1// Copyright (c) 2012 The Chromium Authors. All rights reserved.
2// Use of this source code is governed by a BSD-style license that can be
3// found in the LICENSE file.
4
5// This webpage shows layout of YV12 and other YUV formats
6// http://www.fourcc.org/yuv.php
7// The actual conversion is best described here
8// http://en.wikipedia.org/wiki/YUV
9// An article on optimizing YUV conversion using tables instead of multiplies
10// http://lestourtereaux.free.fr/papers/data/yuvrgb.pdf
11//
12// YV12 is a full plane of Y and a half height, half width chroma planes
13// YV16 is a full plane of Y and a full height, half width chroma planes
14//
15// ARGB pixel format is output, which on little endian is stored as BGRA.
16// The alpha is set to 255, allowing the application to use RGBA or RGB32.
17
18#include "media/base/yuv_convert.h"
19
20#include "base/cpu.h"
21#include "base/logging.h"
22#include "base/memory/scoped_ptr.h"
23#include "base/third_party/dynamic_annotations/dynamic_annotations.h"
24#include "build/build_config.h"
25#include "media/base/simd/convert_rgb_to_yuv.h"
26#include "media/base/simd/convert_yuv_to_rgb.h"
27#include "media/base/simd/filter_yuv.h"
28#include "media/base/simd/yuv_to_rgb_table.h"
29
30#if defined(ARCH_CPU_X86_FAMILY)
31#if defined(COMPILER_MSVC)
32#include <intrin.h>
33#else
34#include <mmintrin.h>
35#endif
36#endif
37
38// Assembly functions are declared without namespace.
39extern "C" { void EmptyRegisterState_MMX(); }  // extern "C"
40
41namespace media {
42
43typedef void (*FilterYUVRowsProc)(uint8*, const uint8*, const uint8*, int, int);
44
45typedef void (*ConvertRGBToYUVProc)(const uint8*,
46                                    uint8*,
47                                    uint8*,
48                                    uint8*,
49                                    int,
50                                    int,
51                                    int,
52                                    int,
53                                    int);
54
55typedef void (*ConvertYUVToRGB32Proc)(const uint8*,
56                                      const uint8*,
57                                      const uint8*,
58                                      uint8*,
59                                      int,
60                                      int,
61                                      int,
62                                      int,
63                                      int,
64                                      YUVType);
65
66typedef void (*ConvertYUVAToARGBProc)(const uint8*,
67                                      const uint8*,
68                                      const uint8*,
69                                      const uint8*,
70                                      uint8*,
71                                      int,
72                                      int,
73                                      int,
74                                      int,
75                                      int,
76                                      int,
77                                      YUVType);
78
79typedef void (*ConvertYUVToRGB32RowProc)(const uint8*,
80                                         const uint8*,
81                                         const uint8*,
82                                         uint8*,
83                                         ptrdiff_t,
84                                         const int16[1024][4]);
85
86typedef void (*ConvertYUVAToARGBRowProc)(const uint8*,
87                                         const uint8*,
88                                         const uint8*,
89                                         const uint8*,
90                                         uint8*,
91                                         ptrdiff_t,
92                                         const int16[1024][4]);
93
94typedef void (*ScaleYUVToRGB32RowProc)(const uint8*,
95                                       const uint8*,
96                                       const uint8*,
97                                       uint8*,
98                                       ptrdiff_t,
99                                       ptrdiff_t,
100                                       const int16[1024][4]);
101
102static FilterYUVRowsProc g_filter_yuv_rows_proc_ = NULL;
103static ConvertYUVToRGB32RowProc g_convert_yuv_to_rgb32_row_proc_ = NULL;
104static ScaleYUVToRGB32RowProc g_scale_yuv_to_rgb32_row_proc_ = NULL;
105static ScaleYUVToRGB32RowProc g_linear_scale_yuv_to_rgb32_row_proc_ = NULL;
106static ConvertRGBToYUVProc g_convert_rgb32_to_yuv_proc_ = NULL;
107static ConvertRGBToYUVProc g_convert_rgb24_to_yuv_proc_ = NULL;
108static ConvertYUVToRGB32Proc g_convert_yuv_to_rgb32_proc_ = NULL;
109static ConvertYUVAToARGBProc g_convert_yuva_to_argb_proc_ = NULL;
110
111// Empty SIMD registers state after using them.
112void EmptyRegisterStateStub() {}
113#if defined(MEDIA_MMX_INTRINSICS_AVAILABLE)
114void EmptyRegisterStateIntrinsic() { _mm_empty(); }
115#endif
116typedef void (*EmptyRegisterStateProc)();
117static EmptyRegisterStateProc g_empty_register_state_proc_ = NULL;
118
119// Get the appropriate value to bitshift by for vertical indices.
120int GetVerticalShift(YUVType type) {
121  switch (type) {
122    case YV16:
123      return 0;
124    case YV12:
125    case YV12J:
126      return 1;
127  }
128  NOTREACHED();
129  return 0;
130}
131
132const int16 (&GetLookupTable(YUVType type))[1024][4] {
133  switch (type) {
134    case YV12:
135    case YV16:
136      return kCoefficientsRgbY;
137    case YV12J:
138      return kCoefficientsRgbY_JPEG;
139  }
140  NOTREACHED();
141  return kCoefficientsRgbY;
142}
143
144void InitializeCPUSpecificYUVConversions() {
145  CHECK(!g_filter_yuv_rows_proc_);
146  CHECK(!g_convert_yuv_to_rgb32_row_proc_);
147  CHECK(!g_scale_yuv_to_rgb32_row_proc_);
148  CHECK(!g_linear_scale_yuv_to_rgb32_row_proc_);
149  CHECK(!g_convert_rgb32_to_yuv_proc_);
150  CHECK(!g_convert_rgb24_to_yuv_proc_);
151  CHECK(!g_convert_yuv_to_rgb32_proc_);
152  CHECK(!g_convert_yuva_to_argb_proc_);
153  CHECK(!g_empty_register_state_proc_);
154
155  g_filter_yuv_rows_proc_ = FilterYUVRows_C;
156  g_convert_yuv_to_rgb32_row_proc_ = ConvertYUVToRGB32Row_C;
157  g_scale_yuv_to_rgb32_row_proc_ = ScaleYUVToRGB32Row_C;
158  g_linear_scale_yuv_to_rgb32_row_proc_ = LinearScaleYUVToRGB32Row_C;
159  g_convert_rgb32_to_yuv_proc_ = ConvertRGB32ToYUV_C;
160  g_convert_rgb24_to_yuv_proc_ = ConvertRGB24ToYUV_C;
161  g_convert_yuv_to_rgb32_proc_ = ConvertYUVToRGB32_C;
162  g_convert_yuva_to_argb_proc_ = ConvertYUVAToARGB_C;
163  g_empty_register_state_proc_ = EmptyRegisterStateStub;
164
165  // Assembly code confuses MemorySanitizer.
166#if defined(ARCH_CPU_X86_FAMILY) && !defined(MEMORY_SANITIZER)
167  g_convert_yuva_to_argb_proc_ = ConvertYUVAToARGB_MMX;
168
169#if defined(MEDIA_MMX_INTRINSICS_AVAILABLE)
170  g_empty_register_state_proc_ = EmptyRegisterStateIntrinsic;
171#else
172  g_empty_register_state_proc_ = EmptyRegisterState_MMX;
173#endif
174
175  g_convert_yuv_to_rgb32_row_proc_ = ConvertYUVToRGB32Row_SSE;
176  g_convert_yuv_to_rgb32_proc_ = ConvertYUVToRGB32_SSE;
177
178  g_filter_yuv_rows_proc_ = FilterYUVRows_SSE2;
179  g_convert_rgb32_to_yuv_proc_ = ConvertRGB32ToYUV_SSE2;
180
181#if defined(ARCH_CPU_X86_64)
182  g_scale_yuv_to_rgb32_row_proc_ = ScaleYUVToRGB32Row_SSE2_X64;
183
184  // Technically this should be in the MMX section, but MSVC will optimize out
185  // the export of LinearScaleYUVToRGB32Row_MMX, which is required by the unit
186  // tests, if that decision can be made at compile time.  Since all X64 CPUs
187  // have SSE2, we can hack around this by making the selection here.
188  g_linear_scale_yuv_to_rgb32_row_proc_ = LinearScaleYUVToRGB32Row_MMX_X64;
189#else
190  g_scale_yuv_to_rgb32_row_proc_ = ScaleYUVToRGB32Row_SSE;
191  g_linear_scale_yuv_to_rgb32_row_proc_ = LinearScaleYUVToRGB32Row_SSE;
192#endif
193
194  base::CPU cpu;
195  if (cpu.has_ssse3()) {
196    g_convert_rgb24_to_yuv_proc_ = &ConvertRGB24ToYUV_SSSE3;
197
198    // TODO(hclam): Add ConvertRGB32ToYUV_SSSE3 when the cyan problem is solved.
199    // See: crbug.com/100462
200  }
201#endif
202}
203
204// Empty SIMD registers state after using them.
205void EmptyRegisterState() { g_empty_register_state_proc_(); }
206
207// 16.16 fixed point arithmetic
208const int kFractionBits = 16;
209const int kFractionMax = 1 << kFractionBits;
210const int kFractionMask = ((1 << kFractionBits) - 1);
211
212// Scale a frame of YUV to 32 bit ARGB.
213void ScaleYUVToRGB32(const uint8* y_buf,
214                     const uint8* u_buf,
215                     const uint8* v_buf,
216                     uint8* rgb_buf,
217                     int source_width,
218                     int source_height,
219                     int width,
220                     int height,
221                     int y_pitch,
222                     int uv_pitch,
223                     int rgb_pitch,
224                     YUVType yuv_type,
225                     Rotate view_rotate,
226                     ScaleFilter filter) {
227  // Handle zero sized sources and destinations.
228  if ((yuv_type == YV12 && (source_width < 2 || source_height < 2)) ||
229      (yuv_type == YV16 && (source_width < 2 || source_height < 1)) ||
230      width == 0 || height == 0)
231    return;
232
233  // 4096 allows 3 buffers to fit in 12k.
234  // Helps performance on CPU with 16K L1 cache.
235  // Large enough for 3830x2160 and 30" displays which are 2560x1600.
236  const int kFilterBufferSize = 4096;
237  // Disable filtering if the screen is too big (to avoid buffer overflows).
238  // This should never happen to regular users: they don't have monitors
239  // wider than 4096 pixels.
240  // TODO(fbarchard): Allow rotated videos to filter.
241  if (source_width > kFilterBufferSize || view_rotate)
242    filter = FILTER_NONE;
243
244  unsigned int y_shift = GetVerticalShift(yuv_type);
245  // Diagram showing origin and direction of source sampling.
246  // ->0   4<-
247  // 7       3
248  //
249  // 6       5
250  // ->1   2<-
251  // Rotations that start at right side of image.
252  if ((view_rotate == ROTATE_180) || (view_rotate == ROTATE_270) ||
253      (view_rotate == MIRROR_ROTATE_0) || (view_rotate == MIRROR_ROTATE_90)) {
254    y_buf += source_width - 1;
255    u_buf += source_width / 2 - 1;
256    v_buf += source_width / 2 - 1;
257    source_width = -source_width;
258  }
259  // Rotations that start at bottom of image.
260  if ((view_rotate == ROTATE_90) || (view_rotate == ROTATE_180) ||
261      (view_rotate == MIRROR_ROTATE_90) || (view_rotate == MIRROR_ROTATE_180)) {
262    y_buf += (source_height - 1) * y_pitch;
263    u_buf += ((source_height >> y_shift) - 1) * uv_pitch;
264    v_buf += ((source_height >> y_shift) - 1) * uv_pitch;
265    source_height = -source_height;
266  }
267
268  int source_dx = source_width * kFractionMax / width;
269
270  if ((view_rotate == ROTATE_90) || (view_rotate == ROTATE_270)) {
271    int tmp = height;
272    height = width;
273    width = tmp;
274    tmp = source_height;
275    source_height = source_width;
276    source_width = tmp;
277    int source_dy = source_height * kFractionMax / height;
278    source_dx = ((source_dy >> kFractionBits) * y_pitch) << kFractionBits;
279    if (view_rotate == ROTATE_90) {
280      y_pitch = -1;
281      uv_pitch = -1;
282      source_height = -source_height;
283    } else {
284      y_pitch = 1;
285      uv_pitch = 1;
286    }
287  }
288
289  // Need padding because FilterRows() will write 1 to 16 extra pixels
290  // after the end for SSE2 version.
291  uint8 yuvbuf[16 + kFilterBufferSize * 3 + 16];
292  uint8* ybuf =
293      reinterpret_cast<uint8*>(reinterpret_cast<uintptr_t>(yuvbuf + 15) & ~15);
294  uint8* ubuf = ybuf + kFilterBufferSize;
295  uint8* vbuf = ubuf + kFilterBufferSize;
296
297  // TODO(fbarchard): Fixed point math is off by 1 on negatives.
298
299  // We take a y-coordinate in [0,1] space in the source image space, and
300  // transform to a y-coordinate in [0,1] space in the destination image space.
301  // Note that the coordinate endpoints lie on pixel boundaries, not on pixel
302  // centers: e.g. a two-pixel-high image will have pixel centers at 0.25 and
303  // 0.75.  The formula is as follows (in fixed-point arithmetic):
304  //   y_dst = dst_height * ((y_src + 0.5) / src_height)
305  //   dst_pixel = clamp([0, dst_height - 1], floor(y_dst - 0.5))
306  // Implement this here as an accumulator + delta, to avoid expensive math
307  // in the loop.
308  int source_y_subpixel_accum =
309      ((kFractionMax / 2) * source_height) / height - (kFractionMax / 2);
310  int source_y_subpixel_delta = ((1 << kFractionBits) * source_height) / height;
311
312  // TODO(fbarchard): Split this into separate function for better efficiency.
313  for (int y = 0; y < height; ++y) {
314    uint8* dest_pixel = rgb_buf + y * rgb_pitch;
315    int source_y_subpixel = source_y_subpixel_accum;
316    source_y_subpixel_accum += source_y_subpixel_delta;
317    if (source_y_subpixel < 0)
318      source_y_subpixel = 0;
319    else if (source_y_subpixel > ((source_height - 1) << kFractionBits))
320      source_y_subpixel = (source_height - 1) << kFractionBits;
321
322    const uint8* y_ptr = NULL;
323    const uint8* u_ptr = NULL;
324    const uint8* v_ptr = NULL;
325    // Apply vertical filtering if necessary.
326    // TODO(fbarchard): Remove memcpy when not necessary.
327    if (filter & media::FILTER_BILINEAR_V) {
328      int source_y = source_y_subpixel >> kFractionBits;
329      y_ptr = y_buf + source_y * y_pitch;
330      u_ptr = u_buf + (source_y >> y_shift) * uv_pitch;
331      v_ptr = v_buf + (source_y >> y_shift) * uv_pitch;
332
333      // Vertical scaler uses 16.8 fixed point.
334      int source_y_fraction = (source_y_subpixel & kFractionMask) >> 8;
335      if (source_y_fraction != 0) {
336        g_filter_yuv_rows_proc_(
337            ybuf, y_ptr, y_ptr + y_pitch, source_width, source_y_fraction);
338      } else {
339        memcpy(ybuf, y_ptr, source_width);
340      }
341      y_ptr = ybuf;
342      ybuf[source_width] = ybuf[source_width - 1];
343
344      int uv_source_width = (source_width + 1) / 2;
345      int source_uv_fraction;
346
347      // For formats with half-height UV planes, each even-numbered pixel row
348      // should not interpolate, since the next row to interpolate from should
349      // be a duplicate of the current row.
350      if (y_shift && (source_y & 0x1) == 0)
351        source_uv_fraction = 0;
352      else
353        source_uv_fraction = source_y_fraction;
354
355      if (source_uv_fraction != 0) {
356        g_filter_yuv_rows_proc_(
357            ubuf, u_ptr, u_ptr + uv_pitch, uv_source_width, source_uv_fraction);
358        g_filter_yuv_rows_proc_(
359            vbuf, v_ptr, v_ptr + uv_pitch, uv_source_width, source_uv_fraction);
360      } else {
361        memcpy(ubuf, u_ptr, uv_source_width);
362        memcpy(vbuf, v_ptr, uv_source_width);
363      }
364      u_ptr = ubuf;
365      v_ptr = vbuf;
366      ubuf[uv_source_width] = ubuf[uv_source_width - 1];
367      vbuf[uv_source_width] = vbuf[uv_source_width - 1];
368    } else {
369      // Offset by 1/2 pixel for center sampling.
370      int source_y = (source_y_subpixel + (kFractionMax / 2)) >> kFractionBits;
371      y_ptr = y_buf + source_y * y_pitch;
372      u_ptr = u_buf + (source_y >> y_shift) * uv_pitch;
373      v_ptr = v_buf + (source_y >> y_shift) * uv_pitch;
374    }
375    if (source_dx == kFractionMax) {  // Not scaled
376      g_convert_yuv_to_rgb32_row_proc_(
377          y_ptr, u_ptr, v_ptr, dest_pixel, width, kCoefficientsRgbY);
378    } else {
379      if (filter & FILTER_BILINEAR_H) {
380        g_linear_scale_yuv_to_rgb32_row_proc_(y_ptr,
381                                              u_ptr,
382                                              v_ptr,
383                                              dest_pixel,
384                                              width,
385                                              source_dx,
386                                              kCoefficientsRgbY);
387      } else {
388        g_scale_yuv_to_rgb32_row_proc_(y_ptr,
389                                       u_ptr,
390                                       v_ptr,
391                                       dest_pixel,
392                                       width,
393                                       source_dx,
394                                       kCoefficientsRgbY);
395      }
396    }
397  }
398
399  g_empty_register_state_proc_();
400}
401
402// Scale a frame of YV12 to 32 bit ARGB for a specific rectangle.
403void ScaleYUVToRGB32WithRect(const uint8* y_buf,
404                             const uint8* u_buf,
405                             const uint8* v_buf,
406                             uint8* rgb_buf,
407                             int source_width,
408                             int source_height,
409                             int dest_width,
410                             int dest_height,
411                             int dest_rect_left,
412                             int dest_rect_top,
413                             int dest_rect_right,
414                             int dest_rect_bottom,
415                             int y_pitch,
416                             int uv_pitch,
417                             int rgb_pitch) {
418  // This routine doesn't currently support up-scaling.
419  CHECK_LE(dest_width, source_width);
420  CHECK_LE(dest_height, source_height);
421
422  // Sanity-check the destination rectangle.
423  DCHECK(dest_rect_left >= 0 && dest_rect_right <= dest_width);
424  DCHECK(dest_rect_top >= 0 && dest_rect_bottom <= dest_height);
425  DCHECK(dest_rect_right > dest_rect_left);
426  DCHECK(dest_rect_bottom > dest_rect_top);
427
428  // Fixed-point value of vertical and horizontal scale down factor.
429  // Values are in the format 16.16.
430  int y_step = kFractionMax * source_height / dest_height;
431  int x_step = kFractionMax * source_width / dest_width;
432
433  // Determine the coordinates of the rectangle in 16.16 coords.
434  // NB: Our origin is the *center* of the top/left pixel, NOT its top/left.
435  // If we're down-scaling by more than a factor of two, we start with a 50%
436  // fraction to avoid degenerating to point-sampling - we should really just
437  // fix the fraction at 50% for all pixels in that case.
438  int source_left = dest_rect_left * x_step;
439  int source_right = (dest_rect_right - 1) * x_step;
440  if (x_step < kFractionMax * 2) {
441    source_left += ((x_step - kFractionMax) / 2);
442    source_right += ((x_step - kFractionMax) / 2);
443  } else {
444    source_left += kFractionMax / 2;
445    source_right += kFractionMax / 2;
446  }
447  int source_top = dest_rect_top * y_step;
448  if (y_step < kFractionMax * 2) {
449    source_top += ((y_step - kFractionMax) / 2);
450  } else {
451    source_top += kFractionMax / 2;
452  }
453
454  // Determine the parts of the Y, U and V buffers to interpolate.
455  int source_y_left = source_left >> kFractionBits;
456  int source_y_right =
457      std::min((source_right >> kFractionBits) + 2, source_width + 1);
458
459  int source_uv_left = source_y_left / 2;
460  int source_uv_right = std::min((source_right >> (kFractionBits + 1)) + 2,
461                                 (source_width + 1) / 2);
462
463  int source_y_width = source_y_right - source_y_left;
464  int source_uv_width = source_uv_right - source_uv_left;
465
466  // Determine number of pixels in each output row.
467  int dest_rect_width = dest_rect_right - dest_rect_left;
468
469  // Intermediate buffer for vertical interpolation.
470  // 4096 bytes allows 3 buffers to fit in 12k, which fits in a 16K L1 cache,
471  // and is bigger than most users will generally need.
472  // The buffer is 16-byte aligned and padded with 16 extra bytes; some of the
473  // FilterYUVRowProcs have alignment requirements, and the SSE version can
474  // write up to 16 bytes past the end of the buffer.
475  const int kFilterBufferSize = 4096;
476  const bool kAvoidUsingOptimizedFilter = source_width > kFilterBufferSize;
477  uint8 yuv_temp[16 + kFilterBufferSize * 3 + 16];
478  // memset() yuv_temp to 0 to avoid bogus warnings when running on Valgrind.
479  if (RunningOnValgrind())
480    memset(yuv_temp, 0, sizeof(yuv_temp));
481  uint8* y_temp = reinterpret_cast<uint8*>(
482      reinterpret_cast<uintptr_t>(yuv_temp + 15) & ~15);
483  uint8* u_temp = y_temp + kFilterBufferSize;
484  uint8* v_temp = u_temp + kFilterBufferSize;
485
486  // Move to the top-left pixel of output.
487  rgb_buf += dest_rect_top * rgb_pitch;
488  rgb_buf += dest_rect_left * 4;
489
490  // For each destination row perform interpolation and color space
491  // conversion to produce the output.
492  for (int row = dest_rect_top; row < dest_rect_bottom; ++row) {
493    // Round the fixed-point y position to get the current row.
494    int source_row = source_top >> kFractionBits;
495    int source_uv_row = source_row / 2;
496    DCHECK(source_row < source_height);
497
498    // Locate the first row for each plane for interpolation.
499    const uint8* y0_ptr = y_buf + y_pitch * source_row + source_y_left;
500    const uint8* u0_ptr = u_buf + uv_pitch * source_uv_row + source_uv_left;
501    const uint8* v0_ptr = v_buf + uv_pitch * source_uv_row + source_uv_left;
502    const uint8* y1_ptr = NULL;
503    const uint8* u1_ptr = NULL;
504    const uint8* v1_ptr = NULL;
505
506    // Locate the second row for interpolation, being careful not to overrun.
507    if (source_row + 1 >= source_height) {
508      y1_ptr = y0_ptr;
509    } else {
510      y1_ptr = y0_ptr + y_pitch;
511    }
512    if (source_uv_row + 1 >= (source_height + 1) / 2) {
513      u1_ptr = u0_ptr;
514      v1_ptr = v0_ptr;
515    } else {
516      u1_ptr = u0_ptr + uv_pitch;
517      v1_ptr = v0_ptr + uv_pitch;
518    }
519
520    if (!kAvoidUsingOptimizedFilter) {
521      // Vertical scaler uses 16.8 fixed point.
522      int fraction = (source_top & kFractionMask) >> 8;
523      g_filter_yuv_rows_proc_(
524          y_temp + source_y_left, y0_ptr, y1_ptr, source_y_width, fraction);
525      g_filter_yuv_rows_proc_(
526          u_temp + source_uv_left, u0_ptr, u1_ptr, source_uv_width, fraction);
527      g_filter_yuv_rows_proc_(
528          v_temp + source_uv_left, v0_ptr, v1_ptr, source_uv_width, fraction);
529
530      // Perform horizontal interpolation and color space conversion.
531      // TODO(hclam): Use the MMX version after more testing.
532      LinearScaleYUVToRGB32RowWithRange_C(y_temp,
533                                          u_temp,
534                                          v_temp,
535                                          rgb_buf,
536                                          dest_rect_width,
537                                          source_left,
538                                          x_step,
539                                          kCoefficientsRgbY);
540    } else {
541      // If the frame is too large then we linear scale a single row.
542      LinearScaleYUVToRGB32RowWithRange_C(y0_ptr,
543                                          u0_ptr,
544                                          v0_ptr,
545                                          rgb_buf,
546                                          dest_rect_width,
547                                          source_left,
548                                          x_step,
549                                          kCoefficientsRgbY);
550    }
551
552    // Advance vertically in the source and destination image.
553    source_top += y_step;
554    rgb_buf += rgb_pitch;
555  }
556
557  g_empty_register_state_proc_();
558}
559
560void ConvertRGB32ToYUV(const uint8* rgbframe,
561                       uint8* yplane,
562                       uint8* uplane,
563                       uint8* vplane,
564                       int width,
565                       int height,
566                       int rgbstride,
567                       int ystride,
568                       int uvstride) {
569  g_convert_rgb32_to_yuv_proc_(rgbframe,
570                               yplane,
571                               uplane,
572                               vplane,
573                               width,
574                               height,
575                               rgbstride,
576                               ystride,
577                               uvstride);
578}
579
580void ConvertRGB24ToYUV(const uint8* rgbframe,
581                       uint8* yplane,
582                       uint8* uplane,
583                       uint8* vplane,
584                       int width,
585                       int height,
586                       int rgbstride,
587                       int ystride,
588                       int uvstride) {
589  g_convert_rgb24_to_yuv_proc_(rgbframe,
590                               yplane,
591                               uplane,
592                               vplane,
593                               width,
594                               height,
595                               rgbstride,
596                               ystride,
597                               uvstride);
598}
599
600void ConvertYUY2ToYUV(const uint8* src,
601                      uint8* yplane,
602                      uint8* uplane,
603                      uint8* vplane,
604                      int width,
605                      int height) {
606  for (int i = 0; i < height / 2; ++i) {
607    for (int j = 0; j < (width / 2); ++j) {
608      yplane[0] = src[0];
609      *uplane = src[1];
610      yplane[1] = src[2];
611      *vplane = src[3];
612      src += 4;
613      yplane += 2;
614      uplane++;
615      vplane++;
616    }
617    for (int j = 0; j < (width / 2); ++j) {
618      yplane[0] = src[0];
619      yplane[1] = src[2];
620      src += 4;
621      yplane += 2;
622    }
623  }
624}
625
626void ConvertNV21ToYUV(const uint8* src,
627                      uint8* yplane,
628                      uint8* uplane,
629                      uint8* vplane,
630                      int width,
631                      int height) {
632  int y_plane_size = width * height;
633  memcpy(yplane, src, y_plane_size);
634
635  src += y_plane_size;
636  int u_plane_size = y_plane_size >> 2;
637  for (int i = 0; i < u_plane_size; ++i) {
638    *vplane++ = *src++;
639    *uplane++ = *src++;
640  }
641}
642
643void ConvertYUVToRGB32(const uint8* yplane,
644                       const uint8* uplane,
645                       const uint8* vplane,
646                       uint8* rgbframe,
647                       int width,
648                       int height,
649                       int ystride,
650                       int uvstride,
651                       int rgbstride,
652                       YUVType yuv_type) {
653  g_convert_yuv_to_rgb32_proc_(yplane,
654                               uplane,
655                               vplane,
656                               rgbframe,
657                               width,
658                               height,
659                               ystride,
660                               uvstride,
661                               rgbstride,
662                               yuv_type);
663}
664
665void ConvertYUVAToARGB(const uint8* yplane,
666                       const uint8* uplane,
667                       const uint8* vplane,
668                       const uint8* aplane,
669                       uint8* rgbframe,
670                       int width,
671                       int height,
672                       int ystride,
673                       int uvstride,
674                       int astride,
675                       int rgbstride,
676                       YUVType yuv_type) {
677  g_convert_yuva_to_argb_proc_(yplane,
678                               uplane,
679                               vplane,
680                               aplane,
681                               rgbframe,
682                               width,
683                               height,
684                               ystride,
685                               uvstride,
686                               astride,
687                               rgbstride,
688                               yuv_type);
689}
690
691}  // namespace media
692