1// Copyright (c) 2012 The Chromium Authors. All rights reserved.
2// Use of this source code is governed by a BSD-style license that can be
3// found in the LICENSE file.
4
5#include "crypto/ghash.h"
6
7#include <algorithm>
8
9#include "base/logging.h"
10#include "base/sys_byteorder.h"
11
12namespace crypto {
13
14// GaloisHash is a polynomial authenticator that works in GF(2^128).
15//
16// Elements of the field are represented in `little-endian' order (which
17// matches the description in the paper[1]), thus the most significant bit is
18// the right-most bit. (This is backwards from the way that everybody else does
19// it.)
20//
21// We store field elements in a pair of such `little-endian' uint64s. So the
22// value one is represented by {low = 2**63, high = 0} and doubling a value
23// involves a *right* shift.
24//
25// [1] http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/proposedmodes/gcm/gcm-revised-spec.pdf
26
27namespace {
28
29// Get64 reads a 64-bit, big-endian number from |bytes|.
30uint64 Get64(const uint8 bytes[8]) {
31  uint64 t;
32  memcpy(&t, bytes, sizeof(t));
33  return base::NetToHost64(t);
34}
35
36// Put64 writes |x| to |bytes| as a 64-bit, big-endian number.
37void Put64(uint8 bytes[8], uint64 x) {
38  x = base::HostToNet64(x);
39  memcpy(bytes, &x, sizeof(x));
40}
41
42// Reverse reverses the order of the bits of 4-bit number in |i|.
43int Reverse(int i) {
44  i = ((i << 2) & 0xc) | ((i >> 2) & 0x3);
45  i = ((i << 1) & 0xa) | ((i >> 1) & 0x5);
46  return i;
47}
48
49}  // namespace
50
51GaloisHash::GaloisHash(const uint8 key[16]) {
52  Reset();
53
54  // We precompute 16 multiples of |key|. However, when we do lookups into this
55  // table we'll be using bits from a field element and therefore the bits will
56  // be in the reverse order. So normally one would expect, say, 4*key to be in
57  // index 4 of the table but due to this bit ordering it will actually be in
58  // index 0010 (base 2) = 2.
59  FieldElement x = {Get64(key), Get64(key+8)};
60  product_table_[0].low = 0;
61  product_table_[0].hi = 0;
62  product_table_[Reverse(1)] = x;
63
64  for (int i = 0; i < 16; i += 2) {
65    product_table_[Reverse(i)] = Double(product_table_[Reverse(i/2)]);
66    product_table_[Reverse(i+1)] = Add(product_table_[Reverse(i)], x);
67  }
68}
69
70void GaloisHash::Reset() {
71  state_ = kHashingAdditionalData;
72  additional_bytes_ = 0;
73  ciphertext_bytes_ = 0;
74  buf_used_ = 0;
75  y_.low = 0;
76  y_.hi = 0;
77}
78
79void GaloisHash::UpdateAdditional(const uint8* data, size_t length) {
80  DCHECK_EQ(state_, kHashingAdditionalData);
81  additional_bytes_ += length;
82  Update(data, length);
83}
84
85void GaloisHash::UpdateCiphertext(const uint8* data, size_t length) {
86  if (state_ == kHashingAdditionalData) {
87    // If there's any remaining additional data it's zero padded to the next
88    // full block.
89    if (buf_used_ > 0) {
90      memset(&buf_[buf_used_], 0, sizeof(buf_)-buf_used_);
91      UpdateBlocks(buf_, 1);
92      buf_used_ = 0;
93    }
94    state_ = kHashingCiphertext;
95  }
96
97  DCHECK_EQ(state_, kHashingCiphertext);
98  ciphertext_bytes_ += length;
99  Update(data, length);
100}
101
102void GaloisHash::Finish(void* output, size_t len) {
103  DCHECK(state_ != kComplete);
104
105  if (buf_used_ > 0) {
106    // If there's any remaining data (additional data or ciphertext), it's zero
107    // padded to the next full block.
108    memset(&buf_[buf_used_], 0, sizeof(buf_)-buf_used_);
109    UpdateBlocks(buf_, 1);
110    buf_used_ = 0;
111  }
112
113  state_ = kComplete;
114
115  // The lengths of the additional data and ciphertext are included as the last
116  // block. The lengths are the number of bits.
117  y_.low ^= additional_bytes_*8;
118  y_.hi ^= ciphertext_bytes_*8;
119  MulAfterPrecomputation(product_table_, &y_);
120
121  uint8 *result, result_tmp[16];
122  if (len >= 16) {
123    result = reinterpret_cast<uint8*>(output);
124  } else {
125    result = result_tmp;
126  }
127
128  Put64(result, y_.low);
129  Put64(result + 8, y_.hi);
130
131  if (len < 16)
132    memcpy(output, result_tmp, len);
133}
134
135// static
136GaloisHash::FieldElement GaloisHash::Add(
137    const FieldElement& x,
138    const FieldElement& y) {
139  // Addition in a characteristic 2 field is just XOR.
140  FieldElement z = {x.low^y.low, x.hi^y.hi};
141  return z;
142}
143
144// static
145GaloisHash::FieldElement GaloisHash::Double(const FieldElement& x) {
146  const bool msb_set = x.hi & 1;
147
148  FieldElement xx;
149  // Because of the bit-ordering, doubling is actually a right shift.
150  xx.hi = x.hi >> 1;
151  xx.hi |= x.low << 63;
152  xx.low = x.low >> 1;
153
154  // If the most-significant bit was set before shifting then it, conceptually,
155  // becomes a term of x^128. This is greater than the irreducible polynomial
156  // so the result has to be reduced. The irreducible polynomial is
157  // 1+x+x^2+x^7+x^128. We can subtract that to eliminate the term at x^128
158  // which also means subtracting the other four terms. In characteristic 2
159  // fields, subtraction == addition == XOR.
160  if (msb_set)
161    xx.low ^= 0xe100000000000000ULL;
162
163  return xx;
164}
165
166void GaloisHash::MulAfterPrecomputation(const FieldElement* table,
167                                        FieldElement* x) {
168  FieldElement z = {0, 0};
169
170  // In order to efficiently multiply, we use the precomputed table of i*key,
171  // for i in 0..15, to handle four bits at a time. We could obviously use
172  // larger tables for greater speedups but the next convenient table size is
173  // 4K, which is a little large.
174  //
175  // In other fields one would use bit positions spread out across the field in
176  // order to reduce the number of doublings required. However, in
177  // characteristic 2 fields, repeated doublings are exceptionally cheap and
178  // it's not worth spending more precomputation time to eliminate them.
179  for (unsigned i = 0; i < 2; i++) {
180    uint64 word;
181    if (i == 0) {
182      word = x->hi;
183    } else {
184      word = x->low;
185    }
186
187    for (unsigned j = 0; j < 64; j += 4) {
188      Mul16(&z);
189      // the values in |table| are ordered for little-endian bit positions. See
190      // the comment in the constructor.
191      const FieldElement& t = table[word & 0xf];
192      z.low ^= t.low;
193      z.hi ^= t.hi;
194      word >>= 4;
195    }
196  }
197
198  *x = z;
199}
200
201// kReductionTable allows for rapid multiplications by 16. A multiplication by
202// 16 is a right shift by four bits, which results in four bits at 2**128.
203// These terms have to be eliminated by dividing by the irreducible polynomial.
204// In GHASH, the polynomial is such that all the terms occur in the
205// least-significant 8 bits, save for the term at x^128. Therefore we can
206// precompute the value to be added to the field element for each of the 16 bit
207// patterns at 2**128 and the values fit within 12 bits.
208static const uint16 kReductionTable[16] = {
209  0x0000, 0x1c20, 0x3840, 0x2460, 0x7080, 0x6ca0, 0x48c0, 0x54e0,
210  0xe100, 0xfd20, 0xd940, 0xc560, 0x9180, 0x8da0, 0xa9c0, 0xb5e0,
211};
212
213// static
214void GaloisHash::Mul16(FieldElement* x) {
215  const unsigned msw = x->hi & 0xf;
216  x->hi >>= 4;
217  x->hi |= x->low << 60;
218  x->low >>= 4;
219  x->low ^= static_cast<uint64>(kReductionTable[msw]) << 48;
220}
221
222void GaloisHash::UpdateBlocks(const uint8* bytes, size_t num_blocks) {
223  for (size_t i = 0; i < num_blocks; i++) {
224    y_.low ^= Get64(bytes);
225    bytes += 8;
226    y_.hi ^= Get64(bytes);
227    bytes += 8;
228    MulAfterPrecomputation(product_table_, &y_);
229  }
230}
231
232void GaloisHash::Update(const uint8* data, size_t length) {
233  if (buf_used_ > 0) {
234    const size_t n = std::min(length, sizeof(buf_) - buf_used_);
235    memcpy(&buf_[buf_used_], data, n);
236    buf_used_ += n;
237    length -= n;
238    data += n;
239
240    if (buf_used_ == sizeof(buf_)) {
241      UpdateBlocks(buf_, 1);
242      buf_used_ = 0;
243    }
244  }
245
246  if (length >= 16) {
247    const size_t n = length / 16;
248    UpdateBlocks(data, n);
249    length -= n*16;
250    data += n*16;
251  }
252
253  if (length > 0) {
254    memcpy(buf_, data, length);
255    buf_used_ = length;
256  }
257}
258
259}  // namespace crypto
260