1// Copyright 2012 the V8 project authors. All rights reserved.
2// Use of this source code is governed by a BSD-style license that can be
3// found in the LICENSE file.
4
5#include "src/v8.h"
6
7#include "src/accessors.h"
8#include "src/api.h"
9#include "src/base/platform/platform.h"
10#include "src/bootstrapper.h"
11#include "src/code-stubs.h"
12#include "src/deoptimizer.h"
13#include "src/execution.h"
14#include "src/global-handles.h"
15#include "src/ic/ic.h"
16#include "src/ic/stub-cache.h"
17#include "src/natives.h"
18#include "src/objects.h"
19#include "src/runtime.h"
20#include "src/serialize.h"
21#include "src/snapshot.h"
22#include "src/snapshot-source-sink.h"
23#include "src/v8threads.h"
24#include "src/version.h"
25
26namespace v8 {
27namespace internal {
28
29
30// -----------------------------------------------------------------------------
31// Coding of external references.
32
33// The encoding of an external reference. The type is in the high word.
34// The id is in the low word.
35static uint32_t EncodeExternal(TypeCode type, uint16_t id) {
36  return static_cast<uint32_t>(type) << 16 | id;
37}
38
39
40static int* GetInternalPointer(StatsCounter* counter) {
41  // All counters refer to dummy_counter, if deserializing happens without
42  // setting up counters.
43  static int dummy_counter = 0;
44  return counter->Enabled() ? counter->GetInternalPointer() : &dummy_counter;
45}
46
47
48ExternalReferenceTable* ExternalReferenceTable::instance(Isolate* isolate) {
49  ExternalReferenceTable* external_reference_table =
50      isolate->external_reference_table();
51  if (external_reference_table == NULL) {
52    external_reference_table = new ExternalReferenceTable(isolate);
53    isolate->set_external_reference_table(external_reference_table);
54  }
55  return external_reference_table;
56}
57
58
59void ExternalReferenceTable::AddFromId(TypeCode type,
60                                       uint16_t id,
61                                       const char* name,
62                                       Isolate* isolate) {
63  Address address;
64  switch (type) {
65    case C_BUILTIN: {
66      ExternalReference ref(static_cast<Builtins::CFunctionId>(id), isolate);
67      address = ref.address();
68      break;
69    }
70    case BUILTIN: {
71      ExternalReference ref(static_cast<Builtins::Name>(id), isolate);
72      address = ref.address();
73      break;
74    }
75    case RUNTIME_FUNCTION: {
76      ExternalReference ref(static_cast<Runtime::FunctionId>(id), isolate);
77      address = ref.address();
78      break;
79    }
80    case IC_UTILITY: {
81      ExternalReference ref(IC_Utility(static_cast<IC::UtilityId>(id)),
82                            isolate);
83      address = ref.address();
84      break;
85    }
86    default:
87      UNREACHABLE();
88      return;
89  }
90  Add(address, type, id, name);
91}
92
93
94void ExternalReferenceTable::Add(Address address,
95                                 TypeCode type,
96                                 uint16_t id,
97                                 const char* name) {
98  DCHECK_NE(NULL, address);
99  ExternalReferenceEntry entry;
100  entry.address = address;
101  entry.code = EncodeExternal(type, id);
102  entry.name = name;
103  DCHECK_NE(0, entry.code);
104  // Assert that the code is added in ascending order to rule out duplicates.
105  DCHECK((size() == 0) || (code(size() - 1) < entry.code));
106  refs_.Add(entry);
107  if (id > max_id_[type]) max_id_[type] = id;
108}
109
110
111void ExternalReferenceTable::PopulateTable(Isolate* isolate) {
112  for (int type_code = 0; type_code < kTypeCodeCount; type_code++) {
113    max_id_[type_code] = 0;
114  }
115
116  // Miscellaneous
117  Add(ExternalReference::roots_array_start(isolate).address(),
118      "Heap::roots_array_start()");
119  Add(ExternalReference::address_of_stack_limit(isolate).address(),
120      "StackGuard::address_of_jslimit()");
121  Add(ExternalReference::address_of_real_stack_limit(isolate).address(),
122      "StackGuard::address_of_real_jslimit()");
123  Add(ExternalReference::new_space_start(isolate).address(),
124      "Heap::NewSpaceStart()");
125  Add(ExternalReference::new_space_mask(isolate).address(),
126      "Heap::NewSpaceMask()");
127  Add(ExternalReference::new_space_allocation_limit_address(isolate).address(),
128      "Heap::NewSpaceAllocationLimitAddress()");
129  Add(ExternalReference::new_space_allocation_top_address(isolate).address(),
130      "Heap::NewSpaceAllocationTopAddress()");
131  Add(ExternalReference::debug_break(isolate).address(), "Debug::Break()");
132  Add(ExternalReference::debug_step_in_fp_address(isolate).address(),
133      "Debug::step_in_fp_addr()");
134  Add(ExternalReference::mod_two_doubles_operation(isolate).address(),
135      "mod_two_doubles");
136  // Keyed lookup cache.
137  Add(ExternalReference::keyed_lookup_cache_keys(isolate).address(),
138      "KeyedLookupCache::keys()");
139  Add(ExternalReference::keyed_lookup_cache_field_offsets(isolate).address(),
140      "KeyedLookupCache::field_offsets()");
141  Add(ExternalReference::handle_scope_next_address(isolate).address(),
142      "HandleScope::next");
143  Add(ExternalReference::handle_scope_limit_address(isolate).address(),
144      "HandleScope::limit");
145  Add(ExternalReference::handle_scope_level_address(isolate).address(),
146      "HandleScope::level");
147  Add(ExternalReference::new_deoptimizer_function(isolate).address(),
148      "Deoptimizer::New()");
149  Add(ExternalReference::compute_output_frames_function(isolate).address(),
150      "Deoptimizer::ComputeOutputFrames()");
151  Add(ExternalReference::address_of_min_int().address(),
152      "LDoubleConstant::min_int");
153  Add(ExternalReference::address_of_one_half().address(),
154      "LDoubleConstant::one_half");
155  Add(ExternalReference::isolate_address(isolate).address(), "isolate");
156  Add(ExternalReference::address_of_negative_infinity().address(),
157      "LDoubleConstant::negative_infinity");
158  Add(ExternalReference::power_double_double_function(isolate).address(),
159      "power_double_double_function");
160  Add(ExternalReference::power_double_int_function(isolate).address(),
161      "power_double_int_function");
162  Add(ExternalReference::math_log_double_function(isolate).address(),
163      "std::log");
164  Add(ExternalReference::store_buffer_top(isolate).address(),
165      "store_buffer_top");
166  Add(ExternalReference::address_of_canonical_non_hole_nan().address(),
167      "canonical_nan");
168  Add(ExternalReference::address_of_the_hole_nan().address(), "the_hole_nan");
169  Add(ExternalReference::get_date_field_function(isolate).address(),
170      "JSDate::GetField");
171  Add(ExternalReference::date_cache_stamp(isolate).address(),
172      "date_cache_stamp");
173  Add(ExternalReference::address_of_pending_message_obj(isolate).address(),
174      "address_of_pending_message_obj");
175  Add(ExternalReference::address_of_has_pending_message(isolate).address(),
176      "address_of_has_pending_message");
177  Add(ExternalReference::address_of_pending_message_script(isolate).address(),
178      "pending_message_script");
179  Add(ExternalReference::get_make_code_young_function(isolate).address(),
180      "Code::MakeCodeYoung");
181  Add(ExternalReference::cpu_features().address(), "cpu_features");
182  Add(ExternalReference(Runtime::kAllocateInNewSpace, isolate).address(),
183      "Runtime::AllocateInNewSpace");
184  Add(ExternalReference(Runtime::kAllocateInTargetSpace, isolate).address(),
185      "Runtime::AllocateInTargetSpace");
186  Add(ExternalReference::old_pointer_space_allocation_top_address(isolate)
187          .address(),
188      "Heap::OldPointerSpaceAllocationTopAddress");
189  Add(ExternalReference::old_pointer_space_allocation_limit_address(isolate)
190          .address(),
191      "Heap::OldPointerSpaceAllocationLimitAddress");
192  Add(ExternalReference::old_data_space_allocation_top_address(isolate)
193          .address(),
194      "Heap::OldDataSpaceAllocationTopAddress");
195  Add(ExternalReference::old_data_space_allocation_limit_address(isolate)
196          .address(),
197      "Heap::OldDataSpaceAllocationLimitAddress");
198  Add(ExternalReference::allocation_sites_list_address(isolate).address(),
199      "Heap::allocation_sites_list_address()");
200  Add(ExternalReference::address_of_uint32_bias().address(), "uint32_bias");
201  Add(ExternalReference::get_mark_code_as_executed_function(isolate).address(),
202      "Code::MarkCodeAsExecuted");
203  Add(ExternalReference::is_profiling_address(isolate).address(),
204      "CpuProfiler::is_profiling");
205  Add(ExternalReference::scheduled_exception_address(isolate).address(),
206      "Isolate::scheduled_exception");
207  Add(ExternalReference::invoke_function_callback(isolate).address(),
208      "InvokeFunctionCallback");
209  Add(ExternalReference::invoke_accessor_getter_callback(isolate).address(),
210      "InvokeAccessorGetterCallback");
211  Add(ExternalReference::flush_icache_function(isolate).address(),
212      "CpuFeatures::FlushICache");
213  Add(ExternalReference::log_enter_external_function(isolate).address(),
214      "Logger::EnterExternal");
215  Add(ExternalReference::log_leave_external_function(isolate).address(),
216      "Logger::LeaveExternal");
217  Add(ExternalReference::address_of_minus_one_half().address(),
218      "double_constants.minus_one_half");
219  Add(ExternalReference::stress_deopt_count(isolate).address(),
220      "Isolate::stress_deopt_count_address()");
221  Add(ExternalReference::incremental_marking_record_write_function(isolate)
222          .address(),
223      "IncrementalMarking::RecordWriteFromCode");
224
225  // Debug addresses
226  Add(ExternalReference::debug_after_break_target_address(isolate).address(),
227      "Debug::after_break_target_address()");
228  Add(ExternalReference::debug_restarter_frame_function_pointer_address(isolate)
229          .address(),
230      "Debug::restarter_frame_function_pointer_address()");
231  Add(ExternalReference::debug_is_active_address(isolate).address(),
232      "Debug::is_active_address()");
233
234#ifndef V8_INTERPRETED_REGEXP
235  Add(ExternalReference::re_case_insensitive_compare_uc16(isolate).address(),
236      "NativeRegExpMacroAssembler::CaseInsensitiveCompareUC16()");
237  Add(ExternalReference::re_check_stack_guard_state(isolate).address(),
238      "RegExpMacroAssembler*::CheckStackGuardState()");
239  Add(ExternalReference::re_grow_stack(isolate).address(),
240      "NativeRegExpMacroAssembler::GrowStack()");
241  Add(ExternalReference::re_word_character_map().address(),
242      "NativeRegExpMacroAssembler::word_character_map");
243  Add(ExternalReference::address_of_regexp_stack_limit(isolate).address(),
244      "RegExpStack::limit_address()");
245  Add(ExternalReference::address_of_regexp_stack_memory_address(isolate)
246          .address(),
247      "RegExpStack::memory_address()");
248  Add(ExternalReference::address_of_regexp_stack_memory_size(isolate).address(),
249      "RegExpStack::memory_size()");
250  Add(ExternalReference::address_of_static_offsets_vector(isolate).address(),
251      "OffsetsVector::static_offsets_vector");
252#endif  // V8_INTERPRETED_REGEXP
253
254  // The following populates all of the different type of external references
255  // into the ExternalReferenceTable.
256  //
257  // NOTE: This function was originally 100k of code.  It has since been
258  // rewritten to be mostly table driven, as the callback macro style tends to
259  // very easily cause code bloat.  Please be careful in the future when adding
260  // new references.
261
262  struct RefTableEntry {
263    TypeCode type;
264    uint16_t id;
265    const char* name;
266  };
267
268  static const RefTableEntry ref_table[] = {
269  // Builtins
270#define DEF_ENTRY_C(name, ignored) \
271  { C_BUILTIN, \
272    Builtins::c_##name, \
273    "Builtins::" #name },
274
275  BUILTIN_LIST_C(DEF_ENTRY_C)
276#undef DEF_ENTRY_C
277
278#define DEF_ENTRY_C(name, ignored) \
279  { BUILTIN, \
280    Builtins::k##name, \
281    "Builtins::" #name },
282#define DEF_ENTRY_A(name, kind, state, extra) DEF_ENTRY_C(name, ignored)
283
284  BUILTIN_LIST_C(DEF_ENTRY_C)
285  BUILTIN_LIST_A(DEF_ENTRY_A)
286  BUILTIN_LIST_DEBUG_A(DEF_ENTRY_A)
287#undef DEF_ENTRY_C
288#undef DEF_ENTRY_A
289
290  // Runtime functions
291#define RUNTIME_ENTRY(name, nargs, ressize) \
292  { RUNTIME_FUNCTION, \
293    Runtime::k##name, \
294    "Runtime::" #name },
295
296  RUNTIME_FUNCTION_LIST(RUNTIME_ENTRY)
297  INLINE_OPTIMIZED_FUNCTION_LIST(RUNTIME_ENTRY)
298#undef RUNTIME_ENTRY
299
300#define INLINE_OPTIMIZED_ENTRY(name, nargs, ressize) \
301  { RUNTIME_FUNCTION, \
302    Runtime::kInlineOptimized##name, \
303    "Runtime::" #name },
304
305  INLINE_OPTIMIZED_FUNCTION_LIST(INLINE_OPTIMIZED_ENTRY)
306#undef INLINE_OPTIMIZED_ENTRY
307
308  // IC utilities
309#define IC_ENTRY(name) \
310  { IC_UTILITY, \
311    IC::k##name, \
312    "IC::" #name },
313
314  IC_UTIL_LIST(IC_ENTRY)
315#undef IC_ENTRY
316  };  // end of ref_table[].
317
318  for (size_t i = 0; i < arraysize(ref_table); ++i) {
319    AddFromId(ref_table[i].type,
320              ref_table[i].id,
321              ref_table[i].name,
322              isolate);
323  }
324
325  // Stat counters
326  struct StatsRefTableEntry {
327    StatsCounter* (Counters::*counter)();
328    uint16_t id;
329    const char* name;
330  };
331
332  const StatsRefTableEntry stats_ref_table[] = {
333#define COUNTER_ENTRY(name, caption) \
334  { &Counters::name,    \
335    Counters::k_##name, \
336    "Counters::" #name },
337
338  STATS_COUNTER_LIST_1(COUNTER_ENTRY)
339  STATS_COUNTER_LIST_2(COUNTER_ENTRY)
340#undef COUNTER_ENTRY
341  };  // end of stats_ref_table[].
342
343  Counters* counters = isolate->counters();
344  for (size_t i = 0; i < arraysize(stats_ref_table); ++i) {
345    Add(reinterpret_cast<Address>(GetInternalPointer(
346            (counters->*(stats_ref_table[i].counter))())),
347        STATS_COUNTER,
348        stats_ref_table[i].id,
349        stats_ref_table[i].name);
350  }
351
352  // Top addresses
353
354  const char* AddressNames[] = {
355#define BUILD_NAME_LITERAL(CamelName, hacker_name)      \
356    "Isolate::" #hacker_name "_address",
357    FOR_EACH_ISOLATE_ADDRESS_NAME(BUILD_NAME_LITERAL)
358    NULL
359#undef BUILD_NAME_LITERAL
360  };
361
362  for (uint16_t i = 0; i < Isolate::kIsolateAddressCount; ++i) {
363    Add(isolate->get_address_from_id((Isolate::AddressId)i),
364        TOP_ADDRESS, i, AddressNames[i]);
365  }
366
367  // Accessors
368#define ACCESSOR_INFO_DECLARATION(name) \
369  Add(FUNCTION_ADDR(&Accessors::name##Getter), \
370      ACCESSOR, \
371      Accessors::k##name##Getter, \
372      "Accessors::" #name "Getter"); \
373  Add(FUNCTION_ADDR(&Accessors::name##Setter), \
374      ACCESSOR, \
375      Accessors::k##name##Setter, \
376      "Accessors::" #name "Setter");
377  ACCESSOR_INFO_LIST(ACCESSOR_INFO_DECLARATION)
378#undef ACCESSOR_INFO_DECLARATION
379
380  StubCache* stub_cache = isolate->stub_cache();
381
382  // Stub cache tables
383  Add(stub_cache->key_reference(StubCache::kPrimary).address(),
384      STUB_CACHE_TABLE, 1, "StubCache::primary_->key");
385  Add(stub_cache->value_reference(StubCache::kPrimary).address(),
386      STUB_CACHE_TABLE, 2, "StubCache::primary_->value");
387  Add(stub_cache->map_reference(StubCache::kPrimary).address(),
388      STUB_CACHE_TABLE, 3, "StubCache::primary_->map");
389  Add(stub_cache->key_reference(StubCache::kSecondary).address(),
390      STUB_CACHE_TABLE, 4, "StubCache::secondary_->key");
391  Add(stub_cache->value_reference(StubCache::kSecondary).address(),
392      STUB_CACHE_TABLE, 5, "StubCache::secondary_->value");
393  Add(stub_cache->map_reference(StubCache::kSecondary).address(),
394      STUB_CACHE_TABLE, 6, "StubCache::secondary_->map");
395
396  // Runtime entries
397  Add(ExternalReference::delete_handle_scope_extensions(isolate).address(),
398      RUNTIME_ENTRY, 1, "HandleScope::DeleteExtensions");
399  Add(ExternalReference::incremental_marking_record_write_function(isolate)
400          .address(),
401      RUNTIME_ENTRY, 2, "IncrementalMarking::RecordWrite");
402  Add(ExternalReference::store_buffer_overflow_function(isolate).address(),
403      RUNTIME_ENTRY, 3, "StoreBuffer::StoreBufferOverflow");
404
405  // Add a small set of deopt entry addresses to encoder without generating the
406  // deopt table code, which isn't possible at deserialization time.
407  HandleScope scope(isolate);
408  for (int entry = 0; entry < kDeoptTableSerializeEntryCount; ++entry) {
409    Address address = Deoptimizer::GetDeoptimizationEntry(
410        isolate,
411        entry,
412        Deoptimizer::LAZY,
413        Deoptimizer::CALCULATE_ENTRY_ADDRESS);
414    Add(address, LAZY_DEOPTIMIZATION, entry, "lazy_deopt");
415  }
416}
417
418
419ExternalReferenceEncoder::ExternalReferenceEncoder(Isolate* isolate)
420    : encodings_(HashMap::PointersMatch),
421      isolate_(isolate) {
422  ExternalReferenceTable* external_references =
423      ExternalReferenceTable::instance(isolate_);
424  for (int i = 0; i < external_references->size(); ++i) {
425    Put(external_references->address(i), i);
426  }
427}
428
429
430uint32_t ExternalReferenceEncoder::Encode(Address key) const {
431  int index = IndexOf(key);
432  DCHECK(key == NULL || index >= 0);
433  return index >= 0 ?
434         ExternalReferenceTable::instance(isolate_)->code(index) : 0;
435}
436
437
438const char* ExternalReferenceEncoder::NameOfAddress(Address key) const {
439  int index = IndexOf(key);
440  return index >= 0 ? ExternalReferenceTable::instance(isolate_)->name(index)
441                    : "<unknown>";
442}
443
444
445int ExternalReferenceEncoder::IndexOf(Address key) const {
446  if (key == NULL) return -1;
447  HashMap::Entry* entry =
448      const_cast<HashMap&>(encodings_).Lookup(key, Hash(key), false);
449  return entry == NULL
450      ? -1
451      : static_cast<int>(reinterpret_cast<intptr_t>(entry->value));
452}
453
454
455void ExternalReferenceEncoder::Put(Address key, int index) {
456  HashMap::Entry* entry = encodings_.Lookup(key, Hash(key), true);
457  entry->value = reinterpret_cast<void*>(index);
458}
459
460
461ExternalReferenceDecoder::ExternalReferenceDecoder(Isolate* isolate)
462    : encodings_(NewArray<Address*>(kTypeCodeCount)),
463      isolate_(isolate) {
464  ExternalReferenceTable* external_references =
465      ExternalReferenceTable::instance(isolate_);
466  for (int type = kFirstTypeCode; type < kTypeCodeCount; ++type) {
467    int max = external_references->max_id(type) + 1;
468    encodings_[type] = NewArray<Address>(max + 1);
469  }
470  for (int i = 0; i < external_references->size(); ++i) {
471    Put(external_references->code(i), external_references->address(i));
472  }
473}
474
475
476ExternalReferenceDecoder::~ExternalReferenceDecoder() {
477  for (int type = kFirstTypeCode; type < kTypeCodeCount; ++type) {
478    DeleteArray(encodings_[type]);
479  }
480  DeleteArray(encodings_);
481}
482
483
484class CodeAddressMap: public CodeEventLogger {
485 public:
486  explicit CodeAddressMap(Isolate* isolate)
487      : isolate_(isolate) {
488    isolate->logger()->addCodeEventListener(this);
489  }
490
491  virtual ~CodeAddressMap() {
492    isolate_->logger()->removeCodeEventListener(this);
493  }
494
495  virtual void CodeMoveEvent(Address from, Address to) {
496    address_to_name_map_.Move(from, to);
497  }
498
499  virtual void CodeDisableOptEvent(Code* code, SharedFunctionInfo* shared) {
500  }
501
502  virtual void CodeDeleteEvent(Address from) {
503    address_to_name_map_.Remove(from);
504  }
505
506  const char* Lookup(Address address) {
507    return address_to_name_map_.Lookup(address);
508  }
509
510 private:
511  class NameMap {
512   public:
513    NameMap() : impl_(HashMap::PointersMatch) {}
514
515    ~NameMap() {
516      for (HashMap::Entry* p = impl_.Start(); p != NULL; p = impl_.Next(p)) {
517        DeleteArray(static_cast<const char*>(p->value));
518      }
519    }
520
521    void Insert(Address code_address, const char* name, int name_size) {
522      HashMap::Entry* entry = FindOrCreateEntry(code_address);
523      if (entry->value == NULL) {
524        entry->value = CopyName(name, name_size);
525      }
526    }
527
528    const char* Lookup(Address code_address) {
529      HashMap::Entry* entry = FindEntry(code_address);
530      return (entry != NULL) ? static_cast<const char*>(entry->value) : NULL;
531    }
532
533    void Remove(Address code_address) {
534      HashMap::Entry* entry = FindEntry(code_address);
535      if (entry != NULL) {
536        DeleteArray(static_cast<char*>(entry->value));
537        RemoveEntry(entry);
538      }
539    }
540
541    void Move(Address from, Address to) {
542      if (from == to) return;
543      HashMap::Entry* from_entry = FindEntry(from);
544      DCHECK(from_entry != NULL);
545      void* value = from_entry->value;
546      RemoveEntry(from_entry);
547      HashMap::Entry* to_entry = FindOrCreateEntry(to);
548      DCHECK(to_entry->value == NULL);
549      to_entry->value = value;
550    }
551
552   private:
553    static char* CopyName(const char* name, int name_size) {
554      char* result = NewArray<char>(name_size + 1);
555      for (int i = 0; i < name_size; ++i) {
556        char c = name[i];
557        if (c == '\0') c = ' ';
558        result[i] = c;
559      }
560      result[name_size] = '\0';
561      return result;
562    }
563
564    HashMap::Entry* FindOrCreateEntry(Address code_address) {
565      return impl_.Lookup(code_address, ComputePointerHash(code_address), true);
566    }
567
568    HashMap::Entry* FindEntry(Address code_address) {
569      return impl_.Lookup(code_address,
570                          ComputePointerHash(code_address),
571                          false);
572    }
573
574    void RemoveEntry(HashMap::Entry* entry) {
575      impl_.Remove(entry->key, entry->hash);
576    }
577
578    HashMap impl_;
579
580    DISALLOW_COPY_AND_ASSIGN(NameMap);
581  };
582
583  virtual void LogRecordedBuffer(Code* code,
584                                 SharedFunctionInfo*,
585                                 const char* name,
586                                 int length) {
587    address_to_name_map_.Insert(code->address(), name, length);
588  }
589
590  NameMap address_to_name_map_;
591  Isolate* isolate_;
592};
593
594
595Deserializer::Deserializer(SnapshotByteSource* source)
596    : isolate_(NULL),
597      attached_objects_(NULL),
598      source_(source),
599      external_reference_decoder_(NULL) {
600  for (int i = 0; i < LAST_SPACE + 1; i++) {
601    reservations_[i] = kUninitializedReservation;
602  }
603}
604
605
606void Deserializer::FlushICacheForNewCodeObjects() {
607  PageIterator it(isolate_->heap()->code_space());
608  while (it.has_next()) {
609    Page* p = it.next();
610    CpuFeatures::FlushICache(p->area_start(), p->area_end() - p->area_start());
611  }
612}
613
614
615void Deserializer::Deserialize(Isolate* isolate) {
616  isolate_ = isolate;
617  DCHECK(isolate_ != NULL);
618  isolate_->heap()->ReserveSpace(reservations_, &high_water_[0]);
619  // No active threads.
620  DCHECK_EQ(NULL, isolate_->thread_manager()->FirstThreadStateInUse());
621  // No active handles.
622  DCHECK(isolate_->handle_scope_implementer()->blocks()->is_empty());
623  DCHECK_EQ(NULL, external_reference_decoder_);
624  external_reference_decoder_ = new ExternalReferenceDecoder(isolate);
625  isolate_->heap()->IterateSmiRoots(this);
626  isolate_->heap()->IterateStrongRoots(this, VISIT_ONLY_STRONG);
627  isolate_->heap()->RepairFreeListsAfterBoot();
628  isolate_->heap()->IterateWeakRoots(this, VISIT_ALL);
629
630  isolate_->heap()->set_native_contexts_list(
631      isolate_->heap()->undefined_value());
632  isolate_->heap()->set_array_buffers_list(
633      isolate_->heap()->undefined_value());
634
635  // The allocation site list is build during root iteration, but if no sites
636  // were encountered then it needs to be initialized to undefined.
637  if (isolate_->heap()->allocation_sites_list() == Smi::FromInt(0)) {
638    isolate_->heap()->set_allocation_sites_list(
639        isolate_->heap()->undefined_value());
640  }
641
642  isolate_->heap()->InitializeWeakObjectToCodeTable();
643
644  // Update data pointers to the external strings containing natives sources.
645  for (int i = 0; i < Natives::GetBuiltinsCount(); i++) {
646    Object* source = isolate_->heap()->natives_source_cache()->get(i);
647    if (!source->IsUndefined()) {
648      ExternalOneByteString::cast(source)->update_data_cache();
649    }
650  }
651
652  FlushICacheForNewCodeObjects();
653
654  // Issue code events for newly deserialized code objects.
655  LOG_CODE_EVENT(isolate_, LogCodeObjects());
656  LOG_CODE_EVENT(isolate_, LogCompiledFunctions());
657}
658
659
660void Deserializer::DeserializePartial(Isolate* isolate, Object** root) {
661  isolate_ = isolate;
662  for (int i = NEW_SPACE; i < kNumberOfSpaces; i++) {
663    DCHECK(reservations_[i] != kUninitializedReservation);
664  }
665  isolate_->heap()->ReserveSpace(reservations_, &high_water_[0]);
666  if (external_reference_decoder_ == NULL) {
667    external_reference_decoder_ = new ExternalReferenceDecoder(isolate);
668  }
669
670  DisallowHeapAllocation no_gc;
671
672  // Keep track of the code space start and end pointers in case new
673  // code objects were unserialized
674  OldSpace* code_space = isolate_->heap()->code_space();
675  Address start_address = code_space->top();
676  VisitPointer(root);
677
678  // There's no code deserialized here. If this assert fires
679  // then that's changed and logging should be added to notify
680  // the profiler et al of the new code.
681  CHECK_EQ(start_address, code_space->top());
682}
683
684
685Deserializer::~Deserializer() {
686  // TODO(svenpanne) Re-enable this assertion when v8 initialization is fixed.
687  // DCHECK(source_->AtEOF());
688  if (external_reference_decoder_) {
689    delete external_reference_decoder_;
690    external_reference_decoder_ = NULL;
691  }
692  if (attached_objects_) attached_objects_->Dispose();
693}
694
695
696// This is called on the roots.  It is the driver of the deserialization
697// process.  It is also called on the body of each function.
698void Deserializer::VisitPointers(Object** start, Object** end) {
699  // The space must be new space.  Any other space would cause ReadChunk to try
700  // to update the remembered using NULL as the address.
701  ReadChunk(start, end, NEW_SPACE, NULL);
702}
703
704
705void Deserializer::RelinkAllocationSite(AllocationSite* site) {
706  if (isolate_->heap()->allocation_sites_list() == Smi::FromInt(0)) {
707    site->set_weak_next(isolate_->heap()->undefined_value());
708  } else {
709    site->set_weak_next(isolate_->heap()->allocation_sites_list());
710  }
711  isolate_->heap()->set_allocation_sites_list(site);
712}
713
714
715// Used to insert a deserialized internalized string into the string table.
716class StringTableInsertionKey : public HashTableKey {
717 public:
718  explicit StringTableInsertionKey(String* string)
719      : string_(string), hash_(HashForObject(string)) {
720    DCHECK(string->IsInternalizedString());
721  }
722
723  virtual bool IsMatch(Object* string) {
724    // We know that all entries in a hash table had their hash keys created.
725    // Use that knowledge to have fast failure.
726    if (hash_ != HashForObject(string)) return false;
727    // We want to compare the content of two internalized strings here.
728    return string_->SlowEquals(String::cast(string));
729  }
730
731  virtual uint32_t Hash() OVERRIDE { return hash_; }
732
733  virtual uint32_t HashForObject(Object* key) OVERRIDE {
734    return String::cast(key)->Hash();
735  }
736
737  MUST_USE_RESULT virtual Handle<Object> AsHandle(Isolate* isolate)
738      OVERRIDE {
739    return handle(string_, isolate);
740  }
741
742  String* string_;
743  uint32_t hash_;
744};
745
746
747HeapObject* Deserializer::ProcessNewObjectFromSerializedCode(HeapObject* obj) {
748  if (obj->IsString()) {
749    String* string = String::cast(obj);
750    // Uninitialize hash field as the hash seed may have changed.
751    string->set_hash_field(String::kEmptyHashField);
752    if (string->IsInternalizedString()) {
753      DisallowHeapAllocation no_gc;
754      HandleScope scope(isolate_);
755      StringTableInsertionKey key(string);
756      String* canonical = *StringTable::LookupKey(isolate_, &key);
757      string->SetForwardedInternalizedString(canonical);
758      return canonical;
759    }
760  }
761  return obj;
762}
763
764
765Object* Deserializer::ProcessBackRefInSerializedCode(Object* obj) {
766  if (obj->IsInternalizedString()) {
767    return String::cast(obj)->GetForwardedInternalizedString();
768  }
769  return obj;
770}
771
772
773// This routine writes the new object into the pointer provided and then
774// returns true if the new object was in young space and false otherwise.
775// The reason for this strange interface is that otherwise the object is
776// written very late, which means the FreeSpace map is not set up by the
777// time we need to use it to mark the space at the end of a page free.
778void Deserializer::ReadObject(int space_number,
779                              Object** write_back) {
780  int size = source_->GetInt() << kObjectAlignmentBits;
781  Address address = Allocate(space_number, size);
782  HeapObject* obj = HeapObject::FromAddress(address);
783  isolate_->heap()->OnAllocationEvent(obj, size);
784  Object** current = reinterpret_cast<Object**>(address);
785  Object** limit = current + (size >> kPointerSizeLog2);
786  if (FLAG_log_snapshot_positions) {
787    LOG(isolate_, SnapshotPositionEvent(address, source_->position()));
788  }
789  ReadChunk(current, limit, space_number, address);
790
791  // TODO(mvstanton): consider treating the heap()->allocation_sites_list()
792  // as a (weak) root. If this root is relocated correctly,
793  // RelinkAllocationSite() isn't necessary.
794  if (obj->IsAllocationSite()) RelinkAllocationSite(AllocationSite::cast(obj));
795
796  // Fix up strings from serialized user code.
797  if (deserializing_user_code()) obj = ProcessNewObjectFromSerializedCode(obj);
798
799  *write_back = obj;
800#ifdef DEBUG
801  bool is_codespace = (space_number == CODE_SPACE);
802  DCHECK(obj->IsCode() == is_codespace);
803#endif
804}
805
806void Deserializer::ReadChunk(Object** current,
807                             Object** limit,
808                             int source_space,
809                             Address current_object_address) {
810  Isolate* const isolate = isolate_;
811  // Write barrier support costs around 1% in startup time.  In fact there
812  // are no new space objects in current boot snapshots, so it's not needed,
813  // but that may change.
814  bool write_barrier_needed = (current_object_address != NULL &&
815                               source_space != NEW_SPACE &&
816                               source_space != CELL_SPACE &&
817                               source_space != PROPERTY_CELL_SPACE &&
818                               source_space != CODE_SPACE &&
819                               source_space != OLD_DATA_SPACE);
820  while (current < limit) {
821    int data = source_->Get();
822    switch (data) {
823#define CASE_STATEMENT(where, how, within, space_number) \
824  case where + how + within + space_number:              \
825    STATIC_ASSERT((where & ~kPointedToMask) == 0);       \
826    STATIC_ASSERT((how & ~kHowToCodeMask) == 0);         \
827    STATIC_ASSERT((within & ~kWhereToPointMask) == 0);   \
828    STATIC_ASSERT((space_number & ~kSpaceMask) == 0);
829
830#define CASE_BODY(where, how, within, space_number_if_any)                     \
831  {                                                                            \
832    bool emit_write_barrier = false;                                           \
833    bool current_was_incremented = false;                                      \
834    int space_number = space_number_if_any == kAnyOldSpace                     \
835                           ? (data & kSpaceMask)                               \
836                           : space_number_if_any;                              \
837    if (where == kNewObject && how == kPlain && within == kStartOfObject) {    \
838      ReadObject(space_number, current);                                       \
839      emit_write_barrier = (space_number == NEW_SPACE);                        \
840    } else {                                                                   \
841      Object* new_object = NULL; /* May not be a real Object pointer. */       \
842      if (where == kNewObject) {                                               \
843        ReadObject(space_number, &new_object);                                 \
844      } else if (where == kRootArray) {                                        \
845        int root_id = source_->GetInt();                                       \
846        new_object = isolate->heap()->roots_array_start()[root_id];            \
847        emit_write_barrier = isolate->heap()->InNewSpace(new_object);          \
848      } else if (where == kPartialSnapshotCache) {                             \
849        int cache_index = source_->GetInt();                                   \
850        new_object = isolate->serialize_partial_snapshot_cache()[cache_index]; \
851        emit_write_barrier = isolate->heap()->InNewSpace(new_object);          \
852      } else if (where == kExternalReference) {                                \
853        int skip = source_->GetInt();                                          \
854        current = reinterpret_cast<Object**>(                                  \
855            reinterpret_cast<Address>(current) + skip);                        \
856        int reference_id = source_->GetInt();                                  \
857        Address address = external_reference_decoder_->Decode(reference_id);   \
858        new_object = reinterpret_cast<Object*>(address);                       \
859      } else if (where == kBackref) {                                          \
860        emit_write_barrier = (space_number == NEW_SPACE);                      \
861        new_object = GetAddressFromEnd(data & kSpaceMask);                     \
862        if (deserializing_user_code()) {                                       \
863          new_object = ProcessBackRefInSerializedCode(new_object);             \
864        }                                                                      \
865      } else if (where == kBuiltin) {                                          \
866        DCHECK(deserializing_user_code());                                     \
867        int builtin_id = source_->GetInt();                                    \
868        DCHECK_LE(0, builtin_id);                                              \
869        DCHECK_LT(builtin_id, Builtins::builtin_count);                        \
870        Builtins::Name name = static_cast<Builtins::Name>(builtin_id);         \
871        new_object = isolate->builtins()->builtin(name);                       \
872        emit_write_barrier = false;                                            \
873      } else if (where == kAttachedReference) {                                \
874        DCHECK(deserializing_user_code());                                     \
875        int index = source_->GetInt();                                         \
876        new_object = *attached_objects_->at(index);                            \
877        emit_write_barrier = isolate->heap()->InNewSpace(new_object);          \
878      } else {                                                                 \
879        DCHECK(where == kBackrefWithSkip);                                     \
880        int skip = source_->GetInt();                                          \
881        current = reinterpret_cast<Object**>(                                  \
882            reinterpret_cast<Address>(current) + skip);                        \
883        emit_write_barrier = (space_number == NEW_SPACE);                      \
884        new_object = GetAddressFromEnd(data & kSpaceMask);                     \
885        if (deserializing_user_code()) {                                       \
886          new_object = ProcessBackRefInSerializedCode(new_object);             \
887        }                                                                      \
888      }                                                                        \
889      if (within == kInnerPointer) {                                           \
890        if (space_number != CODE_SPACE || new_object->IsCode()) {              \
891          Code* new_code_object = reinterpret_cast<Code*>(new_object);         \
892          new_object =                                                         \
893              reinterpret_cast<Object*>(new_code_object->instruction_start()); \
894        } else {                                                               \
895          DCHECK(space_number == CODE_SPACE);                                  \
896          Cell* cell = Cell::cast(new_object);                                 \
897          new_object = reinterpret_cast<Object*>(cell->ValueAddress());        \
898        }                                                                      \
899      }                                                                        \
900      if (how == kFromCode) {                                                  \
901        Address location_of_branch_data = reinterpret_cast<Address>(current);  \
902        Assembler::deserialization_set_special_target_at(                      \
903            location_of_branch_data,                                           \
904            Code::cast(HeapObject::FromAddress(current_object_address)),       \
905            reinterpret_cast<Address>(new_object));                            \
906        location_of_branch_data += Assembler::kSpecialTargetSize;              \
907        current = reinterpret_cast<Object**>(location_of_branch_data);         \
908        current_was_incremented = true;                                        \
909      } else {                                                                 \
910        *current = new_object;                                                 \
911      }                                                                        \
912    }                                                                          \
913    if (emit_write_barrier && write_barrier_needed) {                          \
914      Address current_address = reinterpret_cast<Address>(current);            \
915      isolate->heap()->RecordWrite(                                            \
916          current_object_address,                                              \
917          static_cast<int>(current_address - current_object_address));         \
918    }                                                                          \
919    if (!current_was_incremented) {                                            \
920      current++;                                                               \
921    }                                                                          \
922    break;                                                                     \
923  }
924
925// This generates a case and a body for the new space (which has to do extra
926// write barrier handling) and handles the other spaces with 8 fall-through
927// cases and one body.
928#define ALL_SPACES(where, how, within)                                         \
929  CASE_STATEMENT(where, how, within, NEW_SPACE)                                \
930  CASE_BODY(where, how, within, NEW_SPACE)                                     \
931  CASE_STATEMENT(where, how, within, OLD_DATA_SPACE)                           \
932  CASE_STATEMENT(where, how, within, OLD_POINTER_SPACE)                        \
933  CASE_STATEMENT(where, how, within, CODE_SPACE)                               \
934  CASE_STATEMENT(where, how, within, CELL_SPACE)                               \
935  CASE_STATEMENT(where, how, within, PROPERTY_CELL_SPACE)                      \
936  CASE_STATEMENT(where, how, within, MAP_SPACE)                                \
937  CASE_BODY(where, how, within, kAnyOldSpace)
938
939#define FOUR_CASES(byte_code)             \
940  case byte_code:                         \
941  case byte_code + 1:                     \
942  case byte_code + 2:                     \
943  case byte_code + 3:
944
945#define SIXTEEN_CASES(byte_code)          \
946  FOUR_CASES(byte_code)                   \
947  FOUR_CASES(byte_code + 4)               \
948  FOUR_CASES(byte_code + 8)               \
949  FOUR_CASES(byte_code + 12)
950
951#define COMMON_RAW_LENGTHS(f)        \
952  f(1)  \
953  f(2)  \
954  f(3)  \
955  f(4)  \
956  f(5)  \
957  f(6)  \
958  f(7)  \
959  f(8)  \
960  f(9)  \
961  f(10) \
962  f(11) \
963  f(12) \
964  f(13) \
965  f(14) \
966  f(15) \
967  f(16) \
968  f(17) \
969  f(18) \
970  f(19) \
971  f(20) \
972  f(21) \
973  f(22) \
974  f(23) \
975  f(24) \
976  f(25) \
977  f(26) \
978  f(27) \
979  f(28) \
980  f(29) \
981  f(30) \
982  f(31)
983
984      // We generate 15 cases and bodies that process special tags that combine
985      // the raw data tag and the length into one byte.
986#define RAW_CASE(index)                                                      \
987      case kRawData + index: {                                               \
988        byte* raw_data_out = reinterpret_cast<byte*>(current);               \
989        source_->CopyRaw(raw_data_out, index * kPointerSize);                \
990        current =                                                            \
991            reinterpret_cast<Object**>(raw_data_out + index * kPointerSize); \
992        break;                                                               \
993      }
994      COMMON_RAW_LENGTHS(RAW_CASE)
995#undef RAW_CASE
996
997      // Deserialize a chunk of raw data that doesn't have one of the popular
998      // lengths.
999      case kRawData: {
1000        int size = source_->GetInt();
1001        byte* raw_data_out = reinterpret_cast<byte*>(current);
1002        source_->CopyRaw(raw_data_out, size);
1003        break;
1004      }
1005
1006      SIXTEEN_CASES(kRootArrayConstants + kNoSkipDistance)
1007      SIXTEEN_CASES(kRootArrayConstants + kNoSkipDistance + 16) {
1008        int root_id = RootArrayConstantFromByteCode(data);
1009        Object* object = isolate->heap()->roots_array_start()[root_id];
1010        DCHECK(!isolate->heap()->InNewSpace(object));
1011        *current++ = object;
1012        break;
1013      }
1014
1015      SIXTEEN_CASES(kRootArrayConstants + kHasSkipDistance)
1016      SIXTEEN_CASES(kRootArrayConstants + kHasSkipDistance + 16) {
1017        int root_id = RootArrayConstantFromByteCode(data);
1018        int skip = source_->GetInt();
1019        current = reinterpret_cast<Object**>(
1020            reinterpret_cast<intptr_t>(current) + skip);
1021        Object* object = isolate->heap()->roots_array_start()[root_id];
1022        DCHECK(!isolate->heap()->InNewSpace(object));
1023        *current++ = object;
1024        break;
1025      }
1026
1027      case kRepeat: {
1028        int repeats = source_->GetInt();
1029        Object* object = current[-1];
1030        DCHECK(!isolate->heap()->InNewSpace(object));
1031        for (int i = 0; i < repeats; i++) current[i] = object;
1032        current += repeats;
1033        break;
1034      }
1035
1036      STATIC_ASSERT(kRootArrayNumberOfConstantEncodings ==
1037                    Heap::kOldSpaceRoots);
1038      STATIC_ASSERT(kMaxRepeats == 13);
1039      case kConstantRepeat:
1040      FOUR_CASES(kConstantRepeat + 1)
1041      FOUR_CASES(kConstantRepeat + 5)
1042      FOUR_CASES(kConstantRepeat + 9) {
1043        int repeats = RepeatsForCode(data);
1044        Object* object = current[-1];
1045        DCHECK(!isolate->heap()->InNewSpace(object));
1046        for (int i = 0; i < repeats; i++) current[i] = object;
1047        current += repeats;
1048        break;
1049      }
1050
1051      // Deserialize a new object and write a pointer to it to the current
1052      // object.
1053      ALL_SPACES(kNewObject, kPlain, kStartOfObject)
1054      // Support for direct instruction pointers in functions.  It's an inner
1055      // pointer because it points at the entry point, not at the start of the
1056      // code object.
1057      CASE_STATEMENT(kNewObject, kPlain, kInnerPointer, CODE_SPACE)
1058      CASE_BODY(kNewObject, kPlain, kInnerPointer, CODE_SPACE)
1059      // Deserialize a new code object and write a pointer to its first
1060      // instruction to the current code object.
1061      ALL_SPACES(kNewObject, kFromCode, kInnerPointer)
1062      // Find a recently deserialized object using its offset from the current
1063      // allocation point and write a pointer to it to the current object.
1064      ALL_SPACES(kBackref, kPlain, kStartOfObject)
1065      ALL_SPACES(kBackrefWithSkip, kPlain, kStartOfObject)
1066#if defined(V8_TARGET_ARCH_MIPS) || V8_OOL_CONSTANT_POOL || \
1067    defined(V8_TARGET_ARCH_MIPS64)
1068      // Deserialize a new object from pointer found in code and write
1069      // a pointer to it to the current object. Required only for MIPS or ARM
1070      // with ool constant pool, and omitted on the other architectures because
1071      // it is fully unrolled and would cause bloat.
1072      ALL_SPACES(kNewObject, kFromCode, kStartOfObject)
1073      // Find a recently deserialized code object using its offset from the
1074      // current allocation point and write a pointer to it to the current
1075      // object. Required only for MIPS or ARM with ool constant pool.
1076      ALL_SPACES(kBackref, kFromCode, kStartOfObject)
1077      ALL_SPACES(kBackrefWithSkip, kFromCode, kStartOfObject)
1078#endif
1079      // Find a recently deserialized code object using its offset from the
1080      // current allocation point and write a pointer to its first instruction
1081      // to the current code object or the instruction pointer in a function
1082      // object.
1083      ALL_SPACES(kBackref, kFromCode, kInnerPointer)
1084      ALL_SPACES(kBackrefWithSkip, kFromCode, kInnerPointer)
1085      ALL_SPACES(kBackref, kPlain, kInnerPointer)
1086      ALL_SPACES(kBackrefWithSkip, kPlain, kInnerPointer)
1087      // Find an object in the roots array and write a pointer to it to the
1088      // current object.
1089      CASE_STATEMENT(kRootArray, kPlain, kStartOfObject, 0)
1090      CASE_BODY(kRootArray, kPlain, kStartOfObject, 0)
1091#if defined(V8_TARGET_ARCH_MIPS) || V8_OOL_CONSTANT_POOL || \
1092    defined(V8_TARGET_ARCH_MIPS64)
1093      // Find an object in the roots array and write a pointer to it to in code.
1094      CASE_STATEMENT(kRootArray, kFromCode, kStartOfObject, 0)
1095      CASE_BODY(kRootArray, kFromCode, kStartOfObject, 0)
1096#endif
1097      // Find an object in the partial snapshots cache and write a pointer to it
1098      // to the current object.
1099      CASE_STATEMENT(kPartialSnapshotCache, kPlain, kStartOfObject, 0)
1100      CASE_BODY(kPartialSnapshotCache,
1101                kPlain,
1102                kStartOfObject,
1103                0)
1104      // Find an code entry in the partial snapshots cache and
1105      // write a pointer to it to the current object.
1106      CASE_STATEMENT(kPartialSnapshotCache, kPlain, kInnerPointer, 0)
1107      CASE_BODY(kPartialSnapshotCache,
1108                kPlain,
1109                kInnerPointer,
1110                0)
1111      // Find an external reference and write a pointer to it to the current
1112      // object.
1113      CASE_STATEMENT(kExternalReference, kPlain, kStartOfObject, 0)
1114      CASE_BODY(kExternalReference,
1115                kPlain,
1116                kStartOfObject,
1117                0)
1118      // Find an external reference and write a pointer to it in the current
1119      // code object.
1120      CASE_STATEMENT(kExternalReference, kFromCode, kStartOfObject, 0)
1121      CASE_BODY(kExternalReference,
1122                kFromCode,
1123                kStartOfObject,
1124                0)
1125      // Find a builtin and write a pointer to it to the current object.
1126      CASE_STATEMENT(kBuiltin, kPlain, kStartOfObject, 0)
1127      CASE_BODY(kBuiltin, kPlain, kStartOfObject, 0)
1128#if V8_OOL_CONSTANT_POOL
1129      // Find a builtin code entry and write a pointer to it to the current
1130      // object.
1131      CASE_STATEMENT(kBuiltin, kPlain, kInnerPointer, 0)
1132      CASE_BODY(kBuiltin, kPlain, kInnerPointer, 0)
1133#endif
1134      // Find a builtin and write a pointer to it in the current code object.
1135      CASE_STATEMENT(kBuiltin, kFromCode, kInnerPointer, 0)
1136      CASE_BODY(kBuiltin, kFromCode, kInnerPointer, 0)
1137      // Find an object in the attached references and write a pointer to it to
1138      // the current object.
1139      CASE_STATEMENT(kAttachedReference, kPlain, kStartOfObject, 0)
1140      CASE_BODY(kAttachedReference, kPlain, kStartOfObject, 0)
1141      CASE_STATEMENT(kAttachedReference, kPlain, kInnerPointer, 0)
1142      CASE_BODY(kAttachedReference, kPlain, kInnerPointer, 0)
1143      CASE_STATEMENT(kAttachedReference, kFromCode, kInnerPointer, 0)
1144      CASE_BODY(kAttachedReference, kFromCode, kInnerPointer, 0)
1145
1146#undef CASE_STATEMENT
1147#undef CASE_BODY
1148#undef ALL_SPACES
1149
1150      case kSkip: {
1151        int size = source_->GetInt();
1152        current = reinterpret_cast<Object**>(
1153            reinterpret_cast<intptr_t>(current) + size);
1154        break;
1155      }
1156
1157      case kNativesStringResource: {
1158        int index = source_->Get();
1159        Vector<const char> source_vector = Natives::GetRawScriptSource(index);
1160        NativesExternalStringResource* resource =
1161            new NativesExternalStringResource(isolate->bootstrapper(),
1162                                              source_vector.start(),
1163                                              source_vector.length());
1164        *current++ = reinterpret_cast<Object*>(resource);
1165        break;
1166      }
1167
1168      case kSynchronize: {
1169        // If we get here then that indicates that you have a mismatch between
1170        // the number of GC roots when serializing and deserializing.
1171        UNREACHABLE();
1172      }
1173
1174      default:
1175        UNREACHABLE();
1176    }
1177  }
1178  DCHECK_EQ(limit, current);
1179}
1180
1181
1182Serializer::Serializer(Isolate* isolate, SnapshotByteSink* sink)
1183    : isolate_(isolate),
1184      sink_(sink),
1185      external_reference_encoder_(new ExternalReferenceEncoder(isolate)),
1186      root_index_wave_front_(0),
1187      code_address_map_(NULL) {
1188  // The serializer is meant to be used only to generate initial heap images
1189  // from a context in which there is only one isolate.
1190  for (int i = 0; i <= LAST_SPACE; i++) {
1191    fullness_[i] = 0;
1192  }
1193}
1194
1195
1196Serializer::~Serializer() {
1197  delete external_reference_encoder_;
1198  if (code_address_map_ != NULL) delete code_address_map_;
1199}
1200
1201
1202void StartupSerializer::SerializeStrongReferences() {
1203  Isolate* isolate = this->isolate();
1204  // No active threads.
1205  CHECK_EQ(NULL, isolate->thread_manager()->FirstThreadStateInUse());
1206  // No active or weak handles.
1207  CHECK(isolate->handle_scope_implementer()->blocks()->is_empty());
1208  CHECK_EQ(0, isolate->global_handles()->NumberOfWeakHandles());
1209  CHECK_EQ(0, isolate->eternal_handles()->NumberOfHandles());
1210  // We don't support serializing installed extensions.
1211  CHECK(!isolate->has_installed_extensions());
1212  isolate->heap()->IterateSmiRoots(this);
1213  isolate->heap()->IterateStrongRoots(this, VISIT_ONLY_STRONG);
1214}
1215
1216
1217void PartialSerializer::Serialize(Object** object) {
1218  this->VisitPointer(object);
1219  Pad();
1220}
1221
1222
1223bool Serializer::ShouldBeSkipped(Object** current) {
1224  Object** roots = isolate()->heap()->roots_array_start();
1225  return current == &roots[Heap::kStoreBufferTopRootIndex]
1226      || current == &roots[Heap::kStackLimitRootIndex]
1227      || current == &roots[Heap::kRealStackLimitRootIndex];
1228}
1229
1230
1231void Serializer::VisitPointers(Object** start, Object** end) {
1232  Isolate* isolate = this->isolate();;
1233
1234  for (Object** current = start; current < end; current++) {
1235    if (start == isolate->heap()->roots_array_start()) {
1236      root_index_wave_front_ =
1237          Max(root_index_wave_front_, static_cast<intptr_t>(current - start));
1238    }
1239    if (ShouldBeSkipped(current)) {
1240      sink_->Put(kSkip, "Skip");
1241      sink_->PutInt(kPointerSize, "SkipOneWord");
1242    } else if ((*current)->IsSmi()) {
1243      sink_->Put(kRawData + 1, "Smi");
1244      for (int i = 0; i < kPointerSize; i++) {
1245        sink_->Put(reinterpret_cast<byte*>(current)[i], "Byte");
1246      }
1247    } else {
1248      SerializeObject(*current, kPlain, kStartOfObject, 0);
1249    }
1250  }
1251}
1252
1253
1254// This ensures that the partial snapshot cache keeps things alive during GC and
1255// tracks their movement.  When it is called during serialization of the startup
1256// snapshot nothing happens.  When the partial (context) snapshot is created,
1257// this array is populated with the pointers that the partial snapshot will
1258// need. As that happens we emit serialized objects to the startup snapshot
1259// that correspond to the elements of this cache array.  On deserialization we
1260// therefore need to visit the cache array.  This fills it up with pointers to
1261// deserialized objects.
1262void SerializerDeserializer::Iterate(Isolate* isolate,
1263                                     ObjectVisitor* visitor) {
1264  if (isolate->serializer_enabled()) return;
1265  for (int i = 0; ; i++) {
1266    if (isolate->serialize_partial_snapshot_cache_length() <= i) {
1267      // Extend the array ready to get a value from the visitor when
1268      // deserializing.
1269      isolate->PushToPartialSnapshotCache(Smi::FromInt(0));
1270    }
1271    Object** cache = isolate->serialize_partial_snapshot_cache();
1272    visitor->VisitPointers(&cache[i], &cache[i + 1]);
1273    // Sentinel is the undefined object, which is a root so it will not normally
1274    // be found in the cache.
1275    if (cache[i] == isolate->heap()->undefined_value()) {
1276      break;
1277    }
1278  }
1279}
1280
1281
1282int PartialSerializer::PartialSnapshotCacheIndex(HeapObject* heap_object) {
1283  Isolate* isolate = this->isolate();
1284
1285  for (int i = 0;
1286       i < isolate->serialize_partial_snapshot_cache_length();
1287       i++) {
1288    Object* entry = isolate->serialize_partial_snapshot_cache()[i];
1289    if (entry == heap_object) return i;
1290  }
1291
1292  // We didn't find the object in the cache.  So we add it to the cache and
1293  // then visit the pointer so that it becomes part of the startup snapshot
1294  // and we can refer to it from the partial snapshot.
1295  int length = isolate->serialize_partial_snapshot_cache_length();
1296  isolate->PushToPartialSnapshotCache(heap_object);
1297  startup_serializer_->VisitPointer(reinterpret_cast<Object**>(&heap_object));
1298  // We don't recurse from the startup snapshot generator into the partial
1299  // snapshot generator.
1300  DCHECK(length == isolate->serialize_partial_snapshot_cache_length() - 1);
1301  return length;
1302}
1303
1304
1305int Serializer::RootIndex(HeapObject* heap_object, HowToCode from) {
1306  Heap* heap = isolate()->heap();
1307  if (heap->InNewSpace(heap_object)) return kInvalidRootIndex;
1308  for (int i = 0; i < root_index_wave_front_; i++) {
1309    Object* root = heap->roots_array_start()[i];
1310    if (!root->IsSmi() && root == heap_object) {
1311      return i;
1312    }
1313  }
1314  return kInvalidRootIndex;
1315}
1316
1317
1318// Encode the location of an already deserialized object in order to write its
1319// location into a later object.  We can encode the location as an offset from
1320// the start of the deserialized objects or as an offset backwards from the
1321// current allocation pointer.
1322void Serializer::SerializeReferenceToPreviousObject(HeapObject* heap_object,
1323                                                    HowToCode how_to_code,
1324                                                    WhereToPoint where_to_point,
1325                                                    int skip) {
1326  int space = SpaceOfObject(heap_object);
1327  int address = address_mapper_.MappedTo(heap_object);
1328  int offset = CurrentAllocationAddress(space) - address;
1329  // Shift out the bits that are always 0.
1330  offset >>= kObjectAlignmentBits;
1331  if (skip == 0) {
1332    sink_->Put(kBackref + how_to_code + where_to_point + space, "BackRefSer");
1333  } else {
1334    sink_->Put(kBackrefWithSkip + how_to_code + where_to_point + space,
1335               "BackRefSerWithSkip");
1336    sink_->PutInt(skip, "BackRefSkipDistance");
1337  }
1338  sink_->PutInt(offset, "offset");
1339}
1340
1341
1342void StartupSerializer::SerializeObject(
1343    Object* o,
1344    HowToCode how_to_code,
1345    WhereToPoint where_to_point,
1346    int skip) {
1347  CHECK(o->IsHeapObject());
1348  HeapObject* heap_object = HeapObject::cast(o);
1349  DCHECK(!heap_object->IsJSFunction());
1350
1351  int root_index;
1352  if ((root_index = RootIndex(heap_object, how_to_code)) != kInvalidRootIndex) {
1353    PutRoot(root_index, heap_object, how_to_code, where_to_point, skip);
1354    return;
1355  }
1356
1357  if (address_mapper_.IsMapped(heap_object)) {
1358    SerializeReferenceToPreviousObject(heap_object, how_to_code, where_to_point,
1359                                       skip);
1360  } else {
1361    if (skip != 0) {
1362      sink_->Put(kSkip, "FlushPendingSkip");
1363      sink_->PutInt(skip, "SkipDistance");
1364    }
1365
1366    // Object has not yet been serialized.  Serialize it here.
1367    ObjectSerializer object_serializer(this,
1368                                       heap_object,
1369                                       sink_,
1370                                       how_to_code,
1371                                       where_to_point);
1372    object_serializer.Serialize();
1373  }
1374}
1375
1376
1377void StartupSerializer::SerializeWeakReferences() {
1378  // This phase comes right after the partial serialization (of the snapshot).
1379  // After we have done the partial serialization the partial snapshot cache
1380  // will contain some references needed to decode the partial snapshot.  We
1381  // add one entry with 'undefined' which is the sentinel that the deserializer
1382  // uses to know it is done deserializing the array.
1383  Object* undefined = isolate()->heap()->undefined_value();
1384  VisitPointer(&undefined);
1385  isolate()->heap()->IterateWeakRoots(this, VISIT_ALL);
1386  Pad();
1387}
1388
1389
1390void Serializer::PutRoot(int root_index,
1391                         HeapObject* object,
1392                         SerializerDeserializer::HowToCode how_to_code,
1393                         SerializerDeserializer::WhereToPoint where_to_point,
1394                         int skip) {
1395  if (how_to_code == kPlain &&
1396      where_to_point == kStartOfObject &&
1397      root_index < kRootArrayNumberOfConstantEncodings &&
1398      !isolate()->heap()->InNewSpace(object)) {
1399    if (skip == 0) {
1400      sink_->Put(kRootArrayConstants + kNoSkipDistance + root_index,
1401                 "RootConstant");
1402    } else {
1403      sink_->Put(kRootArrayConstants + kHasSkipDistance + root_index,
1404                 "RootConstant");
1405      sink_->PutInt(skip, "SkipInPutRoot");
1406    }
1407  } else {
1408    if (skip != 0) {
1409      sink_->Put(kSkip, "SkipFromPutRoot");
1410      sink_->PutInt(skip, "SkipFromPutRootDistance");
1411    }
1412    sink_->Put(kRootArray + how_to_code + where_to_point, "RootSerialization");
1413    sink_->PutInt(root_index, "root_index");
1414  }
1415}
1416
1417
1418void PartialSerializer::SerializeObject(
1419    Object* o,
1420    HowToCode how_to_code,
1421    WhereToPoint where_to_point,
1422    int skip) {
1423  CHECK(o->IsHeapObject());
1424  HeapObject* heap_object = HeapObject::cast(o);
1425
1426  if (heap_object->IsMap()) {
1427    // The code-caches link to context-specific code objects, which
1428    // the startup and context serializes cannot currently handle.
1429    DCHECK(Map::cast(heap_object)->code_cache() ==
1430           heap_object->GetHeap()->empty_fixed_array());
1431  }
1432
1433  int root_index;
1434  if ((root_index = RootIndex(heap_object, how_to_code)) != kInvalidRootIndex) {
1435    PutRoot(root_index, heap_object, how_to_code, where_to_point, skip);
1436    return;
1437  }
1438
1439  if (ShouldBeInThePartialSnapshotCache(heap_object)) {
1440    if (skip != 0) {
1441      sink_->Put(kSkip, "SkipFromSerializeObject");
1442      sink_->PutInt(skip, "SkipDistanceFromSerializeObject");
1443    }
1444
1445    int cache_index = PartialSnapshotCacheIndex(heap_object);
1446    sink_->Put(kPartialSnapshotCache + how_to_code + where_to_point,
1447               "PartialSnapshotCache");
1448    sink_->PutInt(cache_index, "partial_snapshot_cache_index");
1449    return;
1450  }
1451
1452  // Pointers from the partial snapshot to the objects in the startup snapshot
1453  // should go through the root array or through the partial snapshot cache.
1454  // If this is not the case you may have to add something to the root array.
1455  DCHECK(!startup_serializer_->address_mapper()->IsMapped(heap_object));
1456  // All the internalized strings that the partial snapshot needs should be
1457  // either in the root table or in the partial snapshot cache.
1458  DCHECK(!heap_object->IsInternalizedString());
1459
1460  if (address_mapper_.IsMapped(heap_object)) {
1461    SerializeReferenceToPreviousObject(heap_object, how_to_code, where_to_point,
1462                                       skip);
1463  } else {
1464    if (skip != 0) {
1465      sink_->Put(kSkip, "SkipFromSerializeObject");
1466      sink_->PutInt(skip, "SkipDistanceFromSerializeObject");
1467    }
1468    // Object has not yet been serialized.  Serialize it here.
1469    ObjectSerializer serializer(this,
1470                                heap_object,
1471                                sink_,
1472                                how_to_code,
1473                                where_to_point);
1474    serializer.Serialize();
1475  }
1476}
1477
1478
1479void Serializer::ObjectSerializer::Serialize() {
1480  int space = Serializer::SpaceOfObject(object_);
1481  int size = object_->Size();
1482
1483  sink_->Put(kNewObject + reference_representation_ + space,
1484             "ObjectSerialization");
1485  sink_->PutInt(size >> kObjectAlignmentBits, "Size in words");
1486
1487  if (serializer_->code_address_map_) {
1488    const char* code_name =
1489        serializer_->code_address_map_->Lookup(object_->address());
1490    LOG(serializer_->isolate_,
1491        CodeNameEvent(object_->address(), sink_->Position(), code_name));
1492    LOG(serializer_->isolate_,
1493        SnapshotPositionEvent(object_->address(), sink_->Position()));
1494  }
1495
1496  // Mark this object as already serialized.
1497  int offset = serializer_->Allocate(space, size);
1498  serializer_->address_mapper()->AddMapping(object_, offset);
1499
1500  // Serialize the map (first word of the object).
1501  serializer_->SerializeObject(object_->map(), kPlain, kStartOfObject, 0);
1502
1503  // Serialize the rest of the object.
1504  CHECK_EQ(0, bytes_processed_so_far_);
1505  bytes_processed_so_far_ = kPointerSize;
1506  object_->IterateBody(object_->map()->instance_type(), size, this);
1507  OutputRawData(object_->address() + size);
1508}
1509
1510
1511void Serializer::ObjectSerializer::VisitPointers(Object** start,
1512                                                 Object** end) {
1513  Object** current = start;
1514  while (current < end) {
1515    while (current < end && (*current)->IsSmi()) current++;
1516    if (current < end) OutputRawData(reinterpret_cast<Address>(current));
1517
1518    while (current < end && !(*current)->IsSmi()) {
1519      HeapObject* current_contents = HeapObject::cast(*current);
1520      int root_index = serializer_->RootIndex(current_contents, kPlain);
1521      // Repeats are not subject to the write barrier so there are only some
1522      // objects that can be used in a repeat encoding.  These are the early
1523      // ones in the root array that are never in new space.
1524      if (current != start &&
1525          root_index != kInvalidRootIndex &&
1526          root_index < kRootArrayNumberOfConstantEncodings &&
1527          current_contents == current[-1]) {
1528        DCHECK(!serializer_->isolate()->heap()->InNewSpace(current_contents));
1529        int repeat_count = 1;
1530        while (&current[repeat_count] < end - 1 &&
1531               current[repeat_count] == current_contents) {
1532          repeat_count++;
1533        }
1534        current += repeat_count;
1535        bytes_processed_so_far_ += repeat_count * kPointerSize;
1536        if (repeat_count > kMaxRepeats) {
1537          sink_->Put(kRepeat, "SerializeRepeats");
1538          sink_->PutInt(repeat_count, "SerializeRepeats");
1539        } else {
1540          sink_->Put(CodeForRepeats(repeat_count), "SerializeRepeats");
1541        }
1542      } else {
1543        serializer_->SerializeObject(
1544                current_contents, kPlain, kStartOfObject, 0);
1545        bytes_processed_so_far_ += kPointerSize;
1546        current++;
1547      }
1548    }
1549  }
1550}
1551
1552
1553void Serializer::ObjectSerializer::VisitEmbeddedPointer(RelocInfo* rinfo) {
1554  // Out-of-line constant pool entries will be visited by the ConstantPoolArray.
1555  if (FLAG_enable_ool_constant_pool && rinfo->IsInConstantPool()) return;
1556
1557  int skip = OutputRawData(rinfo->target_address_address(),
1558                           kCanReturnSkipInsteadOfSkipping);
1559  HowToCode how_to_code = rinfo->IsCodedSpecially() ? kFromCode : kPlain;
1560  Object* object = rinfo->target_object();
1561  serializer_->SerializeObject(object, how_to_code, kStartOfObject, skip);
1562  bytes_processed_so_far_ += rinfo->target_address_size();
1563}
1564
1565
1566void Serializer::ObjectSerializer::VisitExternalReference(Address* p) {
1567  int skip = OutputRawData(reinterpret_cast<Address>(p),
1568                           kCanReturnSkipInsteadOfSkipping);
1569  sink_->Put(kExternalReference + kPlain + kStartOfObject, "ExternalRef");
1570  sink_->PutInt(skip, "SkipB4ExternalRef");
1571  Address target = *p;
1572  sink_->PutInt(serializer_->EncodeExternalReference(target), "reference id");
1573  bytes_processed_so_far_ += kPointerSize;
1574}
1575
1576
1577void Serializer::ObjectSerializer::VisitExternalReference(RelocInfo* rinfo) {
1578  int skip = OutputRawData(rinfo->target_address_address(),
1579                           kCanReturnSkipInsteadOfSkipping);
1580  HowToCode how_to_code = rinfo->IsCodedSpecially() ? kFromCode : kPlain;
1581  sink_->Put(kExternalReference + how_to_code + kStartOfObject, "ExternalRef");
1582  sink_->PutInt(skip, "SkipB4ExternalRef");
1583  Address target = rinfo->target_reference();
1584  sink_->PutInt(serializer_->EncodeExternalReference(target), "reference id");
1585  bytes_processed_so_far_ += rinfo->target_address_size();
1586}
1587
1588
1589void Serializer::ObjectSerializer::VisitRuntimeEntry(RelocInfo* rinfo) {
1590  int skip = OutputRawData(rinfo->target_address_address(),
1591                           kCanReturnSkipInsteadOfSkipping);
1592  HowToCode how_to_code = rinfo->IsCodedSpecially() ? kFromCode : kPlain;
1593  sink_->Put(kExternalReference + how_to_code + kStartOfObject, "ExternalRef");
1594  sink_->PutInt(skip, "SkipB4ExternalRef");
1595  Address target = rinfo->target_address();
1596  sink_->PutInt(serializer_->EncodeExternalReference(target), "reference id");
1597  bytes_processed_so_far_ += rinfo->target_address_size();
1598}
1599
1600
1601void Serializer::ObjectSerializer::VisitCodeTarget(RelocInfo* rinfo) {
1602  // Out-of-line constant pool entries will be visited by the ConstantPoolArray.
1603  if (FLAG_enable_ool_constant_pool && rinfo->IsInConstantPool()) return;
1604
1605  int skip = OutputRawData(rinfo->target_address_address(),
1606                           kCanReturnSkipInsteadOfSkipping);
1607  Code* object = Code::GetCodeFromTargetAddress(rinfo->target_address());
1608  serializer_->SerializeObject(object, kFromCode, kInnerPointer, skip);
1609  bytes_processed_so_far_ += rinfo->target_address_size();
1610}
1611
1612
1613void Serializer::ObjectSerializer::VisitCodeEntry(Address entry_address) {
1614  int skip = OutputRawData(entry_address, kCanReturnSkipInsteadOfSkipping);
1615  Code* object = Code::cast(Code::GetObjectFromEntryAddress(entry_address));
1616  serializer_->SerializeObject(object, kPlain, kInnerPointer, skip);
1617  bytes_processed_so_far_ += kPointerSize;
1618}
1619
1620
1621void Serializer::ObjectSerializer::VisitCell(RelocInfo* rinfo) {
1622  // Out-of-line constant pool entries will be visited by the ConstantPoolArray.
1623  if (FLAG_enable_ool_constant_pool && rinfo->IsInConstantPool()) return;
1624
1625  int skip = OutputRawData(rinfo->pc(), kCanReturnSkipInsteadOfSkipping);
1626  Cell* object = Cell::cast(rinfo->target_cell());
1627  serializer_->SerializeObject(object, kPlain, kInnerPointer, skip);
1628  bytes_processed_so_far_ += kPointerSize;
1629}
1630
1631
1632void Serializer::ObjectSerializer::VisitExternalOneByteString(
1633    v8::String::ExternalOneByteStringResource** resource_pointer) {
1634  Address references_start = reinterpret_cast<Address>(resource_pointer);
1635  OutputRawData(references_start);
1636  for (int i = 0; i < Natives::GetBuiltinsCount(); i++) {
1637    Object* source =
1638        serializer_->isolate()->heap()->natives_source_cache()->get(i);
1639    if (!source->IsUndefined()) {
1640      ExternalOneByteString* string = ExternalOneByteString::cast(source);
1641      typedef v8::String::ExternalOneByteStringResource Resource;
1642      const Resource* resource = string->resource();
1643      if (resource == *resource_pointer) {
1644        sink_->Put(kNativesStringResource, "NativesStringResource");
1645        sink_->PutSection(i, "NativesStringResourceEnd");
1646        bytes_processed_so_far_ += sizeof(resource);
1647        return;
1648      }
1649    }
1650  }
1651  // One of the strings in the natives cache should match the resource.  We
1652  // can't serialize any other kinds of external strings.
1653  UNREACHABLE();
1654}
1655
1656
1657static Code* CloneCodeObject(HeapObject* code) {
1658  Address copy = new byte[code->Size()];
1659  MemCopy(copy, code->address(), code->Size());
1660  return Code::cast(HeapObject::FromAddress(copy));
1661}
1662
1663
1664static void WipeOutRelocations(Code* code) {
1665  int mode_mask =
1666      RelocInfo::kCodeTargetMask |
1667      RelocInfo::ModeMask(RelocInfo::EMBEDDED_OBJECT) |
1668      RelocInfo::ModeMask(RelocInfo::EXTERNAL_REFERENCE) |
1669      RelocInfo::ModeMask(RelocInfo::RUNTIME_ENTRY);
1670  for (RelocIterator it(code, mode_mask); !it.done(); it.next()) {
1671    if (!(FLAG_enable_ool_constant_pool && it.rinfo()->IsInConstantPool())) {
1672      it.rinfo()->WipeOut();
1673    }
1674  }
1675}
1676
1677
1678int Serializer::ObjectSerializer::OutputRawData(
1679    Address up_to, Serializer::ObjectSerializer::ReturnSkip return_skip) {
1680  Address object_start = object_->address();
1681  int base = bytes_processed_so_far_;
1682  int up_to_offset = static_cast<int>(up_to - object_start);
1683  int to_skip = up_to_offset - bytes_processed_so_far_;
1684  int bytes_to_output = to_skip;
1685  bytes_processed_so_far_ += to_skip;
1686  // This assert will fail if the reloc info gives us the target_address_address
1687  // locations in a non-ascending order.  Luckily that doesn't happen.
1688  DCHECK(to_skip >= 0);
1689  bool outputting_code = false;
1690  if (to_skip != 0 && code_object_ && !code_has_been_output_) {
1691    // Output the code all at once and fix later.
1692    bytes_to_output = object_->Size() + to_skip - bytes_processed_so_far_;
1693    outputting_code = true;
1694    code_has_been_output_ = true;
1695  }
1696  if (bytes_to_output != 0 &&
1697      (!code_object_ || outputting_code)) {
1698#define RAW_CASE(index)                                                        \
1699    if (!outputting_code && bytes_to_output == index * kPointerSize &&         \
1700        index * kPointerSize == to_skip) {                                     \
1701      sink_->PutSection(kRawData + index, "RawDataFixed");                     \
1702      to_skip = 0;  /* This insn already skips. */                             \
1703    } else  /* NOLINT */
1704    COMMON_RAW_LENGTHS(RAW_CASE)
1705#undef RAW_CASE
1706    {  /* NOLINT */
1707      // We always end up here if we are outputting the code of a code object.
1708      sink_->Put(kRawData, "RawData");
1709      sink_->PutInt(bytes_to_output, "length");
1710    }
1711
1712    // To make snapshots reproducible, we need to wipe out all pointers in code.
1713    if (code_object_) {
1714      Code* code = CloneCodeObject(object_);
1715      WipeOutRelocations(code);
1716      // We need to wipe out the header fields *after* wiping out the
1717      // relocations, because some of these fields are needed for the latter.
1718      code->WipeOutHeader();
1719      object_start = code->address();
1720    }
1721
1722    const char* description = code_object_ ? "Code" : "Byte";
1723    for (int i = 0; i < bytes_to_output; i++) {
1724      sink_->PutSection(object_start[base + i], description);
1725    }
1726    if (code_object_) delete[] object_start;
1727  }
1728  if (to_skip != 0 && return_skip == kIgnoringReturn) {
1729    sink_->Put(kSkip, "Skip");
1730    sink_->PutInt(to_skip, "SkipDistance");
1731    to_skip = 0;
1732  }
1733  return to_skip;
1734}
1735
1736
1737int Serializer::SpaceOfObject(HeapObject* object) {
1738  for (int i = FIRST_SPACE; i <= LAST_SPACE; i++) {
1739    AllocationSpace s = static_cast<AllocationSpace>(i);
1740    if (object->GetHeap()->InSpace(object, s)) {
1741      DCHECK(i < kNumberOfSpaces);
1742      return i;
1743    }
1744  }
1745  UNREACHABLE();
1746  return 0;
1747}
1748
1749
1750int Serializer::Allocate(int space, int size) {
1751  CHECK(space >= 0 && space < kNumberOfSpaces);
1752  int allocation_address = fullness_[space];
1753  fullness_[space] = allocation_address + size;
1754  return allocation_address;
1755}
1756
1757
1758int Serializer::SpaceAreaSize(int space) {
1759  if (space == CODE_SPACE) {
1760    return isolate_->memory_allocator()->CodePageAreaSize();
1761  } else {
1762    return Page::kPageSize - Page::kObjectStartOffset;
1763  }
1764}
1765
1766
1767void Serializer::Pad() {
1768  // The non-branching GetInt will read up to 3 bytes too far, so we need
1769  // to pad the snapshot to make sure we don't read over the end.
1770  for (unsigned i = 0; i < sizeof(int32_t) - 1; i++) {
1771    sink_->Put(kNop, "Padding");
1772  }
1773}
1774
1775
1776void Serializer::InitializeCodeAddressMap() {
1777  isolate_->InitializeLoggingAndCounters();
1778  code_address_map_ = new CodeAddressMap(isolate_);
1779}
1780
1781
1782ScriptData* CodeSerializer::Serialize(Isolate* isolate,
1783                                      Handle<SharedFunctionInfo> info,
1784                                      Handle<String> source) {
1785  base::ElapsedTimer timer;
1786  if (FLAG_profile_deserialization) timer.Start();
1787
1788  // Serialize code object.
1789  List<byte> payload;
1790  ListSnapshotSink list_sink(&payload);
1791  DebugSnapshotSink debug_sink(&list_sink);
1792  SnapshotByteSink* sink = FLAG_trace_code_serializer
1793                               ? static_cast<SnapshotByteSink*>(&debug_sink)
1794                               : static_cast<SnapshotByteSink*>(&list_sink);
1795  CodeSerializer cs(isolate, sink, *source);
1796  DisallowHeapAllocation no_gc;
1797  Object** location = Handle<Object>::cast(info).location();
1798  cs.VisitPointer(location);
1799  cs.Pad();
1800
1801  SerializedCodeData data(&payload, &cs);
1802  ScriptData* script_data = data.GetScriptData();
1803
1804  if (FLAG_profile_deserialization) {
1805    double ms = timer.Elapsed().InMillisecondsF();
1806    int length = script_data->length();
1807    PrintF("[Serializing to %d bytes took %0.3f ms]\n", length, ms);
1808  }
1809
1810  return script_data;
1811}
1812
1813
1814void CodeSerializer::SerializeObject(Object* o, HowToCode how_to_code,
1815                                     WhereToPoint where_to_point, int skip) {
1816  CHECK(o->IsHeapObject());
1817  HeapObject* heap_object = HeapObject::cast(o);
1818
1819  // The code-caches link to context-specific code objects, which
1820  // the startup and context serializes cannot currently handle.
1821  DCHECK(!heap_object->IsMap() ||
1822         Map::cast(heap_object)->code_cache() ==
1823             heap_object->GetHeap()->empty_fixed_array());
1824
1825  int root_index;
1826  if ((root_index = RootIndex(heap_object, how_to_code)) != kInvalidRootIndex) {
1827    PutRoot(root_index, heap_object, how_to_code, where_to_point, skip);
1828    return;
1829  }
1830
1831  // TODO(yangguo) wire up global object.
1832  // TODO(yangguo) We cannot deal with different hash seeds yet.
1833  DCHECK(!heap_object->IsHashTable());
1834
1835  if (address_mapper_.IsMapped(heap_object)) {
1836    SerializeReferenceToPreviousObject(heap_object, how_to_code, where_to_point,
1837                                       skip);
1838    return;
1839  }
1840
1841  if (heap_object->IsCode()) {
1842    Code* code_object = Code::cast(heap_object);
1843    if (code_object->kind() == Code::BUILTIN) {
1844      SerializeBuiltin(code_object, how_to_code, where_to_point, skip);
1845      return;
1846    }
1847    if (code_object->IsCodeStubOrIC()) {
1848      SerializeCodeStub(code_object, how_to_code, where_to_point, skip);
1849      return;
1850    }
1851    code_object->ClearInlineCaches();
1852  }
1853
1854  if (heap_object == source_) {
1855    SerializeSourceObject(how_to_code, where_to_point, skip);
1856    return;
1857  }
1858
1859  SerializeHeapObject(heap_object, how_to_code, where_to_point, skip);
1860}
1861
1862
1863void CodeSerializer::SerializeHeapObject(HeapObject* heap_object,
1864                                         HowToCode how_to_code,
1865                                         WhereToPoint where_to_point,
1866                                         int skip) {
1867  if (heap_object->IsScript()) {
1868    // The wrapper cache uses a Foreign object to point to a global handle.
1869    // However, the object visitor expects foreign objects to point to external
1870    // references.  Clear the cache to avoid this issue.
1871    Script::cast(heap_object)->ClearWrapperCache();
1872  }
1873
1874  if (skip != 0) {
1875    sink_->Put(kSkip, "SkipFromSerializeObject");
1876    sink_->PutInt(skip, "SkipDistanceFromSerializeObject");
1877  }
1878
1879  if (FLAG_trace_code_serializer) {
1880    PrintF("Encoding heap object: ");
1881    heap_object->ShortPrint();
1882    PrintF("\n");
1883  }
1884
1885  // Object has not yet been serialized.  Serialize it here.
1886  ObjectSerializer serializer(this, heap_object, sink_, how_to_code,
1887                              where_to_point);
1888  serializer.Serialize();
1889}
1890
1891
1892void CodeSerializer::SerializeBuiltin(Code* builtin, HowToCode how_to_code,
1893                                      WhereToPoint where_to_point, int skip) {
1894  if (skip != 0) {
1895    sink_->Put(kSkip, "SkipFromSerializeBuiltin");
1896    sink_->PutInt(skip, "SkipDistanceFromSerializeBuiltin");
1897  }
1898
1899  DCHECK((how_to_code == kPlain && where_to_point == kStartOfObject) ||
1900         (how_to_code == kPlain && where_to_point == kInnerPointer) ||
1901         (how_to_code == kFromCode && where_to_point == kInnerPointer));
1902  int builtin_index = builtin->builtin_index();
1903  DCHECK_LT(builtin_index, Builtins::builtin_count);
1904  DCHECK_LE(0, builtin_index);
1905
1906  if (FLAG_trace_code_serializer) {
1907    PrintF("Encoding builtin: %s\n",
1908           isolate()->builtins()->name(builtin_index));
1909  }
1910
1911  sink_->Put(kBuiltin + how_to_code + where_to_point, "Builtin");
1912  sink_->PutInt(builtin_index, "builtin_index");
1913}
1914
1915
1916void CodeSerializer::SerializeCodeStub(Code* code, HowToCode how_to_code,
1917                                       WhereToPoint where_to_point, int skip) {
1918  DCHECK((how_to_code == kPlain && where_to_point == kStartOfObject) ||
1919         (how_to_code == kPlain && where_to_point == kInnerPointer) ||
1920         (how_to_code == kFromCode && where_to_point == kInnerPointer));
1921  uint32_t stub_key = code->stub_key();
1922
1923  if (stub_key == CodeStub::NoCacheKey()) {
1924    if (FLAG_trace_code_serializer) {
1925      PrintF("Encoding uncacheable code stub as heap object\n");
1926    }
1927    SerializeHeapObject(code, how_to_code, where_to_point, skip);
1928    return;
1929  }
1930
1931  if (skip != 0) {
1932    sink_->Put(kSkip, "SkipFromSerializeCodeStub");
1933    sink_->PutInt(skip, "SkipDistanceFromSerializeCodeStub");
1934  }
1935
1936  int index = AddCodeStubKey(stub_key) + kCodeStubsBaseIndex;
1937
1938  if (FLAG_trace_code_serializer) {
1939    PrintF("Encoding code stub %s as %d\n",
1940           CodeStub::MajorName(CodeStub::MajorKeyFromKey(stub_key), false),
1941           index);
1942  }
1943
1944  sink_->Put(kAttachedReference + how_to_code + where_to_point, "CodeStub");
1945  sink_->PutInt(index, "CodeStub key");
1946}
1947
1948
1949int CodeSerializer::AddCodeStubKey(uint32_t stub_key) {
1950  // TODO(yangguo) Maybe we need a hash table for a faster lookup than O(n^2).
1951  int index = 0;
1952  while (index < stub_keys_.length()) {
1953    if (stub_keys_[index] == stub_key) return index;
1954    index++;
1955  }
1956  stub_keys_.Add(stub_key);
1957  return index;
1958}
1959
1960
1961void CodeSerializer::SerializeSourceObject(HowToCode how_to_code,
1962                                           WhereToPoint where_to_point,
1963                                           int skip) {
1964  if (skip != 0) {
1965    sink_->Put(kSkip, "SkipFromSerializeSourceObject");
1966    sink_->PutInt(skip, "SkipDistanceFromSerializeSourceObject");
1967  }
1968
1969  if (FLAG_trace_code_serializer) {
1970    PrintF("Encoding source object\n");
1971  }
1972
1973  DCHECK(how_to_code == kPlain && where_to_point == kStartOfObject);
1974  sink_->Put(kAttachedReference + how_to_code + where_to_point, "Source");
1975  sink_->PutInt(kSourceObjectIndex, "kSourceObjectIndex");
1976}
1977
1978
1979Handle<SharedFunctionInfo> CodeSerializer::Deserialize(Isolate* isolate,
1980                                                       ScriptData* data,
1981                                                       Handle<String> source) {
1982  base::ElapsedTimer timer;
1983  if (FLAG_profile_deserialization) timer.Start();
1984
1985  Object* root;
1986
1987  {
1988    HandleScope scope(isolate);
1989
1990    SerializedCodeData scd(data, *source);
1991    SnapshotByteSource payload(scd.Payload(), scd.PayloadLength());
1992    Deserializer deserializer(&payload);
1993    STATIC_ASSERT(NEW_SPACE == 0);
1994    for (int i = NEW_SPACE; i <= PROPERTY_CELL_SPACE; i++) {
1995      deserializer.set_reservation(i, scd.GetReservation(i));
1996    }
1997
1998    // Prepare and register list of attached objects.
1999    Vector<const uint32_t> code_stub_keys = scd.CodeStubKeys();
2000    Vector<Handle<Object> > attached_objects = Vector<Handle<Object> >::New(
2001        code_stub_keys.length() + kCodeStubsBaseIndex);
2002    attached_objects[kSourceObjectIndex] = source;
2003    for (int i = 0; i < code_stub_keys.length(); i++) {
2004      attached_objects[i + kCodeStubsBaseIndex] =
2005          CodeStub::GetCode(isolate, code_stub_keys[i]).ToHandleChecked();
2006    }
2007    deserializer.SetAttachedObjects(&attached_objects);
2008
2009    // Deserialize.
2010    deserializer.DeserializePartial(isolate, &root);
2011    deserializer.FlushICacheForNewCodeObjects();
2012  }
2013
2014  if (FLAG_profile_deserialization) {
2015    double ms = timer.Elapsed().InMillisecondsF();
2016    int length = data->length();
2017    PrintF("[Deserializing from %d bytes took %0.3f ms]\n", length, ms);
2018  }
2019  return Handle<SharedFunctionInfo>(SharedFunctionInfo::cast(root), isolate);
2020}
2021
2022
2023SerializedCodeData::SerializedCodeData(List<byte>* payload, CodeSerializer* cs)
2024    : owns_script_data_(true) {
2025  DisallowHeapAllocation no_gc;
2026  List<uint32_t>* stub_keys = cs->stub_keys();
2027
2028  // Calculate sizes.
2029  int num_stub_keys = stub_keys->length();
2030  int stub_keys_size = stub_keys->length() * kInt32Size;
2031  int data_length = kHeaderSize + stub_keys_size + payload->length();
2032
2033  // Allocate backing store and create result data.
2034  byte* data = NewArray<byte>(data_length);
2035  DCHECK(IsAligned(reinterpret_cast<intptr_t>(data), kPointerAlignment));
2036  script_data_ = new ScriptData(data, data_length);
2037  script_data_->AcquireDataOwnership();
2038
2039  // Set header values.
2040  SetHeaderValue(kCheckSumOffset, CheckSum(cs->source()));
2041  SetHeaderValue(kNumCodeStubKeysOffset, num_stub_keys);
2042  SetHeaderValue(kPayloadLengthOffset, payload->length());
2043  STATIC_ASSERT(NEW_SPACE == 0);
2044  for (int i = NEW_SPACE; i <= PROPERTY_CELL_SPACE; i++) {
2045    SetHeaderValue(kReservationsOffset + i, cs->CurrentAllocationAddress(i));
2046  }
2047
2048  // Copy code stub keys.
2049  CopyBytes(data + kHeaderSize, reinterpret_cast<byte*>(stub_keys->begin()),
2050            stub_keys_size);
2051
2052  // Copy serialized data.
2053  CopyBytes(data + kHeaderSize + stub_keys_size, payload->begin(),
2054            static_cast<size_t>(payload->length()));
2055}
2056
2057
2058bool SerializedCodeData::IsSane(String* source) {
2059  return GetHeaderValue(kCheckSumOffset) == CheckSum(source) &&
2060         PayloadLength() >= SharedFunctionInfo::kSize;
2061}
2062
2063
2064int SerializedCodeData::CheckSum(String* string) {
2065  int checksum = Version::Hash();
2066#ifdef DEBUG
2067  uint32_t seed = static_cast<uint32_t>(checksum);
2068  checksum = static_cast<int>(IteratingStringHasher::Hash(string, seed));
2069#endif  // DEBUG
2070  return checksum;
2071}
2072} }  // namespace v8::internal
2073