      break;
2467    case Instruction::FLOAT_TO_LONG:
2468      work_line_->CheckUnaryOpToWide(inst, reg_types_.LongLo(), reg_types_.LongHi(),
2469                                     reg_types_.Float());
2470      break;
2471    case Instruction::FLOAT_TO_DOUBLE:
2472      work_line_->CheckUnaryOpToWide(inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
2473                                     reg_types_.Float());
2474      break;
2475    case Instruction::DOUBLE_TO_INT:
2476      work_line_->CheckUnaryOpFromWide(inst, reg_types_.Integer(),
2477                                       reg_types_.DoubleLo(), reg_types_.DoubleHi());
2478      break;
2479    case Instruction::DOUBLE_TO_LONG:
2480      work_line_->CheckUnaryOpWide(inst, reg_types_.LongLo(), reg_types_.LongHi(),
2481                                   reg_types_.DoubleLo(), reg_types_.DoubleHi());
2482      break;
2483    case Instruction::DOUBLE_TO_FLOAT:
2484      work_line_->CheckUnaryOpFromWide(inst, reg_types_.Float(),
2485                                       reg_types_.DoubleLo(), reg_types_.DoubleHi());
2486      break;
2487    case Instruction::INT_TO_BYTE:
2488      work_line_->CheckUnaryOp(inst, reg_types_.Byte(), reg_types_.Integer());
2489      break;
2490    case Instruction::INT_TO_CHAR:
2491      work_line_->CheckUnaryOp(inst, reg_types_.Char(), reg_types_.Integer());
2492      break;
2493    case Instruction::INT_TO_SHORT:
2494      work_line_->CheckUnaryOp(inst, reg_types_.Short(), reg_types_.Integer());
2495      break;
2496
2497    case Instruction::ADD_INT:
2498    case Instruction::SUB_INT:
2499    case Instruction::MUL_INT:
2500    case Instruction::REM_INT:
2501    case Instruction::DIV_INT:
2502    case Instruction::SHL_INT:
2503    case Instruction::SHR_INT:
2504    case Instruction::USHR_INT:
2505      work_line_->CheckBinaryOp(inst, reg_types_.Integer(), reg_types_.Integer(),
2506                                reg_types_.Integer(), false);
2507      break;
2508    case Instruction::AND_INT:
2509    case Instruction::OR_INT:
2510    case Instruction::XOR_INT:
2511      work_line_->CheckBinaryOp(inst, reg_types_.Integer(), reg_types_.Integer(),
2512                                reg_types_.Integer(), true);
2513      break;
2514    case Instruction::ADD_LONG:
2515    case Instruction::SUB_LONG:
2516    case Instruction::MUL_LONG:
2517    case Instruction::DIV_LONG:
2518    case Instruction::REM_LONG:
2519    case Instruction::AND_LONG:
2520    case Instruction::OR_LONG:
2521    case Instruction::XOR_LONG:
2522      work_line_->CheckBinaryOpWide(inst, reg_types_.LongLo(), reg_types_.LongHi(),
2523                                    reg_types_.LongLo(), reg_types_.LongHi(),
2524                                    reg_types_.LongLo(), reg_types_.LongHi());
2525      break;
2526    case Instruction::SHL_LONG:
2527    case Instruction::SHR_LONG:
2528    case Instruction::USHR_LONG:
2529      /* shift distance is Int, making these different from other binary operations */
2530      work_line_->CheckBinaryOpWideShift(inst, reg_types_.LongLo(), reg_types_.LongHi(),
2531                                         reg_types_.Integer());
2532      break;
2533    case Instruction::ADD_FLOAT:
2534    case Instruction::SUB_FLOAT:
2535    case Instruction::MUL_FLOAT:
2536    case Instruction::DIV_FLOAT:
2537    case Instruction::REM_FLOAT:
2538      work_line_->CheckBinaryOp(inst,
2539                                reg_types_.Float(),
2540                                reg_types_.Float(),
2541                                reg_types_.Float(),
2542                                false);
2543      break;
2544    case Instruction::ADD_DOUBLE:
2545    case Instruction::SUB_DOUBLE:
2546    case Instruction::MUL_DOUBLE:
2547    case Instruction::DIV_DOUBLE:
2548    case Instruction::REM_DOUBLE:
2549      work_line_->CheckBinaryOpWide(inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
2550                                    reg_types_.DoubleLo(), reg_types_.DoubleHi(),
2551                                    reg_types_.DoubleLo(), reg_types_.DoubleHi());
2552      break;
2553    case Instruction::ADD_INT_2ADDR:
2554    case Instruction::SUB_INT_2ADDR:
2555    case Instruction::MUL_INT_2ADDR:
2556    case Instruction::REM_INT_2ADDR:
2557    case Instruction::SHL_INT_2ADDR:
2558    case Instruction::SHR_INT_2ADDR:
2559    case Instruction::USHR_INT_2ADDR:
2560      work_line_->CheckBinaryOp2addr(inst,
2561                                     reg_types_.Integer(),
2562                                     reg_types_.Integer(),
2563                                     reg_types_.Integer(),
2564                                     false);
2565      break;
2566    case Instruction::AND_INT_2ADDR:
2567    case Instruction::OR_INT_2ADDR:
2568    case Instruction::XOR_INT_2ADDR:
2569      work_line_->CheckBinaryOp2addr(inst,
2570                                     reg_types_.Integer(),
2571                                     reg_types_.Integer(),
2572                                     reg_types_.Integer(),
2573                                     true);
2574      break;
2575    case Instruction::DIV_INT_2ADDR:
2576      work_line_->CheckBinaryOp2addr(inst,
2577                                     reg_types_.Integer(),
2578                                     reg_types_.Integer(),
2579                                     reg_types_.Integer(),
2580                                     false);
2581      break;
2582    case Instruction::ADD_LONG_2ADDR:
2583    case Instruction::SUB_LONG_2ADDR:
2584    case Instruction::MUL_LONG_2ADDR:
2585    case Instruction::DIV_LONG_2ADDR:
2586    case Instruction::REM_LONG_2ADDR:
2587    case Instruction::AND_LONG_2ADDR:
2588    case Instruction::OR_LONG_2ADDR:
2589    case Instruction::XOR_LONG_2ADDR:
2590      work_line_->CheckBinaryOp2addrWide(inst, reg_types_.LongLo(), reg_types_.LongHi(),
2591                                         reg_types_.LongLo(), reg_types_.LongHi(),
2592                                         reg_types_.LongLo(), reg_types_.LongHi());
2593      break;
2594    case Instruction::SHL_LONG_2ADDR:
2595    case Instruction::SHR_LONG_2ADDR:
2596    case Instruction::USHR_LONG_2ADDR:
2597      work_line_->CheckBinaryOp2addrWideShift(inst, reg_types_.LongLo(), reg_types_.LongHi(),
2598                                              reg_types_.Integer());
2599      break;
2600    case Instruction::ADD_FLOAT_2ADDR:
2601    case Instruction::SUB_FLOAT_2ADDR:
2602    case Instruction::MUL_FLOAT_2ADDR:
2603    case Instruction::DIV_FLOAT_2ADDR:
2604    case Instruction::REM_FLOAT_2ADDR:
2605      work_line_->CheckBinaryOp2addr(inst,
2606                                     reg_types_.Float(),
2607                                     reg_types_.Float(),
2608                                     reg_types_.Float(),
2609                                     false);
2610      break;
2611    case Instruction::ADD_DOUBLE_2ADDR:
2612    case Instruction::SUB_DOUBLE_2ADDR:
2613    case Instruction::MUL_DOUBLE_2ADDR:
2614    case Instruction::DIV_DOUBLE_2ADDR:
2615    case Instruction::REM_DOUBLE_2ADDR:
2616      work_line_->CheckBinaryOp2addrWide(inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
2617                                         reg_types_.DoubleLo(),  reg_types_.DoubleHi(),
2618                                         reg_types_.DoubleLo(), reg_types_.DoubleHi());
2619      break;
2620    case Instruction::ADD_INT_LIT16:
2621    case Instruction::RSUB_INT:
2622    case Instruction::MUL_INT_LIT16:
2623    case Instruction::DIV_INT_LIT16:
2624    case Instruction::REM_INT_LIT16:
2625      work_line_->CheckLiteralOp(inst, reg_types_.Integer(), reg_types_.Integer(), false, true);
2626      break;
2627    case Instruction::AND_INT_LIT16:
2628    case Instruction::OR_INT_LIT16:
2629    case Instruction::XOR_INT_LIT16:
2630      work_line_->CheckLiteralOp(inst, reg_types_.Integer(), reg_types_.Integer(), true, true);
2631      break;
2632    case Instruction::ADD_INT_LIT8:
2633    case Instruction::RSUB_INT_LIT8:
2634    case Instruction::MUL_INT_LIT8:
2635    case Instruction::DIV_INT_LIT8:
2636    case Instruction::REM_INT_LIT8:
2637    case Instruction::SHL_INT_LIT8:
2638    case Instruction::SHR_INT_LIT8:
2639    case Instruction::USHR_INT_LIT8:
2640      work_line_->CheckLiteralOp(inst, reg_types_.Integer(), reg_types_.Integer(), false, false);
2641      break;
2642    case Instruction::AND_INT_LIT8:
2643    case Instruction::OR_INT_LIT8:
2644    case Instruction::XOR_INT_LIT8:
2645      work_line_->CheckLiteralOp(inst, reg_types_.Integer(), reg_types_.Integer(), true, false);
2646      break;
2647
2648    // Special instructions.
2649    case Instruction::RETURN_VOID_BARRIER:
2650      if (!IsConstructor() || IsStatic()) {
2651          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "return-void-barrier not expected";
2652      }
2653      break;
2654    // Note: the following instructions encode offsets derived from class linking.
2655    // As such they use Class*/Field*/AbstractMethod* as these offsets only have
2656    // meaning if the class linking and resolution were successful.
2657    case Instruction::IGET_QUICK:
2658      VerifyQuickFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Integer(), true);
2659      break;
2660    case Instruction::IGET_WIDE_QUICK:
2661      VerifyQuickFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.LongLo(), true);
2662      break;
2663    case Instruction::IGET_OBJECT_QUICK:
2664      VerifyQuickFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.JavaLangObject(false), false);
2665      break;
2666    case Instruction::IPUT_QUICK:
2667      VerifyQuickFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Integer(), true);
2668      break;
2669    case Instruction::IPUT_WIDE_QUICK:
2670      VerifyQuickFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.LongLo(), true);
2671      break;
2672    case Instruction::IPUT_OBJECT_QUICK:
2673      VerifyQuickFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.JavaLangObject(false), false);
2674      break;
2675    case Instruction::INVOKE_VIRTUAL_QUICK:
2676    case Instruction::INVOKE_VIRTUAL_RANGE_QUICK: {
2677      bool is_range = (inst->Opcode() == Instruction::INVOKE_VIRTUAL_RANGE_QUICK);
2678      mirror::ArtMethod* called_method = VerifyInvokeVirtualQuickArgs(inst, is_range);
2679      if (called_method != nullptr) {
2680        const char* descriptor = called_method->GetReturnTypeDescriptor();
2681        RegType& return_type = reg_types_.FromDescriptor(class_loader_->Get(), descriptor,
2682                                                               false);
2683        if (!return_type.IsLowHalf()) {
2684          work_line_->SetResultRegisterType(return_type);
2685        } else {
2686          work_line_->SetResultRegisterTypeWide(return_type, return_type.HighHalf(&reg_types_));
2687        }
2688        just_set_result = true;
2689      }
2690      break;
2691    }
2692
2693    /* These should never appear during verification. */
2694    case Instruction::UNUSED_3E:
2695    case Instruction::UNUSED_3F:
2696    case Instruction::UNUSED_40:
2697    case Instruction::UNUSED_41:
2698    case Instruction::UNUSED_42:
2699    case Instruction::UNUSED_43:
2700    case Instruction::UNUSED_79:
2701    case Instruction::UNUSED_7A:
2702    case Instruction::UNUSED_EB:
2703    case Instruction::UNUSED_EC:
2704    case Instruction::UNUSED_ED:
2705    case Instruction::UNUSED_EE:
2706    case Instruction::UNUSED_EF:
2707    case Instruction::UNUSED_F0:
2708    case Instruction::UNUSED_F1:
2709    case Instruction::UNUSED_F2:
2710    case Instruction::UNUSED_F3:
2711    case Instruction::UNUSED_F4:
2712    case Instruction::UNUSED_F5:
2713    case Instruction::UNUSED_F6:
2714    case Instruction::UNUSED_F7:
2715    case Instruction::UNUSED_F8:
2716    case Instruction::UNUSED_F9:
2717    case Instruction::UNUSED_FA:
2718    case Instruction::UNUSED_FB:
2719    case Instruction::UNUSED_FC:
2720    case Instruction::UNUSED_FD:
2721    case Instruction::UNUSED_FE:
2722    case Instruction::UNUSED_FF:
2723      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Unexpected opcode " << inst->DumpString(dex_file_);
2724      break;
2725
2726    /*
2727     * DO NOT add a "default" clause here. Without it the compiler will
2728     * complain if an instruction is missing (which is desirable).
2729     */
2730  }  // end - switch (dec_insn.opcode)
2731
2732  if (have_pending_hard_failure_) {
2733    if (Runtime::Current()->IsCompiler()) {
2734      /* When compiling, check that the last failure is a hard failure */
2735      CHECK_EQ(failures_[failures_.size() - 1], VERIFY_ERROR_BAD_CLASS_HARD);
2736    }
2737    /* immediate failure, reject class */
2738    info_messages_ << "Rejecting opcode " << inst->DumpString(dex_file_);
2739    return false;
2740  } else if (have_pending_runtime_throw_failure_) {
2741    /* checking interpreter will throw, mark following code as unreachable */
2742    opcode_flags = Instruction::kThrow;
2743  }
2744  /*
2745   * If we didn't just set the result register, clear it out. This ensures that you can only use
2746   * "move-result" immediately after the result is set. (We could check this statically, but it's
2747   * not expensive and it makes our debugging output cleaner.)
2748   */
2749  if (!just_set_result) {
2750    work_line_->SetResultTypeToUnknown();
2751  }
2752
2753
2754
2755  /*
2756   * Handle "branch". Tag the branch target.
2757   *
2758   * NOTE: instructions like Instruction::EQZ provide information about the
2759   * state of the register when the branch is taken or not taken. For example,
2760   * somebody could get a reference field, check it for zero, and if the
2761   * branch is taken immediately store that register in a boolean field
2762   * since the value is known to be zero. We do not currently account for
2763   * that, and will reject the code.
2764   *
2765   * TODO: avoid re-fetching the branch target
2766   */
2767  if ((opcode_flags & Instruction::kBranch) != 0) {
2768    bool isConditional, selfOkay;
2769    if (!GetBranchOffset(work_insn_idx_, &branch_target, &isConditional, &selfOkay)) {
2770      /* should never happen after static verification */
2771      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad branch";
2772      return false;
2773    }
2774    DCHECK_EQ(isConditional, (opcode_flags & Instruction::kContinue) != 0);
2775    if (!CheckNotMoveException(code_item_->insns_, work_insn_idx_ + branch_target)) {
2776      return false;
2777    }
2778    /* update branch target, set "changed" if appropriate */
2779    if (nullptr != branch_line.get()) {
2780      if (!UpdateRegisters(work_insn_idx_ + branch_target, branch_line.get(), false)) {
2781        return false;
2782      }
2783    } else {
2784      if (!UpdateRegisters(work_insn_idx_ + branch_target, work_line_.get(), false)) {
2785        return false;
2786      }
2787    }
2788  }
2789
2790  /*
2791   * Handle "switch". Tag all possible branch targets.
2792   *
2793   * We've already verified that the table is structurally sound, so we
2794   * just need to walk through and tag the targets.
2795   */
2796  if ((opcode_flags & Instruction::kSwitch) != 0) {
2797    int offset_to_switch = insns[1] | (((int32_t) insns[2]) << 16);
2798    const uint16_t* switch_insns = insns + offset_to_switch;
2799    int switch_count = switch_insns[1];
2800    int offset_to_targets, targ;
2801
2802    if ((*insns & 0xff) == Instruction::PACKED_SWITCH) {
2803      /* 0 = sig, 1 = count, 2/3 = first key */
2804      offset_to_targets = 4;
2805    } else {
2806      /* 0 = sig, 1 = count, 2..count * 2 = keys */
2807      DCHECK((*insns & 0xff) == Instruction::SPARSE_SWITCH);
2808      offset_to_targets = 2 + 2 * switch_count;
2809    }
2810
2811    /* verify each switch target */
2812    for (targ = 0; targ < switch_count; targ++) {
2813      int offset;
2814      uint32_t abs_offset;
2815
2816      /* offsets are 32-bit, and only partly endian-swapped */
2817      offset = switch_insns[offset_to_targets + targ * 2] |
2818         (((int32_t) switch_insns[offset_to_targets + targ * 2 + 1]) << 16);
2819      abs_offset = work_insn_idx_ + offset;
2820      DCHECK_LT(abs_offset, code_item_->insns_size_in_code_units_);
2821      if (!CheckNotMoveException(code_item_->insns_, abs_offset)) {
2822        return false;
2823      }
2824      if (!UpdateRegisters(abs_offset, work_line_.get(), false)) {
2825        return false;
2826      }
2827    }
2828  }
2829
2830  /*
2831   * Handle instructions that can throw and that are sitting in a "try" block. (If they're not in a
2832   * "try" block when they throw, control transfers out of the method.)
2833   */
2834  if ((opcode_flags & Instruction::kThrow) != 0 && insn_flags_[work_insn_idx_].IsInTry()) {
2835    bool has_catch_all_handler = false;
2836    CatchHandlerIterator iterator(*code_item_, work_insn_idx_);
2837
2838    // Need the linker to try and resolve the handled class to check if it's Throwable.
2839    ClassLinker* linker = Runtime::Current()->GetClassLinker();
2840
2841    for (; iterator.HasNext(); iterator.Next()) {
2842      uint16_t handler_type_idx = iterator.GetHandlerTypeIndex();
2843      if (handler_type_idx == DexFile::kDexNoIndex16) {
2844        has_catch_all_handler = true;
2845      } else {
2846        // It is also a catch-all if it is java.lang.Throwable.
2847        mirror::Class* klass = linker->ResolveType(*dex_file_, handler_type_idx, *dex_cache_,
2848                                                   *class_loader_);
2849        if (klass != nullptr) {
2850          if (klass == mirror::Throwable::GetJavaLangThrowable()) {
2851            has_catch_all_handler = true;
2852          }
2853        } else {
2854          // Clear exception.
2855          Thread* self = Thread::Current();
2856          DCHECK(self->IsExceptionPending());
2857          self->ClearException();
2858        }
2859      }
2860      /*
2861       * Merge registers into the "catch" block. We want to use the "savedRegs" rather than
2862       * "work_regs", because at runtime the exception will be thrown before the instruction
2863       * modifies any registers.
2864       */
2865      if (!UpdateRegisters(iterator.GetHandlerAddress(), saved_line_.get(), false)) {
2866        return false;
2867      }
2868    }
2869
2870    /*
2871     * If the monitor stack depth is nonzero, there must be a "catch all" handler for this
2872     * instruction. This does apply to monitor-exit because of async exception handling.
2873     */
2874    if (work_line_->MonitorStackDepth() > 0 && !has_catch_all_handler) {
2875      /*
2876       * The state in work_line reflects the post-execution state. If the current instruction is a
2877       * monitor-enter and the monitor stack was empty, we don't need a catch-all (if it throws,
2878       * it will do so before grabbing the lock).
2879       */
2880      if (inst->Opcode() != Instruction::MONITOR_ENTER || work_line_->MonitorStackDepth() != 1) {
2881        Fail(VERIFY_ERROR_BAD_CLASS_HARD)
2882            << "expected to be within a catch-all for an instruction where a monitor is held";
2883        return false;
2884      }
2885    }
2886  }
2887
2888  /* Handle "continue". Tag the next consecutive instruction.
2889   *  Note: Keep the code handling "continue" case below the "branch" and "switch" cases,
2890   *        because it changes work_line_ when performing peephole optimization
2891   *        and this change should not be used in those cases.
2892   */
2893  if ((opcode_flags & Instruction::kContinue) != 0) {
2894    uint32_t next_insn_idx = work_insn_idx_ + CurrentInsnFlags()->GetLengthInCodeUnits();
2895    if (next_insn_idx >= code_item_->insns_size_in_code_units_) {
2896      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Execution can walk off end of code area";
2897      return false;
2898    }
2899    // The only way to get to a move-exception instruction is to get thrown there. Make sure the
2900    // next instruction isn't one.
2901    if (!CheckNotMoveException(code_item_->insns_, next_insn_idx)) {
2902      return false;
2903    }
2904    if (nullptr != fallthrough_line.get()) {
2905      // Make workline consistent with fallthrough computed from peephole optimization.
2906      work_line_->CopyFromLine(fallthrough_line.get());
2907    }
2908    if (insn_flags_[next_insn_idx].IsReturn()) {
2909      // For returns we only care about the operand to the return, all other registers are dead.
2910      const Instruction* ret_inst = Instruction::At(code_item_->insns_ + next_insn_idx);
2911      Instruction::Code opcode = ret_inst->Opcode();
2912      if ((opcode == Instruction::RETURN_VOID) || (opcode == Instruction::RETURN_VOID_BARRIER)) {
2913        work_line_->MarkAllRegistersAsConflicts();
2914      } else {
2915        if (opcode == Instruction::RETURN_WIDE) {
2916          work_line_->MarkAllRegistersAsConflictsExceptWide(ret_inst->VRegA_11x());
2917        } else {
2918          work_line_->MarkAllRegistersAsConflictsExcept(ret_inst->VRegA_11x());
2919        }
2920      }
2921    }
2922    RegisterLine* next_line = reg_table_.GetLine(next_insn_idx);
2923    if (next_line != nullptr) {
2924      // Merge registers into what we have for the next instruction, and set the "changed" flag if
2925      // needed. If the merge changes the state of the registers then the work line will be
2926      // updated.
2927      if (!UpdateRegisters(next_insn_idx, work_line_.get(), true)) {
2928        return false;
2929      }
2930    } else {
2931      /*
2932       * We're not recording register data for the next instruction, so we don't know what the
2933       * prior state was. We have to assume that something has changed and re-evaluate it.
2934       */
2935      insn_flags_[next_insn_idx].SetChanged();
2936    }
2937  }
2938
2939  /* If we're returning from the method, make sure monitor stack is empty. */
2940  if ((opcode_flags & Instruction::kReturn) != 0) {
2941    if (!work_line_->VerifyMonitorStackEmpty()) {
2942      return false;
2943    }
2944  }
2945
2946  /*
2947   * Update start_guess. Advance to the next instruction of that's
2948   * possible, otherwise use the branch target if one was found. If
2949   * neither of those exists we're in a return or throw; leave start_guess
2950   * alone and let the caller sort it out.
2951   */
2952  if ((opcode_flags & Instruction::kContinue) != 0) {
2953    *start_guess = work_insn_idx_ + insn_flags_[work_insn_idx_].GetLengthInCodeUnits();
2954  } else if ((opcode_flags & Instruction::kBranch) != 0) {
2955    /* we're still okay if branch_target is zero */
2956    *start_guess = work_insn_idx_ + branch_target;
2957  }
2958
2959  DCHECK_LT(*start_guess, code_item_->insns_size_in_code_units_);
2960  DCHECK(insn_flags_[*start_guess].IsOpcode());
2961
2962  return true;
2963}  // NOLINT(readability/fn_size)
2964
2965RegType& MethodVerifier::ResolveClassAndCheckAccess(uint32_t class_idx) {
2966  const char* descriptor = dex_file_->StringByTypeIdx(class_idx);
2967  RegType& referrer = GetDeclaringClass();
2968  mirror::Class* klass = (*dex_cache_)->GetResolvedType(class_idx);
2969  RegType& result =
2970      klass != nullptr ? reg_types_.FromClass(descriptor, klass,
2971                                           klass->CannotBeAssignedFromOtherTypes())
2972                    : reg_types_.FromDescriptor(class_loader_->Get(), descriptor, false);
2973  if (result.IsConflict()) {
2974    Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "accessing broken descriptor '" << descriptor
2975        << "' in " << referrer;
2976    return result;
2977  }
2978  if (klass == nullptr && !result.IsUnresolvedTypes()) {
2979    (*dex_cache_)->SetResolvedType(class_idx, result.GetClass());
2980  }
2981  // Check if access is allowed. Unresolved types use xxxWithAccessCheck to
2982  // check at runtime if access is allowed and so pass here. If result is
2983  // primitive, skip the access check.
2984  if (result.IsNonZeroReferenceTypes() && !result.IsUnresolvedTypes() &&
2985      !referrer.IsUnresolvedTypes() && !referrer.CanAccess(result)) {
2986    Fail(VERIFY_ERROR_ACCESS_CLASS) << "illegal class access: '"
2987                                    << referrer << "' -> '" << result << "'";
2988  }
2989  return result;
2990}
2991
2992RegType& MethodVerifier::GetCaughtExceptionType() {
2993  RegType* common_super = nullptr;
2994  if (code_item_->tries_size_ != 0) {
2995    const byte* handlers_ptr = DexFile::GetCatchHandlerData(*code_item_, 0);
2996    uint32_t handlers_size = DecodeUnsignedLeb128(&handlers_ptr);
2997    for (uint32_t i = 0; i < handlers_size; i++) {
2998      CatchHandlerIterator iterator(handlers_ptr);
2999      for (; iterator.HasNext(); iterator.Next()) {
3000        if (iterator.GetHandlerAddress() == (uint32_t) work_insn_idx_) {
3001          if (iterator.GetHandlerTypeIndex() == DexFile::kDexNoIndex16) {
3002            common_super = &reg_types_.JavaLangThrowable(false);
3003          } else {
3004            RegType& exception = ResolveClassAndCheckAccess(iterator.GetHandlerTypeIndex());
3005            if (!reg_types_.JavaLangThrowable(false).IsAssignableFrom(exception)) {
3006              if (exception.IsUnresolvedTypes()) {
3007                // We don't know enough about the type. Fail here and let runtime handle it.
3008                Fail(VERIFY_ERROR_NO_CLASS) << "unresolved exception class " << exception;
3009                return exception;
3010              } else {
3011                Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "unexpected non-exception class " << exception;
3012                return reg_types_.Conflict();
3013              }
3014            } else if (common_super == nullptr) {
3015              common_super = &exception;
3016            } else if (common_super->Equals(exception)) {
3017              // odd case, but nothing to do
3018            } else {
3019              common_super = &common_super->Merge(exception, &reg_types_);
3020              if (FailOrAbort(this,
3021                              reg_types_.JavaLangThrowable(false).IsAssignableFrom(*common_super),
3022                              "java.lang.Throwable is not assignable-from common_super at ",
3023                              work_insn_idx_)) {
3024                break;
3025              }
3026            }
3027          }
3028        }
3029      }
3030      handlers_ptr = iterator.EndDataPointer();
3031    }
3032  }
3033  if (common_super == nullptr) {
3034    /* no catch blocks, or no catches with classes we can find */
3035    Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "unable to find exception handler";
3036    return reg_types_.Conflict();
3037  }
3038  return *common_super;
3039}
3040
3041mirror::ArtMethod* MethodVerifier::ResolveMethodAndCheckAccess(uint32_t dex_method_idx,
3042                                                               MethodType method_type) {
3043  const DexFile::MethodId& method_id = dex_file_->GetMethodId(dex_method_idx);
3044  RegType& klass_type = ResolveClassAndCheckAccess(method_id.class_idx_);
3045  if (klass_type.IsConflict()) {
3046    std::string append(" in attempt to access method ");
3047    append += dex_file_->GetMethodName(method_id);
3048    AppendToLastFailMessage(append);
3049    return nullptr;
3050  }
3051  if (klass_type.IsUnresolvedTypes()) {
3052    return nullptr;  // Can't resolve Class so no more to do here
3053  }
3054  mirror::Class* klass = klass_type.GetClass();
3055  RegType& referrer = GetDeclaringClass();
3056  mirror::ArtMethod* res_method = (*dex_cache_)->GetResolvedMethod(dex_method_idx);
3057  if (res_method == nullptr) {
3058    const char* name = dex_file_->GetMethodName(method_id);
3059    const Signature signature = dex_file_->GetMethodSignature(method_id);
3060
3061    if (method_type == METHOD_DIRECT || method_type == METHOD_STATIC) {
3062      res_method = klass->FindDirectMethod(name, signature);
3063    } else if (method_type == METHOD_INTERFACE) {
3064      res_method = klass->FindInterfaceMethod(name, signature);
3065    } else {
3066      res_method = klass->FindVirtualMethod(name, signature);
3067    }
3068    if (res_method != nullptr) {
3069      (*dex_cache_)->SetResolvedMethod(dex_method_idx, res_method);
3070    } else {
3071      // If a virtual or interface method wasn't found with the expected type, look in
3072      // the direct methods. This can happen when the wrong invoke type is used or when
3073      // a class has changed, and will be flagged as an error in later checks.
3074      if (method_type == METHOD_INTERFACE || method_type == METHOD_VIRTUAL) {
3075        res_method = klass->FindDirectMethod(name, signature);
3076      }
3077      if (res_method == nullptr) {
3078        Fail(VERIFY_ERROR_NO_METHOD) << "couldn't find method "
3079                                     << PrettyDescriptor(klass) << "." << name
3080                                     << " " << signature;
3081        return nullptr;
3082      }
3083    }
3084  }
3085  // Make sure calls to constructors are "direct". There are additional restrictions but we don't
3086  // enforce them here.
3087  if (res_method->IsConstructor() && method_type != METHOD_DIRECT) {
3088    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "rejecting non-direct call to constructor "
3089                                      << PrettyMethod(res_method);
3090    return nullptr;
3091  }
3092  // Disallow any calls to class initializers.
3093  if (res_method->IsClassInitializer()) {
3094    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "rejecting call to class initializer "
3095                                      << PrettyMethod(res_method);
3096    return nullptr;
3097  }
3098  // Check if access is allowed.
3099  if (!referrer.CanAccessMember(res_method->GetDeclaringClass(), res_method->GetAccessFlags())) {
3100    Fail(VERIFY_ERROR_ACCESS_METHOD) << "illegal method access (call " << PrettyMethod(res_method)
3101                                     << " from " << referrer << ")";
3102    return res_method;
3103  }
3104  // Check that invoke-virtual and invoke-super are not used on private methods of the same class.
3105  if (res_method->IsPrivate() && method_type == METHOD_VIRTUAL) {
3106    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invoke-super/virtual can't be used on private method "
3107                                      << PrettyMethod(res_method);
3108    return nullptr;
3109  }
3110  // Check that interface methods match interface classes.
3111  if (klass->IsInterface() && method_type != METHOD_INTERFACE) {
3112    Fail(VERIFY_ERROR_CLASS_CHANGE) << "non-interface method " << PrettyMethod(res_method)
3113                                    << " is in an interface class " << PrettyClass(klass);
3114    return nullptr;
3115  } else if (!klass->IsInterface() && method_type == METHOD_INTERFACE) {
3116    Fail(VERIFY_ERROR_CLASS_CHANGE) << "interface method " << PrettyMethod(res_method)
3117                                    << " is in a non-interface class " << PrettyClass(klass);
3118    return nullptr;
3119  }
3120  // See if the method type implied by the invoke instruction matches the access flags for the
3121  // target method.
3122  if ((method_type == METHOD_DIRECT && (!res_method->IsDirect() || res_method->IsStatic())) ||
3123      (method_type == METHOD_STATIC && !res_method->IsStatic()) ||
3124      ((method_type == METHOD_VIRTUAL || method_type == METHOD_INTERFACE) && res_method->IsDirect())
3125      ) {
3126    Fail(VERIFY_ERROR_CLASS_CHANGE) << "invoke type (" << method_type << ") does not match method "
3127                                       " type of " << PrettyMethod(res_method);
3128    return nullptr;
3129  }
3130  return res_method;
3131}
3132
3133template <class T>
3134mirror::ArtMethod* MethodVerifier::VerifyInvocationArgsFromIterator(T* it, const Instruction* inst,
3135                                                                    MethodType method_type,
3136                                                                    bool is_range,
3137                                                                    mirror::ArtMethod* res_method) {
3138  // We use vAA as our expected arg count, rather than res_method->insSize, because we need to
3139  // match the call to the signature. Also, we might be calling through an abstract method
3140  // definition (which doesn't have register count values).
3141  const size_t expected_args = (is_range) ? inst->VRegA_3rc() : inst->VRegA_35c();
3142  /* caught by static verifier */
3143  DCHECK(is_range || expected_args <= 5);
3144  if (expected_args > code_item_->outs_size_) {
3145    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid argument count (" << expected_args
3146        << ") exceeds outsSize (" << code_item_->outs_size_ << ")";
3147    return nullptr;
3148  }
3149
3150  uint32_t arg[5];
3151  if (!is_range) {
3152    inst->GetVarArgs(arg);
3153  }
3154  uint32_t sig_registers = 0;
3155
3156  /*
3157   * Check the "this" argument, which must be an instance of the class that declared the method.
3158   * For an interface class, we don't do the full interface merge (see JoinClass), so we can't do a
3159   * rigorous check here (which is okay since we have to do it at runtime).
3160   */
3161  if (method_type != METHOD_STATIC) {
3162    RegType& actual_arg_type = work_line_->GetInvocationThis(inst, is_range);
3163    if (actual_arg_type.IsConflict()) {  // GetInvocationThis failed.
3164      CHECK(have_pending_hard_failure_);
3165      return nullptr;
3166    }
3167    if (actual_arg_type.IsUninitializedReference()) {
3168      if (res_method) {
3169        if (!res_method->IsConstructor()) {
3170          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "'this' arg must be initialized";
3171          return nullptr;
3172        }
3173      } else {
3174        // Check whether the name of the called method is "<init>"
3175        const uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
3176        if (strcmp(dex_file_->GetMethodName(dex_file_->GetMethodId(method_idx)), "<init>") != 0) {
3177          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "'this' arg must be initialized";
3178          return nullptr;
3179        }
3180      }
3181    }
3182    if (method_type != METHOD_INTERFACE && !actual_arg_type.IsZero()) {
3183      RegType* res_method_class;
3184      if (res_method != nullptr) {
3185        mirror::Class* klass = res_method->GetDeclaringClass();
3186        std::string temp;
3187        res_method_class = &reg_types_.FromClass(klass->GetDescriptor(&temp), klass,
3188                                                 klass->CannotBeAssignedFromOtherTypes());
3189      } else {
3190        const uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
3191        const uint16_t class_idx = dex_file_->GetMethodId(method_idx).class_idx_;
3192        res_method_class = &reg_types_.FromDescriptor(class_loader_->Get(),
3193                                                      dex_file_->StringByTypeIdx(class_idx),
3194                                                      false);
3195      }
3196      if (!res_method_class->IsAssignableFrom(actual_arg_type)) {
3197        Fail(actual_arg_type.IsUnresolvedTypes() ? VERIFY_ERROR_NO_CLASS:
3198            VERIFY_ERROR_BAD_CLASS_SOFT) << "'this' argument '" << actual_arg_type
3199                << "' not instance of '" << *res_method_class << "'";
3200        // Continue on soft failures. We need to find possible hard failures to avoid problems in
3201        // the compiler.
3202        if (have_pending_hard_failure_) {
3203          return nullptr;
3204        }
3205      }
3206    }
3207    sig_registers = 1;
3208  }
3209
3210  for ( ; it->HasNext(); it->Next()) {
3211    if (sig_registers >= expected_args) {
3212      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invocation, expected " << inst->VRegA() <<
3213          " arguments, found " << sig_registers << " or more.";
3214      return nullptr;
3215    }
3216
3217    const char* param_descriptor = it->GetDescriptor();
3218
3219    if (param_descriptor == nullptr) {
3220      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invocation because of missing signature "
3221          "component";
3222      return nullptr;
3223    }
3224
3225    RegType& reg_type = reg_types_.FromDescriptor(class_loader_->Get(), param_descriptor,
3226                                                        false);
3227    uint32_t get_reg = is_range ? inst->VRegC_3rc() + static_cast<uint32_t>(sig_registers) :
3228        arg[sig_registers];
3229    if (reg_type.IsIntegralTypes()) {
3230      RegType& src_type = work_line_->GetRegisterType(get_reg);
3231      if (!src_type.IsIntegralTypes()) {
3232        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "register v" << get_reg << " has type " << src_type
3233            << " but expected " << reg_type;
3234        return res_method;
3235      }
3236    } else if (!work_line_->VerifyRegisterType(get_reg, reg_type)) {
3237      // Continue on soft failures. We need to find possible hard failures to avoid problems in the
3238      // compiler.
3239      if (have_pending_hard_failure_) {
3240        return res_method;
3241      }
3242    }
3243    sig_registers += reg_type.IsLongOrDoubleTypes() ?  2 : 1;
3244  }
3245  if (expected_args != sig_registers) {
3246    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invocation, expected " << expected_args <<
3247        " arguments, found " << sig_registers;
3248    return nullptr;
3249  }
3250  return res_method;
3251}
3252
3253void MethodVerifier::VerifyInvocationArgsUnresolvedMethod(const Instruction* inst,
3254                                                          MethodType method_type,
3255                                                          bool is_range) {
3256  // As the method may not have been resolved, make this static check against what we expect.
3257  // The main reason for this code block is to fail hard when we find an illegal use, e.g.,
3258  // wrong number of arguments or wrong primitive types, even if the method could not be resolved.
3259  const uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
3260  DexFileParameterIterator it(*dex_file_,
3261                              dex_file_->GetProtoId(dex_file_->GetMethodId(method_idx).proto_idx_));
3262  VerifyInvocationArgsFromIterator<DexFileParameterIterator>(&it, inst, method_type, is_range,
3263                                                             nullptr);
3264}
3265
3266class MethodParamListDescriptorIterator {
3267 public:
3268  explicit MethodParamListDescriptorIterator(mirror::ArtMethod* res_method) :
3269      res_method_(res_method), pos_(0), params_(res_method->GetParameterTypeList()),
3270      params_size_(params_ == nullptr ? 0 : params_->Size()) {
3271  }
3272
3273  bool HasNext() {
3274    return pos_ < params_size_;
3275  }
3276
3277  void Next() {
3278    ++pos_;
3279  }
3280
3281  const char* GetDescriptor() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
3282    return res_method_->GetTypeDescriptorFromTypeIdx(params_->GetTypeItem(pos_).type_idx_);
3283  }
3284
3285 private:
3286  mirror::ArtMethod* res_method_;
3287  size_t pos_;
3288  const DexFile::TypeList* params_;
3289  const size_t params_size_;
3290};
3291
3292mirror::ArtMethod* MethodVerifier::VerifyInvocationArgs(const Instruction* inst,
3293                                                             MethodType method_type,
3294                                                             bool is_range,
3295                                                             bool is_super) {
3296  // Resolve the method. This could be an abstract or concrete method depending on what sort of call
3297  // we're making.
3298  const uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
3299
3300  mirror::ArtMethod* res_method = ResolveMethodAndCheckAccess(method_idx, method_type);
3301  if (res_method == nullptr) {  // error or class is unresolved
3302    // Check what we can statically.
3303    if (!have_pending_hard_failure_) {
3304      VerifyInvocationArgsUnresolvedMethod(inst, method_type, is_range);
3305    }
3306    return nullptr;
3307  }
3308
3309  // If we're using invoke-super(method), make sure that the executing method's class' superclass
3310  // has a vtable entry for the target method.
3311  if (is_super) {
3312    DCHECK(method_type == METHOD_VIRTUAL);
3313    RegType& super = GetDeclaringClass().GetSuperClass(&reg_types_);
3314    if (super.IsUnresolvedTypes()) {
3315      Fail(VERIFY_ERROR_NO_METHOD) << "unknown super class in invoke-super from "
3316                                   << PrettyMethod(dex_method_idx_, *dex_file_)
3317                                   << " to super " << PrettyMethod(res_method);
3318      return nullptr;
3319    }
3320    mirror::Class* super_klass = super.GetClass();
3321    if (res_method->GetMethodIndex() >= super_klass->GetVTableLength()) {
3322      Fail(VERIFY_ERROR_NO_METHOD) << "invalid invoke-super from "
3323                                   << PrettyMethod(dex_method_idx_, *dex_file_)
3324                                   << " to super " << super
3325                                   << "." << res_method->GetName()
3326                                   << res_method->GetSignature();
3327      return nullptr;
3328    }
3329  }
3330
3331  // Process the target method's signature. This signature may or may not
3332  MethodParamListDescriptorIterator it(res_method);
3333  return VerifyInvocationArgsFromIterator<MethodParamListDescriptorIterator>(&it, inst, method_type,
3334                                                                             is_range, res_method);
3335}
3336
3337mirror::ArtMethod* MethodVerifier::GetQuickInvokedMethod(const Instruction* inst,
3338                                                         RegisterLine* reg_line, bool is_range) {
3339  DCHECK(inst->Opcode() == Instruction::INVOKE_VIRTUAL_QUICK ||
3340         inst->Opcode() == Instruction::INVOKE_VIRTUAL_RANGE_QUICK);
3341  RegType& actual_arg_type = reg_line->GetInvocationThis(inst, is_range);
3342  if (!actual_arg_type.HasClass()) {
3343    VLOG(verifier) << "Failed to get mirror::Class* from '" << actual_arg_type << "'";
3344    return nullptr;
3345  }
3346  mirror::Class* klass = actual_arg_type.GetClass();
3347  mirror::Class* dispatch_class;
3348  if (klass->IsInterface()) {
3349    // Derive Object.class from Class.class.getSuperclass().
3350    mirror::Class* object_klass = klass->GetClass()->GetSuperClass();
3351    if (FailOrAbort(this, object_klass->IsObjectClass(),
3352                    "Failed to find Object class in quickened invoke receiver",
3353                    work_insn_idx_)) {
3354      return nullptr;
3355    }
3356    dispatch_class = object_klass;
3357  } else {
3358    dispatch_class = klass;
3359  }
3360  if (FailOrAbort(this, dispatch_class->HasVTable(),
3361                  "Receiver class has no vtable for quickened invoke at ",
3362                  work_insn_idx_)) {
3363    return nullptr;
3364  }
3365  uint16_t vtable_index = is_range ? inst->VRegB_3rc() : inst->VRegB_35c();
3366  if (FailOrAbort(this, static_cast<int32_t>(vtable_index) < dispatch_class->GetVTableLength(),
3367                  "Receiver class has not enough vtable slots for quickened invoke at ",
3368                  work_insn_idx_)) {
3369    return nullptr;
3370  }
3371  mirror::ArtMethod* res_method = dispatch_class->GetVTableEntry(vtable_index);
3372  if (FailOrAbort(this, !Thread::Current()->IsExceptionPending(),
3373                  "Unexpected exception pending for quickened invoke at ",
3374                  work_insn_idx_)) {
3375    return nullptr;
3376  }
3377  return res_method;
3378}
3379
3380mirror::ArtMethod* MethodVerifier::VerifyInvokeVirtualQuickArgs(const Instruction* inst,
3381                                                                bool is_range) {
3382  DCHECK(Runtime::Current()->IsStarted() || verify_to_dump_);
3383  mirror::ArtMethod* res_method = GetQuickInvokedMethod(inst, work_line_.get(),
3384                                                             is_range);
3385  if (res_method == nullptr) {
3386    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Cannot infer method from " << inst->Name();
3387    return nullptr;
3388  }
3389  if (FailOrAbort(this, !res_method->IsDirect(), "Quick-invoked method is direct at ",
3390                  work_insn_idx_)) {
3391    return nullptr;
3392  }
3393  if (FailOrAbort(this, !res_method->IsStatic(), "Quick-invoked method is static at ",
3394                  work_insn_idx_)) {
3395    return nullptr;
3396  }
3397
3398  // We use vAA as our expected arg count, rather than res_method->insSize, because we need to
3399  // match the call to the signature. Also, we might be calling through an abstract method
3400  // definition (which doesn't have register count values).
3401  RegType& actual_arg_type = work_line_->GetInvocationThis(inst, is_range);
3402  if (actual_arg_type.IsConflict()) {  // GetInvocationThis failed.
3403    return nullptr;
3404  }
3405  const size_t expected_args = (is_range) ? inst->VRegA_3rc() : inst->VRegA_35c();
3406  /* caught by static verifier */
3407  DCHECK(is_range || expected_args <= 5);
3408  if (expected_args > code_item_->outs_size_) {
3409    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid argument count (" << expected_args
3410        << ") exceeds outsSize (" << code_item_->outs_size_ << ")";
3411    return nullptr;
3412  }
3413
3414  /*
3415   * Check the "this" argument, which must be an instance of the class that declared the method.
3416   * For an interface class, we don't do the full interface merge (see JoinClass), so we can't do a
3417   * rigorous check here (which is okay since we have to do it at runtime).
3418   */
3419  if (actual_arg_type.IsUninitializedReference() && !res_method->IsConstructor()) {
3420    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "'this' arg must be initialized";
3421    return nullptr;
3422  }
3423  if (!actual_arg_type.IsZero()) {
3424    mirror::Class* klass = res_method->GetDeclaringClass();
3425    std::string temp;
3426    RegType& res_method_class =
3427        reg_types_.FromClass(klass->GetDescriptor(&temp), klass,
3428                             klass->CannotBeAssignedFromOtherTypes());
3429    if (!res_method_class.IsAssignableFrom(actual_arg_type)) {
3430      Fail(actual_arg_type.IsUnresolvedTypes() ? VERIFY_ERROR_NO_CLASS :
3431          VERIFY_ERROR_BAD_CLASS_SOFT) << "'this' argument '" << actual_arg_type
3432          << "' not instance of '" << res_method_class << "'";
3433      return nullptr;
3434    }
3435  }
3436  /*
3437   * Process the target method's signature. This signature may or may not
3438   * have been verified, so we can't assume it's properly formed.
3439   */
3440  const DexFile::TypeList* params = res_method->GetParameterTypeList();
3441  size_t params_size = params == nullptr ? 0 : params->Size();
3442  uint32_t arg[5];
3443  if (!is_range) {
3444    inst->GetVarArgs(arg);
3445  }
3446  size_t actual_args = 1;
3447  for (size_t param_index = 0; param_index < params_size; param_index++) {
3448    if (actual_args >= expected_args) {
3449      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invalid call to '" << PrettyMethod(res_method)
3450                                        << "'. Expected " << expected_args
3451                                         << " arguments, processing argument " << actual_args
3452                                        << " (where longs/doubles count twice).";
3453      return nullptr;
3454    }
3455    const char* descriptor =
3456        res_method->GetTypeDescriptorFromTypeIdx(params->GetTypeItem(param_index).type_idx_);
3457    if (descriptor == nullptr) {
3458      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invocation of " << PrettyMethod(res_method)
3459                                        << " missing signature component";
3460      return nullptr;
3461    }
3462    RegType& reg_type = reg_types_.FromDescriptor(class_loader_->Get(), descriptor, false);
3463    uint32_t get_reg = is_range ? inst->VRegC_3rc() + actual_args : arg[actual_args];
3464    if (!work_line_->VerifyRegisterType(get_reg, reg_type)) {
3465      return res_method;
3466    }
3467    actual_args = reg_type.IsLongOrDoubleTypes() ? actual_args + 2 : actual_args + 1;
3468  }
3469  if (actual_args != expected_args) {
3470    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invocation of " << PrettyMethod(res_method)
3471              << " expected " << expected_args << " arguments, found " << actual_args;
3472    return nullptr;
3473  } else {
3474    return res_method;
3475  }
3476}
3477
3478void MethodVerifier::VerifyNewArray(const Instruction* inst, bool is_filled, bool is_range) {
3479  uint32_t type_idx;
3480  if (!is_filled) {
3481    DCHECK_EQ(inst->Opcode(), Instruction::NEW_ARRAY);
3482    type_idx = inst->VRegC_22c();
3483  } else if (!is_range) {
3484    DCHECK_EQ(inst->Opcode(), Instruction::FILLED_NEW_ARRAY);
3485    type_idx = inst->VRegB_35c();
3486  } else {
3487    DCHECK_EQ(inst->Opcode(), Instruction::FILLED_NEW_ARRAY_RANGE);
3488    type_idx = inst->VRegB_3rc();
3489  }
3490  RegType& res_type = ResolveClassAndCheckAccess(type_idx);
3491  if (res_type.IsConflict()) {  // bad class
3492    DCHECK_NE(failures_.size(), 0U);
3493  } else {
3494    // TODO: check Compiler::CanAccessTypeWithoutChecks returns false when res_type is unresolved
3495    if (!res_type.IsArrayTypes()) {
3496      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "new-array on non-array class " << res_type;
3497    } else if (!is_filled) {
3498      /* make sure "size" register is valid type */
3499      work_line_->VerifyRegisterType(inst->VRegB_22c(), reg_types_.Integer());
3500      /* set register type to array class */
3501      RegType& precise_type = reg_types_.FromUninitialized(res_type);
3502      work_line_->SetRegisterType(inst->VRegA_22c(), precise_type);
3503    } else {
3504      // Verify each register. If "arg_count" is bad, VerifyRegisterType() will run off the end of
3505      // the list and fail. It's legal, if silly, for arg_count to be zero.
3506      RegType& expected_type = reg_types_.GetComponentType(res_type, class_loader_->Get());
3507      uint32_t arg_count = (is_range) ? inst->VRegA_3rc() : inst->VRegA_35c();
3508      uint32_t arg[5];
3509      if (!is_range) {
3510        inst->GetVarArgs(arg);
3511      }
3512      for (size_t ui = 0; ui < arg_count; ui++) {
3513        uint32_t get_reg = is_range ? inst->VRegC_3rc() + ui : arg[ui];
3514        if (!work_line_->VerifyRegisterType(get_reg, expected_type)) {
3515          work_line_->SetResultRegisterType(reg_types_.Conflict());
3516          return;
3517        }
3518      }
3519      // filled-array result goes into "result" register
3520      RegType& precise_type = reg_types_.FromUninitialized(res_type);
3521      work_line_->SetResultRegisterType(precise_type);
3522    }
3523  }
3524}
3525
3526void MethodVerifier::VerifyAGet(const Instruction* inst,
3527                                RegType& insn_type, bool is_primitive) {
3528  RegType& index_type = work_line_->GetRegisterType(inst->VRegC_23x());
3529  if (!index_type.IsArrayIndexTypes()) {
3530    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Invalid reg type for array index (" << index_type << ")";
3531  } else {
3532    RegType& array_type = work_line_->GetRegisterType(inst->VRegB_23x());
3533    if (array_type.IsZero()) {
3534      // Null array class; this code path will fail at runtime. Infer a merge-able type from the
3535      // instruction type. TODO: have a proper notion of bottom here.
3536      if (!is_primitive || insn_type.IsCategory1Types()) {
3537        // Reference or category 1
3538        work_line_->SetRegisterType(inst->VRegA_23x(), reg_types_.Zero());
3539      } else {
3540        // Category 2
3541        work_line_->SetRegisterTypeWide(inst->VRegA_23x(), reg_types_.FromCat2ConstLo(0, false),
3542                                        reg_types_.FromCat2ConstHi(0, false));
3543      }
3544    } else if (!array_type.IsArrayTypes()) {
3545      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "not array type " << array_type << " with aget";
3546    } else {
3547      /* verify the class */
3548      RegType& component_type = reg_types_.GetComponentType(array_type, class_loader_->Get());
3549      if (!component_type.IsReferenceTypes() && !is_primitive) {
3550        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "primitive array type " << array_type
3551            << " source for aget-object";
3552      } else if (component_type.IsNonZeroReferenceTypes() && is_primitive) {
3553        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "reference array type " << array_type
3554            << " source for category 1 aget";
3555      } else if (is_primitive && !insn_type.Equals(component_type) &&
3556                 !((insn_type.IsInteger() && component_type.IsFloat()) ||
3557                 (insn_type.IsLong() && component_type.IsDouble()))) {
3558        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "array type " << array_type
3559            << " incompatible with aget of type " << insn_type;
3560      } else {
3561        // Use knowledge of the field type which is stronger than the type inferred from the
3562        // instruction, which can't differentiate object types and ints from floats, longs from
3563        // doubles.
3564        if (!component_type.IsLowHalf()) {
3565          work_line_->SetRegisterType(inst->VRegA_23x(), component_type);
3566        } else {
3567          work_line_->SetRegisterTypeWide(inst->VRegA_23x(), component_type,
3568                                          component_type.HighHalf(&reg_types_));
3569        }
3570      }
3571    }
3572  }
3573}
3574
3575void MethodVerifier::VerifyPrimitivePut(RegType& target_type, RegType& insn_type,
3576                                        const uint32_t vregA) {
3577  // Primitive assignability rules are weaker than regular assignability rules.
3578  bool instruction_compatible;
3579  bool value_compatible;
3580  RegType& value_type = work_line_->GetRegisterType(vregA);
3581  if (target_type.IsIntegralTypes()) {
3582    instruction_compatible = target_type.Equals(insn_type);
3583    value_compatible = value_type.IsIntegralTypes();
3584  } else if (target_type.IsFloat()) {
3585    instruction_compatible = insn_type.IsInteger();  // no put-float, so expect put-int
3586    value_compatible = value_type.IsFloatTypes();
3587  } else if (target_type.IsLong()) {
3588    instruction_compatible = insn_type.IsLong();
3589    // Additional register check: this is not checked statically (as part of VerifyInstructions),
3590    // as target_type depends on the resolved type of the field.
3591    if (instruction_compatible && work_line_->NumRegs() > vregA + 1) {
3592      RegType& value_type_hi = work_line_->GetRegisterType(vregA + 1);
3593      value_compatible = value_type.IsLongTypes() && value_type.CheckWidePair(value_type_hi);
3594    } else {
3595      value_compatible = false;
3596    }
3597  } else if (target_type.IsDouble()) {
3598    instruction_compatible = insn_type.IsLong();  // no put-double, so expect put-long
3599    // Additional register check: this is not checked statically (as part of VerifyInstructions),
3600    // as target_type depends on the resolved type of the field.
3601    if (instruction_compatible && work_line_->NumRegs() > vregA + 1) {
3602      RegType& value_type_hi = work_line_->GetRegisterType(vregA + 1);
3603      value_compatible = value_type.IsDoubleTypes() && value_type.CheckWidePair(value_type_hi);
3604    } else {
3605      value_compatible = false;
3606    }
3607  } else {
3608    instruction_compatible = false;  // reference with primitive store
3609    value_compatible = false;  // unused
3610  }
3611  if (!instruction_compatible) {
3612    // This is a global failure rather than a class change failure as the instructions and
3613    // the descriptors for the type should have been consistent within the same file at
3614    // compile time.
3615    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "put insn has type '" << insn_type
3616        << "' but expected type '" << target_type << "'";
3617    return;
3618  }
3619  if (!value_compatible) {
3620    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected value in v" << vregA
3621        << " of type " << value_type << " but expected " << target_type << " for put";
3622    return;
3623  }
3624}
3625
3626void MethodVerifier::VerifyAPut(const Instruction* inst,
3627                                RegType& insn_type, bool is_primitive) {
3628  RegType& index_type = work_line_->GetRegisterType(inst->VRegC_23x());
3629  if (!index_type.IsArrayIndexTypes()) {
3630    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Invalid reg type for array index (" << index_type << ")";
3631  } else {
3632    RegType& array_type = work_line_->GetRegisterType(inst->VRegB_23x());
3633    if (array_type.IsZero()) {
3634      // Null array type; this code path will fail at runtime. Infer a merge-able type from the
3635      // instruction type.
3636    } else if (!array_type.IsArrayTypes()) {
3637      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "not array type " << array_type << " with aput";
3638    } else {
3639      RegType& component_type = reg_types_.GetComponentType(array_type, class_loader_->Get());
3640      const uint32_t vregA = inst->VRegA_23x();
3641      if (is_primitive) {
3642        VerifyPrimitivePut(component_type, insn_type, vregA);
3643      } else {
3644        if (!component_type.IsReferenceTypes()) {
3645          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "primitive array type " << array_type
3646              << " source for aput-object";
3647        } else {
3648          // The instruction agrees with the type of array, confirm the value to be stored does too
3649          // Note: we use the instruction type (rather than the component type) for aput-object as
3650          // incompatible classes will be caught at runtime as an array store exception
3651          work_line_->VerifyRegisterType(vregA, insn_type);
3652        }
3653      }
3654    }
3655  }
3656}
3657
3658mirror::ArtField* MethodVerifier::GetStaticField(int field_idx) {
3659  const DexFile::FieldId& field_id = dex_file_->GetFieldId(field_idx);
3660  // Check access to class
3661  RegType& klass_type = ResolveClassAndCheckAccess(field_id.class_idx_);
3662  if (klass_type.IsConflict()) {  // bad class
3663    AppendToLastFailMessage(StringPrintf(" in attempt to access static field %d (%s) in %s",
3664                                         field_idx, dex_file_->GetFieldName(field_id),
3665                                         dex_file_->GetFieldDeclaringClassDescriptor(field_id)));
3666    return nullptr;
3667  }
3668  if (klass_type.IsUnresolvedTypes()) {
3669    return nullptr;  // Can't resolve Class so no more to do here, will do checking at runtime.
3670  }
3671  ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
3672  mirror::ArtField* field = class_linker->ResolveFieldJLS(*dex_file_, field_idx, *dex_cache_,
3673                                                          *class_loader_);
3674  if (field == nullptr) {
3675    VLOG(verifier) << "Unable to resolve static field " << field_idx << " ("
3676              << dex_file_->GetFieldName(field_id) << ") in "
3677              << dex_file_->GetFieldDeclaringClassDescriptor(field_id);
3678    DCHECK(Thread::Current()->IsExceptionPending());
3679    Thread::Current()->ClearException();
3680    return nullptr;
3681  } else if (!GetDeclaringClass().CanAccessMember(field->GetDeclaringClass(),
3682                                                  field->GetAccessFlags())) {
3683    Fail(VERIFY_ERROR_ACCESS_FIELD) << "cannot access static field " << PrettyField(field)
3684                                    << " from " << GetDeclaringClass();
3685    return nullptr;
3686  } else if (!field->IsStatic()) {
3687    Fail(VERIFY_ERROR_CLASS_CHANGE) << "expected field " << PrettyField(field) << " to be static";
3688    return nullptr;
3689  }
3690  return field;
3691}
3692
3693mirror::ArtField* MethodVerifier::GetInstanceField(RegType& obj_type, int field_idx) {
3694  const DexFile::FieldId& field_id = dex_file_->GetFieldId(field_idx);
3695  // Check access to class
3696  RegType& klass_type = ResolveClassAndCheckAccess(field_id.class_idx_);
3697  if (klass_type.IsConflict()) {
3698    AppendToLastFailMessage(StringPrintf(" in attempt to access instance field %d (%s) in %s",
3699                                         field_idx, dex_file_->GetFieldName(field_id),
3700                                         dex_file_->GetFieldDeclaringClassDescriptor(field_id)));
3701    return nullptr;
3702  }
3703  if (klass_type.IsUnresolvedTypes()) {
3704    return nullptr;  // Can't resolve Class so no more to do here
3705  }
3706  ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
3707  mirror::ArtField* field = class_linker->ResolveFieldJLS(*dex_file_, field_idx, *dex_cache_,
3708                                                          *class_loader_);
3709  if (field == nullptr) {
3710    VLOG(verifier) << "Unable to resolve instance field " << field_idx << " ("
3711              << dex_file_->GetFieldName(field_id) << ") in "
3712              << dex_file_->GetFieldDeclaringClassDescriptor(field_id);
3713    DCHECK(Thread::Current()->IsExceptionPending());
3714    Thread::Current()->ClearException();
3715    return nullptr;
3716  } else if (!GetDeclaringClass().CanAccessMember(field->GetDeclaringClass(),
3717                                                  field->GetAccessFlags())) {
3718    Fail(VERIFY_ERROR_ACCESS_FIELD) << "cannot access instance field " << PrettyField(field)
3719                                    << " from " << GetDeclaringClass();
3720    return nullptr;
3721  } else if (field->IsStatic()) {
3722    Fail(VERIFY_ERROR_CLASS_CHANGE) << "expected field " << PrettyField(field)
3723                                    << " to not be static";
3724    return nullptr;
3725  } else if (obj_type.IsZero()) {
3726    // Cannot infer and check type, however, access will cause null pointer exception
3727    return field;
3728  } else if (!obj_type.IsReferenceTypes()) {
3729    // Trying to read a field from something that isn't a reference
3730    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "instance field access on object that has "
3731                                      << "non-reference type " << obj_type;
3732    return nullptr;
3733  } else {
3734    mirror::Class* klass = field->GetDeclaringClass();
3735    RegType& field_klass =
3736        reg_types_.FromClass(dex_file_->GetFieldDeclaringClassDescriptor(field_id),
3737                             klass, klass->CannotBeAssignedFromOtherTypes());
3738    if (obj_type.IsUninitializedTypes() &&
3739        (!IsConstructor() || GetDeclaringClass().Equals(obj_type) ||
3740            !field_klass.Equals(GetDeclaringClass()))) {
3741      // Field accesses through uninitialized references are only allowable for constructors where
3742      // the field is declared in this class
3743      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "cannot access instance field " << PrettyField(field)
3744                                        << " of a not fully initialized object within the context"
3745                                        << " of " << PrettyMethod(dex_method_idx_, *dex_file_);
3746      return nullptr;
3747    } else if (!field_klass.IsAssignableFrom(obj_type)) {
3748      // Trying to access C1.field1 using reference of type C2, which is neither C1 or a sub-class
3749      // of C1. For resolution to occur the declared class of the field must be compatible with
3750      // obj_type, we've discovered this wasn't so, so report the field didn't exist.
3751      Fail(VERIFY_ERROR_NO_FIELD) << "cannot access instance field " << PrettyField(field)
3752                                  << " from object of type " << obj_type;
3753      return nullptr;
3754    } else {
3755      return field;
3756    }
3757  }
3758}
3759
3760template <MethodVerifier::FieldAccessType kAccType>
3761void MethodVerifier::VerifyISFieldAccess(const Instruction* inst, RegType& insn_type,
3762                                         bool is_primitive, bool is_static) {
3763  uint32_t field_idx = is_static ? inst->VRegB_21c() : inst->VRegC_22c();
3764  mirror::ArtField* field;
3765  if (is_static) {
3766    field = GetStaticField(field_idx);
3767  } else {
3768    RegType& object_type = work_line_->GetRegisterType(inst->VRegB_22c());
3769    field = GetInstanceField(object_type, field_idx);
3770    if (UNLIKELY(have_pending_hard_failure_)) {
3771      return;
3772    }
3773  }
3774  RegType* field_type = nullptr;
3775  if (field != nullptr) {
3776    if (kAccType == FieldAccessType::kAccPut) {
3777      if (field->IsFinal() && field->GetDeclaringClass() != GetDeclaringClass().GetClass()) {
3778        Fail(VERIFY_ERROR_ACCESS_FIELD) << "cannot modify final field " << PrettyField(field)
3779                                        << " from other class " << GetDeclaringClass();
3780        return;
3781      }
3782    }
3783
3784    Thread* self = Thread::Current();
3785    mirror::Class* field_type_class;
3786    {
3787      StackHandleScope<1> hs(self);
3788      HandleWrapper<mirror::ArtField> h_field(hs.NewHandleWrapper(&field));
3789      field_type_class = FieldHelper(h_field).GetType(can_load_classes_);
3790    }
3791    if (field_type_class != nullptr) {
3792      field_type = &reg_types_.FromClass(field->GetTypeDescriptor(), field_type_class,
3793                                         field_type_class->CannotBeAssignedFromOtherTypes());
3794    } else {
3795      DCHECK(!can_load_classes_ || self->IsExceptionPending());
3796      self->ClearException();
3797    }
3798  }
3799  if (field_type == nullptr) {
3800    const DexFile::FieldId& field_id = dex_file_->GetFieldId(field_idx);
3801    const char* descriptor = dex_file_->GetFieldTypeDescriptor(field_id);
3802    field_type = &reg_types_.FromDescriptor(class_loader_->Get(), descriptor, false);
3803  }
3804  DCHECK(field_type != nullptr);
3805  const uint32_t vregA = (is_static) ? inst->VRegA_21c() : inst->VRegA_22c();
3806  static_assert(kAccType == FieldAccessType::kAccPut || kAccType == FieldAccessType::kAccGet,
3807                "Unexpected third access type");
3808  if (kAccType == FieldAccessType::kAccPut) {
3809    // sput or iput.
3810    if (is_primitive) {
3811      VerifyPrimitivePut(*field_type, insn_type, vregA);
3812    } else {
3813      if (!insn_type.IsAssignableFrom(*field_type)) {
3814        Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "expected field " << PrettyField(field)
3815                                                << " to be compatible with type '" << insn_type
3816                                                << "' but found type '" << *field_type
3817                                                << "' in put-object";
3818        return;
3819      }
3820      work_line_->VerifyRegisterType(vregA, *field_type);
3821    }
3822  } else if (kAccType == FieldAccessType::kAccGet) {
3823    // sget or iget.
3824    if (is_primitive) {
3825      if (field_type->Equals(insn_type) ||
3826          (field_type->IsFloat() && insn_type.IsInteger()) ||
3827          (field_type->IsDouble() && insn_type.IsLong())) {
3828        // expected that read is of the correct primitive type or that int reads are reading
3829        // floats or long reads are reading doubles
3830      } else {
3831        // This is a global failure rather than a class change failure as the instructions and
3832        // the descriptors for the type should have been consistent within the same file at
3833        // compile time
3834        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected field " << PrettyField(field)
3835                                          << " to be of type '" << insn_type
3836                                          << "' but found type '" << *field_type << "' in get";
3837        return;
3838      }
3839    } else {
3840      if (!insn_type.IsAssignableFrom(*field_type)) {
3841        Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "expected field " << PrettyField(field)
3842                                          << " to be compatible with type '" << insn_type
3843                                          << "' but found type '" << *field_type
3844                                          << "' in get-object";
3845        work_line_->SetRegisterType(vregA, reg_types_.Conflict());
3846        return;
3847      }
3848    }
3849    if (!field_type->IsLowHalf()) {
3850      work_line_->SetRegisterType(vregA, *field_type);
3851    } else {
3852      work_line_->SetRegisterTypeWide(vregA, *field_type, field_type->HighHalf(&reg_types_));
3853    }
3854  } else {
3855    LOG(FATAL) << "Unexpected case.";
3856  }
3857}
3858
3859mirror::ArtField* MethodVerifier::GetQuickFieldAccess(const Instruction* inst,
3860                                                      RegisterLine* reg_line) {
3861  DCHECK(inst->Opcode() == Instruction::IGET_QUICK ||
3862         inst->Opcode() == Instruction::IGET_WIDE_QUICK ||
3863         inst->Opcode() == Instruction::IGET_OBJECT_QUICK ||
3864         inst->Opcode() == Instruction::IPUT_QUICK ||
3865         inst->Opcode() == Instruction::IPUT_WIDE_QUICK ||
3866         inst->Opcode() == Instruction::IPUT_OBJECT_QUICK);
3867  RegType& object_type = reg_line->GetRegisterType(inst->VRegB_22c());
3868  if (!object_type.HasClass()) {
3869    VLOG(verifier) << "Failed to get mirror::Class* from '" << object_type << "'";
3870    return nullptr;
3871  }
3872  uint32_t field_offset = static_cast<uint32_t>(inst->VRegC_22c());
3873  mirror::ArtField* f = mirror::ArtField::FindInstanceFieldWithOffset(object_type.GetClass(),
3874                                                                      field_offset);
3875  if (f == nullptr) {
3876    VLOG(verifier) << "Failed to find instance field at offset '" << field_offset
3877                   << "' from '" << PrettyDescriptor(object_type.GetClass()) << "'";
3878  }
3879  return f;
3880}
3881
3882template <MethodVerifier::FieldAccessType kAccType>
3883void MethodVerifier::VerifyQuickFieldAccess(const Instruction* inst, RegType& insn_type,
3884                                            bool is_primitive) {
3885  DCHECK(Runtime::Current()->IsStarted() || verify_to_dump_);
3886
3887  mirror::ArtField* field = GetQuickFieldAccess(inst, work_line_.get());
3888  if (field == nullptr) {
3889    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Cannot infer field from " << inst->Name();
3890    return;
3891  }
3892
3893  // For an IPUT_QUICK, we now test for final flag of the field.
3894  if (kAccType == FieldAccessType::kAccPut) {
3895    if (field->IsFinal() && field->GetDeclaringClass() != GetDeclaringClass().GetClass()) {
3896      Fail(VERIFY_ERROR_ACCESS_FIELD) << "cannot modify final field " << PrettyField(field)
3897                                      << " from other class " << GetDeclaringClass();
3898      return;
3899    }
3900  }
3901
3902  // Get the field type.
3903  RegType* field_type;
3904  {
3905    mirror::Class* field_type_class;
3906    {
3907      StackHandleScope<1> hs(Thread::Current());
3908      HandleWrapper<mirror::ArtField> h_field(hs.NewHandleWrapper(&field));
3909      field_type_class = FieldHelper(h_field).GetType(can_load_classes_);
3910    }
3911
3912    if (field_type_class != nullptr) {
3913      field_type = &reg_types_.FromClass(field->GetTypeDescriptor(), field_type_class,
3914                                         field_type_class->CannotBeAssignedFromOtherTypes());
3915    } else {
3916      Thread* self = Thread::Current();
3917      DCHECK(!can_load_classes_ || self->IsExceptionPending());
3918      self->ClearException();
3919      field_type = &reg_types_.FromDescriptor(field->GetDeclaringClass()->GetClassLoader(),
3920                                              field->GetTypeDescriptor(), false);
3921    }
3922    if (field_type == nullptr) {
3923      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Cannot infer field type from " << inst->Name();
3924      return;
3925    }
3926  }
3927
3928  const uint32_t vregA = inst->VRegA_22c();
3929  static_assert(kAccType == FieldAccessType::kAccPut || kAccType == FieldAccessType::kAccGet,
3930                "Unexpected third access type");
3931  if (kAccType == FieldAccessType::kAccPut) {
3932    if (is_primitive) {
3933      // Primitive field assignability rules are weaker than regular assignability rules
3934      bool instruction_compatible;
3935      bool value_compatible;
3936      RegType& value_type = work_line_->GetRegisterType(vregA);
3937      if (field_type->IsIntegralTypes()) {
3938        instruction_compatible = insn_type.IsIntegralTypes();
3939        value_compatible = value_type.IsIntegralTypes();
3940      } else if (field_type->IsFloat()) {
3941        instruction_compatible = insn_type.IsInteger();  // no [is]put-float, so expect [is]put-int
3942        value_compatible = value_type.IsFloatTypes();
3943      } else if (field_type->IsLong()) {
3944        instruction_compatible = insn_type.IsLong();
3945        value_compatible = value_type.IsLongTypes();
3946      } else if (field_type->IsDouble()) {
3947        instruction_compatible = insn_type.IsLong();  // no [is]put-double, so expect [is]put-long
3948        value_compatible = value_type.IsDoubleTypes();
3949      } else {
3950        instruction_compatible = false;  // reference field with primitive store
3951        value_compatible = false;  // unused
3952      }
3953      if (!instruction_compatible) {
3954        // This is a global failure rather than a class change failure as the instructions and
3955        // the descriptors for the type should have been consistent within the same file at
3956        // compile time
3957        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected field " << PrettyField(field)
3958                                          << " to be of type '" << insn_type
3959                                          << "' but found type '" << *field_type
3960                                          << "' in put";
3961        return;
3962      }
3963      if (!value_compatible) {
3964        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected value in v" << vregA
3965            << " of type " << value_type
3966            << " but expected " << *field_type
3967            << " for store to " << PrettyField(field) << " in put";
3968        return;
3969      }
3970    } else {
3971      if (!insn_type.IsAssignableFrom(*field_type)) {
3972        Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "expected field " << PrettyField(field)
3973                                          << " to be compatible with type '" << insn_type
3974                                          << "' but found type '" << *field_type
3975                                          << "' in put-object";
3976        return;
3977      }
3978      work_line_->VerifyRegisterType(vregA, *field_type);
3979    }
3980  } else if (kAccType == FieldAccessType::kAccGet) {
3981    if (is_primitive) {
3982      if (field_type->Equals(insn_type) ||
3983          (field_type->IsFloat() && insn_type.IsIntegralTypes()) ||
3984          (field_type->IsDouble() && insn_type.IsLongTypes())) {
3985        // expected that read is of the correct primitive type or that int reads are reading
3986        // floats or long reads are reading doubles
3987      } else {
3988        // This is a global failure rather than a class change failure as the instructions and
3989        // the descriptors for the type should have been consistent within the same file at
3990        // compile time
3991        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected field " << PrettyField(field)
3992                                          << " to be of type '" << insn_type
3993                                          << "' but found type '" << *field_type << "' in Get";
3994        return;
3995      }
3996    } else {
3997      if (!insn_type.IsAssignableFrom(*field_type)) {
3998        Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "expected field " << PrettyField(field)
3999                                          << " to be compatible with type '" << insn_type
4000                                          << "' but found type '" << *field_type
4001                                          << "' in get-object";
4002        work_line_->SetRegisterType(vregA, reg_types_.Conflict());
4003        return;
4004      }
4005    }
4006    if (!field_type->IsLowHalf()) {
4007      work_line_->SetRegisterType(vregA, *field_type);
4008    } else {
4009      work_line_->SetRegisterTypeWide(vregA, *field_type, field_type->HighHalf(&reg_types_));
4010    }
4011  } else {
4012    LOG(FATAL) << "Unexpected case.";
4013  }
4014}
4015
4016bool MethodVerifier::CheckNotMoveException(const uint16_t* insns, int insn_idx) {
4017  if ((insns[insn_idx] & 0xff) == Instruction::MOVE_EXCEPTION) {
4018    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid use of move-exception";
4019    return false;
4020  }
4021  return true;
4022}
4023
4024bool MethodVerifier::UpdateRegisters(uint32_t next_insn, RegisterLine* merge_line,
4025                                     bool update_merge_line) {
4026  bool changed = true;
4027  RegisterLine* target_line = reg_table_.GetLine(next_insn);
4028  if (!insn_flags_[next_insn].IsVisitedOrChanged()) {
4029    /*
4030     * We haven't processed this instruction before, and we haven't touched the registers here, so
4031     * there's nothing to "merge". Copy the registers over and mark it as changed. (This is the
4032     * only way a register can transition out of "unknown", so this is not just an optimization.)
4033     */
4034    if (!insn_flags_[next_insn].IsReturn()) {
4035      target_line->CopyFromLine(merge_line);
4036    } else {
4037      // Verify that the monitor stack is empty on return.
4038      if (!merge_line->VerifyMonitorStackEmpty()) {
4039        return false;
4040      }
4041      // For returns we only care about the operand to the return, all other registers are dead.
4042      // Initialize them as conflicts so they don't add to GC and deoptimization information.
4043      const Instruction* ret_inst = Instruction::At(code_item_->insns_ + next_insn);
4044      Instruction::Code opcode = ret_inst->Opcode();
4045      if ((opcode == Instruction::RETURN_VOID) || (opcode == Instruction::RETURN_VOID_BARRIER)) {
4046        target_line->MarkAllRegistersAsConflicts();
4047      } else {
4048        target_line->CopyFromLine(merge_line);
4049        if (opcode == Instruction::RETURN_WIDE) {
4050          target_line->MarkAllRegistersAsConflictsExceptWide(ret_inst->VRegA_11x());
4051        } else {
4052          target_line->MarkAllRegistersAsConflictsExcept(ret_inst->VRegA_11x());
4053        }
4054      }
4055    }
4056  } else {
4057    std::unique_ptr<RegisterLine> copy(gDebugVerify ?
4058                                           RegisterLine::Create(target_line->NumRegs(), this) :
4059                                           nullptr);
4060    if (gDebugVerify) {
4061      copy->CopyFromLine(target_line);
4062    }
4063    changed = target_line->MergeRegisters(merge_line);
4064    if (have_pending_hard_failure_) {
4065      return false;
4066    }
4067    if (gDebugVerify && changed) {
4068      LogVerifyInfo() << "Merging at [" << reinterpret_cast<void*>(work_insn_idx_) << "]"
4069                      << " to [" << reinterpret_cast<void*>(next_insn) << "]: " << "\n"
4070                      << *copy.get() << "  MERGE\n"
4071                      << *merge_line << "  ==\n"
4072                      << *target_line << "\n";
4073    }
4074    if (update_merge_line && changed) {
4075      merge_line->CopyFromLine(target_line);
4076    }
4077  }
4078  if (changed) {
4079    insn_flags_[next_insn].SetChanged();
4080  }
4081  return true;
4082}
4083
4084InstructionFlags* MethodVerifier::CurrentInsnFlags() {
4085  return &insn_flags_[work_insn_idx_];
4086}
4087
4088RegType& MethodVerifier::GetMethodReturnType() {
4089  if (return_type_ == nullptr) {
4090    if (mirror_method_ != nullptr) {
4091      Thread* self = Thread::Current();
4092      StackHandleScope<1> hs(self);
4093      mirror::Class* return_type_class;
4094      {
4095        HandleWrapper<mirror::ArtMethod> h_mirror_method(hs.NewHandleWrapper(&mirror_method_));
4096        return_type_class = MethodHelper(h_mirror_method).GetReturnType(can_load_classes_);
4097      }
4098      if (return_type_class != nullptr) {
4099        return_type_ = &reg_types_.FromClass(mirror_method_->GetReturnTypeDescriptor(),
4100                                             return_type_class,
4101                                             return_type_class->CannotBeAssignedFromOtherTypes());
4102      } else {
4103        DCHECK(!can_load_classes_ || self->IsExceptionPending());
4104        self->ClearException();
4105      }
4106    }
4107    if (return_type_ == nullptr) {
4108      const DexFile::MethodId& method_id = dex_file_->GetMethodId(dex_method_idx_);
4109      const DexFile::ProtoId& proto_id = dex_file_->GetMethodPrototype(method_id);
4110      uint16_t return_type_idx = proto_id.return_type_idx_;
4111      const char* descriptor = dex_file_->GetTypeDescriptor(dex_file_->GetTypeId(return_type_idx));
4112      return_type_ = &reg_types_.FromDescriptor(class_loader_->Get(), descriptor, false);
4113    }
4114  }
4115  return *return_type_;
4116}
4117
4118RegType& MethodVerifier::GetDeclaringClass() {
4119  if (declaring_class_ == nullptr) {
4120    const DexFile::MethodId& method_id = dex_file_->GetMethodId(dex_method_idx_);
4121    const char* descriptor
4122        = dex_file_->GetTypeDescriptor(dex_file_->GetTypeId(method_id.class_idx_));
4123    if (mirror_method_ != nullptr) {
4124      mirror::Class* klass = mirror_method_->GetDeclaringClass();
4125      declaring_class_ = &reg_types_.FromClass(descriptor, klass,
4126                                               klass->CannotBeAssignedFromOtherTypes());
4127    } else {
4128      declaring_class_ = &reg_types_.FromDescriptor(class_loader_->Get(), descriptor, false);
4129    }
4130  }
4131  return *declaring_class_;
4132}
4133
4134std::vector<int32_t> MethodVerifier::DescribeVRegs(uint32_t dex_pc) {
4135  RegisterLine* line = reg_table_.GetLine(dex_pc);
4136  DCHECK(line != nullptr) << "No register line at DEX pc " << StringPrintf("0x%x", dex_pc);
4137  std::vector<int32_t> result;
4138  for (size_t i = 0; i < line->NumRegs(); ++i) {
4139    RegType& type = line->GetRegisterType(i);
4140    if (type.IsConstant()) {
4141      result.push_back(type.IsPreciseConstant() ? kConstant : kImpreciseConstant);
4142      result.push_back(type.ConstantValue());
4143    } else if (type.IsConstantLo()) {
4144      result.push_back(type.IsPreciseConstantLo() ? kConstant : kImpreciseConstant);
4145      result.push_back(type.ConstantValueLo());
4146    } else if (type.IsConstantHi()) {
4147      result.push_back(type.IsPreciseConstantHi() ? kConstant : kImpreciseConstant);
4148      result.push_back(type.ConstantValueHi());
4149    } else if (type.IsIntegralTypes()) {
4150      result.push_back(kIntVReg);
4151      result.push_back(0);
4152    } else if (type.IsFloat()) {
4153      result.push_back(kFloatVReg);
4154      result.push_back(0);
4155    } else if (type.IsLong()) {
4156      result.push_back(kLongLoVReg);
4157      result.push_back(0);
4158      result.push_back(kLongHiVReg);
4159      result.push_back(0);
4160      ++i;
4161    } else if (type.IsDouble()) {
4162      result.push_back(kDoubleLoVReg);
4163      result.push_back(0);
4164      result.push_back(kDoubleHiVReg);
4165      result.push_back(0);
4166      ++i;
4167    } else if (type.IsUndefined() || type.IsConflict() || type.IsHighHalf()) {
4168      result.push_back(kUndefined);
4169      result.push_back(0);
4170    } else {
4171      CHECK(type.IsNonZeroReferenceTypes());
4172      result.push_back(kReferenceVReg);
4173      result.push_back(0);
4174    }
4175  }
4176  return result;
4177}
4178
4179RegType& MethodVerifier::DetermineCat1Constant(int32_t value, bool precise) {
4180  if (precise) {
4181    // Precise constant type.
4182    return reg_types_.FromCat1Const(value, true);
4183  } else {
4184    // Imprecise constant type.
4185    if (value < -32768) {
4186      return reg_types_.IntConstant();
4187    } else if (value < -128) {
4188      return reg_types_.ShortConstant();
4189    } else if (value < 0) {
4190      return reg_types_.ByteConstant();
4191    } else if (value == 0) {
4192      return reg_types_.Zero();
4193    } else if (value == 1) {
4194      return reg_types_.One();
4195    } else if (value < 128) {
4196      return reg_types_.PosByteConstant();
4197    } else if (value < 32768) {
4198      return reg_types_.PosShortConstant();
4199    } else if (value < 65536) {
4200      return reg_types_.CharConstant();
4201    } else {
4202      return reg_types_.IntConstant();
4203    }
4204  }
4205}
4206
4207void MethodVerifier::Init() {
4208  art::verifier::RegTypeCache::Init();
4209}
4210
4211void MethodVerifier::Shutdown() {
4212  verifier::RegTypeCache::ShutDown();
4213}
4214
4215void MethodVerifier::VisitStaticRoots(RootCallback* callback, void* arg) {
4216  RegTypeCache::VisitStaticRoots(callback, arg);
4217}
4218
4219void MethodVerifier::VisitRoots(RootCallback* callback, void* arg) {
4220  reg_types_.VisitRoots(callback, arg);
4221}
4222
4223}  // namespace verifier
4224}  // namespace art
4225