1// Copyright 2012 the V8 project authors. All rights reserved.
2// Use of this source code is governed by a BSD-style license that can be
3// found in the LICENSE file.
4
5#include "src/v8.h"
6
7#if V8_TARGET_ARCH_X87
8
9#include "src/codegen.h"
10#include "src/deoptimizer.h"
11#include "src/full-codegen.h"
12#include "src/safepoint-table.h"
13
14namespace v8 {
15namespace internal {
16
17const int Deoptimizer::table_entry_size_ = 10;
18
19
20int Deoptimizer::patch_size() {
21  return Assembler::kCallInstructionLength;
22}
23
24
25void Deoptimizer::EnsureRelocSpaceForLazyDeoptimization(Handle<Code> code) {
26  Isolate* isolate = code->GetIsolate();
27  HandleScope scope(isolate);
28
29  // Compute the size of relocation information needed for the code
30  // patching in Deoptimizer::DeoptimizeFunction.
31  int min_reloc_size = 0;
32  int prev_pc_offset = 0;
33  DeoptimizationInputData* deopt_data =
34      DeoptimizationInputData::cast(code->deoptimization_data());
35  for (int i = 0; i < deopt_data->DeoptCount(); i++) {
36    int pc_offset = deopt_data->Pc(i)->value();
37    if (pc_offset == -1) continue;
38    DCHECK_GE(pc_offset, prev_pc_offset);
39    int pc_delta = pc_offset - prev_pc_offset;
40    // We use RUNTIME_ENTRY reloc info which has a size of 2 bytes
41    // if encodable with small pc delta encoding and up to 6 bytes
42    // otherwise.
43    if (pc_delta <= RelocInfo::kMaxSmallPCDelta) {
44      min_reloc_size += 2;
45    } else {
46      min_reloc_size += 6;
47    }
48    prev_pc_offset = pc_offset;
49  }
50
51  // If the relocation information is not big enough we create a new
52  // relocation info object that is padded with comments to make it
53  // big enough for lazy doptimization.
54  int reloc_length = code->relocation_info()->length();
55  if (min_reloc_size > reloc_length) {
56    int comment_reloc_size = RelocInfo::kMinRelocCommentSize;
57    // Padding needed.
58    int min_padding = min_reloc_size - reloc_length;
59    // Number of comments needed to take up at least that much space.
60    int additional_comments =
61        (min_padding + comment_reloc_size - 1) / comment_reloc_size;
62    // Actual padding size.
63    int padding = additional_comments * comment_reloc_size;
64    // Allocate new relocation info and copy old relocation to the end
65    // of the new relocation info array because relocation info is
66    // written and read backwards.
67    Factory* factory = isolate->factory();
68    Handle<ByteArray> new_reloc =
69        factory->NewByteArray(reloc_length + padding, TENURED);
70    MemCopy(new_reloc->GetDataStartAddress() + padding,
71            code->relocation_info()->GetDataStartAddress(), reloc_length);
72    // Create a relocation writer to write the comments in the padding
73    // space. Use position 0 for everything to ensure short encoding.
74    RelocInfoWriter reloc_info_writer(
75        new_reloc->GetDataStartAddress() + padding, 0);
76    intptr_t comment_string
77        = reinterpret_cast<intptr_t>(RelocInfo::kFillerCommentString);
78    RelocInfo rinfo(0, RelocInfo::COMMENT, comment_string, NULL);
79    for (int i = 0; i < additional_comments; ++i) {
80#ifdef DEBUG
81      byte* pos_before = reloc_info_writer.pos();
82#endif
83      reloc_info_writer.Write(&rinfo);
84      DCHECK(RelocInfo::kMinRelocCommentSize ==
85             pos_before - reloc_info_writer.pos());
86    }
87    // Replace relocation information on the code object.
88    code->set_relocation_info(*new_reloc);
89  }
90}
91
92
93void Deoptimizer::PatchCodeForDeoptimization(Isolate* isolate, Code* code) {
94  Address code_start_address = code->instruction_start();
95
96  if (FLAG_zap_code_space) {
97    // Fail hard and early if we enter this code object again.
98    byte* pointer = code->FindCodeAgeSequence();
99    if (pointer != NULL) {
100      pointer += kNoCodeAgeSequenceLength;
101    } else {
102      pointer = code->instruction_start();
103    }
104    CodePatcher patcher(pointer, 1);
105    patcher.masm()->int3();
106
107    DeoptimizationInputData* data =
108        DeoptimizationInputData::cast(code->deoptimization_data());
109    int osr_offset = data->OsrPcOffset()->value();
110    if (osr_offset > 0) {
111      CodePatcher osr_patcher(code->instruction_start() + osr_offset, 1);
112      osr_patcher.masm()->int3();
113    }
114  }
115
116  // We will overwrite the code's relocation info in-place. Relocation info
117  // is written backward. The relocation info is the payload of a byte
118  // array.  Later on we will slide this to the start of the byte array and
119  // create a filler object in the remaining space.
120  ByteArray* reloc_info = code->relocation_info();
121  Address reloc_end_address = reloc_info->address() + reloc_info->Size();
122  RelocInfoWriter reloc_info_writer(reloc_end_address, code_start_address);
123
124  // Since the call is a relative encoding, write new
125  // reloc info.  We do not need any of the existing reloc info because the
126  // existing code will not be used again (we zap it in debug builds).
127  //
128  // Emit call to lazy deoptimization at all lazy deopt points.
129  DeoptimizationInputData* deopt_data =
130      DeoptimizationInputData::cast(code->deoptimization_data());
131#ifdef DEBUG
132  Address prev_call_address = NULL;
133#endif
134  // For each LLazyBailout instruction insert a call to the corresponding
135  // deoptimization entry.
136  for (int i = 0; i < deopt_data->DeoptCount(); i++) {
137    if (deopt_data->Pc(i)->value() == -1) continue;
138    // Patch lazy deoptimization entry.
139    Address call_address = code_start_address + deopt_data->Pc(i)->value();
140    CodePatcher patcher(call_address, patch_size());
141    Address deopt_entry = GetDeoptimizationEntry(isolate, i, LAZY);
142    patcher.masm()->call(deopt_entry, RelocInfo::NONE32);
143    // We use RUNTIME_ENTRY for deoptimization bailouts.
144    RelocInfo rinfo(call_address + 1,  // 1 after the call opcode.
145                    RelocInfo::RUNTIME_ENTRY,
146                    reinterpret_cast<intptr_t>(deopt_entry),
147                    NULL);
148    reloc_info_writer.Write(&rinfo);
149    DCHECK_GE(reloc_info_writer.pos(),
150              reloc_info->address() + ByteArray::kHeaderSize);
151    DCHECK(prev_call_address == NULL ||
152           call_address >= prev_call_address + patch_size());
153    DCHECK(call_address + patch_size() <= code->instruction_end());
154#ifdef DEBUG
155    prev_call_address = call_address;
156#endif
157  }
158
159  // Move the relocation info to the beginning of the byte array.
160  int new_reloc_size = reloc_end_address - reloc_info_writer.pos();
161  MemMove(code->relocation_start(), reloc_info_writer.pos(), new_reloc_size);
162
163  // The relocation info is in place, update the size.
164  reloc_info->set_length(new_reloc_size);
165
166  // Handle the junk part after the new relocation info. We will create
167  // a non-live object in the extra space at the end of the former reloc info.
168  Address junk_address = reloc_info->address() + reloc_info->Size();
169  DCHECK(junk_address <= reloc_end_address);
170  isolate->heap()->CreateFillerObjectAt(junk_address,
171                                        reloc_end_address - junk_address);
172}
173
174
175void Deoptimizer::FillInputFrame(Address tos, JavaScriptFrame* frame) {
176  // Set the register values. The values are not important as there are no
177  // callee saved registers in JavaScript frames, so all registers are
178  // spilled. Registers ebp and esp are set to the correct values though.
179
180  for (int i = 0; i < Register::kNumRegisters; i++) {
181    input_->SetRegister(i, i * 4);
182  }
183  input_->SetRegister(esp.code(), reinterpret_cast<intptr_t>(frame->sp()));
184  input_->SetRegister(ebp.code(), reinterpret_cast<intptr_t>(frame->fp()));
185  for (int i = 0; i < DoubleRegister::NumAllocatableRegisters(); i++) {
186    input_->SetDoubleRegister(i, 0.0);
187  }
188
189  // Fill the frame content from the actual data on the frame.
190  for (unsigned i = 0; i < input_->GetFrameSize(); i += kPointerSize) {
191    input_->SetFrameSlot(i, Memory::uint32_at(tos + i));
192  }
193}
194
195
196void Deoptimizer::SetPlatformCompiledStubRegisters(
197    FrameDescription* output_frame, CodeStubDescriptor* descriptor) {
198  intptr_t handler =
199      reinterpret_cast<intptr_t>(descriptor->deoptimization_handler());
200  int params = descriptor->GetHandlerParameterCount();
201  output_frame->SetRegister(eax.code(), params);
202  output_frame->SetRegister(ebx.code(), handler);
203}
204
205
206void Deoptimizer::CopyDoubleRegisters(FrameDescription* output_frame) {
207  for (int i = 0; i < X87Register::kMaxNumAllocatableRegisters; ++i) {
208    double double_value = input_->GetDoubleRegister(i);
209    output_frame->SetDoubleRegister(i, double_value);
210  }
211}
212
213
214bool Deoptimizer::HasAlignmentPadding(JSFunction* function) {
215  int parameter_count = function->shared()->formal_parameter_count() + 1;
216  unsigned input_frame_size = input_->GetFrameSize();
217  unsigned alignment_state_offset =
218      input_frame_size - parameter_count * kPointerSize -
219      StandardFrameConstants::kFixedFrameSize -
220      kPointerSize;
221  DCHECK(JavaScriptFrameConstants::kDynamicAlignmentStateOffset ==
222      JavaScriptFrameConstants::kLocal0Offset);
223  int32_t alignment_state = input_->GetFrameSlot(alignment_state_offset);
224  return (alignment_state == kAlignmentPaddingPushed);
225}
226
227
228#define __ masm()->
229
230void Deoptimizer::EntryGenerator::Generate() {
231  GeneratePrologue();
232
233  // Save all general purpose registers before messing with them.
234  const int kNumberOfRegisters = Register::kNumRegisters;
235
236  const int kDoubleRegsSize =
237      kDoubleSize * X87Register::kMaxNumAllocatableRegisters;
238
239  // Reserve space for x87 fp registers.
240  __ sub(esp, Immediate(kDoubleRegsSize));
241
242  __ pushad();
243
244  // GP registers are safe to use now.
245  // Save used x87 fp registers in correct position of previous reserve space.
246  Label loop, done;
247  // Get the layout of x87 stack.
248  __ sub(esp, Immediate(kPointerSize));
249  __ fistp_s(MemOperand(esp, 0));
250  __ pop(eax);
251  // Preserve stack layout in edi
252  __ mov(edi, eax);
253  // Get the x87 stack depth, the first 3 bits.
254  __ mov(ecx, eax);
255  __ and_(ecx, 0x7);
256  __ j(zero, &done, Label::kNear);
257
258  __ bind(&loop);
259  __ shr(eax, 0x3);
260  __ mov(ebx, eax);
261  __ and_(ebx, 0x7);  // Extract the st_x index into ebx.
262  // Pop TOS to the correct position. The disp(0x20) is due to pushad.
263  // The st_i should be saved to (esp + ebx * kDoubleSize + 0x20).
264  __ fstp_d(Operand(esp, ebx, times_8, 0x20));
265  __ dec(ecx);  // Decrease stack depth.
266  __ j(not_zero, &loop, Label::kNear);
267  __ bind(&done);
268
269  const int kSavedRegistersAreaSize =
270      kNumberOfRegisters * kPointerSize + kDoubleRegsSize;
271
272  // Get the bailout id from the stack.
273  __ mov(ebx, Operand(esp, kSavedRegistersAreaSize));
274
275  // Get the address of the location in the code object
276  // and compute the fp-to-sp delta in register edx.
277  __ mov(ecx, Operand(esp, kSavedRegistersAreaSize + 1 * kPointerSize));
278  __ lea(edx, Operand(esp, kSavedRegistersAreaSize + 2 * kPointerSize));
279
280  __ sub(edx, ebp);
281  __ neg(edx);
282
283  __ push(edi);
284  // Allocate a new deoptimizer object.
285  __ PrepareCallCFunction(6, eax);
286  __ mov(eax, Operand(ebp, JavaScriptFrameConstants::kFunctionOffset));
287  __ mov(Operand(esp, 0 * kPointerSize), eax);  // Function.
288  __ mov(Operand(esp, 1 * kPointerSize), Immediate(type()));  // Bailout type.
289  __ mov(Operand(esp, 2 * kPointerSize), ebx);  // Bailout id.
290  __ mov(Operand(esp, 3 * kPointerSize), ecx);  // Code address or 0.
291  __ mov(Operand(esp, 4 * kPointerSize), edx);  // Fp-to-sp delta.
292  __ mov(Operand(esp, 5 * kPointerSize),
293         Immediate(ExternalReference::isolate_address(isolate())));
294  {
295    AllowExternalCallThatCantCauseGC scope(masm());
296    __ CallCFunction(ExternalReference::new_deoptimizer_function(isolate()), 6);
297  }
298
299  __ pop(edi);
300
301  // Preserve deoptimizer object in register eax and get the input
302  // frame descriptor pointer.
303  __ mov(ebx, Operand(eax, Deoptimizer::input_offset()));
304
305  // Fill in the input registers.
306  for (int i = kNumberOfRegisters - 1; i >= 0; i--) {
307    int offset = (i * kPointerSize) + FrameDescription::registers_offset();
308    __ pop(Operand(ebx, offset));
309  }
310
311  int double_regs_offset = FrameDescription::double_registers_offset();
312  // Fill in the double input registers.
313  for (int i = 0; i < X87Register::kMaxNumAllocatableRegisters; ++i) {
314    int dst_offset = i * kDoubleSize + double_regs_offset;
315    int src_offset = i * kDoubleSize;
316    __ fld_d(Operand(esp, src_offset));
317    __ fstp_d(Operand(ebx, dst_offset));
318  }
319
320  // Clear FPU all exceptions.
321  // TODO(ulan): Find out why the TOP register is not zero here in some cases,
322  // and check that the generated code never deoptimizes with unbalanced stack.
323  __ fnclex();
324
325  // Remove the bailout id, return address and the double registers.
326  __ add(esp, Immediate(kDoubleRegsSize + 2 * kPointerSize));
327
328  // Compute a pointer to the unwinding limit in register ecx; that is
329  // the first stack slot not part of the input frame.
330  __ mov(ecx, Operand(ebx, FrameDescription::frame_size_offset()));
331  __ add(ecx, esp);
332
333  // Unwind the stack down to - but not including - the unwinding
334  // limit and copy the contents of the activation frame to the input
335  // frame description.
336  __ lea(edx, Operand(ebx, FrameDescription::frame_content_offset()));
337  Label pop_loop_header;
338  __ jmp(&pop_loop_header);
339  Label pop_loop;
340  __ bind(&pop_loop);
341  __ pop(Operand(edx, 0));
342  __ add(edx, Immediate(sizeof(uint32_t)));
343  __ bind(&pop_loop_header);
344  __ cmp(ecx, esp);
345  __ j(not_equal, &pop_loop);
346
347  // Compute the output frame in the deoptimizer.
348  __ push(edi);
349  __ push(eax);
350  __ PrepareCallCFunction(1, ebx);
351  __ mov(Operand(esp, 0 * kPointerSize), eax);
352  {
353    AllowExternalCallThatCantCauseGC scope(masm());
354    __ CallCFunction(
355        ExternalReference::compute_output_frames_function(isolate()), 1);
356  }
357  __ pop(eax);
358  __ pop(edi);
359
360  // If frame was dynamically aligned, pop padding.
361  Label no_padding;
362  __ cmp(Operand(eax, Deoptimizer::has_alignment_padding_offset()),
363         Immediate(0));
364  __ j(equal, &no_padding);
365  __ pop(ecx);
366  if (FLAG_debug_code) {
367    __ cmp(ecx, Immediate(kAlignmentZapValue));
368    __ Assert(equal, kAlignmentMarkerExpected);
369  }
370  __ bind(&no_padding);
371
372  // Replace the current frame with the output frames.
373  Label outer_push_loop, inner_push_loop,
374      outer_loop_header, inner_loop_header;
375  // Outer loop state: eax = current FrameDescription**, edx = one past the
376  // last FrameDescription**.
377  __ mov(edx, Operand(eax, Deoptimizer::output_count_offset()));
378  __ mov(eax, Operand(eax, Deoptimizer::output_offset()));
379  __ lea(edx, Operand(eax, edx, times_4, 0));
380  __ jmp(&outer_loop_header);
381  __ bind(&outer_push_loop);
382  // Inner loop state: ebx = current FrameDescription*, ecx = loop index.
383  __ mov(ebx, Operand(eax, 0));
384  __ mov(ecx, Operand(ebx, FrameDescription::frame_size_offset()));
385  __ jmp(&inner_loop_header);
386  __ bind(&inner_push_loop);
387  __ sub(ecx, Immediate(sizeof(uint32_t)));
388  __ push(Operand(ebx, ecx, times_1, FrameDescription::frame_content_offset()));
389  __ bind(&inner_loop_header);
390  __ test(ecx, ecx);
391  __ j(not_zero, &inner_push_loop);
392  __ add(eax, Immediate(kPointerSize));
393  __ bind(&outer_loop_header);
394  __ cmp(eax, edx);
395  __ j(below, &outer_push_loop);
396
397
398  // In case of a failed STUB, we have to restore the x87 stack.
399  // x87 stack layout is in edi.
400  Label loop2, done2;
401  // Get the x87 stack depth, the first 3 bits.
402  __ mov(ecx, edi);
403  __ and_(ecx, 0x7);
404  __ j(zero, &done2, Label::kNear);
405
406  __ lea(ecx, Operand(ecx, ecx, times_2, 0));
407  __ bind(&loop2);
408  __ mov(eax, edi);
409  __ shr_cl(eax);
410  __ and_(eax, 0x7);
411  __ fld_d(Operand(ebx, eax, times_8, double_regs_offset));
412  __ sub(ecx, Immediate(0x3));
413  __ j(not_zero, &loop2, Label::kNear);
414  __ bind(&done2);
415
416  // Push state, pc, and continuation from the last output frame.
417  __ push(Operand(ebx, FrameDescription::state_offset()));
418  __ push(Operand(ebx, FrameDescription::pc_offset()));
419  __ push(Operand(ebx, FrameDescription::continuation_offset()));
420
421
422  // Push the registers from the last output frame.
423  for (int i = 0; i < kNumberOfRegisters; i++) {
424    int offset = (i * kPointerSize) + FrameDescription::registers_offset();
425    __ push(Operand(ebx, offset));
426  }
427
428  // Restore the registers from the stack.
429  __ popad();
430
431  // Return to the continuation point.
432  __ ret(0);
433}
434
435
436void Deoptimizer::TableEntryGenerator::GeneratePrologue() {
437  // Create a sequence of deoptimization entries.
438  Label done;
439  for (int i = 0; i < count(); i++) {
440    int start = masm()->pc_offset();
441    USE(start);
442    __ push_imm32(i);
443    __ jmp(&done);
444    DCHECK(masm()->pc_offset() - start == table_entry_size_);
445  }
446  __ bind(&done);
447}
448
449
450void FrameDescription::SetCallerPc(unsigned offset, intptr_t value) {
451  SetFrameSlot(offset, value);
452}
453
454
455void FrameDescription::SetCallerFp(unsigned offset, intptr_t value) {
456  SetFrameSlot(offset, value);
457}
458
459
460void FrameDescription::SetCallerConstantPool(unsigned offset, intptr_t value) {
461  // No out-of-line constant pool support.
462  UNREACHABLE();
463}
464
465
466#undef __
467
468
469} }  // namespace v8::internal
470
471#endif  // V8_TARGET_ARCH_X87
472