1// Copyright (c) 2012 The Chromium Authors. All rights reserved.
2// Use of this source code is governed by a BSD-style license that can be
3// found in the LICENSE file.
4
5#include "base/tracked_objects.h"
6
7#include <limits.h>
8#include <stdlib.h>
9
10#include "base/atomicops.h"
11#include "base/base_switches.h"
12#include "base/command_line.h"
13#include "base/compiler_specific.h"
14#include "base/debug/leak_annotations.h"
15#include "base/logging.h"
16#include "base/process/process_handle.h"
17#include "base/profiler/alternate_timer.h"
18#include "base/strings/stringprintf.h"
19#include "base/third_party/valgrind/memcheck.h"
20#include "base/tracking_info.h"
21
22using base::TimeDelta;
23
24namespace base {
25class TimeDelta;
26}
27
28namespace tracked_objects {
29
30namespace {
31// Flag to compile out almost all of the task tracking code.
32const bool kTrackAllTaskObjects = true;
33
34// TODO(jar): Evaluate the perf impact of enabling this.  If the perf impact is
35// negligible, enable by default.
36// Flag to compile out parent-child link recording.
37const bool kTrackParentChildLinks = false;
38
39// When ThreadData is first initialized, should we start in an ACTIVE state to
40// record all of the startup-time tasks, or should we start up DEACTIVATED, so
41// that we only record after parsing the command line flag --enable-tracking.
42// Note that the flag may force either state, so this really controls only the
43// period of time up until that flag is parsed. If there is no flag seen, then
44// this state may prevail for much or all of the process lifetime.
45const ThreadData::Status kInitialStartupState =
46    ThreadData::PROFILING_CHILDREN_ACTIVE;
47
48// Control whether an alternate time source (Now() function) is supported by
49// the ThreadData class.  This compile time flag should be set to true if we
50// want other modules (such as a memory allocator, or a thread-specific CPU time
51// clock) to be able to provide a thread-specific Now() function.  Without this
52// compile-time flag, the code will only support the wall-clock time.  This flag
53// can be flipped to efficiently disable this path (if there is a performance
54// problem with its presence).
55static const bool kAllowAlternateTimeSourceHandling = true;
56
57inline bool IsProfilerTimingEnabled() {
58  enum {
59    UNDEFINED_TIMING,
60    ENABLED_TIMING,
61    DISABLED_TIMING,
62  };
63  static base::subtle::Atomic32 timing_enabled = UNDEFINED_TIMING;
64  // Reading |timing_enabled| is done without barrier because multiple
65  // initialization is not an issue while the barrier can be relatively costly
66  // given that this method is sometimes called in a tight loop.
67  base::subtle::Atomic32 current_timing_enabled =
68      base::subtle::NoBarrier_Load(&timing_enabled);
69  if (current_timing_enabled == UNDEFINED_TIMING) {
70    if (!CommandLine::InitializedForCurrentProcess())
71      return true;
72    current_timing_enabled =
73        (CommandLine::ForCurrentProcess()->GetSwitchValueASCII(
74             switches::kProfilerTiming) ==
75         switches::kProfilerTimingDisabledValue)
76            ? DISABLED_TIMING
77            : ENABLED_TIMING;
78    base::subtle::NoBarrier_Store(&timing_enabled, current_timing_enabled);
79  }
80  return current_timing_enabled == ENABLED_TIMING;
81}
82
83}  // namespace
84
85//------------------------------------------------------------------------------
86// DeathData tallies durations when a death takes place.
87
88DeathData::DeathData() {
89  Clear();
90}
91
92DeathData::DeathData(int count) {
93  Clear();
94  count_ = count;
95}
96
97// TODO(jar): I need to see if this macro to optimize branching is worth using.
98//
99// This macro has no branching, so it is surely fast, and is equivalent to:
100//             if (assign_it)
101//               target = source;
102// We use a macro rather than a template to force this to inline.
103// Related code for calculating max is discussed on the web.
104#define CONDITIONAL_ASSIGN(assign_it, target, source) \
105    ((target) ^= ((target) ^ (source)) & -static_cast<int32>(assign_it))
106
107void DeathData::RecordDeath(const int32 queue_duration,
108                            const int32 run_duration,
109                            int32 random_number) {
110  // We'll just clamp at INT_MAX, but we should note this in the UI as such.
111  if (count_ < INT_MAX)
112    ++count_;
113  queue_duration_sum_ += queue_duration;
114  run_duration_sum_ += run_duration;
115
116  if (queue_duration_max_ < queue_duration)
117    queue_duration_max_ = queue_duration;
118  if (run_duration_max_ < run_duration)
119    run_duration_max_ = run_duration;
120
121  // Take a uniformly distributed sample over all durations ever supplied.
122  // The probability that we (instead) use this new sample is 1/count_.  This
123  // results in a completely uniform selection of the sample (at least when we
124  // don't clamp count_... but that should be inconsequentially likely).
125  // We ignore the fact that we correlated our selection of a sample to the run
126  // and queue times (i.e., we used them to generate random_number).
127  CHECK_GT(count_, 0);
128  if (0 == (random_number % count_)) {
129    queue_duration_sample_ = queue_duration;
130    run_duration_sample_ = run_duration;
131  }
132}
133
134int DeathData::count() const { return count_; }
135
136int32 DeathData::run_duration_sum() const { return run_duration_sum_; }
137
138int32 DeathData::run_duration_max() const { return run_duration_max_; }
139
140int32 DeathData::run_duration_sample() const {
141  return run_duration_sample_;
142}
143
144int32 DeathData::queue_duration_sum() const {
145  return queue_duration_sum_;
146}
147
148int32 DeathData::queue_duration_max() const {
149  return queue_duration_max_;
150}
151
152int32 DeathData::queue_duration_sample() const {
153  return queue_duration_sample_;
154}
155
156void DeathData::ResetMax() {
157  run_duration_max_ = 0;
158  queue_duration_max_ = 0;
159}
160
161void DeathData::Clear() {
162  count_ = 0;
163  run_duration_sum_ = 0;
164  run_duration_max_ = 0;
165  run_duration_sample_ = 0;
166  queue_duration_sum_ = 0;
167  queue_duration_max_ = 0;
168  queue_duration_sample_ = 0;
169}
170
171//------------------------------------------------------------------------------
172DeathDataSnapshot::DeathDataSnapshot()
173    : count(-1),
174      run_duration_sum(-1),
175      run_duration_max(-1),
176      run_duration_sample(-1),
177      queue_duration_sum(-1),
178      queue_duration_max(-1),
179      queue_duration_sample(-1) {
180}
181
182DeathDataSnapshot::DeathDataSnapshot(
183    const tracked_objects::DeathData& death_data)
184    : count(death_data.count()),
185      run_duration_sum(death_data.run_duration_sum()),
186      run_duration_max(death_data.run_duration_max()),
187      run_duration_sample(death_data.run_duration_sample()),
188      queue_duration_sum(death_data.queue_duration_sum()),
189      queue_duration_max(death_data.queue_duration_max()),
190      queue_duration_sample(death_data.queue_duration_sample()) {
191}
192
193DeathDataSnapshot::~DeathDataSnapshot() {
194}
195
196//------------------------------------------------------------------------------
197BirthOnThread::BirthOnThread(const Location& location,
198                             const ThreadData& current)
199    : location_(location),
200      birth_thread_(&current) {
201}
202
203//------------------------------------------------------------------------------
204BirthOnThreadSnapshot::BirthOnThreadSnapshot() {
205}
206
207BirthOnThreadSnapshot::BirthOnThreadSnapshot(
208    const tracked_objects::BirthOnThread& birth)
209    : location(birth.location()),
210      thread_name(birth.birth_thread()->thread_name()) {
211}
212
213BirthOnThreadSnapshot::~BirthOnThreadSnapshot() {
214}
215
216//------------------------------------------------------------------------------
217Births::Births(const Location& location, const ThreadData& current)
218    : BirthOnThread(location, current),
219      birth_count_(1) { }
220
221int Births::birth_count() const { return birth_count_; }
222
223void Births::RecordBirth() { ++birth_count_; }
224
225void Births::ForgetBirth() { --birth_count_; }
226
227void Births::Clear() { birth_count_ = 0; }
228
229//------------------------------------------------------------------------------
230// ThreadData maintains the central data for all births and deaths on a single
231// thread.
232
233// TODO(jar): We should pull all these static vars together, into a struct, and
234// optimize layout so that we benefit from locality of reference during accesses
235// to them.
236
237// static
238NowFunction* ThreadData::now_function_ = NULL;
239
240// static
241bool ThreadData::now_function_is_time_ = false;
242
243// A TLS slot which points to the ThreadData instance for the current thread. We
244// do a fake initialization here (zeroing out data), and then the real in-place
245// construction happens when we call tls_index_.Initialize().
246// static
247base::ThreadLocalStorage::StaticSlot ThreadData::tls_index_ = TLS_INITIALIZER;
248
249// static
250int ThreadData::worker_thread_data_creation_count_ = 0;
251
252// static
253int ThreadData::cleanup_count_ = 0;
254
255// static
256int ThreadData::incarnation_counter_ = 0;
257
258// static
259ThreadData* ThreadData::all_thread_data_list_head_ = NULL;
260
261// static
262ThreadData* ThreadData::first_retired_worker_ = NULL;
263
264// static
265base::LazyInstance<base::Lock>::Leaky
266    ThreadData::list_lock_ = LAZY_INSTANCE_INITIALIZER;
267
268// static
269ThreadData::Status ThreadData::status_ = ThreadData::UNINITIALIZED;
270
271ThreadData::ThreadData(const std::string& suggested_name)
272    : next_(NULL),
273      next_retired_worker_(NULL),
274      worker_thread_number_(0),
275      incarnation_count_for_pool_(-1),
276      current_stopwatch_(NULL) {
277  DCHECK_GE(suggested_name.size(), 0u);
278  thread_name_ = suggested_name;
279  PushToHeadOfList();  // Which sets real incarnation_count_for_pool_.
280}
281
282ThreadData::ThreadData(int thread_number)
283    : next_(NULL),
284      next_retired_worker_(NULL),
285      worker_thread_number_(thread_number),
286      incarnation_count_for_pool_(-1),
287      current_stopwatch_(NULL) {
288  CHECK_GT(thread_number, 0);
289  base::StringAppendF(&thread_name_, "WorkerThread-%d", thread_number);
290  PushToHeadOfList();  // Which sets real incarnation_count_for_pool_.
291}
292
293ThreadData::~ThreadData() {}
294
295void ThreadData::PushToHeadOfList() {
296  // Toss in a hint of randomness (atop the uniniitalized value).
297  (void)VALGRIND_MAKE_MEM_DEFINED_IF_ADDRESSABLE(&random_number_,
298                                                 sizeof(random_number_));
299  MSAN_UNPOISON(&random_number_, sizeof(random_number_));
300  random_number_ += static_cast<int32>(this - static_cast<ThreadData*>(0));
301  random_number_ ^= (Now() - TrackedTime()).InMilliseconds();
302
303  DCHECK(!next_);
304  base::AutoLock lock(*list_lock_.Pointer());
305  incarnation_count_for_pool_ = incarnation_counter_;
306  next_ = all_thread_data_list_head_;
307  all_thread_data_list_head_ = this;
308}
309
310// static
311ThreadData* ThreadData::first() {
312  base::AutoLock lock(*list_lock_.Pointer());
313  return all_thread_data_list_head_;
314}
315
316ThreadData* ThreadData::next() const { return next_; }
317
318// static
319void ThreadData::InitializeThreadContext(const std::string& suggested_name) {
320  if (!Initialize())  // Always initialize if needed.
321    return;
322  ThreadData* current_thread_data =
323      reinterpret_cast<ThreadData*>(tls_index_.Get());
324  if (current_thread_data)
325    return;  // Browser tests instigate this.
326  current_thread_data = new ThreadData(suggested_name);
327  tls_index_.Set(current_thread_data);
328}
329
330// static
331ThreadData* ThreadData::Get() {
332  if (!tls_index_.initialized())
333    return NULL;  // For unittests only.
334  ThreadData* registered = reinterpret_cast<ThreadData*>(tls_index_.Get());
335  if (registered)
336    return registered;
337
338  // We must be a worker thread, since we didn't pre-register.
339  ThreadData* worker_thread_data = NULL;
340  int worker_thread_number = 0;
341  {
342    base::AutoLock lock(*list_lock_.Pointer());
343    if (first_retired_worker_) {
344      worker_thread_data = first_retired_worker_;
345      first_retired_worker_ = first_retired_worker_->next_retired_worker_;
346      worker_thread_data->next_retired_worker_ = NULL;
347    } else {
348      worker_thread_number = ++worker_thread_data_creation_count_;
349    }
350  }
351
352  // If we can't find a previously used instance, then we have to create one.
353  if (!worker_thread_data) {
354    DCHECK_GT(worker_thread_number, 0);
355    worker_thread_data = new ThreadData(worker_thread_number);
356  }
357  DCHECK_GT(worker_thread_data->worker_thread_number_, 0);
358
359  tls_index_.Set(worker_thread_data);
360  return worker_thread_data;
361}
362
363// static
364void ThreadData::OnThreadTermination(void* thread_data) {
365  DCHECK(thread_data);  // TLS should *never* call us with a NULL.
366  // We must NOT do any allocations during this callback. There is a chance
367  // that the allocator is no longer active on this thread.
368  if (!kTrackAllTaskObjects)
369    return;  // Not compiled in.
370  reinterpret_cast<ThreadData*>(thread_data)->OnThreadTerminationCleanup();
371}
372
373void ThreadData::OnThreadTerminationCleanup() {
374  // The list_lock_ was created when we registered the callback, so it won't be
375  // allocated here despite the lazy reference.
376  base::AutoLock lock(*list_lock_.Pointer());
377  if (incarnation_counter_ != incarnation_count_for_pool_)
378    return;  // ThreadData was constructed in an earlier unit test.
379  ++cleanup_count_;
380  // Only worker threads need to be retired and reused.
381  if (!worker_thread_number_) {
382    return;
383  }
384  // We must NOT do any allocations during this callback.
385  // Using the simple linked lists avoids all allocations.
386  DCHECK_EQ(this->next_retired_worker_, reinterpret_cast<ThreadData*>(NULL));
387  this->next_retired_worker_ = first_retired_worker_;
388  first_retired_worker_ = this;
389}
390
391// static
392void ThreadData::Snapshot(bool reset_max, ProcessDataSnapshot* process_data) {
393  // Add births that have run to completion to |collected_data|.
394  // |birth_counts| tracks the total number of births recorded at each location
395  // for which we have not seen a death count.
396  BirthCountMap birth_counts;
397  ThreadData::SnapshotAllExecutedTasks(reset_max, process_data, &birth_counts);
398
399  // Add births that are still active -- i.e. objects that have tallied a birth,
400  // but have not yet tallied a matching death, and hence must be either
401  // running, queued up, or being held in limbo for future posting.
402  for (BirthCountMap::const_iterator it = birth_counts.begin();
403       it != birth_counts.end(); ++it) {
404    if (it->second > 0) {
405      process_data->tasks.push_back(
406          TaskSnapshot(*it->first, DeathData(it->second), "Still_Alive"));
407    }
408  }
409}
410
411Births* ThreadData::TallyABirth(const Location& location) {
412  BirthMap::iterator it = birth_map_.find(location);
413  Births* child;
414  if (it != birth_map_.end()) {
415    child =  it->second;
416    child->RecordBirth();
417  } else {
418    child = new Births(location, *this);  // Leak this.
419    // Lock since the map may get relocated now, and other threads sometimes
420    // snapshot it (but they lock before copying it).
421    base::AutoLock lock(map_lock_);
422    birth_map_[location] = child;
423  }
424
425  if (kTrackParentChildLinks && status_ > PROFILING_ACTIVE &&
426      !parent_stack_.empty()) {
427    const Births* parent = parent_stack_.top();
428    ParentChildPair pair(parent, child);
429    if (parent_child_set_.find(pair) == parent_child_set_.end()) {
430      // Lock since the map may get relocated now, and other threads sometimes
431      // snapshot it (but they lock before copying it).
432      base::AutoLock lock(map_lock_);
433      parent_child_set_.insert(pair);
434    }
435  }
436
437  return child;
438}
439
440void ThreadData::TallyADeath(const Births& birth,
441                             int32 queue_duration,
442                             const TaskStopwatch& stopwatch) {
443  int32 run_duration = stopwatch.RunDurationMs();
444
445  // Stir in some randomness, plus add constant in case durations are zero.
446  const int32 kSomePrimeNumber = 2147483647;
447  random_number_ += queue_duration + run_duration + kSomePrimeNumber;
448  // An address is going to have some randomness to it as well ;-).
449  random_number_ ^= static_cast<int32>(&birth - reinterpret_cast<Births*>(0));
450
451  // We don't have queue durations without OS timer. OS timer is automatically
452  // used for task-post-timing, so the use of an alternate timer implies all
453  // queue times are invalid, unless it was explicitly said that we can trust
454  // the alternate timer.
455  if (kAllowAlternateTimeSourceHandling &&
456      now_function_ &&
457      !now_function_is_time_) {
458    queue_duration = 0;
459  }
460
461  DeathMap::iterator it = death_map_.find(&birth);
462  DeathData* death_data;
463  if (it != death_map_.end()) {
464    death_data = &it->second;
465  } else {
466    base::AutoLock lock(map_lock_);  // Lock as the map may get relocated now.
467    death_data = &death_map_[&birth];
468  }  // Release lock ASAP.
469  death_data->RecordDeath(queue_duration, run_duration, random_number_);
470
471  if (!kTrackParentChildLinks)
472    return;
473  if (!parent_stack_.empty()) {  // We might get turned off.
474    DCHECK_EQ(parent_stack_.top(), &birth);
475    parent_stack_.pop();
476  }
477}
478
479// static
480Births* ThreadData::TallyABirthIfActive(const Location& location) {
481  if (!kTrackAllTaskObjects)
482    return NULL;  // Not compiled in.
483
484  if (!TrackingStatus())
485    return NULL;
486  ThreadData* current_thread_data = Get();
487  if (!current_thread_data)
488    return NULL;
489  return current_thread_data->TallyABirth(location);
490}
491
492// static
493void ThreadData::TallyRunOnNamedThreadIfTracking(
494    const base::TrackingInfo& completed_task,
495    const TaskStopwatch& stopwatch) {
496  if (!kTrackAllTaskObjects)
497    return;  // Not compiled in.
498
499  // Even if we have been DEACTIVATED, we will process any pending births so
500  // that our data structures (which counted the outstanding births) remain
501  // consistent.
502  const Births* birth = completed_task.birth_tally;
503  if (!birth)
504    return;
505  ThreadData* current_thread_data = stopwatch.GetThreadData();
506  if (!current_thread_data)
507    return;
508
509  // Watch out for a race where status_ is changing, and hence one or both
510  // of start_of_run or end_of_run is zero.  In that case, we didn't bother to
511  // get a time value since we "weren't tracking" and we were trying to be
512  // efficient by not calling for a genuine time value. For simplicity, we'll
513  // use a default zero duration when we can't calculate a true value.
514  TrackedTime start_of_run = stopwatch.StartTime();
515  int32 queue_duration = 0;
516  if (!start_of_run.is_null()) {
517    queue_duration = (start_of_run - completed_task.EffectiveTimePosted())
518        .InMilliseconds();
519  }
520  current_thread_data->TallyADeath(*birth, queue_duration, stopwatch);
521}
522
523// static
524void ThreadData::TallyRunOnWorkerThreadIfTracking(
525    const Births* birth,
526    const TrackedTime& time_posted,
527    const TaskStopwatch& stopwatch) {
528  if (!kTrackAllTaskObjects)
529    return;  // Not compiled in.
530
531  // Even if we have been DEACTIVATED, we will process any pending births so
532  // that our data structures (which counted the outstanding births) remain
533  // consistent.
534  if (!birth)
535    return;
536
537  // TODO(jar): Support the option to coalesce all worker-thread activity under
538  // one ThreadData instance that uses locks to protect *all* access.  This will
539  // reduce memory (making it provably bounded), but run incrementally slower
540  // (since we'll use locks on TallyABirth and TallyADeath).  The good news is
541  // that the locks on TallyADeath will be *after* the worker thread has run,
542  // and hence nothing will be waiting for the completion (... besides some
543  // other thread that might like to run).  Also, the worker threads tasks are
544  // generally longer, and hence the cost of the lock may perchance be amortized
545  // over the long task's lifetime.
546  ThreadData* current_thread_data = stopwatch.GetThreadData();
547  if (!current_thread_data)
548    return;
549
550  TrackedTime start_of_run = stopwatch.StartTime();
551  int32 queue_duration = 0;
552  if (!start_of_run.is_null()) {
553    queue_duration = (start_of_run - time_posted).InMilliseconds();
554  }
555  current_thread_data->TallyADeath(*birth, queue_duration, stopwatch);
556}
557
558// static
559void ThreadData::TallyRunInAScopedRegionIfTracking(
560    const Births* birth,
561    const TaskStopwatch& stopwatch) {
562  if (!kTrackAllTaskObjects)
563    return;  // Not compiled in.
564
565  // Even if we have been DEACTIVATED, we will process any pending births so
566  // that our data structures (which counted the outstanding births) remain
567  // consistent.
568  if (!birth)
569    return;
570
571  ThreadData* current_thread_data = stopwatch.GetThreadData();
572  if (!current_thread_data)
573    return;
574
575  int32 queue_duration = 0;
576  current_thread_data->TallyADeath(*birth, queue_duration, stopwatch);
577}
578
579// static
580void ThreadData::SnapshotAllExecutedTasks(bool reset_max,
581                                          ProcessDataSnapshot* process_data,
582                                          BirthCountMap* birth_counts) {
583  if (!kTrackAllTaskObjects)
584    return;  // Not compiled in.
585
586  // Get an unchanging copy of a ThreadData list.
587  ThreadData* my_list = ThreadData::first();
588
589  // Gather data serially.
590  // This hackish approach *can* get some slighly corrupt tallies, as we are
591  // grabbing values without the protection of a lock, but it has the advantage
592  // of working even with threads that don't have message loops.  If a user
593  // sees any strangeness, they can always just run their stats gathering a
594  // second time.
595  for (ThreadData* thread_data = my_list;
596       thread_data;
597       thread_data = thread_data->next()) {
598    thread_data->SnapshotExecutedTasks(reset_max, process_data, birth_counts);
599  }
600}
601
602void ThreadData::SnapshotExecutedTasks(bool reset_max,
603                                       ProcessDataSnapshot* process_data,
604                                       BirthCountMap* birth_counts) {
605  // Get copy of data, so that the data will not change during the iterations
606  // and processing.
607  ThreadData::BirthMap birth_map;
608  ThreadData::DeathMap death_map;
609  ThreadData::ParentChildSet parent_child_set;
610  SnapshotMaps(reset_max, &birth_map, &death_map, &parent_child_set);
611
612  for (ThreadData::DeathMap::const_iterator it = death_map.begin();
613       it != death_map.end(); ++it) {
614    process_data->tasks.push_back(
615        TaskSnapshot(*it->first, it->second, thread_name()));
616    (*birth_counts)[it->first] -= it->first->birth_count();
617  }
618
619  for (ThreadData::BirthMap::const_iterator it = birth_map.begin();
620       it != birth_map.end(); ++it) {
621    (*birth_counts)[it->second] += it->second->birth_count();
622  }
623
624  if (!kTrackParentChildLinks)
625    return;
626
627  for (ThreadData::ParentChildSet::const_iterator it = parent_child_set.begin();
628       it != parent_child_set.end(); ++it) {
629    process_data->descendants.push_back(ParentChildPairSnapshot(*it));
630  }
631}
632
633// This may be called from another thread.
634void ThreadData::SnapshotMaps(bool reset_max,
635                              BirthMap* birth_map,
636                              DeathMap* death_map,
637                              ParentChildSet* parent_child_set) {
638  base::AutoLock lock(map_lock_);
639  for (BirthMap::const_iterator it = birth_map_.begin();
640       it != birth_map_.end(); ++it)
641    (*birth_map)[it->first] = it->second;
642  for (DeathMap::iterator it = death_map_.begin();
643       it != death_map_.end(); ++it) {
644    (*death_map)[it->first] = it->second;
645    if (reset_max)
646      it->second.ResetMax();
647  }
648
649  if (!kTrackParentChildLinks)
650    return;
651
652  for (ParentChildSet::iterator it = parent_child_set_.begin();
653       it != parent_child_set_.end(); ++it)
654    parent_child_set->insert(*it);
655}
656
657// static
658void ThreadData::ResetAllThreadData() {
659  ThreadData* my_list = first();
660
661  for (ThreadData* thread_data = my_list;
662       thread_data;
663       thread_data = thread_data->next())
664    thread_data->Reset();
665}
666
667void ThreadData::Reset() {
668  base::AutoLock lock(map_lock_);
669  for (DeathMap::iterator it = death_map_.begin();
670       it != death_map_.end(); ++it)
671    it->second.Clear();
672  for (BirthMap::iterator it = birth_map_.begin();
673       it != birth_map_.end(); ++it)
674    it->second->Clear();
675}
676
677static void OptionallyInitializeAlternateTimer() {
678  NowFunction* alternate_time_source = GetAlternateTimeSource();
679  if (alternate_time_source)
680    ThreadData::SetAlternateTimeSource(alternate_time_source);
681}
682
683bool ThreadData::Initialize() {
684  if (!kTrackAllTaskObjects)
685    return false;  // Not compiled in.
686  if (status_ >= DEACTIVATED)
687    return true;  // Someone else did the initialization.
688  // Due to racy lazy initialization in tests, we'll need to recheck status_
689  // after we acquire the lock.
690
691  // Ensure that we don't double initialize tls.  We are called when single
692  // threaded in the product, but some tests may be racy and lazy about our
693  // initialization.
694  base::AutoLock lock(*list_lock_.Pointer());
695  if (status_ >= DEACTIVATED)
696    return true;  // Someone raced in here and beat us.
697
698  // Put an alternate timer in place if the environment calls for it, such as
699  // for tracking TCMalloc allocations.  This insertion is idempotent, so we
700  // don't mind if there is a race, and we'd prefer not to be in a lock while
701  // doing this work.
702  if (kAllowAlternateTimeSourceHandling)
703    OptionallyInitializeAlternateTimer();
704
705  // Perform the "real" TLS initialization now, and leave it intact through
706  // process termination.
707  if (!tls_index_.initialized()) {  // Testing may have initialized this.
708    DCHECK_EQ(status_, UNINITIALIZED);
709    tls_index_.Initialize(&ThreadData::OnThreadTermination);
710    if (!tls_index_.initialized())
711      return false;
712  } else {
713    // TLS was initialzed for us earlier.
714    DCHECK_EQ(status_, DORMANT_DURING_TESTS);
715  }
716
717  // Incarnation counter is only significant to testing, as it otherwise will
718  // never again change in this process.
719  ++incarnation_counter_;
720
721  // The lock is not critical for setting status_, but it doesn't hurt. It also
722  // ensures that if we have a racy initialization, that we'll bail as soon as
723  // we get the lock earlier in this method.
724  status_ = kInitialStartupState;
725  if (!kTrackParentChildLinks &&
726      kInitialStartupState == PROFILING_CHILDREN_ACTIVE)
727    status_ = PROFILING_ACTIVE;
728  DCHECK(status_ != UNINITIALIZED);
729  return true;
730}
731
732// static
733bool ThreadData::InitializeAndSetTrackingStatus(Status status) {
734  DCHECK_GE(status, DEACTIVATED);
735  DCHECK_LE(status, PROFILING_CHILDREN_ACTIVE);
736
737  if (!Initialize())  // No-op if already initialized.
738    return false;  // Not compiled in.
739
740  if (!kTrackParentChildLinks && status > DEACTIVATED)
741    status = PROFILING_ACTIVE;
742  status_ = status;
743  return true;
744}
745
746// static
747ThreadData::Status ThreadData::status() {
748  return status_;
749}
750
751// static
752bool ThreadData::TrackingStatus() {
753  return status_ > DEACTIVATED;
754}
755
756// static
757bool ThreadData::TrackingParentChildStatus() {
758  return status_ >= PROFILING_CHILDREN_ACTIVE;
759}
760
761// static
762void ThreadData::PrepareForStartOfRun(const Births* parent) {
763  if (kTrackParentChildLinks && parent && status_ > PROFILING_ACTIVE) {
764    ThreadData* current_thread_data = Get();
765    if (current_thread_data)
766      current_thread_data->parent_stack_.push(parent);
767  }
768}
769
770// static
771void ThreadData::SetAlternateTimeSource(NowFunction* now_function) {
772  DCHECK(now_function);
773  if (kAllowAlternateTimeSourceHandling)
774    now_function_ = now_function;
775}
776
777// static
778TrackedTime ThreadData::Now() {
779  if (kAllowAlternateTimeSourceHandling && now_function_)
780    return TrackedTime::FromMilliseconds((*now_function_)());
781  if (kTrackAllTaskObjects && IsProfilerTimingEnabled() && TrackingStatus())
782    return TrackedTime::Now();
783  return TrackedTime();  // Super fast when disabled, or not compiled.
784}
785
786// static
787void ThreadData::EnsureCleanupWasCalled(int major_threads_shutdown_count) {
788  base::AutoLock lock(*list_lock_.Pointer());
789  if (worker_thread_data_creation_count_ == 0)
790    return;  // We haven't really run much, and couldn't have leaked.
791
792  // TODO(jar): until this is working on XP, don't run the real test.
793#if 0
794  // Verify that we've at least shutdown/cleanup the major namesd threads.  The
795  // caller should tell us how many thread shutdowns should have taken place by
796  // now.
797  CHECK_GT(cleanup_count_, major_threads_shutdown_count);
798#endif
799}
800
801// static
802void ThreadData::ShutdownSingleThreadedCleanup(bool leak) {
803  // This is only called from test code, where we need to cleanup so that
804  // additional tests can be run.
805  // We must be single threaded... but be careful anyway.
806  if (!InitializeAndSetTrackingStatus(DEACTIVATED))
807    return;
808  ThreadData* thread_data_list;
809  {
810    base::AutoLock lock(*list_lock_.Pointer());
811    thread_data_list = all_thread_data_list_head_;
812    all_thread_data_list_head_ = NULL;
813    ++incarnation_counter_;
814    // To be clean, break apart the retired worker list (though we leak them).
815    while (first_retired_worker_) {
816      ThreadData* worker = first_retired_worker_;
817      CHECK_GT(worker->worker_thread_number_, 0);
818      first_retired_worker_ = worker->next_retired_worker_;
819      worker->next_retired_worker_ = NULL;
820    }
821  }
822
823  // Put most global static back in pristine shape.
824  worker_thread_data_creation_count_ = 0;
825  cleanup_count_ = 0;
826  tls_index_.Set(NULL);
827  status_ = DORMANT_DURING_TESTS;  // Almost UNINITIALIZED.
828
829  // To avoid any chance of racing in unit tests, which is the only place we
830  // call this function, we may sometimes leak all the data structures we
831  // recovered, as they may still be in use on threads from prior tests!
832  if (leak) {
833    ThreadData* thread_data = thread_data_list;
834    while (thread_data) {
835      ANNOTATE_LEAKING_OBJECT_PTR(thread_data);
836      thread_data = thread_data->next();
837    }
838    return;
839  }
840
841  // When we want to cleanup (on a single thread), here is what we do.
842
843  // Do actual recursive delete in all ThreadData instances.
844  while (thread_data_list) {
845    ThreadData* next_thread_data = thread_data_list;
846    thread_data_list = thread_data_list->next();
847
848    for (BirthMap::iterator it = next_thread_data->birth_map_.begin();
849         next_thread_data->birth_map_.end() != it; ++it)
850      delete it->second;  // Delete the Birth Records.
851    delete next_thread_data;  // Includes all Death Records.
852  }
853}
854
855//------------------------------------------------------------------------------
856TaskStopwatch::TaskStopwatch()
857    : start_time_(ThreadData::Now()),
858      current_thread_data_(ThreadData::Get()),
859      excluded_duration_ms_(0),
860      parent_(NULL) {
861#if DCHECK_IS_ON
862  state_ = RUNNING;
863  child_ = NULL;
864#endif
865
866  wallclock_duration_ms_ = 0;
867  if (!current_thread_data_)
868    return;
869
870  parent_ = current_thread_data_->current_stopwatch_;
871#if DCHECK_IS_ON
872  if (parent_) {
873    DCHECK(parent_->state_ == RUNNING);
874    DCHECK(parent_->child_ == NULL);
875    parent_->child_ = this;
876  }
877#endif
878  current_thread_data_->current_stopwatch_ = this;
879}
880
881TaskStopwatch::~TaskStopwatch() {
882#if DCHECK_IS_ON
883  DCHECK(state_ != RUNNING);
884  DCHECK(child_ == NULL);
885#endif
886}
887
888void TaskStopwatch::Stop() {
889  const TrackedTime end_time = ThreadData::Now();
890#if DCHECK_IS_ON
891  DCHECK(state_ == RUNNING);
892  state_ = STOPPED;
893  DCHECK(child_ == NULL);
894#endif
895
896  if (!start_time_.is_null() && !end_time.is_null()) {
897    wallclock_duration_ms_ = (end_time - start_time_).InMilliseconds();
898  }
899
900  if (!current_thread_data_)
901    return;
902
903  DCHECK(current_thread_data_->current_stopwatch_ == this);
904  current_thread_data_->current_stopwatch_ = parent_;
905  if (!parent_)
906    return;
907
908#if DCHECK_IS_ON
909  DCHECK(parent_->state_ == RUNNING);
910  DCHECK(parent_->child_ == this);
911  parent_->child_ = NULL;
912#endif
913  parent_->excluded_duration_ms_ +=
914      wallclock_duration_ms_;
915  parent_ = NULL;
916}
917
918TrackedTime TaskStopwatch::StartTime() const {
919  return start_time_;
920}
921
922int32 TaskStopwatch::RunDurationMs() const {
923#if DCHECK_IS_ON
924  DCHECK(state_ == STOPPED);
925#endif
926
927  return wallclock_duration_ms_ - excluded_duration_ms_;
928}
929
930ThreadData* TaskStopwatch::GetThreadData() const {
931  return current_thread_data_;
932}
933
934//------------------------------------------------------------------------------
935TaskSnapshot::TaskSnapshot() {
936}
937
938TaskSnapshot::TaskSnapshot(const BirthOnThread& birth,
939                           const DeathData& death_data,
940                           const std::string& death_thread_name)
941    : birth(birth),
942      death_data(death_data),
943      death_thread_name(death_thread_name) {
944}
945
946TaskSnapshot::~TaskSnapshot() {
947}
948
949//------------------------------------------------------------------------------
950// ParentChildPairSnapshot
951
952ParentChildPairSnapshot::ParentChildPairSnapshot() {
953}
954
955ParentChildPairSnapshot::ParentChildPairSnapshot(
956    const ThreadData::ParentChildPair& parent_child)
957    : parent(*parent_child.first),
958      child(*parent_child.second) {
959}
960
961ParentChildPairSnapshot::~ParentChildPairSnapshot() {
962}
963
964//------------------------------------------------------------------------------
965// ProcessDataSnapshot
966
967ProcessDataSnapshot::ProcessDataSnapshot()
968#if !defined(OS_NACL)
969    : process_id(base::GetCurrentProcId()) {
970#else
971    : process_id(0) {
972#endif
973}
974
975ProcessDataSnapshot::~ProcessDataSnapshot() {
976}
977
978}  // namespace tracked_objects
979