1// Copyright (c) 2012 The Chromium Authors. All rights reserved.
2// Use of this source code is governed by a BSD-style license that can be
3// found in the LICENSE file.
4
5#define _USE_MATH_DEFINES
6#include <algorithm>
7#include <cmath>
8#include <limits>
9
10#include "skia/ext/image_operations.h"
11
12// TODO(pkasting): skia/ext should not depend on base/!
13#include "base/containers/stack_container.h"
14#include "base/debug/trace_event.h"
15#include "base/logging.h"
16#include "base/metrics/histogram.h"
17#include "base/time/time.h"
18#include "build/build_config.h"
19#include "skia/ext/convolver.h"
20#include "third_party/skia/include/core/SkColorPriv.h"
21#include "third_party/skia/include/core/SkFontHost.h"
22#include "third_party/skia/include/core/SkRect.h"
23
24namespace skia {
25
26namespace {
27
28// Returns the ceiling/floor as an integer.
29inline int CeilInt(float val) {
30  return static_cast<int>(ceil(val));
31}
32inline int FloorInt(float val) {
33  return static_cast<int>(floor(val));
34}
35
36// Filter function computation -------------------------------------------------
37
38// Evaluates the box filter, which goes from -0.5 to +0.5.
39float EvalBox(float x) {
40  return (x >= -0.5f && x < 0.5f) ? 1.0f : 0.0f;
41}
42
43// Evaluates the Lanczos filter of the given filter size window for the given
44// position.
45//
46// |filter_size| is the width of the filter (the "window"), outside of which
47// the value of the function is 0. Inside of the window, the value is the
48// normalized sinc function:
49//   lanczos(x) = sinc(x) * sinc(x / filter_size);
50// where
51//   sinc(x) = sin(pi*x) / (pi*x);
52float EvalLanczos(int filter_size, float x) {
53  if (x <= -filter_size || x >= filter_size)
54    return 0.0f;  // Outside of the window.
55  if (x > -std::numeric_limits<float>::epsilon() &&
56      x < std::numeric_limits<float>::epsilon())
57    return 1.0f;  // Special case the discontinuity at the origin.
58  float xpi = x * static_cast<float>(M_PI);
59  return (sin(xpi) / xpi) *  // sinc(x)
60          sin(xpi / filter_size) / (xpi / filter_size);  // sinc(x/filter_size)
61}
62
63// Evaluates the Hamming filter of the given filter size window for the given
64// position.
65//
66// The filter covers [-filter_size, +filter_size]. Outside of this window
67// the value of the function is 0. Inside of the window, the value is sinus
68// cardinal multiplied by a recentered Hamming function. The traditional
69// Hamming formula for a window of size N and n ranging in [0, N-1] is:
70//   hamming(n) = 0.54 - 0.46 * cos(2 * pi * n / (N-1)))
71// In our case we want the function centered for x == 0 and at its minimum
72// on both ends of the window (x == +/- filter_size), hence the adjusted
73// formula:
74//   hamming(x) = (0.54 -
75//                 0.46 * cos(2 * pi * (x - filter_size)/ (2 * filter_size)))
76//              = 0.54 - 0.46 * cos(pi * x / filter_size - pi)
77//              = 0.54 + 0.46 * cos(pi * x / filter_size)
78float EvalHamming(int filter_size, float x) {
79  if (x <= -filter_size || x >= filter_size)
80    return 0.0f;  // Outside of the window.
81  if (x > -std::numeric_limits<float>::epsilon() &&
82      x < std::numeric_limits<float>::epsilon())
83    return 1.0f;  // Special case the sinc discontinuity at the origin.
84  const float xpi = x * static_cast<float>(M_PI);
85
86  return ((sin(xpi) / xpi) *  // sinc(x)
87          (0.54f + 0.46f * cos(xpi / filter_size)));  // hamming(x)
88}
89
90// ResizeFilter ----------------------------------------------------------------
91
92// Encapsulates computation and storage of the filters required for one complete
93// resize operation.
94class ResizeFilter {
95 public:
96  ResizeFilter(ImageOperations::ResizeMethod method,
97               int src_full_width, int src_full_height,
98               int dest_width, int dest_height,
99               const SkIRect& dest_subset);
100
101  // Returns the filled filter values.
102  const ConvolutionFilter1D& x_filter() { return x_filter_; }
103  const ConvolutionFilter1D& y_filter() { return y_filter_; }
104
105 private:
106  // Returns the number of pixels that the filer spans, in filter space (the
107  // destination image).
108  float GetFilterSupport(float scale) {
109    switch (method_) {
110      case ImageOperations::RESIZE_BOX:
111        // The box filter just scales with the image scaling.
112        return 0.5f;  // Only want one side of the filter = /2.
113      case ImageOperations::RESIZE_HAMMING1:
114        // The Hamming filter takes as much space in the source image in
115        // each direction as the size of the window = 1 for Hamming1.
116        return 1.0f;
117      case ImageOperations::RESIZE_LANCZOS2:
118        // The Lanczos filter takes as much space in the source image in
119        // each direction as the size of the window = 2 for Lanczos2.
120        return 2.0f;
121      case ImageOperations::RESIZE_LANCZOS3:
122        // The Lanczos filter takes as much space in the source image in
123        // each direction as the size of the window = 3 for Lanczos3.
124        return 3.0f;
125      default:
126        NOTREACHED();
127        return 1.0f;
128    }
129  }
130
131  // Computes one set of filters either horizontally or vertically. The caller
132  // will specify the "min" and "max" rather than the bottom/top and
133  // right/bottom so that the same code can be re-used in each dimension.
134  //
135  // |src_depend_lo| and |src_depend_size| gives the range for the source
136  // depend rectangle (horizontally or vertically at the caller's discretion
137  // -- see above for what this means).
138  //
139  // Likewise, the range of destination values to compute and the scale factor
140  // for the transform is also specified.
141  void ComputeFilters(int src_size,
142                      int dest_subset_lo, int dest_subset_size,
143                      float scale,
144                      ConvolutionFilter1D* output);
145
146  // Computes the filter value given the coordinate in filter space.
147  inline float ComputeFilter(float pos) {
148    switch (method_) {
149      case ImageOperations::RESIZE_BOX:
150        return EvalBox(pos);
151      case ImageOperations::RESIZE_HAMMING1:
152        return EvalHamming(1, pos);
153      case ImageOperations::RESIZE_LANCZOS2:
154        return EvalLanczos(2, pos);
155      case ImageOperations::RESIZE_LANCZOS3:
156        return EvalLanczos(3, pos);
157      default:
158        NOTREACHED();
159        return 0;
160    }
161  }
162
163  ImageOperations::ResizeMethod method_;
164
165  // Size of the filter support on one side only in the destination space.
166  // See GetFilterSupport.
167  float x_filter_support_;
168  float y_filter_support_;
169
170  // Subset of scaled destination bitmap to compute.
171  SkIRect out_bounds_;
172
173  ConvolutionFilter1D x_filter_;
174  ConvolutionFilter1D y_filter_;
175
176  DISALLOW_COPY_AND_ASSIGN(ResizeFilter);
177};
178
179ResizeFilter::ResizeFilter(ImageOperations::ResizeMethod method,
180                           int src_full_width, int src_full_height,
181                           int dest_width, int dest_height,
182                           const SkIRect& dest_subset)
183    : method_(method),
184      out_bounds_(dest_subset) {
185  // method_ will only ever refer to an "algorithm method".
186  SkASSERT((ImageOperations::RESIZE_FIRST_ALGORITHM_METHOD <= method) &&
187           (method <= ImageOperations::RESIZE_LAST_ALGORITHM_METHOD));
188
189  float scale_x = static_cast<float>(dest_width) /
190                  static_cast<float>(src_full_width);
191  float scale_y = static_cast<float>(dest_height) /
192                  static_cast<float>(src_full_height);
193
194  ComputeFilters(src_full_width, dest_subset.fLeft, dest_subset.width(),
195                 scale_x, &x_filter_);
196  ComputeFilters(src_full_height, dest_subset.fTop, dest_subset.height(),
197                 scale_y, &y_filter_);
198}
199
200// TODO(egouriou): Take advantage of periods in the convolution.
201// Practical resizing filters are periodic outside of the border area.
202// For Lanczos, a scaling by a (reduced) factor of p/q (q pixels in the
203// source become p pixels in the destination) will have a period of p.
204// A nice consequence is a period of 1 when downscaling by an integral
205// factor. Downscaling from typical display resolutions is also bound
206// to produce interesting periods as those are chosen to have multiple
207// small factors.
208// Small periods reduce computational load and improve cache usage if
209// the coefficients can be shared. For periods of 1 we can consider
210// loading the factors only once outside the borders.
211void ResizeFilter::ComputeFilters(int src_size,
212                                  int dest_subset_lo, int dest_subset_size,
213                                  float scale,
214                                  ConvolutionFilter1D* output) {
215  int dest_subset_hi = dest_subset_lo + dest_subset_size;  // [lo, hi)
216
217  // When we're doing a magnification, the scale will be larger than one. This
218  // means the destination pixels are much smaller than the source pixels, and
219  // that the range covered by the filter won't necessarily cover any source
220  // pixel boundaries. Therefore, we use these clamped values (max of 1) for
221  // some computations.
222  float clamped_scale = std::min(1.0f, scale);
223
224  // This is how many source pixels from the center we need to count
225  // to support the filtering function.
226  float src_support = GetFilterSupport(clamped_scale) / clamped_scale;
227
228  // Speed up the divisions below by turning them into multiplies.
229  float inv_scale = 1.0f / scale;
230
231  base::StackVector<float, 64> filter_values;
232  base::StackVector<int16, 64> fixed_filter_values;
233
234  // Loop over all pixels in the output range. We will generate one set of
235  // filter values for each one. Those values will tell us how to blend the
236  // source pixels to compute the destination pixel.
237  for (int dest_subset_i = dest_subset_lo; dest_subset_i < dest_subset_hi;
238       dest_subset_i++) {
239    // Reset the arrays. We don't declare them inside so they can re-use the
240    // same malloc-ed buffer.
241    filter_values->clear();
242    fixed_filter_values->clear();
243
244    // This is the pixel in the source directly under the pixel in the dest.
245    // Note that we base computations on the "center" of the pixels. To see
246    // why, observe that the destination pixel at coordinates (0, 0) in a 5.0x
247    // downscale should "cover" the pixels around the pixel with *its center*
248    // at coordinates (2.5, 2.5) in the source, not those around (0, 0).
249    // Hence we need to scale coordinates (0.5, 0.5), not (0, 0).
250    float src_pixel = (static_cast<float>(dest_subset_i) + 0.5f) * inv_scale;
251
252    // Compute the (inclusive) range of source pixels the filter covers.
253    int src_begin = std::max(0, FloorInt(src_pixel - src_support));
254    int src_end = std::min(src_size - 1, CeilInt(src_pixel + src_support));
255
256    // Compute the unnormalized filter value at each location of the source
257    // it covers.
258    float filter_sum = 0.0f;  // Sub of the filter values for normalizing.
259    for (int cur_filter_pixel = src_begin; cur_filter_pixel <= src_end;
260         cur_filter_pixel++) {
261      // Distance from the center of the filter, this is the filter coordinate
262      // in source space. We also need to consider the center of the pixel
263      // when comparing distance against 'src_pixel'. In the 5x downscale
264      // example used above the distance from the center of the filter to
265      // the pixel with coordinates (2, 2) should be 0, because its center
266      // is at (2.5, 2.5).
267      float src_filter_dist =
268          ((static_cast<float>(cur_filter_pixel) + 0.5f) - src_pixel);
269
270      // Since the filter really exists in dest space, map it there.
271      float dest_filter_dist = src_filter_dist * clamped_scale;
272
273      // Compute the filter value at that location.
274      float filter_value = ComputeFilter(dest_filter_dist);
275      filter_values->push_back(filter_value);
276
277      filter_sum += filter_value;
278    }
279    DCHECK(!filter_values->empty()) << "We should always get a filter!";
280
281    // The filter must be normalized so that we don't affect the brightness of
282    // the image. Convert to normalized fixed point.
283    int16 fixed_sum = 0;
284    for (size_t i = 0; i < filter_values->size(); i++) {
285      int16 cur_fixed = output->FloatToFixed(filter_values[i] / filter_sum);
286      fixed_sum += cur_fixed;
287      fixed_filter_values->push_back(cur_fixed);
288    }
289
290    // The conversion to fixed point will leave some rounding errors, which
291    // we add back in to avoid affecting the brightness of the image. We
292    // arbitrarily add this to the center of the filter array (this won't always
293    // be the center of the filter function since it could get clipped on the
294    // edges, but it doesn't matter enough to worry about that case).
295    int16 leftovers = output->FloatToFixed(1.0f) - fixed_sum;
296    fixed_filter_values[fixed_filter_values->size() / 2] += leftovers;
297
298    // Now it's ready to go.
299    output->AddFilter(src_begin, &fixed_filter_values[0],
300                      static_cast<int>(fixed_filter_values->size()));
301  }
302
303  output->PaddingForSIMD();
304}
305
306ImageOperations::ResizeMethod ResizeMethodToAlgorithmMethod(
307    ImageOperations::ResizeMethod method) {
308  // Convert any "Quality Method" into an "Algorithm Method"
309  if (method >= ImageOperations::RESIZE_FIRST_ALGORITHM_METHOD &&
310      method <= ImageOperations::RESIZE_LAST_ALGORITHM_METHOD) {
311    return method;
312  }
313  // The call to ImageOperationsGtv::Resize() above took care of
314  // GPU-acceleration in the cases where it is possible. So now we just
315  // pick the appropriate software method for each resize quality.
316  switch (method) {
317    // Users of RESIZE_GOOD are willing to trade a lot of quality to
318    // get speed, allowing the use of linear resampling to get hardware
319    // acceleration (SRB). Hence any of our "good" software filters
320    // will be acceptable, and we use the fastest one, Hamming-1.
321    case ImageOperations::RESIZE_GOOD:
322      // Users of RESIZE_BETTER are willing to trade some quality in order
323      // to improve performance, but are guaranteed not to devolve to a linear
324      // resampling. In visual tests we see that Hamming-1 is not as good as
325      // Lanczos-2, however it is about 40% faster and Lanczos-2 itself is
326      // about 30% faster than Lanczos-3. The use of Hamming-1 has been deemed
327      // an acceptable trade-off between quality and speed.
328    case ImageOperations::RESIZE_BETTER:
329      return ImageOperations::RESIZE_HAMMING1;
330    default:
331      return ImageOperations::RESIZE_LANCZOS3;
332  }
333}
334
335}  // namespace
336
337// Resize ----------------------------------------------------------------------
338
339// static
340SkBitmap ImageOperations::Resize(const SkBitmap& source,
341                                 ResizeMethod method,
342                                 int dest_width, int dest_height,
343                                 const SkIRect& dest_subset,
344                                 SkBitmap::Allocator* allocator) {
345  if (method == ImageOperations::RESIZE_SUBPIXEL) {
346    return ResizeSubpixel(source, dest_width, dest_height,
347                          dest_subset, allocator);
348  } else {
349    return ResizeBasic(source, method, dest_width, dest_height, dest_subset,
350                       allocator);
351  }
352}
353
354// static
355SkBitmap ImageOperations::ResizeSubpixel(const SkBitmap& source,
356                                         int dest_width, int dest_height,
357                                         const SkIRect& dest_subset,
358                                         SkBitmap::Allocator* allocator) {
359  TRACE_EVENT2("skia", "ImageOperations::ResizeSubpixel",
360               "src_pixels", source.width()*source.height(),
361               "dst_pixels", dest_width*dest_height);
362  // Currently only works on Linux/BSD because these are the only platforms
363  // where SkFontHost::GetSubpixelOrder is defined.
364#if defined(OS_LINUX) && !defined(GTV)
365  // Understand the display.
366  const SkFontHost::LCDOrder order = SkFontHost::GetSubpixelOrder();
367  const SkFontHost::LCDOrientation orientation =
368      SkFontHost::GetSubpixelOrientation();
369
370  // Decide on which dimension, if any, to deploy subpixel rendering.
371  int w = 1;
372  int h = 1;
373  switch (orientation) {
374    case SkFontHost::kHorizontal_LCDOrientation:
375      w = dest_width < source.width() ? 3 : 1;
376      break;
377    case SkFontHost::kVertical_LCDOrientation:
378      h = dest_height < source.height() ? 3 : 1;
379      break;
380  }
381
382  // Resize the image.
383  const int width = dest_width * w;
384  const int height = dest_height * h;
385  SkIRect subset = { dest_subset.fLeft, dest_subset.fTop,
386                     dest_subset.fLeft + dest_subset.width() * w,
387                     dest_subset.fTop + dest_subset.height() * h };
388  SkBitmap img = ResizeBasic(source, ImageOperations::RESIZE_LANCZOS3, width,
389                             height, subset, allocator);
390  const int row_words = img.rowBytes() / 4;
391  if (w == 1 && h == 1)
392    return img;
393
394  // Render into subpixels.
395  SkBitmap result;
396  result.setInfo(SkImageInfo::MakeN32(dest_subset.width(), dest_subset.height(),
397                                      img.alphaType()));
398  result.allocPixels(allocator, NULL);
399  if (!result.readyToDraw())
400    return img;
401
402  SkAutoLockPixels locker(img);
403  if (!img.readyToDraw())
404    return img;
405
406  uint32* src_row = img.getAddr32(0, 0);
407  uint32* dst_row = result.getAddr32(0, 0);
408  for (int y = 0; y < dest_subset.height(); y++) {
409    uint32* src = src_row;
410    uint32* dst = dst_row;
411    for (int x = 0; x < dest_subset.width(); x++, src += w, dst++) {
412      uint8 r = 0, g = 0, b = 0, a = 0;
413      switch (order) {
414        case SkFontHost::kRGB_LCDOrder:
415          switch (orientation) {
416            case SkFontHost::kHorizontal_LCDOrientation:
417              r = SkGetPackedR32(src[0]);
418              g = SkGetPackedG32(src[1]);
419              b = SkGetPackedB32(src[2]);
420              a = SkGetPackedA32(src[1]);
421              break;
422            case SkFontHost::kVertical_LCDOrientation:
423              r = SkGetPackedR32(src[0 * row_words]);
424              g = SkGetPackedG32(src[1 * row_words]);
425              b = SkGetPackedB32(src[2 * row_words]);
426              a = SkGetPackedA32(src[1 * row_words]);
427              break;
428          }
429          break;
430        case SkFontHost::kBGR_LCDOrder:
431          switch (orientation) {
432            case SkFontHost::kHorizontal_LCDOrientation:
433              b = SkGetPackedB32(src[0]);
434              g = SkGetPackedG32(src[1]);
435              r = SkGetPackedR32(src[2]);
436              a = SkGetPackedA32(src[1]);
437              break;
438            case SkFontHost::kVertical_LCDOrientation:
439              b = SkGetPackedB32(src[0 * row_words]);
440              g = SkGetPackedG32(src[1 * row_words]);
441              r = SkGetPackedR32(src[2 * row_words]);
442              a = SkGetPackedA32(src[1 * row_words]);
443              break;
444          }
445          break;
446        case SkFontHost::kNONE_LCDOrder:
447          NOTREACHED();
448      }
449      // Premultiplied alpha is very fragile.
450      a = a > r ? a : r;
451      a = a > g ? a : g;
452      a = a > b ? a : b;
453      *dst = SkPackARGB32(a, r, g, b);
454    }
455    src_row += h * row_words;
456    dst_row += result.rowBytes() / 4;
457  }
458  return result;
459#else
460  return SkBitmap();
461#endif  // OS_POSIX && !OS_MACOSX && !defined(OS_ANDROID)
462}
463
464// static
465SkBitmap ImageOperations::ResizeBasic(const SkBitmap& source,
466                                      ResizeMethod method,
467                                      int dest_width, int dest_height,
468                                      const SkIRect& dest_subset,
469                                      SkBitmap::Allocator* allocator) {
470  TRACE_EVENT2("skia", "ImageOperations::ResizeBasic",
471               "src_pixels", source.width()*source.height(),
472               "dst_pixels", dest_width*dest_height);
473  // Ensure that the ResizeMethod enumeration is sound.
474  SkASSERT(((RESIZE_FIRST_QUALITY_METHOD <= method) &&
475            (method <= RESIZE_LAST_QUALITY_METHOD)) ||
476           ((RESIZE_FIRST_ALGORITHM_METHOD <= method) &&
477            (method <= RESIZE_LAST_ALGORITHM_METHOD)));
478
479  // Time how long this takes to see if it's a problem for users.
480  base::TimeTicks resize_start = base::TimeTicks::Now();
481
482  SkIRect dest = { 0, 0, dest_width, dest_height };
483  DCHECK(dest.contains(dest_subset)) <<
484      "The supplied subset does not fall within the destination image.";
485
486  // If the size of source or destination is 0, i.e. 0x0, 0xN or Nx0, just
487  // return empty.
488  if (source.width() < 1 || source.height() < 1 ||
489      dest_width < 1 || dest_height < 1)
490    return SkBitmap();
491
492  method = ResizeMethodToAlgorithmMethod(method);
493  // Check that we deal with an "algorithm methods" from this point onward.
494  SkASSERT((ImageOperations::RESIZE_FIRST_ALGORITHM_METHOD <= method) &&
495           (method <= ImageOperations::RESIZE_LAST_ALGORITHM_METHOD));
496
497  SkAutoLockPixels locker(source);
498  if (!source.readyToDraw() || source.colorType() != kN32_SkColorType)
499    return SkBitmap();
500
501  ResizeFilter filter(method, source.width(), source.height(),
502                      dest_width, dest_height, dest_subset);
503
504  // Get a source bitmap encompassing this touched area. We construct the
505  // offsets and row strides such that it looks like a new bitmap, while
506  // referring to the old data.
507  const uint8* source_subset =
508      reinterpret_cast<const uint8*>(source.getPixels());
509
510  // Convolve into the result.
511  SkBitmap result;
512  result.setInfo(SkImageInfo::MakeN32(dest_subset.width(), dest_subset.height(), source.alphaType()));
513  result.allocPixels(allocator, NULL);
514  if (!result.readyToDraw())
515    return SkBitmap();
516
517  BGRAConvolve2D(source_subset, static_cast<int>(source.rowBytes()),
518                 !source.isOpaque(), filter.x_filter(), filter.y_filter(),
519                 static_cast<int>(result.rowBytes()),
520                 static_cast<unsigned char*>(result.getPixels()),
521                 true);
522
523  base::TimeDelta delta = base::TimeTicks::Now() - resize_start;
524  UMA_HISTOGRAM_TIMES("Image.ResampleMS", delta);
525
526  return result;
527}
528
529// static
530SkBitmap ImageOperations::Resize(const SkBitmap& source,
531                                 ResizeMethod method,
532                                 int dest_width, int dest_height,
533                                 SkBitmap::Allocator* allocator) {
534  SkIRect dest_subset = { 0, 0, dest_width, dest_height };
535  return Resize(source, method, dest_width, dest_height, dest_subset,
536                allocator);
537}
538
539}  // namespace skia
540