1// Copyright 2013 the V8 project authors. All rights reserved.
2// Use of this source code is governed by a BSD-style license that can be
3// found in the LICENSE file.
4
5#include "src/v8.h"
6
7#if V8_TARGET_ARCH_ARM64
8
9#include "src/base/bits.h"
10#include "src/base/division-by-constant.h"
11#include "src/bootstrapper.h"
12#include "src/codegen.h"
13#include "src/cpu-profiler.h"
14#include "src/debug.h"
15#include "src/isolate-inl.h"
16#include "src/runtime.h"
17
18namespace v8 {
19namespace internal {
20
21// Define a fake double underscore to use with the ASM_UNIMPLEMENTED macros.
22#define __
23
24
25MacroAssembler::MacroAssembler(Isolate* arg_isolate,
26                               byte * buffer,
27                               unsigned buffer_size)
28    : Assembler(arg_isolate, buffer, buffer_size),
29      generating_stub_(false),
30#if DEBUG
31      allow_macro_instructions_(true),
32#endif
33      has_frame_(false),
34      use_real_aborts_(true),
35      sp_(jssp),
36      tmp_list_(DefaultTmpList()),
37      fptmp_list_(DefaultFPTmpList()) {
38  if (isolate() != NULL) {
39    code_object_ = Handle<Object>(isolate()->heap()->undefined_value(),
40                                  isolate());
41  }
42}
43
44
45CPURegList MacroAssembler::DefaultTmpList() {
46  return CPURegList(ip0, ip1);
47}
48
49
50CPURegList MacroAssembler::DefaultFPTmpList() {
51  return CPURegList(fp_scratch1, fp_scratch2);
52}
53
54
55void MacroAssembler::LogicalMacro(const Register& rd,
56                                  const Register& rn,
57                                  const Operand& operand,
58                                  LogicalOp op) {
59  UseScratchRegisterScope temps(this);
60
61  if (operand.NeedsRelocation(this)) {
62    Register temp = temps.AcquireX();
63    Ldr(temp, operand.immediate());
64    Logical(rd, rn, temp, op);
65
66  } else if (operand.IsImmediate()) {
67    int64_t immediate = operand.ImmediateValue();
68    unsigned reg_size = rd.SizeInBits();
69
70    // If the operation is NOT, invert the operation and immediate.
71    if ((op & NOT) == NOT) {
72      op = static_cast<LogicalOp>(op & ~NOT);
73      immediate = ~immediate;
74    }
75
76    // Ignore the top 32 bits of an immediate if we're moving to a W register.
77    if (rd.Is32Bits()) {
78      // Check that the top 32 bits are consistent.
79      DCHECK(((immediate >> kWRegSizeInBits) == 0) ||
80             ((immediate >> kWRegSizeInBits) == -1));
81      immediate &= kWRegMask;
82    }
83
84    DCHECK(rd.Is64Bits() || is_uint32(immediate));
85
86    // Special cases for all set or all clear immediates.
87    if (immediate == 0) {
88      switch (op) {
89        case AND:
90          Mov(rd, 0);
91          return;
92        case ORR:  // Fall through.
93        case EOR:
94          Mov(rd, rn);
95          return;
96        case ANDS:  // Fall through.
97        case BICS:
98          break;
99        default:
100          UNREACHABLE();
101      }
102    } else if ((rd.Is64Bits() && (immediate == -1L)) ||
103               (rd.Is32Bits() && (immediate == 0xffffffffL))) {
104      switch (op) {
105        case AND:
106          Mov(rd, rn);
107          return;
108        case ORR:
109          Mov(rd, immediate);
110          return;
111        case EOR:
112          Mvn(rd, rn);
113          return;
114        case ANDS:  // Fall through.
115        case BICS:
116          break;
117        default:
118          UNREACHABLE();
119      }
120    }
121
122    unsigned n, imm_s, imm_r;
123    if (IsImmLogical(immediate, reg_size, &n, &imm_s, &imm_r)) {
124      // Immediate can be encoded in the instruction.
125      LogicalImmediate(rd, rn, n, imm_s, imm_r, op);
126    } else {
127      // Immediate can't be encoded: synthesize using move immediate.
128      Register temp = temps.AcquireSameSizeAs(rn);
129      Operand imm_operand = MoveImmediateForShiftedOp(temp, immediate);
130      if (rd.Is(csp)) {
131        // If rd is the stack pointer we cannot use it as the destination
132        // register so we use the temp register as an intermediate again.
133        Logical(temp, rn, imm_operand, op);
134        Mov(csp, temp);
135        AssertStackConsistency();
136      } else {
137        Logical(rd, rn, imm_operand, op);
138      }
139    }
140
141  } else if (operand.IsExtendedRegister()) {
142    DCHECK(operand.reg().SizeInBits() <= rd.SizeInBits());
143    // Add/sub extended supports shift <= 4. We want to support exactly the
144    // same modes here.
145    DCHECK(operand.shift_amount() <= 4);
146    DCHECK(operand.reg().Is64Bits() ||
147           ((operand.extend() != UXTX) && (operand.extend() != SXTX)));
148    Register temp = temps.AcquireSameSizeAs(rn);
149    EmitExtendShift(temp, operand.reg(), operand.extend(),
150                    operand.shift_amount());
151    Logical(rd, rn, temp, op);
152
153  } else {
154    // The operand can be encoded in the instruction.
155    DCHECK(operand.IsShiftedRegister());
156    Logical(rd, rn, operand, op);
157  }
158}
159
160
161void MacroAssembler::Mov(const Register& rd, uint64_t imm) {
162  DCHECK(allow_macro_instructions_);
163  DCHECK(is_uint32(imm) || is_int32(imm) || rd.Is64Bits());
164  DCHECK(!rd.IsZero());
165
166  // TODO(all) extend to support more immediates.
167  //
168  // Immediates on Aarch64 can be produced using an initial value, and zero to
169  // three move keep operations.
170  //
171  // Initial values can be generated with:
172  //  1. 64-bit move zero (movz).
173  //  2. 32-bit move inverted (movn).
174  //  3. 64-bit move inverted.
175  //  4. 32-bit orr immediate.
176  //  5. 64-bit orr immediate.
177  // Move-keep may then be used to modify each of the 16-bit half-words.
178  //
179  // The code below supports all five initial value generators, and
180  // applying move-keep operations to move-zero and move-inverted initial
181  // values.
182
183  // Try to move the immediate in one instruction, and if that fails, switch to
184  // using multiple instructions.
185  if (!TryOneInstrMoveImmediate(rd, imm)) {
186    unsigned reg_size = rd.SizeInBits();
187
188    // Generic immediate case. Imm will be represented by
189    //   [imm3, imm2, imm1, imm0], where each imm is 16 bits.
190    // A move-zero or move-inverted is generated for the first non-zero or
191    // non-0xffff immX, and a move-keep for subsequent non-zero immX.
192
193    uint64_t ignored_halfword = 0;
194    bool invert_move = false;
195    // If the number of 0xffff halfwords is greater than the number of 0x0000
196    // halfwords, it's more efficient to use move-inverted.
197    if (CountClearHalfWords(~imm, reg_size) >
198        CountClearHalfWords(imm, reg_size)) {
199      ignored_halfword = 0xffffL;
200      invert_move = true;
201    }
202
203    // Mov instructions can't move immediate values into the stack pointer, so
204    // set up a temporary register, if needed.
205    UseScratchRegisterScope temps(this);
206    Register temp = rd.IsSP() ? temps.AcquireSameSizeAs(rd) : rd;
207
208    // Iterate through the halfwords. Use movn/movz for the first non-ignored
209    // halfword, and movk for subsequent halfwords.
210    DCHECK((reg_size % 16) == 0);
211    bool first_mov_done = false;
212    for (unsigned i = 0; i < (rd.SizeInBits() / 16); i++) {
213      uint64_t imm16 = (imm >> (16 * i)) & 0xffffL;
214      if (imm16 != ignored_halfword) {
215        if (!first_mov_done) {
216          if (invert_move) {
217            movn(temp, (~imm16) & 0xffffL, 16 * i);
218          } else {
219            movz(temp, imm16, 16 * i);
220          }
221          first_mov_done = true;
222        } else {
223          // Construct a wider constant.
224          movk(temp, imm16, 16 * i);
225        }
226      }
227    }
228    DCHECK(first_mov_done);
229
230    // Move the temporary if the original destination register was the stack
231    // pointer.
232    if (rd.IsSP()) {
233      mov(rd, temp);
234      AssertStackConsistency();
235    }
236  }
237}
238
239
240void MacroAssembler::Mov(const Register& rd,
241                         const Operand& operand,
242                         DiscardMoveMode discard_mode) {
243  DCHECK(allow_macro_instructions_);
244  DCHECK(!rd.IsZero());
245
246  // Provide a swap register for instructions that need to write into the
247  // system stack pointer (and can't do this inherently).
248  UseScratchRegisterScope temps(this);
249  Register dst = (rd.IsSP()) ? temps.AcquireSameSizeAs(rd) : rd;
250
251  if (operand.NeedsRelocation(this)) {
252    Ldr(dst, operand.immediate());
253
254  } else if (operand.IsImmediate()) {
255    // Call the macro assembler for generic immediates.
256    Mov(dst, operand.ImmediateValue());
257
258  } else if (operand.IsShiftedRegister() && (operand.shift_amount() != 0)) {
259    // Emit a shift instruction if moving a shifted register. This operation
260    // could also be achieved using an orr instruction (like orn used by Mvn),
261    // but using a shift instruction makes the disassembly clearer.
262    EmitShift(dst, operand.reg(), operand.shift(), operand.shift_amount());
263
264  } else if (operand.IsExtendedRegister()) {
265    // Emit an extend instruction if moving an extended register. This handles
266    // extend with post-shift operations, too.
267    EmitExtendShift(dst, operand.reg(), operand.extend(),
268                    operand.shift_amount());
269
270  } else {
271    // Otherwise, emit a register move only if the registers are distinct, or
272    // if they are not X registers.
273    //
274    // Note that mov(w0, w0) is not a no-op because it clears the top word of
275    // x0. A flag is provided (kDiscardForSameWReg) if a move between the same W
276    // registers is not required to clear the top word of the X register. In
277    // this case, the instruction is discarded.
278    //
279    // If csp is an operand, add #0 is emitted, otherwise, orr #0.
280    if (!rd.Is(operand.reg()) || (rd.Is32Bits() &&
281                                  (discard_mode == kDontDiscardForSameWReg))) {
282      Assembler::mov(rd, operand.reg());
283    }
284    // This case can handle writes into the system stack pointer directly.
285    dst = rd;
286  }
287
288  // Copy the result to the system stack pointer.
289  if (!dst.Is(rd)) {
290    DCHECK(rd.IsSP());
291    Assembler::mov(rd, dst);
292  }
293}
294
295
296void MacroAssembler::Mvn(const Register& rd, const Operand& operand) {
297  DCHECK(allow_macro_instructions_);
298
299  if (operand.NeedsRelocation(this)) {
300    Ldr(rd, operand.immediate());
301    mvn(rd, rd);
302
303  } else if (operand.IsImmediate()) {
304    // Call the macro assembler for generic immediates.
305    Mov(rd, ~operand.ImmediateValue());
306
307  } else if (operand.IsExtendedRegister()) {
308    // Emit two instructions for the extend case. This differs from Mov, as
309    // the extend and invert can't be achieved in one instruction.
310    EmitExtendShift(rd, operand.reg(), operand.extend(),
311                    operand.shift_amount());
312    mvn(rd, rd);
313
314  } else {
315    mvn(rd, operand);
316  }
317}
318
319
320unsigned MacroAssembler::CountClearHalfWords(uint64_t imm, unsigned reg_size) {
321  DCHECK((reg_size % 8) == 0);
322  int count = 0;
323  for (unsigned i = 0; i < (reg_size / 16); i++) {
324    if ((imm & 0xffff) == 0) {
325      count++;
326    }
327    imm >>= 16;
328  }
329  return count;
330}
331
332
333// The movz instruction can generate immediates containing an arbitrary 16-bit
334// half-word, with remaining bits clear, eg. 0x00001234, 0x0000123400000000.
335bool MacroAssembler::IsImmMovz(uint64_t imm, unsigned reg_size) {
336  DCHECK((reg_size == kXRegSizeInBits) || (reg_size == kWRegSizeInBits));
337  return CountClearHalfWords(imm, reg_size) >= ((reg_size / 16) - 1);
338}
339
340
341// The movn instruction can generate immediates containing an arbitrary 16-bit
342// half-word, with remaining bits set, eg. 0xffff1234, 0xffff1234ffffffff.
343bool MacroAssembler::IsImmMovn(uint64_t imm, unsigned reg_size) {
344  return IsImmMovz(~imm, reg_size);
345}
346
347
348void MacroAssembler::ConditionalCompareMacro(const Register& rn,
349                                             const Operand& operand,
350                                             StatusFlags nzcv,
351                                             Condition cond,
352                                             ConditionalCompareOp op) {
353  DCHECK((cond != al) && (cond != nv));
354  if (operand.NeedsRelocation(this)) {
355    UseScratchRegisterScope temps(this);
356    Register temp = temps.AcquireX();
357    Ldr(temp, operand.immediate());
358    ConditionalCompareMacro(rn, temp, nzcv, cond, op);
359
360  } else if ((operand.IsShiftedRegister() && (operand.shift_amount() == 0)) ||
361             (operand.IsImmediate() &&
362              IsImmConditionalCompare(operand.ImmediateValue()))) {
363    // The immediate can be encoded in the instruction, or the operand is an
364    // unshifted register: call the assembler.
365    ConditionalCompare(rn, operand, nzcv, cond, op);
366
367  } else {
368    // The operand isn't directly supported by the instruction: perform the
369    // operation on a temporary register.
370    UseScratchRegisterScope temps(this);
371    Register temp = temps.AcquireSameSizeAs(rn);
372    Mov(temp, operand);
373    ConditionalCompare(rn, temp, nzcv, cond, op);
374  }
375}
376
377
378void MacroAssembler::Csel(const Register& rd,
379                          const Register& rn,
380                          const Operand& operand,
381                          Condition cond) {
382  DCHECK(allow_macro_instructions_);
383  DCHECK(!rd.IsZero());
384  DCHECK((cond != al) && (cond != nv));
385  if (operand.IsImmediate()) {
386    // Immediate argument. Handle special cases of 0, 1 and -1 using zero
387    // register.
388    int64_t imm = operand.ImmediateValue();
389    Register zr = AppropriateZeroRegFor(rn);
390    if (imm == 0) {
391      csel(rd, rn, zr, cond);
392    } else if (imm == 1) {
393      csinc(rd, rn, zr, cond);
394    } else if (imm == -1) {
395      csinv(rd, rn, zr, cond);
396    } else {
397      UseScratchRegisterScope temps(this);
398      Register temp = temps.AcquireSameSizeAs(rn);
399      Mov(temp, imm);
400      csel(rd, rn, temp, cond);
401    }
402  } else if (operand.IsShiftedRegister() && (operand.shift_amount() == 0)) {
403    // Unshifted register argument.
404    csel(rd, rn, operand.reg(), cond);
405  } else {
406    // All other arguments.
407    UseScratchRegisterScope temps(this);
408    Register temp = temps.AcquireSameSizeAs(rn);
409    Mov(temp, operand);
410    csel(rd, rn, temp, cond);
411  }
412}
413
414
415bool MacroAssembler::TryOneInstrMoveImmediate(const Register& dst,
416                                              int64_t imm) {
417  unsigned n, imm_s, imm_r;
418  int reg_size = dst.SizeInBits();
419  if (IsImmMovz(imm, reg_size) && !dst.IsSP()) {
420    // Immediate can be represented in a move zero instruction. Movz can't write
421    // to the stack pointer.
422    movz(dst, imm);
423    return true;
424  } else if (IsImmMovn(imm, reg_size) && !dst.IsSP()) {
425    // Immediate can be represented in a move not instruction. Movn can't write
426    // to the stack pointer.
427    movn(dst, dst.Is64Bits() ? ~imm : (~imm & kWRegMask));
428    return true;
429  } else if (IsImmLogical(imm, reg_size, &n, &imm_s, &imm_r)) {
430    // Immediate can be represented in a logical orr instruction.
431    LogicalImmediate(dst, AppropriateZeroRegFor(dst), n, imm_s, imm_r, ORR);
432    return true;
433  }
434  return false;
435}
436
437
438Operand MacroAssembler::MoveImmediateForShiftedOp(const Register& dst,
439                                                  int64_t imm) {
440  int reg_size = dst.SizeInBits();
441
442  // Encode the immediate in a single move instruction, if possible.
443  if (TryOneInstrMoveImmediate(dst, imm)) {
444    // The move was successful; nothing to do here.
445  } else {
446    // Pre-shift the immediate to the least-significant bits of the register.
447    int shift_low = CountTrailingZeros(imm, reg_size);
448    int64_t imm_low = imm >> shift_low;
449
450    // Pre-shift the immediate to the most-significant bits of the register. We
451    // insert set bits in the least-significant bits, as this creates a
452    // different immediate that may be encodable using movn or orr-immediate.
453    // If this new immediate is encodable, the set bits will be eliminated by
454    // the post shift on the following instruction.
455    int shift_high = CountLeadingZeros(imm, reg_size);
456    int64_t imm_high = (imm << shift_high) | ((1 << shift_high) - 1);
457
458    if (TryOneInstrMoveImmediate(dst, imm_low)) {
459      // The new immediate has been moved into the destination's low bits:
460      // return a new leftward-shifting operand.
461      return Operand(dst, LSL, shift_low);
462    } else if (TryOneInstrMoveImmediate(dst, imm_high)) {
463      // The new immediate has been moved into the destination's high bits:
464      // return a new rightward-shifting operand.
465      return Operand(dst, LSR, shift_high);
466    } else {
467      // Use the generic move operation to set up the immediate.
468      Mov(dst, imm);
469    }
470  }
471  return Operand(dst);
472}
473
474
475void MacroAssembler::AddSubMacro(const Register& rd,
476                                 const Register& rn,
477                                 const Operand& operand,
478                                 FlagsUpdate S,
479                                 AddSubOp op) {
480  if (operand.IsZero() && rd.Is(rn) && rd.Is64Bits() && rn.Is64Bits() &&
481      !operand.NeedsRelocation(this) && (S == LeaveFlags)) {
482    // The instruction would be a nop. Avoid generating useless code.
483    return;
484  }
485
486  if (operand.NeedsRelocation(this)) {
487    UseScratchRegisterScope temps(this);
488    Register temp = temps.AcquireX();
489    Ldr(temp, operand.immediate());
490    AddSubMacro(rd, rn, temp, S, op);
491  } else if ((operand.IsImmediate() &&
492              !IsImmAddSub(operand.ImmediateValue()))      ||
493             (rn.IsZero() && !operand.IsShiftedRegister()) ||
494             (operand.IsShiftedRegister() && (operand.shift() == ROR))) {
495    UseScratchRegisterScope temps(this);
496    Register temp = temps.AcquireSameSizeAs(rn);
497    if (operand.IsImmediate()) {
498      Operand imm_operand =
499          MoveImmediateForShiftedOp(temp, operand.ImmediateValue());
500      AddSub(rd, rn, imm_operand, S, op);
501    } else {
502      Mov(temp, operand);
503      AddSub(rd, rn, temp, S, op);
504    }
505  } else {
506    AddSub(rd, rn, operand, S, op);
507  }
508}
509
510
511void MacroAssembler::AddSubWithCarryMacro(const Register& rd,
512                                          const Register& rn,
513                                          const Operand& operand,
514                                          FlagsUpdate S,
515                                          AddSubWithCarryOp op) {
516  DCHECK(rd.SizeInBits() == rn.SizeInBits());
517  UseScratchRegisterScope temps(this);
518
519  if (operand.NeedsRelocation(this)) {
520    Register temp = temps.AcquireX();
521    Ldr(temp, operand.immediate());
522    AddSubWithCarryMacro(rd, rn, temp, S, op);
523
524  } else if (operand.IsImmediate() ||
525             (operand.IsShiftedRegister() && (operand.shift() == ROR))) {
526    // Add/sub with carry (immediate or ROR shifted register.)
527    Register temp = temps.AcquireSameSizeAs(rn);
528    Mov(temp, operand);
529    AddSubWithCarry(rd, rn, temp, S, op);
530
531  } else if (operand.IsShiftedRegister() && (operand.shift_amount() != 0)) {
532    // Add/sub with carry (shifted register).
533    DCHECK(operand.reg().SizeInBits() == rd.SizeInBits());
534    DCHECK(operand.shift() != ROR);
535    DCHECK(is_uintn(operand.shift_amount(),
536          rd.SizeInBits() == kXRegSizeInBits ? kXRegSizeInBitsLog2
537                                             : kWRegSizeInBitsLog2));
538    Register temp = temps.AcquireSameSizeAs(rn);
539    EmitShift(temp, operand.reg(), operand.shift(), operand.shift_amount());
540    AddSubWithCarry(rd, rn, temp, S, op);
541
542  } else if (operand.IsExtendedRegister()) {
543    // Add/sub with carry (extended register).
544    DCHECK(operand.reg().SizeInBits() <= rd.SizeInBits());
545    // Add/sub extended supports a shift <= 4. We want to support exactly the
546    // same modes.
547    DCHECK(operand.shift_amount() <= 4);
548    DCHECK(operand.reg().Is64Bits() ||
549           ((operand.extend() != UXTX) && (operand.extend() != SXTX)));
550    Register temp = temps.AcquireSameSizeAs(rn);
551    EmitExtendShift(temp, operand.reg(), operand.extend(),
552                    operand.shift_amount());
553    AddSubWithCarry(rd, rn, temp, S, op);
554
555  } else {
556    // The addressing mode is directly supported by the instruction.
557    AddSubWithCarry(rd, rn, operand, S, op);
558  }
559}
560
561
562void MacroAssembler::LoadStoreMacro(const CPURegister& rt,
563                                    const MemOperand& addr,
564                                    LoadStoreOp op) {
565  int64_t offset = addr.offset();
566  LSDataSize size = CalcLSDataSize(op);
567
568  // Check if an immediate offset fits in the immediate field of the
569  // appropriate instruction. If not, emit two instructions to perform
570  // the operation.
571  if (addr.IsImmediateOffset() && !IsImmLSScaled(offset, size) &&
572      !IsImmLSUnscaled(offset)) {
573    // Immediate offset that can't be encoded using unsigned or unscaled
574    // addressing modes.
575    UseScratchRegisterScope temps(this);
576    Register temp = temps.AcquireSameSizeAs(addr.base());
577    Mov(temp, addr.offset());
578    LoadStore(rt, MemOperand(addr.base(), temp), op);
579  } else if (addr.IsPostIndex() && !IsImmLSUnscaled(offset)) {
580    // Post-index beyond unscaled addressing range.
581    LoadStore(rt, MemOperand(addr.base()), op);
582    add(addr.base(), addr.base(), offset);
583  } else if (addr.IsPreIndex() && !IsImmLSUnscaled(offset)) {
584    // Pre-index beyond unscaled addressing range.
585    add(addr.base(), addr.base(), offset);
586    LoadStore(rt, MemOperand(addr.base()), op);
587  } else {
588    // Encodable in one load/store instruction.
589    LoadStore(rt, addr, op);
590  }
591}
592
593void MacroAssembler::LoadStorePairMacro(const CPURegister& rt,
594                                        const CPURegister& rt2,
595                                        const MemOperand& addr,
596                                        LoadStorePairOp op) {
597  // TODO(all): Should we support register offset for load-store-pair?
598  DCHECK(!addr.IsRegisterOffset());
599
600  int64_t offset = addr.offset();
601  LSDataSize size = CalcLSPairDataSize(op);
602
603  // Check if the offset fits in the immediate field of the appropriate
604  // instruction. If not, emit two instructions to perform the operation.
605  if (IsImmLSPair(offset, size)) {
606    // Encodable in one load/store pair instruction.
607    LoadStorePair(rt, rt2, addr, op);
608  } else {
609    Register base = addr.base();
610    if (addr.IsImmediateOffset()) {
611      UseScratchRegisterScope temps(this);
612      Register temp = temps.AcquireSameSizeAs(base);
613      Add(temp, base, offset);
614      LoadStorePair(rt, rt2, MemOperand(temp), op);
615    } else if (addr.IsPostIndex()) {
616      LoadStorePair(rt, rt2, MemOperand(base), op);
617      Add(base, base, offset);
618    } else {
619      DCHECK(addr.IsPreIndex());
620      Add(base, base, offset);
621      LoadStorePair(rt, rt2, MemOperand(base), op);
622    }
623  }
624}
625
626
627void MacroAssembler::Load(const Register& rt,
628                          const MemOperand& addr,
629                          Representation r) {
630  DCHECK(!r.IsDouble());
631
632  if (r.IsInteger8()) {
633    Ldrsb(rt, addr);
634  } else if (r.IsUInteger8()) {
635    Ldrb(rt, addr);
636  } else if (r.IsInteger16()) {
637    Ldrsh(rt, addr);
638  } else if (r.IsUInteger16()) {
639    Ldrh(rt, addr);
640  } else if (r.IsInteger32()) {
641    Ldr(rt.W(), addr);
642  } else {
643    DCHECK(rt.Is64Bits());
644    Ldr(rt, addr);
645  }
646}
647
648
649void MacroAssembler::Store(const Register& rt,
650                           const MemOperand& addr,
651                           Representation r) {
652  DCHECK(!r.IsDouble());
653
654  if (r.IsInteger8() || r.IsUInteger8()) {
655    Strb(rt, addr);
656  } else if (r.IsInteger16() || r.IsUInteger16()) {
657    Strh(rt, addr);
658  } else if (r.IsInteger32()) {
659    Str(rt.W(), addr);
660  } else {
661    DCHECK(rt.Is64Bits());
662    if (r.IsHeapObject()) {
663      AssertNotSmi(rt);
664    } else if (r.IsSmi()) {
665      AssertSmi(rt);
666    }
667    Str(rt, addr);
668  }
669}
670
671
672bool MacroAssembler::NeedExtraInstructionsOrRegisterBranch(
673    Label *label, ImmBranchType b_type) {
674  bool need_longer_range = false;
675  // There are two situations in which we care about the offset being out of
676  // range:
677  //  - The label is bound but too far away.
678  //  - The label is not bound but linked, and the previous branch
679  //    instruction in the chain is too far away.
680  if (label->is_bound() || label->is_linked()) {
681    need_longer_range =
682      !Instruction::IsValidImmPCOffset(b_type, label->pos() - pc_offset());
683  }
684  if (!need_longer_range && !label->is_bound()) {
685    int max_reachable_pc = pc_offset() + Instruction::ImmBranchRange(b_type);
686    unresolved_branches_.insert(
687        std::pair<int, FarBranchInfo>(max_reachable_pc,
688                                      FarBranchInfo(pc_offset(), label)));
689    // Also maintain the next pool check.
690    next_veneer_pool_check_ =
691      Min(next_veneer_pool_check_,
692          max_reachable_pc - kVeneerDistanceCheckMargin);
693  }
694  return need_longer_range;
695}
696
697
698void MacroAssembler::Adr(const Register& rd, Label* label, AdrHint hint) {
699  DCHECK(allow_macro_instructions_);
700  DCHECK(!rd.IsZero());
701
702  if (hint == kAdrNear) {
703    adr(rd, label);
704    return;
705  }
706
707  DCHECK(hint == kAdrFar);
708  if (label->is_bound()) {
709    int label_offset = label->pos() - pc_offset();
710    if (Instruction::IsValidPCRelOffset(label_offset)) {
711      adr(rd, label);
712    } else {
713      DCHECK(label_offset <= 0);
714      int min_adr_offset = -(1 << (Instruction::ImmPCRelRangeBitwidth - 1));
715      adr(rd, min_adr_offset);
716      Add(rd, rd, label_offset - min_adr_offset);
717    }
718  } else {
719    UseScratchRegisterScope temps(this);
720    Register scratch = temps.AcquireX();
721
722    InstructionAccurateScope scope(
723        this, PatchingAssembler::kAdrFarPatchableNInstrs);
724    adr(rd, label);
725    for (int i = 0; i < PatchingAssembler::kAdrFarPatchableNNops; ++i) {
726      nop(ADR_FAR_NOP);
727    }
728    movz(scratch, 0);
729  }
730}
731
732
733void MacroAssembler::B(Label* label, BranchType type, Register reg, int bit) {
734  DCHECK((reg.Is(NoReg) || type >= kBranchTypeFirstUsingReg) &&
735         (bit == -1 || type >= kBranchTypeFirstUsingBit));
736  if (kBranchTypeFirstCondition <= type && type <= kBranchTypeLastCondition) {
737    B(static_cast<Condition>(type), label);
738  } else {
739    switch (type) {
740      case always:        B(label);              break;
741      case never:         break;
742      case reg_zero:      Cbz(reg, label);       break;
743      case reg_not_zero:  Cbnz(reg, label);      break;
744      case reg_bit_clear: Tbz(reg, bit, label);  break;
745      case reg_bit_set:   Tbnz(reg, bit, label); break;
746      default:
747        UNREACHABLE();
748    }
749  }
750}
751
752
753void MacroAssembler::B(Label* label, Condition cond) {
754  DCHECK(allow_macro_instructions_);
755  DCHECK((cond != al) && (cond != nv));
756
757  Label done;
758  bool need_extra_instructions =
759    NeedExtraInstructionsOrRegisterBranch(label, CondBranchType);
760
761  if (need_extra_instructions) {
762    b(&done, NegateCondition(cond));
763    B(label);
764  } else {
765    b(label, cond);
766  }
767  bind(&done);
768}
769
770
771void MacroAssembler::Tbnz(const Register& rt, unsigned bit_pos, Label* label) {
772  DCHECK(allow_macro_instructions_);
773
774  Label done;
775  bool need_extra_instructions =
776    NeedExtraInstructionsOrRegisterBranch(label, TestBranchType);
777
778  if (need_extra_instructions) {
779    tbz(rt, bit_pos, &done);
780    B(label);
781  } else {
782    tbnz(rt, bit_pos, label);
783  }
784  bind(&done);
785}
786
787
788void MacroAssembler::Tbz(const Register& rt, unsigned bit_pos, Label* label) {
789  DCHECK(allow_macro_instructions_);
790
791  Label done;
792  bool need_extra_instructions =
793    NeedExtraInstructionsOrRegisterBranch(label, TestBranchType);
794
795  if (need_extra_instructions) {
796    tbnz(rt, bit_pos, &done);
797    B(label);
798  } else {
799    tbz(rt, bit_pos, label);
800  }
801  bind(&done);
802}
803
804
805void MacroAssembler::Cbnz(const Register& rt, Label* label) {
806  DCHECK(allow_macro_instructions_);
807
808  Label done;
809  bool need_extra_instructions =
810    NeedExtraInstructionsOrRegisterBranch(label, CompareBranchType);
811
812  if (need_extra_instructions) {
813    cbz(rt, &done);
814    B(label);
815  } else {
816    cbnz(rt, label);
817  }
818  bind(&done);
819}
820
821
822void MacroAssembler::Cbz(const Register& rt, Label* label) {
823  DCHECK(allow_macro_instructions_);
824
825  Label done;
826  bool need_extra_instructions =
827    NeedExtraInstructionsOrRegisterBranch(label, CompareBranchType);
828
829  if (need_extra_instructions) {
830    cbnz(rt, &done);
831    B(label);
832  } else {
833    cbz(rt, label);
834  }
835  bind(&done);
836}
837
838
839// Pseudo-instructions.
840
841
842void MacroAssembler::Abs(const Register& rd, const Register& rm,
843                         Label* is_not_representable,
844                         Label* is_representable) {
845  DCHECK(allow_macro_instructions_);
846  DCHECK(AreSameSizeAndType(rd, rm));
847
848  Cmp(rm, 1);
849  Cneg(rd, rm, lt);
850
851  // If the comparison sets the v flag, the input was the smallest value
852  // representable by rm, and the mathematical result of abs(rm) is not
853  // representable using two's complement.
854  if ((is_not_representable != NULL) && (is_representable != NULL)) {
855    B(is_not_representable, vs);
856    B(is_representable);
857  } else if (is_not_representable != NULL) {
858    B(is_not_representable, vs);
859  } else if (is_representable != NULL) {
860    B(is_representable, vc);
861  }
862}
863
864
865// Abstracted stack operations.
866
867
868void MacroAssembler::Push(const CPURegister& src0, const CPURegister& src1,
869                          const CPURegister& src2, const CPURegister& src3) {
870  DCHECK(AreSameSizeAndType(src0, src1, src2, src3));
871
872  int count = 1 + src1.IsValid() + src2.IsValid() + src3.IsValid();
873  int size = src0.SizeInBytes();
874
875  PushPreamble(count, size);
876  PushHelper(count, size, src0, src1, src2, src3);
877}
878
879
880void MacroAssembler::Push(const CPURegister& src0, const CPURegister& src1,
881                          const CPURegister& src2, const CPURegister& src3,
882                          const CPURegister& src4, const CPURegister& src5,
883                          const CPURegister& src6, const CPURegister& src7) {
884  DCHECK(AreSameSizeAndType(src0, src1, src2, src3, src4, src5, src6, src7));
885
886  int count = 5 + src5.IsValid() + src6.IsValid() + src6.IsValid();
887  int size = src0.SizeInBytes();
888
889  PushPreamble(count, size);
890  PushHelper(4, size, src0, src1, src2, src3);
891  PushHelper(count - 4, size, src4, src5, src6, src7);
892}
893
894
895void MacroAssembler::Pop(const CPURegister& dst0, const CPURegister& dst1,
896                         const CPURegister& dst2, const CPURegister& dst3) {
897  // It is not valid to pop into the same register more than once in one
898  // instruction, not even into the zero register.
899  DCHECK(!AreAliased(dst0, dst1, dst2, dst3));
900  DCHECK(AreSameSizeAndType(dst0, dst1, dst2, dst3));
901  DCHECK(dst0.IsValid());
902
903  int count = 1 + dst1.IsValid() + dst2.IsValid() + dst3.IsValid();
904  int size = dst0.SizeInBytes();
905
906  PopHelper(count, size, dst0, dst1, dst2, dst3);
907  PopPostamble(count, size);
908}
909
910
911void MacroAssembler::Push(const Register& src0, const FPRegister& src1) {
912  int size = src0.SizeInBytes() + src1.SizeInBytes();
913
914  PushPreamble(size);
915  // Reserve room for src0 and push src1.
916  str(src1, MemOperand(StackPointer(), -size, PreIndex));
917  // Fill the gap with src0.
918  str(src0, MemOperand(StackPointer(), src1.SizeInBytes()));
919}
920
921
922void MacroAssembler::PushPopQueue::PushQueued(
923    PreambleDirective preamble_directive) {
924  if (queued_.empty()) return;
925
926  if (preamble_directive == WITH_PREAMBLE) {
927    masm_->PushPreamble(size_);
928  }
929
930  int count = queued_.size();
931  int index = 0;
932  while (index < count) {
933    // PushHelper can only handle registers with the same size and type, and it
934    // can handle only four at a time. Batch them up accordingly.
935    CPURegister batch[4] = {NoReg, NoReg, NoReg, NoReg};
936    int batch_index = 0;
937    do {
938      batch[batch_index++] = queued_[index++];
939    } while ((batch_index < 4) && (index < count) &&
940             batch[0].IsSameSizeAndType(queued_[index]));
941
942    masm_->PushHelper(batch_index, batch[0].SizeInBytes(),
943                      batch[0], batch[1], batch[2], batch[3]);
944  }
945
946  queued_.clear();
947}
948
949
950void MacroAssembler::PushPopQueue::PopQueued() {
951  if (queued_.empty()) return;
952
953  int count = queued_.size();
954  int index = 0;
955  while (index < count) {
956    // PopHelper can only handle registers with the same size and type, and it
957    // can handle only four at a time. Batch them up accordingly.
958    CPURegister batch[4] = {NoReg, NoReg, NoReg, NoReg};
959    int batch_index = 0;
960    do {
961      batch[batch_index++] = queued_[index++];
962    } while ((batch_index < 4) && (index < count) &&
963             batch[0].IsSameSizeAndType(queued_[index]));
964
965    masm_->PopHelper(batch_index, batch[0].SizeInBytes(),
966                     batch[0], batch[1], batch[2], batch[3]);
967  }
968
969  masm_->PopPostamble(size_);
970  queued_.clear();
971}
972
973
974void MacroAssembler::PushCPURegList(CPURegList registers) {
975  int size = registers.RegisterSizeInBytes();
976
977  PushPreamble(registers.Count(), size);
978  // Push up to four registers at a time because if the current stack pointer is
979  // csp and reg_size is 32, registers must be pushed in blocks of four in order
980  // to maintain the 16-byte alignment for csp.
981  while (!registers.IsEmpty()) {
982    int count_before = registers.Count();
983    const CPURegister& src0 = registers.PopHighestIndex();
984    const CPURegister& src1 = registers.PopHighestIndex();
985    const CPURegister& src2 = registers.PopHighestIndex();
986    const CPURegister& src3 = registers.PopHighestIndex();
987    int count = count_before - registers.Count();
988    PushHelper(count, size, src0, src1, src2, src3);
989  }
990}
991
992
993void MacroAssembler::PopCPURegList(CPURegList registers) {
994  int size = registers.RegisterSizeInBytes();
995
996  // Pop up to four registers at a time because if the current stack pointer is
997  // csp and reg_size is 32, registers must be pushed in blocks of four in
998  // order to maintain the 16-byte alignment for csp.
999  while (!registers.IsEmpty()) {
1000    int count_before = registers.Count();
1001    const CPURegister& dst0 = registers.PopLowestIndex();
1002    const CPURegister& dst1 = registers.PopLowestIndex();
1003    const CPURegister& dst2 = registers.PopLowestIndex();
1004    const CPURegister& dst3 = registers.PopLowestIndex();
1005    int count = count_before - registers.Count();
1006    PopHelper(count, size, dst0, dst1, dst2, dst3);
1007  }
1008  PopPostamble(registers.Count(), size);
1009}
1010
1011
1012void MacroAssembler::PushMultipleTimes(CPURegister src, int count) {
1013  int size = src.SizeInBytes();
1014
1015  PushPreamble(count, size);
1016
1017  if (FLAG_optimize_for_size && count > 8) {
1018    UseScratchRegisterScope temps(this);
1019    Register temp = temps.AcquireX();
1020
1021    Label loop;
1022    __ Mov(temp, count / 2);
1023    __ Bind(&loop);
1024    PushHelper(2, size, src, src, NoReg, NoReg);
1025    __ Subs(temp, temp, 1);
1026    __ B(ne, &loop);
1027
1028    count %= 2;
1029  }
1030
1031  // Push up to four registers at a time if possible because if the current
1032  // stack pointer is csp and the register size is 32, registers must be pushed
1033  // in blocks of four in order to maintain the 16-byte alignment for csp.
1034  while (count >= 4) {
1035    PushHelper(4, size, src, src, src, src);
1036    count -= 4;
1037  }
1038  if (count >= 2) {
1039    PushHelper(2, size, src, src, NoReg, NoReg);
1040    count -= 2;
1041  }
1042  if (count == 1) {
1043    PushHelper(1, size, src, NoReg, NoReg, NoReg);
1044    count -= 1;
1045  }
1046  DCHECK(count == 0);
1047}
1048
1049
1050void MacroAssembler::PushMultipleTimes(CPURegister src, Register count) {
1051  PushPreamble(Operand(count, UXTW, WhichPowerOf2(src.SizeInBytes())));
1052
1053  UseScratchRegisterScope temps(this);
1054  Register temp = temps.AcquireSameSizeAs(count);
1055
1056  if (FLAG_optimize_for_size) {
1057    Label loop, done;
1058
1059    Subs(temp, count, 1);
1060    B(mi, &done);
1061
1062    // Push all registers individually, to save code size.
1063    Bind(&loop);
1064    Subs(temp, temp, 1);
1065    PushHelper(1, src.SizeInBytes(), src, NoReg, NoReg, NoReg);
1066    B(pl, &loop);
1067
1068    Bind(&done);
1069  } else {
1070    Label loop, leftover2, leftover1, done;
1071
1072    Subs(temp, count, 4);
1073    B(mi, &leftover2);
1074
1075    // Push groups of four first.
1076    Bind(&loop);
1077    Subs(temp, temp, 4);
1078    PushHelper(4, src.SizeInBytes(), src, src, src, src);
1079    B(pl, &loop);
1080
1081    // Push groups of two.
1082    Bind(&leftover2);
1083    Tbz(count, 1, &leftover1);
1084    PushHelper(2, src.SizeInBytes(), src, src, NoReg, NoReg);
1085
1086    // Push the last one (if required).
1087    Bind(&leftover1);
1088    Tbz(count, 0, &done);
1089    PushHelper(1, src.SizeInBytes(), src, NoReg, NoReg, NoReg);
1090
1091    Bind(&done);
1092  }
1093}
1094
1095
1096void MacroAssembler::PushHelper(int count, int size,
1097                                const CPURegister& src0,
1098                                const CPURegister& src1,
1099                                const CPURegister& src2,
1100                                const CPURegister& src3) {
1101  // Ensure that we don't unintentially modify scratch or debug registers.
1102  InstructionAccurateScope scope(this);
1103
1104  DCHECK(AreSameSizeAndType(src0, src1, src2, src3));
1105  DCHECK(size == src0.SizeInBytes());
1106
1107  // When pushing multiple registers, the store order is chosen such that
1108  // Push(a, b) is equivalent to Push(a) followed by Push(b).
1109  switch (count) {
1110    case 1:
1111      DCHECK(src1.IsNone() && src2.IsNone() && src3.IsNone());
1112      str(src0, MemOperand(StackPointer(), -1 * size, PreIndex));
1113      break;
1114    case 2:
1115      DCHECK(src2.IsNone() && src3.IsNone());
1116      stp(src1, src0, MemOperand(StackPointer(), -2 * size, PreIndex));
1117      break;
1118    case 3:
1119      DCHECK(src3.IsNone());
1120      stp(src2, src1, MemOperand(StackPointer(), -3 * size, PreIndex));
1121      str(src0, MemOperand(StackPointer(), 2 * size));
1122      break;
1123    case 4:
1124      // Skip over 4 * size, then fill in the gap. This allows four W registers
1125      // to be pushed using csp, whilst maintaining 16-byte alignment for csp
1126      // at all times.
1127      stp(src3, src2, MemOperand(StackPointer(), -4 * size, PreIndex));
1128      stp(src1, src0, MemOperand(StackPointer(), 2 * size));
1129      break;
1130    default:
1131      UNREACHABLE();
1132  }
1133}
1134
1135
1136void MacroAssembler::PopHelper(int count, int size,
1137                               const CPURegister& dst0,
1138                               const CPURegister& dst1,
1139                               const CPURegister& dst2,
1140                               const CPURegister& dst3) {
1141  // Ensure that we don't unintentially modify scratch or debug registers.
1142  InstructionAccurateScope scope(this);
1143
1144  DCHECK(AreSameSizeAndType(dst0, dst1, dst2, dst3));
1145  DCHECK(size == dst0.SizeInBytes());
1146
1147  // When popping multiple registers, the load order is chosen such that
1148  // Pop(a, b) is equivalent to Pop(a) followed by Pop(b).
1149  switch (count) {
1150    case 1:
1151      DCHECK(dst1.IsNone() && dst2.IsNone() && dst3.IsNone());
1152      ldr(dst0, MemOperand(StackPointer(), 1 * size, PostIndex));
1153      break;
1154    case 2:
1155      DCHECK(dst2.IsNone() && dst3.IsNone());
1156      ldp(dst0, dst1, MemOperand(StackPointer(), 2 * size, PostIndex));
1157      break;
1158    case 3:
1159      DCHECK(dst3.IsNone());
1160      ldr(dst2, MemOperand(StackPointer(), 2 * size));
1161      ldp(dst0, dst1, MemOperand(StackPointer(), 3 * size, PostIndex));
1162      break;
1163    case 4:
1164      // Load the higher addresses first, then load the lower addresses and
1165      // skip the whole block in the second instruction. This allows four W
1166      // registers to be popped using csp, whilst maintaining 16-byte alignment
1167      // for csp at all times.
1168      ldp(dst2, dst3, MemOperand(StackPointer(), 2 * size));
1169      ldp(dst0, dst1, MemOperand(StackPointer(), 4 * size, PostIndex));
1170      break;
1171    default:
1172      UNREACHABLE();
1173  }
1174}
1175
1176
1177void MacroAssembler::PushPreamble(Operand total_size) {
1178  if (csp.Is(StackPointer())) {
1179    // If the current stack pointer is csp, then it must be aligned to 16 bytes
1180    // on entry and the total size of the specified registers must also be a
1181    // multiple of 16 bytes.
1182    if (total_size.IsImmediate()) {
1183      DCHECK((total_size.ImmediateValue() % 16) == 0);
1184    }
1185
1186    // Don't check access size for non-immediate sizes. It's difficult to do
1187    // well, and it will be caught by hardware (or the simulator) anyway.
1188  } else {
1189    // Even if the current stack pointer is not the system stack pointer (csp),
1190    // the system stack pointer will still be modified in order to comply with
1191    // ABI rules about accessing memory below the system stack pointer.
1192    BumpSystemStackPointer(total_size);
1193  }
1194}
1195
1196
1197void MacroAssembler::PopPostamble(Operand total_size) {
1198  if (csp.Is(StackPointer())) {
1199    // If the current stack pointer is csp, then it must be aligned to 16 bytes
1200    // on entry and the total size of the specified registers must also be a
1201    // multiple of 16 bytes.
1202    if (total_size.IsImmediate()) {
1203      DCHECK((total_size.ImmediateValue() % 16) == 0);
1204    }
1205
1206    // Don't check access size for non-immediate sizes. It's difficult to do
1207    // well, and it will be caught by hardware (or the simulator) anyway.
1208  } else if (emit_debug_code()) {
1209    // It is safe to leave csp where it is when unwinding the JavaScript stack,
1210    // but if we keep it matching StackPointer, the simulator can detect memory
1211    // accesses in the now-free part of the stack.
1212    SyncSystemStackPointer();
1213  }
1214}
1215
1216
1217void MacroAssembler::Poke(const CPURegister& src, const Operand& offset) {
1218  if (offset.IsImmediate()) {
1219    DCHECK(offset.ImmediateValue() >= 0);
1220  } else if (emit_debug_code()) {
1221    Cmp(xzr, offset);
1222    Check(le, kStackAccessBelowStackPointer);
1223  }
1224
1225  Str(src, MemOperand(StackPointer(), offset));
1226}
1227
1228
1229void MacroAssembler::Peek(const CPURegister& dst, const Operand& offset) {
1230  if (offset.IsImmediate()) {
1231    DCHECK(offset.ImmediateValue() >= 0);
1232  } else if (emit_debug_code()) {
1233    Cmp(xzr, offset);
1234    Check(le, kStackAccessBelowStackPointer);
1235  }
1236
1237  Ldr(dst, MemOperand(StackPointer(), offset));
1238}
1239
1240
1241void MacroAssembler::PokePair(const CPURegister& src1,
1242                              const CPURegister& src2,
1243                              int offset) {
1244  DCHECK(AreSameSizeAndType(src1, src2));
1245  DCHECK((offset >= 0) && ((offset % src1.SizeInBytes()) == 0));
1246  Stp(src1, src2, MemOperand(StackPointer(), offset));
1247}
1248
1249
1250void MacroAssembler::PeekPair(const CPURegister& dst1,
1251                              const CPURegister& dst2,
1252                              int offset) {
1253  DCHECK(AreSameSizeAndType(dst1, dst2));
1254  DCHECK((offset >= 0) && ((offset % dst1.SizeInBytes()) == 0));
1255  Ldp(dst1, dst2, MemOperand(StackPointer(), offset));
1256}
1257
1258
1259void MacroAssembler::PushCalleeSavedRegisters() {
1260  // Ensure that the macro-assembler doesn't use any scratch registers.
1261  InstructionAccurateScope scope(this);
1262
1263  // This method must not be called unless the current stack pointer is the
1264  // system stack pointer (csp).
1265  DCHECK(csp.Is(StackPointer()));
1266
1267  MemOperand tos(csp, -2 * kXRegSize, PreIndex);
1268
1269  stp(d14, d15, tos);
1270  stp(d12, d13, tos);
1271  stp(d10, d11, tos);
1272  stp(d8, d9, tos);
1273
1274  stp(x29, x30, tos);
1275  stp(x27, x28, tos);    // x28 = jssp
1276  stp(x25, x26, tos);
1277  stp(x23, x24, tos);
1278  stp(x21, x22, tos);
1279  stp(x19, x20, tos);
1280}
1281
1282
1283void MacroAssembler::PopCalleeSavedRegisters() {
1284  // Ensure that the macro-assembler doesn't use any scratch registers.
1285  InstructionAccurateScope scope(this);
1286
1287  // This method must not be called unless the current stack pointer is the
1288  // system stack pointer (csp).
1289  DCHECK(csp.Is(StackPointer()));
1290
1291  MemOperand tos(csp, 2 * kXRegSize, PostIndex);
1292
1293  ldp(x19, x20, tos);
1294  ldp(x21, x22, tos);
1295  ldp(x23, x24, tos);
1296  ldp(x25, x26, tos);
1297  ldp(x27, x28, tos);    // x28 = jssp
1298  ldp(x29, x30, tos);
1299
1300  ldp(d8, d9, tos);
1301  ldp(d10, d11, tos);
1302  ldp(d12, d13, tos);
1303  ldp(d14, d15, tos);
1304}
1305
1306
1307void MacroAssembler::AssertStackConsistency() {
1308  // Avoid emitting code when !use_real_abort() since non-real aborts cause too
1309  // much code to be generated.
1310  if (emit_debug_code() && use_real_aborts()) {
1311    if (csp.Is(StackPointer()) || CpuFeatures::IsSupported(ALWAYS_ALIGN_CSP)) {
1312      // Always check the alignment of csp if ALWAYS_ALIGN_CSP is true.  We
1313      // can't check the alignment of csp without using a scratch register (or
1314      // clobbering the flags), but the processor (or simulator) will abort if
1315      // it is not properly aligned during a load.
1316      ldr(xzr, MemOperand(csp, 0));
1317    }
1318    if (FLAG_enable_slow_asserts && !csp.Is(StackPointer())) {
1319      Label ok;
1320      // Check that csp <= StackPointer(), preserving all registers and NZCV.
1321      sub(StackPointer(), csp, StackPointer());
1322      cbz(StackPointer(), &ok);                 // Ok if csp == StackPointer().
1323      tbnz(StackPointer(), kXSignBit, &ok);     // Ok if csp < StackPointer().
1324
1325      // Avoid generating AssertStackConsistency checks for the Push in Abort.
1326      { DontEmitDebugCodeScope dont_emit_debug_code_scope(this);
1327        Abort(kTheCurrentStackPointerIsBelowCsp);
1328      }
1329
1330      bind(&ok);
1331      // Restore StackPointer().
1332      sub(StackPointer(), csp, StackPointer());
1333    }
1334  }
1335}
1336
1337
1338void MacroAssembler::AssertFPCRState(Register fpcr) {
1339  if (emit_debug_code()) {
1340    Label unexpected_mode, done;
1341    UseScratchRegisterScope temps(this);
1342    if (fpcr.IsNone()) {
1343      fpcr = temps.AcquireX();
1344      Mrs(fpcr, FPCR);
1345    }
1346
1347    // Settings overridden by ConfiugreFPCR():
1348    //   - Assert that default-NaN mode is set.
1349    Tbz(fpcr, DN_offset, &unexpected_mode);
1350
1351    // Settings left to their default values:
1352    //   - Assert that flush-to-zero is not set.
1353    Tbnz(fpcr, FZ_offset, &unexpected_mode);
1354    //   - Assert that the rounding mode is nearest-with-ties-to-even.
1355    STATIC_ASSERT(FPTieEven == 0);
1356    Tst(fpcr, RMode_mask);
1357    B(eq, &done);
1358
1359    Bind(&unexpected_mode);
1360    Abort(kUnexpectedFPCRMode);
1361
1362    Bind(&done);
1363  }
1364}
1365
1366
1367void MacroAssembler::ConfigureFPCR() {
1368  UseScratchRegisterScope temps(this);
1369  Register fpcr = temps.AcquireX();
1370  Mrs(fpcr, FPCR);
1371
1372  // If necessary, enable default-NaN mode. The default values of the other FPCR
1373  // options should be suitable, and AssertFPCRState will verify that.
1374  Label no_write_required;
1375  Tbnz(fpcr, DN_offset, &no_write_required);
1376
1377  Orr(fpcr, fpcr, DN_mask);
1378  Msr(FPCR, fpcr);
1379
1380  Bind(&no_write_required);
1381  AssertFPCRState(fpcr);
1382}
1383
1384
1385void MacroAssembler::CanonicalizeNaN(const FPRegister& dst,
1386                                     const FPRegister& src) {
1387  AssertFPCRState();
1388
1389  // With DN=1 and RMode=FPTieEven, subtracting 0.0 preserves all inputs except
1390  // for NaNs, which become the default NaN. We use fsub rather than fadd
1391  // because sub preserves -0.0 inputs: -0.0 + 0.0 = 0.0, but -0.0 - 0.0 = -0.0.
1392  Fsub(dst, src, fp_zero);
1393}
1394
1395
1396void MacroAssembler::LoadRoot(CPURegister destination,
1397                              Heap::RootListIndex index) {
1398  // TODO(jbramley): Most root values are constants, and can be synthesized
1399  // without a load. Refer to the ARM back end for details.
1400  Ldr(destination, MemOperand(root, index << kPointerSizeLog2));
1401}
1402
1403
1404void MacroAssembler::StoreRoot(Register source,
1405                               Heap::RootListIndex index) {
1406  Str(source, MemOperand(root, index << kPointerSizeLog2));
1407}
1408
1409
1410void MacroAssembler::LoadTrueFalseRoots(Register true_root,
1411                                        Register false_root) {
1412  STATIC_ASSERT((Heap::kTrueValueRootIndex + 1) == Heap::kFalseValueRootIndex);
1413  Ldp(true_root, false_root,
1414      MemOperand(root, Heap::kTrueValueRootIndex << kPointerSizeLog2));
1415}
1416
1417
1418void MacroAssembler::LoadHeapObject(Register result,
1419                                    Handle<HeapObject> object) {
1420  AllowDeferredHandleDereference using_raw_address;
1421  if (isolate()->heap()->InNewSpace(*object)) {
1422    Handle<Cell> cell = isolate()->factory()->NewCell(object);
1423    Mov(result, Operand(cell));
1424    Ldr(result, FieldMemOperand(result, Cell::kValueOffset));
1425  } else {
1426    Mov(result, Operand(object));
1427  }
1428}
1429
1430
1431void MacroAssembler::LoadInstanceDescriptors(Register map,
1432                                             Register descriptors) {
1433  Ldr(descriptors, FieldMemOperand(map, Map::kDescriptorsOffset));
1434}
1435
1436
1437void MacroAssembler::NumberOfOwnDescriptors(Register dst, Register map) {
1438  Ldr(dst, FieldMemOperand(map, Map::kBitField3Offset));
1439  DecodeField<Map::NumberOfOwnDescriptorsBits>(dst);
1440}
1441
1442
1443void MacroAssembler::EnumLengthUntagged(Register dst, Register map) {
1444  STATIC_ASSERT(Map::EnumLengthBits::kShift == 0);
1445  Ldrsw(dst, FieldMemOperand(map, Map::kBitField3Offset));
1446  And(dst, dst, Map::EnumLengthBits::kMask);
1447}
1448
1449
1450void MacroAssembler::EnumLengthSmi(Register dst, Register map) {
1451  EnumLengthUntagged(dst, map);
1452  SmiTag(dst, dst);
1453}
1454
1455
1456void MacroAssembler::CheckEnumCache(Register object,
1457                                    Register null_value,
1458                                    Register scratch0,
1459                                    Register scratch1,
1460                                    Register scratch2,
1461                                    Register scratch3,
1462                                    Label* call_runtime) {
1463  DCHECK(!AreAliased(object, null_value, scratch0, scratch1, scratch2,
1464                     scratch3));
1465
1466  Register empty_fixed_array_value = scratch0;
1467  Register current_object = scratch1;
1468
1469  LoadRoot(empty_fixed_array_value, Heap::kEmptyFixedArrayRootIndex);
1470  Label next, start;
1471
1472  Mov(current_object, object);
1473
1474  // Check if the enum length field is properly initialized, indicating that
1475  // there is an enum cache.
1476  Register map = scratch2;
1477  Register enum_length = scratch3;
1478  Ldr(map, FieldMemOperand(current_object, HeapObject::kMapOffset));
1479
1480  EnumLengthUntagged(enum_length, map);
1481  Cmp(enum_length, kInvalidEnumCacheSentinel);
1482  B(eq, call_runtime);
1483
1484  B(&start);
1485
1486  Bind(&next);
1487  Ldr(map, FieldMemOperand(current_object, HeapObject::kMapOffset));
1488
1489  // For all objects but the receiver, check that the cache is empty.
1490  EnumLengthUntagged(enum_length, map);
1491  Cbnz(enum_length, call_runtime);
1492
1493  Bind(&start);
1494
1495  // Check that there are no elements. Register current_object contains the
1496  // current JS object we've reached through the prototype chain.
1497  Label no_elements;
1498  Ldr(current_object, FieldMemOperand(current_object,
1499                                      JSObject::kElementsOffset));
1500  Cmp(current_object, empty_fixed_array_value);
1501  B(eq, &no_elements);
1502
1503  // Second chance, the object may be using the empty slow element dictionary.
1504  CompareRoot(current_object, Heap::kEmptySlowElementDictionaryRootIndex);
1505  B(ne, call_runtime);
1506
1507  Bind(&no_elements);
1508  Ldr(current_object, FieldMemOperand(map, Map::kPrototypeOffset));
1509  Cmp(current_object, null_value);
1510  B(ne, &next);
1511}
1512
1513
1514void MacroAssembler::TestJSArrayForAllocationMemento(Register receiver,
1515                                                     Register scratch1,
1516                                                     Register scratch2,
1517                                                     Label* no_memento_found) {
1518  ExternalReference new_space_start =
1519      ExternalReference::new_space_start(isolate());
1520  ExternalReference new_space_allocation_top =
1521      ExternalReference::new_space_allocation_top_address(isolate());
1522
1523  Add(scratch1, receiver,
1524      JSArray::kSize + AllocationMemento::kSize - kHeapObjectTag);
1525  Cmp(scratch1, new_space_start);
1526  B(lt, no_memento_found);
1527
1528  Mov(scratch2, new_space_allocation_top);
1529  Ldr(scratch2, MemOperand(scratch2));
1530  Cmp(scratch1, scratch2);
1531  B(gt, no_memento_found);
1532
1533  Ldr(scratch1, MemOperand(scratch1, -AllocationMemento::kSize));
1534  Cmp(scratch1,
1535      Operand(isolate()->factory()->allocation_memento_map()));
1536}
1537
1538
1539void MacroAssembler::JumpToHandlerEntry(Register exception,
1540                                        Register object,
1541                                        Register state,
1542                                        Register scratch1,
1543                                        Register scratch2) {
1544  // Handler expects argument in x0.
1545  DCHECK(exception.Is(x0));
1546
1547  // Compute the handler entry address and jump to it. The handler table is
1548  // a fixed array of (smi-tagged) code offsets.
1549  Ldr(scratch1, FieldMemOperand(object, Code::kHandlerTableOffset));
1550  Add(scratch1, scratch1, FixedArray::kHeaderSize - kHeapObjectTag);
1551  STATIC_ASSERT(StackHandler::kKindWidth < kPointerSizeLog2);
1552  Lsr(scratch2, state, StackHandler::kKindWidth);
1553  Ldr(scratch2, MemOperand(scratch1, scratch2, LSL, kPointerSizeLog2));
1554  Add(scratch1, object, Code::kHeaderSize - kHeapObjectTag);
1555  Add(scratch1, scratch1, Operand::UntagSmi(scratch2));
1556  Br(scratch1);
1557}
1558
1559
1560void MacroAssembler::InNewSpace(Register object,
1561                                Condition cond,
1562                                Label* branch) {
1563  DCHECK(cond == eq || cond == ne);
1564  UseScratchRegisterScope temps(this);
1565  Register temp = temps.AcquireX();
1566  And(temp, object, ExternalReference::new_space_mask(isolate()));
1567  Cmp(temp, ExternalReference::new_space_start(isolate()));
1568  B(cond, branch);
1569}
1570
1571
1572void MacroAssembler::Throw(Register value,
1573                           Register scratch1,
1574                           Register scratch2,
1575                           Register scratch3,
1576                           Register scratch4) {
1577  // Adjust this code if not the case.
1578  STATIC_ASSERT(StackHandlerConstants::kSize == 5 * kPointerSize);
1579  STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0);
1580  STATIC_ASSERT(StackHandlerConstants::kCodeOffset == 1 * kPointerSize);
1581  STATIC_ASSERT(StackHandlerConstants::kStateOffset == 2 * kPointerSize);
1582  STATIC_ASSERT(StackHandlerConstants::kContextOffset == 3 * kPointerSize);
1583  STATIC_ASSERT(StackHandlerConstants::kFPOffset == 4 * kPointerSize);
1584
1585  // The handler expects the exception in x0.
1586  DCHECK(value.Is(x0));
1587
1588  // Drop the stack pointer to the top of the top handler.
1589  DCHECK(jssp.Is(StackPointer()));
1590  Mov(scratch1, Operand(ExternalReference(Isolate::kHandlerAddress,
1591                                          isolate())));
1592  Ldr(jssp, MemOperand(scratch1));
1593  // Restore the next handler.
1594  Pop(scratch2);
1595  Str(scratch2, MemOperand(scratch1));
1596
1597  // Get the code object and state.  Restore the context and frame pointer.
1598  Register object = scratch1;
1599  Register state = scratch2;
1600  Pop(object, state, cp, fp);
1601
1602  // If the handler is a JS frame, restore the context to the frame.
1603  // (kind == ENTRY) == (fp == 0) == (cp == 0), so we could test either fp
1604  // or cp.
1605  Label not_js_frame;
1606  Cbz(cp, &not_js_frame);
1607  Str(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
1608  Bind(&not_js_frame);
1609
1610  JumpToHandlerEntry(value, object, state, scratch3, scratch4);
1611}
1612
1613
1614void MacroAssembler::ThrowUncatchable(Register value,
1615                                      Register scratch1,
1616                                      Register scratch2,
1617                                      Register scratch3,
1618                                      Register scratch4) {
1619  // Adjust this code if not the case.
1620  STATIC_ASSERT(StackHandlerConstants::kSize == 5 * kPointerSize);
1621  STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0 * kPointerSize);
1622  STATIC_ASSERT(StackHandlerConstants::kCodeOffset == 1 * kPointerSize);
1623  STATIC_ASSERT(StackHandlerConstants::kStateOffset == 2 * kPointerSize);
1624  STATIC_ASSERT(StackHandlerConstants::kContextOffset == 3 * kPointerSize);
1625  STATIC_ASSERT(StackHandlerConstants::kFPOffset == 4 * kPointerSize);
1626
1627  // The handler expects the exception in x0.
1628  DCHECK(value.Is(x0));
1629
1630  // Drop the stack pointer to the top of the top stack handler.
1631  DCHECK(jssp.Is(StackPointer()));
1632  Mov(scratch1, Operand(ExternalReference(Isolate::kHandlerAddress,
1633                                          isolate())));
1634  Ldr(jssp, MemOperand(scratch1));
1635
1636  // Unwind the handlers until the ENTRY handler is found.
1637  Label fetch_next, check_kind;
1638  B(&check_kind);
1639  Bind(&fetch_next);
1640  Peek(jssp, StackHandlerConstants::kNextOffset);
1641
1642  Bind(&check_kind);
1643  STATIC_ASSERT(StackHandler::JS_ENTRY == 0);
1644  Peek(scratch2, StackHandlerConstants::kStateOffset);
1645  TestAndBranchIfAnySet(scratch2, StackHandler::KindField::kMask, &fetch_next);
1646
1647  // Set the top handler address to next handler past the top ENTRY handler.
1648  Pop(scratch2);
1649  Str(scratch2, MemOperand(scratch1));
1650
1651  // Get the code object and state.  Clear the context and frame pointer (0 was
1652  // saved in the handler).
1653  Register object = scratch1;
1654  Register state = scratch2;
1655  Pop(object, state, cp, fp);
1656
1657  JumpToHandlerEntry(value, object, state, scratch3, scratch4);
1658}
1659
1660
1661void MacroAssembler::AssertSmi(Register object, BailoutReason reason) {
1662  if (emit_debug_code()) {
1663    STATIC_ASSERT(kSmiTag == 0);
1664    Tst(object, kSmiTagMask);
1665    Check(eq, reason);
1666  }
1667}
1668
1669
1670void MacroAssembler::AssertNotSmi(Register object, BailoutReason reason) {
1671  if (emit_debug_code()) {
1672    STATIC_ASSERT(kSmiTag == 0);
1673    Tst(object, kSmiTagMask);
1674    Check(ne, reason);
1675  }
1676}
1677
1678
1679void MacroAssembler::AssertName(Register object) {
1680  if (emit_debug_code()) {
1681    AssertNotSmi(object, kOperandIsASmiAndNotAName);
1682
1683    UseScratchRegisterScope temps(this);
1684    Register temp = temps.AcquireX();
1685
1686    Ldr(temp, FieldMemOperand(object, HeapObject::kMapOffset));
1687    CompareInstanceType(temp, temp, LAST_NAME_TYPE);
1688    Check(ls, kOperandIsNotAName);
1689  }
1690}
1691
1692
1693void MacroAssembler::AssertUndefinedOrAllocationSite(Register object,
1694                                                     Register scratch) {
1695  if (emit_debug_code()) {
1696    Label done_checking;
1697    AssertNotSmi(object);
1698    JumpIfRoot(object, Heap::kUndefinedValueRootIndex, &done_checking);
1699    Ldr(scratch, FieldMemOperand(object, HeapObject::kMapOffset));
1700    CompareRoot(scratch, Heap::kAllocationSiteMapRootIndex);
1701    Assert(eq, kExpectedUndefinedOrCell);
1702    Bind(&done_checking);
1703  }
1704}
1705
1706
1707void MacroAssembler::AssertString(Register object) {
1708  if (emit_debug_code()) {
1709    UseScratchRegisterScope temps(this);
1710    Register temp = temps.AcquireX();
1711    STATIC_ASSERT(kSmiTag == 0);
1712    Tst(object, kSmiTagMask);
1713    Check(ne, kOperandIsASmiAndNotAString);
1714    Ldr(temp, FieldMemOperand(object, HeapObject::kMapOffset));
1715    CompareInstanceType(temp, temp, FIRST_NONSTRING_TYPE);
1716    Check(lo, kOperandIsNotAString);
1717  }
1718}
1719
1720
1721void MacroAssembler::CallStub(CodeStub* stub, TypeFeedbackId ast_id) {
1722  DCHECK(AllowThisStubCall(stub));  // Stub calls are not allowed in some stubs.
1723  Call(stub->GetCode(), RelocInfo::CODE_TARGET, ast_id);
1724}
1725
1726
1727void MacroAssembler::TailCallStub(CodeStub* stub) {
1728  Jump(stub->GetCode(), RelocInfo::CODE_TARGET);
1729}
1730
1731
1732void MacroAssembler::CallRuntime(const Runtime::Function* f,
1733                                 int num_arguments,
1734                                 SaveFPRegsMode save_doubles) {
1735  // All arguments must be on the stack before this function is called.
1736  // x0 holds the return value after the call.
1737
1738  // Check that the number of arguments matches what the function expects.
1739  // If f->nargs is -1, the function can accept a variable number of arguments.
1740  CHECK(f->nargs < 0 || f->nargs == num_arguments);
1741
1742  // Place the necessary arguments.
1743  Mov(x0, num_arguments);
1744  Mov(x1, ExternalReference(f, isolate()));
1745
1746  CEntryStub stub(isolate(), 1, save_doubles);
1747  CallStub(&stub);
1748}
1749
1750
1751static int AddressOffset(ExternalReference ref0, ExternalReference ref1) {
1752  return ref0.address() - ref1.address();
1753}
1754
1755
1756void MacroAssembler::CallApiFunctionAndReturn(
1757    Register function_address,
1758    ExternalReference thunk_ref,
1759    int stack_space,
1760    int spill_offset,
1761    MemOperand return_value_operand,
1762    MemOperand* context_restore_operand) {
1763  ASM_LOCATION("CallApiFunctionAndReturn");
1764  ExternalReference next_address =
1765      ExternalReference::handle_scope_next_address(isolate());
1766  const int kNextOffset = 0;
1767  const int kLimitOffset = AddressOffset(
1768      ExternalReference::handle_scope_limit_address(isolate()),
1769      next_address);
1770  const int kLevelOffset = AddressOffset(
1771      ExternalReference::handle_scope_level_address(isolate()),
1772      next_address);
1773
1774  DCHECK(function_address.is(x1) || function_address.is(x2));
1775
1776  Label profiler_disabled;
1777  Label end_profiler_check;
1778  Mov(x10, ExternalReference::is_profiling_address(isolate()));
1779  Ldrb(w10, MemOperand(x10));
1780  Cbz(w10, &profiler_disabled);
1781  Mov(x3, thunk_ref);
1782  B(&end_profiler_check);
1783
1784  Bind(&profiler_disabled);
1785  Mov(x3, function_address);
1786  Bind(&end_profiler_check);
1787
1788  // Save the callee-save registers we are going to use.
1789  // TODO(all): Is this necessary? ARM doesn't do it.
1790  STATIC_ASSERT(kCallApiFunctionSpillSpace == 4);
1791  Poke(x19, (spill_offset + 0) * kXRegSize);
1792  Poke(x20, (spill_offset + 1) * kXRegSize);
1793  Poke(x21, (spill_offset + 2) * kXRegSize);
1794  Poke(x22, (spill_offset + 3) * kXRegSize);
1795
1796  // Allocate HandleScope in callee-save registers.
1797  // We will need to restore the HandleScope after the call to the API function,
1798  // by allocating it in callee-save registers they will be preserved by C code.
1799  Register handle_scope_base = x22;
1800  Register next_address_reg = x19;
1801  Register limit_reg = x20;
1802  Register level_reg = w21;
1803
1804  Mov(handle_scope_base, next_address);
1805  Ldr(next_address_reg, MemOperand(handle_scope_base, kNextOffset));
1806  Ldr(limit_reg, MemOperand(handle_scope_base, kLimitOffset));
1807  Ldr(level_reg, MemOperand(handle_scope_base, kLevelOffset));
1808  Add(level_reg, level_reg, 1);
1809  Str(level_reg, MemOperand(handle_scope_base, kLevelOffset));
1810
1811  if (FLAG_log_timer_events) {
1812    FrameScope frame(this, StackFrame::MANUAL);
1813    PushSafepointRegisters();
1814    Mov(x0, ExternalReference::isolate_address(isolate()));
1815    CallCFunction(ExternalReference::log_enter_external_function(isolate()), 1);
1816    PopSafepointRegisters();
1817  }
1818
1819  // Native call returns to the DirectCEntry stub which redirects to the
1820  // return address pushed on stack (could have moved after GC).
1821  // DirectCEntry stub itself is generated early and never moves.
1822  DirectCEntryStub stub(isolate());
1823  stub.GenerateCall(this, x3);
1824
1825  if (FLAG_log_timer_events) {
1826    FrameScope frame(this, StackFrame::MANUAL);
1827    PushSafepointRegisters();
1828    Mov(x0, ExternalReference::isolate_address(isolate()));
1829    CallCFunction(ExternalReference::log_leave_external_function(isolate()), 1);
1830    PopSafepointRegisters();
1831  }
1832
1833  Label promote_scheduled_exception;
1834  Label exception_handled;
1835  Label delete_allocated_handles;
1836  Label leave_exit_frame;
1837  Label return_value_loaded;
1838
1839  // Load value from ReturnValue.
1840  Ldr(x0, return_value_operand);
1841  Bind(&return_value_loaded);
1842  // No more valid handles (the result handle was the last one). Restore
1843  // previous handle scope.
1844  Str(next_address_reg, MemOperand(handle_scope_base, kNextOffset));
1845  if (emit_debug_code()) {
1846    Ldr(w1, MemOperand(handle_scope_base, kLevelOffset));
1847    Cmp(w1, level_reg);
1848    Check(eq, kUnexpectedLevelAfterReturnFromApiCall);
1849  }
1850  Sub(level_reg, level_reg, 1);
1851  Str(level_reg, MemOperand(handle_scope_base, kLevelOffset));
1852  Ldr(x1, MemOperand(handle_scope_base, kLimitOffset));
1853  Cmp(limit_reg, x1);
1854  B(ne, &delete_allocated_handles);
1855
1856  Bind(&leave_exit_frame);
1857  // Restore callee-saved registers.
1858  Peek(x19, (spill_offset + 0) * kXRegSize);
1859  Peek(x20, (spill_offset + 1) * kXRegSize);
1860  Peek(x21, (spill_offset + 2) * kXRegSize);
1861  Peek(x22, (spill_offset + 3) * kXRegSize);
1862
1863  // Check if the function scheduled an exception.
1864  Mov(x5, ExternalReference::scheduled_exception_address(isolate()));
1865  Ldr(x5, MemOperand(x5));
1866  JumpIfNotRoot(x5, Heap::kTheHoleValueRootIndex, &promote_scheduled_exception);
1867  Bind(&exception_handled);
1868
1869  bool restore_context = context_restore_operand != NULL;
1870  if (restore_context) {
1871    Ldr(cp, *context_restore_operand);
1872  }
1873
1874  LeaveExitFrame(false, x1, !restore_context);
1875  Drop(stack_space);
1876  Ret();
1877
1878  Bind(&promote_scheduled_exception);
1879  {
1880    FrameScope frame(this, StackFrame::INTERNAL);
1881    CallExternalReference(
1882        ExternalReference(
1883            Runtime::kPromoteScheduledException, isolate()), 0);
1884  }
1885  B(&exception_handled);
1886
1887  // HandleScope limit has changed. Delete allocated extensions.
1888  Bind(&delete_allocated_handles);
1889  Str(limit_reg, MemOperand(handle_scope_base, kLimitOffset));
1890  // Save the return value in a callee-save register.
1891  Register saved_result = x19;
1892  Mov(saved_result, x0);
1893  Mov(x0, ExternalReference::isolate_address(isolate()));
1894  CallCFunction(
1895      ExternalReference::delete_handle_scope_extensions(isolate()), 1);
1896  Mov(x0, saved_result);
1897  B(&leave_exit_frame);
1898}
1899
1900
1901void MacroAssembler::CallExternalReference(const ExternalReference& ext,
1902                                           int num_arguments) {
1903  Mov(x0, num_arguments);
1904  Mov(x1, ext);
1905
1906  CEntryStub stub(isolate(), 1);
1907  CallStub(&stub);
1908}
1909
1910
1911void MacroAssembler::JumpToExternalReference(const ExternalReference& builtin) {
1912  Mov(x1, builtin);
1913  CEntryStub stub(isolate(), 1);
1914  Jump(stub.GetCode(), RelocInfo::CODE_TARGET);
1915}
1916
1917
1918void MacroAssembler::GetBuiltinFunction(Register target,
1919                                        Builtins::JavaScript id) {
1920  // Load the builtins object into target register.
1921  Ldr(target, GlobalObjectMemOperand());
1922  Ldr(target, FieldMemOperand(target, GlobalObject::kBuiltinsOffset));
1923  // Load the JavaScript builtin function from the builtins object.
1924  Ldr(target, FieldMemOperand(target,
1925                          JSBuiltinsObject::OffsetOfFunctionWithId(id)));
1926}
1927
1928
1929void MacroAssembler::GetBuiltinEntry(Register target,
1930                                     Register function,
1931                                     Builtins::JavaScript id) {
1932  DCHECK(!AreAliased(target, function));
1933  GetBuiltinFunction(function, id);
1934  // Load the code entry point from the builtins object.
1935  Ldr(target, FieldMemOperand(function, JSFunction::kCodeEntryOffset));
1936}
1937
1938
1939void MacroAssembler::InvokeBuiltin(Builtins::JavaScript id,
1940                                   InvokeFlag flag,
1941                                   const CallWrapper& call_wrapper) {
1942  ASM_LOCATION("MacroAssembler::InvokeBuiltin");
1943  // You can't call a builtin without a valid frame.
1944  DCHECK(flag == JUMP_FUNCTION || has_frame());
1945
1946  // Get the builtin entry in x2 and setup the function object in x1.
1947  GetBuiltinEntry(x2, x1, id);
1948  if (flag == CALL_FUNCTION) {
1949    call_wrapper.BeforeCall(CallSize(x2));
1950    Call(x2);
1951    call_wrapper.AfterCall();
1952  } else {
1953    DCHECK(flag == JUMP_FUNCTION);
1954    Jump(x2);
1955  }
1956}
1957
1958
1959void MacroAssembler::TailCallExternalReference(const ExternalReference& ext,
1960                                               int num_arguments,
1961                                               int result_size) {
1962  // TODO(1236192): Most runtime routines don't need the number of
1963  // arguments passed in because it is constant. At some point we
1964  // should remove this need and make the runtime routine entry code
1965  // smarter.
1966  Mov(x0, num_arguments);
1967  JumpToExternalReference(ext);
1968}
1969
1970
1971void MacroAssembler::TailCallRuntime(Runtime::FunctionId fid,
1972                                     int num_arguments,
1973                                     int result_size) {
1974  TailCallExternalReference(ExternalReference(fid, isolate()),
1975                            num_arguments,
1976                            result_size);
1977}
1978
1979
1980void MacroAssembler::InitializeNewString(Register string,
1981                                         Register length,
1982                                         Heap::RootListIndex map_index,
1983                                         Register scratch1,
1984                                         Register scratch2) {
1985  DCHECK(!AreAliased(string, length, scratch1, scratch2));
1986  LoadRoot(scratch2, map_index);
1987  SmiTag(scratch1, length);
1988  Str(scratch2, FieldMemOperand(string, HeapObject::kMapOffset));
1989
1990  Mov(scratch2, String::kEmptyHashField);
1991  Str(scratch1, FieldMemOperand(string, String::kLengthOffset));
1992  Str(scratch2, FieldMemOperand(string, String::kHashFieldOffset));
1993}
1994
1995
1996int MacroAssembler::ActivationFrameAlignment() {
1997#if V8_HOST_ARCH_ARM64
1998  // Running on the real platform. Use the alignment as mandated by the local
1999  // environment.
2000  // Note: This will break if we ever start generating snapshots on one ARM
2001  // platform for another ARM platform with a different alignment.
2002  return base::OS::ActivationFrameAlignment();
2003#else  // V8_HOST_ARCH_ARM64
2004  // If we are using the simulator then we should always align to the expected
2005  // alignment. As the simulator is used to generate snapshots we do not know
2006  // if the target platform will need alignment, so this is controlled from a
2007  // flag.
2008  return FLAG_sim_stack_alignment;
2009#endif  // V8_HOST_ARCH_ARM64
2010}
2011
2012
2013void MacroAssembler::CallCFunction(ExternalReference function,
2014                                   int num_of_reg_args) {
2015  CallCFunction(function, num_of_reg_args, 0);
2016}
2017
2018
2019void MacroAssembler::CallCFunction(ExternalReference function,
2020                                   int num_of_reg_args,
2021                                   int num_of_double_args) {
2022  UseScratchRegisterScope temps(this);
2023  Register temp = temps.AcquireX();
2024  Mov(temp, function);
2025  CallCFunction(temp, num_of_reg_args, num_of_double_args);
2026}
2027
2028
2029void MacroAssembler::CallCFunction(Register function,
2030                                   int num_of_reg_args,
2031                                   int num_of_double_args) {
2032  DCHECK(has_frame());
2033  // We can pass 8 integer arguments in registers. If we need to pass more than
2034  // that, we'll need to implement support for passing them on the stack.
2035  DCHECK(num_of_reg_args <= 8);
2036
2037  // If we're passing doubles, we're limited to the following prototypes
2038  // (defined by ExternalReference::Type):
2039  //  BUILTIN_COMPARE_CALL:  int f(double, double)
2040  //  BUILTIN_FP_FP_CALL:    double f(double, double)
2041  //  BUILTIN_FP_CALL:       double f(double)
2042  //  BUILTIN_FP_INT_CALL:   double f(double, int)
2043  if (num_of_double_args > 0) {
2044    DCHECK(num_of_reg_args <= 1);
2045    DCHECK((num_of_double_args + num_of_reg_args) <= 2);
2046  }
2047
2048
2049  // If the stack pointer is not csp, we need to derive an aligned csp from the
2050  // current stack pointer.
2051  const Register old_stack_pointer = StackPointer();
2052  if (!csp.Is(old_stack_pointer)) {
2053    AssertStackConsistency();
2054
2055    int sp_alignment = ActivationFrameAlignment();
2056    // The ABI mandates at least 16-byte alignment.
2057    DCHECK(sp_alignment >= 16);
2058    DCHECK(base::bits::IsPowerOfTwo32(sp_alignment));
2059
2060    // The current stack pointer is a callee saved register, and is preserved
2061    // across the call.
2062    DCHECK(kCalleeSaved.IncludesAliasOf(old_stack_pointer));
2063
2064    // Align and synchronize the system stack pointer with jssp.
2065    Bic(csp, old_stack_pointer, sp_alignment - 1);
2066    SetStackPointer(csp);
2067  }
2068
2069  // Call directly. The function called cannot cause a GC, or allow preemption,
2070  // so the return address in the link register stays correct.
2071  Call(function);
2072
2073  if (!csp.Is(old_stack_pointer)) {
2074    if (emit_debug_code()) {
2075      // Because the stack pointer must be aligned on a 16-byte boundary, the
2076      // aligned csp can be up to 12 bytes below the jssp. This is the case
2077      // where we only pushed one W register on top of an aligned jssp.
2078      UseScratchRegisterScope temps(this);
2079      Register temp = temps.AcquireX();
2080      DCHECK(ActivationFrameAlignment() == 16);
2081      Sub(temp, csp, old_stack_pointer);
2082      // We want temp <= 0 && temp >= -12.
2083      Cmp(temp, 0);
2084      Ccmp(temp, -12, NFlag, le);
2085      Check(ge, kTheStackWasCorruptedByMacroAssemblerCall);
2086    }
2087    SetStackPointer(old_stack_pointer);
2088  }
2089}
2090
2091
2092void MacroAssembler::Jump(Register target) {
2093  Br(target);
2094}
2095
2096
2097void MacroAssembler::Jump(intptr_t target, RelocInfo::Mode rmode) {
2098  UseScratchRegisterScope temps(this);
2099  Register temp = temps.AcquireX();
2100  Mov(temp, Operand(target, rmode));
2101  Br(temp);
2102}
2103
2104
2105void MacroAssembler::Jump(Address target, RelocInfo::Mode rmode) {
2106  DCHECK(!RelocInfo::IsCodeTarget(rmode));
2107  Jump(reinterpret_cast<intptr_t>(target), rmode);
2108}
2109
2110
2111void MacroAssembler::Jump(Handle<Code> code, RelocInfo::Mode rmode) {
2112  DCHECK(RelocInfo::IsCodeTarget(rmode));
2113  AllowDeferredHandleDereference embedding_raw_address;
2114  Jump(reinterpret_cast<intptr_t>(code.location()), rmode);
2115}
2116
2117
2118void MacroAssembler::Call(Register target) {
2119  BlockPoolsScope scope(this);
2120#ifdef DEBUG
2121  Label start_call;
2122  Bind(&start_call);
2123#endif
2124
2125  Blr(target);
2126
2127#ifdef DEBUG
2128  AssertSizeOfCodeGeneratedSince(&start_call, CallSize(target));
2129#endif
2130}
2131
2132
2133void MacroAssembler::Call(Label* target) {
2134  BlockPoolsScope scope(this);
2135#ifdef DEBUG
2136  Label start_call;
2137  Bind(&start_call);
2138#endif
2139
2140  Bl(target);
2141
2142#ifdef DEBUG
2143  AssertSizeOfCodeGeneratedSince(&start_call, CallSize(target));
2144#endif
2145}
2146
2147
2148// MacroAssembler::CallSize is sensitive to changes in this function, as it
2149// requires to know how many instructions are used to branch to the target.
2150void MacroAssembler::Call(Address target, RelocInfo::Mode rmode) {
2151  BlockPoolsScope scope(this);
2152#ifdef DEBUG
2153  Label start_call;
2154  Bind(&start_call);
2155#endif
2156  // Statement positions are expected to be recorded when the target
2157  // address is loaded.
2158  positions_recorder()->WriteRecordedPositions();
2159
2160  // Addresses always have 64 bits, so we shouldn't encounter NONE32.
2161  DCHECK(rmode != RelocInfo::NONE32);
2162
2163  UseScratchRegisterScope temps(this);
2164  Register temp = temps.AcquireX();
2165
2166  if (rmode == RelocInfo::NONE64) {
2167    // Addresses are 48 bits so we never need to load the upper 16 bits.
2168    uint64_t imm = reinterpret_cast<uint64_t>(target);
2169    // If we don't use ARM tagged addresses, the 16 higher bits must be 0.
2170    DCHECK(((imm >> 48) & 0xffff) == 0);
2171    movz(temp, (imm >> 0) & 0xffff, 0);
2172    movk(temp, (imm >> 16) & 0xffff, 16);
2173    movk(temp, (imm >> 32) & 0xffff, 32);
2174  } else {
2175    Ldr(temp, Immediate(reinterpret_cast<intptr_t>(target), rmode));
2176  }
2177  Blr(temp);
2178#ifdef DEBUG
2179  AssertSizeOfCodeGeneratedSince(&start_call, CallSize(target, rmode));
2180#endif
2181}
2182
2183
2184void MacroAssembler::Call(Handle<Code> code,
2185                          RelocInfo::Mode rmode,
2186                          TypeFeedbackId ast_id) {
2187#ifdef DEBUG
2188  Label start_call;
2189  Bind(&start_call);
2190#endif
2191
2192  if ((rmode == RelocInfo::CODE_TARGET) && (!ast_id.IsNone())) {
2193    SetRecordedAstId(ast_id);
2194    rmode = RelocInfo::CODE_TARGET_WITH_ID;
2195  }
2196
2197  AllowDeferredHandleDereference embedding_raw_address;
2198  Call(reinterpret_cast<Address>(code.location()), rmode);
2199
2200#ifdef DEBUG
2201  // Check the size of the code generated.
2202  AssertSizeOfCodeGeneratedSince(&start_call, CallSize(code, rmode, ast_id));
2203#endif
2204}
2205
2206
2207int MacroAssembler::CallSize(Register target) {
2208  USE(target);
2209  return kInstructionSize;
2210}
2211
2212
2213int MacroAssembler::CallSize(Label* target) {
2214  USE(target);
2215  return kInstructionSize;
2216}
2217
2218
2219int MacroAssembler::CallSize(Address target, RelocInfo::Mode rmode) {
2220  USE(target);
2221
2222  // Addresses always have 64 bits, so we shouldn't encounter NONE32.
2223  DCHECK(rmode != RelocInfo::NONE32);
2224
2225  if (rmode == RelocInfo::NONE64) {
2226    return kCallSizeWithoutRelocation;
2227  } else {
2228    return kCallSizeWithRelocation;
2229  }
2230}
2231
2232
2233int MacroAssembler::CallSize(Handle<Code> code,
2234                             RelocInfo::Mode rmode,
2235                             TypeFeedbackId ast_id) {
2236  USE(code);
2237  USE(ast_id);
2238
2239  // Addresses always have 64 bits, so we shouldn't encounter NONE32.
2240  DCHECK(rmode != RelocInfo::NONE32);
2241
2242  if (rmode == RelocInfo::NONE64) {
2243    return kCallSizeWithoutRelocation;
2244  } else {
2245    return kCallSizeWithRelocation;
2246  }
2247}
2248
2249
2250void MacroAssembler::JumpIfHeapNumber(Register object, Label* on_heap_number,
2251                                      SmiCheckType smi_check_type) {
2252  Label on_not_heap_number;
2253
2254  if (smi_check_type == DO_SMI_CHECK) {
2255    JumpIfSmi(object, &on_not_heap_number);
2256  }
2257
2258  AssertNotSmi(object);
2259
2260  UseScratchRegisterScope temps(this);
2261  Register temp = temps.AcquireX();
2262  Ldr(temp, FieldMemOperand(object, HeapObject::kMapOffset));
2263  JumpIfRoot(temp, Heap::kHeapNumberMapRootIndex, on_heap_number);
2264
2265  Bind(&on_not_heap_number);
2266}
2267
2268
2269void MacroAssembler::JumpIfNotHeapNumber(Register object,
2270                                         Label* on_not_heap_number,
2271                                         SmiCheckType smi_check_type) {
2272  if (smi_check_type == DO_SMI_CHECK) {
2273    JumpIfSmi(object, on_not_heap_number);
2274  }
2275
2276  AssertNotSmi(object);
2277
2278  UseScratchRegisterScope temps(this);
2279  Register temp = temps.AcquireX();
2280  Ldr(temp, FieldMemOperand(object, HeapObject::kMapOffset));
2281  JumpIfNotRoot(temp, Heap::kHeapNumberMapRootIndex, on_not_heap_number);
2282}
2283
2284
2285void MacroAssembler::LookupNumberStringCache(Register object,
2286                                             Register result,
2287                                             Register scratch1,
2288                                             Register scratch2,
2289                                             Register scratch3,
2290                                             Label* not_found) {
2291  DCHECK(!AreAliased(object, result, scratch1, scratch2, scratch3));
2292
2293  // Use of registers. Register result is used as a temporary.
2294  Register number_string_cache = result;
2295  Register mask = scratch3;
2296
2297  // Load the number string cache.
2298  LoadRoot(number_string_cache, Heap::kNumberStringCacheRootIndex);
2299
2300  // Make the hash mask from the length of the number string cache. It
2301  // contains two elements (number and string) for each cache entry.
2302  Ldrsw(mask, UntagSmiFieldMemOperand(number_string_cache,
2303                                      FixedArray::kLengthOffset));
2304  Asr(mask, mask, 1);  // Divide length by two.
2305  Sub(mask, mask, 1);  // Make mask.
2306
2307  // Calculate the entry in the number string cache. The hash value in the
2308  // number string cache for smis is just the smi value, and the hash for
2309  // doubles is the xor of the upper and lower words. See
2310  // Heap::GetNumberStringCache.
2311  Label is_smi;
2312  Label load_result_from_cache;
2313
2314  JumpIfSmi(object, &is_smi);
2315  JumpIfNotHeapNumber(object, not_found);
2316
2317  STATIC_ASSERT(kDoubleSize == (kWRegSize * 2));
2318  Add(scratch1, object, HeapNumber::kValueOffset - kHeapObjectTag);
2319  Ldp(scratch1.W(), scratch2.W(), MemOperand(scratch1));
2320  Eor(scratch1, scratch1, scratch2);
2321  And(scratch1, scratch1, mask);
2322
2323  // Calculate address of entry in string cache: each entry consists of two
2324  // pointer sized fields.
2325  Add(scratch1, number_string_cache,
2326      Operand(scratch1, LSL, kPointerSizeLog2 + 1));
2327
2328  Register probe = mask;
2329  Ldr(probe, FieldMemOperand(scratch1, FixedArray::kHeaderSize));
2330  JumpIfSmi(probe, not_found);
2331  Ldr(d0, FieldMemOperand(object, HeapNumber::kValueOffset));
2332  Ldr(d1, FieldMemOperand(probe, HeapNumber::kValueOffset));
2333  Fcmp(d0, d1);
2334  B(ne, not_found);
2335  B(&load_result_from_cache);
2336
2337  Bind(&is_smi);
2338  Register scratch = scratch1;
2339  And(scratch, mask, Operand::UntagSmi(object));
2340  // Calculate address of entry in string cache: each entry consists
2341  // of two pointer sized fields.
2342  Add(scratch, number_string_cache,
2343      Operand(scratch, LSL, kPointerSizeLog2 + 1));
2344
2345  // Check if the entry is the smi we are looking for.
2346  Ldr(probe, FieldMemOperand(scratch, FixedArray::kHeaderSize));
2347  Cmp(object, probe);
2348  B(ne, not_found);
2349
2350  // Get the result from the cache.
2351  Bind(&load_result_from_cache);
2352  Ldr(result, FieldMemOperand(scratch, FixedArray::kHeaderSize + kPointerSize));
2353  IncrementCounter(isolate()->counters()->number_to_string_native(), 1,
2354                   scratch1, scratch2);
2355}
2356
2357
2358void MacroAssembler::TryRepresentDoubleAsInt(Register as_int,
2359                                             FPRegister value,
2360                                             FPRegister scratch_d,
2361                                             Label* on_successful_conversion,
2362                                             Label* on_failed_conversion) {
2363  // Convert to an int and back again, then compare with the original value.
2364  Fcvtzs(as_int, value);
2365  Scvtf(scratch_d, as_int);
2366  Fcmp(value, scratch_d);
2367
2368  if (on_successful_conversion) {
2369    B(on_successful_conversion, eq);
2370  }
2371  if (on_failed_conversion) {
2372    B(on_failed_conversion, ne);
2373  }
2374}
2375
2376
2377void MacroAssembler::TestForMinusZero(DoubleRegister input) {
2378  UseScratchRegisterScope temps(this);
2379  Register temp = temps.AcquireX();
2380  // Floating point -0.0 is kMinInt as an integer, so subtracting 1 (cmp) will
2381  // cause overflow.
2382  Fmov(temp, input);
2383  Cmp(temp, 1);
2384}
2385
2386
2387void MacroAssembler::JumpIfMinusZero(DoubleRegister input,
2388                                     Label* on_negative_zero) {
2389  TestForMinusZero(input);
2390  B(vs, on_negative_zero);
2391}
2392
2393
2394void MacroAssembler::JumpIfMinusZero(Register input,
2395                                     Label* on_negative_zero) {
2396  DCHECK(input.Is64Bits());
2397  // Floating point value is in an integer register. Detect -0.0 by subtracting
2398  // 1 (cmp), which will cause overflow.
2399  Cmp(input, 1);
2400  B(vs, on_negative_zero);
2401}
2402
2403
2404void MacroAssembler::ClampInt32ToUint8(Register output, Register input) {
2405  // Clamp the value to [0..255].
2406  Cmp(input.W(), Operand(input.W(), UXTB));
2407  // If input < input & 0xff, it must be < 0, so saturate to 0.
2408  Csel(output.W(), wzr, input.W(), lt);
2409  // If input <= input & 0xff, it must be <= 255. Otherwise, saturate to 255.
2410  Csel(output.W(), output.W(), 255, le);
2411}
2412
2413
2414void MacroAssembler::ClampInt32ToUint8(Register in_out) {
2415  ClampInt32ToUint8(in_out, in_out);
2416}
2417
2418
2419void MacroAssembler::ClampDoubleToUint8(Register output,
2420                                        DoubleRegister input,
2421                                        DoubleRegister dbl_scratch) {
2422  // This conversion follows the WebIDL "[Clamp]" rules for PIXEL types:
2423  //   - Inputs lower than 0 (including -infinity) produce 0.
2424  //   - Inputs higher than 255 (including +infinity) produce 255.
2425  // Also, it seems that PIXEL types use round-to-nearest rather than
2426  // round-towards-zero.
2427
2428  // Squash +infinity before the conversion, since Fcvtnu will normally
2429  // convert it to 0.
2430  Fmov(dbl_scratch, 255);
2431  Fmin(dbl_scratch, dbl_scratch, input);
2432
2433  // Convert double to unsigned integer. Values less than zero become zero.
2434  // Values greater than 255 have already been clamped to 255.
2435  Fcvtnu(output, dbl_scratch);
2436}
2437
2438
2439void MacroAssembler::CopyFieldsLoopPairsHelper(Register dst,
2440                                               Register src,
2441                                               unsigned count,
2442                                               Register scratch1,
2443                                               Register scratch2,
2444                                               Register scratch3,
2445                                               Register scratch4,
2446                                               Register scratch5) {
2447  // Untag src and dst into scratch registers.
2448  // Copy src->dst in a tight loop.
2449  DCHECK(!AreAliased(dst, src,
2450                     scratch1, scratch2, scratch3, scratch4, scratch5));
2451  DCHECK(count >= 2);
2452
2453  const Register& remaining = scratch3;
2454  Mov(remaining, count / 2);
2455
2456  const Register& dst_untagged = scratch1;
2457  const Register& src_untagged = scratch2;
2458  Sub(dst_untagged, dst, kHeapObjectTag);
2459  Sub(src_untagged, src, kHeapObjectTag);
2460
2461  // Copy fields in pairs.
2462  Label loop;
2463  Bind(&loop);
2464  Ldp(scratch4, scratch5,
2465      MemOperand(src_untagged, kXRegSize* 2, PostIndex));
2466  Stp(scratch4, scratch5,
2467      MemOperand(dst_untagged, kXRegSize* 2, PostIndex));
2468  Sub(remaining, remaining, 1);
2469  Cbnz(remaining, &loop);
2470
2471  // Handle the leftovers.
2472  if (count & 1) {
2473    Ldr(scratch4, MemOperand(src_untagged));
2474    Str(scratch4, MemOperand(dst_untagged));
2475  }
2476}
2477
2478
2479void MacroAssembler::CopyFieldsUnrolledPairsHelper(Register dst,
2480                                                   Register src,
2481                                                   unsigned count,
2482                                                   Register scratch1,
2483                                                   Register scratch2,
2484                                                   Register scratch3,
2485                                                   Register scratch4) {
2486  // Untag src and dst into scratch registers.
2487  // Copy src->dst in an unrolled loop.
2488  DCHECK(!AreAliased(dst, src, scratch1, scratch2, scratch3, scratch4));
2489
2490  const Register& dst_untagged = scratch1;
2491  const Register& src_untagged = scratch2;
2492  sub(dst_untagged, dst, kHeapObjectTag);
2493  sub(src_untagged, src, kHeapObjectTag);
2494
2495  // Copy fields in pairs.
2496  for (unsigned i = 0; i < count / 2; i++) {
2497    Ldp(scratch3, scratch4, MemOperand(src_untagged, kXRegSize * 2, PostIndex));
2498    Stp(scratch3, scratch4, MemOperand(dst_untagged, kXRegSize * 2, PostIndex));
2499  }
2500
2501  // Handle the leftovers.
2502  if (count & 1) {
2503    Ldr(scratch3, MemOperand(src_untagged));
2504    Str(scratch3, MemOperand(dst_untagged));
2505  }
2506}
2507
2508
2509void MacroAssembler::CopyFieldsUnrolledHelper(Register dst,
2510                                              Register src,
2511                                              unsigned count,
2512                                              Register scratch1,
2513                                              Register scratch2,
2514                                              Register scratch3) {
2515  // Untag src and dst into scratch registers.
2516  // Copy src->dst in an unrolled loop.
2517  DCHECK(!AreAliased(dst, src, scratch1, scratch2, scratch3));
2518
2519  const Register& dst_untagged = scratch1;
2520  const Register& src_untagged = scratch2;
2521  Sub(dst_untagged, dst, kHeapObjectTag);
2522  Sub(src_untagged, src, kHeapObjectTag);
2523
2524  // Copy fields one by one.
2525  for (unsigned i = 0; i < count; i++) {
2526    Ldr(scratch3, MemOperand(src_untagged, kXRegSize, PostIndex));
2527    Str(scratch3, MemOperand(dst_untagged, kXRegSize, PostIndex));
2528  }
2529}
2530
2531
2532void MacroAssembler::CopyFields(Register dst, Register src, CPURegList temps,
2533                                unsigned count) {
2534  // One of two methods is used:
2535  //
2536  // For high 'count' values where many scratch registers are available:
2537  //    Untag src and dst into scratch registers.
2538  //    Copy src->dst in a tight loop.
2539  //
2540  // For low 'count' values or where few scratch registers are available:
2541  //    Untag src and dst into scratch registers.
2542  //    Copy src->dst in an unrolled loop.
2543  //
2544  // In both cases, fields are copied in pairs if possible, and left-overs are
2545  // handled separately.
2546  DCHECK(!AreAliased(dst, src));
2547  DCHECK(!temps.IncludesAliasOf(dst));
2548  DCHECK(!temps.IncludesAliasOf(src));
2549  DCHECK(!temps.IncludesAliasOf(xzr));
2550
2551  if (emit_debug_code()) {
2552    Cmp(dst, src);
2553    Check(ne, kTheSourceAndDestinationAreTheSame);
2554  }
2555
2556  // The value of 'count' at which a loop will be generated (if there are
2557  // enough scratch registers).
2558  static const unsigned kLoopThreshold = 8;
2559
2560  UseScratchRegisterScope masm_temps(this);
2561  if ((temps.Count() >= 3) && (count >= kLoopThreshold)) {
2562    CopyFieldsLoopPairsHelper(dst, src, count,
2563                              Register(temps.PopLowestIndex()),
2564                              Register(temps.PopLowestIndex()),
2565                              Register(temps.PopLowestIndex()),
2566                              masm_temps.AcquireX(),
2567                              masm_temps.AcquireX());
2568  } else if (temps.Count() >= 2) {
2569    CopyFieldsUnrolledPairsHelper(dst, src, count,
2570                                  Register(temps.PopLowestIndex()),
2571                                  Register(temps.PopLowestIndex()),
2572                                  masm_temps.AcquireX(),
2573                                  masm_temps.AcquireX());
2574  } else if (temps.Count() == 1) {
2575    CopyFieldsUnrolledHelper(dst, src, count,
2576                             Register(temps.PopLowestIndex()),
2577                             masm_temps.AcquireX(),
2578                             masm_temps.AcquireX());
2579  } else {
2580    UNREACHABLE();
2581  }
2582}
2583
2584
2585void MacroAssembler::CopyBytes(Register dst,
2586                               Register src,
2587                               Register length,
2588                               Register scratch,
2589                               CopyHint hint) {
2590  UseScratchRegisterScope temps(this);
2591  Register tmp1 = temps.AcquireX();
2592  Register tmp2 = temps.AcquireX();
2593  DCHECK(!AreAliased(src, dst, length, scratch, tmp1, tmp2));
2594  DCHECK(!AreAliased(src, dst, csp));
2595
2596  if (emit_debug_code()) {
2597    // Check copy length.
2598    Cmp(length, 0);
2599    Assert(ge, kUnexpectedNegativeValue);
2600
2601    // Check src and dst buffers don't overlap.
2602    Add(scratch, src, length);  // Calculate end of src buffer.
2603    Cmp(scratch, dst);
2604    Add(scratch, dst, length);  // Calculate end of dst buffer.
2605    Ccmp(scratch, src, ZFlag, gt);
2606    Assert(le, kCopyBuffersOverlap);
2607  }
2608
2609  Label short_copy, short_loop, bulk_loop, done;
2610
2611  if ((hint == kCopyLong || hint == kCopyUnknown) && !FLAG_optimize_for_size) {
2612    Register bulk_length = scratch;
2613    int pair_size = 2 * kXRegSize;
2614    int pair_mask = pair_size - 1;
2615
2616    Bic(bulk_length, length, pair_mask);
2617    Cbz(bulk_length, &short_copy);
2618    Bind(&bulk_loop);
2619    Sub(bulk_length, bulk_length, pair_size);
2620    Ldp(tmp1, tmp2, MemOperand(src, pair_size, PostIndex));
2621    Stp(tmp1, tmp2, MemOperand(dst, pair_size, PostIndex));
2622    Cbnz(bulk_length, &bulk_loop);
2623
2624    And(length, length, pair_mask);
2625  }
2626
2627  Bind(&short_copy);
2628  Cbz(length, &done);
2629  Bind(&short_loop);
2630  Sub(length, length, 1);
2631  Ldrb(tmp1, MemOperand(src, 1, PostIndex));
2632  Strb(tmp1, MemOperand(dst, 1, PostIndex));
2633  Cbnz(length, &short_loop);
2634
2635
2636  Bind(&done);
2637}
2638
2639
2640void MacroAssembler::FillFields(Register dst,
2641                                Register field_count,
2642                                Register filler) {
2643  DCHECK(!dst.Is(csp));
2644  UseScratchRegisterScope temps(this);
2645  Register field_ptr = temps.AcquireX();
2646  Register counter = temps.AcquireX();
2647  Label done;
2648
2649  // Decrement count. If the result < zero, count was zero, and there's nothing
2650  // to do. If count was one, flags are set to fail the gt condition at the end
2651  // of the pairs loop.
2652  Subs(counter, field_count, 1);
2653  B(lt, &done);
2654
2655  // There's at least one field to fill, so do this unconditionally.
2656  Str(filler, MemOperand(dst, kPointerSize, PostIndex));
2657
2658  // If the bottom bit of counter is set, there are an even number of fields to
2659  // fill, so pull the start pointer back by one field, allowing the pairs loop
2660  // to overwrite the field that was stored above.
2661  And(field_ptr, counter, 1);
2662  Sub(field_ptr, dst, Operand(field_ptr, LSL, kPointerSizeLog2));
2663
2664  // Store filler to memory in pairs.
2665  Label entry, loop;
2666  B(&entry);
2667  Bind(&loop);
2668  Stp(filler, filler, MemOperand(field_ptr, 2 * kPointerSize, PostIndex));
2669  Subs(counter, counter, 2);
2670  Bind(&entry);
2671  B(gt, &loop);
2672
2673  Bind(&done);
2674}
2675
2676
2677void MacroAssembler::JumpIfEitherIsNotSequentialOneByteStrings(
2678    Register first, Register second, Register scratch1, Register scratch2,
2679    Label* failure, SmiCheckType smi_check) {
2680  if (smi_check == DO_SMI_CHECK) {
2681    JumpIfEitherSmi(first, second, failure);
2682  } else if (emit_debug_code()) {
2683    DCHECK(smi_check == DONT_DO_SMI_CHECK);
2684    Label not_smi;
2685    JumpIfEitherSmi(first, second, NULL, &not_smi);
2686
2687    // At least one input is a smi, but the flags indicated a smi check wasn't
2688    // needed.
2689    Abort(kUnexpectedSmi);
2690
2691    Bind(&not_smi);
2692  }
2693
2694  // Test that both first and second are sequential one-byte strings.
2695  Ldr(scratch1, FieldMemOperand(first, HeapObject::kMapOffset));
2696  Ldr(scratch2, FieldMemOperand(second, HeapObject::kMapOffset));
2697  Ldrb(scratch1, FieldMemOperand(scratch1, Map::kInstanceTypeOffset));
2698  Ldrb(scratch2, FieldMemOperand(scratch2, Map::kInstanceTypeOffset));
2699
2700  JumpIfEitherInstanceTypeIsNotSequentialOneByte(scratch1, scratch2, scratch1,
2701                                                 scratch2, failure);
2702}
2703
2704
2705void MacroAssembler::JumpIfEitherInstanceTypeIsNotSequentialOneByte(
2706    Register first, Register second, Register scratch1, Register scratch2,
2707    Label* failure) {
2708  DCHECK(!AreAliased(scratch1, second));
2709  DCHECK(!AreAliased(scratch1, scratch2));
2710  static const int kFlatOneByteStringMask =
2711      kIsNotStringMask | kStringEncodingMask | kStringRepresentationMask;
2712  static const int kFlatOneByteStringTag = ONE_BYTE_STRING_TYPE;
2713  And(scratch1, first, kFlatOneByteStringMask);
2714  And(scratch2, second, kFlatOneByteStringMask);
2715  Cmp(scratch1, kFlatOneByteStringTag);
2716  Ccmp(scratch2, kFlatOneByteStringTag, NoFlag, eq);
2717  B(ne, failure);
2718}
2719
2720
2721void MacroAssembler::JumpIfInstanceTypeIsNotSequentialOneByte(Register type,
2722                                                              Register scratch,
2723                                                              Label* failure) {
2724  const int kFlatOneByteStringMask =
2725      kIsNotStringMask | kStringEncodingMask | kStringRepresentationMask;
2726  const int kFlatOneByteStringTag =
2727      kStringTag | kOneByteStringTag | kSeqStringTag;
2728  And(scratch, type, kFlatOneByteStringMask);
2729  Cmp(scratch, kFlatOneByteStringTag);
2730  B(ne, failure);
2731}
2732
2733
2734void MacroAssembler::JumpIfBothInstanceTypesAreNotSequentialOneByte(
2735    Register first, Register second, Register scratch1, Register scratch2,
2736    Label* failure) {
2737  DCHECK(!AreAliased(first, second, scratch1, scratch2));
2738  const int kFlatOneByteStringMask =
2739      kIsNotStringMask | kStringEncodingMask | kStringRepresentationMask;
2740  const int kFlatOneByteStringTag =
2741      kStringTag | kOneByteStringTag | kSeqStringTag;
2742  And(scratch1, first, kFlatOneByteStringMask);
2743  And(scratch2, second, kFlatOneByteStringMask);
2744  Cmp(scratch1, kFlatOneByteStringTag);
2745  Ccmp(scratch2, kFlatOneByteStringTag, NoFlag, eq);
2746  B(ne, failure);
2747}
2748
2749
2750void MacroAssembler::JumpIfNotUniqueNameInstanceType(Register type,
2751                                                     Label* not_unique_name) {
2752  STATIC_ASSERT((kInternalizedTag == 0) && (kStringTag == 0));
2753  // if ((type is string && type is internalized) || type == SYMBOL_TYPE) {
2754  //   continue
2755  // } else {
2756  //   goto not_unique_name
2757  // }
2758  Tst(type, kIsNotStringMask | kIsNotInternalizedMask);
2759  Ccmp(type, SYMBOL_TYPE, ZFlag, ne);
2760  B(ne, not_unique_name);
2761}
2762
2763
2764void MacroAssembler::InvokePrologue(const ParameterCount& expected,
2765                                    const ParameterCount& actual,
2766                                    Handle<Code> code_constant,
2767                                    Register code_reg,
2768                                    Label* done,
2769                                    InvokeFlag flag,
2770                                    bool* definitely_mismatches,
2771                                    const CallWrapper& call_wrapper) {
2772  bool definitely_matches = false;
2773  *definitely_mismatches = false;
2774  Label regular_invoke;
2775
2776  // Check whether the expected and actual arguments count match. If not,
2777  // setup registers according to contract with ArgumentsAdaptorTrampoline:
2778  //  x0: actual arguments count.
2779  //  x1: function (passed through to callee).
2780  //  x2: expected arguments count.
2781
2782  // The code below is made a lot easier because the calling code already sets
2783  // up actual and expected registers according to the contract if values are
2784  // passed in registers.
2785  DCHECK(actual.is_immediate() || actual.reg().is(x0));
2786  DCHECK(expected.is_immediate() || expected.reg().is(x2));
2787  DCHECK((!code_constant.is_null() && code_reg.is(no_reg)) || code_reg.is(x3));
2788
2789  if (expected.is_immediate()) {
2790    DCHECK(actual.is_immediate());
2791    if (expected.immediate() == actual.immediate()) {
2792      definitely_matches = true;
2793
2794    } else {
2795      Mov(x0, actual.immediate());
2796      if (expected.immediate() ==
2797          SharedFunctionInfo::kDontAdaptArgumentsSentinel) {
2798        // Don't worry about adapting arguments for builtins that
2799        // don't want that done. Skip adaption code by making it look
2800        // like we have a match between expected and actual number of
2801        // arguments.
2802        definitely_matches = true;
2803      } else {
2804        *definitely_mismatches = true;
2805        // Set up x2 for the argument adaptor.
2806        Mov(x2, expected.immediate());
2807      }
2808    }
2809
2810  } else {  // expected is a register.
2811    Operand actual_op = actual.is_immediate() ? Operand(actual.immediate())
2812                                              : Operand(actual.reg());
2813    // If actual == expected perform a regular invocation.
2814    Cmp(expected.reg(), actual_op);
2815    B(eq, &regular_invoke);
2816    // Otherwise set up x0 for the argument adaptor.
2817    Mov(x0, actual_op);
2818  }
2819
2820  // If the argument counts may mismatch, generate a call to the argument
2821  // adaptor.
2822  if (!definitely_matches) {
2823    if (!code_constant.is_null()) {
2824      Mov(x3, Operand(code_constant));
2825      Add(x3, x3, Code::kHeaderSize - kHeapObjectTag);
2826    }
2827
2828    Handle<Code> adaptor =
2829        isolate()->builtins()->ArgumentsAdaptorTrampoline();
2830    if (flag == CALL_FUNCTION) {
2831      call_wrapper.BeforeCall(CallSize(adaptor));
2832      Call(adaptor);
2833      call_wrapper.AfterCall();
2834      if (!*definitely_mismatches) {
2835        // If the arg counts don't match, no extra code is emitted by
2836        // MAsm::InvokeCode and we can just fall through.
2837        B(done);
2838      }
2839    } else {
2840      Jump(adaptor, RelocInfo::CODE_TARGET);
2841    }
2842  }
2843  Bind(&regular_invoke);
2844}
2845
2846
2847void MacroAssembler::InvokeCode(Register code,
2848                                const ParameterCount& expected,
2849                                const ParameterCount& actual,
2850                                InvokeFlag flag,
2851                                const CallWrapper& call_wrapper) {
2852  // You can't call a function without a valid frame.
2853  DCHECK(flag == JUMP_FUNCTION || has_frame());
2854
2855  Label done;
2856
2857  bool definitely_mismatches = false;
2858  InvokePrologue(expected, actual, Handle<Code>::null(), code, &done, flag,
2859                 &definitely_mismatches, call_wrapper);
2860
2861  // If we are certain that actual != expected, then we know InvokePrologue will
2862  // have handled the call through the argument adaptor mechanism.
2863  // The called function expects the call kind in x5.
2864  if (!definitely_mismatches) {
2865    if (flag == CALL_FUNCTION) {
2866      call_wrapper.BeforeCall(CallSize(code));
2867      Call(code);
2868      call_wrapper.AfterCall();
2869    } else {
2870      DCHECK(flag == JUMP_FUNCTION);
2871      Jump(code);
2872    }
2873  }
2874
2875  // Continue here if InvokePrologue does handle the invocation due to
2876  // mismatched parameter counts.
2877  Bind(&done);
2878}
2879
2880
2881void MacroAssembler::InvokeFunction(Register function,
2882                                    const ParameterCount& actual,
2883                                    InvokeFlag flag,
2884                                    const CallWrapper& call_wrapper) {
2885  // You can't call a function without a valid frame.
2886  DCHECK(flag == JUMP_FUNCTION || has_frame());
2887
2888  // Contract with called JS functions requires that function is passed in x1.
2889  // (See FullCodeGenerator::Generate().)
2890  DCHECK(function.is(x1));
2891
2892  Register expected_reg = x2;
2893  Register code_reg = x3;
2894
2895  Ldr(cp, FieldMemOperand(function, JSFunction::kContextOffset));
2896  // The number of arguments is stored as an int32_t, and -1 is a marker
2897  // (SharedFunctionInfo::kDontAdaptArgumentsSentinel), so we need sign
2898  // extension to correctly handle it.
2899  Ldr(expected_reg, FieldMemOperand(function,
2900                                    JSFunction::kSharedFunctionInfoOffset));
2901  Ldrsw(expected_reg,
2902        FieldMemOperand(expected_reg,
2903                        SharedFunctionInfo::kFormalParameterCountOffset));
2904  Ldr(code_reg,
2905      FieldMemOperand(function, JSFunction::kCodeEntryOffset));
2906
2907  ParameterCount expected(expected_reg);
2908  InvokeCode(code_reg, expected, actual, flag, call_wrapper);
2909}
2910
2911
2912void MacroAssembler::InvokeFunction(Register function,
2913                                    const ParameterCount& expected,
2914                                    const ParameterCount& actual,
2915                                    InvokeFlag flag,
2916                                    const CallWrapper& call_wrapper) {
2917  // You can't call a function without a valid frame.
2918  DCHECK(flag == JUMP_FUNCTION || has_frame());
2919
2920  // Contract with called JS functions requires that function is passed in x1.
2921  // (See FullCodeGenerator::Generate().)
2922  DCHECK(function.Is(x1));
2923
2924  Register code_reg = x3;
2925
2926  // Set up the context.
2927  Ldr(cp, FieldMemOperand(function, JSFunction::kContextOffset));
2928
2929  // We call indirectly through the code field in the function to
2930  // allow recompilation to take effect without changing any of the
2931  // call sites.
2932  Ldr(code_reg, FieldMemOperand(function, JSFunction::kCodeEntryOffset));
2933  InvokeCode(code_reg, expected, actual, flag, call_wrapper);
2934}
2935
2936
2937void MacroAssembler::InvokeFunction(Handle<JSFunction> function,
2938                                    const ParameterCount& expected,
2939                                    const ParameterCount& actual,
2940                                    InvokeFlag flag,
2941                                    const CallWrapper& call_wrapper) {
2942  // Contract with called JS functions requires that function is passed in x1.
2943  // (See FullCodeGenerator::Generate().)
2944  __ LoadObject(x1, function);
2945  InvokeFunction(x1, expected, actual, flag, call_wrapper);
2946}
2947
2948
2949void MacroAssembler::TryConvertDoubleToInt64(Register result,
2950                                             DoubleRegister double_input,
2951                                             Label* done) {
2952  // Try to convert with an FPU convert instruction. It's trivial to compute
2953  // the modulo operation on an integer register so we convert to a 64-bit
2954  // integer.
2955  //
2956  // Fcvtzs will saturate to INT64_MIN (0x800...00) or INT64_MAX (0x7ff...ff)
2957  // when the double is out of range. NaNs and infinities will be converted to 0
2958  // (as ECMA-262 requires).
2959  Fcvtzs(result.X(), double_input);
2960
2961  // The values INT64_MIN (0x800...00) or INT64_MAX (0x7ff...ff) are not
2962  // representable using a double, so if the result is one of those then we know
2963  // that saturation occured, and we need to manually handle the conversion.
2964  //
2965  // It is easy to detect INT64_MIN and INT64_MAX because adding or subtracting
2966  // 1 will cause signed overflow.
2967  Cmp(result.X(), 1);
2968  Ccmp(result.X(), -1, VFlag, vc);
2969
2970  B(vc, done);
2971}
2972
2973
2974void MacroAssembler::TruncateDoubleToI(Register result,
2975                                       DoubleRegister double_input) {
2976  Label done;
2977
2978  // Try to convert the double to an int64. If successful, the bottom 32 bits
2979  // contain our truncated int32 result.
2980  TryConvertDoubleToInt64(result, double_input, &done);
2981
2982  const Register old_stack_pointer = StackPointer();
2983  if (csp.Is(old_stack_pointer)) {
2984    // This currently only happens during compiler-unittest. If it arises
2985    // during regular code generation the DoubleToI stub should be updated to
2986    // cope with csp and have an extra parameter indicating which stack pointer
2987    // it should use.
2988    Push(jssp, xzr);  // Push xzr to maintain csp required 16-bytes alignment.
2989    Mov(jssp, csp);
2990    SetStackPointer(jssp);
2991  }
2992
2993  // If we fell through then inline version didn't succeed - call stub instead.
2994  Push(lr, double_input);
2995
2996  DoubleToIStub stub(isolate(),
2997                     jssp,
2998                     result,
2999                     0,
3000                     true,   // is_truncating
3001                     true);  // skip_fastpath
3002  CallStub(&stub);  // DoubleToIStub preserves any registers it needs to clobber
3003
3004  DCHECK_EQ(xzr.SizeInBytes(), double_input.SizeInBytes());
3005  Pop(xzr, lr);  // xzr to drop the double input on the stack.
3006
3007  if (csp.Is(old_stack_pointer)) {
3008    Mov(csp, jssp);
3009    SetStackPointer(csp);
3010    AssertStackConsistency();
3011    Pop(xzr, jssp);
3012  }
3013
3014  Bind(&done);
3015}
3016
3017
3018void MacroAssembler::TruncateHeapNumberToI(Register result,
3019                                           Register object) {
3020  Label done;
3021  DCHECK(!result.is(object));
3022  DCHECK(jssp.Is(StackPointer()));
3023
3024  Ldr(fp_scratch, FieldMemOperand(object, HeapNumber::kValueOffset));
3025
3026  // Try to convert the double to an int64. If successful, the bottom 32 bits
3027  // contain our truncated int32 result.
3028  TryConvertDoubleToInt64(result, fp_scratch, &done);
3029
3030  // If we fell through then inline version didn't succeed - call stub instead.
3031  Push(lr);
3032  DoubleToIStub stub(isolate(),
3033                     object,
3034                     result,
3035                     HeapNumber::kValueOffset - kHeapObjectTag,
3036                     true,   // is_truncating
3037                     true);  // skip_fastpath
3038  CallStub(&stub);  // DoubleToIStub preserves any registers it needs to clobber
3039  Pop(lr);
3040
3041  Bind(&done);
3042}
3043
3044
3045void MacroAssembler::StubPrologue() {
3046  DCHECK(StackPointer().Is(jssp));
3047  UseScratchRegisterScope temps(this);
3048  Register temp = temps.AcquireX();
3049  __ Mov(temp, Smi::FromInt(StackFrame::STUB));
3050  // Compiled stubs don't age, and so they don't need the predictable code
3051  // ageing sequence.
3052  __ Push(lr, fp, cp, temp);
3053  __ Add(fp, jssp, StandardFrameConstants::kFixedFrameSizeFromFp);
3054}
3055
3056
3057void MacroAssembler::Prologue(bool code_pre_aging) {
3058  if (code_pre_aging) {
3059    Code* stub = Code::GetPreAgedCodeAgeStub(isolate());
3060    __ EmitCodeAgeSequence(stub);
3061  } else {
3062    __ EmitFrameSetupForCodeAgePatching();
3063  }
3064}
3065
3066
3067void MacroAssembler::EnterFrame(StackFrame::Type type) {
3068  DCHECK(jssp.Is(StackPointer()));
3069  UseScratchRegisterScope temps(this);
3070  Register type_reg = temps.AcquireX();
3071  Register code_reg = temps.AcquireX();
3072
3073  Push(lr, fp, cp);
3074  Mov(type_reg, Smi::FromInt(type));
3075  Mov(code_reg, Operand(CodeObject()));
3076  Push(type_reg, code_reg);
3077  // jssp[4] : lr
3078  // jssp[3] : fp
3079  // jssp[2] : cp
3080  // jssp[1] : type
3081  // jssp[0] : code object
3082
3083  // Adjust FP to point to saved FP.
3084  Add(fp, jssp, StandardFrameConstants::kFixedFrameSizeFromFp + kPointerSize);
3085}
3086
3087
3088void MacroAssembler::LeaveFrame(StackFrame::Type type) {
3089  DCHECK(jssp.Is(StackPointer()));
3090  // Drop the execution stack down to the frame pointer and restore
3091  // the caller frame pointer and return address.
3092  Mov(jssp, fp);
3093  AssertStackConsistency();
3094  Pop(fp, lr);
3095}
3096
3097
3098void MacroAssembler::ExitFramePreserveFPRegs() {
3099  PushCPURegList(kCallerSavedFP);
3100}
3101
3102
3103void MacroAssembler::ExitFrameRestoreFPRegs() {
3104  // Read the registers from the stack without popping them. The stack pointer
3105  // will be reset as part of the unwinding process.
3106  CPURegList saved_fp_regs = kCallerSavedFP;
3107  DCHECK(saved_fp_regs.Count() % 2 == 0);
3108
3109  int offset = ExitFrameConstants::kLastExitFrameField;
3110  while (!saved_fp_regs.IsEmpty()) {
3111    const CPURegister& dst0 = saved_fp_regs.PopHighestIndex();
3112    const CPURegister& dst1 = saved_fp_regs.PopHighestIndex();
3113    offset -= 2 * kDRegSize;
3114    Ldp(dst1, dst0, MemOperand(fp, offset));
3115  }
3116}
3117
3118
3119void MacroAssembler::EnterExitFrame(bool save_doubles,
3120                                    const Register& scratch,
3121                                    int extra_space) {
3122  DCHECK(jssp.Is(StackPointer()));
3123
3124  // Set up the new stack frame.
3125  Mov(scratch, Operand(CodeObject()));
3126  Push(lr, fp);
3127  Mov(fp, StackPointer());
3128  Push(xzr, scratch);
3129  //          fp[8]: CallerPC (lr)
3130  //    fp -> fp[0]: CallerFP (old fp)
3131  //          fp[-8]: Space reserved for SPOffset.
3132  //  jssp -> fp[-16]: CodeObject()
3133  STATIC_ASSERT((2 * kPointerSize) ==
3134                ExitFrameConstants::kCallerSPDisplacement);
3135  STATIC_ASSERT((1 * kPointerSize) == ExitFrameConstants::kCallerPCOffset);
3136  STATIC_ASSERT((0 * kPointerSize) == ExitFrameConstants::kCallerFPOffset);
3137  STATIC_ASSERT((-1 * kPointerSize) == ExitFrameConstants::kSPOffset);
3138  STATIC_ASSERT((-2 * kPointerSize) == ExitFrameConstants::kCodeOffset);
3139
3140  // Save the frame pointer and context pointer in the top frame.
3141  Mov(scratch, Operand(ExternalReference(Isolate::kCEntryFPAddress,
3142                                         isolate())));
3143  Str(fp, MemOperand(scratch));
3144  Mov(scratch, Operand(ExternalReference(Isolate::kContextAddress,
3145                                         isolate())));
3146  Str(cp, MemOperand(scratch));
3147
3148  STATIC_ASSERT((-2 * kPointerSize) ==
3149                ExitFrameConstants::kLastExitFrameField);
3150  if (save_doubles) {
3151    ExitFramePreserveFPRegs();
3152  }
3153
3154  // Reserve space for the return address and for user requested memory.
3155  // We do this before aligning to make sure that we end up correctly
3156  // aligned with the minimum of wasted space.
3157  Claim(extra_space + 1, kXRegSize);
3158  //         fp[8]: CallerPC (lr)
3159  //   fp -> fp[0]: CallerFP (old fp)
3160  //         fp[-8]: Space reserved for SPOffset.
3161  //         fp[-16]: CodeObject()
3162  //         fp[-16 - fp_size]: Saved doubles (if save_doubles is true).
3163  //         jssp[8]: Extra space reserved for caller (if extra_space != 0).
3164  // jssp -> jssp[0]: Space reserved for the return address.
3165
3166  // Align and synchronize the system stack pointer with jssp.
3167  AlignAndSetCSPForFrame();
3168  DCHECK(csp.Is(StackPointer()));
3169
3170  //         fp[8]: CallerPC (lr)
3171  //   fp -> fp[0]: CallerFP (old fp)
3172  //         fp[-8]: Space reserved for SPOffset.
3173  //         fp[-16]: CodeObject()
3174  //         fp[-16 - fp_size]: Saved doubles (if save_doubles is true).
3175  //         csp[8]: Memory reserved for the caller if extra_space != 0.
3176  //                 Alignment padding, if necessary.
3177  //  csp -> csp[0]: Space reserved for the return address.
3178
3179  // ExitFrame::GetStateForFramePointer expects to find the return address at
3180  // the memory address immediately below the pointer stored in SPOffset.
3181  // It is not safe to derive much else from SPOffset, because the size of the
3182  // padding can vary.
3183  Add(scratch, csp, kXRegSize);
3184  Str(scratch, MemOperand(fp, ExitFrameConstants::kSPOffset));
3185}
3186
3187
3188// Leave the current exit frame.
3189void MacroAssembler::LeaveExitFrame(bool restore_doubles,
3190                                    const Register& scratch,
3191                                    bool restore_context) {
3192  DCHECK(csp.Is(StackPointer()));
3193
3194  if (restore_doubles) {
3195    ExitFrameRestoreFPRegs();
3196  }
3197
3198  // Restore the context pointer from the top frame.
3199  if (restore_context) {
3200    Mov(scratch, Operand(ExternalReference(Isolate::kContextAddress,
3201                                           isolate())));
3202    Ldr(cp, MemOperand(scratch));
3203  }
3204
3205  if (emit_debug_code()) {
3206    // Also emit debug code to clear the cp in the top frame.
3207    Mov(scratch, Operand(ExternalReference(Isolate::kContextAddress,
3208                                           isolate())));
3209    Str(xzr, MemOperand(scratch));
3210  }
3211  // Clear the frame pointer from the top frame.
3212  Mov(scratch, Operand(ExternalReference(Isolate::kCEntryFPAddress,
3213                                         isolate())));
3214  Str(xzr, MemOperand(scratch));
3215
3216  // Pop the exit frame.
3217  //         fp[8]: CallerPC (lr)
3218  //   fp -> fp[0]: CallerFP (old fp)
3219  //         fp[...]: The rest of the frame.
3220  Mov(jssp, fp);
3221  SetStackPointer(jssp);
3222  AssertStackConsistency();
3223  Pop(fp, lr);
3224}
3225
3226
3227void MacroAssembler::SetCounter(StatsCounter* counter, int value,
3228                                Register scratch1, Register scratch2) {
3229  if (FLAG_native_code_counters && counter->Enabled()) {
3230    Mov(scratch1, value);
3231    Mov(scratch2, ExternalReference(counter));
3232    Str(scratch1, MemOperand(scratch2));
3233  }
3234}
3235
3236
3237void MacroAssembler::IncrementCounter(StatsCounter* counter, int value,
3238                                      Register scratch1, Register scratch2) {
3239  DCHECK(value != 0);
3240  if (FLAG_native_code_counters && counter->Enabled()) {
3241    Mov(scratch2, ExternalReference(counter));
3242    Ldr(scratch1, MemOperand(scratch2));
3243    Add(scratch1, scratch1, value);
3244    Str(scratch1, MemOperand(scratch2));
3245  }
3246}
3247
3248
3249void MacroAssembler::DecrementCounter(StatsCounter* counter, int value,
3250                                      Register scratch1, Register scratch2) {
3251  IncrementCounter(counter, -value, scratch1, scratch2);
3252}
3253
3254
3255void MacroAssembler::LoadContext(Register dst, int context_chain_length) {
3256  if (context_chain_length > 0) {
3257    // Move up the chain of contexts to the context containing the slot.
3258    Ldr(dst, MemOperand(cp, Context::SlotOffset(Context::PREVIOUS_INDEX)));
3259    for (int i = 1; i < context_chain_length; i++) {
3260      Ldr(dst, MemOperand(dst, Context::SlotOffset(Context::PREVIOUS_INDEX)));
3261    }
3262  } else {
3263    // Slot is in the current function context.  Move it into the
3264    // destination register in case we store into it (the write barrier
3265    // cannot be allowed to destroy the context in cp).
3266    Mov(dst, cp);
3267  }
3268}
3269
3270
3271void MacroAssembler::DebugBreak() {
3272  Mov(x0, 0);
3273  Mov(x1, ExternalReference(Runtime::kDebugBreak, isolate()));
3274  CEntryStub ces(isolate(), 1);
3275  DCHECK(AllowThisStubCall(&ces));
3276  Call(ces.GetCode(), RelocInfo::DEBUG_BREAK);
3277}
3278
3279
3280void MacroAssembler::PushTryHandler(StackHandler::Kind kind,
3281                                    int handler_index) {
3282  DCHECK(jssp.Is(StackPointer()));
3283  // Adjust this code if the asserts don't hold.
3284  STATIC_ASSERT(StackHandlerConstants::kSize == 5 * kPointerSize);
3285  STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0 * kPointerSize);
3286  STATIC_ASSERT(StackHandlerConstants::kCodeOffset == 1 * kPointerSize);
3287  STATIC_ASSERT(StackHandlerConstants::kStateOffset == 2 * kPointerSize);
3288  STATIC_ASSERT(StackHandlerConstants::kContextOffset == 3 * kPointerSize);
3289  STATIC_ASSERT(StackHandlerConstants::kFPOffset == 4 * kPointerSize);
3290
3291  // For the JSEntry handler, we must preserve the live registers x0-x4.
3292  // (See JSEntryStub::GenerateBody().)
3293
3294  unsigned state =
3295      StackHandler::IndexField::encode(handler_index) |
3296      StackHandler::KindField::encode(kind);
3297
3298  // Set up the code object and the state for pushing.
3299  Mov(x10, Operand(CodeObject()));
3300  Mov(x11, state);
3301
3302  // Push the frame pointer, context, state, and code object.
3303  if (kind == StackHandler::JS_ENTRY) {
3304    DCHECK(Smi::FromInt(0) == 0);
3305    Push(xzr, xzr, x11, x10);
3306  } else {
3307    Push(fp, cp, x11, x10);
3308  }
3309
3310  // Link the current handler as the next handler.
3311  Mov(x11, ExternalReference(Isolate::kHandlerAddress, isolate()));
3312  Ldr(x10, MemOperand(x11));
3313  Push(x10);
3314  // Set this new handler as the current one.
3315  Str(jssp, MemOperand(x11));
3316}
3317
3318
3319void MacroAssembler::PopTryHandler() {
3320  STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0);
3321  Pop(x10);
3322  Mov(x11, ExternalReference(Isolate::kHandlerAddress, isolate()));
3323  Drop(StackHandlerConstants::kSize - kXRegSize, kByteSizeInBytes);
3324  Str(x10, MemOperand(x11));
3325}
3326
3327
3328void MacroAssembler::Allocate(int object_size,
3329                              Register result,
3330                              Register scratch1,
3331                              Register scratch2,
3332                              Label* gc_required,
3333                              AllocationFlags flags) {
3334  DCHECK(object_size <= Page::kMaxRegularHeapObjectSize);
3335  if (!FLAG_inline_new) {
3336    if (emit_debug_code()) {
3337      // Trash the registers to simulate an allocation failure.
3338      // We apply salt to the original zap value to easily spot the values.
3339      Mov(result, (kDebugZapValue & ~0xffL) | 0x11L);
3340      Mov(scratch1, (kDebugZapValue & ~0xffL) | 0x21L);
3341      Mov(scratch2, (kDebugZapValue & ~0xffL) | 0x21L);
3342    }
3343    B(gc_required);
3344    return;
3345  }
3346
3347  UseScratchRegisterScope temps(this);
3348  Register scratch3 = temps.AcquireX();
3349
3350  DCHECK(!AreAliased(result, scratch1, scratch2, scratch3));
3351  DCHECK(result.Is64Bits() && scratch1.Is64Bits() && scratch2.Is64Bits());
3352
3353  // Make object size into bytes.
3354  if ((flags & SIZE_IN_WORDS) != 0) {
3355    object_size *= kPointerSize;
3356  }
3357  DCHECK(0 == (object_size & kObjectAlignmentMask));
3358
3359  // Check relative positions of allocation top and limit addresses.
3360  // The values must be adjacent in memory to allow the use of LDP.
3361  ExternalReference heap_allocation_top =
3362      AllocationUtils::GetAllocationTopReference(isolate(), flags);
3363  ExternalReference heap_allocation_limit =
3364      AllocationUtils::GetAllocationLimitReference(isolate(), flags);
3365  intptr_t top = reinterpret_cast<intptr_t>(heap_allocation_top.address());
3366  intptr_t limit = reinterpret_cast<intptr_t>(heap_allocation_limit.address());
3367  DCHECK((limit - top) == kPointerSize);
3368
3369  // Set up allocation top address and object size registers.
3370  Register top_address = scratch1;
3371  Register allocation_limit = scratch2;
3372  Mov(top_address, Operand(heap_allocation_top));
3373
3374  if ((flags & RESULT_CONTAINS_TOP) == 0) {
3375    // Load allocation top into result and the allocation limit.
3376    Ldp(result, allocation_limit, MemOperand(top_address));
3377  } else {
3378    if (emit_debug_code()) {
3379      // Assert that result actually contains top on entry.
3380      Ldr(scratch3, MemOperand(top_address));
3381      Cmp(result, scratch3);
3382      Check(eq, kUnexpectedAllocationTop);
3383    }
3384    // Load the allocation limit. 'result' already contains the allocation top.
3385    Ldr(allocation_limit, MemOperand(top_address, limit - top));
3386  }
3387
3388  // We can ignore DOUBLE_ALIGNMENT flags here because doubles and pointers have
3389  // the same alignment on ARM64.
3390  STATIC_ASSERT(kPointerAlignment == kDoubleAlignment);
3391
3392  // Calculate new top and bail out if new space is exhausted.
3393  Adds(scratch3, result, object_size);
3394  Ccmp(scratch3, allocation_limit, CFlag, cc);
3395  B(hi, gc_required);
3396  Str(scratch3, MemOperand(top_address));
3397
3398  // Tag the object if requested.
3399  if ((flags & TAG_OBJECT) != 0) {
3400    ObjectTag(result, result);
3401  }
3402}
3403
3404
3405void MacroAssembler::Allocate(Register object_size,
3406                              Register result,
3407                              Register scratch1,
3408                              Register scratch2,
3409                              Label* gc_required,
3410                              AllocationFlags flags) {
3411  if (!FLAG_inline_new) {
3412    if (emit_debug_code()) {
3413      // Trash the registers to simulate an allocation failure.
3414      // We apply salt to the original zap value to easily spot the values.
3415      Mov(result, (kDebugZapValue & ~0xffL) | 0x11L);
3416      Mov(scratch1, (kDebugZapValue & ~0xffL) | 0x21L);
3417      Mov(scratch2, (kDebugZapValue & ~0xffL) | 0x21L);
3418    }
3419    B(gc_required);
3420    return;
3421  }
3422
3423  UseScratchRegisterScope temps(this);
3424  Register scratch3 = temps.AcquireX();
3425
3426  DCHECK(!AreAliased(object_size, result, scratch1, scratch2, scratch3));
3427  DCHECK(object_size.Is64Bits() && result.Is64Bits() &&
3428         scratch1.Is64Bits() && scratch2.Is64Bits());
3429
3430  // Check relative positions of allocation top and limit addresses.
3431  // The values must be adjacent in memory to allow the use of LDP.
3432  ExternalReference heap_allocation_top =
3433      AllocationUtils::GetAllocationTopReference(isolate(), flags);
3434  ExternalReference heap_allocation_limit =
3435      AllocationUtils::GetAllocationLimitReference(isolate(), flags);
3436  intptr_t top = reinterpret_cast<intptr_t>(heap_allocation_top.address());
3437  intptr_t limit = reinterpret_cast<intptr_t>(heap_allocation_limit.address());
3438  DCHECK((limit - top) == kPointerSize);
3439
3440  // Set up allocation top address and object size registers.
3441  Register top_address = scratch1;
3442  Register allocation_limit = scratch2;
3443  Mov(top_address, heap_allocation_top);
3444
3445  if ((flags & RESULT_CONTAINS_TOP) == 0) {
3446    // Load allocation top into result and the allocation limit.
3447    Ldp(result, allocation_limit, MemOperand(top_address));
3448  } else {
3449    if (emit_debug_code()) {
3450      // Assert that result actually contains top on entry.
3451      Ldr(scratch3, MemOperand(top_address));
3452      Cmp(result, scratch3);
3453      Check(eq, kUnexpectedAllocationTop);
3454    }
3455    // Load the allocation limit. 'result' already contains the allocation top.
3456    Ldr(allocation_limit, MemOperand(top_address, limit - top));
3457  }
3458
3459  // We can ignore DOUBLE_ALIGNMENT flags here because doubles and pointers have
3460  // the same alignment on ARM64.
3461  STATIC_ASSERT(kPointerAlignment == kDoubleAlignment);
3462
3463  // Calculate new top and bail out if new space is exhausted
3464  if ((flags & SIZE_IN_WORDS) != 0) {
3465    Adds(scratch3, result, Operand(object_size, LSL, kPointerSizeLog2));
3466  } else {
3467    Adds(scratch3, result, object_size);
3468  }
3469
3470  if (emit_debug_code()) {
3471    Tst(scratch3, kObjectAlignmentMask);
3472    Check(eq, kUnalignedAllocationInNewSpace);
3473  }
3474
3475  Ccmp(scratch3, allocation_limit, CFlag, cc);
3476  B(hi, gc_required);
3477  Str(scratch3, MemOperand(top_address));
3478
3479  // Tag the object if requested.
3480  if ((flags & TAG_OBJECT) != 0) {
3481    ObjectTag(result, result);
3482  }
3483}
3484
3485
3486void MacroAssembler::UndoAllocationInNewSpace(Register object,
3487                                              Register scratch) {
3488  ExternalReference new_space_allocation_top =
3489      ExternalReference::new_space_allocation_top_address(isolate());
3490
3491  // Make sure the object has no tag before resetting top.
3492  Bic(object, object, kHeapObjectTagMask);
3493#ifdef DEBUG
3494  // Check that the object un-allocated is below the current top.
3495  Mov(scratch, new_space_allocation_top);
3496  Ldr(scratch, MemOperand(scratch));
3497  Cmp(object, scratch);
3498  Check(lt, kUndoAllocationOfNonAllocatedMemory);
3499#endif
3500  // Write the address of the object to un-allocate as the current top.
3501  Mov(scratch, new_space_allocation_top);
3502  Str(object, MemOperand(scratch));
3503}
3504
3505
3506void MacroAssembler::AllocateTwoByteString(Register result,
3507                                           Register length,
3508                                           Register scratch1,
3509                                           Register scratch2,
3510                                           Register scratch3,
3511                                           Label* gc_required) {
3512  DCHECK(!AreAliased(result, length, scratch1, scratch2, scratch3));
3513  // Calculate the number of bytes needed for the characters in the string while
3514  // observing object alignment.
3515  STATIC_ASSERT((SeqTwoByteString::kHeaderSize & kObjectAlignmentMask) == 0);
3516  Add(scratch1, length, length);  // Length in bytes, not chars.
3517  Add(scratch1, scratch1, kObjectAlignmentMask + SeqTwoByteString::kHeaderSize);
3518  Bic(scratch1, scratch1, kObjectAlignmentMask);
3519
3520  // Allocate two-byte string in new space.
3521  Allocate(scratch1,
3522           result,
3523           scratch2,
3524           scratch3,
3525           gc_required,
3526           TAG_OBJECT);
3527
3528  // Set the map, length and hash field.
3529  InitializeNewString(result,
3530                      length,
3531                      Heap::kStringMapRootIndex,
3532                      scratch1,
3533                      scratch2);
3534}
3535
3536
3537void MacroAssembler::AllocateOneByteString(Register result, Register length,
3538                                           Register scratch1, Register scratch2,
3539                                           Register scratch3,
3540                                           Label* gc_required) {
3541  DCHECK(!AreAliased(result, length, scratch1, scratch2, scratch3));
3542  // Calculate the number of bytes needed for the characters in the string while
3543  // observing object alignment.
3544  STATIC_ASSERT((SeqOneByteString::kHeaderSize & kObjectAlignmentMask) == 0);
3545  STATIC_ASSERT(kCharSize == 1);
3546  Add(scratch1, length, kObjectAlignmentMask + SeqOneByteString::kHeaderSize);
3547  Bic(scratch1, scratch1, kObjectAlignmentMask);
3548
3549  // Allocate one-byte string in new space.
3550  Allocate(scratch1,
3551           result,
3552           scratch2,
3553           scratch3,
3554           gc_required,
3555           TAG_OBJECT);
3556
3557  // Set the map, length and hash field.
3558  InitializeNewString(result, length, Heap::kOneByteStringMapRootIndex,
3559                      scratch1, scratch2);
3560}
3561
3562
3563void MacroAssembler::AllocateTwoByteConsString(Register result,
3564                                               Register length,
3565                                               Register scratch1,
3566                                               Register scratch2,
3567                                               Label* gc_required) {
3568  Allocate(ConsString::kSize, result, scratch1, scratch2, gc_required,
3569           TAG_OBJECT);
3570
3571  InitializeNewString(result,
3572                      length,
3573                      Heap::kConsStringMapRootIndex,
3574                      scratch1,
3575                      scratch2);
3576}
3577
3578
3579void MacroAssembler::AllocateOneByteConsString(Register result, Register length,
3580                                               Register scratch1,
3581                                               Register scratch2,
3582                                               Label* gc_required) {
3583  Allocate(ConsString::kSize,
3584           result,
3585           scratch1,
3586           scratch2,
3587           gc_required,
3588           TAG_OBJECT);
3589
3590  InitializeNewString(result, length, Heap::kConsOneByteStringMapRootIndex,
3591                      scratch1, scratch2);
3592}
3593
3594
3595void MacroAssembler::AllocateTwoByteSlicedString(Register result,
3596                                                 Register length,
3597                                                 Register scratch1,
3598                                                 Register scratch2,
3599                                                 Label* gc_required) {
3600  DCHECK(!AreAliased(result, length, scratch1, scratch2));
3601  Allocate(SlicedString::kSize, result, scratch1, scratch2, gc_required,
3602           TAG_OBJECT);
3603
3604  InitializeNewString(result,
3605                      length,
3606                      Heap::kSlicedStringMapRootIndex,
3607                      scratch1,
3608                      scratch2);
3609}
3610
3611
3612void MacroAssembler::AllocateOneByteSlicedString(Register result,
3613                                                 Register length,
3614                                                 Register scratch1,
3615                                                 Register scratch2,
3616                                                 Label* gc_required) {
3617  DCHECK(!AreAliased(result, length, scratch1, scratch2));
3618  Allocate(SlicedString::kSize, result, scratch1, scratch2, gc_required,
3619           TAG_OBJECT);
3620
3621  InitializeNewString(result, length, Heap::kSlicedOneByteStringMapRootIndex,
3622                      scratch1, scratch2);
3623}
3624
3625
3626// Allocates a heap number or jumps to the need_gc label if the young space
3627// is full and a scavenge is needed.
3628void MacroAssembler::AllocateHeapNumber(Register result,
3629                                        Label* gc_required,
3630                                        Register scratch1,
3631                                        Register scratch2,
3632                                        CPURegister value,
3633                                        CPURegister heap_number_map,
3634                                        MutableMode mode) {
3635  DCHECK(!value.IsValid() || value.Is64Bits());
3636  UseScratchRegisterScope temps(this);
3637
3638  // Allocate an object in the heap for the heap number and tag it as a heap
3639  // object.
3640  Allocate(HeapNumber::kSize, result, scratch1, scratch2, gc_required,
3641           NO_ALLOCATION_FLAGS);
3642
3643  Heap::RootListIndex map_index = mode == MUTABLE
3644      ? Heap::kMutableHeapNumberMapRootIndex
3645      : Heap::kHeapNumberMapRootIndex;
3646
3647  // Prepare the heap number map.
3648  if (!heap_number_map.IsValid()) {
3649    // If we have a valid value register, use the same type of register to store
3650    // the map so we can use STP to store both in one instruction.
3651    if (value.IsValid() && value.IsFPRegister()) {
3652      heap_number_map = temps.AcquireD();
3653    } else {
3654      heap_number_map = scratch1;
3655    }
3656    LoadRoot(heap_number_map, map_index);
3657  }
3658  if (emit_debug_code()) {
3659    Register map;
3660    if (heap_number_map.IsFPRegister()) {
3661      map = scratch1;
3662      Fmov(map, DoubleRegister(heap_number_map));
3663    } else {
3664      map = Register(heap_number_map);
3665    }
3666    AssertRegisterIsRoot(map, map_index);
3667  }
3668
3669  // Store the heap number map and the value in the allocated object.
3670  if (value.IsSameSizeAndType(heap_number_map)) {
3671    STATIC_ASSERT(HeapObject::kMapOffset + kPointerSize ==
3672                  HeapNumber::kValueOffset);
3673    Stp(heap_number_map, value, MemOperand(result, HeapObject::kMapOffset));
3674  } else {
3675    Str(heap_number_map, MemOperand(result, HeapObject::kMapOffset));
3676    if (value.IsValid()) {
3677      Str(value, MemOperand(result, HeapNumber::kValueOffset));
3678    }
3679  }
3680  ObjectTag(result, result);
3681}
3682
3683
3684void MacroAssembler::JumpIfObjectType(Register object,
3685                                      Register map,
3686                                      Register type_reg,
3687                                      InstanceType type,
3688                                      Label* if_cond_pass,
3689                                      Condition cond) {
3690  CompareObjectType(object, map, type_reg, type);
3691  B(cond, if_cond_pass);
3692}
3693
3694
3695void MacroAssembler::JumpIfNotObjectType(Register object,
3696                                         Register map,
3697                                         Register type_reg,
3698                                         InstanceType type,
3699                                         Label* if_not_object) {
3700  JumpIfObjectType(object, map, type_reg, type, if_not_object, ne);
3701}
3702
3703
3704// Sets condition flags based on comparison, and returns type in type_reg.
3705void MacroAssembler::CompareObjectType(Register object,
3706                                       Register map,
3707                                       Register type_reg,
3708                                       InstanceType type) {
3709  Ldr(map, FieldMemOperand(object, HeapObject::kMapOffset));
3710  CompareInstanceType(map, type_reg, type);
3711}
3712
3713
3714// Sets condition flags based on comparison, and returns type in type_reg.
3715void MacroAssembler::CompareInstanceType(Register map,
3716                                         Register type_reg,
3717                                         InstanceType type) {
3718  Ldrb(type_reg, FieldMemOperand(map, Map::kInstanceTypeOffset));
3719  Cmp(type_reg, type);
3720}
3721
3722
3723void MacroAssembler::CompareObjectMap(Register obj, Heap::RootListIndex index) {
3724  UseScratchRegisterScope temps(this);
3725  Register obj_map = temps.AcquireX();
3726  Ldr(obj_map, FieldMemOperand(obj, HeapObject::kMapOffset));
3727  CompareRoot(obj_map, index);
3728}
3729
3730
3731void MacroAssembler::CompareObjectMap(Register obj, Register scratch,
3732                                      Handle<Map> map) {
3733  Ldr(scratch, FieldMemOperand(obj, HeapObject::kMapOffset));
3734  CompareMap(scratch, map);
3735}
3736
3737
3738void MacroAssembler::CompareMap(Register obj_map,
3739                                Handle<Map> map) {
3740  Cmp(obj_map, Operand(map));
3741}
3742
3743
3744void MacroAssembler::CheckMap(Register obj,
3745                              Register scratch,
3746                              Handle<Map> map,
3747                              Label* fail,
3748                              SmiCheckType smi_check_type) {
3749  if (smi_check_type == DO_SMI_CHECK) {
3750    JumpIfSmi(obj, fail);
3751  }
3752
3753  CompareObjectMap(obj, scratch, map);
3754  B(ne, fail);
3755}
3756
3757
3758void MacroAssembler::CheckMap(Register obj,
3759                              Register scratch,
3760                              Heap::RootListIndex index,
3761                              Label* fail,
3762                              SmiCheckType smi_check_type) {
3763  if (smi_check_type == DO_SMI_CHECK) {
3764    JumpIfSmi(obj, fail);
3765  }
3766  Ldr(scratch, FieldMemOperand(obj, HeapObject::kMapOffset));
3767  JumpIfNotRoot(scratch, index, fail);
3768}
3769
3770
3771void MacroAssembler::CheckMap(Register obj_map,
3772                              Handle<Map> map,
3773                              Label* fail,
3774                              SmiCheckType smi_check_type) {
3775  if (smi_check_type == DO_SMI_CHECK) {
3776    JumpIfSmi(obj_map, fail);
3777  }
3778
3779  CompareMap(obj_map, map);
3780  B(ne, fail);
3781}
3782
3783
3784void MacroAssembler::DispatchMap(Register obj,
3785                                 Register scratch,
3786                                 Handle<Map> map,
3787                                 Handle<Code> success,
3788                                 SmiCheckType smi_check_type) {
3789  Label fail;
3790  if (smi_check_type == DO_SMI_CHECK) {
3791    JumpIfSmi(obj, &fail);
3792  }
3793  Ldr(scratch, FieldMemOperand(obj, HeapObject::kMapOffset));
3794  Cmp(scratch, Operand(map));
3795  B(ne, &fail);
3796  Jump(success, RelocInfo::CODE_TARGET);
3797  Bind(&fail);
3798}
3799
3800
3801void MacroAssembler::TestMapBitfield(Register object, uint64_t mask) {
3802  UseScratchRegisterScope temps(this);
3803  Register temp = temps.AcquireX();
3804  Ldr(temp, FieldMemOperand(object, HeapObject::kMapOffset));
3805  Ldrb(temp, FieldMemOperand(temp, Map::kBitFieldOffset));
3806  Tst(temp, mask);
3807}
3808
3809
3810void MacroAssembler::LoadElementsKindFromMap(Register result, Register map) {
3811  // Load the map's "bit field 2".
3812  __ Ldrb(result, FieldMemOperand(map, Map::kBitField2Offset));
3813  // Retrieve elements_kind from bit field 2.
3814  DecodeField<Map::ElementsKindBits>(result);
3815}
3816
3817
3818void MacroAssembler::TryGetFunctionPrototype(Register function,
3819                                             Register result,
3820                                             Register scratch,
3821                                             Label* miss,
3822                                             BoundFunctionAction action) {
3823  DCHECK(!AreAliased(function, result, scratch));
3824
3825  Label non_instance;
3826  if (action == kMissOnBoundFunction) {
3827    // Check that the receiver isn't a smi.
3828    JumpIfSmi(function, miss);
3829
3830    // Check that the function really is a function. Load map into result reg.
3831    JumpIfNotObjectType(function, result, scratch, JS_FUNCTION_TYPE, miss);
3832
3833    Register scratch_w = scratch.W();
3834    Ldr(scratch,
3835        FieldMemOperand(function, JSFunction::kSharedFunctionInfoOffset));
3836    // On 64-bit platforms, compiler hints field is not a smi. See definition of
3837    // kCompilerHintsOffset in src/objects.h.
3838    Ldr(scratch_w,
3839        FieldMemOperand(scratch, SharedFunctionInfo::kCompilerHintsOffset));
3840    Tbnz(scratch, SharedFunctionInfo::kBoundFunction, miss);
3841
3842    // Make sure that the function has an instance prototype.
3843    Ldrb(scratch, FieldMemOperand(result, Map::kBitFieldOffset));
3844    Tbnz(scratch, Map::kHasNonInstancePrototype, &non_instance);
3845  }
3846
3847  // Get the prototype or initial map from the function.
3848  Ldr(result,
3849      FieldMemOperand(function, JSFunction::kPrototypeOrInitialMapOffset));
3850
3851  // If the prototype or initial map is the hole, don't return it and simply
3852  // miss the cache instead. This will allow us to allocate a prototype object
3853  // on-demand in the runtime system.
3854  JumpIfRoot(result, Heap::kTheHoleValueRootIndex, miss);
3855
3856  // If the function does not have an initial map, we're done.
3857  Label done;
3858  JumpIfNotObjectType(result, scratch, scratch, MAP_TYPE, &done);
3859
3860  // Get the prototype from the initial map.
3861  Ldr(result, FieldMemOperand(result, Map::kPrototypeOffset));
3862
3863  if (action == kMissOnBoundFunction) {
3864    B(&done);
3865
3866    // Non-instance prototype: fetch prototype from constructor field in initial
3867    // map.
3868    Bind(&non_instance);
3869    Ldr(result, FieldMemOperand(result, Map::kConstructorOffset));
3870  }
3871
3872  // All done.
3873  Bind(&done);
3874}
3875
3876
3877void MacroAssembler::CompareRoot(const Register& obj,
3878                                 Heap::RootListIndex index) {
3879  UseScratchRegisterScope temps(this);
3880  Register temp = temps.AcquireX();
3881  DCHECK(!AreAliased(obj, temp));
3882  LoadRoot(temp, index);
3883  Cmp(obj, temp);
3884}
3885
3886
3887void MacroAssembler::JumpIfRoot(const Register& obj,
3888                                Heap::RootListIndex index,
3889                                Label* if_equal) {
3890  CompareRoot(obj, index);
3891  B(eq, if_equal);
3892}
3893
3894
3895void MacroAssembler::JumpIfNotRoot(const Register& obj,
3896                                   Heap::RootListIndex index,
3897                                   Label* if_not_equal) {
3898  CompareRoot(obj, index);
3899  B(ne, if_not_equal);
3900}
3901
3902
3903void MacroAssembler::CompareAndSplit(const Register& lhs,
3904                                     const Operand& rhs,
3905                                     Condition cond,
3906                                     Label* if_true,
3907                                     Label* if_false,
3908                                     Label* fall_through) {
3909  if ((if_true == if_false) && (if_false == fall_through)) {
3910    // Fall through.
3911  } else if (if_true == if_false) {
3912    B(if_true);
3913  } else if (if_false == fall_through) {
3914    CompareAndBranch(lhs, rhs, cond, if_true);
3915  } else if (if_true == fall_through) {
3916    CompareAndBranch(lhs, rhs, NegateCondition(cond), if_false);
3917  } else {
3918    CompareAndBranch(lhs, rhs, cond, if_true);
3919    B(if_false);
3920  }
3921}
3922
3923
3924void MacroAssembler::TestAndSplit(const Register& reg,
3925                                  uint64_t bit_pattern,
3926                                  Label* if_all_clear,
3927                                  Label* if_any_set,
3928                                  Label* fall_through) {
3929  if ((if_all_clear == if_any_set) && (if_any_set == fall_through)) {
3930    // Fall through.
3931  } else if (if_all_clear == if_any_set) {
3932    B(if_all_clear);
3933  } else if (if_all_clear == fall_through) {
3934    TestAndBranchIfAnySet(reg, bit_pattern, if_any_set);
3935  } else if (if_any_set == fall_through) {
3936    TestAndBranchIfAllClear(reg, bit_pattern, if_all_clear);
3937  } else {
3938    TestAndBranchIfAnySet(reg, bit_pattern, if_any_set);
3939    B(if_all_clear);
3940  }
3941}
3942
3943
3944void MacroAssembler::CheckFastElements(Register map,
3945                                       Register scratch,
3946                                       Label* fail) {
3947  STATIC_ASSERT(FAST_SMI_ELEMENTS == 0);
3948  STATIC_ASSERT(FAST_HOLEY_SMI_ELEMENTS == 1);
3949  STATIC_ASSERT(FAST_ELEMENTS == 2);
3950  STATIC_ASSERT(FAST_HOLEY_ELEMENTS == 3);
3951  Ldrb(scratch, FieldMemOperand(map, Map::kBitField2Offset));
3952  Cmp(scratch, Map::kMaximumBitField2FastHoleyElementValue);
3953  B(hi, fail);
3954}
3955
3956
3957void MacroAssembler::CheckFastObjectElements(Register map,
3958                                             Register scratch,
3959                                             Label* fail) {
3960  STATIC_ASSERT(FAST_SMI_ELEMENTS == 0);
3961  STATIC_ASSERT(FAST_HOLEY_SMI_ELEMENTS == 1);
3962  STATIC_ASSERT(FAST_ELEMENTS == 2);
3963  STATIC_ASSERT(FAST_HOLEY_ELEMENTS == 3);
3964  Ldrb(scratch, FieldMemOperand(map, Map::kBitField2Offset));
3965  Cmp(scratch, Operand(Map::kMaximumBitField2FastHoleySmiElementValue));
3966  // If cond==ls, set cond=hi, otherwise compare.
3967  Ccmp(scratch,
3968       Operand(Map::kMaximumBitField2FastHoleyElementValue), CFlag, hi);
3969  B(hi, fail);
3970}
3971
3972
3973// Note: The ARM version of this clobbers elements_reg, but this version does
3974// not. Some uses of this in ARM64 assume that elements_reg will be preserved.
3975void MacroAssembler::StoreNumberToDoubleElements(Register value_reg,
3976                                                 Register key_reg,
3977                                                 Register elements_reg,
3978                                                 Register scratch1,
3979                                                 FPRegister fpscratch1,
3980                                                 Label* fail,
3981                                                 int elements_offset) {
3982  DCHECK(!AreAliased(value_reg, key_reg, elements_reg, scratch1));
3983  Label store_num;
3984
3985  // Speculatively convert the smi to a double - all smis can be exactly
3986  // represented as a double.
3987  SmiUntagToDouble(fpscratch1, value_reg, kSpeculativeUntag);
3988
3989  // If value_reg is a smi, we're done.
3990  JumpIfSmi(value_reg, &store_num);
3991
3992  // Ensure that the object is a heap number.
3993  JumpIfNotHeapNumber(value_reg, fail);
3994
3995  Ldr(fpscratch1, FieldMemOperand(value_reg, HeapNumber::kValueOffset));
3996
3997  // Canonicalize NaNs.
3998  CanonicalizeNaN(fpscratch1);
3999
4000  // Store the result.
4001  Bind(&store_num);
4002  Add(scratch1, elements_reg,
4003      Operand::UntagSmiAndScale(key_reg, kDoubleSizeLog2));
4004  Str(fpscratch1,
4005      FieldMemOperand(scratch1,
4006                      FixedDoubleArray::kHeaderSize - elements_offset));
4007}
4008
4009
4010bool MacroAssembler::AllowThisStubCall(CodeStub* stub) {
4011  return has_frame_ || !stub->SometimesSetsUpAFrame();
4012}
4013
4014
4015void MacroAssembler::IndexFromHash(Register hash, Register index) {
4016  // If the hash field contains an array index pick it out. The assert checks
4017  // that the constants for the maximum number of digits for an array index
4018  // cached in the hash field and the number of bits reserved for it does not
4019  // conflict.
4020  DCHECK(TenToThe(String::kMaxCachedArrayIndexLength) <
4021         (1 << String::kArrayIndexValueBits));
4022  DecodeField<String::ArrayIndexValueBits>(index, hash);
4023  SmiTag(index, index);
4024}
4025
4026
4027void MacroAssembler::EmitSeqStringSetCharCheck(
4028    Register string,
4029    Register index,
4030    SeqStringSetCharCheckIndexType index_type,
4031    Register scratch,
4032    uint32_t encoding_mask) {
4033  DCHECK(!AreAliased(string, index, scratch));
4034
4035  if (index_type == kIndexIsSmi) {
4036    AssertSmi(index);
4037  }
4038
4039  // Check that string is an object.
4040  AssertNotSmi(string, kNonObject);
4041
4042  // Check that string has an appropriate map.
4043  Ldr(scratch, FieldMemOperand(string, HeapObject::kMapOffset));
4044  Ldrb(scratch, FieldMemOperand(scratch, Map::kInstanceTypeOffset));
4045
4046  And(scratch, scratch, kStringRepresentationMask | kStringEncodingMask);
4047  Cmp(scratch, encoding_mask);
4048  Check(eq, kUnexpectedStringType);
4049
4050  Ldr(scratch, FieldMemOperand(string, String::kLengthOffset));
4051  Cmp(index, index_type == kIndexIsSmi ? scratch : Operand::UntagSmi(scratch));
4052  Check(lt, kIndexIsTooLarge);
4053
4054  DCHECK_EQ(0, Smi::FromInt(0));
4055  Cmp(index, 0);
4056  Check(ge, kIndexIsNegative);
4057}
4058
4059
4060void MacroAssembler::CheckAccessGlobalProxy(Register holder_reg,
4061                                            Register scratch1,
4062                                            Register scratch2,
4063                                            Label* miss) {
4064  DCHECK(!AreAliased(holder_reg, scratch1, scratch2));
4065  Label same_contexts;
4066
4067  // Load current lexical context from the stack frame.
4068  Ldr(scratch1, MemOperand(fp, StandardFrameConstants::kContextOffset));
4069  // In debug mode, make sure the lexical context is set.
4070#ifdef DEBUG
4071  Cmp(scratch1, 0);
4072  Check(ne, kWeShouldNotHaveAnEmptyLexicalContext);
4073#endif
4074
4075  // Load the native context of the current context.
4076  int offset =
4077      Context::kHeaderSize + Context::GLOBAL_OBJECT_INDEX * kPointerSize;
4078  Ldr(scratch1, FieldMemOperand(scratch1, offset));
4079  Ldr(scratch1, FieldMemOperand(scratch1, GlobalObject::kNativeContextOffset));
4080
4081  // Check the context is a native context.
4082  if (emit_debug_code()) {
4083    // Read the first word and compare to the global_context_map.
4084    Ldr(scratch2, FieldMemOperand(scratch1, HeapObject::kMapOffset));
4085    CompareRoot(scratch2, Heap::kNativeContextMapRootIndex);
4086    Check(eq, kExpectedNativeContext);
4087  }
4088
4089  // Check if both contexts are the same.
4090  Ldr(scratch2, FieldMemOperand(holder_reg,
4091                                JSGlobalProxy::kNativeContextOffset));
4092  Cmp(scratch1, scratch2);
4093  B(&same_contexts, eq);
4094
4095  // Check the context is a native context.
4096  if (emit_debug_code()) {
4097    // We're short on scratch registers here, so use holder_reg as a scratch.
4098    Push(holder_reg);
4099    Register scratch3 = holder_reg;
4100
4101    CompareRoot(scratch2, Heap::kNullValueRootIndex);
4102    Check(ne, kExpectedNonNullContext);
4103
4104    Ldr(scratch3, FieldMemOperand(scratch2, HeapObject::kMapOffset));
4105    CompareRoot(scratch3, Heap::kNativeContextMapRootIndex);
4106    Check(eq, kExpectedNativeContext);
4107    Pop(holder_reg);
4108  }
4109
4110  // Check that the security token in the calling global object is
4111  // compatible with the security token in the receiving global
4112  // object.
4113  int token_offset = Context::kHeaderSize +
4114                     Context::SECURITY_TOKEN_INDEX * kPointerSize;
4115
4116  Ldr(scratch1, FieldMemOperand(scratch1, token_offset));
4117  Ldr(scratch2, FieldMemOperand(scratch2, token_offset));
4118  Cmp(scratch1, scratch2);
4119  B(miss, ne);
4120
4121  Bind(&same_contexts);
4122}
4123
4124
4125// Compute the hash code from the untagged key. This must be kept in sync with
4126// ComputeIntegerHash in utils.h and KeyedLoadGenericStub in
4127// code-stub-hydrogen.cc
4128void MacroAssembler::GetNumberHash(Register key, Register scratch) {
4129  DCHECK(!AreAliased(key, scratch));
4130
4131  // Xor original key with a seed.
4132  LoadRoot(scratch, Heap::kHashSeedRootIndex);
4133  Eor(key, key, Operand::UntagSmi(scratch));
4134
4135  // The algorithm uses 32-bit integer values.
4136  key = key.W();
4137  scratch = scratch.W();
4138
4139  // Compute the hash code from the untagged key.  This must be kept in sync
4140  // with ComputeIntegerHash in utils.h.
4141  //
4142  // hash = ~hash + (hash <<1 15);
4143  Mvn(scratch, key);
4144  Add(key, scratch, Operand(key, LSL, 15));
4145  // hash = hash ^ (hash >> 12);
4146  Eor(key, key, Operand(key, LSR, 12));
4147  // hash = hash + (hash << 2);
4148  Add(key, key, Operand(key, LSL, 2));
4149  // hash = hash ^ (hash >> 4);
4150  Eor(key, key, Operand(key, LSR, 4));
4151  // hash = hash * 2057;
4152  Mov(scratch, Operand(key, LSL, 11));
4153  Add(key, key, Operand(key, LSL, 3));
4154  Add(key, key, scratch);
4155  // hash = hash ^ (hash >> 16);
4156  Eor(key, key, Operand(key, LSR, 16));
4157}
4158
4159
4160void MacroAssembler::LoadFromNumberDictionary(Label* miss,
4161                                              Register elements,
4162                                              Register key,
4163                                              Register result,
4164                                              Register scratch0,
4165                                              Register scratch1,
4166                                              Register scratch2,
4167                                              Register scratch3) {
4168  DCHECK(!AreAliased(elements, key, scratch0, scratch1, scratch2, scratch3));
4169
4170  Label done;
4171
4172  SmiUntag(scratch0, key);
4173  GetNumberHash(scratch0, scratch1);
4174
4175  // Compute the capacity mask.
4176  Ldrsw(scratch1,
4177        UntagSmiFieldMemOperand(elements,
4178                                SeededNumberDictionary::kCapacityOffset));
4179  Sub(scratch1, scratch1, 1);
4180
4181  // Generate an unrolled loop that performs a few probes before giving up.
4182  for (int i = 0; i < kNumberDictionaryProbes; i++) {
4183    // Compute the masked index: (hash + i + i * i) & mask.
4184    if (i > 0) {
4185      Add(scratch2, scratch0, SeededNumberDictionary::GetProbeOffset(i));
4186    } else {
4187      Mov(scratch2, scratch0);
4188    }
4189    And(scratch2, scratch2, scratch1);
4190
4191    // Scale the index by multiplying by the element size.
4192    DCHECK(SeededNumberDictionary::kEntrySize == 3);
4193    Add(scratch2, scratch2, Operand(scratch2, LSL, 1));
4194
4195    // Check if the key is identical to the name.
4196    Add(scratch2, elements, Operand(scratch2, LSL, kPointerSizeLog2));
4197    Ldr(scratch3,
4198        FieldMemOperand(scratch2,
4199                        SeededNumberDictionary::kElementsStartOffset));
4200    Cmp(key, scratch3);
4201    if (i != (kNumberDictionaryProbes - 1)) {
4202      B(eq, &done);
4203    } else {
4204      B(ne, miss);
4205    }
4206  }
4207
4208  Bind(&done);
4209  // Check that the value is a normal property.
4210  const int kDetailsOffset =
4211      SeededNumberDictionary::kElementsStartOffset + 2 * kPointerSize;
4212  Ldrsw(scratch1, UntagSmiFieldMemOperand(scratch2, kDetailsOffset));
4213  TestAndBranchIfAnySet(scratch1, PropertyDetails::TypeField::kMask, miss);
4214
4215  // Get the value at the masked, scaled index and return.
4216  const int kValueOffset =
4217      SeededNumberDictionary::kElementsStartOffset + kPointerSize;
4218  Ldr(result, FieldMemOperand(scratch2, kValueOffset));
4219}
4220
4221
4222void MacroAssembler::RememberedSetHelper(Register object,  // For debug tests.
4223                                         Register address,
4224                                         Register scratch1,
4225                                         SaveFPRegsMode fp_mode,
4226                                         RememberedSetFinalAction and_then) {
4227  DCHECK(!AreAliased(object, address, scratch1));
4228  Label done, store_buffer_overflow;
4229  if (emit_debug_code()) {
4230    Label ok;
4231    JumpIfNotInNewSpace(object, &ok);
4232    Abort(kRememberedSetPointerInNewSpace);
4233    bind(&ok);
4234  }
4235  UseScratchRegisterScope temps(this);
4236  Register scratch2 = temps.AcquireX();
4237
4238  // Load store buffer top.
4239  Mov(scratch2, ExternalReference::store_buffer_top(isolate()));
4240  Ldr(scratch1, MemOperand(scratch2));
4241  // Store pointer to buffer and increment buffer top.
4242  Str(address, MemOperand(scratch1, kPointerSize, PostIndex));
4243  // Write back new top of buffer.
4244  Str(scratch1, MemOperand(scratch2));
4245  // Call stub on end of buffer.
4246  // Check for end of buffer.
4247  DCHECK(StoreBuffer::kStoreBufferOverflowBit ==
4248         (1 << (14 + kPointerSizeLog2)));
4249  if (and_then == kFallThroughAtEnd) {
4250    Tbz(scratch1, (14 + kPointerSizeLog2), &done);
4251  } else {
4252    DCHECK(and_then == kReturnAtEnd);
4253    Tbnz(scratch1, (14 + kPointerSizeLog2), &store_buffer_overflow);
4254    Ret();
4255  }
4256
4257  Bind(&store_buffer_overflow);
4258  Push(lr);
4259  StoreBufferOverflowStub store_buffer_overflow_stub(isolate(), fp_mode);
4260  CallStub(&store_buffer_overflow_stub);
4261  Pop(lr);
4262
4263  Bind(&done);
4264  if (and_then == kReturnAtEnd) {
4265    Ret();
4266  }
4267}
4268
4269
4270void MacroAssembler::PopSafepointRegisters() {
4271  const int num_unsaved = kNumSafepointRegisters - kNumSafepointSavedRegisters;
4272  PopXRegList(kSafepointSavedRegisters);
4273  Drop(num_unsaved);
4274}
4275
4276
4277void MacroAssembler::PushSafepointRegisters() {
4278  // Safepoints expect a block of kNumSafepointRegisters values on the stack, so
4279  // adjust the stack for unsaved registers.
4280  const int num_unsaved = kNumSafepointRegisters - kNumSafepointSavedRegisters;
4281  DCHECK(num_unsaved >= 0);
4282  Claim(num_unsaved);
4283  PushXRegList(kSafepointSavedRegisters);
4284}
4285
4286
4287void MacroAssembler::PushSafepointRegistersAndDoubles() {
4288  PushSafepointRegisters();
4289  PushCPURegList(CPURegList(CPURegister::kFPRegister, kDRegSizeInBits,
4290                            FPRegister::kAllocatableFPRegisters));
4291}
4292
4293
4294void MacroAssembler::PopSafepointRegistersAndDoubles() {
4295  PopCPURegList(CPURegList(CPURegister::kFPRegister, kDRegSizeInBits,
4296                           FPRegister::kAllocatableFPRegisters));
4297  PopSafepointRegisters();
4298}
4299
4300
4301int MacroAssembler::SafepointRegisterStackIndex(int reg_code) {
4302  // Make sure the safepoint registers list is what we expect.
4303  DCHECK(CPURegList::GetSafepointSavedRegisters().list() == 0x6ffcffff);
4304
4305  // Safepoint registers are stored contiguously on the stack, but not all the
4306  // registers are saved. The following registers are excluded:
4307  //  - x16 and x17 (ip0 and ip1) because they shouldn't be preserved outside of
4308  //    the macro assembler.
4309  //  - x28 (jssp) because JS stack pointer doesn't need to be included in
4310  //    safepoint registers.
4311  //  - x31 (csp) because the system stack pointer doesn't need to be included
4312  //    in safepoint registers.
4313  //
4314  // This function implements the mapping of register code to index into the
4315  // safepoint register slots.
4316  if ((reg_code >= 0) && (reg_code <= 15)) {
4317    return reg_code;
4318  } else if ((reg_code >= 18) && (reg_code <= 27)) {
4319    // Skip ip0 and ip1.
4320    return reg_code - 2;
4321  } else if ((reg_code == 29) || (reg_code == 30)) {
4322    // Also skip jssp.
4323    return reg_code - 3;
4324  } else {
4325    // This register has no safepoint register slot.
4326    UNREACHABLE();
4327    return -1;
4328  }
4329}
4330
4331
4332void MacroAssembler::CheckPageFlagSet(const Register& object,
4333                                      const Register& scratch,
4334                                      int mask,
4335                                      Label* if_any_set) {
4336  And(scratch, object, ~Page::kPageAlignmentMask);
4337  Ldr(scratch, MemOperand(scratch, MemoryChunk::kFlagsOffset));
4338  TestAndBranchIfAnySet(scratch, mask, if_any_set);
4339}
4340
4341
4342void MacroAssembler::CheckPageFlagClear(const Register& object,
4343                                        const Register& scratch,
4344                                        int mask,
4345                                        Label* if_all_clear) {
4346  And(scratch, object, ~Page::kPageAlignmentMask);
4347  Ldr(scratch, MemOperand(scratch, MemoryChunk::kFlagsOffset));
4348  TestAndBranchIfAllClear(scratch, mask, if_all_clear);
4349}
4350
4351
4352void MacroAssembler::RecordWriteField(
4353    Register object,
4354    int offset,
4355    Register value,
4356    Register scratch,
4357    LinkRegisterStatus lr_status,
4358    SaveFPRegsMode save_fp,
4359    RememberedSetAction remembered_set_action,
4360    SmiCheck smi_check,
4361    PointersToHereCheck pointers_to_here_check_for_value) {
4362  // First, check if a write barrier is even needed. The tests below
4363  // catch stores of Smis.
4364  Label done;
4365
4366  // Skip the barrier if writing a smi.
4367  if (smi_check == INLINE_SMI_CHECK) {
4368    JumpIfSmi(value, &done);
4369  }
4370
4371  // Although the object register is tagged, the offset is relative to the start
4372  // of the object, so offset must be a multiple of kPointerSize.
4373  DCHECK(IsAligned(offset, kPointerSize));
4374
4375  Add(scratch, object, offset - kHeapObjectTag);
4376  if (emit_debug_code()) {
4377    Label ok;
4378    Tst(scratch, (1 << kPointerSizeLog2) - 1);
4379    B(eq, &ok);
4380    Abort(kUnalignedCellInWriteBarrier);
4381    Bind(&ok);
4382  }
4383
4384  RecordWrite(object,
4385              scratch,
4386              value,
4387              lr_status,
4388              save_fp,
4389              remembered_set_action,
4390              OMIT_SMI_CHECK,
4391              pointers_to_here_check_for_value);
4392
4393  Bind(&done);
4394
4395  // Clobber clobbered input registers when running with the debug-code flag
4396  // turned on to provoke errors.
4397  if (emit_debug_code()) {
4398    Mov(value, Operand(bit_cast<int64_t>(kZapValue + 4)));
4399    Mov(scratch, Operand(bit_cast<int64_t>(kZapValue + 8)));
4400  }
4401}
4402
4403
4404// Will clobber: object, map, dst.
4405// If lr_status is kLRHasBeenSaved, lr will also be clobbered.
4406void MacroAssembler::RecordWriteForMap(Register object,
4407                                       Register map,
4408                                       Register dst,
4409                                       LinkRegisterStatus lr_status,
4410                                       SaveFPRegsMode fp_mode) {
4411  ASM_LOCATION("MacroAssembler::RecordWrite");
4412  DCHECK(!AreAliased(object, map));
4413
4414  if (emit_debug_code()) {
4415    UseScratchRegisterScope temps(this);
4416    Register temp = temps.AcquireX();
4417
4418    CompareObjectMap(map, temp, isolate()->factory()->meta_map());
4419    Check(eq, kWrongAddressOrValuePassedToRecordWrite);
4420  }
4421
4422  if (!FLAG_incremental_marking) {
4423    return;
4424  }
4425
4426  if (emit_debug_code()) {
4427    UseScratchRegisterScope temps(this);
4428    Register temp = temps.AcquireX();
4429
4430    Ldr(temp, FieldMemOperand(object, HeapObject::kMapOffset));
4431    Cmp(temp, map);
4432    Check(eq, kWrongAddressOrValuePassedToRecordWrite);
4433  }
4434
4435  // First, check if a write barrier is even needed. The tests below
4436  // catch stores of smis and stores into the young generation.
4437  Label done;
4438
4439  // A single check of the map's pages interesting flag suffices, since it is
4440  // only set during incremental collection, and then it's also guaranteed that
4441  // the from object's page's interesting flag is also set.  This optimization
4442  // relies on the fact that maps can never be in new space.
4443  CheckPageFlagClear(map,
4444                     map,  // Used as scratch.
4445                     MemoryChunk::kPointersToHereAreInterestingMask,
4446                     &done);
4447
4448  // Record the actual write.
4449  if (lr_status == kLRHasNotBeenSaved) {
4450    Push(lr);
4451  }
4452  Add(dst, object, HeapObject::kMapOffset - kHeapObjectTag);
4453  RecordWriteStub stub(isolate(), object, map, dst, OMIT_REMEMBERED_SET,
4454                       fp_mode);
4455  CallStub(&stub);
4456  if (lr_status == kLRHasNotBeenSaved) {
4457    Pop(lr);
4458  }
4459
4460  Bind(&done);
4461
4462  // Count number of write barriers in generated code.
4463  isolate()->counters()->write_barriers_static()->Increment();
4464  IncrementCounter(isolate()->counters()->write_barriers_dynamic(), 1, map,
4465                   dst);
4466
4467  // Clobber clobbered registers when running with the debug-code flag
4468  // turned on to provoke errors.
4469  if (emit_debug_code()) {
4470    Mov(dst, Operand(bit_cast<int64_t>(kZapValue + 12)));
4471    Mov(map, Operand(bit_cast<int64_t>(kZapValue + 16)));
4472  }
4473}
4474
4475
4476// Will clobber: object, address, value.
4477// If lr_status is kLRHasBeenSaved, lr will also be clobbered.
4478//
4479// The register 'object' contains a heap object pointer. The heap object tag is
4480// shifted away.
4481void MacroAssembler::RecordWrite(
4482    Register object,
4483    Register address,
4484    Register value,
4485    LinkRegisterStatus lr_status,
4486    SaveFPRegsMode fp_mode,
4487    RememberedSetAction remembered_set_action,
4488    SmiCheck smi_check,
4489    PointersToHereCheck pointers_to_here_check_for_value) {
4490  ASM_LOCATION("MacroAssembler::RecordWrite");
4491  DCHECK(!AreAliased(object, value));
4492
4493  if (emit_debug_code()) {
4494    UseScratchRegisterScope temps(this);
4495    Register temp = temps.AcquireX();
4496
4497    Ldr(temp, MemOperand(address));
4498    Cmp(temp, value);
4499    Check(eq, kWrongAddressOrValuePassedToRecordWrite);
4500  }
4501
4502  // First, check if a write barrier is even needed. The tests below
4503  // catch stores of smis and stores into the young generation.
4504  Label done;
4505
4506  if (smi_check == INLINE_SMI_CHECK) {
4507    DCHECK_EQ(0, kSmiTag);
4508    JumpIfSmi(value, &done);
4509  }
4510
4511  if (pointers_to_here_check_for_value != kPointersToHereAreAlwaysInteresting) {
4512    CheckPageFlagClear(value,
4513                       value,  // Used as scratch.
4514                       MemoryChunk::kPointersToHereAreInterestingMask,
4515                       &done);
4516  }
4517  CheckPageFlagClear(object,
4518                     value,  // Used as scratch.
4519                     MemoryChunk::kPointersFromHereAreInterestingMask,
4520                     &done);
4521
4522  // Record the actual write.
4523  if (lr_status == kLRHasNotBeenSaved) {
4524    Push(lr);
4525  }
4526  RecordWriteStub stub(isolate(), object, value, address, remembered_set_action,
4527                       fp_mode);
4528  CallStub(&stub);
4529  if (lr_status == kLRHasNotBeenSaved) {
4530    Pop(lr);
4531  }
4532
4533  Bind(&done);
4534
4535  // Count number of write barriers in generated code.
4536  isolate()->counters()->write_barriers_static()->Increment();
4537  IncrementCounter(isolate()->counters()->write_barriers_dynamic(), 1, address,
4538                   value);
4539
4540  // Clobber clobbered registers when running with the debug-code flag
4541  // turned on to provoke errors.
4542  if (emit_debug_code()) {
4543    Mov(address, Operand(bit_cast<int64_t>(kZapValue + 12)));
4544    Mov(value, Operand(bit_cast<int64_t>(kZapValue + 16)));
4545  }
4546}
4547
4548
4549void MacroAssembler::AssertHasValidColor(const Register& reg) {
4550  if (emit_debug_code()) {
4551    // The bit sequence is backward. The first character in the string
4552    // represents the least significant bit.
4553    DCHECK(strcmp(Marking::kImpossibleBitPattern, "01") == 0);
4554
4555    Label color_is_valid;
4556    Tbnz(reg, 0, &color_is_valid);
4557    Tbz(reg, 1, &color_is_valid);
4558    Abort(kUnexpectedColorFound);
4559    Bind(&color_is_valid);
4560  }
4561}
4562
4563
4564void MacroAssembler::GetMarkBits(Register addr_reg,
4565                                 Register bitmap_reg,
4566                                 Register shift_reg) {
4567  DCHECK(!AreAliased(addr_reg, bitmap_reg, shift_reg));
4568  DCHECK(addr_reg.Is64Bits() && bitmap_reg.Is64Bits() && shift_reg.Is64Bits());
4569  // addr_reg is divided into fields:
4570  // |63        page base        20|19    high      8|7   shift   3|2  0|
4571  // 'high' gives the index of the cell holding color bits for the object.
4572  // 'shift' gives the offset in the cell for this object's color.
4573  const int kShiftBits = kPointerSizeLog2 + Bitmap::kBitsPerCellLog2;
4574  UseScratchRegisterScope temps(this);
4575  Register temp = temps.AcquireX();
4576  Ubfx(temp, addr_reg, kShiftBits, kPageSizeBits - kShiftBits);
4577  Bic(bitmap_reg, addr_reg, Page::kPageAlignmentMask);
4578  Add(bitmap_reg, bitmap_reg, Operand(temp, LSL, Bitmap::kBytesPerCellLog2));
4579  // bitmap_reg:
4580  // |63        page base        20|19 zeros 15|14      high      3|2  0|
4581  Ubfx(shift_reg, addr_reg, kPointerSizeLog2, Bitmap::kBitsPerCellLog2);
4582}
4583
4584
4585void MacroAssembler::HasColor(Register object,
4586                              Register bitmap_scratch,
4587                              Register shift_scratch,
4588                              Label* has_color,
4589                              int first_bit,
4590                              int second_bit) {
4591  // See mark-compact.h for color definitions.
4592  DCHECK(!AreAliased(object, bitmap_scratch, shift_scratch));
4593
4594  GetMarkBits(object, bitmap_scratch, shift_scratch);
4595  Ldr(bitmap_scratch, MemOperand(bitmap_scratch, MemoryChunk::kHeaderSize));
4596  // Shift the bitmap down to get the color of the object in bits [1:0].
4597  Lsr(bitmap_scratch, bitmap_scratch, shift_scratch);
4598
4599  AssertHasValidColor(bitmap_scratch);
4600
4601  // These bit sequences are backwards. The first character in the string
4602  // represents the least significant bit.
4603  DCHECK(strcmp(Marking::kWhiteBitPattern, "00") == 0);
4604  DCHECK(strcmp(Marking::kBlackBitPattern, "10") == 0);
4605  DCHECK(strcmp(Marking::kGreyBitPattern, "11") == 0);
4606
4607  // Check for the color.
4608  if (first_bit == 0) {
4609    // Checking for white.
4610    DCHECK(second_bit == 0);
4611    // We only need to test the first bit.
4612    Tbz(bitmap_scratch, 0, has_color);
4613  } else {
4614    Label other_color;
4615    // Checking for grey or black.
4616    Tbz(bitmap_scratch, 0, &other_color);
4617    if (second_bit == 0) {
4618      Tbz(bitmap_scratch, 1, has_color);
4619    } else {
4620      Tbnz(bitmap_scratch, 1, has_color);
4621    }
4622    Bind(&other_color);
4623  }
4624
4625  // Fall through if it does not have the right color.
4626}
4627
4628
4629void MacroAssembler::CheckMapDeprecated(Handle<Map> map,
4630                                        Register scratch,
4631                                        Label* if_deprecated) {
4632  if (map->CanBeDeprecated()) {
4633    Mov(scratch, Operand(map));
4634    Ldrsw(scratch, FieldMemOperand(scratch, Map::kBitField3Offset));
4635    TestAndBranchIfAnySet(scratch, Map::Deprecated::kMask, if_deprecated);
4636  }
4637}
4638
4639
4640void MacroAssembler::JumpIfBlack(Register object,
4641                                 Register scratch0,
4642                                 Register scratch1,
4643                                 Label* on_black) {
4644  DCHECK(strcmp(Marking::kBlackBitPattern, "10") == 0);
4645  HasColor(object, scratch0, scratch1, on_black, 1, 0);  // kBlackBitPattern.
4646}
4647
4648
4649void MacroAssembler::JumpIfDictionaryInPrototypeChain(
4650    Register object,
4651    Register scratch0,
4652    Register scratch1,
4653    Label* found) {
4654  DCHECK(!AreAliased(object, scratch0, scratch1));
4655  Factory* factory = isolate()->factory();
4656  Register current = scratch0;
4657  Label loop_again;
4658
4659  // Scratch contains elements pointer.
4660  Mov(current, object);
4661
4662  // Loop based on the map going up the prototype chain.
4663  Bind(&loop_again);
4664  Ldr(current, FieldMemOperand(current, HeapObject::kMapOffset));
4665  Ldrb(scratch1, FieldMemOperand(current, Map::kBitField2Offset));
4666  DecodeField<Map::ElementsKindBits>(scratch1);
4667  CompareAndBranch(scratch1, DICTIONARY_ELEMENTS, eq, found);
4668  Ldr(current, FieldMemOperand(current, Map::kPrototypeOffset));
4669  CompareAndBranch(current, Operand(factory->null_value()), ne, &loop_again);
4670}
4671
4672
4673void MacroAssembler::GetRelocatedValueLocation(Register ldr_location,
4674                                               Register result) {
4675  DCHECK(!result.Is(ldr_location));
4676  const uint32_t kLdrLitOffset_lsb = 5;
4677  const uint32_t kLdrLitOffset_width = 19;
4678  Ldr(result, MemOperand(ldr_location));
4679  if (emit_debug_code()) {
4680    And(result, result, LoadLiteralFMask);
4681    Cmp(result, LoadLiteralFixed);
4682    Check(eq, kTheInstructionToPatchShouldBeAnLdrLiteral);
4683    // The instruction was clobbered. Reload it.
4684    Ldr(result, MemOperand(ldr_location));
4685  }
4686  Sbfx(result, result, kLdrLitOffset_lsb, kLdrLitOffset_width);
4687  Add(result, ldr_location, Operand(result, LSL, kWordSizeInBytesLog2));
4688}
4689
4690
4691void MacroAssembler::EnsureNotWhite(
4692    Register value,
4693    Register bitmap_scratch,
4694    Register shift_scratch,
4695    Register load_scratch,
4696    Register length_scratch,
4697    Label* value_is_white_and_not_data) {
4698  DCHECK(!AreAliased(
4699      value, bitmap_scratch, shift_scratch, load_scratch, length_scratch));
4700
4701  // These bit sequences are backwards. The first character in the string
4702  // represents the least significant bit.
4703  DCHECK(strcmp(Marking::kWhiteBitPattern, "00") == 0);
4704  DCHECK(strcmp(Marking::kBlackBitPattern, "10") == 0);
4705  DCHECK(strcmp(Marking::kGreyBitPattern, "11") == 0);
4706
4707  GetMarkBits(value, bitmap_scratch, shift_scratch);
4708  Ldr(load_scratch, MemOperand(bitmap_scratch, MemoryChunk::kHeaderSize));
4709  Lsr(load_scratch, load_scratch, shift_scratch);
4710
4711  AssertHasValidColor(load_scratch);
4712
4713  // If the value is black or grey we don't need to do anything.
4714  // Since both black and grey have a 1 in the first position and white does
4715  // not have a 1 there we only need to check one bit.
4716  Label done;
4717  Tbnz(load_scratch, 0, &done);
4718
4719  // Value is white.  We check whether it is data that doesn't need scanning.
4720  Register map = load_scratch;  // Holds map while checking type.
4721  Label is_data_object;
4722
4723  // Check for heap-number.
4724  Ldr(map, FieldMemOperand(value, HeapObject::kMapOffset));
4725  Mov(length_scratch, HeapNumber::kSize);
4726  JumpIfRoot(map, Heap::kHeapNumberMapRootIndex, &is_data_object);
4727
4728  // Check for strings.
4729  DCHECK(kIsIndirectStringTag == 1 && kIsIndirectStringMask == 1);
4730  DCHECK(kNotStringTag == 0x80 && kIsNotStringMask == 0x80);
4731  // If it's a string and it's not a cons string then it's an object containing
4732  // no GC pointers.
4733  Register instance_type = load_scratch;
4734  Ldrb(instance_type, FieldMemOperand(map, Map::kInstanceTypeOffset));
4735  TestAndBranchIfAnySet(instance_type,
4736                        kIsIndirectStringMask | kIsNotStringMask,
4737                        value_is_white_and_not_data);
4738
4739  // It's a non-indirect (non-cons and non-slice) string.
4740  // If it's external, the length is just ExternalString::kSize.
4741  // Otherwise it's String::kHeaderSize + string->length() * (1 or 2).
4742  // External strings are the only ones with the kExternalStringTag bit
4743  // set.
4744  DCHECK_EQ(0, kSeqStringTag & kExternalStringTag);
4745  DCHECK_EQ(0, kConsStringTag & kExternalStringTag);
4746  Mov(length_scratch, ExternalString::kSize);
4747  TestAndBranchIfAnySet(instance_type, kExternalStringTag, &is_data_object);
4748
4749  // Sequential string, either Latin1 or UC16.
4750  // For Latin1 (char-size of 1) we shift the smi tag away to get the length.
4751  // For UC16 (char-size of 2) we just leave the smi tag in place, thereby
4752  // getting the length multiplied by 2.
4753  DCHECK(kOneByteStringTag == 4 && kStringEncodingMask == 4);
4754  Ldrsw(length_scratch, UntagSmiFieldMemOperand(value,
4755                                                String::kLengthOffset));
4756  Tst(instance_type, kStringEncodingMask);
4757  Cset(load_scratch, eq);
4758  Lsl(length_scratch, length_scratch, load_scratch);
4759  Add(length_scratch,
4760      length_scratch,
4761      SeqString::kHeaderSize + kObjectAlignmentMask);
4762  Bic(length_scratch, length_scratch, kObjectAlignmentMask);
4763
4764  Bind(&is_data_object);
4765  // Value is a data object, and it is white.  Mark it black.  Since we know
4766  // that the object is white we can make it black by flipping one bit.
4767  Register mask = shift_scratch;
4768  Mov(load_scratch, 1);
4769  Lsl(mask, load_scratch, shift_scratch);
4770
4771  Ldr(load_scratch, MemOperand(bitmap_scratch, MemoryChunk::kHeaderSize));
4772  Orr(load_scratch, load_scratch, mask);
4773  Str(load_scratch, MemOperand(bitmap_scratch, MemoryChunk::kHeaderSize));
4774
4775  Bic(bitmap_scratch, bitmap_scratch, Page::kPageAlignmentMask);
4776  Ldr(load_scratch, MemOperand(bitmap_scratch, MemoryChunk::kLiveBytesOffset));
4777  Add(load_scratch, load_scratch, length_scratch);
4778  Str(load_scratch, MemOperand(bitmap_scratch, MemoryChunk::kLiveBytesOffset));
4779
4780  Bind(&done);
4781}
4782
4783
4784void MacroAssembler::Assert(Condition cond, BailoutReason reason) {
4785  if (emit_debug_code()) {
4786    Check(cond, reason);
4787  }
4788}
4789
4790
4791
4792void MacroAssembler::AssertRegisterIsClear(Register reg, BailoutReason reason) {
4793  if (emit_debug_code()) {
4794    CheckRegisterIsClear(reg, reason);
4795  }
4796}
4797
4798
4799void MacroAssembler::AssertRegisterIsRoot(Register reg,
4800                                          Heap::RootListIndex index,
4801                                          BailoutReason reason) {
4802  if (emit_debug_code()) {
4803    CompareRoot(reg, index);
4804    Check(eq, reason);
4805  }
4806}
4807
4808
4809void MacroAssembler::AssertFastElements(Register elements) {
4810  if (emit_debug_code()) {
4811    UseScratchRegisterScope temps(this);
4812    Register temp = temps.AcquireX();
4813    Label ok;
4814    Ldr(temp, FieldMemOperand(elements, HeapObject::kMapOffset));
4815    JumpIfRoot(temp, Heap::kFixedArrayMapRootIndex, &ok);
4816    JumpIfRoot(temp, Heap::kFixedDoubleArrayMapRootIndex, &ok);
4817    JumpIfRoot(temp, Heap::kFixedCOWArrayMapRootIndex, &ok);
4818    Abort(kJSObjectWithFastElementsMapHasSlowElements);
4819    Bind(&ok);
4820  }
4821}
4822
4823
4824void MacroAssembler::AssertIsString(const Register& object) {
4825  if (emit_debug_code()) {
4826    UseScratchRegisterScope temps(this);
4827    Register temp = temps.AcquireX();
4828    STATIC_ASSERT(kSmiTag == 0);
4829    Tst(object, kSmiTagMask);
4830    Check(ne, kOperandIsNotAString);
4831    Ldr(temp, FieldMemOperand(object, HeapObject::kMapOffset));
4832    CompareInstanceType(temp, temp, FIRST_NONSTRING_TYPE);
4833    Check(lo, kOperandIsNotAString);
4834  }
4835}
4836
4837
4838void MacroAssembler::Check(Condition cond, BailoutReason reason) {
4839  Label ok;
4840  B(cond, &ok);
4841  Abort(reason);
4842  // Will not return here.
4843  Bind(&ok);
4844}
4845
4846
4847void MacroAssembler::CheckRegisterIsClear(Register reg, BailoutReason reason) {
4848  Label ok;
4849  Cbz(reg, &ok);
4850  Abort(reason);
4851  // Will not return here.
4852  Bind(&ok);
4853}
4854
4855
4856void MacroAssembler::Abort(BailoutReason reason) {
4857#ifdef DEBUG
4858  RecordComment("Abort message: ");
4859  RecordComment(GetBailoutReason(reason));
4860
4861  if (FLAG_trap_on_abort) {
4862    Brk(0);
4863    return;
4864  }
4865#endif
4866
4867  // Abort is used in some contexts where csp is the stack pointer. In order to
4868  // simplify the CallRuntime code, make sure that jssp is the stack pointer.
4869  // There is no risk of register corruption here because Abort doesn't return.
4870  Register old_stack_pointer = StackPointer();
4871  SetStackPointer(jssp);
4872  Mov(jssp, old_stack_pointer);
4873
4874  // We need some scratch registers for the MacroAssembler, so make sure we have
4875  // some. This is safe here because Abort never returns.
4876  RegList old_tmp_list = TmpList()->list();
4877  TmpList()->Combine(MacroAssembler::DefaultTmpList());
4878
4879  if (use_real_aborts()) {
4880    // Avoid infinite recursion; Push contains some assertions that use Abort.
4881    NoUseRealAbortsScope no_real_aborts(this);
4882
4883    Mov(x0, Smi::FromInt(reason));
4884    Push(x0);
4885
4886    if (!has_frame_) {
4887      // We don't actually want to generate a pile of code for this, so just
4888      // claim there is a stack frame, without generating one.
4889      FrameScope scope(this, StackFrame::NONE);
4890      CallRuntime(Runtime::kAbort, 1);
4891    } else {
4892      CallRuntime(Runtime::kAbort, 1);
4893    }
4894  } else {
4895    // Load the string to pass to Printf.
4896    Label msg_address;
4897    Adr(x0, &msg_address);
4898
4899    // Call Printf directly to report the error.
4900    CallPrintf();
4901
4902    // We need a way to stop execution on both the simulator and real hardware,
4903    // and Unreachable() is the best option.
4904    Unreachable();
4905
4906    // Emit the message string directly in the instruction stream.
4907    {
4908      BlockPoolsScope scope(this);
4909      Bind(&msg_address);
4910      EmitStringData(GetBailoutReason(reason));
4911    }
4912  }
4913
4914  SetStackPointer(old_stack_pointer);
4915  TmpList()->set_list(old_tmp_list);
4916}
4917
4918
4919void MacroAssembler::LoadTransitionedArrayMapConditional(
4920    ElementsKind expected_kind,
4921    ElementsKind transitioned_kind,
4922    Register map_in_out,
4923    Register scratch1,
4924    Register scratch2,
4925    Label* no_map_match) {
4926  // Load the global or builtins object from the current context.
4927  Ldr(scratch1, GlobalObjectMemOperand());
4928  Ldr(scratch1, FieldMemOperand(scratch1, GlobalObject::kNativeContextOffset));
4929
4930  // Check that the function's map is the same as the expected cached map.
4931  Ldr(scratch1, ContextMemOperand(scratch1, Context::JS_ARRAY_MAPS_INDEX));
4932  size_t offset = (expected_kind * kPointerSize) + FixedArrayBase::kHeaderSize;
4933  Ldr(scratch2, FieldMemOperand(scratch1, offset));
4934  Cmp(map_in_out, scratch2);
4935  B(ne, no_map_match);
4936
4937  // Use the transitioned cached map.
4938  offset = (transitioned_kind * kPointerSize) + FixedArrayBase::kHeaderSize;
4939  Ldr(map_in_out, FieldMemOperand(scratch1, offset));
4940}
4941
4942
4943void MacroAssembler::LoadGlobalFunction(int index, Register function) {
4944  // Load the global or builtins object from the current context.
4945  Ldr(function, GlobalObjectMemOperand());
4946  // Load the native context from the global or builtins object.
4947  Ldr(function, FieldMemOperand(function,
4948                                GlobalObject::kNativeContextOffset));
4949  // Load the function from the native context.
4950  Ldr(function, ContextMemOperand(function, index));
4951}
4952
4953
4954void MacroAssembler::LoadGlobalFunctionInitialMap(Register function,
4955                                                  Register map,
4956                                                  Register scratch) {
4957  // Load the initial map. The global functions all have initial maps.
4958  Ldr(map, FieldMemOperand(function, JSFunction::kPrototypeOrInitialMapOffset));
4959  if (emit_debug_code()) {
4960    Label ok, fail;
4961    CheckMap(map, scratch, Heap::kMetaMapRootIndex, &fail, DO_SMI_CHECK);
4962    B(&ok);
4963    Bind(&fail);
4964    Abort(kGlobalFunctionsMustHaveInitialMap);
4965    Bind(&ok);
4966  }
4967}
4968
4969
4970// This is the main Printf implementation. All other Printf variants call
4971// PrintfNoPreserve after setting up one or more PreserveRegisterScopes.
4972void MacroAssembler::PrintfNoPreserve(const char * format,
4973                                      const CPURegister& arg0,
4974                                      const CPURegister& arg1,
4975                                      const CPURegister& arg2,
4976                                      const CPURegister& arg3) {
4977  // We cannot handle a caller-saved stack pointer. It doesn't make much sense
4978  // in most cases anyway, so this restriction shouldn't be too serious.
4979  DCHECK(!kCallerSaved.IncludesAliasOf(__ StackPointer()));
4980
4981  // The provided arguments, and their proper procedure-call standard registers.
4982  CPURegister args[kPrintfMaxArgCount] = {arg0, arg1, arg2, arg3};
4983  CPURegister pcs[kPrintfMaxArgCount] = {NoReg, NoReg, NoReg, NoReg};
4984
4985  int arg_count = kPrintfMaxArgCount;
4986
4987  // The PCS varargs registers for printf. Note that x0 is used for the printf
4988  // format string.
4989  static const CPURegList kPCSVarargs =
4990      CPURegList(CPURegister::kRegister, kXRegSizeInBits, 1, arg_count);
4991  static const CPURegList kPCSVarargsFP =
4992      CPURegList(CPURegister::kFPRegister, kDRegSizeInBits, 0, arg_count - 1);
4993
4994  // We can use caller-saved registers as scratch values, except for the
4995  // arguments and the PCS registers where they might need to go.
4996  CPURegList tmp_list = kCallerSaved;
4997  tmp_list.Remove(x0);      // Used to pass the format string.
4998  tmp_list.Remove(kPCSVarargs);
4999  tmp_list.Remove(arg0, arg1, arg2, arg3);
5000
5001  CPURegList fp_tmp_list = kCallerSavedFP;
5002  fp_tmp_list.Remove(kPCSVarargsFP);
5003  fp_tmp_list.Remove(arg0, arg1, arg2, arg3);
5004
5005  // Override the MacroAssembler's scratch register list. The lists will be
5006  // reset automatically at the end of the UseScratchRegisterScope.
5007  UseScratchRegisterScope temps(this);
5008  TmpList()->set_list(tmp_list.list());
5009  FPTmpList()->set_list(fp_tmp_list.list());
5010
5011  // Copies of the printf vararg registers that we can pop from.
5012  CPURegList pcs_varargs = kPCSVarargs;
5013  CPURegList pcs_varargs_fp = kPCSVarargsFP;
5014
5015  // Place the arguments. There are lots of clever tricks and optimizations we
5016  // could use here, but Printf is a debug tool so instead we just try to keep
5017  // it simple: Move each input that isn't already in the right place to a
5018  // scratch register, then move everything back.
5019  for (unsigned i = 0; i < kPrintfMaxArgCount; i++) {
5020    // Work out the proper PCS register for this argument.
5021    if (args[i].IsRegister()) {
5022      pcs[i] = pcs_varargs.PopLowestIndex().X();
5023      // We might only need a W register here. We need to know the size of the
5024      // argument so we can properly encode it for the simulator call.
5025      if (args[i].Is32Bits()) pcs[i] = pcs[i].W();
5026    } else if (args[i].IsFPRegister()) {
5027      // In C, floats are always cast to doubles for varargs calls.
5028      pcs[i] = pcs_varargs_fp.PopLowestIndex().D();
5029    } else {
5030      DCHECK(args[i].IsNone());
5031      arg_count = i;
5032      break;
5033    }
5034
5035    // If the argument is already in the right place, leave it where it is.
5036    if (args[i].Aliases(pcs[i])) continue;
5037
5038    // Otherwise, if the argument is in a PCS argument register, allocate an
5039    // appropriate scratch register and then move it out of the way.
5040    if (kPCSVarargs.IncludesAliasOf(args[i]) ||
5041        kPCSVarargsFP.IncludesAliasOf(args[i])) {
5042      if (args[i].IsRegister()) {
5043        Register old_arg = Register(args[i]);
5044        Register new_arg = temps.AcquireSameSizeAs(old_arg);
5045        Mov(new_arg, old_arg);
5046        args[i] = new_arg;
5047      } else {
5048        FPRegister old_arg = FPRegister(args[i]);
5049        FPRegister new_arg = temps.AcquireSameSizeAs(old_arg);
5050        Fmov(new_arg, old_arg);
5051        args[i] = new_arg;
5052      }
5053    }
5054  }
5055
5056  // Do a second pass to move values into their final positions and perform any
5057  // conversions that may be required.
5058  for (int i = 0; i < arg_count; i++) {
5059    DCHECK(pcs[i].type() == args[i].type());
5060    if (pcs[i].IsRegister()) {
5061      Mov(Register(pcs[i]), Register(args[i]), kDiscardForSameWReg);
5062    } else {
5063      DCHECK(pcs[i].IsFPRegister());
5064      if (pcs[i].SizeInBytes() == args[i].SizeInBytes()) {
5065        Fmov(FPRegister(pcs[i]), FPRegister(args[i]));
5066      } else {
5067        Fcvt(FPRegister(pcs[i]), FPRegister(args[i]));
5068      }
5069    }
5070  }
5071
5072  // Load the format string into x0, as per the procedure-call standard.
5073  //
5074  // To make the code as portable as possible, the format string is encoded
5075  // directly in the instruction stream. It might be cleaner to encode it in a
5076  // literal pool, but since Printf is usually used for debugging, it is
5077  // beneficial for it to be minimally dependent on other features.
5078  Label format_address;
5079  Adr(x0, &format_address);
5080
5081  // Emit the format string directly in the instruction stream.
5082  { BlockPoolsScope scope(this);
5083    Label after_data;
5084    B(&after_data);
5085    Bind(&format_address);
5086    EmitStringData(format);
5087    Unreachable();
5088    Bind(&after_data);
5089  }
5090
5091  // We don't pass any arguments on the stack, but we still need to align the C
5092  // stack pointer to a 16-byte boundary for PCS compliance.
5093  if (!csp.Is(StackPointer())) {
5094    Bic(csp, StackPointer(), 0xf);
5095  }
5096
5097  CallPrintf(arg_count, pcs);
5098}
5099
5100
5101void MacroAssembler::CallPrintf(int arg_count, const CPURegister * args) {
5102  // A call to printf needs special handling for the simulator, since the system
5103  // printf function will use a different instruction set and the procedure-call
5104  // standard will not be compatible.
5105#ifdef USE_SIMULATOR
5106  { InstructionAccurateScope scope(this, kPrintfLength / kInstructionSize);
5107    hlt(kImmExceptionIsPrintf);
5108    dc32(arg_count);          // kPrintfArgCountOffset
5109
5110    // Determine the argument pattern.
5111    uint32_t arg_pattern_list = 0;
5112    for (int i = 0; i < arg_count; i++) {
5113      uint32_t arg_pattern;
5114      if (args[i].IsRegister()) {
5115        arg_pattern = args[i].Is32Bits() ? kPrintfArgW : kPrintfArgX;
5116      } else {
5117        DCHECK(args[i].Is64Bits());
5118        arg_pattern = kPrintfArgD;
5119      }
5120      DCHECK(arg_pattern < (1 << kPrintfArgPatternBits));
5121      arg_pattern_list |= (arg_pattern << (kPrintfArgPatternBits * i));
5122    }
5123    dc32(arg_pattern_list);   // kPrintfArgPatternListOffset
5124  }
5125#else
5126  Call(FUNCTION_ADDR(printf), RelocInfo::EXTERNAL_REFERENCE);
5127#endif
5128}
5129
5130
5131void MacroAssembler::Printf(const char * format,
5132                            CPURegister arg0,
5133                            CPURegister arg1,
5134                            CPURegister arg2,
5135                            CPURegister arg3) {
5136  // We can only print sp if it is the current stack pointer.
5137  if (!csp.Is(StackPointer())) {
5138    DCHECK(!csp.Aliases(arg0));
5139    DCHECK(!csp.Aliases(arg1));
5140    DCHECK(!csp.Aliases(arg2));
5141    DCHECK(!csp.Aliases(arg3));
5142  }
5143
5144  // Printf is expected to preserve all registers, so make sure that none are
5145  // available as scratch registers until we've preserved them.
5146  RegList old_tmp_list = TmpList()->list();
5147  RegList old_fp_tmp_list = FPTmpList()->list();
5148  TmpList()->set_list(0);
5149  FPTmpList()->set_list(0);
5150
5151  // Preserve all caller-saved registers as well as NZCV.
5152  // If csp is the stack pointer, PushCPURegList asserts that the size of each
5153  // list is a multiple of 16 bytes.
5154  PushCPURegList(kCallerSaved);
5155  PushCPURegList(kCallerSavedFP);
5156
5157  // We can use caller-saved registers as scratch values (except for argN).
5158  CPURegList tmp_list = kCallerSaved;
5159  CPURegList fp_tmp_list = kCallerSavedFP;
5160  tmp_list.Remove(arg0, arg1, arg2, arg3);
5161  fp_tmp_list.Remove(arg0, arg1, arg2, arg3);
5162  TmpList()->set_list(tmp_list.list());
5163  FPTmpList()->set_list(fp_tmp_list.list());
5164
5165  { UseScratchRegisterScope temps(this);
5166    // If any of the arguments are the current stack pointer, allocate a new
5167    // register for them, and adjust the value to compensate for pushing the
5168    // caller-saved registers.
5169    bool arg0_sp = StackPointer().Aliases(arg0);
5170    bool arg1_sp = StackPointer().Aliases(arg1);
5171    bool arg2_sp = StackPointer().Aliases(arg2);
5172    bool arg3_sp = StackPointer().Aliases(arg3);
5173    if (arg0_sp || arg1_sp || arg2_sp || arg3_sp) {
5174      // Allocate a register to hold the original stack pointer value, to pass
5175      // to PrintfNoPreserve as an argument.
5176      Register arg_sp = temps.AcquireX();
5177      Add(arg_sp, StackPointer(),
5178          kCallerSaved.TotalSizeInBytes() + kCallerSavedFP.TotalSizeInBytes());
5179      if (arg0_sp) arg0 = Register::Create(arg_sp.code(), arg0.SizeInBits());
5180      if (arg1_sp) arg1 = Register::Create(arg_sp.code(), arg1.SizeInBits());
5181      if (arg2_sp) arg2 = Register::Create(arg_sp.code(), arg2.SizeInBits());
5182      if (arg3_sp) arg3 = Register::Create(arg_sp.code(), arg3.SizeInBits());
5183    }
5184
5185    // Preserve NZCV.
5186    { UseScratchRegisterScope temps(this);
5187      Register tmp = temps.AcquireX();
5188      Mrs(tmp, NZCV);
5189      Push(tmp, xzr);
5190    }
5191
5192    PrintfNoPreserve(format, arg0, arg1, arg2, arg3);
5193
5194    // Restore NZCV.
5195    { UseScratchRegisterScope temps(this);
5196      Register tmp = temps.AcquireX();
5197      Pop(xzr, tmp);
5198      Msr(NZCV, tmp);
5199    }
5200  }
5201
5202  PopCPURegList(kCallerSavedFP);
5203  PopCPURegList(kCallerSaved);
5204
5205  TmpList()->set_list(old_tmp_list);
5206  FPTmpList()->set_list(old_fp_tmp_list);
5207}
5208
5209
5210void MacroAssembler::EmitFrameSetupForCodeAgePatching() {
5211  // TODO(jbramley): Other architectures use the internal memcpy to copy the
5212  // sequence. If this is a performance bottleneck, we should consider caching
5213  // the sequence and copying it in the same way.
5214  InstructionAccurateScope scope(this,
5215                                 kNoCodeAgeSequenceLength / kInstructionSize);
5216  DCHECK(jssp.Is(StackPointer()));
5217  EmitFrameSetupForCodeAgePatching(this);
5218}
5219
5220
5221
5222void MacroAssembler::EmitCodeAgeSequence(Code* stub) {
5223  InstructionAccurateScope scope(this,
5224                                 kNoCodeAgeSequenceLength / kInstructionSize);
5225  DCHECK(jssp.Is(StackPointer()));
5226  EmitCodeAgeSequence(this, stub);
5227}
5228
5229
5230#undef __
5231#define __ assm->
5232
5233
5234void MacroAssembler::EmitFrameSetupForCodeAgePatching(Assembler * assm) {
5235  Label start;
5236  __ bind(&start);
5237
5238  // We can do this sequence using four instructions, but the code ageing
5239  // sequence that patches it needs five, so we use the extra space to try to
5240  // simplify some addressing modes and remove some dependencies (compared to
5241  // using two stp instructions with write-back).
5242  __ sub(jssp, jssp, 4 * kXRegSize);
5243  __ sub(csp, csp, 4 * kXRegSize);
5244  __ stp(x1, cp, MemOperand(jssp, 0 * kXRegSize));
5245  __ stp(fp, lr, MemOperand(jssp, 2 * kXRegSize));
5246  __ add(fp, jssp, StandardFrameConstants::kFixedFrameSizeFromFp);
5247
5248  __ AssertSizeOfCodeGeneratedSince(&start, kNoCodeAgeSequenceLength);
5249}
5250
5251
5252void MacroAssembler::EmitCodeAgeSequence(Assembler * assm,
5253                                         Code * stub) {
5254  Label start;
5255  __ bind(&start);
5256  // When the stub is called, the sequence is replaced with the young sequence
5257  // (as in EmitFrameSetupForCodeAgePatching). After the code is replaced, the
5258  // stub jumps to &start, stored in x0. The young sequence does not call the
5259  // stub so there is no infinite loop here.
5260  //
5261  // A branch (br) is used rather than a call (blr) because this code replaces
5262  // the frame setup code that would normally preserve lr.
5263  __ ldr_pcrel(ip0, kCodeAgeStubEntryOffset >> kLoadLiteralScaleLog2);
5264  __ adr(x0, &start);
5265  __ br(ip0);
5266  // IsCodeAgeSequence in codegen-arm64.cc assumes that the code generated up
5267  // until now (kCodeAgeStubEntryOffset) is the same for all code age sequences.
5268  __ AssertSizeOfCodeGeneratedSince(&start, kCodeAgeStubEntryOffset);
5269  if (stub) {
5270    __ dc64(reinterpret_cast<uint64_t>(stub->instruction_start()));
5271    __ AssertSizeOfCodeGeneratedSince(&start, kNoCodeAgeSequenceLength);
5272  }
5273}
5274
5275
5276bool MacroAssembler::IsYoungSequence(Isolate* isolate, byte* sequence) {
5277  bool is_young = isolate->code_aging_helper()->IsYoung(sequence);
5278  DCHECK(is_young ||
5279         isolate->code_aging_helper()->IsOld(sequence));
5280  return is_young;
5281}
5282
5283
5284void MacroAssembler::TruncatingDiv(Register result,
5285                                   Register dividend,
5286                                   int32_t divisor) {
5287  DCHECK(!AreAliased(result, dividend));
5288  DCHECK(result.Is32Bits() && dividend.Is32Bits());
5289  base::MagicNumbersForDivision<uint32_t> mag =
5290      base::SignedDivisionByConstant(static_cast<uint32_t>(divisor));
5291  Mov(result, mag.multiplier);
5292  Smull(result.X(), dividend, result);
5293  Asr(result.X(), result.X(), 32);
5294  bool neg = (mag.multiplier & (static_cast<uint32_t>(1) << 31)) != 0;
5295  if (divisor > 0 && neg) Add(result, result, dividend);
5296  if (divisor < 0 && !neg && mag.multiplier > 0) Sub(result, result, dividend);
5297  if (mag.shift > 0) Asr(result, result, mag.shift);
5298  Add(result, result, Operand(dividend, LSR, 31));
5299}
5300
5301
5302#undef __
5303
5304
5305UseScratchRegisterScope::~UseScratchRegisterScope() {
5306  available_->set_list(old_available_);
5307  availablefp_->set_list(old_availablefp_);
5308}
5309
5310
5311Register UseScratchRegisterScope::AcquireSameSizeAs(const Register& reg) {
5312  int code = AcquireNextAvailable(available_).code();
5313  return Register::Create(code, reg.SizeInBits());
5314}
5315
5316
5317FPRegister UseScratchRegisterScope::AcquireSameSizeAs(const FPRegister& reg) {
5318  int code = AcquireNextAvailable(availablefp_).code();
5319  return FPRegister::Create(code, reg.SizeInBits());
5320}
5321
5322
5323CPURegister UseScratchRegisterScope::AcquireNextAvailable(
5324    CPURegList* available) {
5325  CHECK(!available->IsEmpty());
5326  CPURegister result = available->PopLowestIndex();
5327  DCHECK(!AreAliased(result, xzr, csp));
5328  return result;
5329}
5330
5331
5332CPURegister UseScratchRegisterScope::UnsafeAcquire(CPURegList* available,
5333                                                   const CPURegister& reg) {
5334  DCHECK(available->IncludesAliasOf(reg));
5335  available->Remove(reg);
5336  return reg;
5337}
5338
5339
5340#define __ masm->
5341
5342
5343void InlineSmiCheckInfo::Emit(MacroAssembler* masm, const Register& reg,
5344                              const Label* smi_check) {
5345  Assembler::BlockPoolsScope scope(masm);
5346  if (reg.IsValid()) {
5347    DCHECK(smi_check->is_bound());
5348    DCHECK(reg.Is64Bits());
5349
5350    // Encode the register (x0-x30) in the lowest 5 bits, then the offset to
5351    // 'check' in the other bits. The possible offset is limited in that we
5352    // use BitField to pack the data, and the underlying data type is a
5353    // uint32_t.
5354    uint32_t delta = __ InstructionsGeneratedSince(smi_check);
5355    __ InlineData(RegisterBits::encode(reg.code()) | DeltaBits::encode(delta));
5356  } else {
5357    DCHECK(!smi_check->is_bound());
5358
5359    // An offset of 0 indicates that there is no patch site.
5360    __ InlineData(0);
5361  }
5362}
5363
5364
5365InlineSmiCheckInfo::InlineSmiCheckInfo(Address info)
5366    : reg_(NoReg), smi_check_(NULL) {
5367  InstructionSequence* inline_data = InstructionSequence::At(info);
5368  DCHECK(inline_data->IsInlineData());
5369  if (inline_data->IsInlineData()) {
5370    uint64_t payload = inline_data->InlineData();
5371    // We use BitField to decode the payload, and BitField can only handle
5372    // 32-bit values.
5373    DCHECK(is_uint32(payload));
5374    if (payload != 0) {
5375      int reg_code = RegisterBits::decode(payload);
5376      reg_ = Register::XRegFromCode(reg_code);
5377      uint64_t smi_check_delta = DeltaBits::decode(payload);
5378      DCHECK(smi_check_delta != 0);
5379      smi_check_ = inline_data->preceding(smi_check_delta);
5380    }
5381  }
5382}
5383
5384
5385#undef __
5386
5387
5388} }  // namespace v8::internal
5389
5390#endif  // V8_TARGET_ARCH_ARM64
5391