1f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org/*
2f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org** 2001 September 15
3f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org**
4f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org** The author disclaims copyright to this source code.  In place of
5f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org** a legal notice, here is a blessing:
6f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org**
7f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org**    May you do good and not evil.
8f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org**    May you find forgiveness for yourself and forgive others.
9f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org**    May you share freely, never taking more than you give.
10f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org**
11f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org*************************************************************************
12f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org** This file contains routines used for analyzing expressions and
13f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org** for generating VDBE code that evaluates expressions in SQLite.
14f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org*/
15f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org#include "sqliteInt.h"
16f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org
17f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org/*
18f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org** Return the 'affinity' of the expression pExpr if any.
19f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org**
20f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org** If pExpr is a column, a reference to a column via an 'AS' alias,
21f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org** or a sub-select with a column as the return value, then the
22f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org** affinity of that column is returned. Otherwise, 0x00 is returned,
23f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org** indicating no affinity for the expression.
24f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org**
25f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org** i.e. the WHERE clause expresssions in the following statements all
26f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org** have an affinity:
27f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org**
28f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org** CREATE TABLE t1(a);
29f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org** SELECT * FROM t1 WHERE a;
30f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org** SELECT a AS b FROM t1 WHERE b;
31f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org** SELECT * FROM t1 WHERE (select a from t1);
32f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org*/
33f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.orgchar sqlite3ExprAffinity(Expr *pExpr){
34f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org  int op = pExpr->op;
35f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org  if( op==TK_SELECT ){
36f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org    assert( pExpr->flags&EP_xIsSelect );
37f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org    return sqlite3ExprAffinity(pExpr->x.pSelect->pEList->a[0].pExpr);
38f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org  }
39f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org#ifndef SQLITE_OMIT_CAST
40f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org  if( op==TK_CAST ){
41f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org    assert( !ExprHasProperty(pExpr, EP_IntValue) );
42f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org    return sqlite3AffinityType(pExpr->u.zToken);
43f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org  }
44f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org#endif
45f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org  if( (op==TK_AGG_COLUMN || op==TK_COLUMN || op==TK_REGISTER)
46f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org   && pExpr->pTab!=0
47f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org  ){
48f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org    /* op==TK_REGISTER && pExpr->pTab!=0 happens when pExpr was originally
49f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org    ** a TK_COLUMN but was previously evaluated and cached in a register */
50f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org    int j = pExpr->iColumn;
51f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org    if( j<0 ) return SQLITE_AFF_INTEGER;
52f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org    assert( pExpr->pTab && j<pExpr->pTab->nCol );
53f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org    return pExpr->pTab->aCol[j].affinity;
54f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org  }
55f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org  return pExpr->affinity;
56f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org}
57f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org
58f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org/*
59f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org** Set the explicit collating sequence for an expression to the
60f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org** collating sequence supplied in the second argument.
61f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org*/
62f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.orgExpr *sqlite3ExprSetColl(Expr *pExpr, CollSeq *pColl){
63f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org  if( pExpr && pColl ){
64f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org    pExpr->pColl = pColl;
65f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org    pExpr->flags |= EP_ExpCollate;
66f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org  }
67f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org  return pExpr;
68f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org}
69f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org
70f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org/*
71f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org** Set the collating sequence for expression pExpr to be the collating
72f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org** sequence named by pToken.   Return a pointer to the revised expression.
73f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org** The collating sequence is marked as "explicit" using the EP_ExpCollate
74f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org** flag.  An explicit collating sequence will override implicit
75f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org** collating sequences.
76f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org*/
77f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.orgExpr *sqlite3ExprSetCollByToken(Parse *pParse, Expr *pExpr, Token *pCollName){
78f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org  char *zColl = 0;            /* Dequoted name of collation sequence */
79f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org  CollSeq *pColl;
80f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org  sqlite3 *db = pParse->db;
81f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org  zColl = sqlite3NameFromToken(db, pCollName);
82f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org  pColl = sqlite3LocateCollSeq(pParse, zColl);
83f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org  sqlite3ExprSetColl(pExpr, pColl);
84f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org  sqlite3DbFree(db, zColl);
85f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org  return pExpr;
86f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org}
87f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org
88f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org/*
89f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org** Return the default collation sequence for the expression pExpr. If
90f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org** there is no default collation type, return 0.
91f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org*/
92f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.orgCollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr){
93f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org  CollSeq *pColl = 0;
94f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org  Expr *p = pExpr;
95f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org  while( p ){
96f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org    int op;
97f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org    pColl = p->pColl;
98f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org    if( pColl ) break;
99f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org    op = p->op;
100f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org    if( p->pTab!=0 && (
101f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org        op==TK_AGG_COLUMN || op==TK_COLUMN || op==TK_REGISTER || op==TK_TRIGGER
102f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org    )){
103f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org      /* op==TK_REGISTER && p->pTab!=0 happens when pExpr was originally
104f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org      ** a TK_COLUMN but was previously evaluated and cached in a register */
105f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org      const char *zColl;
106f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org      int j = p->iColumn;
107f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org      if( j>=0 ){
108f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org        sqlite3 *db = pParse->db;
109f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org        zColl = p->pTab->aCol[j].zColl;
110f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org        pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0);
111f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org        pExpr->pColl = pColl;
112f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org      }
113f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org      break;
114f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org    }
115f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org    if( op!=TK_CAST && op!=TK_UPLUS ){
116f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org      break;
117f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org    }
118f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org    p = p->pLeft;
119f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org  }
120f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org  if( sqlite3CheckCollSeq(pParse, pColl) ){
121f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org    pColl = 0;
122f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org  }
123f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org  return pColl;
124f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org}
125f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org
126f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org/*
127f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org** pExpr is an operand of a comparison operator.  aff2 is the
128f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org** type affinity of the other operand.  This routine returns the
129f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org** type affinity that should be used for the comparison operator.
130f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org*/
131f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.orgchar sqlite3CompareAffinity(Expr *pExpr, char aff2){
132f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org  char aff1 = sqlite3ExprAffinity(pExpr);
133f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org  if( aff1 && aff2 ){
134f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org    /* Both sides of the comparison are columns. If one has numeric
135f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org    ** affinity, use that. Otherwise use no affinity.
136f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org    */
137f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org    if( sqlite3IsNumericAffinity(aff1) || sqlite3IsNumericAffinity(aff2) ){
138f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org      return SQLITE_AFF_NUMERIC;
139f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org    }else{
140f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org      return SQLITE_AFF_NONE;
141f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org    }
142f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org  }else if( !aff1 && !aff2 ){
143f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org    /* Neither side of the comparison is a column.  Compare the
144f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org    ** results directly.
145f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org    */
146f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org    return SQLITE_AFF_NONE;
147f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org  }else{
148f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org    /* One side is a column, the other is not. Use the columns affinity. */
149f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org    assert( aff1==0 || aff2==0 );
150f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org    return (aff1 + aff2);
151f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org  }
152f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org}
153f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org
154f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org/*
155f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org** pExpr is a comparison operator.  Return the type affinity that should
156f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org** be applied to both operands prior to doing the comparison.
157f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org*/
158f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.orgstatic char comparisonAffinity(Expr *pExpr){
159f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org  char aff;
160f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org  assert( pExpr->op==TK_EQ || pExpr->op==TK_IN || pExpr->op==TK_LT ||
161f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org          pExpr->op==TK_GT || pExpr->op==TK_GE || pExpr->op==TK_LE ||
162f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org          pExpr->op==TK_NE || pExpr->op==TK_IS || pExpr->op==TK_ISNOT );
163f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org  assert( pExpr->pLeft );
164f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org  aff = sqlite3ExprAffinity(pExpr->pLeft);
165f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org  if( pExpr->pRight ){
166f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org    aff = sqlite3CompareAffinity(pExpr->pRight, aff);
167f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org  }else if( ExprHasProperty(pExpr, EP_xIsSelect) ){
168f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org    aff = sqlite3CompareAffinity(pExpr->x.pSelect->pEList->a[0].pExpr, aff);
169f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org  }else if( !aff ){
170f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org    aff = SQLITE_AFF_NONE;
171f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org  }
172f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org  return aff;
173f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org}
174f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org
175f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org/*
176f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org** pExpr is a comparison expression, eg. '=', '<', IN(...) etc.
177f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org** idx_affinity is the affinity of an indexed column. Return true
178f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org** if the index with affinity idx_affinity may be used to implement
179f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org** the comparison in pExpr.
180f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org*/
181f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.orgint sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity){
182f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org  char aff = comparisonAffinity(pExpr);
183f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org  switch( aff ){
184f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org    case SQLITE_AFF_NONE:
185f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org      return 1;
186f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org    case SQLITE_AFF_TEXT:
187f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org      return idx_affinity==SQLITE_AFF_TEXT;
188f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org    default:
189f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org      return sqlite3IsNumericAffinity(idx_affinity);
190f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org  }
191f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org}
192f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org
193f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org/*
194f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org** Return the P5 value that should be used for a binary comparison
195f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org** opcode (OP_Eq, OP_Ge etc.) used to compare pExpr1 and pExpr2.
196f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org*/
197f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.orgstatic u8 binaryCompareP5(Expr *pExpr1, Expr *pExpr2, int jumpIfNull){
198f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org  u8 aff = (char)sqlite3ExprAffinity(pExpr2);
199f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org  aff = (u8)sqlite3CompareAffinity(pExpr1, aff) | (u8)jumpIfNull;
200f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org  return aff;
201f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org}
202f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org
203f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org/*
204f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org** Return a pointer to the collation sequence that should be used by
205f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org** a binary comparison operator comparing pLeft and pRight.
206f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org**
207f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org** If the left hand expression has a collating sequence type, then it is
208f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org** used. Otherwise the collation sequence for the right hand expression
209f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org** is used, or the default (BINARY) if neither expression has a collating
210f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org** type.
211f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org**
212f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org** Argument pRight (but not pLeft) may be a null pointer. In this case,
213f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org** it is not considered.
214f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org*/
215f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.orgCollSeq *sqlite3BinaryCompareCollSeq(
216f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org  Parse *pParse,
217f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org  Expr *pLeft,
218f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org  Expr *pRight
219f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org){
220f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org  CollSeq *pColl;
221f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org  assert( pLeft );
222f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org  if( pLeft->flags & EP_ExpCollate ){
223f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org    assert( pLeft->pColl );
224f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org    pColl = pLeft->pColl;
225f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org  }else if( pRight && pRight->flags & EP_ExpCollate ){
226f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org    assert( pRight->pColl );
227f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org    pColl = pRight->pColl;
228f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org  }else{
229f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org    pColl = sqlite3ExprCollSeq(pParse, pLeft);
230f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org    if( !pColl ){
231f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org      pColl = sqlite3ExprCollSeq(pParse, pRight);
232f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org    }
233f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org  }
234f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org  return pColl;
235f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org}
236f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org
237f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org/*
238f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org** Generate code for a comparison operator.
239f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org*/
240f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.orgstatic int codeCompare(
241f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org  Parse *pParse,    /* The parsing (and code generating) context */
242f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org  Expr *pLeft,      /* The left operand */
243f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org  Expr *pRight,     /* The right operand */
244f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org  int opcode,       /* The comparison opcode */
245f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org  int in1, int in2, /* Register holding operands */
246f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org  int dest,         /* Jump here if true.  */
247f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org  int jumpIfNull    /* If true, jump if either operand is NULL */
248f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org){
249f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org  int p5;
250f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org  int addr;
251f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org  CollSeq *p4;
252f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org
253f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org  p4 = sqlite3BinaryCompareCollSeq(pParse, pLeft, pRight);
254f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org  p5 = binaryCompareP5(pLeft, pRight, jumpIfNull);
255f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org  addr = sqlite3VdbeAddOp4(pParse->pVdbe, opcode, in2, dest, in1,
256f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org                           (void*)p4, P4_COLLSEQ);
257f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org  sqlite3VdbeChangeP5(pParse->pVdbe, (u8)p5);
258f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org  return addr;
259f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org}
260f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org
261#if SQLITE_MAX_EXPR_DEPTH>0
262/*
263** Check that argument nHeight is less than or equal to the maximum
264** expression depth allowed. If it is not, leave an error message in
265** pParse.
266*/
267int sqlite3ExprCheckHeight(Parse *pParse, int nHeight){
268  int rc = SQLITE_OK;
269  int mxHeight = pParse->db->aLimit[SQLITE_LIMIT_EXPR_DEPTH];
270  if( nHeight>mxHeight ){
271    sqlite3ErrorMsg(pParse,
272       "Expression tree is too large (maximum depth %d)", mxHeight
273    );
274    rc = SQLITE_ERROR;
275  }
276  return rc;
277}
278
279/* The following three functions, heightOfExpr(), heightOfExprList()
280** and heightOfSelect(), are used to determine the maximum height
281** of any expression tree referenced by the structure passed as the
282** first argument.
283**
284** If this maximum height is greater than the current value pointed
285** to by pnHeight, the second parameter, then set *pnHeight to that
286** value.
287*/
288static void heightOfExpr(Expr *p, int *pnHeight){
289  if( p ){
290    if( p->nHeight>*pnHeight ){
291      *pnHeight = p->nHeight;
292    }
293  }
294}
295static void heightOfExprList(ExprList *p, int *pnHeight){
296  if( p ){
297    int i;
298    for(i=0; i<p->nExpr; i++){
299      heightOfExpr(p->a[i].pExpr, pnHeight);
300    }
301  }
302}
303static void heightOfSelect(Select *p, int *pnHeight){
304  if( p ){
305    heightOfExpr(p->pWhere, pnHeight);
306    heightOfExpr(p->pHaving, pnHeight);
307    heightOfExpr(p->pLimit, pnHeight);
308    heightOfExpr(p->pOffset, pnHeight);
309    heightOfExprList(p->pEList, pnHeight);
310    heightOfExprList(p->pGroupBy, pnHeight);
311    heightOfExprList(p->pOrderBy, pnHeight);
312    heightOfSelect(p->pPrior, pnHeight);
313  }
314}
315
316/*
317** Set the Expr.nHeight variable in the structure passed as an
318** argument. An expression with no children, Expr.pList or
319** Expr.pSelect member has a height of 1. Any other expression
320** has a height equal to the maximum height of any other
321** referenced Expr plus one.
322*/
323static void exprSetHeight(Expr *p){
324  int nHeight = 0;
325  heightOfExpr(p->pLeft, &nHeight);
326  heightOfExpr(p->pRight, &nHeight);
327  if( ExprHasProperty(p, EP_xIsSelect) ){
328    heightOfSelect(p->x.pSelect, &nHeight);
329  }else{
330    heightOfExprList(p->x.pList, &nHeight);
331  }
332  p->nHeight = nHeight + 1;
333}
334
335/*
336** Set the Expr.nHeight variable using the exprSetHeight() function. If
337** the height is greater than the maximum allowed expression depth,
338** leave an error in pParse.
339*/
340void sqlite3ExprSetHeight(Parse *pParse, Expr *p){
341  exprSetHeight(p);
342  sqlite3ExprCheckHeight(pParse, p->nHeight);
343}
344
345/*
346** Return the maximum height of any expression tree referenced
347** by the select statement passed as an argument.
348*/
349int sqlite3SelectExprHeight(Select *p){
350  int nHeight = 0;
351  heightOfSelect(p, &nHeight);
352  return nHeight;
353}
354#else
355  #define exprSetHeight(y)
356#endif /* SQLITE_MAX_EXPR_DEPTH>0 */
357
358/*
359** This routine is the core allocator for Expr nodes.
360**
361** Construct a new expression node and return a pointer to it.  Memory
362** for this node and for the pToken argument is a single allocation
363** obtained from sqlite3DbMalloc().  The calling function
364** is responsible for making sure the node eventually gets freed.
365**
366** If dequote is true, then the token (if it exists) is dequoted.
367** If dequote is false, no dequoting is performance.  The deQuote
368** parameter is ignored if pToken is NULL or if the token does not
369** appear to be quoted.  If the quotes were of the form "..." (double-quotes)
370** then the EP_DblQuoted flag is set on the expression node.
371**
372** Special case:  If op==TK_INTEGER and pToken points to a string that
373** can be translated into a 32-bit integer, then the token is not
374** stored in u.zToken.  Instead, the integer values is written
375** into u.iValue and the EP_IntValue flag is set.  No extra storage
376** is allocated to hold the integer text and the dequote flag is ignored.
377*/
378Expr *sqlite3ExprAlloc(
379  sqlite3 *db,            /* Handle for sqlite3DbMallocZero() (may be null) */
380  int op,                 /* Expression opcode */
381  const Token *pToken,    /* Token argument.  Might be NULL */
382  int dequote             /* True to dequote */
383){
384  Expr *pNew;
385  int nExtra = 0;
386  int iValue = 0;
387
388  if( pToken ){
389    if( op!=TK_INTEGER || pToken->z==0
390          || sqlite3GetInt32(pToken->z, &iValue)==0 ){
391      nExtra = pToken->n+1;
392      assert( iValue>=0 );
393    }
394  }
395  pNew = sqlite3DbMallocZero(db, sizeof(Expr)+nExtra);
396  if( pNew ){
397    pNew->op = (u8)op;
398    pNew->iAgg = -1;
399    if( pToken ){
400      if( nExtra==0 ){
401        pNew->flags |= EP_IntValue;
402        pNew->u.iValue = iValue;
403      }else{
404        int c;
405        pNew->u.zToken = (char*)&pNew[1];
406        memcpy(pNew->u.zToken, pToken->z, pToken->n);
407        pNew->u.zToken[pToken->n] = 0;
408        if( dequote && nExtra>=3
409             && ((c = pToken->z[0])=='\'' || c=='"' || c=='[' || c=='`') ){
410          sqlite3Dequote(pNew->u.zToken);
411          if( c=='"' ) pNew->flags |= EP_DblQuoted;
412        }
413      }
414    }
415#if SQLITE_MAX_EXPR_DEPTH>0
416    pNew->nHeight = 1;
417#endif
418  }
419  return pNew;
420}
421
422/*
423** Allocate a new expression node from a zero-terminated token that has
424** already been dequoted.
425*/
426Expr *sqlite3Expr(
427  sqlite3 *db,            /* Handle for sqlite3DbMallocZero() (may be null) */
428  int op,                 /* Expression opcode */
429  const char *zToken      /* Token argument.  Might be NULL */
430){
431  Token x;
432  x.z = zToken;
433  x.n = zToken ? sqlite3Strlen30(zToken) : 0;
434  return sqlite3ExprAlloc(db, op, &x, 0);
435}
436
437/*
438** Attach subtrees pLeft and pRight to the Expr node pRoot.
439**
440** If pRoot==NULL that means that a memory allocation error has occurred.
441** In that case, delete the subtrees pLeft and pRight.
442*/
443void sqlite3ExprAttachSubtrees(
444  sqlite3 *db,
445  Expr *pRoot,
446  Expr *pLeft,
447  Expr *pRight
448){
449  if( pRoot==0 ){
450    assert( db->mallocFailed );
451    sqlite3ExprDelete(db, pLeft);
452    sqlite3ExprDelete(db, pRight);
453  }else{
454    if( pRight ){
455      pRoot->pRight = pRight;
456      if( pRight->flags & EP_ExpCollate ){
457        pRoot->flags |= EP_ExpCollate;
458        pRoot->pColl = pRight->pColl;
459      }
460    }
461    if( pLeft ){
462      pRoot->pLeft = pLeft;
463      if( pLeft->flags & EP_ExpCollate ){
464        pRoot->flags |= EP_ExpCollate;
465        pRoot->pColl = pLeft->pColl;
466      }
467    }
468    exprSetHeight(pRoot);
469  }
470}
471
472/*
473** Allocate a Expr node which joins as many as two subtrees.
474**
475** One or both of the subtrees can be NULL.  Return a pointer to the new
476** Expr node.  Or, if an OOM error occurs, set pParse->db->mallocFailed,
477** free the subtrees and return NULL.
478*/
479Expr *sqlite3PExpr(
480  Parse *pParse,          /* Parsing context */
481  int op,                 /* Expression opcode */
482  Expr *pLeft,            /* Left operand */
483  Expr *pRight,           /* Right operand */
484  const Token *pToken     /* Argument token */
485){
486  Expr *p = sqlite3ExprAlloc(pParse->db, op, pToken, 1);
487  sqlite3ExprAttachSubtrees(pParse->db, p, pLeft, pRight);
488  if( p ) {
489    sqlite3ExprCheckHeight(pParse, p->nHeight);
490  }
491  return p;
492}
493
494/*
495** Join two expressions using an AND operator.  If either expression is
496** NULL, then just return the other expression.
497*/
498Expr *sqlite3ExprAnd(sqlite3 *db, Expr *pLeft, Expr *pRight){
499  if( pLeft==0 ){
500    return pRight;
501  }else if( pRight==0 ){
502    return pLeft;
503  }else{
504    Expr *pNew = sqlite3ExprAlloc(db, TK_AND, 0, 0);
505    sqlite3ExprAttachSubtrees(db, pNew, pLeft, pRight);
506    return pNew;
507  }
508}
509
510/*
511** Construct a new expression node for a function with multiple
512** arguments.
513*/
514Expr *sqlite3ExprFunction(Parse *pParse, ExprList *pList, Token *pToken){
515  Expr *pNew;
516  sqlite3 *db = pParse->db;
517  assert( pToken );
518  pNew = sqlite3ExprAlloc(db, TK_FUNCTION, pToken, 1);
519  if( pNew==0 ){
520    sqlite3ExprListDelete(db, pList); /* Avoid memory leak when malloc fails */
521    return 0;
522  }
523  pNew->x.pList = pList;
524  assert( !ExprHasProperty(pNew, EP_xIsSelect) );
525  sqlite3ExprSetHeight(pParse, pNew);
526  return pNew;
527}
528
529/*
530** Assign a variable number to an expression that encodes a wildcard
531** in the original SQL statement.
532**
533** Wildcards consisting of a single "?" are assigned the next sequential
534** variable number.
535**
536** Wildcards of the form "?nnn" are assigned the number "nnn".  We make
537** sure "nnn" is not too be to avoid a denial of service attack when
538** the SQL statement comes from an external source.
539**
540** Wildcards of the form ":aaa", "@aaa", or "$aaa" are assigned the same number
541** as the previous instance of the same wildcard.  Or if this is the first
542** instance of the wildcard, the next sequenial variable number is
543** assigned.
544*/
545void sqlite3ExprAssignVarNumber(Parse *pParse, Expr *pExpr){
546  sqlite3 *db = pParse->db;
547  const char *z;
548
549  if( pExpr==0 ) return;
550  assert( !ExprHasAnyProperty(pExpr, EP_IntValue|EP_Reduced|EP_TokenOnly) );
551  z = pExpr->u.zToken;
552  assert( z!=0 );
553  assert( z[0]!=0 );
554  if( z[1]==0 ){
555    /* Wildcard of the form "?".  Assign the next variable number */
556    assert( z[0]=='?' );
557    pExpr->iColumn = (ynVar)(++pParse->nVar);
558  }else if( z[0]=='?' ){
559    /* Wildcard of the form "?nnn".  Convert "nnn" to an integer and
560    ** use it as the variable number */
561    i64 i;
562    int bOk = 0==sqlite3Atoi64(&z[1], &i, sqlite3Strlen30(&z[1]), SQLITE_UTF8);
563    pExpr->iColumn = (ynVar)i;
564    testcase( i==0 );
565    testcase( i==1 );
566    testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]-1 );
567    testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] );
568    if( bOk==0 || i<1 || i>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){
569      sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d",
570          db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]);
571    }
572    if( i>pParse->nVar ){
573      pParse->nVar = (int)i;
574    }
575  }else{
576    /* Wildcards like ":aaa", "$aaa" or "@aaa".  Reuse the same variable
577    ** number as the prior appearance of the same name, or if the name
578    ** has never appeared before, reuse the same variable number
579    */
580    int i;
581    for(i=0; i<pParse->nVarExpr; i++){
582      Expr *pE = pParse->apVarExpr[i];
583      assert( pE!=0 );
584      if( strcmp(pE->u.zToken, z)==0 ){
585        pExpr->iColumn = pE->iColumn;
586        break;
587      }
588    }
589    if( i>=pParse->nVarExpr ){
590      pExpr->iColumn = (ynVar)(++pParse->nVar);
591      if( pParse->nVarExpr>=pParse->nVarExprAlloc-1 ){
592        pParse->nVarExprAlloc += pParse->nVarExprAlloc + 10;
593        pParse->apVarExpr =
594            sqlite3DbReallocOrFree(
595              db,
596              pParse->apVarExpr,
597              pParse->nVarExprAlloc*sizeof(pParse->apVarExpr[0])
598            );
599      }
600      if( !db->mallocFailed ){
601        assert( pParse->apVarExpr!=0 );
602        pParse->apVarExpr[pParse->nVarExpr++] = pExpr;
603      }
604    }
605  }
606  if( !pParse->nErr && pParse->nVar>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){
607    sqlite3ErrorMsg(pParse, "too many SQL variables");
608  }
609}
610
611/*
612** Recursively delete an expression tree.
613*/
614void sqlite3ExprDelete(sqlite3 *db, Expr *p){
615  if( p==0 ) return;
616  /* Sanity check: Assert that the IntValue is non-negative if it exists */
617  assert( !ExprHasProperty(p, EP_IntValue) || p->u.iValue>=0 );
618  if( !ExprHasAnyProperty(p, EP_TokenOnly) ){
619    sqlite3ExprDelete(db, p->pLeft);
620    sqlite3ExprDelete(db, p->pRight);
621    if( !ExprHasProperty(p, EP_Reduced) && (p->flags2 & EP2_MallocedToken)!=0 ){
622      sqlite3DbFree(db, p->u.zToken);
623    }
624    if( ExprHasProperty(p, EP_xIsSelect) ){
625      sqlite3SelectDelete(db, p->x.pSelect);
626    }else{
627      sqlite3ExprListDelete(db, p->x.pList);
628    }
629  }
630  if( !ExprHasProperty(p, EP_Static) ){
631    sqlite3DbFree(db, p);
632  }
633}
634
635/*
636** Return the number of bytes allocated for the expression structure
637** passed as the first argument. This is always one of EXPR_FULLSIZE,
638** EXPR_REDUCEDSIZE or EXPR_TOKENONLYSIZE.
639*/
640static int exprStructSize(Expr *p){
641  if( ExprHasProperty(p, EP_TokenOnly) ) return EXPR_TOKENONLYSIZE;
642  if( ExprHasProperty(p, EP_Reduced) ) return EXPR_REDUCEDSIZE;
643  return EXPR_FULLSIZE;
644}
645
646/*
647** The dupedExpr*Size() routines each return the number of bytes required
648** to store a copy of an expression or expression tree.  They differ in
649** how much of the tree is measured.
650**
651**     dupedExprStructSize()     Size of only the Expr structure
652**     dupedExprNodeSize()       Size of Expr + space for token
653**     dupedExprSize()           Expr + token + subtree components
654**
655***************************************************************************
656**
657** The dupedExprStructSize() function returns two values OR-ed together:
658** (1) the space required for a copy of the Expr structure only and
659** (2) the EP_xxx flags that indicate what the structure size should be.
660** The return values is always one of:
661**
662**      EXPR_FULLSIZE
663**      EXPR_REDUCEDSIZE   | EP_Reduced
664**      EXPR_TOKENONLYSIZE | EP_TokenOnly
665**
666** The size of the structure can be found by masking the return value
667** of this routine with 0xfff.  The flags can be found by masking the
668** return value with EP_Reduced|EP_TokenOnly.
669**
670** Note that with flags==EXPRDUP_REDUCE, this routines works on full-size
671** (unreduced) Expr objects as they or originally constructed by the parser.
672** During expression analysis, extra information is computed and moved into
673** later parts of teh Expr object and that extra information might get chopped
674** off if the expression is reduced.  Note also that it does not work to
675** make a EXPRDUP_REDUCE copy of a reduced expression.  It is only legal
676** to reduce a pristine expression tree from the parser.  The implementation
677** of dupedExprStructSize() contain multiple assert() statements that attempt
678** to enforce this constraint.
679*/
680static int dupedExprStructSize(Expr *p, int flags){
681  int nSize;
682  assert( flags==EXPRDUP_REDUCE || flags==0 ); /* Only one flag value allowed */
683  if( 0==(flags&EXPRDUP_REDUCE) ){
684    nSize = EXPR_FULLSIZE;
685  }else{
686    assert( !ExprHasAnyProperty(p, EP_TokenOnly|EP_Reduced) );
687    assert( !ExprHasProperty(p, EP_FromJoin) );
688    assert( (p->flags2 & EP2_MallocedToken)==0 );
689    assert( (p->flags2 & EP2_Irreducible)==0 );
690    if( p->pLeft || p->pRight || p->pColl || p->x.pList ){
691      nSize = EXPR_REDUCEDSIZE | EP_Reduced;
692    }else{
693      nSize = EXPR_TOKENONLYSIZE | EP_TokenOnly;
694    }
695  }
696  return nSize;
697}
698
699/*
700** This function returns the space in bytes required to store the copy
701** of the Expr structure and a copy of the Expr.u.zToken string (if that
702** string is defined.)
703*/
704static int dupedExprNodeSize(Expr *p, int flags){
705  int nByte = dupedExprStructSize(p, flags) & 0xfff;
706  if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){
707    nByte += sqlite3Strlen30(p->u.zToken)+1;
708  }
709  return ROUND8(nByte);
710}
711
712/*
713** Return the number of bytes required to create a duplicate of the
714** expression passed as the first argument. The second argument is a
715** mask containing EXPRDUP_XXX flags.
716**
717** The value returned includes space to create a copy of the Expr struct
718** itself and the buffer referred to by Expr.u.zToken, if any.
719**
720** If the EXPRDUP_REDUCE flag is set, then the return value includes
721** space to duplicate all Expr nodes in the tree formed by Expr.pLeft
722** and Expr.pRight variables (but not for any structures pointed to or
723** descended from the Expr.x.pList or Expr.x.pSelect variables).
724*/
725static int dupedExprSize(Expr *p, int flags){
726  int nByte = 0;
727  if( p ){
728    nByte = dupedExprNodeSize(p, flags);
729    if( flags&EXPRDUP_REDUCE ){
730      nByte += dupedExprSize(p->pLeft, flags) + dupedExprSize(p->pRight, flags);
731    }
732  }
733  return nByte;
734}
735
736/*
737** This function is similar to sqlite3ExprDup(), except that if pzBuffer
738** is not NULL then *pzBuffer is assumed to point to a buffer large enough
739** to store the copy of expression p, the copies of p->u.zToken
740** (if applicable), and the copies of the p->pLeft and p->pRight expressions,
741** if any. Before returning, *pzBuffer is set to the first byte passed the
742** portion of the buffer copied into by this function.
743*/
744static Expr *exprDup(sqlite3 *db, Expr *p, int flags, u8 **pzBuffer){
745  Expr *pNew = 0;                      /* Value to return */
746  if( p ){
747    const int isReduced = (flags&EXPRDUP_REDUCE);
748    u8 *zAlloc;
749    u32 staticFlag = 0;
750
751    assert( pzBuffer==0 || isReduced );
752
753    /* Figure out where to write the new Expr structure. */
754    if( pzBuffer ){
755      zAlloc = *pzBuffer;
756      staticFlag = EP_Static;
757    }else{
758      zAlloc = sqlite3DbMallocRaw(db, dupedExprSize(p, flags));
759    }
760    pNew = (Expr *)zAlloc;
761
762    if( pNew ){
763      /* Set nNewSize to the size allocated for the structure pointed to
764      ** by pNew. This is either EXPR_FULLSIZE, EXPR_REDUCEDSIZE or
765      ** EXPR_TOKENONLYSIZE. nToken is set to the number of bytes consumed
766      ** by the copy of the p->u.zToken string (if any).
767      */
768      const unsigned nStructSize = dupedExprStructSize(p, flags);
769      const int nNewSize = nStructSize & 0xfff;
770      int nToken;
771      if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){
772        nToken = sqlite3Strlen30(p->u.zToken) + 1;
773      }else{
774        nToken = 0;
775      }
776      if( isReduced ){
777        assert( ExprHasProperty(p, EP_Reduced)==0 );
778        memcpy(zAlloc, p, nNewSize);
779      }else{
780        int nSize = exprStructSize(p);
781        memcpy(zAlloc, p, nSize);
782        if( EXPR_FULLSIZE>nSize ){
783          memset(&zAlloc[nSize], 0, EXPR_FULLSIZE-nSize);
784        }
785      }
786
787      /* Set the EP_Reduced, EP_TokenOnly, and EP_Static flags appropriately. */
788      pNew->flags &= ~(EP_Reduced|EP_TokenOnly|EP_Static);
789      pNew->flags |= nStructSize & (EP_Reduced|EP_TokenOnly);
790      pNew->flags |= staticFlag;
791
792      /* Copy the p->u.zToken string, if any. */
793      if( nToken ){
794        char *zToken = pNew->u.zToken = (char*)&zAlloc[nNewSize];
795        memcpy(zToken, p->u.zToken, nToken);
796      }
797
798      if( 0==((p->flags|pNew->flags) & EP_TokenOnly) ){
799        /* Fill in the pNew->x.pSelect or pNew->x.pList member. */
800        if( ExprHasProperty(p, EP_xIsSelect) ){
801          pNew->x.pSelect = sqlite3SelectDup(db, p->x.pSelect, isReduced);
802        }else{
803          pNew->x.pList = sqlite3ExprListDup(db, p->x.pList, isReduced);
804        }
805      }
806
807      /* Fill in pNew->pLeft and pNew->pRight. */
808      if( ExprHasAnyProperty(pNew, EP_Reduced|EP_TokenOnly) ){
809        zAlloc += dupedExprNodeSize(p, flags);
810        if( ExprHasProperty(pNew, EP_Reduced) ){
811          pNew->pLeft = exprDup(db, p->pLeft, EXPRDUP_REDUCE, &zAlloc);
812          pNew->pRight = exprDup(db, p->pRight, EXPRDUP_REDUCE, &zAlloc);
813        }
814        if( pzBuffer ){
815          *pzBuffer = zAlloc;
816        }
817      }else{
818        pNew->flags2 = 0;
819        if( !ExprHasAnyProperty(p, EP_TokenOnly) ){
820          pNew->pLeft = sqlite3ExprDup(db, p->pLeft, 0);
821          pNew->pRight = sqlite3ExprDup(db, p->pRight, 0);
822        }
823      }
824
825    }
826  }
827  return pNew;
828}
829
830/*
831** The following group of routines make deep copies of expressions,
832** expression lists, ID lists, and select statements.  The copies can
833** be deleted (by being passed to their respective ...Delete() routines)
834** without effecting the originals.
835**
836** The expression list, ID, and source lists return by sqlite3ExprListDup(),
837** sqlite3IdListDup(), and sqlite3SrcListDup() can not be further expanded
838** by subsequent calls to sqlite*ListAppend() routines.
839**
840** Any tables that the SrcList might point to are not duplicated.
841**
842** The flags parameter contains a combination of the EXPRDUP_XXX flags.
843** If the EXPRDUP_REDUCE flag is set, then the structure returned is a
844** truncated version of the usual Expr structure that will be stored as
845** part of the in-memory representation of the database schema.
846*/
847Expr *sqlite3ExprDup(sqlite3 *db, Expr *p, int flags){
848  return exprDup(db, p, flags, 0);
849}
850ExprList *sqlite3ExprListDup(sqlite3 *db, ExprList *p, int flags){
851  ExprList *pNew;
852  struct ExprList_item *pItem, *pOldItem;
853  int i;
854  if( p==0 ) return 0;
855  pNew = sqlite3DbMallocRaw(db, sizeof(*pNew) );
856  if( pNew==0 ) return 0;
857  pNew->iECursor = 0;
858  pNew->nExpr = pNew->nAlloc = p->nExpr;
859  pNew->a = pItem = sqlite3DbMallocRaw(db,  p->nExpr*sizeof(p->a[0]) );
860  if( pItem==0 ){
861    sqlite3DbFree(db, pNew);
862    return 0;
863  }
864  pOldItem = p->a;
865  for(i=0; i<p->nExpr; i++, pItem++, pOldItem++){
866    Expr *pOldExpr = pOldItem->pExpr;
867    pItem->pExpr = sqlite3ExprDup(db, pOldExpr, flags);
868    pItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
869    pItem->zSpan = sqlite3DbStrDup(db, pOldItem->zSpan);
870    pItem->sortOrder = pOldItem->sortOrder;
871    pItem->done = 0;
872    pItem->iCol = pOldItem->iCol;
873    pItem->iAlias = pOldItem->iAlias;
874  }
875  return pNew;
876}
877
878/*
879** If cursors, triggers, views and subqueries are all omitted from
880** the build, then none of the following routines, except for
881** sqlite3SelectDup(), can be called. sqlite3SelectDup() is sometimes
882** called with a NULL argument.
883*/
884#if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) \
885 || !defined(SQLITE_OMIT_SUBQUERY)
886SrcList *sqlite3SrcListDup(sqlite3 *db, SrcList *p, int flags){
887  SrcList *pNew;
888  int i;
889  int nByte;
890  if( p==0 ) return 0;
891  nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0);
892  pNew = sqlite3DbMallocRaw(db, nByte );
893  if( pNew==0 ) return 0;
894  pNew->nSrc = pNew->nAlloc = p->nSrc;
895  for(i=0; i<p->nSrc; i++){
896    struct SrcList_item *pNewItem = &pNew->a[i];
897    struct SrcList_item *pOldItem = &p->a[i];
898    Table *pTab;
899    pNewItem->zDatabase = sqlite3DbStrDup(db, pOldItem->zDatabase);
900    pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
901    pNewItem->zAlias = sqlite3DbStrDup(db, pOldItem->zAlias);
902    pNewItem->jointype = pOldItem->jointype;
903    pNewItem->iCursor = pOldItem->iCursor;
904    pNewItem->isPopulated = pOldItem->isPopulated;
905    pNewItem->zIndex = sqlite3DbStrDup(db, pOldItem->zIndex);
906    pNewItem->notIndexed = pOldItem->notIndexed;
907    pNewItem->pIndex = pOldItem->pIndex;
908    pTab = pNewItem->pTab = pOldItem->pTab;
909    if( pTab ){
910      pTab->nRef++;
911    }
912    pNewItem->pSelect = sqlite3SelectDup(db, pOldItem->pSelect, flags);
913    pNewItem->pOn = sqlite3ExprDup(db, pOldItem->pOn, flags);
914    pNewItem->pUsing = sqlite3IdListDup(db, pOldItem->pUsing);
915    pNewItem->colUsed = pOldItem->colUsed;
916  }
917  return pNew;
918}
919IdList *sqlite3IdListDup(sqlite3 *db, IdList *p){
920  IdList *pNew;
921  int i;
922  if( p==0 ) return 0;
923  pNew = sqlite3DbMallocRaw(db, sizeof(*pNew) );
924  if( pNew==0 ) return 0;
925  pNew->nId = pNew->nAlloc = p->nId;
926  pNew->a = sqlite3DbMallocRaw(db, p->nId*sizeof(p->a[0]) );
927  if( pNew->a==0 ){
928    sqlite3DbFree(db, pNew);
929    return 0;
930  }
931  for(i=0; i<p->nId; i++){
932    struct IdList_item *pNewItem = &pNew->a[i];
933    struct IdList_item *pOldItem = &p->a[i];
934    pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
935    pNewItem->idx = pOldItem->idx;
936  }
937  return pNew;
938}
939Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){
940  Select *pNew;
941  if( p==0 ) return 0;
942  pNew = sqlite3DbMallocRaw(db, sizeof(*p) );
943  if( pNew==0 ) return 0;
944  pNew->pEList = sqlite3ExprListDup(db, p->pEList, flags);
945  pNew->pSrc = sqlite3SrcListDup(db, p->pSrc, flags);
946  pNew->pWhere = sqlite3ExprDup(db, p->pWhere, flags);
947  pNew->pGroupBy = sqlite3ExprListDup(db, p->pGroupBy, flags);
948  pNew->pHaving = sqlite3ExprDup(db, p->pHaving, flags);
949  pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy, flags);
950  pNew->op = p->op;
951  pNew->pPrior = sqlite3SelectDup(db, p->pPrior, flags);
952  pNew->pLimit = sqlite3ExprDup(db, p->pLimit, flags);
953  pNew->pOffset = sqlite3ExprDup(db, p->pOffset, flags);
954  pNew->iLimit = 0;
955  pNew->iOffset = 0;
956  pNew->selFlags = p->selFlags & ~SF_UsesEphemeral;
957  pNew->pRightmost = 0;
958  pNew->addrOpenEphm[0] = -1;
959  pNew->addrOpenEphm[1] = -1;
960  pNew->addrOpenEphm[2] = -1;
961  return pNew;
962}
963#else
964Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){
965  assert( p==0 );
966  return 0;
967}
968#endif
969
970
971/*
972** Add a new element to the end of an expression list.  If pList is
973** initially NULL, then create a new expression list.
974**
975** If a memory allocation error occurs, the entire list is freed and
976** NULL is returned.  If non-NULL is returned, then it is guaranteed
977** that the new entry was successfully appended.
978*/
979ExprList *sqlite3ExprListAppend(
980  Parse *pParse,          /* Parsing context */
981  ExprList *pList,        /* List to which to append. Might be NULL */
982  Expr *pExpr             /* Expression to be appended. Might be NULL */
983){
984  sqlite3 *db = pParse->db;
985  if( pList==0 ){
986    pList = sqlite3DbMallocZero(db, sizeof(ExprList) );
987    if( pList==0 ){
988      goto no_mem;
989    }
990    assert( pList->nAlloc==0 );
991  }
992  if( pList->nAlloc<=pList->nExpr ){
993    struct ExprList_item *a;
994    int n = pList->nAlloc*2 + 4;
995    a = sqlite3DbRealloc(db, pList->a, n*sizeof(pList->a[0]));
996    if( a==0 ){
997      goto no_mem;
998    }
999    pList->a = a;
1000    pList->nAlloc = sqlite3DbMallocSize(db, a)/sizeof(a[0]);
1001  }
1002  assert( pList->a!=0 );
1003  if( 1 ){
1004    struct ExprList_item *pItem = &pList->a[pList->nExpr++];
1005    memset(pItem, 0, sizeof(*pItem));
1006    pItem->pExpr = pExpr;
1007  }
1008  return pList;
1009
1010no_mem:
1011  /* Avoid leaking memory if malloc has failed. */
1012  sqlite3ExprDelete(db, pExpr);
1013  sqlite3ExprListDelete(db, pList);
1014  return 0;
1015}
1016
1017/*
1018** Set the ExprList.a[].zName element of the most recently added item
1019** on the expression list.
1020**
1021** pList might be NULL following an OOM error.  But pName should never be
1022** NULL.  If a memory allocation fails, the pParse->db->mallocFailed flag
1023** is set.
1024*/
1025void sqlite3ExprListSetName(
1026  Parse *pParse,          /* Parsing context */
1027  ExprList *pList,        /* List to which to add the span. */
1028  Token *pName,           /* Name to be added */
1029  int dequote             /* True to cause the name to be dequoted */
1030){
1031  assert( pList!=0 || pParse->db->mallocFailed!=0 );
1032  if( pList ){
1033    struct ExprList_item *pItem;
1034    assert( pList->nExpr>0 );
1035    pItem = &pList->a[pList->nExpr-1];
1036    assert( pItem->zName==0 );
1037    pItem->zName = sqlite3DbStrNDup(pParse->db, pName->z, pName->n);
1038    if( dequote && pItem->zName ) sqlite3Dequote(pItem->zName);
1039  }
1040}
1041
1042/*
1043** Set the ExprList.a[].zSpan element of the most recently added item
1044** on the expression list.
1045**
1046** pList might be NULL following an OOM error.  But pSpan should never be
1047** NULL.  If a memory allocation fails, the pParse->db->mallocFailed flag
1048** is set.
1049*/
1050void sqlite3ExprListSetSpan(
1051  Parse *pParse,          /* Parsing context */
1052  ExprList *pList,        /* List to which to add the span. */
1053  ExprSpan *pSpan         /* The span to be added */
1054){
1055  sqlite3 *db = pParse->db;
1056  assert( pList!=0 || db->mallocFailed!=0 );
1057  if( pList ){
1058    struct ExprList_item *pItem = &pList->a[pList->nExpr-1];
1059    assert( pList->nExpr>0 );
1060    assert( db->mallocFailed || pItem->pExpr==pSpan->pExpr );
1061    sqlite3DbFree(db, pItem->zSpan);
1062    pItem->zSpan = sqlite3DbStrNDup(db, (char*)pSpan->zStart,
1063                                    (int)(pSpan->zEnd - pSpan->zStart));
1064  }
1065}
1066
1067/*
1068** If the expression list pEList contains more than iLimit elements,
1069** leave an error message in pParse.
1070*/
1071void sqlite3ExprListCheckLength(
1072  Parse *pParse,
1073  ExprList *pEList,
1074  const char *zObject
1075){
1076  int mx = pParse->db->aLimit[SQLITE_LIMIT_COLUMN];
1077  testcase( pEList && pEList->nExpr==mx );
1078  testcase( pEList && pEList->nExpr==mx+1 );
1079  if( pEList && pEList->nExpr>mx ){
1080    sqlite3ErrorMsg(pParse, "too many columns in %s", zObject);
1081  }
1082}
1083
1084/*
1085** Delete an entire expression list.
1086*/
1087void sqlite3ExprListDelete(sqlite3 *db, ExprList *pList){
1088  int i;
1089  struct ExprList_item *pItem;
1090  if( pList==0 ) return;
1091  assert( pList->a!=0 || (pList->nExpr==0 && pList->nAlloc==0) );
1092  assert( pList->nExpr<=pList->nAlloc );
1093  for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){
1094    sqlite3ExprDelete(db, pItem->pExpr);
1095    sqlite3DbFree(db, pItem->zName);
1096    sqlite3DbFree(db, pItem->zSpan);
1097  }
1098  sqlite3DbFree(db, pList->a);
1099  sqlite3DbFree(db, pList);
1100}
1101
1102/*
1103** These routines are Walker callbacks.  Walker.u.pi is a pointer
1104** to an integer.  These routines are checking an expression to see
1105** if it is a constant.  Set *Walker.u.pi to 0 if the expression is
1106** not constant.
1107**
1108** These callback routines are used to implement the following:
1109**
1110**     sqlite3ExprIsConstant()
1111**     sqlite3ExprIsConstantNotJoin()
1112**     sqlite3ExprIsConstantOrFunction()
1113**
1114*/
1115static int exprNodeIsConstant(Walker *pWalker, Expr *pExpr){
1116
1117  /* If pWalker->u.i is 3 then any term of the expression that comes from
1118  ** the ON or USING clauses of a join disqualifies the expression
1119  ** from being considered constant. */
1120  if( pWalker->u.i==3 && ExprHasAnyProperty(pExpr, EP_FromJoin) ){
1121    pWalker->u.i = 0;
1122    return WRC_Abort;
1123  }
1124
1125  switch( pExpr->op ){
1126    /* Consider functions to be constant if all their arguments are constant
1127    ** and pWalker->u.i==2 */
1128    case TK_FUNCTION:
1129      if( pWalker->u.i==2 ) return 0;
1130      /* Fall through */
1131    case TK_ID:
1132    case TK_COLUMN:
1133    case TK_AGG_FUNCTION:
1134    case TK_AGG_COLUMN:
1135      testcase( pExpr->op==TK_ID );
1136      testcase( pExpr->op==TK_COLUMN );
1137      testcase( pExpr->op==TK_AGG_FUNCTION );
1138      testcase( pExpr->op==TK_AGG_COLUMN );
1139      pWalker->u.i = 0;
1140      return WRC_Abort;
1141    default:
1142      testcase( pExpr->op==TK_SELECT ); /* selectNodeIsConstant will disallow */
1143      testcase( pExpr->op==TK_EXISTS ); /* selectNodeIsConstant will disallow */
1144      return WRC_Continue;
1145  }
1146}
1147static int selectNodeIsConstant(Walker *pWalker, Select *NotUsed){
1148  UNUSED_PARAMETER(NotUsed);
1149  pWalker->u.i = 0;
1150  return WRC_Abort;
1151}
1152static int exprIsConst(Expr *p, int initFlag){
1153  Walker w;
1154  w.u.i = initFlag;
1155  w.xExprCallback = exprNodeIsConstant;
1156  w.xSelectCallback = selectNodeIsConstant;
1157  sqlite3WalkExpr(&w, p);
1158  return w.u.i;
1159}
1160
1161/*
1162** Walk an expression tree.  Return 1 if the expression is constant
1163** and 0 if it involves variables or function calls.
1164**
1165** For the purposes of this function, a double-quoted string (ex: "abc")
1166** is considered a variable but a single-quoted string (ex: 'abc') is
1167** a constant.
1168*/
1169int sqlite3ExprIsConstant(Expr *p){
1170  return exprIsConst(p, 1);
1171}
1172
1173/*
1174** Walk an expression tree.  Return 1 if the expression is constant
1175** that does no originate from the ON or USING clauses of a join.
1176** Return 0 if it involves variables or function calls or terms from
1177** an ON or USING clause.
1178*/
1179int sqlite3ExprIsConstantNotJoin(Expr *p){
1180  return exprIsConst(p, 3);
1181}
1182
1183/*
1184** Walk an expression tree.  Return 1 if the expression is constant
1185** or a function call with constant arguments.  Return and 0 if there
1186** are any variables.
1187**
1188** For the purposes of this function, a double-quoted string (ex: "abc")
1189** is considered a variable but a single-quoted string (ex: 'abc') is
1190** a constant.
1191*/
1192int sqlite3ExprIsConstantOrFunction(Expr *p){
1193  return exprIsConst(p, 2);
1194}
1195
1196/*
1197** If the expression p codes a constant integer that is small enough
1198** to fit in a 32-bit integer, return 1 and put the value of the integer
1199** in *pValue.  If the expression is not an integer or if it is too big
1200** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged.
1201*/
1202int sqlite3ExprIsInteger(Expr *p, int *pValue){
1203  int rc = 0;
1204
1205  /* If an expression is an integer literal that fits in a signed 32-bit
1206  ** integer, then the EP_IntValue flag will have already been set */
1207  assert( p->op!=TK_INTEGER || (p->flags & EP_IntValue)!=0
1208           || sqlite3GetInt32(p->u.zToken, &rc)==0 );
1209
1210  if( p->flags & EP_IntValue ){
1211    *pValue = p->u.iValue;
1212    return 1;
1213  }
1214  switch( p->op ){
1215    case TK_UPLUS: {
1216      rc = sqlite3ExprIsInteger(p->pLeft, pValue);
1217      break;
1218    }
1219    case TK_UMINUS: {
1220      int v;
1221      if( sqlite3ExprIsInteger(p->pLeft, &v) ){
1222        *pValue = -v;
1223        rc = 1;
1224      }
1225      break;
1226    }
1227    default: break;
1228  }
1229  return rc;
1230}
1231
1232/*
1233** Return FALSE if there is no chance that the expression can be NULL.
1234**
1235** If the expression might be NULL or if the expression is too complex
1236** to tell return TRUE.
1237**
1238** This routine is used as an optimization, to skip OP_IsNull opcodes
1239** when we know that a value cannot be NULL.  Hence, a false positive
1240** (returning TRUE when in fact the expression can never be NULL) might
1241** be a small performance hit but is otherwise harmless.  On the other
1242** hand, a false negative (returning FALSE when the result could be NULL)
1243** will likely result in an incorrect answer.  So when in doubt, return
1244** TRUE.
1245*/
1246int sqlite3ExprCanBeNull(const Expr *p){
1247  u8 op;
1248  while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ p = p->pLeft; }
1249  op = p->op;
1250  if( op==TK_REGISTER ) op = p->op2;
1251  switch( op ){
1252    case TK_INTEGER:
1253    case TK_STRING:
1254    case TK_FLOAT:
1255    case TK_BLOB:
1256      return 0;
1257    default:
1258      return 1;
1259  }
1260}
1261
1262/*
1263** Generate an OP_IsNull instruction that tests register iReg and jumps
1264** to location iDest if the value in iReg is NULL.  The value in iReg
1265** was computed by pExpr.  If we can look at pExpr at compile-time and
1266** determine that it can never generate a NULL, then the OP_IsNull operation
1267** can be omitted.
1268*/
1269void sqlite3ExprCodeIsNullJump(
1270  Vdbe *v,            /* The VDBE under construction */
1271  const Expr *pExpr,  /* Only generate OP_IsNull if this expr can be NULL */
1272  int iReg,           /* Test the value in this register for NULL */
1273  int iDest           /* Jump here if the value is null */
1274){
1275  if( sqlite3ExprCanBeNull(pExpr) ){
1276    sqlite3VdbeAddOp2(v, OP_IsNull, iReg, iDest);
1277  }
1278}
1279
1280/*
1281** Return TRUE if the given expression is a constant which would be
1282** unchanged by OP_Affinity with the affinity given in the second
1283** argument.
1284**
1285** This routine is used to determine if the OP_Affinity operation
1286** can be omitted.  When in doubt return FALSE.  A false negative
1287** is harmless.  A false positive, however, can result in the wrong
1288** answer.
1289*/
1290int sqlite3ExprNeedsNoAffinityChange(const Expr *p, char aff){
1291  u8 op;
1292  if( aff==SQLITE_AFF_NONE ) return 1;
1293  while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ p = p->pLeft; }
1294  op = p->op;
1295  if( op==TK_REGISTER ) op = p->op2;
1296  switch( op ){
1297    case TK_INTEGER: {
1298      return aff==SQLITE_AFF_INTEGER || aff==SQLITE_AFF_NUMERIC;
1299    }
1300    case TK_FLOAT: {
1301      return aff==SQLITE_AFF_REAL || aff==SQLITE_AFF_NUMERIC;
1302    }
1303    case TK_STRING: {
1304      return aff==SQLITE_AFF_TEXT;
1305    }
1306    case TK_BLOB: {
1307      return 1;
1308    }
1309    case TK_COLUMN: {
1310      assert( p->iTable>=0 );  /* p cannot be part of a CHECK constraint */
1311      return p->iColumn<0
1312          && (aff==SQLITE_AFF_INTEGER || aff==SQLITE_AFF_NUMERIC);
1313    }
1314    default: {
1315      return 0;
1316    }
1317  }
1318}
1319
1320/*
1321** Return TRUE if the given string is a row-id column name.
1322*/
1323int sqlite3IsRowid(const char *z){
1324  if( sqlite3StrICmp(z, "_ROWID_")==0 ) return 1;
1325  if( sqlite3StrICmp(z, "ROWID")==0 ) return 1;
1326  if( sqlite3StrICmp(z, "OID")==0 ) return 1;
1327  return 0;
1328}
1329
1330/*
1331** Return true if we are able to the IN operator optimization on a
1332** query of the form
1333**
1334**       x IN (SELECT ...)
1335**
1336** Where the SELECT... clause is as specified by the parameter to this
1337** routine.
1338**
1339** The Select object passed in has already been preprocessed and no
1340** errors have been found.
1341*/
1342#ifndef SQLITE_OMIT_SUBQUERY
1343static int isCandidateForInOpt(Select *p){
1344  SrcList *pSrc;
1345  ExprList *pEList;
1346  Table *pTab;
1347  if( p==0 ) return 0;                   /* right-hand side of IN is SELECT */
1348  if( p->pPrior ) return 0;              /* Not a compound SELECT */
1349  if( p->selFlags & (SF_Distinct|SF_Aggregate) ){
1350    testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct );
1351    testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate );
1352    return 0; /* No DISTINCT keyword and no aggregate functions */
1353  }
1354  assert( p->pGroupBy==0 );              /* Has no GROUP BY clause */
1355  if( p->pLimit ) return 0;              /* Has no LIMIT clause */
1356  assert( p->pOffset==0 );               /* No LIMIT means no OFFSET */
1357  if( p->pWhere ) return 0;              /* Has no WHERE clause */
1358  pSrc = p->pSrc;
1359  assert( pSrc!=0 );
1360  if( pSrc->nSrc!=1 ) return 0;          /* Single term in FROM clause */
1361  if( pSrc->a[0].pSelect ) return 0;     /* FROM is not a subquery or view */
1362  pTab = pSrc->a[0].pTab;
1363  if( NEVER(pTab==0) ) return 0;
1364  assert( pTab->pSelect==0 );            /* FROM clause is not a view */
1365  if( IsVirtual(pTab) ) return 0;        /* FROM clause not a virtual table */
1366  pEList = p->pEList;
1367  if( pEList->nExpr!=1 ) return 0;       /* One column in the result set */
1368  if( pEList->a[0].pExpr->op!=TK_COLUMN ) return 0; /* Result is a column */
1369  return 1;
1370}
1371#endif /* SQLITE_OMIT_SUBQUERY */
1372
1373/*
1374** This function is used by the implementation of the IN (...) operator.
1375** It's job is to find or create a b-tree structure that may be used
1376** either to test for membership of the (...) set or to iterate through
1377** its members, skipping duplicates.
1378**
1379** The index of the cursor opened on the b-tree (database table, database index
1380** or ephermal table) is stored in pX->iTable before this function returns.
1381** The returned value of this function indicates the b-tree type, as follows:
1382**
1383**   IN_INDEX_ROWID - The cursor was opened on a database table.
1384**   IN_INDEX_INDEX - The cursor was opened on a database index.
1385**   IN_INDEX_EPH -   The cursor was opened on a specially created and
1386**                    populated epheremal table.
1387**
1388** An existing b-tree may only be used if the SELECT is of the simple
1389** form:
1390**
1391**     SELECT <column> FROM <table>
1392**
1393** If the prNotFound parameter is 0, then the b-tree will be used to iterate
1394** through the set members, skipping any duplicates. In this case an
1395** epheremal table must be used unless the selected <column> is guaranteed
1396** to be unique - either because it is an INTEGER PRIMARY KEY or it
1397** has a UNIQUE constraint or UNIQUE index.
1398**
1399** If the prNotFound parameter is not 0, then the b-tree will be used
1400** for fast set membership tests. In this case an epheremal table must
1401** be used unless <column> is an INTEGER PRIMARY KEY or an index can
1402** be found with <column> as its left-most column.
1403**
1404** When the b-tree is being used for membership tests, the calling function
1405** needs to know whether or not the structure contains an SQL NULL
1406** value in order to correctly evaluate expressions like "X IN (Y, Z)".
1407** If there is any chance that the (...) might contain a NULL value at
1408** runtime, then a register is allocated and the register number written
1409** to *prNotFound. If there is no chance that the (...) contains a
1410** NULL value, then *prNotFound is left unchanged.
1411**
1412** If a register is allocated and its location stored in *prNotFound, then
1413** its initial value is NULL.  If the (...) does not remain constant
1414** for the duration of the query (i.e. the SELECT within the (...)
1415** is a correlated subquery) then the value of the allocated register is
1416** reset to NULL each time the subquery is rerun. This allows the
1417** caller to use vdbe code equivalent to the following:
1418**
1419**   if( register==NULL ){
1420**     has_null = <test if data structure contains null>
1421**     register = 1
1422**   }
1423**
1424** in order to avoid running the <test if data structure contains null>
1425** test more often than is necessary.
1426*/
1427#ifndef SQLITE_OMIT_SUBQUERY
1428int sqlite3FindInIndex(Parse *pParse, Expr *pX, int *prNotFound){
1429  Select *p;                            /* SELECT to the right of IN operator */
1430  int eType = 0;                        /* Type of RHS table. IN_INDEX_* */
1431  int iTab = pParse->nTab++;            /* Cursor of the RHS table */
1432  int mustBeUnique = (prNotFound==0);   /* True if RHS must be unique */
1433
1434  assert( pX->op==TK_IN );
1435
1436  /* Check to see if an existing table or index can be used to
1437  ** satisfy the query.  This is preferable to generating a new
1438  ** ephemeral table.
1439  */
1440  p = (ExprHasProperty(pX, EP_xIsSelect) ? pX->x.pSelect : 0);
1441  if( ALWAYS(pParse->nErr==0) && isCandidateForInOpt(p) ){
1442    sqlite3 *db = pParse->db;              /* Database connection */
1443    Expr *pExpr = p->pEList->a[0].pExpr;   /* Expression <column> */
1444    int iCol = pExpr->iColumn;             /* Index of column <column> */
1445    Vdbe *v = sqlite3GetVdbe(pParse);      /* Virtual machine being coded */
1446    Table *pTab = p->pSrc->a[0].pTab;      /* Table <table>. */
1447    int iDb;                               /* Database idx for pTab */
1448
1449    /* Code an OP_VerifyCookie and OP_TableLock for <table>. */
1450    iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
1451    sqlite3CodeVerifySchema(pParse, iDb);
1452    sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
1453
1454    /* This function is only called from two places. In both cases the vdbe
1455    ** has already been allocated. So assume sqlite3GetVdbe() is always
1456    ** successful here.
1457    */
1458    assert(v);
1459    if( iCol<0 ){
1460      int iMem = ++pParse->nMem;
1461      int iAddr;
1462
1463      iAddr = sqlite3VdbeAddOp1(v, OP_If, iMem);
1464      sqlite3VdbeAddOp2(v, OP_Integer, 1, iMem);
1465
1466      sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead);
1467      eType = IN_INDEX_ROWID;
1468
1469      sqlite3VdbeJumpHere(v, iAddr);
1470    }else{
1471      Index *pIdx;                         /* Iterator variable */
1472
1473      /* The collation sequence used by the comparison. If an index is to
1474      ** be used in place of a temp-table, it must be ordered according
1475      ** to this collation sequence.  */
1476      CollSeq *pReq = sqlite3BinaryCompareCollSeq(pParse, pX->pLeft, pExpr);
1477
1478      /* Check that the affinity that will be used to perform the
1479      ** comparison is the same as the affinity of the column. If
1480      ** it is not, it is not possible to use any index.
1481      */
1482      char aff = comparisonAffinity(pX);
1483      int affinity_ok = (pTab->aCol[iCol].affinity==aff||aff==SQLITE_AFF_NONE);
1484
1485      for(pIdx=pTab->pIndex; pIdx && eType==0 && affinity_ok; pIdx=pIdx->pNext){
1486        if( (pIdx->aiColumn[0]==iCol)
1487         && sqlite3FindCollSeq(db, ENC(db), pIdx->azColl[0], 0)==pReq
1488         && (!mustBeUnique || (pIdx->nColumn==1 && pIdx->onError!=OE_None))
1489        ){
1490          int iMem = ++pParse->nMem;
1491          int iAddr;
1492          char *pKey;
1493
1494          pKey = (char *)sqlite3IndexKeyinfo(pParse, pIdx);
1495          iAddr = sqlite3VdbeAddOp1(v, OP_If, iMem);
1496          sqlite3VdbeAddOp2(v, OP_Integer, 1, iMem);
1497
1498          sqlite3VdbeAddOp4(v, OP_OpenRead, iTab, pIdx->tnum, iDb,
1499                               pKey,P4_KEYINFO_HANDOFF);
1500          VdbeComment((v, "%s", pIdx->zName));
1501          eType = IN_INDEX_INDEX;
1502
1503          sqlite3VdbeJumpHere(v, iAddr);
1504          if( prNotFound && !pTab->aCol[iCol].notNull ){
1505            *prNotFound = ++pParse->nMem;
1506          }
1507        }
1508      }
1509    }
1510  }
1511
1512  if( eType==0 ){
1513    /* Could not found an existing table or index to use as the RHS b-tree.
1514    ** We will have to generate an ephemeral table to do the job.
1515    */
1516    double savedNQueryLoop = pParse->nQueryLoop;
1517    int rMayHaveNull = 0;
1518    eType = IN_INDEX_EPH;
1519    if( prNotFound ){
1520      *prNotFound = rMayHaveNull = ++pParse->nMem;
1521    }else{
1522      testcase( pParse->nQueryLoop>(double)1 );
1523      pParse->nQueryLoop = (double)1;
1524      if( pX->pLeft->iColumn<0 && !ExprHasAnyProperty(pX, EP_xIsSelect) ){
1525        eType = IN_INDEX_ROWID;
1526      }
1527    }
1528    sqlite3CodeSubselect(pParse, pX, rMayHaveNull, eType==IN_INDEX_ROWID);
1529    pParse->nQueryLoop = savedNQueryLoop;
1530  }else{
1531    pX->iTable = iTab;
1532  }
1533  return eType;
1534}
1535#endif
1536
1537/*
1538** Generate code for scalar subqueries used as a subquery expression, EXISTS,
1539** or IN operators.  Examples:
1540**
1541**     (SELECT a FROM b)          -- subquery
1542**     EXISTS (SELECT a FROM b)   -- EXISTS subquery
1543**     x IN (4,5,11)              -- IN operator with list on right-hand side
1544**     x IN (SELECT a FROM b)     -- IN operator with subquery on the right
1545**
1546** The pExpr parameter describes the expression that contains the IN
1547** operator or subquery.
1548**
1549** If parameter isRowid is non-zero, then expression pExpr is guaranteed
1550** to be of the form "<rowid> IN (?, ?, ?)", where <rowid> is a reference
1551** to some integer key column of a table B-Tree. In this case, use an
1552** intkey B-Tree to store the set of IN(...) values instead of the usual
1553** (slower) variable length keys B-Tree.
1554**
1555** If rMayHaveNull is non-zero, that means that the operation is an IN
1556** (not a SELECT or EXISTS) and that the RHS might contains NULLs.
1557** Furthermore, the IN is in a WHERE clause and that we really want
1558** to iterate over the RHS of the IN operator in order to quickly locate
1559** all corresponding LHS elements.  All this routine does is initialize
1560** the register given by rMayHaveNull to NULL.  Calling routines will take
1561** care of changing this register value to non-NULL if the RHS is NULL-free.
1562**
1563** If rMayHaveNull is zero, that means that the subquery is being used
1564** for membership testing only.  There is no need to initialize any
1565** registers to indicate the presense or absence of NULLs on the RHS.
1566**
1567** For a SELECT or EXISTS operator, return the register that holds the
1568** result.  For IN operators or if an error occurs, the return value is 0.
1569*/
1570#ifndef SQLITE_OMIT_SUBQUERY
1571int sqlite3CodeSubselect(
1572  Parse *pParse,          /* Parsing context */
1573  Expr *pExpr,            /* The IN, SELECT, or EXISTS operator */
1574  int rMayHaveNull,       /* Register that records whether NULLs exist in RHS */
1575  int isRowid             /* If true, LHS of IN operator is a rowid */
1576){
1577  int testAddr = 0;                       /* One-time test address */
1578  int rReg = 0;                           /* Register storing resulting */
1579  Vdbe *v = sqlite3GetVdbe(pParse);
1580  if( NEVER(v==0) ) return 0;
1581  sqlite3ExprCachePush(pParse);
1582
1583  /* This code must be run in its entirety every time it is encountered
1584  ** if any of the following is true:
1585  **
1586  **    *  The right-hand side is a correlated subquery
1587  **    *  The right-hand side is an expression list containing variables
1588  **    *  We are inside a trigger
1589  **
1590  ** If all of the above are false, then we can run this code just once
1591  ** save the results, and reuse the same result on subsequent invocations.
1592  */
1593  if( !ExprHasAnyProperty(pExpr, EP_VarSelect) && !pParse->pTriggerTab ){
1594    int mem = ++pParse->nMem;
1595    sqlite3VdbeAddOp1(v, OP_If, mem);
1596    testAddr = sqlite3VdbeAddOp2(v, OP_Integer, 1, mem);
1597    assert( testAddr>0 || pParse->db->mallocFailed );
1598  }
1599
1600#ifndef SQLITE_OMIT_EXPLAIN
1601  if( pParse->explain==2 ){
1602    char *zMsg = sqlite3MPrintf(
1603        pParse->db, "EXECUTE %s%s SUBQUERY %d", testAddr?"":"CORRELATED ",
1604        pExpr->op==TK_IN?"LIST":"SCALAR", pParse->iNextSelectId
1605    );
1606    sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC);
1607  }
1608#endif
1609
1610  switch( pExpr->op ){
1611    case TK_IN: {
1612      char affinity;              /* Affinity of the LHS of the IN */
1613      KeyInfo keyInfo;            /* Keyinfo for the generated table */
1614      int addr;                   /* Address of OP_OpenEphemeral instruction */
1615      Expr *pLeft = pExpr->pLeft; /* the LHS of the IN operator */
1616
1617      if( rMayHaveNull ){
1618        sqlite3VdbeAddOp2(v, OP_Null, 0, rMayHaveNull);
1619      }
1620
1621      affinity = sqlite3ExprAffinity(pLeft);
1622
1623      /* Whether this is an 'x IN(SELECT...)' or an 'x IN(<exprlist>)'
1624      ** expression it is handled the same way.  An ephemeral table is
1625      ** filled with single-field index keys representing the results
1626      ** from the SELECT or the <exprlist>.
1627      **
1628      ** If the 'x' expression is a column value, or the SELECT...
1629      ** statement returns a column value, then the affinity of that
1630      ** column is used to build the index keys. If both 'x' and the
1631      ** SELECT... statement are columns, then numeric affinity is used
1632      ** if either column has NUMERIC or INTEGER affinity. If neither
1633      ** 'x' nor the SELECT... statement are columns, then numeric affinity
1634      ** is used.
1635      */
1636      pExpr->iTable = pParse->nTab++;
1637      addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pExpr->iTable, !isRowid);
1638      if( rMayHaveNull==0 ) sqlite3VdbeChangeP5(v, BTREE_UNORDERED);
1639      memset(&keyInfo, 0, sizeof(keyInfo));
1640      keyInfo.nField = 1;
1641
1642      if( ExprHasProperty(pExpr, EP_xIsSelect) ){
1643        /* Case 1:     expr IN (SELECT ...)
1644        **
1645        ** Generate code to write the results of the select into the temporary
1646        ** table allocated and opened above.
1647        */
1648        SelectDest dest;
1649        ExprList *pEList;
1650
1651        assert( !isRowid );
1652        sqlite3SelectDestInit(&dest, SRT_Set, pExpr->iTable);
1653        dest.affinity = (u8)affinity;
1654        assert( (pExpr->iTable&0x0000FFFF)==pExpr->iTable );
1655        pExpr->x.pSelect->iLimit = 0;
1656        if( sqlite3Select(pParse, pExpr->x.pSelect, &dest) ){
1657          return 0;
1658        }
1659        pEList = pExpr->x.pSelect->pEList;
1660        if( ALWAYS(pEList!=0 && pEList->nExpr>0) ){
1661          keyInfo.aColl[0] = sqlite3BinaryCompareCollSeq(pParse, pExpr->pLeft,
1662              pEList->a[0].pExpr);
1663        }
1664      }else if( ALWAYS(pExpr->x.pList!=0) ){
1665        /* Case 2:     expr IN (exprlist)
1666        **
1667        ** For each expression, build an index key from the evaluation and
1668        ** store it in the temporary table. If <expr> is a column, then use
1669        ** that columns affinity when building index keys. If <expr> is not
1670        ** a column, use numeric affinity.
1671        */
1672        int i;
1673        ExprList *pList = pExpr->x.pList;
1674        struct ExprList_item *pItem;
1675        int r1, r2, r3;
1676
1677        if( !affinity ){
1678          affinity = SQLITE_AFF_NONE;
1679        }
1680        keyInfo.aColl[0] = sqlite3ExprCollSeq(pParse, pExpr->pLeft);
1681
1682        /* Loop through each expression in <exprlist>. */
1683        r1 = sqlite3GetTempReg(pParse);
1684        r2 = sqlite3GetTempReg(pParse);
1685        sqlite3VdbeAddOp2(v, OP_Null, 0, r2);
1686        for(i=pList->nExpr, pItem=pList->a; i>0; i--, pItem++){
1687          Expr *pE2 = pItem->pExpr;
1688          int iValToIns;
1689
1690          /* If the expression is not constant then we will need to
1691          ** disable the test that was generated above that makes sure
1692          ** this code only executes once.  Because for a non-constant
1693          ** expression we need to rerun this code each time.
1694          */
1695          if( testAddr && !sqlite3ExprIsConstant(pE2) ){
1696            sqlite3VdbeChangeToNoop(v, testAddr-1, 2);
1697            testAddr = 0;
1698          }
1699
1700          /* Evaluate the expression and insert it into the temp table */
1701          if( isRowid && sqlite3ExprIsInteger(pE2, &iValToIns) ){
1702            sqlite3VdbeAddOp3(v, OP_InsertInt, pExpr->iTable, r2, iValToIns);
1703          }else{
1704            r3 = sqlite3ExprCodeTarget(pParse, pE2, r1);
1705            if( isRowid ){
1706              sqlite3VdbeAddOp2(v, OP_MustBeInt, r3,
1707                                sqlite3VdbeCurrentAddr(v)+2);
1708              sqlite3VdbeAddOp3(v, OP_Insert, pExpr->iTable, r2, r3);
1709            }else{
1710              sqlite3VdbeAddOp4(v, OP_MakeRecord, r3, 1, r2, &affinity, 1);
1711              sqlite3ExprCacheAffinityChange(pParse, r3, 1);
1712              sqlite3VdbeAddOp2(v, OP_IdxInsert, pExpr->iTable, r2);
1713            }
1714          }
1715        }
1716        sqlite3ReleaseTempReg(pParse, r1);
1717        sqlite3ReleaseTempReg(pParse, r2);
1718      }
1719      if( !isRowid ){
1720        sqlite3VdbeChangeP4(v, addr, (void *)&keyInfo, P4_KEYINFO);
1721      }
1722      break;
1723    }
1724
1725    case TK_EXISTS:
1726    case TK_SELECT:
1727    default: {
1728      /* If this has to be a scalar SELECT.  Generate code to put the
1729      ** value of this select in a memory cell and record the number
1730      ** of the memory cell in iColumn.  If this is an EXISTS, write
1731      ** an integer 0 (not exists) or 1 (exists) into a memory cell
1732      ** and record that memory cell in iColumn.
1733      */
1734      Select *pSel;                         /* SELECT statement to encode */
1735      SelectDest dest;                      /* How to deal with SELECt result */
1736
1737      testcase( pExpr->op==TK_EXISTS );
1738      testcase( pExpr->op==TK_SELECT );
1739      assert( pExpr->op==TK_EXISTS || pExpr->op==TK_SELECT );
1740
1741      assert( ExprHasProperty(pExpr, EP_xIsSelect) );
1742      pSel = pExpr->x.pSelect;
1743      sqlite3SelectDestInit(&dest, 0, ++pParse->nMem);
1744      if( pExpr->op==TK_SELECT ){
1745        dest.eDest = SRT_Mem;
1746        sqlite3VdbeAddOp2(v, OP_Null, 0, dest.iParm);
1747        VdbeComment((v, "Init subquery result"));
1748      }else{
1749        dest.eDest = SRT_Exists;
1750        sqlite3VdbeAddOp2(v, OP_Integer, 0, dest.iParm);
1751        VdbeComment((v, "Init EXISTS result"));
1752      }
1753      sqlite3ExprDelete(pParse->db, pSel->pLimit);
1754      pSel->pLimit = sqlite3PExpr(pParse, TK_INTEGER, 0, 0,
1755                                  &sqlite3IntTokens[1]);
1756      pSel->iLimit = 0;
1757      if( sqlite3Select(pParse, pSel, &dest) ){
1758        return 0;
1759      }
1760      rReg = dest.iParm;
1761      ExprSetIrreducible(pExpr);
1762      break;
1763    }
1764  }
1765
1766  if( testAddr ){
1767    sqlite3VdbeJumpHere(v, testAddr-1);
1768  }
1769  sqlite3ExprCachePop(pParse, 1);
1770
1771  return rReg;
1772}
1773#endif /* SQLITE_OMIT_SUBQUERY */
1774
1775#ifndef SQLITE_OMIT_SUBQUERY
1776/*
1777** Generate code for an IN expression.
1778**
1779**      x IN (SELECT ...)
1780**      x IN (value, value, ...)
1781**
1782** The left-hand side (LHS) is a scalar expression.  The right-hand side (RHS)
1783** is an array of zero or more values.  The expression is true if the LHS is
1784** contained within the RHS.  The value of the expression is unknown (NULL)
1785** if the LHS is NULL or if the LHS is not contained within the RHS and the
1786** RHS contains one or more NULL values.
1787**
1788** This routine generates code will jump to destIfFalse if the LHS is not
1789** contained within the RHS.  If due to NULLs we cannot determine if the LHS
1790** is contained in the RHS then jump to destIfNull.  If the LHS is contained
1791** within the RHS then fall through.
1792*/
1793static void sqlite3ExprCodeIN(
1794  Parse *pParse,        /* Parsing and code generating context */
1795  Expr *pExpr,          /* The IN expression */
1796  int destIfFalse,      /* Jump here if LHS is not contained in the RHS */
1797  int destIfNull        /* Jump here if the results are unknown due to NULLs */
1798){
1799  int rRhsHasNull = 0;  /* Register that is true if RHS contains NULL values */
1800  char affinity;        /* Comparison affinity to use */
1801  int eType;            /* Type of the RHS */
1802  int r1;               /* Temporary use register */
1803  Vdbe *v;              /* Statement under construction */
1804
1805  /* Compute the RHS.   After this step, the table with cursor
1806  ** pExpr->iTable will contains the values that make up the RHS.
1807  */
1808  v = pParse->pVdbe;
1809  assert( v!=0 );       /* OOM detected prior to this routine */
1810  VdbeNoopComment((v, "begin IN expr"));
1811  eType = sqlite3FindInIndex(pParse, pExpr, &rRhsHasNull);
1812
1813  /* Figure out the affinity to use to create a key from the results
1814  ** of the expression. affinityStr stores a static string suitable for
1815  ** P4 of OP_MakeRecord.
1816  */
1817  affinity = comparisonAffinity(pExpr);
1818
1819  /* Code the LHS, the <expr> from "<expr> IN (...)".
1820  */
1821  sqlite3ExprCachePush(pParse);
1822  r1 = sqlite3GetTempReg(pParse);
1823  sqlite3ExprCode(pParse, pExpr->pLeft, r1);
1824
1825  /* If the LHS is NULL, then the result is either false or NULL depending
1826  ** on whether the RHS is empty or not, respectively.
1827  */
1828  if( destIfNull==destIfFalse ){
1829    /* Shortcut for the common case where the false and NULL outcomes are
1830    ** the same. */
1831    sqlite3VdbeAddOp2(v, OP_IsNull, r1, destIfNull);
1832  }else{
1833    int addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, r1);
1834    sqlite3VdbeAddOp2(v, OP_Rewind, pExpr->iTable, destIfFalse);
1835    sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfNull);
1836    sqlite3VdbeJumpHere(v, addr1);
1837  }
1838
1839  if( eType==IN_INDEX_ROWID ){
1840    /* In this case, the RHS is the ROWID of table b-tree
1841    */
1842    sqlite3VdbeAddOp2(v, OP_MustBeInt, r1, destIfFalse);
1843    sqlite3VdbeAddOp3(v, OP_NotExists, pExpr->iTable, destIfFalse, r1);
1844  }else{
1845    /* In this case, the RHS is an index b-tree.
1846    */
1847    sqlite3VdbeAddOp4(v, OP_Affinity, r1, 1, 0, &affinity, 1);
1848
1849    /* If the set membership test fails, then the result of the
1850    ** "x IN (...)" expression must be either 0 or NULL. If the set
1851    ** contains no NULL values, then the result is 0. If the set
1852    ** contains one or more NULL values, then the result of the
1853    ** expression is also NULL.
1854    */
1855    if( rRhsHasNull==0 || destIfFalse==destIfNull ){
1856      /* This branch runs if it is known at compile time that the RHS
1857      ** cannot contain NULL values. This happens as the result
1858      ** of a "NOT NULL" constraint in the database schema.
1859      **
1860      ** Also run this branch if NULL is equivalent to FALSE
1861      ** for this particular IN operator.
1862      */
1863      sqlite3VdbeAddOp4Int(v, OP_NotFound, pExpr->iTable, destIfFalse, r1, 1);
1864
1865    }else{
1866      /* In this branch, the RHS of the IN might contain a NULL and
1867      ** the presence of a NULL on the RHS makes a difference in the
1868      ** outcome.
1869      */
1870      int j1, j2, j3;
1871
1872      /* First check to see if the LHS is contained in the RHS.  If so,
1873      ** then the presence of NULLs in the RHS does not matter, so jump
1874      ** over all of the code that follows.
1875      */
1876      j1 = sqlite3VdbeAddOp4Int(v, OP_Found, pExpr->iTable, 0, r1, 1);
1877
1878      /* Here we begin generating code that runs if the LHS is not
1879      ** contained within the RHS.  Generate additional code that
1880      ** tests the RHS for NULLs.  If the RHS contains a NULL then
1881      ** jump to destIfNull.  If there are no NULLs in the RHS then
1882      ** jump to destIfFalse.
1883      */
1884      j2 = sqlite3VdbeAddOp1(v, OP_NotNull, rRhsHasNull);
1885      j3 = sqlite3VdbeAddOp4Int(v, OP_Found, pExpr->iTable, 0, rRhsHasNull, 1);
1886      sqlite3VdbeAddOp2(v, OP_Integer, -1, rRhsHasNull);
1887      sqlite3VdbeJumpHere(v, j3);
1888      sqlite3VdbeAddOp2(v, OP_AddImm, rRhsHasNull, 1);
1889      sqlite3VdbeJumpHere(v, j2);
1890
1891      /* Jump to the appropriate target depending on whether or not
1892      ** the RHS contains a NULL
1893      */
1894      sqlite3VdbeAddOp2(v, OP_If, rRhsHasNull, destIfNull);
1895      sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfFalse);
1896
1897      /* The OP_Found at the top of this branch jumps here when true,
1898      ** causing the overall IN expression evaluation to fall through.
1899      */
1900      sqlite3VdbeJumpHere(v, j1);
1901    }
1902  }
1903  sqlite3ReleaseTempReg(pParse, r1);
1904  sqlite3ExprCachePop(pParse, 1);
1905  VdbeComment((v, "end IN expr"));
1906}
1907#endif /* SQLITE_OMIT_SUBQUERY */
1908
1909/*
1910** Duplicate an 8-byte value
1911*/
1912static char *dup8bytes(Vdbe *v, const char *in){
1913  char *out = sqlite3DbMallocRaw(sqlite3VdbeDb(v), 8);
1914  if( out ){
1915    memcpy(out, in, 8);
1916  }
1917  return out;
1918}
1919
1920#ifndef SQLITE_OMIT_FLOATING_POINT
1921/*
1922** Generate an instruction that will put the floating point
1923** value described by z[0..n-1] into register iMem.
1924**
1925** The z[] string will probably not be zero-terminated.  But the
1926** z[n] character is guaranteed to be something that does not look
1927** like the continuation of the number.
1928*/
1929static void codeReal(Vdbe *v, const char *z, int negateFlag, int iMem){
1930  if( ALWAYS(z!=0) ){
1931    double value;
1932    char *zV;
1933    sqlite3AtoF(z, &value, sqlite3Strlen30(z), SQLITE_UTF8);
1934    assert( !sqlite3IsNaN(value) ); /* The new AtoF never returns NaN */
1935    if( negateFlag ) value = -value;
1936    zV = dup8bytes(v, (char*)&value);
1937    sqlite3VdbeAddOp4(v, OP_Real, 0, iMem, 0, zV, P4_REAL);
1938  }
1939}
1940#endif
1941
1942
1943/*
1944** Generate an instruction that will put the integer describe by
1945** text z[0..n-1] into register iMem.
1946**
1947** Expr.u.zToken is always UTF8 and zero-terminated.
1948*/
1949static void codeInteger(Parse *pParse, Expr *pExpr, int negFlag, int iMem){
1950  Vdbe *v = pParse->pVdbe;
1951  if( pExpr->flags & EP_IntValue ){
1952    int i = pExpr->u.iValue;
1953    assert( i>=0 );
1954    if( negFlag ) i = -i;
1955    sqlite3VdbeAddOp2(v, OP_Integer, i, iMem);
1956  }else{
1957    int c;
1958    i64 value;
1959    const char *z = pExpr->u.zToken;
1960    assert( z!=0 );
1961    c = sqlite3Atoi64(z, &value, sqlite3Strlen30(z), SQLITE_UTF8);
1962    if( c==0 || (c==2 && negFlag) ){
1963      char *zV;
1964      if( negFlag ){ value = c==2 ? SMALLEST_INT64 : -value; }
1965      zV = dup8bytes(v, (char*)&value);
1966      sqlite3VdbeAddOp4(v, OP_Int64, 0, iMem, 0, zV, P4_INT64);
1967    }else{
1968#ifdef SQLITE_OMIT_FLOATING_POINT
1969      sqlite3ErrorMsg(pParse, "oversized integer: %s%s", negFlag ? "-" : "", z);
1970#else
1971      codeReal(v, z, negFlag, iMem);
1972#endif
1973    }
1974  }
1975}
1976
1977/*
1978** Clear a cache entry.
1979*/
1980static void cacheEntryClear(Parse *pParse, struct yColCache *p){
1981  if( p->tempReg ){
1982    if( pParse->nTempReg<ArraySize(pParse->aTempReg) ){
1983      pParse->aTempReg[pParse->nTempReg++] = p->iReg;
1984    }
1985    p->tempReg = 0;
1986  }
1987}
1988
1989
1990/*
1991** Record in the column cache that a particular column from a
1992** particular table is stored in a particular register.
1993*/
1994void sqlite3ExprCacheStore(Parse *pParse, int iTab, int iCol, int iReg){
1995  int i;
1996  int minLru;
1997  int idxLru;
1998  struct yColCache *p;
1999
2000  assert( iReg>0 );  /* Register numbers are always positive */
2001  assert( iCol>=-1 && iCol<32768 );  /* Finite column numbers */
2002
2003  /* The SQLITE_ColumnCache flag disables the column cache.  This is used
2004  ** for testing only - to verify that SQLite always gets the same answer
2005  ** with and without the column cache.
2006  */
2007  if( pParse->db->flags & SQLITE_ColumnCache ) return;
2008
2009  /* First replace any existing entry.
2010  **
2011  ** Actually, the way the column cache is currently used, we are guaranteed
2012  ** that the object will never already be in cache.  Verify this guarantee.
2013  */
2014#ifndef NDEBUG
2015  for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2016#if 0 /* This code wold remove the entry from the cache if it existed */
2017    if( p->iReg && p->iTable==iTab && p->iColumn==iCol ){
2018      cacheEntryClear(pParse, p);
2019      p->iLevel = pParse->iCacheLevel;
2020      p->iReg = iReg;
2021      p->lru = pParse->iCacheCnt++;
2022      return;
2023    }
2024#endif
2025    assert( p->iReg==0 || p->iTable!=iTab || p->iColumn!=iCol );
2026  }
2027#endif
2028
2029  /* Find an empty slot and replace it */
2030  for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2031    if( p->iReg==0 ){
2032      p->iLevel = pParse->iCacheLevel;
2033      p->iTable = iTab;
2034      p->iColumn = iCol;
2035      p->iReg = iReg;
2036      p->tempReg = 0;
2037      p->lru = pParse->iCacheCnt++;
2038      return;
2039    }
2040  }
2041
2042  /* Replace the last recently used */
2043  minLru = 0x7fffffff;
2044  idxLru = -1;
2045  for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2046    if( p->lru<minLru ){
2047      idxLru = i;
2048      minLru = p->lru;
2049    }
2050  }
2051  if( ALWAYS(idxLru>=0) ){
2052    p = &pParse->aColCache[idxLru];
2053    p->iLevel = pParse->iCacheLevel;
2054    p->iTable = iTab;
2055    p->iColumn = iCol;
2056    p->iReg = iReg;
2057    p->tempReg = 0;
2058    p->lru = pParse->iCacheCnt++;
2059    return;
2060  }
2061}
2062
2063/*
2064** Indicate that registers between iReg..iReg+nReg-1 are being overwritten.
2065** Purge the range of registers from the column cache.
2066*/
2067void sqlite3ExprCacheRemove(Parse *pParse, int iReg, int nReg){
2068  int i;
2069  int iLast = iReg + nReg - 1;
2070  struct yColCache *p;
2071  for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2072    int r = p->iReg;
2073    if( r>=iReg && r<=iLast ){
2074      cacheEntryClear(pParse, p);
2075      p->iReg = 0;
2076    }
2077  }
2078}
2079
2080/*
2081** Remember the current column cache context.  Any new entries added
2082** added to the column cache after this call are removed when the
2083** corresponding pop occurs.
2084*/
2085void sqlite3ExprCachePush(Parse *pParse){
2086  pParse->iCacheLevel++;
2087}
2088
2089/*
2090** Remove from the column cache any entries that were added since the
2091** the previous N Push operations.  In other words, restore the cache
2092** to the state it was in N Pushes ago.
2093*/
2094void sqlite3ExprCachePop(Parse *pParse, int N){
2095  int i;
2096  struct yColCache *p;
2097  assert( N>0 );
2098  assert( pParse->iCacheLevel>=N );
2099  pParse->iCacheLevel -= N;
2100  for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2101    if( p->iReg && p->iLevel>pParse->iCacheLevel ){
2102      cacheEntryClear(pParse, p);
2103      p->iReg = 0;
2104    }
2105  }
2106}
2107
2108/*
2109** When a cached column is reused, make sure that its register is
2110** no longer available as a temp register.  ticket #3879:  that same
2111** register might be in the cache in multiple places, so be sure to
2112** get them all.
2113*/
2114static void sqlite3ExprCachePinRegister(Parse *pParse, int iReg){
2115  int i;
2116  struct yColCache *p;
2117  for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2118    if( p->iReg==iReg ){
2119      p->tempReg = 0;
2120    }
2121  }
2122}
2123
2124/*
2125** Generate code to extract the value of the iCol-th column of a table.
2126*/
2127void sqlite3ExprCodeGetColumnOfTable(
2128  Vdbe *v,        /* The VDBE under construction */
2129  Table *pTab,    /* The table containing the value */
2130  int iTabCur,    /* The cursor for this table */
2131  int iCol,       /* Index of the column to extract */
2132  int regOut      /* Extract the valud into this register */
2133){
2134  if( iCol<0 || iCol==pTab->iPKey ){
2135    sqlite3VdbeAddOp2(v, OP_Rowid, iTabCur, regOut);
2136  }else{
2137    int op = IsVirtual(pTab) ? OP_VColumn : OP_Column;
2138    sqlite3VdbeAddOp3(v, op, iTabCur, iCol, regOut);
2139  }
2140  if( iCol>=0 ){
2141    sqlite3ColumnDefault(v, pTab, iCol, regOut);
2142  }
2143}
2144
2145/*
2146** Generate code that will extract the iColumn-th column from
2147** table pTab and store the column value in a register.  An effort
2148** is made to store the column value in register iReg, but this is
2149** not guaranteed.  The location of the column value is returned.
2150**
2151** There must be an open cursor to pTab in iTable when this routine
2152** is called.  If iColumn<0 then code is generated that extracts the rowid.
2153*/
2154int sqlite3ExprCodeGetColumn(
2155  Parse *pParse,   /* Parsing and code generating context */
2156  Table *pTab,     /* Description of the table we are reading from */
2157  int iColumn,     /* Index of the table column */
2158  int iTable,      /* The cursor pointing to the table */
2159  int iReg         /* Store results here */
2160){
2161  Vdbe *v = pParse->pVdbe;
2162  int i;
2163  struct yColCache *p;
2164
2165  for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2166    if( p->iReg>0 && p->iTable==iTable && p->iColumn==iColumn ){
2167      p->lru = pParse->iCacheCnt++;
2168      sqlite3ExprCachePinRegister(pParse, p->iReg);
2169      return p->iReg;
2170    }
2171  }
2172  assert( v!=0 );
2173  sqlite3ExprCodeGetColumnOfTable(v, pTab, iTable, iColumn, iReg);
2174  sqlite3ExprCacheStore(pParse, iTable, iColumn, iReg);
2175  return iReg;
2176}
2177
2178/*
2179** Clear all column cache entries.
2180*/
2181void sqlite3ExprCacheClear(Parse *pParse){
2182  int i;
2183  struct yColCache *p;
2184
2185  for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2186    if( p->iReg ){
2187      cacheEntryClear(pParse, p);
2188      p->iReg = 0;
2189    }
2190  }
2191}
2192
2193/*
2194** Record the fact that an affinity change has occurred on iCount
2195** registers starting with iStart.
2196*/
2197void sqlite3ExprCacheAffinityChange(Parse *pParse, int iStart, int iCount){
2198  sqlite3ExprCacheRemove(pParse, iStart, iCount);
2199}
2200
2201/*
2202** Generate code to move content from registers iFrom...iFrom+nReg-1
2203** over to iTo..iTo+nReg-1. Keep the column cache up-to-date.
2204*/
2205void sqlite3ExprCodeMove(Parse *pParse, int iFrom, int iTo, int nReg){
2206  int i;
2207  struct yColCache *p;
2208  if( NEVER(iFrom==iTo) ) return;
2209  sqlite3VdbeAddOp3(pParse->pVdbe, OP_Move, iFrom, iTo, nReg);
2210  for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2211    int x = p->iReg;
2212    if( x>=iFrom && x<iFrom+nReg ){
2213      p->iReg += iTo-iFrom;
2214    }
2215  }
2216}
2217
2218/*
2219** Generate code to copy content from registers iFrom...iFrom+nReg-1
2220** over to iTo..iTo+nReg-1.
2221*/
2222void sqlite3ExprCodeCopy(Parse *pParse, int iFrom, int iTo, int nReg){
2223  int i;
2224  if( NEVER(iFrom==iTo) ) return;
2225  for(i=0; i<nReg; i++){
2226    sqlite3VdbeAddOp2(pParse->pVdbe, OP_Copy, iFrom+i, iTo+i);
2227  }
2228}
2229
2230#if defined(SQLITE_DEBUG) || defined(SQLITE_COVERAGE_TEST)
2231/*
2232** Return true if any register in the range iFrom..iTo (inclusive)
2233** is used as part of the column cache.
2234**
2235** This routine is used within assert() and testcase() macros only
2236** and does not appear in a normal build.
2237*/
2238static int usedAsColumnCache(Parse *pParse, int iFrom, int iTo){
2239  int i;
2240  struct yColCache *p;
2241  for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2242    int r = p->iReg;
2243    if( r>=iFrom && r<=iTo ) return 1;    /*NO_TEST*/
2244  }
2245  return 0;
2246}
2247#endif /* SQLITE_DEBUG || SQLITE_COVERAGE_TEST */
2248
2249/*
2250** Generate code into the current Vdbe to evaluate the given
2251** expression.  Attempt to store the results in register "target".
2252** Return the register where results are stored.
2253**
2254** With this routine, there is no guarantee that results will
2255** be stored in target.  The result might be stored in some other
2256** register if it is convenient to do so.  The calling function
2257** must check the return code and move the results to the desired
2258** register.
2259*/
2260int sqlite3ExprCodeTarget(Parse *pParse, Expr *pExpr, int target){
2261  Vdbe *v = pParse->pVdbe;  /* The VM under construction */
2262  int op;                   /* The opcode being coded */
2263  int inReg = target;       /* Results stored in register inReg */
2264  int regFree1 = 0;         /* If non-zero free this temporary register */
2265  int regFree2 = 0;         /* If non-zero free this temporary register */
2266  int r1, r2, r3, r4;       /* Various register numbers */
2267  sqlite3 *db = pParse->db; /* The database connection */
2268
2269  assert( target>0 && target<=pParse->nMem );
2270  if( v==0 ){
2271    assert( pParse->db->mallocFailed );
2272    return 0;
2273  }
2274
2275  if( pExpr==0 ){
2276    op = TK_NULL;
2277  }else{
2278    op = pExpr->op;
2279  }
2280  switch( op ){
2281    case TK_AGG_COLUMN: {
2282      AggInfo *pAggInfo = pExpr->pAggInfo;
2283      struct AggInfo_col *pCol = &pAggInfo->aCol[pExpr->iAgg];
2284      if( !pAggInfo->directMode ){
2285        assert( pCol->iMem>0 );
2286        inReg = pCol->iMem;
2287        break;
2288      }else if( pAggInfo->useSortingIdx ){
2289        sqlite3VdbeAddOp3(v, OP_Column, pAggInfo->sortingIdx,
2290                              pCol->iSorterColumn, target);
2291        break;
2292      }
2293      /* Otherwise, fall thru into the TK_COLUMN case */
2294    }
2295    case TK_COLUMN: {
2296      if( pExpr->iTable<0 ){
2297        /* This only happens when coding check constraints */
2298        assert( pParse->ckBase>0 );
2299        inReg = pExpr->iColumn + pParse->ckBase;
2300      }else{
2301        inReg = sqlite3ExprCodeGetColumn(pParse, pExpr->pTab,
2302                                 pExpr->iColumn, pExpr->iTable, target);
2303      }
2304      break;
2305    }
2306    case TK_INTEGER: {
2307      codeInteger(pParse, pExpr, 0, target);
2308      break;
2309    }
2310#ifndef SQLITE_OMIT_FLOATING_POINT
2311    case TK_FLOAT: {
2312      assert( !ExprHasProperty(pExpr, EP_IntValue) );
2313      codeReal(v, pExpr->u.zToken, 0, target);
2314      break;
2315    }
2316#endif
2317    case TK_STRING: {
2318      assert( !ExprHasProperty(pExpr, EP_IntValue) );
2319      sqlite3VdbeAddOp4(v, OP_String8, 0, target, 0, pExpr->u.zToken, 0);
2320      break;
2321    }
2322    case TK_NULL: {
2323      sqlite3VdbeAddOp2(v, OP_Null, 0, target);
2324      break;
2325    }
2326#ifndef SQLITE_OMIT_BLOB_LITERAL
2327    case TK_BLOB: {
2328      int n;
2329      const char *z;
2330      char *zBlob;
2331      assert( !ExprHasProperty(pExpr, EP_IntValue) );
2332      assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' );
2333      assert( pExpr->u.zToken[1]=='\'' );
2334      z = &pExpr->u.zToken[2];
2335      n = sqlite3Strlen30(z) - 1;
2336      assert( z[n]=='\'' );
2337      zBlob = sqlite3HexToBlob(sqlite3VdbeDb(v), z, n);
2338      sqlite3VdbeAddOp4(v, OP_Blob, n/2, target, 0, zBlob, P4_DYNAMIC);
2339      break;
2340    }
2341#endif
2342    case TK_VARIABLE: {
2343      assert( !ExprHasProperty(pExpr, EP_IntValue) );
2344      assert( pExpr->u.zToken!=0 );
2345      assert( pExpr->u.zToken[0]!=0 );
2346      sqlite3VdbeAddOp2(v, OP_Variable, pExpr->iColumn, target);
2347      if( pExpr->u.zToken[1]!=0 ){
2348        sqlite3VdbeChangeP4(v, -1, pExpr->u.zToken, P4_TRANSIENT);
2349      }
2350      break;
2351    }
2352    case TK_REGISTER: {
2353      inReg = pExpr->iTable;
2354      break;
2355    }
2356    case TK_AS: {
2357      inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
2358      break;
2359    }
2360#ifndef SQLITE_OMIT_CAST
2361    case TK_CAST: {
2362      /* Expressions of the form:   CAST(pLeft AS token) */
2363      int aff, to_op;
2364      inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
2365      assert( !ExprHasProperty(pExpr, EP_IntValue) );
2366      aff = sqlite3AffinityType(pExpr->u.zToken);
2367      to_op = aff - SQLITE_AFF_TEXT + OP_ToText;
2368      assert( to_op==OP_ToText    || aff!=SQLITE_AFF_TEXT    );
2369      assert( to_op==OP_ToBlob    || aff!=SQLITE_AFF_NONE    );
2370      assert( to_op==OP_ToNumeric || aff!=SQLITE_AFF_NUMERIC );
2371      assert( to_op==OP_ToInt     || aff!=SQLITE_AFF_INTEGER );
2372      assert( to_op==OP_ToReal    || aff!=SQLITE_AFF_REAL    );
2373      testcase( to_op==OP_ToText );
2374      testcase( to_op==OP_ToBlob );
2375      testcase( to_op==OP_ToNumeric );
2376      testcase( to_op==OP_ToInt );
2377      testcase( to_op==OP_ToReal );
2378      if( inReg!=target ){
2379        sqlite3VdbeAddOp2(v, OP_SCopy, inReg, target);
2380        inReg = target;
2381      }
2382      sqlite3VdbeAddOp1(v, to_op, inReg);
2383      testcase( usedAsColumnCache(pParse, inReg, inReg) );
2384      sqlite3ExprCacheAffinityChange(pParse, inReg, 1);
2385      break;
2386    }
2387#endif /* SQLITE_OMIT_CAST */
2388    case TK_LT:
2389    case TK_LE:
2390    case TK_GT:
2391    case TK_GE:
2392    case TK_NE:
2393    case TK_EQ: {
2394      assert( TK_LT==OP_Lt );
2395      assert( TK_LE==OP_Le );
2396      assert( TK_GT==OP_Gt );
2397      assert( TK_GE==OP_Ge );
2398      assert( TK_EQ==OP_Eq );
2399      assert( TK_NE==OP_Ne );
2400      testcase( op==TK_LT );
2401      testcase( op==TK_LE );
2402      testcase( op==TK_GT );
2403      testcase( op==TK_GE );
2404      testcase( op==TK_EQ );
2405      testcase( op==TK_NE );
2406      r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
2407      r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
2408      codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
2409                  r1, r2, inReg, SQLITE_STOREP2);
2410      testcase( regFree1==0 );
2411      testcase( regFree2==0 );
2412      break;
2413    }
2414    case TK_IS:
2415    case TK_ISNOT: {
2416      testcase( op==TK_IS );
2417      testcase( op==TK_ISNOT );
2418      r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
2419      r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
2420      op = (op==TK_IS) ? TK_EQ : TK_NE;
2421      codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
2422                  r1, r2, inReg, SQLITE_STOREP2 | SQLITE_NULLEQ);
2423      testcase( regFree1==0 );
2424      testcase( regFree2==0 );
2425      break;
2426    }
2427    case TK_AND:
2428    case TK_OR:
2429    case TK_PLUS:
2430    case TK_STAR:
2431    case TK_MINUS:
2432    case TK_REM:
2433    case TK_BITAND:
2434    case TK_BITOR:
2435    case TK_SLASH:
2436    case TK_LSHIFT:
2437    case TK_RSHIFT:
2438    case TK_CONCAT: {
2439      assert( TK_AND==OP_And );
2440      assert( TK_OR==OP_Or );
2441      assert( TK_PLUS==OP_Add );
2442      assert( TK_MINUS==OP_Subtract );
2443      assert( TK_REM==OP_Remainder );
2444      assert( TK_BITAND==OP_BitAnd );
2445      assert( TK_BITOR==OP_BitOr );
2446      assert( TK_SLASH==OP_Divide );
2447      assert( TK_LSHIFT==OP_ShiftLeft );
2448      assert( TK_RSHIFT==OP_ShiftRight );
2449      assert( TK_CONCAT==OP_Concat );
2450      testcase( op==TK_AND );
2451      testcase( op==TK_OR );
2452      testcase( op==TK_PLUS );
2453      testcase( op==TK_MINUS );
2454      testcase( op==TK_REM );
2455      testcase( op==TK_BITAND );
2456      testcase( op==TK_BITOR );
2457      testcase( op==TK_SLASH );
2458      testcase( op==TK_LSHIFT );
2459      testcase( op==TK_RSHIFT );
2460      testcase( op==TK_CONCAT );
2461      r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
2462      r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
2463      sqlite3VdbeAddOp3(v, op, r2, r1, target);
2464      testcase( regFree1==0 );
2465      testcase( regFree2==0 );
2466      break;
2467    }
2468    case TK_UMINUS: {
2469      Expr *pLeft = pExpr->pLeft;
2470      assert( pLeft );
2471      if( pLeft->op==TK_INTEGER ){
2472        codeInteger(pParse, pLeft, 1, target);
2473#ifndef SQLITE_OMIT_FLOATING_POINT
2474      }else if( pLeft->op==TK_FLOAT ){
2475        assert( !ExprHasProperty(pExpr, EP_IntValue) );
2476        codeReal(v, pLeft->u.zToken, 1, target);
2477#endif
2478      }else{
2479        regFree1 = r1 = sqlite3GetTempReg(pParse);
2480        sqlite3VdbeAddOp2(v, OP_Integer, 0, r1);
2481        r2 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree2);
2482        sqlite3VdbeAddOp3(v, OP_Subtract, r2, r1, target);
2483        testcase( regFree2==0 );
2484      }
2485      inReg = target;
2486      break;
2487    }
2488    case TK_BITNOT:
2489    case TK_NOT: {
2490      assert( TK_BITNOT==OP_BitNot );
2491      assert( TK_NOT==OP_Not );
2492      testcase( op==TK_BITNOT );
2493      testcase( op==TK_NOT );
2494      r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
2495      testcase( regFree1==0 );
2496      inReg = target;
2497      sqlite3VdbeAddOp2(v, op, r1, inReg);
2498      break;
2499    }
2500    case TK_ISNULL:
2501    case TK_NOTNULL: {
2502      int addr;
2503      assert( TK_ISNULL==OP_IsNull );
2504      assert( TK_NOTNULL==OP_NotNull );
2505      testcase( op==TK_ISNULL );
2506      testcase( op==TK_NOTNULL );
2507      sqlite3VdbeAddOp2(v, OP_Integer, 1, target);
2508      r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
2509      testcase( regFree1==0 );
2510      addr = sqlite3VdbeAddOp1(v, op, r1);
2511      sqlite3VdbeAddOp2(v, OP_AddImm, target, -1);
2512      sqlite3VdbeJumpHere(v, addr);
2513      break;
2514    }
2515    case TK_AGG_FUNCTION: {
2516      AggInfo *pInfo = pExpr->pAggInfo;
2517      if( pInfo==0 ){
2518        assert( !ExprHasProperty(pExpr, EP_IntValue) );
2519        sqlite3ErrorMsg(pParse, "misuse of aggregate: %s()", pExpr->u.zToken);
2520      }else{
2521        inReg = pInfo->aFunc[pExpr->iAgg].iMem;
2522      }
2523      break;
2524    }
2525    case TK_CONST_FUNC:
2526    case TK_FUNCTION: {
2527      ExprList *pFarg;       /* List of function arguments */
2528      int nFarg;             /* Number of function arguments */
2529      FuncDef *pDef;         /* The function definition object */
2530      int nId;               /* Length of the function name in bytes */
2531      const char *zId;       /* The function name */
2532      int constMask = 0;     /* Mask of function arguments that are constant */
2533      int i;                 /* Loop counter */
2534      u8 enc = ENC(db);      /* The text encoding used by this database */
2535      CollSeq *pColl = 0;    /* A collating sequence */
2536
2537      assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
2538      testcase( op==TK_CONST_FUNC );
2539      testcase( op==TK_FUNCTION );
2540      if( ExprHasAnyProperty(pExpr, EP_TokenOnly) ){
2541        pFarg = 0;
2542      }else{
2543        pFarg = pExpr->x.pList;
2544      }
2545      nFarg = pFarg ? pFarg->nExpr : 0;
2546      assert( !ExprHasProperty(pExpr, EP_IntValue) );
2547      zId = pExpr->u.zToken;
2548      nId = sqlite3Strlen30(zId);
2549      pDef = sqlite3FindFunction(db, zId, nId, nFarg, enc, 0);
2550      if( pDef==0 ){
2551        sqlite3ErrorMsg(pParse, "unknown function: %.*s()", nId, zId);
2552        break;
2553      }
2554
2555      /* Attempt a direct implementation of the built-in COALESCE() and
2556      ** IFNULL() functions.  This avoids unnecessary evalation of
2557      ** arguments past the first non-NULL argument.
2558      */
2559      if( pDef->flags & SQLITE_FUNC_COALESCE ){
2560        int endCoalesce = sqlite3VdbeMakeLabel(v);
2561        assert( nFarg>=2 );
2562        sqlite3ExprCode(pParse, pFarg->a[0].pExpr, target);
2563        for(i=1; i<nFarg; i++){
2564          sqlite3VdbeAddOp2(v, OP_NotNull, target, endCoalesce);
2565          sqlite3ExprCacheRemove(pParse, target, 1);
2566          sqlite3ExprCachePush(pParse);
2567          sqlite3ExprCode(pParse, pFarg->a[i].pExpr, target);
2568          sqlite3ExprCachePop(pParse, 1);
2569        }
2570        sqlite3VdbeResolveLabel(v, endCoalesce);
2571        break;
2572      }
2573
2574
2575      if( pFarg ){
2576        r1 = sqlite3GetTempRange(pParse, nFarg);
2577        sqlite3ExprCachePush(pParse);     /* Ticket 2ea2425d34be */
2578        sqlite3ExprCodeExprList(pParse, pFarg, r1, 1);
2579        sqlite3ExprCachePop(pParse, 1);   /* Ticket 2ea2425d34be */
2580      }else{
2581        r1 = 0;
2582      }
2583#ifndef SQLITE_OMIT_VIRTUALTABLE
2584      /* Possibly overload the function if the first argument is
2585      ** a virtual table column.
2586      **
2587      ** For infix functions (LIKE, GLOB, REGEXP, and MATCH) use the
2588      ** second argument, not the first, as the argument to test to
2589      ** see if it is a column in a virtual table.  This is done because
2590      ** the left operand of infix functions (the operand we want to
2591      ** control overloading) ends up as the second argument to the
2592      ** function.  The expression "A glob B" is equivalent to
2593      ** "glob(B,A).  We want to use the A in "A glob B" to test
2594      ** for function overloading.  But we use the B term in "glob(B,A)".
2595      */
2596      if( nFarg>=2 && (pExpr->flags & EP_InfixFunc) ){
2597        pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[1].pExpr);
2598      }else if( nFarg>0 ){
2599        pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[0].pExpr);
2600      }
2601#endif
2602      for(i=0; i<nFarg; i++){
2603        if( i<32 && sqlite3ExprIsConstant(pFarg->a[i].pExpr) ){
2604          constMask |= (1<<i);
2605        }
2606        if( (pDef->flags & SQLITE_FUNC_NEEDCOLL)!=0 && !pColl ){
2607          pColl = sqlite3ExprCollSeq(pParse, pFarg->a[i].pExpr);
2608        }
2609      }
2610      if( pDef->flags & SQLITE_FUNC_NEEDCOLL ){
2611        if( !pColl ) pColl = db->pDfltColl;
2612        sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ);
2613      }
2614      sqlite3VdbeAddOp4(v, OP_Function, constMask, r1, target,
2615                        (char*)pDef, P4_FUNCDEF);
2616      sqlite3VdbeChangeP5(v, (u8)nFarg);
2617      if( nFarg ){
2618        sqlite3ReleaseTempRange(pParse, r1, nFarg);
2619      }
2620      break;
2621    }
2622#ifndef SQLITE_OMIT_SUBQUERY
2623    case TK_EXISTS:
2624    case TK_SELECT: {
2625      testcase( op==TK_EXISTS );
2626      testcase( op==TK_SELECT );
2627      inReg = sqlite3CodeSubselect(pParse, pExpr, 0, 0);
2628      break;
2629    }
2630    case TK_IN: {
2631      int destIfFalse = sqlite3VdbeMakeLabel(v);
2632      int destIfNull = sqlite3VdbeMakeLabel(v);
2633      sqlite3VdbeAddOp2(v, OP_Null, 0, target);
2634      sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull);
2635      sqlite3VdbeAddOp2(v, OP_Integer, 1, target);
2636      sqlite3VdbeResolveLabel(v, destIfFalse);
2637      sqlite3VdbeAddOp2(v, OP_AddImm, target, 0);
2638      sqlite3VdbeResolveLabel(v, destIfNull);
2639      break;
2640    }
2641#endif /* SQLITE_OMIT_SUBQUERY */
2642
2643
2644    /*
2645    **    x BETWEEN y AND z
2646    **
2647    ** This is equivalent to
2648    **
2649    **    x>=y AND x<=z
2650    **
2651    ** X is stored in pExpr->pLeft.
2652    ** Y is stored in pExpr->pList->a[0].pExpr.
2653    ** Z is stored in pExpr->pList->a[1].pExpr.
2654    */
2655    case TK_BETWEEN: {
2656      Expr *pLeft = pExpr->pLeft;
2657      struct ExprList_item *pLItem = pExpr->x.pList->a;
2658      Expr *pRight = pLItem->pExpr;
2659
2660      r1 = sqlite3ExprCodeTemp(pParse, pLeft, &regFree1);
2661      r2 = sqlite3ExprCodeTemp(pParse, pRight, &regFree2);
2662      testcase( regFree1==0 );
2663      testcase( regFree2==0 );
2664      r3 = sqlite3GetTempReg(pParse);
2665      r4 = sqlite3GetTempReg(pParse);
2666      codeCompare(pParse, pLeft, pRight, OP_Ge,
2667                  r1, r2, r3, SQLITE_STOREP2);
2668      pLItem++;
2669      pRight = pLItem->pExpr;
2670      sqlite3ReleaseTempReg(pParse, regFree2);
2671      r2 = sqlite3ExprCodeTemp(pParse, pRight, &regFree2);
2672      testcase( regFree2==0 );
2673      codeCompare(pParse, pLeft, pRight, OP_Le, r1, r2, r4, SQLITE_STOREP2);
2674      sqlite3VdbeAddOp3(v, OP_And, r3, r4, target);
2675      sqlite3ReleaseTempReg(pParse, r3);
2676      sqlite3ReleaseTempReg(pParse, r4);
2677      break;
2678    }
2679    case TK_UPLUS: {
2680      inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
2681      break;
2682    }
2683
2684    case TK_TRIGGER: {
2685      /* If the opcode is TK_TRIGGER, then the expression is a reference
2686      ** to a column in the new.* or old.* pseudo-tables available to
2687      ** trigger programs. In this case Expr.iTable is set to 1 for the
2688      ** new.* pseudo-table, or 0 for the old.* pseudo-table. Expr.iColumn
2689      ** is set to the column of the pseudo-table to read, or to -1 to
2690      ** read the rowid field.
2691      **
2692      ** The expression is implemented using an OP_Param opcode. The p1
2693      ** parameter is set to 0 for an old.rowid reference, or to (i+1)
2694      ** to reference another column of the old.* pseudo-table, where
2695      ** i is the index of the column. For a new.rowid reference, p1 is
2696      ** set to (n+1), where n is the number of columns in each pseudo-table.
2697      ** For a reference to any other column in the new.* pseudo-table, p1
2698      ** is set to (n+2+i), where n and i are as defined previously. For
2699      ** example, if the table on which triggers are being fired is
2700      ** declared as:
2701      **
2702      **   CREATE TABLE t1(a, b);
2703      **
2704      ** Then p1 is interpreted as follows:
2705      **
2706      **   p1==0   ->    old.rowid     p1==3   ->    new.rowid
2707      **   p1==1   ->    old.a         p1==4   ->    new.a
2708      **   p1==2   ->    old.b         p1==5   ->    new.b
2709      */
2710      Table *pTab = pExpr->pTab;
2711      int p1 = pExpr->iTable * (pTab->nCol+1) + 1 + pExpr->iColumn;
2712
2713      assert( pExpr->iTable==0 || pExpr->iTable==1 );
2714      assert( pExpr->iColumn>=-1 && pExpr->iColumn<pTab->nCol );
2715      assert( pTab->iPKey<0 || pExpr->iColumn!=pTab->iPKey );
2716      assert( p1>=0 && p1<(pTab->nCol*2+2) );
2717
2718      sqlite3VdbeAddOp2(v, OP_Param, p1, target);
2719      VdbeComment((v, "%s.%s -> $%d",
2720        (pExpr->iTable ? "new" : "old"),
2721        (pExpr->iColumn<0 ? "rowid" : pExpr->pTab->aCol[pExpr->iColumn].zName),
2722        target
2723      ));
2724
2725#ifndef SQLITE_OMIT_FLOATING_POINT
2726      /* If the column has REAL affinity, it may currently be stored as an
2727      ** integer. Use OP_RealAffinity to make sure it is really real.  */
2728      if( pExpr->iColumn>=0
2729       && pTab->aCol[pExpr->iColumn].affinity==SQLITE_AFF_REAL
2730      ){
2731        sqlite3VdbeAddOp1(v, OP_RealAffinity, target);
2732      }
2733#endif
2734      break;
2735    }
2736
2737
2738    /*
2739    ** Form A:
2740    **   CASE x WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END
2741    **
2742    ** Form B:
2743    **   CASE WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END
2744    **
2745    ** Form A is can be transformed into the equivalent form B as follows:
2746    **   CASE WHEN x=e1 THEN r1 WHEN x=e2 THEN r2 ...
2747    **        WHEN x=eN THEN rN ELSE y END
2748    **
2749    ** X (if it exists) is in pExpr->pLeft.
2750    ** Y is in pExpr->pRight.  The Y is also optional.  If there is no
2751    ** ELSE clause and no other term matches, then the result of the
2752    ** exprssion is NULL.
2753    ** Ei is in pExpr->pList->a[i*2] and Ri is pExpr->pList->a[i*2+1].
2754    **
2755    ** The result of the expression is the Ri for the first matching Ei,
2756    ** or if there is no matching Ei, the ELSE term Y, or if there is
2757    ** no ELSE term, NULL.
2758    */
2759    default: assert( op==TK_CASE ); {
2760      int endLabel;                     /* GOTO label for end of CASE stmt */
2761      int nextCase;                     /* GOTO label for next WHEN clause */
2762      int nExpr;                        /* 2x number of WHEN terms */
2763      int i;                            /* Loop counter */
2764      ExprList *pEList;                 /* List of WHEN terms */
2765      struct ExprList_item *aListelem;  /* Array of WHEN terms */
2766      Expr opCompare;                   /* The X==Ei expression */
2767      Expr cacheX;                      /* Cached expression X */
2768      Expr *pX;                         /* The X expression */
2769      Expr *pTest = 0;                  /* X==Ei (form A) or just Ei (form B) */
2770      VVA_ONLY( int iCacheLevel = pParse->iCacheLevel; )
2771
2772      assert( !ExprHasProperty(pExpr, EP_xIsSelect) && pExpr->x.pList );
2773      assert((pExpr->x.pList->nExpr % 2) == 0);
2774      assert(pExpr->x.pList->nExpr > 0);
2775      pEList = pExpr->x.pList;
2776      aListelem = pEList->a;
2777      nExpr = pEList->nExpr;
2778      endLabel = sqlite3VdbeMakeLabel(v);
2779      if( (pX = pExpr->pLeft)!=0 ){
2780        cacheX = *pX;
2781        testcase( pX->op==TK_COLUMN );
2782        testcase( pX->op==TK_REGISTER );
2783        cacheX.iTable = sqlite3ExprCodeTemp(pParse, pX, &regFree1);
2784        testcase( regFree1==0 );
2785        cacheX.op = TK_REGISTER;
2786        opCompare.op = TK_EQ;
2787        opCompare.pLeft = &cacheX;
2788        pTest = &opCompare;
2789        /* Ticket b351d95f9cd5ef17e9d9dbae18f5ca8611190001:
2790        ** The value in regFree1 might get SCopy-ed into the file result.
2791        ** So make sure that the regFree1 register is not reused for other
2792        ** purposes and possibly overwritten.  */
2793        regFree1 = 0;
2794      }
2795      for(i=0; i<nExpr; i=i+2){
2796        sqlite3ExprCachePush(pParse);
2797        if( pX ){
2798          assert( pTest!=0 );
2799          opCompare.pRight = aListelem[i].pExpr;
2800        }else{
2801          pTest = aListelem[i].pExpr;
2802        }
2803        nextCase = sqlite3VdbeMakeLabel(v);
2804        testcase( pTest->op==TK_COLUMN );
2805        sqlite3ExprIfFalse(pParse, pTest, nextCase, SQLITE_JUMPIFNULL);
2806        testcase( aListelem[i+1].pExpr->op==TK_COLUMN );
2807        testcase( aListelem[i+1].pExpr->op==TK_REGISTER );
2808        sqlite3ExprCode(pParse, aListelem[i+1].pExpr, target);
2809        sqlite3VdbeAddOp2(v, OP_Goto, 0, endLabel);
2810        sqlite3ExprCachePop(pParse, 1);
2811        sqlite3VdbeResolveLabel(v, nextCase);
2812      }
2813      if( pExpr->pRight ){
2814        sqlite3ExprCachePush(pParse);
2815        sqlite3ExprCode(pParse, pExpr->pRight, target);
2816        sqlite3ExprCachePop(pParse, 1);
2817      }else{
2818        sqlite3VdbeAddOp2(v, OP_Null, 0, target);
2819      }
2820      assert( db->mallocFailed || pParse->nErr>0
2821           || pParse->iCacheLevel==iCacheLevel );
2822      sqlite3VdbeResolveLabel(v, endLabel);
2823      break;
2824    }
2825#ifndef SQLITE_OMIT_TRIGGER
2826    case TK_RAISE: {
2827      assert( pExpr->affinity==OE_Rollback
2828           || pExpr->affinity==OE_Abort
2829           || pExpr->affinity==OE_Fail
2830           || pExpr->affinity==OE_Ignore
2831      );
2832      if( !pParse->pTriggerTab ){
2833        sqlite3ErrorMsg(pParse,
2834                       "RAISE() may only be used within a trigger-program");
2835        return 0;
2836      }
2837      if( pExpr->affinity==OE_Abort ){
2838        sqlite3MayAbort(pParse);
2839      }
2840      assert( !ExprHasProperty(pExpr, EP_IntValue) );
2841      if( pExpr->affinity==OE_Ignore ){
2842        sqlite3VdbeAddOp4(
2843            v, OP_Halt, SQLITE_OK, OE_Ignore, 0, pExpr->u.zToken,0);
2844      }else{
2845        sqlite3HaltConstraint(pParse, pExpr->affinity, pExpr->u.zToken, 0);
2846      }
2847
2848      break;
2849    }
2850#endif
2851  }
2852  sqlite3ReleaseTempReg(pParse, regFree1);
2853  sqlite3ReleaseTempReg(pParse, regFree2);
2854  return inReg;
2855}
2856
2857/*
2858** Generate code to evaluate an expression and store the results
2859** into a register.  Return the register number where the results
2860** are stored.
2861**
2862** If the register is a temporary register that can be deallocated,
2863** then write its number into *pReg.  If the result register is not
2864** a temporary, then set *pReg to zero.
2865*/
2866int sqlite3ExprCodeTemp(Parse *pParse, Expr *pExpr, int *pReg){
2867  int r1 = sqlite3GetTempReg(pParse);
2868  int r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1);
2869  if( r2==r1 ){
2870    *pReg = r1;
2871  }else{
2872    sqlite3ReleaseTempReg(pParse, r1);
2873    *pReg = 0;
2874  }
2875  return r2;
2876}
2877
2878/*
2879** Generate code that will evaluate expression pExpr and store the
2880** results in register target.  The results are guaranteed to appear
2881** in register target.
2882*/
2883int sqlite3ExprCode(Parse *pParse, Expr *pExpr, int target){
2884  int inReg;
2885
2886  assert( target>0 && target<=pParse->nMem );
2887  if( pExpr && pExpr->op==TK_REGISTER ){
2888    sqlite3VdbeAddOp2(pParse->pVdbe, OP_Copy, pExpr->iTable, target);
2889  }else{
2890    inReg = sqlite3ExprCodeTarget(pParse, pExpr, target);
2891    assert( pParse->pVdbe || pParse->db->mallocFailed );
2892    if( inReg!=target && pParse->pVdbe ){
2893      sqlite3VdbeAddOp2(pParse->pVdbe, OP_SCopy, inReg, target);
2894    }
2895  }
2896  return target;
2897}
2898
2899/*
2900** Generate code that evalutes the given expression and puts the result
2901** in register target.
2902**
2903** Also make a copy of the expression results into another "cache" register
2904** and modify the expression so that the next time it is evaluated,
2905** the result is a copy of the cache register.
2906**
2907** This routine is used for expressions that are used multiple
2908** times.  They are evaluated once and the results of the expression
2909** are reused.
2910*/
2911int sqlite3ExprCodeAndCache(Parse *pParse, Expr *pExpr, int target){
2912  Vdbe *v = pParse->pVdbe;
2913  int inReg;
2914  inReg = sqlite3ExprCode(pParse, pExpr, target);
2915  assert( target>0 );
2916  /* This routine is called for terms to INSERT or UPDATE.  And the only
2917  ** other place where expressions can be converted into TK_REGISTER is
2918  ** in WHERE clause processing.  So as currently implemented, there is
2919  ** no way for a TK_REGISTER to exist here.  But it seems prudent to
2920  ** keep the ALWAYS() in case the conditions above change with future
2921  ** modifications or enhancements. */
2922  if( ALWAYS(pExpr->op!=TK_REGISTER) ){
2923    int iMem;
2924    iMem = ++pParse->nMem;
2925    sqlite3VdbeAddOp2(v, OP_Copy, inReg, iMem);
2926    pExpr->iTable = iMem;
2927    pExpr->op2 = pExpr->op;
2928    pExpr->op = TK_REGISTER;
2929  }
2930  return inReg;
2931}
2932
2933/*
2934** Return TRUE if pExpr is an constant expression that is appropriate
2935** for factoring out of a loop.  Appropriate expressions are:
2936**
2937**    *  Any expression that evaluates to two or more opcodes.
2938**
2939**    *  Any OP_Integer, OP_Real, OP_String, OP_Blob, OP_Null,
2940**       or OP_Variable that does not need to be placed in a
2941**       specific register.
2942**
2943** There is no point in factoring out single-instruction constant
2944** expressions that need to be placed in a particular register.
2945** We could factor them out, but then we would end up adding an
2946** OP_SCopy instruction to move the value into the correct register
2947** later.  We might as well just use the original instruction and
2948** avoid the OP_SCopy.
2949*/
2950static int isAppropriateForFactoring(Expr *p){
2951  if( !sqlite3ExprIsConstantNotJoin(p) ){
2952    return 0;  /* Only constant expressions are appropriate for factoring */
2953  }
2954  if( (p->flags & EP_FixedDest)==0 ){
2955    return 1;  /* Any constant without a fixed destination is appropriate */
2956  }
2957  while( p->op==TK_UPLUS ) p = p->pLeft;
2958  switch( p->op ){
2959#ifndef SQLITE_OMIT_BLOB_LITERAL
2960    case TK_BLOB:
2961#endif
2962    case TK_VARIABLE:
2963    case TK_INTEGER:
2964    case TK_FLOAT:
2965    case TK_NULL:
2966    case TK_STRING: {
2967      testcase( p->op==TK_BLOB );
2968      testcase( p->op==TK_VARIABLE );
2969      testcase( p->op==TK_INTEGER );
2970      testcase( p->op==TK_FLOAT );
2971      testcase( p->op==TK_NULL );
2972      testcase( p->op==TK_STRING );
2973      /* Single-instruction constants with a fixed destination are
2974      ** better done in-line.  If we factor them, they will just end
2975      ** up generating an OP_SCopy to move the value to the destination
2976      ** register. */
2977      return 0;
2978    }
2979    case TK_UMINUS: {
2980      if( p->pLeft->op==TK_FLOAT || p->pLeft->op==TK_INTEGER ){
2981        return 0;
2982      }
2983      break;
2984    }
2985    default: {
2986      break;
2987    }
2988  }
2989  return 1;
2990}
2991
2992/*
2993** If pExpr is a constant expression that is appropriate for
2994** factoring out of a loop, then evaluate the expression
2995** into a register and convert the expression into a TK_REGISTER
2996** expression.
2997*/
2998static int evalConstExpr(Walker *pWalker, Expr *pExpr){
2999  Parse *pParse = pWalker->pParse;
3000  switch( pExpr->op ){
3001    case TK_IN:
3002    case TK_REGISTER: {
3003      return WRC_Prune;
3004    }
3005    case TK_FUNCTION:
3006    case TK_AGG_FUNCTION:
3007    case TK_CONST_FUNC: {
3008      /* The arguments to a function have a fixed destination.
3009      ** Mark them this way to avoid generated unneeded OP_SCopy
3010      ** instructions.
3011      */
3012      ExprList *pList = pExpr->x.pList;
3013      assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
3014      if( pList ){
3015        int i = pList->nExpr;
3016        struct ExprList_item *pItem = pList->a;
3017        for(; i>0; i--, pItem++){
3018          if( ALWAYS(pItem->pExpr) ) pItem->pExpr->flags |= EP_FixedDest;
3019        }
3020      }
3021      break;
3022    }
3023  }
3024  if( isAppropriateForFactoring(pExpr) ){
3025    int r1 = ++pParse->nMem;
3026    int r2;
3027    r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1);
3028    if( NEVER(r1!=r2) ) sqlite3ReleaseTempReg(pParse, r1);
3029    pExpr->op2 = pExpr->op;
3030    pExpr->op = TK_REGISTER;
3031    pExpr->iTable = r2;
3032    return WRC_Prune;
3033  }
3034  return WRC_Continue;
3035}
3036
3037/*
3038** Preevaluate constant subexpressions within pExpr and store the
3039** results in registers.  Modify pExpr so that the constant subexpresions
3040** are TK_REGISTER opcodes that refer to the precomputed values.
3041**
3042** This routine is a no-op if the jump to the cookie-check code has
3043** already occur.  Since the cookie-check jump is generated prior to
3044** any other serious processing, this check ensures that there is no
3045** way to accidently bypass the constant initializations.
3046**
3047** This routine is also a no-op if the SQLITE_FactorOutConst optimization
3048** is disabled via the sqlite3_test_control(SQLITE_TESTCTRL_OPTIMIZATIONS)
3049** interface.  This allows test logic to verify that the same answer is
3050** obtained for queries regardless of whether or not constants are
3051** precomputed into registers or if they are inserted in-line.
3052*/
3053void sqlite3ExprCodeConstants(Parse *pParse, Expr *pExpr){
3054  Walker w;
3055  if( pParse->cookieGoto ) return;
3056  if( (pParse->db->flags & SQLITE_FactorOutConst)!=0 ) return;
3057  w.xExprCallback = evalConstExpr;
3058  w.xSelectCallback = 0;
3059  w.pParse = pParse;
3060  sqlite3WalkExpr(&w, pExpr);
3061}
3062
3063
3064/*
3065** Generate code that pushes the value of every element of the given
3066** expression list into a sequence of registers beginning at target.
3067**
3068** Return the number of elements evaluated.
3069*/
3070int sqlite3ExprCodeExprList(
3071  Parse *pParse,     /* Parsing context */
3072  ExprList *pList,   /* The expression list to be coded */
3073  int target,        /* Where to write results */
3074  int doHardCopy     /* Make a hard copy of every element */
3075){
3076  struct ExprList_item *pItem;
3077  int i, n;
3078  assert( pList!=0 );
3079  assert( target>0 );
3080  assert( pParse->pVdbe!=0 );  /* Never gets this far otherwise */
3081  n = pList->nExpr;
3082  for(pItem=pList->a, i=0; i<n; i++, pItem++){
3083    Expr *pExpr = pItem->pExpr;
3084    int inReg = sqlite3ExprCodeTarget(pParse, pExpr, target+i);
3085    if( inReg!=target+i ){
3086      sqlite3VdbeAddOp2(pParse->pVdbe, doHardCopy ? OP_Copy : OP_SCopy,
3087                        inReg, target+i);
3088    }
3089  }
3090  return n;
3091}
3092
3093/*
3094** Generate code for a BETWEEN operator.
3095**
3096**    x BETWEEN y AND z
3097**
3098** The above is equivalent to
3099**
3100**    x>=y AND x<=z
3101**
3102** Code it as such, taking care to do the common subexpression
3103** elementation of x.
3104*/
3105static void exprCodeBetween(
3106  Parse *pParse,    /* Parsing and code generating context */
3107  Expr *pExpr,      /* The BETWEEN expression */
3108  int dest,         /* Jump here if the jump is taken */
3109  int jumpIfTrue,   /* Take the jump if the BETWEEN is true */
3110  int jumpIfNull    /* Take the jump if the BETWEEN is NULL */
3111){
3112  Expr exprAnd;     /* The AND operator in  x>=y AND x<=z  */
3113  Expr compLeft;    /* The  x>=y  term */
3114  Expr compRight;   /* The  x<=z  term */
3115  Expr exprX;       /* The  x  subexpression */
3116  int regFree1 = 0; /* Temporary use register */
3117
3118  assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
3119  exprX = *pExpr->pLeft;
3120  exprAnd.op = TK_AND;
3121  exprAnd.pLeft = &compLeft;
3122  exprAnd.pRight = &compRight;
3123  compLeft.op = TK_GE;
3124  compLeft.pLeft = &exprX;
3125  compLeft.pRight = pExpr->x.pList->a[0].pExpr;
3126  compRight.op = TK_LE;
3127  compRight.pLeft = &exprX;
3128  compRight.pRight = pExpr->x.pList->a[1].pExpr;
3129  exprX.iTable = sqlite3ExprCodeTemp(pParse, &exprX, &regFree1);
3130  exprX.op = TK_REGISTER;
3131  if( jumpIfTrue ){
3132    sqlite3ExprIfTrue(pParse, &exprAnd, dest, jumpIfNull);
3133  }else{
3134    sqlite3ExprIfFalse(pParse, &exprAnd, dest, jumpIfNull);
3135  }
3136  sqlite3ReleaseTempReg(pParse, regFree1);
3137
3138  /* Ensure adequate test coverage */
3139  testcase( jumpIfTrue==0 && jumpIfNull==0 && regFree1==0 );
3140  testcase( jumpIfTrue==0 && jumpIfNull==0 && regFree1!=0 );
3141  testcase( jumpIfTrue==0 && jumpIfNull!=0 && regFree1==0 );
3142  testcase( jumpIfTrue==0 && jumpIfNull!=0 && regFree1!=0 );
3143  testcase( jumpIfTrue!=0 && jumpIfNull==0 && regFree1==0 );
3144  testcase( jumpIfTrue!=0 && jumpIfNull==0 && regFree1!=0 );
3145  testcase( jumpIfTrue!=0 && jumpIfNull!=0 && regFree1==0 );
3146  testcase( jumpIfTrue!=0 && jumpIfNull!=0 && regFree1!=0 );
3147}
3148
3149/*
3150** Generate code for a boolean expression such that a jump is made
3151** to the label "dest" if the expression is true but execution
3152** continues straight thru if the expression is false.
3153**
3154** If the expression evaluates to NULL (neither true nor false), then
3155** take the jump if the jumpIfNull flag is SQLITE_JUMPIFNULL.
3156**
3157** This code depends on the fact that certain token values (ex: TK_EQ)
3158** are the same as opcode values (ex: OP_Eq) that implement the corresponding
3159** operation.  Special comments in vdbe.c and the mkopcodeh.awk script in
3160** the make process cause these values to align.  Assert()s in the code
3161** below verify that the numbers are aligned correctly.
3162*/
3163void sqlite3ExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
3164  Vdbe *v = pParse->pVdbe;
3165  int op = 0;
3166  int regFree1 = 0;
3167  int regFree2 = 0;
3168  int r1, r2;
3169
3170  assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 );
3171  if( NEVER(v==0) )     return;  /* Existance of VDBE checked by caller */
3172  if( NEVER(pExpr==0) ) return;  /* No way this can happen */
3173  op = pExpr->op;
3174  switch( op ){
3175    case TK_AND: {
3176      int d2 = sqlite3VdbeMakeLabel(v);
3177      testcase( jumpIfNull==0 );
3178      sqlite3ExprCachePush(pParse);
3179      sqlite3ExprIfFalse(pParse, pExpr->pLeft, d2,jumpIfNull^SQLITE_JUMPIFNULL);
3180      sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
3181      sqlite3VdbeResolveLabel(v, d2);
3182      sqlite3ExprCachePop(pParse, 1);
3183      break;
3184    }
3185    case TK_OR: {
3186      testcase( jumpIfNull==0 );
3187      sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
3188      sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
3189      break;
3190    }
3191    case TK_NOT: {
3192      testcase( jumpIfNull==0 );
3193      sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
3194      break;
3195    }
3196    case TK_LT:
3197    case TK_LE:
3198    case TK_GT:
3199    case TK_GE:
3200    case TK_NE:
3201    case TK_EQ: {
3202      assert( TK_LT==OP_Lt );
3203      assert( TK_LE==OP_Le );
3204      assert( TK_GT==OP_Gt );
3205      assert( TK_GE==OP_Ge );
3206      assert( TK_EQ==OP_Eq );
3207      assert( TK_NE==OP_Ne );
3208      testcase( op==TK_LT );
3209      testcase( op==TK_LE );
3210      testcase( op==TK_GT );
3211      testcase( op==TK_GE );
3212      testcase( op==TK_EQ );
3213      testcase( op==TK_NE );
3214      testcase( jumpIfNull==0 );
3215      r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3216      r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
3217      codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
3218                  r1, r2, dest, jumpIfNull);
3219      testcase( regFree1==0 );
3220      testcase( regFree2==0 );
3221      break;
3222    }
3223    case TK_IS:
3224    case TK_ISNOT: {
3225      testcase( op==TK_IS );
3226      testcase( op==TK_ISNOT );
3227      r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3228      r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
3229      op = (op==TK_IS) ? TK_EQ : TK_NE;
3230      codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
3231                  r1, r2, dest, SQLITE_NULLEQ);
3232      testcase( regFree1==0 );
3233      testcase( regFree2==0 );
3234      break;
3235    }
3236    case TK_ISNULL:
3237    case TK_NOTNULL: {
3238      assert( TK_ISNULL==OP_IsNull );
3239      assert( TK_NOTNULL==OP_NotNull );
3240      testcase( op==TK_ISNULL );
3241      testcase( op==TK_NOTNULL );
3242      r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3243      sqlite3VdbeAddOp2(v, op, r1, dest);
3244      testcase( regFree1==0 );
3245      break;
3246    }
3247    case TK_BETWEEN: {
3248      testcase( jumpIfNull==0 );
3249      exprCodeBetween(pParse, pExpr, dest, 1, jumpIfNull);
3250      break;
3251    }
3252#ifndef SQLITE_OMIT_SUBQUERY
3253    case TK_IN: {
3254      int destIfFalse = sqlite3VdbeMakeLabel(v);
3255      int destIfNull = jumpIfNull ? dest : destIfFalse;
3256      sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull);
3257      sqlite3VdbeAddOp2(v, OP_Goto, 0, dest);
3258      sqlite3VdbeResolveLabel(v, destIfFalse);
3259      break;
3260    }
3261#endif
3262    default: {
3263      r1 = sqlite3ExprCodeTemp(pParse, pExpr, &regFree1);
3264      sqlite3VdbeAddOp3(v, OP_If, r1, dest, jumpIfNull!=0);
3265      testcase( regFree1==0 );
3266      testcase( jumpIfNull==0 );
3267      break;
3268    }
3269  }
3270  sqlite3ReleaseTempReg(pParse, regFree1);
3271  sqlite3ReleaseTempReg(pParse, regFree2);
3272}
3273
3274/*
3275** Generate code for a boolean expression such that a jump is made
3276** to the label "dest" if the expression is false but execution
3277** continues straight thru if the expression is true.
3278**
3279** If the expression evaluates to NULL (neither true nor false) then
3280** jump if jumpIfNull is SQLITE_JUMPIFNULL or fall through if jumpIfNull
3281** is 0.
3282*/
3283void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
3284  Vdbe *v = pParse->pVdbe;
3285  int op = 0;
3286  int regFree1 = 0;
3287  int regFree2 = 0;
3288  int r1, r2;
3289
3290  assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 );
3291  if( NEVER(v==0) ) return; /* Existance of VDBE checked by caller */
3292  if( pExpr==0 )    return;
3293
3294  /* The value of pExpr->op and op are related as follows:
3295  **
3296  **       pExpr->op            op
3297  **       ---------          ----------
3298  **       TK_ISNULL          OP_NotNull
3299  **       TK_NOTNULL         OP_IsNull
3300  **       TK_NE              OP_Eq
3301  **       TK_EQ              OP_Ne
3302  **       TK_GT              OP_Le
3303  **       TK_LE              OP_Gt
3304  **       TK_GE              OP_Lt
3305  **       TK_LT              OP_Ge
3306  **
3307  ** For other values of pExpr->op, op is undefined and unused.
3308  ** The value of TK_ and OP_ constants are arranged such that we
3309  ** can compute the mapping above using the following expression.
3310  ** Assert()s verify that the computation is correct.
3311  */
3312  op = ((pExpr->op+(TK_ISNULL&1))^1)-(TK_ISNULL&1);
3313
3314  /* Verify correct alignment of TK_ and OP_ constants
3315  */
3316  assert( pExpr->op!=TK_ISNULL || op==OP_NotNull );
3317  assert( pExpr->op!=TK_NOTNULL || op==OP_IsNull );
3318  assert( pExpr->op!=TK_NE || op==OP_Eq );
3319  assert( pExpr->op!=TK_EQ || op==OP_Ne );
3320  assert( pExpr->op!=TK_LT || op==OP_Ge );
3321  assert( pExpr->op!=TK_LE || op==OP_Gt );
3322  assert( pExpr->op!=TK_GT || op==OP_Le );
3323  assert( pExpr->op!=TK_GE || op==OP_Lt );
3324
3325  switch( pExpr->op ){
3326    case TK_AND: {
3327      testcase( jumpIfNull==0 );
3328      sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
3329      sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
3330      break;
3331    }
3332    case TK_OR: {
3333      int d2 = sqlite3VdbeMakeLabel(v);
3334      testcase( jumpIfNull==0 );
3335      sqlite3ExprCachePush(pParse);
3336      sqlite3ExprIfTrue(pParse, pExpr->pLeft, d2, jumpIfNull^SQLITE_JUMPIFNULL);
3337      sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
3338      sqlite3VdbeResolveLabel(v, d2);
3339      sqlite3ExprCachePop(pParse, 1);
3340      break;
3341    }
3342    case TK_NOT: {
3343      testcase( jumpIfNull==0 );
3344      sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
3345      break;
3346    }
3347    case TK_LT:
3348    case TK_LE:
3349    case TK_GT:
3350    case TK_GE:
3351    case TK_NE:
3352    case TK_EQ: {
3353      testcase( op==TK_LT );
3354      testcase( op==TK_LE );
3355      testcase( op==TK_GT );
3356      testcase( op==TK_GE );
3357      testcase( op==TK_EQ );
3358      testcase( op==TK_NE );
3359      testcase( jumpIfNull==0 );
3360      r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3361      r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
3362      codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
3363                  r1, r2, dest, jumpIfNull);
3364      testcase( regFree1==0 );
3365      testcase( regFree2==0 );
3366      break;
3367    }
3368    case TK_IS:
3369    case TK_ISNOT: {
3370      testcase( pExpr->op==TK_IS );
3371      testcase( pExpr->op==TK_ISNOT );
3372      r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3373      r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
3374      op = (pExpr->op==TK_IS) ? TK_NE : TK_EQ;
3375      codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
3376                  r1, r2, dest, SQLITE_NULLEQ);
3377      testcase( regFree1==0 );
3378      testcase( regFree2==0 );
3379      break;
3380    }
3381    case TK_ISNULL:
3382    case TK_NOTNULL: {
3383      testcase( op==TK_ISNULL );
3384      testcase( op==TK_NOTNULL );
3385      r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3386      sqlite3VdbeAddOp2(v, op, r1, dest);
3387      testcase( regFree1==0 );
3388      break;
3389    }
3390    case TK_BETWEEN: {
3391      testcase( jumpIfNull==0 );
3392      exprCodeBetween(pParse, pExpr, dest, 0, jumpIfNull);
3393      break;
3394    }
3395#ifndef SQLITE_OMIT_SUBQUERY
3396    case TK_IN: {
3397      if( jumpIfNull ){
3398        sqlite3ExprCodeIN(pParse, pExpr, dest, dest);
3399      }else{
3400        int destIfNull = sqlite3VdbeMakeLabel(v);
3401        sqlite3ExprCodeIN(pParse, pExpr, dest, destIfNull);
3402        sqlite3VdbeResolveLabel(v, destIfNull);
3403      }
3404      break;
3405    }
3406#endif
3407    default: {
3408      r1 = sqlite3ExprCodeTemp(pParse, pExpr, &regFree1);
3409      sqlite3VdbeAddOp3(v, OP_IfNot, r1, dest, jumpIfNull!=0);
3410      testcase( regFree1==0 );
3411      testcase( jumpIfNull==0 );
3412      break;
3413    }
3414  }
3415  sqlite3ReleaseTempReg(pParse, regFree1);
3416  sqlite3ReleaseTempReg(pParse, regFree2);
3417}
3418
3419/*
3420** Do a deep comparison of two expression trees.  Return 0 if the two
3421** expressions are completely identical.  Return 1 if they differ only
3422** by a COLLATE operator at the top level.  Return 2 if there are differences
3423** other than the top-level COLLATE operator.
3424**
3425** Sometimes this routine will return 2 even if the two expressions
3426** really are equivalent.  If we cannot prove that the expressions are
3427** identical, we return 2 just to be safe.  So if this routine
3428** returns 2, then you do not really know for certain if the two
3429** expressions are the same.  But if you get a 0 or 1 return, then you
3430** can be sure the expressions are the same.  In the places where
3431** this routine is used, it does not hurt to get an extra 2 - that
3432** just might result in some slightly slower code.  But returning
3433** an incorrect 0 or 1 could lead to a malfunction.
3434*/
3435int sqlite3ExprCompare(Expr *pA, Expr *pB){
3436  if( pA==0||pB==0 ){
3437    return pB==pA ? 0 : 2;
3438  }
3439  assert( !ExprHasAnyProperty(pA, EP_TokenOnly|EP_Reduced) );
3440  assert( !ExprHasAnyProperty(pB, EP_TokenOnly|EP_Reduced) );
3441  if( ExprHasProperty(pA, EP_xIsSelect) || ExprHasProperty(pB, EP_xIsSelect) ){
3442    return 2;
3443  }
3444  if( (pA->flags & EP_Distinct)!=(pB->flags & EP_Distinct) ) return 2;
3445  if( pA->op!=pB->op ) return 2;
3446  if( sqlite3ExprCompare(pA->pLeft, pB->pLeft) ) return 2;
3447  if( sqlite3ExprCompare(pA->pRight, pB->pRight) ) return 2;
3448  if( sqlite3ExprListCompare(pA->x.pList, pB->x.pList) ) return 2;
3449  if( pA->iTable!=pB->iTable || pA->iColumn!=pB->iColumn ) return 2;
3450  if( ExprHasProperty(pA, EP_IntValue) ){
3451    if( !ExprHasProperty(pB, EP_IntValue) || pA->u.iValue!=pB->u.iValue ){
3452      return 2;
3453    }
3454  }else if( pA->op!=TK_COLUMN && pA->u.zToken ){
3455    if( ExprHasProperty(pB, EP_IntValue) || NEVER(pB->u.zToken==0) ) return 2;
3456    if( sqlite3StrICmp(pA->u.zToken,pB->u.zToken)!=0 ){
3457      return 2;
3458    }
3459  }
3460  if( (pA->flags & EP_ExpCollate)!=(pB->flags & EP_ExpCollate) ) return 1;
3461  if( (pA->flags & EP_ExpCollate)!=0 && pA->pColl!=pB->pColl ) return 2;
3462  return 0;
3463}
3464
3465/*
3466** Compare two ExprList objects.  Return 0 if they are identical and
3467** non-zero if they differ in any way.
3468**
3469** This routine might return non-zero for equivalent ExprLists.  The
3470** only consequence will be disabled optimizations.  But this routine
3471** must never return 0 if the two ExprList objects are different, or
3472** a malfunction will result.
3473**
3474** Two NULL pointers are considered to be the same.  But a NULL pointer
3475** always differs from a non-NULL pointer.
3476*/
3477int sqlite3ExprListCompare(ExprList *pA, ExprList *pB){
3478  int i;
3479  if( pA==0 && pB==0 ) return 0;
3480  if( pA==0 || pB==0 ) return 1;
3481  if( pA->nExpr!=pB->nExpr ) return 1;
3482  for(i=0; i<pA->nExpr; i++){
3483    Expr *pExprA = pA->a[i].pExpr;
3484    Expr *pExprB = pB->a[i].pExpr;
3485    if( pA->a[i].sortOrder!=pB->a[i].sortOrder ) return 1;
3486    if( sqlite3ExprCompare(pExprA, pExprB) ) return 1;
3487  }
3488  return 0;
3489}
3490
3491/*
3492** Add a new element to the pAggInfo->aCol[] array.  Return the index of
3493** the new element.  Return a negative number if malloc fails.
3494*/
3495static int addAggInfoColumn(sqlite3 *db, AggInfo *pInfo){
3496  int i;
3497  pInfo->aCol = sqlite3ArrayAllocate(
3498       db,
3499       pInfo->aCol,
3500       sizeof(pInfo->aCol[0]),
3501       3,
3502       &pInfo->nColumn,
3503       &pInfo->nColumnAlloc,
3504       &i
3505  );
3506  return i;
3507}
3508
3509/*
3510** Add a new element to the pAggInfo->aFunc[] array.  Return the index of
3511** the new element.  Return a negative number if malloc fails.
3512*/
3513static int addAggInfoFunc(sqlite3 *db, AggInfo *pInfo){
3514  int i;
3515  pInfo->aFunc = sqlite3ArrayAllocate(
3516       db,
3517       pInfo->aFunc,
3518       sizeof(pInfo->aFunc[0]),
3519       3,
3520       &pInfo->nFunc,
3521       &pInfo->nFuncAlloc,
3522       &i
3523  );
3524  return i;
3525}
3526
3527/*
3528** This is the xExprCallback for a tree walker.  It is used to
3529** implement sqlite3ExprAnalyzeAggregates().  See sqlite3ExprAnalyzeAggregates
3530** for additional information.
3531*/
3532static int analyzeAggregate(Walker *pWalker, Expr *pExpr){
3533  int i;
3534  NameContext *pNC = pWalker->u.pNC;
3535  Parse *pParse = pNC->pParse;
3536  SrcList *pSrcList = pNC->pSrcList;
3537  AggInfo *pAggInfo = pNC->pAggInfo;
3538
3539  switch( pExpr->op ){
3540    case TK_AGG_COLUMN:
3541    case TK_COLUMN: {
3542      testcase( pExpr->op==TK_AGG_COLUMN );
3543      testcase( pExpr->op==TK_COLUMN );
3544      /* Check to see if the column is in one of the tables in the FROM
3545      ** clause of the aggregate query */
3546      if( ALWAYS(pSrcList!=0) ){
3547        struct SrcList_item *pItem = pSrcList->a;
3548        for(i=0; i<pSrcList->nSrc; i++, pItem++){
3549          struct AggInfo_col *pCol;
3550          assert( !ExprHasAnyProperty(pExpr, EP_TokenOnly|EP_Reduced) );
3551          if( pExpr->iTable==pItem->iCursor ){
3552            /* If we reach this point, it means that pExpr refers to a table
3553            ** that is in the FROM clause of the aggregate query.
3554            **
3555            ** Make an entry for the column in pAggInfo->aCol[] if there
3556            ** is not an entry there already.
3557            */
3558            int k;
3559            pCol = pAggInfo->aCol;
3560            for(k=0; k<pAggInfo->nColumn; k++, pCol++){
3561              if( pCol->iTable==pExpr->iTable &&
3562                  pCol->iColumn==pExpr->iColumn ){
3563                break;
3564              }
3565            }
3566            if( (k>=pAggInfo->nColumn)
3567             && (k = addAggInfoColumn(pParse->db, pAggInfo))>=0
3568            ){
3569              pCol = &pAggInfo->aCol[k];
3570              pCol->pTab = pExpr->pTab;
3571              pCol->iTable = pExpr->iTable;
3572              pCol->iColumn = pExpr->iColumn;
3573              pCol->iMem = ++pParse->nMem;
3574              pCol->iSorterColumn = -1;
3575              pCol->pExpr = pExpr;
3576              if( pAggInfo->pGroupBy ){
3577                int j, n;
3578                ExprList *pGB = pAggInfo->pGroupBy;
3579                struct ExprList_item *pTerm = pGB->a;
3580                n = pGB->nExpr;
3581                for(j=0; j<n; j++, pTerm++){
3582                  Expr *pE = pTerm->pExpr;
3583                  if( pE->op==TK_COLUMN && pE->iTable==pExpr->iTable &&
3584                      pE->iColumn==pExpr->iColumn ){
3585                    pCol->iSorterColumn = j;
3586                    break;
3587                  }
3588                }
3589              }
3590              if( pCol->iSorterColumn<0 ){
3591                pCol->iSorterColumn = pAggInfo->nSortingColumn++;
3592              }
3593            }
3594            /* There is now an entry for pExpr in pAggInfo->aCol[] (either
3595            ** because it was there before or because we just created it).
3596            ** Convert the pExpr to be a TK_AGG_COLUMN referring to that
3597            ** pAggInfo->aCol[] entry.
3598            */
3599            ExprSetIrreducible(pExpr);
3600            pExpr->pAggInfo = pAggInfo;
3601            pExpr->op = TK_AGG_COLUMN;
3602            pExpr->iAgg = (i16)k;
3603            break;
3604          } /* endif pExpr->iTable==pItem->iCursor */
3605        } /* end loop over pSrcList */
3606      }
3607      return WRC_Prune;
3608    }
3609    case TK_AGG_FUNCTION: {
3610      /* The pNC->nDepth==0 test causes aggregate functions in subqueries
3611      ** to be ignored */
3612      if( pNC->nDepth==0 ){
3613        /* Check to see if pExpr is a duplicate of another aggregate
3614        ** function that is already in the pAggInfo structure
3615        */
3616        struct AggInfo_func *pItem = pAggInfo->aFunc;
3617        for(i=0; i<pAggInfo->nFunc; i++, pItem++){
3618          if( sqlite3ExprCompare(pItem->pExpr, pExpr)==0 ){
3619            break;
3620          }
3621        }
3622        if( i>=pAggInfo->nFunc ){
3623          /* pExpr is original.  Make a new entry in pAggInfo->aFunc[]
3624          */
3625          u8 enc = ENC(pParse->db);
3626          i = addAggInfoFunc(pParse->db, pAggInfo);
3627          if( i>=0 ){
3628            assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
3629            pItem = &pAggInfo->aFunc[i];
3630            pItem->pExpr = pExpr;
3631            pItem->iMem = ++pParse->nMem;
3632            assert( !ExprHasProperty(pExpr, EP_IntValue) );
3633            pItem->pFunc = sqlite3FindFunction(pParse->db,
3634                   pExpr->u.zToken, sqlite3Strlen30(pExpr->u.zToken),
3635                   pExpr->x.pList ? pExpr->x.pList->nExpr : 0, enc, 0);
3636            if( pExpr->flags & EP_Distinct ){
3637              pItem->iDistinct = pParse->nTab++;
3638            }else{
3639              pItem->iDistinct = -1;
3640            }
3641          }
3642        }
3643        /* Make pExpr point to the appropriate pAggInfo->aFunc[] entry
3644        */
3645        assert( !ExprHasAnyProperty(pExpr, EP_TokenOnly|EP_Reduced) );
3646        ExprSetIrreducible(pExpr);
3647        pExpr->iAgg = (i16)i;
3648        pExpr->pAggInfo = pAggInfo;
3649        return WRC_Prune;
3650      }
3651    }
3652  }
3653  return WRC_Continue;
3654}
3655static int analyzeAggregatesInSelect(Walker *pWalker, Select *pSelect){
3656  NameContext *pNC = pWalker->u.pNC;
3657  if( pNC->nDepth==0 ){
3658    pNC->nDepth++;
3659    sqlite3WalkSelect(pWalker, pSelect);
3660    pNC->nDepth--;
3661    return WRC_Prune;
3662  }else{
3663    return WRC_Continue;
3664  }
3665}
3666
3667/*
3668** Analyze the given expression looking for aggregate functions and
3669** for variables that need to be added to the pParse->aAgg[] array.
3670** Make additional entries to the pParse->aAgg[] array as necessary.
3671**
3672** This routine should only be called after the expression has been
3673** analyzed by sqlite3ResolveExprNames().
3674*/
3675void sqlite3ExprAnalyzeAggregates(NameContext *pNC, Expr *pExpr){
3676  Walker w;
3677  w.xExprCallback = analyzeAggregate;
3678  w.xSelectCallback = analyzeAggregatesInSelect;
3679  w.u.pNC = pNC;
3680  assert( pNC->pSrcList!=0 );
3681  sqlite3WalkExpr(&w, pExpr);
3682}
3683
3684/*
3685** Call sqlite3ExprAnalyzeAggregates() for every expression in an
3686** expression list.  Return the number of errors.
3687**
3688** If an error is found, the analysis is cut short.
3689*/
3690void sqlite3ExprAnalyzeAggList(NameContext *pNC, ExprList *pList){
3691  struct ExprList_item *pItem;
3692  int i;
3693  if( pList ){
3694    for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){
3695      sqlite3ExprAnalyzeAggregates(pNC, pItem->pExpr);
3696    }
3697  }
3698}
3699
3700/*
3701** Allocate a single new register for use to hold some intermediate result.
3702*/
3703int sqlite3GetTempReg(Parse *pParse){
3704  if( pParse->nTempReg==0 ){
3705    return ++pParse->nMem;
3706  }
3707  return pParse->aTempReg[--pParse->nTempReg];
3708}
3709
3710/*
3711** Deallocate a register, making available for reuse for some other
3712** purpose.
3713**
3714** If a register is currently being used by the column cache, then
3715** the dallocation is deferred until the column cache line that uses
3716** the register becomes stale.
3717*/
3718void sqlite3ReleaseTempReg(Parse *pParse, int iReg){
3719  if( iReg && pParse->nTempReg<ArraySize(pParse->aTempReg) ){
3720    int i;
3721    struct yColCache *p;
3722    for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
3723      if( p->iReg==iReg ){
3724        p->tempReg = 1;
3725        return;
3726      }
3727    }
3728    pParse->aTempReg[pParse->nTempReg++] = iReg;
3729  }
3730}
3731
3732/*
3733** Allocate or deallocate a block of nReg consecutive registers
3734*/
3735int sqlite3GetTempRange(Parse *pParse, int nReg){
3736  int i, n;
3737  i = pParse->iRangeReg;
3738  n = pParse->nRangeReg;
3739  if( nReg<=n ){
3740    assert( !usedAsColumnCache(pParse, i, i+n-1) );
3741    pParse->iRangeReg += nReg;
3742    pParse->nRangeReg -= nReg;
3743  }else{
3744    i = pParse->nMem+1;
3745    pParse->nMem += nReg;
3746  }
3747  return i;
3748}
3749void sqlite3ReleaseTempRange(Parse *pParse, int iReg, int nReg){
3750  sqlite3ExprCacheRemove(pParse, iReg, nReg);
3751  if( nReg>pParse->nRangeReg ){
3752    pParse->nRangeReg = nReg;
3753    pParse->iRangeReg = iReg;
3754  }
3755}
3756