1// Copyright 2012 the V8 project authors. All rights reserved.
2// Use of this source code is governed by a BSD-style license that can be
3// found in the LICENSE file.
4
5
6
7#include "src/v8.h"
8
9#if V8_TARGET_ARCH_MIPS64
10
11#include "src/codegen.h"
12#include "src/debug.h"
13#include "src/deoptimizer.h"
14#include "src/full-codegen.h"
15#include "src/runtime.h"
16
17namespace v8 {
18namespace internal {
19
20
21#define __ ACCESS_MASM(masm)
22
23
24void Builtins::Generate_Adaptor(MacroAssembler* masm,
25                                CFunctionId id,
26                                BuiltinExtraArguments extra_args) {
27  // ----------- S t a t e -------------
28  //  -- a0                 : number of arguments excluding receiver
29  //  -- a1                 : called function (only guaranteed when
30  //  --                      extra_args requires it)
31  //  -- cp                 : context
32  //  -- sp[0]              : last argument
33  //  -- ...
34  //  -- sp[8 * (argc - 1)] : first argument
35  //  -- sp[8 * agrc]       : receiver
36  // -----------------------------------
37
38  // Insert extra arguments.
39  int num_extra_args = 0;
40  if (extra_args == NEEDS_CALLED_FUNCTION) {
41    num_extra_args = 1;
42    __ push(a1);
43  } else {
44    DCHECK(extra_args == NO_EXTRA_ARGUMENTS);
45  }
46
47  // JumpToExternalReference expects s0 to contain the number of arguments
48  // including the receiver and the extra arguments.
49  __ Daddu(s0, a0, num_extra_args + 1);
50  __ dsll(s1, s0, kPointerSizeLog2);
51  __ Dsubu(s1, s1, kPointerSize);
52  __ JumpToExternalReference(ExternalReference(id, masm->isolate()));
53}
54
55
56// Load the built-in InternalArray function from the current context.
57static void GenerateLoadInternalArrayFunction(MacroAssembler* masm,
58                                              Register result) {
59  // Load the native context.
60
61  __ ld(result,
62        MemOperand(cp, Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX)));
63  __ ld(result,
64        FieldMemOperand(result, GlobalObject::kNativeContextOffset));
65  // Load the InternalArray function from the native context.
66  __ ld(result,
67         MemOperand(result,
68                    Context::SlotOffset(
69                        Context::INTERNAL_ARRAY_FUNCTION_INDEX)));
70}
71
72
73// Load the built-in Array function from the current context.
74static void GenerateLoadArrayFunction(MacroAssembler* masm, Register result) {
75  // Load the native context.
76
77  __ ld(result,
78        MemOperand(cp, Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX)));
79  __ ld(result,
80        FieldMemOperand(result, GlobalObject::kNativeContextOffset));
81  // Load the Array function from the native context.
82  __ ld(result,
83        MemOperand(result,
84                   Context::SlotOffset(Context::ARRAY_FUNCTION_INDEX)));
85}
86
87
88void Builtins::Generate_InternalArrayCode(MacroAssembler* masm) {
89  // ----------- S t a t e -------------
90  //  -- a0     : number of arguments
91  //  -- ra     : return address
92  //  -- sp[...]: constructor arguments
93  // -----------------------------------
94  Label generic_array_code, one_or_more_arguments, two_or_more_arguments;
95
96  // Get the InternalArray function.
97  GenerateLoadInternalArrayFunction(masm, a1);
98
99  if (FLAG_debug_code) {
100    // Initial map for the builtin InternalArray functions should be maps.
101    __ ld(a2, FieldMemOperand(a1, JSFunction::kPrototypeOrInitialMapOffset));
102    __ SmiTst(a2, a4);
103    __ Assert(ne, kUnexpectedInitialMapForInternalArrayFunction,
104              a4, Operand(zero_reg));
105    __ GetObjectType(a2, a3, a4);
106    __ Assert(eq, kUnexpectedInitialMapForInternalArrayFunction,
107              a4, Operand(MAP_TYPE));
108  }
109
110  // Run the native code for the InternalArray function called as a normal
111  // function.
112  // Tail call a stub.
113  InternalArrayConstructorStub stub(masm->isolate());
114  __ TailCallStub(&stub);
115}
116
117
118void Builtins::Generate_ArrayCode(MacroAssembler* masm) {
119  // ----------- S t a t e -------------
120  //  -- a0     : number of arguments
121  //  -- ra     : return address
122  //  -- sp[...]: constructor arguments
123  // -----------------------------------
124  Label generic_array_code;
125
126  // Get the Array function.
127  GenerateLoadArrayFunction(masm, a1);
128
129  if (FLAG_debug_code) {
130    // Initial map for the builtin Array functions should be maps.
131    __ ld(a2, FieldMemOperand(a1, JSFunction::kPrototypeOrInitialMapOffset));
132    __ SmiTst(a2, a4);
133    __ Assert(ne, kUnexpectedInitialMapForArrayFunction1,
134              a4, Operand(zero_reg));
135    __ GetObjectType(a2, a3, a4);
136    __ Assert(eq, kUnexpectedInitialMapForArrayFunction2,
137              a4, Operand(MAP_TYPE));
138  }
139
140  // Run the native code for the Array function called as a normal function.
141  // Tail call a stub.
142  __ LoadRoot(a2, Heap::kUndefinedValueRootIndex);
143  ArrayConstructorStub stub(masm->isolate());
144  __ TailCallStub(&stub);
145}
146
147
148void Builtins::Generate_StringConstructCode(MacroAssembler* masm) {
149  // ----------- S t a t e -------------
150  //  -- a0                     : number of arguments
151  //  -- a1                     : constructor function
152  //  -- ra                     : return address
153  //  -- sp[(argc - n - 1) * 8] : arg[n] (zero based)
154  //  -- sp[argc * 8]           : receiver
155  // -----------------------------------
156  Counters* counters = masm->isolate()->counters();
157  __ IncrementCounter(counters->string_ctor_calls(), 1, a2, a3);
158
159  Register function = a1;
160  if (FLAG_debug_code) {
161    __ LoadGlobalFunction(Context::STRING_FUNCTION_INDEX, a2);
162    __ Assert(eq, kUnexpectedStringFunction, function, Operand(a2));
163  }
164
165  // Load the first arguments in a0 and get rid of the rest.
166  Label no_arguments;
167  __ Branch(&no_arguments, eq, a0, Operand(zero_reg));
168  // First args = sp[(argc - 1) * 8].
169  __ Dsubu(a0, a0, Operand(1));
170  __ dsll(a0, a0, kPointerSizeLog2);
171  __ Daddu(sp, a0, sp);
172  __ ld(a0, MemOperand(sp));
173  // sp now point to args[0], drop args[0] + receiver.
174  __ Drop(2);
175
176  Register argument = a2;
177  Label not_cached, argument_is_string;
178  __ LookupNumberStringCache(a0,        // Input.
179                             argument,  // Result.
180                             a3,        // Scratch.
181                             a4,        // Scratch.
182                             a5,        // Scratch.
183                             &not_cached);
184  __ IncrementCounter(counters->string_ctor_cached_number(), 1, a3, a4);
185  __ bind(&argument_is_string);
186
187  // ----------- S t a t e -------------
188  //  -- a2     : argument converted to string
189  //  -- a1     : constructor function
190  //  -- ra     : return address
191  // -----------------------------------
192
193  Label gc_required;
194  __ Allocate(JSValue::kSize,
195              v0,  // Result.
196              a3,  // Scratch.
197              a4,  // Scratch.
198              &gc_required,
199              TAG_OBJECT);
200
201  // Initialising the String Object.
202  Register map = a3;
203  __ LoadGlobalFunctionInitialMap(function, map, a4);
204  if (FLAG_debug_code) {
205    __ lbu(a4, FieldMemOperand(map, Map::kInstanceSizeOffset));
206    __ Assert(eq, kUnexpectedStringWrapperInstanceSize,
207        a4, Operand(JSValue::kSize >> kPointerSizeLog2));
208    __ lbu(a4, FieldMemOperand(map, Map::kUnusedPropertyFieldsOffset));
209    __ Assert(eq, kUnexpectedUnusedPropertiesOfStringWrapper,
210        a4, Operand(zero_reg));
211  }
212  __ sd(map, FieldMemOperand(v0, HeapObject::kMapOffset));
213
214  __ LoadRoot(a3, Heap::kEmptyFixedArrayRootIndex);
215  __ sd(a3, FieldMemOperand(v0, JSObject::kPropertiesOffset));
216  __ sd(a3, FieldMemOperand(v0, JSObject::kElementsOffset));
217
218  __ sd(argument, FieldMemOperand(v0, JSValue::kValueOffset));
219
220  // Ensure the object is fully initialized.
221  STATIC_ASSERT(JSValue::kSize == 4 * kPointerSize);
222
223  __ Ret();
224
225  // The argument was not found in the number to string cache. Check
226  // if it's a string already before calling the conversion builtin.
227  Label convert_argument;
228  __ bind(&not_cached);
229  __ JumpIfSmi(a0, &convert_argument);
230
231  // Is it a String?
232  __ ld(a2, FieldMemOperand(a0, HeapObject::kMapOffset));
233  __ lbu(a3, FieldMemOperand(a2, Map::kInstanceTypeOffset));
234  STATIC_ASSERT(kNotStringTag != 0);
235  __ And(a4, a3, Operand(kIsNotStringMask));
236  __ Branch(&convert_argument, ne, a4, Operand(zero_reg));
237  __ mov(argument, a0);
238  __ IncrementCounter(counters->string_ctor_conversions(), 1, a3, a4);
239  __ Branch(&argument_is_string);
240
241  // Invoke the conversion builtin and put the result into a2.
242  __ bind(&convert_argument);
243  __ push(function);  // Preserve the function.
244  __ IncrementCounter(counters->string_ctor_conversions(), 1, a3, a4);
245  {
246    FrameScope scope(masm, StackFrame::INTERNAL);
247    __ push(a0);
248    __ InvokeBuiltin(Builtins::TO_STRING, CALL_FUNCTION);
249  }
250  __ pop(function);
251  __ mov(argument, v0);
252  __ Branch(&argument_is_string);
253
254  // Load the empty string into a2, remove the receiver from the
255  // stack, and jump back to the case where the argument is a string.
256  __ bind(&no_arguments);
257  __ LoadRoot(argument, Heap::kempty_stringRootIndex);
258  __ Drop(1);
259  __ Branch(&argument_is_string);
260
261  // At this point the argument is already a string. Call runtime to
262  // create a string wrapper.
263  __ bind(&gc_required);
264  __ IncrementCounter(counters->string_ctor_gc_required(), 1, a3, a4);
265  {
266    FrameScope scope(masm, StackFrame::INTERNAL);
267    __ push(argument);
268    __ CallRuntime(Runtime::kNewStringWrapper, 1);
269  }
270  __ Ret();
271}
272
273
274static void CallRuntimePassFunction(
275    MacroAssembler* masm, Runtime::FunctionId function_id) {
276  FrameScope scope(masm, StackFrame::INTERNAL);
277  // Push a copy of the function onto the stack.
278  // Push call kind information and function as parameter to the runtime call.
279  __ Push(a1, a1);
280
281  __ CallRuntime(function_id, 1);
282  // Restore call kind information and receiver.
283  __ Pop(a1);
284}
285
286
287static void GenerateTailCallToSharedCode(MacroAssembler* masm) {
288  __ ld(a2, FieldMemOperand(a1, JSFunction::kSharedFunctionInfoOffset));
289  __ ld(a2, FieldMemOperand(a2, SharedFunctionInfo::kCodeOffset));
290  __ Daddu(at, a2, Operand(Code::kHeaderSize - kHeapObjectTag));
291  __ Jump(at);
292}
293
294
295static void GenerateTailCallToReturnedCode(MacroAssembler* masm) {
296  __ Daddu(at, v0, Operand(Code::kHeaderSize - kHeapObjectTag));
297  __ Jump(at);
298}
299
300
301void Builtins::Generate_InOptimizationQueue(MacroAssembler* masm) {
302  // Checking whether the queued function is ready for install is optional,
303  // since we come across interrupts and stack checks elsewhere.  However,
304  // not checking may delay installing ready functions, and always checking
305  // would be quite expensive.  A good compromise is to first check against
306  // stack limit as a cue for an interrupt signal.
307  Label ok;
308  __ LoadRoot(a4, Heap::kStackLimitRootIndex);
309  __ Branch(&ok, hs, sp, Operand(a4));
310
311  CallRuntimePassFunction(masm, Runtime::kTryInstallOptimizedCode);
312  GenerateTailCallToReturnedCode(masm);
313
314  __ bind(&ok);
315  GenerateTailCallToSharedCode(masm);
316}
317
318
319static void Generate_JSConstructStubHelper(MacroAssembler* masm,
320                                           bool is_api_function,
321                                           bool create_memento) {
322  // ----------- S t a t e -------------
323  //  -- a0     : number of arguments
324  //  -- a1     : constructor function
325  //  -- a2     : allocation site or undefined
326  //  -- ra     : return address
327  //  -- sp[...]: constructor arguments
328  // -----------------------------------
329
330  // Should never create mementos for api functions.
331  DCHECK(!is_api_function || !create_memento);
332
333  Isolate* isolate = masm->isolate();
334
335  // ----------- S t a t e -------------
336  //  -- a0     : number of arguments
337  //  -- a1     : constructor function
338  //  -- ra     : return address
339  //  -- sp[...]: constructor arguments
340  // -----------------------------------
341
342  // Enter a construct frame.
343  {
344    FrameScope scope(masm, StackFrame::CONSTRUCT);
345
346    if (create_memento) {
347      __ AssertUndefinedOrAllocationSite(a2, a3);
348      __ push(a2);
349    }
350
351    // Preserve the two incoming parameters on the stack.
352    // Tag arguments count.
353    __ dsll32(a0, a0, 0);
354    __ MultiPushReversed(a0.bit() | a1.bit());
355
356    Label rt_call, allocated;
357    // Try to allocate the object without transitioning into C code. If any of
358    // the preconditions is not met, the code bails out to the runtime call.
359    if (FLAG_inline_new) {
360      Label undo_allocation;
361      ExternalReference debug_step_in_fp =
362          ExternalReference::debug_step_in_fp_address(isolate);
363      __ li(a2, Operand(debug_step_in_fp));
364      __ ld(a2, MemOperand(a2));
365      __ Branch(&rt_call, ne, a2, Operand(zero_reg));
366
367      // Load the initial map and verify that it is in fact a map.
368      // a1: constructor function
369      __ ld(a2, FieldMemOperand(a1, JSFunction::kPrototypeOrInitialMapOffset));
370      __ JumpIfSmi(a2, &rt_call);
371      __ GetObjectType(a2, a3, t0);
372      __ Branch(&rt_call, ne, t0, Operand(MAP_TYPE));
373
374      // Check that the constructor is not constructing a JSFunction (see
375      // comments in Runtime_NewObject in runtime.cc). In which case the
376      // initial map's instance type would be JS_FUNCTION_TYPE.
377      // a1: constructor function
378      // a2: initial map
379      __ lbu(a3, FieldMemOperand(a2, Map::kInstanceTypeOffset));
380      __ Branch(&rt_call, eq, a3, Operand(JS_FUNCTION_TYPE));
381
382      if (!is_api_function) {
383        Label allocate;
384        MemOperand bit_field3 = FieldMemOperand(a2, Map::kBitField3Offset);
385        // Check if slack tracking is enabled.
386        __ lwu(a4, bit_field3);
387        __ DecodeField<Map::ConstructionCount>(a6, a4);
388        __ Branch(&allocate,
389                  eq,
390                  a6,
391                  Operand(static_cast<int64_t>(JSFunction::kNoSlackTracking)));
392        // Decrease generous allocation count.
393        __ Dsubu(a4, a4, Operand(1 << Map::ConstructionCount::kShift));
394        __ Branch(USE_DELAY_SLOT,
395            &allocate, ne, a6, Operand(JSFunction::kFinishSlackTracking));
396        __ sw(a4, bit_field3);  // In delay slot.
397
398        __ Push(a1, a2, a1);  // a1 = Constructor.
399        __ CallRuntime(Runtime::kFinalizeInstanceSize, 1);
400
401        __ Pop(a1, a2);
402        // Slack tracking counter is kNoSlackTracking after runtime call.
403        DCHECK(JSFunction::kNoSlackTracking == 0);
404        __ mov(a6, zero_reg);
405
406        __ bind(&allocate);
407      }
408
409      // Now allocate the JSObject on the heap.
410      // a1: constructor function
411      // a2: initial map
412      __ lbu(a3, FieldMemOperand(a2, Map::kInstanceSizeOffset));
413      if (create_memento) {
414        __ Daddu(a3, a3, Operand(AllocationMemento::kSize / kPointerSize));
415      }
416
417      __ Allocate(a3, t0, t1, t2, &rt_call, SIZE_IN_WORDS);
418
419      // Allocated the JSObject, now initialize the fields. Map is set to
420      // initial map and properties and elements are set to empty fixed array.
421      // a1: constructor function
422      // a2: initial map
423      // a3: object size (not including memento if create_memento)
424      // t0: JSObject (not tagged)
425      __ LoadRoot(t2, Heap::kEmptyFixedArrayRootIndex);
426      __ mov(t1, t0);
427      __ sd(a2, MemOperand(t1, JSObject::kMapOffset));
428      __ sd(t2, MemOperand(t1, JSObject::kPropertiesOffset));
429      __ sd(t2, MemOperand(t1, JSObject::kElementsOffset));
430      __ Daddu(t1, t1, Operand(3*kPointerSize));
431      DCHECK_EQ(0 * kPointerSize, JSObject::kMapOffset);
432      DCHECK_EQ(1 * kPointerSize, JSObject::kPropertiesOffset);
433      DCHECK_EQ(2 * kPointerSize, JSObject::kElementsOffset);
434
435      // Fill all the in-object properties with appropriate filler.
436      // a1: constructor function
437      // a2: initial map
438      // a3: object size (in words, including memento if create_memento)
439      // t0: JSObject (not tagged)
440      // t1: First in-object property of JSObject (not tagged)
441      // a6: slack tracking counter (non-API function case)
442      DCHECK_EQ(3 * kPointerSize, JSObject::kHeaderSize);
443
444      // Use t3 to hold undefined, which is used in several places below.
445      __ LoadRoot(t3, Heap::kUndefinedValueRootIndex);
446
447      if (!is_api_function) {
448        Label no_inobject_slack_tracking;
449
450        // Check if slack tracking is enabled.
451        __ Branch(&no_inobject_slack_tracking,
452                  eq,
453                  a6,
454                  Operand(static_cast<int64_t>(JSFunction::kNoSlackTracking)));
455
456        // Allocate object with a slack.
457        __ lwu(a0, FieldMemOperand(a2, Map::kInstanceSizesOffset));
458        __ Ext(a0, a0, Map::kPreAllocatedPropertyFieldsByte * kBitsPerByte,
459                kBitsPerByte);
460        __ dsll(at, a0, kPointerSizeLog2);
461        __ daddu(a0, t1, at);
462        // a0: offset of first field after pre-allocated fields
463        if (FLAG_debug_code) {
464          __ dsll(at, a3, kPointerSizeLog2);
465          __ Daddu(t2, t0, Operand(at));   // End of object.
466          __ Assert(le, kUnexpectedNumberOfPreAllocatedPropertyFields,
467              a0, Operand(t2));
468        }
469        __ InitializeFieldsWithFiller(t1, a0, t3);
470        // To allow for truncation.
471        __ LoadRoot(t3, Heap::kOnePointerFillerMapRootIndex);
472        // Fill the remaining fields with one pointer filler map.
473
474        __ bind(&no_inobject_slack_tracking);
475      }
476
477      if (create_memento) {
478        __ Dsubu(a0, a3, Operand(AllocationMemento::kSize / kPointerSize));
479        __ dsll(a0, a0, kPointerSizeLog2);
480        __ Daddu(a0, t0, Operand(a0));  // End of object.
481        __ InitializeFieldsWithFiller(t1, a0, t3);
482
483        // Fill in memento fields.
484        // t1: points to the allocated but uninitialized memento.
485        __ LoadRoot(t3, Heap::kAllocationMementoMapRootIndex);
486        DCHECK_EQ(0 * kPointerSize, AllocationMemento::kMapOffset);
487        __ sd(t3, MemOperand(t1));
488        __ Daddu(t1, t1, kPointerSize);
489        // Load the AllocationSite.
490        __ ld(t3, MemOperand(sp, 2 * kPointerSize));
491        DCHECK_EQ(1 * kPointerSize, AllocationMemento::kAllocationSiteOffset);
492        __ sd(t3, MemOperand(t1));
493        __ Daddu(t1, t1, kPointerSize);
494      } else {
495        __ dsll(at, a3, kPointerSizeLog2);
496        __ Daddu(a0, t0, Operand(at));  // End of object.
497        __ InitializeFieldsWithFiller(t1, a0, t3);
498      }
499
500      // Add the object tag to make the JSObject real, so that we can continue
501      // and jump into the continuation code at any time from now on. Any
502      // failures need to undo the allocation, so that the heap is in a
503      // consistent state and verifiable.
504      __ Daddu(t0, t0, Operand(kHeapObjectTag));
505
506      // Check if a non-empty properties array is needed. Continue with
507      // allocated object if not fall through to runtime call if it is.
508      // a1: constructor function
509      // t0: JSObject
510      // t1: start of next object (not tagged)
511      __ lbu(a3, FieldMemOperand(a2, Map::kUnusedPropertyFieldsOffset));
512      // The field instance sizes contains both pre-allocated property fields
513      // and in-object properties.
514      __ lw(a0, FieldMemOperand(a2, Map::kInstanceSizesOffset));
515      __ Ext(t2, a0, Map::kPreAllocatedPropertyFieldsByte * kBitsPerByte,
516             kBitsPerByte);
517      __ Daddu(a3, a3, Operand(t2));
518      __ Ext(t2, a0, Map::kInObjectPropertiesByte * kBitsPerByte,
519              kBitsPerByte);
520      __ dsubu(a3, a3, t2);
521
522      // Done if no extra properties are to be allocated.
523      __ Branch(&allocated, eq, a3, Operand(zero_reg));
524      __ Assert(greater_equal, kPropertyAllocationCountFailed,
525          a3, Operand(zero_reg));
526
527      // Scale the number of elements by pointer size and add the header for
528      // FixedArrays to the start of the next object calculation from above.
529      // a1: constructor
530      // a3: number of elements in properties array
531      // t0: JSObject
532      // t1: start of next object
533      __ Daddu(a0, a3, Operand(FixedArray::kHeaderSize / kPointerSize));
534      __ Allocate(
535          a0,
536          t1,
537          t2,
538          a2,
539          &undo_allocation,
540          static_cast<AllocationFlags>(RESULT_CONTAINS_TOP | SIZE_IN_WORDS));
541
542      // Initialize the FixedArray.
543      // a1: constructor
544      // a3: number of elements in properties array (untagged)
545      // t0: JSObject
546      // t1: start of next object
547      __ LoadRoot(t2, Heap::kFixedArrayMapRootIndex);
548      __ mov(a2, t1);
549      __ sd(t2, MemOperand(a2, JSObject::kMapOffset));
550      // Tag number of elements.
551      __ dsll32(a0, a3, 0);
552      __ sd(a0, MemOperand(a2, FixedArray::kLengthOffset));
553      __ Daddu(a2, a2, Operand(2 * kPointerSize));
554
555      DCHECK_EQ(0 * kPointerSize, JSObject::kMapOffset);
556      DCHECK_EQ(1 * kPointerSize, FixedArray::kLengthOffset);
557
558      // Initialize the fields to undefined.
559      // a1: constructor
560      // a2: First element of FixedArray (not tagged)
561      // a3: number of elements in properties array
562      // t0: JSObject
563      // t1: FixedArray (not tagged)
564      __ dsll(a7, a3, kPointerSizeLog2);
565      __ daddu(t2, a2, a7);  // End of object.
566      DCHECK_EQ(2 * kPointerSize, FixedArray::kHeaderSize);
567      { Label loop, entry;
568        if (!is_api_function || create_memento) {
569          __ LoadRoot(t3, Heap::kUndefinedValueRootIndex);
570        } else if (FLAG_debug_code) {
571          __ LoadRoot(a6, Heap::kUndefinedValueRootIndex);
572          __ Assert(eq, kUndefinedValueNotLoaded, t3, Operand(a6));
573        }
574        __ jmp(&entry);
575        __ bind(&loop);
576        __ sd(t3, MemOperand(a2));
577        __ daddiu(a2, a2, kPointerSize);
578        __ bind(&entry);
579        __ Branch(&loop, less, a2, Operand(t2));
580      }
581
582      // Store the initialized FixedArray into the properties field of
583      // the JSObject.
584      // a1: constructor function
585      // t0: JSObject
586      // t1: FixedArray (not tagged)
587      __ Daddu(t1, t1, Operand(kHeapObjectTag));  // Add the heap tag.
588      __ sd(t1, FieldMemOperand(t0, JSObject::kPropertiesOffset));
589
590      // Continue with JSObject being successfully allocated.
591      // a1: constructor function
592      // a4: JSObject
593      __ jmp(&allocated);
594
595      // Undo the setting of the new top so that the heap is verifiable. For
596      // example, the map's unused properties potentially do not match the
597      // allocated objects unused properties.
598      // t0: JSObject (previous new top)
599      __ bind(&undo_allocation);
600      __ UndoAllocationInNewSpace(t0, t1);
601    }
602
603    // Allocate the new receiver object using the runtime call.
604    // a1: constructor function
605    __ bind(&rt_call);
606    if (create_memento) {
607      // Get the cell or allocation site.
608      __ ld(a2, MemOperand(sp, 2 * kPointerSize));
609      __ push(a2);
610    }
611
612    __ push(a1);  // Argument for Runtime_NewObject.
613    if (create_memento) {
614      __ CallRuntime(Runtime::kNewObjectWithAllocationSite, 2);
615    } else {
616      __ CallRuntime(Runtime::kNewObject, 1);
617    }
618    __ mov(t0, v0);
619
620    // If we ended up using the runtime, and we want a memento, then the
621    // runtime call made it for us, and we shouldn't do create count
622    // increment.
623    Label count_incremented;
624    if (create_memento) {
625      __ jmp(&count_incremented);
626    }
627
628    // Receiver for constructor call allocated.
629    // t0: JSObject
630    __ bind(&allocated);
631
632    if (create_memento) {
633      __ ld(a2, MemOperand(sp, kPointerSize * 2));
634      __ LoadRoot(t1, Heap::kUndefinedValueRootIndex);
635      __ Branch(&count_incremented, eq, a2, Operand(t1));
636      // a2 is an AllocationSite. We are creating a memento from it, so we
637      // need to increment the memento create count.
638      __ ld(a3, FieldMemOperand(a2,
639                                AllocationSite::kPretenureCreateCountOffset));
640      __ Daddu(a3, a3, Operand(Smi::FromInt(1)));
641      __ sd(a3, FieldMemOperand(a2,
642                                AllocationSite::kPretenureCreateCountOffset));
643      __ bind(&count_incremented);
644    }
645
646    __ Push(t0, t0);
647
648    // Reload the number of arguments from the stack.
649    // sp[0]: receiver
650    // sp[1]: receiver
651    // sp[2]: constructor function
652    // sp[3]: number of arguments (smi-tagged)
653    __ ld(a1, MemOperand(sp, 2 * kPointerSize));
654    __ ld(a3, MemOperand(sp, 3 * kPointerSize));
655
656    // Set up pointer to last argument.
657    __ Daddu(a2, fp, Operand(StandardFrameConstants::kCallerSPOffset));
658
659    // Set up number of arguments for function call below.
660    __ SmiUntag(a0, a3);
661
662    // Copy arguments and receiver to the expression stack.
663    // a0: number of arguments
664    // a1: constructor function
665    // a2: address of last argument (caller sp)
666    // a3: number of arguments (smi-tagged)
667    // sp[0]: receiver
668    // sp[1]: receiver
669    // sp[2]: constructor function
670    // sp[3]: number of arguments (smi-tagged)
671    Label loop, entry;
672    __ SmiUntag(a3);
673    __ jmp(&entry);
674    __ bind(&loop);
675    __ dsll(a4, a3, kPointerSizeLog2);
676    __ Daddu(a4, a2, Operand(a4));
677    __ ld(a5, MemOperand(a4));
678    __ push(a5);
679    __ bind(&entry);
680    __ Daddu(a3, a3, Operand(-1));
681    __ Branch(&loop, greater_equal, a3, Operand(zero_reg));
682
683    // Call the function.
684    // a0: number of arguments
685    // a1: constructor function
686    if (is_api_function) {
687      __ ld(cp, FieldMemOperand(a1, JSFunction::kContextOffset));
688      Handle<Code> code =
689          masm->isolate()->builtins()->HandleApiCallConstruct();
690      __ Call(code, RelocInfo::CODE_TARGET);
691    } else {
692      ParameterCount actual(a0);
693      __ InvokeFunction(a1, actual, CALL_FUNCTION, NullCallWrapper());
694    }
695
696    // Store offset of return address for deoptimizer.
697    if (!is_api_function) {
698      masm->isolate()->heap()->SetConstructStubDeoptPCOffset(masm->pc_offset());
699    }
700
701    // Restore context from the frame.
702    __ ld(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
703
704    // If the result is an object (in the ECMA sense), we should get rid
705    // of the receiver and use the result; see ECMA-262 section 13.2.2-7
706    // on page 74.
707    Label use_receiver, exit;
708
709    // If the result is a smi, it is *not* an object in the ECMA sense.
710    // v0: result
711    // sp[0]: receiver (newly allocated object)
712    // sp[1]: constructor function
713    // sp[2]: number of arguments (smi-tagged)
714    __ JumpIfSmi(v0, &use_receiver);
715
716    // If the type of the result (stored in its map) is less than
717    // FIRST_SPEC_OBJECT_TYPE, it is not an object in the ECMA sense.
718    __ GetObjectType(v0, a1, a3);
719    __ Branch(&exit, greater_equal, a3, Operand(FIRST_SPEC_OBJECT_TYPE));
720
721    // Throw away the result of the constructor invocation and use the
722    // on-stack receiver as the result.
723    __ bind(&use_receiver);
724    __ ld(v0, MemOperand(sp));
725
726    // Remove receiver from the stack, remove caller arguments, and
727    // return.
728    __ bind(&exit);
729    // v0: result
730    // sp[0]: receiver (newly allocated object)
731    // sp[1]: constructor function
732    // sp[2]: number of arguments (smi-tagged)
733    __ ld(a1, MemOperand(sp, 2 * kPointerSize));
734
735    // Leave construct frame.
736  }
737
738  __ SmiScale(a4, a1, kPointerSizeLog2);
739  __ Daddu(sp, sp, a4);
740  __ Daddu(sp, sp, kPointerSize);
741  __ IncrementCounter(isolate->counters()->constructed_objects(), 1, a1, a2);
742  __ Ret();
743}
744
745
746void Builtins::Generate_JSConstructStubGeneric(MacroAssembler* masm) {
747  Generate_JSConstructStubHelper(masm, false, FLAG_pretenuring_call_new);
748}
749
750
751void Builtins::Generate_JSConstructStubApi(MacroAssembler* masm) {
752  Generate_JSConstructStubHelper(masm, true, false);
753}
754
755
756static void Generate_JSEntryTrampolineHelper(MacroAssembler* masm,
757                                             bool is_construct) {
758  // Called from JSEntryStub::GenerateBody
759
760  // ----------- S t a t e -------------
761  //  -- a0: code entry
762  //  -- a1: function
763  //  -- a2: receiver_pointer
764  //  -- a3: argc
765  //  -- s0: argv
766  // -----------------------------------
767  ProfileEntryHookStub::MaybeCallEntryHook(masm);
768  // Clear the context before we push it when entering the JS frame.
769  __ mov(cp, zero_reg);
770
771  // Enter an internal frame.
772  {
773    FrameScope scope(masm, StackFrame::INTERNAL);
774
775    // Set up the context from the function argument.
776    __ ld(cp, FieldMemOperand(a1, JSFunction::kContextOffset));
777
778    // Push the function and the receiver onto the stack.
779    __ Push(a1, a2);
780
781    // Copy arguments to the stack in a loop.
782    // a3: argc
783    // s0: argv, i.e. points to first arg
784    Label loop, entry;
785    // TODO(plind): At least on simulator, argc in a3 is an int32_t with junk
786    //    in upper bits. Should fix the root cause, rather than use below
787    //    workaround to clear upper bits.
788    __ dsll32(a3, a3, 0);  // int32_t -> int64_t.
789    __ dsrl32(a3, a3, 0);
790    __ dsll(a4, a3, kPointerSizeLog2);
791    __ daddu(a6, s0, a4);
792    __ b(&entry);
793    __ nop();   // Branch delay slot nop.
794    // a6 points past last arg.
795    __ bind(&loop);
796    __ ld(a4, MemOperand(s0));  // Read next parameter.
797    __ daddiu(s0, s0, kPointerSize);
798    __ ld(a4, MemOperand(a4));  // Dereference handle.
799    __ push(a4);  // Push parameter.
800    __ bind(&entry);
801    __ Branch(&loop, ne, s0, Operand(a6));
802
803    // Initialize all JavaScript callee-saved registers, since they will be seen
804    // by the garbage collector as part of handlers.
805    __ LoadRoot(a4, Heap::kUndefinedValueRootIndex);
806    __ mov(s1, a4);
807    __ mov(s2, a4);
808    __ mov(s3, a4);
809    __ mov(s4, a4);
810    __ mov(s5, a4);
811    // s6 holds the root address. Do not clobber.
812    // s7 is cp. Do not init.
813
814    // Invoke the code and pass argc as a0.
815    __ mov(a0, a3);
816    if (is_construct) {
817      // No type feedback cell is available
818      __ LoadRoot(a2, Heap::kUndefinedValueRootIndex);
819      CallConstructStub stub(masm->isolate(), NO_CALL_CONSTRUCTOR_FLAGS);
820      __ CallStub(&stub);
821    } else {
822      ParameterCount actual(a0);
823      __ InvokeFunction(a1, actual, CALL_FUNCTION, NullCallWrapper());
824    }
825
826    // Leave internal frame.
827  }
828  __ Jump(ra);
829}
830
831
832void Builtins::Generate_JSEntryTrampoline(MacroAssembler* masm) {
833  Generate_JSEntryTrampolineHelper(masm, false);
834}
835
836
837void Builtins::Generate_JSConstructEntryTrampoline(MacroAssembler* masm) {
838  Generate_JSEntryTrampolineHelper(masm, true);
839}
840
841
842void Builtins::Generate_CompileLazy(MacroAssembler* masm) {
843  CallRuntimePassFunction(masm, Runtime::kCompileLazy);
844  GenerateTailCallToReturnedCode(masm);
845}
846
847
848static void CallCompileOptimized(MacroAssembler* masm, bool concurrent) {
849  FrameScope scope(masm, StackFrame::INTERNAL);
850  // Push a copy of the function onto the stack.
851  // Push function as parameter to the runtime call.
852  __ Push(a1, a1);
853  // Whether to compile in a background thread.
854  __ Push(masm->isolate()->factory()->ToBoolean(concurrent));
855
856  __ CallRuntime(Runtime::kCompileOptimized, 2);
857  // Restore receiver.
858  __ Pop(a1);
859}
860
861
862void Builtins::Generate_CompileOptimized(MacroAssembler* masm) {
863  CallCompileOptimized(masm, false);
864  GenerateTailCallToReturnedCode(masm);
865}
866
867
868void Builtins::Generate_CompileOptimizedConcurrent(MacroAssembler* masm) {
869  CallCompileOptimized(masm, true);
870  GenerateTailCallToReturnedCode(masm);
871}
872
873
874static void GenerateMakeCodeYoungAgainCommon(MacroAssembler* masm) {
875  // For now, we are relying on the fact that make_code_young doesn't do any
876  // garbage collection which allows us to save/restore the registers without
877  // worrying about which of them contain pointers. We also don't build an
878  // internal frame to make the code faster, since we shouldn't have to do stack
879  // crawls in MakeCodeYoung. This seems a bit fragile.
880
881  // Set a0 to point to the head of the PlatformCodeAge sequence.
882  __ Dsubu(a0, a0,
883      Operand(kNoCodeAgeSequenceLength - Assembler::kInstrSize));
884
885  // The following registers must be saved and restored when calling through to
886  // the runtime:
887  //   a0 - contains return address (beginning of patch sequence)
888  //   a1 - isolate
889  RegList saved_regs =
890      (a0.bit() | a1.bit() | ra.bit() | fp.bit()) & ~sp.bit();
891  FrameScope scope(masm, StackFrame::MANUAL);
892  __ MultiPush(saved_regs);
893  __ PrepareCallCFunction(2, 0, a2);
894  __ li(a1, Operand(ExternalReference::isolate_address(masm->isolate())));
895  __ CallCFunction(
896      ExternalReference::get_make_code_young_function(masm->isolate()), 2);
897  __ MultiPop(saved_regs);
898  __ Jump(a0);
899}
900
901#define DEFINE_CODE_AGE_BUILTIN_GENERATOR(C)                 \
902void Builtins::Generate_Make##C##CodeYoungAgainEvenMarking(  \
903    MacroAssembler* masm) {                                  \
904  GenerateMakeCodeYoungAgainCommon(masm);                    \
905}                                                            \
906void Builtins::Generate_Make##C##CodeYoungAgainOddMarking(   \
907    MacroAssembler* masm) {                                  \
908  GenerateMakeCodeYoungAgainCommon(masm);                    \
909}
910CODE_AGE_LIST(DEFINE_CODE_AGE_BUILTIN_GENERATOR)
911#undef DEFINE_CODE_AGE_BUILTIN_GENERATOR
912
913
914void Builtins::Generate_MarkCodeAsExecutedOnce(MacroAssembler* masm) {
915  // For now, as in GenerateMakeCodeYoungAgainCommon, we are relying on the fact
916  // that make_code_young doesn't do any garbage collection which allows us to
917  // save/restore the registers without worrying about which of them contain
918  // pointers.
919
920  // Set a0 to point to the head of the PlatformCodeAge sequence.
921  __ Dsubu(a0, a0,
922      Operand(kNoCodeAgeSequenceLength - Assembler::kInstrSize));
923
924  // The following registers must be saved and restored when calling through to
925  // the runtime:
926  //   a0 - contains return address (beginning of patch sequence)
927  //   a1 - isolate
928  RegList saved_regs =
929      (a0.bit() | a1.bit() | ra.bit() | fp.bit()) & ~sp.bit();
930  FrameScope scope(masm, StackFrame::MANUAL);
931  __ MultiPush(saved_regs);
932  __ PrepareCallCFunction(2, 0, a2);
933  __ li(a1, Operand(ExternalReference::isolate_address(masm->isolate())));
934  __ CallCFunction(
935      ExternalReference::get_mark_code_as_executed_function(masm->isolate()),
936      2);
937  __ MultiPop(saved_regs);
938
939  // Perform prologue operations usually performed by the young code stub.
940  __ Push(ra, fp, cp, a1);
941  __ Daddu(fp, sp, Operand(StandardFrameConstants::kFixedFrameSizeFromFp));
942
943  // Jump to point after the code-age stub.
944  __ Daddu(a0, a0, Operand((kNoCodeAgeSequenceLength)));
945  __ Jump(a0);
946}
947
948
949void Builtins::Generate_MarkCodeAsExecutedTwice(MacroAssembler* masm) {
950  GenerateMakeCodeYoungAgainCommon(masm);
951}
952
953
954static void Generate_NotifyStubFailureHelper(MacroAssembler* masm,
955                                             SaveFPRegsMode save_doubles) {
956  {
957    FrameScope scope(masm, StackFrame::INTERNAL);
958
959    // Preserve registers across notification, this is important for compiled
960    // stubs that tail call the runtime on deopts passing their parameters in
961    // registers.
962    __ MultiPush(kJSCallerSaved | kCalleeSaved);
963    // Pass the function and deoptimization type to the runtime system.
964    __ CallRuntime(Runtime::kNotifyStubFailure, 0, save_doubles);
965    __ MultiPop(kJSCallerSaved | kCalleeSaved);
966  }
967
968  __ Daddu(sp, sp, Operand(kPointerSize));  // Ignore state
969  __ Jump(ra);  // Jump to miss handler
970}
971
972
973void Builtins::Generate_NotifyStubFailure(MacroAssembler* masm) {
974  Generate_NotifyStubFailureHelper(masm, kDontSaveFPRegs);
975}
976
977
978void Builtins::Generate_NotifyStubFailureSaveDoubles(MacroAssembler* masm) {
979  Generate_NotifyStubFailureHelper(masm, kSaveFPRegs);
980}
981
982
983static void Generate_NotifyDeoptimizedHelper(MacroAssembler* masm,
984                                             Deoptimizer::BailoutType type) {
985  {
986    FrameScope scope(masm, StackFrame::INTERNAL);
987    // Pass the function and deoptimization type to the runtime system.
988    __ li(a0, Operand(Smi::FromInt(static_cast<int>(type))));
989    __ push(a0);
990    __ CallRuntime(Runtime::kNotifyDeoptimized, 1);
991  }
992
993  // Get the full codegen state from the stack and untag it -> a6.
994  __ ld(a6, MemOperand(sp, 0 * kPointerSize));
995  __ SmiUntag(a6);
996  // Switch on the state.
997  Label with_tos_register, unknown_state;
998  __ Branch(&with_tos_register,
999            ne, a6, Operand(FullCodeGenerator::NO_REGISTERS));
1000  __ Ret(USE_DELAY_SLOT);
1001  // Safe to fill delay slot Addu will emit one instruction.
1002  __ Daddu(sp, sp, Operand(1 * kPointerSize));  // Remove state.
1003
1004  __ bind(&with_tos_register);
1005  __ ld(v0, MemOperand(sp, 1 * kPointerSize));
1006  __ Branch(&unknown_state, ne, a6, Operand(FullCodeGenerator::TOS_REG));
1007
1008  __ Ret(USE_DELAY_SLOT);
1009  // Safe to fill delay slot Addu will emit one instruction.
1010  __ Daddu(sp, sp, Operand(2 * kPointerSize));  // Remove state.
1011
1012  __ bind(&unknown_state);
1013  __ stop("no cases left");
1014}
1015
1016
1017void Builtins::Generate_NotifyDeoptimized(MacroAssembler* masm) {
1018  Generate_NotifyDeoptimizedHelper(masm, Deoptimizer::EAGER);
1019}
1020
1021
1022void Builtins::Generate_NotifySoftDeoptimized(MacroAssembler* masm) {
1023  Generate_NotifyDeoptimizedHelper(masm, Deoptimizer::SOFT);
1024}
1025
1026
1027void Builtins::Generate_NotifyLazyDeoptimized(MacroAssembler* masm) {
1028  Generate_NotifyDeoptimizedHelper(masm, Deoptimizer::LAZY);
1029}
1030
1031
1032void Builtins::Generate_OnStackReplacement(MacroAssembler* masm) {
1033  // Lookup the function in the JavaScript frame.
1034  __ ld(a0, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
1035  {
1036    FrameScope scope(masm, StackFrame::INTERNAL);
1037    // Pass function as argument.
1038    __ push(a0);
1039    __ CallRuntime(Runtime::kCompileForOnStackReplacement, 1);
1040  }
1041
1042  // If the code object is null, just return to the unoptimized code.
1043  __ Ret(eq, v0, Operand(Smi::FromInt(0)));
1044
1045  // Load deoptimization data from the code object.
1046  // <deopt_data> = <code>[#deoptimization_data_offset]
1047  __ Uld(a1, MemOperand(v0, Code::kDeoptimizationDataOffset - kHeapObjectTag));
1048
1049  // Load the OSR entrypoint offset from the deoptimization data.
1050  // <osr_offset> = <deopt_data>[#header_size + #osr_pc_offset]
1051  __ ld(a1, MemOperand(a1, FixedArray::OffsetOfElementAt(
1052      DeoptimizationInputData::kOsrPcOffsetIndex) - kHeapObjectTag));
1053  __ SmiUntag(a1);
1054
1055  // Compute the target address = code_obj + header_size + osr_offset
1056  // <entry_addr> = <code_obj> + #header_size + <osr_offset>
1057  __ daddu(v0, v0, a1);
1058  __ daddiu(ra, v0, Code::kHeaderSize - kHeapObjectTag);
1059
1060  // And "return" to the OSR entry point of the function.
1061  __ Ret();
1062}
1063
1064
1065void Builtins::Generate_OsrAfterStackCheck(MacroAssembler* masm) {
1066  // We check the stack limit as indicator that recompilation might be done.
1067  Label ok;
1068  __ LoadRoot(at, Heap::kStackLimitRootIndex);
1069  __ Branch(&ok, hs, sp, Operand(at));
1070  {
1071    FrameScope scope(masm, StackFrame::INTERNAL);
1072    __ CallRuntime(Runtime::kStackGuard, 0);
1073  }
1074  __ Jump(masm->isolate()->builtins()->OnStackReplacement(),
1075          RelocInfo::CODE_TARGET);
1076
1077  __ bind(&ok);
1078  __ Ret();
1079}
1080
1081
1082void Builtins::Generate_FunctionCall(MacroAssembler* masm) {
1083  // 1. Make sure we have at least one argument.
1084  // a0: actual number of arguments
1085  { Label done;
1086    __ Branch(&done, ne, a0, Operand(zero_reg));
1087    __ LoadRoot(a6, Heap::kUndefinedValueRootIndex);
1088    __ push(a6);
1089    __ Daddu(a0, a0, Operand(1));
1090    __ bind(&done);
1091  }
1092
1093  // 2. Get the function to call (passed as receiver) from the stack, check
1094  //    if it is a function.
1095  // a0: actual number of arguments
1096  Label slow, non_function;
1097  __ dsll(at, a0, kPointerSizeLog2);
1098  __ daddu(at, sp, at);
1099  __ ld(a1, MemOperand(at));
1100  __ JumpIfSmi(a1, &non_function);
1101  __ GetObjectType(a1, a2, a2);
1102  __ Branch(&slow, ne, a2, Operand(JS_FUNCTION_TYPE));
1103
1104  // 3a. Patch the first argument if necessary when calling a function.
1105  // a0: actual number of arguments
1106  // a1: function
1107  Label shift_arguments;
1108  __ li(a4, Operand(0, RelocInfo::NONE32));  // Indicate regular JS_FUNCTION.
1109  { Label convert_to_object, use_global_proxy, patch_receiver;
1110    // Change context eagerly in case we need the global receiver.
1111    __ ld(cp, FieldMemOperand(a1, JSFunction::kContextOffset));
1112
1113    // Do not transform the receiver for strict mode functions.
1114    __ ld(a2, FieldMemOperand(a1, JSFunction::kSharedFunctionInfoOffset));
1115    __ lbu(a3, FieldMemOperand(a2, SharedFunctionInfo::kStrictModeByteOffset));
1116    __ And(a7, a3, Operand(1 << SharedFunctionInfo::kStrictModeBitWithinByte));
1117    __ Branch(&shift_arguments, ne, a7, Operand(zero_reg));
1118
1119    // Do not transform the receiver for native (Compilerhints already in a3).
1120    __ lbu(a3, FieldMemOperand(a2, SharedFunctionInfo::kNativeByteOffset));
1121    __ And(a7, a3, Operand(1 << SharedFunctionInfo::kNativeBitWithinByte));
1122    __ Branch(&shift_arguments, ne, a7, Operand(zero_reg));
1123
1124    // Compute the receiver in sloppy mode.
1125    // Load first argument in a2. a2 = -kPointerSize(sp + n_args << 2).
1126    __ dsll(at, a0, kPointerSizeLog2);
1127    __ daddu(a2, sp, at);
1128    __ ld(a2, MemOperand(a2, -kPointerSize));
1129    // a0: actual number of arguments
1130    // a1: function
1131    // a2: first argument
1132    __ JumpIfSmi(a2, &convert_to_object, a6);
1133
1134    __ LoadRoot(a3, Heap::kUndefinedValueRootIndex);
1135    __ Branch(&use_global_proxy, eq, a2, Operand(a3));
1136    __ LoadRoot(a3, Heap::kNullValueRootIndex);
1137    __ Branch(&use_global_proxy, eq, a2, Operand(a3));
1138
1139    STATIC_ASSERT(LAST_SPEC_OBJECT_TYPE == LAST_TYPE);
1140    __ GetObjectType(a2, a3, a3);
1141    __ Branch(&shift_arguments, ge, a3, Operand(FIRST_SPEC_OBJECT_TYPE));
1142
1143    __ bind(&convert_to_object);
1144    // Enter an internal frame in order to preserve argument count.
1145    {
1146      FrameScope scope(masm, StackFrame::INTERNAL);
1147      __ SmiTag(a0);
1148      __ Push(a0, a2);
1149      __ InvokeBuiltin(Builtins::TO_OBJECT, CALL_FUNCTION);
1150      __ mov(a2, v0);
1151
1152      __ pop(a0);
1153      __ SmiUntag(a0);
1154      // Leave internal frame.
1155    }
1156    // Restore the function to a1, and the flag to a4.
1157    __ dsll(at, a0, kPointerSizeLog2);
1158    __ daddu(at, sp, at);
1159    __ ld(a1, MemOperand(at));
1160    __ Branch(USE_DELAY_SLOT, &patch_receiver);
1161    __ li(a4, Operand(0, RelocInfo::NONE32));
1162
1163    __ bind(&use_global_proxy);
1164    __ ld(a2, ContextOperand(cp, Context::GLOBAL_OBJECT_INDEX));
1165    __ ld(a2, FieldMemOperand(a2, GlobalObject::kGlobalProxyOffset));
1166
1167    __ bind(&patch_receiver);
1168    __ dsll(at, a0, kPointerSizeLog2);
1169    __ daddu(a3, sp, at);
1170    __ sd(a2, MemOperand(a3, -kPointerSize));
1171
1172    __ Branch(&shift_arguments);
1173  }
1174
1175  // 3b. Check for function proxy.
1176  __ bind(&slow);
1177  __ li(a4, Operand(1, RelocInfo::NONE32));  // Indicate function proxy.
1178  __ Branch(&shift_arguments, eq, a2, Operand(JS_FUNCTION_PROXY_TYPE));
1179
1180  __ bind(&non_function);
1181  __ li(a4, Operand(2, RelocInfo::NONE32));  // Indicate non-function.
1182
1183  // 3c. Patch the first argument when calling a non-function.  The
1184  //     CALL_NON_FUNCTION builtin expects the non-function callee as
1185  //     receiver, so overwrite the first argument which will ultimately
1186  //     become the receiver.
1187  // a0: actual number of arguments
1188  // a1: function
1189  // a4: call type (0: JS function, 1: function proxy, 2: non-function)
1190  __ dsll(at, a0, kPointerSizeLog2);
1191  __ daddu(a2, sp, at);
1192  __ sd(a1, MemOperand(a2, -kPointerSize));
1193
1194  // 4. Shift arguments and return address one slot down on the stack
1195  //    (overwriting the original receiver).  Adjust argument count to make
1196  //    the original first argument the new receiver.
1197  // a0: actual number of arguments
1198  // a1: function
1199  // a4: call type (0: JS function, 1: function proxy, 2: non-function)
1200  __ bind(&shift_arguments);
1201  { Label loop;
1202    // Calculate the copy start address (destination). Copy end address is sp.
1203    __ dsll(at, a0, kPointerSizeLog2);
1204    __ daddu(a2, sp, at);
1205
1206    __ bind(&loop);
1207    __ ld(at, MemOperand(a2, -kPointerSize));
1208    __ sd(at, MemOperand(a2));
1209    __ Dsubu(a2, a2, Operand(kPointerSize));
1210    __ Branch(&loop, ne, a2, Operand(sp));
1211    // Adjust the actual number of arguments and remove the top element
1212    // (which is a copy of the last argument).
1213    __ Dsubu(a0, a0, Operand(1));
1214    __ Pop();
1215  }
1216
1217  // 5a. Call non-function via tail call to CALL_NON_FUNCTION builtin,
1218  //     or a function proxy via CALL_FUNCTION_PROXY.
1219  // a0: actual number of arguments
1220  // a1: function
1221  // a4: call type (0: JS function, 1: function proxy, 2: non-function)
1222  { Label function, non_proxy;
1223    __ Branch(&function, eq, a4, Operand(zero_reg));
1224    // Expected number of arguments is 0 for CALL_NON_FUNCTION.
1225    __ mov(a2, zero_reg);
1226    __ Branch(&non_proxy, ne, a4, Operand(1));
1227
1228    __ push(a1);  // Re-add proxy object as additional argument.
1229    __ Daddu(a0, a0, Operand(1));
1230    __ GetBuiltinFunction(a1, Builtins::CALL_FUNCTION_PROXY);
1231    __ Jump(masm->isolate()->builtins()->ArgumentsAdaptorTrampoline(),
1232            RelocInfo::CODE_TARGET);
1233
1234    __ bind(&non_proxy);
1235    __ GetBuiltinFunction(a1, Builtins::CALL_NON_FUNCTION);
1236    __ Jump(masm->isolate()->builtins()->ArgumentsAdaptorTrampoline(),
1237            RelocInfo::CODE_TARGET);
1238    __ bind(&function);
1239  }
1240
1241  // 5b. Get the code to call from the function and check that the number of
1242  //     expected arguments matches what we're providing.  If so, jump
1243  //     (tail-call) to the code in register edx without checking arguments.
1244  // a0: actual number of arguments
1245  // a1: function
1246  __ ld(a3, FieldMemOperand(a1, JSFunction::kSharedFunctionInfoOffset));
1247  // The argument count is stored as int32_t on 64-bit platforms.
1248  // TODO(plind): Smi on 32-bit platforms.
1249  __ lw(a2,
1250         FieldMemOperand(a3, SharedFunctionInfo::kFormalParameterCountOffset));
1251  // Check formal and actual parameter counts.
1252  __ Jump(masm->isolate()->builtins()->ArgumentsAdaptorTrampoline(),
1253          RelocInfo::CODE_TARGET, ne, a2, Operand(a0));
1254
1255  __ ld(a3, FieldMemOperand(a1, JSFunction::kCodeEntryOffset));
1256  ParameterCount expected(0);
1257  __ InvokeCode(a3, expected, expected, JUMP_FUNCTION, NullCallWrapper());
1258}
1259
1260
1261void Builtins::Generate_FunctionApply(MacroAssembler* masm) {
1262  const int kIndexOffset    =
1263      StandardFrameConstants::kExpressionsOffset - (2 * kPointerSize);
1264  const int kLimitOffset    =
1265      StandardFrameConstants::kExpressionsOffset - (1 * kPointerSize);
1266  const int kArgsOffset     = 2 * kPointerSize;
1267  const int kRecvOffset     = 3 * kPointerSize;
1268  const int kFunctionOffset = 4 * kPointerSize;
1269
1270  {
1271    FrameScope frame_scope(masm, StackFrame::INTERNAL);
1272    __ ld(a0, MemOperand(fp, kFunctionOffset));  // Get the function.
1273    __ push(a0);
1274    __ ld(a0, MemOperand(fp, kArgsOffset));  // Get the args array.
1275    __ push(a0);
1276    // Returns (in v0) number of arguments to copy to stack as Smi.
1277    __ InvokeBuiltin(Builtins::APPLY_PREPARE, CALL_FUNCTION);
1278
1279    // Check the stack for overflow. We are not trying to catch
1280    // interruptions (e.g. debug break and preemption) here, so the "real stack
1281    // limit" is checked.
1282    Label okay;
1283    __ LoadRoot(a2, Heap::kRealStackLimitRootIndex);
1284    // Make a2 the space we have left. The stack might already be overflowed
1285    // here which will cause a2 to become negative.
1286    __ dsubu(a2, sp, a2);
1287    // Check if the arguments will overflow the stack.
1288    __ SmiScale(a7, v0, kPointerSizeLog2);
1289    __ Branch(&okay, gt, a2, Operand(a7));  // Signed comparison.
1290
1291    // Out of stack space.
1292    __ ld(a1, MemOperand(fp, kFunctionOffset));
1293    __ Push(a1, v0);
1294    __ InvokeBuiltin(Builtins::STACK_OVERFLOW, CALL_FUNCTION);
1295    // End of stack check.
1296
1297    // Push current limit and index.
1298    __ bind(&okay);
1299    __ mov(a1, zero_reg);
1300    __ Push(v0, a1);  // Limit and initial index.
1301
1302    // Get the receiver.
1303    __ ld(a0, MemOperand(fp, kRecvOffset));
1304
1305    // Check that the function is a JS function (otherwise it must be a proxy).
1306    Label push_receiver;
1307    __ ld(a1, MemOperand(fp, kFunctionOffset));
1308    __ GetObjectType(a1, a2, a2);
1309    __ Branch(&push_receiver, ne, a2, Operand(JS_FUNCTION_TYPE));
1310
1311    // Change context eagerly to get the right global object if necessary.
1312    __ ld(cp, FieldMemOperand(a1, JSFunction::kContextOffset));
1313    // Load the shared function info while the function is still in a1.
1314    __ ld(a2, FieldMemOperand(a1, JSFunction::kSharedFunctionInfoOffset));
1315
1316    // Compute the receiver.
1317    // Do not transform the receiver for strict mode functions.
1318    Label call_to_object, use_global_proxy;
1319    __ lbu(a7, FieldMemOperand(a2, SharedFunctionInfo::kStrictModeByteOffset));
1320    __ And(a7, a7, Operand(1 << SharedFunctionInfo::kStrictModeBitWithinByte));
1321    __ Branch(&push_receiver, ne, a7, Operand(zero_reg));
1322
1323    // Do not transform the receiver for native (Compilerhints already in a2).
1324    __ lbu(a7, FieldMemOperand(a2, SharedFunctionInfo::kNativeByteOffset));
1325    __ And(a7, a7, Operand(1 << SharedFunctionInfo::kNativeBitWithinByte));
1326    __ Branch(&push_receiver, ne, a7, Operand(zero_reg));
1327
1328    // Compute the receiver in sloppy mode.
1329    __ JumpIfSmi(a0, &call_to_object);
1330    __ LoadRoot(a1, Heap::kNullValueRootIndex);
1331    __ Branch(&use_global_proxy, eq, a0, Operand(a1));
1332    __ LoadRoot(a2, Heap::kUndefinedValueRootIndex);
1333    __ Branch(&use_global_proxy, eq, a0, Operand(a2));
1334
1335    // Check if the receiver is already a JavaScript object.
1336    // a0: receiver
1337    STATIC_ASSERT(LAST_SPEC_OBJECT_TYPE == LAST_TYPE);
1338    __ GetObjectType(a0, a1, a1);
1339    __ Branch(&push_receiver, ge, a1, Operand(FIRST_SPEC_OBJECT_TYPE));
1340
1341    // Convert the receiver to a regular object.
1342    // a0: receiver
1343    __ bind(&call_to_object);
1344    __ push(a0);
1345    __ InvokeBuiltin(Builtins::TO_OBJECT, CALL_FUNCTION);
1346    __ mov(a0, v0);  // Put object in a0 to match other paths to push_receiver.
1347    __ Branch(&push_receiver);
1348
1349    __ bind(&use_global_proxy);
1350    __ ld(a0, ContextOperand(cp, Context::GLOBAL_OBJECT_INDEX));
1351    __ ld(a0, FieldMemOperand(a0, GlobalObject::kGlobalProxyOffset));
1352
1353    // Push the receiver.
1354    // a0: receiver
1355    __ bind(&push_receiver);
1356    __ push(a0);
1357
1358    // Copy all arguments from the array to the stack.
1359    Label entry, loop;
1360    __ ld(a0, MemOperand(fp, kIndexOffset));
1361    __ Branch(&entry);
1362
1363    // Load the current argument from the arguments array and push it to the
1364    // stack.
1365    // a0: current argument index
1366    __ bind(&loop);
1367    __ ld(a1, MemOperand(fp, kArgsOffset));
1368    __ Push(a1, a0);
1369
1370    // Call the runtime to access the property in the arguments array.
1371    __ CallRuntime(Runtime::kGetProperty, 2);
1372    __ push(v0);
1373
1374    // Use inline caching to access the arguments.
1375    __ ld(a0, MemOperand(fp, kIndexOffset));
1376    __ Daddu(a0, a0, Operand(Smi::FromInt(1)));
1377    __ sd(a0, MemOperand(fp, kIndexOffset));
1378
1379    // Test if the copy loop has finished copying all the elements from the
1380    // arguments object.
1381    __ bind(&entry);
1382    __ ld(a1, MemOperand(fp, kLimitOffset));
1383    __ Branch(&loop, ne, a0, Operand(a1));
1384
1385    // Call the function.
1386    Label call_proxy;
1387    ParameterCount actual(a0);
1388    __ SmiUntag(a0);
1389    __ ld(a1, MemOperand(fp, kFunctionOffset));
1390    __ GetObjectType(a1, a2, a2);
1391    __ Branch(&call_proxy, ne, a2, Operand(JS_FUNCTION_TYPE));
1392
1393    __ InvokeFunction(a1, actual, CALL_FUNCTION, NullCallWrapper());
1394
1395    frame_scope.GenerateLeaveFrame();
1396    __ Ret(USE_DELAY_SLOT);
1397    __ Daddu(sp, sp, Operand(3 * kPointerSize));  // In delay slot.
1398
1399    // Call the function proxy.
1400    __ bind(&call_proxy);
1401    __ push(a1);  // Add function proxy as last argument.
1402    __ Daddu(a0, a0, Operand(1));
1403    __ li(a2, Operand(0, RelocInfo::NONE32));
1404    __ GetBuiltinFunction(a1, Builtins::CALL_FUNCTION_PROXY);
1405    __ Call(masm->isolate()->builtins()->ArgumentsAdaptorTrampoline(),
1406            RelocInfo::CODE_TARGET);
1407    // Tear down the internal frame and remove function, receiver and args.
1408  }
1409
1410  __ Ret(USE_DELAY_SLOT);
1411  __ Daddu(sp, sp, Operand(3 * kPointerSize));  // In delay slot.
1412}
1413
1414
1415static void ArgumentAdaptorStackCheck(MacroAssembler* masm,
1416                                      Label* stack_overflow) {
1417  // ----------- S t a t e -------------
1418  //  -- a0 : actual number of arguments
1419  //  -- a1 : function (passed through to callee)
1420  //  -- a2 : expected number of arguments
1421  // -----------------------------------
1422  // Check the stack for overflow. We are not trying to catch
1423  // interruptions (e.g. debug break and preemption) here, so the "real stack
1424  // limit" is checked.
1425  __ LoadRoot(a5, Heap::kRealStackLimitRootIndex);
1426  // Make a5 the space we have left. The stack might already be overflowed
1427  // here which will cause a5 to become negative.
1428  __ dsubu(a5, sp, a5);
1429  // Check if the arguments will overflow the stack.
1430  __ dsll(at, a2, kPointerSizeLog2);
1431  // Signed comparison.
1432  __ Branch(stack_overflow, le, a5, Operand(at));
1433}
1434
1435
1436static void EnterArgumentsAdaptorFrame(MacroAssembler* masm) {
1437  // __ sll(a0, a0, kSmiTagSize);
1438  __ dsll32(a0, a0, 0);
1439  __ li(a4, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
1440  __ MultiPush(a0.bit() | a1.bit() | a4.bit() | fp.bit() | ra.bit());
1441  __ Daddu(fp, sp,
1442      Operand(StandardFrameConstants::kFixedFrameSizeFromFp + kPointerSize));
1443}
1444
1445
1446static void LeaveArgumentsAdaptorFrame(MacroAssembler* masm) {
1447  // ----------- S t a t e -------------
1448  //  -- v0 : result being passed through
1449  // -----------------------------------
1450  // Get the number of arguments passed (as a smi), tear down the frame and
1451  // then tear down the parameters.
1452  __ ld(a1, MemOperand(fp, -(StandardFrameConstants::kFixedFrameSizeFromFp +
1453                             kPointerSize)));
1454  __ mov(sp, fp);
1455  __ MultiPop(fp.bit() | ra.bit());
1456  __ SmiScale(a4, a1, kPointerSizeLog2);
1457  __ Daddu(sp, sp, a4);
1458  // Adjust for the receiver.
1459  __ Daddu(sp, sp, Operand(kPointerSize));
1460}
1461
1462
1463void Builtins::Generate_ArgumentsAdaptorTrampoline(MacroAssembler* masm) {
1464  // State setup as expected by MacroAssembler::InvokePrologue.
1465  // ----------- S t a t e -------------
1466  //  -- a0: actual arguments count
1467  //  -- a1: function (passed through to callee)
1468  //  -- a2: expected arguments count
1469  // -----------------------------------
1470
1471  Label stack_overflow;
1472  ArgumentAdaptorStackCheck(masm, &stack_overflow);
1473  Label invoke, dont_adapt_arguments;
1474
1475  Label enough, too_few;
1476  __ ld(a3, FieldMemOperand(a1, JSFunction::kCodeEntryOffset));
1477  __ Branch(&dont_adapt_arguments, eq,
1478      a2, Operand(SharedFunctionInfo::kDontAdaptArgumentsSentinel));
1479  // We use Uless as the number of argument should always be greater than 0.
1480  __ Branch(&too_few, Uless, a0, Operand(a2));
1481
1482  {  // Enough parameters: actual >= expected.
1483    // a0: actual number of arguments as a smi
1484    // a1: function
1485    // a2: expected number of arguments
1486    // a3: code entry to call
1487    __ bind(&enough);
1488    EnterArgumentsAdaptorFrame(masm);
1489
1490    // Calculate copy start address into a0 and copy end address into a2.
1491    __ SmiScale(a0, a0, kPointerSizeLog2);
1492    __ Daddu(a0, fp, a0);
1493    // Adjust for return address and receiver.
1494    __ Daddu(a0, a0, Operand(2 * kPointerSize));
1495    // Compute copy end address.
1496    __ dsll(a2, a2, kPointerSizeLog2);
1497    __ dsubu(a2, a0, a2);
1498
1499    // Copy the arguments (including the receiver) to the new stack frame.
1500    // a0: copy start address
1501    // a1: function
1502    // a2: copy end address
1503    // a3: code entry to call
1504
1505    Label copy;
1506    __ bind(&copy);
1507    __ ld(a4, MemOperand(a0));
1508    __ push(a4);
1509    __ Branch(USE_DELAY_SLOT, &copy, ne, a0, Operand(a2));
1510    __ daddiu(a0, a0, -kPointerSize);  // In delay slot.
1511
1512    __ jmp(&invoke);
1513  }
1514
1515  {  // Too few parameters: Actual < expected.
1516    __ bind(&too_few);
1517    EnterArgumentsAdaptorFrame(masm);
1518
1519    // Calculate copy start address into a0 and copy end address is fp.
1520    // a0: actual number of arguments as a smi
1521    // a1: function
1522    // a2: expected number of arguments
1523    // a3: code entry to call
1524    __ SmiScale(a0, a0, kPointerSizeLog2);
1525    __ Daddu(a0, fp, a0);
1526    // Adjust for return address and receiver.
1527    __ Daddu(a0, a0, Operand(2 * kPointerSize));
1528    // Compute copy end address. Also adjust for return address.
1529    __ Daddu(a7, fp, kPointerSize);
1530
1531    // Copy the arguments (including the receiver) to the new stack frame.
1532    // a0: copy start address
1533    // a1: function
1534    // a2: expected number of arguments
1535    // a3: code entry to call
1536    // a7: copy end address
1537    Label copy;
1538    __ bind(&copy);
1539    __ ld(a4, MemOperand(a0));  // Adjusted above for return addr and receiver.
1540    __ Dsubu(sp, sp, kPointerSize);
1541    __ Dsubu(a0, a0, kPointerSize);
1542    __ Branch(USE_DELAY_SLOT, &copy, ne, a0, Operand(a7));
1543    __ sd(a4, MemOperand(sp));  // In the delay slot.
1544
1545    // Fill the remaining expected arguments with undefined.
1546    // a1: function
1547    // a2: expected number of arguments
1548    // a3: code entry to call
1549    __ LoadRoot(a4, Heap::kUndefinedValueRootIndex);
1550    __ dsll(a6, a2, kPointerSizeLog2);
1551    __ Dsubu(a2, fp, Operand(a6));
1552    // Adjust for frame.
1553    __ Dsubu(a2, a2, Operand(StandardFrameConstants::kFixedFrameSizeFromFp +
1554                            2 * kPointerSize));
1555
1556    Label fill;
1557    __ bind(&fill);
1558    __ Dsubu(sp, sp, kPointerSize);
1559    __ Branch(USE_DELAY_SLOT, &fill, ne, sp, Operand(a2));
1560    __ sd(a4, MemOperand(sp));
1561  }
1562
1563  // Call the entry point.
1564  __ bind(&invoke);
1565
1566  __ Call(a3);
1567
1568  // Store offset of return address for deoptimizer.
1569  masm->isolate()->heap()->SetArgumentsAdaptorDeoptPCOffset(masm->pc_offset());
1570
1571  // Exit frame and return.
1572  LeaveArgumentsAdaptorFrame(masm);
1573  __ Ret();
1574
1575
1576  // -------------------------------------------
1577  // Don't adapt arguments.
1578  // -------------------------------------------
1579  __ bind(&dont_adapt_arguments);
1580  __ Jump(a3);
1581
1582  __ bind(&stack_overflow);
1583  {
1584    FrameScope frame(masm, StackFrame::MANUAL);
1585    EnterArgumentsAdaptorFrame(masm);
1586    __ InvokeBuiltin(Builtins::STACK_OVERFLOW, CALL_FUNCTION);
1587    __ break_(0xCC);
1588  }
1589}
1590
1591
1592#undef __
1593
1594} }  // namespace v8::internal
1595
1596#endif  // V8_TARGET_ARCH_MIPS64
1597