1// Copyright 2012 the V8 project authors. All rights reserved.
2// Redistribution and use in source and binary forms, with or without
3// modification, are permitted provided that the following conditions are
4// met:
5//
6//     * Redistributions of source code must retain the above copyright
7//       notice, this list of conditions and the following disclaimer.
8//     * Redistributions in binary form must reproduce the above
9//       copyright notice, this list of conditions and the following
10//       disclaimer in the documentation and/or other materials provided
11//       with the distribution.
12//     * Neither the name of Google Inc. nor the names of its
13//       contributors may be used to endorse or promote products derived
14//       from this software without specific prior written permission.
15//
16// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
28#include <stdlib.h>
29
30#ifdef __linux__
31#include <errno.h>
32#include <fcntl.h>
33#include <sys/stat.h>
34#include <sys/types.h>
35#include <unistd.h>
36#endif
37
38#include <utility>
39
40#include "src/v8.h"
41
42#include "src/full-codegen.h"
43#include "src/global-handles.h"
44#include "src/snapshot.h"
45#include "test/cctest/cctest.h"
46
47using namespace v8::internal;
48
49
50TEST(MarkingDeque) {
51  CcTest::InitializeVM();
52  int mem_size = 20 * kPointerSize;
53  byte* mem = NewArray<byte>(20*kPointerSize);
54  Address low = reinterpret_cast<Address>(mem);
55  Address high = low + mem_size;
56  MarkingDeque s;
57  s.Initialize(low, high);
58
59  Address original_address = reinterpret_cast<Address>(&s);
60  Address current_address = original_address;
61  while (!s.IsFull()) {
62    s.PushBlack(HeapObject::FromAddress(current_address));
63    current_address += kPointerSize;
64  }
65
66  while (!s.IsEmpty()) {
67    Address value = s.Pop()->address();
68    current_address -= kPointerSize;
69    CHECK_EQ(current_address, value);
70  }
71
72  CHECK_EQ(original_address, current_address);
73  DeleteArray(mem);
74}
75
76
77TEST(Promotion) {
78  CcTest::InitializeVM();
79  TestHeap* heap = CcTest::test_heap();
80  heap->ConfigureHeap(1, 1, 1, 0);
81
82  v8::HandleScope sc(CcTest::isolate());
83
84  // Allocate a fixed array in the new space.
85  int array_length =
86      (Page::kMaxRegularHeapObjectSize - FixedArray::kHeaderSize) /
87      (4 * kPointerSize);
88  Object* obj = heap->AllocateFixedArray(array_length).ToObjectChecked();
89  Handle<FixedArray> array(FixedArray::cast(obj));
90
91  // Array should be in the new space.
92  CHECK(heap->InSpace(*array, NEW_SPACE));
93
94  // Call mark compact GC, so array becomes an old object.
95  heap->CollectAllGarbage(Heap::kAbortIncrementalMarkingMask);
96  heap->CollectAllGarbage(Heap::kAbortIncrementalMarkingMask);
97
98  // Array now sits in the old space
99  CHECK(heap->InSpace(*array, OLD_POINTER_SPACE));
100}
101
102
103TEST(NoPromotion) {
104  CcTest::InitializeVM();
105  TestHeap* heap = CcTest::test_heap();
106  heap->ConfigureHeap(1, 1, 1, 0);
107
108  v8::HandleScope sc(CcTest::isolate());
109
110  // Allocate a big fixed array in the new space.
111  int array_length =
112      (Page::kMaxRegularHeapObjectSize - FixedArray::kHeaderSize) /
113      (2 * kPointerSize);
114  Object* obj = heap->AllocateFixedArray(array_length).ToObjectChecked();
115  Handle<FixedArray> array(FixedArray::cast(obj));
116
117  // Array should be in the new space.
118  CHECK(heap->InSpace(*array, NEW_SPACE));
119
120  // Simulate a full old space to make promotion fail.
121  SimulateFullSpace(heap->old_pointer_space());
122
123  // Call mark compact GC, and it should pass.
124  heap->CollectGarbage(OLD_POINTER_SPACE);
125}
126
127
128TEST(MarkCompactCollector) {
129  FLAG_incremental_marking = false;
130  CcTest::InitializeVM();
131  Isolate* isolate = CcTest::i_isolate();
132  TestHeap* heap = CcTest::test_heap();
133  Factory* factory = isolate->factory();
134
135  v8::HandleScope sc(CcTest::isolate());
136  Handle<GlobalObject> global(isolate->context()->global_object());
137
138  // call mark-compact when heap is empty
139  heap->CollectGarbage(OLD_POINTER_SPACE, "trigger 1");
140
141  // keep allocating garbage in new space until it fails
142  const int arraysize = 100;
143  AllocationResult allocation;
144  do {
145    allocation = heap->AllocateFixedArray(arraysize);
146  } while (!allocation.IsRetry());
147  heap->CollectGarbage(NEW_SPACE, "trigger 2");
148  heap->AllocateFixedArray(arraysize).ToObjectChecked();
149
150  // keep allocating maps until it fails
151  do {
152    allocation = heap->AllocateMap(JS_OBJECT_TYPE, JSObject::kHeaderSize);
153  } while (!allocation.IsRetry());
154  heap->CollectGarbage(MAP_SPACE, "trigger 3");
155  heap->AllocateMap(JS_OBJECT_TYPE, JSObject::kHeaderSize).ToObjectChecked();
156
157  { HandleScope scope(isolate);
158    // allocate a garbage
159    Handle<String> func_name = factory->InternalizeUtf8String("theFunction");
160    Handle<JSFunction> function = factory->NewFunction(func_name);
161    JSReceiver::SetProperty(global, func_name, function, SLOPPY).Check();
162
163    factory->NewJSObject(function);
164  }
165
166  heap->CollectGarbage(OLD_POINTER_SPACE, "trigger 4");
167
168  { HandleScope scope(isolate);
169    Handle<String> func_name = factory->InternalizeUtf8String("theFunction");
170    v8::Maybe<bool> maybe = JSReceiver::HasOwnProperty(global, func_name);
171    CHECK(maybe.has_value);
172    CHECK(maybe.value);
173    Handle<Object> func_value =
174        Object::GetProperty(global, func_name).ToHandleChecked();
175    CHECK(func_value->IsJSFunction());
176    Handle<JSFunction> function = Handle<JSFunction>::cast(func_value);
177    Handle<JSObject> obj = factory->NewJSObject(function);
178
179    Handle<String> obj_name = factory->InternalizeUtf8String("theObject");
180    JSReceiver::SetProperty(global, obj_name, obj, SLOPPY).Check();
181    Handle<String> prop_name = factory->InternalizeUtf8String("theSlot");
182    Handle<Smi> twenty_three(Smi::FromInt(23), isolate);
183    JSReceiver::SetProperty(obj, prop_name, twenty_three, SLOPPY).Check();
184  }
185
186  heap->CollectGarbage(OLD_POINTER_SPACE, "trigger 5");
187
188  { HandleScope scope(isolate);
189    Handle<String> obj_name = factory->InternalizeUtf8String("theObject");
190    v8::Maybe<bool> maybe = JSReceiver::HasOwnProperty(global, obj_name);
191    CHECK(maybe.has_value);
192    CHECK(maybe.value);
193    Handle<Object> object =
194        Object::GetProperty(global, obj_name).ToHandleChecked();
195    CHECK(object->IsJSObject());
196    Handle<String> prop_name = factory->InternalizeUtf8String("theSlot");
197    CHECK_EQ(*Object::GetProperty(object, prop_name).ToHandleChecked(),
198             Smi::FromInt(23));
199  }
200}
201
202
203// TODO(1600): compaction of map space is temporary removed from GC.
204#if 0
205static Handle<Map> CreateMap(Isolate* isolate) {
206  return isolate->factory()->NewMap(JS_OBJECT_TYPE, JSObject::kHeaderSize);
207}
208
209
210TEST(MapCompact) {
211  FLAG_max_map_space_pages = 16;
212  CcTest::InitializeVM();
213  Isolate* isolate = CcTest::i_isolate();
214  Factory* factory = isolate->factory();
215
216  {
217    v8::HandleScope sc;
218    // keep allocating maps while pointers are still encodable and thus
219    // mark compact is permitted.
220    Handle<JSObject> root = factory->NewJSObjectFromMap(CreateMap());
221    do {
222      Handle<Map> map = CreateMap();
223      map->set_prototype(*root);
224      root = factory->NewJSObjectFromMap(map);
225    } while (CcTest::heap()->map_space()->MapPointersEncodable());
226  }
227  // Now, as we don't have any handles to just allocated maps, we should
228  // be able to trigger map compaction.
229  // To give an additional chance to fail, try to force compaction which
230  // should be impossible right now.
231  CcTest::heap()->CollectAllGarbage(Heap::kForceCompactionMask);
232  // And now map pointers should be encodable again.
233  CHECK(CcTest::heap()->map_space()->MapPointersEncodable());
234}
235#endif
236
237
238static int NumberOfWeakCalls = 0;
239static void WeakPointerCallback(
240    const v8::WeakCallbackData<v8::Value, void>& data) {
241  std::pair<v8::Persistent<v8::Value>*, int>* p =
242      reinterpret_cast<std::pair<v8::Persistent<v8::Value>*, int>*>(
243          data.GetParameter());
244  DCHECK_EQ(1234, p->second);
245  NumberOfWeakCalls++;
246  p->first->Reset();
247}
248
249
250TEST(ObjectGroups) {
251  FLAG_incremental_marking = false;
252  CcTest::InitializeVM();
253  GlobalHandles* global_handles = CcTest::i_isolate()->global_handles();
254  TestHeap* heap = CcTest::test_heap();
255  NumberOfWeakCalls = 0;
256  v8::HandleScope handle_scope(CcTest::isolate());
257
258  Handle<Object> g1s1 =
259      global_handles->Create(heap->AllocateFixedArray(1).ToObjectChecked());
260  Handle<Object> g1s2 =
261      global_handles->Create(heap->AllocateFixedArray(1).ToObjectChecked());
262  Handle<Object> g1c1 =
263      global_handles->Create(heap->AllocateFixedArray(1).ToObjectChecked());
264  std::pair<Handle<Object>*, int> g1s1_and_id(&g1s1, 1234);
265  GlobalHandles::MakeWeak(g1s1.location(),
266                          reinterpret_cast<void*>(&g1s1_and_id),
267                          &WeakPointerCallback);
268  std::pair<Handle<Object>*, int> g1s2_and_id(&g1s2, 1234);
269  GlobalHandles::MakeWeak(g1s2.location(),
270                          reinterpret_cast<void*>(&g1s2_and_id),
271                          &WeakPointerCallback);
272  std::pair<Handle<Object>*, int> g1c1_and_id(&g1c1, 1234);
273  GlobalHandles::MakeWeak(g1c1.location(),
274                          reinterpret_cast<void*>(&g1c1_and_id),
275                          &WeakPointerCallback);
276
277  Handle<Object> g2s1 =
278      global_handles->Create(heap->AllocateFixedArray(1).ToObjectChecked());
279  Handle<Object> g2s2 =
280    global_handles->Create(heap->AllocateFixedArray(1).ToObjectChecked());
281  Handle<Object> g2c1 =
282    global_handles->Create(heap->AllocateFixedArray(1).ToObjectChecked());
283  std::pair<Handle<Object>*, int> g2s1_and_id(&g2s1, 1234);
284  GlobalHandles::MakeWeak(g2s1.location(),
285                          reinterpret_cast<void*>(&g2s1_and_id),
286                          &WeakPointerCallback);
287  std::pair<Handle<Object>*, int> g2s2_and_id(&g2s2, 1234);
288  GlobalHandles::MakeWeak(g2s2.location(),
289                          reinterpret_cast<void*>(&g2s2_and_id),
290                          &WeakPointerCallback);
291  std::pair<Handle<Object>*, int> g2c1_and_id(&g2c1, 1234);
292  GlobalHandles::MakeWeak(g2c1.location(),
293                          reinterpret_cast<void*>(&g2c1_and_id),
294                          &WeakPointerCallback);
295
296  Handle<Object> root = global_handles->Create(*g1s1);  // make a root.
297
298  // Connect group 1 and 2, make a cycle.
299  Handle<FixedArray>::cast(g1s2)->set(0, *g2s2);
300  Handle<FixedArray>::cast(g2s1)->set(0, *g1s1);
301
302  {
303    Object** g1_objects[] = { g1s1.location(), g1s2.location() };
304    Object** g2_objects[] = { g2s1.location(), g2s2.location() };
305    global_handles->AddObjectGroup(g1_objects, 2, NULL);
306    global_handles->SetReference(Handle<HeapObject>::cast(g1s1).location(),
307                                 g1c1.location());
308    global_handles->AddObjectGroup(g2_objects, 2, NULL);
309    global_handles->SetReference(Handle<HeapObject>::cast(g2s1).location(),
310                                 g2c1.location());
311  }
312  // Do a full GC
313  heap->CollectGarbage(OLD_POINTER_SPACE);
314
315  // All object should be alive.
316  CHECK_EQ(0, NumberOfWeakCalls);
317
318  // Weaken the root.
319  std::pair<Handle<Object>*, int> root_and_id(&root, 1234);
320  GlobalHandles::MakeWeak(root.location(),
321                          reinterpret_cast<void*>(&root_and_id),
322                          &WeakPointerCallback);
323  // But make children strong roots---all the objects (except for children)
324  // should be collectable now.
325  global_handles->ClearWeakness(g1c1.location());
326  global_handles->ClearWeakness(g2c1.location());
327
328  // Groups are deleted, rebuild groups.
329  {
330    Object** g1_objects[] = { g1s1.location(), g1s2.location() };
331    Object** g2_objects[] = { g2s1.location(), g2s2.location() };
332    global_handles->AddObjectGroup(g1_objects, 2, NULL);
333    global_handles->SetReference(Handle<HeapObject>::cast(g1s1).location(),
334                                 g1c1.location());
335    global_handles->AddObjectGroup(g2_objects, 2, NULL);
336    global_handles->SetReference(Handle<HeapObject>::cast(g2s1).location(),
337                                 g2c1.location());
338  }
339
340  heap->CollectGarbage(OLD_POINTER_SPACE);
341
342  // All objects should be gone. 5 global handles in total.
343  CHECK_EQ(5, NumberOfWeakCalls);
344
345  // And now make children weak again and collect them.
346  GlobalHandles::MakeWeak(g1c1.location(),
347                          reinterpret_cast<void*>(&g1c1_and_id),
348                          &WeakPointerCallback);
349  GlobalHandles::MakeWeak(g2c1.location(),
350                          reinterpret_cast<void*>(&g2c1_and_id),
351                          &WeakPointerCallback);
352
353  heap->CollectGarbage(OLD_POINTER_SPACE);
354  CHECK_EQ(7, NumberOfWeakCalls);
355}
356
357
358class TestRetainedObjectInfo : public v8::RetainedObjectInfo {
359 public:
360  TestRetainedObjectInfo() : has_been_disposed_(false) {}
361
362  bool has_been_disposed() { return has_been_disposed_; }
363
364  virtual void Dispose() {
365    DCHECK(!has_been_disposed_);
366    has_been_disposed_ = true;
367  }
368
369  virtual bool IsEquivalent(v8::RetainedObjectInfo* other) {
370    return other == this;
371  }
372
373  virtual intptr_t GetHash() { return 0; }
374
375  virtual const char* GetLabel() { return "whatever"; }
376
377 private:
378  bool has_been_disposed_;
379};
380
381
382TEST(EmptyObjectGroups) {
383  CcTest::InitializeVM();
384  GlobalHandles* global_handles = CcTest::i_isolate()->global_handles();
385
386  v8::HandleScope handle_scope(CcTest::isolate());
387
388  TestRetainedObjectInfo info;
389  global_handles->AddObjectGroup(NULL, 0, &info);
390  DCHECK(info.has_been_disposed());
391}
392
393
394#if defined(__has_feature)
395#if __has_feature(address_sanitizer)
396#define V8_WITH_ASAN 1
397#endif
398#endif
399
400
401// Here is a memory use test that uses /proc, and is therefore Linux-only.  We
402// do not care how much memory the simulator uses, since it is only there for
403// debugging purposes. Testing with ASAN doesn't make sense, either.
404#if defined(__linux__) && !defined(USE_SIMULATOR) && !defined(V8_WITH_ASAN)
405
406
407static uintptr_t ReadLong(char* buffer, intptr_t* position, int base) {
408  char* end_address = buffer + *position;
409  uintptr_t result = strtoul(buffer + *position, &end_address, base);
410  CHECK(result != ULONG_MAX || errno != ERANGE);
411  CHECK(end_address > buffer + *position);
412  *position = end_address - buffer;
413  return result;
414}
415
416
417// The memory use computed this way is not entirely accurate and depends on
418// the way malloc allocates memory.  That's why the memory use may seem to
419// increase even though the sum of the allocated object sizes decreases.  It
420// also means that the memory use depends on the kernel and stdlib.
421static intptr_t MemoryInUse() {
422  intptr_t memory_use = 0;
423
424  int fd = open("/proc/self/maps", O_RDONLY);
425  if (fd < 0) return -1;
426
427  const int kBufSize = 10000;
428  char buffer[kBufSize];
429  int length = read(fd, buffer, kBufSize);
430  intptr_t line_start = 0;
431  CHECK_LT(length, kBufSize);  // Make the buffer bigger.
432  CHECK_GT(length, 0);  // We have to find some data in the file.
433  while (line_start < length) {
434    if (buffer[line_start] == '\n') {
435      line_start++;
436      continue;
437    }
438    intptr_t position = line_start;
439    uintptr_t start = ReadLong(buffer, &position, 16);
440    CHECK_EQ(buffer[position++], '-');
441    uintptr_t end = ReadLong(buffer, &position, 16);
442    CHECK_EQ(buffer[position++], ' ');
443    CHECK(buffer[position] == '-' || buffer[position] == 'r');
444    bool read_permission = (buffer[position++] == 'r');
445    CHECK(buffer[position] == '-' || buffer[position] == 'w');
446    bool write_permission = (buffer[position++] == 'w');
447    CHECK(buffer[position] == '-' || buffer[position] == 'x');
448    bool execute_permission = (buffer[position++] == 'x');
449    CHECK(buffer[position] == '-' || buffer[position] == 'p');
450    bool private_mapping = (buffer[position++] == 'p');
451    CHECK_EQ(buffer[position++], ' ');
452    uintptr_t offset = ReadLong(buffer, &position, 16);
453    USE(offset);
454    CHECK_EQ(buffer[position++], ' ');
455    uintptr_t major = ReadLong(buffer, &position, 16);
456    USE(major);
457    CHECK_EQ(buffer[position++], ':');
458    uintptr_t minor = ReadLong(buffer, &position, 16);
459    USE(minor);
460    CHECK_EQ(buffer[position++], ' ');
461    uintptr_t inode = ReadLong(buffer, &position, 10);
462    while (position < length && buffer[position] != '\n') position++;
463    if ((read_permission || write_permission || execute_permission) &&
464        private_mapping && inode == 0) {
465      memory_use += (end - start);
466    }
467
468    line_start = position;
469  }
470  close(fd);
471  return memory_use;
472}
473
474
475intptr_t ShortLivingIsolate() {
476  v8::Isolate* isolate = v8::Isolate::New();
477  { v8::Isolate::Scope isolate_scope(isolate);
478    v8::Locker lock(isolate);
479    v8::HandleScope handle_scope(isolate);
480    v8::Local<v8::Context> context = v8::Context::New(isolate);
481    CHECK(!context.IsEmpty());
482  }
483  isolate->Dispose();
484  return MemoryInUse();
485}
486
487
488TEST(RegressJoinThreadsOnIsolateDeinit) {
489  intptr_t size_limit = ShortLivingIsolate() * 2;
490  for (int i = 0; i < 10; i++) {
491    CHECK_GT(size_limit, ShortLivingIsolate());
492  }
493}
494
495#endif  // __linux__ and !USE_SIMULATOR
496