method_verifier.cc revision 61c5ebc6aee2cac1c363de6fbdac25ada1697fdb
1/*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include "method_verifier-inl.h"
18
19#include <iostream>
20
21#include "base/logging.h"
22#include "base/mutex-inl.h"
23#include "class_linker.h"
24#include "compiler_callbacks.h"
25#include "dex_file-inl.h"
26#include "dex_instruction-inl.h"
27#include "dex_instruction_visitor.h"
28#include "gc/accounting/card_table-inl.h"
29#include "indenter.h"
30#include "intern_table.h"
31#include "leb128.h"
32#include "mirror/art_field-inl.h"
33#include "mirror/art_method-inl.h"
34#include "mirror/class.h"
35#include "mirror/class-inl.h"
36#include "mirror/dex_cache-inl.h"
37#include "mirror/object-inl.h"
38#include "mirror/object_array-inl.h"
39#include "object_utils.h"
40#include "register_line-inl.h"
41#include "runtime.h"
42#include "scoped_thread_state_change.h"
43#include "handle_scope-inl.h"
44#include "verifier/dex_gc_map.h"
45
46namespace art {
47namespace verifier {
48
49static const bool gDebugVerify = false;
50// TODO: Add a constant to method_verifier to turn on verbose logging?
51
52void PcToRegisterLineTable::Init(RegisterTrackingMode mode, InstructionFlags* flags,
53                                 uint32_t insns_size, uint16_t registers_size,
54                                 MethodVerifier* verifier) {
55  DCHECK_GT(insns_size, 0U);
56  register_lines_.reset(new RegisterLine*[insns_size]());
57  size_ = insns_size;
58  for (uint32_t i = 0; i < insns_size; i++) {
59    bool interesting = false;
60    switch (mode) {
61      case kTrackRegsAll:
62        interesting = flags[i].IsOpcode();
63        break;
64      case kTrackCompilerInterestPoints:
65        interesting = flags[i].IsCompileTimeInfoPoint() || flags[i].IsBranchTarget();
66        break;
67      case kTrackRegsBranches:
68        interesting = flags[i].IsBranchTarget();
69        break;
70      default:
71        break;
72    }
73    if (interesting) {
74      register_lines_[i] = RegisterLine::Create(registers_size, verifier);
75    }
76  }
77}
78
79PcToRegisterLineTable::~PcToRegisterLineTable() {
80  for (size_t i = 0; i < size_; i++) {
81    delete register_lines_[i];
82    if (kIsDebugBuild) {
83      register_lines_[i] = nullptr;
84    }
85  }
86}
87
88MethodVerifier::FailureKind MethodVerifier::VerifyClass(mirror::Class* klass,
89                                                        bool allow_soft_failures,
90                                                        std::string* error) {
91  if (klass->IsVerified()) {
92    return kNoFailure;
93  }
94  bool early_failure = false;
95  std::string failure_message;
96  const DexFile& dex_file = klass->GetDexFile();
97  const DexFile::ClassDef* class_def = klass->GetClassDef();
98  mirror::Class* super = klass->GetSuperClass();
99  if (super == NULL && "Ljava/lang/Object;" != klass->GetDescriptor()) {
100    early_failure = true;
101    failure_message = " that has no super class";
102  } else if (super != NULL && super->IsFinal()) {
103    early_failure = true;
104    failure_message = " that attempts to sub-class final class " + PrettyDescriptor(super);
105  } else if (class_def == NULL) {
106    early_failure = true;
107    failure_message = " that isn't present in dex file " + dex_file.GetLocation();
108  }
109  if (early_failure) {
110    *error = "Verifier rejected class " + PrettyDescriptor(klass) + failure_message;
111    if (Runtime::Current()->IsCompiler()) {
112      ClassReference ref(&dex_file, klass->GetDexClassDefIndex());
113      Runtime::Current()->GetCompilerCallbacks()->ClassRejected(ref);
114    }
115    return kHardFailure;
116  }
117  StackHandleScope<2> hs(Thread::Current());
118  Handle<mirror::DexCache> dex_cache(hs.NewHandle(klass->GetDexCache()));
119  Handle<mirror::ClassLoader> class_loader(hs.NewHandle(klass->GetClassLoader()));
120  return VerifyClass(&dex_file, dex_cache, class_loader, class_def, allow_soft_failures, error);
121}
122
123MethodVerifier::FailureKind MethodVerifier::VerifyClass(const DexFile* dex_file,
124                                                        Handle<mirror::DexCache> dex_cache,
125                                                        Handle<mirror::ClassLoader> class_loader,
126                                                        const DexFile::ClassDef* class_def,
127                                                        bool allow_soft_failures,
128                                                        std::string* error) {
129  DCHECK(class_def != nullptr);
130  const byte* class_data = dex_file->GetClassData(*class_def);
131  if (class_data == NULL) {
132    // empty class, probably a marker interface
133    return kNoFailure;
134  }
135  ClassDataItemIterator it(*dex_file, class_data);
136  while (it.HasNextStaticField() || it.HasNextInstanceField()) {
137    it.Next();
138  }
139  size_t error_count = 0;
140  bool hard_fail = false;
141  ClassLinker* linker = Runtime::Current()->GetClassLinker();
142  int64_t previous_direct_method_idx = -1;
143  while (it.HasNextDirectMethod()) {
144    uint32_t method_idx = it.GetMemberIndex();
145    if (method_idx == previous_direct_method_idx) {
146      // smali can create dex files with two encoded_methods sharing the same method_idx
147      // http://code.google.com/p/smali/issues/detail?id=119
148      it.Next();
149      continue;
150    }
151    previous_direct_method_idx = method_idx;
152    InvokeType type = it.GetMethodInvokeType(*class_def);
153    mirror::ArtMethod* method =
154        linker->ResolveMethod(*dex_file, method_idx, dex_cache, class_loader,
155                              NullHandle<mirror::ArtMethod>(), type);
156    if (method == NULL) {
157      DCHECK(Thread::Current()->IsExceptionPending());
158      // We couldn't resolve the method, but continue regardless.
159      Thread::Current()->ClearException();
160    }
161    MethodVerifier::FailureKind result = VerifyMethod(method_idx,
162                                                      dex_file,
163                                                      dex_cache,
164                                                      class_loader,
165                                                      class_def,
166                                                      it.GetMethodCodeItem(),
167                                                      method,
168                                                      it.GetMemberAccessFlags(),
169                                                      allow_soft_failures,
170                                                      false);
171    if (result != kNoFailure) {
172      if (result == kHardFailure) {
173        hard_fail = true;
174        if (error_count > 0) {
175          *error += "\n";
176        }
177        *error = "Verifier rejected class ";
178        *error += PrettyDescriptor(dex_file->GetClassDescriptor(*class_def));
179        *error += " due to bad method ";
180        *error += PrettyMethod(method_idx, *dex_file);
181      }
182      ++error_count;
183    }
184    it.Next();
185  }
186  int64_t previous_virtual_method_idx = -1;
187  while (it.HasNextVirtualMethod()) {
188    uint32_t method_idx = it.GetMemberIndex();
189    if (method_idx == previous_virtual_method_idx) {
190      // smali can create dex files with two encoded_methods sharing the same method_idx
191      // http://code.google.com/p/smali/issues/detail?id=119
192      it.Next();
193      continue;
194    }
195    previous_virtual_method_idx = method_idx;
196    InvokeType type = it.GetMethodInvokeType(*class_def);
197    mirror::ArtMethod* method =
198        linker->ResolveMethod(*dex_file, method_idx, dex_cache, class_loader,
199                              NullHandle<mirror::ArtMethod>(), type);
200    if (method == NULL) {
201      DCHECK(Thread::Current()->IsExceptionPending());
202      // We couldn't resolve the method, but continue regardless.
203      Thread::Current()->ClearException();
204    }
205    MethodVerifier::FailureKind result = VerifyMethod(method_idx,
206                                                      dex_file,
207                                                      dex_cache,
208                                                      class_loader,
209                                                      class_def,
210                                                      it.GetMethodCodeItem(),
211                                                      method,
212                                                      it.GetMemberAccessFlags(),
213                                                      allow_soft_failures,
214                                                      false);
215    if (result != kNoFailure) {
216      if (result == kHardFailure) {
217        hard_fail = true;
218        if (error_count > 0) {
219          *error += "\n";
220        }
221        *error = "Verifier rejected class ";
222        *error += PrettyDescriptor(dex_file->GetClassDescriptor(*class_def));
223        *error += " due to bad method ";
224        *error += PrettyMethod(method_idx, *dex_file);
225      }
226      ++error_count;
227    }
228    it.Next();
229  }
230  if (error_count == 0) {
231    return kNoFailure;
232  } else {
233    return hard_fail ? kHardFailure : kSoftFailure;
234  }
235}
236
237MethodVerifier::FailureKind MethodVerifier::VerifyMethod(uint32_t method_idx,
238                                                         const DexFile* dex_file,
239                                                         Handle<mirror::DexCache> dex_cache,
240                                                         Handle<mirror::ClassLoader> class_loader,
241                                                         const DexFile::ClassDef* class_def,
242                                                         const DexFile::CodeItem* code_item,
243                                                         mirror::ArtMethod* method,
244                                                         uint32_t method_access_flags,
245                                                         bool allow_soft_failures,
246                                                         bool need_precise_constants) {
247  MethodVerifier::FailureKind result = kNoFailure;
248  uint64_t start_ns = NanoTime();
249
250  MethodVerifier verifier(dex_file, &dex_cache, &class_loader, class_def, code_item,
251                           method_idx, method, method_access_flags, true, allow_soft_failures,
252                           need_precise_constants);
253  if (verifier.Verify()) {
254    // Verification completed, however failures may be pending that didn't cause the verification
255    // to hard fail.
256    CHECK(!verifier.have_pending_hard_failure_);
257    if (verifier.failures_.size() != 0) {
258      if (VLOG_IS_ON(verifier)) {
259          verifier.DumpFailures(VLOG_STREAM(verifier) << "Soft verification failures in "
260                                << PrettyMethod(method_idx, *dex_file) << "\n");
261      }
262      result = kSoftFailure;
263    }
264  } else {
265    // Bad method data.
266    CHECK_NE(verifier.failures_.size(), 0U);
267    CHECK(verifier.have_pending_hard_failure_);
268    verifier.DumpFailures(LOG(INFO) << "Verification error in "
269                                    << PrettyMethod(method_idx, *dex_file) << "\n");
270    if (gDebugVerify) {
271      std::cout << "\n" << verifier.info_messages_.str();
272      verifier.Dump(std::cout);
273    }
274    result = kHardFailure;
275  }
276  uint64_t duration_ns = NanoTime() - start_ns;
277  if (duration_ns > MsToNs(100)) {
278    LOG(WARNING) << "Verification of " << PrettyMethod(method_idx, *dex_file)
279                 << " took " << PrettyDuration(duration_ns);
280  }
281  return result;
282}
283
284void MethodVerifier::VerifyMethodAndDump(std::ostream& os, uint32_t dex_method_idx,
285                                         const DexFile* dex_file,
286                                         Handle<mirror::DexCache> dex_cache,
287                                         Handle<mirror::ClassLoader> class_loader,
288                                         const DexFile::ClassDef* class_def,
289                                         const DexFile::CodeItem* code_item,
290                                         mirror::ArtMethod* method,
291                                         uint32_t method_access_flags) {
292  MethodVerifier verifier(dex_file, &dex_cache, &class_loader, class_def, code_item,
293                          dex_method_idx, method, method_access_flags, true, true, true);
294  verifier.Verify();
295  verifier.DumpFailures(os);
296  os << verifier.info_messages_.str();
297  verifier.Dump(os);
298}
299
300MethodVerifier::MethodVerifier(const DexFile* dex_file, Handle<mirror::DexCache>* dex_cache,
301                               Handle<mirror::ClassLoader>* class_loader,
302                               const DexFile::ClassDef* class_def,
303                               const DexFile::CodeItem* code_item, uint32_t dex_method_idx,
304                               mirror::ArtMethod* method, uint32_t method_access_flags,
305                               bool can_load_classes, bool allow_soft_failures,
306                               bool need_precise_constants)
307    : reg_types_(can_load_classes),
308      work_insn_idx_(-1),
309      dex_method_idx_(dex_method_idx),
310      mirror_method_(method),
311      method_access_flags_(method_access_flags),
312      return_type_(nullptr),
313      dex_file_(dex_file),
314      dex_cache_(dex_cache),
315      class_loader_(class_loader),
316      class_def_(class_def),
317      code_item_(code_item),
318      declaring_class_(NULL),
319      interesting_dex_pc_(-1),
320      monitor_enter_dex_pcs_(nullptr),
321      have_pending_hard_failure_(false),
322      have_pending_runtime_throw_failure_(false),
323      new_instance_count_(0),
324      monitor_enter_count_(0),
325      can_load_classes_(can_load_classes),
326      allow_soft_failures_(allow_soft_failures),
327      need_precise_constants_(need_precise_constants),
328      has_check_casts_(false),
329      has_virtual_or_interface_invokes_(false) {
330  Runtime::Current()->AddMethodVerifier(this);
331  DCHECK(class_def != nullptr);
332}
333
334MethodVerifier::~MethodVerifier() {
335  Runtime::Current()->RemoveMethodVerifier(this);
336  STLDeleteElements(&failure_messages_);
337}
338
339void MethodVerifier::FindLocksAtDexPc(mirror::ArtMethod* m, uint32_t dex_pc,
340                                      std::vector<uint32_t>* monitor_enter_dex_pcs) {
341  MethodHelper mh(m);
342  StackHandleScope<2> hs(Thread::Current());
343  Handle<mirror::DexCache> dex_cache(hs.NewHandle(mh.GetDexCache()));
344  Handle<mirror::ClassLoader> class_loader(hs.NewHandle(mh.GetClassLoader()));
345  MethodVerifier verifier(&mh.GetDexFile(), &dex_cache, &class_loader, &mh.GetClassDef(),
346                          mh.GetCodeItem(), m->GetDexMethodIndex(), m, m->GetAccessFlags(), false,
347                          true, false);
348  verifier.interesting_dex_pc_ = dex_pc;
349  verifier.monitor_enter_dex_pcs_ = monitor_enter_dex_pcs;
350  verifier.FindLocksAtDexPc();
351}
352
353void MethodVerifier::FindLocksAtDexPc() {
354  CHECK(monitor_enter_dex_pcs_ != NULL);
355  CHECK(code_item_ != NULL);  // This only makes sense for methods with code.
356
357  // Strictly speaking, we ought to be able to get away with doing a subset of the full method
358  // verification. In practice, the phase we want relies on data structures set up by all the
359  // earlier passes, so we just run the full method verification and bail out early when we've
360  // got what we wanted.
361  Verify();
362}
363
364mirror::ArtField* MethodVerifier::FindAccessedFieldAtDexPc(mirror::ArtMethod* m,
365                                                           uint32_t dex_pc) {
366  MethodHelper mh(m);
367  StackHandleScope<2> hs(Thread::Current());
368  Handle<mirror::DexCache> dex_cache(hs.NewHandle(mh.GetDexCache()));
369  Handle<mirror::ClassLoader> class_loader(hs.NewHandle(mh.GetClassLoader()));
370  MethodVerifier verifier(&mh.GetDexFile(), &dex_cache, &class_loader, &mh.GetClassDef(),
371                          mh.GetCodeItem(), m->GetDexMethodIndex(), m, m->GetAccessFlags(), true,
372                          true, false);
373  return verifier.FindAccessedFieldAtDexPc(dex_pc);
374}
375
376mirror::ArtField* MethodVerifier::FindAccessedFieldAtDexPc(uint32_t dex_pc) {
377  CHECK(code_item_ != NULL);  // This only makes sense for methods with code.
378
379  // Strictly speaking, we ought to be able to get away with doing a subset of the full method
380  // verification. In practice, the phase we want relies on data structures set up by all the
381  // earlier passes, so we just run the full method verification and bail out early when we've
382  // got what we wanted.
383  bool success = Verify();
384  if (!success) {
385    return nullptr;
386  }
387  RegisterLine* register_line = reg_table_.GetLine(dex_pc);
388  if (register_line == NULL) {
389    return nullptr;
390  }
391  const Instruction* inst = Instruction::At(code_item_->insns_ + dex_pc);
392  return GetQuickFieldAccess(inst, register_line);
393}
394
395mirror::ArtMethod* MethodVerifier::FindInvokedMethodAtDexPc(mirror::ArtMethod* m,
396                                                            uint32_t dex_pc) {
397  MethodHelper mh(m);
398  StackHandleScope<2> hs(Thread::Current());
399  Handle<mirror::DexCache> dex_cache(hs.NewHandle(mh.GetDexCache()));
400  Handle<mirror::ClassLoader> class_loader(hs.NewHandle(mh.GetClassLoader()));
401  MethodVerifier verifier(&mh.GetDexFile(), &dex_cache, &class_loader, &mh.GetClassDef(),
402                          mh.GetCodeItem(), m->GetDexMethodIndex(), m, m->GetAccessFlags(), true,
403                          true, false);
404  return verifier.FindInvokedMethodAtDexPc(dex_pc);
405}
406
407mirror::ArtMethod* MethodVerifier::FindInvokedMethodAtDexPc(uint32_t dex_pc) {
408  CHECK(code_item_ != NULL);  // This only makes sense for methods with code.
409
410  // Strictly speaking, we ought to be able to get away with doing a subset of the full method
411  // verification. In practice, the phase we want relies on data structures set up by all the
412  // earlier passes, so we just run the full method verification and bail out early when we've
413  // got what we wanted.
414  bool success = Verify();
415  if (!success) {
416    return NULL;
417  }
418  RegisterLine* register_line = reg_table_.GetLine(dex_pc);
419  if (register_line == NULL) {
420    return NULL;
421  }
422  const Instruction* inst = Instruction::At(code_item_->insns_ + dex_pc);
423  const bool is_range = (inst->Opcode() == Instruction::INVOKE_VIRTUAL_RANGE_QUICK);
424  return GetQuickInvokedMethod(inst, register_line, is_range);
425}
426
427bool MethodVerifier::Verify() {
428  // If there aren't any instructions, make sure that's expected, then exit successfully.
429  if (code_item_ == NULL) {
430    if ((method_access_flags_ & (kAccNative | kAccAbstract)) == 0) {
431      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "zero-length code in concrete non-native method";
432      return false;
433    } else {
434      return true;
435    }
436  }
437  // Sanity-check the register counts. ins + locals = registers, so make sure that ins <= registers.
438  if (code_item_->ins_size_ > code_item_->registers_size_) {
439    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad register counts (ins=" << code_item_->ins_size_
440                                      << " regs=" << code_item_->registers_size_;
441    return false;
442  }
443  // Allocate and initialize an array to hold instruction data.
444  insn_flags_.reset(new InstructionFlags[code_item_->insns_size_in_code_units_]());
445  // Run through the instructions and see if the width checks out.
446  bool result = ComputeWidthsAndCountOps();
447  // Flag instructions guarded by a "try" block and check exception handlers.
448  result = result && ScanTryCatchBlocks();
449  // Perform static instruction verification.
450  result = result && VerifyInstructions();
451  // Perform code-flow analysis and return.
452  result = result && VerifyCodeFlow();
453  // Compute information for compiler.
454  if (result && Runtime::Current()->IsCompiler()) {
455    result = Runtime::Current()->GetCompilerCallbacks()->MethodVerified(this);
456  }
457  return result;
458}
459
460std::ostream& MethodVerifier::Fail(VerifyError error) {
461  switch (error) {
462    case VERIFY_ERROR_NO_CLASS:
463    case VERIFY_ERROR_NO_FIELD:
464    case VERIFY_ERROR_NO_METHOD:
465    case VERIFY_ERROR_ACCESS_CLASS:
466    case VERIFY_ERROR_ACCESS_FIELD:
467    case VERIFY_ERROR_ACCESS_METHOD:
468    case VERIFY_ERROR_INSTANTIATION:
469    case VERIFY_ERROR_CLASS_CHANGE:
470      if (Runtime::Current()->IsCompiler() || !can_load_classes_) {
471        // If we're optimistically running verification at compile time, turn NO_xxx, ACCESS_xxx,
472        // class change and instantiation errors into soft verification errors so that we re-verify
473        // at runtime. We may fail to find or to agree on access because of not yet available class
474        // loaders, or class loaders that will differ at runtime. In these cases, we don't want to
475        // affect the soundness of the code being compiled. Instead, the generated code runs "slow
476        // paths" that dynamically perform the verification and cause the behavior to be that akin
477        // to an interpreter.
478        error = VERIFY_ERROR_BAD_CLASS_SOFT;
479      } else {
480        // If we fail again at runtime, mark that this instruction would throw and force this
481        // method to be executed using the interpreter with checks.
482        have_pending_runtime_throw_failure_ = true;
483      }
484      break;
485      // Indication that verification should be retried at runtime.
486    case VERIFY_ERROR_BAD_CLASS_SOFT:
487      if (!allow_soft_failures_) {
488        have_pending_hard_failure_ = true;
489      }
490      break;
491      // Hard verification failures at compile time will still fail at runtime, so the class is
492      // marked as rejected to prevent it from being compiled.
493    case VERIFY_ERROR_BAD_CLASS_HARD: {
494      if (Runtime::Current()->IsCompiler()) {
495        ClassReference ref(dex_file_, dex_file_->GetIndexForClassDef(*class_def_));
496        Runtime::Current()->GetCompilerCallbacks()->ClassRejected(ref);
497      }
498      have_pending_hard_failure_ = true;
499      break;
500    }
501  }
502  failures_.push_back(error);
503  std::string location(StringPrintf("%s: [0x%X]", PrettyMethod(dex_method_idx_, *dex_file_).c_str(),
504                                    work_insn_idx_));
505  std::ostringstream* failure_message = new std::ostringstream(location);
506  failure_messages_.push_back(failure_message);
507  return *failure_message;
508}
509
510void MethodVerifier::PrependToLastFailMessage(std::string prepend) {
511  size_t failure_num = failure_messages_.size();
512  DCHECK_NE(failure_num, 0U);
513  std::ostringstream* last_fail_message = failure_messages_[failure_num - 1];
514  prepend += last_fail_message->str();
515  failure_messages_[failure_num - 1] = new std::ostringstream(prepend);
516  delete last_fail_message;
517}
518
519void MethodVerifier::AppendToLastFailMessage(std::string append) {
520  size_t failure_num = failure_messages_.size();
521  DCHECK_NE(failure_num, 0U);
522  std::ostringstream* last_fail_message = failure_messages_[failure_num - 1];
523  (*last_fail_message) << append;
524}
525
526bool MethodVerifier::ComputeWidthsAndCountOps() {
527  const uint16_t* insns = code_item_->insns_;
528  size_t insns_size = code_item_->insns_size_in_code_units_;
529  const Instruction* inst = Instruction::At(insns);
530  size_t new_instance_count = 0;
531  size_t monitor_enter_count = 0;
532  size_t dex_pc = 0;
533
534  while (dex_pc < insns_size) {
535    Instruction::Code opcode = inst->Opcode();
536    switch (opcode) {
537      case Instruction::APUT_OBJECT:
538      case Instruction::CHECK_CAST:
539        has_check_casts_ = true;
540        break;
541      case Instruction::INVOKE_VIRTUAL:
542      case Instruction::INVOKE_VIRTUAL_RANGE:
543      case Instruction::INVOKE_INTERFACE:
544      case Instruction::INVOKE_INTERFACE_RANGE:
545        has_virtual_or_interface_invokes_ = true;
546        break;
547      case Instruction::MONITOR_ENTER:
548        monitor_enter_count++;
549        break;
550      case Instruction::NEW_INSTANCE:
551        new_instance_count++;
552        break;
553      default:
554        break;
555    }
556    size_t inst_size = inst->SizeInCodeUnits();
557    insn_flags_[dex_pc].SetLengthInCodeUnits(inst_size);
558    dex_pc += inst_size;
559    inst = inst->Next();
560  }
561
562  if (dex_pc != insns_size) {
563    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "code did not end where expected ("
564                                      << dex_pc << " vs. " << insns_size << ")";
565    return false;
566  }
567
568  new_instance_count_ = new_instance_count;
569  monitor_enter_count_ = monitor_enter_count;
570  return true;
571}
572
573bool MethodVerifier::ScanTryCatchBlocks() {
574  uint32_t tries_size = code_item_->tries_size_;
575  if (tries_size == 0) {
576    return true;
577  }
578  uint32_t insns_size = code_item_->insns_size_in_code_units_;
579  const DexFile::TryItem* tries = DexFile::GetTryItems(*code_item_, 0);
580
581  for (uint32_t idx = 0; idx < tries_size; idx++) {
582    const DexFile::TryItem* try_item = &tries[idx];
583    uint32_t start = try_item->start_addr_;
584    uint32_t end = start + try_item->insn_count_;
585    if ((start >= end) || (start >= insns_size) || (end > insns_size)) {
586      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad exception entry: startAddr=" << start
587                                        << " endAddr=" << end << " (size=" << insns_size << ")";
588      return false;
589    }
590    if (!insn_flags_[start].IsOpcode()) {
591      Fail(VERIFY_ERROR_BAD_CLASS_HARD)
592          << "'try' block starts inside an instruction (" << start << ")";
593      return false;
594    }
595    for (uint32_t dex_pc = start; dex_pc < end;
596        dex_pc += insn_flags_[dex_pc].GetLengthInCodeUnits()) {
597      insn_flags_[dex_pc].SetInTry();
598    }
599  }
600  // Iterate over each of the handlers to verify target addresses.
601  const byte* handlers_ptr = DexFile::GetCatchHandlerData(*code_item_, 0);
602  uint32_t handlers_size = DecodeUnsignedLeb128(&handlers_ptr);
603  ClassLinker* linker = Runtime::Current()->GetClassLinker();
604  for (uint32_t idx = 0; idx < handlers_size; idx++) {
605    CatchHandlerIterator iterator(handlers_ptr);
606    for (; iterator.HasNext(); iterator.Next()) {
607      uint32_t dex_pc= iterator.GetHandlerAddress();
608      if (!insn_flags_[dex_pc].IsOpcode()) {
609        Fail(VERIFY_ERROR_BAD_CLASS_HARD)
610            << "exception handler starts at bad address (" << dex_pc << ")";
611        return false;
612      }
613      insn_flags_[dex_pc].SetBranchTarget();
614      // Ensure exception types are resolved so that they don't need resolution to be delivered,
615      // unresolved exception types will be ignored by exception delivery
616      if (iterator.GetHandlerTypeIndex() != DexFile::kDexNoIndex16) {
617        mirror::Class* exception_type = linker->ResolveType(*dex_file_,
618                                                            iterator.GetHandlerTypeIndex(),
619                                                            *dex_cache_, *class_loader_);
620        if (exception_type == NULL) {
621          DCHECK(Thread::Current()->IsExceptionPending());
622          Thread::Current()->ClearException();
623        }
624      }
625    }
626    handlers_ptr = iterator.EndDataPointer();
627  }
628  return true;
629}
630
631bool MethodVerifier::VerifyInstructions() {
632  const Instruction* inst = Instruction::At(code_item_->insns_);
633
634  /* Flag the start of the method as a branch target, and a GC point due to stack overflow errors */
635  insn_flags_[0].SetBranchTarget();
636  insn_flags_[0].SetCompileTimeInfoPoint();
637
638  uint32_t insns_size = code_item_->insns_size_in_code_units_;
639  for (uint32_t dex_pc = 0; dex_pc < insns_size;) {
640    if (!VerifyInstruction(inst, dex_pc)) {
641      DCHECK_NE(failures_.size(), 0U);
642      return false;
643    }
644    /* Flag instructions that are garbage collection points */
645    // All invoke points are marked as "Throw" points already.
646    // We are relying on this to also count all the invokes as interesting.
647    if (inst->IsBranch() || inst->IsSwitch() || inst->IsThrow()) {
648      insn_flags_[dex_pc].SetCompileTimeInfoPoint();
649    } else if (inst->IsReturn()) {
650      insn_flags_[dex_pc].SetCompileTimeInfoPointAndReturn();
651    }
652    dex_pc += inst->SizeInCodeUnits();
653    inst = inst->Next();
654  }
655  return true;
656}
657
658bool MethodVerifier::VerifyInstruction(const Instruction* inst, uint32_t code_offset) {
659  bool result = true;
660  switch (inst->GetVerifyTypeArgumentA()) {
661    case Instruction::kVerifyRegA:
662      result = result && CheckRegisterIndex(inst->VRegA());
663      break;
664    case Instruction::kVerifyRegAWide:
665      result = result && CheckWideRegisterIndex(inst->VRegA());
666      break;
667  }
668  switch (inst->GetVerifyTypeArgumentB()) {
669    case Instruction::kVerifyRegB:
670      result = result && CheckRegisterIndex(inst->VRegB());
671      break;
672    case Instruction::kVerifyRegBField:
673      result = result && CheckFieldIndex(inst->VRegB());
674      break;
675    case Instruction::kVerifyRegBMethod:
676      result = result && CheckMethodIndex(inst->VRegB());
677      break;
678    case Instruction::kVerifyRegBNewInstance:
679      result = result && CheckNewInstance(inst->VRegB());
680      break;
681    case Instruction::kVerifyRegBString:
682      result = result && CheckStringIndex(inst->VRegB());
683      break;
684    case Instruction::kVerifyRegBType:
685      result = result && CheckTypeIndex(inst->VRegB());
686      break;
687    case Instruction::kVerifyRegBWide:
688      result = result && CheckWideRegisterIndex(inst->VRegB());
689      break;
690  }
691  switch (inst->GetVerifyTypeArgumentC()) {
692    case Instruction::kVerifyRegC:
693      result = result && CheckRegisterIndex(inst->VRegC());
694      break;
695    case Instruction::kVerifyRegCField:
696      result = result && CheckFieldIndex(inst->VRegC());
697      break;
698    case Instruction::kVerifyRegCNewArray:
699      result = result && CheckNewArray(inst->VRegC());
700      break;
701    case Instruction::kVerifyRegCType:
702      result = result && CheckTypeIndex(inst->VRegC());
703      break;
704    case Instruction::kVerifyRegCWide:
705      result = result && CheckWideRegisterIndex(inst->VRegC());
706      break;
707  }
708  switch (inst->GetVerifyExtraFlags()) {
709    case Instruction::kVerifyArrayData:
710      result = result && CheckArrayData(code_offset);
711      break;
712    case Instruction::kVerifyBranchTarget:
713      result = result && CheckBranchTarget(code_offset);
714      break;
715    case Instruction::kVerifySwitchTargets:
716      result = result && CheckSwitchTargets(code_offset);
717      break;
718    case Instruction::kVerifyVarArg: {
719      uint32_t args[Instruction::kMaxVarArgRegs];
720      inst->GetVarArgs(args);
721      result = result && CheckVarArgRegs(inst->VRegA(), args);
722      break;
723    }
724    case Instruction::kVerifyVarArgRange:
725      result = result && CheckVarArgRangeRegs(inst->VRegA(), inst->VRegC());
726      break;
727    case Instruction::kVerifyError:
728      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected opcode " << inst->Name();
729      result = false;
730      break;
731  }
732  return result;
733}
734
735bool MethodVerifier::CheckRegisterIndex(uint32_t idx) {
736  if (idx >= code_item_->registers_size_) {
737    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "register index out of range (" << idx << " >= "
738                                      << code_item_->registers_size_ << ")";
739    return false;
740  }
741  return true;
742}
743
744bool MethodVerifier::CheckWideRegisterIndex(uint32_t idx) {
745  if (idx + 1 >= code_item_->registers_size_) {
746    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "wide register index out of range (" << idx
747                                      << "+1 >= " << code_item_->registers_size_ << ")";
748    return false;
749  }
750  return true;
751}
752
753bool MethodVerifier::CheckFieldIndex(uint32_t idx) {
754  if (idx >= dex_file_->GetHeader().field_ids_size_) {
755    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad field index " << idx << " (max "
756                                      << dex_file_->GetHeader().field_ids_size_ << ")";
757    return false;
758  }
759  return true;
760}
761
762bool MethodVerifier::CheckMethodIndex(uint32_t idx) {
763  if (idx >= dex_file_->GetHeader().method_ids_size_) {
764    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad method index " << idx << " (max "
765                                      << dex_file_->GetHeader().method_ids_size_ << ")";
766    return false;
767  }
768  return true;
769}
770
771bool MethodVerifier::CheckNewInstance(uint32_t idx) {
772  if (idx >= dex_file_->GetHeader().type_ids_size_) {
773    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad type index " << idx << " (max "
774                                      << dex_file_->GetHeader().type_ids_size_ << ")";
775    return false;
776  }
777  // We don't need the actual class, just a pointer to the class name.
778  const char* descriptor = dex_file_->StringByTypeIdx(idx);
779  if (descriptor[0] != 'L') {
780    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "can't call new-instance on type '" << descriptor << "'";
781    return false;
782  }
783  return true;
784}
785
786bool MethodVerifier::CheckStringIndex(uint32_t idx) {
787  if (idx >= dex_file_->GetHeader().string_ids_size_) {
788    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad string index " << idx << " (max "
789                                      << dex_file_->GetHeader().string_ids_size_ << ")";
790    return false;
791  }
792  return true;
793}
794
795bool MethodVerifier::CheckTypeIndex(uint32_t idx) {
796  if (idx >= dex_file_->GetHeader().type_ids_size_) {
797    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad type index " << idx << " (max "
798                                      << dex_file_->GetHeader().type_ids_size_ << ")";
799    return false;
800  }
801  return true;
802}
803
804bool MethodVerifier::CheckNewArray(uint32_t idx) {
805  if (idx >= dex_file_->GetHeader().type_ids_size_) {
806    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad type index " << idx << " (max "
807                                      << dex_file_->GetHeader().type_ids_size_ << ")";
808    return false;
809  }
810  int bracket_count = 0;
811  const char* descriptor = dex_file_->StringByTypeIdx(idx);
812  const char* cp = descriptor;
813  while (*cp++ == '[') {
814    bracket_count++;
815  }
816  if (bracket_count == 0) {
817    /* The given class must be an array type. */
818    Fail(VERIFY_ERROR_BAD_CLASS_HARD)
819        << "can't new-array class '" << descriptor << "' (not an array)";
820    return false;
821  } else if (bracket_count > 255) {
822    /* It is illegal to create an array of more than 255 dimensions. */
823    Fail(VERIFY_ERROR_BAD_CLASS_HARD)
824        << "can't new-array class '" << descriptor << "' (exceeds limit)";
825    return false;
826  }
827  return true;
828}
829
830bool MethodVerifier::CheckArrayData(uint32_t cur_offset) {
831  const uint32_t insn_count = code_item_->insns_size_in_code_units_;
832  const uint16_t* insns = code_item_->insns_ + cur_offset;
833  const uint16_t* array_data;
834  int32_t array_data_offset;
835
836  DCHECK_LT(cur_offset, insn_count);
837  /* make sure the start of the array data table is in range */
838  array_data_offset = insns[1] | (((int32_t) insns[2]) << 16);
839  if ((int32_t) cur_offset + array_data_offset < 0 ||
840      cur_offset + array_data_offset + 2 >= insn_count) {
841    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid array data start: at " << cur_offset
842                                      << ", data offset " << array_data_offset
843                                      << ", count " << insn_count;
844    return false;
845  }
846  /* offset to array data table is a relative branch-style offset */
847  array_data = insns + array_data_offset;
848  /* make sure the table is 32-bit aligned */
849  if ((reinterpret_cast<uintptr_t>(array_data) & 0x03) != 0) {
850    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unaligned array data table: at " << cur_offset
851                                      << ", data offset " << array_data_offset;
852    return false;
853  }
854  uint32_t value_width = array_data[1];
855  uint32_t value_count = *reinterpret_cast<const uint32_t*>(&array_data[2]);
856  uint32_t table_size = 4 + (value_width * value_count + 1) / 2;
857  /* make sure the end of the switch is in range */
858  if (cur_offset + array_data_offset + table_size > insn_count) {
859    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid array data end: at " << cur_offset
860                                      << ", data offset " << array_data_offset << ", end "
861                                      << cur_offset + array_data_offset + table_size
862                                      << ", count " << insn_count;
863    return false;
864  }
865  return true;
866}
867
868bool MethodVerifier::CheckBranchTarget(uint32_t cur_offset) {
869  int32_t offset;
870  bool isConditional, selfOkay;
871  if (!GetBranchOffset(cur_offset, &offset, &isConditional, &selfOkay)) {
872    return false;
873  }
874  if (!selfOkay && offset == 0) {
875    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "branch offset of zero not allowed at"
876                                      << reinterpret_cast<void*>(cur_offset);
877    return false;
878  }
879  // Check for 32-bit overflow. This isn't strictly necessary if we can depend on the runtime
880  // to have identical "wrap-around" behavior, but it's unwise to depend on that.
881  if (((int64_t) cur_offset + (int64_t) offset) != (int64_t) (cur_offset + offset)) {
882    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "branch target overflow "
883                                      << reinterpret_cast<void*>(cur_offset) << " +" << offset;
884    return false;
885  }
886  const uint32_t insn_count = code_item_->insns_size_in_code_units_;
887  int32_t abs_offset = cur_offset + offset;
888  if (abs_offset < 0 ||
889      (uint32_t) abs_offset >= insn_count ||
890      !insn_flags_[abs_offset].IsOpcode()) {
891    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid branch target " << offset << " (-> "
892                                      << reinterpret_cast<void*>(abs_offset) << ") at "
893                                      << reinterpret_cast<void*>(cur_offset);
894    return false;
895  }
896  insn_flags_[abs_offset].SetBranchTarget();
897  return true;
898}
899
900bool MethodVerifier::GetBranchOffset(uint32_t cur_offset, int32_t* pOffset, bool* pConditional,
901                                  bool* selfOkay) {
902  const uint16_t* insns = code_item_->insns_ + cur_offset;
903  *pConditional = false;
904  *selfOkay = false;
905  switch (*insns & 0xff) {
906    case Instruction::GOTO:
907      *pOffset = ((int16_t) *insns) >> 8;
908      break;
909    case Instruction::GOTO_32:
910      *pOffset = insns[1] | (((uint32_t) insns[2]) << 16);
911      *selfOkay = true;
912      break;
913    case Instruction::GOTO_16:
914      *pOffset = (int16_t) insns[1];
915      break;
916    case Instruction::IF_EQ:
917    case Instruction::IF_NE:
918    case Instruction::IF_LT:
919    case Instruction::IF_GE:
920    case Instruction::IF_GT:
921    case Instruction::IF_LE:
922    case Instruction::IF_EQZ:
923    case Instruction::IF_NEZ:
924    case Instruction::IF_LTZ:
925    case Instruction::IF_GEZ:
926    case Instruction::IF_GTZ:
927    case Instruction::IF_LEZ:
928      *pOffset = (int16_t) insns[1];
929      *pConditional = true;
930      break;
931    default:
932      return false;
933      break;
934  }
935  return true;
936}
937
938bool MethodVerifier::CheckSwitchTargets(uint32_t cur_offset) {
939  const uint32_t insn_count = code_item_->insns_size_in_code_units_;
940  DCHECK_LT(cur_offset, insn_count);
941  const uint16_t* insns = code_item_->insns_ + cur_offset;
942  /* make sure the start of the switch is in range */
943  int32_t switch_offset = insns[1] | ((int32_t) insns[2]) << 16;
944  if ((int32_t) cur_offset + switch_offset < 0 || cur_offset + switch_offset + 2 >= insn_count) {
945    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid switch start: at " << cur_offset
946                                      << ", switch offset " << switch_offset
947                                      << ", count " << insn_count;
948    return false;
949  }
950  /* offset to switch table is a relative branch-style offset */
951  const uint16_t* switch_insns = insns + switch_offset;
952  /* make sure the table is 32-bit aligned */
953  if ((reinterpret_cast<uintptr_t>(switch_insns) & 0x03) != 0) {
954    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unaligned switch table: at " << cur_offset
955                                      << ", switch offset " << switch_offset;
956    return false;
957  }
958  uint32_t switch_count = switch_insns[1];
959  int32_t keys_offset, targets_offset;
960  uint16_t expected_signature;
961  if ((*insns & 0xff) == Instruction::PACKED_SWITCH) {
962    /* 0=sig, 1=count, 2/3=firstKey */
963    targets_offset = 4;
964    keys_offset = -1;
965    expected_signature = Instruction::kPackedSwitchSignature;
966  } else {
967    /* 0=sig, 1=count, 2..count*2 = keys */
968    keys_offset = 2;
969    targets_offset = 2 + 2 * switch_count;
970    expected_signature = Instruction::kSparseSwitchSignature;
971  }
972  uint32_t table_size = targets_offset + switch_count * 2;
973  if (switch_insns[0] != expected_signature) {
974    Fail(VERIFY_ERROR_BAD_CLASS_HARD)
975        << StringPrintf("wrong signature for switch table (%x, wanted %x)",
976                        switch_insns[0], expected_signature);
977    return false;
978  }
979  /* make sure the end of the switch is in range */
980  if (cur_offset + switch_offset + table_size > (uint32_t) insn_count) {
981    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid switch end: at " << cur_offset
982                                      << ", switch offset " << switch_offset
983                                      << ", end " << (cur_offset + switch_offset + table_size)
984                                      << ", count " << insn_count;
985    return false;
986  }
987  /* for a sparse switch, verify the keys are in ascending order */
988  if (keys_offset > 0 && switch_count > 1) {
989    int32_t last_key = switch_insns[keys_offset] | (switch_insns[keys_offset + 1] << 16);
990    for (uint32_t targ = 1; targ < switch_count; targ++) {
991      int32_t key = (int32_t) switch_insns[keys_offset + targ * 2] |
992                    (int32_t) (switch_insns[keys_offset + targ * 2 + 1] << 16);
993      if (key <= last_key) {
994        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid packed switch: last key=" << last_key
995                                          << ", this=" << key;
996        return false;
997      }
998      last_key = key;
999    }
1000  }
1001  /* verify each switch target */
1002  for (uint32_t targ = 0; targ < switch_count; targ++) {
1003    int32_t offset = (int32_t) switch_insns[targets_offset + targ * 2] |
1004                     (int32_t) (switch_insns[targets_offset + targ * 2 + 1] << 16);
1005    int32_t abs_offset = cur_offset + offset;
1006    if (abs_offset < 0 ||
1007        abs_offset >= (int32_t) insn_count ||
1008        !insn_flags_[abs_offset].IsOpcode()) {
1009      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid switch target " << offset
1010                                        << " (-> " << reinterpret_cast<void*>(abs_offset) << ") at "
1011                                        << reinterpret_cast<void*>(cur_offset)
1012                                        << "[" << targ << "]";
1013      return false;
1014    }
1015    insn_flags_[abs_offset].SetBranchTarget();
1016  }
1017  return true;
1018}
1019
1020bool MethodVerifier::CheckVarArgRegs(uint32_t vA, uint32_t arg[]) {
1021  if (vA > Instruction::kMaxVarArgRegs) {
1022    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid arg count (" << vA << ") in non-range invoke)";
1023    return false;
1024  }
1025  uint16_t registers_size = code_item_->registers_size_;
1026  for (uint32_t idx = 0; idx < vA; idx++) {
1027    if (arg[idx] >= registers_size) {
1028      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid reg index (" << arg[idx]
1029                                        << ") in non-range invoke (>= " << registers_size << ")";
1030      return false;
1031    }
1032  }
1033
1034  return true;
1035}
1036
1037bool MethodVerifier::CheckVarArgRangeRegs(uint32_t vA, uint32_t vC) {
1038  uint16_t registers_size = code_item_->registers_size_;
1039  // vA/vC are unsigned 8-bit/16-bit quantities for /range instructions, so there's no risk of
1040  // integer overflow when adding them here.
1041  if (vA + vC > registers_size) {
1042    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid reg index " << vA << "+" << vC
1043                                      << " in range invoke (> " << registers_size << ")";
1044    return false;
1045  }
1046  return true;
1047}
1048
1049bool MethodVerifier::VerifyCodeFlow() {
1050  uint16_t registers_size = code_item_->registers_size_;
1051  uint32_t insns_size = code_item_->insns_size_in_code_units_;
1052
1053  if (registers_size * insns_size > 4*1024*1024) {
1054    LOG(WARNING) << "warning: method is huge (regs=" << registers_size
1055                 << " insns_size=" << insns_size << ")";
1056  }
1057  /* Create and initialize table holding register status */
1058  reg_table_.Init(kTrackCompilerInterestPoints,
1059                  insn_flags_.get(),
1060                  insns_size,
1061                  registers_size,
1062                  this);
1063
1064
1065  work_line_.reset(RegisterLine::Create(registers_size, this));
1066  saved_line_.reset(RegisterLine::Create(registers_size, this));
1067
1068  /* Initialize register types of method arguments. */
1069  if (!SetTypesFromSignature()) {
1070    DCHECK_NE(failures_.size(), 0U);
1071    std::string prepend("Bad signature in ");
1072    prepend += PrettyMethod(dex_method_idx_, *dex_file_);
1073    PrependToLastFailMessage(prepend);
1074    return false;
1075  }
1076  /* Perform code flow verification. */
1077  if (!CodeFlowVerifyMethod()) {
1078    DCHECK_NE(failures_.size(), 0U);
1079    return false;
1080  }
1081  return true;
1082}
1083
1084std::ostream& MethodVerifier::DumpFailures(std::ostream& os) {
1085  DCHECK_EQ(failures_.size(), failure_messages_.size());
1086  for (size_t i = 0; i < failures_.size(); ++i) {
1087      os << failure_messages_[i]->str() << "\n";
1088  }
1089  return os;
1090}
1091
1092extern "C" void MethodVerifierGdbDump(MethodVerifier* v)
1093    SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1094  v->Dump(std::cerr);
1095}
1096
1097void MethodVerifier::Dump(std::ostream& os) {
1098  if (code_item_ == NULL) {
1099    os << "Native method\n";
1100    return;
1101  }
1102  {
1103    os << "Register Types:\n";
1104    Indenter indent_filter(os.rdbuf(), kIndentChar, kIndentBy1Count);
1105    std::ostream indent_os(&indent_filter);
1106    reg_types_.Dump(indent_os);
1107  }
1108  os << "Dumping instructions and register lines:\n";
1109  Indenter indent_filter(os.rdbuf(), kIndentChar, kIndentBy1Count);
1110  std::ostream indent_os(&indent_filter);
1111  const Instruction* inst = Instruction::At(code_item_->insns_);
1112  for (size_t dex_pc = 0; dex_pc < code_item_->insns_size_in_code_units_;
1113      dex_pc += insn_flags_[dex_pc].GetLengthInCodeUnits()) {
1114    RegisterLine* reg_line = reg_table_.GetLine(dex_pc);
1115    if (reg_line != NULL) {
1116      indent_os << reg_line->Dump() << "\n";
1117    }
1118    indent_os << StringPrintf("0x%04zx", dex_pc) << ": " << insn_flags_[dex_pc].ToString() << " ";
1119    const bool kDumpHexOfInstruction = false;
1120    if (kDumpHexOfInstruction) {
1121      indent_os << inst->DumpHex(5) << " ";
1122    }
1123    indent_os << inst->DumpString(dex_file_) << "\n";
1124    inst = inst->Next();
1125  }
1126}
1127
1128static bool IsPrimitiveDescriptor(char descriptor) {
1129  switch (descriptor) {
1130    case 'I':
1131    case 'C':
1132    case 'S':
1133    case 'B':
1134    case 'Z':
1135    case 'F':
1136    case 'D':
1137    case 'J':
1138      return true;
1139    default:
1140      return false;
1141  }
1142}
1143
1144bool MethodVerifier::SetTypesFromSignature() {
1145  RegisterLine* reg_line = reg_table_.GetLine(0);
1146  int arg_start = code_item_->registers_size_ - code_item_->ins_size_;
1147  size_t expected_args = code_item_->ins_size_;   /* long/double count as two */
1148
1149  DCHECK_GE(arg_start, 0);      /* should have been verified earlier */
1150  // Include the "this" pointer.
1151  size_t cur_arg = 0;
1152  if (!IsStatic()) {
1153    // If this is a constructor for a class other than java.lang.Object, mark the first ("this")
1154    // argument as uninitialized. This restricts field access until the superclass constructor is
1155    // called.
1156    const RegType& declaring_class = GetDeclaringClass();
1157    if (IsConstructor() && !declaring_class.IsJavaLangObject()) {
1158      reg_line->SetRegisterType(arg_start + cur_arg,
1159                                reg_types_.UninitializedThisArgument(declaring_class));
1160    } else {
1161      reg_line->SetRegisterType(arg_start + cur_arg, declaring_class);
1162    }
1163    cur_arg++;
1164  }
1165
1166  const DexFile::ProtoId& proto_id =
1167      dex_file_->GetMethodPrototype(dex_file_->GetMethodId(dex_method_idx_));
1168  DexFileParameterIterator iterator(*dex_file_, proto_id);
1169
1170  for (; iterator.HasNext(); iterator.Next()) {
1171    const char* descriptor = iterator.GetDescriptor();
1172    if (descriptor == NULL) {
1173      LOG(FATAL) << "Null descriptor";
1174    }
1175    if (cur_arg >= expected_args) {
1176      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected " << expected_args
1177                                        << " args, found more (" << descriptor << ")";
1178      return false;
1179    }
1180    switch (descriptor[0]) {
1181      case 'L':
1182      case '[':
1183        // We assume that reference arguments are initialized. The only way it could be otherwise
1184        // (assuming the caller was verified) is if the current method is <init>, but in that case
1185        // it's effectively considered initialized the instant we reach here (in the sense that we
1186        // can return without doing anything or call virtual methods).
1187        {
1188          const RegType& reg_type = ResolveClassAndCheckAccess(iterator.GetTypeIdx());
1189          if (!reg_type.IsNonZeroReferenceTypes()) {
1190            DCHECK(HasFailures());
1191            return false;
1192          }
1193          reg_line->SetRegisterType(arg_start + cur_arg, reg_type);
1194        }
1195        break;
1196      case 'Z':
1197        reg_line->SetRegisterType(arg_start + cur_arg, reg_types_.Boolean());
1198        break;
1199      case 'C':
1200        reg_line->SetRegisterType(arg_start + cur_arg, reg_types_.Char());
1201        break;
1202      case 'B':
1203        reg_line->SetRegisterType(arg_start + cur_arg, reg_types_.Byte());
1204        break;
1205      case 'I':
1206        reg_line->SetRegisterType(arg_start + cur_arg, reg_types_.Integer());
1207        break;
1208      case 'S':
1209        reg_line->SetRegisterType(arg_start + cur_arg, reg_types_.Short());
1210        break;
1211      case 'F':
1212        reg_line->SetRegisterType(arg_start + cur_arg, reg_types_.Float());
1213        break;
1214      case 'J':
1215      case 'D': {
1216        const RegType& lo_half = descriptor[0] == 'J' ? reg_types_.LongLo() : reg_types_.DoubleLo();
1217        const RegType& hi_half = descriptor[0] == 'J' ? reg_types_.LongHi() : reg_types_.DoubleHi();
1218        reg_line->SetRegisterTypeWide(arg_start + cur_arg, lo_half, hi_half);
1219        cur_arg++;
1220        break;
1221      }
1222      default:
1223        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected signature type char '"
1224                                          << descriptor << "'";
1225        return false;
1226    }
1227    cur_arg++;
1228  }
1229  if (cur_arg != expected_args) {
1230    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected " << expected_args
1231                                      << " arguments, found " << cur_arg;
1232    return false;
1233  }
1234  const char* descriptor = dex_file_->GetReturnTypeDescriptor(proto_id);
1235  // Validate return type. We don't do the type lookup; just want to make sure that it has the right
1236  // format. Only major difference from the method argument format is that 'V' is supported.
1237  bool result;
1238  if (IsPrimitiveDescriptor(descriptor[0]) || descriptor[0] == 'V') {
1239    result = descriptor[1] == '\0';
1240  } else if (descriptor[0] == '[') {  // single/multi-dimensional array of object/primitive
1241    size_t i = 0;
1242    do {
1243      i++;
1244    } while (descriptor[i] == '[');  // process leading [
1245    if (descriptor[i] == 'L') {  // object array
1246      do {
1247        i++;  // find closing ;
1248      } while (descriptor[i] != ';' && descriptor[i] != '\0');
1249      result = descriptor[i] == ';';
1250    } else {  // primitive array
1251      result = IsPrimitiveDescriptor(descriptor[i]) && descriptor[i + 1] == '\0';
1252    }
1253  } else if (descriptor[0] == 'L') {
1254    // could be more thorough here, but shouldn't be required
1255    size_t i = 0;
1256    do {
1257      i++;
1258    } while (descriptor[i] != ';' && descriptor[i] != '\0');
1259    result = descriptor[i] == ';';
1260  } else {
1261    result = false;
1262  }
1263  if (!result) {
1264    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected char in return type descriptor '"
1265                                      << descriptor << "'";
1266  }
1267  return result;
1268}
1269
1270bool MethodVerifier::CodeFlowVerifyMethod() {
1271  const uint16_t* insns = code_item_->insns_;
1272  const uint32_t insns_size = code_item_->insns_size_in_code_units_;
1273
1274  /* Begin by marking the first instruction as "changed". */
1275  insn_flags_[0].SetChanged();
1276  uint32_t start_guess = 0;
1277
1278  /* Continue until no instructions are marked "changed". */
1279  while (true) {
1280    // Find the first marked one. Use "start_guess" as a way to find one quickly.
1281    uint32_t insn_idx = start_guess;
1282    for (; insn_idx < insns_size; insn_idx++) {
1283      if (insn_flags_[insn_idx].IsChanged())
1284        break;
1285    }
1286    if (insn_idx == insns_size) {
1287      if (start_guess != 0) {
1288        /* try again, starting from the top */
1289        start_guess = 0;
1290        continue;
1291      } else {
1292        /* all flags are clear */
1293        break;
1294      }
1295    }
1296    // We carry the working set of registers from instruction to instruction. If this address can
1297    // be the target of a branch (or throw) instruction, or if we're skipping around chasing
1298    // "changed" flags, we need to load the set of registers from the table.
1299    // Because we always prefer to continue on to the next instruction, we should never have a
1300    // situation where we have a stray "changed" flag set on an instruction that isn't a branch
1301    // target.
1302    work_insn_idx_ = insn_idx;
1303    if (insn_flags_[insn_idx].IsBranchTarget()) {
1304      work_line_->CopyFromLine(reg_table_.GetLine(insn_idx));
1305    } else {
1306#ifndef NDEBUG
1307      /*
1308       * Sanity check: retrieve the stored register line (assuming
1309       * a full table) and make sure it actually matches.
1310       */
1311      RegisterLine* register_line = reg_table_.GetLine(insn_idx);
1312      if (register_line != NULL) {
1313        if (work_line_->CompareLine(register_line) != 0) {
1314          Dump(std::cout);
1315          std::cout << info_messages_.str();
1316          LOG(FATAL) << "work_line diverged in " << PrettyMethod(dex_method_idx_, *dex_file_)
1317                     << "@" << reinterpret_cast<void*>(work_insn_idx_) << "\n"
1318                     << " work_line=" << *work_line_ << "\n"
1319                     << "  expected=" << *register_line;
1320        }
1321      }
1322#endif
1323    }
1324    if (!CodeFlowVerifyInstruction(&start_guess)) {
1325      std::string prepend(PrettyMethod(dex_method_idx_, *dex_file_));
1326      prepend += " failed to verify: ";
1327      PrependToLastFailMessage(prepend);
1328      return false;
1329    }
1330    /* Clear "changed" and mark as visited. */
1331    insn_flags_[insn_idx].SetVisited();
1332    insn_flags_[insn_idx].ClearChanged();
1333  }
1334
1335  if (gDebugVerify) {
1336    /*
1337     * Scan for dead code. There's nothing "evil" about dead code
1338     * (besides the wasted space), but it indicates a flaw somewhere
1339     * down the line, possibly in the verifier.
1340     *
1341     * If we've substituted "always throw" instructions into the stream,
1342     * we are almost certainly going to have some dead code.
1343     */
1344    int dead_start = -1;
1345    uint32_t insn_idx = 0;
1346    for (; insn_idx < insns_size; insn_idx += insn_flags_[insn_idx].GetLengthInCodeUnits()) {
1347      /*
1348       * Switch-statement data doesn't get "visited" by scanner. It
1349       * may or may not be preceded by a padding NOP (for alignment).
1350       */
1351      if (insns[insn_idx] == Instruction::kPackedSwitchSignature ||
1352          insns[insn_idx] == Instruction::kSparseSwitchSignature ||
1353          insns[insn_idx] == Instruction::kArrayDataSignature ||
1354          (insns[insn_idx] == Instruction::NOP && (insn_idx + 1 < insns_size) &&
1355           (insns[insn_idx + 1] == Instruction::kPackedSwitchSignature ||
1356            insns[insn_idx + 1] == Instruction::kSparseSwitchSignature ||
1357            insns[insn_idx + 1] == Instruction::kArrayDataSignature))) {
1358        insn_flags_[insn_idx].SetVisited();
1359      }
1360
1361      if (!insn_flags_[insn_idx].IsVisited()) {
1362        if (dead_start < 0)
1363          dead_start = insn_idx;
1364      } else if (dead_start >= 0) {
1365        LogVerifyInfo() << "dead code " << reinterpret_cast<void*>(dead_start)
1366                        << "-" << reinterpret_cast<void*>(insn_idx - 1);
1367        dead_start = -1;
1368      }
1369    }
1370    if (dead_start >= 0) {
1371      LogVerifyInfo() << "dead code " << reinterpret_cast<void*>(dead_start)
1372                      << "-" << reinterpret_cast<void*>(insn_idx - 1);
1373    }
1374    // To dump the state of the verify after a method, do something like:
1375    // if (PrettyMethod(dex_method_idx_, *dex_file_) ==
1376    //     "boolean java.lang.String.equals(java.lang.Object)") {
1377    //   LOG(INFO) << info_messages_.str();
1378    // }
1379  }
1380  return true;
1381}
1382
1383bool MethodVerifier::CodeFlowVerifyInstruction(uint32_t* start_guess) {
1384  // If we're doing FindLocksAtDexPc, check whether we're at the dex pc we care about.
1385  // We want the state _before_ the instruction, for the case where the dex pc we're
1386  // interested in is itself a monitor-enter instruction (which is a likely place
1387  // for a thread to be suspended).
1388  if (monitor_enter_dex_pcs_ != NULL && work_insn_idx_ == interesting_dex_pc_) {
1389    monitor_enter_dex_pcs_->clear();  // The new work line is more accurate than the previous one.
1390    for (size_t i = 0; i < work_line_->GetMonitorEnterCount(); ++i) {
1391      monitor_enter_dex_pcs_->push_back(work_line_->GetMonitorEnterDexPc(i));
1392    }
1393  }
1394
1395  /*
1396   * Once we finish decoding the instruction, we need to figure out where
1397   * we can go from here. There are three possible ways to transfer
1398   * control to another statement:
1399   *
1400   * (1) Continue to the next instruction. Applies to all but
1401   *     unconditional branches, method returns, and exception throws.
1402   * (2) Branch to one or more possible locations. Applies to branches
1403   *     and switch statements.
1404   * (3) Exception handlers. Applies to any instruction that can
1405   *     throw an exception that is handled by an encompassing "try"
1406   *     block.
1407   *
1408   * We can also return, in which case there is no successor instruction
1409   * from this point.
1410   *
1411   * The behavior can be determined from the opcode flags.
1412   */
1413  const uint16_t* insns = code_item_->insns_ + work_insn_idx_;
1414  const Instruction* inst = Instruction::At(insns);
1415  int opcode_flags = Instruction::FlagsOf(inst->Opcode());
1416
1417  int32_t branch_target = 0;
1418  bool just_set_result = false;
1419  if (gDebugVerify) {
1420    // Generate processing back trace to debug verifier
1421    LogVerifyInfo() << "Processing " << inst->DumpString(dex_file_) << "\n"
1422                    << *work_line_.get() << "\n";
1423  }
1424
1425  /*
1426   * Make a copy of the previous register state. If the instruction
1427   * can throw an exception, we will copy/merge this into the "catch"
1428   * address rather than work_line, because we don't want the result
1429   * from the "successful" code path (e.g. a check-cast that "improves"
1430   * a type) to be visible to the exception handler.
1431   */
1432  if ((opcode_flags & Instruction::kThrow) != 0 && CurrentInsnFlags()->IsInTry()) {
1433    saved_line_->CopyFromLine(work_line_.get());
1434  } else {
1435#ifndef NDEBUG
1436    saved_line_->FillWithGarbage();
1437#endif
1438  }
1439
1440
1441  // We need to ensure the work line is consistent while performing validation. When we spot a
1442  // peephole pattern we compute a new line for either the fallthrough instruction or the
1443  // branch target.
1444  std::unique_ptr<RegisterLine> branch_line;
1445  std::unique_ptr<RegisterLine> fallthrough_line;
1446
1447  switch (inst->Opcode()) {
1448    case Instruction::NOP:
1449      /*
1450       * A "pure" NOP has no effect on anything. Data tables start with
1451       * a signature that looks like a NOP; if we see one of these in
1452       * the course of executing code then we have a problem.
1453       */
1454      if (inst->VRegA_10x() != 0) {
1455        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "encountered data table in instruction stream";
1456      }
1457      break;
1458
1459    case Instruction::MOVE:
1460      work_line_->CopyRegister1(inst->VRegA_12x(), inst->VRegB_12x(), kTypeCategory1nr);
1461      break;
1462    case Instruction::MOVE_FROM16:
1463      work_line_->CopyRegister1(inst->VRegA_22x(), inst->VRegB_22x(), kTypeCategory1nr);
1464      break;
1465    case Instruction::MOVE_16:
1466      work_line_->CopyRegister1(inst->VRegA_32x(), inst->VRegB_32x(), kTypeCategory1nr);
1467      break;
1468    case Instruction::MOVE_WIDE:
1469      work_line_->CopyRegister2(inst->VRegA_12x(), inst->VRegB_12x());
1470      break;
1471    case Instruction::MOVE_WIDE_FROM16:
1472      work_line_->CopyRegister2(inst->VRegA_22x(), inst->VRegB_22x());
1473      break;
1474    case Instruction::MOVE_WIDE_16:
1475      work_line_->CopyRegister2(inst->VRegA_32x(), inst->VRegB_32x());
1476      break;
1477    case Instruction::MOVE_OBJECT:
1478      work_line_->CopyRegister1(inst->VRegA_12x(), inst->VRegB_12x(), kTypeCategoryRef);
1479      break;
1480    case Instruction::MOVE_OBJECT_FROM16:
1481      work_line_->CopyRegister1(inst->VRegA_22x(), inst->VRegB_22x(), kTypeCategoryRef);
1482      break;
1483    case Instruction::MOVE_OBJECT_16:
1484      work_line_->CopyRegister1(inst->VRegA_32x(), inst->VRegB_32x(), kTypeCategoryRef);
1485      break;
1486
1487    /*
1488     * The move-result instructions copy data out of a "pseudo-register"
1489     * with the results from the last method invocation. In practice we
1490     * might want to hold the result in an actual CPU register, so the
1491     * Dalvik spec requires that these only appear immediately after an
1492     * invoke or filled-new-array.
1493     *
1494     * These calls invalidate the "result" register. (This is now
1495     * redundant with the reset done below, but it can make the debug info
1496     * easier to read in some cases.)
1497     */
1498    case Instruction::MOVE_RESULT:
1499      work_line_->CopyResultRegister1(inst->VRegA_11x(), false);
1500      break;
1501    case Instruction::MOVE_RESULT_WIDE:
1502      work_line_->CopyResultRegister2(inst->VRegA_11x());
1503      break;
1504    case Instruction::MOVE_RESULT_OBJECT:
1505      work_line_->CopyResultRegister1(inst->VRegA_11x(), true);
1506      break;
1507
1508    case Instruction::MOVE_EXCEPTION: {
1509      /*
1510       * This statement can only appear as the first instruction in an exception handler. We verify
1511       * that as part of extracting the exception type from the catch block list.
1512       */
1513      const RegType& res_type = GetCaughtExceptionType();
1514      work_line_->SetRegisterType(inst->VRegA_11x(), res_type);
1515      break;
1516    }
1517    case Instruction::RETURN_VOID:
1518      if (!IsConstructor() || work_line_->CheckConstructorReturn()) {
1519        if (!GetMethodReturnType().IsConflict()) {
1520          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "return-void not expected";
1521        }
1522      }
1523      break;
1524    case Instruction::RETURN:
1525      if (!IsConstructor() || work_line_->CheckConstructorReturn()) {
1526        /* check the method signature */
1527        const RegType& return_type = GetMethodReturnType();
1528        if (!return_type.IsCategory1Types()) {
1529          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected non-category 1 return type "
1530                                            << return_type;
1531        } else {
1532          // Compilers may generate synthetic functions that write byte values into boolean fields.
1533          // Also, it may use integer values for boolean, byte, short, and character return types.
1534          const uint32_t vregA = inst->VRegA_11x();
1535          const RegType& src_type = work_line_->GetRegisterType(vregA);
1536          bool use_src = ((return_type.IsBoolean() && src_type.IsByte()) ||
1537                          ((return_type.IsBoolean() || return_type.IsByte() ||
1538                           return_type.IsShort() || return_type.IsChar()) &&
1539                           src_type.IsInteger()));
1540          /* check the register contents */
1541          bool success =
1542              work_line_->VerifyRegisterType(vregA, use_src ? src_type : return_type);
1543          if (!success) {
1544            AppendToLastFailMessage(StringPrintf(" return-1nr on invalid register v%d", vregA));
1545          }
1546        }
1547      }
1548      break;
1549    case Instruction::RETURN_WIDE:
1550      if (!IsConstructor() || work_line_->CheckConstructorReturn()) {
1551        /* check the method signature */
1552        const RegType& return_type = GetMethodReturnType();
1553        if (!return_type.IsCategory2Types()) {
1554          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "return-wide not expected";
1555        } else {
1556          /* check the register contents */
1557          const uint32_t vregA = inst->VRegA_11x();
1558          bool success = work_line_->VerifyRegisterType(vregA, return_type);
1559          if (!success) {
1560            AppendToLastFailMessage(StringPrintf(" return-wide on invalid register v%d", vregA));
1561          }
1562        }
1563      }
1564      break;
1565    case Instruction::RETURN_OBJECT:
1566      if (!IsConstructor() || work_line_->CheckConstructorReturn()) {
1567        const RegType& return_type = GetMethodReturnType();
1568        if (!return_type.IsReferenceTypes()) {
1569          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "return-object not expected";
1570        } else {
1571          /* return_type is the *expected* return type, not register value */
1572          DCHECK(!return_type.IsZero());
1573          DCHECK(!return_type.IsUninitializedReference());
1574          const uint32_t vregA = inst->VRegA_11x();
1575          const RegType& reg_type = work_line_->GetRegisterType(vregA);
1576          // Disallow returning uninitialized values and verify that the reference in vAA is an
1577          // instance of the "return_type"
1578          if (reg_type.IsUninitializedTypes()) {
1579            Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "returning uninitialized object '"
1580                                              << reg_type << "'";
1581          } else if (!return_type.IsAssignableFrom(reg_type)) {
1582            if (reg_type.IsUnresolvedTypes() || return_type.IsUnresolvedTypes()) {
1583              Fail(VERIFY_ERROR_NO_CLASS) << " can't resolve returned type '" << return_type
1584                  << "' or '" << reg_type << "'";
1585            } else {
1586              Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "returning '" << reg_type
1587                  << "', but expected from declaration '" << return_type << "'";
1588            }
1589          }
1590        }
1591      }
1592      break;
1593
1594      /* could be boolean, int, float, or a null reference */
1595    case Instruction::CONST_4: {
1596      int32_t val = static_cast<int32_t>(inst->VRegB_11n() << 28) >> 28;
1597      work_line_->SetRegisterType(inst->VRegA_11n(),
1598                                  DetermineCat1Constant(val, need_precise_constants_));
1599      break;
1600    }
1601    case Instruction::CONST_16: {
1602      int16_t val = static_cast<int16_t>(inst->VRegB_21s());
1603      work_line_->SetRegisterType(inst->VRegA_21s(),
1604                                  DetermineCat1Constant(val, need_precise_constants_));
1605      break;
1606    }
1607    case Instruction::CONST: {
1608      int32_t val = inst->VRegB_31i();
1609      work_line_->SetRegisterType(inst->VRegA_31i(),
1610                                  DetermineCat1Constant(val, need_precise_constants_));
1611      break;
1612    }
1613    case Instruction::CONST_HIGH16: {
1614      int32_t val = static_cast<int32_t>(inst->VRegB_21h() << 16);
1615      work_line_->SetRegisterType(inst->VRegA_21h(),
1616                                  DetermineCat1Constant(val, need_precise_constants_));
1617      break;
1618    }
1619      /* could be long or double; resolved upon use */
1620    case Instruction::CONST_WIDE_16: {
1621      int64_t val = static_cast<int16_t>(inst->VRegB_21s());
1622      const RegType& lo = reg_types_.FromCat2ConstLo(static_cast<int32_t>(val), true);
1623      const RegType& hi = reg_types_.FromCat2ConstHi(static_cast<int32_t>(val >> 32), true);
1624      work_line_->SetRegisterTypeWide(inst->VRegA_21s(), lo, hi);
1625      break;
1626    }
1627    case Instruction::CONST_WIDE_32: {
1628      int64_t val = static_cast<int32_t>(inst->VRegB_31i());
1629      const RegType& lo = reg_types_.FromCat2ConstLo(static_cast<int32_t>(val), true);
1630      const RegType& hi = reg_types_.FromCat2ConstHi(static_cast<int32_t>(val >> 32), true);
1631      work_line_->SetRegisterTypeWide(inst->VRegA_31i(), lo, hi);
1632      break;
1633    }
1634    case Instruction::CONST_WIDE: {
1635      int64_t val = inst->VRegB_51l();
1636      const RegType& lo = reg_types_.FromCat2ConstLo(static_cast<int32_t>(val), true);
1637      const RegType& hi = reg_types_.FromCat2ConstHi(static_cast<int32_t>(val >> 32), true);
1638      work_line_->SetRegisterTypeWide(inst->VRegA_51l(), lo, hi);
1639      break;
1640    }
1641    case Instruction::CONST_WIDE_HIGH16: {
1642      int64_t val = static_cast<uint64_t>(inst->VRegB_21h()) << 48;
1643      const RegType& lo = reg_types_.FromCat2ConstLo(static_cast<int32_t>(val), true);
1644      const RegType& hi = reg_types_.FromCat2ConstHi(static_cast<int32_t>(val >> 32), true);
1645      work_line_->SetRegisterTypeWide(inst->VRegA_21h(), lo, hi);
1646      break;
1647    }
1648    case Instruction::CONST_STRING:
1649      work_line_->SetRegisterType(inst->VRegA_21c(), reg_types_.JavaLangString());
1650      break;
1651    case Instruction::CONST_STRING_JUMBO:
1652      work_line_->SetRegisterType(inst->VRegA_31c(), reg_types_.JavaLangString());
1653      break;
1654    case Instruction::CONST_CLASS: {
1655      // Get type from instruction if unresolved then we need an access check
1656      // TODO: check Compiler::CanAccessTypeWithoutChecks returns false when res_type is unresolved
1657      const RegType& res_type = ResolveClassAndCheckAccess(inst->VRegB_21c());
1658      // Register holds class, ie its type is class, on error it will hold Conflict.
1659      work_line_->SetRegisterType(inst->VRegA_21c(),
1660                                  res_type.IsConflict() ? res_type
1661                                                        : reg_types_.JavaLangClass(true));
1662      break;
1663    }
1664    case Instruction::MONITOR_ENTER:
1665      work_line_->PushMonitor(inst->VRegA_11x(), work_insn_idx_);
1666      break;
1667    case Instruction::MONITOR_EXIT:
1668      /*
1669       * monitor-exit instructions are odd. They can throw exceptions,
1670       * but when they do they act as if they succeeded and the PC is
1671       * pointing to the following instruction. (This behavior goes back
1672       * to the need to handle asynchronous exceptions, a now-deprecated
1673       * feature that Dalvik doesn't support.)
1674       *
1675       * In practice we don't need to worry about this. The only
1676       * exceptions that can be thrown from monitor-exit are for a
1677       * null reference and -exit without a matching -enter. If the
1678       * structured locking checks are working, the former would have
1679       * failed on the -enter instruction, and the latter is impossible.
1680       *
1681       * This is fortunate, because issue 3221411 prevents us from
1682       * chasing the "can throw" path when monitor verification is
1683       * enabled. If we can fully verify the locking we can ignore
1684       * some catch blocks (which will show up as "dead" code when
1685       * we skip them here); if we can't, then the code path could be
1686       * "live" so we still need to check it.
1687       */
1688      opcode_flags &= ~Instruction::kThrow;
1689      work_line_->PopMonitor(inst->VRegA_11x());
1690      break;
1691
1692    case Instruction::CHECK_CAST:
1693    case Instruction::INSTANCE_OF: {
1694      /*
1695       * If this instruction succeeds, we will "downcast" register vA to the type in vB. (This
1696       * could be a "upcast" -- not expected, so we don't try to address it.)
1697       *
1698       * If it fails, an exception is thrown, which we deal with later by ignoring the update to
1699       * dec_insn.vA when branching to a handler.
1700       */
1701      const bool is_checkcast = (inst->Opcode() == Instruction::CHECK_CAST);
1702      const uint32_t type_idx = (is_checkcast) ? inst->VRegB_21c() : inst->VRegC_22c();
1703      const RegType& res_type = ResolveClassAndCheckAccess(type_idx);
1704      if (res_type.IsConflict()) {
1705        DCHECK_NE(failures_.size(), 0U);
1706        if (!is_checkcast) {
1707          work_line_->SetRegisterType(inst->VRegA_22c(), reg_types_.Boolean());
1708        }
1709        break;  // bad class
1710      }
1711      // TODO: check Compiler::CanAccessTypeWithoutChecks returns false when res_type is unresolved
1712      uint32_t orig_type_reg = (is_checkcast) ? inst->VRegA_21c() : inst->VRegB_22c();
1713      const RegType& orig_type = work_line_->GetRegisterType(orig_type_reg);
1714      if (!res_type.IsNonZeroReferenceTypes()) {
1715        if (is_checkcast) {
1716          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "check-cast on unexpected class " << res_type;
1717        } else {
1718          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "instance-of on unexpected class " << res_type;
1719        }
1720      } else if (!orig_type.IsReferenceTypes()) {
1721        if (is_checkcast) {
1722          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "check-cast on non-reference in v" << orig_type_reg;
1723        } else {
1724          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "instance-of on non-reference in v" << orig_type_reg;
1725        }
1726      } else {
1727        if (is_checkcast) {
1728          work_line_->SetRegisterType(inst->VRegA_21c(), res_type);
1729        } else {
1730          work_line_->SetRegisterType(inst->VRegA_22c(), reg_types_.Boolean());
1731        }
1732      }
1733      break;
1734    }
1735    case Instruction::ARRAY_LENGTH: {
1736      const RegType& res_type = work_line_->GetRegisterType(inst->VRegB_12x());
1737      if (res_type.IsReferenceTypes()) {
1738        if (!res_type.IsArrayTypes() && !res_type.IsZero()) {  // ie not an array or null
1739          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "array-length on non-array " << res_type;
1740        } else {
1741          work_line_->SetRegisterType(inst->VRegA_12x(), reg_types_.Integer());
1742        }
1743      }
1744      break;
1745    }
1746    case Instruction::NEW_INSTANCE: {
1747      const RegType& res_type = ResolveClassAndCheckAccess(inst->VRegB_21c());
1748      if (res_type.IsConflict()) {
1749        DCHECK_NE(failures_.size(), 0U);
1750        break;  // bad class
1751      }
1752      // TODO: check Compiler::CanAccessTypeWithoutChecks returns false when res_type is unresolved
1753      // can't create an instance of an interface or abstract class */
1754      if (!res_type.IsInstantiableTypes()) {
1755        Fail(VERIFY_ERROR_INSTANTIATION)
1756            << "new-instance on primitive, interface or abstract class" << res_type;
1757        // Soft failure so carry on to set register type.
1758      }
1759      const RegType& uninit_type = reg_types_.Uninitialized(res_type, work_insn_idx_);
1760      // Any registers holding previous allocations from this address that have not yet been
1761      // initialized must be marked invalid.
1762      work_line_->MarkUninitRefsAsInvalid(uninit_type);
1763      // add the new uninitialized reference to the register state
1764      work_line_->SetRegisterType(inst->VRegA_21c(), uninit_type);
1765      break;
1766    }
1767    case Instruction::NEW_ARRAY:
1768      VerifyNewArray(inst, false, false);
1769      break;
1770    case Instruction::FILLED_NEW_ARRAY:
1771      VerifyNewArray(inst, true, false);
1772      just_set_result = true;  // Filled new array sets result register
1773      break;
1774    case Instruction::FILLED_NEW_ARRAY_RANGE:
1775      VerifyNewArray(inst, true, true);
1776      just_set_result = true;  // Filled new array range sets result register
1777      break;
1778    case Instruction::CMPL_FLOAT:
1779    case Instruction::CMPG_FLOAT:
1780      if (!work_line_->VerifyRegisterType(inst->VRegB_23x(), reg_types_.Float())) {
1781        break;
1782      }
1783      if (!work_line_->VerifyRegisterType(inst->VRegC_23x(), reg_types_.Float())) {
1784        break;
1785      }
1786      work_line_->SetRegisterType(inst->VRegA_23x(), reg_types_.Integer());
1787      break;
1788    case Instruction::CMPL_DOUBLE:
1789    case Instruction::CMPG_DOUBLE:
1790      if (!work_line_->VerifyRegisterTypeWide(inst->VRegB_23x(), reg_types_.DoubleLo(),
1791                                              reg_types_.DoubleHi())) {
1792        break;
1793      }
1794      if (!work_line_->VerifyRegisterTypeWide(inst->VRegC_23x(), reg_types_.DoubleLo(),
1795                                              reg_types_.DoubleHi())) {
1796        break;
1797      }
1798      work_line_->SetRegisterType(inst->VRegA_23x(), reg_types_.Integer());
1799      break;
1800    case Instruction::CMP_LONG:
1801      if (!work_line_->VerifyRegisterTypeWide(inst->VRegB_23x(), reg_types_.LongLo(),
1802                                              reg_types_.LongHi())) {
1803        break;
1804      }
1805      if (!work_line_->VerifyRegisterTypeWide(inst->VRegC_23x(), reg_types_.LongLo(),
1806                                              reg_types_.LongHi())) {
1807        break;
1808      }
1809      work_line_->SetRegisterType(inst->VRegA_23x(), reg_types_.Integer());
1810      break;
1811    case Instruction::THROW: {
1812      const RegType& res_type = work_line_->GetRegisterType(inst->VRegA_11x());
1813      if (!reg_types_.JavaLangThrowable(false).IsAssignableFrom(res_type)) {
1814        Fail(res_type.IsUnresolvedTypes() ? VERIFY_ERROR_NO_CLASS : VERIFY_ERROR_BAD_CLASS_SOFT)
1815            << "thrown class " << res_type << " not instanceof Throwable";
1816      }
1817      break;
1818    }
1819    case Instruction::GOTO:
1820    case Instruction::GOTO_16:
1821    case Instruction::GOTO_32:
1822      /* no effect on or use of registers */
1823      break;
1824
1825    case Instruction::PACKED_SWITCH:
1826    case Instruction::SPARSE_SWITCH:
1827      /* verify that vAA is an integer, or can be converted to one */
1828      work_line_->VerifyRegisterType(inst->VRegA_31t(), reg_types_.Integer());
1829      break;
1830
1831    case Instruction::FILL_ARRAY_DATA: {
1832      /* Similar to the verification done for APUT */
1833      const RegType& array_type = work_line_->GetRegisterType(inst->VRegA_31t());
1834      /* array_type can be null if the reg type is Zero */
1835      if (!array_type.IsZero()) {
1836        if (!array_type.IsArrayTypes()) {
1837          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid fill-array-data with array type "
1838                                            << array_type;
1839        } else {
1840          const RegType& component_type = reg_types_.GetComponentType(array_type,
1841                                                                      class_loader_->Get());
1842          DCHECK(!component_type.IsConflict());
1843          if (component_type.IsNonZeroReferenceTypes()) {
1844            Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid fill-array-data with component type "
1845                                              << component_type;
1846          } else {
1847            // Now verify if the element width in the table matches the element width declared in
1848            // the array
1849            const uint16_t* array_data = insns + (insns[1] | (((int32_t) insns[2]) << 16));
1850            if (array_data[0] != Instruction::kArrayDataSignature) {
1851              Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid magic for array-data";
1852            } else {
1853              size_t elem_width = Primitive::ComponentSize(component_type.GetPrimitiveType());
1854              // Since we don't compress the data in Dex, expect to see equal width of data stored
1855              // in the table and expected from the array class.
1856              if (array_data[1] != elem_width) {
1857                Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "array-data size mismatch (" << array_data[1]
1858                                                  << " vs " << elem_width << ")";
1859              }
1860            }
1861          }
1862        }
1863      }
1864      break;
1865    }
1866    case Instruction::IF_EQ:
1867    case Instruction::IF_NE: {
1868      const RegType& reg_type1 = work_line_->GetRegisterType(inst->VRegA_22t());
1869      const RegType& reg_type2 = work_line_->GetRegisterType(inst->VRegB_22t());
1870      bool mismatch = false;
1871      if (reg_type1.IsZero()) {  // zero then integral or reference expected
1872        mismatch = !reg_type2.IsReferenceTypes() && !reg_type2.IsIntegralTypes();
1873      } else if (reg_type1.IsReferenceTypes()) {  // both references?
1874        mismatch = !reg_type2.IsReferenceTypes();
1875      } else {  // both integral?
1876        mismatch = !reg_type1.IsIntegralTypes() || !reg_type2.IsIntegralTypes();
1877      }
1878      if (mismatch) {
1879        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "args to if-eq/if-ne (" << reg_type1 << ","
1880                                          << reg_type2 << ") must both be references or integral";
1881      }
1882      break;
1883    }
1884    case Instruction::IF_LT:
1885    case Instruction::IF_GE:
1886    case Instruction::IF_GT:
1887    case Instruction::IF_LE: {
1888      const RegType& reg_type1 = work_line_->GetRegisterType(inst->VRegA_22t());
1889      const RegType& reg_type2 = work_line_->GetRegisterType(inst->VRegB_22t());
1890      if (!reg_type1.IsIntegralTypes() || !reg_type2.IsIntegralTypes()) {
1891        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "args to 'if' (" << reg_type1 << ","
1892                                          << reg_type2 << ") must be integral";
1893      }
1894      break;
1895    }
1896    case Instruction::IF_EQZ:
1897    case Instruction::IF_NEZ: {
1898      const RegType& reg_type = work_line_->GetRegisterType(inst->VRegA_21t());
1899      if (!reg_type.IsReferenceTypes() && !reg_type.IsIntegralTypes()) {
1900        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "type " << reg_type
1901                                          << " unexpected as arg to if-eqz/if-nez";
1902      }
1903
1904      // Find previous instruction - its existence is a precondition to peephole optimization.
1905      uint32_t instance_of_idx = 0;
1906      if (0 != work_insn_idx_) {
1907        instance_of_idx = work_insn_idx_ - 1;
1908        while (0 != instance_of_idx && !insn_flags_[instance_of_idx].IsOpcode()) {
1909          instance_of_idx--;
1910        }
1911        CHECK(insn_flags_[instance_of_idx].IsOpcode());
1912      } else {
1913        break;
1914      }
1915
1916      const Instruction* instance_of_inst = Instruction::At(code_item_->insns_ + instance_of_idx);
1917
1918      /* Check for peep-hole pattern of:
1919       *    ...;
1920       *    instance-of vX, vY, T;
1921       *    ifXXX vX, label ;
1922       *    ...;
1923       * label:
1924       *    ...;
1925       * and sharpen the type of vY to be type T.
1926       * Note, this pattern can't be if:
1927       *  - if there are other branches to this branch,
1928       *  - when vX == vY.
1929       */
1930      if (!CurrentInsnFlags()->IsBranchTarget() &&
1931          (Instruction::INSTANCE_OF == instance_of_inst->Opcode()) &&
1932          (inst->VRegA_21t() == instance_of_inst->VRegA_22c()) &&
1933          (instance_of_inst->VRegA_22c() != instance_of_inst->VRegB_22c())) {
1934        // Check that the we are not attempting conversion to interface types,
1935        // which is not done because of the multiple inheritance implications.
1936        // Also don't change the type if it would result in an upcast.
1937        const RegType& orig_type = work_line_->GetRegisterType(instance_of_inst->VRegB_22c());
1938        const RegType& cast_type = ResolveClassAndCheckAccess(instance_of_inst->VRegC_22c());
1939
1940        if (!cast_type.IsUnresolvedTypes() && !orig_type.IsUnresolvedTypes() &&
1941            !cast_type.GetClass()->IsInterface() && !cast_type.IsAssignableFrom(orig_type)) {
1942          RegisterLine* update_line = RegisterLine::Create(code_item_->registers_size_, this);
1943          if (inst->Opcode() == Instruction::IF_EQZ) {
1944            fallthrough_line.reset(update_line);
1945          } else {
1946            branch_line.reset(update_line);
1947          }
1948          update_line->CopyFromLine(work_line_.get());
1949          update_line->SetRegisterType(instance_of_inst->VRegB_22c(), cast_type);
1950          if (!insn_flags_[instance_of_idx].IsBranchTarget() && 0 != instance_of_idx) {
1951            // See if instance-of was preceded by a move-object operation, common due to the small
1952            // register encoding space of instance-of, and propagate type information to the source
1953            // of the move-object.
1954            uint32_t move_idx = instance_of_idx - 1;
1955            while (0 != move_idx && !insn_flags_[move_idx].IsOpcode()) {
1956              move_idx--;
1957            }
1958            CHECK(insn_flags_[move_idx].IsOpcode());
1959            const Instruction* move_inst = Instruction::At(code_item_->insns_ + move_idx);
1960            switch (move_inst->Opcode()) {
1961              case Instruction::MOVE_OBJECT:
1962                if (move_inst->VRegA_12x() == instance_of_inst->VRegB_22c()) {
1963                  update_line->SetRegisterType(move_inst->VRegB_12x(), cast_type);
1964                }
1965                break;
1966              case Instruction::MOVE_OBJECT_FROM16:
1967                if (move_inst->VRegA_22x() == instance_of_inst->VRegB_22c()) {
1968                  update_line->SetRegisterType(move_inst->VRegB_22x(), cast_type);
1969                }
1970                break;
1971              case Instruction::MOVE_OBJECT_16:
1972                if (move_inst->VRegA_32x() == instance_of_inst->VRegB_22c()) {
1973                  update_line->SetRegisterType(move_inst->VRegB_32x(), cast_type);
1974                }
1975                break;
1976              default:
1977                break;
1978            }
1979          }
1980        }
1981      }
1982
1983      break;
1984    }
1985    case Instruction::IF_LTZ:
1986    case Instruction::IF_GEZ:
1987    case Instruction::IF_GTZ:
1988    case Instruction::IF_LEZ: {
1989      const RegType& reg_type = work_line_->GetRegisterType(inst->VRegA_21t());
1990      if (!reg_type.IsIntegralTypes()) {
1991        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "type " << reg_type
1992                                          << " unexpected as arg to if-ltz/if-gez/if-gtz/if-lez";
1993      }
1994      break;
1995    }
1996    case Instruction::AGET_BOOLEAN:
1997      VerifyAGet(inst, reg_types_.Boolean(), true);
1998      break;
1999    case Instruction::AGET_BYTE:
2000      VerifyAGet(inst, reg_types_.Byte(), true);
2001      break;
2002    case Instruction::AGET_CHAR:
2003      VerifyAGet(inst, reg_types_.Char(), true);
2004      break;
2005    case Instruction::AGET_SHORT:
2006      VerifyAGet(inst, reg_types_.Short(), true);
2007      break;
2008    case Instruction::AGET:
2009      VerifyAGet(inst, reg_types_.Integer(), true);
2010      break;
2011    case Instruction::AGET_WIDE:
2012      VerifyAGet(inst, reg_types_.LongLo(), true);
2013      break;
2014    case Instruction::AGET_OBJECT:
2015      VerifyAGet(inst, reg_types_.JavaLangObject(false), false);
2016      break;
2017
2018    case Instruction::APUT_BOOLEAN:
2019      VerifyAPut(inst, reg_types_.Boolean(), true);
2020      break;
2021    case Instruction::APUT_BYTE:
2022      VerifyAPut(inst, reg_types_.Byte(), true);
2023      break;
2024    case Instruction::APUT_CHAR:
2025      VerifyAPut(inst, reg_types_.Char(), true);
2026      break;
2027    case Instruction::APUT_SHORT:
2028      VerifyAPut(inst, reg_types_.Short(), true);
2029      break;
2030    case Instruction::APUT:
2031      VerifyAPut(inst, reg_types_.Integer(), true);
2032      break;
2033    case Instruction::APUT_WIDE:
2034      VerifyAPut(inst, reg_types_.LongLo(), true);
2035      break;
2036    case Instruction::APUT_OBJECT:
2037      VerifyAPut(inst, reg_types_.JavaLangObject(false), false);
2038      break;
2039
2040    case Instruction::IGET_BOOLEAN:
2041      VerifyISGet(inst, reg_types_.Boolean(), true, false);
2042      break;
2043    case Instruction::IGET_BYTE:
2044      VerifyISGet(inst, reg_types_.Byte(), true, false);
2045      break;
2046    case Instruction::IGET_CHAR:
2047      VerifyISGet(inst, reg_types_.Char(), true, false);
2048      break;
2049    case Instruction::IGET_SHORT:
2050      VerifyISGet(inst, reg_types_.Short(), true, false);
2051      break;
2052    case Instruction::IGET:
2053      VerifyISGet(inst, reg_types_.Integer(), true, false);
2054      break;
2055    case Instruction::IGET_WIDE:
2056      VerifyISGet(inst, reg_types_.LongLo(), true, false);
2057      break;
2058    case Instruction::IGET_OBJECT:
2059      VerifyISGet(inst, reg_types_.JavaLangObject(false), false, false);
2060      break;
2061
2062    case Instruction::IPUT_BOOLEAN:
2063      VerifyISPut(inst, reg_types_.Boolean(), true, false);
2064      break;
2065    case Instruction::IPUT_BYTE:
2066      VerifyISPut(inst, reg_types_.Byte(), true, false);
2067      break;
2068    case Instruction::IPUT_CHAR:
2069      VerifyISPut(inst, reg_types_.Char(), true, false);
2070      break;
2071    case Instruction::IPUT_SHORT:
2072      VerifyISPut(inst, reg_types_.Short(), true, false);
2073      break;
2074    case Instruction::IPUT:
2075      VerifyISPut(inst, reg_types_.Integer(), true, false);
2076      break;
2077    case Instruction::IPUT_WIDE:
2078      VerifyISPut(inst, reg_types_.LongLo(), true, false);
2079      break;
2080    case Instruction::IPUT_OBJECT:
2081      VerifyISPut(inst, reg_types_.JavaLangObject(false), false, false);
2082      break;
2083
2084    case Instruction::SGET_BOOLEAN:
2085      VerifyISGet(inst, reg_types_.Boolean(), true, true);
2086      break;
2087    case Instruction::SGET_BYTE:
2088      VerifyISGet(inst, reg_types_.Byte(), true, true);
2089      break;
2090    case Instruction::SGET_CHAR:
2091      VerifyISGet(inst, reg_types_.Char(), true, true);
2092      break;
2093    case Instruction::SGET_SHORT:
2094      VerifyISGet(inst, reg_types_.Short(), true, true);
2095      break;
2096    case Instruction::SGET:
2097      VerifyISGet(inst, reg_types_.Integer(), true, true);
2098      break;
2099    case Instruction::SGET_WIDE:
2100      VerifyISGet(inst, reg_types_.LongLo(), true, true);
2101      break;
2102    case Instruction::SGET_OBJECT:
2103      VerifyISGet(inst, reg_types_.JavaLangObject(false), false, true);
2104      break;
2105
2106    case Instruction::SPUT_BOOLEAN:
2107      VerifyISPut(inst, reg_types_.Boolean(), true, true);
2108      break;
2109    case Instruction::SPUT_BYTE:
2110      VerifyISPut(inst, reg_types_.Byte(), true, true);
2111      break;
2112    case Instruction::SPUT_CHAR:
2113      VerifyISPut(inst, reg_types_.Char(), true, true);
2114      break;
2115    case Instruction::SPUT_SHORT:
2116      VerifyISPut(inst, reg_types_.Short(), true, true);
2117      break;
2118    case Instruction::SPUT:
2119      VerifyISPut(inst, reg_types_.Integer(), true, true);
2120      break;
2121    case Instruction::SPUT_WIDE:
2122      VerifyISPut(inst, reg_types_.LongLo(), true, true);
2123      break;
2124    case Instruction::SPUT_OBJECT:
2125      VerifyISPut(inst, reg_types_.JavaLangObject(false), false, true);
2126      break;
2127
2128    case Instruction::INVOKE_VIRTUAL:
2129    case Instruction::INVOKE_VIRTUAL_RANGE:
2130    case Instruction::INVOKE_SUPER:
2131    case Instruction::INVOKE_SUPER_RANGE: {
2132      bool is_range = (inst->Opcode() == Instruction::INVOKE_VIRTUAL_RANGE ||
2133                       inst->Opcode() == Instruction::INVOKE_SUPER_RANGE);
2134      bool is_super =  (inst->Opcode() == Instruction::INVOKE_SUPER ||
2135                        inst->Opcode() == Instruction::INVOKE_SUPER_RANGE);
2136      mirror::ArtMethod* called_method = VerifyInvocationArgs(inst, METHOD_VIRTUAL,
2137                                                                   is_range, is_super);
2138      const RegType* return_type = nullptr;
2139      if (called_method != nullptr) {
2140        MethodHelper mh(called_method);
2141        mirror::Class* return_type_class = mh.GetReturnType(can_load_classes_);
2142        if (return_type_class != nullptr) {
2143          return_type = &reg_types_.FromClass(mh.GetReturnTypeDescriptor(), return_type_class,
2144                                              return_type_class->CannotBeAssignedFromOtherTypes());
2145        } else {
2146          Thread* self = Thread::Current();
2147          DCHECK(!can_load_classes_ || self->IsExceptionPending());
2148          self->ClearException();
2149        }
2150      }
2151      if (return_type == nullptr) {
2152        uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
2153        const DexFile::MethodId& method_id = dex_file_->GetMethodId(method_idx);
2154        uint32_t return_type_idx = dex_file_->GetProtoId(method_id.proto_idx_).return_type_idx_;
2155        const char* descriptor = dex_file_->StringByTypeIdx(return_type_idx);
2156        return_type = &reg_types_.FromDescriptor(class_loader_->Get(), descriptor, false);
2157      }
2158      if (!return_type->IsLowHalf()) {
2159        work_line_->SetResultRegisterType(*return_type);
2160      } else {
2161        work_line_->SetResultRegisterTypeWide(*return_type, return_type->HighHalf(&reg_types_));
2162      }
2163      just_set_result = true;
2164      break;
2165    }
2166    case Instruction::INVOKE_DIRECT:
2167    case Instruction::INVOKE_DIRECT_RANGE: {
2168      bool is_range = (inst->Opcode() == Instruction::INVOKE_DIRECT_RANGE);
2169      mirror::ArtMethod* called_method = VerifyInvocationArgs(inst, METHOD_DIRECT,
2170                                                                   is_range, false);
2171      const char* return_type_descriptor;
2172      bool is_constructor;
2173      if (called_method == NULL) {
2174        uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
2175        const DexFile::MethodId& method_id = dex_file_->GetMethodId(method_idx);
2176        is_constructor = strcmp("<init>", dex_file_->StringDataByIdx(method_id.name_idx_)) == 0;
2177        uint32_t return_type_idx = dex_file_->GetProtoId(method_id.proto_idx_).return_type_idx_;
2178        return_type_descriptor =  dex_file_->StringByTypeIdx(return_type_idx);
2179      } else {
2180        is_constructor = called_method->IsConstructor();
2181        return_type_descriptor = MethodHelper(called_method).GetReturnTypeDescriptor();
2182      }
2183      if (is_constructor) {
2184        /*
2185         * Some additional checks when calling a constructor. We know from the invocation arg check
2186         * that the "this" argument is an instance of called_method->klass. Now we further restrict
2187         * that to require that called_method->klass is the same as this->klass or this->super,
2188         * allowing the latter only if the "this" argument is the same as the "this" argument to
2189         * this method (which implies that we're in a constructor ourselves).
2190         */
2191        const RegType& this_type = work_line_->GetInvocationThis(inst, is_range);
2192        if (this_type.IsConflict())  // failure.
2193          break;
2194
2195        /* no null refs allowed (?) */
2196        if (this_type.IsZero()) {
2197          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unable to initialize null ref";
2198          break;
2199        }
2200
2201        /* must be in same class or in superclass */
2202        // const RegType& this_super_klass = this_type.GetSuperClass(&reg_types_);
2203        // TODO: re-enable constructor type verification
2204        // if (this_super_klass.IsConflict()) {
2205          // Unknown super class, fail so we re-check at runtime.
2206          // Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "super class unknown for '" << this_type << "'";
2207          // break;
2208        // }
2209
2210        /* arg must be an uninitialized reference */
2211        if (!this_type.IsUninitializedTypes()) {
2212          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Expected initialization on uninitialized reference "
2213              << this_type;
2214          break;
2215        }
2216
2217        /*
2218         * Replace the uninitialized reference with an initialized one. We need to do this for all
2219         * registers that have the same object instance in them, not just the "this" register.
2220         */
2221        work_line_->MarkRefsAsInitialized(this_type);
2222      }
2223      const RegType& return_type = reg_types_.FromDescriptor(class_loader_->Get(),
2224                                                             return_type_descriptor, false);
2225      if (!return_type.IsLowHalf()) {
2226        work_line_->SetResultRegisterType(return_type);
2227      } else {
2228        work_line_->SetResultRegisterTypeWide(return_type, return_type.HighHalf(&reg_types_));
2229      }
2230      just_set_result = true;
2231      break;
2232    }
2233    case Instruction::INVOKE_STATIC:
2234    case Instruction::INVOKE_STATIC_RANGE: {
2235        bool is_range = (inst->Opcode() == Instruction::INVOKE_STATIC_RANGE);
2236        mirror::ArtMethod* called_method = VerifyInvocationArgs(inst,
2237                                                                     METHOD_STATIC,
2238                                                                     is_range,
2239                                                                     false);
2240        const char* descriptor;
2241        if (called_method == NULL) {
2242          uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
2243          const DexFile::MethodId& method_id = dex_file_->GetMethodId(method_idx);
2244          uint32_t return_type_idx = dex_file_->GetProtoId(method_id.proto_idx_).return_type_idx_;
2245          descriptor = dex_file_->StringByTypeIdx(return_type_idx);
2246        } else {
2247          descriptor = MethodHelper(called_method).GetReturnTypeDescriptor();
2248        }
2249        const RegType& return_type =  reg_types_.FromDescriptor(class_loader_->Get(), descriptor,
2250                                                                false);
2251        if (!return_type.IsLowHalf()) {
2252          work_line_->SetResultRegisterType(return_type);
2253        } else {
2254          work_line_->SetResultRegisterTypeWide(return_type, return_type.HighHalf(&reg_types_));
2255        }
2256        just_set_result = true;
2257      }
2258      break;
2259    case Instruction::INVOKE_INTERFACE:
2260    case Instruction::INVOKE_INTERFACE_RANGE: {
2261      bool is_range =  (inst->Opcode() == Instruction::INVOKE_INTERFACE_RANGE);
2262      mirror::ArtMethod* abs_method = VerifyInvocationArgs(inst,
2263                                                                METHOD_INTERFACE,
2264                                                                is_range,
2265                                                                false);
2266      if (abs_method != NULL) {
2267        mirror::Class* called_interface = abs_method->GetDeclaringClass();
2268        if (!called_interface->IsInterface() && !called_interface->IsObjectClass()) {
2269          Fail(VERIFY_ERROR_CLASS_CHANGE) << "expected interface class in invoke-interface '"
2270              << PrettyMethod(abs_method) << "'";
2271          break;
2272        }
2273      }
2274      /* Get the type of the "this" arg, which should either be a sub-interface of called
2275       * interface or Object (see comments in RegType::JoinClass).
2276       */
2277      const RegType& this_type = work_line_->GetInvocationThis(inst, is_range);
2278      if (this_type.IsZero()) {
2279        /* null pointer always passes (and always fails at runtime) */
2280      } else {
2281        if (this_type.IsUninitializedTypes()) {
2282          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "interface call on uninitialized object "
2283              << this_type;
2284          break;
2285        }
2286        // In the past we have tried to assert that "called_interface" is assignable
2287        // from "this_type.GetClass()", however, as we do an imprecise Join
2288        // (RegType::JoinClass) we don't have full information on what interfaces are
2289        // implemented by "this_type". For example, two classes may implement the same
2290        // interfaces and have a common parent that doesn't implement the interface. The
2291        // join will set "this_type" to the parent class and a test that this implements
2292        // the interface will incorrectly fail.
2293      }
2294      /*
2295       * We don't have an object instance, so we can't find the concrete method. However, all of
2296       * the type information is in the abstract method, so we're good.
2297       */
2298      const char* descriptor;
2299      if (abs_method == NULL) {
2300        uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
2301        const DexFile::MethodId& method_id = dex_file_->GetMethodId(method_idx);
2302        uint32_t return_type_idx = dex_file_->GetProtoId(method_id.proto_idx_).return_type_idx_;
2303        descriptor =  dex_file_->StringByTypeIdx(return_type_idx);
2304      } else {
2305        descriptor = MethodHelper(abs_method).GetReturnTypeDescriptor();
2306      }
2307      const RegType& return_type = reg_types_.FromDescriptor(class_loader_->Get(), descriptor,
2308                                                             false);
2309      if (!return_type.IsLowHalf()) {
2310        work_line_->SetResultRegisterType(return_type);
2311      } else {
2312        work_line_->SetResultRegisterTypeWide(return_type, return_type.HighHalf(&reg_types_));
2313      }
2314      just_set_result = true;
2315      break;
2316    }
2317    case Instruction::NEG_INT:
2318    case Instruction::NOT_INT:
2319      work_line_->CheckUnaryOp(inst, reg_types_.Integer(), reg_types_.Integer());
2320      break;
2321    case Instruction::NEG_LONG:
2322    case Instruction::NOT_LONG:
2323      work_line_->CheckUnaryOpWide(inst, reg_types_.LongLo(), reg_types_.LongHi(),
2324                                   reg_types_.LongLo(), reg_types_.LongHi());
2325      break;
2326    case Instruction::NEG_FLOAT:
2327      work_line_->CheckUnaryOp(inst, reg_types_.Float(), reg_types_.Float());
2328      break;
2329    case Instruction::NEG_DOUBLE:
2330      work_line_->CheckUnaryOpWide(inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
2331                                   reg_types_.DoubleLo(), reg_types_.DoubleHi());
2332      break;
2333    case Instruction::INT_TO_LONG:
2334      work_line_->CheckUnaryOpToWide(inst, reg_types_.LongLo(), reg_types_.LongHi(),
2335                                     reg_types_.Integer());
2336      break;
2337    case Instruction::INT_TO_FLOAT:
2338      work_line_->CheckUnaryOp(inst, reg_types_.Float(), reg_types_.Integer());
2339      break;
2340    case Instruction::INT_TO_DOUBLE:
2341      work_line_->CheckUnaryOpToWide(inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
2342                                     reg_types_.Integer());
2343      break;
2344    case Instruction::LONG_TO_INT:
2345      work_line_->CheckUnaryOpFromWide(inst, reg_types_.Integer(),
2346                                       reg_types_.LongLo(), reg_types_.LongHi());
2347      break;
2348    case Instruction::LONG_TO_FLOAT:
2349      work_line_->CheckUnaryOpFromWide(inst, reg_types_.Float(),
2350                                       reg_types_.LongLo(), reg_types_.LongHi());
2351      break;
2352    case Instruction::LONG_TO_DOUBLE:
2353      work_line_->CheckUnaryOpWide(inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
2354                                   reg_types_.LongLo(), reg_types_.LongHi());
2355      break;
2356    case Instruction::FLOAT_TO_INT:
2357      work_line_->CheckUnaryOp(inst, reg_types_.Integer(), reg_types_.Float());
2358      break;
2359    case Instruction::FLOAT_TO_LONG:
2360      work_line_->CheckUnaryOpToWide(inst, reg_types_.LongLo(), reg_types_.LongHi(),
2361                                     reg_types_.Float());
2362      break;
2363    case Instruction::FLOAT_TO_DOUBLE:
2364      work_line_->CheckUnaryOpToWide(inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
2365                                     reg_types_.Float());
2366      break;
2367    case Instruction::DOUBLE_TO_INT:
2368      work_line_->CheckUnaryOpFromWide(inst, reg_types_.Integer(),
2369                                       reg_types_.DoubleLo(), reg_types_.DoubleHi());
2370      break;
2371    case Instruction::DOUBLE_TO_LONG:
2372      work_line_->CheckUnaryOpWide(inst, reg_types_.LongLo(), reg_types_.LongHi(),
2373                                   reg_types_.DoubleLo(), reg_types_.DoubleHi());
2374      break;
2375    case Instruction::DOUBLE_TO_FLOAT:
2376      work_line_->CheckUnaryOpFromWide(inst, reg_types_.Float(),
2377                                       reg_types_.DoubleLo(), reg_types_.DoubleHi());
2378      break;
2379    case Instruction::INT_TO_BYTE:
2380      work_line_->CheckUnaryOp(inst, reg_types_.Byte(), reg_types_.Integer());
2381      break;
2382    case Instruction::INT_TO_CHAR:
2383      work_line_->CheckUnaryOp(inst, reg_types_.Char(), reg_types_.Integer());
2384      break;
2385    case Instruction::INT_TO_SHORT:
2386      work_line_->CheckUnaryOp(inst, reg_types_.Short(), reg_types_.Integer());
2387      break;
2388
2389    case Instruction::ADD_INT:
2390    case Instruction::SUB_INT:
2391    case Instruction::MUL_INT:
2392    case Instruction::REM_INT:
2393    case Instruction::DIV_INT:
2394    case Instruction::SHL_INT:
2395    case Instruction::SHR_INT:
2396    case Instruction::USHR_INT:
2397      work_line_->CheckBinaryOp(inst, reg_types_.Integer(), reg_types_.Integer(),
2398                                reg_types_.Integer(), false);
2399      break;
2400    case Instruction::AND_INT:
2401    case Instruction::OR_INT:
2402    case Instruction::XOR_INT:
2403      work_line_->CheckBinaryOp(inst, reg_types_.Integer(), reg_types_.Integer(),
2404                                reg_types_.Integer(), true);
2405      break;
2406    case Instruction::ADD_LONG:
2407    case Instruction::SUB_LONG:
2408    case Instruction::MUL_LONG:
2409    case Instruction::DIV_LONG:
2410    case Instruction::REM_LONG:
2411    case Instruction::AND_LONG:
2412    case Instruction::OR_LONG:
2413    case Instruction::XOR_LONG:
2414      work_line_->CheckBinaryOpWide(inst, reg_types_.LongLo(), reg_types_.LongHi(),
2415                                    reg_types_.LongLo(), reg_types_.LongHi(),
2416                                    reg_types_.LongLo(), reg_types_.LongHi());
2417      break;
2418    case Instruction::SHL_LONG:
2419    case Instruction::SHR_LONG:
2420    case Instruction::USHR_LONG:
2421      /* shift distance is Int, making these different from other binary operations */
2422      work_line_->CheckBinaryOpWideShift(inst, reg_types_.LongLo(), reg_types_.LongHi(),
2423                                         reg_types_.Integer());
2424      break;
2425    case Instruction::ADD_FLOAT:
2426    case Instruction::SUB_FLOAT:
2427    case Instruction::MUL_FLOAT:
2428    case Instruction::DIV_FLOAT:
2429    case Instruction::REM_FLOAT:
2430      work_line_->CheckBinaryOp(inst,
2431                                reg_types_.Float(),
2432                                reg_types_.Float(),
2433                                reg_types_.Float(),
2434                                false);
2435      break;
2436    case Instruction::ADD_DOUBLE:
2437    case Instruction::SUB_DOUBLE:
2438    case Instruction::MUL_DOUBLE:
2439    case Instruction::DIV_DOUBLE:
2440    case Instruction::REM_DOUBLE:
2441      work_line_->CheckBinaryOpWide(inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
2442                                    reg_types_.DoubleLo(), reg_types_.DoubleHi(),
2443                                    reg_types_.DoubleLo(), reg_types_.DoubleHi());
2444      break;
2445    case Instruction::ADD_INT_2ADDR:
2446    case Instruction::SUB_INT_2ADDR:
2447    case Instruction::MUL_INT_2ADDR:
2448    case Instruction::REM_INT_2ADDR:
2449    case Instruction::SHL_INT_2ADDR:
2450    case Instruction::SHR_INT_2ADDR:
2451    case Instruction::USHR_INT_2ADDR:
2452      work_line_->CheckBinaryOp2addr(inst,
2453                                     reg_types_.Integer(),
2454                                     reg_types_.Integer(),
2455                                     reg_types_.Integer(),
2456                                     false);
2457      break;
2458    case Instruction::AND_INT_2ADDR:
2459    case Instruction::OR_INT_2ADDR:
2460    case Instruction::XOR_INT_2ADDR:
2461      work_line_->CheckBinaryOp2addr(inst,
2462                                     reg_types_.Integer(),
2463                                     reg_types_.Integer(),
2464                                     reg_types_.Integer(),
2465                                     true);
2466      break;
2467    case Instruction::DIV_INT_2ADDR:
2468      work_line_->CheckBinaryOp2addr(inst,
2469                                     reg_types_.Integer(),
2470                                     reg_types_.Integer(),
2471                                     reg_types_.Integer(),
2472                                     false);
2473      break;
2474    case Instruction::ADD_LONG_2ADDR:
2475    case Instruction::SUB_LONG_2ADDR:
2476    case Instruction::MUL_LONG_2ADDR:
2477    case Instruction::DIV_LONG_2ADDR:
2478    case Instruction::REM_LONG_2ADDR:
2479    case Instruction::AND_LONG_2ADDR:
2480    case Instruction::OR_LONG_2ADDR:
2481    case Instruction::XOR_LONG_2ADDR:
2482      work_line_->CheckBinaryOp2addrWide(inst, reg_types_.LongLo(), reg_types_.LongHi(),
2483                                         reg_types_.LongLo(), reg_types_.LongHi(),
2484                                         reg_types_.LongLo(), reg_types_.LongHi());
2485      break;
2486    case Instruction::SHL_LONG_2ADDR:
2487    case Instruction::SHR_LONG_2ADDR:
2488    case Instruction::USHR_LONG_2ADDR:
2489      work_line_->CheckBinaryOp2addrWideShift(inst, reg_types_.LongLo(), reg_types_.LongHi(),
2490                                              reg_types_.Integer());
2491      break;
2492    case Instruction::ADD_FLOAT_2ADDR:
2493    case Instruction::SUB_FLOAT_2ADDR:
2494    case Instruction::MUL_FLOAT_2ADDR:
2495    case Instruction::DIV_FLOAT_2ADDR:
2496    case Instruction::REM_FLOAT_2ADDR:
2497      work_line_->CheckBinaryOp2addr(inst,
2498                                     reg_types_.Float(),
2499                                     reg_types_.Float(),
2500                                     reg_types_.Float(),
2501                                     false);
2502      break;
2503    case Instruction::ADD_DOUBLE_2ADDR:
2504    case Instruction::SUB_DOUBLE_2ADDR:
2505    case Instruction::MUL_DOUBLE_2ADDR:
2506    case Instruction::DIV_DOUBLE_2ADDR:
2507    case Instruction::REM_DOUBLE_2ADDR:
2508      work_line_->CheckBinaryOp2addrWide(inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
2509                                         reg_types_.DoubleLo(),  reg_types_.DoubleHi(),
2510                                         reg_types_.DoubleLo(), reg_types_.DoubleHi());
2511      break;
2512    case Instruction::ADD_INT_LIT16:
2513    case Instruction::RSUB_INT:
2514    case Instruction::MUL_INT_LIT16:
2515    case Instruction::DIV_INT_LIT16:
2516    case Instruction::REM_INT_LIT16:
2517      work_line_->CheckLiteralOp(inst, reg_types_.Integer(), reg_types_.Integer(), false, true);
2518      break;
2519    case Instruction::AND_INT_LIT16:
2520    case Instruction::OR_INT_LIT16:
2521    case Instruction::XOR_INT_LIT16:
2522      work_line_->CheckLiteralOp(inst, reg_types_.Integer(), reg_types_.Integer(), true, true);
2523      break;
2524    case Instruction::ADD_INT_LIT8:
2525    case Instruction::RSUB_INT_LIT8:
2526    case Instruction::MUL_INT_LIT8:
2527    case Instruction::DIV_INT_LIT8:
2528    case Instruction::REM_INT_LIT8:
2529    case Instruction::SHL_INT_LIT8:
2530    case Instruction::SHR_INT_LIT8:
2531    case Instruction::USHR_INT_LIT8:
2532      work_line_->CheckLiteralOp(inst, reg_types_.Integer(), reg_types_.Integer(), false, false);
2533      break;
2534    case Instruction::AND_INT_LIT8:
2535    case Instruction::OR_INT_LIT8:
2536    case Instruction::XOR_INT_LIT8:
2537      work_line_->CheckLiteralOp(inst, reg_types_.Integer(), reg_types_.Integer(), true, false);
2538      break;
2539
2540    // Special instructions.
2541    case Instruction::RETURN_VOID_BARRIER:
2542      if (!IsConstructor() || IsStatic()) {
2543          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "return-void-barrier not expected";
2544      }
2545      break;
2546    // Note: the following instructions encode offsets derived from class linking.
2547    // As such they use Class*/Field*/AbstractMethod* as these offsets only have
2548    // meaning if the class linking and resolution were successful.
2549    case Instruction::IGET_QUICK:
2550      VerifyIGetQuick(inst, reg_types_.Integer(), true);
2551      break;
2552    case Instruction::IGET_WIDE_QUICK:
2553      VerifyIGetQuick(inst, reg_types_.LongLo(), true);
2554      break;
2555    case Instruction::IGET_OBJECT_QUICK:
2556      VerifyIGetQuick(inst, reg_types_.JavaLangObject(false), false);
2557      break;
2558    case Instruction::IPUT_QUICK:
2559      VerifyIPutQuick(inst, reg_types_.Integer(), true);
2560      break;
2561    case Instruction::IPUT_WIDE_QUICK:
2562      VerifyIPutQuick(inst, reg_types_.LongLo(), true);
2563      break;
2564    case Instruction::IPUT_OBJECT_QUICK:
2565      VerifyIPutQuick(inst, reg_types_.JavaLangObject(false), false);
2566      break;
2567    case Instruction::INVOKE_VIRTUAL_QUICK:
2568    case Instruction::INVOKE_VIRTUAL_RANGE_QUICK: {
2569      bool is_range = (inst->Opcode() == Instruction::INVOKE_VIRTUAL_RANGE_QUICK);
2570      mirror::ArtMethod* called_method = VerifyInvokeVirtualQuickArgs(inst, is_range);
2571      if (called_method != NULL) {
2572        const char* descriptor = MethodHelper(called_method).GetReturnTypeDescriptor();
2573        const RegType& return_type = reg_types_.FromDescriptor(class_loader_->Get(), descriptor,
2574                                                               false);
2575        if (!return_type.IsLowHalf()) {
2576          work_line_->SetResultRegisterType(return_type);
2577        } else {
2578          work_line_->SetResultRegisterTypeWide(return_type, return_type.HighHalf(&reg_types_));
2579        }
2580        just_set_result = true;
2581      }
2582      break;
2583    }
2584
2585    /* These should never appear during verification. */
2586    case Instruction::UNUSED_3E:
2587    case Instruction::UNUSED_3F:
2588    case Instruction::UNUSED_40:
2589    case Instruction::UNUSED_41:
2590    case Instruction::UNUSED_42:
2591    case Instruction::UNUSED_43:
2592    case Instruction::UNUSED_79:
2593    case Instruction::UNUSED_7A:
2594    case Instruction::UNUSED_EB:
2595    case Instruction::UNUSED_EC:
2596    case Instruction::UNUSED_ED:
2597    case Instruction::UNUSED_EE:
2598    case Instruction::UNUSED_EF:
2599    case Instruction::UNUSED_F0:
2600    case Instruction::UNUSED_F1:
2601    case Instruction::UNUSED_F2:
2602    case Instruction::UNUSED_F3:
2603    case Instruction::UNUSED_F4:
2604    case Instruction::UNUSED_F5:
2605    case Instruction::UNUSED_F6:
2606    case Instruction::UNUSED_F7:
2607    case Instruction::UNUSED_F8:
2608    case Instruction::UNUSED_F9:
2609    case Instruction::UNUSED_FA:
2610    case Instruction::UNUSED_FB:
2611    case Instruction::UNUSED_FC:
2612    case Instruction::UNUSED_FD:
2613    case Instruction::UNUSED_FE:
2614    case Instruction::UNUSED_FF:
2615      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Unexpected opcode " << inst->DumpString(dex_file_);
2616      break;
2617
2618    /*
2619     * DO NOT add a "default" clause here. Without it the compiler will
2620     * complain if an instruction is missing (which is desirable).
2621     */
2622  }  // end - switch (dec_insn.opcode)
2623
2624  if (have_pending_hard_failure_) {
2625    if (Runtime::Current()->IsCompiler()) {
2626      /* When compiling, check that the last failure is a hard failure */
2627      CHECK_EQ(failures_[failures_.size() - 1], VERIFY_ERROR_BAD_CLASS_HARD);
2628    }
2629    /* immediate failure, reject class */
2630    info_messages_ << "Rejecting opcode " << inst->DumpString(dex_file_);
2631    return false;
2632  } else if (have_pending_runtime_throw_failure_) {
2633    /* checking interpreter will throw, mark following code as unreachable */
2634    opcode_flags = Instruction::kThrow;
2635  }
2636  /*
2637   * If we didn't just set the result register, clear it out. This ensures that you can only use
2638   * "move-result" immediately after the result is set. (We could check this statically, but it's
2639   * not expensive and it makes our debugging output cleaner.)
2640   */
2641  if (!just_set_result) {
2642    work_line_->SetResultTypeToUnknown();
2643  }
2644
2645
2646
2647  /*
2648   * Handle "branch". Tag the branch target.
2649   *
2650   * NOTE: instructions like Instruction::EQZ provide information about the
2651   * state of the register when the branch is taken or not taken. For example,
2652   * somebody could get a reference field, check it for zero, and if the
2653   * branch is taken immediately store that register in a boolean field
2654   * since the value is known to be zero. We do not currently account for
2655   * that, and will reject the code.
2656   *
2657   * TODO: avoid re-fetching the branch target
2658   */
2659  if ((opcode_flags & Instruction::kBranch) != 0) {
2660    bool isConditional, selfOkay;
2661    if (!GetBranchOffset(work_insn_idx_, &branch_target, &isConditional, &selfOkay)) {
2662      /* should never happen after static verification */
2663      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad branch";
2664      return false;
2665    }
2666    DCHECK_EQ(isConditional, (opcode_flags & Instruction::kContinue) != 0);
2667    if (!CheckNotMoveException(code_item_->insns_, work_insn_idx_ + branch_target)) {
2668      return false;
2669    }
2670    /* update branch target, set "changed" if appropriate */
2671    if (NULL != branch_line.get()) {
2672      if (!UpdateRegisters(work_insn_idx_ + branch_target, branch_line.get())) {
2673        return false;
2674      }
2675    } else {
2676      if (!UpdateRegisters(work_insn_idx_ + branch_target, work_line_.get())) {
2677        return false;
2678      }
2679    }
2680  }
2681
2682  /*
2683   * Handle "switch". Tag all possible branch targets.
2684   *
2685   * We've already verified that the table is structurally sound, so we
2686   * just need to walk through and tag the targets.
2687   */
2688  if ((opcode_flags & Instruction::kSwitch) != 0) {
2689    int offset_to_switch = insns[1] | (((int32_t) insns[2]) << 16);
2690    const uint16_t* switch_insns = insns + offset_to_switch;
2691    int switch_count = switch_insns[1];
2692    int offset_to_targets, targ;
2693
2694    if ((*insns & 0xff) == Instruction::PACKED_SWITCH) {
2695      /* 0 = sig, 1 = count, 2/3 = first key */
2696      offset_to_targets = 4;
2697    } else {
2698      /* 0 = sig, 1 = count, 2..count * 2 = keys */
2699      DCHECK((*insns & 0xff) == Instruction::SPARSE_SWITCH);
2700      offset_to_targets = 2 + 2 * switch_count;
2701    }
2702
2703    /* verify each switch target */
2704    for (targ = 0; targ < switch_count; targ++) {
2705      int offset;
2706      uint32_t abs_offset;
2707
2708      /* offsets are 32-bit, and only partly endian-swapped */
2709      offset = switch_insns[offset_to_targets + targ * 2] |
2710         (((int32_t) switch_insns[offset_to_targets + targ * 2 + 1]) << 16);
2711      abs_offset = work_insn_idx_ + offset;
2712      DCHECK_LT(abs_offset, code_item_->insns_size_in_code_units_);
2713      if (!CheckNotMoveException(code_item_->insns_, abs_offset)) {
2714        return false;
2715      }
2716      if (!UpdateRegisters(abs_offset, work_line_.get()))
2717        return false;
2718    }
2719  }
2720
2721  /*
2722   * Handle instructions that can throw and that are sitting in a "try" block. (If they're not in a
2723   * "try" block when they throw, control transfers out of the method.)
2724   */
2725  if ((opcode_flags & Instruction::kThrow) != 0 && insn_flags_[work_insn_idx_].IsInTry()) {
2726    bool within_catch_all = false;
2727    CatchHandlerIterator iterator(*code_item_, work_insn_idx_);
2728
2729    for (; iterator.HasNext(); iterator.Next()) {
2730      if (iterator.GetHandlerTypeIndex() == DexFile::kDexNoIndex16) {
2731        within_catch_all = true;
2732      }
2733      /*
2734       * Merge registers into the "catch" block. We want to use the "savedRegs" rather than
2735       * "work_regs", because at runtime the exception will be thrown before the instruction
2736       * modifies any registers.
2737       */
2738      if (!UpdateRegisters(iterator.GetHandlerAddress(), saved_line_.get())) {
2739        return false;
2740      }
2741    }
2742
2743    /*
2744     * If the monitor stack depth is nonzero, there must be a "catch all" handler for this
2745     * instruction. This does apply to monitor-exit because of async exception handling.
2746     */
2747    if (work_line_->MonitorStackDepth() > 0 && !within_catch_all) {
2748      /*
2749       * The state in work_line reflects the post-execution state. If the current instruction is a
2750       * monitor-enter and the monitor stack was empty, we don't need a catch-all (if it throws,
2751       * it will do so before grabbing the lock).
2752       */
2753      if (inst->Opcode() != Instruction::MONITOR_ENTER || work_line_->MonitorStackDepth() != 1) {
2754        Fail(VERIFY_ERROR_BAD_CLASS_HARD)
2755            << "expected to be within a catch-all for an instruction where a monitor is held";
2756        return false;
2757      }
2758    }
2759  }
2760
2761  /* Handle "continue". Tag the next consecutive instruction.
2762   *  Note: Keep the code handling "continue" case below the "branch" and "switch" cases,
2763   *        because it changes work_line_ when performing peephole optimization
2764   *        and this change should not be used in those cases.
2765   */
2766  if ((opcode_flags & Instruction::kContinue) != 0) {
2767    uint32_t next_insn_idx = work_insn_idx_ + CurrentInsnFlags()->GetLengthInCodeUnits();
2768    if (next_insn_idx >= code_item_->insns_size_in_code_units_) {
2769      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Execution can walk off end of code area";
2770      return false;
2771    }
2772    // The only way to get to a move-exception instruction is to get thrown there. Make sure the
2773    // next instruction isn't one.
2774    if (!CheckNotMoveException(code_item_->insns_, next_insn_idx)) {
2775      return false;
2776    }
2777    if (NULL != fallthrough_line.get()) {
2778      // Make workline consistent with fallthrough computed from peephole optimization.
2779      work_line_->CopyFromLine(fallthrough_line.get());
2780    }
2781    if (insn_flags_[next_insn_idx].IsReturn()) {
2782      // For returns we only care about the operand to the return, all other registers are dead.
2783      const Instruction* ret_inst = Instruction::At(code_item_->insns_ + next_insn_idx);
2784      Instruction::Code opcode = ret_inst->Opcode();
2785      if ((opcode == Instruction::RETURN_VOID) || (opcode == Instruction::RETURN_VOID_BARRIER)) {
2786        work_line_->MarkAllRegistersAsConflicts();
2787      } else {
2788        if (opcode == Instruction::RETURN_WIDE) {
2789          work_line_->MarkAllRegistersAsConflictsExceptWide(ret_inst->VRegA_11x());
2790        } else {
2791          work_line_->MarkAllRegistersAsConflictsExcept(ret_inst->VRegA_11x());
2792        }
2793      }
2794    }
2795    RegisterLine* next_line = reg_table_.GetLine(next_insn_idx);
2796    if (next_line != NULL) {
2797      // Merge registers into what we have for the next instruction,
2798      // and set the "changed" flag if needed.
2799      if (!UpdateRegisters(next_insn_idx, work_line_.get())) {
2800        return false;
2801      }
2802    } else {
2803      /*
2804       * We're not recording register data for the next instruction, so we don't know what the
2805       * prior state was. We have to assume that something has changed and re-evaluate it.
2806       */
2807      insn_flags_[next_insn_idx].SetChanged();
2808    }
2809  }
2810
2811  /* If we're returning from the method, make sure monitor stack is empty. */
2812  if ((opcode_flags & Instruction::kReturn) != 0) {
2813    if (!work_line_->VerifyMonitorStackEmpty()) {
2814      return false;
2815    }
2816  }
2817
2818  /*
2819   * Update start_guess. Advance to the next instruction of that's
2820   * possible, otherwise use the branch target if one was found. If
2821   * neither of those exists we're in a return or throw; leave start_guess
2822   * alone and let the caller sort it out.
2823   */
2824  if ((opcode_flags & Instruction::kContinue) != 0) {
2825    *start_guess = work_insn_idx_ + insn_flags_[work_insn_idx_].GetLengthInCodeUnits();
2826  } else if ((opcode_flags & Instruction::kBranch) != 0) {
2827    /* we're still okay if branch_target is zero */
2828    *start_guess = work_insn_idx_ + branch_target;
2829  }
2830
2831  DCHECK_LT(*start_guess, code_item_->insns_size_in_code_units_);
2832  DCHECK(insn_flags_[*start_guess].IsOpcode());
2833
2834  return true;
2835}  // NOLINT(readability/fn_size)
2836
2837const RegType& MethodVerifier::ResolveClassAndCheckAccess(uint32_t class_idx) {
2838  const char* descriptor = dex_file_->StringByTypeIdx(class_idx);
2839  const RegType& referrer = GetDeclaringClass();
2840  mirror::Class* klass = (*dex_cache_)->GetResolvedType(class_idx);
2841  const RegType& result =
2842      klass != NULL ? reg_types_.FromClass(descriptor, klass,
2843                                           klass->CannotBeAssignedFromOtherTypes())
2844                    : reg_types_.FromDescriptor(class_loader_->Get(), descriptor, false);
2845  if (result.IsConflict()) {
2846    Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "accessing broken descriptor '" << descriptor
2847        << "' in " << referrer;
2848    return result;
2849  }
2850  if (klass == NULL && !result.IsUnresolvedTypes()) {
2851    (*dex_cache_)->SetResolvedType(class_idx, result.GetClass());
2852  }
2853  // Check if access is allowed. Unresolved types use xxxWithAccessCheck to
2854  // check at runtime if access is allowed and so pass here. If result is
2855  // primitive, skip the access check.
2856  if (result.IsNonZeroReferenceTypes() && !result.IsUnresolvedTypes() &&
2857      !referrer.IsUnresolvedTypes() && !referrer.CanAccess(result)) {
2858    Fail(VERIFY_ERROR_ACCESS_CLASS) << "illegal class access: '"
2859                                    << referrer << "' -> '" << result << "'";
2860  }
2861  return result;
2862}
2863
2864const RegType& MethodVerifier::GetCaughtExceptionType() {
2865  const RegType* common_super = NULL;
2866  if (code_item_->tries_size_ != 0) {
2867    const byte* handlers_ptr = DexFile::GetCatchHandlerData(*code_item_, 0);
2868    uint32_t handlers_size = DecodeUnsignedLeb128(&handlers_ptr);
2869    for (uint32_t i = 0; i < handlers_size; i++) {
2870      CatchHandlerIterator iterator(handlers_ptr);
2871      for (; iterator.HasNext(); iterator.Next()) {
2872        if (iterator.GetHandlerAddress() == (uint32_t) work_insn_idx_) {
2873          if (iterator.GetHandlerTypeIndex() == DexFile::kDexNoIndex16) {
2874            common_super = &reg_types_.JavaLangThrowable(false);
2875          } else {
2876            const RegType& exception = ResolveClassAndCheckAccess(iterator.GetHandlerTypeIndex());
2877            if (!reg_types_.JavaLangThrowable(false).IsAssignableFrom(exception)) {
2878              if (exception.IsUnresolvedTypes()) {
2879                // We don't know enough about the type. Fail here and let runtime handle it.
2880                Fail(VERIFY_ERROR_NO_CLASS) << "unresolved exception class " << exception;
2881                return exception;
2882              } else {
2883                Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "unexpected non-exception class " << exception;
2884                return reg_types_.Conflict();
2885              }
2886            } else if (common_super == nullptr) {
2887              common_super = &exception;
2888            } else if (common_super->Equals(exception)) {
2889              // odd case, but nothing to do
2890            } else {
2891              common_super = &common_super->Merge(exception, &reg_types_);
2892              CHECK(reg_types_.JavaLangThrowable(false).IsAssignableFrom(*common_super));
2893            }
2894          }
2895        }
2896      }
2897      handlers_ptr = iterator.EndDataPointer();
2898    }
2899  }
2900  if (common_super == NULL) {
2901    /* no catch blocks, or no catches with classes we can find */
2902    Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "unable to find exception handler";
2903    return reg_types_.Conflict();
2904  }
2905  return *common_super;
2906}
2907
2908mirror::ArtMethod* MethodVerifier::ResolveMethodAndCheckAccess(uint32_t dex_method_idx,
2909                                                               MethodType method_type) {
2910  const DexFile::MethodId& method_id = dex_file_->GetMethodId(dex_method_idx);
2911  const RegType& klass_type = ResolveClassAndCheckAccess(method_id.class_idx_);
2912  if (klass_type.IsConflict()) {
2913    std::string append(" in attempt to access method ");
2914    append += dex_file_->GetMethodName(method_id);
2915    AppendToLastFailMessage(append);
2916    return NULL;
2917  }
2918  if (klass_type.IsUnresolvedTypes()) {
2919    return NULL;  // Can't resolve Class so no more to do here
2920  }
2921  mirror::Class* klass = klass_type.GetClass();
2922  const RegType& referrer = GetDeclaringClass();
2923  mirror::ArtMethod* res_method = (*dex_cache_)->GetResolvedMethod(dex_method_idx);
2924  if (res_method == NULL) {
2925    const char* name = dex_file_->GetMethodName(method_id);
2926    const Signature signature = dex_file_->GetMethodSignature(method_id);
2927
2928    if (method_type == METHOD_DIRECT || method_type == METHOD_STATIC) {
2929      res_method = klass->FindDirectMethod(name, signature);
2930    } else if (method_type == METHOD_INTERFACE) {
2931      res_method = klass->FindInterfaceMethod(name, signature);
2932    } else {
2933      res_method = klass->FindVirtualMethod(name, signature);
2934    }
2935    if (res_method != NULL) {
2936      (*dex_cache_)->SetResolvedMethod(dex_method_idx, res_method);
2937    } else {
2938      // If a virtual or interface method wasn't found with the expected type, look in
2939      // the direct methods. This can happen when the wrong invoke type is used or when
2940      // a class has changed, and will be flagged as an error in later checks.
2941      if (method_type == METHOD_INTERFACE || method_type == METHOD_VIRTUAL) {
2942        res_method = klass->FindDirectMethod(name, signature);
2943      }
2944      if (res_method == NULL) {
2945        Fail(VERIFY_ERROR_NO_METHOD) << "couldn't find method "
2946                                     << PrettyDescriptor(klass) << "." << name
2947                                     << " " << signature;
2948        return NULL;
2949      }
2950    }
2951  }
2952  // Make sure calls to constructors are "direct". There are additional restrictions but we don't
2953  // enforce them here.
2954  if (res_method->IsConstructor() && method_type != METHOD_DIRECT) {
2955    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "rejecting non-direct call to constructor "
2956                                      << PrettyMethod(res_method);
2957    return NULL;
2958  }
2959  // Disallow any calls to class initializers.
2960  if (MethodHelper(res_method).IsClassInitializer()) {
2961    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "rejecting call to class initializer "
2962                                      << PrettyMethod(res_method);
2963    return NULL;
2964  }
2965  // Check if access is allowed.
2966  if (!referrer.CanAccessMember(res_method->GetDeclaringClass(), res_method->GetAccessFlags())) {
2967    Fail(VERIFY_ERROR_ACCESS_METHOD) << "illegal method access (call " << PrettyMethod(res_method)
2968                                     << " from " << referrer << ")";
2969    return res_method;
2970  }
2971  // Check that invoke-virtual and invoke-super are not used on private methods of the same class.
2972  if (res_method->IsPrivate() && method_type == METHOD_VIRTUAL) {
2973    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invoke-super/virtual can't be used on private method "
2974                                      << PrettyMethod(res_method);
2975    return NULL;
2976  }
2977  // Check that interface methods match interface classes.
2978  if (klass->IsInterface() && method_type != METHOD_INTERFACE) {
2979    Fail(VERIFY_ERROR_CLASS_CHANGE) << "non-interface method " << PrettyMethod(res_method)
2980                                    << " is in an interface class " << PrettyClass(klass);
2981    return NULL;
2982  } else if (!klass->IsInterface() && method_type == METHOD_INTERFACE) {
2983    Fail(VERIFY_ERROR_CLASS_CHANGE) << "interface method " << PrettyMethod(res_method)
2984                                    << " is in a non-interface class " << PrettyClass(klass);
2985    return NULL;
2986  }
2987  // See if the method type implied by the invoke instruction matches the access flags for the
2988  // target method.
2989  if ((method_type == METHOD_DIRECT && !res_method->IsDirect()) ||
2990      (method_type == METHOD_STATIC && !res_method->IsStatic()) ||
2991      ((method_type == METHOD_VIRTUAL || method_type == METHOD_INTERFACE) && res_method->IsDirect())
2992      ) {
2993    Fail(VERIFY_ERROR_CLASS_CHANGE) << "invoke type (" << method_type << ") does not match method "
2994                                       " type of " << PrettyMethod(res_method);
2995    return NULL;
2996  }
2997  return res_method;
2998}
2999
3000mirror::ArtMethod* MethodVerifier::VerifyInvocationArgs(const Instruction* inst,
3001                                                             MethodType method_type,
3002                                                             bool is_range,
3003                                                             bool is_super) {
3004  // Resolve the method. This could be an abstract or concrete method depending on what sort of call
3005  // we're making.
3006  const uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
3007  mirror::ArtMethod* res_method = ResolveMethodAndCheckAccess(method_idx, method_type);
3008  if (res_method == NULL) {  // error or class is unresolved
3009    return NULL;
3010  }
3011
3012  // If we're using invoke-super(method), make sure that the executing method's class' superclass
3013  // has a vtable entry for the target method.
3014  if (is_super) {
3015    DCHECK(method_type == METHOD_VIRTUAL);
3016    const RegType& super = GetDeclaringClass().GetSuperClass(&reg_types_);
3017    if (super.IsUnresolvedTypes()) {
3018      Fail(VERIFY_ERROR_NO_METHOD) << "unknown super class in invoke-super from "
3019                                   << PrettyMethod(dex_method_idx_, *dex_file_)
3020                                   << " to super " << PrettyMethod(res_method);
3021      return NULL;
3022    }
3023    mirror::Class* super_klass = super.GetClass();
3024    if (res_method->GetMethodIndex() >= super_klass->GetVTable()->GetLength()) {
3025      MethodHelper mh(res_method);
3026      Fail(VERIFY_ERROR_NO_METHOD) << "invalid invoke-super from "
3027                                   << PrettyMethod(dex_method_idx_, *dex_file_)
3028                                   << " to super " << super
3029                                   << "." << mh.GetName()
3030                                   << mh.GetSignature();
3031      return NULL;
3032    }
3033  }
3034  // We use vAA as our expected arg count, rather than res_method->insSize, because we need to
3035  // match the call to the signature. Also, we might be calling through an abstract method
3036  // definition (which doesn't have register count values).
3037  const size_t expected_args = (is_range) ? inst->VRegA_3rc() : inst->VRegA_35c();
3038  /* caught by static verifier */
3039  DCHECK(is_range || expected_args <= 5);
3040  if (expected_args > code_item_->outs_size_) {
3041    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid argument count (" << expected_args
3042        << ") exceeds outsSize (" << code_item_->outs_size_ << ")";
3043    return NULL;
3044  }
3045
3046  /*
3047   * Check the "this" argument, which must be an instance of the class that declared the method.
3048   * For an interface class, we don't do the full interface merge (see JoinClass), so we can't do a
3049   * rigorous check here (which is okay since we have to do it at runtime).
3050   */
3051  size_t actual_args = 0;
3052  if (!res_method->IsStatic()) {
3053    const RegType& actual_arg_type = work_line_->GetInvocationThis(inst, is_range);
3054    if (actual_arg_type.IsConflict()) {  // GetInvocationThis failed.
3055      return NULL;
3056    }
3057    if (actual_arg_type.IsUninitializedReference() && !res_method->IsConstructor()) {
3058      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "'this' arg must be initialized";
3059      return NULL;
3060    }
3061    if (method_type != METHOD_INTERFACE && !actual_arg_type.IsZero()) {
3062      mirror::Class* klass = res_method->GetDeclaringClass();
3063      const RegType& res_method_class =
3064          reg_types_.FromClass(klass->GetDescriptor().c_str(), klass,
3065                               klass->CannotBeAssignedFromOtherTypes());
3066      if (!res_method_class.IsAssignableFrom(actual_arg_type)) {
3067        Fail(actual_arg_type.IsUnresolvedTypes() ? VERIFY_ERROR_NO_CLASS:
3068            VERIFY_ERROR_BAD_CLASS_SOFT) << "'this' argument '" << actual_arg_type
3069            << "' not instance of '" << res_method_class << "'";
3070        return NULL;
3071      }
3072    }
3073    actual_args++;
3074  }
3075  /*
3076   * Process the target method's signature. This signature may or may not
3077   * have been verified, so we can't assume it's properly formed.
3078   */
3079  MethodHelper mh(res_method);
3080  const DexFile::TypeList* params = mh.GetParameterTypeList();
3081  size_t params_size = params == NULL ? 0 : params->Size();
3082  uint32_t arg[5];
3083  if (!is_range) {
3084    inst->GetVarArgs(arg);
3085  }
3086  for (size_t param_index = 0; param_index < params_size; param_index++) {
3087    if (actual_args >= expected_args) {
3088      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invalid call to '" << PrettyMethod(res_method)
3089          << "'. Expected " << expected_args << " arguments, processing argument " << actual_args
3090          << " (where longs/doubles count twice).";
3091      return NULL;
3092    }
3093    const char* descriptor =
3094        mh.GetTypeDescriptorFromTypeIdx(params->GetTypeItem(param_index).type_idx_);
3095    if (descriptor == NULL) {
3096      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invocation of " << PrettyMethod(res_method)
3097          << " missing signature component";
3098      return NULL;
3099    }
3100    const RegType& reg_type = reg_types_.FromDescriptor(class_loader_->Get(), descriptor, false);
3101    uint32_t get_reg = is_range ? inst->VRegC_3rc() + actual_args : arg[actual_args];
3102    if (reg_type.IsIntegralTypes()) {
3103      const RegType& src_type = work_line_->GetRegisterType(get_reg);
3104      if (!src_type.IsIntegralTypes()) {
3105        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "register v" << get_reg << " has type " << src_type
3106                                          << " but expected " << reg_type;
3107        return res_method;
3108      }
3109    } else if (!work_line_->VerifyRegisterType(get_reg, reg_type)) {
3110      return res_method;
3111    }
3112    actual_args = reg_type.IsLongOrDoubleTypes() ? actual_args + 2 : actual_args + 1;
3113  }
3114  if (actual_args != expected_args) {
3115    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invocation of " << PrettyMethod(res_method)
3116        << " expected " << expected_args << " arguments, found " << actual_args;
3117    return NULL;
3118  } else {
3119    return res_method;
3120  }
3121}
3122
3123mirror::ArtMethod* MethodVerifier::GetQuickInvokedMethod(const Instruction* inst,
3124                                                         RegisterLine* reg_line, bool is_range) {
3125  DCHECK(inst->Opcode() == Instruction::INVOKE_VIRTUAL_QUICK ||
3126         inst->Opcode() == Instruction::INVOKE_VIRTUAL_RANGE_QUICK);
3127  const RegType& actual_arg_type = reg_line->GetInvocationThis(inst, is_range);
3128  if (!actual_arg_type.HasClass()) {
3129    VLOG(verifier) << "Failed to get mirror::Class* from '" << actual_arg_type << "'";
3130    return nullptr;
3131  }
3132  mirror::ObjectArray<mirror::ArtMethod>* vtable = nullptr;
3133  mirror::Class* klass = actual_arg_type.GetClass();
3134  if (klass->IsInterface()) {
3135    // Derive Object.class from Class.class.getSuperclass().
3136    mirror::Class* object_klass = klass->GetClass()->GetSuperClass();
3137    CHECK(object_klass->IsObjectClass());
3138    vtable = object_klass->GetVTable();
3139  } else {
3140    vtable = klass->GetVTable();
3141  }
3142  CHECK(vtable != nullptr) << PrettyDescriptor(klass);
3143  uint16_t vtable_index = is_range ? inst->VRegB_3rc() : inst->VRegB_35c();
3144  CHECK_LT(static_cast<int32_t>(vtable_index), vtable->GetLength()) << PrettyDescriptor(klass);
3145  mirror::ArtMethod* res_method = vtable->Get(vtable_index);
3146  CHECK(!Thread::Current()->IsExceptionPending());
3147  return res_method;
3148}
3149
3150mirror::ArtMethod* MethodVerifier::VerifyInvokeVirtualQuickArgs(const Instruction* inst,
3151                                                                     bool is_range) {
3152  DCHECK(Runtime::Current()->IsStarted());
3153  mirror::ArtMethod* res_method = GetQuickInvokedMethod(inst, work_line_.get(),
3154                                                             is_range);
3155  if (res_method == NULL) {
3156    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Cannot infer method from " << inst->Name();
3157    return NULL;
3158  }
3159  CHECK(!res_method->IsDirect() && !res_method->IsStatic());
3160
3161  // We use vAA as our expected arg count, rather than res_method->insSize, because we need to
3162  // match the call to the signature. Also, we might be calling through an abstract method
3163  // definition (which doesn't have register count values).
3164  const RegType& actual_arg_type = work_line_->GetInvocationThis(inst, is_range);
3165  if (actual_arg_type.IsConflict()) {  // GetInvocationThis failed.
3166    return NULL;
3167  }
3168  const size_t expected_args = (is_range) ? inst->VRegA_3rc() : inst->VRegA_35c();
3169  /* caught by static verifier */
3170  DCHECK(is_range || expected_args <= 5);
3171  if (expected_args > code_item_->outs_size_) {
3172    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid argument count (" << expected_args
3173        << ") exceeds outsSize (" << code_item_->outs_size_ << ")";
3174    return NULL;
3175  }
3176
3177  /*
3178   * Check the "this" argument, which must be an instance of the class that declared the method.
3179   * For an interface class, we don't do the full interface merge (see JoinClass), so we can't do a
3180   * rigorous check here (which is okay since we have to do it at runtime).
3181   */
3182  if (actual_arg_type.IsUninitializedReference() && !res_method->IsConstructor()) {
3183    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "'this' arg must be initialized";
3184    return NULL;
3185  }
3186  if (!actual_arg_type.IsZero()) {
3187    mirror::Class* klass = res_method->GetDeclaringClass();
3188    const RegType& res_method_class =
3189        reg_types_.FromClass(klass->GetDescriptor().c_str(), klass,
3190                             klass->CannotBeAssignedFromOtherTypes());
3191    if (!res_method_class.IsAssignableFrom(actual_arg_type)) {
3192      Fail(actual_arg_type.IsUnresolvedTypes() ? VERIFY_ERROR_NO_CLASS :
3193          VERIFY_ERROR_BAD_CLASS_SOFT) << "'this' argument '" << actual_arg_type
3194          << "' not instance of '" << res_method_class << "'";
3195      return NULL;
3196    }
3197  }
3198  /*
3199   * Process the target method's signature. This signature may or may not
3200   * have been verified, so we can't assume it's properly formed.
3201   */
3202  MethodHelper mh(res_method);
3203  const DexFile::TypeList* params = mh.GetParameterTypeList();
3204  size_t params_size = params == NULL ? 0 : params->Size();
3205  uint32_t arg[5];
3206  if (!is_range) {
3207    inst->GetVarArgs(arg);
3208  }
3209  size_t actual_args = 1;
3210  for (size_t param_index = 0; param_index < params_size; param_index++) {
3211    if (actual_args >= expected_args) {
3212      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invalid call to '" << PrettyMethod(res_method)
3213                                        << "'. Expected " << expected_args
3214                                         << " arguments, processing argument " << actual_args
3215                                        << " (where longs/doubles count twice).";
3216      return NULL;
3217    }
3218    const char* descriptor =
3219        mh.GetTypeDescriptorFromTypeIdx(params->GetTypeItem(param_index).type_idx_);
3220    if (descriptor == NULL) {
3221      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invocation of " << PrettyMethod(res_method)
3222                                        << " missing signature component";
3223      return NULL;
3224    }
3225    const RegType& reg_type = reg_types_.FromDescriptor(class_loader_->Get(), descriptor, false);
3226    uint32_t get_reg = is_range ? inst->VRegC_3rc() + actual_args : arg[actual_args];
3227    if (!work_line_->VerifyRegisterType(get_reg, reg_type)) {
3228      return res_method;
3229    }
3230    actual_args = reg_type.IsLongOrDoubleTypes() ? actual_args + 2 : actual_args + 1;
3231  }
3232  if (actual_args != expected_args) {
3233    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invocation of " << PrettyMethod(res_method)
3234              << " expected " << expected_args << " arguments, found " << actual_args;
3235    return NULL;
3236  } else {
3237    return res_method;
3238  }
3239}
3240
3241void MethodVerifier::VerifyNewArray(const Instruction* inst, bool is_filled, bool is_range) {
3242  uint32_t type_idx;
3243  if (!is_filled) {
3244    DCHECK_EQ(inst->Opcode(), Instruction::NEW_ARRAY);
3245    type_idx = inst->VRegC_22c();
3246  } else if (!is_range) {
3247    DCHECK_EQ(inst->Opcode(), Instruction::FILLED_NEW_ARRAY);
3248    type_idx = inst->VRegB_35c();
3249  } else {
3250    DCHECK_EQ(inst->Opcode(), Instruction::FILLED_NEW_ARRAY_RANGE);
3251    type_idx = inst->VRegB_3rc();
3252  }
3253  const RegType& res_type = ResolveClassAndCheckAccess(type_idx);
3254  if (res_type.IsConflict()) {  // bad class
3255    DCHECK_NE(failures_.size(), 0U);
3256  } else {
3257    // TODO: check Compiler::CanAccessTypeWithoutChecks returns false when res_type is unresolved
3258    if (!res_type.IsArrayTypes()) {
3259      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "new-array on non-array class " << res_type;
3260    } else if (!is_filled) {
3261      /* make sure "size" register is valid type */
3262      work_line_->VerifyRegisterType(inst->VRegB_22c(), reg_types_.Integer());
3263      /* set register type to array class */
3264      const RegType& precise_type = reg_types_.FromUninitialized(res_type);
3265      work_line_->SetRegisterType(inst->VRegA_22c(), precise_type);
3266    } else {
3267      // Verify each register. If "arg_count" is bad, VerifyRegisterType() will run off the end of
3268      // the list and fail. It's legal, if silly, for arg_count to be zero.
3269      const RegType& expected_type = reg_types_.GetComponentType(res_type, class_loader_->Get());
3270      uint32_t arg_count = (is_range) ? inst->VRegA_3rc() : inst->VRegA_35c();
3271      uint32_t arg[5];
3272      if (!is_range) {
3273        inst->GetVarArgs(arg);
3274      }
3275      for (size_t ui = 0; ui < arg_count; ui++) {
3276        uint32_t get_reg = is_range ? inst->VRegC_3rc() + ui : arg[ui];
3277        if (!work_line_->VerifyRegisterType(get_reg, expected_type)) {
3278          work_line_->SetResultRegisterType(reg_types_.Conflict());
3279          return;
3280        }
3281      }
3282      // filled-array result goes into "result" register
3283      const RegType& precise_type = reg_types_.FromUninitialized(res_type);
3284      work_line_->SetResultRegisterType(precise_type);
3285    }
3286  }
3287}
3288
3289void MethodVerifier::VerifyAGet(const Instruction* inst,
3290                                const RegType& insn_type, bool is_primitive) {
3291  const RegType& index_type = work_line_->GetRegisterType(inst->VRegC_23x());
3292  if (!index_type.IsArrayIndexTypes()) {
3293    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Invalid reg type for array index (" << index_type << ")";
3294  } else {
3295    const RegType& array_type = work_line_->GetRegisterType(inst->VRegB_23x());
3296    if (array_type.IsZero()) {
3297      // Null array class; this code path will fail at runtime. Infer a merge-able type from the
3298      // instruction type. TODO: have a proper notion of bottom here.
3299      if (!is_primitive || insn_type.IsCategory1Types()) {
3300        // Reference or category 1
3301        work_line_->SetRegisterType(inst->VRegA_23x(), reg_types_.Zero());
3302      } else {
3303        // Category 2
3304        work_line_->SetRegisterTypeWide(inst->VRegA_23x(), reg_types_.FromCat2ConstLo(0, false),
3305                                        reg_types_.FromCat2ConstHi(0, false));
3306      }
3307    } else if (!array_type.IsArrayTypes()) {
3308      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "not array type " << array_type << " with aget";
3309    } else {
3310      /* verify the class */
3311      const RegType& component_type = reg_types_.GetComponentType(array_type, class_loader_->Get());
3312      if (!component_type.IsReferenceTypes() && !is_primitive) {
3313        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "primitive array type " << array_type
3314            << " source for aget-object";
3315      } else if (component_type.IsNonZeroReferenceTypes() && is_primitive) {
3316        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "reference array type " << array_type
3317            << " source for category 1 aget";
3318      } else if (is_primitive && !insn_type.Equals(component_type) &&
3319                 !((insn_type.IsInteger() && component_type.IsFloat()) ||
3320                 (insn_type.IsLong() && component_type.IsDouble()))) {
3321        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "array type " << array_type
3322            << " incompatible with aget of type " << insn_type;
3323      } else {
3324        // Use knowledge of the field type which is stronger than the type inferred from the
3325        // instruction, which can't differentiate object types and ints from floats, longs from
3326        // doubles.
3327        if (!component_type.IsLowHalf()) {
3328          work_line_->SetRegisterType(inst->VRegA_23x(), component_type);
3329        } else {
3330          work_line_->SetRegisterTypeWide(inst->VRegA_23x(), component_type,
3331                                          component_type.HighHalf(&reg_types_));
3332        }
3333      }
3334    }
3335  }
3336}
3337
3338void MethodVerifier::VerifyPrimitivePut(const RegType& target_type, const RegType& insn_type,
3339                                        const uint32_t vregA) {
3340  // Primitive assignability rules are weaker than regular assignability rules.
3341  bool instruction_compatible;
3342  bool value_compatible;
3343  const RegType& value_type = work_line_->GetRegisterType(vregA);
3344  if (target_type.IsIntegralTypes()) {
3345    instruction_compatible = target_type.Equals(insn_type);
3346    value_compatible = value_type.IsIntegralTypes();
3347  } else if (target_type.IsFloat()) {
3348    instruction_compatible = insn_type.IsInteger();  // no put-float, so expect put-int
3349    value_compatible = value_type.IsFloatTypes();
3350  } else if (target_type.IsLong()) {
3351    instruction_compatible = insn_type.IsLong();
3352    value_compatible = value_type.IsLongTypes();
3353  } else if (target_type.IsDouble()) {
3354    instruction_compatible = insn_type.IsLong();  // no put-double, so expect put-long
3355    value_compatible = value_type.IsDoubleTypes();
3356  } else {
3357    instruction_compatible = false;  // reference with primitive store
3358    value_compatible = false;  // unused
3359  }
3360  if (!instruction_compatible) {
3361    // This is a global failure rather than a class change failure as the instructions and
3362    // the descriptors for the type should have been consistent within the same file at
3363    // compile time.
3364    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "put insn has type '" << insn_type
3365        << "' but expected type '" << target_type << "'";
3366    return;
3367  }
3368  if (!value_compatible) {
3369    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected value in v" << vregA
3370        << " of type " << value_type << " but expected " << target_type << " for put";
3371    return;
3372  }
3373}
3374
3375void MethodVerifier::VerifyAPut(const Instruction* inst,
3376                                const RegType& insn_type, bool is_primitive) {
3377  const RegType& index_type = work_line_->GetRegisterType(inst->VRegC_23x());
3378  if (!index_type.IsArrayIndexTypes()) {
3379    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Invalid reg type for array index (" << index_type << ")";
3380  } else {
3381    const RegType& array_type = work_line_->GetRegisterType(inst->VRegB_23x());
3382    if (array_type.IsZero()) {
3383      // Null array type; this code path will fail at runtime. Infer a merge-able type from the
3384      // instruction type.
3385    } else if (!array_type.IsArrayTypes()) {
3386      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "not array type " << array_type << " with aput";
3387    } else {
3388      const RegType& component_type = reg_types_.GetComponentType(array_type, class_loader_->Get());
3389      const uint32_t vregA = inst->VRegA_23x();
3390      if (is_primitive) {
3391        VerifyPrimitivePut(component_type, insn_type, vregA);
3392      } else {
3393        if (!component_type.IsReferenceTypes()) {
3394          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "primitive array type " << array_type
3395              << " source for aput-object";
3396        } else {
3397          // The instruction agrees with the type of array, confirm the value to be stored does too
3398          // Note: we use the instruction type (rather than the component type) for aput-object as
3399          // incompatible classes will be caught at runtime as an array store exception
3400          work_line_->VerifyRegisterType(vregA, insn_type);
3401        }
3402      }
3403    }
3404  }
3405}
3406
3407mirror::ArtField* MethodVerifier::GetStaticField(int field_idx) {
3408  const DexFile::FieldId& field_id = dex_file_->GetFieldId(field_idx);
3409  // Check access to class
3410  const RegType& klass_type = ResolveClassAndCheckAccess(field_id.class_idx_);
3411  if (klass_type.IsConflict()) {  // bad class
3412    AppendToLastFailMessage(StringPrintf(" in attempt to access static field %d (%s) in %s",
3413                                         field_idx, dex_file_->GetFieldName(field_id),
3414                                         dex_file_->GetFieldDeclaringClassDescriptor(field_id)));
3415    return NULL;
3416  }
3417  if (klass_type.IsUnresolvedTypes()) {
3418    return NULL;  // Can't resolve Class so no more to do here, will do checking at runtime.
3419  }
3420  ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
3421  mirror::ArtField* field = class_linker->ResolveFieldJLS(*dex_file_, field_idx, *dex_cache_,
3422                                                          *class_loader_);
3423  if (field == NULL) {
3424    VLOG(verifier) << "Unable to resolve static field " << field_idx << " ("
3425              << dex_file_->GetFieldName(field_id) << ") in "
3426              << dex_file_->GetFieldDeclaringClassDescriptor(field_id);
3427    DCHECK(Thread::Current()->IsExceptionPending());
3428    Thread::Current()->ClearException();
3429    return NULL;
3430  } else if (!GetDeclaringClass().CanAccessMember(field->GetDeclaringClass(),
3431                                                  field->GetAccessFlags())) {
3432    Fail(VERIFY_ERROR_ACCESS_FIELD) << "cannot access static field " << PrettyField(field)
3433                                    << " from " << GetDeclaringClass();
3434    return NULL;
3435  } else if (!field->IsStatic()) {
3436    Fail(VERIFY_ERROR_CLASS_CHANGE) << "expected field " << PrettyField(field) << " to be static";
3437    return NULL;
3438  }
3439  return field;
3440}
3441
3442mirror::ArtField* MethodVerifier::GetInstanceField(const RegType& obj_type, int field_idx) {
3443  const DexFile::FieldId& field_id = dex_file_->GetFieldId(field_idx);
3444  // Check access to class
3445  const RegType& klass_type = ResolveClassAndCheckAccess(field_id.class_idx_);
3446  if (klass_type.IsConflict()) {
3447    AppendToLastFailMessage(StringPrintf(" in attempt to access instance field %d (%s) in %s",
3448                                         field_idx, dex_file_->GetFieldName(field_id),
3449                                         dex_file_->GetFieldDeclaringClassDescriptor(field_id)));
3450    return NULL;
3451  }
3452  if (klass_type.IsUnresolvedTypes()) {
3453    return NULL;  // Can't resolve Class so no more to do here
3454  }
3455  ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
3456  mirror::ArtField* field = class_linker->ResolveFieldJLS(*dex_file_, field_idx, *dex_cache_,
3457                                                          *class_loader_);
3458  if (field == NULL) {
3459    VLOG(verifier) << "Unable to resolve instance field " << field_idx << " ("
3460              << dex_file_->GetFieldName(field_id) << ") in "
3461              << dex_file_->GetFieldDeclaringClassDescriptor(field_id);
3462    DCHECK(Thread::Current()->IsExceptionPending());
3463    Thread::Current()->ClearException();
3464    return NULL;
3465  } else if (!GetDeclaringClass().CanAccessMember(field->GetDeclaringClass(),
3466                                                  field->GetAccessFlags())) {
3467    Fail(VERIFY_ERROR_ACCESS_FIELD) << "cannot access instance field " << PrettyField(field)
3468                                    << " from " << GetDeclaringClass();
3469    return NULL;
3470  } else if (field->IsStatic()) {
3471    Fail(VERIFY_ERROR_CLASS_CHANGE) << "expected field " << PrettyField(field)
3472                                    << " to not be static";
3473    return NULL;
3474  } else if (obj_type.IsZero()) {
3475    // Cannot infer and check type, however, access will cause null pointer exception
3476    return field;
3477  } else {
3478    mirror::Class* klass = field->GetDeclaringClass();
3479    const RegType& field_klass =
3480        reg_types_.FromClass(dex_file_->GetFieldDeclaringClassDescriptor(field_id),
3481                             klass, klass->CannotBeAssignedFromOtherTypes());
3482    if (obj_type.IsUninitializedTypes() &&
3483        (!IsConstructor() || GetDeclaringClass().Equals(obj_type) ||
3484            !field_klass.Equals(GetDeclaringClass()))) {
3485      // Field accesses through uninitialized references are only allowable for constructors where
3486      // the field is declared in this class
3487      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "cannot access instance field " << PrettyField(field)
3488                                        << " of a not fully initialized object within the context"
3489                                        << " of " << PrettyMethod(dex_method_idx_, *dex_file_);
3490      return NULL;
3491    } else if (!field_klass.IsAssignableFrom(obj_type)) {
3492      // Trying to access C1.field1 using reference of type C2, which is neither C1 or a sub-class
3493      // of C1. For resolution to occur the declared class of the field must be compatible with
3494      // obj_type, we've discovered this wasn't so, so report the field didn't exist.
3495      Fail(VERIFY_ERROR_NO_FIELD) << "cannot access instance field " << PrettyField(field)
3496                                  << " from object of type " << obj_type;
3497      return NULL;
3498    } else {
3499      return field;
3500    }
3501  }
3502}
3503
3504void MethodVerifier::VerifyISGet(const Instruction* inst, const RegType& insn_type,
3505                                 bool is_primitive, bool is_static) {
3506  uint32_t field_idx = is_static ? inst->VRegB_21c() : inst->VRegC_22c();
3507  mirror::ArtField* field;
3508  if (is_static) {
3509    field = GetStaticField(field_idx);
3510  } else {
3511    const RegType& object_type = work_line_->GetRegisterType(inst->VRegB_22c());
3512    field = GetInstanceField(object_type, field_idx);
3513  }
3514  const RegType* field_type = nullptr;
3515  if (field != NULL) {
3516    Thread* self = Thread::Current();
3517    mirror::Class* field_type_class;
3518    {
3519      StackHandleScope<1> hs(self);
3520      HandleWrapper<mirror::ArtField> h_field(hs.NewHandleWrapper(&field));
3521      field_type_class = FieldHelper(h_field).GetType(can_load_classes_);
3522    }
3523    if (field_type_class != nullptr) {
3524      field_type = &reg_types_.FromClass(field->GetTypeDescriptor(), field_type_class,
3525                                         field_type_class->CannotBeAssignedFromOtherTypes());
3526    } else {
3527      DCHECK(!can_load_classes_ || self->IsExceptionPending());
3528      self->ClearException();
3529    }
3530  }
3531  if (field_type == nullptr) {
3532    const DexFile::FieldId& field_id = dex_file_->GetFieldId(field_idx);
3533    const char* descriptor = dex_file_->GetFieldTypeDescriptor(field_id);
3534    field_type = &reg_types_.FromDescriptor(class_loader_->Get(), descriptor, false);
3535  }
3536  DCHECK(field_type != nullptr);
3537  const uint32_t vregA = (is_static) ? inst->VRegA_21c() : inst->VRegA_22c();
3538  if (is_primitive) {
3539    if (field_type->Equals(insn_type) ||
3540        (field_type->IsFloat() && insn_type.IsInteger()) ||
3541        (field_type->IsDouble() && insn_type.IsLong())) {
3542      // expected that read is of the correct primitive type or that int reads are reading
3543      // floats or long reads are reading doubles
3544    } else {
3545      // This is a global failure rather than a class change failure as the instructions and
3546      // the descriptors for the type should have been consistent within the same file at
3547      // compile time
3548      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected field " << PrettyField(field)
3549                                        << " to be of type '" << insn_type
3550                                        << "' but found type '" << *field_type << "' in get";
3551      return;
3552    }
3553  } else {
3554    if (!insn_type.IsAssignableFrom(*field_type)) {
3555      Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "expected field " << PrettyField(field)
3556                                        << " to be compatible with type '" << insn_type
3557                                        << "' but found type '" << *field_type
3558                                        << "' in Get-object";
3559      work_line_->SetRegisterType(vregA, reg_types_.Conflict());
3560      return;
3561    }
3562  }
3563  if (!field_type->IsLowHalf()) {
3564    work_line_->SetRegisterType(vregA, *field_type);
3565  } else {
3566    work_line_->SetRegisterTypeWide(vregA, *field_type, field_type->HighHalf(&reg_types_));
3567  }
3568}
3569
3570void MethodVerifier::VerifyISPut(const Instruction* inst, const RegType& insn_type,
3571                                 bool is_primitive, bool is_static) {
3572  uint32_t field_idx = is_static ? inst->VRegB_21c() : inst->VRegC_22c();
3573  mirror::ArtField* field;
3574  if (is_static) {
3575    field = GetStaticField(field_idx);
3576  } else {
3577    const RegType& object_type = work_line_->GetRegisterType(inst->VRegB_22c());
3578    field = GetInstanceField(object_type, field_idx);
3579  }
3580  const RegType* field_type = nullptr;
3581  if (field != NULL) {
3582    if (field->IsFinal() && field->GetDeclaringClass() != GetDeclaringClass().GetClass()) {
3583      Fail(VERIFY_ERROR_ACCESS_FIELD) << "cannot modify final field " << PrettyField(field)
3584                                      << " from other class " << GetDeclaringClass();
3585      return;
3586    }
3587    mirror::Class* field_type_class;
3588    {
3589      StackHandleScope<1> hs(Thread::Current());
3590      HandleWrapper<mirror::ArtField> h_field(hs.NewHandleWrapper(&field));
3591      FieldHelper fh(h_field);
3592      field_type_class = fh.GetType(can_load_classes_);
3593    }
3594    if (field_type_class != nullptr) {
3595      field_type = &reg_types_.FromClass(field->GetTypeDescriptor(), field_type_class,
3596                                         field_type_class->CannotBeAssignedFromOtherTypes());
3597    } else {
3598      Thread* self = Thread::Current();
3599      DCHECK(!can_load_classes_ || self->IsExceptionPending());
3600      self->ClearException();
3601    }
3602  }
3603  if (field_type == nullptr) {
3604    const DexFile::FieldId& field_id = dex_file_->GetFieldId(field_idx);
3605    const char* descriptor = dex_file_->GetFieldTypeDescriptor(field_id);
3606    field_type = &reg_types_.FromDescriptor(class_loader_->Get(), descriptor, false);
3607  }
3608  DCHECK(field_type != nullptr);
3609  const uint32_t vregA = (is_static) ? inst->VRegA_21c() : inst->VRegA_22c();
3610  if (is_primitive) {
3611    VerifyPrimitivePut(*field_type, insn_type, vregA);
3612  } else {
3613    if (!insn_type.IsAssignableFrom(*field_type)) {
3614      Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "expected field " << PrettyField(field)
3615                                        << " to be compatible with type '" << insn_type
3616                                        << "' but found type '" << *field_type
3617                                        << "' in put-object";
3618      return;
3619    }
3620    work_line_->VerifyRegisterType(vregA, *field_type);
3621  }
3622}
3623
3624mirror::ArtField* MethodVerifier::GetQuickFieldAccess(const Instruction* inst,
3625                                                      RegisterLine* reg_line) {
3626  DCHECK(inst->Opcode() == Instruction::IGET_QUICK ||
3627         inst->Opcode() == Instruction::IGET_WIDE_QUICK ||
3628         inst->Opcode() == Instruction::IGET_OBJECT_QUICK ||
3629         inst->Opcode() == Instruction::IPUT_QUICK ||
3630         inst->Opcode() == Instruction::IPUT_WIDE_QUICK ||
3631         inst->Opcode() == Instruction::IPUT_OBJECT_QUICK);
3632  const RegType& object_type = reg_line->GetRegisterType(inst->VRegB_22c());
3633  if (!object_type.HasClass()) {
3634    VLOG(verifier) << "Failed to get mirror::Class* from '" << object_type << "'";
3635    return nullptr;
3636  }
3637  uint32_t field_offset = static_cast<uint32_t>(inst->VRegC_22c());
3638  mirror::ArtField* f = mirror::ArtField::FindInstanceFieldWithOffset(object_type.GetClass(),
3639                                                                      field_offset);
3640  if (f == nullptr) {
3641    VLOG(verifier) << "Failed to find instance field at offset '" << field_offset
3642                   << "' from '" << PrettyDescriptor(object_type.GetClass()) << "'";
3643  }
3644  return f;
3645}
3646
3647void MethodVerifier::VerifyIGetQuick(const Instruction* inst, const RegType& insn_type,
3648                                     bool is_primitive) {
3649  DCHECK(Runtime::Current()->IsStarted());
3650  mirror::ArtField* field = GetQuickFieldAccess(inst, work_line_.get());
3651  if (field == NULL) {
3652    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Cannot infer field from " << inst->Name();
3653    return;
3654  }
3655  mirror::Class* field_type_class;
3656  {
3657    StackHandleScope<1> hs(Thread::Current());
3658    HandleWrapper<mirror::ArtField> h_field(hs.NewHandleWrapper(&field));
3659    FieldHelper fh(h_field);
3660    field_type_class = fh.GetType(can_load_classes_);
3661  }
3662  const RegType* field_type;
3663  if (field_type_class != nullptr) {
3664    field_type = &reg_types_.FromClass(field->GetTypeDescriptor(), field_type_class,
3665                                       field_type_class->CannotBeAssignedFromOtherTypes());
3666  } else {
3667    Thread* self = Thread::Current();
3668    DCHECK(!can_load_classes_ || self->IsExceptionPending());
3669    self->ClearException();
3670    field_type = &reg_types_.FromDescriptor(field->GetDeclaringClass()->GetClassLoader(),
3671                                            field->GetTypeDescriptor(), false);
3672  }
3673  DCHECK(field_type != nullptr);
3674  const uint32_t vregA = inst->VRegA_22c();
3675  if (is_primitive) {
3676    if (field_type->Equals(insn_type) ||
3677        (field_type->IsFloat() && insn_type.IsIntegralTypes()) ||
3678        (field_type->IsDouble() && insn_type.IsLongTypes())) {
3679      // expected that read is of the correct primitive type or that int reads are reading
3680      // floats or long reads are reading doubles
3681    } else {
3682      // This is a global failure rather than a class change failure as the instructions and
3683      // the descriptors for the type should have been consistent within the same file at
3684      // compile time
3685      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected field " << PrettyField(field)
3686                                        << " to be of type '" << insn_type
3687                                        << "' but found type '" << *field_type << "' in Get";
3688      return;
3689    }
3690  } else {
3691    if (!insn_type.IsAssignableFrom(*field_type)) {
3692      Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "expected field " << PrettyField(field)
3693                                        << " to be compatible with type '" << insn_type
3694                                        << "' but found type '" << *field_type
3695                                        << "' in get-object";
3696      work_line_->SetRegisterType(vregA, reg_types_.Conflict());
3697      return;
3698    }
3699  }
3700  if (!field_type->IsLowHalf()) {
3701    work_line_->SetRegisterType(vregA, *field_type);
3702  } else {
3703    work_line_->SetRegisterTypeWide(vregA, *field_type, field_type->HighHalf(&reg_types_));
3704  }
3705}
3706
3707void MethodVerifier::VerifyIPutQuick(const Instruction* inst, const RegType& insn_type,
3708                                     bool is_primitive) {
3709  DCHECK(Runtime::Current()->IsStarted());
3710  mirror::ArtField* field = GetQuickFieldAccess(inst, work_line_.get());
3711  if (field == NULL) {
3712    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Cannot infer field from " << inst->Name();
3713    return;
3714  }
3715  const char* descriptor = field->GetTypeDescriptor();
3716  mirror::ClassLoader* loader = field->GetDeclaringClass()->GetClassLoader();
3717  const RegType& field_type = reg_types_.FromDescriptor(loader, descriptor, false);
3718  if (field != NULL) {
3719    if (field->IsFinal() && field->GetDeclaringClass() != GetDeclaringClass().GetClass()) {
3720      Fail(VERIFY_ERROR_ACCESS_FIELD) << "cannot modify final field " << PrettyField(field)
3721                                      << " from other class " << GetDeclaringClass();
3722      return;
3723    }
3724  }
3725  const uint32_t vregA = inst->VRegA_22c();
3726  if (is_primitive) {
3727    // Primitive field assignability rules are weaker than regular assignability rules
3728    bool instruction_compatible;
3729    bool value_compatible;
3730    const RegType& value_type = work_line_->GetRegisterType(vregA);
3731    if (field_type.IsIntegralTypes()) {
3732      instruction_compatible = insn_type.IsIntegralTypes();
3733      value_compatible = value_type.IsIntegralTypes();
3734    } else if (field_type.IsFloat()) {
3735      instruction_compatible = insn_type.IsInteger();  // no [is]put-float, so expect [is]put-int
3736      value_compatible = value_type.IsFloatTypes();
3737    } else if (field_type.IsLong()) {
3738      instruction_compatible = insn_type.IsLong();
3739      value_compatible = value_type.IsLongTypes();
3740    } else if (field_type.IsDouble()) {
3741      instruction_compatible = insn_type.IsLong();  // no [is]put-double, so expect [is]put-long
3742      value_compatible = value_type.IsDoubleTypes();
3743    } else {
3744      instruction_compatible = false;  // reference field with primitive store
3745      value_compatible = false;  // unused
3746    }
3747    if (!instruction_compatible) {
3748      // This is a global failure rather than a class change failure as the instructions and
3749      // the descriptors for the type should have been consistent within the same file at
3750      // compile time
3751      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected field " << PrettyField(field)
3752                                        << " to be of type '" << insn_type
3753                                        << "' but found type '" << field_type
3754                                        << "' in put";
3755      return;
3756    }
3757    if (!value_compatible) {
3758      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected value in v" << vregA
3759          << " of type " << value_type
3760          << " but expected " << field_type
3761          << " for store to " << PrettyField(field) << " in put";
3762      return;
3763    }
3764  } else {
3765    if (!insn_type.IsAssignableFrom(field_type)) {
3766      Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "expected field " << PrettyField(field)
3767                                        << " to be compatible with type '" << insn_type
3768                                        << "' but found type '" << field_type
3769                                        << "' in put-object";
3770      return;
3771    }
3772    work_line_->VerifyRegisterType(vregA, field_type);
3773  }
3774}
3775
3776bool MethodVerifier::CheckNotMoveException(const uint16_t* insns, int insn_idx) {
3777  if ((insns[insn_idx] & 0xff) == Instruction::MOVE_EXCEPTION) {
3778    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid use of move-exception";
3779    return false;
3780  }
3781  return true;
3782}
3783
3784bool MethodVerifier::UpdateRegisters(uint32_t next_insn, const RegisterLine* merge_line) {
3785  bool changed = true;
3786  RegisterLine* target_line = reg_table_.GetLine(next_insn);
3787  if (!insn_flags_[next_insn].IsVisitedOrChanged()) {
3788    /*
3789     * We haven't processed this instruction before, and we haven't touched the registers here, so
3790     * there's nothing to "merge". Copy the registers over and mark it as changed. (This is the
3791     * only way a register can transition out of "unknown", so this is not just an optimization.)
3792     */
3793    if (!insn_flags_[next_insn].IsReturn()) {
3794      target_line->CopyFromLine(merge_line);
3795    } else {
3796      // Verify that the monitor stack is empty on return.
3797      if (!merge_line->VerifyMonitorStackEmpty()) {
3798        return false;
3799      }
3800      // For returns we only care about the operand to the return, all other registers are dead.
3801      // Initialize them as conflicts so they don't add to GC and deoptimization information.
3802      const Instruction* ret_inst = Instruction::At(code_item_->insns_ + next_insn);
3803      Instruction::Code opcode = ret_inst->Opcode();
3804      if ((opcode == Instruction::RETURN_VOID) || (opcode == Instruction::RETURN_VOID_BARRIER)) {
3805        target_line->MarkAllRegistersAsConflicts();
3806      } else {
3807        target_line->CopyFromLine(merge_line);
3808        if (opcode == Instruction::RETURN_WIDE) {
3809          target_line->MarkAllRegistersAsConflictsExceptWide(ret_inst->VRegA_11x());
3810        } else {
3811          target_line->MarkAllRegistersAsConflictsExcept(ret_inst->VRegA_11x());
3812        }
3813      }
3814    }
3815  } else {
3816    std::unique_ptr<RegisterLine> copy(gDebugVerify ?
3817                                 RegisterLine::Create(target_line->NumRegs(), this) :
3818                                 NULL);
3819    if (gDebugVerify) {
3820      copy->CopyFromLine(target_line);
3821    }
3822    changed = target_line->MergeRegisters(merge_line);
3823    if (have_pending_hard_failure_) {
3824      return false;
3825    }
3826    if (gDebugVerify && changed) {
3827      LogVerifyInfo() << "Merging at [" << reinterpret_cast<void*>(work_insn_idx_) << "]"
3828                      << " to [" << reinterpret_cast<void*>(next_insn) << "]: " << "\n"
3829                      << *copy.get() << "  MERGE\n"
3830                      << *merge_line << "  ==\n"
3831                      << *target_line << "\n";
3832    }
3833  }
3834  if (changed) {
3835    insn_flags_[next_insn].SetChanged();
3836  }
3837  return true;
3838}
3839
3840InstructionFlags* MethodVerifier::CurrentInsnFlags() {
3841  return &insn_flags_[work_insn_idx_];
3842}
3843
3844const RegType& MethodVerifier::GetMethodReturnType() {
3845  if (return_type_ == nullptr) {
3846    if (mirror_method_ != NULL) {
3847      MethodHelper mh(mirror_method_);
3848      mirror::Class* return_type_class = mh.GetReturnType(can_load_classes_);
3849      if (return_type_class != nullptr) {
3850        return_type_ = &reg_types_.FromClass(mh.GetReturnTypeDescriptor(), return_type_class,
3851                                             return_type_class->CannotBeAssignedFromOtherTypes());
3852      } else {
3853        Thread* self = Thread::Current();
3854        DCHECK(!can_load_classes_ || self->IsExceptionPending());
3855        self->ClearException();
3856      }
3857    }
3858    if (return_type_ == nullptr) {
3859      const DexFile::MethodId& method_id = dex_file_->GetMethodId(dex_method_idx_);
3860      const DexFile::ProtoId& proto_id = dex_file_->GetMethodPrototype(method_id);
3861      uint16_t return_type_idx = proto_id.return_type_idx_;
3862      const char* descriptor = dex_file_->GetTypeDescriptor(dex_file_->GetTypeId(return_type_idx));
3863      return_type_ = &reg_types_.FromDescriptor(class_loader_->Get(), descriptor, false);
3864    }
3865  }
3866  return *return_type_;
3867}
3868
3869const RegType& MethodVerifier::GetDeclaringClass() {
3870  if (declaring_class_ == NULL) {
3871    const DexFile::MethodId& method_id = dex_file_->GetMethodId(dex_method_idx_);
3872    const char* descriptor
3873        = dex_file_->GetTypeDescriptor(dex_file_->GetTypeId(method_id.class_idx_));
3874    if (mirror_method_ != NULL) {
3875      mirror::Class* klass = mirror_method_->GetDeclaringClass();
3876      declaring_class_ = &reg_types_.FromClass(descriptor, klass,
3877                                               klass->CannotBeAssignedFromOtherTypes());
3878    } else {
3879      declaring_class_ = &reg_types_.FromDescriptor(class_loader_->Get(), descriptor, false);
3880    }
3881  }
3882  return *declaring_class_;
3883}
3884
3885std::vector<int32_t> MethodVerifier::DescribeVRegs(uint32_t dex_pc) {
3886  RegisterLine* line = reg_table_.GetLine(dex_pc);
3887  DCHECK(line != nullptr) << "No register line at DEX pc " << StringPrintf("0x%x", dex_pc);
3888  std::vector<int32_t> result;
3889  for (size_t i = 0; i < line->NumRegs(); ++i) {
3890    const RegType& type = line->GetRegisterType(i);
3891    if (type.IsConstant()) {
3892      result.push_back(type.IsPreciseConstant() ? kConstant : kImpreciseConstant);
3893      result.push_back(type.ConstantValue());
3894    } else if (type.IsConstantLo()) {
3895      result.push_back(type.IsPreciseConstantLo() ? kConstant : kImpreciseConstant);
3896      result.push_back(type.ConstantValueLo());
3897    } else if (type.IsConstantHi()) {
3898      result.push_back(type.IsPreciseConstantHi() ? kConstant : kImpreciseConstant);
3899      result.push_back(type.ConstantValueHi());
3900    } else if (type.IsIntegralTypes()) {
3901      result.push_back(kIntVReg);
3902      result.push_back(0);
3903    } else if (type.IsFloat()) {
3904      result.push_back(kFloatVReg);
3905      result.push_back(0);
3906    } else if (type.IsLong()) {
3907      result.push_back(kLongLoVReg);
3908      result.push_back(0);
3909      result.push_back(kLongHiVReg);
3910      result.push_back(0);
3911      ++i;
3912    } else if (type.IsDouble()) {
3913      result.push_back(kDoubleLoVReg);
3914      result.push_back(0);
3915      result.push_back(kDoubleHiVReg);
3916      result.push_back(0);
3917      ++i;
3918    } else if (type.IsUndefined() || type.IsConflict() || type.IsHighHalf()) {
3919      result.push_back(kUndefined);
3920      result.push_back(0);
3921    } else {
3922      CHECK(type.IsNonZeroReferenceTypes());
3923      result.push_back(kReferenceVReg);
3924      result.push_back(0);
3925    }
3926  }
3927  return result;
3928}
3929
3930const RegType& MethodVerifier::DetermineCat1Constant(int32_t value, bool precise) {
3931  if (precise) {
3932    // Precise constant type.
3933    return reg_types_.FromCat1Const(value, true);
3934  } else {
3935    // Imprecise constant type.
3936    if (value < -32768) {
3937      return reg_types_.IntConstant();
3938    } else if (value < -128) {
3939      return reg_types_.ShortConstant();
3940    } else if (value < 0) {
3941      return reg_types_.ByteConstant();
3942    } else if (value == 0) {
3943      return reg_types_.Zero();
3944    } else if (value == 1) {
3945      return reg_types_.One();
3946    } else if (value < 128) {
3947      return reg_types_.PosByteConstant();
3948    } else if (value < 32768) {
3949      return reg_types_.PosShortConstant();
3950    } else if (value < 65536) {
3951      return reg_types_.CharConstant();
3952    } else {
3953      return reg_types_.IntConstant();
3954    }
3955  }
3956}
3957
3958void MethodVerifier::Init() {
3959  art::verifier::RegTypeCache::Init();
3960}
3961
3962void MethodVerifier::Shutdown() {
3963  verifier::RegTypeCache::ShutDown();
3964}
3965
3966void MethodVerifier::VisitRoots(RootCallback* callback, void* arg) {
3967  reg_types_.VisitRoots(callback, arg);
3968}
3969
3970}  // namespace verifier
3971}  // namespace art
3972