1// Copyright 2012 the V8 project authors. All rights reserved.
2// Use of this source code is governed by a BSD-style license that can be
3// found in the LICENSE file.
4
5#include <stdlib.h>
6
7#include "src/v8.h"
8
9#include "src/ast.h"
10#include "src/base/platform/platform.h"
11#include "src/base/sys-info.h"
12#include "src/base/utils/random-number-generator.h"
13#include "src/bootstrapper.h"
14#include "src/codegen.h"
15#include "src/compilation-cache.h"
16#include "src/cpu-profiler.h"
17#include "src/debug.h"
18#include "src/deoptimizer.h"
19#include "src/heap/spaces.h"
20#include "src/heap/sweeper-thread.h"
21#include "src/heap-profiler.h"
22#include "src/hydrogen.h"
23#include "src/ic/stub-cache.h"
24#include "src/isolate-inl.h"
25#include "src/lithium-allocator.h"
26#include "src/log.h"
27#include "src/messages.h"
28#include "src/prototype.h"
29#include "src/regexp-stack.h"
30#include "src/runtime-profiler.h"
31#include "src/sampler.h"
32#include "src/scopeinfo.h"
33#include "src/serialize.h"
34#include "src/simulator.h"
35#include "src/version.h"
36#include "src/vm-state-inl.h"
37
38
39namespace v8 {
40namespace internal {
41
42base::Atomic32 ThreadId::highest_thread_id_ = 0;
43
44int ThreadId::AllocateThreadId() {
45  int new_id = base::NoBarrier_AtomicIncrement(&highest_thread_id_, 1);
46  return new_id;
47}
48
49
50int ThreadId::GetCurrentThreadId() {
51  int thread_id = base::Thread::GetThreadLocalInt(Isolate::thread_id_key_);
52  if (thread_id == 0) {
53    thread_id = AllocateThreadId();
54    base::Thread::SetThreadLocalInt(Isolate::thread_id_key_, thread_id);
55  }
56  return thread_id;
57}
58
59
60ThreadLocalTop::ThreadLocalTop() {
61  InitializeInternal();
62}
63
64
65void ThreadLocalTop::InitializeInternal() {
66  c_entry_fp_ = 0;
67  handler_ = 0;
68#ifdef USE_SIMULATOR
69  simulator_ = NULL;
70#endif
71  js_entry_sp_ = NULL;
72  external_callback_scope_ = NULL;
73  current_vm_state_ = EXTERNAL;
74  try_catch_handler_ = NULL;
75  context_ = NULL;
76  thread_id_ = ThreadId::Invalid();
77  external_caught_exception_ = false;
78  failed_access_check_callback_ = NULL;
79  save_context_ = NULL;
80  catcher_ = NULL;
81  top_lookup_result_ = NULL;
82  promise_on_stack_ = NULL;
83
84  // These members are re-initialized later after deserialization
85  // is complete.
86  pending_exception_ = NULL;
87  has_pending_message_ = false;
88  rethrowing_message_ = false;
89  pending_message_obj_ = NULL;
90  pending_message_script_ = NULL;
91  scheduled_exception_ = NULL;
92}
93
94
95void ThreadLocalTop::Initialize() {
96  InitializeInternal();
97#ifdef USE_SIMULATOR
98  simulator_ = Simulator::current(isolate_);
99#endif
100  thread_id_ = ThreadId::Current();
101}
102
103
104void ThreadLocalTop::Free() {
105  // Match unmatched PopPromise calls.
106  while (promise_on_stack_) isolate_->PopPromise();
107}
108
109
110base::Thread::LocalStorageKey Isolate::isolate_key_;
111base::Thread::LocalStorageKey Isolate::thread_id_key_;
112base::Thread::LocalStorageKey Isolate::per_isolate_thread_data_key_;
113#ifdef DEBUG
114base::Thread::LocalStorageKey PerThreadAssertScopeBase::thread_local_key;
115#endif  // DEBUG
116base::LazyMutex Isolate::thread_data_table_mutex_ = LAZY_MUTEX_INITIALIZER;
117Isolate::ThreadDataTable* Isolate::thread_data_table_ = NULL;
118base::Atomic32 Isolate::isolate_counter_ = 0;
119
120Isolate::PerIsolateThreadData*
121    Isolate::FindOrAllocatePerThreadDataForThisThread() {
122  ThreadId thread_id = ThreadId::Current();
123  PerIsolateThreadData* per_thread = NULL;
124  {
125    base::LockGuard<base::Mutex> lock_guard(thread_data_table_mutex_.Pointer());
126    per_thread = thread_data_table_->Lookup(this, thread_id);
127    if (per_thread == NULL) {
128      per_thread = new PerIsolateThreadData(this, thread_id);
129      thread_data_table_->Insert(per_thread);
130    }
131    DCHECK(thread_data_table_->Lookup(this, thread_id) == per_thread);
132  }
133  return per_thread;
134}
135
136
137Isolate::PerIsolateThreadData* Isolate::FindPerThreadDataForThisThread() {
138  ThreadId thread_id = ThreadId::Current();
139  return FindPerThreadDataForThread(thread_id);
140}
141
142
143Isolate::PerIsolateThreadData* Isolate::FindPerThreadDataForThread(
144    ThreadId thread_id) {
145  PerIsolateThreadData* per_thread = NULL;
146  {
147    base::LockGuard<base::Mutex> lock_guard(thread_data_table_mutex_.Pointer());
148    per_thread = thread_data_table_->Lookup(this, thread_id);
149  }
150  return per_thread;
151}
152
153
154void Isolate::InitializeOncePerProcess() {
155  base::LockGuard<base::Mutex> lock_guard(thread_data_table_mutex_.Pointer());
156  CHECK(thread_data_table_ == NULL);
157  isolate_key_ = base::Thread::CreateThreadLocalKey();
158  thread_id_key_ = base::Thread::CreateThreadLocalKey();
159  per_isolate_thread_data_key_ = base::Thread::CreateThreadLocalKey();
160#ifdef DEBUG
161  PerThreadAssertScopeBase::thread_local_key =
162      base::Thread::CreateThreadLocalKey();
163#endif  // DEBUG
164  thread_data_table_ = new Isolate::ThreadDataTable();
165}
166
167
168Address Isolate::get_address_from_id(Isolate::AddressId id) {
169  return isolate_addresses_[id];
170}
171
172
173char* Isolate::Iterate(ObjectVisitor* v, char* thread_storage) {
174  ThreadLocalTop* thread = reinterpret_cast<ThreadLocalTop*>(thread_storage);
175  Iterate(v, thread);
176  return thread_storage + sizeof(ThreadLocalTop);
177}
178
179
180void Isolate::IterateThread(ThreadVisitor* v, char* t) {
181  ThreadLocalTop* thread = reinterpret_cast<ThreadLocalTop*>(t);
182  v->VisitThread(this, thread);
183}
184
185
186void Isolate::Iterate(ObjectVisitor* v, ThreadLocalTop* thread) {
187  // Visit the roots from the top for a given thread.
188  v->VisitPointer(&thread->pending_exception_);
189  v->VisitPointer(&(thread->pending_message_obj_));
190  v->VisitPointer(bit_cast<Object**>(&(thread->pending_message_script_)));
191  v->VisitPointer(bit_cast<Object**>(&(thread->context_)));
192  v->VisitPointer(&thread->scheduled_exception_);
193
194  for (v8::TryCatch* block = thread->try_catch_handler();
195       block != NULL;
196       block = block->next_) {
197    v->VisitPointer(bit_cast<Object**>(&(block->exception_)));
198    v->VisitPointer(bit_cast<Object**>(&(block->message_obj_)));
199    v->VisitPointer(bit_cast<Object**>(&(block->message_script_)));
200  }
201
202  // Iterate over pointers on native execution stack.
203  for (StackFrameIterator it(this, thread); !it.done(); it.Advance()) {
204    it.frame()->Iterate(v);
205  }
206
207  // Iterate pointers in live lookup results.
208  thread->top_lookup_result_->Iterate(v);
209}
210
211
212void Isolate::Iterate(ObjectVisitor* v) {
213  ThreadLocalTop* current_t = thread_local_top();
214  Iterate(v, current_t);
215}
216
217
218void Isolate::IterateDeferredHandles(ObjectVisitor* visitor) {
219  for (DeferredHandles* deferred = deferred_handles_head_;
220       deferred != NULL;
221       deferred = deferred->next_) {
222    deferred->Iterate(visitor);
223  }
224}
225
226
227#ifdef DEBUG
228bool Isolate::IsDeferredHandle(Object** handle) {
229  // Each DeferredHandles instance keeps the handles to one job in the
230  // concurrent recompilation queue, containing a list of blocks.  Each block
231  // contains kHandleBlockSize handles except for the first block, which may
232  // not be fully filled.
233  // We iterate through all the blocks to see whether the argument handle
234  // belongs to one of the blocks.  If so, it is deferred.
235  for (DeferredHandles* deferred = deferred_handles_head_;
236       deferred != NULL;
237       deferred = deferred->next_) {
238    List<Object**>* blocks = &deferred->blocks_;
239    for (int i = 0; i < blocks->length(); i++) {
240      Object** block_limit = (i == 0) ? deferred->first_block_limit_
241                                      : blocks->at(i) + kHandleBlockSize;
242      if (blocks->at(i) <= handle && handle < block_limit) return true;
243    }
244  }
245  return false;
246}
247#endif  // DEBUG
248
249
250void Isolate::RegisterTryCatchHandler(v8::TryCatch* that) {
251  thread_local_top()->set_try_catch_handler(that);
252}
253
254
255void Isolate::UnregisterTryCatchHandler(v8::TryCatch* that) {
256  DCHECK(thread_local_top()->try_catch_handler() == that);
257  thread_local_top()->set_try_catch_handler(that->next_);
258  thread_local_top()->catcher_ = NULL;
259}
260
261
262Handle<String> Isolate::StackTraceString() {
263  if (stack_trace_nesting_level_ == 0) {
264    stack_trace_nesting_level_++;
265    HeapStringAllocator allocator;
266    StringStream::ClearMentionedObjectCache(this);
267    StringStream accumulator(&allocator);
268    incomplete_message_ = &accumulator;
269    PrintStack(&accumulator);
270    Handle<String> stack_trace = accumulator.ToString(this);
271    incomplete_message_ = NULL;
272    stack_trace_nesting_level_ = 0;
273    return stack_trace;
274  } else if (stack_trace_nesting_level_ == 1) {
275    stack_trace_nesting_level_++;
276    base::OS::PrintError(
277      "\n\nAttempt to print stack while printing stack (double fault)\n");
278    base::OS::PrintError(
279      "If you are lucky you may find a partial stack dump on stdout.\n\n");
280    incomplete_message_->OutputToStdOut();
281    return factory()->empty_string();
282  } else {
283    base::OS::Abort();
284    // Unreachable
285    return factory()->empty_string();
286  }
287}
288
289
290void Isolate::PushStackTraceAndDie(unsigned int magic,
291                                   Object* object,
292                                   Map* map,
293                                   unsigned int magic2) {
294  const int kMaxStackTraceSize = 8192;
295  Handle<String> trace = StackTraceString();
296  uint8_t buffer[kMaxStackTraceSize];
297  int length = Min(kMaxStackTraceSize - 1, trace->length());
298  String::WriteToFlat(*trace, buffer, 0, length);
299  buffer[length] = '\0';
300  // TODO(dcarney): convert buffer to utf8?
301  base::OS::PrintError("Stacktrace (%x-%x) %p %p: %s\n", magic, magic2,
302                       static_cast<void*>(object), static_cast<void*>(map),
303                       reinterpret_cast<char*>(buffer));
304  base::OS::Abort();
305}
306
307
308// Determines whether the given stack frame should be displayed in
309// a stack trace.  The caller is the error constructor that asked
310// for the stack trace to be collected.  The first time a construct
311// call to this function is encountered it is skipped.  The seen_caller
312// in/out parameter is used to remember if the caller has been seen
313// yet.
314static bool IsVisibleInStackTrace(JSFunction* fun,
315                                  Object* caller,
316                                  Object* receiver,
317                                  bool* seen_caller) {
318  if ((fun == caller) && !(*seen_caller)) {
319    *seen_caller = true;
320    return false;
321  }
322  // Skip all frames until we've seen the caller.
323  if (!(*seen_caller)) return false;
324  // Also, skip non-visible built-in functions and any call with the builtins
325  // object as receiver, so as to not reveal either the builtins object or
326  // an internal function.
327  // The --builtins-in-stack-traces command line flag allows including
328  // internal call sites in the stack trace for debugging purposes.
329  if (!FLAG_builtins_in_stack_traces) {
330    if (receiver->IsJSBuiltinsObject()) return false;
331    if (fun->IsBuiltin()) {
332      return fun->shared()->native();
333    } else if (fun->IsFromNativeScript() || fun->IsFromExtensionScript()) {
334      return false;
335    }
336  }
337  return true;
338}
339
340
341Handle<Object> Isolate::CaptureSimpleStackTrace(Handle<JSObject> error_object,
342                                                Handle<Object> caller) {
343  // Get stack trace limit.
344  Handle<Object> error = Object::GetProperty(
345      this, js_builtins_object(), "$Error").ToHandleChecked();
346  if (!error->IsJSObject()) return factory()->undefined_value();
347
348  Handle<String> stackTraceLimit =
349      factory()->InternalizeUtf8String("stackTraceLimit");
350  DCHECK(!stackTraceLimit.is_null());
351  Handle<Object> stack_trace_limit =
352      JSObject::GetDataProperty(Handle<JSObject>::cast(error),
353                                stackTraceLimit);
354  if (!stack_trace_limit->IsNumber()) return factory()->undefined_value();
355  int limit = FastD2IChecked(stack_trace_limit->Number());
356  limit = Max(limit, 0);  // Ensure that limit is not negative.
357
358  int initial_size = Min(limit, 10);
359  Handle<FixedArray> elements =
360      factory()->NewFixedArrayWithHoles(initial_size * 4 + 1);
361
362  // If the caller parameter is a function we skip frames until we're
363  // under it before starting to collect.
364  bool seen_caller = !caller->IsJSFunction();
365  // First element is reserved to store the number of sloppy frames.
366  int cursor = 1;
367  int frames_seen = 0;
368  int sloppy_frames = 0;
369  bool encountered_strict_function = false;
370  for (JavaScriptFrameIterator iter(this);
371       !iter.done() && frames_seen < limit;
372       iter.Advance()) {
373    JavaScriptFrame* frame = iter.frame();
374    // Set initial size to the maximum inlining level + 1 for the outermost
375    // function.
376    List<FrameSummary> frames(FLAG_max_inlining_levels + 1);
377    frame->Summarize(&frames);
378    for (int i = frames.length() - 1; i >= 0; i--) {
379      Handle<JSFunction> fun = frames[i].function();
380      Handle<Object> recv = frames[i].receiver();
381      // Filter out internal frames that we do not want to show.
382      if (!IsVisibleInStackTrace(*fun, *caller, *recv, &seen_caller)) continue;
383      // Filter out frames from other security contexts.
384      if (!this->context()->HasSameSecurityTokenAs(fun->context())) continue;
385      if (cursor + 4 > elements->length()) {
386        int new_capacity = JSObject::NewElementsCapacity(elements->length());
387        Handle<FixedArray> new_elements =
388            factory()->NewFixedArrayWithHoles(new_capacity);
389        for (int i = 0; i < cursor; i++) {
390          new_elements->set(i, elements->get(i));
391        }
392        elements = new_elements;
393      }
394      DCHECK(cursor + 4 <= elements->length());
395
396
397      Handle<Code> code = frames[i].code();
398      Handle<Smi> offset(Smi::FromInt(frames[i].offset()), this);
399      // The stack trace API should not expose receivers and function
400      // objects on frames deeper than the top-most one with a strict
401      // mode function.  The number of sloppy frames is stored as
402      // first element in the result array.
403      if (!encountered_strict_function) {
404        if (fun->shared()->strict_mode() == STRICT) {
405          encountered_strict_function = true;
406        } else {
407          sloppy_frames++;
408        }
409      }
410      elements->set(cursor++, *recv);
411      elements->set(cursor++, *fun);
412      elements->set(cursor++, *code);
413      elements->set(cursor++, *offset);
414      frames_seen++;
415    }
416  }
417  elements->set(0, Smi::FromInt(sloppy_frames));
418  Handle<JSArray> result = factory()->NewJSArrayWithElements(elements);
419  result->set_length(Smi::FromInt(cursor));
420  return result;
421}
422
423
424void Isolate::CaptureAndSetDetailedStackTrace(Handle<JSObject> error_object) {
425  if (capture_stack_trace_for_uncaught_exceptions_) {
426    // Capture stack trace for a detailed exception message.
427    Handle<Name> key = factory()->detailed_stack_trace_symbol();
428    Handle<JSArray> stack_trace = CaptureCurrentStackTrace(
429        stack_trace_for_uncaught_exceptions_frame_limit_,
430        stack_trace_for_uncaught_exceptions_options_);
431    JSObject::SetProperty(error_object, key, stack_trace, STRICT).Assert();
432  }
433}
434
435
436void Isolate::CaptureAndSetSimpleStackTrace(Handle<JSObject> error_object,
437                                            Handle<Object> caller) {
438  // Capture stack trace for simple stack trace string formatting.
439  Handle<Name> key = factory()->stack_trace_symbol();
440  Handle<Object> stack_trace = CaptureSimpleStackTrace(error_object, caller);
441  JSObject::SetProperty(error_object, key, stack_trace, STRICT).Assert();
442}
443
444
445Handle<JSArray> Isolate::CaptureCurrentStackTrace(
446    int frame_limit, StackTrace::StackTraceOptions options) {
447  // Ensure no negative values.
448  int limit = Max(frame_limit, 0);
449  Handle<JSArray> stack_trace = factory()->NewJSArray(frame_limit);
450
451  Handle<String> column_key =
452      factory()->InternalizeOneByteString(STATIC_CHAR_VECTOR("column"));
453  Handle<String> line_key =
454      factory()->InternalizeOneByteString(STATIC_CHAR_VECTOR("lineNumber"));
455  Handle<String> script_id_key =
456      factory()->InternalizeOneByteString(STATIC_CHAR_VECTOR("scriptId"));
457  Handle<String> script_name_key =
458      factory()->InternalizeOneByteString(STATIC_CHAR_VECTOR("scriptName"));
459  Handle<String> script_name_or_source_url_key =
460      factory()->InternalizeOneByteString(
461          STATIC_CHAR_VECTOR("scriptNameOrSourceURL"));
462  Handle<String> function_key =
463      factory()->InternalizeOneByteString(STATIC_CHAR_VECTOR("functionName"));
464  Handle<String> eval_key =
465      factory()->InternalizeOneByteString(STATIC_CHAR_VECTOR("isEval"));
466  Handle<String> constructor_key =
467      factory()->InternalizeOneByteString(STATIC_CHAR_VECTOR("isConstructor"));
468
469  StackTraceFrameIterator it(this);
470  int frames_seen = 0;
471  while (!it.done() && (frames_seen < limit)) {
472    JavaScriptFrame* frame = it.frame();
473    // Set initial size to the maximum inlining level + 1 for the outermost
474    // function.
475    List<FrameSummary> frames(FLAG_max_inlining_levels + 1);
476    frame->Summarize(&frames);
477    for (int i = frames.length() - 1; i >= 0 && frames_seen < limit; i--) {
478      Handle<JSFunction> fun = frames[i].function();
479      // Filter frames from other security contexts.
480      if (!(options & StackTrace::kExposeFramesAcrossSecurityOrigins) &&
481          !this->context()->HasSameSecurityTokenAs(fun->context())) continue;
482
483      // Create a JSObject to hold the information for the StackFrame.
484      Handle<JSObject> stack_frame = factory()->NewJSObject(object_function());
485
486      Handle<Script> script(Script::cast(fun->shared()->script()));
487
488      if (options & StackTrace::kLineNumber) {
489        int script_line_offset = script->line_offset()->value();
490        int position = frames[i].code()->SourcePosition(frames[i].pc());
491        int line_number = Script::GetLineNumber(script, position);
492        // line_number is already shifted by the script_line_offset.
493        int relative_line_number = line_number - script_line_offset;
494        if (options & StackTrace::kColumnOffset && relative_line_number >= 0) {
495          Handle<FixedArray> line_ends(FixedArray::cast(script->line_ends()));
496          int start = (relative_line_number == 0) ? 0 :
497              Smi::cast(line_ends->get(relative_line_number - 1))->value() + 1;
498          int column_offset = position - start;
499          if (relative_line_number == 0) {
500            // For the case where the code is on the same line as the script
501            // tag.
502            column_offset += script->column_offset()->value();
503          }
504          JSObject::AddProperty(
505              stack_frame, column_key,
506              handle(Smi::FromInt(column_offset + 1), this), NONE);
507        }
508       JSObject::AddProperty(
509            stack_frame, line_key,
510            handle(Smi::FromInt(line_number + 1), this), NONE);
511      }
512
513      if (options & StackTrace::kScriptId) {
514        JSObject::AddProperty(
515            stack_frame, script_id_key, handle(script->id(), this), NONE);
516      }
517
518      if (options & StackTrace::kScriptName) {
519        JSObject::AddProperty(
520            stack_frame, script_name_key, handle(script->name(), this), NONE);
521      }
522
523      if (options & StackTrace::kScriptNameOrSourceURL) {
524        Handle<Object> result = Script::GetNameOrSourceURL(script);
525        JSObject::AddProperty(
526            stack_frame, script_name_or_source_url_key, result, NONE);
527      }
528
529      if (options & StackTrace::kFunctionName) {
530        Handle<Object> fun_name(fun->shared()->DebugName(), this);
531        JSObject::AddProperty(stack_frame, function_key, fun_name, NONE);
532      }
533
534      if (options & StackTrace::kIsEval) {
535        Handle<Object> is_eval =
536            script->compilation_type() == Script::COMPILATION_TYPE_EVAL ?
537                factory()->true_value() : factory()->false_value();
538        JSObject::AddProperty(stack_frame, eval_key, is_eval, NONE);
539      }
540
541      if (options & StackTrace::kIsConstructor) {
542        Handle<Object> is_constructor = (frames[i].is_constructor()) ?
543            factory()->true_value() : factory()->false_value();
544        JSObject::AddProperty(
545            stack_frame, constructor_key, is_constructor, NONE);
546      }
547
548      FixedArray::cast(stack_trace->elements())->set(frames_seen, *stack_frame);
549      frames_seen++;
550    }
551    it.Advance();
552  }
553
554  stack_trace->set_length(Smi::FromInt(frames_seen));
555  return stack_trace;
556}
557
558
559void Isolate::PrintStack(FILE* out) {
560  if (stack_trace_nesting_level_ == 0) {
561    stack_trace_nesting_level_++;
562    StringStream::ClearMentionedObjectCache(this);
563    HeapStringAllocator allocator;
564    StringStream accumulator(&allocator);
565    incomplete_message_ = &accumulator;
566    PrintStack(&accumulator);
567    accumulator.OutputToFile(out);
568    InitializeLoggingAndCounters();
569    accumulator.Log(this);
570    incomplete_message_ = NULL;
571    stack_trace_nesting_level_ = 0;
572  } else if (stack_trace_nesting_level_ == 1) {
573    stack_trace_nesting_level_++;
574    base::OS::PrintError(
575      "\n\nAttempt to print stack while printing stack (double fault)\n");
576    base::OS::PrintError(
577      "If you are lucky you may find a partial stack dump on stdout.\n\n");
578    incomplete_message_->OutputToFile(out);
579  }
580}
581
582
583static void PrintFrames(Isolate* isolate,
584                        StringStream* accumulator,
585                        StackFrame::PrintMode mode) {
586  StackFrameIterator it(isolate);
587  for (int i = 0; !it.done(); it.Advance()) {
588    it.frame()->Print(accumulator, mode, i++);
589  }
590}
591
592
593void Isolate::PrintStack(StringStream* accumulator) {
594  if (!IsInitialized()) {
595    accumulator->Add(
596        "\n==== JS stack trace is not available =======================\n\n");
597    accumulator->Add(
598        "\n==== Isolate for the thread is not initialized =============\n\n");
599    return;
600  }
601  // The MentionedObjectCache is not GC-proof at the moment.
602  DisallowHeapAllocation no_gc;
603  DCHECK(StringStream::IsMentionedObjectCacheClear(this));
604
605  // Avoid printing anything if there are no frames.
606  if (c_entry_fp(thread_local_top()) == 0) return;
607
608  accumulator->Add(
609      "\n==== JS stack trace =========================================\n\n");
610  PrintFrames(this, accumulator, StackFrame::OVERVIEW);
611
612  accumulator->Add(
613      "\n==== Details ================================================\n\n");
614  PrintFrames(this, accumulator, StackFrame::DETAILS);
615
616  accumulator->PrintMentionedObjectCache(this);
617  accumulator->Add("=====================\n\n");
618}
619
620
621void Isolate::SetFailedAccessCheckCallback(
622    v8::FailedAccessCheckCallback callback) {
623  thread_local_top()->failed_access_check_callback_ = callback;
624}
625
626
627static inline AccessCheckInfo* GetAccessCheckInfo(Isolate* isolate,
628                                                  Handle<JSObject> receiver) {
629  JSFunction* constructor = JSFunction::cast(receiver->map()->constructor());
630  if (!constructor->shared()->IsApiFunction()) return NULL;
631
632  Object* data_obj =
633     constructor->shared()->get_api_func_data()->access_check_info();
634  if (data_obj == isolate->heap()->undefined_value()) return NULL;
635
636  return AccessCheckInfo::cast(data_obj);
637}
638
639
640void Isolate::ReportFailedAccessCheck(Handle<JSObject> receiver,
641                                      v8::AccessType type) {
642  if (!thread_local_top()->failed_access_check_callback_) {
643    Handle<String> message = factory()->InternalizeUtf8String("no access");
644    Handle<Object> error;
645    ASSIGN_RETURN_ON_EXCEPTION_VALUE(
646        this, error, factory()->NewTypeError(message), /* void */);
647    ScheduleThrow(*error);
648    return;
649  }
650
651  DCHECK(receiver->IsAccessCheckNeeded());
652  DCHECK(context());
653
654  // Get the data object from access check info.
655  HandleScope scope(this);
656  Handle<Object> data;
657  { DisallowHeapAllocation no_gc;
658    AccessCheckInfo* access_check_info = GetAccessCheckInfo(this, receiver);
659    if (!access_check_info) return;
660    data = handle(access_check_info->data(), this);
661  }
662
663  // Leaving JavaScript.
664  VMState<EXTERNAL> state(this);
665  thread_local_top()->failed_access_check_callback_(
666      v8::Utils::ToLocal(receiver),
667      type,
668      v8::Utils::ToLocal(data));
669}
670
671
672enum MayAccessDecision {
673  YES, NO, UNKNOWN
674};
675
676
677static MayAccessDecision MayAccessPreCheck(Isolate* isolate,
678                                           Handle<JSObject> receiver,
679                                           v8::AccessType type) {
680  DisallowHeapAllocation no_gc;
681  // During bootstrapping, callback functions are not enabled yet.
682  if (isolate->bootstrapper()->IsActive()) return YES;
683
684  if (receiver->IsJSGlobalProxy()) {
685    Object* receiver_context = JSGlobalProxy::cast(*receiver)->native_context();
686    if (!receiver_context->IsContext()) return NO;
687
688    // Get the native context of current top context.
689    // avoid using Isolate::native_context() because it uses Handle.
690    Context* native_context =
691        isolate->context()->global_object()->native_context();
692    if (receiver_context == native_context) return YES;
693
694    if (Context::cast(receiver_context)->security_token() ==
695        native_context->security_token())
696      return YES;
697  }
698
699  return UNKNOWN;
700}
701
702
703bool Isolate::MayNamedAccess(Handle<JSObject> receiver,
704                             Handle<Object> key,
705                             v8::AccessType type) {
706  DCHECK(receiver->IsJSGlobalProxy() || receiver->IsAccessCheckNeeded());
707
708  // Skip checks for hidden properties access.  Note, we do not
709  // require existence of a context in this case.
710  if (key.is_identical_to(factory()->hidden_string())) return true;
711
712  // Check for compatibility between the security tokens in the
713  // current lexical context and the accessed object.
714  DCHECK(context());
715
716  MayAccessDecision decision = MayAccessPreCheck(this, receiver, type);
717  if (decision != UNKNOWN) return decision == YES;
718
719  HandleScope scope(this);
720  Handle<Object> data;
721  v8::NamedSecurityCallback callback;
722  { DisallowHeapAllocation no_gc;
723    AccessCheckInfo* access_check_info = GetAccessCheckInfo(this, receiver);
724    if (!access_check_info) return false;
725    Object* fun_obj = access_check_info->named_callback();
726    callback = v8::ToCData<v8::NamedSecurityCallback>(fun_obj);
727    if (!callback) return false;
728    data = handle(access_check_info->data(), this);
729  }
730
731  LOG(this, ApiNamedSecurityCheck(*key));
732
733  // Leaving JavaScript.
734  VMState<EXTERNAL> state(this);
735  return callback(v8::Utils::ToLocal(receiver),
736                  v8::Utils::ToLocal(key),
737                  type,
738                  v8::Utils::ToLocal(data));
739}
740
741
742bool Isolate::MayIndexedAccess(Handle<JSObject> receiver,
743                               uint32_t index,
744                               v8::AccessType type) {
745  DCHECK(receiver->IsJSGlobalProxy() || receiver->IsAccessCheckNeeded());
746  // Check for compatibility between the security tokens in the
747  // current lexical context and the accessed object.
748  DCHECK(context());
749
750  MayAccessDecision decision = MayAccessPreCheck(this, receiver, type);
751  if (decision != UNKNOWN) return decision == YES;
752
753  HandleScope scope(this);
754  Handle<Object> data;
755  v8::IndexedSecurityCallback callback;
756  { DisallowHeapAllocation no_gc;
757    // Get named access check callback
758    AccessCheckInfo* access_check_info = GetAccessCheckInfo(this, receiver);
759    if (!access_check_info) return false;
760    Object* fun_obj = access_check_info->indexed_callback();
761    callback = v8::ToCData<v8::IndexedSecurityCallback>(fun_obj);
762    if (!callback) return false;
763    data = handle(access_check_info->data(), this);
764  }
765
766  LOG(this, ApiIndexedSecurityCheck(index));
767
768  // Leaving JavaScript.
769  VMState<EXTERNAL> state(this);
770  return callback(
771      v8::Utils::ToLocal(receiver), index, type, v8::Utils::ToLocal(data));
772}
773
774
775const char* const Isolate::kStackOverflowMessage =
776  "Uncaught RangeError: Maximum call stack size exceeded";
777
778
779Object* Isolate::StackOverflow() {
780  HandleScope scope(this);
781  // At this point we cannot create an Error object using its javascript
782  // constructor.  Instead, we copy the pre-constructed boilerplate and
783  // attach the stack trace as a hidden property.
784  Handle<String> key = factory()->stack_overflow_string();
785  Handle<JSObject> boilerplate = Handle<JSObject>::cast(
786      Object::GetProperty(js_builtins_object(), key).ToHandleChecked());
787  Handle<JSObject> exception = factory()->CopyJSObject(boilerplate);
788  DoThrow(*exception, NULL);
789
790  CaptureAndSetSimpleStackTrace(exception, factory()->undefined_value());
791  return heap()->exception();
792}
793
794
795Object* Isolate::TerminateExecution() {
796  DoThrow(heap_.termination_exception(), NULL);
797  return heap()->exception();
798}
799
800
801void Isolate::CancelTerminateExecution() {
802  if (try_catch_handler()) {
803    try_catch_handler()->has_terminated_ = false;
804  }
805  if (has_pending_exception() &&
806      pending_exception() == heap_.termination_exception()) {
807    thread_local_top()->external_caught_exception_ = false;
808    clear_pending_exception();
809  }
810  if (has_scheduled_exception() &&
811      scheduled_exception() == heap_.termination_exception()) {
812    thread_local_top()->external_caught_exception_ = false;
813    clear_scheduled_exception();
814  }
815}
816
817
818void Isolate::InvokeApiInterruptCallback() {
819  // Note: callback below should be called outside of execution access lock.
820  InterruptCallback callback = NULL;
821  void* data = NULL;
822  {
823    ExecutionAccess access(this);
824    callback = api_interrupt_callback_;
825    data = api_interrupt_callback_data_;
826    api_interrupt_callback_ = NULL;
827    api_interrupt_callback_data_ = NULL;
828  }
829
830  if (callback != NULL) {
831    VMState<EXTERNAL> state(this);
832    HandleScope handle_scope(this);
833    callback(reinterpret_cast<v8::Isolate*>(this), data);
834  }
835}
836
837
838Object* Isolate::Throw(Object* exception, MessageLocation* location) {
839  DoThrow(exception, location);
840  return heap()->exception();
841}
842
843
844Object* Isolate::ReThrow(Object* exception) {
845  bool can_be_caught_externally = false;
846  bool catchable_by_javascript = is_catchable_by_javascript(exception);
847  ShouldReportException(&can_be_caught_externally, catchable_by_javascript);
848
849  thread_local_top()->catcher_ = can_be_caught_externally ?
850      try_catch_handler() : NULL;
851
852  // Set the exception being re-thrown.
853  set_pending_exception(exception);
854  return heap()->exception();
855}
856
857
858Object* Isolate::ThrowIllegalOperation() {
859  if (FLAG_stack_trace_on_illegal) PrintStack(stdout);
860  return Throw(heap_.illegal_access_string());
861}
862
863
864void Isolate::ScheduleThrow(Object* exception) {
865  // When scheduling a throw we first throw the exception to get the
866  // error reporting if it is uncaught before rescheduling it.
867  Throw(exception);
868  PropagatePendingExceptionToExternalTryCatch();
869  if (has_pending_exception()) {
870    thread_local_top()->scheduled_exception_ = pending_exception();
871    thread_local_top()->external_caught_exception_ = false;
872    clear_pending_exception();
873  }
874}
875
876
877void Isolate::RestorePendingMessageFromTryCatch(v8::TryCatch* handler) {
878  DCHECK(handler == try_catch_handler());
879  DCHECK(handler->HasCaught());
880  DCHECK(handler->rethrow_);
881  DCHECK(handler->capture_message_);
882  Object* message = reinterpret_cast<Object*>(handler->message_obj_);
883  Object* script = reinterpret_cast<Object*>(handler->message_script_);
884  DCHECK(message->IsJSMessageObject() || message->IsTheHole());
885  DCHECK(script->IsScript() || script->IsTheHole());
886  thread_local_top()->pending_message_obj_ = message;
887  thread_local_top()->pending_message_script_ = script;
888  thread_local_top()->pending_message_start_pos_ = handler->message_start_pos_;
889  thread_local_top()->pending_message_end_pos_ = handler->message_end_pos_;
890}
891
892
893void Isolate::CancelScheduledExceptionFromTryCatch(v8::TryCatch* handler) {
894  DCHECK(has_scheduled_exception());
895  if (scheduled_exception() == handler->exception_) {
896    DCHECK(scheduled_exception() != heap()->termination_exception());
897    clear_scheduled_exception();
898  }
899}
900
901
902Object* Isolate::PromoteScheduledException() {
903  Object* thrown = scheduled_exception();
904  clear_scheduled_exception();
905  // Re-throw the exception to avoid getting repeated error reporting.
906  return ReThrow(thrown);
907}
908
909
910void Isolate::PrintCurrentStackTrace(FILE* out) {
911  StackTraceFrameIterator it(this);
912  while (!it.done()) {
913    HandleScope scope(this);
914    // Find code position if recorded in relocation info.
915    JavaScriptFrame* frame = it.frame();
916    int pos = frame->LookupCode()->SourcePosition(frame->pc());
917    Handle<Object> pos_obj(Smi::FromInt(pos), this);
918    // Fetch function and receiver.
919    Handle<JSFunction> fun(frame->function());
920    Handle<Object> recv(frame->receiver(), this);
921    // Advance to the next JavaScript frame and determine if the
922    // current frame is the top-level frame.
923    it.Advance();
924    Handle<Object> is_top_level = it.done()
925        ? factory()->true_value()
926        : factory()->false_value();
927    // Generate and print stack trace line.
928    Handle<String> line =
929        Execution::GetStackTraceLine(recv, fun, pos_obj, is_top_level);
930    if (line->length() > 0) {
931      line->PrintOn(out);
932      PrintF(out, "\n");
933    }
934  }
935}
936
937
938void Isolate::ComputeLocation(MessageLocation* target) {
939  *target = MessageLocation(Handle<Script>(heap_.empty_script()), -1, -1);
940  StackTraceFrameIterator it(this);
941  if (!it.done()) {
942    JavaScriptFrame* frame = it.frame();
943    JSFunction* fun = frame->function();
944    Object* script = fun->shared()->script();
945    if (script->IsScript() &&
946        !(Script::cast(script)->source()->IsUndefined())) {
947      int pos = frame->LookupCode()->SourcePosition(frame->pc());
948      // Compute the location from the function and the reloc info.
949      Handle<Script> casted_script(Script::cast(script));
950      *target = MessageLocation(casted_script, pos, pos + 1);
951    }
952  }
953}
954
955
956bool Isolate::ShouldReportException(bool* can_be_caught_externally,
957                                    bool catchable_by_javascript) {
958  // Find the top-most try-catch handler.
959  StackHandler* handler =
960      StackHandler::FromAddress(Isolate::handler(thread_local_top()));
961  while (handler != NULL && !handler->is_catch()) {
962    handler = handler->next();
963  }
964
965  // Get the address of the external handler so we can compare the address to
966  // determine which one is closer to the top of the stack.
967  Address external_handler_address =
968      thread_local_top()->try_catch_handler_address();
969
970  // The exception has been externally caught if and only if there is
971  // an external handler which is on top of the top-most try-catch
972  // handler.
973  *can_be_caught_externally = external_handler_address != NULL &&
974      (handler == NULL || handler->address() > external_handler_address ||
975       !catchable_by_javascript);
976
977  if (*can_be_caught_externally) {
978    // Only report the exception if the external handler is verbose.
979    return try_catch_handler()->is_verbose_;
980  } else {
981    // Report the exception if it isn't caught by JavaScript code.
982    return handler == NULL;
983  }
984}
985
986
987bool Isolate::IsErrorObject(Handle<Object> obj) {
988  if (!obj->IsJSObject()) return false;
989
990  Handle<String> error_key =
991      factory()->InternalizeOneByteString(STATIC_CHAR_VECTOR("$Error"));
992  Handle<Object> error_constructor = Object::GetProperty(
993      js_builtins_object(), error_key).ToHandleChecked();
994
995  DisallowHeapAllocation no_gc;
996  for (PrototypeIterator iter(this, *obj, PrototypeIterator::START_AT_RECEIVER);
997       !iter.IsAtEnd(); iter.Advance()) {
998    if (iter.GetCurrent()->IsJSProxy()) return false;
999    if (JSObject::cast(iter.GetCurrent())->map()->constructor() ==
1000        *error_constructor) {
1001      return true;
1002    }
1003  }
1004  return false;
1005}
1006
1007static int fatal_exception_depth = 0;
1008
1009void Isolate::DoThrow(Object* exception, MessageLocation* location) {
1010  DCHECK(!has_pending_exception());
1011
1012  HandleScope scope(this);
1013  Handle<Object> exception_handle(exception, this);
1014
1015  // Determine reporting and whether the exception is caught externally.
1016  bool catchable_by_javascript = is_catchable_by_javascript(exception);
1017  bool can_be_caught_externally = false;
1018  bool should_report_exception =
1019      ShouldReportException(&can_be_caught_externally, catchable_by_javascript);
1020  bool report_exception = catchable_by_javascript && should_report_exception;
1021  bool try_catch_needs_message =
1022      can_be_caught_externally && try_catch_handler()->capture_message_;
1023  bool bootstrapping = bootstrapper()->IsActive();
1024  bool rethrowing_message = thread_local_top()->rethrowing_message_;
1025
1026  thread_local_top()->rethrowing_message_ = false;
1027
1028  // Notify debugger of exception.
1029  if (catchable_by_javascript) {
1030    debug()->OnThrow(exception_handle, report_exception);
1031  }
1032
1033  // Generate the message if required.
1034  if (!rethrowing_message && (report_exception || try_catch_needs_message)) {
1035    MessageLocation potential_computed_location;
1036    if (location == NULL) {
1037      // If no location was specified we use a computed one instead.
1038      ComputeLocation(&potential_computed_location);
1039      location = &potential_computed_location;
1040    }
1041    // It's not safe to try to make message objects or collect stack traces
1042    // while the bootstrapper is active since the infrastructure may not have
1043    // been properly initialized.
1044    if (!bootstrapping) {
1045      Handle<JSArray> stack_trace_object;
1046      if (capture_stack_trace_for_uncaught_exceptions_) {
1047        if (IsErrorObject(exception_handle)) {
1048          // We fetch the stack trace that corresponds to this error object.
1049          Handle<Name> key = factory()->detailed_stack_trace_symbol();
1050          // Look up as own property.  If the lookup fails, the exception is
1051          // probably not a valid Error object.  In that case, we fall through
1052          // and capture the stack trace at this throw site.
1053          LookupIterator lookup(exception_handle, key,
1054                                LookupIterator::OWN_SKIP_INTERCEPTOR);
1055          Handle<Object> stack_trace_property;
1056          if (Object::GetProperty(&lookup).ToHandle(&stack_trace_property) &&
1057              stack_trace_property->IsJSArray()) {
1058            stack_trace_object = Handle<JSArray>::cast(stack_trace_property);
1059          }
1060        }
1061        if (stack_trace_object.is_null()) {
1062          // Not an error object, we capture at throw site.
1063          stack_trace_object = CaptureCurrentStackTrace(
1064              stack_trace_for_uncaught_exceptions_frame_limit_,
1065              stack_trace_for_uncaught_exceptions_options_);
1066        }
1067      }
1068
1069      Handle<Object> exception_arg = exception_handle;
1070      // If the exception argument is a custom object, turn it into a string
1071      // before throwing as uncaught exception.  Note that the pending
1072      // exception object to be set later must not be turned into a string.
1073      if (exception_arg->IsJSObject() && !IsErrorObject(exception_arg)) {
1074        MaybeHandle<Object> maybe_exception =
1075            Execution::ToDetailString(this, exception_arg);
1076        if (!maybe_exception.ToHandle(&exception_arg)) {
1077          exception_arg = factory()->InternalizeOneByteString(
1078              STATIC_CHAR_VECTOR("exception"));
1079        }
1080      }
1081      Handle<Object> message_obj = MessageHandler::MakeMessageObject(
1082          this,
1083          "uncaught_exception",
1084          location,
1085          HandleVector<Object>(&exception_arg, 1),
1086          stack_trace_object);
1087      thread_local_top()->pending_message_obj_ = *message_obj;
1088      if (location != NULL) {
1089        thread_local_top()->pending_message_script_ = *location->script();
1090        thread_local_top()->pending_message_start_pos_ = location->start_pos();
1091        thread_local_top()->pending_message_end_pos_ = location->end_pos();
1092      }
1093
1094      // If the abort-on-uncaught-exception flag is specified, abort on any
1095      // exception not caught by JavaScript, even when an external handler is
1096      // present.  This flag is intended for use by JavaScript developers, so
1097      // print a user-friendly stack trace (not an internal one).
1098      if (fatal_exception_depth == 0 &&
1099          FLAG_abort_on_uncaught_exception &&
1100          (report_exception || can_be_caught_externally)) {
1101        fatal_exception_depth++;
1102        PrintF(stderr,
1103               "%s\n\nFROM\n",
1104               MessageHandler::GetLocalizedMessage(this, message_obj).get());
1105        PrintCurrentStackTrace(stderr);
1106        base::OS::Abort();
1107      }
1108    } else if (location != NULL && !location->script().is_null()) {
1109      // We are bootstrapping and caught an error where the location is set
1110      // and we have a script for the location.
1111      // In this case we could have an extension (or an internal error
1112      // somewhere) and we print out the line number at which the error occured
1113      // to the console for easier debugging.
1114      int line_number =
1115          location->script()->GetLineNumber(location->start_pos()) + 1;
1116      if (exception->IsString() && location->script()->name()->IsString()) {
1117        base::OS::PrintError(
1118            "Extension or internal compilation error: %s in %s at line %d.\n",
1119            String::cast(exception)->ToCString().get(),
1120            String::cast(location->script()->name())->ToCString().get(),
1121            line_number);
1122      } else if (location->script()->name()->IsString()) {
1123        base::OS::PrintError(
1124            "Extension or internal compilation error in %s at line %d.\n",
1125            String::cast(location->script()->name())->ToCString().get(),
1126            line_number);
1127      } else {
1128        base::OS::PrintError("Extension or internal compilation error.\n");
1129      }
1130#ifdef OBJECT_PRINT
1131      // Since comments and empty lines have been stripped from the source of
1132      // builtins, print the actual source here so that line numbers match.
1133      if (location->script()->source()->IsString()) {
1134        Handle<String> src(String::cast(location->script()->source()));
1135        PrintF("Failing script:\n");
1136        int len = src->length();
1137        int line_number = 1;
1138        PrintF("%5d: ", line_number);
1139        for (int i = 0; i < len; i++) {
1140          uint16_t character = src->Get(i);
1141          PrintF("%c", character);
1142          if (character == '\n' && i < len - 2) {
1143            PrintF("%5d: ", ++line_number);
1144          }
1145        }
1146      }
1147#endif
1148    }
1149  }
1150
1151  // Save the message for reporting if the the exception remains uncaught.
1152  thread_local_top()->has_pending_message_ = report_exception;
1153
1154  // Do not forget to clean catcher_ if currently thrown exception cannot
1155  // be caught.  If necessary, ReThrow will update the catcher.
1156  thread_local_top()->catcher_ = can_be_caught_externally ?
1157      try_catch_handler() : NULL;
1158
1159  set_pending_exception(*exception_handle);
1160}
1161
1162
1163bool Isolate::HasExternalTryCatch() {
1164  DCHECK(has_pending_exception());
1165
1166  return (thread_local_top()->catcher_ != NULL) &&
1167      (try_catch_handler() == thread_local_top()->catcher_);
1168}
1169
1170
1171bool Isolate::IsFinallyOnTop() {
1172  // Get the address of the external handler so we can compare the address to
1173  // determine which one is closer to the top of the stack.
1174  Address external_handler_address =
1175      thread_local_top()->try_catch_handler_address();
1176  DCHECK(external_handler_address != NULL);
1177
1178  // The exception has been externally caught if and only if there is
1179  // an external handler which is on top of the top-most try-finally
1180  // handler.
1181  // There should be no try-catch blocks as they would prohibit us from
1182  // finding external catcher in the first place (see catcher_ check above).
1183  //
1184  // Note, that finally clause would rethrow an exception unless it's
1185  // aborted by jumps in control flow like return, break, etc. and we'll
1186  // have another chances to set proper v8::TryCatch.
1187  StackHandler* handler =
1188      StackHandler::FromAddress(Isolate::handler(thread_local_top()));
1189  while (handler != NULL && handler->address() < external_handler_address) {
1190    DCHECK(!handler->is_catch());
1191    if (handler->is_finally()) return true;
1192
1193    handler = handler->next();
1194  }
1195
1196  return false;
1197}
1198
1199
1200void Isolate::ReportPendingMessages() {
1201  DCHECK(has_pending_exception());
1202  bool can_clear_message = PropagatePendingExceptionToExternalTryCatch();
1203
1204  HandleScope scope(this);
1205  if (thread_local_top_.pending_exception_ == heap()->termination_exception()) {
1206    // Do nothing: if needed, the exception has been already propagated to
1207    // v8::TryCatch.
1208  } else {
1209    if (thread_local_top_.has_pending_message_) {
1210      thread_local_top_.has_pending_message_ = false;
1211      if (!thread_local_top_.pending_message_obj_->IsTheHole()) {
1212        HandleScope scope(this);
1213        Handle<Object> message_obj(thread_local_top_.pending_message_obj_,
1214                                   this);
1215        if (!thread_local_top_.pending_message_script_->IsTheHole()) {
1216          Handle<Script> script(
1217              Script::cast(thread_local_top_.pending_message_script_));
1218          int start_pos = thread_local_top_.pending_message_start_pos_;
1219          int end_pos = thread_local_top_.pending_message_end_pos_;
1220          MessageLocation location(script, start_pos, end_pos);
1221          MessageHandler::ReportMessage(this, &location, message_obj);
1222        } else {
1223          MessageHandler::ReportMessage(this, NULL, message_obj);
1224        }
1225      }
1226    }
1227  }
1228  if (can_clear_message) clear_pending_message();
1229}
1230
1231
1232MessageLocation Isolate::GetMessageLocation() {
1233  DCHECK(has_pending_exception());
1234
1235  if (thread_local_top_.pending_exception_ != heap()->termination_exception() &&
1236      thread_local_top_.has_pending_message_ &&
1237      !thread_local_top_.pending_message_obj_->IsTheHole() &&
1238      !thread_local_top_.pending_message_obj_->IsTheHole()) {
1239    Handle<Script> script(
1240        Script::cast(thread_local_top_.pending_message_script_));
1241    int start_pos = thread_local_top_.pending_message_start_pos_;
1242    int end_pos = thread_local_top_.pending_message_end_pos_;
1243    return MessageLocation(script, start_pos, end_pos);
1244  }
1245
1246  return MessageLocation();
1247}
1248
1249
1250bool Isolate::OptionalRescheduleException(bool is_bottom_call) {
1251  DCHECK(has_pending_exception());
1252  PropagatePendingExceptionToExternalTryCatch();
1253
1254  bool is_termination_exception =
1255      pending_exception() == heap_.termination_exception();
1256
1257  // Do not reschedule the exception if this is the bottom call.
1258  bool clear_exception = is_bottom_call;
1259
1260  if (is_termination_exception) {
1261    if (is_bottom_call) {
1262      thread_local_top()->external_caught_exception_ = false;
1263      clear_pending_exception();
1264      return false;
1265    }
1266  } else if (thread_local_top()->external_caught_exception_) {
1267    // If the exception is externally caught, clear it if there are no
1268    // JavaScript frames on the way to the C++ frame that has the
1269    // external handler.
1270    DCHECK(thread_local_top()->try_catch_handler_address() != NULL);
1271    Address external_handler_address =
1272        thread_local_top()->try_catch_handler_address();
1273    JavaScriptFrameIterator it(this);
1274    if (it.done() || (it.frame()->sp() > external_handler_address)) {
1275      clear_exception = true;
1276    }
1277  }
1278
1279  // Clear the exception if needed.
1280  if (clear_exception) {
1281    thread_local_top()->external_caught_exception_ = false;
1282    clear_pending_exception();
1283    return false;
1284  }
1285
1286  // Reschedule the exception.
1287  thread_local_top()->scheduled_exception_ = pending_exception();
1288  clear_pending_exception();
1289  return true;
1290}
1291
1292
1293void Isolate::PushPromise(Handle<JSObject> promise) {
1294  ThreadLocalTop* tltop = thread_local_top();
1295  PromiseOnStack* prev = tltop->promise_on_stack_;
1296  StackHandler* handler = StackHandler::FromAddress(Isolate::handler(tltop));
1297  Handle<JSObject> global_handle =
1298      Handle<JSObject>::cast(global_handles()->Create(*promise));
1299  tltop->promise_on_stack_ = new PromiseOnStack(handler, global_handle, prev);
1300}
1301
1302
1303void Isolate::PopPromise() {
1304  ThreadLocalTop* tltop = thread_local_top();
1305  if (tltop->promise_on_stack_ == NULL) return;
1306  PromiseOnStack* prev = tltop->promise_on_stack_->prev();
1307  Handle<Object> global_handle = tltop->promise_on_stack_->promise();
1308  delete tltop->promise_on_stack_;
1309  tltop->promise_on_stack_ = prev;
1310  global_handles()->Destroy(global_handle.location());
1311}
1312
1313
1314Handle<Object> Isolate::GetPromiseOnStackOnThrow() {
1315  Handle<Object> undefined = factory()->undefined_value();
1316  ThreadLocalTop* tltop = thread_local_top();
1317  if (tltop->promise_on_stack_ == NULL) return undefined;
1318  StackHandler* promise_try = tltop->promise_on_stack_->handler();
1319  // Find the top-most try-catch handler.
1320  StackHandler* handler = StackHandler::FromAddress(Isolate::handler(tltop));
1321  do {
1322    if (handler == promise_try) {
1323      // Mark the pushed try-catch handler to prevent a later duplicate event
1324      // triggered with the following reject.
1325      return tltop->promise_on_stack_->promise();
1326    }
1327    handler = handler->next();
1328    // Throwing inside a Promise can be intercepted by an inner try-catch, so
1329    // we stop at the first try-catch handler.
1330  } while (handler != NULL && !handler->is_catch());
1331  return undefined;
1332}
1333
1334
1335void Isolate::SetCaptureStackTraceForUncaughtExceptions(
1336      bool capture,
1337      int frame_limit,
1338      StackTrace::StackTraceOptions options) {
1339  capture_stack_trace_for_uncaught_exceptions_ = capture;
1340  stack_trace_for_uncaught_exceptions_frame_limit_ = frame_limit;
1341  stack_trace_for_uncaught_exceptions_options_ = options;
1342}
1343
1344
1345Handle<Context> Isolate::native_context() {
1346  return handle(context()->native_context());
1347}
1348
1349
1350Handle<Context> Isolate::global_context() {
1351  return handle(context()->global_object()->global_context());
1352}
1353
1354
1355Handle<Context> Isolate::GetCallingNativeContext() {
1356  JavaScriptFrameIterator it(this);
1357  if (debug_->in_debug_scope()) {
1358    while (!it.done()) {
1359      JavaScriptFrame* frame = it.frame();
1360      Context* context = Context::cast(frame->context());
1361      if (context->native_context() == *debug_->debug_context()) {
1362        it.Advance();
1363      } else {
1364        break;
1365      }
1366    }
1367  }
1368  if (it.done()) return Handle<Context>::null();
1369  JavaScriptFrame* frame = it.frame();
1370  Context* context = Context::cast(frame->context());
1371  return Handle<Context>(context->native_context());
1372}
1373
1374
1375char* Isolate::ArchiveThread(char* to) {
1376  MemCopy(to, reinterpret_cast<char*>(thread_local_top()),
1377          sizeof(ThreadLocalTop));
1378  InitializeThreadLocal();
1379  clear_pending_exception();
1380  clear_pending_message();
1381  clear_scheduled_exception();
1382  return to + sizeof(ThreadLocalTop);
1383}
1384
1385
1386char* Isolate::RestoreThread(char* from) {
1387  MemCopy(reinterpret_cast<char*>(thread_local_top()), from,
1388          sizeof(ThreadLocalTop));
1389// This might be just paranoia, but it seems to be needed in case a
1390// thread_local_top_ is restored on a separate OS thread.
1391#ifdef USE_SIMULATOR
1392  thread_local_top()->simulator_ = Simulator::current(this);
1393#endif
1394  DCHECK(context() == NULL || context()->IsContext());
1395  return from + sizeof(ThreadLocalTop);
1396}
1397
1398
1399Isolate::ThreadDataTable::ThreadDataTable()
1400    : list_(NULL) {
1401}
1402
1403
1404Isolate::ThreadDataTable::~ThreadDataTable() {
1405  // TODO(svenpanne) The assertion below would fire if an embedder does not
1406  // cleanly dispose all Isolates before disposing v8, so we are conservative
1407  // and leave it out for now.
1408  // DCHECK_EQ(NULL, list_);
1409}
1410
1411
1412Isolate::PerIsolateThreadData::~PerIsolateThreadData() {
1413#if defined(USE_SIMULATOR)
1414  delete simulator_;
1415#endif
1416}
1417
1418
1419Isolate::PerIsolateThreadData*
1420    Isolate::ThreadDataTable::Lookup(Isolate* isolate,
1421                                     ThreadId thread_id) {
1422  for (PerIsolateThreadData* data = list_; data != NULL; data = data->next_) {
1423    if (data->Matches(isolate, thread_id)) return data;
1424  }
1425  return NULL;
1426}
1427
1428
1429void Isolate::ThreadDataTable::Insert(Isolate::PerIsolateThreadData* data) {
1430  if (list_ != NULL) list_->prev_ = data;
1431  data->next_ = list_;
1432  list_ = data;
1433}
1434
1435
1436void Isolate::ThreadDataTable::Remove(PerIsolateThreadData* data) {
1437  if (list_ == data) list_ = data->next_;
1438  if (data->next_ != NULL) data->next_->prev_ = data->prev_;
1439  if (data->prev_ != NULL) data->prev_->next_ = data->next_;
1440  delete data;
1441}
1442
1443
1444void Isolate::ThreadDataTable::RemoveAllThreads(Isolate* isolate) {
1445  PerIsolateThreadData* data = list_;
1446  while (data != NULL) {
1447    PerIsolateThreadData* next = data->next_;
1448    if (data->isolate() == isolate) Remove(data);
1449    data = next;
1450  }
1451}
1452
1453
1454#ifdef DEBUG
1455#define TRACE_ISOLATE(tag)                                              \
1456  do {                                                                  \
1457    if (FLAG_trace_isolates) {                                          \
1458      PrintF("Isolate %p (id %d)" #tag "\n",                            \
1459             reinterpret_cast<void*>(this), id());                      \
1460    }                                                                   \
1461  } while (false)
1462#else
1463#define TRACE_ISOLATE(tag)
1464#endif
1465
1466
1467Isolate::Isolate()
1468    : embedder_data_(),
1469      state_(UNINITIALIZED),
1470      entry_stack_(NULL),
1471      stack_trace_nesting_level_(0),
1472      incomplete_message_(NULL),
1473      bootstrapper_(NULL),
1474      runtime_profiler_(NULL),
1475      compilation_cache_(NULL),
1476      counters_(NULL),
1477      code_range_(NULL),
1478      logger_(NULL),
1479      stats_table_(NULL),
1480      stub_cache_(NULL),
1481      code_aging_helper_(NULL),
1482      deoptimizer_data_(NULL),
1483      materialized_object_store_(NULL),
1484      capture_stack_trace_for_uncaught_exceptions_(false),
1485      stack_trace_for_uncaught_exceptions_frame_limit_(0),
1486      stack_trace_for_uncaught_exceptions_options_(StackTrace::kOverview),
1487      memory_allocator_(NULL),
1488      keyed_lookup_cache_(NULL),
1489      context_slot_cache_(NULL),
1490      descriptor_lookup_cache_(NULL),
1491      handle_scope_implementer_(NULL),
1492      unicode_cache_(NULL),
1493      runtime_zone_(this),
1494      inner_pointer_to_code_cache_(NULL),
1495      write_iterator_(NULL),
1496      global_handles_(NULL),
1497      eternal_handles_(NULL),
1498      thread_manager_(NULL),
1499      has_installed_extensions_(false),
1500      string_tracker_(NULL),
1501      regexp_stack_(NULL),
1502      date_cache_(NULL),
1503      call_descriptor_data_(NULL),
1504      // TODO(bmeurer) Initialized lazily because it depends on flags; can
1505      // be fixed once the default isolate cleanup is done.
1506      random_number_generator_(NULL),
1507      serializer_enabled_(false),
1508      has_fatal_error_(false),
1509      initialized_from_snapshot_(false),
1510      cpu_profiler_(NULL),
1511      heap_profiler_(NULL),
1512      function_entry_hook_(NULL),
1513      deferred_handles_head_(NULL),
1514      optimizing_compiler_thread_(NULL),
1515      sweeper_thread_(NULL),
1516      num_sweeper_threads_(0),
1517      stress_deopt_count_(0),
1518      next_optimization_id_(0),
1519      use_counter_callback_(NULL) {
1520  {
1521    base::LockGuard<base::Mutex> lock_guard(thread_data_table_mutex_.Pointer());
1522    CHECK(thread_data_table_);
1523  }
1524  id_ = base::NoBarrier_AtomicIncrement(&isolate_counter_, 1);
1525  TRACE_ISOLATE(constructor);
1526
1527  memset(isolate_addresses_, 0,
1528      sizeof(isolate_addresses_[0]) * (kIsolateAddressCount + 1));
1529
1530  heap_.isolate_ = this;
1531  stack_guard_.isolate_ = this;
1532
1533  // ThreadManager is initialized early to support locking an isolate
1534  // before it is entered.
1535  thread_manager_ = new ThreadManager();
1536  thread_manager_->isolate_ = this;
1537
1538#ifdef DEBUG
1539  // heap_histograms_ initializes itself.
1540  memset(&js_spill_information_, 0, sizeof(js_spill_information_));
1541#endif
1542
1543  handle_scope_data_.Initialize();
1544
1545#define ISOLATE_INIT_EXECUTE(type, name, initial_value)                        \
1546  name##_ = (initial_value);
1547  ISOLATE_INIT_LIST(ISOLATE_INIT_EXECUTE)
1548#undef ISOLATE_INIT_EXECUTE
1549
1550#define ISOLATE_INIT_ARRAY_EXECUTE(type, name, length)                         \
1551  memset(name##_, 0, sizeof(type) * length);
1552  ISOLATE_INIT_ARRAY_LIST(ISOLATE_INIT_ARRAY_EXECUTE)
1553#undef ISOLATE_INIT_ARRAY_EXECUTE
1554
1555  InitializeLoggingAndCounters();
1556  debug_ = new Debug(this);
1557}
1558
1559
1560void Isolate::TearDown() {
1561  TRACE_ISOLATE(tear_down);
1562
1563  // Temporarily set this isolate as current so that various parts of
1564  // the isolate can access it in their destructors without having a
1565  // direct pointer. We don't use Enter/Exit here to avoid
1566  // initializing the thread data.
1567  PerIsolateThreadData* saved_data = CurrentPerIsolateThreadData();
1568  Isolate* saved_isolate = UncheckedCurrent();
1569  SetIsolateThreadLocals(this, NULL);
1570
1571  Deinit();
1572
1573  {
1574    base::LockGuard<base::Mutex> lock_guard(thread_data_table_mutex_.Pointer());
1575    thread_data_table_->RemoveAllThreads(this);
1576  }
1577
1578  if (serialize_partial_snapshot_cache_ != NULL) {
1579    delete[] serialize_partial_snapshot_cache_;
1580    serialize_partial_snapshot_cache_ = NULL;
1581  }
1582
1583  delete this;
1584
1585  // Restore the previous current isolate.
1586  SetIsolateThreadLocals(saved_isolate, saved_data);
1587}
1588
1589
1590void Isolate::GlobalTearDown() {
1591  delete thread_data_table_;
1592  thread_data_table_ = NULL;
1593}
1594
1595
1596void Isolate::Deinit() {
1597  if (state_ == INITIALIZED) {
1598    TRACE_ISOLATE(deinit);
1599
1600    debug()->Unload();
1601
1602    FreeThreadResources();
1603
1604    if (concurrent_recompilation_enabled()) {
1605      optimizing_compiler_thread_->Stop();
1606      delete optimizing_compiler_thread_;
1607      optimizing_compiler_thread_ = NULL;
1608    }
1609
1610    for (int i = 0; i < num_sweeper_threads_; i++) {
1611      sweeper_thread_[i]->Stop();
1612      delete sweeper_thread_[i];
1613      sweeper_thread_[i] = NULL;
1614    }
1615    delete[] sweeper_thread_;
1616    sweeper_thread_ = NULL;
1617
1618    if (FLAG_job_based_sweeping &&
1619        heap_.mark_compact_collector()->sweeping_in_progress()) {
1620      heap_.mark_compact_collector()->EnsureSweepingCompleted();
1621    }
1622
1623    if (FLAG_turbo_stats) GetTStatistics()->Print("TurboFan");
1624    if (FLAG_hydrogen_stats) GetHStatistics()->Print("Hydrogen");
1625
1626    if (FLAG_print_deopt_stress) {
1627      PrintF(stdout, "=== Stress deopt counter: %u\n", stress_deopt_count_);
1628    }
1629
1630    // We must stop the logger before we tear down other components.
1631    Sampler* sampler = logger_->sampler();
1632    if (sampler && sampler->IsActive()) sampler->Stop();
1633
1634    delete deoptimizer_data_;
1635    deoptimizer_data_ = NULL;
1636    builtins_.TearDown();
1637    bootstrapper_->TearDown();
1638
1639    if (runtime_profiler_ != NULL) {
1640      delete runtime_profiler_;
1641      runtime_profiler_ = NULL;
1642    }
1643    heap_.TearDown();
1644    logger_->TearDown();
1645
1646    delete heap_profiler_;
1647    heap_profiler_ = NULL;
1648    delete cpu_profiler_;
1649    cpu_profiler_ = NULL;
1650
1651    // The default isolate is re-initializable due to legacy API.
1652    state_ = UNINITIALIZED;
1653  }
1654}
1655
1656
1657void Isolate::PushToPartialSnapshotCache(Object* obj) {
1658  int length = serialize_partial_snapshot_cache_length();
1659  int capacity = serialize_partial_snapshot_cache_capacity();
1660
1661  if (length >= capacity) {
1662    int new_capacity = static_cast<int>((capacity + 10) * 1.2);
1663    Object** new_array = new Object*[new_capacity];
1664    for (int i = 0; i < length; i++) {
1665      new_array[i] = serialize_partial_snapshot_cache()[i];
1666    }
1667    if (capacity != 0) delete[] serialize_partial_snapshot_cache();
1668    set_serialize_partial_snapshot_cache(new_array);
1669    set_serialize_partial_snapshot_cache_capacity(new_capacity);
1670  }
1671
1672  serialize_partial_snapshot_cache()[length] = obj;
1673  set_serialize_partial_snapshot_cache_length(length + 1);
1674}
1675
1676
1677void Isolate::SetIsolateThreadLocals(Isolate* isolate,
1678                                     PerIsolateThreadData* data) {
1679  base::Thread::SetThreadLocal(isolate_key_, isolate);
1680  base::Thread::SetThreadLocal(per_isolate_thread_data_key_, data);
1681}
1682
1683
1684Isolate::~Isolate() {
1685  TRACE_ISOLATE(destructor);
1686
1687  // Has to be called while counters_ are still alive
1688  runtime_zone_.DeleteKeptSegment();
1689
1690  // The entry stack must be empty when we get here.
1691  DCHECK(entry_stack_ == NULL || entry_stack_->previous_item == NULL);
1692
1693  delete entry_stack_;
1694  entry_stack_ = NULL;
1695
1696  delete unicode_cache_;
1697  unicode_cache_ = NULL;
1698
1699  delete date_cache_;
1700  date_cache_ = NULL;
1701
1702  delete[] call_descriptor_data_;
1703  call_descriptor_data_ = NULL;
1704
1705  delete regexp_stack_;
1706  regexp_stack_ = NULL;
1707
1708  delete descriptor_lookup_cache_;
1709  descriptor_lookup_cache_ = NULL;
1710  delete context_slot_cache_;
1711  context_slot_cache_ = NULL;
1712  delete keyed_lookup_cache_;
1713  keyed_lookup_cache_ = NULL;
1714
1715  delete stub_cache_;
1716  stub_cache_ = NULL;
1717  delete code_aging_helper_;
1718  code_aging_helper_ = NULL;
1719  delete stats_table_;
1720  stats_table_ = NULL;
1721
1722  delete materialized_object_store_;
1723  materialized_object_store_ = NULL;
1724
1725  delete logger_;
1726  logger_ = NULL;
1727
1728  delete counters_;
1729  counters_ = NULL;
1730
1731  delete handle_scope_implementer_;
1732  handle_scope_implementer_ = NULL;
1733
1734  delete compilation_cache_;
1735  compilation_cache_ = NULL;
1736  delete bootstrapper_;
1737  bootstrapper_ = NULL;
1738  delete inner_pointer_to_code_cache_;
1739  inner_pointer_to_code_cache_ = NULL;
1740  delete write_iterator_;
1741  write_iterator_ = NULL;
1742
1743  delete thread_manager_;
1744  thread_manager_ = NULL;
1745
1746  delete string_tracker_;
1747  string_tracker_ = NULL;
1748
1749  delete memory_allocator_;
1750  memory_allocator_ = NULL;
1751  delete code_range_;
1752  code_range_ = NULL;
1753  delete global_handles_;
1754  global_handles_ = NULL;
1755  delete eternal_handles_;
1756  eternal_handles_ = NULL;
1757
1758  delete string_stream_debug_object_cache_;
1759  string_stream_debug_object_cache_ = NULL;
1760
1761  delete external_reference_table_;
1762  external_reference_table_ = NULL;
1763
1764  delete random_number_generator_;
1765  random_number_generator_ = NULL;
1766
1767  delete debug_;
1768  debug_ = NULL;
1769}
1770
1771
1772void Isolate::InitializeThreadLocal() {
1773  thread_local_top_.isolate_ = this;
1774  thread_local_top_.Initialize();
1775}
1776
1777
1778bool Isolate::PropagatePendingExceptionToExternalTryCatch() {
1779  DCHECK(has_pending_exception());
1780
1781  bool has_external_try_catch = HasExternalTryCatch();
1782  if (!has_external_try_catch) {
1783    thread_local_top_.external_caught_exception_ = false;
1784    return true;
1785  }
1786
1787  bool catchable_by_js = is_catchable_by_javascript(pending_exception());
1788  if (catchable_by_js && IsFinallyOnTop()) {
1789    thread_local_top_.external_caught_exception_ = false;
1790    return false;
1791  }
1792
1793  thread_local_top_.external_caught_exception_ = true;
1794  if (thread_local_top_.pending_exception_ == heap()->termination_exception()) {
1795    try_catch_handler()->can_continue_ = false;
1796    try_catch_handler()->has_terminated_ = true;
1797    try_catch_handler()->exception_ = heap()->null_value();
1798  } else {
1799    v8::TryCatch* handler = try_catch_handler();
1800    DCHECK(thread_local_top_.pending_message_obj_->IsJSMessageObject() ||
1801           thread_local_top_.pending_message_obj_->IsTheHole());
1802    DCHECK(thread_local_top_.pending_message_script_->IsScript() ||
1803           thread_local_top_.pending_message_script_->IsTheHole());
1804    handler->can_continue_ = true;
1805    handler->has_terminated_ = false;
1806    handler->exception_ = pending_exception();
1807    // Propagate to the external try-catch only if we got an actual message.
1808    if (thread_local_top_.pending_message_obj_->IsTheHole()) return true;
1809
1810    handler->message_obj_ = thread_local_top_.pending_message_obj_;
1811    handler->message_script_ = thread_local_top_.pending_message_script_;
1812    handler->message_start_pos_ = thread_local_top_.pending_message_start_pos_;
1813    handler->message_end_pos_ = thread_local_top_.pending_message_end_pos_;
1814  }
1815  return true;
1816}
1817
1818
1819void Isolate::InitializeLoggingAndCounters() {
1820  if (logger_ == NULL) {
1821    logger_ = new Logger(this);
1822  }
1823  if (counters_ == NULL) {
1824    counters_ = new Counters(this);
1825  }
1826}
1827
1828
1829bool Isolate::Init(Deserializer* des) {
1830  DCHECK(state_ != INITIALIZED);
1831  TRACE_ISOLATE(init);
1832
1833  stress_deopt_count_ = FLAG_deopt_every_n_times;
1834
1835  has_fatal_error_ = false;
1836
1837  if (function_entry_hook() != NULL) {
1838    // When function entry hooking is in effect, we have to create the code
1839    // stubs from scratch to get entry hooks, rather than loading the previously
1840    // generated stubs from disk.
1841    // If this assert fires, the initialization path has regressed.
1842    DCHECK(des == NULL);
1843  }
1844
1845  // The initialization process does not handle memory exhaustion.
1846  DisallowAllocationFailure disallow_allocation_failure(this);
1847
1848  memory_allocator_ = new MemoryAllocator(this);
1849  code_range_ = new CodeRange(this);
1850
1851  // Safe after setting Heap::isolate_, and initializing StackGuard
1852  heap_.SetStackLimits();
1853
1854#define ASSIGN_ELEMENT(CamelName, hacker_name)                  \
1855  isolate_addresses_[Isolate::k##CamelName##Address] =          \
1856      reinterpret_cast<Address>(hacker_name##_address());
1857  FOR_EACH_ISOLATE_ADDRESS_NAME(ASSIGN_ELEMENT)
1858#undef ASSIGN_ELEMENT
1859
1860  string_tracker_ = new StringTracker();
1861  string_tracker_->isolate_ = this;
1862  compilation_cache_ = new CompilationCache(this);
1863  keyed_lookup_cache_ = new KeyedLookupCache();
1864  context_slot_cache_ = new ContextSlotCache();
1865  descriptor_lookup_cache_ = new DescriptorLookupCache();
1866  unicode_cache_ = new UnicodeCache();
1867  inner_pointer_to_code_cache_ = new InnerPointerToCodeCache(this);
1868  write_iterator_ = new ConsStringIteratorOp();
1869  global_handles_ = new GlobalHandles(this);
1870  eternal_handles_ = new EternalHandles();
1871  bootstrapper_ = new Bootstrapper(this);
1872  handle_scope_implementer_ = new HandleScopeImplementer(this);
1873  stub_cache_ = new StubCache(this);
1874  materialized_object_store_ = new MaterializedObjectStore(this);
1875  regexp_stack_ = new RegExpStack();
1876  regexp_stack_->isolate_ = this;
1877  date_cache_ = new DateCache();
1878  call_descriptor_data_ =
1879      new CallInterfaceDescriptorData[CallDescriptors::NUMBER_OF_DESCRIPTORS];
1880  cpu_profiler_ = new CpuProfiler(this);
1881  heap_profiler_ = new HeapProfiler(heap());
1882
1883  // Enable logging before setting up the heap
1884  logger_->SetUp(this);
1885
1886  // Initialize other runtime facilities
1887#if defined(USE_SIMULATOR)
1888#if V8_TARGET_ARCH_ARM || V8_TARGET_ARCH_ARM64 || \
1889    V8_TARGET_ARCH_MIPS || V8_TARGET_ARCH_MIPS64
1890  Simulator::Initialize(this);
1891#endif
1892#endif
1893
1894  code_aging_helper_ = new CodeAgingHelper();
1895
1896  { // NOLINT
1897    // Ensure that the thread has a valid stack guard.  The v8::Locker object
1898    // will ensure this too, but we don't have to use lockers if we are only
1899    // using one thread.
1900    ExecutionAccess lock(this);
1901    stack_guard_.InitThread(lock);
1902  }
1903
1904  // SetUp the object heap.
1905  DCHECK(!heap_.HasBeenSetUp());
1906  if (!heap_.SetUp()) {
1907    V8::FatalProcessOutOfMemory("heap setup");
1908    return false;
1909  }
1910
1911  deoptimizer_data_ = new DeoptimizerData(memory_allocator_);
1912
1913  const bool create_heap_objects = (des == NULL);
1914  if (create_heap_objects && !heap_.CreateHeapObjects()) {
1915    V8::FatalProcessOutOfMemory("heap object creation");
1916    return false;
1917  }
1918
1919  if (create_heap_objects) {
1920    // Terminate the cache array with the sentinel so we can iterate.
1921    PushToPartialSnapshotCache(heap_.undefined_value());
1922  }
1923
1924  InitializeThreadLocal();
1925
1926  bootstrapper_->Initialize(create_heap_objects);
1927  builtins_.SetUp(this, create_heap_objects);
1928
1929  if (FLAG_log_internal_timer_events) {
1930    set_event_logger(Logger::DefaultTimerEventsLogger);
1931  } else {
1932    set_event_logger(Logger::EmptyTimerEventsLogger);
1933  }
1934
1935  // Set default value if not yet set.
1936  // TODO(yangguo): move this to ResourceConstraints::ConfigureDefaults
1937  // once ResourceConstraints becomes an argument to the Isolate constructor.
1938  if (max_available_threads_ < 1) {
1939    // Choose the default between 1 and 4.
1940    max_available_threads_ =
1941        Max(Min(base::SysInfo::NumberOfProcessors(), 4), 1);
1942  }
1943
1944  if (!FLAG_job_based_sweeping) {
1945    num_sweeper_threads_ =
1946        SweeperThread::NumberOfThreads(max_available_threads_);
1947  }
1948
1949  if (FLAG_trace_hydrogen || FLAG_trace_hydrogen_stubs) {
1950    PrintF("Concurrent recompilation has been disabled for tracing.\n");
1951  } else if (OptimizingCompilerThread::Enabled(max_available_threads_)) {
1952    optimizing_compiler_thread_ = new OptimizingCompilerThread(this);
1953    optimizing_compiler_thread_->Start();
1954  }
1955
1956  if (num_sweeper_threads_ > 0) {
1957    sweeper_thread_ = new SweeperThread*[num_sweeper_threads_];
1958    for (int i = 0; i < num_sweeper_threads_; i++) {
1959      sweeper_thread_[i] = new SweeperThread(this);
1960      sweeper_thread_[i]->Start();
1961    }
1962  }
1963
1964  // If we are deserializing, read the state into the now-empty heap.
1965  if (!create_heap_objects) {
1966    des->Deserialize(this);
1967  }
1968  stub_cache_->Initialize();
1969
1970  // Finish initialization of ThreadLocal after deserialization is done.
1971  clear_pending_exception();
1972  clear_pending_message();
1973  clear_scheduled_exception();
1974
1975  // Deserializing may put strange things in the root array's copy of the
1976  // stack guard.
1977  heap_.SetStackLimits();
1978
1979  // Quiet the heap NaN if needed on target platform.
1980  if (!create_heap_objects) Assembler::QuietNaN(heap_.nan_value());
1981
1982  runtime_profiler_ = new RuntimeProfiler(this);
1983
1984  // If we are deserializing, log non-function code objects and compiled
1985  // functions found in the snapshot.
1986  if (!create_heap_objects &&
1987      (FLAG_log_code ||
1988       FLAG_ll_prof ||
1989       FLAG_perf_jit_prof ||
1990       FLAG_perf_basic_prof ||
1991       logger_->is_logging_code_events())) {
1992    HandleScope scope(this);
1993    LOG(this, LogCodeObjects());
1994    LOG(this, LogCompiledFunctions());
1995  }
1996
1997  CHECK_EQ(static_cast<int>(OFFSET_OF(Isolate, embedder_data_)),
1998           Internals::kIsolateEmbedderDataOffset);
1999  CHECK_EQ(static_cast<int>(OFFSET_OF(Isolate, heap_.roots_)),
2000           Internals::kIsolateRootsOffset);
2001  CHECK_EQ(static_cast<int>(
2002               OFFSET_OF(Isolate, heap_.amount_of_external_allocated_memory_)),
2003           Internals::kAmountOfExternalAllocatedMemoryOffset);
2004  CHECK_EQ(static_cast<int>(OFFSET_OF(
2005               Isolate,
2006               heap_.amount_of_external_allocated_memory_at_last_global_gc_)),
2007           Internals::kAmountOfExternalAllocatedMemoryAtLastGlobalGCOffset);
2008
2009  state_ = INITIALIZED;
2010  time_millis_at_init_ = base::OS::TimeCurrentMillis();
2011
2012  if (!create_heap_objects) {
2013    // Now that the heap is consistent, it's OK to generate the code for the
2014    // deopt entry table that might have been referred to by optimized code in
2015    // the snapshot.
2016    HandleScope scope(this);
2017    Deoptimizer::EnsureCodeForDeoptimizationEntry(
2018        this,
2019        Deoptimizer::LAZY,
2020        kDeoptTableSerializeEntryCount - 1);
2021  }
2022
2023  if (!serializer_enabled()) {
2024    // Ensure that all stubs which need to be generated ahead of time, but
2025    // cannot be serialized into the snapshot have been generated.
2026    HandleScope scope(this);
2027    CodeStub::GenerateFPStubs(this);
2028    StoreBufferOverflowStub::GenerateFixedRegStubsAheadOfTime(this);
2029    StubFailureTrampolineStub::GenerateAheadOfTime(this);
2030  }
2031
2032  initialized_from_snapshot_ = (des != NULL);
2033
2034  return true;
2035}
2036
2037
2038// Initialized lazily to allow early
2039// v8::V8::SetAddHistogramSampleFunction calls.
2040StatsTable* Isolate::stats_table() {
2041  if (stats_table_ == NULL) {
2042    stats_table_ = new StatsTable;
2043  }
2044  return stats_table_;
2045}
2046
2047
2048void Isolate::Enter() {
2049  Isolate* current_isolate = NULL;
2050  PerIsolateThreadData* current_data = CurrentPerIsolateThreadData();
2051  if (current_data != NULL) {
2052    current_isolate = current_data->isolate_;
2053    DCHECK(current_isolate != NULL);
2054    if (current_isolate == this) {
2055      DCHECK(Current() == this);
2056      DCHECK(entry_stack_ != NULL);
2057      DCHECK(entry_stack_->previous_thread_data == NULL ||
2058             entry_stack_->previous_thread_data->thread_id().Equals(
2059                 ThreadId::Current()));
2060      // Same thread re-enters the isolate, no need to re-init anything.
2061      entry_stack_->entry_count++;
2062      return;
2063    }
2064  }
2065
2066  PerIsolateThreadData* data = FindOrAllocatePerThreadDataForThisThread();
2067  DCHECK(data != NULL);
2068  DCHECK(data->isolate_ == this);
2069
2070  EntryStackItem* item = new EntryStackItem(current_data,
2071                                            current_isolate,
2072                                            entry_stack_);
2073  entry_stack_ = item;
2074
2075  SetIsolateThreadLocals(this, data);
2076
2077  // In case it's the first time some thread enters the isolate.
2078  set_thread_id(data->thread_id());
2079}
2080
2081
2082void Isolate::Exit() {
2083  DCHECK(entry_stack_ != NULL);
2084  DCHECK(entry_stack_->previous_thread_data == NULL ||
2085         entry_stack_->previous_thread_data->thread_id().Equals(
2086             ThreadId::Current()));
2087
2088  if (--entry_stack_->entry_count > 0) return;
2089
2090  DCHECK(CurrentPerIsolateThreadData() != NULL);
2091  DCHECK(CurrentPerIsolateThreadData()->isolate_ == this);
2092
2093  // Pop the stack.
2094  EntryStackItem* item = entry_stack_;
2095  entry_stack_ = item->previous_item;
2096
2097  PerIsolateThreadData* previous_thread_data = item->previous_thread_data;
2098  Isolate* previous_isolate = item->previous_isolate;
2099
2100  delete item;
2101
2102  // Reinit the current thread for the isolate it was running before this one.
2103  SetIsolateThreadLocals(previous_isolate, previous_thread_data);
2104}
2105
2106
2107void Isolate::LinkDeferredHandles(DeferredHandles* deferred) {
2108  deferred->next_ = deferred_handles_head_;
2109  if (deferred_handles_head_ != NULL) {
2110    deferred_handles_head_->previous_ = deferred;
2111  }
2112  deferred_handles_head_ = deferred;
2113}
2114
2115
2116void Isolate::UnlinkDeferredHandles(DeferredHandles* deferred) {
2117#ifdef DEBUG
2118  // In debug mode assert that the linked list is well-formed.
2119  DeferredHandles* deferred_iterator = deferred;
2120  while (deferred_iterator->previous_ != NULL) {
2121    deferred_iterator = deferred_iterator->previous_;
2122  }
2123  DCHECK(deferred_handles_head_ == deferred_iterator);
2124#endif
2125  if (deferred_handles_head_ == deferred) {
2126    deferred_handles_head_ = deferred_handles_head_->next_;
2127  }
2128  if (deferred->next_ != NULL) {
2129    deferred->next_->previous_ = deferred->previous_;
2130  }
2131  if (deferred->previous_ != NULL) {
2132    deferred->previous_->next_ = deferred->next_;
2133  }
2134}
2135
2136
2137HStatistics* Isolate::GetHStatistics() {
2138  if (hstatistics() == NULL) set_hstatistics(new HStatistics());
2139  return hstatistics();
2140}
2141
2142
2143HStatistics* Isolate::GetTStatistics() {
2144  if (tstatistics() == NULL) set_tstatistics(new HStatistics());
2145  return tstatistics();
2146}
2147
2148
2149HTracer* Isolate::GetHTracer() {
2150  if (htracer() == NULL) set_htracer(new HTracer(id()));
2151  return htracer();
2152}
2153
2154
2155CodeTracer* Isolate::GetCodeTracer() {
2156  if (code_tracer() == NULL) set_code_tracer(new CodeTracer(id()));
2157  return code_tracer();
2158}
2159
2160
2161Map* Isolate::get_initial_js_array_map(ElementsKind kind) {
2162  Context* native_context = context()->native_context();
2163  Object* maybe_map_array = native_context->js_array_maps();
2164  if (!maybe_map_array->IsUndefined()) {
2165    Object* maybe_transitioned_map =
2166        FixedArray::cast(maybe_map_array)->get(kind);
2167    if (!maybe_transitioned_map->IsUndefined()) {
2168      return Map::cast(maybe_transitioned_map);
2169    }
2170  }
2171  return NULL;
2172}
2173
2174
2175bool Isolate::use_crankshaft() const {
2176  return FLAG_crankshaft &&
2177         !serializer_enabled_ &&
2178         CpuFeatures::SupportsCrankshaft();
2179}
2180
2181
2182bool Isolate::IsFastArrayConstructorPrototypeChainIntact() {
2183  Map* root_array_map =
2184      get_initial_js_array_map(GetInitialFastElementsKind());
2185  DCHECK(root_array_map != NULL);
2186  JSObject* initial_array_proto = JSObject::cast(*initial_array_prototype());
2187
2188  // Check that the array prototype hasn't been altered WRT empty elements.
2189  if (root_array_map->prototype() != initial_array_proto) return false;
2190  if (initial_array_proto->elements() != heap()->empty_fixed_array()) {
2191    return false;
2192  }
2193
2194  // Check that the object prototype hasn't been altered WRT empty elements.
2195  JSObject* initial_object_proto = JSObject::cast(*initial_object_prototype());
2196  PrototypeIterator iter(this, initial_array_proto);
2197  if (iter.IsAtEnd() || iter.GetCurrent() != initial_object_proto) {
2198    return false;
2199  }
2200  if (initial_object_proto->elements() != heap()->empty_fixed_array()) {
2201    return false;
2202  }
2203
2204  iter.Advance();
2205  return iter.IsAtEnd();
2206}
2207
2208
2209CallInterfaceDescriptorData* Isolate::call_descriptor_data(int index) {
2210  DCHECK(0 <= index && index < CallDescriptors::NUMBER_OF_DESCRIPTORS);
2211  return &call_descriptor_data_[index];
2212}
2213
2214
2215Object* Isolate::FindCodeObject(Address a) {
2216  return inner_pointer_to_code_cache()->GcSafeFindCodeForInnerPointer(a);
2217}
2218
2219
2220#ifdef DEBUG
2221#define ISOLATE_FIELD_OFFSET(type, name, ignored)                       \
2222const intptr_t Isolate::name##_debug_offset_ = OFFSET_OF(Isolate, name##_);
2223ISOLATE_INIT_LIST(ISOLATE_FIELD_OFFSET)
2224ISOLATE_INIT_ARRAY_LIST(ISOLATE_FIELD_OFFSET)
2225#undef ISOLATE_FIELD_OFFSET
2226#endif
2227
2228
2229Handle<JSObject> Isolate::GetSymbolRegistry() {
2230  if (heap()->symbol_registry()->IsUndefined()) {
2231    Handle<Map> map = factory()->NewMap(JS_OBJECT_TYPE, JSObject::kHeaderSize);
2232    Handle<JSObject> registry = factory()->NewJSObjectFromMap(map);
2233    heap()->set_symbol_registry(*registry);
2234
2235    static const char* nested[] = {
2236      "for", "for_api", "for_intern", "keyFor", "private_api", "private_intern"
2237    };
2238    for (unsigned i = 0; i < arraysize(nested); ++i) {
2239      Handle<String> name = factory()->InternalizeUtf8String(nested[i]);
2240      Handle<JSObject> obj = factory()->NewJSObjectFromMap(map);
2241      JSObject::NormalizeProperties(obj, KEEP_INOBJECT_PROPERTIES, 8);
2242      JSObject::SetProperty(registry, name, obj, STRICT).Assert();
2243    }
2244  }
2245  return Handle<JSObject>::cast(factory()->symbol_registry());
2246}
2247
2248
2249void Isolate::AddCallCompletedCallback(CallCompletedCallback callback) {
2250  for (int i = 0; i < call_completed_callbacks_.length(); i++) {
2251    if (callback == call_completed_callbacks_.at(i)) return;
2252  }
2253  call_completed_callbacks_.Add(callback);
2254}
2255
2256
2257void Isolate::RemoveCallCompletedCallback(CallCompletedCallback callback) {
2258  for (int i = 0; i < call_completed_callbacks_.length(); i++) {
2259    if (callback == call_completed_callbacks_.at(i)) {
2260      call_completed_callbacks_.Remove(i);
2261    }
2262  }
2263}
2264
2265
2266void Isolate::FireCallCompletedCallback() {
2267  bool has_call_completed_callbacks = !call_completed_callbacks_.is_empty();
2268  bool run_microtasks = autorun_microtasks() && pending_microtask_count();
2269  if (!has_call_completed_callbacks && !run_microtasks) return;
2270
2271  if (!handle_scope_implementer()->CallDepthIsZero()) return;
2272  if (run_microtasks) RunMicrotasks();
2273  // Fire callbacks.  Increase call depth to prevent recursive callbacks.
2274  v8::Isolate::SuppressMicrotaskExecutionScope suppress(
2275      reinterpret_cast<v8::Isolate*>(this));
2276  for (int i = 0; i < call_completed_callbacks_.length(); i++) {
2277    call_completed_callbacks_.at(i)();
2278  }
2279}
2280
2281
2282void Isolate::EnqueueMicrotask(Handle<Object> microtask) {
2283  DCHECK(microtask->IsJSFunction() || microtask->IsCallHandlerInfo());
2284  Handle<FixedArray> queue(heap()->microtask_queue(), this);
2285  int num_tasks = pending_microtask_count();
2286  DCHECK(num_tasks <= queue->length());
2287  if (num_tasks == 0) {
2288    queue = factory()->NewFixedArray(8);
2289    heap()->set_microtask_queue(*queue);
2290  } else if (num_tasks == queue->length()) {
2291    queue = FixedArray::CopySize(queue, num_tasks * 2);
2292    heap()->set_microtask_queue(*queue);
2293  }
2294  DCHECK(queue->get(num_tasks)->IsUndefined());
2295  queue->set(num_tasks, *microtask);
2296  set_pending_microtask_count(num_tasks + 1);
2297}
2298
2299
2300void Isolate::RunMicrotasks() {
2301  // %RunMicrotasks may be called in mjsunit tests, which violates
2302  // this assertion, hence the check for --allow-natives-syntax.
2303  // TODO(adamk): However, this also fails some layout tests.
2304  //
2305  // DCHECK(FLAG_allow_natives_syntax ||
2306  //        handle_scope_implementer()->CallDepthIsZero());
2307
2308  // Increase call depth to prevent recursive callbacks.
2309  v8::Isolate::SuppressMicrotaskExecutionScope suppress(
2310      reinterpret_cast<v8::Isolate*>(this));
2311
2312  while (pending_microtask_count() > 0) {
2313    HandleScope scope(this);
2314    int num_tasks = pending_microtask_count();
2315    Handle<FixedArray> queue(heap()->microtask_queue(), this);
2316    DCHECK(num_tasks <= queue->length());
2317    set_pending_microtask_count(0);
2318    heap()->set_microtask_queue(heap()->empty_fixed_array());
2319
2320    for (int i = 0; i < num_tasks; i++) {
2321      HandleScope scope(this);
2322      Handle<Object> microtask(queue->get(i), this);
2323      if (microtask->IsJSFunction()) {
2324        Handle<JSFunction> microtask_function =
2325            Handle<JSFunction>::cast(microtask);
2326        SaveContext save(this);
2327        set_context(microtask_function->context()->native_context());
2328        MaybeHandle<Object> maybe_exception;
2329        MaybeHandle<Object> result =
2330            Execution::TryCall(microtask_function, factory()->undefined_value(),
2331                               0, NULL, &maybe_exception);
2332        // If execution is terminating, just bail out.
2333        Handle<Object> exception;
2334        if (result.is_null() && maybe_exception.is_null()) {
2335          // Clear out any remaining callbacks in the queue.
2336          heap()->set_microtask_queue(heap()->empty_fixed_array());
2337          set_pending_microtask_count(0);
2338          return;
2339        }
2340      } else {
2341        Handle<CallHandlerInfo> callback_info =
2342            Handle<CallHandlerInfo>::cast(microtask);
2343        v8::MicrotaskCallback callback =
2344            v8::ToCData<v8::MicrotaskCallback>(callback_info->callback());
2345        void* data = v8::ToCData<void*>(callback_info->data());
2346        callback(data);
2347      }
2348    }
2349  }
2350}
2351
2352
2353void Isolate::SetUseCounterCallback(v8::Isolate::UseCounterCallback callback) {
2354  DCHECK(!use_counter_callback_);
2355  use_counter_callback_ = callback;
2356}
2357
2358
2359void Isolate::CountUsage(v8::Isolate::UseCounterFeature feature) {
2360  if (use_counter_callback_) {
2361    use_counter_callback_(reinterpret_cast<v8::Isolate*>(this), feature);
2362  }
2363}
2364
2365
2366bool StackLimitCheck::JsHasOverflowed() const {
2367  StackGuard* stack_guard = isolate_->stack_guard();
2368#ifdef USE_SIMULATOR
2369  // The simulator uses a separate JS stack.
2370  Address jssp_address = Simulator::current(isolate_)->get_sp();
2371  uintptr_t jssp = reinterpret_cast<uintptr_t>(jssp_address);
2372  if (jssp < stack_guard->real_jslimit()) return true;
2373#endif  // USE_SIMULATOR
2374  return GetCurrentStackPosition() < stack_guard->real_climit();
2375}
2376
2377
2378bool PostponeInterruptsScope::Intercept(StackGuard::InterruptFlag flag) {
2379  // First check whether the previous scope intercepts.
2380  if (prev_ && prev_->Intercept(flag)) return true;
2381  // Then check whether this scope intercepts.
2382  if ((flag & intercept_mask_)) {
2383    intercepted_flags_ |= flag;
2384    return true;
2385  }
2386  return false;
2387}
2388
2389} }  // namespace v8::internal
2390