1// Copyright 2011 the V8 project authors. All rights reserved.
2// Use of this source code is governed by a BSD-style license that can be
3// found in the LICENSE file.
4
5
6// Declares a Simulator for MIPS instructions if we are not generating a native
7// MIPS binary. This Simulator allows us to run and debug MIPS code generation
8// on regular desktop machines.
9// V8 calls into generated code by "calling" the CALL_GENERATED_CODE macro,
10// which will start execution in the Simulator or forwards to the real entry
11// on a MIPS HW platform.
12
13#ifndef V8_MIPS_SIMULATOR_MIPS_H_
14#define V8_MIPS_SIMULATOR_MIPS_H_
15
16#include "src/allocation.h"
17#include "src/mips64/constants-mips64.h"
18
19#if !defined(USE_SIMULATOR)
20// Running without a simulator on a native mips platform.
21
22namespace v8 {
23namespace internal {
24
25// When running without a simulator we call the entry directly.
26#define CALL_GENERATED_CODE(entry, p0, p1, p2, p3, p4) \
27  entry(p0, p1, p2, p3, p4)
28
29
30// Call the generated regexp code directly. The code at the entry address
31// should act as a function matching the type arm_regexp_matcher.
32// The fifth (or ninth) argument is a dummy that reserves the space used for
33// the return address added by the ExitFrame in native calls.
34#ifdef MIPS_ABI_N64
35typedef int (*mips_regexp_matcher)(String* input,
36                                   int64_t start_offset,
37                                   const byte* input_start,
38                                   const byte* input_end,
39                                   int* output,
40                                   int64_t output_size,
41                                   Address stack_base,
42                                   int64_t direct_call,
43                                   void* return_address,
44                                   Isolate* isolate);
45
46#define CALL_GENERATED_REGEXP_CODE(entry, p0, p1, p2, p3, p4, p5, p6, p7, p8) \
47  (FUNCTION_CAST<mips_regexp_matcher>(entry)( \
48      p0, p1, p2, p3, p4, p5, p6, p7, NULL, p8))
49
50#else  // O32 Abi.
51
52typedef int (*mips_regexp_matcher)(String* input,
53                                   int32_t start_offset,
54                                   const byte* input_start,
55                                   const byte* input_end,
56                                   void* return_address,
57                                   int* output,
58                                   int32_t output_size,
59                                   Address stack_base,
60                                   int32_t direct_call,
61                                   Isolate* isolate);
62
63#define CALL_GENERATED_REGEXP_CODE(entry, p0, p1, p2, p3, p4, p5, p6, p7, p8) \
64  (FUNCTION_CAST<mips_regexp_matcher>(entry)( \
65      p0, p1, p2, p3, NULL, p4, p5, p6, p7, p8))
66
67#endif  // MIPS_ABI_N64
68
69
70// The stack limit beyond which we will throw stack overflow errors in
71// generated code. Because generated code on mips uses the C stack, we
72// just use the C stack limit.
73class SimulatorStack : public v8::internal::AllStatic {
74 public:
75  static inline uintptr_t JsLimitFromCLimit(Isolate* isolate,
76                                            uintptr_t c_limit) {
77    return c_limit;
78  }
79
80  static inline uintptr_t RegisterCTryCatch(uintptr_t try_catch_address) {
81    return try_catch_address;
82  }
83
84  static inline void UnregisterCTryCatch() { }
85};
86
87} }  // namespace v8::internal
88
89// Calculated the stack limit beyond which we will throw stack overflow errors.
90// This macro must be called from a C++ method. It relies on being able to take
91// the address of "this" to get a value on the current execution stack and then
92// calculates the stack limit based on that value.
93// NOTE: The check for overflow is not safe as there is no guarantee that the
94// running thread has its stack in all memory up to address 0x00000000.
95#define GENERATED_CODE_STACK_LIMIT(limit) \
96  (reinterpret_cast<uintptr_t>(this) >= limit ? \
97      reinterpret_cast<uintptr_t>(this) - limit : 0)
98
99#else  // !defined(USE_SIMULATOR)
100// Running with a simulator.
101
102#include "src/assembler.h"
103#include "src/hashmap.h"
104
105namespace v8 {
106namespace internal {
107
108// -----------------------------------------------------------------------------
109// Utility functions
110
111class CachePage {
112 public:
113  static const int LINE_VALID = 0;
114  static const int LINE_INVALID = 1;
115
116  static const int kPageShift = 12;
117  static const int kPageSize = 1 << kPageShift;
118  static const int kPageMask = kPageSize - 1;
119  static const int kLineShift = 2;  // The cache line is only 4 bytes right now.
120  static const int kLineLength = 1 << kLineShift;
121  static const int kLineMask = kLineLength - 1;
122
123  CachePage() {
124    memset(&validity_map_, LINE_INVALID, sizeof(validity_map_));
125  }
126
127  char* ValidityByte(int offset) {
128    return &validity_map_[offset >> kLineShift];
129  }
130
131  char* CachedData(int offset) {
132    return &data_[offset];
133  }
134
135 private:
136  char data_[kPageSize];   // The cached data.
137  static const int kValidityMapSize = kPageSize >> kLineShift;
138  char validity_map_[kValidityMapSize];  // One byte per line.
139};
140
141class Simulator {
142 public:
143  friend class MipsDebugger;
144
145  // Registers are declared in order. See SMRL chapter 2.
146  enum Register {
147    no_reg = -1,
148    zero_reg = 0,
149    at,
150    v0, v1,
151    a0, a1, a2, a3, a4, a5, a6, a7,
152    t0, t1, t2, t3,
153    s0, s1, s2, s3, s4, s5, s6, s7,
154    t8, t9,
155    k0, k1,
156    gp,
157    sp,
158    s8,
159    ra,
160    // LO, HI, and pc.
161    LO,
162    HI,
163    pc,   // pc must be the last register.
164    kNumSimuRegisters,
165    // aliases
166    fp = s8
167  };
168
169  // Coprocessor registers.
170  // Generated code will always use doubles. So we will only use even registers.
171  enum FPURegister {
172    f0, f1, f2, f3, f4, f5, f6, f7, f8, f9, f10, f11,
173    f12, f13, f14, f15,   // f12 and f14 are arguments FPURegisters.
174    f16, f17, f18, f19, f20, f21, f22, f23, f24, f25,
175    f26, f27, f28, f29, f30, f31,
176    kNumFPURegisters
177  };
178
179  explicit Simulator(Isolate* isolate);
180  ~Simulator();
181
182  // The currently executing Simulator instance. Potentially there can be one
183  // for each native thread.
184  static Simulator* current(v8::internal::Isolate* isolate);
185
186  // Accessors for register state. Reading the pc value adheres to the MIPS
187  // architecture specification and is off by a 8 from the currently executing
188  // instruction.
189  void set_register(int reg, int64_t value);
190  void set_register_word(int reg, int32_t value);
191  void set_dw_register(int dreg, const int* dbl);
192  int64_t get_register(int reg) const;
193  double get_double_from_register_pair(int reg);
194  // Same for FPURegisters.
195  void set_fpu_register(int fpureg, int64_t value);
196  void set_fpu_register_word(int fpureg, int32_t value);
197  void set_fpu_register_hi_word(int fpureg, int32_t value);
198  void set_fpu_register_float(int fpureg, float value);
199  void set_fpu_register_double(int fpureg, double value);
200  int64_t get_fpu_register(int fpureg) const;
201  int32_t get_fpu_register_word(int fpureg) const;
202  int32_t get_fpu_register_signed_word(int fpureg) const;
203  int32_t get_fpu_register_hi_word(int fpureg) const;
204  float get_fpu_register_float(int fpureg) const;
205  double get_fpu_register_double(int fpureg) const;
206  void set_fcsr_bit(uint32_t cc, bool value);
207  bool test_fcsr_bit(uint32_t cc);
208  bool set_fcsr_round_error(double original, double rounded);
209  bool set_fcsr_round64_error(double original, double rounded);
210
211  // Special case of set_register and get_register to access the raw PC value.
212  void set_pc(int64_t value);
213  int64_t get_pc() const;
214
215  Address get_sp() {
216    return reinterpret_cast<Address>(static_cast<intptr_t>(get_register(sp)));
217  }
218
219  // Accessor to the internal simulator stack area.
220  uintptr_t StackLimit() const;
221
222  // Executes MIPS instructions until the PC reaches end_sim_pc.
223  void Execute();
224
225  // Call on program start.
226  static void Initialize(Isolate* isolate);
227
228  // V8 generally calls into generated JS code with 5 parameters and into
229  // generated RegExp code with 7 parameters. This is a convenience function,
230  // which sets up the simulator state and grabs the result on return.
231  int64_t Call(byte* entry, int argument_count, ...);
232  // Alternative: call a 2-argument double function.
233  double CallFP(byte* entry, double d0, double d1);
234
235  // Push an address onto the JS stack.
236  uintptr_t PushAddress(uintptr_t address);
237
238  // Pop an address from the JS stack.
239  uintptr_t PopAddress();
240
241  // Debugger input.
242  void set_last_debugger_input(char* input);
243  char* last_debugger_input() { return last_debugger_input_; }
244
245  // ICache checking.
246  static void FlushICache(v8::internal::HashMap* i_cache, void* start,
247                          size_t size);
248
249  // Returns true if pc register contains one of the 'special_values' defined
250  // below (bad_ra, end_sim_pc).
251  bool has_bad_pc() const;
252
253 private:
254  enum special_values {
255    // Known bad pc value to ensure that the simulator does not execute
256    // without being properly setup.
257    bad_ra = -1,
258    // A pc value used to signal the simulator to stop execution.  Generally
259    // the ra is set to this value on transition from native C code to
260    // simulated execution, so that the simulator can "return" to the native
261    // C code.
262    end_sim_pc = -2,
263    // Unpredictable value.
264    Unpredictable = 0xbadbeaf
265  };
266
267  // Unsupported instructions use Format to print an error and stop execution.
268  void Format(Instruction* instr, const char* format);
269
270  // Read and write memory.
271  inline uint32_t ReadBU(int64_t addr);
272  inline int32_t ReadB(int64_t addr);
273  inline void WriteB(int64_t addr, uint8_t value);
274  inline void WriteB(int64_t addr, int8_t value);
275
276  inline uint16_t ReadHU(int64_t addr, Instruction* instr);
277  inline int16_t ReadH(int64_t addr, Instruction* instr);
278  // Note: Overloaded on the sign of the value.
279  inline void WriteH(int64_t addr, uint16_t value, Instruction* instr);
280  inline void WriteH(int64_t addr, int16_t value, Instruction* instr);
281
282  inline uint32_t ReadWU(int64_t addr, Instruction* instr);
283  inline int32_t ReadW(int64_t addr, Instruction* instr);
284  inline void WriteW(int64_t addr, int32_t value, Instruction* instr);
285  inline int64_t Read2W(int64_t addr, Instruction* instr);
286  inline void Write2W(int64_t addr, int64_t value, Instruction* instr);
287
288  inline double ReadD(int64_t addr, Instruction* instr);
289  inline void WriteD(int64_t addr, double value, Instruction* instr);
290
291  // Helper for debugging memory access.
292  inline void DieOrDebug();
293
294  // Helpers for data value tracing.
295    enum TraceType {
296    BYTE,
297    HALF,
298    WORD,
299    DWORD
300    // DFLOAT - Floats may have printing issues due to paired lwc1's
301  };
302
303  void TraceRegWr(int64_t value);
304  void TraceMemWr(int64_t addr, int64_t value, TraceType t);
305  void TraceMemRd(int64_t addr, int64_t value);
306
307  // Operations depending on endianness.
308  // Get Double Higher / Lower word.
309  inline int32_t GetDoubleHIW(double* addr);
310  inline int32_t GetDoubleLOW(double* addr);
311  // Set Double Higher / Lower word.
312  inline int32_t SetDoubleHIW(double* addr);
313  inline int32_t SetDoubleLOW(double* addr);
314
315  // Executing is handled based on the instruction type.
316  void DecodeTypeRegister(Instruction* instr);
317
318  // Helper function for DecodeTypeRegister.
319  void ConfigureTypeRegister(Instruction* instr,
320                             int64_t* alu_out,
321                             int64_t* i64hilo,
322                             uint64_t* u64hilo,
323                             int64_t* next_pc,
324                             int64_t* return_addr_reg,
325                             bool* do_interrupt,
326                             int64_t* result128H,
327                             int64_t* result128L);
328
329  void DecodeTypeImmediate(Instruction* instr);
330  void DecodeTypeJump(Instruction* instr);
331
332  // Used for breakpoints and traps.
333  void SoftwareInterrupt(Instruction* instr);
334
335  // Stop helper functions.
336  bool IsWatchpoint(uint64_t code);
337  void PrintWatchpoint(uint64_t code);
338  void HandleStop(uint64_t code, Instruction* instr);
339  bool IsStopInstruction(Instruction* instr);
340  bool IsEnabledStop(uint64_t code);
341  void EnableStop(uint64_t code);
342  void DisableStop(uint64_t code);
343  void IncreaseStopCounter(uint64_t code);
344  void PrintStopInfo(uint64_t code);
345
346
347  // Executes one instruction.
348  void InstructionDecode(Instruction* instr);
349  // Execute one instruction placed in a branch delay slot.
350  void BranchDelayInstructionDecode(Instruction* instr) {
351    if (instr->InstructionBits() == nopInstr) {
352      // Short-cut generic nop instructions. They are always valid and they
353      // never change the simulator state.
354      return;
355    }
356
357    if (instr->IsForbiddenInBranchDelay()) {
358      V8_Fatal(__FILE__, __LINE__,
359               "Eror:Unexpected %i opcode in a branch delay slot.",
360               instr->OpcodeValue());
361    }
362    InstructionDecode(instr);
363  }
364
365  // ICache.
366  static void CheckICache(v8::internal::HashMap* i_cache, Instruction* instr);
367  static void FlushOnePage(v8::internal::HashMap* i_cache, intptr_t start,
368                           int size);
369  static CachePage* GetCachePage(v8::internal::HashMap* i_cache, void* page);
370
371  enum Exception {
372    none,
373    kIntegerOverflow,
374    kIntegerUnderflow,
375    kDivideByZero,
376    kNumExceptions
377  };
378  int16_t exceptions[kNumExceptions];
379
380  // Exceptions.
381  void SignalExceptions();
382
383  // Runtime call support.
384  static void* RedirectExternalReference(void* external_function,
385                                         ExternalReference::Type type);
386
387  // Handle arguments and return value for runtime FP functions.
388  void GetFpArgs(double* x, double* y, int32_t* z);
389  void SetFpResult(const double& result);
390
391  void CallInternal(byte* entry);
392
393  // Architecture state.
394  // Registers.
395  int64_t registers_[kNumSimuRegisters];
396  // Coprocessor Registers.
397  int64_t FPUregisters_[kNumFPURegisters];
398  // FPU control register.
399  uint32_t FCSR_;
400
401  // Simulator support.
402  // Allocate 1MB for stack.
403  size_t stack_size_;
404  char* stack_;
405  bool pc_modified_;
406  int64_t icount_;
407  int break_count_;
408  EmbeddedVector<char, 128> trace_buf_;
409
410  // Debugger input.
411  char* last_debugger_input_;
412
413  // Icache simulation.
414  v8::internal::HashMap* i_cache_;
415
416  v8::internal::Isolate* isolate_;
417
418  // Registered breakpoints.
419  Instruction* break_pc_;
420  Instr break_instr_;
421
422  // Stop is disabled if bit 31 is set.
423  static const uint32_t kStopDisabledBit = 1 << 31;
424
425  // A stop is enabled, meaning the simulator will stop when meeting the
426  // instruction, if bit 31 of watched_stops_[code].count is unset.
427  // The value watched_stops_[code].count & ~(1 << 31) indicates how many times
428  // the breakpoint was hit or gone through.
429  struct StopCountAndDesc {
430    uint32_t count;
431    char* desc;
432  };
433  StopCountAndDesc watched_stops_[kMaxStopCode + 1];
434};
435
436
437// When running with the simulator transition into simulated execution at this
438// point.
439#define CALL_GENERATED_CODE(entry, p0, p1, p2, p3, p4) \
440    reinterpret_cast<Object*>(Simulator::current(Isolate::Current())->Call( \
441      FUNCTION_ADDR(entry), 5, p0, p1, p2, p3, p4))
442
443#ifdef MIPS_ABI_N64
444#define CALL_GENERATED_REGEXP_CODE(entry, p0, p1, p2, p3, p4, p5, p6, p7, p8) \
445    Simulator::current(Isolate::Current())->Call( \
446        entry, 10, p0, p1, p2, p3, p4, p5, p6, p7, NULL, p8)
447#else  // Must be O32 Abi.
448#define CALL_GENERATED_REGEXP_CODE(entry, p0, p1, p2, p3, p4, p5, p6, p7, p8) \
449    Simulator::current(Isolate::Current())->Call( \
450        entry, 10, p0, p1, p2, p3, NULL, p4, p5, p6, p7, p8)
451#endif  // MIPS_ABI_N64
452
453
454// The simulator has its own stack. Thus it has a different stack limit from
455// the C-based native code.  Setting the c_limit to indicate a very small
456// stack cause stack overflow errors, since the simulator ignores the input.
457// This is unlikely to be an issue in practice, though it might cause testing
458// trouble down the line.
459class SimulatorStack : public v8::internal::AllStatic {
460 public:
461  static inline uintptr_t JsLimitFromCLimit(Isolate* isolate,
462                                            uintptr_t c_limit) {
463    return Simulator::current(isolate)->StackLimit();
464  }
465
466  static inline uintptr_t RegisterCTryCatch(uintptr_t try_catch_address) {
467    Simulator* sim = Simulator::current(Isolate::Current());
468    return sim->PushAddress(try_catch_address);
469  }
470
471  static inline void UnregisterCTryCatch() {
472    Simulator::current(Isolate::Current())->PopAddress();
473  }
474};
475
476} }  // namespace v8::internal
477
478#endif  // !defined(USE_SIMULATOR)
479#endif  // V8_MIPS_SIMULATOR_MIPS_H_
480