1// Copyright 2011 the V8 project authors. All rights reserved.
2// Use of this source code is governed by a BSD-style license that can be
3// found in the LICENSE file.
4
5
6// Declares a Simulator for MIPS instructions if we are not generating a native
7// MIPS binary. This Simulator allows us to run and debug MIPS code generation
8// on regular desktop machines.
9// V8 calls into generated code by "calling" the CALL_GENERATED_CODE macro,
10// which will start execution in the Simulator or forwards to the real entry
11// on a MIPS HW platform.
12
13#ifndef V8_MIPS_SIMULATOR_MIPS_H_
14#define V8_MIPS_SIMULATOR_MIPS_H_
15
16#include "src/allocation.h"
17#include "src/mips/constants-mips.h"
18
19#if !defined(USE_SIMULATOR)
20// Running without a simulator on a native mips platform.
21
22namespace v8 {
23namespace internal {
24
25// When running without a simulator we call the entry directly.
26#define CALL_GENERATED_CODE(entry, p0, p1, p2, p3, p4) \
27  entry(p0, p1, p2, p3, p4)
28
29typedef int (*mips_regexp_matcher)(String*, int, const byte*, const byte*,
30                                   void*, int*, int, Address, int, Isolate*);
31
32
33// Call the generated regexp code directly. The code at the entry address
34// should act as a function matching the type arm_regexp_matcher.
35// The fifth argument is a dummy that reserves the space used for
36// the return address added by the ExitFrame in native calls.
37#define CALL_GENERATED_REGEXP_CODE(entry, p0, p1, p2, p3, p4, p5, p6, p7, p8) \
38  (FUNCTION_CAST<mips_regexp_matcher>(entry)( \
39      p0, p1, p2, p3, NULL, p4, p5, p6, p7, p8))
40
41// The stack limit beyond which we will throw stack overflow errors in
42// generated code. Because generated code on mips uses the C stack, we
43// just use the C stack limit.
44class SimulatorStack : public v8::internal::AllStatic {
45 public:
46  static inline uintptr_t JsLimitFromCLimit(Isolate* isolate,
47                                            uintptr_t c_limit) {
48    return c_limit;
49  }
50
51  static inline uintptr_t RegisterCTryCatch(uintptr_t try_catch_address) {
52    return try_catch_address;
53  }
54
55  static inline void UnregisterCTryCatch() { }
56};
57
58} }  // namespace v8::internal
59
60// Calculated the stack limit beyond which we will throw stack overflow errors.
61// This macro must be called from a C++ method. It relies on being able to take
62// the address of "this" to get a value on the current execution stack and then
63// calculates the stack limit based on that value.
64// NOTE: The check for overflow is not safe as there is no guarantee that the
65// running thread has its stack in all memory up to address 0x00000000.
66#define GENERATED_CODE_STACK_LIMIT(limit) \
67  (reinterpret_cast<uintptr_t>(this) >= limit ? \
68      reinterpret_cast<uintptr_t>(this) - limit : 0)
69
70#else  // !defined(USE_SIMULATOR)
71// Running with a simulator.
72
73#include "src/assembler.h"
74#include "src/hashmap.h"
75
76namespace v8 {
77namespace internal {
78
79// -----------------------------------------------------------------------------
80// Utility functions
81
82class CachePage {
83 public:
84  static const int LINE_VALID = 0;
85  static const int LINE_INVALID = 1;
86
87  static const int kPageShift = 12;
88  static const int kPageSize = 1 << kPageShift;
89  static const int kPageMask = kPageSize - 1;
90  static const int kLineShift = 2;  // The cache line is only 4 bytes right now.
91  static const int kLineLength = 1 << kLineShift;
92  static const int kLineMask = kLineLength - 1;
93
94  CachePage() {
95    memset(&validity_map_, LINE_INVALID, sizeof(validity_map_));
96  }
97
98  char* ValidityByte(int offset) {
99    return &validity_map_[offset >> kLineShift];
100  }
101
102  char* CachedData(int offset) {
103    return &data_[offset];
104  }
105
106 private:
107  char data_[kPageSize];   // The cached data.
108  static const int kValidityMapSize = kPageSize >> kLineShift;
109  char validity_map_[kValidityMapSize];  // One byte per line.
110};
111
112class Simulator {
113 public:
114  friend class MipsDebugger;
115
116  // Registers are declared in order. See SMRL chapter 2.
117  enum Register {
118    no_reg = -1,
119    zero_reg = 0,
120    at,
121    v0, v1,
122    a0, a1, a2, a3,
123    t0, t1, t2, t3, t4, t5, t6, t7,
124    s0, s1, s2, s3, s4, s5, s6, s7,
125    t8, t9,
126    k0, k1,
127    gp,
128    sp,
129    s8,
130    ra,
131    // LO, HI, and pc.
132    LO,
133    HI,
134    pc,   // pc must be the last register.
135    kNumSimuRegisters,
136    // aliases
137    fp = s8
138  };
139
140  // Coprocessor registers.
141  // Generated code will always use doubles. So we will only use even registers.
142  enum FPURegister {
143    f0, f1, f2, f3, f4, f5, f6, f7, f8, f9, f10, f11,
144    f12, f13, f14, f15,   // f12 and f14 are arguments FPURegisters.
145    f16, f17, f18, f19, f20, f21, f22, f23, f24, f25,
146    f26, f27, f28, f29, f30, f31,
147    kNumFPURegisters
148  };
149
150  explicit Simulator(Isolate* isolate);
151  ~Simulator();
152
153  // The currently executing Simulator instance. Potentially there can be one
154  // for each native thread.
155  static Simulator* current(v8::internal::Isolate* isolate);
156
157  // Accessors for register state. Reading the pc value adheres to the MIPS
158  // architecture specification and is off by a 8 from the currently executing
159  // instruction.
160  void set_register(int reg, int32_t value);
161  void set_dw_register(int dreg, const int* dbl);
162  int32_t get_register(int reg) const;
163  double get_double_from_register_pair(int reg);
164  // Same for FPURegisters.
165  void set_fpu_register(int fpureg, int64_t value);
166  void set_fpu_register_word(int fpureg, int32_t value);
167  void set_fpu_register_hi_word(int fpureg, int32_t value);
168  void set_fpu_register_float(int fpureg, float value);
169  void set_fpu_register_double(int fpureg, double value);
170  int64_t get_fpu_register(int fpureg) const;
171  int32_t get_fpu_register_word(int fpureg) const;
172  int32_t get_fpu_register_signed_word(int fpureg) const;
173  int32_t get_fpu_register_hi_word(int fpureg) const;
174  float get_fpu_register_float(int fpureg) const;
175  double get_fpu_register_double(int fpureg) const;
176  void set_fcsr_bit(uint32_t cc, bool value);
177  bool test_fcsr_bit(uint32_t cc);
178  bool set_fcsr_round_error(double original, double rounded);
179
180  // Special case of set_register and get_register to access the raw PC value.
181  void set_pc(int32_t value);
182  int32_t get_pc() const;
183
184  Address get_sp() {
185    return reinterpret_cast<Address>(static_cast<intptr_t>(get_register(sp)));
186  }
187
188  // Accessor to the internal simulator stack area.
189  uintptr_t StackLimit() const;
190
191  // Executes MIPS instructions until the PC reaches end_sim_pc.
192  void Execute();
193
194  // Call on program start.
195  static void Initialize(Isolate* isolate);
196
197  // V8 generally calls into generated JS code with 5 parameters and into
198  // generated RegExp code with 7 parameters. This is a convenience function,
199  // which sets up the simulator state and grabs the result on return.
200  int32_t Call(byte* entry, int argument_count, ...);
201  // Alternative: call a 2-argument double function.
202  double CallFP(byte* entry, double d0, double d1);
203
204  // Push an address onto the JS stack.
205  uintptr_t PushAddress(uintptr_t address);
206
207  // Pop an address from the JS stack.
208  uintptr_t PopAddress();
209
210  // Debugger input.
211  void set_last_debugger_input(char* input);
212  char* last_debugger_input() { return last_debugger_input_; }
213
214  // ICache checking.
215  static void FlushICache(v8::internal::HashMap* i_cache, void* start,
216                          size_t size);
217
218  // Returns true if pc register contains one of the 'special_values' defined
219  // below (bad_ra, end_sim_pc).
220  bool has_bad_pc() const;
221
222 private:
223  enum special_values {
224    // Known bad pc value to ensure that the simulator does not execute
225    // without being properly setup.
226    bad_ra = -1,
227    // A pc value used to signal the simulator to stop execution.  Generally
228    // the ra is set to this value on transition from native C code to
229    // simulated execution, so that the simulator can "return" to the native
230    // C code.
231    end_sim_pc = -2,
232    // Unpredictable value.
233    Unpredictable = 0xbadbeaf
234  };
235
236  // Unsupported instructions use Format to print an error and stop execution.
237  void Format(Instruction* instr, const char* format);
238
239  // Read and write memory.
240  inline uint32_t ReadBU(int32_t addr);
241  inline int32_t ReadB(int32_t addr);
242  inline void WriteB(int32_t addr, uint8_t value);
243  inline void WriteB(int32_t addr, int8_t value);
244
245  inline uint16_t ReadHU(int32_t addr, Instruction* instr);
246  inline int16_t ReadH(int32_t addr, Instruction* instr);
247  // Note: Overloaded on the sign of the value.
248  inline void WriteH(int32_t addr, uint16_t value, Instruction* instr);
249  inline void WriteH(int32_t addr, int16_t value, Instruction* instr);
250
251  inline int ReadW(int32_t addr, Instruction* instr);
252  inline void WriteW(int32_t addr, int value, Instruction* instr);
253
254  inline double ReadD(int32_t addr, Instruction* instr);
255  inline void WriteD(int32_t addr, double value, Instruction* instr);
256
257  // Operations depending on endianness.
258  // Get Double Higher / Lower word.
259  inline int32_t GetDoubleHIW(double* addr);
260  inline int32_t GetDoubleLOW(double* addr);
261  // Set Double Higher / Lower word.
262  inline int32_t SetDoubleHIW(double* addr);
263  inline int32_t SetDoubleLOW(double* addr);
264
265  // Executing is handled based on the instruction type.
266  void DecodeTypeRegister(Instruction* instr);
267
268  // Helper function for DecodeTypeRegister.
269  void ConfigureTypeRegister(Instruction* instr,
270                             int32_t* alu_out,
271                             int64_t* i64hilo,
272                             uint64_t* u64hilo,
273                             int32_t* next_pc,
274                             int32_t* return_addr_reg,
275                             bool* do_interrupt);
276
277  void DecodeTypeImmediate(Instruction* instr);
278  void DecodeTypeJump(Instruction* instr);
279
280  // Used for breakpoints and traps.
281  void SoftwareInterrupt(Instruction* instr);
282
283  // Stop helper functions.
284  bool IsWatchpoint(uint32_t code);
285  void PrintWatchpoint(uint32_t code);
286  void HandleStop(uint32_t code, Instruction* instr);
287  bool IsStopInstruction(Instruction* instr);
288  bool IsEnabledStop(uint32_t code);
289  void EnableStop(uint32_t code);
290  void DisableStop(uint32_t code);
291  void IncreaseStopCounter(uint32_t code);
292  void PrintStopInfo(uint32_t code);
293
294
295  // Executes one instruction.
296  void InstructionDecode(Instruction* instr);
297  // Execute one instruction placed in a branch delay slot.
298  void BranchDelayInstructionDecode(Instruction* instr) {
299    if (instr->InstructionBits() == nopInstr) {
300      // Short-cut generic nop instructions. They are always valid and they
301      // never change the simulator state.
302      return;
303    }
304
305    if (instr->IsForbiddenInBranchDelay()) {
306      V8_Fatal(__FILE__, __LINE__,
307               "Eror:Unexpected %i opcode in a branch delay slot.",
308               instr->OpcodeValue());
309    }
310    InstructionDecode(instr);
311  }
312
313  // ICache.
314  static void CheckICache(v8::internal::HashMap* i_cache, Instruction* instr);
315  static void FlushOnePage(v8::internal::HashMap* i_cache, intptr_t start,
316                           int size);
317  static CachePage* GetCachePage(v8::internal::HashMap* i_cache, void* page);
318
319  enum Exception {
320    none,
321    kIntegerOverflow,
322    kIntegerUnderflow,
323    kDivideByZero,
324    kNumExceptions
325  };
326  int16_t exceptions[kNumExceptions];
327
328  // Exceptions.
329  void SignalExceptions();
330
331  // Runtime call support.
332  static void* RedirectExternalReference(void* external_function,
333                                         ExternalReference::Type type);
334
335  // Handle arguments and return value for runtime FP functions.
336  void GetFpArgs(double* x, double* y, int32_t* z);
337  void SetFpResult(const double& result);
338
339  void CallInternal(byte* entry);
340
341  // Architecture state.
342  // Registers.
343  int32_t registers_[kNumSimuRegisters];
344  // Coprocessor Registers.
345  // Note: FP32 mode uses only the lower 32-bit part of each element,
346  // the upper 32-bit is unpredictable.
347  int64_t FPUregisters_[kNumFPURegisters];
348  // FPU control register.
349  uint32_t FCSR_;
350
351  // Simulator support.
352  // Allocate 1MB for stack.
353  static const size_t stack_size_ = 1 * 1024*1024;
354  char* stack_;
355  bool pc_modified_;
356  int icount_;
357  int break_count_;
358
359  // Debugger input.
360  char* last_debugger_input_;
361
362  // Icache simulation.
363  v8::internal::HashMap* i_cache_;
364
365  v8::internal::Isolate* isolate_;
366
367  // Registered breakpoints.
368  Instruction* break_pc_;
369  Instr break_instr_;
370
371  // Stop is disabled if bit 31 is set.
372  static const uint32_t kStopDisabledBit = 1 << 31;
373
374  // A stop is enabled, meaning the simulator will stop when meeting the
375  // instruction, if bit 31 of watched_stops_[code].count is unset.
376  // The value watched_stops_[code].count & ~(1 << 31) indicates how many times
377  // the breakpoint was hit or gone through.
378  struct StopCountAndDesc {
379    uint32_t count;
380    char* desc;
381  };
382  StopCountAndDesc watched_stops_[kMaxStopCode + 1];
383};
384
385
386// When running with the simulator transition into simulated execution at this
387// point.
388#define CALL_GENERATED_CODE(entry, p0, p1, p2, p3, p4) \
389    reinterpret_cast<Object*>(Simulator::current(Isolate::Current())->Call( \
390      FUNCTION_ADDR(entry), 5, p0, p1, p2, p3, p4))
391
392#define CALL_GENERATED_REGEXP_CODE(entry, p0, p1, p2, p3, p4, p5, p6, p7, p8) \
393    Simulator::current(Isolate::Current())->Call( \
394        entry, 10, p0, p1, p2, p3, NULL, p4, p5, p6, p7, p8)
395
396
397// The simulator has its own stack. Thus it has a different stack limit from
398// the C-based native code.  Setting the c_limit to indicate a very small
399// stack cause stack overflow errors, since the simulator ignores the input.
400// This is unlikely to be an issue in practice, though it might cause testing
401// trouble down the line.
402class SimulatorStack : public v8::internal::AllStatic {
403 public:
404  static inline uintptr_t JsLimitFromCLimit(Isolate* isolate,
405                                            uintptr_t c_limit) {
406    return Simulator::current(isolate)->StackLimit();
407  }
408
409  static inline uintptr_t RegisterCTryCatch(uintptr_t try_catch_address) {
410    Simulator* sim = Simulator::current(Isolate::Current());
411    return sim->PushAddress(try_catch_address);
412  }
413
414  static inline void UnregisterCTryCatch() {
415    Simulator::current(Isolate::Current())->PopAddress();
416  }
417};
418
419} }  // namespace v8::internal
420
421#endif  // !defined(USE_SIMULATOR)
422#endif  // V8_MIPS_SIMULATOR_MIPS_H_
423