1// Copyright (c) 2012 The Chromium Authors. All rights reserved.
2// Use of this source code is governed by a BSD-style license that can be
3// found in the LICENSE file.
4
5#include "sandbox/linux/seccomp-bpf/sandbox_bpf.h"
6
7// Some headers on Android are missing cdefs: crbug.com/172337.
8// (We can't use OS_ANDROID here since build_config.h is not included).
9#if defined(ANDROID)
10#include <sys/cdefs.h>
11#endif
12
13#include <errno.h>
14#include <fcntl.h>
15#include <linux/filter.h>
16#include <signal.h>
17#include <string.h>
18#include <sys/prctl.h>
19#include <sys/stat.h>
20#include <sys/syscall.h>
21#include <sys/types.h>
22#include <sys/wait.h>
23#include <time.h>
24#include <unistd.h>
25
26#include <limits>
27
28#include "base/compiler_specific.h"
29#include "base/logging.h"
30#include "base/macros.h"
31#include "base/memory/scoped_ptr.h"
32#include "base/posix/eintr_wrapper.h"
33#include "sandbox/linux/seccomp-bpf/codegen.h"
34#include "sandbox/linux/seccomp-bpf/die.h"
35#include "sandbox/linux/seccomp-bpf/errorcode.h"
36#include "sandbox/linux/seccomp-bpf/instruction.h"
37#include "sandbox/linux/seccomp-bpf/linux_seccomp.h"
38#include "sandbox/linux/seccomp-bpf/sandbox_bpf_policy.h"
39#include "sandbox/linux/seccomp-bpf/syscall.h"
40#include "sandbox/linux/seccomp-bpf/syscall_iterator.h"
41#include "sandbox/linux/seccomp-bpf/trap.h"
42#include "sandbox/linux/seccomp-bpf/verifier.h"
43#include "sandbox/linux/services/linux_syscalls.h"
44
45namespace sandbox {
46
47namespace {
48
49const int kExpectedExitCode = 100;
50
51#if defined(__i386__) || defined(__x86_64__)
52const bool kIsIntel = true;
53#else
54const bool kIsIntel = false;
55#endif
56#if defined(__x86_64__) && defined(__ILP32__)
57const bool kIsX32 = true;
58#else
59const bool kIsX32 = false;
60#endif
61
62const int kSyscallsRequiredForUnsafeTraps[] = {
63  __NR_rt_sigprocmask,
64  __NR_rt_sigreturn,
65#if defined(__NR_sigprocmask)
66  __NR_sigprocmask,
67#endif
68#if defined(__NR_sigreturn)
69  __NR_sigreturn,
70#endif
71};
72
73bool HasExactlyOneBit(uint64_t x) {
74  // Common trick; e.g., see http://stackoverflow.com/a/108329.
75  return x != 0 && (x & (x - 1)) == 0;
76}
77
78#if !defined(NDEBUG)
79void WriteFailedStderrSetupMessage(int out_fd) {
80  const char* error_string = strerror(errno);
81  static const char msg[] =
82      "You have reproduced a puzzling issue.\n"
83      "Please, report to crbug.com/152530!\n"
84      "Failed to set up stderr: ";
85  if (HANDLE_EINTR(write(out_fd, msg, sizeof(msg) - 1)) > 0 && error_string &&
86      HANDLE_EINTR(write(out_fd, error_string, strlen(error_string))) > 0 &&
87      HANDLE_EINTR(write(out_fd, "\n", 1))) {
88  }
89}
90#endif  // !defined(NDEBUG)
91
92// We define a really simple sandbox policy. It is just good enough for us
93// to tell that the sandbox has actually been activated.
94class ProbePolicy : public SandboxBPFPolicy {
95 public:
96  ProbePolicy() {}
97  virtual ErrorCode EvaluateSyscall(SandboxBPF*, int sysnum) const OVERRIDE {
98    switch (sysnum) {
99      case __NR_getpid:
100        // Return EPERM so that we can check that the filter actually ran.
101        return ErrorCode(EPERM);
102      case __NR_exit_group:
103        // Allow exit() with a non-default return code.
104        return ErrorCode(ErrorCode::ERR_ALLOWED);
105      default:
106        // Make everything else fail in an easily recognizable way.
107        return ErrorCode(EINVAL);
108    }
109  }
110
111 private:
112  DISALLOW_COPY_AND_ASSIGN(ProbePolicy);
113};
114
115void ProbeProcess(void) {
116  if (syscall(__NR_getpid) < 0 && errno == EPERM) {
117    syscall(__NR_exit_group, static_cast<intptr_t>(kExpectedExitCode));
118  }
119}
120
121class AllowAllPolicy : public SandboxBPFPolicy {
122 public:
123  AllowAllPolicy() {}
124  virtual ErrorCode EvaluateSyscall(SandboxBPF*, int sysnum) const OVERRIDE {
125    DCHECK(SandboxBPF::IsValidSyscallNumber(sysnum));
126    return ErrorCode(ErrorCode::ERR_ALLOWED);
127  }
128
129 private:
130  DISALLOW_COPY_AND_ASSIGN(AllowAllPolicy);
131};
132
133void TryVsyscallProcess(void) {
134  time_t current_time;
135  // time() is implemented as a vsyscall. With an older glibc, with
136  // vsyscall=emulate and some versions of the seccomp BPF patch
137  // we may get SIGKILL-ed. Detect this!
138  if (time(&current_time) != static_cast<time_t>(-1)) {
139    syscall(__NR_exit_group, static_cast<intptr_t>(kExpectedExitCode));
140  }
141}
142
143bool IsSingleThreaded(int proc_fd) {
144  if (proc_fd < 0) {
145    // Cannot determine whether program is single-threaded. Hope for
146    // the best...
147    return true;
148  }
149
150  struct stat sb;
151  int task = -1;
152  if ((task = openat(proc_fd, "self/task", O_RDONLY | O_DIRECTORY)) < 0 ||
153      fstat(task, &sb) != 0 || sb.st_nlink != 3 || IGNORE_EINTR(close(task))) {
154    if (task >= 0) {
155      if (IGNORE_EINTR(close(task))) {
156      }
157    }
158    return false;
159  }
160  return true;
161}
162
163bool IsDenied(const ErrorCode& code) {
164  return (code.err() & SECCOMP_RET_ACTION) == SECCOMP_RET_TRAP ||
165         (code.err() >= (SECCOMP_RET_ERRNO + ErrorCode::ERR_MIN_ERRNO) &&
166          code.err() <= (SECCOMP_RET_ERRNO + ErrorCode::ERR_MAX_ERRNO));
167}
168
169// Function that can be passed as a callback function to CodeGen::Traverse().
170// Checks whether the "insn" returns an UnsafeTrap() ErrorCode. If so, it
171// sets the "bool" variable pointed to by "aux".
172void CheckForUnsafeErrorCodes(Instruction* insn, void* aux) {
173  bool* is_unsafe = static_cast<bool*>(aux);
174  if (!*is_unsafe) {
175    if (BPF_CLASS(insn->code) == BPF_RET && insn->k > SECCOMP_RET_TRAP &&
176        insn->k - SECCOMP_RET_TRAP <= SECCOMP_RET_DATA) {
177      if (!Trap::IsSafeTrapId(insn->k & SECCOMP_RET_DATA)) {
178        *is_unsafe = true;
179      }
180    }
181  }
182}
183
184// A Trap() handler that returns an "errno" value. The value is encoded
185// in the "aux" parameter.
186intptr_t ReturnErrno(const struct arch_seccomp_data&, void* aux) {
187  // TrapFnc functions report error by following the native kernel convention
188  // of returning an exit code in the range of -1..-4096. They do not try to
189  // set errno themselves. The glibc wrapper that triggered the SIGSYS will
190  // ultimately do so for us.
191  int err = reinterpret_cast<intptr_t>(aux) & SECCOMP_RET_DATA;
192  return -err;
193}
194
195// Function that can be passed as a callback function to CodeGen::Traverse().
196// Checks whether the "insn" returns an errno value from a BPF filter. If so,
197// it rewrites the instruction to instead call a Trap() handler that does
198// the same thing. "aux" is ignored.
199void RedirectToUserspace(Instruction* insn, void* aux) {
200  // When inside an UnsafeTrap() callback, we want to allow all system calls.
201  // This means, we must conditionally disable the sandbox -- and that's not
202  // something that kernel-side BPF filters can do, as they cannot inspect
203  // any state other than the syscall arguments.
204  // But if we redirect all error handlers to user-space, then we can easily
205  // make this decision.
206  // The performance penalty for this extra round-trip to user-space is not
207  // actually that bad, as we only ever pay it for denied system calls; and a
208  // typical program has very few of these.
209  SandboxBPF* sandbox = static_cast<SandboxBPF*>(aux);
210  if (BPF_CLASS(insn->code) == BPF_RET &&
211      (insn->k & SECCOMP_RET_ACTION) == SECCOMP_RET_ERRNO) {
212    insn->k = sandbox->Trap(ReturnErrno,
213        reinterpret_cast<void*>(insn->k & SECCOMP_RET_DATA)).err();
214  }
215}
216
217// This wraps an existing policy and changes its behavior to match the changes
218// made by RedirectToUserspace(). This is part of the framework that allows BPF
219// evaluation in userland.
220// TODO(markus): document the code inside better.
221class RedirectToUserSpacePolicyWrapper : public SandboxBPFPolicy {
222 public:
223  explicit RedirectToUserSpacePolicyWrapper(
224      const SandboxBPFPolicy* wrapped_policy)
225      : wrapped_policy_(wrapped_policy) {
226    DCHECK(wrapped_policy_);
227  }
228
229  virtual ErrorCode EvaluateSyscall(SandboxBPF* sandbox_compiler,
230                                    int system_call_number) const OVERRIDE {
231    ErrorCode err =
232        wrapped_policy_->EvaluateSyscall(sandbox_compiler, system_call_number);
233    ChangeErrnoToTraps(&err, sandbox_compiler);
234    return err;
235  }
236
237  virtual ErrorCode InvalidSyscall(
238      SandboxBPF* sandbox_compiler) const OVERRIDE {
239    return ReturnErrnoViaTrap(sandbox_compiler, ENOSYS);
240  }
241
242 private:
243  ErrorCode ReturnErrnoViaTrap(SandboxBPF* sandbox_compiler, int err) const {
244    return sandbox_compiler->Trap(ReturnErrno, reinterpret_cast<void*>(err));
245  }
246
247  // ChangeErrnoToTraps recursivly iterates through the ErrorCode
248  // converting any ERRNO to a userspace trap
249  void ChangeErrnoToTraps(ErrorCode* err, SandboxBPF* sandbox_compiler) const {
250    if (err->error_type() == ErrorCode::ET_SIMPLE &&
251        (err->err() & SECCOMP_RET_ACTION) == SECCOMP_RET_ERRNO) {
252      // Have an errno, need to change this to a trap
253      *err =
254          ReturnErrnoViaTrap(sandbox_compiler, err->err() & SECCOMP_RET_DATA);
255      return;
256    } else if (err->error_type() == ErrorCode::ET_COND) {
257      // Need to explore both paths
258      ChangeErrnoToTraps((ErrorCode*)err->passed(), sandbox_compiler);
259      ChangeErrnoToTraps((ErrorCode*)err->failed(), sandbox_compiler);
260      return;
261    } else if (err->error_type() == ErrorCode::ET_TRAP) {
262      return;
263    } else if (err->error_type() == ErrorCode::ET_SIMPLE &&
264               (err->err() & SECCOMP_RET_ACTION) == SECCOMP_RET_ALLOW) {
265      return;
266    }
267    NOTREACHED();
268  }
269
270  const SandboxBPFPolicy* wrapped_policy_;
271  DISALLOW_COPY_AND_ASSIGN(RedirectToUserSpacePolicyWrapper);
272};
273
274intptr_t BPFFailure(const struct arch_seccomp_data&, void* aux) {
275  SANDBOX_DIE(static_cast<char*>(aux));
276}
277
278}  // namespace
279
280SandboxBPF::SandboxBPF()
281    : quiet_(false),
282      proc_fd_(-1),
283      conds_(new Conds),
284      sandbox_has_started_(false) {}
285
286SandboxBPF::~SandboxBPF() {
287  // It is generally unsafe to call any memory allocator operations or to even
288  // call arbitrary destructors after having installed a new policy. We just
289  // have no way to tell whether this policy would allow the system calls that
290  // the constructors can trigger.
291  // So, we normally destroy all of our complex state prior to starting the
292  // sandbox. But this won't happen, if the Sandbox object was created and
293  // never actually used to set up a sandbox. So, just in case, we are
294  // destroying any remaining state.
295  // The "if ()" statements are technically superfluous. But let's be explicit
296  // that we really don't want to run any code, when we already destroyed
297  // objects before setting up the sandbox.
298  if (conds_) {
299    delete conds_;
300  }
301}
302
303bool SandboxBPF::IsValidSyscallNumber(int sysnum) {
304  return SyscallIterator::IsValid(sysnum);
305}
306
307bool SandboxBPF::RunFunctionInPolicy(void (*code_in_sandbox)(),
308                                     scoped_ptr<SandboxBPFPolicy> policy) {
309  // Block all signals before forking a child process. This prevents an
310  // attacker from manipulating our test by sending us an unexpected signal.
311  sigset_t old_mask, new_mask;
312  if (sigfillset(&new_mask) || sigprocmask(SIG_BLOCK, &new_mask, &old_mask)) {
313    SANDBOX_DIE("sigprocmask() failed");
314  }
315  int fds[2];
316  if (pipe2(fds, O_NONBLOCK | O_CLOEXEC)) {
317    SANDBOX_DIE("pipe() failed");
318  }
319
320  if (fds[0] <= 2 || fds[1] <= 2) {
321    SANDBOX_DIE("Process started without standard file descriptors");
322  }
323
324  // This code is using fork() and should only ever run single-threaded.
325  // Most of the code below is "async-signal-safe" and only minor changes
326  // would be needed to support threads.
327  DCHECK(IsSingleThreaded(proc_fd_));
328  pid_t pid = fork();
329  if (pid < 0) {
330    // Die if we cannot fork(). We would probably fail a little later
331    // anyway, as the machine is likely very close to running out of
332    // memory.
333    // But what we don't want to do is return "false", as a crafty
334    // attacker might cause fork() to fail at will and could trick us
335    // into running without a sandbox.
336    sigprocmask(SIG_SETMASK, &old_mask, NULL);  // OK, if it fails
337    SANDBOX_DIE("fork() failed unexpectedly");
338  }
339
340  // In the child process
341  if (!pid) {
342    // Test a very simple sandbox policy to verify that we can
343    // successfully turn on sandboxing.
344    Die::EnableSimpleExit();
345
346    errno = 0;
347    if (IGNORE_EINTR(close(fds[0]))) {
348      // This call to close() has been failing in strange ways. See
349      // crbug.com/152530. So we only fail in debug mode now.
350#if !defined(NDEBUG)
351      WriteFailedStderrSetupMessage(fds[1]);
352      SANDBOX_DIE(NULL);
353#endif
354    }
355    if (HANDLE_EINTR(dup2(fds[1], 2)) != 2) {
356      // Stderr could very well be a file descriptor to .xsession-errors, or
357      // another file, which could be backed by a file system that could cause
358      // dup2 to fail while trying to close stderr. It's important that we do
359      // not fail on trying to close stderr.
360      // If dup2 fails here, we will continue normally, this means that our
361      // parent won't cause a fatal failure if something writes to stderr in
362      // this child.
363#if !defined(NDEBUG)
364      // In DEBUG builds, we still want to get a report.
365      WriteFailedStderrSetupMessage(fds[1]);
366      SANDBOX_DIE(NULL);
367#endif
368    }
369    if (IGNORE_EINTR(close(fds[1]))) {
370      // This call to close() has been failing in strange ways. See
371      // crbug.com/152530. So we only fail in debug mode now.
372#if !defined(NDEBUG)
373      WriteFailedStderrSetupMessage(fds[1]);
374      SANDBOX_DIE(NULL);
375#endif
376    }
377
378    SetSandboxPolicy(policy.release());
379    if (!StartSandbox(PROCESS_SINGLE_THREADED)) {
380      SANDBOX_DIE(NULL);
381    }
382
383    // Run our code in the sandbox.
384    code_in_sandbox();
385
386    // code_in_sandbox() is not supposed to return here.
387    SANDBOX_DIE(NULL);
388  }
389
390  // In the parent process.
391  if (IGNORE_EINTR(close(fds[1]))) {
392    SANDBOX_DIE("close() failed");
393  }
394  if (sigprocmask(SIG_SETMASK, &old_mask, NULL)) {
395    SANDBOX_DIE("sigprocmask() failed");
396  }
397  int status;
398  if (HANDLE_EINTR(waitpid(pid, &status, 0)) != pid) {
399    SANDBOX_DIE("waitpid() failed unexpectedly");
400  }
401  bool rc = WIFEXITED(status) && WEXITSTATUS(status) == kExpectedExitCode;
402
403  // If we fail to support sandboxing, there might be an additional
404  // error message. If so, this was an entirely unexpected and fatal
405  // failure. We should report the failure and somebody must fix
406  // things. This is probably a security-critical bug in the sandboxing
407  // code.
408  if (!rc) {
409    char buf[4096];
410    ssize_t len = HANDLE_EINTR(read(fds[0], buf, sizeof(buf) - 1));
411    if (len > 0) {
412      while (len > 1 && buf[len - 1] == '\n') {
413        --len;
414      }
415      buf[len] = '\000';
416      SANDBOX_DIE(buf);
417    }
418  }
419  if (IGNORE_EINTR(close(fds[0]))) {
420    SANDBOX_DIE("close() failed");
421  }
422
423  return rc;
424}
425
426bool SandboxBPF::KernelSupportSeccompBPF() {
427  return RunFunctionInPolicy(ProbeProcess,
428                             scoped_ptr<SandboxBPFPolicy>(new ProbePolicy())) &&
429         RunFunctionInPolicy(
430             TryVsyscallProcess,
431             scoped_ptr<SandboxBPFPolicy>(new AllowAllPolicy()));
432}
433
434// static
435SandboxBPF::SandboxStatus SandboxBPF::SupportsSeccompSandbox(int proc_fd) {
436  // It the sandbox is currently active, we clearly must have support for
437  // sandboxing.
438  if (status_ == STATUS_ENABLED) {
439    return status_;
440  }
441
442  // Even if the sandbox was previously available, something might have
443  // changed in our run-time environment. Check one more time.
444  if (status_ == STATUS_AVAILABLE) {
445    if (!IsSingleThreaded(proc_fd)) {
446      status_ = STATUS_UNAVAILABLE;
447    }
448    return status_;
449  }
450
451  if (status_ == STATUS_UNAVAILABLE && IsSingleThreaded(proc_fd)) {
452    // All state transitions resulting in STATUS_UNAVAILABLE are immediately
453    // preceded by STATUS_AVAILABLE. Furthermore, these transitions all
454    // happen, if and only if they are triggered by the process being multi-
455    // threaded.
456    // In other words, if a single-threaded process is currently in the
457    // STATUS_UNAVAILABLE state, it is safe to assume that sandboxing is
458    // actually available.
459    status_ = STATUS_AVAILABLE;
460    return status_;
461  }
462
463  // If we have not previously checked for availability of the sandbox or if
464  // we otherwise don't believe to have a good cached value, we have to
465  // perform a thorough check now.
466  if (status_ == STATUS_UNKNOWN) {
467    // We create our own private copy of a "Sandbox" object. This ensures that
468    // the object does not have any policies configured, that might interfere
469    // with the tests done by "KernelSupportSeccompBPF()".
470    SandboxBPF sandbox;
471
472    // By setting "quiet_ = true" we suppress messages for expected and benign
473    // failures (e.g. if the current kernel lacks support for BPF filters).
474    sandbox.quiet_ = true;
475    sandbox.set_proc_fd(proc_fd);
476    status_ = sandbox.KernelSupportSeccompBPF() ? STATUS_AVAILABLE
477                                                : STATUS_UNSUPPORTED;
478
479    // As we are performing our tests from a child process, the run-time
480    // environment that is visible to the sandbox is always guaranteed to be
481    // single-threaded. Let's check here whether the caller is single-
482    // threaded. Otherwise, we mark the sandbox as temporarily unavailable.
483    if (status_ == STATUS_AVAILABLE && !IsSingleThreaded(proc_fd)) {
484      status_ = STATUS_UNAVAILABLE;
485    }
486  }
487  return status_;
488}
489
490// static
491SandboxBPF::SandboxStatus
492SandboxBPF::SupportsSeccompThreadFilterSynchronization() {
493  // Applying NO_NEW_PRIVS, a BPF filter, and synchronizing the filter across
494  // the thread group are all handled atomically by this syscall.
495  const int rv = syscall(
496      __NR_seccomp, SECCOMP_SET_MODE_FILTER, SECCOMP_FILTER_FLAG_TSYNC, NULL);
497
498  if (rv == -1 && errno == EFAULT) {
499    return STATUS_AVAILABLE;
500  } else {
501    // TODO(jln): turn these into DCHECK after 417888 is considered fixed.
502    CHECK_EQ(-1, rv);
503    CHECK(ENOSYS == errno || EINVAL == errno);
504    return STATUS_UNSUPPORTED;
505  }
506}
507
508void SandboxBPF::set_proc_fd(int proc_fd) { proc_fd_ = proc_fd; }
509
510bool SandboxBPF::StartSandbox(SandboxThreadState thread_state) {
511  CHECK(thread_state == PROCESS_SINGLE_THREADED ||
512        thread_state == PROCESS_MULTI_THREADED);
513
514  if (status_ == STATUS_UNSUPPORTED || status_ == STATUS_UNAVAILABLE) {
515    SANDBOX_DIE(
516        "Trying to start sandbox, even though it is known to be "
517        "unavailable");
518    return false;
519  } else if (sandbox_has_started_ || !conds_) {
520    SANDBOX_DIE(
521        "Cannot repeatedly start sandbox. Create a separate Sandbox "
522        "object instead.");
523    return false;
524  }
525  if (proc_fd_ < 0) {
526    proc_fd_ = open("/proc", O_RDONLY | O_DIRECTORY);
527  }
528  if (proc_fd_ < 0) {
529    // For now, continue in degraded mode, if we can't access /proc.
530    // In the future, we might want to tighten this requirement.
531  }
532
533  bool supports_tsync =
534      SupportsSeccompThreadFilterSynchronization() == STATUS_AVAILABLE;
535
536  if (thread_state == PROCESS_SINGLE_THREADED) {
537    if (!IsSingleThreaded(proc_fd_)) {
538      SANDBOX_DIE("Cannot start sandbox; process is already multi-threaded");
539      return false;
540    }
541  } else if (thread_state == PROCESS_MULTI_THREADED) {
542    if (IsSingleThreaded(proc_fd_)) {
543      SANDBOX_DIE("Cannot start sandbox; "
544                  "process may be single-threaded when reported as not");
545      return false;
546    }
547    if (!supports_tsync) {
548      SANDBOX_DIE("Cannot start sandbox; kernel does not support synchronizing "
549                  "filters for a threadgroup");
550      return false;
551    }
552  }
553
554  // We no longer need access to any files in /proc. We want to do this
555  // before installing the filters, just in case that our policy denies
556  // close().
557  if (proc_fd_ >= 0) {
558    if (IGNORE_EINTR(close(proc_fd_))) {
559      SANDBOX_DIE("Failed to close file descriptor for /proc");
560      return false;
561    }
562    proc_fd_ = -1;
563  }
564
565  // Install the filters.
566  InstallFilter(supports_tsync || thread_state == PROCESS_MULTI_THREADED);
567
568  // We are now inside the sandbox.
569  status_ = STATUS_ENABLED;
570
571  return true;
572}
573
574void SandboxBPF::PolicySanityChecks(SandboxBPFPolicy* policy) {
575  if (!IsDenied(policy->InvalidSyscall(this))) {
576    SANDBOX_DIE("Policies should deny invalid system calls.");
577  }
578  return;
579}
580
581// Don't take a scoped_ptr here, polymorphism make their use awkward.
582void SandboxBPF::SetSandboxPolicy(SandboxBPFPolicy* policy) {
583  DCHECK(!policy_);
584  if (sandbox_has_started_ || !conds_) {
585    SANDBOX_DIE("Cannot change policy after sandbox has started");
586  }
587  PolicySanityChecks(policy);
588  policy_.reset(policy);
589}
590
591void SandboxBPF::InstallFilter(bool must_sync_threads) {
592  // We want to be very careful in not imposing any requirements on the
593  // policies that are set with SetSandboxPolicy(). This means, as soon as
594  // the sandbox is active, we shouldn't be relying on libraries that could
595  // be making system calls. This, for example, means we should avoid
596  // using the heap and we should avoid using STL functions.
597  // Temporarily copy the contents of the "program" vector into a
598  // stack-allocated array; and then explicitly destroy that object.
599  // This makes sure we don't ex- or implicitly call new/delete after we
600  // installed the BPF filter program in the kernel. Depending on the
601  // system memory allocator that is in effect, these operators can result
602  // in system calls to things like munmap() or brk().
603  Program* program = AssembleFilter(false /* force_verification */);
604
605  struct sock_filter bpf[program->size()];
606  const struct sock_fprog prog = {static_cast<unsigned short>(program->size()),
607                                  bpf};
608  memcpy(bpf, &(*program)[0], sizeof(bpf));
609  delete program;
610
611  // Make an attempt to release memory that is no longer needed here, rather
612  // than in the destructor. Try to avoid as much as possible to presume of
613  // what will be possible to do in the new (sandboxed) execution environment.
614  delete conds_;
615  conds_ = NULL;
616  policy_.reset();
617
618  if (prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0)) {
619    SANDBOX_DIE(quiet_ ? NULL : "Kernel refuses to enable no-new-privs");
620  }
621
622  // Install BPF filter program. If the thread state indicates multi-threading
623  // support, then the kernel hass the seccomp system call. Otherwise, fall
624  // back on prctl, which requires the process to be single-threaded.
625  if (must_sync_threads) {
626    int rv = syscall(__NR_seccomp, SECCOMP_SET_MODE_FILTER,
627        SECCOMP_FILTER_FLAG_TSYNC, reinterpret_cast<const char*>(&prog));
628    if (rv) {
629      SANDBOX_DIE(quiet_ ? NULL :
630          "Kernel refuses to turn on and synchronize threads for BPF filters");
631    }
632  } else {
633    if (prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, &prog)) {
634      SANDBOX_DIE(quiet_ ? NULL : "Kernel refuses to turn on BPF filters");
635    }
636  }
637
638  sandbox_has_started_ = true;
639}
640
641SandboxBPF::Program* SandboxBPF::AssembleFilter(bool force_verification) {
642#if !defined(NDEBUG)
643  force_verification = true;
644#endif
645
646  // Verify that the user pushed a policy.
647  DCHECK(policy_);
648
649  // Assemble the BPF filter program.
650  CodeGen* gen = new CodeGen();
651  if (!gen) {
652    SANDBOX_DIE("Out of memory");
653  }
654
655  bool has_unsafe_traps;
656  Instruction* head = CompilePolicy(gen, &has_unsafe_traps);
657
658  // Turn the DAG into a vector of instructions.
659  Program* program = new Program();
660  gen->Compile(head, program);
661  delete gen;
662
663  // Make sure compilation resulted in BPF program that executes
664  // correctly. Otherwise, there is an internal error in our BPF compiler.
665  // There is really nothing the caller can do until the bug is fixed.
666  if (force_verification) {
667    // Verification is expensive. We only perform this step, if we are
668    // compiled in debug mode, or if the caller explicitly requested
669    // verification.
670    VerifyProgram(*program, has_unsafe_traps);
671  }
672
673  return program;
674}
675
676Instruction* SandboxBPF::CompilePolicy(CodeGen* gen, bool* has_unsafe_traps) {
677  // A compiled policy consists of three logical parts:
678  //   1. Check that the "arch" field matches the expected architecture.
679  //   2. If the policy involves unsafe traps, check if the syscall was
680  //      invoked by Syscall::Call, and then allow it unconditionally.
681  //   3. Check the system call number and jump to the appropriate compiled
682  //      system call policy number.
683  return CheckArch(
684      gen, MaybeAddEscapeHatch(gen, has_unsafe_traps, DispatchSyscall(gen)));
685}
686
687Instruction* SandboxBPF::CheckArch(CodeGen* gen, Instruction* passed) {
688  // If the architecture doesn't match SECCOMP_ARCH, disallow the
689  // system call.
690  return gen->MakeInstruction(
691      BPF_LD + BPF_W + BPF_ABS,
692      SECCOMP_ARCH_IDX,
693      gen->MakeInstruction(
694          BPF_JMP + BPF_JEQ + BPF_K,
695          SECCOMP_ARCH,
696          passed,
697          RetExpression(gen,
698                        Kill("Invalid audit architecture in BPF filter"))));
699}
700
701Instruction* SandboxBPF::MaybeAddEscapeHatch(CodeGen* gen,
702                                             bool* has_unsafe_traps,
703                                             Instruction* rest) {
704  // If there is at least one UnsafeTrap() in our program, the entire sandbox
705  // is unsafe. We need to modify the program so that all non-
706  // SECCOMP_RET_ALLOW ErrorCodes are handled in user-space. This will then
707  // allow us to temporarily disable sandboxing rules inside of callbacks to
708  // UnsafeTrap().
709  *has_unsafe_traps = false;
710  gen->Traverse(rest, CheckForUnsafeErrorCodes, has_unsafe_traps);
711  if (!*has_unsafe_traps) {
712    // If no unsafe traps, then simply return |rest|.
713    return rest;
714  }
715
716  // If our BPF program has unsafe jumps, enable support for them. This
717  // test happens very early in the BPF filter program. Even before we
718  // consider looking at system call numbers.
719  // As support for unsafe jumps essentially defeats all the security
720  // measures that the sandbox provides, we print a big warning message --
721  // and of course, we make sure to only ever enable this feature if it
722  // is actually requested by the sandbox policy.
723  if (Syscall::Call(-1) == -1 && errno == ENOSYS) {
724    SANDBOX_DIE(
725        "Support for UnsafeTrap() has not yet been ported to this "
726        "architecture");
727  }
728
729  for (size_t i = 0; i < arraysize(kSyscallsRequiredForUnsafeTraps); ++i) {
730    if (!policy_->EvaluateSyscall(this, kSyscallsRequiredForUnsafeTraps[i])
731             .Equals(ErrorCode(ErrorCode::ERR_ALLOWED))) {
732      SANDBOX_DIE(
733          "Policies that use UnsafeTrap() must unconditionally allow all "
734          "required system calls");
735    }
736  }
737
738  if (!Trap::EnableUnsafeTrapsInSigSysHandler()) {
739    // We should never be able to get here, as UnsafeTrap() should never
740    // actually return a valid ErrorCode object unless the user set the
741    // CHROME_SANDBOX_DEBUGGING environment variable; and therefore,
742    // "has_unsafe_traps" would always be false. But better double-check
743    // than enabling dangerous code.
744    SANDBOX_DIE("We'd rather die than enable unsafe traps");
745  }
746  gen->Traverse(rest, RedirectToUserspace, this);
747
748  // Allow system calls, if they originate from our magic return address
749  // (which we can query by calling Syscall::Call(-1)).
750  uint64_t syscall_entry_point =
751      static_cast<uint64_t>(static_cast<uintptr_t>(Syscall::Call(-1)));
752  uint32_t low = static_cast<uint32_t>(syscall_entry_point);
753  uint32_t hi = static_cast<uint32_t>(syscall_entry_point >> 32);
754
755  // BPF cannot do native 64-bit comparisons, so we have to compare
756  // both 32-bit halves of the instruction pointer. If they match what
757  // we expect, we return ERR_ALLOWED. If either or both don't match,
758  // we continue evalutating the rest of the sandbox policy.
759  //
760  // For simplicity, we check the full 64-bit instruction pointer even
761  // on 32-bit architectures.
762  return gen->MakeInstruction(
763      BPF_LD + BPF_W + BPF_ABS,
764      SECCOMP_IP_LSB_IDX,
765      gen->MakeInstruction(
766          BPF_JMP + BPF_JEQ + BPF_K,
767          low,
768          gen->MakeInstruction(
769              BPF_LD + BPF_W + BPF_ABS,
770              SECCOMP_IP_MSB_IDX,
771              gen->MakeInstruction(
772                  BPF_JMP + BPF_JEQ + BPF_K,
773                  hi,
774                  RetExpression(gen, ErrorCode(ErrorCode::ERR_ALLOWED)),
775                  rest)),
776          rest));
777}
778
779Instruction* SandboxBPF::DispatchSyscall(CodeGen* gen) {
780  // Evaluate all possible system calls and group their ErrorCodes into
781  // ranges of identical codes.
782  Ranges ranges;
783  FindRanges(&ranges);
784
785  // Compile the system call ranges to an optimized BPF jumptable
786  Instruction* jumptable = AssembleJumpTable(gen, ranges.begin(), ranges.end());
787
788  // Grab the system call number, so that we can check it and then
789  // execute the jump table.
790  return gen->MakeInstruction(BPF_LD + BPF_W + BPF_ABS,
791                              SECCOMP_NR_IDX,
792                              CheckSyscallNumber(gen, jumptable));
793}
794
795Instruction* SandboxBPF::CheckSyscallNumber(CodeGen* gen, Instruction* passed) {
796  if (kIsIntel) {
797    // On Intel architectures, verify that system call numbers are in the
798    // expected number range.
799    Instruction* invalidX32 =
800        RetExpression(gen, Kill("Illegal mixing of system call ABIs"));
801    if (kIsX32) {
802      // The newer x32 API always sets bit 30.
803      return gen->MakeInstruction(
804          BPF_JMP + BPF_JSET + BPF_K, 0x40000000, passed, invalidX32);
805    } else {
806      // The older i386 and x86-64 APIs clear bit 30 on all system calls.
807      return gen->MakeInstruction(
808          BPF_JMP + BPF_JSET + BPF_K, 0x40000000, invalidX32, passed);
809    }
810  }
811
812  // TODO(mdempsky): Similar validation for other architectures?
813  return passed;
814}
815
816void SandboxBPF::VerifyProgram(const Program& program, bool has_unsafe_traps) {
817  // If we previously rewrote the BPF program so that it calls user-space
818  // whenever we return an "errno" value from the filter, then we have to
819  // wrap our system call evaluator to perform the same operation. Otherwise,
820  // the verifier would also report a mismatch in return codes.
821  scoped_ptr<const RedirectToUserSpacePolicyWrapper> redirected_policy(
822      new RedirectToUserSpacePolicyWrapper(policy_.get()));
823
824  const char* err = NULL;
825  if (!Verifier::VerifyBPF(this,
826                           program,
827                           has_unsafe_traps ? *redirected_policy : *policy_,
828                           &err)) {
829    CodeGen::PrintProgram(program);
830    SANDBOX_DIE(err);
831  }
832}
833
834void SandboxBPF::FindRanges(Ranges* ranges) {
835  // Please note that "struct seccomp_data" defines system calls as a signed
836  // int32_t, but BPF instructions always operate on unsigned quantities. We
837  // deal with this disparity by enumerating from MIN_SYSCALL to MAX_SYSCALL,
838  // and then verifying that the rest of the number range (both positive and
839  // negative) all return the same ErrorCode.
840  const ErrorCode invalid_err = policy_->InvalidSyscall(this);
841  uint32_t old_sysnum = 0;
842  ErrorCode old_err = IsValidSyscallNumber(old_sysnum)
843                          ? policy_->EvaluateSyscall(this, old_sysnum)
844                          : invalid_err;
845
846  for (SyscallIterator iter(false); !iter.Done();) {
847    uint32_t sysnum = iter.Next();
848    ErrorCode err =
849        IsValidSyscallNumber(sysnum)
850            ? policy_->EvaluateSyscall(this, static_cast<int>(sysnum))
851            : invalid_err;
852    if (!err.Equals(old_err) || iter.Done()) {
853      ranges->push_back(Range(old_sysnum, sysnum - 1, old_err));
854      old_sysnum = sysnum;
855      old_err = err;
856    }
857  }
858}
859
860Instruction* SandboxBPF::AssembleJumpTable(CodeGen* gen,
861                                           Ranges::const_iterator start,
862                                           Ranges::const_iterator stop) {
863  // We convert the list of system call ranges into jump table that performs
864  // a binary search over the ranges.
865  // As a sanity check, we need to have at least one distinct ranges for us
866  // to be able to build a jump table.
867  if (stop - start <= 0) {
868    SANDBOX_DIE("Invalid set of system call ranges");
869  } else if (stop - start == 1) {
870    // If we have narrowed things down to a single range object, we can
871    // return from the BPF filter program.
872    return RetExpression(gen, start->err);
873  }
874
875  // Pick the range object that is located at the mid point of our list.
876  // We compare our system call number against the lowest valid system call
877  // number in this range object. If our number is lower, it is outside of
878  // this range object. If it is greater or equal, it might be inside.
879  Ranges::const_iterator mid = start + (stop - start) / 2;
880
881  // Sub-divide the list of ranges and continue recursively.
882  Instruction* jf = AssembleJumpTable(gen, start, mid);
883  Instruction* jt = AssembleJumpTable(gen, mid, stop);
884  return gen->MakeInstruction(BPF_JMP + BPF_JGE + BPF_K, mid->from, jt, jf);
885}
886
887Instruction* SandboxBPF::RetExpression(CodeGen* gen, const ErrorCode& err) {
888  switch (err.error_type()) {
889    case ErrorCode::ET_COND:
890      return CondExpression(gen, err);
891    case ErrorCode::ET_SIMPLE:
892    case ErrorCode::ET_TRAP:
893      return gen->MakeInstruction(BPF_RET + BPF_K, err.err());
894    default:
895      SANDBOX_DIE("ErrorCode is not suitable for returning from a BPF program");
896  }
897}
898
899Instruction* SandboxBPF::CondExpression(CodeGen* gen, const ErrorCode& cond) {
900  // Sanity check that |cond| makes sense.
901  if (cond.argno_ < 0 || cond.argno_ >= 6) {
902    SANDBOX_DIE("sandbox_bpf: invalid argument number");
903  }
904  if (cond.width_ != ErrorCode::TP_32BIT &&
905      cond.width_ != ErrorCode::TP_64BIT) {
906    SANDBOX_DIE("sandbox_bpf: invalid argument width");
907  }
908  if (cond.mask_ == 0) {
909    SANDBOX_DIE("sandbox_bpf: zero mask is invalid");
910  }
911  if ((cond.value_ & cond.mask_) != cond.value_) {
912    SANDBOX_DIE("sandbox_bpf: value contains masked out bits");
913  }
914  if (cond.width_ == ErrorCode::TP_32BIT &&
915      ((cond.mask_ >> 32) != 0 || (cond.value_ >> 32) != 0)) {
916    SANDBOX_DIE("sandbox_bpf: test exceeds argument size");
917  }
918  // TODO(mdempsky): Reject TP_64BIT on 32-bit platforms. For now we allow it
919  // because some SandboxBPF unit tests exercise it.
920
921  Instruction* passed = RetExpression(gen, *cond.passed_);
922  Instruction* failed = RetExpression(gen, *cond.failed_);
923
924  // We want to emit code to check "(arg & mask) == value" where arg, mask, and
925  // value are 64-bit values, but the BPF machine is only 32-bit. We implement
926  // this by independently testing the upper and lower 32-bits and continuing to
927  // |passed| if both evaluate true, or to |failed| if either evaluate false.
928  return CondExpressionHalf(
929      gen,
930      cond,
931      UpperHalf,
932      CondExpressionHalf(gen, cond, LowerHalf, passed, failed),
933      failed);
934}
935
936Instruction* SandboxBPF::CondExpressionHalf(CodeGen* gen,
937                                            const ErrorCode& cond,
938                                            ArgHalf half,
939                                            Instruction* passed,
940                                            Instruction* failed) {
941  if (cond.width_ == ErrorCode::TP_32BIT && half == UpperHalf) {
942    // Special logic for sanity checking the upper 32-bits of 32-bit system
943    // call arguments.
944
945    // TODO(mdempsky): Compile Unexpected64bitArgument() just per program.
946    Instruction* invalid_64bit = RetExpression(gen, Unexpected64bitArgument());
947
948    const uint32_t upper = SECCOMP_ARG_MSB_IDX(cond.argno_);
949    const uint32_t lower = SECCOMP_ARG_LSB_IDX(cond.argno_);
950
951    if (sizeof(void*) == 4) {
952      // On 32-bit platforms, the upper 32-bits should always be 0:
953      //   LDW  [upper]
954      //   JEQ  0, passed, invalid
955      return gen->MakeInstruction(
956          BPF_LD + BPF_W + BPF_ABS,
957          upper,
958          gen->MakeInstruction(
959              BPF_JMP + BPF_JEQ + BPF_K, 0, passed, invalid_64bit));
960    }
961
962    // On 64-bit platforms, the upper 32-bits may be 0 or ~0; but we only allow
963    // ~0 if the sign bit of the lower 32-bits is set too:
964    //   LDW  [upper]
965    //   JEQ  0, passed, (next)
966    //   JEQ  ~0, (next), invalid
967    //   LDW  [lower]
968    //   JSET (1<<31), passed, invalid
969    //
970    // TODO(mdempsky): The JSET instruction could perhaps jump to passed->next
971    // instead, as the first instruction of passed should be "LDW [lower]".
972    return gen->MakeInstruction(
973        BPF_LD + BPF_W + BPF_ABS,
974        upper,
975        gen->MakeInstruction(
976            BPF_JMP + BPF_JEQ + BPF_K,
977            0,
978            passed,
979            gen->MakeInstruction(
980                BPF_JMP + BPF_JEQ + BPF_K,
981                std::numeric_limits<uint32_t>::max(),
982                gen->MakeInstruction(
983                    BPF_LD + BPF_W + BPF_ABS,
984                    lower,
985                    gen->MakeInstruction(BPF_JMP + BPF_JSET + BPF_K,
986                                         1U << 31,
987                                         passed,
988                                         invalid_64bit)),
989                invalid_64bit)));
990  }
991
992  const uint32_t idx = (half == UpperHalf) ? SECCOMP_ARG_MSB_IDX(cond.argno_)
993                                           : SECCOMP_ARG_LSB_IDX(cond.argno_);
994  const uint32_t mask = (half == UpperHalf) ? cond.mask_ >> 32 : cond.mask_;
995  const uint32_t value = (half == UpperHalf) ? cond.value_ >> 32 : cond.value_;
996
997  // Emit a suitable instruction sequence for (arg & mask) == value.
998
999  // For (arg & 0) == 0, just return passed.
1000  if (mask == 0) {
1001    CHECK_EQ(0U, value);
1002    return passed;
1003  }
1004
1005  // For (arg & ~0) == value, emit:
1006  //   LDW  [idx]
1007  //   JEQ  value, passed, failed
1008  if (mask == std::numeric_limits<uint32_t>::max()) {
1009    return gen->MakeInstruction(
1010        BPF_LD + BPF_W + BPF_ABS,
1011        idx,
1012        gen->MakeInstruction(BPF_JMP + BPF_JEQ + BPF_K, value, passed, failed));
1013  }
1014
1015  // For (arg & mask) == 0, emit:
1016  //   LDW  [idx]
1017  //   JSET mask, failed, passed
1018  // (Note: failed and passed are intentionally swapped.)
1019  if (value == 0) {
1020    return gen->MakeInstruction(
1021        BPF_LD + BPF_W + BPF_ABS,
1022        idx,
1023        gen->MakeInstruction(BPF_JMP + BPF_JSET + BPF_K, mask, failed, passed));
1024  }
1025
1026  // For (arg & x) == x where x is a single-bit value, emit:
1027  //   LDW  [idx]
1028  //   JSET mask, passed, failed
1029  if (mask == value && HasExactlyOneBit(mask)) {
1030    return gen->MakeInstruction(
1031        BPF_LD + BPF_W + BPF_ABS,
1032        idx,
1033        gen->MakeInstruction(BPF_JMP + BPF_JSET + BPF_K, mask, passed, failed));
1034  }
1035
1036  // Generic fallback:
1037  //   LDW  [idx]
1038  //   AND  mask
1039  //   JEQ  value, passed, failed
1040  return gen->MakeInstruction(
1041      BPF_LD + BPF_W + BPF_ABS,
1042      idx,
1043      gen->MakeInstruction(
1044          BPF_ALU + BPF_AND + BPF_K,
1045          mask,
1046          gen->MakeInstruction(
1047              BPF_JMP + BPF_JEQ + BPF_K, value, passed, failed)));
1048}
1049
1050ErrorCode SandboxBPF::Unexpected64bitArgument() {
1051  return Kill("Unexpected 64bit argument detected");
1052}
1053
1054ErrorCode SandboxBPF::Trap(Trap::TrapFnc fnc, const void* aux) {
1055  return ErrorCode(fnc, aux, true /* Safe Trap */);
1056}
1057
1058ErrorCode SandboxBPF::UnsafeTrap(Trap::TrapFnc fnc, const void* aux) {
1059  return ErrorCode(fnc, aux, false /* Unsafe Trap */);
1060}
1061
1062bool SandboxBPF::IsRequiredForUnsafeTrap(int sysno) {
1063  for (size_t i = 0; i < arraysize(kSyscallsRequiredForUnsafeTraps); ++i) {
1064    if (sysno == kSyscallsRequiredForUnsafeTraps[i]) {
1065      return true;
1066    }
1067  }
1068  return false;
1069}
1070
1071intptr_t SandboxBPF::ForwardSyscall(const struct arch_seccomp_data& args) {
1072  return Syscall::Call(args.nr,
1073                       static_cast<intptr_t>(args.args[0]),
1074                       static_cast<intptr_t>(args.args[1]),
1075                       static_cast<intptr_t>(args.args[2]),
1076                       static_cast<intptr_t>(args.args[3]),
1077                       static_cast<intptr_t>(args.args[4]),
1078                       static_cast<intptr_t>(args.args[5]));
1079}
1080
1081ErrorCode SandboxBPF::CondMaskedEqual(int argno,
1082                                      ErrorCode::ArgType width,
1083                                      uint64_t mask,
1084                                      uint64_t value,
1085                                      const ErrorCode& passed,
1086                                      const ErrorCode& failed) {
1087  return ErrorCode(argno,
1088                   width,
1089                   mask,
1090                   value,
1091                   &*conds_->insert(passed).first,
1092                   &*conds_->insert(failed).first);
1093}
1094
1095ErrorCode SandboxBPF::Cond(int argno,
1096                           ErrorCode::ArgType width,
1097                           ErrorCode::Operation op,
1098                           uint64_t value,
1099                           const ErrorCode& passed,
1100                           const ErrorCode& failed) {
1101  // CondExpression() currently rejects mask==0 as invalid, but there are
1102  // SandboxBPF unit tests that (questionably) expect OP_HAS_{ANY,ALL}_BITS to
1103  // work with value==0. To keep those tests working for now, we specially
1104  // convert value==0 here.
1105
1106  switch (op) {
1107    case ErrorCode::OP_EQUAL: {
1108      // Convert to "(arg & ~0) == value".
1109      const uint64_t mask = (width == ErrorCode::TP_64BIT)
1110                                ? std::numeric_limits<uint64_t>::max()
1111                                : std::numeric_limits<uint32_t>::max();
1112      return CondMaskedEqual(argno, width, mask, value, passed, failed);
1113    }
1114
1115    case ErrorCode::OP_HAS_ALL_BITS:
1116      if (value == 0) {
1117        // Always passes.
1118        return passed;
1119      }
1120      // Convert to "(arg & value) == value".
1121      return CondMaskedEqual(argno, width, value, value, passed, failed);
1122
1123    case ErrorCode::OP_HAS_ANY_BITS:
1124      if (value == 0) {
1125        // Always fails.
1126        return failed;
1127      }
1128      // Convert to "(arg & value) == 0", but swap passed and failed.
1129      return CondMaskedEqual(argno, width, value, 0, failed, passed);
1130
1131    default:
1132      SANDBOX_DIE("Not implemented");
1133  }
1134}
1135
1136ErrorCode SandboxBPF::Kill(const char* msg) {
1137  return Trap(BPFFailure, const_cast<char*>(msg));
1138}
1139
1140SandboxBPF::SandboxStatus SandboxBPF::status_ = STATUS_UNKNOWN;
1141
1142}  // namespace sandbox
1143