1// Copyright (c) 2013 The Chromium Authors. All rights reserved.
2// Use of this source code is governed by a BSD-style license that can be
3// found in the LICENSE file.
4
5#include "net/quic/crypto/strike_register.h"
6
7#include <limits>
8
9#include "base/logging.h"
10
11using std::make_pair;
12using std::max;
13using std::min;
14using std::pair;
15using std::set;
16using std::vector;
17
18namespace net {
19
20namespace {
21
22uint32 GetInitialHorizon(uint32 current_time_internal,
23                         uint32 window_secs,
24                         StrikeRegister::StartupType startup) {
25  if (startup == StrikeRegister::DENY_REQUESTS_AT_STARTUP) {
26    // The horizon is initially set |window_secs| into the future because, if
27    // we just crashed, then we may have accepted nonces in the span
28    // [current_time...current_time+window_secs] and so we conservatively
29    // reject the whole timespan unless |startup| tells us otherwise.
30    return current_time_internal + window_secs + 1;
31  } else {  // startup == StrikeRegister::NO_STARTUP_PERIOD_NEEDED
32    // The orbit can be assumed to be globally unique.  Use a horizon
33    // in the past.
34    return 0;
35  }
36}
37
38}  // namespace
39
40// static
41const uint32 StrikeRegister::kExternalNodeSize = 24;
42// static
43const uint32 StrikeRegister::kNil = (1u << 31) | 1;
44// static
45const uint32 StrikeRegister::kExternalFlag = 1 << 23;
46
47// InternalNode represents a non-leaf node in the critbit tree. See the comment
48// in the .h file for details.
49class StrikeRegister::InternalNode {
50 public:
51  void SetChild(unsigned direction, uint32 child) {
52    data_[direction] = (data_[direction] & 0xff) | (child << 8);
53  }
54
55  void SetCritByte(uint8 critbyte) {
56    data_[0] = (data_[0] & 0xffffff00) | critbyte;
57  }
58
59  void SetOtherBits(uint8 otherbits) {
60    data_[1] = (data_[1] & 0xffffff00) | otherbits;
61  }
62
63  void SetNextPtr(uint32 next) { data_[0] = next; }
64
65  uint32 next() const { return data_[0]; }
66
67  uint32 child(unsigned n) const { return data_[n] >> 8; }
68
69  uint8 critbyte() const { return data_[0]; }
70
71  uint8 otherbits() const { return data_[1]; }
72
73  // These bytes are organised thus:
74  //   <24 bits> left child
75  //   <8 bits> crit-byte
76  //   <24 bits> right child
77  //   <8 bits> other-bits
78  uint32 data_[2];
79};
80
81// kCreationTimeFromInternalEpoch contains the number of seconds between the
82// start of the internal epoch and the creation time. This allows us
83// to consider times that are before the creation time.
84static const uint32 kCreationTimeFromInternalEpoch = 63115200;  // 2 years.
85
86void StrikeRegister::ValidateStrikeRegisterConfig(unsigned max_entries) {
87  // We only have 23 bits of index available.
88  CHECK_LT(max_entries, 1u << 23);
89  CHECK_GT(max_entries, 1u);           // There must be at least two entries.
90  CHECK_EQ(sizeof(InternalNode), 8u);  // in case of compiler changes.
91}
92
93StrikeRegister::StrikeRegister(unsigned max_entries,
94                               uint32 current_time,
95                               uint32 window_secs,
96                               const uint8 orbit[8],
97                               StartupType startup)
98    : max_entries_(max_entries),
99      window_secs_(window_secs),
100      internal_epoch_(current_time > kCreationTimeFromInternalEpoch
101                          ? current_time - kCreationTimeFromInternalEpoch
102                          : 0),
103      horizon_(GetInitialHorizon(
104          ExternalTimeToInternal(current_time), window_secs, startup)) {
105  memcpy(orbit_, orbit, sizeof(orbit_));
106
107  ValidateStrikeRegisterConfig(max_entries);
108  internal_nodes_ = new InternalNode[max_entries];
109  external_nodes_.reset(new uint8[kExternalNodeSize * max_entries]);
110
111  Reset();
112}
113
114StrikeRegister::~StrikeRegister() { delete[] internal_nodes_; }
115
116void StrikeRegister::Reset() {
117  // Thread a free list through all of the internal nodes.
118  internal_node_free_head_ = 0;
119  for (unsigned i = 0; i < max_entries_ - 1; i++)
120    internal_nodes_[i].SetNextPtr(i + 1);
121  internal_nodes_[max_entries_ - 1].SetNextPtr(kNil);
122
123  // Also thread a free list through the external nodes.
124  external_node_free_head_ = 0;
125  for (unsigned i = 0; i < max_entries_ - 1; i++)
126    external_node_next_ptr(i) = i + 1;
127  external_node_next_ptr(max_entries_ - 1) = kNil;
128
129  // This is the root of the tree.
130  internal_node_head_ = kNil;
131}
132
133InsertStatus StrikeRegister::Insert(const uint8 nonce[32],
134                                    uint32 current_time_external) {
135  // Make space for the insertion if the strike register is full.
136  while (external_node_free_head_ == kNil ||
137         internal_node_free_head_ == kNil) {
138    DropOldestNode();
139  }
140
141  const uint32 current_time = ExternalTimeToInternal(current_time_external);
142
143  // Check to see if the orbit is correct.
144  if (memcmp(nonce + sizeof(current_time), orbit_, sizeof(orbit_))) {
145    return NONCE_INVALID_ORBIT_FAILURE;
146  }
147
148  const uint32 nonce_time = ExternalTimeToInternal(TimeFromBytes(nonce));
149
150  // Check that the timestamp is in the valid range.
151  pair<uint32, uint32> valid_range =
152      StrikeRegister::GetValidRange(current_time);
153  if (nonce_time < valid_range.first || nonce_time > valid_range.second) {
154    return NONCE_INVALID_TIME_FAILURE;
155  }
156
157  // We strip the orbit out of the nonce.
158  uint8 value[24];
159  memcpy(value, nonce, sizeof(nonce_time));
160  memcpy(value + sizeof(nonce_time),
161         nonce + sizeof(nonce_time) + sizeof(orbit_),
162         sizeof(value) - sizeof(nonce_time));
163
164  // Find the best match to |value| in the crit-bit tree. The best match is
165  // simply the value which /could/ match |value|, if any does, so we still
166  // need a memcmp to check.
167  uint32 best_match_index = BestMatch(value);
168  if (best_match_index == kNil) {
169    // Empty tree. Just insert the new value at the root.
170    uint32 index = GetFreeExternalNode();
171    memcpy(external_node(index), value, sizeof(value));
172    internal_node_head_ = (index | kExternalFlag) << 8;
173    DCHECK_LE(horizon_, nonce_time);
174    return NONCE_OK;
175  }
176
177  const uint8* best_match = external_node(best_match_index);
178  if (memcmp(best_match, value, sizeof(value)) == 0) {
179    // We found the value in the tree.
180    return NONCE_NOT_UNIQUE_FAILURE;
181  }
182
183  // We are going to insert a new entry into the tree, so get the nodes now.
184  uint32 internal_node_index = GetFreeInternalNode();
185  uint32 external_node_index = GetFreeExternalNode();
186
187  // If we just evicted the best match, then we have to try and match again.
188  // We know that we didn't just empty the tree because we require that
189  // max_entries_ >= 2. Also, we know that it doesn't match because, if it
190  // did, it would have been returned previously.
191  if (external_node_index == best_match_index) {
192    best_match_index = BestMatch(value);
193    best_match = external_node(best_match_index);
194  }
195
196  // Now we need to find the first bit where we differ from |best_match|.
197  unsigned differing_byte;
198  uint8 new_other_bits;
199  for (differing_byte = 0; differing_byte < sizeof(value); differing_byte++) {
200    new_other_bits = value[differing_byte] ^ best_match[differing_byte];
201    if (new_other_bits) {
202      break;
203    }
204  }
205
206  // Once we have the XOR the of first differing byte in new_other_bits we need
207  // to find the most significant differing bit. We could do this with a simple
208  // for loop, testing bits 7..0. Instead we fold the bits so that we end up
209  // with a byte where all the bits below the most significant one, are set.
210  new_other_bits |= new_other_bits >> 1;
211  new_other_bits |= new_other_bits >> 2;
212  new_other_bits |= new_other_bits >> 4;
213  // Now this bit trick results in all the bits set, except the original
214  // most-significant one.
215  new_other_bits = (new_other_bits & ~(new_other_bits >> 1)) ^ 255;
216
217  // Consider the effect of ORing against |new_other_bits|. If |value| did not
218  // have the critical bit set, the result is the same as |new_other_bits|. If
219  // it did, the result is all ones.
220
221  unsigned newdirection;
222  if ((new_other_bits | value[differing_byte]) == 0xff) {
223    newdirection = 1;
224  } else {
225    newdirection = 0;
226  }
227
228  memcpy(external_node(external_node_index), value, sizeof(value));
229  InternalNode* inode = &internal_nodes_[internal_node_index];
230
231  inode->SetChild(newdirection, external_node_index | kExternalFlag);
232  inode->SetCritByte(differing_byte);
233  inode->SetOtherBits(new_other_bits);
234
235  // |where_index| is a pointer to the uint32 which needs to be updated in
236  // order to insert the new internal node into the tree. The internal nodes
237  // store the child indexes in the top 24-bits of a 32-bit word and, to keep
238  // the code simple, we define that |internal_node_head_| is organised the
239  // same way.
240  DCHECK_EQ(internal_node_head_ & 0xff, 0u);
241  uint32* where_index = &internal_node_head_;
242  while (((*where_index >> 8) & kExternalFlag) == 0) {
243    InternalNode* node = &internal_nodes_[*where_index >> 8];
244    if (node->critbyte() > differing_byte) {
245      break;
246    }
247    if (node->critbyte() == differing_byte &&
248        node->otherbits() > new_other_bits) {
249      break;
250    }
251    if (node->critbyte() == differing_byte &&
252        node->otherbits() == new_other_bits) {
253      CHECK(false);
254    }
255
256    uint8 c = value[node->critbyte()];
257    const int direction =
258        (1 + static_cast<unsigned>(node->otherbits() | c)) >> 8;
259    where_index = &node->data_[direction];
260  }
261
262  inode->SetChild(newdirection ^ 1, *where_index >> 8);
263  *where_index = (*where_index & 0xff) | (internal_node_index << 8);
264
265  DCHECK_LE(horizon_, nonce_time);
266  return NONCE_OK;
267}
268
269const uint8* StrikeRegister::orbit() const {
270  return orbit_;
271}
272
273uint32 StrikeRegister::GetCurrentValidWindowSecs(
274    uint32 current_time_external) const {
275  uint32 current_time = ExternalTimeToInternal(current_time_external);
276  pair<uint32, uint32> valid_range = StrikeRegister::GetValidRange(
277      current_time);
278  if (valid_range.second >= valid_range.first) {
279    return valid_range.second - current_time + 1;
280  } else {
281    return 0;
282  }
283}
284
285void StrikeRegister::Validate() {
286  set<uint32> free_internal_nodes;
287  for (uint32 i = internal_node_free_head_; i != kNil;
288       i = internal_nodes_[i].next()) {
289    CHECK_LT(i, max_entries_);
290    CHECK_EQ(free_internal_nodes.count(i), 0u);
291    free_internal_nodes.insert(i);
292  }
293
294  set<uint32> free_external_nodes;
295  for (uint32 i = external_node_free_head_; i != kNil;
296       i = external_node_next_ptr(i)) {
297    CHECK_LT(i, max_entries_);
298    CHECK_EQ(free_external_nodes.count(i), 0u);
299    free_external_nodes.insert(i);
300  }
301
302  set<uint32> used_external_nodes;
303  set<uint32> used_internal_nodes;
304
305  if (internal_node_head_ != kNil &&
306      ((internal_node_head_ >> 8) & kExternalFlag) == 0) {
307    vector<pair<unsigned, bool> > bits;
308    ValidateTree(internal_node_head_ >> 8, -1, bits, free_internal_nodes,
309                 free_external_nodes, &used_internal_nodes,
310                 &used_external_nodes);
311  }
312}
313
314// static
315uint32 StrikeRegister::TimeFromBytes(const uint8 d[4]) {
316  return static_cast<uint32>(d[0]) << 24 |
317         static_cast<uint32>(d[1]) << 16 |
318         static_cast<uint32>(d[2]) << 8 |
319         static_cast<uint32>(d[3]);
320}
321
322pair<uint32, uint32> StrikeRegister::GetValidRange(
323    uint32 current_time_internal) const {
324  if (current_time_internal < horizon_) {
325    // Empty valid range.
326    return make_pair(std::numeric_limits<uint32>::max(), 0);
327  }
328
329  uint32 lower_bound;
330  if (current_time_internal >= window_secs_) {
331    lower_bound = max(horizon_, current_time_internal - window_secs_);
332  } else {
333    lower_bound = horizon_;
334  }
335
336  // Also limit the upper range based on horizon_.  This makes the
337  // strike register reject inserts that are far in the future and
338  // would consume strike register resources for a long time.  This
339  // allows the strike server to degrade optimally in cases where the
340  // insert rate exceeds |max_entries_ / (2 * window_secs_)| entries
341  // per second.
342  uint32 upper_bound =
343      current_time_internal + min(current_time_internal - horizon_,
344                                  window_secs_);
345
346  return make_pair(lower_bound, upper_bound);
347}
348
349uint32 StrikeRegister::ExternalTimeToInternal(uint32 external_time) const {
350  return external_time - internal_epoch_;
351}
352
353uint32 StrikeRegister::BestMatch(const uint8 v[24]) const {
354  if (internal_node_head_ == kNil) {
355    return kNil;
356  }
357
358  uint32 next = internal_node_head_ >> 8;
359  while ((next & kExternalFlag) == 0) {
360    InternalNode* node = &internal_nodes_[next];
361    uint8 b = v[node->critbyte()];
362    unsigned direction =
363        (1 + static_cast<unsigned>(node->otherbits() | b)) >> 8;
364    next = node->child(direction);
365  }
366
367  return next & ~kExternalFlag;
368}
369
370uint32& StrikeRegister::external_node_next_ptr(unsigned i) {
371  return *reinterpret_cast<uint32*>(&external_nodes_[i * kExternalNodeSize]);
372}
373
374uint8* StrikeRegister::external_node(unsigned i) {
375  return &external_nodes_[i * kExternalNodeSize];
376}
377
378uint32 StrikeRegister::GetFreeExternalNode() {
379  uint32 index = external_node_free_head_;
380  DCHECK(index != kNil);
381  external_node_free_head_ = external_node_next_ptr(index);
382  return index;
383}
384
385uint32 StrikeRegister::GetFreeInternalNode() {
386  uint32 index = internal_node_free_head_;
387  DCHECK(index != kNil);
388  internal_node_free_head_ = internal_nodes_[index].next();
389  return index;
390}
391
392void StrikeRegister::DropOldestNode() {
393  // DropOldestNode should never be called on an empty tree.
394  DCHECK(internal_node_head_ != kNil);
395
396  // An internal node in a crit-bit tree always has exactly two children.
397  // This means that, if we are removing an external node (which is one of
398  // those children), then we also need to remove an internal node. In order
399  // to do that we keep pointers to the parent (wherep) and grandparent
400  // (whereq) when walking down the tree.
401
402  uint32 p = internal_node_head_ >> 8, *wherep = &internal_node_head_,
403         *whereq = NULL;
404  while ((p & kExternalFlag) == 0) {
405    whereq = wherep;
406    InternalNode* inode = &internal_nodes_[p];
407    // We always go left, towards the smallest element, exploiting the fact
408    // that the timestamp is big-endian and at the start of the value.
409    wherep = &inode->data_[0];
410    p = (*wherep) >> 8;
411  }
412
413  const uint32 ext_index = p & ~kExternalFlag;
414  const uint8* ext_node = external_node(ext_index);
415  uint32 new_horizon = ExternalTimeToInternal(TimeFromBytes(ext_node)) + 1;
416  DCHECK_LE(horizon_, new_horizon);
417  horizon_ = new_horizon;
418
419  if (!whereq) {
420    // We are removing the last element in a tree.
421    internal_node_head_ = kNil;
422    FreeExternalNode(ext_index);
423    return;
424  }
425
426  // |wherep| points to the left child pointer in the parent so we can add
427  // one and dereference to get the right child.
428  const uint32 other_child = wherep[1];
429  FreeInternalNode((*whereq) >> 8);
430  *whereq = (*whereq & 0xff) | (other_child & 0xffffff00);
431  FreeExternalNode(ext_index);
432}
433
434void StrikeRegister::FreeExternalNode(uint32 index) {
435  external_node_next_ptr(index) = external_node_free_head_;
436  external_node_free_head_ = index;
437}
438
439void StrikeRegister::FreeInternalNode(uint32 index) {
440  internal_nodes_[index].SetNextPtr(internal_node_free_head_);
441  internal_node_free_head_ = index;
442}
443
444void StrikeRegister::ValidateTree(
445    uint32 internal_node,
446    int last_bit,
447    const vector<pair<unsigned, bool> >& bits,
448    const set<uint32>& free_internal_nodes,
449    const set<uint32>& free_external_nodes,
450    set<uint32>* used_internal_nodes,
451    set<uint32>* used_external_nodes) {
452  CHECK_LT(internal_node, max_entries_);
453  const InternalNode* i = &internal_nodes_[internal_node];
454  unsigned bit = 0;
455  switch (i->otherbits()) {
456    case 0xff & ~(1 << 7):
457      bit = 0;
458      break;
459    case 0xff & ~(1 << 6):
460      bit = 1;
461      break;
462    case 0xff & ~(1 << 5):
463      bit = 2;
464      break;
465    case 0xff & ~(1 << 4):
466      bit = 3;
467      break;
468    case 0xff & ~(1 << 3):
469      bit = 4;
470      break;
471    case 0xff & ~(1 << 2):
472      bit = 5;
473      break;
474    case 0xff & ~(1 << 1):
475      bit = 6;
476      break;
477    case 0xff & ~1:
478      bit = 7;
479      break;
480    default:
481      CHECK(false);
482  }
483
484  bit += 8 * i->critbyte();
485  if (last_bit > -1) {
486    CHECK_GT(bit, static_cast<unsigned>(last_bit));
487  }
488
489  CHECK_EQ(free_internal_nodes.count(internal_node), 0u);
490
491  for (unsigned child = 0; child < 2; child++) {
492    if (i->child(child) & kExternalFlag) {
493      uint32 ext = i->child(child) & ~kExternalFlag;
494      CHECK_EQ(free_external_nodes.count(ext), 0u);
495      CHECK_EQ(used_external_nodes->count(ext), 0u);
496      used_external_nodes->insert(ext);
497      const uint8* bytes = external_node(ext);
498      for (vector<pair<unsigned, bool> >::const_iterator i = bits.begin();
499           i != bits.end(); i++) {
500        unsigned byte = i->first / 8;
501        DCHECK_LE(byte, 0xffu);
502        unsigned bit = i->first % 8;
503        static const uint8 kMasks[8] =
504            {0x80, 0x40, 0x20, 0x10, 0x08, 0x04, 0x02, 0x01};
505        CHECK_EQ((bytes[byte] & kMasks[bit]) != 0, i->second);
506      }
507    } else {
508      uint32 inter = i->child(child);
509      vector<pair<unsigned, bool> > new_bits(bits);
510      new_bits.push_back(pair<unsigned, bool>(bit, child != 0));
511      CHECK_EQ(free_internal_nodes.count(inter), 0u);
512      CHECK_EQ(used_internal_nodes->count(inter), 0u);
513      used_internal_nodes->insert(inter);
514      ValidateTree(inter, bit, bits, free_internal_nodes, free_external_nodes,
515                   used_internal_nodes, used_external_nodes);
516    }
517  }
518}
519
520}  // namespace net
521