1/*
2 * jdhuff.c
3 *
4 * This file was part of the Independent JPEG Group's software:
5 * Copyright (C) 1991-1997, Thomas G. Lane.
6 * libjpeg-turbo Modifications:
7 * Copyright (C) 2009-2011, D. R. Commander.
8 * For conditions of distribution and use, see the accompanying README file.
9 *
10 * This file contains Huffman entropy decoding routines.
11 *
12 * Much of the complexity here has to do with supporting input suspension.
13 * If the data source module demands suspension, we want to be able to back
14 * up to the start of the current MCU.  To do this, we copy state variables
15 * into local working storage, and update them back to the permanent
16 * storage only upon successful completion of an MCU.
17 */
18
19#define JPEG_INTERNALS
20#include "jinclude.h"
21#include "jpeglib.h"
22#include "jdhuff.h"		/* Declarations shared with jdphuff.c */
23#include "jpegcomp.h"
24
25
26/*
27 * Expanded entropy decoder object for Huffman decoding.
28 *
29 * The savable_state subrecord contains fields that change within an MCU,
30 * but must not be updated permanently until we complete the MCU.
31 */
32
33typedef struct {
34  int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */
35} savable_state;
36
37/* This macro is to work around compilers with missing or broken
38 * structure assignment.  You'll need to fix this code if you have
39 * such a compiler and you change MAX_COMPS_IN_SCAN.
40 */
41
42#ifndef NO_STRUCT_ASSIGN
43#define ASSIGN_STATE(dest,src)  ((dest) = (src))
44#else
45#if MAX_COMPS_IN_SCAN == 4
46#define ASSIGN_STATE(dest,src)  \
47	((dest).last_dc_val[0] = (src).last_dc_val[0], \
48	 (dest).last_dc_val[1] = (src).last_dc_val[1], \
49	 (dest).last_dc_val[2] = (src).last_dc_val[2], \
50	 (dest).last_dc_val[3] = (src).last_dc_val[3])
51#endif
52#endif
53
54
55typedef struct {
56  struct jpeg_entropy_decoder pub; /* public fields */
57
58  /* These fields are loaded into local variables at start of each MCU.
59   * In case of suspension, we exit WITHOUT updating them.
60   */
61  bitread_perm_state bitstate;	/* Bit buffer at start of MCU */
62  savable_state saved;		/* Other state at start of MCU */
63
64  /* These fields are NOT loaded into local working state. */
65  unsigned int restarts_to_go;	/* MCUs left in this restart interval */
66
67  /* Pointers to derived tables (these workspaces have image lifespan) */
68  d_derived_tbl * dc_derived_tbls[NUM_HUFF_TBLS];
69  d_derived_tbl * ac_derived_tbls[NUM_HUFF_TBLS];
70
71  /* Precalculated info set up by start_pass for use in decode_mcu: */
72
73  /* Pointers to derived tables to be used for each block within an MCU */
74  d_derived_tbl * dc_cur_tbls[D_MAX_BLOCKS_IN_MCU];
75  d_derived_tbl * ac_cur_tbls[D_MAX_BLOCKS_IN_MCU];
76  /* Whether we care about the DC and AC coefficient values for each block */
77  boolean dc_needed[D_MAX_BLOCKS_IN_MCU];
78  boolean ac_needed[D_MAX_BLOCKS_IN_MCU];
79} huff_entropy_decoder;
80
81typedef huff_entropy_decoder * huff_entropy_ptr;
82
83
84/*
85 * Initialize for a Huffman-compressed scan.
86 */
87
88METHODDEF(void)
89start_pass_huff_decoder (j_decompress_ptr cinfo)
90{
91  huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
92  int ci, blkn, dctbl, actbl;
93  jpeg_component_info * compptr;
94
95  /* Check that the scan parameters Ss, Se, Ah/Al are OK for sequential JPEG.
96   * This ought to be an error condition, but we make it a warning because
97   * there are some baseline files out there with all zeroes in these bytes.
98   */
99  if (cinfo->Ss != 0 || cinfo->Se != DCTSIZE2-1 ||
100      cinfo->Ah != 0 || cinfo->Al != 0)
101    WARNMS(cinfo, JWRN_NOT_SEQUENTIAL);
102
103  for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
104    compptr = cinfo->cur_comp_info[ci];
105    dctbl = compptr->dc_tbl_no;
106    actbl = compptr->ac_tbl_no;
107    /* Compute derived values for Huffman tables */
108    /* We may do this more than once for a table, but it's not expensive */
109    jpeg_make_d_derived_tbl(cinfo, TRUE, dctbl,
110			    & entropy->dc_derived_tbls[dctbl]);
111    jpeg_make_d_derived_tbl(cinfo, FALSE, actbl,
112			    & entropy->ac_derived_tbls[actbl]);
113    /* Initialize DC predictions to 0 */
114    entropy->saved.last_dc_val[ci] = 0;
115  }
116
117  /* Precalculate decoding info for each block in an MCU of this scan */
118  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
119    ci = cinfo->MCU_membership[blkn];
120    compptr = cinfo->cur_comp_info[ci];
121    /* Precalculate which table to use for each block */
122    entropy->dc_cur_tbls[blkn] = entropy->dc_derived_tbls[compptr->dc_tbl_no];
123    entropy->ac_cur_tbls[blkn] = entropy->ac_derived_tbls[compptr->ac_tbl_no];
124    /* Decide whether we really care about the coefficient values */
125    if (compptr->component_needed) {
126      entropy->dc_needed[blkn] = TRUE;
127      /* we don't need the ACs if producing a 1/8th-size image */
128      entropy->ac_needed[blkn] = (compptr->_DCT_scaled_size > 1);
129    } else {
130      entropy->dc_needed[blkn] = entropy->ac_needed[blkn] = FALSE;
131    }
132  }
133
134  /* Initialize bitread state variables */
135  entropy->bitstate.bits_left = 0;
136  entropy->bitstate.get_buffer = 0; /* unnecessary, but keeps Purify quiet */
137  entropy->pub.insufficient_data = FALSE;
138
139  /* Initialize restart counter */
140  entropy->restarts_to_go = cinfo->restart_interval;
141}
142
143
144/*
145 * Compute the derived values for a Huffman table.
146 * This routine also performs some validation checks on the table.
147 *
148 * Note this is also used by jdphuff.c.
149 */
150
151GLOBAL(void)
152jpeg_make_d_derived_tbl (j_decompress_ptr cinfo, boolean isDC, int tblno,
153			 d_derived_tbl ** pdtbl)
154{
155  JHUFF_TBL *htbl;
156  d_derived_tbl *dtbl;
157  int p, i, l, si, numsymbols;
158  int lookbits, ctr;
159  char huffsize[257];
160  unsigned int huffcode[257];
161  unsigned int code;
162
163  /* Note that huffsize[] and huffcode[] are filled in code-length order,
164   * paralleling the order of the symbols themselves in htbl->huffval[].
165   */
166
167  /* Find the input Huffman table */
168  if (tblno < 0 || tblno >= NUM_HUFF_TBLS)
169    ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
170  htbl =
171    isDC ? cinfo->dc_huff_tbl_ptrs[tblno] : cinfo->ac_huff_tbl_ptrs[tblno];
172  if (htbl == NULL)
173    ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
174
175  /* Allocate a workspace if we haven't already done so. */
176  if (*pdtbl == NULL)
177    *pdtbl = (d_derived_tbl *)
178      (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
179				  SIZEOF(d_derived_tbl));
180  dtbl = *pdtbl;
181  dtbl->pub = htbl;		/* fill in back link */
182
183  /* Figure C.1: make table of Huffman code length for each symbol */
184
185  p = 0;
186  for (l = 1; l <= 16; l++) {
187    i = (int) htbl->bits[l];
188    if (i < 0 || p + i > 256)	/* protect against table overrun */
189      ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
190    while (i--)
191      huffsize[p++] = (char) l;
192  }
193  huffsize[p] = 0;
194  numsymbols = p;
195
196  /* Figure C.2: generate the codes themselves */
197  /* We also validate that the counts represent a legal Huffman code tree. */
198
199  code = 0;
200  si = huffsize[0];
201  p = 0;
202  while (huffsize[p]) {
203    while (((int) huffsize[p]) == si) {
204      huffcode[p++] = code;
205      code++;
206    }
207    /* code is now 1 more than the last code used for codelength si; but
208     * it must still fit in si bits, since no code is allowed to be all ones.
209     */
210    if (((INT32) code) >= (((INT32) 1) << si))
211      ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
212    code <<= 1;
213    si++;
214  }
215
216  /* Figure F.15: generate decoding tables for bit-sequential decoding */
217
218  p = 0;
219  for (l = 1; l <= 16; l++) {
220    if (htbl->bits[l]) {
221      /* valoffset[l] = huffval[] index of 1st symbol of code length l,
222       * minus the minimum code of length l
223       */
224      dtbl->valoffset[l] = (INT32) p - (INT32) huffcode[p];
225      p += htbl->bits[l];
226      dtbl->maxcode[l] = huffcode[p-1]; /* maximum code of length l */
227    } else {
228      dtbl->maxcode[l] = -1;	/* -1 if no codes of this length */
229    }
230  }
231  dtbl->valoffset[17] = 0;
232  dtbl->maxcode[17] = 0xFFFFFL; /* ensures jpeg_huff_decode terminates */
233
234  /* Compute lookahead tables to speed up decoding.
235   * First we set all the table entries to 0, indicating "too long";
236   * then we iterate through the Huffman codes that are short enough and
237   * fill in all the entries that correspond to bit sequences starting
238   * with that code.
239   */
240
241   for (i = 0; i < (1 << HUFF_LOOKAHEAD); i++)
242     dtbl->lookup[i] = (HUFF_LOOKAHEAD + 1) << HUFF_LOOKAHEAD;
243
244  p = 0;
245  for (l = 1; l <= HUFF_LOOKAHEAD; l++) {
246    for (i = 1; i <= (int) htbl->bits[l]; i++, p++) {
247      /* l = current code's length, p = its index in huffcode[] & huffval[]. */
248      /* Generate left-justified code followed by all possible bit sequences */
249      lookbits = huffcode[p] << (HUFF_LOOKAHEAD-l);
250      for (ctr = 1 << (HUFF_LOOKAHEAD-l); ctr > 0; ctr--) {
251	dtbl->lookup[lookbits] = (l << HUFF_LOOKAHEAD) | htbl->huffval[p];
252	lookbits++;
253      }
254    }
255  }
256
257  /* Validate symbols as being reasonable.
258   * For AC tables, we make no check, but accept all byte values 0..255.
259   * For DC tables, we require the symbols to be in range 0..15.
260   * (Tighter bounds could be applied depending on the data depth and mode,
261   * but this is sufficient to ensure safe decoding.)
262   */
263  if (isDC) {
264    for (i = 0; i < numsymbols; i++) {
265      int sym = htbl->huffval[i];
266      if (sym < 0 || sym > 15)
267	ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
268    }
269  }
270}
271
272
273/*
274 * Out-of-line code for bit fetching (shared with jdphuff.c).
275 * See jdhuff.h for info about usage.
276 * Note: current values of get_buffer and bits_left are passed as parameters,
277 * but are returned in the corresponding fields of the state struct.
278 *
279 * On most machines MIN_GET_BITS should be 25 to allow the full 32-bit width
280 * of get_buffer to be used.  (On machines with wider words, an even larger
281 * buffer could be used.)  However, on some machines 32-bit shifts are
282 * quite slow and take time proportional to the number of places shifted.
283 * (This is true with most PC compilers, for instance.)  In this case it may
284 * be a win to set MIN_GET_BITS to the minimum value of 15.  This reduces the
285 * average shift distance at the cost of more calls to jpeg_fill_bit_buffer.
286 */
287
288#ifdef SLOW_SHIFT_32
289#define MIN_GET_BITS  15	/* minimum allowable value */
290#else
291#define MIN_GET_BITS  (BIT_BUF_SIZE-7)
292#endif
293
294
295GLOBAL(boolean)
296jpeg_fill_bit_buffer (bitread_working_state * state,
297		      register bit_buf_type get_buffer, register int bits_left,
298		      int nbits)
299/* Load up the bit buffer to a depth of at least nbits */
300{
301  /* Copy heavily used state fields into locals (hopefully registers) */
302  register const JOCTET * next_input_byte = state->next_input_byte;
303  register size_t bytes_in_buffer = state->bytes_in_buffer;
304  j_decompress_ptr cinfo = state->cinfo;
305
306  /* Attempt to load at least MIN_GET_BITS bits into get_buffer. */
307  /* (It is assumed that no request will be for more than that many bits.) */
308  /* We fail to do so only if we hit a marker or are forced to suspend. */
309
310  if (cinfo->unread_marker == 0) {	/* cannot advance past a marker */
311    while (bits_left < MIN_GET_BITS) {
312      register int c;
313
314      /* Attempt to read a byte */
315      if (bytes_in_buffer == 0) {
316	if (! (*cinfo->src->fill_input_buffer) (cinfo))
317	  return FALSE;
318	next_input_byte = cinfo->src->next_input_byte;
319	bytes_in_buffer = cinfo->src->bytes_in_buffer;
320      }
321      bytes_in_buffer--;
322      c = GETJOCTET(*next_input_byte++);
323
324      /* If it's 0xFF, check and discard stuffed zero byte */
325      if (c == 0xFF) {
326	/* Loop here to discard any padding FF's on terminating marker,
327	 * so that we can save a valid unread_marker value.  NOTE: we will
328	 * accept multiple FF's followed by a 0 as meaning a single FF data
329	 * byte.  This data pattern is not valid according to the standard.
330	 */
331	do {
332	  if (bytes_in_buffer == 0) {
333	    if (! (*cinfo->src->fill_input_buffer) (cinfo))
334	      return FALSE;
335	    next_input_byte = cinfo->src->next_input_byte;
336	    bytes_in_buffer = cinfo->src->bytes_in_buffer;
337	  }
338	  bytes_in_buffer--;
339	  c = GETJOCTET(*next_input_byte++);
340	} while (c == 0xFF);
341
342	if (c == 0) {
343	  /* Found FF/00, which represents an FF data byte */
344	  c = 0xFF;
345	} else {
346	  /* Oops, it's actually a marker indicating end of compressed data.
347	   * Save the marker code for later use.
348	   * Fine point: it might appear that we should save the marker into
349	   * bitread working state, not straight into permanent state.  But
350	   * once we have hit a marker, we cannot need to suspend within the
351	   * current MCU, because we will read no more bytes from the data
352	   * source.  So it is OK to update permanent state right away.
353	   */
354	  cinfo->unread_marker = c;
355	  /* See if we need to insert some fake zero bits. */
356	  goto no_more_bytes;
357	}
358      }
359
360      /* OK, load c into get_buffer */
361      get_buffer = (get_buffer << 8) | c;
362      bits_left += 8;
363    } /* end while */
364  } else {
365  no_more_bytes:
366    /* We get here if we've read the marker that terminates the compressed
367     * data segment.  There should be enough bits in the buffer register
368     * to satisfy the request; if so, no problem.
369     */
370    if (nbits > bits_left) {
371      /* Uh-oh.  Report corrupted data to user and stuff zeroes into
372       * the data stream, so that we can produce some kind of image.
373       * We use a nonvolatile flag to ensure that only one warning message
374       * appears per data segment.
375       */
376      if (! cinfo->entropy->insufficient_data) {
377	WARNMS(cinfo, JWRN_HIT_MARKER);
378	cinfo->entropy->insufficient_data = TRUE;
379      }
380      /* Fill the buffer with zero bits */
381      get_buffer <<= MIN_GET_BITS - bits_left;
382      bits_left = MIN_GET_BITS;
383    }
384  }
385
386  /* Unload the local registers */
387  state->next_input_byte = next_input_byte;
388  state->bytes_in_buffer = bytes_in_buffer;
389  state->get_buffer = get_buffer;
390  state->bits_left = bits_left;
391
392  return TRUE;
393}
394
395
396/* Macro version of the above, which performs much better but does not
397   handle markers.  We have to hand off any blocks with markers to the
398   slower routines. */
399
400#define GET_BYTE \
401{ \
402  register int c0, c1; \
403  c0 = GETJOCTET(*buffer++); \
404  c1 = GETJOCTET(*buffer); \
405  /* Pre-execute most common case */ \
406  get_buffer = (get_buffer << 8) | c0; \
407  bits_left += 8; \
408  if (c0 == 0xFF) { \
409    /* Pre-execute case of FF/00, which represents an FF data byte */ \
410    buffer++; \
411    if (c1 != 0) { \
412      /* Oops, it's actually a marker indicating end of compressed data. */ \
413      cinfo->unread_marker = c1; \
414      /* Back out pre-execution and fill the buffer with zero bits */ \
415      buffer -= 2; \
416      get_buffer &= ~0xFF; \
417    } \
418  } \
419}
420
421#if __WORDSIZE == 64 || defined(_WIN64)
422
423/* Pre-fetch 48 bytes, because the holding register is 64-bit */
424#define FILL_BIT_BUFFER_FAST \
425  if (bits_left < 16) { \
426    GET_BYTE GET_BYTE GET_BYTE GET_BYTE GET_BYTE GET_BYTE \
427  }
428
429#else
430
431/* Pre-fetch 16 bytes, because the holding register is 32-bit */
432#define FILL_BIT_BUFFER_FAST \
433  if (bits_left < 16) { \
434    GET_BYTE GET_BYTE \
435  }
436
437#endif
438
439
440/*
441 * Out-of-line code for Huffman code decoding.
442 * See jdhuff.h for info about usage.
443 */
444
445GLOBAL(int)
446jpeg_huff_decode (bitread_working_state * state,
447		  register bit_buf_type get_buffer, register int bits_left,
448		  d_derived_tbl * htbl, int min_bits)
449{
450  register int l = min_bits;
451  register INT32 code;
452
453  /* HUFF_DECODE has determined that the code is at least min_bits */
454  /* bits long, so fetch that many bits in one swoop. */
455
456  CHECK_BIT_BUFFER(*state, l, return -1);
457  code = GET_BITS(l);
458
459  /* Collect the rest of the Huffman code one bit at a time. */
460  /* This is per Figure F.16 in the JPEG spec. */
461
462  while (code > htbl->maxcode[l]) {
463    code <<= 1;
464    CHECK_BIT_BUFFER(*state, 1, return -1);
465    code |= GET_BITS(1);
466    l++;
467  }
468
469  /* Unload the local registers */
470  state->get_buffer = get_buffer;
471  state->bits_left = bits_left;
472
473  /* With garbage input we may reach the sentinel value l = 17. */
474
475  if (l > 16) {
476    WARNMS(state->cinfo, JWRN_HUFF_BAD_CODE);
477    return 0;			/* fake a zero as the safest result */
478  }
479
480  return htbl->pub->huffval[ (int) (code + htbl->valoffset[l]) ];
481}
482
483
484/*
485 * Figure F.12: extend sign bit.
486 * On some machines, a shift and add will be faster than a table lookup.
487 */
488
489#define AVOID_TABLES
490#ifdef AVOID_TABLES
491
492#define HUFF_EXTEND(x,s)  ((x) + ((((x) - (1<<((s)-1))) >> 31) & (((-1)<<(s)) + 1)))
493
494#else
495
496#define HUFF_EXTEND(x,s)  ((x) < extend_test[s] ? (x) + extend_offset[s] : (x))
497
498static const int extend_test[16] =   /* entry n is 2**(n-1) */
499  { 0, 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
500    0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000 };
501
502static const int extend_offset[16] = /* entry n is (-1 << n) + 1 */
503  { 0, ((-1)<<1) + 1, ((-1)<<2) + 1, ((-1)<<3) + 1, ((-1)<<4) + 1,
504    ((-1)<<5) + 1, ((-1)<<6) + 1, ((-1)<<7) + 1, ((-1)<<8) + 1,
505    ((-1)<<9) + 1, ((-1)<<10) + 1, ((-1)<<11) + 1, ((-1)<<12) + 1,
506    ((-1)<<13) + 1, ((-1)<<14) + 1, ((-1)<<15) + 1 };
507
508#endif /* AVOID_TABLES */
509
510
511/*
512 * Check for a restart marker & resynchronize decoder.
513 * Returns FALSE if must suspend.
514 */
515
516LOCAL(boolean)
517process_restart (j_decompress_ptr cinfo)
518{
519  huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
520  int ci;
521
522  /* Throw away any unused bits remaining in bit buffer; */
523  /* include any full bytes in next_marker's count of discarded bytes */
524  cinfo->marker->discarded_bytes += entropy->bitstate.bits_left / 8;
525  entropy->bitstate.bits_left = 0;
526
527  /* Advance past the RSTn marker */
528  if (! (*cinfo->marker->read_restart_marker) (cinfo))
529    return FALSE;
530
531  /* Re-initialize DC predictions to 0 */
532  for (ci = 0; ci < cinfo->comps_in_scan; ci++)
533    entropy->saved.last_dc_val[ci] = 0;
534
535  /* Reset restart counter */
536  entropy->restarts_to_go = cinfo->restart_interval;
537
538  /* Reset out-of-data flag, unless read_restart_marker left us smack up
539   * against a marker.  In that case we will end up treating the next data
540   * segment as empty, and we can avoid producing bogus output pixels by
541   * leaving the flag set.
542   */
543  if (cinfo->unread_marker == 0)
544    entropy->pub.insufficient_data = FALSE;
545
546  return TRUE;
547}
548
549
550LOCAL(boolean)
551decode_mcu_slow (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
552{
553  huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
554  BITREAD_STATE_VARS;
555  int blkn;
556  savable_state state;
557  /* Outer loop handles each block in the MCU */
558
559  /* Load up working state */
560  BITREAD_LOAD_STATE(cinfo,entropy->bitstate);
561  ASSIGN_STATE(state, entropy->saved);
562
563  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
564    JBLOCKROW block = MCU_data[blkn];
565    d_derived_tbl * dctbl = entropy->dc_cur_tbls[blkn];
566    d_derived_tbl * actbl = entropy->ac_cur_tbls[blkn];
567    register int s, k, r;
568
569    /* Decode a single block's worth of coefficients */
570
571    /* Section F.2.2.1: decode the DC coefficient difference */
572    HUFF_DECODE(s, br_state, dctbl, return FALSE, label1);
573    if (s) {
574      CHECK_BIT_BUFFER(br_state, s, return FALSE);
575      r = GET_BITS(s);
576      s = HUFF_EXTEND(r, s);
577    }
578
579    if (entropy->dc_needed[blkn]) {
580      /* Convert DC difference to actual value, update last_dc_val */
581      int ci = cinfo->MCU_membership[blkn];
582      s += state.last_dc_val[ci];
583      state.last_dc_val[ci] = s;
584      /* Output the DC coefficient (assumes jpeg_natural_order[0] = 0) */
585      (*block)[0] = (JCOEF) s;
586    }
587
588    if (entropy->ac_needed[blkn]) {
589
590      /* Section F.2.2.2: decode the AC coefficients */
591      /* Since zeroes are skipped, output area must be cleared beforehand */
592      for (k = 1; k < DCTSIZE2; k++) {
593        HUFF_DECODE(s, br_state, actbl, return FALSE, label2);
594
595        r = s >> 4;
596        s &= 15;
597
598        if (s) {
599          k += r;
600          CHECK_BIT_BUFFER(br_state, s, return FALSE);
601          r = GET_BITS(s);
602          s = HUFF_EXTEND(r, s);
603          /* Output coefficient in natural (dezigzagged) order.
604           * Note: the extra entries in jpeg_natural_order[] will save us
605           * if k >= DCTSIZE2, which could happen if the data is corrupted.
606           */
607          (*block)[jpeg_natural_order[k]] = (JCOEF) s;
608        } else {
609          if (r != 15)
610            break;
611          k += 15;
612        }
613      }
614
615    } else {
616
617      /* Section F.2.2.2: decode the AC coefficients */
618      /* In this path we just discard the values */
619      for (k = 1; k < DCTSIZE2; k++) {
620        HUFF_DECODE(s, br_state, actbl, return FALSE, label3);
621
622        r = s >> 4;
623        s &= 15;
624
625        if (s) {
626          k += r;
627          CHECK_BIT_BUFFER(br_state, s, return FALSE);
628          DROP_BITS(s);
629        } else {
630          if (r != 15)
631            break;
632          k += 15;
633        }
634      }
635    }
636  }
637
638  /* Completed MCU, so update state */
639  BITREAD_SAVE_STATE(cinfo,entropy->bitstate);
640  ASSIGN_STATE(entropy->saved, state);
641  return TRUE;
642}
643
644
645LOCAL(boolean)
646decode_mcu_fast (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
647{
648  huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
649  BITREAD_STATE_VARS;
650  JOCTET *buffer;
651  int blkn;
652  savable_state state;
653  /* Outer loop handles each block in the MCU */
654
655  /* Load up working state */
656  BITREAD_LOAD_STATE(cinfo,entropy->bitstate);
657  buffer = (JOCTET *) br_state.next_input_byte;
658  ASSIGN_STATE(state, entropy->saved);
659
660  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
661    JBLOCKROW block = MCU_data[blkn];
662    d_derived_tbl * dctbl = entropy->dc_cur_tbls[blkn];
663    d_derived_tbl * actbl = entropy->ac_cur_tbls[blkn];
664    register int s, k, r, l;
665
666    HUFF_DECODE_FAST(s, l, dctbl);
667    if (s) {
668      FILL_BIT_BUFFER_FAST
669      r = GET_BITS(s);
670      s = HUFF_EXTEND(r, s);
671    }
672
673    if (entropy->dc_needed[blkn]) {
674      int ci = cinfo->MCU_membership[blkn];
675      s += state.last_dc_val[ci];
676      state.last_dc_val[ci] = s;
677      (*block)[0] = (JCOEF) s;
678    }
679
680    if (entropy->ac_needed[blkn]) {
681
682      for (k = 1; k < DCTSIZE2; k++) {
683        HUFF_DECODE_FAST(s, l, actbl);
684        r = s >> 4;
685        s &= 15;
686
687        if (s) {
688          k += r;
689          FILL_BIT_BUFFER_FAST
690          r = GET_BITS(s);
691          s = HUFF_EXTEND(r, s);
692          (*block)[jpeg_natural_order[k]] = (JCOEF) s;
693        } else {
694          if (r != 15) break;
695          k += 15;
696        }
697      }
698
699    } else {
700
701      for (k = 1; k < DCTSIZE2; k++) {
702        HUFF_DECODE_FAST(s, l, actbl);
703        r = s >> 4;
704        s &= 15;
705
706        if (s) {
707          k += r;
708          FILL_BIT_BUFFER_FAST
709          DROP_BITS(s);
710        } else {
711          if (r != 15) break;
712          k += 15;
713        }
714      }
715    }
716  }
717
718  if (cinfo->unread_marker != 0) {
719    cinfo->unread_marker = 0;
720    return FALSE;
721  }
722
723  br_state.bytes_in_buffer -= (buffer - br_state.next_input_byte);
724  br_state.next_input_byte = buffer;
725  BITREAD_SAVE_STATE(cinfo,entropy->bitstate);
726  ASSIGN_STATE(entropy->saved, state);
727  return TRUE;
728}
729
730
731/*
732 * Decode and return one MCU's worth of Huffman-compressed coefficients.
733 * The coefficients are reordered from zigzag order into natural array order,
734 * but are not dequantized.
735 *
736 * The i'th block of the MCU is stored into the block pointed to by
737 * MCU_data[i].  WE ASSUME THIS AREA HAS BEEN ZEROED BY THE CALLER.
738 * (Wholesale zeroing is usually a little faster than retail...)
739 *
740 * Returns FALSE if data source requested suspension.  In that case no
741 * changes have been made to permanent state.  (Exception: some output
742 * coefficients may already have been assigned.  This is harmless for
743 * this module, since we'll just re-assign them on the next call.)
744 */
745
746#define BUFSIZE (DCTSIZE2 * 2u)
747
748METHODDEF(boolean)
749decode_mcu (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
750{
751  huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
752  int usefast = 1;
753
754  /* Process restart marker if needed; may have to suspend */
755  if (cinfo->restart_interval) {
756    if (entropy->restarts_to_go == 0)
757      if (! process_restart(cinfo))
758	return FALSE;
759    usefast = 0;
760  }
761
762  if (cinfo->src->bytes_in_buffer < BUFSIZE * (size_t)cinfo->blocks_in_MCU
763    || cinfo->unread_marker != 0)
764    usefast = 0;
765
766  /* If we've run out of data, just leave the MCU set to zeroes.
767   * This way, we return uniform gray for the remainder of the segment.
768   */
769  if (! entropy->pub.insufficient_data) {
770
771    if (usefast) {
772      if (!decode_mcu_fast(cinfo, MCU_data)) goto use_slow;
773    }
774    else {
775      use_slow:
776      if (!decode_mcu_slow(cinfo, MCU_data)) return FALSE;
777    }
778
779  }
780
781  /* Account for restart interval (no-op if not using restarts) */
782  entropy->restarts_to_go--;
783
784  return TRUE;
785}
786
787
788/*
789 * Module initialization routine for Huffman entropy decoding.
790 */
791
792GLOBAL(void)
793jinit_huff_decoder (j_decompress_ptr cinfo)
794{
795  huff_entropy_ptr entropy;
796  int i;
797
798  entropy = (huff_entropy_ptr)
799    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
800				SIZEOF(huff_entropy_decoder));
801  cinfo->entropy = (struct jpeg_entropy_decoder *) entropy;
802  entropy->pub.start_pass = start_pass_huff_decoder;
803  entropy->pub.decode_mcu = decode_mcu;
804
805  /* Mark tables unallocated */
806  for (i = 0; i < NUM_HUFF_TBLS; i++) {
807    entropy->dc_derived_tbls[i] = entropy->ac_derived_tbls[i] = NULL;
808  }
809}
810