ASTContext.cpp revision 15c8e56e44a5fb6d298ae5bad791f9ea5bb883f6
1//===--- ASTContext.cpp - Context to hold long-lived AST nodes ------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements the ASTContext interface.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/AST/ASTContext.h"
15#include "CXXABI.h"
16#include "clang/AST/ASTMutationListener.h"
17#include "clang/AST/Attr.h"
18#include "clang/AST/CharUnits.h"
19#include "clang/AST/Comment.h"
20#include "clang/AST/CommentCommandTraits.h"
21#include "clang/AST/DeclCXX.h"
22#include "clang/AST/DeclObjC.h"
23#include "clang/AST/DeclTemplate.h"
24#include "clang/AST/Expr.h"
25#include "clang/AST/ExprCXX.h"
26#include "clang/AST/ExternalASTSource.h"
27#include "clang/AST/Mangle.h"
28#include "clang/AST/RecordLayout.h"
29#include "clang/AST/RecursiveASTVisitor.h"
30#include "clang/AST/TypeLoc.h"
31#include "clang/Basic/Builtins.h"
32#include "clang/Basic/SourceManager.h"
33#include "clang/Basic/TargetInfo.h"
34#include "llvm/ADT/SmallString.h"
35#include "llvm/ADT/StringExtras.h"
36#include "llvm/Support/Capacity.h"
37#include "llvm/Support/MathExtras.h"
38#include "llvm/Support/raw_ostream.h"
39#include <map>
40
41using namespace clang;
42
43unsigned ASTContext::NumImplicitDefaultConstructors;
44unsigned ASTContext::NumImplicitDefaultConstructorsDeclared;
45unsigned ASTContext::NumImplicitCopyConstructors;
46unsigned ASTContext::NumImplicitCopyConstructorsDeclared;
47unsigned ASTContext::NumImplicitMoveConstructors;
48unsigned ASTContext::NumImplicitMoveConstructorsDeclared;
49unsigned ASTContext::NumImplicitCopyAssignmentOperators;
50unsigned ASTContext::NumImplicitCopyAssignmentOperatorsDeclared;
51unsigned ASTContext::NumImplicitMoveAssignmentOperators;
52unsigned ASTContext::NumImplicitMoveAssignmentOperatorsDeclared;
53unsigned ASTContext::NumImplicitDestructors;
54unsigned ASTContext::NumImplicitDestructorsDeclared;
55
56enum FloatingRank {
57  HalfRank, FloatRank, DoubleRank, LongDoubleRank
58};
59
60RawComment *ASTContext::getRawCommentForDeclNoCache(const Decl *D) const {
61  if (!CommentsLoaded && ExternalSource) {
62    ExternalSource->ReadComments();
63    CommentsLoaded = true;
64  }
65
66  assert(D);
67
68  // User can not attach documentation to implicit declarations.
69  if (D->isImplicit())
70    return NULL;
71
72  // User can not attach documentation to implicit instantiations.
73  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
74    if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
75      return NULL;
76  }
77
78  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
79    if (VD->isStaticDataMember() &&
80        VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
81      return NULL;
82  }
83
84  if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(D)) {
85    if (CRD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
86      return NULL;
87  }
88
89  if (const ClassTemplateSpecializationDecl *CTSD =
90          dyn_cast<ClassTemplateSpecializationDecl>(D)) {
91    TemplateSpecializationKind TSK = CTSD->getSpecializationKind();
92    if (TSK == TSK_ImplicitInstantiation ||
93        TSK == TSK_Undeclared)
94      return NULL;
95  }
96
97  if (const EnumDecl *ED = dyn_cast<EnumDecl>(D)) {
98    if (ED->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
99      return NULL;
100  }
101  if (const TagDecl *TD = dyn_cast<TagDecl>(D)) {
102    // When tag declaration (but not definition!) is part of the
103    // decl-specifier-seq of some other declaration, it doesn't get comment
104    if (TD->isEmbeddedInDeclarator() && !TD->isCompleteDefinition())
105      return NULL;
106  }
107  // TODO: handle comments for function parameters properly.
108  if (isa<ParmVarDecl>(D))
109    return NULL;
110
111  // TODO: we could look up template parameter documentation in the template
112  // documentation.
113  if (isa<TemplateTypeParmDecl>(D) ||
114      isa<NonTypeTemplateParmDecl>(D) ||
115      isa<TemplateTemplateParmDecl>(D))
116    return NULL;
117
118  ArrayRef<RawComment *> RawComments = Comments.getComments();
119
120  // If there are no comments anywhere, we won't find anything.
121  if (RawComments.empty())
122    return NULL;
123
124  // Find declaration location.
125  // For Objective-C declarations we generally don't expect to have multiple
126  // declarators, thus use declaration starting location as the "declaration
127  // location".
128  // For all other declarations multiple declarators are used quite frequently,
129  // so we use the location of the identifier as the "declaration location".
130  SourceLocation DeclLoc;
131  if (isa<ObjCMethodDecl>(D) || isa<ObjCContainerDecl>(D) ||
132      isa<ObjCPropertyDecl>(D) ||
133      isa<RedeclarableTemplateDecl>(D) ||
134      isa<ClassTemplateSpecializationDecl>(D))
135    DeclLoc = D->getLocStart();
136  else {
137    DeclLoc = D->getLocation();
138    // If location of the typedef name is in a macro, it is because being
139    // declared via a macro. Try using declaration's starting location
140    // as the "declaration location".
141    if (DeclLoc.isMacroID() && isa<TypedefDecl>(D))
142      DeclLoc = D->getLocStart();
143  }
144
145  // If the declaration doesn't map directly to a location in a file, we
146  // can't find the comment.
147  if (DeclLoc.isInvalid() || !DeclLoc.isFileID())
148    return NULL;
149
150  // Find the comment that occurs just after this declaration.
151  ArrayRef<RawComment *>::iterator Comment;
152  {
153    // When searching for comments during parsing, the comment we are looking
154    // for is usually among the last two comments we parsed -- check them
155    // first.
156    RawComment CommentAtDeclLoc(
157        SourceMgr, SourceRange(DeclLoc), false,
158        LangOpts.CommentOpts.ParseAllComments);
159    BeforeThanCompare<RawComment> Compare(SourceMgr);
160    ArrayRef<RawComment *>::iterator MaybeBeforeDecl = RawComments.end() - 1;
161    bool Found = Compare(*MaybeBeforeDecl, &CommentAtDeclLoc);
162    if (!Found && RawComments.size() >= 2) {
163      MaybeBeforeDecl--;
164      Found = Compare(*MaybeBeforeDecl, &CommentAtDeclLoc);
165    }
166
167    if (Found) {
168      Comment = MaybeBeforeDecl + 1;
169      assert(Comment == std::lower_bound(RawComments.begin(), RawComments.end(),
170                                         &CommentAtDeclLoc, Compare));
171    } else {
172      // Slow path.
173      Comment = std::lower_bound(RawComments.begin(), RawComments.end(),
174                                 &CommentAtDeclLoc, Compare);
175    }
176  }
177
178  // Decompose the location for the declaration and find the beginning of the
179  // file buffer.
180  std::pair<FileID, unsigned> DeclLocDecomp = SourceMgr.getDecomposedLoc(DeclLoc);
181
182  // First check whether we have a trailing comment.
183  if (Comment != RawComments.end() &&
184      (*Comment)->isDocumentation() && (*Comment)->isTrailingComment() &&
185      (isa<FieldDecl>(D) || isa<EnumConstantDecl>(D) || isa<VarDecl>(D) ||
186       isa<ObjCMethodDecl>(D) || isa<ObjCPropertyDecl>(D))) {
187    std::pair<FileID, unsigned> CommentBeginDecomp
188      = SourceMgr.getDecomposedLoc((*Comment)->getSourceRange().getBegin());
189    // Check that Doxygen trailing comment comes after the declaration, starts
190    // on the same line and in the same file as the declaration.
191    if (DeclLocDecomp.first == CommentBeginDecomp.first &&
192        SourceMgr.getLineNumber(DeclLocDecomp.first, DeclLocDecomp.second)
193          == SourceMgr.getLineNumber(CommentBeginDecomp.first,
194                                     CommentBeginDecomp.second)) {
195      return *Comment;
196    }
197  }
198
199  // The comment just after the declaration was not a trailing comment.
200  // Let's look at the previous comment.
201  if (Comment == RawComments.begin())
202    return NULL;
203  --Comment;
204
205  // Check that we actually have a non-member Doxygen comment.
206  if (!(*Comment)->isDocumentation() || (*Comment)->isTrailingComment())
207    return NULL;
208
209  // Decompose the end of the comment.
210  std::pair<FileID, unsigned> CommentEndDecomp
211    = SourceMgr.getDecomposedLoc((*Comment)->getSourceRange().getEnd());
212
213  // If the comment and the declaration aren't in the same file, then they
214  // aren't related.
215  if (DeclLocDecomp.first != CommentEndDecomp.first)
216    return NULL;
217
218  // Get the corresponding buffer.
219  bool Invalid = false;
220  const char *Buffer = SourceMgr.getBufferData(DeclLocDecomp.first,
221                                               &Invalid).data();
222  if (Invalid)
223    return NULL;
224
225  // Extract text between the comment and declaration.
226  StringRef Text(Buffer + CommentEndDecomp.second,
227                 DeclLocDecomp.second - CommentEndDecomp.second);
228
229  // There should be no other declarations or preprocessor directives between
230  // comment and declaration.
231  if (Text.find_first_of(";{}#@") != StringRef::npos)
232    return NULL;
233
234  return *Comment;
235}
236
237namespace {
238/// If we have a 'templated' declaration for a template, adjust 'D' to
239/// refer to the actual template.
240/// If we have an implicit instantiation, adjust 'D' to refer to template.
241const Decl *adjustDeclToTemplate(const Decl *D) {
242  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
243    // Is this function declaration part of a function template?
244    if (const FunctionTemplateDecl *FTD = FD->getDescribedFunctionTemplate())
245      return FTD;
246
247    // Nothing to do if function is not an implicit instantiation.
248    if (FD->getTemplateSpecializationKind() != TSK_ImplicitInstantiation)
249      return D;
250
251    // Function is an implicit instantiation of a function template?
252    if (const FunctionTemplateDecl *FTD = FD->getPrimaryTemplate())
253      return FTD;
254
255    // Function is instantiated from a member definition of a class template?
256    if (const FunctionDecl *MemberDecl =
257            FD->getInstantiatedFromMemberFunction())
258      return MemberDecl;
259
260    return D;
261  }
262  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
263    // Static data member is instantiated from a member definition of a class
264    // template?
265    if (VD->isStaticDataMember())
266      if (const VarDecl *MemberDecl = VD->getInstantiatedFromStaticDataMember())
267        return MemberDecl;
268
269    return D;
270  }
271  if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(D)) {
272    // Is this class declaration part of a class template?
273    if (const ClassTemplateDecl *CTD = CRD->getDescribedClassTemplate())
274      return CTD;
275
276    // Class is an implicit instantiation of a class template or partial
277    // specialization?
278    if (const ClassTemplateSpecializationDecl *CTSD =
279            dyn_cast<ClassTemplateSpecializationDecl>(CRD)) {
280      if (CTSD->getSpecializationKind() != TSK_ImplicitInstantiation)
281        return D;
282      llvm::PointerUnion<ClassTemplateDecl *,
283                         ClassTemplatePartialSpecializationDecl *>
284          PU = CTSD->getSpecializedTemplateOrPartial();
285      return PU.is<ClassTemplateDecl*>() ?
286          static_cast<const Decl*>(PU.get<ClassTemplateDecl *>()) :
287          static_cast<const Decl*>(
288              PU.get<ClassTemplatePartialSpecializationDecl *>());
289    }
290
291    // Class is instantiated from a member definition of a class template?
292    if (const MemberSpecializationInfo *Info =
293                   CRD->getMemberSpecializationInfo())
294      return Info->getInstantiatedFrom();
295
296    return D;
297  }
298  if (const EnumDecl *ED = dyn_cast<EnumDecl>(D)) {
299    // Enum is instantiated from a member definition of a class template?
300    if (const EnumDecl *MemberDecl = ED->getInstantiatedFromMemberEnum())
301      return MemberDecl;
302
303    return D;
304  }
305  // FIXME: Adjust alias templates?
306  return D;
307}
308} // unnamed namespace
309
310const RawComment *ASTContext::getRawCommentForAnyRedecl(
311                                                const Decl *D,
312                                                const Decl **OriginalDecl) const {
313  D = adjustDeclToTemplate(D);
314
315  // Check whether we have cached a comment for this declaration already.
316  {
317    llvm::DenseMap<const Decl *, RawCommentAndCacheFlags>::iterator Pos =
318        RedeclComments.find(D);
319    if (Pos != RedeclComments.end()) {
320      const RawCommentAndCacheFlags &Raw = Pos->second;
321      if (Raw.getKind() != RawCommentAndCacheFlags::NoCommentInDecl) {
322        if (OriginalDecl)
323          *OriginalDecl = Raw.getOriginalDecl();
324        return Raw.getRaw();
325      }
326    }
327  }
328
329  // Search for comments attached to declarations in the redeclaration chain.
330  const RawComment *RC = NULL;
331  const Decl *OriginalDeclForRC = NULL;
332  for (Decl::redecl_iterator I = D->redecls_begin(),
333                             E = D->redecls_end();
334       I != E; ++I) {
335    llvm::DenseMap<const Decl *, RawCommentAndCacheFlags>::iterator Pos =
336        RedeclComments.find(*I);
337    if (Pos != RedeclComments.end()) {
338      const RawCommentAndCacheFlags &Raw = Pos->second;
339      if (Raw.getKind() != RawCommentAndCacheFlags::NoCommentInDecl) {
340        RC = Raw.getRaw();
341        OriginalDeclForRC = Raw.getOriginalDecl();
342        break;
343      }
344    } else {
345      RC = getRawCommentForDeclNoCache(*I);
346      OriginalDeclForRC = *I;
347      RawCommentAndCacheFlags Raw;
348      if (RC) {
349        Raw.setRaw(RC);
350        Raw.setKind(RawCommentAndCacheFlags::FromDecl);
351      } else
352        Raw.setKind(RawCommentAndCacheFlags::NoCommentInDecl);
353      Raw.setOriginalDecl(*I);
354      RedeclComments[*I] = Raw;
355      if (RC)
356        break;
357    }
358  }
359
360  // If we found a comment, it should be a documentation comment.
361  assert(!RC || RC->isDocumentation());
362
363  if (OriginalDecl)
364    *OriginalDecl = OriginalDeclForRC;
365
366  // Update cache for every declaration in the redeclaration chain.
367  RawCommentAndCacheFlags Raw;
368  Raw.setRaw(RC);
369  Raw.setKind(RawCommentAndCacheFlags::FromRedecl);
370  Raw.setOriginalDecl(OriginalDeclForRC);
371
372  for (Decl::redecl_iterator I = D->redecls_begin(),
373                             E = D->redecls_end();
374       I != E; ++I) {
375    RawCommentAndCacheFlags &R = RedeclComments[*I];
376    if (R.getKind() == RawCommentAndCacheFlags::NoCommentInDecl)
377      R = Raw;
378  }
379
380  return RC;
381}
382
383static void addRedeclaredMethods(const ObjCMethodDecl *ObjCMethod,
384                   SmallVectorImpl<const NamedDecl *> &Redeclared) {
385  const DeclContext *DC = ObjCMethod->getDeclContext();
386  if (const ObjCImplDecl *IMD = dyn_cast<ObjCImplDecl>(DC)) {
387    const ObjCInterfaceDecl *ID = IMD->getClassInterface();
388    if (!ID)
389      return;
390    // Add redeclared method here.
391    for (ObjCInterfaceDecl::known_extensions_iterator
392           Ext = ID->known_extensions_begin(),
393           ExtEnd = ID->known_extensions_end();
394         Ext != ExtEnd; ++Ext) {
395      if (ObjCMethodDecl *RedeclaredMethod =
396            Ext->getMethod(ObjCMethod->getSelector(),
397                                  ObjCMethod->isInstanceMethod()))
398        Redeclared.push_back(RedeclaredMethod);
399    }
400  }
401}
402
403comments::FullComment *ASTContext::cloneFullComment(comments::FullComment *FC,
404                                                    const Decl *D) const {
405  comments::DeclInfo *ThisDeclInfo = new (*this) comments::DeclInfo;
406  ThisDeclInfo->CommentDecl = D;
407  ThisDeclInfo->IsFilled = false;
408  ThisDeclInfo->fill();
409  ThisDeclInfo->CommentDecl = FC->getDecl();
410  comments::FullComment *CFC =
411    new (*this) comments::FullComment(FC->getBlocks(),
412                                      ThisDeclInfo);
413  return CFC;
414
415}
416
417comments::FullComment *ASTContext::getLocalCommentForDeclUncached(const Decl *D) const {
418  const RawComment *RC = getRawCommentForDeclNoCache(D);
419  return RC ? RC->parse(*this, 0, D) : 0;
420}
421
422comments::FullComment *ASTContext::getCommentForDecl(
423                                              const Decl *D,
424                                              const Preprocessor *PP) const {
425  if (D->isInvalidDecl())
426    return NULL;
427  D = adjustDeclToTemplate(D);
428
429  const Decl *Canonical = D->getCanonicalDecl();
430  llvm::DenseMap<const Decl *, comments::FullComment *>::iterator Pos =
431      ParsedComments.find(Canonical);
432
433  if (Pos != ParsedComments.end()) {
434    if (Canonical != D) {
435      comments::FullComment *FC = Pos->second;
436      comments::FullComment *CFC = cloneFullComment(FC, D);
437      return CFC;
438    }
439    return Pos->second;
440  }
441
442  const Decl *OriginalDecl;
443
444  const RawComment *RC = getRawCommentForAnyRedecl(D, &OriginalDecl);
445  if (!RC) {
446    if (isa<ObjCMethodDecl>(D) || isa<FunctionDecl>(D)) {
447      SmallVector<const NamedDecl*, 8> Overridden;
448      const ObjCMethodDecl *OMD = dyn_cast<ObjCMethodDecl>(D);
449      if (OMD && OMD->isPropertyAccessor())
450        if (const ObjCPropertyDecl *PDecl = OMD->findPropertyDecl())
451          if (comments::FullComment *FC = getCommentForDecl(PDecl, PP))
452            return cloneFullComment(FC, D);
453      if (OMD)
454        addRedeclaredMethods(OMD, Overridden);
455      getOverriddenMethods(dyn_cast<NamedDecl>(D), Overridden);
456      for (unsigned i = 0, e = Overridden.size(); i < e; i++)
457        if (comments::FullComment *FC = getCommentForDecl(Overridden[i], PP))
458          return cloneFullComment(FC, D);
459    }
460    else if (const TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(D)) {
461      // Attach any tag type's documentation to its typedef if latter
462      // does not have one of its own.
463      QualType QT = TD->getUnderlyingType();
464      if (const TagType *TT = QT->getAs<TagType>())
465        if (const Decl *TD = TT->getDecl())
466          if (comments::FullComment *FC = getCommentForDecl(TD, PP))
467            return cloneFullComment(FC, D);
468    }
469    else if (const ObjCInterfaceDecl *IC = dyn_cast<ObjCInterfaceDecl>(D)) {
470      while (IC->getSuperClass()) {
471        IC = IC->getSuperClass();
472        if (comments::FullComment *FC = getCommentForDecl(IC, PP))
473          return cloneFullComment(FC, D);
474      }
475    }
476    else if (const ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(D)) {
477      if (const ObjCInterfaceDecl *IC = CD->getClassInterface())
478        if (comments::FullComment *FC = getCommentForDecl(IC, PP))
479          return cloneFullComment(FC, D);
480    }
481    else if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D)) {
482      if (!(RD = RD->getDefinition()))
483        return NULL;
484      // Check non-virtual bases.
485      for (CXXRecordDecl::base_class_const_iterator I =
486           RD->bases_begin(), E = RD->bases_end(); I != E; ++I) {
487        if (I->isVirtual() || (I->getAccessSpecifier() != AS_public))
488          continue;
489        QualType Ty = I->getType();
490        if (Ty.isNull())
491          continue;
492        if (const CXXRecordDecl *NonVirtualBase = Ty->getAsCXXRecordDecl()) {
493          if (!(NonVirtualBase= NonVirtualBase->getDefinition()))
494            continue;
495
496          if (comments::FullComment *FC = getCommentForDecl((NonVirtualBase), PP))
497            return cloneFullComment(FC, D);
498        }
499      }
500      // Check virtual bases.
501      for (CXXRecordDecl::base_class_const_iterator I =
502           RD->vbases_begin(), E = RD->vbases_end(); I != E; ++I) {
503        if (I->getAccessSpecifier() != AS_public)
504          continue;
505        QualType Ty = I->getType();
506        if (Ty.isNull())
507          continue;
508        if (const CXXRecordDecl *VirtualBase = Ty->getAsCXXRecordDecl()) {
509          if (!(VirtualBase= VirtualBase->getDefinition()))
510            continue;
511          if (comments::FullComment *FC = getCommentForDecl((VirtualBase), PP))
512            return cloneFullComment(FC, D);
513        }
514      }
515    }
516    return NULL;
517  }
518
519  // If the RawComment was attached to other redeclaration of this Decl, we
520  // should parse the comment in context of that other Decl.  This is important
521  // because comments can contain references to parameter names which can be
522  // different across redeclarations.
523  if (D != OriginalDecl)
524    return getCommentForDecl(OriginalDecl, PP);
525
526  comments::FullComment *FC = RC->parse(*this, PP, D);
527  ParsedComments[Canonical] = FC;
528  return FC;
529}
530
531void
532ASTContext::CanonicalTemplateTemplateParm::Profile(llvm::FoldingSetNodeID &ID,
533                                               TemplateTemplateParmDecl *Parm) {
534  ID.AddInteger(Parm->getDepth());
535  ID.AddInteger(Parm->getPosition());
536  ID.AddBoolean(Parm->isParameterPack());
537
538  TemplateParameterList *Params = Parm->getTemplateParameters();
539  ID.AddInteger(Params->size());
540  for (TemplateParameterList::const_iterator P = Params->begin(),
541                                          PEnd = Params->end();
542       P != PEnd; ++P) {
543    if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*P)) {
544      ID.AddInteger(0);
545      ID.AddBoolean(TTP->isParameterPack());
546      continue;
547    }
548
549    if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(*P)) {
550      ID.AddInteger(1);
551      ID.AddBoolean(NTTP->isParameterPack());
552      ID.AddPointer(NTTP->getType().getCanonicalType().getAsOpaquePtr());
553      if (NTTP->isExpandedParameterPack()) {
554        ID.AddBoolean(true);
555        ID.AddInteger(NTTP->getNumExpansionTypes());
556        for (unsigned I = 0, N = NTTP->getNumExpansionTypes(); I != N; ++I) {
557          QualType T = NTTP->getExpansionType(I);
558          ID.AddPointer(T.getCanonicalType().getAsOpaquePtr());
559        }
560      } else
561        ID.AddBoolean(false);
562      continue;
563    }
564
565    TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(*P);
566    ID.AddInteger(2);
567    Profile(ID, TTP);
568  }
569}
570
571TemplateTemplateParmDecl *
572ASTContext::getCanonicalTemplateTemplateParmDecl(
573                                          TemplateTemplateParmDecl *TTP) const {
574  // Check if we already have a canonical template template parameter.
575  llvm::FoldingSetNodeID ID;
576  CanonicalTemplateTemplateParm::Profile(ID, TTP);
577  void *InsertPos = 0;
578  CanonicalTemplateTemplateParm *Canonical
579    = CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos);
580  if (Canonical)
581    return Canonical->getParam();
582
583  // Build a canonical template parameter list.
584  TemplateParameterList *Params = TTP->getTemplateParameters();
585  SmallVector<NamedDecl *, 4> CanonParams;
586  CanonParams.reserve(Params->size());
587  for (TemplateParameterList::const_iterator P = Params->begin(),
588                                          PEnd = Params->end();
589       P != PEnd; ++P) {
590    if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*P))
591      CanonParams.push_back(
592                  TemplateTypeParmDecl::Create(*this, getTranslationUnitDecl(),
593                                               SourceLocation(),
594                                               SourceLocation(),
595                                               TTP->getDepth(),
596                                               TTP->getIndex(), 0, false,
597                                               TTP->isParameterPack()));
598    else if (NonTypeTemplateParmDecl *NTTP
599             = dyn_cast<NonTypeTemplateParmDecl>(*P)) {
600      QualType T = getCanonicalType(NTTP->getType());
601      TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(T);
602      NonTypeTemplateParmDecl *Param;
603      if (NTTP->isExpandedParameterPack()) {
604        SmallVector<QualType, 2> ExpandedTypes;
605        SmallVector<TypeSourceInfo *, 2> ExpandedTInfos;
606        for (unsigned I = 0, N = NTTP->getNumExpansionTypes(); I != N; ++I) {
607          ExpandedTypes.push_back(getCanonicalType(NTTP->getExpansionType(I)));
608          ExpandedTInfos.push_back(
609                                getTrivialTypeSourceInfo(ExpandedTypes.back()));
610        }
611
612        Param = NonTypeTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
613                                                SourceLocation(),
614                                                SourceLocation(),
615                                                NTTP->getDepth(),
616                                                NTTP->getPosition(), 0,
617                                                T,
618                                                TInfo,
619                                                ExpandedTypes.data(),
620                                                ExpandedTypes.size(),
621                                                ExpandedTInfos.data());
622      } else {
623        Param = NonTypeTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
624                                                SourceLocation(),
625                                                SourceLocation(),
626                                                NTTP->getDepth(),
627                                                NTTP->getPosition(), 0,
628                                                T,
629                                                NTTP->isParameterPack(),
630                                                TInfo);
631      }
632      CanonParams.push_back(Param);
633
634    } else
635      CanonParams.push_back(getCanonicalTemplateTemplateParmDecl(
636                                           cast<TemplateTemplateParmDecl>(*P)));
637  }
638
639  TemplateTemplateParmDecl *CanonTTP
640    = TemplateTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
641                                       SourceLocation(), TTP->getDepth(),
642                                       TTP->getPosition(),
643                                       TTP->isParameterPack(),
644                                       0,
645                         TemplateParameterList::Create(*this, SourceLocation(),
646                                                       SourceLocation(),
647                                                       CanonParams.data(),
648                                                       CanonParams.size(),
649                                                       SourceLocation()));
650
651  // Get the new insert position for the node we care about.
652  Canonical = CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos);
653  assert(Canonical == 0 && "Shouldn't be in the map!");
654  (void)Canonical;
655
656  // Create the canonical template template parameter entry.
657  Canonical = new (*this) CanonicalTemplateTemplateParm(CanonTTP);
658  CanonTemplateTemplateParms.InsertNode(Canonical, InsertPos);
659  return CanonTTP;
660}
661
662CXXABI *ASTContext::createCXXABI(const TargetInfo &T) {
663  if (!LangOpts.CPlusPlus) return 0;
664
665  switch (T.getCXXABI().getKind()) {
666  case TargetCXXABI::GenericARM:
667  case TargetCXXABI::iOS:
668    return CreateARMCXXABI(*this);
669  case TargetCXXABI::GenericAArch64: // Same as Itanium at this level
670  case TargetCXXABI::GenericItanium:
671    return CreateItaniumCXXABI(*this);
672  case TargetCXXABI::Microsoft:
673    return CreateMicrosoftCXXABI(*this);
674  }
675  llvm_unreachable("Invalid CXXABI type!");
676}
677
678static const LangAS::Map *getAddressSpaceMap(const TargetInfo &T,
679                                             const LangOptions &LOpts) {
680  if (LOpts.FakeAddressSpaceMap) {
681    // The fake address space map must have a distinct entry for each
682    // language-specific address space.
683    static const unsigned FakeAddrSpaceMap[] = {
684      1, // opencl_global
685      2, // opencl_local
686      3, // opencl_constant
687      4, // cuda_device
688      5, // cuda_constant
689      6  // cuda_shared
690    };
691    return &FakeAddrSpaceMap;
692  } else {
693    return &T.getAddressSpaceMap();
694  }
695}
696
697ASTContext::ASTContext(LangOptions& LOpts, SourceManager &SM,
698                       const TargetInfo *t,
699                       IdentifierTable &idents, SelectorTable &sels,
700                       Builtin::Context &builtins,
701                       unsigned size_reserve,
702                       bool DelayInitialization)
703  : FunctionProtoTypes(this_()),
704    TemplateSpecializationTypes(this_()),
705    DependentTemplateSpecializationTypes(this_()),
706    SubstTemplateTemplateParmPacks(this_()),
707    GlobalNestedNameSpecifier(0),
708    Int128Decl(0), UInt128Decl(0), Float128StubDecl(0),
709    BuiltinVaListDecl(0),
710    ObjCIdDecl(0), ObjCSelDecl(0), ObjCClassDecl(0), ObjCProtocolClassDecl(0),
711    BOOLDecl(0),
712    CFConstantStringTypeDecl(0), ObjCInstanceTypeDecl(0),
713    FILEDecl(0),
714    jmp_bufDecl(0), sigjmp_bufDecl(0), ucontext_tDecl(0),
715    BlockDescriptorType(0), BlockDescriptorExtendedType(0),
716    cudaConfigureCallDecl(0),
717    NullTypeSourceInfo(QualType()),
718    FirstLocalImport(), LastLocalImport(),
719    SourceMgr(SM), LangOpts(LOpts),
720    AddrSpaceMap(0), Target(t), PrintingPolicy(LOpts),
721    Idents(idents), Selectors(sels),
722    BuiltinInfo(builtins),
723    DeclarationNames(*this),
724    ExternalSource(0), Listener(0),
725    Comments(SM), CommentsLoaded(false),
726    CommentCommandTraits(BumpAlloc, LOpts.CommentOpts),
727    LastSDM(0, 0)
728{
729  if (size_reserve > 0) Types.reserve(size_reserve);
730  TUDecl = TranslationUnitDecl::Create(*this);
731
732  if (!DelayInitialization) {
733    assert(t && "No target supplied for ASTContext initialization");
734    InitBuiltinTypes(*t);
735  }
736}
737
738ASTContext::~ASTContext() {
739  // Release the DenseMaps associated with DeclContext objects.
740  // FIXME: Is this the ideal solution?
741  ReleaseDeclContextMaps();
742
743  // Call all of the deallocation functions on all of their targets.
744  for (DeallocationMap::const_iterator I = Deallocations.begin(),
745           E = Deallocations.end(); I != E; ++I)
746    for (unsigned J = 0, N = I->second.size(); J != N; ++J)
747      (I->first)((I->second)[J]);
748
749  // ASTRecordLayout objects in ASTRecordLayouts must always be destroyed
750  // because they can contain DenseMaps.
751  for (llvm::DenseMap<const ObjCContainerDecl*,
752       const ASTRecordLayout*>::iterator
753       I = ObjCLayouts.begin(), E = ObjCLayouts.end(); I != E; )
754    // Increment in loop to prevent using deallocated memory.
755    if (ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second))
756      R->Destroy(*this);
757
758  for (llvm::DenseMap<const RecordDecl*, const ASTRecordLayout*>::iterator
759       I = ASTRecordLayouts.begin(), E = ASTRecordLayouts.end(); I != E; ) {
760    // Increment in loop to prevent using deallocated memory.
761    if (ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second))
762      R->Destroy(*this);
763  }
764
765  for (llvm::DenseMap<const Decl*, AttrVec*>::iterator A = DeclAttrs.begin(),
766                                                    AEnd = DeclAttrs.end();
767       A != AEnd; ++A)
768    A->second->~AttrVec();
769}
770
771void ASTContext::AddDeallocation(void (*Callback)(void*), void *Data) {
772  Deallocations[Callback].push_back(Data);
773}
774
775void
776ASTContext::setExternalSource(OwningPtr<ExternalASTSource> &Source) {
777  ExternalSource.reset(Source.take());
778}
779
780void ASTContext::PrintStats() const {
781  llvm::errs() << "\n*** AST Context Stats:\n";
782  llvm::errs() << "  " << Types.size() << " types total.\n";
783
784  unsigned counts[] = {
785#define TYPE(Name, Parent) 0,
786#define ABSTRACT_TYPE(Name, Parent)
787#include "clang/AST/TypeNodes.def"
788    0 // Extra
789  };
790
791  for (unsigned i = 0, e = Types.size(); i != e; ++i) {
792    Type *T = Types[i];
793    counts[(unsigned)T->getTypeClass()]++;
794  }
795
796  unsigned Idx = 0;
797  unsigned TotalBytes = 0;
798#define TYPE(Name, Parent)                                              \
799  if (counts[Idx])                                                      \
800    llvm::errs() << "    " << counts[Idx] << " " << #Name               \
801                 << " types\n";                                         \
802  TotalBytes += counts[Idx] * sizeof(Name##Type);                       \
803  ++Idx;
804#define ABSTRACT_TYPE(Name, Parent)
805#include "clang/AST/TypeNodes.def"
806
807  llvm::errs() << "Total bytes = " << TotalBytes << "\n";
808
809  // Implicit special member functions.
810  llvm::errs() << NumImplicitDefaultConstructorsDeclared << "/"
811               << NumImplicitDefaultConstructors
812               << " implicit default constructors created\n";
813  llvm::errs() << NumImplicitCopyConstructorsDeclared << "/"
814               << NumImplicitCopyConstructors
815               << " implicit copy constructors created\n";
816  if (getLangOpts().CPlusPlus)
817    llvm::errs() << NumImplicitMoveConstructorsDeclared << "/"
818                 << NumImplicitMoveConstructors
819                 << " implicit move constructors created\n";
820  llvm::errs() << NumImplicitCopyAssignmentOperatorsDeclared << "/"
821               << NumImplicitCopyAssignmentOperators
822               << " implicit copy assignment operators created\n";
823  if (getLangOpts().CPlusPlus)
824    llvm::errs() << NumImplicitMoveAssignmentOperatorsDeclared << "/"
825                 << NumImplicitMoveAssignmentOperators
826                 << " implicit move assignment operators created\n";
827  llvm::errs() << NumImplicitDestructorsDeclared << "/"
828               << NumImplicitDestructors
829               << " implicit destructors created\n";
830
831  if (ExternalSource.get()) {
832    llvm::errs() << "\n";
833    ExternalSource->PrintStats();
834  }
835
836  BumpAlloc.PrintStats();
837}
838
839TypedefDecl *ASTContext::getInt128Decl() const {
840  if (!Int128Decl) {
841    TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(Int128Ty);
842    Int128Decl = TypedefDecl::Create(const_cast<ASTContext &>(*this),
843                                     getTranslationUnitDecl(),
844                                     SourceLocation(),
845                                     SourceLocation(),
846                                     &Idents.get("__int128_t"),
847                                     TInfo);
848  }
849
850  return Int128Decl;
851}
852
853TypedefDecl *ASTContext::getUInt128Decl() const {
854  if (!UInt128Decl) {
855    TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(UnsignedInt128Ty);
856    UInt128Decl = TypedefDecl::Create(const_cast<ASTContext &>(*this),
857                                     getTranslationUnitDecl(),
858                                     SourceLocation(),
859                                     SourceLocation(),
860                                     &Idents.get("__uint128_t"),
861                                     TInfo);
862  }
863
864  return UInt128Decl;
865}
866
867TypeDecl *ASTContext::getFloat128StubType() const {
868  assert(LangOpts.CPlusPlus && "should only be called for c++");
869  if (!Float128StubDecl) {
870    Float128StubDecl = CXXRecordDecl::Create(const_cast<ASTContext &>(*this),
871                                             TTK_Struct,
872                                             getTranslationUnitDecl(),
873                                             SourceLocation(),
874                                             SourceLocation(),
875                                             &Idents.get("__float128"));
876  }
877
878  return Float128StubDecl;
879}
880
881void ASTContext::InitBuiltinType(CanQualType &R, BuiltinType::Kind K) {
882  BuiltinType *Ty = new (*this, TypeAlignment) BuiltinType(K);
883  R = CanQualType::CreateUnsafe(QualType(Ty, 0));
884  Types.push_back(Ty);
885}
886
887void ASTContext::InitBuiltinTypes(const TargetInfo &Target) {
888  assert((!this->Target || this->Target == &Target) &&
889         "Incorrect target reinitialization");
890  assert(VoidTy.isNull() && "Context reinitialized?");
891
892  this->Target = &Target;
893
894  ABI.reset(createCXXABI(Target));
895  AddrSpaceMap = getAddressSpaceMap(Target, LangOpts);
896
897  // C99 6.2.5p19.
898  InitBuiltinType(VoidTy,              BuiltinType::Void);
899
900  // C99 6.2.5p2.
901  InitBuiltinType(BoolTy,              BuiltinType::Bool);
902  // C99 6.2.5p3.
903  if (LangOpts.CharIsSigned)
904    InitBuiltinType(CharTy,            BuiltinType::Char_S);
905  else
906    InitBuiltinType(CharTy,            BuiltinType::Char_U);
907  // C99 6.2.5p4.
908  InitBuiltinType(SignedCharTy,        BuiltinType::SChar);
909  InitBuiltinType(ShortTy,             BuiltinType::Short);
910  InitBuiltinType(IntTy,               BuiltinType::Int);
911  InitBuiltinType(LongTy,              BuiltinType::Long);
912  InitBuiltinType(LongLongTy,          BuiltinType::LongLong);
913
914  // C99 6.2.5p6.
915  InitBuiltinType(UnsignedCharTy,      BuiltinType::UChar);
916  InitBuiltinType(UnsignedShortTy,     BuiltinType::UShort);
917  InitBuiltinType(UnsignedIntTy,       BuiltinType::UInt);
918  InitBuiltinType(UnsignedLongTy,      BuiltinType::ULong);
919  InitBuiltinType(UnsignedLongLongTy,  BuiltinType::ULongLong);
920
921  // C99 6.2.5p10.
922  InitBuiltinType(FloatTy,             BuiltinType::Float);
923  InitBuiltinType(DoubleTy,            BuiltinType::Double);
924  InitBuiltinType(LongDoubleTy,        BuiltinType::LongDouble);
925
926  // GNU extension, 128-bit integers.
927  InitBuiltinType(Int128Ty,            BuiltinType::Int128);
928  InitBuiltinType(UnsignedInt128Ty,    BuiltinType::UInt128);
929
930  // C++ 3.9.1p5
931  if (TargetInfo::isTypeSigned(Target.getWCharType()))
932    InitBuiltinType(WCharTy,           BuiltinType::WChar_S);
933  else  // -fshort-wchar makes wchar_t be unsigned.
934    InitBuiltinType(WCharTy,           BuiltinType::WChar_U);
935  if (LangOpts.CPlusPlus && LangOpts.WChar)
936    WideCharTy = WCharTy;
937  else {
938    // C99 (or C++ using -fno-wchar).
939    WideCharTy = getFromTargetType(Target.getWCharType());
940  }
941
942  WIntTy = getFromTargetType(Target.getWIntType());
943
944  if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
945    InitBuiltinType(Char16Ty,           BuiltinType::Char16);
946  else // C99
947    Char16Ty = getFromTargetType(Target.getChar16Type());
948
949  if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
950    InitBuiltinType(Char32Ty,           BuiltinType::Char32);
951  else // C99
952    Char32Ty = getFromTargetType(Target.getChar32Type());
953
954  // Placeholder type for type-dependent expressions whose type is
955  // completely unknown. No code should ever check a type against
956  // DependentTy and users should never see it; however, it is here to
957  // help diagnose failures to properly check for type-dependent
958  // expressions.
959  InitBuiltinType(DependentTy,         BuiltinType::Dependent);
960
961  // Placeholder type for functions.
962  InitBuiltinType(OverloadTy,          BuiltinType::Overload);
963
964  // Placeholder type for bound members.
965  InitBuiltinType(BoundMemberTy,       BuiltinType::BoundMember);
966
967  // Placeholder type for pseudo-objects.
968  InitBuiltinType(PseudoObjectTy,      BuiltinType::PseudoObject);
969
970  // "any" type; useful for debugger-like clients.
971  InitBuiltinType(UnknownAnyTy,        BuiltinType::UnknownAny);
972
973  // Placeholder type for unbridged ARC casts.
974  InitBuiltinType(ARCUnbridgedCastTy,  BuiltinType::ARCUnbridgedCast);
975
976  // Placeholder type for builtin functions.
977  InitBuiltinType(BuiltinFnTy,  BuiltinType::BuiltinFn);
978
979  // C99 6.2.5p11.
980  FloatComplexTy      = getComplexType(FloatTy);
981  DoubleComplexTy     = getComplexType(DoubleTy);
982  LongDoubleComplexTy = getComplexType(LongDoubleTy);
983
984  // Builtin types for 'id', 'Class', and 'SEL'.
985  InitBuiltinType(ObjCBuiltinIdTy, BuiltinType::ObjCId);
986  InitBuiltinType(ObjCBuiltinClassTy, BuiltinType::ObjCClass);
987  InitBuiltinType(ObjCBuiltinSelTy, BuiltinType::ObjCSel);
988
989  if (LangOpts.OpenCL) {
990    InitBuiltinType(OCLImage1dTy, BuiltinType::OCLImage1d);
991    InitBuiltinType(OCLImage1dArrayTy, BuiltinType::OCLImage1dArray);
992    InitBuiltinType(OCLImage1dBufferTy, BuiltinType::OCLImage1dBuffer);
993    InitBuiltinType(OCLImage2dTy, BuiltinType::OCLImage2d);
994    InitBuiltinType(OCLImage2dArrayTy, BuiltinType::OCLImage2dArray);
995    InitBuiltinType(OCLImage3dTy, BuiltinType::OCLImage3d);
996
997    InitBuiltinType(OCLSamplerTy, BuiltinType::OCLSampler);
998    InitBuiltinType(OCLEventTy, BuiltinType::OCLEvent);
999  }
1000
1001  // Builtin type for __objc_yes and __objc_no
1002  ObjCBuiltinBoolTy = (Target.useSignedCharForObjCBool() ?
1003                       SignedCharTy : BoolTy);
1004
1005  ObjCConstantStringType = QualType();
1006
1007  ObjCSuperType = QualType();
1008
1009  // void * type
1010  VoidPtrTy = getPointerType(VoidTy);
1011
1012  // nullptr type (C++0x 2.14.7)
1013  InitBuiltinType(NullPtrTy,           BuiltinType::NullPtr);
1014
1015  // half type (OpenCL 6.1.1.1) / ARM NEON __fp16
1016  InitBuiltinType(HalfTy, BuiltinType::Half);
1017
1018  // Builtin type used to help define __builtin_va_list.
1019  VaListTagTy = QualType();
1020}
1021
1022DiagnosticsEngine &ASTContext::getDiagnostics() const {
1023  return SourceMgr.getDiagnostics();
1024}
1025
1026AttrVec& ASTContext::getDeclAttrs(const Decl *D) {
1027  AttrVec *&Result = DeclAttrs[D];
1028  if (!Result) {
1029    void *Mem = Allocate(sizeof(AttrVec));
1030    Result = new (Mem) AttrVec;
1031  }
1032
1033  return *Result;
1034}
1035
1036/// \brief Erase the attributes corresponding to the given declaration.
1037void ASTContext::eraseDeclAttrs(const Decl *D) {
1038  llvm::DenseMap<const Decl*, AttrVec*>::iterator Pos = DeclAttrs.find(D);
1039  if (Pos != DeclAttrs.end()) {
1040    Pos->second->~AttrVec();
1041    DeclAttrs.erase(Pos);
1042  }
1043}
1044
1045// FIXME: Remove ?
1046MemberSpecializationInfo *
1047ASTContext::getInstantiatedFromStaticDataMember(const VarDecl *Var) {
1048  assert(Var->isStaticDataMember() && "Not a static data member");
1049  return getTemplateOrSpecializationInfo(Var)
1050      .dyn_cast<MemberSpecializationInfo *>();
1051}
1052
1053ASTContext::TemplateOrSpecializationInfo
1054ASTContext::getTemplateOrSpecializationInfo(const VarDecl *Var) {
1055  llvm::DenseMap<const VarDecl *, TemplateOrSpecializationInfo>::iterator Pos =
1056      TemplateOrInstantiation.find(Var);
1057  if (Pos == TemplateOrInstantiation.end())
1058    return TemplateOrSpecializationInfo();
1059
1060  return Pos->second;
1061}
1062
1063void
1064ASTContext::setInstantiatedFromStaticDataMember(VarDecl *Inst, VarDecl *Tmpl,
1065                                                TemplateSpecializationKind TSK,
1066                                          SourceLocation PointOfInstantiation) {
1067  assert(Inst->isStaticDataMember() && "Not a static data member");
1068  assert(Tmpl->isStaticDataMember() && "Not a static data member");
1069  setTemplateOrSpecializationInfo(Inst, new (*this) MemberSpecializationInfo(
1070                                            Tmpl, TSK, PointOfInstantiation));
1071}
1072
1073void
1074ASTContext::setTemplateOrSpecializationInfo(VarDecl *Inst,
1075                                            TemplateOrSpecializationInfo TSI) {
1076  assert(!TemplateOrInstantiation[Inst] &&
1077         "Already noted what the variable was instantiated from");
1078  TemplateOrInstantiation[Inst] = TSI;
1079}
1080
1081FunctionDecl *ASTContext::getClassScopeSpecializationPattern(
1082                                                     const FunctionDecl *FD){
1083  assert(FD && "Specialization is 0");
1084  llvm::DenseMap<const FunctionDecl*, FunctionDecl *>::const_iterator Pos
1085    = ClassScopeSpecializationPattern.find(FD);
1086  if (Pos == ClassScopeSpecializationPattern.end())
1087    return 0;
1088
1089  return Pos->second;
1090}
1091
1092void ASTContext::setClassScopeSpecializationPattern(FunctionDecl *FD,
1093                                        FunctionDecl *Pattern) {
1094  assert(FD && "Specialization is 0");
1095  assert(Pattern && "Class scope specialization pattern is 0");
1096  ClassScopeSpecializationPattern[FD] = Pattern;
1097}
1098
1099NamedDecl *
1100ASTContext::getInstantiatedFromUsingDecl(UsingDecl *UUD) {
1101  llvm::DenseMap<UsingDecl *, NamedDecl *>::const_iterator Pos
1102    = InstantiatedFromUsingDecl.find(UUD);
1103  if (Pos == InstantiatedFromUsingDecl.end())
1104    return 0;
1105
1106  return Pos->second;
1107}
1108
1109void
1110ASTContext::setInstantiatedFromUsingDecl(UsingDecl *Inst, NamedDecl *Pattern) {
1111  assert((isa<UsingDecl>(Pattern) ||
1112          isa<UnresolvedUsingValueDecl>(Pattern) ||
1113          isa<UnresolvedUsingTypenameDecl>(Pattern)) &&
1114         "pattern decl is not a using decl");
1115  assert(!InstantiatedFromUsingDecl[Inst] && "pattern already exists");
1116  InstantiatedFromUsingDecl[Inst] = Pattern;
1117}
1118
1119UsingShadowDecl *
1120ASTContext::getInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst) {
1121  llvm::DenseMap<UsingShadowDecl*, UsingShadowDecl*>::const_iterator Pos
1122    = InstantiatedFromUsingShadowDecl.find(Inst);
1123  if (Pos == InstantiatedFromUsingShadowDecl.end())
1124    return 0;
1125
1126  return Pos->second;
1127}
1128
1129void
1130ASTContext::setInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst,
1131                                               UsingShadowDecl *Pattern) {
1132  assert(!InstantiatedFromUsingShadowDecl[Inst] && "pattern already exists");
1133  InstantiatedFromUsingShadowDecl[Inst] = Pattern;
1134}
1135
1136FieldDecl *ASTContext::getInstantiatedFromUnnamedFieldDecl(FieldDecl *Field) {
1137  llvm::DenseMap<FieldDecl *, FieldDecl *>::iterator Pos
1138    = InstantiatedFromUnnamedFieldDecl.find(Field);
1139  if (Pos == InstantiatedFromUnnamedFieldDecl.end())
1140    return 0;
1141
1142  return Pos->second;
1143}
1144
1145void ASTContext::setInstantiatedFromUnnamedFieldDecl(FieldDecl *Inst,
1146                                                     FieldDecl *Tmpl) {
1147  assert(!Inst->getDeclName() && "Instantiated field decl is not unnamed");
1148  assert(!Tmpl->getDeclName() && "Template field decl is not unnamed");
1149  assert(!InstantiatedFromUnnamedFieldDecl[Inst] &&
1150         "Already noted what unnamed field was instantiated from");
1151
1152  InstantiatedFromUnnamedFieldDecl[Inst] = Tmpl;
1153}
1154
1155ASTContext::overridden_cxx_method_iterator
1156ASTContext::overridden_methods_begin(const CXXMethodDecl *Method) const {
1157  llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
1158    = OverriddenMethods.find(Method->getCanonicalDecl());
1159  if (Pos == OverriddenMethods.end())
1160    return 0;
1161
1162  return Pos->second.begin();
1163}
1164
1165ASTContext::overridden_cxx_method_iterator
1166ASTContext::overridden_methods_end(const CXXMethodDecl *Method) const {
1167  llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
1168    = OverriddenMethods.find(Method->getCanonicalDecl());
1169  if (Pos == OverriddenMethods.end())
1170    return 0;
1171
1172  return Pos->second.end();
1173}
1174
1175unsigned
1176ASTContext::overridden_methods_size(const CXXMethodDecl *Method) const {
1177  llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
1178    = OverriddenMethods.find(Method->getCanonicalDecl());
1179  if (Pos == OverriddenMethods.end())
1180    return 0;
1181
1182  return Pos->second.size();
1183}
1184
1185void ASTContext::addOverriddenMethod(const CXXMethodDecl *Method,
1186                                     const CXXMethodDecl *Overridden) {
1187  assert(Method->isCanonicalDecl() && Overridden->isCanonicalDecl());
1188  OverriddenMethods[Method].push_back(Overridden);
1189}
1190
1191void ASTContext::getOverriddenMethods(
1192                      const NamedDecl *D,
1193                      SmallVectorImpl<const NamedDecl *> &Overridden) const {
1194  assert(D);
1195
1196  if (const CXXMethodDecl *CXXMethod = dyn_cast<CXXMethodDecl>(D)) {
1197    Overridden.append(overridden_methods_begin(CXXMethod),
1198                      overridden_methods_end(CXXMethod));
1199    return;
1200  }
1201
1202  const ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(D);
1203  if (!Method)
1204    return;
1205
1206  SmallVector<const ObjCMethodDecl *, 8> OverDecls;
1207  Method->getOverriddenMethods(OverDecls);
1208  Overridden.append(OverDecls.begin(), OverDecls.end());
1209}
1210
1211void ASTContext::addedLocalImportDecl(ImportDecl *Import) {
1212  assert(!Import->NextLocalImport && "Import declaration already in the chain");
1213  assert(!Import->isFromASTFile() && "Non-local import declaration");
1214  if (!FirstLocalImport) {
1215    FirstLocalImport = Import;
1216    LastLocalImport = Import;
1217    return;
1218  }
1219
1220  LastLocalImport->NextLocalImport = Import;
1221  LastLocalImport = Import;
1222}
1223
1224//===----------------------------------------------------------------------===//
1225//                         Type Sizing and Analysis
1226//===----------------------------------------------------------------------===//
1227
1228/// getFloatTypeSemantics - Return the APFloat 'semantics' for the specified
1229/// scalar floating point type.
1230const llvm::fltSemantics &ASTContext::getFloatTypeSemantics(QualType T) const {
1231  const BuiltinType *BT = T->getAs<BuiltinType>();
1232  assert(BT && "Not a floating point type!");
1233  switch (BT->getKind()) {
1234  default: llvm_unreachable("Not a floating point type!");
1235  case BuiltinType::Half:       return Target->getHalfFormat();
1236  case BuiltinType::Float:      return Target->getFloatFormat();
1237  case BuiltinType::Double:     return Target->getDoubleFormat();
1238  case BuiltinType::LongDouble: return Target->getLongDoubleFormat();
1239  }
1240}
1241
1242/// getDeclAlign - Return a conservative estimate of the alignment of the
1243/// specified decl.  Note that bitfields do not have a valid alignment, so
1244/// this method will assert on them.
1245/// If @p RefAsPointee, references are treated like their underlying type
1246/// (for alignof), else they're treated like pointers (for CodeGen).
1247CharUnits ASTContext::getDeclAlign(const Decl *D, bool RefAsPointee) const {
1248  unsigned Align = Target->getCharWidth();
1249
1250  bool UseAlignAttrOnly = false;
1251  if (unsigned AlignFromAttr = D->getMaxAlignment()) {
1252    Align = AlignFromAttr;
1253
1254    // __attribute__((aligned)) can increase or decrease alignment
1255    // *except* on a struct or struct member, where it only increases
1256    // alignment unless 'packed' is also specified.
1257    //
1258    // It is an error for alignas to decrease alignment, so we can
1259    // ignore that possibility;  Sema should diagnose it.
1260    if (isa<FieldDecl>(D)) {
1261      UseAlignAttrOnly = D->hasAttr<PackedAttr>() ||
1262        cast<FieldDecl>(D)->getParent()->hasAttr<PackedAttr>();
1263    } else {
1264      UseAlignAttrOnly = true;
1265    }
1266  }
1267  else if (isa<FieldDecl>(D))
1268      UseAlignAttrOnly =
1269        D->hasAttr<PackedAttr>() ||
1270        cast<FieldDecl>(D)->getParent()->hasAttr<PackedAttr>();
1271
1272  // If we're using the align attribute only, just ignore everything
1273  // else about the declaration and its type.
1274  if (UseAlignAttrOnly) {
1275    // do nothing
1276
1277  } else if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
1278    QualType T = VD->getType();
1279    if (const ReferenceType* RT = T->getAs<ReferenceType>()) {
1280      if (RefAsPointee)
1281        T = RT->getPointeeType();
1282      else
1283        T = getPointerType(RT->getPointeeType());
1284    }
1285    if (!T->isIncompleteType() && !T->isFunctionType()) {
1286      // Adjust alignments of declarations with array type by the
1287      // large-array alignment on the target.
1288      unsigned MinWidth = Target->getLargeArrayMinWidth();
1289      const ArrayType *arrayType;
1290      if (MinWidth && (arrayType = getAsArrayType(T))) {
1291        if (isa<VariableArrayType>(arrayType))
1292          Align = std::max(Align, Target->getLargeArrayAlign());
1293        else if (isa<ConstantArrayType>(arrayType) &&
1294                 MinWidth <= getTypeSize(cast<ConstantArrayType>(arrayType)))
1295          Align = std::max(Align, Target->getLargeArrayAlign());
1296
1297        // Walk through any array types while we're at it.
1298        T = getBaseElementType(arrayType);
1299      }
1300      Align = std::max(Align, getPreferredTypeAlign(T.getTypePtr()));
1301      if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1302        if (VD->hasGlobalStorage())
1303          Align = std::max(Align, getTargetInfo().getMinGlobalAlign());
1304      }
1305    }
1306
1307    // Fields can be subject to extra alignment constraints, like if
1308    // the field is packed, the struct is packed, or the struct has a
1309    // a max-field-alignment constraint (#pragma pack).  So calculate
1310    // the actual alignment of the field within the struct, and then
1311    // (as we're expected to) constrain that by the alignment of the type.
1312    if (const FieldDecl *Field = dyn_cast<FieldDecl>(VD)) {
1313      const RecordDecl *Parent = Field->getParent();
1314      // We can only produce a sensible answer if the record is valid.
1315      if (!Parent->isInvalidDecl()) {
1316        const ASTRecordLayout &Layout = getASTRecordLayout(Parent);
1317
1318        // Start with the record's overall alignment.
1319        unsigned FieldAlign = toBits(Layout.getAlignment());
1320
1321        // Use the GCD of that and the offset within the record.
1322        uint64_t Offset = Layout.getFieldOffset(Field->getFieldIndex());
1323        if (Offset > 0) {
1324          // Alignment is always a power of 2, so the GCD will be a power of 2,
1325          // which means we get to do this crazy thing instead of Euclid's.
1326          uint64_t LowBitOfOffset = Offset & (~Offset + 1);
1327          if (LowBitOfOffset < FieldAlign)
1328            FieldAlign = static_cast<unsigned>(LowBitOfOffset);
1329        }
1330
1331        Align = std::min(Align, FieldAlign);
1332      }
1333    }
1334  }
1335
1336  return toCharUnitsFromBits(Align);
1337}
1338
1339// getTypeInfoDataSizeInChars - Return the size of a type, in
1340// chars. If the type is a record, its data size is returned.  This is
1341// the size of the memcpy that's performed when assigning this type
1342// using a trivial copy/move assignment operator.
1343std::pair<CharUnits, CharUnits>
1344ASTContext::getTypeInfoDataSizeInChars(QualType T) const {
1345  std::pair<CharUnits, CharUnits> sizeAndAlign = getTypeInfoInChars(T);
1346
1347  // In C++, objects can sometimes be allocated into the tail padding
1348  // of a base-class subobject.  We decide whether that's possible
1349  // during class layout, so here we can just trust the layout results.
1350  if (getLangOpts().CPlusPlus) {
1351    if (const RecordType *RT = T->getAs<RecordType>()) {
1352      const ASTRecordLayout &layout = getASTRecordLayout(RT->getDecl());
1353      sizeAndAlign.first = layout.getDataSize();
1354    }
1355  }
1356
1357  return sizeAndAlign;
1358}
1359
1360/// getConstantArrayInfoInChars - Performing the computation in CharUnits
1361/// instead of in bits prevents overflowing the uint64_t for some large arrays.
1362std::pair<CharUnits, CharUnits>
1363static getConstantArrayInfoInChars(const ASTContext &Context,
1364                                   const ConstantArrayType *CAT) {
1365  std::pair<CharUnits, CharUnits> EltInfo =
1366      Context.getTypeInfoInChars(CAT->getElementType());
1367  uint64_t Size = CAT->getSize().getZExtValue();
1368  assert((Size == 0 || static_cast<uint64_t>(EltInfo.first.getQuantity()) <=
1369              (uint64_t)(-1)/Size) &&
1370         "Overflow in array type char size evaluation");
1371  uint64_t Width = EltInfo.first.getQuantity() * Size;
1372  unsigned Align = EltInfo.second.getQuantity();
1373  Width = llvm::RoundUpToAlignment(Width, Align);
1374  return std::make_pair(CharUnits::fromQuantity(Width),
1375                        CharUnits::fromQuantity(Align));
1376}
1377
1378std::pair<CharUnits, CharUnits>
1379ASTContext::getTypeInfoInChars(const Type *T) const {
1380  if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(T))
1381    return getConstantArrayInfoInChars(*this, CAT);
1382  std::pair<uint64_t, unsigned> Info = getTypeInfo(T);
1383  return std::make_pair(toCharUnitsFromBits(Info.first),
1384                        toCharUnitsFromBits(Info.second));
1385}
1386
1387std::pair<CharUnits, CharUnits>
1388ASTContext::getTypeInfoInChars(QualType T) const {
1389  return getTypeInfoInChars(T.getTypePtr());
1390}
1391
1392std::pair<uint64_t, unsigned> ASTContext::getTypeInfo(const Type *T) const {
1393  TypeInfoMap::iterator it = MemoizedTypeInfo.find(T);
1394  if (it != MemoizedTypeInfo.end())
1395    return it->second;
1396
1397  std::pair<uint64_t, unsigned> Info = getTypeInfoImpl(T);
1398  MemoizedTypeInfo.insert(std::make_pair(T, Info));
1399  return Info;
1400}
1401
1402/// getTypeInfoImpl - Return the size of the specified type, in bits.  This
1403/// method does not work on incomplete types.
1404///
1405/// FIXME: Pointers into different addr spaces could have different sizes and
1406/// alignment requirements: getPointerInfo should take an AddrSpace, this
1407/// should take a QualType, &c.
1408std::pair<uint64_t, unsigned>
1409ASTContext::getTypeInfoImpl(const Type *T) const {
1410  uint64_t Width=0;
1411  unsigned Align=8;
1412  switch (T->getTypeClass()) {
1413#define TYPE(Class, Base)
1414#define ABSTRACT_TYPE(Class, Base)
1415#define NON_CANONICAL_TYPE(Class, Base)
1416#define DEPENDENT_TYPE(Class, Base) case Type::Class:
1417#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base)                       \
1418  case Type::Class:                                                            \
1419  assert(!T->isDependentType() && "should not see dependent types here");      \
1420  return getTypeInfo(cast<Class##Type>(T)->desugar().getTypePtr());
1421#include "clang/AST/TypeNodes.def"
1422    llvm_unreachable("Should not see dependent types");
1423
1424  case Type::FunctionNoProto:
1425  case Type::FunctionProto:
1426    // GCC extension: alignof(function) = 32 bits
1427    Width = 0;
1428    Align = 32;
1429    break;
1430
1431  case Type::IncompleteArray:
1432  case Type::VariableArray:
1433    Width = 0;
1434    Align = getTypeAlign(cast<ArrayType>(T)->getElementType());
1435    break;
1436
1437  case Type::ConstantArray: {
1438    const ConstantArrayType *CAT = cast<ConstantArrayType>(T);
1439
1440    std::pair<uint64_t, unsigned> EltInfo = getTypeInfo(CAT->getElementType());
1441    uint64_t Size = CAT->getSize().getZExtValue();
1442    assert((Size == 0 || EltInfo.first <= (uint64_t)(-1)/Size) &&
1443           "Overflow in array type bit size evaluation");
1444    Width = EltInfo.first*Size;
1445    Align = EltInfo.second;
1446    Width = llvm::RoundUpToAlignment(Width, Align);
1447    break;
1448  }
1449  case Type::ExtVector:
1450  case Type::Vector: {
1451    const VectorType *VT = cast<VectorType>(T);
1452    std::pair<uint64_t, unsigned> EltInfo = getTypeInfo(VT->getElementType());
1453    Width = EltInfo.first*VT->getNumElements();
1454    Align = Width;
1455    // If the alignment is not a power of 2, round up to the next power of 2.
1456    // This happens for non-power-of-2 length vectors.
1457    if (Align & (Align-1)) {
1458      Align = llvm::NextPowerOf2(Align);
1459      Width = llvm::RoundUpToAlignment(Width, Align);
1460    }
1461    // Adjust the alignment based on the target max.
1462    uint64_t TargetVectorAlign = Target->getMaxVectorAlign();
1463    if (TargetVectorAlign && TargetVectorAlign < Align)
1464      Align = TargetVectorAlign;
1465    break;
1466  }
1467
1468  case Type::Builtin:
1469    switch (cast<BuiltinType>(T)->getKind()) {
1470    default: llvm_unreachable("Unknown builtin type!");
1471    case BuiltinType::Void:
1472      // GCC extension: alignof(void) = 8 bits.
1473      Width = 0;
1474      Align = 8;
1475      break;
1476
1477    case BuiltinType::Bool:
1478      Width = Target->getBoolWidth();
1479      Align = Target->getBoolAlign();
1480      break;
1481    case BuiltinType::Char_S:
1482    case BuiltinType::Char_U:
1483    case BuiltinType::UChar:
1484    case BuiltinType::SChar:
1485      Width = Target->getCharWidth();
1486      Align = Target->getCharAlign();
1487      break;
1488    case BuiltinType::WChar_S:
1489    case BuiltinType::WChar_U:
1490      Width = Target->getWCharWidth();
1491      Align = Target->getWCharAlign();
1492      break;
1493    case BuiltinType::Char16:
1494      Width = Target->getChar16Width();
1495      Align = Target->getChar16Align();
1496      break;
1497    case BuiltinType::Char32:
1498      Width = Target->getChar32Width();
1499      Align = Target->getChar32Align();
1500      break;
1501    case BuiltinType::UShort:
1502    case BuiltinType::Short:
1503      Width = Target->getShortWidth();
1504      Align = Target->getShortAlign();
1505      break;
1506    case BuiltinType::UInt:
1507    case BuiltinType::Int:
1508      Width = Target->getIntWidth();
1509      Align = Target->getIntAlign();
1510      break;
1511    case BuiltinType::ULong:
1512    case BuiltinType::Long:
1513      Width = Target->getLongWidth();
1514      Align = Target->getLongAlign();
1515      break;
1516    case BuiltinType::ULongLong:
1517    case BuiltinType::LongLong:
1518      Width = Target->getLongLongWidth();
1519      Align = Target->getLongLongAlign();
1520      break;
1521    case BuiltinType::Int128:
1522    case BuiltinType::UInt128:
1523      Width = 128;
1524      Align = 128; // int128_t is 128-bit aligned on all targets.
1525      break;
1526    case BuiltinType::Half:
1527      Width = Target->getHalfWidth();
1528      Align = Target->getHalfAlign();
1529      break;
1530    case BuiltinType::Float:
1531      Width = Target->getFloatWidth();
1532      Align = Target->getFloatAlign();
1533      break;
1534    case BuiltinType::Double:
1535      Width = Target->getDoubleWidth();
1536      Align = Target->getDoubleAlign();
1537      break;
1538    case BuiltinType::LongDouble:
1539      Width = Target->getLongDoubleWidth();
1540      Align = Target->getLongDoubleAlign();
1541      break;
1542    case BuiltinType::NullPtr:
1543      Width = Target->getPointerWidth(0); // C++ 3.9.1p11: sizeof(nullptr_t)
1544      Align = Target->getPointerAlign(0); //   == sizeof(void*)
1545      break;
1546    case BuiltinType::ObjCId:
1547    case BuiltinType::ObjCClass:
1548    case BuiltinType::ObjCSel:
1549      Width = Target->getPointerWidth(0);
1550      Align = Target->getPointerAlign(0);
1551      break;
1552    case BuiltinType::OCLSampler:
1553      // Samplers are modeled as integers.
1554      Width = Target->getIntWidth();
1555      Align = Target->getIntAlign();
1556      break;
1557    case BuiltinType::OCLEvent:
1558    case BuiltinType::OCLImage1d:
1559    case BuiltinType::OCLImage1dArray:
1560    case BuiltinType::OCLImage1dBuffer:
1561    case BuiltinType::OCLImage2d:
1562    case BuiltinType::OCLImage2dArray:
1563    case BuiltinType::OCLImage3d:
1564      // Currently these types are pointers to opaque types.
1565      Width = Target->getPointerWidth(0);
1566      Align = Target->getPointerAlign(0);
1567      break;
1568    }
1569    break;
1570  case Type::ObjCObjectPointer:
1571    Width = Target->getPointerWidth(0);
1572    Align = Target->getPointerAlign(0);
1573    break;
1574  case Type::BlockPointer: {
1575    unsigned AS = getTargetAddressSpace(
1576        cast<BlockPointerType>(T)->getPointeeType());
1577    Width = Target->getPointerWidth(AS);
1578    Align = Target->getPointerAlign(AS);
1579    break;
1580  }
1581  case Type::LValueReference:
1582  case Type::RValueReference: {
1583    // alignof and sizeof should never enter this code path here, so we go
1584    // the pointer route.
1585    unsigned AS = getTargetAddressSpace(
1586        cast<ReferenceType>(T)->getPointeeType());
1587    Width = Target->getPointerWidth(AS);
1588    Align = Target->getPointerAlign(AS);
1589    break;
1590  }
1591  case Type::Pointer: {
1592    unsigned AS = getTargetAddressSpace(cast<PointerType>(T)->getPointeeType());
1593    Width = Target->getPointerWidth(AS);
1594    Align = Target->getPointerAlign(AS);
1595    break;
1596  }
1597  case Type::MemberPointer: {
1598    const MemberPointerType *MPT = cast<MemberPointerType>(T);
1599    llvm::tie(Width, Align) = ABI->getMemberPointerWidthAndAlign(MPT);
1600    break;
1601  }
1602  case Type::Complex: {
1603    // Complex types have the same alignment as their elements, but twice the
1604    // size.
1605    std::pair<uint64_t, unsigned> EltInfo =
1606      getTypeInfo(cast<ComplexType>(T)->getElementType());
1607    Width = EltInfo.first*2;
1608    Align = EltInfo.second;
1609    break;
1610  }
1611  case Type::ObjCObject:
1612    return getTypeInfo(cast<ObjCObjectType>(T)->getBaseType().getTypePtr());
1613  case Type::Decayed:
1614    return getTypeInfo(cast<DecayedType>(T)->getDecayedType().getTypePtr());
1615  case Type::ObjCInterface: {
1616    const ObjCInterfaceType *ObjCI = cast<ObjCInterfaceType>(T);
1617    const ASTRecordLayout &Layout = getASTObjCInterfaceLayout(ObjCI->getDecl());
1618    Width = toBits(Layout.getSize());
1619    Align = toBits(Layout.getAlignment());
1620    break;
1621  }
1622  case Type::Record:
1623  case Type::Enum: {
1624    const TagType *TT = cast<TagType>(T);
1625
1626    if (TT->getDecl()->isInvalidDecl()) {
1627      Width = 8;
1628      Align = 8;
1629      break;
1630    }
1631
1632    if (const EnumType *ET = dyn_cast<EnumType>(TT))
1633      return getTypeInfo(ET->getDecl()->getIntegerType());
1634
1635    const RecordType *RT = cast<RecordType>(TT);
1636    const ASTRecordLayout &Layout = getASTRecordLayout(RT->getDecl());
1637    Width = toBits(Layout.getSize());
1638    Align = toBits(Layout.getAlignment());
1639    break;
1640  }
1641
1642  case Type::SubstTemplateTypeParm:
1643    return getTypeInfo(cast<SubstTemplateTypeParmType>(T)->
1644                       getReplacementType().getTypePtr());
1645
1646  case Type::Auto: {
1647    const AutoType *A = cast<AutoType>(T);
1648    assert(!A->getDeducedType().isNull() &&
1649           "cannot request the size of an undeduced or dependent auto type");
1650    return getTypeInfo(A->getDeducedType().getTypePtr());
1651  }
1652
1653  case Type::Paren:
1654    return getTypeInfo(cast<ParenType>(T)->getInnerType().getTypePtr());
1655
1656  case Type::Typedef: {
1657    const TypedefNameDecl *Typedef = cast<TypedefType>(T)->getDecl();
1658    std::pair<uint64_t, unsigned> Info
1659      = getTypeInfo(Typedef->getUnderlyingType().getTypePtr());
1660    // If the typedef has an aligned attribute on it, it overrides any computed
1661    // alignment we have.  This violates the GCC documentation (which says that
1662    // attribute(aligned) can only round up) but matches its implementation.
1663    if (unsigned AttrAlign = Typedef->getMaxAlignment())
1664      Align = AttrAlign;
1665    else
1666      Align = Info.second;
1667    Width = Info.first;
1668    break;
1669  }
1670
1671  case Type::Elaborated:
1672    return getTypeInfo(cast<ElaboratedType>(T)->getNamedType().getTypePtr());
1673
1674  case Type::Attributed:
1675    return getTypeInfo(
1676                  cast<AttributedType>(T)->getEquivalentType().getTypePtr());
1677
1678  case Type::Atomic: {
1679    // Start with the base type information.
1680    std::pair<uint64_t, unsigned> Info
1681      = getTypeInfo(cast<AtomicType>(T)->getValueType());
1682    Width = Info.first;
1683    Align = Info.second;
1684
1685    // If the size of the type doesn't exceed the platform's max
1686    // atomic promotion width, make the size and alignment more
1687    // favorable to atomic operations:
1688    if (Width != 0 && Width <= Target->getMaxAtomicPromoteWidth()) {
1689      // Round the size up to a power of 2.
1690      if (!llvm::isPowerOf2_64(Width))
1691        Width = llvm::NextPowerOf2(Width);
1692
1693      // Set the alignment equal to the size.
1694      Align = static_cast<unsigned>(Width);
1695    }
1696  }
1697
1698  }
1699
1700  assert(llvm::isPowerOf2_32(Align) && "Alignment must be power of 2");
1701  return std::make_pair(Width, Align);
1702}
1703
1704/// toCharUnitsFromBits - Convert a size in bits to a size in characters.
1705CharUnits ASTContext::toCharUnitsFromBits(int64_t BitSize) const {
1706  return CharUnits::fromQuantity(BitSize / getCharWidth());
1707}
1708
1709/// toBits - Convert a size in characters to a size in characters.
1710int64_t ASTContext::toBits(CharUnits CharSize) const {
1711  return CharSize.getQuantity() * getCharWidth();
1712}
1713
1714/// getTypeSizeInChars - Return the size of the specified type, in characters.
1715/// This method does not work on incomplete types.
1716CharUnits ASTContext::getTypeSizeInChars(QualType T) const {
1717  return getTypeInfoInChars(T).first;
1718}
1719CharUnits ASTContext::getTypeSizeInChars(const Type *T) const {
1720  return getTypeInfoInChars(T).first;
1721}
1722
1723/// getTypeAlignInChars - Return the ABI-specified alignment of a type, in
1724/// characters. This method does not work on incomplete types.
1725CharUnits ASTContext::getTypeAlignInChars(QualType T) const {
1726  return toCharUnitsFromBits(getTypeAlign(T));
1727}
1728CharUnits ASTContext::getTypeAlignInChars(const Type *T) const {
1729  return toCharUnitsFromBits(getTypeAlign(T));
1730}
1731
1732/// getPreferredTypeAlign - Return the "preferred" alignment of the specified
1733/// type for the current target in bits.  This can be different than the ABI
1734/// alignment in cases where it is beneficial for performance to overalign
1735/// a data type.
1736unsigned ASTContext::getPreferredTypeAlign(const Type *T) const {
1737  unsigned ABIAlign = getTypeAlign(T);
1738
1739  // Double and long long should be naturally aligned if possible.
1740  if (const ComplexType* CT = T->getAs<ComplexType>())
1741    T = CT->getElementType().getTypePtr();
1742  if (T->isSpecificBuiltinType(BuiltinType::Double) ||
1743      T->isSpecificBuiltinType(BuiltinType::LongLong) ||
1744      T->isSpecificBuiltinType(BuiltinType::ULongLong))
1745    return std::max(ABIAlign, (unsigned)getTypeSize(T));
1746
1747  return ABIAlign;
1748}
1749
1750/// getAlignOfGlobalVar - Return the alignment in bits that should be given
1751/// to a global variable of the specified type.
1752unsigned ASTContext::getAlignOfGlobalVar(QualType T) const {
1753  return std::max(getTypeAlign(T), getTargetInfo().getMinGlobalAlign());
1754}
1755
1756/// getAlignOfGlobalVarInChars - Return the alignment in characters that
1757/// should be given to a global variable of the specified type.
1758CharUnits ASTContext::getAlignOfGlobalVarInChars(QualType T) const {
1759  return toCharUnitsFromBits(getAlignOfGlobalVar(T));
1760}
1761
1762/// DeepCollectObjCIvars -
1763/// This routine first collects all declared, but not synthesized, ivars in
1764/// super class and then collects all ivars, including those synthesized for
1765/// current class. This routine is used for implementation of current class
1766/// when all ivars, declared and synthesized are known.
1767///
1768void ASTContext::DeepCollectObjCIvars(const ObjCInterfaceDecl *OI,
1769                                      bool leafClass,
1770                            SmallVectorImpl<const ObjCIvarDecl*> &Ivars) const {
1771  if (const ObjCInterfaceDecl *SuperClass = OI->getSuperClass())
1772    DeepCollectObjCIvars(SuperClass, false, Ivars);
1773  if (!leafClass) {
1774    for (ObjCInterfaceDecl::ivar_iterator I = OI->ivar_begin(),
1775         E = OI->ivar_end(); I != E; ++I)
1776      Ivars.push_back(*I);
1777  } else {
1778    ObjCInterfaceDecl *IDecl = const_cast<ObjCInterfaceDecl *>(OI);
1779    for (const ObjCIvarDecl *Iv = IDecl->all_declared_ivar_begin(); Iv;
1780         Iv= Iv->getNextIvar())
1781      Ivars.push_back(Iv);
1782  }
1783}
1784
1785/// CollectInheritedProtocols - Collect all protocols in current class and
1786/// those inherited by it.
1787void ASTContext::CollectInheritedProtocols(const Decl *CDecl,
1788                          llvm::SmallPtrSet<ObjCProtocolDecl*, 8> &Protocols) {
1789  if (const ObjCInterfaceDecl *OI = dyn_cast<ObjCInterfaceDecl>(CDecl)) {
1790    // We can use protocol_iterator here instead of
1791    // all_referenced_protocol_iterator since we are walking all categories.
1792    for (ObjCInterfaceDecl::all_protocol_iterator P = OI->all_referenced_protocol_begin(),
1793         PE = OI->all_referenced_protocol_end(); P != PE; ++P) {
1794      ObjCProtocolDecl *Proto = (*P);
1795      Protocols.insert(Proto->getCanonicalDecl());
1796      for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
1797           PE = Proto->protocol_end(); P != PE; ++P) {
1798        Protocols.insert((*P)->getCanonicalDecl());
1799        CollectInheritedProtocols(*P, Protocols);
1800      }
1801    }
1802
1803    // Categories of this Interface.
1804    for (ObjCInterfaceDecl::visible_categories_iterator
1805           Cat = OI->visible_categories_begin(),
1806           CatEnd = OI->visible_categories_end();
1807         Cat != CatEnd; ++Cat) {
1808      CollectInheritedProtocols(*Cat, Protocols);
1809    }
1810
1811    if (ObjCInterfaceDecl *SD = OI->getSuperClass())
1812      while (SD) {
1813        CollectInheritedProtocols(SD, Protocols);
1814        SD = SD->getSuperClass();
1815      }
1816  } else if (const ObjCCategoryDecl *OC = dyn_cast<ObjCCategoryDecl>(CDecl)) {
1817    for (ObjCCategoryDecl::protocol_iterator P = OC->protocol_begin(),
1818         PE = OC->protocol_end(); P != PE; ++P) {
1819      ObjCProtocolDecl *Proto = (*P);
1820      Protocols.insert(Proto->getCanonicalDecl());
1821      for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
1822           PE = Proto->protocol_end(); P != PE; ++P)
1823        CollectInheritedProtocols(*P, Protocols);
1824    }
1825  } else if (const ObjCProtocolDecl *OP = dyn_cast<ObjCProtocolDecl>(CDecl)) {
1826    for (ObjCProtocolDecl::protocol_iterator P = OP->protocol_begin(),
1827         PE = OP->protocol_end(); P != PE; ++P) {
1828      ObjCProtocolDecl *Proto = (*P);
1829      Protocols.insert(Proto->getCanonicalDecl());
1830      for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
1831           PE = Proto->protocol_end(); P != PE; ++P)
1832        CollectInheritedProtocols(*P, Protocols);
1833    }
1834  }
1835}
1836
1837unsigned ASTContext::CountNonClassIvars(const ObjCInterfaceDecl *OI) const {
1838  unsigned count = 0;
1839  // Count ivars declared in class extension.
1840  for (ObjCInterfaceDecl::known_extensions_iterator
1841         Ext = OI->known_extensions_begin(),
1842         ExtEnd = OI->known_extensions_end();
1843       Ext != ExtEnd; ++Ext) {
1844    count += Ext->ivar_size();
1845  }
1846
1847  // Count ivar defined in this class's implementation.  This
1848  // includes synthesized ivars.
1849  if (ObjCImplementationDecl *ImplDecl = OI->getImplementation())
1850    count += ImplDecl->ivar_size();
1851
1852  return count;
1853}
1854
1855bool ASTContext::isSentinelNullExpr(const Expr *E) {
1856  if (!E)
1857    return false;
1858
1859  // nullptr_t is always treated as null.
1860  if (E->getType()->isNullPtrType()) return true;
1861
1862  if (E->getType()->isAnyPointerType() &&
1863      E->IgnoreParenCasts()->isNullPointerConstant(*this,
1864                                                Expr::NPC_ValueDependentIsNull))
1865    return true;
1866
1867  // Unfortunately, __null has type 'int'.
1868  if (isa<GNUNullExpr>(E)) return true;
1869
1870  return false;
1871}
1872
1873/// \brief Get the implementation of ObjCInterfaceDecl,or NULL if none exists.
1874ObjCImplementationDecl *ASTContext::getObjCImplementation(ObjCInterfaceDecl *D) {
1875  llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
1876    I = ObjCImpls.find(D);
1877  if (I != ObjCImpls.end())
1878    return cast<ObjCImplementationDecl>(I->second);
1879  return 0;
1880}
1881/// \brief Get the implementation of ObjCCategoryDecl, or NULL if none exists.
1882ObjCCategoryImplDecl *ASTContext::getObjCImplementation(ObjCCategoryDecl *D) {
1883  llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
1884    I = ObjCImpls.find(D);
1885  if (I != ObjCImpls.end())
1886    return cast<ObjCCategoryImplDecl>(I->second);
1887  return 0;
1888}
1889
1890/// \brief Set the implementation of ObjCInterfaceDecl.
1891void ASTContext::setObjCImplementation(ObjCInterfaceDecl *IFaceD,
1892                           ObjCImplementationDecl *ImplD) {
1893  assert(IFaceD && ImplD && "Passed null params");
1894  ObjCImpls[IFaceD] = ImplD;
1895}
1896/// \brief Set the implementation of ObjCCategoryDecl.
1897void ASTContext::setObjCImplementation(ObjCCategoryDecl *CatD,
1898                           ObjCCategoryImplDecl *ImplD) {
1899  assert(CatD && ImplD && "Passed null params");
1900  ObjCImpls[CatD] = ImplD;
1901}
1902
1903const ObjCInterfaceDecl *ASTContext::getObjContainingInterface(
1904                                              const NamedDecl *ND) const {
1905  if (const ObjCInterfaceDecl *ID =
1906          dyn_cast<ObjCInterfaceDecl>(ND->getDeclContext()))
1907    return ID;
1908  if (const ObjCCategoryDecl *CD =
1909          dyn_cast<ObjCCategoryDecl>(ND->getDeclContext()))
1910    return CD->getClassInterface();
1911  if (const ObjCImplDecl *IMD =
1912          dyn_cast<ObjCImplDecl>(ND->getDeclContext()))
1913    return IMD->getClassInterface();
1914
1915  return 0;
1916}
1917
1918/// \brief Get the copy initialization expression of VarDecl,or NULL if
1919/// none exists.
1920Expr *ASTContext::getBlockVarCopyInits(const VarDecl*VD) {
1921  assert(VD && "Passed null params");
1922  assert(VD->hasAttr<BlocksAttr>() &&
1923         "getBlockVarCopyInits - not __block var");
1924  llvm::DenseMap<const VarDecl*, Expr*>::iterator
1925    I = BlockVarCopyInits.find(VD);
1926  return (I != BlockVarCopyInits.end()) ? cast<Expr>(I->second) : 0;
1927}
1928
1929/// \brief Set the copy inialization expression of a block var decl.
1930void ASTContext::setBlockVarCopyInits(VarDecl*VD, Expr* Init) {
1931  assert(VD && Init && "Passed null params");
1932  assert(VD->hasAttr<BlocksAttr>() &&
1933         "setBlockVarCopyInits - not __block var");
1934  BlockVarCopyInits[VD] = Init;
1935}
1936
1937TypeSourceInfo *ASTContext::CreateTypeSourceInfo(QualType T,
1938                                                 unsigned DataSize) const {
1939  if (!DataSize)
1940    DataSize = TypeLoc::getFullDataSizeForType(T);
1941  else
1942    assert(DataSize == TypeLoc::getFullDataSizeForType(T) &&
1943           "incorrect data size provided to CreateTypeSourceInfo!");
1944
1945  TypeSourceInfo *TInfo =
1946    (TypeSourceInfo*)BumpAlloc.Allocate(sizeof(TypeSourceInfo) + DataSize, 8);
1947  new (TInfo) TypeSourceInfo(T);
1948  return TInfo;
1949}
1950
1951TypeSourceInfo *ASTContext::getTrivialTypeSourceInfo(QualType T,
1952                                                     SourceLocation L) const {
1953  TypeSourceInfo *DI = CreateTypeSourceInfo(T);
1954  DI->getTypeLoc().initialize(const_cast<ASTContext &>(*this), L);
1955  return DI;
1956}
1957
1958const ASTRecordLayout &
1959ASTContext::getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D) const {
1960  return getObjCLayout(D, 0);
1961}
1962
1963const ASTRecordLayout &
1964ASTContext::getASTObjCImplementationLayout(
1965                                        const ObjCImplementationDecl *D) const {
1966  return getObjCLayout(D->getClassInterface(), D);
1967}
1968
1969//===----------------------------------------------------------------------===//
1970//                   Type creation/memoization methods
1971//===----------------------------------------------------------------------===//
1972
1973QualType
1974ASTContext::getExtQualType(const Type *baseType, Qualifiers quals) const {
1975  unsigned fastQuals = quals.getFastQualifiers();
1976  quals.removeFastQualifiers();
1977
1978  // Check if we've already instantiated this type.
1979  llvm::FoldingSetNodeID ID;
1980  ExtQuals::Profile(ID, baseType, quals);
1981  void *insertPos = 0;
1982  if (ExtQuals *eq = ExtQualNodes.FindNodeOrInsertPos(ID, insertPos)) {
1983    assert(eq->getQualifiers() == quals);
1984    return QualType(eq, fastQuals);
1985  }
1986
1987  // If the base type is not canonical, make the appropriate canonical type.
1988  QualType canon;
1989  if (!baseType->isCanonicalUnqualified()) {
1990    SplitQualType canonSplit = baseType->getCanonicalTypeInternal().split();
1991    canonSplit.Quals.addConsistentQualifiers(quals);
1992    canon = getExtQualType(canonSplit.Ty, canonSplit.Quals);
1993
1994    // Re-find the insert position.
1995    (void) ExtQualNodes.FindNodeOrInsertPos(ID, insertPos);
1996  }
1997
1998  ExtQuals *eq = new (*this, TypeAlignment) ExtQuals(baseType, canon, quals);
1999  ExtQualNodes.InsertNode(eq, insertPos);
2000  return QualType(eq, fastQuals);
2001}
2002
2003QualType
2004ASTContext::getAddrSpaceQualType(QualType T, unsigned AddressSpace) const {
2005  QualType CanT = getCanonicalType(T);
2006  if (CanT.getAddressSpace() == AddressSpace)
2007    return T;
2008
2009  // If we are composing extended qualifiers together, merge together
2010  // into one ExtQuals node.
2011  QualifierCollector Quals;
2012  const Type *TypeNode = Quals.strip(T);
2013
2014  // If this type already has an address space specified, it cannot get
2015  // another one.
2016  assert(!Quals.hasAddressSpace() &&
2017         "Type cannot be in multiple addr spaces!");
2018  Quals.addAddressSpace(AddressSpace);
2019
2020  return getExtQualType(TypeNode, Quals);
2021}
2022
2023QualType ASTContext::getObjCGCQualType(QualType T,
2024                                       Qualifiers::GC GCAttr) const {
2025  QualType CanT = getCanonicalType(T);
2026  if (CanT.getObjCGCAttr() == GCAttr)
2027    return T;
2028
2029  if (const PointerType *ptr = T->getAs<PointerType>()) {
2030    QualType Pointee = ptr->getPointeeType();
2031    if (Pointee->isAnyPointerType()) {
2032      QualType ResultType = getObjCGCQualType(Pointee, GCAttr);
2033      return getPointerType(ResultType);
2034    }
2035  }
2036
2037  // If we are composing extended qualifiers together, merge together
2038  // into one ExtQuals node.
2039  QualifierCollector Quals;
2040  const Type *TypeNode = Quals.strip(T);
2041
2042  // If this type already has an ObjCGC specified, it cannot get
2043  // another one.
2044  assert(!Quals.hasObjCGCAttr() &&
2045         "Type cannot have multiple ObjCGCs!");
2046  Quals.addObjCGCAttr(GCAttr);
2047
2048  return getExtQualType(TypeNode, Quals);
2049}
2050
2051const FunctionType *ASTContext::adjustFunctionType(const FunctionType *T,
2052                                                   FunctionType::ExtInfo Info) {
2053  if (T->getExtInfo() == Info)
2054    return T;
2055
2056  QualType Result;
2057  if (const FunctionNoProtoType *FNPT = dyn_cast<FunctionNoProtoType>(T)) {
2058    Result = getFunctionNoProtoType(FNPT->getResultType(), Info);
2059  } else {
2060    const FunctionProtoType *FPT = cast<FunctionProtoType>(T);
2061    FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
2062    EPI.ExtInfo = Info;
2063    Result = getFunctionType(FPT->getResultType(), FPT->getArgTypes(), EPI);
2064  }
2065
2066  return cast<FunctionType>(Result.getTypePtr());
2067}
2068
2069void ASTContext::adjustDeducedFunctionResultType(FunctionDecl *FD,
2070                                                 QualType ResultType) {
2071  FD = FD->getMostRecentDecl();
2072  while (true) {
2073    const FunctionProtoType *FPT = FD->getType()->castAs<FunctionProtoType>();
2074    FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
2075    FD->setType(getFunctionType(ResultType, FPT->getArgTypes(), EPI));
2076    if (FunctionDecl *Next = FD->getPreviousDecl())
2077      FD = Next;
2078    else
2079      break;
2080  }
2081  if (ASTMutationListener *L = getASTMutationListener())
2082    L->DeducedReturnType(FD, ResultType);
2083}
2084
2085/// getComplexType - Return the uniqued reference to the type for a complex
2086/// number with the specified element type.
2087QualType ASTContext::getComplexType(QualType T) const {
2088  // Unique pointers, to guarantee there is only one pointer of a particular
2089  // structure.
2090  llvm::FoldingSetNodeID ID;
2091  ComplexType::Profile(ID, T);
2092
2093  void *InsertPos = 0;
2094  if (ComplexType *CT = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos))
2095    return QualType(CT, 0);
2096
2097  // If the pointee type isn't canonical, this won't be a canonical type either,
2098  // so fill in the canonical type field.
2099  QualType Canonical;
2100  if (!T.isCanonical()) {
2101    Canonical = getComplexType(getCanonicalType(T));
2102
2103    // Get the new insert position for the node we care about.
2104    ComplexType *NewIP = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos);
2105    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2106  }
2107  ComplexType *New = new (*this, TypeAlignment) ComplexType(T, Canonical);
2108  Types.push_back(New);
2109  ComplexTypes.InsertNode(New, InsertPos);
2110  return QualType(New, 0);
2111}
2112
2113/// getPointerType - Return the uniqued reference to the type for a pointer to
2114/// the specified type.
2115QualType ASTContext::getPointerType(QualType T) const {
2116  // Unique pointers, to guarantee there is only one pointer of a particular
2117  // structure.
2118  llvm::FoldingSetNodeID ID;
2119  PointerType::Profile(ID, T);
2120
2121  void *InsertPos = 0;
2122  if (PointerType *PT = PointerTypes.FindNodeOrInsertPos(ID, InsertPos))
2123    return QualType(PT, 0);
2124
2125  // If the pointee type isn't canonical, this won't be a canonical type either,
2126  // so fill in the canonical type field.
2127  QualType Canonical;
2128  if (!T.isCanonical()) {
2129    Canonical = getPointerType(getCanonicalType(T));
2130
2131    // Get the new insert position for the node we care about.
2132    PointerType *NewIP = PointerTypes.FindNodeOrInsertPos(ID, InsertPos);
2133    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2134  }
2135  PointerType *New = new (*this, TypeAlignment) PointerType(T, Canonical);
2136  Types.push_back(New);
2137  PointerTypes.InsertNode(New, InsertPos);
2138  return QualType(New, 0);
2139}
2140
2141QualType ASTContext::getDecayedType(QualType T) const {
2142  assert((T->isArrayType() || T->isFunctionType()) && "T does not decay");
2143
2144  llvm::FoldingSetNodeID ID;
2145  DecayedType::Profile(ID, T);
2146  void *InsertPos = 0;
2147  if (DecayedType *DT = DecayedTypes.FindNodeOrInsertPos(ID, InsertPos))
2148    return QualType(DT, 0);
2149
2150  QualType Decayed;
2151
2152  // C99 6.7.5.3p7:
2153  //   A declaration of a parameter as "array of type" shall be
2154  //   adjusted to "qualified pointer to type", where the type
2155  //   qualifiers (if any) are those specified within the [ and ] of
2156  //   the array type derivation.
2157  if (T->isArrayType())
2158    Decayed = getArrayDecayedType(T);
2159
2160  // C99 6.7.5.3p8:
2161  //   A declaration of a parameter as "function returning type"
2162  //   shall be adjusted to "pointer to function returning type", as
2163  //   in 6.3.2.1.
2164  if (T->isFunctionType())
2165    Decayed = getPointerType(T);
2166
2167  QualType Canonical = getCanonicalType(Decayed);
2168
2169  // Get the new insert position for the node we care about.
2170  DecayedType *NewIP = DecayedTypes.FindNodeOrInsertPos(ID, InsertPos);
2171  assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2172
2173  DecayedType *New =
2174      new (*this, TypeAlignment) DecayedType(T, Decayed, Canonical);
2175  Types.push_back(New);
2176  DecayedTypes.InsertNode(New, InsertPos);
2177  return QualType(New, 0);
2178}
2179
2180/// getBlockPointerType - Return the uniqued reference to the type for
2181/// a pointer to the specified block.
2182QualType ASTContext::getBlockPointerType(QualType T) const {
2183  assert(T->isFunctionType() && "block of function types only");
2184  // Unique pointers, to guarantee there is only one block of a particular
2185  // structure.
2186  llvm::FoldingSetNodeID ID;
2187  BlockPointerType::Profile(ID, T);
2188
2189  void *InsertPos = 0;
2190  if (BlockPointerType *PT =
2191        BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
2192    return QualType(PT, 0);
2193
2194  // If the block pointee type isn't canonical, this won't be a canonical
2195  // type either so fill in the canonical type field.
2196  QualType Canonical;
2197  if (!T.isCanonical()) {
2198    Canonical = getBlockPointerType(getCanonicalType(T));
2199
2200    // Get the new insert position for the node we care about.
2201    BlockPointerType *NewIP =
2202      BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
2203    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2204  }
2205  BlockPointerType *New
2206    = new (*this, TypeAlignment) BlockPointerType(T, Canonical);
2207  Types.push_back(New);
2208  BlockPointerTypes.InsertNode(New, InsertPos);
2209  return QualType(New, 0);
2210}
2211
2212/// getLValueReferenceType - Return the uniqued reference to the type for an
2213/// lvalue reference to the specified type.
2214QualType
2215ASTContext::getLValueReferenceType(QualType T, bool SpelledAsLValue) const {
2216  assert(getCanonicalType(T) != OverloadTy &&
2217         "Unresolved overloaded function type");
2218
2219  // Unique pointers, to guarantee there is only one pointer of a particular
2220  // structure.
2221  llvm::FoldingSetNodeID ID;
2222  ReferenceType::Profile(ID, T, SpelledAsLValue);
2223
2224  void *InsertPos = 0;
2225  if (LValueReferenceType *RT =
2226        LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
2227    return QualType(RT, 0);
2228
2229  const ReferenceType *InnerRef = T->getAs<ReferenceType>();
2230
2231  // If the referencee type isn't canonical, this won't be a canonical type
2232  // either, so fill in the canonical type field.
2233  QualType Canonical;
2234  if (!SpelledAsLValue || InnerRef || !T.isCanonical()) {
2235    QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
2236    Canonical = getLValueReferenceType(getCanonicalType(PointeeType));
2237
2238    // Get the new insert position for the node we care about.
2239    LValueReferenceType *NewIP =
2240      LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
2241    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2242  }
2243
2244  LValueReferenceType *New
2245    = new (*this, TypeAlignment) LValueReferenceType(T, Canonical,
2246                                                     SpelledAsLValue);
2247  Types.push_back(New);
2248  LValueReferenceTypes.InsertNode(New, InsertPos);
2249
2250  return QualType(New, 0);
2251}
2252
2253/// getRValueReferenceType - Return the uniqued reference to the type for an
2254/// rvalue reference to the specified type.
2255QualType ASTContext::getRValueReferenceType(QualType T) const {
2256  // Unique pointers, to guarantee there is only one pointer of a particular
2257  // structure.
2258  llvm::FoldingSetNodeID ID;
2259  ReferenceType::Profile(ID, T, false);
2260
2261  void *InsertPos = 0;
2262  if (RValueReferenceType *RT =
2263        RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
2264    return QualType(RT, 0);
2265
2266  const ReferenceType *InnerRef = T->getAs<ReferenceType>();
2267
2268  // If the referencee type isn't canonical, this won't be a canonical type
2269  // either, so fill in the canonical type field.
2270  QualType Canonical;
2271  if (InnerRef || !T.isCanonical()) {
2272    QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
2273    Canonical = getRValueReferenceType(getCanonicalType(PointeeType));
2274
2275    // Get the new insert position for the node we care about.
2276    RValueReferenceType *NewIP =
2277      RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
2278    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2279  }
2280
2281  RValueReferenceType *New
2282    = new (*this, TypeAlignment) RValueReferenceType(T, Canonical);
2283  Types.push_back(New);
2284  RValueReferenceTypes.InsertNode(New, InsertPos);
2285  return QualType(New, 0);
2286}
2287
2288/// getMemberPointerType - Return the uniqued reference to the type for a
2289/// member pointer to the specified type, in the specified class.
2290QualType ASTContext::getMemberPointerType(QualType T, const Type *Cls) const {
2291  // Unique pointers, to guarantee there is only one pointer of a particular
2292  // structure.
2293  llvm::FoldingSetNodeID ID;
2294  MemberPointerType::Profile(ID, T, Cls);
2295
2296  void *InsertPos = 0;
2297  if (MemberPointerType *PT =
2298      MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
2299    return QualType(PT, 0);
2300
2301  // If the pointee or class type isn't canonical, this won't be a canonical
2302  // type either, so fill in the canonical type field.
2303  QualType Canonical;
2304  if (!T.isCanonical() || !Cls->isCanonicalUnqualified()) {
2305    Canonical = getMemberPointerType(getCanonicalType(T),getCanonicalType(Cls));
2306
2307    // Get the new insert position for the node we care about.
2308    MemberPointerType *NewIP =
2309      MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
2310    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2311  }
2312  MemberPointerType *New
2313    = new (*this, TypeAlignment) MemberPointerType(T, Cls, Canonical);
2314  Types.push_back(New);
2315  MemberPointerTypes.InsertNode(New, InsertPos);
2316  return QualType(New, 0);
2317}
2318
2319/// getConstantArrayType - Return the unique reference to the type for an
2320/// array of the specified element type.
2321QualType ASTContext::getConstantArrayType(QualType EltTy,
2322                                          const llvm::APInt &ArySizeIn,
2323                                          ArrayType::ArraySizeModifier ASM,
2324                                          unsigned IndexTypeQuals) const {
2325  assert((EltTy->isDependentType() ||
2326          EltTy->isIncompleteType() || EltTy->isConstantSizeType()) &&
2327         "Constant array of VLAs is illegal!");
2328
2329  // Convert the array size into a canonical width matching the pointer size for
2330  // the target.
2331  llvm::APInt ArySize(ArySizeIn);
2332  ArySize =
2333    ArySize.zextOrTrunc(Target->getPointerWidth(getTargetAddressSpace(EltTy)));
2334
2335  llvm::FoldingSetNodeID ID;
2336  ConstantArrayType::Profile(ID, EltTy, ArySize, ASM, IndexTypeQuals);
2337
2338  void *InsertPos = 0;
2339  if (ConstantArrayType *ATP =
2340      ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
2341    return QualType(ATP, 0);
2342
2343  // If the element type isn't canonical or has qualifiers, this won't
2344  // be a canonical type either, so fill in the canonical type field.
2345  QualType Canon;
2346  if (!EltTy.isCanonical() || EltTy.hasLocalQualifiers()) {
2347    SplitQualType canonSplit = getCanonicalType(EltTy).split();
2348    Canon = getConstantArrayType(QualType(canonSplit.Ty, 0), ArySize,
2349                                 ASM, IndexTypeQuals);
2350    Canon = getQualifiedType(Canon, canonSplit.Quals);
2351
2352    // Get the new insert position for the node we care about.
2353    ConstantArrayType *NewIP =
2354      ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
2355    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2356  }
2357
2358  ConstantArrayType *New = new(*this,TypeAlignment)
2359    ConstantArrayType(EltTy, Canon, ArySize, ASM, IndexTypeQuals);
2360  ConstantArrayTypes.InsertNode(New, InsertPos);
2361  Types.push_back(New);
2362  return QualType(New, 0);
2363}
2364
2365/// getVariableArrayDecayedType - Turns the given type, which may be
2366/// variably-modified, into the corresponding type with all the known
2367/// sizes replaced with [*].
2368QualType ASTContext::getVariableArrayDecayedType(QualType type) const {
2369  // Vastly most common case.
2370  if (!type->isVariablyModifiedType()) return type;
2371
2372  QualType result;
2373
2374  SplitQualType split = type.getSplitDesugaredType();
2375  const Type *ty = split.Ty;
2376  switch (ty->getTypeClass()) {
2377#define TYPE(Class, Base)
2378#define ABSTRACT_TYPE(Class, Base)
2379#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
2380#include "clang/AST/TypeNodes.def"
2381    llvm_unreachable("didn't desugar past all non-canonical types?");
2382
2383  // These types should never be variably-modified.
2384  case Type::Builtin:
2385  case Type::Complex:
2386  case Type::Vector:
2387  case Type::ExtVector:
2388  case Type::DependentSizedExtVector:
2389  case Type::ObjCObject:
2390  case Type::ObjCInterface:
2391  case Type::ObjCObjectPointer:
2392  case Type::Record:
2393  case Type::Enum:
2394  case Type::UnresolvedUsing:
2395  case Type::TypeOfExpr:
2396  case Type::TypeOf:
2397  case Type::Decltype:
2398  case Type::UnaryTransform:
2399  case Type::DependentName:
2400  case Type::InjectedClassName:
2401  case Type::TemplateSpecialization:
2402  case Type::DependentTemplateSpecialization:
2403  case Type::TemplateTypeParm:
2404  case Type::SubstTemplateTypeParmPack:
2405  case Type::Auto:
2406  case Type::PackExpansion:
2407    llvm_unreachable("type should never be variably-modified");
2408
2409  // These types can be variably-modified but should never need to
2410  // further decay.
2411  case Type::FunctionNoProto:
2412  case Type::FunctionProto:
2413  case Type::BlockPointer:
2414  case Type::MemberPointer:
2415    return type;
2416
2417  // These types can be variably-modified.  All these modifications
2418  // preserve structure except as noted by comments.
2419  // TODO: if we ever care about optimizing VLAs, there are no-op
2420  // optimizations available here.
2421  case Type::Pointer:
2422    result = getPointerType(getVariableArrayDecayedType(
2423                              cast<PointerType>(ty)->getPointeeType()));
2424    break;
2425
2426  case Type::LValueReference: {
2427    const LValueReferenceType *lv = cast<LValueReferenceType>(ty);
2428    result = getLValueReferenceType(
2429                 getVariableArrayDecayedType(lv->getPointeeType()),
2430                                    lv->isSpelledAsLValue());
2431    break;
2432  }
2433
2434  case Type::RValueReference: {
2435    const RValueReferenceType *lv = cast<RValueReferenceType>(ty);
2436    result = getRValueReferenceType(
2437                 getVariableArrayDecayedType(lv->getPointeeType()));
2438    break;
2439  }
2440
2441  case Type::Atomic: {
2442    const AtomicType *at = cast<AtomicType>(ty);
2443    result = getAtomicType(getVariableArrayDecayedType(at->getValueType()));
2444    break;
2445  }
2446
2447  case Type::ConstantArray: {
2448    const ConstantArrayType *cat = cast<ConstantArrayType>(ty);
2449    result = getConstantArrayType(
2450                 getVariableArrayDecayedType(cat->getElementType()),
2451                                  cat->getSize(),
2452                                  cat->getSizeModifier(),
2453                                  cat->getIndexTypeCVRQualifiers());
2454    break;
2455  }
2456
2457  case Type::DependentSizedArray: {
2458    const DependentSizedArrayType *dat = cast<DependentSizedArrayType>(ty);
2459    result = getDependentSizedArrayType(
2460                 getVariableArrayDecayedType(dat->getElementType()),
2461                                        dat->getSizeExpr(),
2462                                        dat->getSizeModifier(),
2463                                        dat->getIndexTypeCVRQualifiers(),
2464                                        dat->getBracketsRange());
2465    break;
2466  }
2467
2468  // Turn incomplete types into [*] types.
2469  case Type::IncompleteArray: {
2470    const IncompleteArrayType *iat = cast<IncompleteArrayType>(ty);
2471    result = getVariableArrayType(
2472                 getVariableArrayDecayedType(iat->getElementType()),
2473                                  /*size*/ 0,
2474                                  ArrayType::Normal,
2475                                  iat->getIndexTypeCVRQualifiers(),
2476                                  SourceRange());
2477    break;
2478  }
2479
2480  // Turn VLA types into [*] types.
2481  case Type::VariableArray: {
2482    const VariableArrayType *vat = cast<VariableArrayType>(ty);
2483    result = getVariableArrayType(
2484                 getVariableArrayDecayedType(vat->getElementType()),
2485                                  /*size*/ 0,
2486                                  ArrayType::Star,
2487                                  vat->getIndexTypeCVRQualifiers(),
2488                                  vat->getBracketsRange());
2489    break;
2490  }
2491  }
2492
2493  // Apply the top-level qualifiers from the original.
2494  return getQualifiedType(result, split.Quals);
2495}
2496
2497/// getVariableArrayType - Returns a non-unique reference to the type for a
2498/// variable array of the specified element type.
2499QualType ASTContext::getVariableArrayType(QualType EltTy,
2500                                          Expr *NumElts,
2501                                          ArrayType::ArraySizeModifier ASM,
2502                                          unsigned IndexTypeQuals,
2503                                          SourceRange Brackets) const {
2504  // Since we don't unique expressions, it isn't possible to unique VLA's
2505  // that have an expression provided for their size.
2506  QualType Canon;
2507
2508  // Be sure to pull qualifiers off the element type.
2509  if (!EltTy.isCanonical() || EltTy.hasLocalQualifiers()) {
2510    SplitQualType canonSplit = getCanonicalType(EltTy).split();
2511    Canon = getVariableArrayType(QualType(canonSplit.Ty, 0), NumElts, ASM,
2512                                 IndexTypeQuals, Brackets);
2513    Canon = getQualifiedType(Canon, canonSplit.Quals);
2514  }
2515
2516  VariableArrayType *New = new(*this, TypeAlignment)
2517    VariableArrayType(EltTy, Canon, NumElts, ASM, IndexTypeQuals, Brackets);
2518
2519  VariableArrayTypes.push_back(New);
2520  Types.push_back(New);
2521  return QualType(New, 0);
2522}
2523
2524/// getDependentSizedArrayType - Returns a non-unique reference to
2525/// the type for a dependently-sized array of the specified element
2526/// type.
2527QualType ASTContext::getDependentSizedArrayType(QualType elementType,
2528                                                Expr *numElements,
2529                                                ArrayType::ArraySizeModifier ASM,
2530                                                unsigned elementTypeQuals,
2531                                                SourceRange brackets) const {
2532  assert((!numElements || numElements->isTypeDependent() ||
2533          numElements->isValueDependent()) &&
2534         "Size must be type- or value-dependent!");
2535
2536  // Dependently-sized array types that do not have a specified number
2537  // of elements will have their sizes deduced from a dependent
2538  // initializer.  We do no canonicalization here at all, which is okay
2539  // because they can't be used in most locations.
2540  if (!numElements) {
2541    DependentSizedArrayType *newType
2542      = new (*this, TypeAlignment)
2543          DependentSizedArrayType(*this, elementType, QualType(),
2544                                  numElements, ASM, elementTypeQuals,
2545                                  brackets);
2546    Types.push_back(newType);
2547    return QualType(newType, 0);
2548  }
2549
2550  // Otherwise, we actually build a new type every time, but we
2551  // also build a canonical type.
2552
2553  SplitQualType canonElementType = getCanonicalType(elementType).split();
2554
2555  void *insertPos = 0;
2556  llvm::FoldingSetNodeID ID;
2557  DependentSizedArrayType::Profile(ID, *this,
2558                                   QualType(canonElementType.Ty, 0),
2559                                   ASM, elementTypeQuals, numElements);
2560
2561  // Look for an existing type with these properties.
2562  DependentSizedArrayType *canonTy =
2563    DependentSizedArrayTypes.FindNodeOrInsertPos(ID, insertPos);
2564
2565  // If we don't have one, build one.
2566  if (!canonTy) {
2567    canonTy = new (*this, TypeAlignment)
2568      DependentSizedArrayType(*this, QualType(canonElementType.Ty, 0),
2569                              QualType(), numElements, ASM, elementTypeQuals,
2570                              brackets);
2571    DependentSizedArrayTypes.InsertNode(canonTy, insertPos);
2572    Types.push_back(canonTy);
2573  }
2574
2575  // Apply qualifiers from the element type to the array.
2576  QualType canon = getQualifiedType(QualType(canonTy,0),
2577                                    canonElementType.Quals);
2578
2579  // If we didn't need extra canonicalization for the element type,
2580  // then just use that as our result.
2581  if (QualType(canonElementType.Ty, 0) == elementType)
2582    return canon;
2583
2584  // Otherwise, we need to build a type which follows the spelling
2585  // of the element type.
2586  DependentSizedArrayType *sugaredType
2587    = new (*this, TypeAlignment)
2588        DependentSizedArrayType(*this, elementType, canon, numElements,
2589                                ASM, elementTypeQuals, brackets);
2590  Types.push_back(sugaredType);
2591  return QualType(sugaredType, 0);
2592}
2593
2594QualType ASTContext::getIncompleteArrayType(QualType elementType,
2595                                            ArrayType::ArraySizeModifier ASM,
2596                                            unsigned elementTypeQuals) const {
2597  llvm::FoldingSetNodeID ID;
2598  IncompleteArrayType::Profile(ID, elementType, ASM, elementTypeQuals);
2599
2600  void *insertPos = 0;
2601  if (IncompleteArrayType *iat =
2602       IncompleteArrayTypes.FindNodeOrInsertPos(ID, insertPos))
2603    return QualType(iat, 0);
2604
2605  // If the element type isn't canonical, this won't be a canonical type
2606  // either, so fill in the canonical type field.  We also have to pull
2607  // qualifiers off the element type.
2608  QualType canon;
2609
2610  if (!elementType.isCanonical() || elementType.hasLocalQualifiers()) {
2611    SplitQualType canonSplit = getCanonicalType(elementType).split();
2612    canon = getIncompleteArrayType(QualType(canonSplit.Ty, 0),
2613                                   ASM, elementTypeQuals);
2614    canon = getQualifiedType(canon, canonSplit.Quals);
2615
2616    // Get the new insert position for the node we care about.
2617    IncompleteArrayType *existing =
2618      IncompleteArrayTypes.FindNodeOrInsertPos(ID, insertPos);
2619    assert(!existing && "Shouldn't be in the map!"); (void) existing;
2620  }
2621
2622  IncompleteArrayType *newType = new (*this, TypeAlignment)
2623    IncompleteArrayType(elementType, canon, ASM, elementTypeQuals);
2624
2625  IncompleteArrayTypes.InsertNode(newType, insertPos);
2626  Types.push_back(newType);
2627  return QualType(newType, 0);
2628}
2629
2630/// getVectorType - Return the unique reference to a vector type of
2631/// the specified element type and size. VectorType must be a built-in type.
2632QualType ASTContext::getVectorType(QualType vecType, unsigned NumElts,
2633                                   VectorType::VectorKind VecKind) const {
2634  assert(vecType->isBuiltinType());
2635
2636  // Check if we've already instantiated a vector of this type.
2637  llvm::FoldingSetNodeID ID;
2638  VectorType::Profile(ID, vecType, NumElts, Type::Vector, VecKind);
2639
2640  void *InsertPos = 0;
2641  if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
2642    return QualType(VTP, 0);
2643
2644  // If the element type isn't canonical, this won't be a canonical type either,
2645  // so fill in the canonical type field.
2646  QualType Canonical;
2647  if (!vecType.isCanonical()) {
2648    Canonical = getVectorType(getCanonicalType(vecType), NumElts, VecKind);
2649
2650    // Get the new insert position for the node we care about.
2651    VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
2652    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2653  }
2654  VectorType *New = new (*this, TypeAlignment)
2655    VectorType(vecType, NumElts, Canonical, VecKind);
2656  VectorTypes.InsertNode(New, InsertPos);
2657  Types.push_back(New);
2658  return QualType(New, 0);
2659}
2660
2661/// getExtVectorType - Return the unique reference to an extended vector type of
2662/// the specified element type and size. VectorType must be a built-in type.
2663QualType
2664ASTContext::getExtVectorType(QualType vecType, unsigned NumElts) const {
2665  assert(vecType->isBuiltinType() || vecType->isDependentType());
2666
2667  // Check if we've already instantiated a vector of this type.
2668  llvm::FoldingSetNodeID ID;
2669  VectorType::Profile(ID, vecType, NumElts, Type::ExtVector,
2670                      VectorType::GenericVector);
2671  void *InsertPos = 0;
2672  if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
2673    return QualType(VTP, 0);
2674
2675  // If the element type isn't canonical, this won't be a canonical type either,
2676  // so fill in the canonical type field.
2677  QualType Canonical;
2678  if (!vecType.isCanonical()) {
2679    Canonical = getExtVectorType(getCanonicalType(vecType), NumElts);
2680
2681    // Get the new insert position for the node we care about.
2682    VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
2683    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2684  }
2685  ExtVectorType *New = new (*this, TypeAlignment)
2686    ExtVectorType(vecType, NumElts, Canonical);
2687  VectorTypes.InsertNode(New, InsertPos);
2688  Types.push_back(New);
2689  return QualType(New, 0);
2690}
2691
2692QualType
2693ASTContext::getDependentSizedExtVectorType(QualType vecType,
2694                                           Expr *SizeExpr,
2695                                           SourceLocation AttrLoc) const {
2696  llvm::FoldingSetNodeID ID;
2697  DependentSizedExtVectorType::Profile(ID, *this, getCanonicalType(vecType),
2698                                       SizeExpr);
2699
2700  void *InsertPos = 0;
2701  DependentSizedExtVectorType *Canon
2702    = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
2703  DependentSizedExtVectorType *New;
2704  if (Canon) {
2705    // We already have a canonical version of this array type; use it as
2706    // the canonical type for a newly-built type.
2707    New = new (*this, TypeAlignment)
2708      DependentSizedExtVectorType(*this, vecType, QualType(Canon, 0),
2709                                  SizeExpr, AttrLoc);
2710  } else {
2711    QualType CanonVecTy = getCanonicalType(vecType);
2712    if (CanonVecTy == vecType) {
2713      New = new (*this, TypeAlignment)
2714        DependentSizedExtVectorType(*this, vecType, QualType(), SizeExpr,
2715                                    AttrLoc);
2716
2717      DependentSizedExtVectorType *CanonCheck
2718        = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
2719      assert(!CanonCheck && "Dependent-sized ext_vector canonical type broken");
2720      (void)CanonCheck;
2721      DependentSizedExtVectorTypes.InsertNode(New, InsertPos);
2722    } else {
2723      QualType Canon = getDependentSizedExtVectorType(CanonVecTy, SizeExpr,
2724                                                      SourceLocation());
2725      New = new (*this, TypeAlignment)
2726        DependentSizedExtVectorType(*this, vecType, Canon, SizeExpr, AttrLoc);
2727    }
2728  }
2729
2730  Types.push_back(New);
2731  return QualType(New, 0);
2732}
2733
2734/// getFunctionNoProtoType - Return a K&R style C function type like 'int()'.
2735///
2736QualType
2737ASTContext::getFunctionNoProtoType(QualType ResultTy,
2738                                   const FunctionType::ExtInfo &Info) const {
2739  const CallingConv DefaultCC = Info.getCC();
2740  const CallingConv CallConv = (LangOpts.MRTD && DefaultCC == CC_Default) ?
2741                               CC_X86StdCall : DefaultCC;
2742  // Unique functions, to guarantee there is only one function of a particular
2743  // structure.
2744  llvm::FoldingSetNodeID ID;
2745  FunctionNoProtoType::Profile(ID, ResultTy, Info);
2746
2747  void *InsertPos = 0;
2748  if (FunctionNoProtoType *FT =
2749        FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
2750    return QualType(FT, 0);
2751
2752  QualType Canonical;
2753  if (!ResultTy.isCanonical() ||
2754      getCanonicalCallConv(CallConv) != CallConv) {
2755    Canonical =
2756      getFunctionNoProtoType(getCanonicalType(ResultTy),
2757                     Info.withCallingConv(getCanonicalCallConv(CallConv)));
2758
2759    // Get the new insert position for the node we care about.
2760    FunctionNoProtoType *NewIP =
2761      FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
2762    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2763  }
2764
2765  FunctionProtoType::ExtInfo newInfo = Info.withCallingConv(CallConv);
2766  FunctionNoProtoType *New = new (*this, TypeAlignment)
2767    FunctionNoProtoType(ResultTy, Canonical, newInfo);
2768  Types.push_back(New);
2769  FunctionNoProtoTypes.InsertNode(New, InsertPos);
2770  return QualType(New, 0);
2771}
2772
2773/// \brief Determine whether \p T is canonical as the result type of a function.
2774static bool isCanonicalResultType(QualType T) {
2775  return T.isCanonical() &&
2776         (T.getObjCLifetime() == Qualifiers::OCL_None ||
2777          T.getObjCLifetime() == Qualifiers::OCL_ExplicitNone);
2778}
2779
2780/// getFunctionType - Return a normal function type with a typed argument
2781/// list.  isVariadic indicates whether the argument list includes '...'.
2782QualType
2783ASTContext::getFunctionType(QualType ResultTy, ArrayRef<QualType> ArgArray,
2784                            const FunctionProtoType::ExtProtoInfo &EPI) const {
2785  size_t NumArgs = ArgArray.size();
2786
2787  // Unique functions, to guarantee there is only one function of a particular
2788  // structure.
2789  llvm::FoldingSetNodeID ID;
2790  FunctionProtoType::Profile(ID, ResultTy, ArgArray.begin(), NumArgs, EPI,
2791                             *this);
2792
2793  void *InsertPos = 0;
2794  if (FunctionProtoType *FTP =
2795        FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
2796    return QualType(FTP, 0);
2797
2798  // Determine whether the type being created is already canonical or not.
2799  bool isCanonical =
2800    EPI.ExceptionSpecType == EST_None && isCanonicalResultType(ResultTy) &&
2801    !EPI.HasTrailingReturn;
2802  for (unsigned i = 0; i != NumArgs && isCanonical; ++i)
2803    if (!ArgArray[i].isCanonicalAsParam())
2804      isCanonical = false;
2805
2806  const CallingConv DefaultCC = EPI.ExtInfo.getCC();
2807  const CallingConv CallConv = (LangOpts.MRTD && DefaultCC == CC_Default) ?
2808                               CC_X86StdCall : DefaultCC;
2809
2810  // If this type isn't canonical, get the canonical version of it.
2811  // The exception spec is not part of the canonical type.
2812  QualType Canonical;
2813  if (!isCanonical || getCanonicalCallConv(CallConv) != CallConv) {
2814    SmallVector<QualType, 16> CanonicalArgs;
2815    CanonicalArgs.reserve(NumArgs);
2816    for (unsigned i = 0; i != NumArgs; ++i)
2817      CanonicalArgs.push_back(getCanonicalParamType(ArgArray[i]));
2818
2819    FunctionProtoType::ExtProtoInfo CanonicalEPI = EPI;
2820    CanonicalEPI.HasTrailingReturn = false;
2821    CanonicalEPI.ExceptionSpecType = EST_None;
2822    CanonicalEPI.NumExceptions = 0;
2823    CanonicalEPI.ExtInfo
2824      = CanonicalEPI.ExtInfo.withCallingConv(getCanonicalCallConv(CallConv));
2825
2826    // Result types do not have ARC lifetime qualifiers.
2827    QualType CanResultTy = getCanonicalType(ResultTy);
2828    if (ResultTy.getQualifiers().hasObjCLifetime()) {
2829      Qualifiers Qs = CanResultTy.getQualifiers();
2830      Qs.removeObjCLifetime();
2831      CanResultTy = getQualifiedType(CanResultTy.getUnqualifiedType(), Qs);
2832    }
2833
2834    Canonical = getFunctionType(CanResultTy, CanonicalArgs, CanonicalEPI);
2835
2836    // Get the new insert position for the node we care about.
2837    FunctionProtoType *NewIP =
2838      FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
2839    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2840  }
2841
2842  // FunctionProtoType objects are allocated with extra bytes after
2843  // them for three variable size arrays at the end:
2844  //  - parameter types
2845  //  - exception types
2846  //  - consumed-arguments flags
2847  // Instead of the exception types, there could be a noexcept
2848  // expression, or information used to resolve the exception
2849  // specification.
2850  size_t Size = sizeof(FunctionProtoType) +
2851                NumArgs * sizeof(QualType);
2852  if (EPI.ExceptionSpecType == EST_Dynamic) {
2853    Size += EPI.NumExceptions * sizeof(QualType);
2854  } else if (EPI.ExceptionSpecType == EST_ComputedNoexcept) {
2855    Size += sizeof(Expr*);
2856  } else if (EPI.ExceptionSpecType == EST_Uninstantiated) {
2857    Size += 2 * sizeof(FunctionDecl*);
2858  } else if (EPI.ExceptionSpecType == EST_Unevaluated) {
2859    Size += sizeof(FunctionDecl*);
2860  }
2861  if (EPI.ConsumedArguments)
2862    Size += NumArgs * sizeof(bool);
2863
2864  FunctionProtoType *FTP = (FunctionProtoType*) Allocate(Size, TypeAlignment);
2865  FunctionProtoType::ExtProtoInfo newEPI = EPI;
2866  newEPI.ExtInfo = EPI.ExtInfo.withCallingConv(CallConv);
2867  new (FTP) FunctionProtoType(ResultTy, ArgArray, Canonical, newEPI);
2868  Types.push_back(FTP);
2869  FunctionProtoTypes.InsertNode(FTP, InsertPos);
2870  return QualType(FTP, 0);
2871}
2872
2873#ifndef NDEBUG
2874static bool NeedsInjectedClassNameType(const RecordDecl *D) {
2875  if (!isa<CXXRecordDecl>(D)) return false;
2876  const CXXRecordDecl *RD = cast<CXXRecordDecl>(D);
2877  if (isa<ClassTemplatePartialSpecializationDecl>(RD))
2878    return true;
2879  if (RD->getDescribedClassTemplate() &&
2880      !isa<ClassTemplateSpecializationDecl>(RD))
2881    return true;
2882  return false;
2883}
2884#endif
2885
2886/// getInjectedClassNameType - Return the unique reference to the
2887/// injected class name type for the specified templated declaration.
2888QualType ASTContext::getInjectedClassNameType(CXXRecordDecl *Decl,
2889                                              QualType TST) const {
2890  assert(NeedsInjectedClassNameType(Decl));
2891  if (Decl->TypeForDecl) {
2892    assert(isa<InjectedClassNameType>(Decl->TypeForDecl));
2893  } else if (CXXRecordDecl *PrevDecl = Decl->getPreviousDecl()) {
2894    assert(PrevDecl->TypeForDecl && "previous declaration has no type");
2895    Decl->TypeForDecl = PrevDecl->TypeForDecl;
2896    assert(isa<InjectedClassNameType>(Decl->TypeForDecl));
2897  } else {
2898    Type *newType =
2899      new (*this, TypeAlignment) InjectedClassNameType(Decl, TST);
2900    Decl->TypeForDecl = newType;
2901    Types.push_back(newType);
2902  }
2903  return QualType(Decl->TypeForDecl, 0);
2904}
2905
2906/// getTypeDeclType - Return the unique reference to the type for the
2907/// specified type declaration.
2908QualType ASTContext::getTypeDeclTypeSlow(const TypeDecl *Decl) const {
2909  assert(Decl && "Passed null for Decl param");
2910  assert(!Decl->TypeForDecl && "TypeForDecl present in slow case");
2911
2912  if (const TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Decl))
2913    return getTypedefType(Typedef);
2914
2915  assert(!isa<TemplateTypeParmDecl>(Decl) &&
2916         "Template type parameter types are always available.");
2917
2918  if (const RecordDecl *Record = dyn_cast<RecordDecl>(Decl)) {
2919    assert(!Record->getPreviousDecl() &&
2920           "struct/union has previous declaration");
2921    assert(!NeedsInjectedClassNameType(Record));
2922    return getRecordType(Record);
2923  } else if (const EnumDecl *Enum = dyn_cast<EnumDecl>(Decl)) {
2924    assert(!Enum->getPreviousDecl() &&
2925           "enum has previous declaration");
2926    return getEnumType(Enum);
2927  } else if (const UnresolvedUsingTypenameDecl *Using =
2928               dyn_cast<UnresolvedUsingTypenameDecl>(Decl)) {
2929    Type *newType = new (*this, TypeAlignment) UnresolvedUsingType(Using);
2930    Decl->TypeForDecl = newType;
2931    Types.push_back(newType);
2932  } else
2933    llvm_unreachable("TypeDecl without a type?");
2934
2935  return QualType(Decl->TypeForDecl, 0);
2936}
2937
2938/// getTypedefType - Return the unique reference to the type for the
2939/// specified typedef name decl.
2940QualType
2941ASTContext::getTypedefType(const TypedefNameDecl *Decl,
2942                           QualType Canonical) const {
2943  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
2944
2945  if (Canonical.isNull())
2946    Canonical = getCanonicalType(Decl->getUnderlyingType());
2947  TypedefType *newType = new(*this, TypeAlignment)
2948    TypedefType(Type::Typedef, Decl, Canonical);
2949  Decl->TypeForDecl = newType;
2950  Types.push_back(newType);
2951  return QualType(newType, 0);
2952}
2953
2954QualType ASTContext::getRecordType(const RecordDecl *Decl) const {
2955  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
2956
2957  if (const RecordDecl *PrevDecl = Decl->getPreviousDecl())
2958    if (PrevDecl->TypeForDecl)
2959      return QualType(Decl->TypeForDecl = PrevDecl->TypeForDecl, 0);
2960
2961  RecordType *newType = new (*this, TypeAlignment) RecordType(Decl);
2962  Decl->TypeForDecl = newType;
2963  Types.push_back(newType);
2964  return QualType(newType, 0);
2965}
2966
2967QualType ASTContext::getEnumType(const EnumDecl *Decl) const {
2968  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
2969
2970  if (const EnumDecl *PrevDecl = Decl->getPreviousDecl())
2971    if (PrevDecl->TypeForDecl)
2972      return QualType(Decl->TypeForDecl = PrevDecl->TypeForDecl, 0);
2973
2974  EnumType *newType = new (*this, TypeAlignment) EnumType(Decl);
2975  Decl->TypeForDecl = newType;
2976  Types.push_back(newType);
2977  return QualType(newType, 0);
2978}
2979
2980QualType ASTContext::getAttributedType(AttributedType::Kind attrKind,
2981                                       QualType modifiedType,
2982                                       QualType equivalentType) {
2983  llvm::FoldingSetNodeID id;
2984  AttributedType::Profile(id, attrKind, modifiedType, equivalentType);
2985
2986  void *insertPos = 0;
2987  AttributedType *type = AttributedTypes.FindNodeOrInsertPos(id, insertPos);
2988  if (type) return QualType(type, 0);
2989
2990  QualType canon = getCanonicalType(equivalentType);
2991  type = new (*this, TypeAlignment)
2992           AttributedType(canon, attrKind, modifiedType, equivalentType);
2993
2994  Types.push_back(type);
2995  AttributedTypes.InsertNode(type, insertPos);
2996
2997  return QualType(type, 0);
2998}
2999
3000
3001/// \brief Retrieve a substitution-result type.
3002QualType
3003ASTContext::getSubstTemplateTypeParmType(const TemplateTypeParmType *Parm,
3004                                         QualType Replacement) const {
3005  assert(Replacement.isCanonical()
3006         && "replacement types must always be canonical");
3007
3008  llvm::FoldingSetNodeID ID;
3009  SubstTemplateTypeParmType::Profile(ID, Parm, Replacement);
3010  void *InsertPos = 0;
3011  SubstTemplateTypeParmType *SubstParm
3012    = SubstTemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
3013
3014  if (!SubstParm) {
3015    SubstParm = new (*this, TypeAlignment)
3016      SubstTemplateTypeParmType(Parm, Replacement);
3017    Types.push_back(SubstParm);
3018    SubstTemplateTypeParmTypes.InsertNode(SubstParm, InsertPos);
3019  }
3020
3021  return QualType(SubstParm, 0);
3022}
3023
3024/// \brief Retrieve a
3025QualType ASTContext::getSubstTemplateTypeParmPackType(
3026                                          const TemplateTypeParmType *Parm,
3027                                              const TemplateArgument &ArgPack) {
3028#ifndef NDEBUG
3029  for (TemplateArgument::pack_iterator P = ArgPack.pack_begin(),
3030                                    PEnd = ArgPack.pack_end();
3031       P != PEnd; ++P) {
3032    assert(P->getKind() == TemplateArgument::Type &&"Pack contains a non-type");
3033    assert(P->getAsType().isCanonical() && "Pack contains non-canonical type");
3034  }
3035#endif
3036
3037  llvm::FoldingSetNodeID ID;
3038  SubstTemplateTypeParmPackType::Profile(ID, Parm, ArgPack);
3039  void *InsertPos = 0;
3040  if (SubstTemplateTypeParmPackType *SubstParm
3041        = SubstTemplateTypeParmPackTypes.FindNodeOrInsertPos(ID, InsertPos))
3042    return QualType(SubstParm, 0);
3043
3044  QualType Canon;
3045  if (!Parm->isCanonicalUnqualified()) {
3046    Canon = getCanonicalType(QualType(Parm, 0));
3047    Canon = getSubstTemplateTypeParmPackType(cast<TemplateTypeParmType>(Canon),
3048                                             ArgPack);
3049    SubstTemplateTypeParmPackTypes.FindNodeOrInsertPos(ID, InsertPos);
3050  }
3051
3052  SubstTemplateTypeParmPackType *SubstParm
3053    = new (*this, TypeAlignment) SubstTemplateTypeParmPackType(Parm, Canon,
3054                                                               ArgPack);
3055  Types.push_back(SubstParm);
3056  SubstTemplateTypeParmTypes.InsertNode(SubstParm, InsertPos);
3057  return QualType(SubstParm, 0);
3058}
3059
3060/// \brief Retrieve the template type parameter type for a template
3061/// parameter or parameter pack with the given depth, index, and (optionally)
3062/// name.
3063QualType ASTContext::getTemplateTypeParmType(unsigned Depth, unsigned Index,
3064                                             bool ParameterPack,
3065                                             TemplateTypeParmDecl *TTPDecl) const {
3066  llvm::FoldingSetNodeID ID;
3067  TemplateTypeParmType::Profile(ID, Depth, Index, ParameterPack, TTPDecl);
3068  void *InsertPos = 0;
3069  TemplateTypeParmType *TypeParm
3070    = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
3071
3072  if (TypeParm)
3073    return QualType(TypeParm, 0);
3074
3075  if (TTPDecl) {
3076    QualType Canon = getTemplateTypeParmType(Depth, Index, ParameterPack);
3077    TypeParm = new (*this, TypeAlignment) TemplateTypeParmType(TTPDecl, Canon);
3078
3079    TemplateTypeParmType *TypeCheck
3080      = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
3081    assert(!TypeCheck && "Template type parameter canonical type broken");
3082    (void)TypeCheck;
3083  } else
3084    TypeParm = new (*this, TypeAlignment)
3085      TemplateTypeParmType(Depth, Index, ParameterPack);
3086
3087  Types.push_back(TypeParm);
3088  TemplateTypeParmTypes.InsertNode(TypeParm, InsertPos);
3089
3090  return QualType(TypeParm, 0);
3091}
3092
3093TypeSourceInfo *
3094ASTContext::getTemplateSpecializationTypeInfo(TemplateName Name,
3095                                              SourceLocation NameLoc,
3096                                        const TemplateArgumentListInfo &Args,
3097                                              QualType Underlying) const {
3098  assert(!Name.getAsDependentTemplateName() &&
3099         "No dependent template names here!");
3100  QualType TST = getTemplateSpecializationType(Name, Args, Underlying);
3101
3102  TypeSourceInfo *DI = CreateTypeSourceInfo(TST);
3103  TemplateSpecializationTypeLoc TL =
3104      DI->getTypeLoc().castAs<TemplateSpecializationTypeLoc>();
3105  TL.setTemplateKeywordLoc(SourceLocation());
3106  TL.setTemplateNameLoc(NameLoc);
3107  TL.setLAngleLoc(Args.getLAngleLoc());
3108  TL.setRAngleLoc(Args.getRAngleLoc());
3109  for (unsigned i = 0, e = TL.getNumArgs(); i != e; ++i)
3110    TL.setArgLocInfo(i, Args[i].getLocInfo());
3111  return DI;
3112}
3113
3114QualType
3115ASTContext::getTemplateSpecializationType(TemplateName Template,
3116                                          const TemplateArgumentListInfo &Args,
3117                                          QualType Underlying) const {
3118  assert(!Template.getAsDependentTemplateName() &&
3119         "No dependent template names here!");
3120
3121  unsigned NumArgs = Args.size();
3122
3123  SmallVector<TemplateArgument, 4> ArgVec;
3124  ArgVec.reserve(NumArgs);
3125  for (unsigned i = 0; i != NumArgs; ++i)
3126    ArgVec.push_back(Args[i].getArgument());
3127
3128  return getTemplateSpecializationType(Template, ArgVec.data(), NumArgs,
3129                                       Underlying);
3130}
3131
3132#ifndef NDEBUG
3133static bool hasAnyPackExpansions(const TemplateArgument *Args,
3134                                 unsigned NumArgs) {
3135  for (unsigned I = 0; I != NumArgs; ++I)
3136    if (Args[I].isPackExpansion())
3137      return true;
3138
3139  return true;
3140}
3141#endif
3142
3143QualType
3144ASTContext::getTemplateSpecializationType(TemplateName Template,
3145                                          const TemplateArgument *Args,
3146                                          unsigned NumArgs,
3147                                          QualType Underlying) const {
3148  assert(!Template.getAsDependentTemplateName() &&
3149         "No dependent template names here!");
3150  // Look through qualified template names.
3151  if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName())
3152    Template = TemplateName(QTN->getTemplateDecl());
3153
3154  bool IsTypeAlias =
3155    Template.getAsTemplateDecl() &&
3156    isa<TypeAliasTemplateDecl>(Template.getAsTemplateDecl());
3157  QualType CanonType;
3158  if (!Underlying.isNull())
3159    CanonType = getCanonicalType(Underlying);
3160  else {
3161    // We can get here with an alias template when the specialization contains
3162    // a pack expansion that does not match up with a parameter pack.
3163    assert((!IsTypeAlias || hasAnyPackExpansions(Args, NumArgs)) &&
3164           "Caller must compute aliased type");
3165    IsTypeAlias = false;
3166    CanonType = getCanonicalTemplateSpecializationType(Template, Args,
3167                                                       NumArgs);
3168  }
3169
3170  // Allocate the (non-canonical) template specialization type, but don't
3171  // try to unique it: these types typically have location information that
3172  // we don't unique and don't want to lose.
3173  void *Mem = Allocate(sizeof(TemplateSpecializationType) +
3174                       sizeof(TemplateArgument) * NumArgs +
3175                       (IsTypeAlias? sizeof(QualType) : 0),
3176                       TypeAlignment);
3177  TemplateSpecializationType *Spec
3178    = new (Mem) TemplateSpecializationType(Template, Args, NumArgs, CanonType,
3179                                         IsTypeAlias ? Underlying : QualType());
3180
3181  Types.push_back(Spec);
3182  return QualType(Spec, 0);
3183}
3184
3185QualType
3186ASTContext::getCanonicalTemplateSpecializationType(TemplateName Template,
3187                                                   const TemplateArgument *Args,
3188                                                   unsigned NumArgs) const {
3189  assert(!Template.getAsDependentTemplateName() &&
3190         "No dependent template names here!");
3191
3192  // Look through qualified template names.
3193  if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName())
3194    Template = TemplateName(QTN->getTemplateDecl());
3195
3196  // Build the canonical template specialization type.
3197  TemplateName CanonTemplate = getCanonicalTemplateName(Template);
3198  SmallVector<TemplateArgument, 4> CanonArgs;
3199  CanonArgs.reserve(NumArgs);
3200  for (unsigned I = 0; I != NumArgs; ++I)
3201    CanonArgs.push_back(getCanonicalTemplateArgument(Args[I]));
3202
3203  // Determine whether this canonical template specialization type already
3204  // exists.
3205  llvm::FoldingSetNodeID ID;
3206  TemplateSpecializationType::Profile(ID, CanonTemplate,
3207                                      CanonArgs.data(), NumArgs, *this);
3208
3209  void *InsertPos = 0;
3210  TemplateSpecializationType *Spec
3211    = TemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
3212
3213  if (!Spec) {
3214    // Allocate a new canonical template specialization type.
3215    void *Mem = Allocate((sizeof(TemplateSpecializationType) +
3216                          sizeof(TemplateArgument) * NumArgs),
3217                         TypeAlignment);
3218    Spec = new (Mem) TemplateSpecializationType(CanonTemplate,
3219                                                CanonArgs.data(), NumArgs,
3220                                                QualType(), QualType());
3221    Types.push_back(Spec);
3222    TemplateSpecializationTypes.InsertNode(Spec, InsertPos);
3223  }
3224
3225  assert(Spec->isDependentType() &&
3226         "Non-dependent template-id type must have a canonical type");
3227  return QualType(Spec, 0);
3228}
3229
3230QualType
3231ASTContext::getElaboratedType(ElaboratedTypeKeyword Keyword,
3232                              NestedNameSpecifier *NNS,
3233                              QualType NamedType) const {
3234  llvm::FoldingSetNodeID ID;
3235  ElaboratedType::Profile(ID, Keyword, NNS, NamedType);
3236
3237  void *InsertPos = 0;
3238  ElaboratedType *T = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
3239  if (T)
3240    return QualType(T, 0);
3241
3242  QualType Canon = NamedType;
3243  if (!Canon.isCanonical()) {
3244    Canon = getCanonicalType(NamedType);
3245    ElaboratedType *CheckT = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
3246    assert(!CheckT && "Elaborated canonical type broken");
3247    (void)CheckT;
3248  }
3249
3250  T = new (*this) ElaboratedType(Keyword, NNS, NamedType, Canon);
3251  Types.push_back(T);
3252  ElaboratedTypes.InsertNode(T, InsertPos);
3253  return QualType(T, 0);
3254}
3255
3256QualType
3257ASTContext::getParenType(QualType InnerType) const {
3258  llvm::FoldingSetNodeID ID;
3259  ParenType::Profile(ID, InnerType);
3260
3261  void *InsertPos = 0;
3262  ParenType *T = ParenTypes.FindNodeOrInsertPos(ID, InsertPos);
3263  if (T)
3264    return QualType(T, 0);
3265
3266  QualType Canon = InnerType;
3267  if (!Canon.isCanonical()) {
3268    Canon = getCanonicalType(InnerType);
3269    ParenType *CheckT = ParenTypes.FindNodeOrInsertPos(ID, InsertPos);
3270    assert(!CheckT && "Paren canonical type broken");
3271    (void)CheckT;
3272  }
3273
3274  T = new (*this) ParenType(InnerType, Canon);
3275  Types.push_back(T);
3276  ParenTypes.InsertNode(T, InsertPos);
3277  return QualType(T, 0);
3278}
3279
3280QualType ASTContext::getDependentNameType(ElaboratedTypeKeyword Keyword,
3281                                          NestedNameSpecifier *NNS,
3282                                          const IdentifierInfo *Name,
3283                                          QualType Canon) const {
3284  assert(NNS->isDependent() && "nested-name-specifier must be dependent");
3285
3286  if (Canon.isNull()) {
3287    NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
3288    ElaboratedTypeKeyword CanonKeyword = Keyword;
3289    if (Keyword == ETK_None)
3290      CanonKeyword = ETK_Typename;
3291
3292    if (CanonNNS != NNS || CanonKeyword != Keyword)
3293      Canon = getDependentNameType(CanonKeyword, CanonNNS, Name);
3294  }
3295
3296  llvm::FoldingSetNodeID ID;
3297  DependentNameType::Profile(ID, Keyword, NNS, Name);
3298
3299  void *InsertPos = 0;
3300  DependentNameType *T
3301    = DependentNameTypes.FindNodeOrInsertPos(ID, InsertPos);
3302  if (T)
3303    return QualType(T, 0);
3304
3305  T = new (*this) DependentNameType(Keyword, NNS, Name, Canon);
3306  Types.push_back(T);
3307  DependentNameTypes.InsertNode(T, InsertPos);
3308  return QualType(T, 0);
3309}
3310
3311QualType
3312ASTContext::getDependentTemplateSpecializationType(
3313                                 ElaboratedTypeKeyword Keyword,
3314                                 NestedNameSpecifier *NNS,
3315                                 const IdentifierInfo *Name,
3316                                 const TemplateArgumentListInfo &Args) const {
3317  // TODO: avoid this copy
3318  SmallVector<TemplateArgument, 16> ArgCopy;
3319  for (unsigned I = 0, E = Args.size(); I != E; ++I)
3320    ArgCopy.push_back(Args[I].getArgument());
3321  return getDependentTemplateSpecializationType(Keyword, NNS, Name,
3322                                                ArgCopy.size(),
3323                                                ArgCopy.data());
3324}
3325
3326QualType
3327ASTContext::getDependentTemplateSpecializationType(
3328                                 ElaboratedTypeKeyword Keyword,
3329                                 NestedNameSpecifier *NNS,
3330                                 const IdentifierInfo *Name,
3331                                 unsigned NumArgs,
3332                                 const TemplateArgument *Args) const {
3333  assert((!NNS || NNS->isDependent()) &&
3334         "nested-name-specifier must be dependent");
3335
3336  llvm::FoldingSetNodeID ID;
3337  DependentTemplateSpecializationType::Profile(ID, *this, Keyword, NNS,
3338                                               Name, NumArgs, Args);
3339
3340  void *InsertPos = 0;
3341  DependentTemplateSpecializationType *T
3342    = DependentTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
3343  if (T)
3344    return QualType(T, 0);
3345
3346  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
3347
3348  ElaboratedTypeKeyword CanonKeyword = Keyword;
3349  if (Keyword == ETK_None) CanonKeyword = ETK_Typename;
3350
3351  bool AnyNonCanonArgs = false;
3352  SmallVector<TemplateArgument, 16> CanonArgs(NumArgs);
3353  for (unsigned I = 0; I != NumArgs; ++I) {
3354    CanonArgs[I] = getCanonicalTemplateArgument(Args[I]);
3355    if (!CanonArgs[I].structurallyEquals(Args[I]))
3356      AnyNonCanonArgs = true;
3357  }
3358
3359  QualType Canon;
3360  if (AnyNonCanonArgs || CanonNNS != NNS || CanonKeyword != Keyword) {
3361    Canon = getDependentTemplateSpecializationType(CanonKeyword, CanonNNS,
3362                                                   Name, NumArgs,
3363                                                   CanonArgs.data());
3364
3365    // Find the insert position again.
3366    DependentTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
3367  }
3368
3369  void *Mem = Allocate((sizeof(DependentTemplateSpecializationType) +
3370                        sizeof(TemplateArgument) * NumArgs),
3371                       TypeAlignment);
3372  T = new (Mem) DependentTemplateSpecializationType(Keyword, NNS,
3373                                                    Name, NumArgs, Args, Canon);
3374  Types.push_back(T);
3375  DependentTemplateSpecializationTypes.InsertNode(T, InsertPos);
3376  return QualType(T, 0);
3377}
3378
3379QualType ASTContext::getPackExpansionType(QualType Pattern,
3380                                          Optional<unsigned> NumExpansions) {
3381  llvm::FoldingSetNodeID ID;
3382  PackExpansionType::Profile(ID, Pattern, NumExpansions);
3383
3384  assert(Pattern->containsUnexpandedParameterPack() &&
3385         "Pack expansions must expand one or more parameter packs");
3386  void *InsertPos = 0;
3387  PackExpansionType *T
3388    = PackExpansionTypes.FindNodeOrInsertPos(ID, InsertPos);
3389  if (T)
3390    return QualType(T, 0);
3391
3392  QualType Canon;
3393  if (!Pattern.isCanonical()) {
3394    Canon = getCanonicalType(Pattern);
3395    // The canonical type might not contain an unexpanded parameter pack, if it
3396    // contains an alias template specialization which ignores one of its
3397    // parameters.
3398    if (Canon->containsUnexpandedParameterPack()) {
3399      Canon = getPackExpansionType(getCanonicalType(Pattern), NumExpansions);
3400
3401      // Find the insert position again, in case we inserted an element into
3402      // PackExpansionTypes and invalidated our insert position.
3403      PackExpansionTypes.FindNodeOrInsertPos(ID, InsertPos);
3404    }
3405  }
3406
3407  T = new (*this) PackExpansionType(Pattern, Canon, NumExpansions);
3408  Types.push_back(T);
3409  PackExpansionTypes.InsertNode(T, InsertPos);
3410  return QualType(T, 0);
3411}
3412
3413/// CmpProtocolNames - Comparison predicate for sorting protocols
3414/// alphabetically.
3415static bool CmpProtocolNames(const ObjCProtocolDecl *LHS,
3416                            const ObjCProtocolDecl *RHS) {
3417  return LHS->getDeclName() < RHS->getDeclName();
3418}
3419
3420static bool areSortedAndUniqued(ObjCProtocolDecl * const *Protocols,
3421                                unsigned NumProtocols) {
3422  if (NumProtocols == 0) return true;
3423
3424  if (Protocols[0]->getCanonicalDecl() != Protocols[0])
3425    return false;
3426
3427  for (unsigned i = 1; i != NumProtocols; ++i)
3428    if (!CmpProtocolNames(Protocols[i-1], Protocols[i]) ||
3429        Protocols[i]->getCanonicalDecl() != Protocols[i])
3430      return false;
3431  return true;
3432}
3433
3434static void SortAndUniqueProtocols(ObjCProtocolDecl **Protocols,
3435                                   unsigned &NumProtocols) {
3436  ObjCProtocolDecl **ProtocolsEnd = Protocols+NumProtocols;
3437
3438  // Sort protocols, keyed by name.
3439  std::sort(Protocols, Protocols+NumProtocols, CmpProtocolNames);
3440
3441  // Canonicalize.
3442  for (unsigned I = 0, N = NumProtocols; I != N; ++I)
3443    Protocols[I] = Protocols[I]->getCanonicalDecl();
3444
3445  // Remove duplicates.
3446  ProtocolsEnd = std::unique(Protocols, ProtocolsEnd);
3447  NumProtocols = ProtocolsEnd-Protocols;
3448}
3449
3450QualType ASTContext::getObjCObjectType(QualType BaseType,
3451                                       ObjCProtocolDecl * const *Protocols,
3452                                       unsigned NumProtocols) const {
3453  // If the base type is an interface and there aren't any protocols
3454  // to add, then the interface type will do just fine.
3455  if (!NumProtocols && isa<ObjCInterfaceType>(BaseType))
3456    return BaseType;
3457
3458  // Look in the folding set for an existing type.
3459  llvm::FoldingSetNodeID ID;
3460  ObjCObjectTypeImpl::Profile(ID, BaseType, Protocols, NumProtocols);
3461  void *InsertPos = 0;
3462  if (ObjCObjectType *QT = ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos))
3463    return QualType(QT, 0);
3464
3465  // Build the canonical type, which has the canonical base type and
3466  // a sorted-and-uniqued list of protocols.
3467  QualType Canonical;
3468  bool ProtocolsSorted = areSortedAndUniqued(Protocols, NumProtocols);
3469  if (!ProtocolsSorted || !BaseType.isCanonical()) {
3470    if (!ProtocolsSorted) {
3471      SmallVector<ObjCProtocolDecl*, 8> Sorted(Protocols,
3472                                                     Protocols + NumProtocols);
3473      unsigned UniqueCount = NumProtocols;
3474
3475      SortAndUniqueProtocols(&Sorted[0], UniqueCount);
3476      Canonical = getObjCObjectType(getCanonicalType(BaseType),
3477                                    &Sorted[0], UniqueCount);
3478    } else {
3479      Canonical = getObjCObjectType(getCanonicalType(BaseType),
3480                                    Protocols, NumProtocols);
3481    }
3482
3483    // Regenerate InsertPos.
3484    ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos);
3485  }
3486
3487  unsigned Size = sizeof(ObjCObjectTypeImpl);
3488  Size += NumProtocols * sizeof(ObjCProtocolDecl *);
3489  void *Mem = Allocate(Size, TypeAlignment);
3490  ObjCObjectTypeImpl *T =
3491    new (Mem) ObjCObjectTypeImpl(Canonical, BaseType, Protocols, NumProtocols);
3492
3493  Types.push_back(T);
3494  ObjCObjectTypes.InsertNode(T, InsertPos);
3495  return QualType(T, 0);
3496}
3497
3498/// getObjCObjectPointerType - Return a ObjCObjectPointerType type for
3499/// the given object type.
3500QualType ASTContext::getObjCObjectPointerType(QualType ObjectT) const {
3501  llvm::FoldingSetNodeID ID;
3502  ObjCObjectPointerType::Profile(ID, ObjectT);
3503
3504  void *InsertPos = 0;
3505  if (ObjCObjectPointerType *QT =
3506              ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
3507    return QualType(QT, 0);
3508
3509  // Find the canonical object type.
3510  QualType Canonical;
3511  if (!ObjectT.isCanonical()) {
3512    Canonical = getObjCObjectPointerType(getCanonicalType(ObjectT));
3513
3514    // Regenerate InsertPos.
3515    ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
3516  }
3517
3518  // No match.
3519  void *Mem = Allocate(sizeof(ObjCObjectPointerType), TypeAlignment);
3520  ObjCObjectPointerType *QType =
3521    new (Mem) ObjCObjectPointerType(Canonical, ObjectT);
3522
3523  Types.push_back(QType);
3524  ObjCObjectPointerTypes.InsertNode(QType, InsertPos);
3525  return QualType(QType, 0);
3526}
3527
3528/// getObjCInterfaceType - Return the unique reference to the type for the
3529/// specified ObjC interface decl. The list of protocols is optional.
3530QualType ASTContext::getObjCInterfaceType(const ObjCInterfaceDecl *Decl,
3531                                          ObjCInterfaceDecl *PrevDecl) const {
3532  if (Decl->TypeForDecl)
3533    return QualType(Decl->TypeForDecl, 0);
3534
3535  if (PrevDecl) {
3536    assert(PrevDecl->TypeForDecl && "previous decl has no TypeForDecl");
3537    Decl->TypeForDecl = PrevDecl->TypeForDecl;
3538    return QualType(PrevDecl->TypeForDecl, 0);
3539  }
3540
3541  // Prefer the definition, if there is one.
3542  if (const ObjCInterfaceDecl *Def = Decl->getDefinition())
3543    Decl = Def;
3544
3545  void *Mem = Allocate(sizeof(ObjCInterfaceType), TypeAlignment);
3546  ObjCInterfaceType *T = new (Mem) ObjCInterfaceType(Decl);
3547  Decl->TypeForDecl = T;
3548  Types.push_back(T);
3549  return QualType(T, 0);
3550}
3551
3552/// getTypeOfExprType - Unlike many "get<Type>" functions, we can't unique
3553/// TypeOfExprType AST's (since expression's are never shared). For example,
3554/// multiple declarations that refer to "typeof(x)" all contain different
3555/// DeclRefExpr's. This doesn't effect the type checker, since it operates
3556/// on canonical type's (which are always unique).
3557QualType ASTContext::getTypeOfExprType(Expr *tofExpr) const {
3558  TypeOfExprType *toe;
3559  if (tofExpr->isTypeDependent()) {
3560    llvm::FoldingSetNodeID ID;
3561    DependentTypeOfExprType::Profile(ID, *this, tofExpr);
3562
3563    void *InsertPos = 0;
3564    DependentTypeOfExprType *Canon
3565      = DependentTypeOfExprTypes.FindNodeOrInsertPos(ID, InsertPos);
3566    if (Canon) {
3567      // We already have a "canonical" version of an identical, dependent
3568      // typeof(expr) type. Use that as our canonical type.
3569      toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr,
3570                                          QualType((TypeOfExprType*)Canon, 0));
3571    } else {
3572      // Build a new, canonical typeof(expr) type.
3573      Canon
3574        = new (*this, TypeAlignment) DependentTypeOfExprType(*this, tofExpr);
3575      DependentTypeOfExprTypes.InsertNode(Canon, InsertPos);
3576      toe = Canon;
3577    }
3578  } else {
3579    QualType Canonical = getCanonicalType(tofExpr->getType());
3580    toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr, Canonical);
3581  }
3582  Types.push_back(toe);
3583  return QualType(toe, 0);
3584}
3585
3586/// getTypeOfType -  Unlike many "get<Type>" functions, we don't unique
3587/// TypeOfType AST's. The only motivation to unique these nodes would be
3588/// memory savings. Since typeof(t) is fairly uncommon, space shouldn't be
3589/// an issue. This doesn't effect the type checker, since it operates
3590/// on canonical type's (which are always unique).
3591QualType ASTContext::getTypeOfType(QualType tofType) const {
3592  QualType Canonical = getCanonicalType(tofType);
3593  TypeOfType *tot = new (*this, TypeAlignment) TypeOfType(tofType, Canonical);
3594  Types.push_back(tot);
3595  return QualType(tot, 0);
3596}
3597
3598
3599/// getDecltypeType -  Unlike many "get<Type>" functions, we don't unique
3600/// DecltypeType AST's. The only motivation to unique these nodes would be
3601/// memory savings. Since decltype(t) is fairly uncommon, space shouldn't be
3602/// an issue. This doesn't effect the type checker, since it operates
3603/// on canonical types (which are always unique).
3604QualType ASTContext::getDecltypeType(Expr *e, QualType UnderlyingType) const {
3605  DecltypeType *dt;
3606
3607  // C++0x [temp.type]p2:
3608  //   If an expression e involves a template parameter, decltype(e) denotes a
3609  //   unique dependent type. Two such decltype-specifiers refer to the same
3610  //   type only if their expressions are equivalent (14.5.6.1).
3611  if (e->isInstantiationDependent()) {
3612    llvm::FoldingSetNodeID ID;
3613    DependentDecltypeType::Profile(ID, *this, e);
3614
3615    void *InsertPos = 0;
3616    DependentDecltypeType *Canon
3617      = DependentDecltypeTypes.FindNodeOrInsertPos(ID, InsertPos);
3618    if (Canon) {
3619      // We already have a "canonical" version of an equivalent, dependent
3620      // decltype type. Use that as our canonical type.
3621      dt = new (*this, TypeAlignment) DecltypeType(e, UnderlyingType,
3622                                       QualType((DecltypeType*)Canon, 0));
3623    } else {
3624      // Build a new, canonical typeof(expr) type.
3625      Canon = new (*this, TypeAlignment) DependentDecltypeType(*this, e);
3626      DependentDecltypeTypes.InsertNode(Canon, InsertPos);
3627      dt = Canon;
3628    }
3629  } else {
3630    dt = new (*this, TypeAlignment) DecltypeType(e, UnderlyingType,
3631                                      getCanonicalType(UnderlyingType));
3632  }
3633  Types.push_back(dt);
3634  return QualType(dt, 0);
3635}
3636
3637/// getUnaryTransformationType - We don't unique these, since the memory
3638/// savings are minimal and these are rare.
3639QualType ASTContext::getUnaryTransformType(QualType BaseType,
3640                                           QualType UnderlyingType,
3641                                           UnaryTransformType::UTTKind Kind)
3642    const {
3643  UnaryTransformType *Ty =
3644    new (*this, TypeAlignment) UnaryTransformType (BaseType, UnderlyingType,
3645                                                   Kind,
3646                                 UnderlyingType->isDependentType() ?
3647                                 QualType() : getCanonicalType(UnderlyingType));
3648  Types.push_back(Ty);
3649  return QualType(Ty, 0);
3650}
3651
3652/// getAutoType - Return the uniqued reference to the 'auto' type which has been
3653/// deduced to the given type, or to the canonical undeduced 'auto' type, or the
3654/// canonical deduced-but-dependent 'auto' type.
3655QualType ASTContext::getAutoType(QualType DeducedType, bool IsDecltypeAuto,
3656                                 bool IsDependent) const {
3657  if (DeducedType.isNull() && !IsDecltypeAuto && !IsDependent)
3658    return getAutoDeductType();
3659
3660  // Look in the folding set for an existing type.
3661  void *InsertPos = 0;
3662  llvm::FoldingSetNodeID ID;
3663  AutoType::Profile(ID, DeducedType, IsDecltypeAuto, IsDependent);
3664  if (AutoType *AT = AutoTypes.FindNodeOrInsertPos(ID, InsertPos))
3665    return QualType(AT, 0);
3666
3667  AutoType *AT = new (*this, TypeAlignment) AutoType(DeducedType,
3668                                                     IsDecltypeAuto,
3669                                                     IsDependent);
3670  Types.push_back(AT);
3671  if (InsertPos)
3672    AutoTypes.InsertNode(AT, InsertPos);
3673  return QualType(AT, 0);
3674}
3675
3676/// getAtomicType - Return the uniqued reference to the atomic type for
3677/// the given value type.
3678QualType ASTContext::getAtomicType(QualType T) const {
3679  // Unique pointers, to guarantee there is only one pointer of a particular
3680  // structure.
3681  llvm::FoldingSetNodeID ID;
3682  AtomicType::Profile(ID, T);
3683
3684  void *InsertPos = 0;
3685  if (AtomicType *AT = AtomicTypes.FindNodeOrInsertPos(ID, InsertPos))
3686    return QualType(AT, 0);
3687
3688  // If the atomic value type isn't canonical, this won't be a canonical type
3689  // either, so fill in the canonical type field.
3690  QualType Canonical;
3691  if (!T.isCanonical()) {
3692    Canonical = getAtomicType(getCanonicalType(T));
3693
3694    // Get the new insert position for the node we care about.
3695    AtomicType *NewIP = AtomicTypes.FindNodeOrInsertPos(ID, InsertPos);
3696    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
3697  }
3698  AtomicType *New = new (*this, TypeAlignment) AtomicType(T, Canonical);
3699  Types.push_back(New);
3700  AtomicTypes.InsertNode(New, InsertPos);
3701  return QualType(New, 0);
3702}
3703
3704/// getAutoDeductType - Get type pattern for deducing against 'auto'.
3705QualType ASTContext::getAutoDeductType() const {
3706  if (AutoDeductTy.isNull())
3707    AutoDeductTy = QualType(
3708      new (*this, TypeAlignment) AutoType(QualType(), /*decltype(auto)*/false,
3709                                          /*dependent*/false),
3710      0);
3711  return AutoDeductTy;
3712}
3713
3714/// getAutoRRefDeductType - Get type pattern for deducing against 'auto &&'.
3715QualType ASTContext::getAutoRRefDeductType() const {
3716  if (AutoRRefDeductTy.isNull())
3717    AutoRRefDeductTy = getRValueReferenceType(getAutoDeductType());
3718  assert(!AutoRRefDeductTy.isNull() && "can't build 'auto &&' pattern");
3719  return AutoRRefDeductTy;
3720}
3721
3722/// getTagDeclType - Return the unique reference to the type for the
3723/// specified TagDecl (struct/union/class/enum) decl.
3724QualType ASTContext::getTagDeclType(const TagDecl *Decl) const {
3725  assert (Decl);
3726  // FIXME: What is the design on getTagDeclType when it requires casting
3727  // away const?  mutable?
3728  return getTypeDeclType(const_cast<TagDecl*>(Decl));
3729}
3730
3731/// getSizeType - Return the unique type for "size_t" (C99 7.17), the result
3732/// of the sizeof operator (C99 6.5.3.4p4). The value is target dependent and
3733/// needs to agree with the definition in <stddef.h>.
3734CanQualType ASTContext::getSizeType() const {
3735  return getFromTargetType(Target->getSizeType());
3736}
3737
3738/// getIntMaxType - Return the unique type for "intmax_t" (C99 7.18.1.5).
3739CanQualType ASTContext::getIntMaxType() const {
3740  return getFromTargetType(Target->getIntMaxType());
3741}
3742
3743/// getUIntMaxType - Return the unique type for "uintmax_t" (C99 7.18.1.5).
3744CanQualType ASTContext::getUIntMaxType() const {
3745  return getFromTargetType(Target->getUIntMaxType());
3746}
3747
3748/// getSignedWCharType - Return the type of "signed wchar_t".
3749/// Used when in C++, as a GCC extension.
3750QualType ASTContext::getSignedWCharType() const {
3751  // FIXME: derive from "Target" ?
3752  return WCharTy;
3753}
3754
3755/// getUnsignedWCharType - Return the type of "unsigned wchar_t".
3756/// Used when in C++, as a GCC extension.
3757QualType ASTContext::getUnsignedWCharType() const {
3758  // FIXME: derive from "Target" ?
3759  return UnsignedIntTy;
3760}
3761
3762QualType ASTContext::getIntPtrType() const {
3763  return getFromTargetType(Target->getIntPtrType());
3764}
3765
3766QualType ASTContext::getUIntPtrType() const {
3767  return getCorrespondingUnsignedType(getIntPtrType());
3768}
3769
3770/// getPointerDiffType - Return the unique type for "ptrdiff_t" (C99 7.17)
3771/// defined in <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9).
3772QualType ASTContext::getPointerDiffType() const {
3773  return getFromTargetType(Target->getPtrDiffType(0));
3774}
3775
3776/// \brief Return the unique type for "pid_t" defined in
3777/// <sys/types.h>. We need this to compute the correct type for vfork().
3778QualType ASTContext::getProcessIDType() const {
3779  return getFromTargetType(Target->getProcessIDType());
3780}
3781
3782//===----------------------------------------------------------------------===//
3783//                              Type Operators
3784//===----------------------------------------------------------------------===//
3785
3786CanQualType ASTContext::getCanonicalParamType(QualType T) const {
3787  // Push qualifiers into arrays, and then discard any remaining
3788  // qualifiers.
3789  T = getCanonicalType(T);
3790  T = getVariableArrayDecayedType(T);
3791  const Type *Ty = T.getTypePtr();
3792  QualType Result;
3793  if (isa<ArrayType>(Ty)) {
3794    Result = getArrayDecayedType(QualType(Ty,0));
3795  } else if (isa<FunctionType>(Ty)) {
3796    Result = getPointerType(QualType(Ty, 0));
3797  } else {
3798    Result = QualType(Ty, 0);
3799  }
3800
3801  return CanQualType::CreateUnsafe(Result);
3802}
3803
3804QualType ASTContext::getUnqualifiedArrayType(QualType type,
3805                                             Qualifiers &quals) {
3806  SplitQualType splitType = type.getSplitUnqualifiedType();
3807
3808  // FIXME: getSplitUnqualifiedType() actually walks all the way to
3809  // the unqualified desugared type and then drops it on the floor.
3810  // We then have to strip that sugar back off with
3811  // getUnqualifiedDesugaredType(), which is silly.
3812  const ArrayType *AT =
3813    dyn_cast<ArrayType>(splitType.Ty->getUnqualifiedDesugaredType());
3814
3815  // If we don't have an array, just use the results in splitType.
3816  if (!AT) {
3817    quals = splitType.Quals;
3818    return QualType(splitType.Ty, 0);
3819  }
3820
3821  // Otherwise, recurse on the array's element type.
3822  QualType elementType = AT->getElementType();
3823  QualType unqualElementType = getUnqualifiedArrayType(elementType, quals);
3824
3825  // If that didn't change the element type, AT has no qualifiers, so we
3826  // can just use the results in splitType.
3827  if (elementType == unqualElementType) {
3828    assert(quals.empty()); // from the recursive call
3829    quals = splitType.Quals;
3830    return QualType(splitType.Ty, 0);
3831  }
3832
3833  // Otherwise, add in the qualifiers from the outermost type, then
3834  // build the type back up.
3835  quals.addConsistentQualifiers(splitType.Quals);
3836
3837  if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) {
3838    return getConstantArrayType(unqualElementType, CAT->getSize(),
3839                                CAT->getSizeModifier(), 0);
3840  }
3841
3842  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) {
3843    return getIncompleteArrayType(unqualElementType, IAT->getSizeModifier(), 0);
3844  }
3845
3846  if (const VariableArrayType *VAT = dyn_cast<VariableArrayType>(AT)) {
3847    return getVariableArrayType(unqualElementType,
3848                                VAT->getSizeExpr(),
3849                                VAT->getSizeModifier(),
3850                                VAT->getIndexTypeCVRQualifiers(),
3851                                VAT->getBracketsRange());
3852  }
3853
3854  const DependentSizedArrayType *DSAT = cast<DependentSizedArrayType>(AT);
3855  return getDependentSizedArrayType(unqualElementType, DSAT->getSizeExpr(),
3856                                    DSAT->getSizeModifier(), 0,
3857                                    SourceRange());
3858}
3859
3860/// UnwrapSimilarPointerTypes - If T1 and T2 are pointer types  that
3861/// may be similar (C++ 4.4), replaces T1 and T2 with the type that
3862/// they point to and return true. If T1 and T2 aren't pointer types
3863/// or pointer-to-member types, or if they are not similar at this
3864/// level, returns false and leaves T1 and T2 unchanged. Top-level
3865/// qualifiers on T1 and T2 are ignored. This function will typically
3866/// be called in a loop that successively "unwraps" pointer and
3867/// pointer-to-member types to compare them at each level.
3868bool ASTContext::UnwrapSimilarPointerTypes(QualType &T1, QualType &T2) {
3869  const PointerType *T1PtrType = T1->getAs<PointerType>(),
3870                    *T2PtrType = T2->getAs<PointerType>();
3871  if (T1PtrType && T2PtrType) {
3872    T1 = T1PtrType->getPointeeType();
3873    T2 = T2PtrType->getPointeeType();
3874    return true;
3875  }
3876
3877  const MemberPointerType *T1MPType = T1->getAs<MemberPointerType>(),
3878                          *T2MPType = T2->getAs<MemberPointerType>();
3879  if (T1MPType && T2MPType &&
3880      hasSameUnqualifiedType(QualType(T1MPType->getClass(), 0),
3881                             QualType(T2MPType->getClass(), 0))) {
3882    T1 = T1MPType->getPointeeType();
3883    T2 = T2MPType->getPointeeType();
3884    return true;
3885  }
3886
3887  if (getLangOpts().ObjC1) {
3888    const ObjCObjectPointerType *T1OPType = T1->getAs<ObjCObjectPointerType>(),
3889                                *T2OPType = T2->getAs<ObjCObjectPointerType>();
3890    if (T1OPType && T2OPType) {
3891      T1 = T1OPType->getPointeeType();
3892      T2 = T2OPType->getPointeeType();
3893      return true;
3894    }
3895  }
3896
3897  // FIXME: Block pointers, too?
3898
3899  return false;
3900}
3901
3902DeclarationNameInfo
3903ASTContext::getNameForTemplate(TemplateName Name,
3904                               SourceLocation NameLoc) const {
3905  switch (Name.getKind()) {
3906  case TemplateName::QualifiedTemplate:
3907  case TemplateName::Template:
3908    // DNInfo work in progress: CHECKME: what about DNLoc?
3909    return DeclarationNameInfo(Name.getAsTemplateDecl()->getDeclName(),
3910                               NameLoc);
3911
3912  case TemplateName::OverloadedTemplate: {
3913    OverloadedTemplateStorage *Storage = Name.getAsOverloadedTemplate();
3914    // DNInfo work in progress: CHECKME: what about DNLoc?
3915    return DeclarationNameInfo((*Storage->begin())->getDeclName(), NameLoc);
3916  }
3917
3918  case TemplateName::DependentTemplate: {
3919    DependentTemplateName *DTN = Name.getAsDependentTemplateName();
3920    DeclarationName DName;
3921    if (DTN->isIdentifier()) {
3922      DName = DeclarationNames.getIdentifier(DTN->getIdentifier());
3923      return DeclarationNameInfo(DName, NameLoc);
3924    } else {
3925      DName = DeclarationNames.getCXXOperatorName(DTN->getOperator());
3926      // DNInfo work in progress: FIXME: source locations?
3927      DeclarationNameLoc DNLoc;
3928      DNLoc.CXXOperatorName.BeginOpNameLoc = SourceLocation().getRawEncoding();
3929      DNLoc.CXXOperatorName.EndOpNameLoc = SourceLocation().getRawEncoding();
3930      return DeclarationNameInfo(DName, NameLoc, DNLoc);
3931    }
3932  }
3933
3934  case TemplateName::SubstTemplateTemplateParm: {
3935    SubstTemplateTemplateParmStorage *subst
3936      = Name.getAsSubstTemplateTemplateParm();
3937    return DeclarationNameInfo(subst->getParameter()->getDeclName(),
3938                               NameLoc);
3939  }
3940
3941  case TemplateName::SubstTemplateTemplateParmPack: {
3942    SubstTemplateTemplateParmPackStorage *subst
3943      = Name.getAsSubstTemplateTemplateParmPack();
3944    return DeclarationNameInfo(subst->getParameterPack()->getDeclName(),
3945                               NameLoc);
3946  }
3947  }
3948
3949  llvm_unreachable("bad template name kind!");
3950}
3951
3952TemplateName ASTContext::getCanonicalTemplateName(TemplateName Name) const {
3953  switch (Name.getKind()) {
3954  case TemplateName::QualifiedTemplate:
3955  case TemplateName::Template: {
3956    TemplateDecl *Template = Name.getAsTemplateDecl();
3957    if (TemplateTemplateParmDecl *TTP
3958          = dyn_cast<TemplateTemplateParmDecl>(Template))
3959      Template = getCanonicalTemplateTemplateParmDecl(TTP);
3960
3961    // The canonical template name is the canonical template declaration.
3962    return TemplateName(cast<TemplateDecl>(Template->getCanonicalDecl()));
3963  }
3964
3965  case TemplateName::OverloadedTemplate:
3966    llvm_unreachable("cannot canonicalize overloaded template");
3967
3968  case TemplateName::DependentTemplate: {
3969    DependentTemplateName *DTN = Name.getAsDependentTemplateName();
3970    assert(DTN && "Non-dependent template names must refer to template decls.");
3971    return DTN->CanonicalTemplateName;
3972  }
3973
3974  case TemplateName::SubstTemplateTemplateParm: {
3975    SubstTemplateTemplateParmStorage *subst
3976      = Name.getAsSubstTemplateTemplateParm();
3977    return getCanonicalTemplateName(subst->getReplacement());
3978  }
3979
3980  case TemplateName::SubstTemplateTemplateParmPack: {
3981    SubstTemplateTemplateParmPackStorage *subst
3982                                  = Name.getAsSubstTemplateTemplateParmPack();
3983    TemplateTemplateParmDecl *canonParameter
3984      = getCanonicalTemplateTemplateParmDecl(subst->getParameterPack());
3985    TemplateArgument canonArgPack
3986      = getCanonicalTemplateArgument(subst->getArgumentPack());
3987    return getSubstTemplateTemplateParmPack(canonParameter, canonArgPack);
3988  }
3989  }
3990
3991  llvm_unreachable("bad template name!");
3992}
3993
3994bool ASTContext::hasSameTemplateName(TemplateName X, TemplateName Y) {
3995  X = getCanonicalTemplateName(X);
3996  Y = getCanonicalTemplateName(Y);
3997  return X.getAsVoidPointer() == Y.getAsVoidPointer();
3998}
3999
4000TemplateArgument
4001ASTContext::getCanonicalTemplateArgument(const TemplateArgument &Arg) const {
4002  switch (Arg.getKind()) {
4003    case TemplateArgument::Null:
4004      return Arg;
4005
4006    case TemplateArgument::Expression:
4007      return Arg;
4008
4009    case TemplateArgument::Declaration: {
4010      ValueDecl *D = cast<ValueDecl>(Arg.getAsDecl()->getCanonicalDecl());
4011      return TemplateArgument(D, Arg.isDeclForReferenceParam());
4012    }
4013
4014    case TemplateArgument::NullPtr:
4015      return TemplateArgument(getCanonicalType(Arg.getNullPtrType()),
4016                              /*isNullPtr*/true);
4017
4018    case TemplateArgument::Template:
4019      return TemplateArgument(getCanonicalTemplateName(Arg.getAsTemplate()));
4020
4021    case TemplateArgument::TemplateExpansion:
4022      return TemplateArgument(getCanonicalTemplateName(
4023                                         Arg.getAsTemplateOrTemplatePattern()),
4024                              Arg.getNumTemplateExpansions());
4025
4026    case TemplateArgument::Integral:
4027      return TemplateArgument(Arg, getCanonicalType(Arg.getIntegralType()));
4028
4029    case TemplateArgument::Type:
4030      return TemplateArgument(getCanonicalType(Arg.getAsType()));
4031
4032    case TemplateArgument::Pack: {
4033      if (Arg.pack_size() == 0)
4034        return Arg;
4035
4036      TemplateArgument *CanonArgs
4037        = new (*this) TemplateArgument[Arg.pack_size()];
4038      unsigned Idx = 0;
4039      for (TemplateArgument::pack_iterator A = Arg.pack_begin(),
4040                                        AEnd = Arg.pack_end();
4041           A != AEnd; (void)++A, ++Idx)
4042        CanonArgs[Idx] = getCanonicalTemplateArgument(*A);
4043
4044      return TemplateArgument(CanonArgs, Arg.pack_size());
4045    }
4046  }
4047
4048  // Silence GCC warning
4049  llvm_unreachable("Unhandled template argument kind");
4050}
4051
4052NestedNameSpecifier *
4053ASTContext::getCanonicalNestedNameSpecifier(NestedNameSpecifier *NNS) const {
4054  if (!NNS)
4055    return 0;
4056
4057  switch (NNS->getKind()) {
4058  case NestedNameSpecifier::Identifier:
4059    // Canonicalize the prefix but keep the identifier the same.
4060    return NestedNameSpecifier::Create(*this,
4061                         getCanonicalNestedNameSpecifier(NNS->getPrefix()),
4062                                       NNS->getAsIdentifier());
4063
4064  case NestedNameSpecifier::Namespace:
4065    // A namespace is canonical; build a nested-name-specifier with
4066    // this namespace and no prefix.
4067    return NestedNameSpecifier::Create(*this, 0,
4068                                 NNS->getAsNamespace()->getOriginalNamespace());
4069
4070  case NestedNameSpecifier::NamespaceAlias:
4071    // A namespace is canonical; build a nested-name-specifier with
4072    // this namespace and no prefix.
4073    return NestedNameSpecifier::Create(*this, 0,
4074                                    NNS->getAsNamespaceAlias()->getNamespace()
4075                                                      ->getOriginalNamespace());
4076
4077  case NestedNameSpecifier::TypeSpec:
4078  case NestedNameSpecifier::TypeSpecWithTemplate: {
4079    QualType T = getCanonicalType(QualType(NNS->getAsType(), 0));
4080
4081    // If we have some kind of dependent-named type (e.g., "typename T::type"),
4082    // break it apart into its prefix and identifier, then reconsititute those
4083    // as the canonical nested-name-specifier. This is required to canonicalize
4084    // a dependent nested-name-specifier involving typedefs of dependent-name
4085    // types, e.g.,
4086    //   typedef typename T::type T1;
4087    //   typedef typename T1::type T2;
4088    if (const DependentNameType *DNT = T->getAs<DependentNameType>())
4089      return NestedNameSpecifier::Create(*this, DNT->getQualifier(),
4090                           const_cast<IdentifierInfo *>(DNT->getIdentifier()));
4091
4092    // Otherwise, just canonicalize the type, and force it to be a TypeSpec.
4093    // FIXME: Why are TypeSpec and TypeSpecWithTemplate distinct in the
4094    // first place?
4095    return NestedNameSpecifier::Create(*this, 0, false,
4096                                       const_cast<Type*>(T.getTypePtr()));
4097  }
4098
4099  case NestedNameSpecifier::Global:
4100    // The global specifier is canonical and unique.
4101    return NNS;
4102  }
4103
4104  llvm_unreachable("Invalid NestedNameSpecifier::Kind!");
4105}
4106
4107
4108const ArrayType *ASTContext::getAsArrayType(QualType T) const {
4109  // Handle the non-qualified case efficiently.
4110  if (!T.hasLocalQualifiers()) {
4111    // Handle the common positive case fast.
4112    if (const ArrayType *AT = dyn_cast<ArrayType>(T))
4113      return AT;
4114  }
4115
4116  // Handle the common negative case fast.
4117  if (!isa<ArrayType>(T.getCanonicalType()))
4118    return 0;
4119
4120  // Apply any qualifiers from the array type to the element type.  This
4121  // implements C99 6.7.3p8: "If the specification of an array type includes
4122  // any type qualifiers, the element type is so qualified, not the array type."
4123
4124  // If we get here, we either have type qualifiers on the type, or we have
4125  // sugar such as a typedef in the way.  If we have type qualifiers on the type
4126  // we must propagate them down into the element type.
4127
4128  SplitQualType split = T.getSplitDesugaredType();
4129  Qualifiers qs = split.Quals;
4130
4131  // If we have a simple case, just return now.
4132  const ArrayType *ATy = dyn_cast<ArrayType>(split.Ty);
4133  if (ATy == 0 || qs.empty())
4134    return ATy;
4135
4136  // Otherwise, we have an array and we have qualifiers on it.  Push the
4137  // qualifiers into the array element type and return a new array type.
4138  QualType NewEltTy = getQualifiedType(ATy->getElementType(), qs);
4139
4140  if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(ATy))
4141    return cast<ArrayType>(getConstantArrayType(NewEltTy, CAT->getSize(),
4142                                                CAT->getSizeModifier(),
4143                                           CAT->getIndexTypeCVRQualifiers()));
4144  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(ATy))
4145    return cast<ArrayType>(getIncompleteArrayType(NewEltTy,
4146                                                  IAT->getSizeModifier(),
4147                                           IAT->getIndexTypeCVRQualifiers()));
4148
4149  if (const DependentSizedArrayType *DSAT
4150        = dyn_cast<DependentSizedArrayType>(ATy))
4151    return cast<ArrayType>(
4152                     getDependentSizedArrayType(NewEltTy,
4153                                                DSAT->getSizeExpr(),
4154                                                DSAT->getSizeModifier(),
4155                                              DSAT->getIndexTypeCVRQualifiers(),
4156                                                DSAT->getBracketsRange()));
4157
4158  const VariableArrayType *VAT = cast<VariableArrayType>(ATy);
4159  return cast<ArrayType>(getVariableArrayType(NewEltTy,
4160                                              VAT->getSizeExpr(),
4161                                              VAT->getSizeModifier(),
4162                                              VAT->getIndexTypeCVRQualifiers(),
4163                                              VAT->getBracketsRange()));
4164}
4165
4166QualType ASTContext::getAdjustedParameterType(QualType T) const {
4167  if (T->isArrayType() || T->isFunctionType())
4168    return getDecayedType(T);
4169  return T;
4170}
4171
4172QualType ASTContext::getSignatureParameterType(QualType T) const {
4173  T = getVariableArrayDecayedType(T);
4174  T = getAdjustedParameterType(T);
4175  return T.getUnqualifiedType();
4176}
4177
4178/// getArrayDecayedType - Return the properly qualified result of decaying the
4179/// specified array type to a pointer.  This operation is non-trivial when
4180/// handling typedefs etc.  The canonical type of "T" must be an array type,
4181/// this returns a pointer to a properly qualified element of the array.
4182///
4183/// See C99 6.7.5.3p7 and C99 6.3.2.1p3.
4184QualType ASTContext::getArrayDecayedType(QualType Ty) const {
4185  // Get the element type with 'getAsArrayType' so that we don't lose any
4186  // typedefs in the element type of the array.  This also handles propagation
4187  // of type qualifiers from the array type into the element type if present
4188  // (C99 6.7.3p8).
4189  const ArrayType *PrettyArrayType = getAsArrayType(Ty);
4190  assert(PrettyArrayType && "Not an array type!");
4191
4192  QualType PtrTy = getPointerType(PrettyArrayType->getElementType());
4193
4194  // int x[restrict 4] ->  int *restrict
4195  return getQualifiedType(PtrTy, PrettyArrayType->getIndexTypeQualifiers());
4196}
4197
4198QualType ASTContext::getBaseElementType(const ArrayType *array) const {
4199  return getBaseElementType(array->getElementType());
4200}
4201
4202QualType ASTContext::getBaseElementType(QualType type) const {
4203  Qualifiers qs;
4204  while (true) {
4205    SplitQualType split = type.getSplitDesugaredType();
4206    const ArrayType *array = split.Ty->getAsArrayTypeUnsafe();
4207    if (!array) break;
4208
4209    type = array->getElementType();
4210    qs.addConsistentQualifiers(split.Quals);
4211  }
4212
4213  return getQualifiedType(type, qs);
4214}
4215
4216/// getConstantArrayElementCount - Returns number of constant array elements.
4217uint64_t
4218ASTContext::getConstantArrayElementCount(const ConstantArrayType *CA)  const {
4219  uint64_t ElementCount = 1;
4220  do {
4221    ElementCount *= CA->getSize().getZExtValue();
4222    CA = dyn_cast_or_null<ConstantArrayType>(
4223      CA->getElementType()->getAsArrayTypeUnsafe());
4224  } while (CA);
4225  return ElementCount;
4226}
4227
4228/// getFloatingRank - Return a relative rank for floating point types.
4229/// This routine will assert if passed a built-in type that isn't a float.
4230static FloatingRank getFloatingRank(QualType T) {
4231  if (const ComplexType *CT = T->getAs<ComplexType>())
4232    return getFloatingRank(CT->getElementType());
4233
4234  assert(T->getAs<BuiltinType>() && "getFloatingRank(): not a floating type");
4235  switch (T->getAs<BuiltinType>()->getKind()) {
4236  default: llvm_unreachable("getFloatingRank(): not a floating type");
4237  case BuiltinType::Half:       return HalfRank;
4238  case BuiltinType::Float:      return FloatRank;
4239  case BuiltinType::Double:     return DoubleRank;
4240  case BuiltinType::LongDouble: return LongDoubleRank;
4241  }
4242}
4243
4244/// getFloatingTypeOfSizeWithinDomain - Returns a real floating
4245/// point or a complex type (based on typeDomain/typeSize).
4246/// 'typeDomain' is a real floating point or complex type.
4247/// 'typeSize' is a real floating point or complex type.
4248QualType ASTContext::getFloatingTypeOfSizeWithinDomain(QualType Size,
4249                                                       QualType Domain) const {
4250  FloatingRank EltRank = getFloatingRank(Size);
4251  if (Domain->isComplexType()) {
4252    switch (EltRank) {
4253    case HalfRank: llvm_unreachable("Complex half is not supported");
4254    case FloatRank:      return FloatComplexTy;
4255    case DoubleRank:     return DoubleComplexTy;
4256    case LongDoubleRank: return LongDoubleComplexTy;
4257    }
4258  }
4259
4260  assert(Domain->isRealFloatingType() && "Unknown domain!");
4261  switch (EltRank) {
4262  case HalfRank:       return HalfTy;
4263  case FloatRank:      return FloatTy;
4264  case DoubleRank:     return DoubleTy;
4265  case LongDoubleRank: return LongDoubleTy;
4266  }
4267  llvm_unreachable("getFloatingRank(): illegal value for rank");
4268}
4269
4270/// getFloatingTypeOrder - Compare the rank of the two specified floating
4271/// point types, ignoring the domain of the type (i.e. 'double' ==
4272/// '_Complex double').  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
4273/// LHS < RHS, return -1.
4274int ASTContext::getFloatingTypeOrder(QualType LHS, QualType RHS) const {
4275  FloatingRank LHSR = getFloatingRank(LHS);
4276  FloatingRank RHSR = getFloatingRank(RHS);
4277
4278  if (LHSR == RHSR)
4279    return 0;
4280  if (LHSR > RHSR)
4281    return 1;
4282  return -1;
4283}
4284
4285/// getIntegerRank - Return an integer conversion rank (C99 6.3.1.1p1). This
4286/// routine will assert if passed a built-in type that isn't an integer or enum,
4287/// or if it is not canonicalized.
4288unsigned ASTContext::getIntegerRank(const Type *T) const {
4289  assert(T->isCanonicalUnqualified() && "T should be canonicalized");
4290
4291  switch (cast<BuiltinType>(T)->getKind()) {
4292  default: llvm_unreachable("getIntegerRank(): not a built-in integer");
4293  case BuiltinType::Bool:
4294    return 1 + (getIntWidth(BoolTy) << 3);
4295  case BuiltinType::Char_S:
4296  case BuiltinType::Char_U:
4297  case BuiltinType::SChar:
4298  case BuiltinType::UChar:
4299    return 2 + (getIntWidth(CharTy) << 3);
4300  case BuiltinType::Short:
4301  case BuiltinType::UShort:
4302    return 3 + (getIntWidth(ShortTy) << 3);
4303  case BuiltinType::Int:
4304  case BuiltinType::UInt:
4305    return 4 + (getIntWidth(IntTy) << 3);
4306  case BuiltinType::Long:
4307  case BuiltinType::ULong:
4308    return 5 + (getIntWidth(LongTy) << 3);
4309  case BuiltinType::LongLong:
4310  case BuiltinType::ULongLong:
4311    return 6 + (getIntWidth(LongLongTy) << 3);
4312  case BuiltinType::Int128:
4313  case BuiltinType::UInt128:
4314    return 7 + (getIntWidth(Int128Ty) << 3);
4315  }
4316}
4317
4318/// \brief Whether this is a promotable bitfield reference according
4319/// to C99 6.3.1.1p2, bullet 2 (and GCC extensions).
4320///
4321/// \returns the type this bit-field will promote to, or NULL if no
4322/// promotion occurs.
4323QualType ASTContext::isPromotableBitField(Expr *E) const {
4324  if (E->isTypeDependent() || E->isValueDependent())
4325    return QualType();
4326
4327  FieldDecl *Field = E->getSourceBitField(); // FIXME: conditional bit-fields?
4328  if (!Field)
4329    return QualType();
4330
4331  QualType FT = Field->getType();
4332
4333  uint64_t BitWidth = Field->getBitWidthValue(*this);
4334  uint64_t IntSize = getTypeSize(IntTy);
4335  // GCC extension compatibility: if the bit-field size is less than or equal
4336  // to the size of int, it gets promoted no matter what its type is.
4337  // For instance, unsigned long bf : 4 gets promoted to signed int.
4338  if (BitWidth < IntSize)
4339    return IntTy;
4340
4341  if (BitWidth == IntSize)
4342    return FT->isSignedIntegerType() ? IntTy : UnsignedIntTy;
4343
4344  // Types bigger than int are not subject to promotions, and therefore act
4345  // like the base type.
4346  // FIXME: This doesn't quite match what gcc does, but what gcc does here
4347  // is ridiculous.
4348  return QualType();
4349}
4350
4351/// getPromotedIntegerType - Returns the type that Promotable will
4352/// promote to: C99 6.3.1.1p2, assuming that Promotable is a promotable
4353/// integer type.
4354QualType ASTContext::getPromotedIntegerType(QualType Promotable) const {
4355  assert(!Promotable.isNull());
4356  assert(Promotable->isPromotableIntegerType());
4357  if (const EnumType *ET = Promotable->getAs<EnumType>())
4358    return ET->getDecl()->getPromotionType();
4359
4360  if (const BuiltinType *BT = Promotable->getAs<BuiltinType>()) {
4361    // C++ [conv.prom]: A prvalue of type char16_t, char32_t, or wchar_t
4362    // (3.9.1) can be converted to a prvalue of the first of the following
4363    // types that can represent all the values of its underlying type:
4364    // int, unsigned int, long int, unsigned long int, long long int, or
4365    // unsigned long long int [...]
4366    // FIXME: Is there some better way to compute this?
4367    if (BT->getKind() == BuiltinType::WChar_S ||
4368        BT->getKind() == BuiltinType::WChar_U ||
4369        BT->getKind() == BuiltinType::Char16 ||
4370        BT->getKind() == BuiltinType::Char32) {
4371      bool FromIsSigned = BT->getKind() == BuiltinType::WChar_S;
4372      uint64_t FromSize = getTypeSize(BT);
4373      QualType PromoteTypes[] = { IntTy, UnsignedIntTy, LongTy, UnsignedLongTy,
4374                                  LongLongTy, UnsignedLongLongTy };
4375      for (size_t Idx = 0; Idx < llvm::array_lengthof(PromoteTypes); ++Idx) {
4376        uint64_t ToSize = getTypeSize(PromoteTypes[Idx]);
4377        if (FromSize < ToSize ||
4378            (FromSize == ToSize &&
4379             FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType()))
4380          return PromoteTypes[Idx];
4381      }
4382      llvm_unreachable("char type should fit into long long");
4383    }
4384  }
4385
4386  // At this point, we should have a signed or unsigned integer type.
4387  if (Promotable->isSignedIntegerType())
4388    return IntTy;
4389  uint64_t PromotableSize = getIntWidth(Promotable);
4390  uint64_t IntSize = getIntWidth(IntTy);
4391  assert(Promotable->isUnsignedIntegerType() && PromotableSize <= IntSize);
4392  return (PromotableSize != IntSize) ? IntTy : UnsignedIntTy;
4393}
4394
4395/// \brief Recurses in pointer/array types until it finds an objc retainable
4396/// type and returns its ownership.
4397Qualifiers::ObjCLifetime ASTContext::getInnerObjCOwnership(QualType T) const {
4398  while (!T.isNull()) {
4399    if (T.getObjCLifetime() != Qualifiers::OCL_None)
4400      return T.getObjCLifetime();
4401    if (T->isArrayType())
4402      T = getBaseElementType(T);
4403    else if (const PointerType *PT = T->getAs<PointerType>())
4404      T = PT->getPointeeType();
4405    else if (const ReferenceType *RT = T->getAs<ReferenceType>())
4406      T = RT->getPointeeType();
4407    else
4408      break;
4409  }
4410
4411  return Qualifiers::OCL_None;
4412}
4413
4414/// getIntegerTypeOrder - Returns the highest ranked integer type:
4415/// C99 6.3.1.8p1.  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
4416/// LHS < RHS, return -1.
4417int ASTContext::getIntegerTypeOrder(QualType LHS, QualType RHS) const {
4418  const Type *LHSC = getCanonicalType(LHS).getTypePtr();
4419  const Type *RHSC = getCanonicalType(RHS).getTypePtr();
4420  if (LHSC == RHSC) return 0;
4421
4422  bool LHSUnsigned = LHSC->isUnsignedIntegerType();
4423  bool RHSUnsigned = RHSC->isUnsignedIntegerType();
4424
4425  unsigned LHSRank = getIntegerRank(LHSC);
4426  unsigned RHSRank = getIntegerRank(RHSC);
4427
4428  if (LHSUnsigned == RHSUnsigned) {  // Both signed or both unsigned.
4429    if (LHSRank == RHSRank) return 0;
4430    return LHSRank > RHSRank ? 1 : -1;
4431  }
4432
4433  // Otherwise, the LHS is signed and the RHS is unsigned or visa versa.
4434  if (LHSUnsigned) {
4435    // If the unsigned [LHS] type is larger, return it.
4436    if (LHSRank >= RHSRank)
4437      return 1;
4438
4439    // If the signed type can represent all values of the unsigned type, it
4440    // wins.  Because we are dealing with 2's complement and types that are
4441    // powers of two larger than each other, this is always safe.
4442    return -1;
4443  }
4444
4445  // If the unsigned [RHS] type is larger, return it.
4446  if (RHSRank >= LHSRank)
4447    return -1;
4448
4449  // If the signed type can represent all values of the unsigned type, it
4450  // wins.  Because we are dealing with 2's complement and types that are
4451  // powers of two larger than each other, this is always safe.
4452  return 1;
4453}
4454
4455static RecordDecl *
4456CreateRecordDecl(const ASTContext &Ctx, RecordDecl::TagKind TK,
4457                 DeclContext *DC, IdentifierInfo *Id) {
4458  SourceLocation Loc;
4459  if (Ctx.getLangOpts().CPlusPlus)
4460    return CXXRecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id);
4461  else
4462    return RecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id);
4463}
4464
4465// getCFConstantStringType - Return the type used for constant CFStrings.
4466QualType ASTContext::getCFConstantStringType() const {
4467  if (!CFConstantStringTypeDecl) {
4468    CFConstantStringTypeDecl =
4469      CreateRecordDecl(*this, TTK_Struct, TUDecl,
4470                       &Idents.get("NSConstantString"));
4471    CFConstantStringTypeDecl->startDefinition();
4472
4473    QualType FieldTypes[4];
4474
4475    // const int *isa;
4476    FieldTypes[0] = getPointerType(IntTy.withConst());
4477    // int flags;
4478    FieldTypes[1] = IntTy;
4479    // const char *str;
4480    FieldTypes[2] = getPointerType(CharTy.withConst());
4481    // long length;
4482    FieldTypes[3] = LongTy;
4483
4484    // Create fields
4485    for (unsigned i = 0; i < 4; ++i) {
4486      FieldDecl *Field = FieldDecl::Create(*this, CFConstantStringTypeDecl,
4487                                           SourceLocation(),
4488                                           SourceLocation(), 0,
4489                                           FieldTypes[i], /*TInfo=*/0,
4490                                           /*BitWidth=*/0,
4491                                           /*Mutable=*/false,
4492                                           ICIS_NoInit);
4493      Field->setAccess(AS_public);
4494      CFConstantStringTypeDecl->addDecl(Field);
4495    }
4496
4497    CFConstantStringTypeDecl->completeDefinition();
4498  }
4499
4500  return getTagDeclType(CFConstantStringTypeDecl);
4501}
4502
4503QualType ASTContext::getObjCSuperType() const {
4504  if (ObjCSuperType.isNull()) {
4505    RecordDecl *ObjCSuperTypeDecl  =
4506      CreateRecordDecl(*this, TTK_Struct, TUDecl, &Idents.get("objc_super"));
4507    TUDecl->addDecl(ObjCSuperTypeDecl);
4508    ObjCSuperType = getTagDeclType(ObjCSuperTypeDecl);
4509  }
4510  return ObjCSuperType;
4511}
4512
4513void ASTContext::setCFConstantStringType(QualType T) {
4514  const RecordType *Rec = T->getAs<RecordType>();
4515  assert(Rec && "Invalid CFConstantStringType");
4516  CFConstantStringTypeDecl = Rec->getDecl();
4517}
4518
4519QualType ASTContext::getBlockDescriptorType() const {
4520  if (BlockDescriptorType)
4521    return getTagDeclType(BlockDescriptorType);
4522
4523  RecordDecl *T;
4524  // FIXME: Needs the FlagAppleBlock bit.
4525  T = CreateRecordDecl(*this, TTK_Struct, TUDecl,
4526                       &Idents.get("__block_descriptor"));
4527  T->startDefinition();
4528
4529  QualType FieldTypes[] = {
4530    UnsignedLongTy,
4531    UnsignedLongTy,
4532  };
4533
4534  static const char *const FieldNames[] = {
4535    "reserved",
4536    "Size"
4537  };
4538
4539  for (size_t i = 0; i < 2; ++i) {
4540    FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(),
4541                                         SourceLocation(),
4542                                         &Idents.get(FieldNames[i]),
4543                                         FieldTypes[i], /*TInfo=*/0,
4544                                         /*BitWidth=*/0,
4545                                         /*Mutable=*/false,
4546                                         ICIS_NoInit);
4547    Field->setAccess(AS_public);
4548    T->addDecl(Field);
4549  }
4550
4551  T->completeDefinition();
4552
4553  BlockDescriptorType = T;
4554
4555  return getTagDeclType(BlockDescriptorType);
4556}
4557
4558QualType ASTContext::getBlockDescriptorExtendedType() const {
4559  if (BlockDescriptorExtendedType)
4560    return getTagDeclType(BlockDescriptorExtendedType);
4561
4562  RecordDecl *T;
4563  // FIXME: Needs the FlagAppleBlock bit.
4564  T = CreateRecordDecl(*this, TTK_Struct, TUDecl,
4565                       &Idents.get("__block_descriptor_withcopydispose"));
4566  T->startDefinition();
4567
4568  QualType FieldTypes[] = {
4569    UnsignedLongTy,
4570    UnsignedLongTy,
4571    getPointerType(VoidPtrTy),
4572    getPointerType(VoidPtrTy)
4573  };
4574
4575  static const char *const FieldNames[] = {
4576    "reserved",
4577    "Size",
4578    "CopyFuncPtr",
4579    "DestroyFuncPtr"
4580  };
4581
4582  for (size_t i = 0; i < 4; ++i) {
4583    FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(),
4584                                         SourceLocation(),
4585                                         &Idents.get(FieldNames[i]),
4586                                         FieldTypes[i], /*TInfo=*/0,
4587                                         /*BitWidth=*/0,
4588                                         /*Mutable=*/false,
4589                                         ICIS_NoInit);
4590    Field->setAccess(AS_public);
4591    T->addDecl(Field);
4592  }
4593
4594  T->completeDefinition();
4595
4596  BlockDescriptorExtendedType = T;
4597
4598  return getTagDeclType(BlockDescriptorExtendedType);
4599}
4600
4601/// BlockRequiresCopying - Returns true if byref variable "D" of type "Ty"
4602/// requires copy/dispose. Note that this must match the logic
4603/// in buildByrefHelpers.
4604bool ASTContext::BlockRequiresCopying(QualType Ty,
4605                                      const VarDecl *D) {
4606  if (const CXXRecordDecl *record = Ty->getAsCXXRecordDecl()) {
4607    const Expr *copyExpr = getBlockVarCopyInits(D);
4608    if (!copyExpr && record->hasTrivialDestructor()) return false;
4609
4610    return true;
4611  }
4612
4613  if (!Ty->isObjCRetainableType()) return false;
4614
4615  Qualifiers qs = Ty.getQualifiers();
4616
4617  // If we have lifetime, that dominates.
4618  if (Qualifiers::ObjCLifetime lifetime = qs.getObjCLifetime()) {
4619    assert(getLangOpts().ObjCAutoRefCount);
4620
4621    switch (lifetime) {
4622      case Qualifiers::OCL_None: llvm_unreachable("impossible");
4623
4624      // These are just bits as far as the runtime is concerned.
4625      case Qualifiers::OCL_ExplicitNone:
4626      case Qualifiers::OCL_Autoreleasing:
4627        return false;
4628
4629      // Tell the runtime that this is ARC __weak, called by the
4630      // byref routines.
4631      case Qualifiers::OCL_Weak:
4632      // ARC __strong __block variables need to be retained.
4633      case Qualifiers::OCL_Strong:
4634        return true;
4635    }
4636    llvm_unreachable("fell out of lifetime switch!");
4637  }
4638  return (Ty->isBlockPointerType() || isObjCNSObjectType(Ty) ||
4639          Ty->isObjCObjectPointerType());
4640}
4641
4642bool ASTContext::getByrefLifetime(QualType Ty,
4643                              Qualifiers::ObjCLifetime &LifeTime,
4644                              bool &HasByrefExtendedLayout) const {
4645
4646  if (!getLangOpts().ObjC1 ||
4647      getLangOpts().getGC() != LangOptions::NonGC)
4648    return false;
4649
4650  HasByrefExtendedLayout = false;
4651  if (Ty->isRecordType()) {
4652    HasByrefExtendedLayout = true;
4653    LifeTime = Qualifiers::OCL_None;
4654  }
4655  else if (getLangOpts().ObjCAutoRefCount)
4656    LifeTime = Ty.getObjCLifetime();
4657  // MRR.
4658  else if (Ty->isObjCObjectPointerType() || Ty->isBlockPointerType())
4659    LifeTime = Qualifiers::OCL_ExplicitNone;
4660  else
4661    LifeTime = Qualifiers::OCL_None;
4662  return true;
4663}
4664
4665TypedefDecl *ASTContext::getObjCInstanceTypeDecl() {
4666  if (!ObjCInstanceTypeDecl)
4667    ObjCInstanceTypeDecl = TypedefDecl::Create(*this,
4668                                               getTranslationUnitDecl(),
4669                                               SourceLocation(),
4670                                               SourceLocation(),
4671                                               &Idents.get("instancetype"),
4672                                     getTrivialTypeSourceInfo(getObjCIdType()));
4673  return ObjCInstanceTypeDecl;
4674}
4675
4676// This returns true if a type has been typedefed to BOOL:
4677// typedef <type> BOOL;
4678static bool isTypeTypedefedAsBOOL(QualType T) {
4679  if (const TypedefType *TT = dyn_cast<TypedefType>(T))
4680    if (IdentifierInfo *II = TT->getDecl()->getIdentifier())
4681      return II->isStr("BOOL");
4682
4683  return false;
4684}
4685
4686/// getObjCEncodingTypeSize returns size of type for objective-c encoding
4687/// purpose.
4688CharUnits ASTContext::getObjCEncodingTypeSize(QualType type) const {
4689  if (!type->isIncompleteArrayType() && type->isIncompleteType())
4690    return CharUnits::Zero();
4691
4692  CharUnits sz = getTypeSizeInChars(type);
4693
4694  // Make all integer and enum types at least as large as an int
4695  if (sz.isPositive() && type->isIntegralOrEnumerationType())
4696    sz = std::max(sz, getTypeSizeInChars(IntTy));
4697  // Treat arrays as pointers, since that's how they're passed in.
4698  else if (type->isArrayType())
4699    sz = getTypeSizeInChars(VoidPtrTy);
4700  return sz;
4701}
4702
4703static inline
4704std::string charUnitsToString(const CharUnits &CU) {
4705  return llvm::itostr(CU.getQuantity());
4706}
4707
4708/// getObjCEncodingForBlock - Return the encoded type for this block
4709/// declaration.
4710std::string ASTContext::getObjCEncodingForBlock(const BlockExpr *Expr) const {
4711  std::string S;
4712
4713  const BlockDecl *Decl = Expr->getBlockDecl();
4714  QualType BlockTy =
4715      Expr->getType()->getAs<BlockPointerType>()->getPointeeType();
4716  // Encode result type.
4717  if (getLangOpts().EncodeExtendedBlockSig)
4718    getObjCEncodingForMethodParameter(Decl::OBJC_TQ_None,
4719                            BlockTy->getAs<FunctionType>()->getResultType(),
4720                            S, true /*Extended*/);
4721  else
4722    getObjCEncodingForType(BlockTy->getAs<FunctionType>()->getResultType(),
4723                           S);
4724  // Compute size of all parameters.
4725  // Start with computing size of a pointer in number of bytes.
4726  // FIXME: There might(should) be a better way of doing this computation!
4727  SourceLocation Loc;
4728  CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy);
4729  CharUnits ParmOffset = PtrSize;
4730  for (BlockDecl::param_const_iterator PI = Decl->param_begin(),
4731       E = Decl->param_end(); PI != E; ++PI) {
4732    QualType PType = (*PI)->getType();
4733    CharUnits sz = getObjCEncodingTypeSize(PType);
4734    if (sz.isZero())
4735      continue;
4736    assert (sz.isPositive() && "BlockExpr - Incomplete param type");
4737    ParmOffset += sz;
4738  }
4739  // Size of the argument frame
4740  S += charUnitsToString(ParmOffset);
4741  // Block pointer and offset.
4742  S += "@?0";
4743
4744  // Argument types.
4745  ParmOffset = PtrSize;
4746  for (BlockDecl::param_const_iterator PI = Decl->param_begin(), E =
4747       Decl->param_end(); PI != E; ++PI) {
4748    ParmVarDecl *PVDecl = *PI;
4749    QualType PType = PVDecl->getOriginalType();
4750    if (const ArrayType *AT =
4751          dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
4752      // Use array's original type only if it has known number of
4753      // elements.
4754      if (!isa<ConstantArrayType>(AT))
4755        PType = PVDecl->getType();
4756    } else if (PType->isFunctionType())
4757      PType = PVDecl->getType();
4758    if (getLangOpts().EncodeExtendedBlockSig)
4759      getObjCEncodingForMethodParameter(Decl::OBJC_TQ_None, PType,
4760                                      S, true /*Extended*/);
4761    else
4762      getObjCEncodingForType(PType, S);
4763    S += charUnitsToString(ParmOffset);
4764    ParmOffset += getObjCEncodingTypeSize(PType);
4765  }
4766
4767  return S;
4768}
4769
4770bool ASTContext::getObjCEncodingForFunctionDecl(const FunctionDecl *Decl,
4771                                                std::string& S) {
4772  // Encode result type.
4773  getObjCEncodingForType(Decl->getResultType(), S);
4774  CharUnits ParmOffset;
4775  // Compute size of all parameters.
4776  for (FunctionDecl::param_const_iterator PI = Decl->param_begin(),
4777       E = Decl->param_end(); PI != E; ++PI) {
4778    QualType PType = (*PI)->getType();
4779    CharUnits sz = getObjCEncodingTypeSize(PType);
4780    if (sz.isZero())
4781      continue;
4782
4783    assert (sz.isPositive() &&
4784        "getObjCEncodingForFunctionDecl - Incomplete param type");
4785    ParmOffset += sz;
4786  }
4787  S += charUnitsToString(ParmOffset);
4788  ParmOffset = CharUnits::Zero();
4789
4790  // Argument types.
4791  for (FunctionDecl::param_const_iterator PI = Decl->param_begin(),
4792       E = Decl->param_end(); PI != E; ++PI) {
4793    ParmVarDecl *PVDecl = *PI;
4794    QualType PType = PVDecl->getOriginalType();
4795    if (const ArrayType *AT =
4796          dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
4797      // Use array's original type only if it has known number of
4798      // elements.
4799      if (!isa<ConstantArrayType>(AT))
4800        PType = PVDecl->getType();
4801    } else if (PType->isFunctionType())
4802      PType = PVDecl->getType();
4803    getObjCEncodingForType(PType, S);
4804    S += charUnitsToString(ParmOffset);
4805    ParmOffset += getObjCEncodingTypeSize(PType);
4806  }
4807
4808  return false;
4809}
4810
4811/// getObjCEncodingForMethodParameter - Return the encoded type for a single
4812/// method parameter or return type. If Extended, include class names and
4813/// block object types.
4814void ASTContext::getObjCEncodingForMethodParameter(Decl::ObjCDeclQualifier QT,
4815                                                   QualType T, std::string& S,
4816                                                   bool Extended) const {
4817  // Encode type qualifer, 'in', 'inout', etc. for the parameter.
4818  getObjCEncodingForTypeQualifier(QT, S);
4819  // Encode parameter type.
4820  getObjCEncodingForTypeImpl(T, S, true, true, 0,
4821                             true     /*OutermostType*/,
4822                             false    /*EncodingProperty*/,
4823                             false    /*StructField*/,
4824                             Extended /*EncodeBlockParameters*/,
4825                             Extended /*EncodeClassNames*/);
4826}
4827
4828/// getObjCEncodingForMethodDecl - Return the encoded type for this method
4829/// declaration.
4830bool ASTContext::getObjCEncodingForMethodDecl(const ObjCMethodDecl *Decl,
4831                                              std::string& S,
4832                                              bool Extended) const {
4833  // FIXME: This is not very efficient.
4834  // Encode return type.
4835  getObjCEncodingForMethodParameter(Decl->getObjCDeclQualifier(),
4836                                    Decl->getResultType(), S, Extended);
4837  // Compute size of all parameters.
4838  // Start with computing size of a pointer in number of bytes.
4839  // FIXME: There might(should) be a better way of doing this computation!
4840  SourceLocation Loc;
4841  CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy);
4842  // The first two arguments (self and _cmd) are pointers; account for
4843  // their size.
4844  CharUnits ParmOffset = 2 * PtrSize;
4845  for (ObjCMethodDecl::param_const_iterator PI = Decl->param_begin(),
4846       E = Decl->sel_param_end(); PI != E; ++PI) {
4847    QualType PType = (*PI)->getType();
4848    CharUnits sz = getObjCEncodingTypeSize(PType);
4849    if (sz.isZero())
4850      continue;
4851
4852    assert (sz.isPositive() &&
4853        "getObjCEncodingForMethodDecl - Incomplete param type");
4854    ParmOffset += sz;
4855  }
4856  S += charUnitsToString(ParmOffset);
4857  S += "@0:";
4858  S += charUnitsToString(PtrSize);
4859
4860  // Argument types.
4861  ParmOffset = 2 * PtrSize;
4862  for (ObjCMethodDecl::param_const_iterator PI = Decl->param_begin(),
4863       E = Decl->sel_param_end(); PI != E; ++PI) {
4864    const ParmVarDecl *PVDecl = *PI;
4865    QualType PType = PVDecl->getOriginalType();
4866    if (const ArrayType *AT =
4867          dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
4868      // Use array's original type only if it has known number of
4869      // elements.
4870      if (!isa<ConstantArrayType>(AT))
4871        PType = PVDecl->getType();
4872    } else if (PType->isFunctionType())
4873      PType = PVDecl->getType();
4874    getObjCEncodingForMethodParameter(PVDecl->getObjCDeclQualifier(),
4875                                      PType, S, Extended);
4876    S += charUnitsToString(ParmOffset);
4877    ParmOffset += getObjCEncodingTypeSize(PType);
4878  }
4879
4880  return false;
4881}
4882
4883/// getObjCEncodingForPropertyDecl - Return the encoded type for this
4884/// property declaration. If non-NULL, Container must be either an
4885/// ObjCCategoryImplDecl or ObjCImplementationDecl; it should only be
4886/// NULL when getting encodings for protocol properties.
4887/// Property attributes are stored as a comma-delimited C string. The simple
4888/// attributes readonly and bycopy are encoded as single characters. The
4889/// parametrized attributes, getter=name, setter=name, and ivar=name, are
4890/// encoded as single characters, followed by an identifier. Property types
4891/// are also encoded as a parametrized attribute. The characters used to encode
4892/// these attributes are defined by the following enumeration:
4893/// @code
4894/// enum PropertyAttributes {
4895/// kPropertyReadOnly = 'R',   // property is read-only.
4896/// kPropertyBycopy = 'C',     // property is a copy of the value last assigned
4897/// kPropertyByref = '&',  // property is a reference to the value last assigned
4898/// kPropertyDynamic = 'D',    // property is dynamic
4899/// kPropertyGetter = 'G',     // followed by getter selector name
4900/// kPropertySetter = 'S',     // followed by setter selector name
4901/// kPropertyInstanceVariable = 'V'  // followed by instance variable  name
4902/// kPropertyType = 'T'              // followed by old-style type encoding.
4903/// kPropertyWeak = 'W'              // 'weak' property
4904/// kPropertyStrong = 'P'            // property GC'able
4905/// kPropertyNonAtomic = 'N'         // property non-atomic
4906/// };
4907/// @endcode
4908void ASTContext::getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD,
4909                                                const Decl *Container,
4910                                                std::string& S) const {
4911  // Collect information from the property implementation decl(s).
4912  bool Dynamic = false;
4913  ObjCPropertyImplDecl *SynthesizePID = 0;
4914
4915  // FIXME: Duplicated code due to poor abstraction.
4916  if (Container) {
4917    if (const ObjCCategoryImplDecl *CID =
4918        dyn_cast<ObjCCategoryImplDecl>(Container)) {
4919      for (ObjCCategoryImplDecl::propimpl_iterator
4920             i = CID->propimpl_begin(), e = CID->propimpl_end();
4921           i != e; ++i) {
4922        ObjCPropertyImplDecl *PID = *i;
4923        if (PID->getPropertyDecl() == PD) {
4924          if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) {
4925            Dynamic = true;
4926          } else {
4927            SynthesizePID = PID;
4928          }
4929        }
4930      }
4931    } else {
4932      const ObjCImplementationDecl *OID=cast<ObjCImplementationDecl>(Container);
4933      for (ObjCCategoryImplDecl::propimpl_iterator
4934             i = OID->propimpl_begin(), e = OID->propimpl_end();
4935           i != e; ++i) {
4936        ObjCPropertyImplDecl *PID = *i;
4937        if (PID->getPropertyDecl() == PD) {
4938          if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) {
4939            Dynamic = true;
4940          } else {
4941            SynthesizePID = PID;
4942          }
4943        }
4944      }
4945    }
4946  }
4947
4948  // FIXME: This is not very efficient.
4949  S = "T";
4950
4951  // Encode result type.
4952  // GCC has some special rules regarding encoding of properties which
4953  // closely resembles encoding of ivars.
4954  getObjCEncodingForTypeImpl(PD->getType(), S, true, true, 0,
4955                             true /* outermost type */,
4956                             true /* encoding for property */);
4957
4958  if (PD->isReadOnly()) {
4959    S += ",R";
4960    if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_copy)
4961      S += ",C";
4962    if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_retain)
4963      S += ",&";
4964  } else {
4965    switch (PD->getSetterKind()) {
4966    case ObjCPropertyDecl::Assign: break;
4967    case ObjCPropertyDecl::Copy:   S += ",C"; break;
4968    case ObjCPropertyDecl::Retain: S += ",&"; break;
4969    case ObjCPropertyDecl::Weak:   S += ",W"; break;
4970    }
4971  }
4972
4973  // It really isn't clear at all what this means, since properties
4974  // are "dynamic by default".
4975  if (Dynamic)
4976    S += ",D";
4977
4978  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_nonatomic)
4979    S += ",N";
4980
4981  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_getter) {
4982    S += ",G";
4983    S += PD->getGetterName().getAsString();
4984  }
4985
4986  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_setter) {
4987    S += ",S";
4988    S += PD->getSetterName().getAsString();
4989  }
4990
4991  if (SynthesizePID) {
4992    const ObjCIvarDecl *OID = SynthesizePID->getPropertyIvarDecl();
4993    S += ",V";
4994    S += OID->getNameAsString();
4995  }
4996
4997  // FIXME: OBJCGC: weak & strong
4998}
4999
5000/// getLegacyIntegralTypeEncoding -
5001/// Another legacy compatibility encoding: 32-bit longs are encoded as
5002/// 'l' or 'L' , but not always.  For typedefs, we need to use
5003/// 'i' or 'I' instead if encoding a struct field, or a pointer!
5004///
5005void ASTContext::getLegacyIntegralTypeEncoding (QualType &PointeeTy) const {
5006  if (isa<TypedefType>(PointeeTy.getTypePtr())) {
5007    if (const BuiltinType *BT = PointeeTy->getAs<BuiltinType>()) {
5008      if (BT->getKind() == BuiltinType::ULong && getIntWidth(PointeeTy) == 32)
5009        PointeeTy = UnsignedIntTy;
5010      else
5011        if (BT->getKind() == BuiltinType::Long && getIntWidth(PointeeTy) == 32)
5012          PointeeTy = IntTy;
5013    }
5014  }
5015}
5016
5017void ASTContext::getObjCEncodingForType(QualType T, std::string& S,
5018                                        const FieldDecl *Field) const {
5019  // We follow the behavior of gcc, expanding structures which are
5020  // directly pointed to, and expanding embedded structures. Note that
5021  // these rules are sufficient to prevent recursive encoding of the
5022  // same type.
5023  getObjCEncodingForTypeImpl(T, S, true, true, Field,
5024                             true /* outermost type */);
5025}
5026
5027static char getObjCEncodingForPrimitiveKind(const ASTContext *C,
5028                                            BuiltinType::Kind kind) {
5029    switch (kind) {
5030    case BuiltinType::Void:       return 'v';
5031    case BuiltinType::Bool:       return 'B';
5032    case BuiltinType::Char_U:
5033    case BuiltinType::UChar:      return 'C';
5034    case BuiltinType::Char16:
5035    case BuiltinType::UShort:     return 'S';
5036    case BuiltinType::Char32:
5037    case BuiltinType::UInt:       return 'I';
5038    case BuiltinType::ULong:
5039        return C->getTargetInfo().getLongWidth() == 32 ? 'L' : 'Q';
5040    case BuiltinType::UInt128:    return 'T';
5041    case BuiltinType::ULongLong:  return 'Q';
5042    case BuiltinType::Char_S:
5043    case BuiltinType::SChar:      return 'c';
5044    case BuiltinType::Short:      return 's';
5045    case BuiltinType::WChar_S:
5046    case BuiltinType::WChar_U:
5047    case BuiltinType::Int:        return 'i';
5048    case BuiltinType::Long:
5049      return C->getTargetInfo().getLongWidth() == 32 ? 'l' : 'q';
5050    case BuiltinType::LongLong:   return 'q';
5051    case BuiltinType::Int128:     return 't';
5052    case BuiltinType::Float:      return 'f';
5053    case BuiltinType::Double:     return 'd';
5054    case BuiltinType::LongDouble: return 'D';
5055    case BuiltinType::NullPtr:    return '*'; // like char*
5056
5057    case BuiltinType::Half:
5058      // FIXME: potentially need @encodes for these!
5059      return ' ';
5060
5061    case BuiltinType::ObjCId:
5062    case BuiltinType::ObjCClass:
5063    case BuiltinType::ObjCSel:
5064      llvm_unreachable("@encoding ObjC primitive type");
5065
5066    // OpenCL and placeholder types don't need @encodings.
5067    case BuiltinType::OCLImage1d:
5068    case BuiltinType::OCLImage1dArray:
5069    case BuiltinType::OCLImage1dBuffer:
5070    case BuiltinType::OCLImage2d:
5071    case BuiltinType::OCLImage2dArray:
5072    case BuiltinType::OCLImage3d:
5073    case BuiltinType::OCLEvent:
5074    case BuiltinType::OCLSampler:
5075    case BuiltinType::Dependent:
5076#define BUILTIN_TYPE(KIND, ID)
5077#define PLACEHOLDER_TYPE(KIND, ID) \
5078    case BuiltinType::KIND:
5079#include "clang/AST/BuiltinTypes.def"
5080      llvm_unreachable("invalid builtin type for @encode");
5081    }
5082    llvm_unreachable("invalid BuiltinType::Kind value");
5083}
5084
5085static char ObjCEncodingForEnumType(const ASTContext *C, const EnumType *ET) {
5086  EnumDecl *Enum = ET->getDecl();
5087
5088  // The encoding of an non-fixed enum type is always 'i', regardless of size.
5089  if (!Enum->isFixed())
5090    return 'i';
5091
5092  // The encoding of a fixed enum type matches its fixed underlying type.
5093  const BuiltinType *BT = Enum->getIntegerType()->castAs<BuiltinType>();
5094  return getObjCEncodingForPrimitiveKind(C, BT->getKind());
5095}
5096
5097static void EncodeBitField(const ASTContext *Ctx, std::string& S,
5098                           QualType T, const FieldDecl *FD) {
5099  assert(FD->isBitField() && "not a bitfield - getObjCEncodingForTypeImpl");
5100  S += 'b';
5101  // The NeXT runtime encodes bit fields as b followed by the number of bits.
5102  // The GNU runtime requires more information; bitfields are encoded as b,
5103  // then the offset (in bits) of the first element, then the type of the
5104  // bitfield, then the size in bits.  For example, in this structure:
5105  //
5106  // struct
5107  // {
5108  //    int integer;
5109  //    int flags:2;
5110  // };
5111  // On a 32-bit system, the encoding for flags would be b2 for the NeXT
5112  // runtime, but b32i2 for the GNU runtime.  The reason for this extra
5113  // information is not especially sensible, but we're stuck with it for
5114  // compatibility with GCC, although providing it breaks anything that
5115  // actually uses runtime introspection and wants to work on both runtimes...
5116  if (Ctx->getLangOpts().ObjCRuntime.isGNUFamily()) {
5117    const RecordDecl *RD = FD->getParent();
5118    const ASTRecordLayout &RL = Ctx->getASTRecordLayout(RD);
5119    S += llvm::utostr(RL.getFieldOffset(FD->getFieldIndex()));
5120    if (const EnumType *ET = T->getAs<EnumType>())
5121      S += ObjCEncodingForEnumType(Ctx, ET);
5122    else {
5123      const BuiltinType *BT = T->castAs<BuiltinType>();
5124      S += getObjCEncodingForPrimitiveKind(Ctx, BT->getKind());
5125    }
5126  }
5127  S += llvm::utostr(FD->getBitWidthValue(*Ctx));
5128}
5129
5130// FIXME: Use SmallString for accumulating string.
5131void ASTContext::getObjCEncodingForTypeImpl(QualType T, std::string& S,
5132                                            bool ExpandPointedToStructures,
5133                                            bool ExpandStructures,
5134                                            const FieldDecl *FD,
5135                                            bool OutermostType,
5136                                            bool EncodingProperty,
5137                                            bool StructField,
5138                                            bool EncodeBlockParameters,
5139                                            bool EncodeClassNames,
5140                                            bool EncodePointerToObjCTypedef) const {
5141  CanQualType CT = getCanonicalType(T);
5142  switch (CT->getTypeClass()) {
5143  case Type::Builtin:
5144  case Type::Enum:
5145    if (FD && FD->isBitField())
5146      return EncodeBitField(this, S, T, FD);
5147    if (const BuiltinType *BT = dyn_cast<BuiltinType>(CT))
5148      S += getObjCEncodingForPrimitiveKind(this, BT->getKind());
5149    else
5150      S += ObjCEncodingForEnumType(this, cast<EnumType>(CT));
5151    return;
5152
5153  case Type::Complex: {
5154    const ComplexType *CT = T->castAs<ComplexType>();
5155    S += 'j';
5156    getObjCEncodingForTypeImpl(CT->getElementType(), S, false, false, 0, false,
5157                               false);
5158    return;
5159  }
5160
5161  case Type::Atomic: {
5162    const AtomicType *AT = T->castAs<AtomicType>();
5163    S += 'A';
5164    getObjCEncodingForTypeImpl(AT->getValueType(), S, false, false, 0,
5165                               false, false);
5166    return;
5167  }
5168
5169  // encoding for pointer or reference types.
5170  case Type::Pointer:
5171  case Type::LValueReference:
5172  case Type::RValueReference: {
5173    QualType PointeeTy;
5174    if (isa<PointerType>(CT)) {
5175      const PointerType *PT = T->castAs<PointerType>();
5176      if (PT->isObjCSelType()) {
5177        S += ':';
5178        return;
5179      }
5180      PointeeTy = PT->getPointeeType();
5181    } else {
5182      PointeeTy = T->castAs<ReferenceType>()->getPointeeType();
5183    }
5184
5185    bool isReadOnly = false;
5186    // For historical/compatibility reasons, the read-only qualifier of the
5187    // pointee gets emitted _before_ the '^'.  The read-only qualifier of
5188    // the pointer itself gets ignored, _unless_ we are looking at a typedef!
5189    // Also, do not emit the 'r' for anything but the outermost type!
5190    if (isa<TypedefType>(T.getTypePtr())) {
5191      if (OutermostType && T.isConstQualified()) {
5192        isReadOnly = true;
5193        S += 'r';
5194      }
5195    } else if (OutermostType) {
5196      QualType P = PointeeTy;
5197      while (P->getAs<PointerType>())
5198        P = P->getAs<PointerType>()->getPointeeType();
5199      if (P.isConstQualified()) {
5200        isReadOnly = true;
5201        S += 'r';
5202      }
5203    }
5204    if (isReadOnly) {
5205      // Another legacy compatibility encoding. Some ObjC qualifier and type
5206      // combinations need to be rearranged.
5207      // Rewrite "in const" from "nr" to "rn"
5208      if (StringRef(S).endswith("nr"))
5209        S.replace(S.end()-2, S.end(), "rn");
5210    }
5211
5212    if (PointeeTy->isCharType()) {
5213      // char pointer types should be encoded as '*' unless it is a
5214      // type that has been typedef'd to 'BOOL'.
5215      if (!isTypeTypedefedAsBOOL(PointeeTy)) {
5216        S += '*';
5217        return;
5218      }
5219    } else if (const RecordType *RTy = PointeeTy->getAs<RecordType>()) {
5220      // GCC binary compat: Need to convert "struct objc_class *" to "#".
5221      if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_class")) {
5222        S += '#';
5223        return;
5224      }
5225      // GCC binary compat: Need to convert "struct objc_object *" to "@".
5226      if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_object")) {
5227        S += '@';
5228        return;
5229      }
5230      // fall through...
5231    }
5232    S += '^';
5233    getLegacyIntegralTypeEncoding(PointeeTy);
5234
5235    getObjCEncodingForTypeImpl(PointeeTy, S, false, ExpandPointedToStructures,
5236                               NULL);
5237    return;
5238  }
5239
5240  case Type::ConstantArray:
5241  case Type::IncompleteArray:
5242  case Type::VariableArray: {
5243    const ArrayType *AT = cast<ArrayType>(CT);
5244
5245    if (isa<IncompleteArrayType>(AT) && !StructField) {
5246      // Incomplete arrays are encoded as a pointer to the array element.
5247      S += '^';
5248
5249      getObjCEncodingForTypeImpl(AT->getElementType(), S,
5250                                 false, ExpandStructures, FD);
5251    } else {
5252      S += '[';
5253
5254      if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
5255        S += llvm::utostr(CAT->getSize().getZExtValue());
5256      else {
5257        //Variable length arrays are encoded as a regular array with 0 elements.
5258        assert((isa<VariableArrayType>(AT) || isa<IncompleteArrayType>(AT)) &&
5259               "Unknown array type!");
5260        S += '0';
5261      }
5262
5263      getObjCEncodingForTypeImpl(AT->getElementType(), S,
5264                                 false, ExpandStructures, FD);
5265      S += ']';
5266    }
5267    return;
5268  }
5269
5270  case Type::FunctionNoProto:
5271  case Type::FunctionProto:
5272    S += '?';
5273    return;
5274
5275  case Type::Record: {
5276    RecordDecl *RDecl = cast<RecordType>(CT)->getDecl();
5277    S += RDecl->isUnion() ? '(' : '{';
5278    // Anonymous structures print as '?'
5279    if (const IdentifierInfo *II = RDecl->getIdentifier()) {
5280      S += II->getName();
5281      if (ClassTemplateSpecializationDecl *Spec
5282          = dyn_cast<ClassTemplateSpecializationDecl>(RDecl)) {
5283        const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
5284        llvm::raw_string_ostream OS(S);
5285        TemplateSpecializationType::PrintTemplateArgumentList(OS,
5286                                            TemplateArgs.data(),
5287                                            TemplateArgs.size(),
5288                                            (*this).getPrintingPolicy());
5289      }
5290    } else {
5291      S += '?';
5292    }
5293    if (ExpandStructures) {
5294      S += '=';
5295      if (!RDecl->isUnion()) {
5296        getObjCEncodingForStructureImpl(RDecl, S, FD);
5297      } else {
5298        for (RecordDecl::field_iterator Field = RDecl->field_begin(),
5299                                     FieldEnd = RDecl->field_end();
5300             Field != FieldEnd; ++Field) {
5301          if (FD) {
5302            S += '"';
5303            S += Field->getNameAsString();
5304            S += '"';
5305          }
5306
5307          // Special case bit-fields.
5308          if (Field->isBitField()) {
5309            getObjCEncodingForTypeImpl(Field->getType(), S, false, true,
5310                                       *Field);
5311          } else {
5312            QualType qt = Field->getType();
5313            getLegacyIntegralTypeEncoding(qt);
5314            getObjCEncodingForTypeImpl(qt, S, false, true,
5315                                       FD, /*OutermostType*/false,
5316                                       /*EncodingProperty*/false,
5317                                       /*StructField*/true);
5318          }
5319        }
5320      }
5321    }
5322    S += RDecl->isUnion() ? ')' : '}';
5323    return;
5324  }
5325
5326  case Type::BlockPointer: {
5327    const BlockPointerType *BT = T->castAs<BlockPointerType>();
5328    S += "@?"; // Unlike a pointer-to-function, which is "^?".
5329    if (EncodeBlockParameters) {
5330      const FunctionType *FT = BT->getPointeeType()->castAs<FunctionType>();
5331
5332      S += '<';
5333      // Block return type
5334      getObjCEncodingForTypeImpl(FT->getResultType(), S,
5335                                 ExpandPointedToStructures, ExpandStructures,
5336                                 FD,
5337                                 false /* OutermostType */,
5338                                 EncodingProperty,
5339                                 false /* StructField */,
5340                                 EncodeBlockParameters,
5341                                 EncodeClassNames);
5342      // Block self
5343      S += "@?";
5344      // Block parameters
5345      if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(FT)) {
5346        for (FunctionProtoType::arg_type_iterator I = FPT->arg_type_begin(),
5347               E = FPT->arg_type_end(); I && (I != E); ++I) {
5348          getObjCEncodingForTypeImpl(*I, S,
5349                                     ExpandPointedToStructures,
5350                                     ExpandStructures,
5351                                     FD,
5352                                     false /* OutermostType */,
5353                                     EncodingProperty,
5354                                     false /* StructField */,
5355                                     EncodeBlockParameters,
5356                                     EncodeClassNames);
5357        }
5358      }
5359      S += '>';
5360    }
5361    return;
5362  }
5363
5364  case Type::ObjCObject:
5365  case Type::ObjCInterface: {
5366    // Ignore protocol qualifiers when mangling at this level.
5367    T = T->castAs<ObjCObjectType>()->getBaseType();
5368
5369    // The assumption seems to be that this assert will succeed
5370    // because nested levels will have filtered out 'id' and 'Class'.
5371    const ObjCInterfaceType *OIT = T->castAs<ObjCInterfaceType>();
5372    // @encode(class_name)
5373    ObjCInterfaceDecl *OI = OIT->getDecl();
5374    S += '{';
5375    const IdentifierInfo *II = OI->getIdentifier();
5376    S += II->getName();
5377    S += '=';
5378    SmallVector<const ObjCIvarDecl*, 32> Ivars;
5379    DeepCollectObjCIvars(OI, true, Ivars);
5380    for (unsigned i = 0, e = Ivars.size(); i != e; ++i) {
5381      const FieldDecl *Field = cast<FieldDecl>(Ivars[i]);
5382      if (Field->isBitField())
5383        getObjCEncodingForTypeImpl(Field->getType(), S, false, true, Field);
5384      else
5385        getObjCEncodingForTypeImpl(Field->getType(), S, false, true, FD,
5386                                   false, false, false, false, false,
5387                                   EncodePointerToObjCTypedef);
5388    }
5389    S += '}';
5390    return;
5391  }
5392
5393  case Type::ObjCObjectPointer: {
5394    const ObjCObjectPointerType *OPT = T->castAs<ObjCObjectPointerType>();
5395    if (OPT->isObjCIdType()) {
5396      S += '@';
5397      return;
5398    }
5399
5400    if (OPT->isObjCClassType() || OPT->isObjCQualifiedClassType()) {
5401      // FIXME: Consider if we need to output qualifiers for 'Class<p>'.
5402      // Since this is a binary compatibility issue, need to consult with runtime
5403      // folks. Fortunately, this is a *very* obsure construct.
5404      S += '#';
5405      return;
5406    }
5407
5408    if (OPT->isObjCQualifiedIdType()) {
5409      getObjCEncodingForTypeImpl(getObjCIdType(), S,
5410                                 ExpandPointedToStructures,
5411                                 ExpandStructures, FD);
5412      if (FD || EncodingProperty || EncodeClassNames) {
5413        // Note that we do extended encoding of protocol qualifer list
5414        // Only when doing ivar or property encoding.
5415        S += '"';
5416        for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(),
5417             E = OPT->qual_end(); I != E; ++I) {
5418          S += '<';
5419          S += (*I)->getNameAsString();
5420          S += '>';
5421        }
5422        S += '"';
5423      }
5424      return;
5425    }
5426
5427    QualType PointeeTy = OPT->getPointeeType();
5428    if (!EncodingProperty &&
5429        isa<TypedefType>(PointeeTy.getTypePtr()) &&
5430        !EncodePointerToObjCTypedef) {
5431      // Another historical/compatibility reason.
5432      // We encode the underlying type which comes out as
5433      // {...};
5434      S += '^';
5435      if (FD && OPT->getInterfaceDecl()) {
5436        // Prevent recursive encoding of fields in some rare cases.
5437        ObjCInterfaceDecl *OI = OPT->getInterfaceDecl();
5438        SmallVector<const ObjCIvarDecl*, 32> Ivars;
5439        DeepCollectObjCIvars(OI, true, Ivars);
5440        for (unsigned i = 0, e = Ivars.size(); i != e; ++i) {
5441          if (cast<FieldDecl>(Ivars[i]) == FD) {
5442            S += '{';
5443            S += OI->getIdentifier()->getName();
5444            S += '}';
5445            return;
5446          }
5447        }
5448      }
5449      getObjCEncodingForTypeImpl(PointeeTy, S,
5450                                 false, ExpandPointedToStructures,
5451                                 NULL,
5452                                 false, false, false, false, false,
5453                                 /*EncodePointerToObjCTypedef*/true);
5454      return;
5455    }
5456
5457    S += '@';
5458    if (OPT->getInterfaceDecl() &&
5459        (FD || EncodingProperty || EncodeClassNames)) {
5460      S += '"';
5461      S += OPT->getInterfaceDecl()->getIdentifier()->getName();
5462      for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(),
5463           E = OPT->qual_end(); I != E; ++I) {
5464        S += '<';
5465        S += (*I)->getNameAsString();
5466        S += '>';
5467      }
5468      S += '"';
5469    }
5470    return;
5471  }
5472
5473  // gcc just blithely ignores member pointers.
5474  // FIXME: we shoul do better than that.  'M' is available.
5475  case Type::MemberPointer:
5476    return;
5477
5478  case Type::Vector:
5479  case Type::ExtVector:
5480    // This matches gcc's encoding, even though technically it is
5481    // insufficient.
5482    // FIXME. We should do a better job than gcc.
5483    return;
5484
5485  case Type::Auto:
5486    // We could see an undeduced auto type here during error recovery.
5487    // Just ignore it.
5488    return;
5489
5490#define ABSTRACT_TYPE(KIND, BASE)
5491#define TYPE(KIND, BASE)
5492#define DEPENDENT_TYPE(KIND, BASE) \
5493  case Type::KIND:
5494#define NON_CANONICAL_TYPE(KIND, BASE) \
5495  case Type::KIND:
5496#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(KIND, BASE) \
5497  case Type::KIND:
5498#include "clang/AST/TypeNodes.def"
5499    llvm_unreachable("@encode for dependent type!");
5500  }
5501  llvm_unreachable("bad type kind!");
5502}
5503
5504void ASTContext::getObjCEncodingForStructureImpl(RecordDecl *RDecl,
5505                                                 std::string &S,
5506                                                 const FieldDecl *FD,
5507                                                 bool includeVBases) const {
5508  assert(RDecl && "Expected non-null RecordDecl");
5509  assert(!RDecl->isUnion() && "Should not be called for unions");
5510  if (!RDecl->getDefinition())
5511    return;
5512
5513  CXXRecordDecl *CXXRec = dyn_cast<CXXRecordDecl>(RDecl);
5514  std::multimap<uint64_t, NamedDecl *> FieldOrBaseOffsets;
5515  const ASTRecordLayout &layout = getASTRecordLayout(RDecl);
5516
5517  if (CXXRec) {
5518    for (CXXRecordDecl::base_class_iterator
5519           BI = CXXRec->bases_begin(),
5520           BE = CXXRec->bases_end(); BI != BE; ++BI) {
5521      if (!BI->isVirtual()) {
5522        CXXRecordDecl *base = BI->getType()->getAsCXXRecordDecl();
5523        if (base->isEmpty())
5524          continue;
5525        uint64_t offs = toBits(layout.getBaseClassOffset(base));
5526        FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
5527                                  std::make_pair(offs, base));
5528      }
5529    }
5530  }
5531
5532  unsigned i = 0;
5533  for (RecordDecl::field_iterator Field = RDecl->field_begin(),
5534                               FieldEnd = RDecl->field_end();
5535       Field != FieldEnd; ++Field, ++i) {
5536    uint64_t offs = layout.getFieldOffset(i);
5537    FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
5538                              std::make_pair(offs, *Field));
5539  }
5540
5541  if (CXXRec && includeVBases) {
5542    for (CXXRecordDecl::base_class_iterator
5543           BI = CXXRec->vbases_begin(),
5544           BE = CXXRec->vbases_end(); BI != BE; ++BI) {
5545      CXXRecordDecl *base = BI->getType()->getAsCXXRecordDecl();
5546      if (base->isEmpty())
5547        continue;
5548      uint64_t offs = toBits(layout.getVBaseClassOffset(base));
5549      if (FieldOrBaseOffsets.find(offs) == FieldOrBaseOffsets.end())
5550        FieldOrBaseOffsets.insert(FieldOrBaseOffsets.end(),
5551                                  std::make_pair(offs, base));
5552    }
5553  }
5554
5555  CharUnits size;
5556  if (CXXRec) {
5557    size = includeVBases ? layout.getSize() : layout.getNonVirtualSize();
5558  } else {
5559    size = layout.getSize();
5560  }
5561
5562  uint64_t CurOffs = 0;
5563  std::multimap<uint64_t, NamedDecl *>::iterator
5564    CurLayObj = FieldOrBaseOffsets.begin();
5565
5566  if (CXXRec && CXXRec->isDynamicClass() &&
5567      (CurLayObj == FieldOrBaseOffsets.end() || CurLayObj->first != 0)) {
5568    if (FD) {
5569      S += "\"_vptr$";
5570      std::string recname = CXXRec->getNameAsString();
5571      if (recname.empty()) recname = "?";
5572      S += recname;
5573      S += '"';
5574    }
5575    S += "^^?";
5576    CurOffs += getTypeSize(VoidPtrTy);
5577  }
5578
5579  if (!RDecl->hasFlexibleArrayMember()) {
5580    // Mark the end of the structure.
5581    uint64_t offs = toBits(size);
5582    FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
5583                              std::make_pair(offs, (NamedDecl*)0));
5584  }
5585
5586  for (; CurLayObj != FieldOrBaseOffsets.end(); ++CurLayObj) {
5587    assert(CurOffs <= CurLayObj->first);
5588
5589    if (CurOffs < CurLayObj->first) {
5590      uint64_t padding = CurLayObj->first - CurOffs;
5591      // FIXME: There doesn't seem to be a way to indicate in the encoding that
5592      // packing/alignment of members is different that normal, in which case
5593      // the encoding will be out-of-sync with the real layout.
5594      // If the runtime switches to just consider the size of types without
5595      // taking into account alignment, we could make padding explicit in the
5596      // encoding (e.g. using arrays of chars). The encoding strings would be
5597      // longer then though.
5598      CurOffs += padding;
5599    }
5600
5601    NamedDecl *dcl = CurLayObj->second;
5602    if (dcl == 0)
5603      break; // reached end of structure.
5604
5605    if (CXXRecordDecl *base = dyn_cast<CXXRecordDecl>(dcl)) {
5606      // We expand the bases without their virtual bases since those are going
5607      // in the initial structure. Note that this differs from gcc which
5608      // expands virtual bases each time one is encountered in the hierarchy,
5609      // making the encoding type bigger than it really is.
5610      getObjCEncodingForStructureImpl(base, S, FD, /*includeVBases*/false);
5611      assert(!base->isEmpty());
5612      CurOffs += toBits(getASTRecordLayout(base).getNonVirtualSize());
5613    } else {
5614      FieldDecl *field = cast<FieldDecl>(dcl);
5615      if (FD) {
5616        S += '"';
5617        S += field->getNameAsString();
5618        S += '"';
5619      }
5620
5621      if (field->isBitField()) {
5622        EncodeBitField(this, S, field->getType(), field);
5623        CurOffs += field->getBitWidthValue(*this);
5624      } else {
5625        QualType qt = field->getType();
5626        getLegacyIntegralTypeEncoding(qt);
5627        getObjCEncodingForTypeImpl(qt, S, false, true, FD,
5628                                   /*OutermostType*/false,
5629                                   /*EncodingProperty*/false,
5630                                   /*StructField*/true);
5631        CurOffs += getTypeSize(field->getType());
5632      }
5633    }
5634  }
5635}
5636
5637void ASTContext::getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT,
5638                                                 std::string& S) const {
5639  if (QT & Decl::OBJC_TQ_In)
5640    S += 'n';
5641  if (QT & Decl::OBJC_TQ_Inout)
5642    S += 'N';
5643  if (QT & Decl::OBJC_TQ_Out)
5644    S += 'o';
5645  if (QT & Decl::OBJC_TQ_Bycopy)
5646    S += 'O';
5647  if (QT & Decl::OBJC_TQ_Byref)
5648    S += 'R';
5649  if (QT & Decl::OBJC_TQ_Oneway)
5650    S += 'V';
5651}
5652
5653TypedefDecl *ASTContext::getObjCIdDecl() const {
5654  if (!ObjCIdDecl) {
5655    QualType T = getObjCObjectType(ObjCBuiltinIdTy, 0, 0);
5656    T = getObjCObjectPointerType(T);
5657    TypeSourceInfo *IdInfo = getTrivialTypeSourceInfo(T);
5658    ObjCIdDecl = TypedefDecl::Create(const_cast<ASTContext &>(*this),
5659                                     getTranslationUnitDecl(),
5660                                     SourceLocation(), SourceLocation(),
5661                                     &Idents.get("id"), IdInfo);
5662  }
5663
5664  return ObjCIdDecl;
5665}
5666
5667TypedefDecl *ASTContext::getObjCSelDecl() const {
5668  if (!ObjCSelDecl) {
5669    QualType SelT = getPointerType(ObjCBuiltinSelTy);
5670    TypeSourceInfo *SelInfo = getTrivialTypeSourceInfo(SelT);
5671    ObjCSelDecl = TypedefDecl::Create(const_cast<ASTContext &>(*this),
5672                                      getTranslationUnitDecl(),
5673                                      SourceLocation(), SourceLocation(),
5674                                      &Idents.get("SEL"), SelInfo);
5675  }
5676  return ObjCSelDecl;
5677}
5678
5679TypedefDecl *ASTContext::getObjCClassDecl() const {
5680  if (!ObjCClassDecl) {
5681    QualType T = getObjCObjectType(ObjCBuiltinClassTy, 0, 0);
5682    T = getObjCObjectPointerType(T);
5683    TypeSourceInfo *ClassInfo = getTrivialTypeSourceInfo(T);
5684    ObjCClassDecl = TypedefDecl::Create(const_cast<ASTContext &>(*this),
5685                                        getTranslationUnitDecl(),
5686                                        SourceLocation(), SourceLocation(),
5687                                        &Idents.get("Class"), ClassInfo);
5688  }
5689
5690  return ObjCClassDecl;
5691}
5692
5693ObjCInterfaceDecl *ASTContext::getObjCProtocolDecl() const {
5694  if (!ObjCProtocolClassDecl) {
5695    ObjCProtocolClassDecl
5696      = ObjCInterfaceDecl::Create(*this, getTranslationUnitDecl(),
5697                                  SourceLocation(),
5698                                  &Idents.get("Protocol"),
5699                                  /*PrevDecl=*/0,
5700                                  SourceLocation(), true);
5701  }
5702
5703  return ObjCProtocolClassDecl;
5704}
5705
5706//===----------------------------------------------------------------------===//
5707// __builtin_va_list Construction Functions
5708//===----------------------------------------------------------------------===//
5709
5710static TypedefDecl *CreateCharPtrBuiltinVaListDecl(const ASTContext *Context) {
5711  // typedef char* __builtin_va_list;
5712  QualType CharPtrType = Context->getPointerType(Context->CharTy);
5713  TypeSourceInfo *TInfo
5714    = Context->getTrivialTypeSourceInfo(CharPtrType);
5715
5716  TypedefDecl *VaListTypeDecl
5717    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
5718                          Context->getTranslationUnitDecl(),
5719                          SourceLocation(), SourceLocation(),
5720                          &Context->Idents.get("__builtin_va_list"),
5721                          TInfo);
5722  return VaListTypeDecl;
5723}
5724
5725static TypedefDecl *CreateVoidPtrBuiltinVaListDecl(const ASTContext *Context) {
5726  // typedef void* __builtin_va_list;
5727  QualType VoidPtrType = Context->getPointerType(Context->VoidTy);
5728  TypeSourceInfo *TInfo
5729    = Context->getTrivialTypeSourceInfo(VoidPtrType);
5730
5731  TypedefDecl *VaListTypeDecl
5732    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
5733                          Context->getTranslationUnitDecl(),
5734                          SourceLocation(), SourceLocation(),
5735                          &Context->Idents.get("__builtin_va_list"),
5736                          TInfo);
5737  return VaListTypeDecl;
5738}
5739
5740static TypedefDecl *
5741CreateAArch64ABIBuiltinVaListDecl(const ASTContext *Context) {
5742  RecordDecl *VaListTagDecl;
5743  if (Context->getLangOpts().CPlusPlus) {
5744    // namespace std { struct __va_list {
5745    NamespaceDecl *NS;
5746    NS = NamespaceDecl::Create(const_cast<ASTContext &>(*Context),
5747                               Context->getTranslationUnitDecl(),
5748                               /*Inline*/false, SourceLocation(),
5749                               SourceLocation(), &Context->Idents.get("std"),
5750                               /*PrevDecl*/0);
5751
5752    VaListTagDecl = CXXRecordDecl::Create(*Context, TTK_Struct,
5753                                          Context->getTranslationUnitDecl(),
5754                                          SourceLocation(), SourceLocation(),
5755                                          &Context->Idents.get("__va_list"));
5756    VaListTagDecl->setDeclContext(NS);
5757  } else {
5758    // struct __va_list
5759    VaListTagDecl = CreateRecordDecl(*Context, TTK_Struct,
5760                                   Context->getTranslationUnitDecl(),
5761                                   &Context->Idents.get("__va_list"));
5762  }
5763
5764  VaListTagDecl->startDefinition();
5765
5766  const size_t NumFields = 5;
5767  QualType FieldTypes[NumFields];
5768  const char *FieldNames[NumFields];
5769
5770  // void *__stack;
5771  FieldTypes[0] = Context->getPointerType(Context->VoidTy);
5772  FieldNames[0] = "__stack";
5773
5774  // void *__gr_top;
5775  FieldTypes[1] = Context->getPointerType(Context->VoidTy);
5776  FieldNames[1] = "__gr_top";
5777
5778  // void *__vr_top;
5779  FieldTypes[2] = Context->getPointerType(Context->VoidTy);
5780  FieldNames[2] = "__vr_top";
5781
5782  // int __gr_offs;
5783  FieldTypes[3] = Context->IntTy;
5784  FieldNames[3] = "__gr_offs";
5785
5786  // int __vr_offs;
5787  FieldTypes[4] = Context->IntTy;
5788  FieldNames[4] = "__vr_offs";
5789
5790  // Create fields
5791  for (unsigned i = 0; i < NumFields; ++i) {
5792    FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context),
5793                                         VaListTagDecl,
5794                                         SourceLocation(),
5795                                         SourceLocation(),
5796                                         &Context->Idents.get(FieldNames[i]),
5797                                         FieldTypes[i], /*TInfo=*/0,
5798                                         /*BitWidth=*/0,
5799                                         /*Mutable=*/false,
5800                                         ICIS_NoInit);
5801    Field->setAccess(AS_public);
5802    VaListTagDecl->addDecl(Field);
5803  }
5804  VaListTagDecl->completeDefinition();
5805  QualType VaListTagType = Context->getRecordType(VaListTagDecl);
5806  Context->VaListTagTy = VaListTagType;
5807
5808  // } __builtin_va_list;
5809  TypedefDecl *VaListTypedefDecl
5810    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
5811                          Context->getTranslationUnitDecl(),
5812                          SourceLocation(), SourceLocation(),
5813                          &Context->Idents.get("__builtin_va_list"),
5814                          Context->getTrivialTypeSourceInfo(VaListTagType));
5815
5816  return VaListTypedefDecl;
5817}
5818
5819static TypedefDecl *CreatePowerABIBuiltinVaListDecl(const ASTContext *Context) {
5820  // typedef struct __va_list_tag {
5821  RecordDecl *VaListTagDecl;
5822
5823  VaListTagDecl = CreateRecordDecl(*Context, TTK_Struct,
5824                                   Context->getTranslationUnitDecl(),
5825                                   &Context->Idents.get("__va_list_tag"));
5826  VaListTagDecl->startDefinition();
5827
5828  const size_t NumFields = 5;
5829  QualType FieldTypes[NumFields];
5830  const char *FieldNames[NumFields];
5831
5832  //   unsigned char gpr;
5833  FieldTypes[0] = Context->UnsignedCharTy;
5834  FieldNames[0] = "gpr";
5835
5836  //   unsigned char fpr;
5837  FieldTypes[1] = Context->UnsignedCharTy;
5838  FieldNames[1] = "fpr";
5839
5840  //   unsigned short reserved;
5841  FieldTypes[2] = Context->UnsignedShortTy;
5842  FieldNames[2] = "reserved";
5843
5844  //   void* overflow_arg_area;
5845  FieldTypes[3] = Context->getPointerType(Context->VoidTy);
5846  FieldNames[3] = "overflow_arg_area";
5847
5848  //   void* reg_save_area;
5849  FieldTypes[4] = Context->getPointerType(Context->VoidTy);
5850  FieldNames[4] = "reg_save_area";
5851
5852  // Create fields
5853  for (unsigned i = 0; i < NumFields; ++i) {
5854    FieldDecl *Field = FieldDecl::Create(*Context, VaListTagDecl,
5855                                         SourceLocation(),
5856                                         SourceLocation(),
5857                                         &Context->Idents.get(FieldNames[i]),
5858                                         FieldTypes[i], /*TInfo=*/0,
5859                                         /*BitWidth=*/0,
5860                                         /*Mutable=*/false,
5861                                         ICIS_NoInit);
5862    Field->setAccess(AS_public);
5863    VaListTagDecl->addDecl(Field);
5864  }
5865  VaListTagDecl->completeDefinition();
5866  QualType VaListTagType = Context->getRecordType(VaListTagDecl);
5867  Context->VaListTagTy = VaListTagType;
5868
5869  // } __va_list_tag;
5870  TypedefDecl *VaListTagTypedefDecl
5871    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
5872                          Context->getTranslationUnitDecl(),
5873                          SourceLocation(), SourceLocation(),
5874                          &Context->Idents.get("__va_list_tag"),
5875                          Context->getTrivialTypeSourceInfo(VaListTagType));
5876  QualType VaListTagTypedefType =
5877    Context->getTypedefType(VaListTagTypedefDecl);
5878
5879  // typedef __va_list_tag __builtin_va_list[1];
5880  llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 1);
5881  QualType VaListTagArrayType
5882    = Context->getConstantArrayType(VaListTagTypedefType,
5883                                    Size, ArrayType::Normal, 0);
5884  TypeSourceInfo *TInfo
5885    = Context->getTrivialTypeSourceInfo(VaListTagArrayType);
5886  TypedefDecl *VaListTypedefDecl
5887    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
5888                          Context->getTranslationUnitDecl(),
5889                          SourceLocation(), SourceLocation(),
5890                          &Context->Idents.get("__builtin_va_list"),
5891                          TInfo);
5892
5893  return VaListTypedefDecl;
5894}
5895
5896static TypedefDecl *
5897CreateX86_64ABIBuiltinVaListDecl(const ASTContext *Context) {
5898  // typedef struct __va_list_tag {
5899  RecordDecl *VaListTagDecl;
5900  VaListTagDecl = CreateRecordDecl(*Context, TTK_Struct,
5901                                   Context->getTranslationUnitDecl(),
5902                                   &Context->Idents.get("__va_list_tag"));
5903  VaListTagDecl->startDefinition();
5904
5905  const size_t NumFields = 4;
5906  QualType FieldTypes[NumFields];
5907  const char *FieldNames[NumFields];
5908
5909  //   unsigned gp_offset;
5910  FieldTypes[0] = Context->UnsignedIntTy;
5911  FieldNames[0] = "gp_offset";
5912
5913  //   unsigned fp_offset;
5914  FieldTypes[1] = Context->UnsignedIntTy;
5915  FieldNames[1] = "fp_offset";
5916
5917  //   void* overflow_arg_area;
5918  FieldTypes[2] = Context->getPointerType(Context->VoidTy);
5919  FieldNames[2] = "overflow_arg_area";
5920
5921  //   void* reg_save_area;
5922  FieldTypes[3] = Context->getPointerType(Context->VoidTy);
5923  FieldNames[3] = "reg_save_area";
5924
5925  // Create fields
5926  for (unsigned i = 0; i < NumFields; ++i) {
5927    FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context),
5928                                         VaListTagDecl,
5929                                         SourceLocation(),
5930                                         SourceLocation(),
5931                                         &Context->Idents.get(FieldNames[i]),
5932                                         FieldTypes[i], /*TInfo=*/0,
5933                                         /*BitWidth=*/0,
5934                                         /*Mutable=*/false,
5935                                         ICIS_NoInit);
5936    Field->setAccess(AS_public);
5937    VaListTagDecl->addDecl(Field);
5938  }
5939  VaListTagDecl->completeDefinition();
5940  QualType VaListTagType = Context->getRecordType(VaListTagDecl);
5941  Context->VaListTagTy = VaListTagType;
5942
5943  // } __va_list_tag;
5944  TypedefDecl *VaListTagTypedefDecl
5945    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
5946                          Context->getTranslationUnitDecl(),
5947                          SourceLocation(), SourceLocation(),
5948                          &Context->Idents.get("__va_list_tag"),
5949                          Context->getTrivialTypeSourceInfo(VaListTagType));
5950  QualType VaListTagTypedefType =
5951    Context->getTypedefType(VaListTagTypedefDecl);
5952
5953  // typedef __va_list_tag __builtin_va_list[1];
5954  llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 1);
5955  QualType VaListTagArrayType
5956    = Context->getConstantArrayType(VaListTagTypedefType,
5957                                      Size, ArrayType::Normal,0);
5958  TypeSourceInfo *TInfo
5959    = Context->getTrivialTypeSourceInfo(VaListTagArrayType);
5960  TypedefDecl *VaListTypedefDecl
5961    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
5962                          Context->getTranslationUnitDecl(),
5963                          SourceLocation(), SourceLocation(),
5964                          &Context->Idents.get("__builtin_va_list"),
5965                          TInfo);
5966
5967  return VaListTypedefDecl;
5968}
5969
5970static TypedefDecl *CreatePNaClABIBuiltinVaListDecl(const ASTContext *Context) {
5971  // typedef int __builtin_va_list[4];
5972  llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 4);
5973  QualType IntArrayType
5974    = Context->getConstantArrayType(Context->IntTy,
5975				    Size, ArrayType::Normal, 0);
5976  TypedefDecl *VaListTypedefDecl
5977    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
5978                          Context->getTranslationUnitDecl(),
5979                          SourceLocation(), SourceLocation(),
5980                          &Context->Idents.get("__builtin_va_list"),
5981                          Context->getTrivialTypeSourceInfo(IntArrayType));
5982
5983  return VaListTypedefDecl;
5984}
5985
5986static TypedefDecl *
5987CreateAAPCSABIBuiltinVaListDecl(const ASTContext *Context) {
5988  RecordDecl *VaListDecl;
5989  if (Context->getLangOpts().CPlusPlus) {
5990    // namespace std { struct __va_list {
5991    NamespaceDecl *NS;
5992    NS = NamespaceDecl::Create(const_cast<ASTContext &>(*Context),
5993                               Context->getTranslationUnitDecl(),
5994                               /*Inline*/false, SourceLocation(),
5995                               SourceLocation(), &Context->Idents.get("std"),
5996                               /*PrevDecl*/0);
5997
5998    VaListDecl = CXXRecordDecl::Create(*Context, TTK_Struct,
5999                                       Context->getTranslationUnitDecl(),
6000                                       SourceLocation(), SourceLocation(),
6001                                       &Context->Idents.get("__va_list"));
6002
6003    VaListDecl->setDeclContext(NS);
6004
6005  } else {
6006    // struct __va_list {
6007    VaListDecl = CreateRecordDecl(*Context, TTK_Struct,
6008                                  Context->getTranslationUnitDecl(),
6009                                  &Context->Idents.get("__va_list"));
6010  }
6011
6012  VaListDecl->startDefinition();
6013
6014  // void * __ap;
6015  FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context),
6016                                       VaListDecl,
6017                                       SourceLocation(),
6018                                       SourceLocation(),
6019                                       &Context->Idents.get("__ap"),
6020                                       Context->getPointerType(Context->VoidTy),
6021                                       /*TInfo=*/0,
6022                                       /*BitWidth=*/0,
6023                                       /*Mutable=*/false,
6024                                       ICIS_NoInit);
6025  Field->setAccess(AS_public);
6026  VaListDecl->addDecl(Field);
6027
6028  // };
6029  VaListDecl->completeDefinition();
6030
6031  // typedef struct __va_list __builtin_va_list;
6032  TypeSourceInfo *TInfo
6033    = Context->getTrivialTypeSourceInfo(Context->getRecordType(VaListDecl));
6034
6035  TypedefDecl *VaListTypeDecl
6036    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
6037                          Context->getTranslationUnitDecl(),
6038                          SourceLocation(), SourceLocation(),
6039                          &Context->Idents.get("__builtin_va_list"),
6040                          TInfo);
6041
6042  return VaListTypeDecl;
6043}
6044
6045static TypedefDecl *
6046CreateSystemZBuiltinVaListDecl(const ASTContext *Context) {
6047  // typedef struct __va_list_tag {
6048  RecordDecl *VaListTagDecl;
6049  VaListTagDecl = CreateRecordDecl(*Context, TTK_Struct,
6050                                   Context->getTranslationUnitDecl(),
6051                                   &Context->Idents.get("__va_list_tag"));
6052  VaListTagDecl->startDefinition();
6053
6054  const size_t NumFields = 4;
6055  QualType FieldTypes[NumFields];
6056  const char *FieldNames[NumFields];
6057
6058  //   long __gpr;
6059  FieldTypes[0] = Context->LongTy;
6060  FieldNames[0] = "__gpr";
6061
6062  //   long __fpr;
6063  FieldTypes[1] = Context->LongTy;
6064  FieldNames[1] = "__fpr";
6065
6066  //   void *__overflow_arg_area;
6067  FieldTypes[2] = Context->getPointerType(Context->VoidTy);
6068  FieldNames[2] = "__overflow_arg_area";
6069
6070  //   void *__reg_save_area;
6071  FieldTypes[3] = Context->getPointerType(Context->VoidTy);
6072  FieldNames[3] = "__reg_save_area";
6073
6074  // Create fields
6075  for (unsigned i = 0; i < NumFields; ++i) {
6076    FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context),
6077                                         VaListTagDecl,
6078                                         SourceLocation(),
6079                                         SourceLocation(),
6080                                         &Context->Idents.get(FieldNames[i]),
6081                                         FieldTypes[i], /*TInfo=*/0,
6082                                         /*BitWidth=*/0,
6083                                         /*Mutable=*/false,
6084                                         ICIS_NoInit);
6085    Field->setAccess(AS_public);
6086    VaListTagDecl->addDecl(Field);
6087  }
6088  VaListTagDecl->completeDefinition();
6089  QualType VaListTagType = Context->getRecordType(VaListTagDecl);
6090  Context->VaListTagTy = VaListTagType;
6091
6092  // } __va_list_tag;
6093  TypedefDecl *VaListTagTypedefDecl
6094    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
6095                          Context->getTranslationUnitDecl(),
6096                          SourceLocation(), SourceLocation(),
6097                          &Context->Idents.get("__va_list_tag"),
6098                          Context->getTrivialTypeSourceInfo(VaListTagType));
6099  QualType VaListTagTypedefType =
6100    Context->getTypedefType(VaListTagTypedefDecl);
6101
6102  // typedef __va_list_tag __builtin_va_list[1];
6103  llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 1);
6104  QualType VaListTagArrayType
6105    = Context->getConstantArrayType(VaListTagTypedefType,
6106                                      Size, ArrayType::Normal,0);
6107  TypeSourceInfo *TInfo
6108    = Context->getTrivialTypeSourceInfo(VaListTagArrayType);
6109  TypedefDecl *VaListTypedefDecl
6110    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
6111                          Context->getTranslationUnitDecl(),
6112                          SourceLocation(), SourceLocation(),
6113                          &Context->Idents.get("__builtin_va_list"),
6114                          TInfo);
6115
6116  return VaListTypedefDecl;
6117}
6118
6119static TypedefDecl *CreateVaListDecl(const ASTContext *Context,
6120                                     TargetInfo::BuiltinVaListKind Kind) {
6121  switch (Kind) {
6122  case TargetInfo::CharPtrBuiltinVaList:
6123    return CreateCharPtrBuiltinVaListDecl(Context);
6124  case TargetInfo::VoidPtrBuiltinVaList:
6125    return CreateVoidPtrBuiltinVaListDecl(Context);
6126  case TargetInfo::AArch64ABIBuiltinVaList:
6127    return CreateAArch64ABIBuiltinVaListDecl(Context);
6128  case TargetInfo::PowerABIBuiltinVaList:
6129    return CreatePowerABIBuiltinVaListDecl(Context);
6130  case TargetInfo::X86_64ABIBuiltinVaList:
6131    return CreateX86_64ABIBuiltinVaListDecl(Context);
6132  case TargetInfo::PNaClABIBuiltinVaList:
6133    return CreatePNaClABIBuiltinVaListDecl(Context);
6134  case TargetInfo::AAPCSABIBuiltinVaList:
6135    return CreateAAPCSABIBuiltinVaListDecl(Context);
6136  case TargetInfo::SystemZBuiltinVaList:
6137    return CreateSystemZBuiltinVaListDecl(Context);
6138  }
6139
6140  llvm_unreachable("Unhandled __builtin_va_list type kind");
6141}
6142
6143TypedefDecl *ASTContext::getBuiltinVaListDecl() const {
6144  if (!BuiltinVaListDecl)
6145    BuiltinVaListDecl = CreateVaListDecl(this, Target->getBuiltinVaListKind());
6146
6147  return BuiltinVaListDecl;
6148}
6149
6150QualType ASTContext::getVaListTagType() const {
6151  // Force the creation of VaListTagTy by building the __builtin_va_list
6152  // declaration.
6153  if (VaListTagTy.isNull())
6154    (void) getBuiltinVaListDecl();
6155
6156  return VaListTagTy;
6157}
6158
6159void ASTContext::setObjCConstantStringInterface(ObjCInterfaceDecl *Decl) {
6160  assert(ObjCConstantStringType.isNull() &&
6161         "'NSConstantString' type already set!");
6162
6163  ObjCConstantStringType = getObjCInterfaceType(Decl);
6164}
6165
6166/// \brief Retrieve the template name that corresponds to a non-empty
6167/// lookup.
6168TemplateName
6169ASTContext::getOverloadedTemplateName(UnresolvedSetIterator Begin,
6170                                      UnresolvedSetIterator End) const {
6171  unsigned size = End - Begin;
6172  assert(size > 1 && "set is not overloaded!");
6173
6174  void *memory = Allocate(sizeof(OverloadedTemplateStorage) +
6175                          size * sizeof(FunctionTemplateDecl*));
6176  OverloadedTemplateStorage *OT = new(memory) OverloadedTemplateStorage(size);
6177
6178  NamedDecl **Storage = OT->getStorage();
6179  for (UnresolvedSetIterator I = Begin; I != End; ++I) {
6180    NamedDecl *D = *I;
6181    assert(isa<FunctionTemplateDecl>(D) ||
6182           (isa<UsingShadowDecl>(D) &&
6183            isa<FunctionTemplateDecl>(D->getUnderlyingDecl())));
6184    *Storage++ = D;
6185  }
6186
6187  return TemplateName(OT);
6188}
6189
6190/// \brief Retrieve the template name that represents a qualified
6191/// template name such as \c std::vector.
6192TemplateName
6193ASTContext::getQualifiedTemplateName(NestedNameSpecifier *NNS,
6194                                     bool TemplateKeyword,
6195                                     TemplateDecl *Template) const {
6196  assert(NNS && "Missing nested-name-specifier in qualified template name");
6197
6198  // FIXME: Canonicalization?
6199  llvm::FoldingSetNodeID ID;
6200  QualifiedTemplateName::Profile(ID, NNS, TemplateKeyword, Template);
6201
6202  void *InsertPos = 0;
6203  QualifiedTemplateName *QTN =
6204    QualifiedTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
6205  if (!QTN) {
6206    QTN = new (*this, llvm::alignOf<QualifiedTemplateName>())
6207        QualifiedTemplateName(NNS, TemplateKeyword, Template);
6208    QualifiedTemplateNames.InsertNode(QTN, InsertPos);
6209  }
6210
6211  return TemplateName(QTN);
6212}
6213
6214/// \brief Retrieve the template name that represents a dependent
6215/// template name such as \c MetaFun::template apply.
6216TemplateName
6217ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
6218                                     const IdentifierInfo *Name) const {
6219  assert((!NNS || NNS->isDependent()) &&
6220         "Nested name specifier must be dependent");
6221
6222  llvm::FoldingSetNodeID ID;
6223  DependentTemplateName::Profile(ID, NNS, Name);
6224
6225  void *InsertPos = 0;
6226  DependentTemplateName *QTN =
6227    DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
6228
6229  if (QTN)
6230    return TemplateName(QTN);
6231
6232  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
6233  if (CanonNNS == NNS) {
6234    QTN = new (*this, llvm::alignOf<DependentTemplateName>())
6235        DependentTemplateName(NNS, Name);
6236  } else {
6237    TemplateName Canon = getDependentTemplateName(CanonNNS, Name);
6238    QTN = new (*this, llvm::alignOf<DependentTemplateName>())
6239        DependentTemplateName(NNS, Name, Canon);
6240    DependentTemplateName *CheckQTN =
6241      DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
6242    assert(!CheckQTN && "Dependent type name canonicalization broken");
6243    (void)CheckQTN;
6244  }
6245
6246  DependentTemplateNames.InsertNode(QTN, InsertPos);
6247  return TemplateName(QTN);
6248}
6249
6250/// \brief Retrieve the template name that represents a dependent
6251/// template name such as \c MetaFun::template operator+.
6252TemplateName
6253ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
6254                                     OverloadedOperatorKind Operator) const {
6255  assert((!NNS || NNS->isDependent()) &&
6256         "Nested name specifier must be dependent");
6257
6258  llvm::FoldingSetNodeID ID;
6259  DependentTemplateName::Profile(ID, NNS, Operator);
6260
6261  void *InsertPos = 0;
6262  DependentTemplateName *QTN
6263    = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
6264
6265  if (QTN)
6266    return TemplateName(QTN);
6267
6268  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
6269  if (CanonNNS == NNS) {
6270    QTN = new (*this, llvm::alignOf<DependentTemplateName>())
6271        DependentTemplateName(NNS, Operator);
6272  } else {
6273    TemplateName Canon = getDependentTemplateName(CanonNNS, Operator);
6274    QTN = new (*this, llvm::alignOf<DependentTemplateName>())
6275        DependentTemplateName(NNS, Operator, Canon);
6276
6277    DependentTemplateName *CheckQTN
6278      = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
6279    assert(!CheckQTN && "Dependent template name canonicalization broken");
6280    (void)CheckQTN;
6281  }
6282
6283  DependentTemplateNames.InsertNode(QTN, InsertPos);
6284  return TemplateName(QTN);
6285}
6286
6287TemplateName
6288ASTContext::getSubstTemplateTemplateParm(TemplateTemplateParmDecl *param,
6289                                         TemplateName replacement) const {
6290  llvm::FoldingSetNodeID ID;
6291  SubstTemplateTemplateParmStorage::Profile(ID, param, replacement);
6292
6293  void *insertPos = 0;
6294  SubstTemplateTemplateParmStorage *subst
6295    = SubstTemplateTemplateParms.FindNodeOrInsertPos(ID, insertPos);
6296
6297  if (!subst) {
6298    subst = new (*this) SubstTemplateTemplateParmStorage(param, replacement);
6299    SubstTemplateTemplateParms.InsertNode(subst, insertPos);
6300  }
6301
6302  return TemplateName(subst);
6303}
6304
6305TemplateName
6306ASTContext::getSubstTemplateTemplateParmPack(TemplateTemplateParmDecl *Param,
6307                                       const TemplateArgument &ArgPack) const {
6308  ASTContext &Self = const_cast<ASTContext &>(*this);
6309  llvm::FoldingSetNodeID ID;
6310  SubstTemplateTemplateParmPackStorage::Profile(ID, Self, Param, ArgPack);
6311
6312  void *InsertPos = 0;
6313  SubstTemplateTemplateParmPackStorage *Subst
6314    = SubstTemplateTemplateParmPacks.FindNodeOrInsertPos(ID, InsertPos);
6315
6316  if (!Subst) {
6317    Subst = new (*this) SubstTemplateTemplateParmPackStorage(Param,
6318                                                           ArgPack.pack_size(),
6319                                                         ArgPack.pack_begin());
6320    SubstTemplateTemplateParmPacks.InsertNode(Subst, InsertPos);
6321  }
6322
6323  return TemplateName(Subst);
6324}
6325
6326/// getFromTargetType - Given one of the integer types provided by
6327/// TargetInfo, produce the corresponding type. The unsigned @p Type
6328/// is actually a value of type @c TargetInfo::IntType.
6329CanQualType ASTContext::getFromTargetType(unsigned Type) const {
6330  switch (Type) {
6331  case TargetInfo::NoInt: return CanQualType();
6332  case TargetInfo::SignedShort: return ShortTy;
6333  case TargetInfo::UnsignedShort: return UnsignedShortTy;
6334  case TargetInfo::SignedInt: return IntTy;
6335  case TargetInfo::UnsignedInt: return UnsignedIntTy;
6336  case TargetInfo::SignedLong: return LongTy;
6337  case TargetInfo::UnsignedLong: return UnsignedLongTy;
6338  case TargetInfo::SignedLongLong: return LongLongTy;
6339  case TargetInfo::UnsignedLongLong: return UnsignedLongLongTy;
6340  }
6341
6342  llvm_unreachable("Unhandled TargetInfo::IntType value");
6343}
6344
6345//===----------------------------------------------------------------------===//
6346//                        Type Predicates.
6347//===----------------------------------------------------------------------===//
6348
6349/// getObjCGCAttr - Returns one of GCNone, Weak or Strong objc's
6350/// garbage collection attribute.
6351///
6352Qualifiers::GC ASTContext::getObjCGCAttrKind(QualType Ty) const {
6353  if (getLangOpts().getGC() == LangOptions::NonGC)
6354    return Qualifiers::GCNone;
6355
6356  assert(getLangOpts().ObjC1);
6357  Qualifiers::GC GCAttrs = Ty.getObjCGCAttr();
6358
6359  // Default behaviour under objective-C's gc is for ObjC pointers
6360  // (or pointers to them) be treated as though they were declared
6361  // as __strong.
6362  if (GCAttrs == Qualifiers::GCNone) {
6363    if (Ty->isObjCObjectPointerType() || Ty->isBlockPointerType())
6364      return Qualifiers::Strong;
6365    else if (Ty->isPointerType())
6366      return getObjCGCAttrKind(Ty->getAs<PointerType>()->getPointeeType());
6367  } else {
6368    // It's not valid to set GC attributes on anything that isn't a
6369    // pointer.
6370#ifndef NDEBUG
6371    QualType CT = Ty->getCanonicalTypeInternal();
6372    while (const ArrayType *AT = dyn_cast<ArrayType>(CT))
6373      CT = AT->getElementType();
6374    assert(CT->isAnyPointerType() || CT->isBlockPointerType());
6375#endif
6376  }
6377  return GCAttrs;
6378}
6379
6380//===----------------------------------------------------------------------===//
6381//                        Type Compatibility Testing
6382//===----------------------------------------------------------------------===//
6383
6384/// areCompatVectorTypes - Return true if the two specified vector types are
6385/// compatible.
6386static bool areCompatVectorTypes(const VectorType *LHS,
6387                                 const VectorType *RHS) {
6388  assert(LHS->isCanonicalUnqualified() && RHS->isCanonicalUnqualified());
6389  return LHS->getElementType() == RHS->getElementType() &&
6390         LHS->getNumElements() == RHS->getNumElements();
6391}
6392
6393bool ASTContext::areCompatibleVectorTypes(QualType FirstVec,
6394                                          QualType SecondVec) {
6395  assert(FirstVec->isVectorType() && "FirstVec should be a vector type");
6396  assert(SecondVec->isVectorType() && "SecondVec should be a vector type");
6397
6398  if (hasSameUnqualifiedType(FirstVec, SecondVec))
6399    return true;
6400
6401  // Treat Neon vector types and most AltiVec vector types as if they are the
6402  // equivalent GCC vector types.
6403  const VectorType *First = FirstVec->getAs<VectorType>();
6404  const VectorType *Second = SecondVec->getAs<VectorType>();
6405  if (First->getNumElements() == Second->getNumElements() &&
6406      hasSameType(First->getElementType(), Second->getElementType()) &&
6407      First->getVectorKind() != VectorType::AltiVecPixel &&
6408      First->getVectorKind() != VectorType::AltiVecBool &&
6409      Second->getVectorKind() != VectorType::AltiVecPixel &&
6410      Second->getVectorKind() != VectorType::AltiVecBool)
6411    return true;
6412
6413  return false;
6414}
6415
6416//===----------------------------------------------------------------------===//
6417// ObjCQualifiedIdTypesAreCompatible - Compatibility testing for qualified id's.
6418//===----------------------------------------------------------------------===//
6419
6420/// ProtocolCompatibleWithProtocol - return 'true' if 'lProto' is in the
6421/// inheritance hierarchy of 'rProto'.
6422bool
6423ASTContext::ProtocolCompatibleWithProtocol(ObjCProtocolDecl *lProto,
6424                                           ObjCProtocolDecl *rProto) const {
6425  if (declaresSameEntity(lProto, rProto))
6426    return true;
6427  for (ObjCProtocolDecl::protocol_iterator PI = rProto->protocol_begin(),
6428       E = rProto->protocol_end(); PI != E; ++PI)
6429    if (ProtocolCompatibleWithProtocol(lProto, *PI))
6430      return true;
6431  return false;
6432}
6433
6434/// ObjCQualifiedClassTypesAreCompatible - compare  Class<pr,...> and
6435/// Class<pr1, ...>.
6436bool ASTContext::ObjCQualifiedClassTypesAreCompatible(QualType lhs,
6437                                                      QualType rhs) {
6438  const ObjCObjectPointerType *lhsQID = lhs->getAs<ObjCObjectPointerType>();
6439  const ObjCObjectPointerType *rhsOPT = rhs->getAs<ObjCObjectPointerType>();
6440  assert ((lhsQID && rhsOPT) && "ObjCQualifiedClassTypesAreCompatible");
6441
6442  for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
6443       E = lhsQID->qual_end(); I != E; ++I) {
6444    bool match = false;
6445    ObjCProtocolDecl *lhsProto = *I;
6446    for (ObjCObjectPointerType::qual_iterator J = rhsOPT->qual_begin(),
6447         E = rhsOPT->qual_end(); J != E; ++J) {
6448      ObjCProtocolDecl *rhsProto = *J;
6449      if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto)) {
6450        match = true;
6451        break;
6452      }
6453    }
6454    if (!match)
6455      return false;
6456  }
6457  return true;
6458}
6459
6460/// ObjCQualifiedIdTypesAreCompatible - We know that one of lhs/rhs is an
6461/// ObjCQualifiedIDType.
6462bool ASTContext::ObjCQualifiedIdTypesAreCompatible(QualType lhs, QualType rhs,
6463                                                   bool compare) {
6464  // Allow id<P..> and an 'id' or void* type in all cases.
6465  if (lhs->isVoidPointerType() ||
6466      lhs->isObjCIdType() || lhs->isObjCClassType())
6467    return true;
6468  else if (rhs->isVoidPointerType() ||
6469           rhs->isObjCIdType() || rhs->isObjCClassType())
6470    return true;
6471
6472  if (const ObjCObjectPointerType *lhsQID = lhs->getAsObjCQualifiedIdType()) {
6473    const ObjCObjectPointerType *rhsOPT = rhs->getAs<ObjCObjectPointerType>();
6474
6475    if (!rhsOPT) return false;
6476
6477    if (rhsOPT->qual_empty()) {
6478      // If the RHS is a unqualified interface pointer "NSString*",
6479      // make sure we check the class hierarchy.
6480      if (ObjCInterfaceDecl *rhsID = rhsOPT->getInterfaceDecl()) {
6481        for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
6482             E = lhsQID->qual_end(); I != E; ++I) {
6483          // when comparing an id<P> on lhs with a static type on rhs,
6484          // see if static class implements all of id's protocols, directly or
6485          // through its super class and categories.
6486          if (!rhsID->ClassImplementsProtocol(*I, true))
6487            return false;
6488        }
6489      }
6490      // If there are no qualifiers and no interface, we have an 'id'.
6491      return true;
6492    }
6493    // Both the right and left sides have qualifiers.
6494    for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
6495         E = lhsQID->qual_end(); I != E; ++I) {
6496      ObjCProtocolDecl *lhsProto = *I;
6497      bool match = false;
6498
6499      // when comparing an id<P> on lhs with a static type on rhs,
6500      // see if static class implements all of id's protocols, directly or
6501      // through its super class and categories.
6502      for (ObjCObjectPointerType::qual_iterator J = rhsOPT->qual_begin(),
6503           E = rhsOPT->qual_end(); J != E; ++J) {
6504        ObjCProtocolDecl *rhsProto = *J;
6505        if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
6506            (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
6507          match = true;
6508          break;
6509        }
6510      }
6511      // If the RHS is a qualified interface pointer "NSString<P>*",
6512      // make sure we check the class hierarchy.
6513      if (ObjCInterfaceDecl *rhsID = rhsOPT->getInterfaceDecl()) {
6514        for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
6515             E = lhsQID->qual_end(); I != E; ++I) {
6516          // when comparing an id<P> on lhs with a static type on rhs,
6517          // see if static class implements all of id's protocols, directly or
6518          // through its super class and categories.
6519          if (rhsID->ClassImplementsProtocol(*I, true)) {
6520            match = true;
6521            break;
6522          }
6523        }
6524      }
6525      if (!match)
6526        return false;
6527    }
6528
6529    return true;
6530  }
6531
6532  const ObjCObjectPointerType *rhsQID = rhs->getAsObjCQualifiedIdType();
6533  assert(rhsQID && "One of the LHS/RHS should be id<x>");
6534
6535  if (const ObjCObjectPointerType *lhsOPT =
6536        lhs->getAsObjCInterfacePointerType()) {
6537    // If both the right and left sides have qualifiers.
6538    for (ObjCObjectPointerType::qual_iterator I = lhsOPT->qual_begin(),
6539         E = lhsOPT->qual_end(); I != E; ++I) {
6540      ObjCProtocolDecl *lhsProto = *I;
6541      bool match = false;
6542
6543      // when comparing an id<P> on rhs with a static type on lhs,
6544      // see if static class implements all of id's protocols, directly or
6545      // through its super class and categories.
6546      // First, lhs protocols in the qualifier list must be found, direct
6547      // or indirect in rhs's qualifier list or it is a mismatch.
6548      for (ObjCObjectPointerType::qual_iterator J = rhsQID->qual_begin(),
6549           E = rhsQID->qual_end(); J != E; ++J) {
6550        ObjCProtocolDecl *rhsProto = *J;
6551        if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
6552            (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
6553          match = true;
6554          break;
6555        }
6556      }
6557      if (!match)
6558        return false;
6559    }
6560
6561    // Static class's protocols, or its super class or category protocols
6562    // must be found, direct or indirect in rhs's qualifier list or it is a mismatch.
6563    if (ObjCInterfaceDecl *lhsID = lhsOPT->getInterfaceDecl()) {
6564      llvm::SmallPtrSet<ObjCProtocolDecl *, 8> LHSInheritedProtocols;
6565      CollectInheritedProtocols(lhsID, LHSInheritedProtocols);
6566      // This is rather dubious but matches gcc's behavior. If lhs has
6567      // no type qualifier and its class has no static protocol(s)
6568      // assume that it is mismatch.
6569      if (LHSInheritedProtocols.empty() && lhsOPT->qual_empty())
6570        return false;
6571      for (llvm::SmallPtrSet<ObjCProtocolDecl*,8>::iterator I =
6572           LHSInheritedProtocols.begin(),
6573           E = LHSInheritedProtocols.end(); I != E; ++I) {
6574        bool match = false;
6575        ObjCProtocolDecl *lhsProto = (*I);
6576        for (ObjCObjectPointerType::qual_iterator J = rhsQID->qual_begin(),
6577             E = rhsQID->qual_end(); J != E; ++J) {
6578          ObjCProtocolDecl *rhsProto = *J;
6579          if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
6580              (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
6581            match = true;
6582            break;
6583          }
6584        }
6585        if (!match)
6586          return false;
6587      }
6588    }
6589    return true;
6590  }
6591  return false;
6592}
6593
6594/// canAssignObjCInterfaces - Return true if the two interface types are
6595/// compatible for assignment from RHS to LHS.  This handles validation of any
6596/// protocol qualifiers on the LHS or RHS.
6597///
6598bool ASTContext::canAssignObjCInterfaces(const ObjCObjectPointerType *LHSOPT,
6599                                         const ObjCObjectPointerType *RHSOPT) {
6600  const ObjCObjectType* LHS = LHSOPT->getObjectType();
6601  const ObjCObjectType* RHS = RHSOPT->getObjectType();
6602
6603  // If either type represents the built-in 'id' or 'Class' types, return true.
6604  if (LHS->isObjCUnqualifiedIdOrClass() ||
6605      RHS->isObjCUnqualifiedIdOrClass())
6606    return true;
6607
6608  if (LHS->isObjCQualifiedId() || RHS->isObjCQualifiedId())
6609    return ObjCQualifiedIdTypesAreCompatible(QualType(LHSOPT,0),
6610                                             QualType(RHSOPT,0),
6611                                             false);
6612
6613  if (LHS->isObjCQualifiedClass() && RHS->isObjCQualifiedClass())
6614    return ObjCQualifiedClassTypesAreCompatible(QualType(LHSOPT,0),
6615                                                QualType(RHSOPT,0));
6616
6617  // If we have 2 user-defined types, fall into that path.
6618  if (LHS->getInterface() && RHS->getInterface())
6619    return canAssignObjCInterfaces(LHS, RHS);
6620
6621  return false;
6622}
6623
6624/// canAssignObjCInterfacesInBlockPointer - This routine is specifically written
6625/// for providing type-safety for objective-c pointers used to pass/return
6626/// arguments in block literals. When passed as arguments, passing 'A*' where
6627/// 'id' is expected is not OK. Passing 'Sub *" where 'Super *" is expected is
6628/// not OK. For the return type, the opposite is not OK.
6629bool ASTContext::canAssignObjCInterfacesInBlockPointer(
6630                                         const ObjCObjectPointerType *LHSOPT,
6631                                         const ObjCObjectPointerType *RHSOPT,
6632                                         bool BlockReturnType) {
6633  if (RHSOPT->isObjCBuiltinType() || LHSOPT->isObjCIdType())
6634    return true;
6635
6636  if (LHSOPT->isObjCBuiltinType()) {
6637    return RHSOPT->isObjCBuiltinType() || RHSOPT->isObjCQualifiedIdType();
6638  }
6639
6640  if (LHSOPT->isObjCQualifiedIdType() || RHSOPT->isObjCQualifiedIdType())
6641    return ObjCQualifiedIdTypesAreCompatible(QualType(LHSOPT,0),
6642                                             QualType(RHSOPT,0),
6643                                             false);
6644
6645  const ObjCInterfaceType* LHS = LHSOPT->getInterfaceType();
6646  const ObjCInterfaceType* RHS = RHSOPT->getInterfaceType();
6647  if (LHS && RHS)  { // We have 2 user-defined types.
6648    if (LHS != RHS) {
6649      if (LHS->getDecl()->isSuperClassOf(RHS->getDecl()))
6650        return BlockReturnType;
6651      if (RHS->getDecl()->isSuperClassOf(LHS->getDecl()))
6652        return !BlockReturnType;
6653    }
6654    else
6655      return true;
6656  }
6657  return false;
6658}
6659
6660/// getIntersectionOfProtocols - This routine finds the intersection of set
6661/// of protocols inherited from two distinct objective-c pointer objects.
6662/// It is used to build composite qualifier list of the composite type of
6663/// the conditional expression involving two objective-c pointer objects.
6664static
6665void getIntersectionOfProtocols(ASTContext &Context,
6666                                const ObjCObjectPointerType *LHSOPT,
6667                                const ObjCObjectPointerType *RHSOPT,
6668      SmallVectorImpl<ObjCProtocolDecl *> &IntersectionOfProtocols) {
6669
6670  const ObjCObjectType* LHS = LHSOPT->getObjectType();
6671  const ObjCObjectType* RHS = RHSOPT->getObjectType();
6672  assert(LHS->getInterface() && "LHS must have an interface base");
6673  assert(RHS->getInterface() && "RHS must have an interface base");
6674
6675  llvm::SmallPtrSet<ObjCProtocolDecl *, 8> InheritedProtocolSet;
6676  unsigned LHSNumProtocols = LHS->getNumProtocols();
6677  if (LHSNumProtocols > 0)
6678    InheritedProtocolSet.insert(LHS->qual_begin(), LHS->qual_end());
6679  else {
6680    llvm::SmallPtrSet<ObjCProtocolDecl *, 8> LHSInheritedProtocols;
6681    Context.CollectInheritedProtocols(LHS->getInterface(),
6682                                      LHSInheritedProtocols);
6683    InheritedProtocolSet.insert(LHSInheritedProtocols.begin(),
6684                                LHSInheritedProtocols.end());
6685  }
6686
6687  unsigned RHSNumProtocols = RHS->getNumProtocols();
6688  if (RHSNumProtocols > 0) {
6689    ObjCProtocolDecl **RHSProtocols =
6690      const_cast<ObjCProtocolDecl **>(RHS->qual_begin());
6691    for (unsigned i = 0; i < RHSNumProtocols; ++i)
6692      if (InheritedProtocolSet.count(RHSProtocols[i]))
6693        IntersectionOfProtocols.push_back(RHSProtocols[i]);
6694  } else {
6695    llvm::SmallPtrSet<ObjCProtocolDecl *, 8> RHSInheritedProtocols;
6696    Context.CollectInheritedProtocols(RHS->getInterface(),
6697                                      RHSInheritedProtocols);
6698    for (llvm::SmallPtrSet<ObjCProtocolDecl*,8>::iterator I =
6699         RHSInheritedProtocols.begin(),
6700         E = RHSInheritedProtocols.end(); I != E; ++I)
6701      if (InheritedProtocolSet.count((*I)))
6702        IntersectionOfProtocols.push_back((*I));
6703  }
6704}
6705
6706/// areCommonBaseCompatible - Returns common base class of the two classes if
6707/// one found. Note that this is O'2 algorithm. But it will be called as the
6708/// last type comparison in a ?-exp of ObjC pointer types before a
6709/// warning is issued. So, its invokation is extremely rare.
6710QualType ASTContext::areCommonBaseCompatible(
6711                                          const ObjCObjectPointerType *Lptr,
6712                                          const ObjCObjectPointerType *Rptr) {
6713  const ObjCObjectType *LHS = Lptr->getObjectType();
6714  const ObjCObjectType *RHS = Rptr->getObjectType();
6715  const ObjCInterfaceDecl* LDecl = LHS->getInterface();
6716  const ObjCInterfaceDecl* RDecl = RHS->getInterface();
6717  if (!LDecl || !RDecl || (declaresSameEntity(LDecl, RDecl)))
6718    return QualType();
6719
6720  do {
6721    LHS = cast<ObjCInterfaceType>(getObjCInterfaceType(LDecl));
6722    if (canAssignObjCInterfaces(LHS, RHS)) {
6723      SmallVector<ObjCProtocolDecl *, 8> Protocols;
6724      getIntersectionOfProtocols(*this, Lptr, Rptr, Protocols);
6725
6726      QualType Result = QualType(LHS, 0);
6727      if (!Protocols.empty())
6728        Result = getObjCObjectType(Result, Protocols.data(), Protocols.size());
6729      Result = getObjCObjectPointerType(Result);
6730      return Result;
6731    }
6732  } while ((LDecl = LDecl->getSuperClass()));
6733
6734  return QualType();
6735}
6736
6737bool ASTContext::canAssignObjCInterfaces(const ObjCObjectType *LHS,
6738                                         const ObjCObjectType *RHS) {
6739  assert(LHS->getInterface() && "LHS is not an interface type");
6740  assert(RHS->getInterface() && "RHS is not an interface type");
6741
6742  // Verify that the base decls are compatible: the RHS must be a subclass of
6743  // the LHS.
6744  if (!LHS->getInterface()->isSuperClassOf(RHS->getInterface()))
6745    return false;
6746
6747  // RHS must have a superset of the protocols in the LHS.  If the LHS is not
6748  // protocol qualified at all, then we are good.
6749  if (LHS->getNumProtocols() == 0)
6750    return true;
6751
6752  // Okay, we know the LHS has protocol qualifiers.  If the RHS doesn't,
6753  // more detailed analysis is required.
6754  if (RHS->getNumProtocols() == 0) {
6755    // OK, if LHS is a superclass of RHS *and*
6756    // this superclass is assignment compatible with LHS.
6757    // false otherwise.
6758    bool IsSuperClass =
6759      LHS->getInterface()->isSuperClassOf(RHS->getInterface());
6760    if (IsSuperClass) {
6761      // OK if conversion of LHS to SuperClass results in narrowing of types
6762      // ; i.e., SuperClass may implement at least one of the protocols
6763      // in LHS's protocol list. Example, SuperObj<P1> = lhs<P1,P2> is ok.
6764      // But not SuperObj<P1,P2,P3> = lhs<P1,P2>.
6765      llvm::SmallPtrSet<ObjCProtocolDecl *, 8> SuperClassInheritedProtocols;
6766      CollectInheritedProtocols(RHS->getInterface(), SuperClassInheritedProtocols);
6767      // If super class has no protocols, it is not a match.
6768      if (SuperClassInheritedProtocols.empty())
6769        return false;
6770
6771      for (ObjCObjectType::qual_iterator LHSPI = LHS->qual_begin(),
6772           LHSPE = LHS->qual_end();
6773           LHSPI != LHSPE; LHSPI++) {
6774        bool SuperImplementsProtocol = false;
6775        ObjCProtocolDecl *LHSProto = (*LHSPI);
6776
6777        for (llvm::SmallPtrSet<ObjCProtocolDecl*,8>::iterator I =
6778             SuperClassInheritedProtocols.begin(),
6779             E = SuperClassInheritedProtocols.end(); I != E; ++I) {
6780          ObjCProtocolDecl *SuperClassProto = (*I);
6781          if (SuperClassProto->lookupProtocolNamed(LHSProto->getIdentifier())) {
6782            SuperImplementsProtocol = true;
6783            break;
6784          }
6785        }
6786        if (!SuperImplementsProtocol)
6787          return false;
6788      }
6789      return true;
6790    }
6791    return false;
6792  }
6793
6794  for (ObjCObjectType::qual_iterator LHSPI = LHS->qual_begin(),
6795                                     LHSPE = LHS->qual_end();
6796       LHSPI != LHSPE; LHSPI++) {
6797    bool RHSImplementsProtocol = false;
6798
6799    // If the RHS doesn't implement the protocol on the left, the types
6800    // are incompatible.
6801    for (ObjCObjectType::qual_iterator RHSPI = RHS->qual_begin(),
6802                                       RHSPE = RHS->qual_end();
6803         RHSPI != RHSPE; RHSPI++) {
6804      if ((*RHSPI)->lookupProtocolNamed((*LHSPI)->getIdentifier())) {
6805        RHSImplementsProtocol = true;
6806        break;
6807      }
6808    }
6809    // FIXME: For better diagnostics, consider passing back the protocol name.
6810    if (!RHSImplementsProtocol)
6811      return false;
6812  }
6813  // The RHS implements all protocols listed on the LHS.
6814  return true;
6815}
6816
6817bool ASTContext::areComparableObjCPointerTypes(QualType LHS, QualType RHS) {
6818  // get the "pointed to" types
6819  const ObjCObjectPointerType *LHSOPT = LHS->getAs<ObjCObjectPointerType>();
6820  const ObjCObjectPointerType *RHSOPT = RHS->getAs<ObjCObjectPointerType>();
6821
6822  if (!LHSOPT || !RHSOPT)
6823    return false;
6824
6825  return canAssignObjCInterfaces(LHSOPT, RHSOPT) ||
6826         canAssignObjCInterfaces(RHSOPT, LHSOPT);
6827}
6828
6829bool ASTContext::canBindObjCObjectType(QualType To, QualType From) {
6830  return canAssignObjCInterfaces(
6831                getObjCObjectPointerType(To)->getAs<ObjCObjectPointerType>(),
6832                getObjCObjectPointerType(From)->getAs<ObjCObjectPointerType>());
6833}
6834
6835/// typesAreCompatible - C99 6.7.3p9: For two qualified types to be compatible,
6836/// both shall have the identically qualified version of a compatible type.
6837/// C99 6.2.7p1: Two types have compatible types if their types are the
6838/// same. See 6.7.[2,3,5] for additional rules.
6839bool ASTContext::typesAreCompatible(QualType LHS, QualType RHS,
6840                                    bool CompareUnqualified) {
6841  if (getLangOpts().CPlusPlus)
6842    return hasSameType(LHS, RHS);
6843
6844  return !mergeTypes(LHS, RHS, false, CompareUnqualified).isNull();
6845}
6846
6847bool ASTContext::propertyTypesAreCompatible(QualType LHS, QualType RHS) {
6848  return typesAreCompatible(LHS, RHS);
6849}
6850
6851bool ASTContext::typesAreBlockPointerCompatible(QualType LHS, QualType RHS) {
6852  return !mergeTypes(LHS, RHS, true).isNull();
6853}
6854
6855/// mergeTransparentUnionType - if T is a transparent union type and a member
6856/// of T is compatible with SubType, return the merged type, else return
6857/// QualType()
6858QualType ASTContext::mergeTransparentUnionType(QualType T, QualType SubType,
6859                                               bool OfBlockPointer,
6860                                               bool Unqualified) {
6861  if (const RecordType *UT = T->getAsUnionType()) {
6862    RecordDecl *UD = UT->getDecl();
6863    if (UD->hasAttr<TransparentUnionAttr>()) {
6864      for (RecordDecl::field_iterator it = UD->field_begin(),
6865           itend = UD->field_end(); it != itend; ++it) {
6866        QualType ET = it->getType().getUnqualifiedType();
6867        QualType MT = mergeTypes(ET, SubType, OfBlockPointer, Unqualified);
6868        if (!MT.isNull())
6869          return MT;
6870      }
6871    }
6872  }
6873
6874  return QualType();
6875}
6876
6877/// mergeFunctionArgumentTypes - merge two types which appear as function
6878/// argument types
6879QualType ASTContext::mergeFunctionArgumentTypes(QualType lhs, QualType rhs,
6880                                                bool OfBlockPointer,
6881                                                bool Unqualified) {
6882  // GNU extension: two types are compatible if they appear as a function
6883  // argument, one of the types is a transparent union type and the other
6884  // type is compatible with a union member
6885  QualType lmerge = mergeTransparentUnionType(lhs, rhs, OfBlockPointer,
6886                                              Unqualified);
6887  if (!lmerge.isNull())
6888    return lmerge;
6889
6890  QualType rmerge = mergeTransparentUnionType(rhs, lhs, OfBlockPointer,
6891                                              Unqualified);
6892  if (!rmerge.isNull())
6893    return rmerge;
6894
6895  return mergeTypes(lhs, rhs, OfBlockPointer, Unqualified);
6896}
6897
6898QualType ASTContext::mergeFunctionTypes(QualType lhs, QualType rhs,
6899                                        bool OfBlockPointer,
6900                                        bool Unqualified) {
6901  const FunctionType *lbase = lhs->getAs<FunctionType>();
6902  const FunctionType *rbase = rhs->getAs<FunctionType>();
6903  const FunctionProtoType *lproto = dyn_cast<FunctionProtoType>(lbase);
6904  const FunctionProtoType *rproto = dyn_cast<FunctionProtoType>(rbase);
6905  bool allLTypes = true;
6906  bool allRTypes = true;
6907
6908  // Check return type
6909  QualType retType;
6910  if (OfBlockPointer) {
6911    QualType RHS = rbase->getResultType();
6912    QualType LHS = lbase->getResultType();
6913    bool UnqualifiedResult = Unqualified;
6914    if (!UnqualifiedResult)
6915      UnqualifiedResult = (!RHS.hasQualifiers() && LHS.hasQualifiers());
6916    retType = mergeTypes(LHS, RHS, true, UnqualifiedResult, true);
6917  }
6918  else
6919    retType = mergeTypes(lbase->getResultType(), rbase->getResultType(), false,
6920                         Unqualified);
6921  if (retType.isNull()) return QualType();
6922
6923  if (Unqualified)
6924    retType = retType.getUnqualifiedType();
6925
6926  CanQualType LRetType = getCanonicalType(lbase->getResultType());
6927  CanQualType RRetType = getCanonicalType(rbase->getResultType());
6928  if (Unqualified) {
6929    LRetType = LRetType.getUnqualifiedType();
6930    RRetType = RRetType.getUnqualifiedType();
6931  }
6932
6933  if (getCanonicalType(retType) != LRetType)
6934    allLTypes = false;
6935  if (getCanonicalType(retType) != RRetType)
6936    allRTypes = false;
6937
6938  // FIXME: double check this
6939  // FIXME: should we error if lbase->getRegParmAttr() != 0 &&
6940  //                           rbase->getRegParmAttr() != 0 &&
6941  //                           lbase->getRegParmAttr() != rbase->getRegParmAttr()?
6942  FunctionType::ExtInfo lbaseInfo = lbase->getExtInfo();
6943  FunctionType::ExtInfo rbaseInfo = rbase->getExtInfo();
6944
6945  // Compatible functions must have compatible calling conventions
6946  if (!isSameCallConv(lbaseInfo.getCC(), rbaseInfo.getCC()))
6947    return QualType();
6948
6949  // Regparm is part of the calling convention.
6950  if (lbaseInfo.getHasRegParm() != rbaseInfo.getHasRegParm())
6951    return QualType();
6952  if (lbaseInfo.getRegParm() != rbaseInfo.getRegParm())
6953    return QualType();
6954
6955  if (lbaseInfo.getProducesResult() != rbaseInfo.getProducesResult())
6956    return QualType();
6957
6958  // FIXME: some uses, e.g. conditional exprs, really want this to be 'both'.
6959  bool NoReturn = lbaseInfo.getNoReturn() || rbaseInfo.getNoReturn();
6960
6961  if (lbaseInfo.getNoReturn() != NoReturn)
6962    allLTypes = false;
6963  if (rbaseInfo.getNoReturn() != NoReturn)
6964    allRTypes = false;
6965
6966  FunctionType::ExtInfo einfo = lbaseInfo.withNoReturn(NoReturn);
6967
6968  if (lproto && rproto) { // two C99 style function prototypes
6969    assert(!lproto->hasExceptionSpec() && !rproto->hasExceptionSpec() &&
6970           "C++ shouldn't be here");
6971    unsigned lproto_nargs = lproto->getNumArgs();
6972    unsigned rproto_nargs = rproto->getNumArgs();
6973
6974    // Compatible functions must have the same number of arguments
6975    if (lproto_nargs != rproto_nargs)
6976      return QualType();
6977
6978    // Variadic and non-variadic functions aren't compatible
6979    if (lproto->isVariadic() != rproto->isVariadic())
6980      return QualType();
6981
6982    if (lproto->getTypeQuals() != rproto->getTypeQuals())
6983      return QualType();
6984
6985    if (LangOpts.ObjCAutoRefCount &&
6986        !FunctionTypesMatchOnNSConsumedAttrs(rproto, lproto))
6987      return QualType();
6988
6989    // Check argument compatibility
6990    SmallVector<QualType, 10> types;
6991    for (unsigned i = 0; i < lproto_nargs; i++) {
6992      QualType largtype = lproto->getArgType(i).getUnqualifiedType();
6993      QualType rargtype = rproto->getArgType(i).getUnqualifiedType();
6994      QualType argtype = mergeFunctionArgumentTypes(largtype, rargtype,
6995                                                    OfBlockPointer,
6996                                                    Unqualified);
6997      if (argtype.isNull()) return QualType();
6998
6999      if (Unqualified)
7000        argtype = argtype.getUnqualifiedType();
7001
7002      types.push_back(argtype);
7003      if (Unqualified) {
7004        largtype = largtype.getUnqualifiedType();
7005        rargtype = rargtype.getUnqualifiedType();
7006      }
7007
7008      if (getCanonicalType(argtype) != getCanonicalType(largtype))
7009        allLTypes = false;
7010      if (getCanonicalType(argtype) != getCanonicalType(rargtype))
7011        allRTypes = false;
7012    }
7013
7014    if (allLTypes) return lhs;
7015    if (allRTypes) return rhs;
7016
7017    FunctionProtoType::ExtProtoInfo EPI = lproto->getExtProtoInfo();
7018    EPI.ExtInfo = einfo;
7019    return getFunctionType(retType, types, EPI);
7020  }
7021
7022  if (lproto) allRTypes = false;
7023  if (rproto) allLTypes = false;
7024
7025  const FunctionProtoType *proto = lproto ? lproto : rproto;
7026  if (proto) {
7027    assert(!proto->hasExceptionSpec() && "C++ shouldn't be here");
7028    if (proto->isVariadic()) return QualType();
7029    // Check that the types are compatible with the types that
7030    // would result from default argument promotions (C99 6.7.5.3p15).
7031    // The only types actually affected are promotable integer
7032    // types and floats, which would be passed as a different
7033    // type depending on whether the prototype is visible.
7034    unsigned proto_nargs = proto->getNumArgs();
7035    for (unsigned i = 0; i < proto_nargs; ++i) {
7036      QualType argTy = proto->getArgType(i);
7037
7038      // Look at the converted type of enum types, since that is the type used
7039      // to pass enum values.
7040      if (const EnumType *Enum = argTy->getAs<EnumType>()) {
7041        argTy = Enum->getDecl()->getIntegerType();
7042        if (argTy.isNull())
7043          return QualType();
7044      }
7045
7046      if (argTy->isPromotableIntegerType() ||
7047          getCanonicalType(argTy).getUnqualifiedType() == FloatTy)
7048        return QualType();
7049    }
7050
7051    if (allLTypes) return lhs;
7052    if (allRTypes) return rhs;
7053
7054    FunctionProtoType::ExtProtoInfo EPI = proto->getExtProtoInfo();
7055    EPI.ExtInfo = einfo;
7056    return getFunctionType(retType, proto->getArgTypes(), EPI);
7057  }
7058
7059  if (allLTypes) return lhs;
7060  if (allRTypes) return rhs;
7061  return getFunctionNoProtoType(retType, einfo);
7062}
7063
7064/// Given that we have an enum type and a non-enum type, try to merge them.
7065static QualType mergeEnumWithInteger(ASTContext &Context, const EnumType *ET,
7066                                     QualType other, bool isBlockReturnType) {
7067  // C99 6.7.2.2p4: Each enumerated type shall be compatible with char,
7068  // a signed integer type, or an unsigned integer type.
7069  // Compatibility is based on the underlying type, not the promotion
7070  // type.
7071  QualType underlyingType = ET->getDecl()->getIntegerType();
7072  if (underlyingType.isNull()) return QualType();
7073  if (Context.hasSameType(underlyingType, other))
7074    return other;
7075
7076  // In block return types, we're more permissive and accept any
7077  // integral type of the same size.
7078  if (isBlockReturnType && other->isIntegerType() &&
7079      Context.getTypeSize(underlyingType) == Context.getTypeSize(other))
7080    return other;
7081
7082  return QualType();
7083}
7084
7085QualType ASTContext::mergeTypes(QualType LHS, QualType RHS,
7086                                bool OfBlockPointer,
7087                                bool Unqualified, bool BlockReturnType) {
7088  // C++ [expr]: If an expression initially has the type "reference to T", the
7089  // type is adjusted to "T" prior to any further analysis, the expression
7090  // designates the object or function denoted by the reference, and the
7091  // expression is an lvalue unless the reference is an rvalue reference and
7092  // the expression is a function call (possibly inside parentheses).
7093  assert(!LHS->getAs<ReferenceType>() && "LHS is a reference type?");
7094  assert(!RHS->getAs<ReferenceType>() && "RHS is a reference type?");
7095
7096  if (Unqualified) {
7097    LHS = LHS.getUnqualifiedType();
7098    RHS = RHS.getUnqualifiedType();
7099  }
7100
7101  QualType LHSCan = getCanonicalType(LHS),
7102           RHSCan = getCanonicalType(RHS);
7103
7104  // If two types are identical, they are compatible.
7105  if (LHSCan == RHSCan)
7106    return LHS;
7107
7108  // If the qualifiers are different, the types aren't compatible... mostly.
7109  Qualifiers LQuals = LHSCan.getLocalQualifiers();
7110  Qualifiers RQuals = RHSCan.getLocalQualifiers();
7111  if (LQuals != RQuals) {
7112    // If any of these qualifiers are different, we have a type
7113    // mismatch.
7114    if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() ||
7115        LQuals.getAddressSpace() != RQuals.getAddressSpace() ||
7116        LQuals.getObjCLifetime() != RQuals.getObjCLifetime())
7117      return QualType();
7118
7119    // Exactly one GC qualifier difference is allowed: __strong is
7120    // okay if the other type has no GC qualifier but is an Objective
7121    // C object pointer (i.e. implicitly strong by default).  We fix
7122    // this by pretending that the unqualified type was actually
7123    // qualified __strong.
7124    Qualifiers::GC GC_L = LQuals.getObjCGCAttr();
7125    Qualifiers::GC GC_R = RQuals.getObjCGCAttr();
7126    assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements");
7127
7128    if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak)
7129      return QualType();
7130
7131    if (GC_L == Qualifiers::Strong && RHSCan->isObjCObjectPointerType()) {
7132      return mergeTypes(LHS, getObjCGCQualType(RHS, Qualifiers::Strong));
7133    }
7134    if (GC_R == Qualifiers::Strong && LHSCan->isObjCObjectPointerType()) {
7135      return mergeTypes(getObjCGCQualType(LHS, Qualifiers::Strong), RHS);
7136    }
7137    return QualType();
7138  }
7139
7140  // Okay, qualifiers are equal.
7141
7142  Type::TypeClass LHSClass = LHSCan->getTypeClass();
7143  Type::TypeClass RHSClass = RHSCan->getTypeClass();
7144
7145  // We want to consider the two function types to be the same for these
7146  // comparisons, just force one to the other.
7147  if (LHSClass == Type::FunctionProto) LHSClass = Type::FunctionNoProto;
7148  if (RHSClass == Type::FunctionProto) RHSClass = Type::FunctionNoProto;
7149
7150  // Same as above for arrays
7151  if (LHSClass == Type::VariableArray || LHSClass == Type::IncompleteArray)
7152    LHSClass = Type::ConstantArray;
7153  if (RHSClass == Type::VariableArray || RHSClass == Type::IncompleteArray)
7154    RHSClass = Type::ConstantArray;
7155
7156  // ObjCInterfaces are just specialized ObjCObjects.
7157  if (LHSClass == Type::ObjCInterface) LHSClass = Type::ObjCObject;
7158  if (RHSClass == Type::ObjCInterface) RHSClass = Type::ObjCObject;
7159
7160  // Canonicalize ExtVector -> Vector.
7161  if (LHSClass == Type::ExtVector) LHSClass = Type::Vector;
7162  if (RHSClass == Type::ExtVector) RHSClass = Type::Vector;
7163
7164  // If the canonical type classes don't match.
7165  if (LHSClass != RHSClass) {
7166    // Note that we only have special rules for turning block enum
7167    // returns into block int returns, not vice-versa.
7168    if (const EnumType* ETy = LHS->getAs<EnumType>()) {
7169      return mergeEnumWithInteger(*this, ETy, RHS, false);
7170    }
7171    if (const EnumType* ETy = RHS->getAs<EnumType>()) {
7172      return mergeEnumWithInteger(*this, ETy, LHS, BlockReturnType);
7173    }
7174    // allow block pointer type to match an 'id' type.
7175    if (OfBlockPointer && !BlockReturnType) {
7176       if (LHS->isObjCIdType() && RHS->isBlockPointerType())
7177         return LHS;
7178      if (RHS->isObjCIdType() && LHS->isBlockPointerType())
7179        return RHS;
7180    }
7181
7182    return QualType();
7183  }
7184
7185  // The canonical type classes match.
7186  switch (LHSClass) {
7187#define TYPE(Class, Base)
7188#define ABSTRACT_TYPE(Class, Base)
7189#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
7190#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
7191#define DEPENDENT_TYPE(Class, Base) case Type::Class:
7192#include "clang/AST/TypeNodes.def"
7193    llvm_unreachable("Non-canonical and dependent types shouldn't get here");
7194
7195  case Type::Auto:
7196  case Type::LValueReference:
7197  case Type::RValueReference:
7198  case Type::MemberPointer:
7199    llvm_unreachable("C++ should never be in mergeTypes");
7200
7201  case Type::ObjCInterface:
7202  case Type::IncompleteArray:
7203  case Type::VariableArray:
7204  case Type::FunctionProto:
7205  case Type::ExtVector:
7206    llvm_unreachable("Types are eliminated above");
7207
7208  case Type::Pointer:
7209  {
7210    // Merge two pointer types, while trying to preserve typedef info
7211    QualType LHSPointee = LHS->getAs<PointerType>()->getPointeeType();
7212    QualType RHSPointee = RHS->getAs<PointerType>()->getPointeeType();
7213    if (Unqualified) {
7214      LHSPointee = LHSPointee.getUnqualifiedType();
7215      RHSPointee = RHSPointee.getUnqualifiedType();
7216    }
7217    QualType ResultType = mergeTypes(LHSPointee, RHSPointee, false,
7218                                     Unqualified);
7219    if (ResultType.isNull()) return QualType();
7220    if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
7221      return LHS;
7222    if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
7223      return RHS;
7224    return getPointerType(ResultType);
7225  }
7226  case Type::BlockPointer:
7227  {
7228    // Merge two block pointer types, while trying to preserve typedef info
7229    QualType LHSPointee = LHS->getAs<BlockPointerType>()->getPointeeType();
7230    QualType RHSPointee = RHS->getAs<BlockPointerType>()->getPointeeType();
7231    if (Unqualified) {
7232      LHSPointee = LHSPointee.getUnqualifiedType();
7233      RHSPointee = RHSPointee.getUnqualifiedType();
7234    }
7235    QualType ResultType = mergeTypes(LHSPointee, RHSPointee, OfBlockPointer,
7236                                     Unqualified);
7237    if (ResultType.isNull()) return QualType();
7238    if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
7239      return LHS;
7240    if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
7241      return RHS;
7242    return getBlockPointerType(ResultType);
7243  }
7244  case Type::Atomic:
7245  {
7246    // Merge two pointer types, while trying to preserve typedef info
7247    QualType LHSValue = LHS->getAs<AtomicType>()->getValueType();
7248    QualType RHSValue = RHS->getAs<AtomicType>()->getValueType();
7249    if (Unqualified) {
7250      LHSValue = LHSValue.getUnqualifiedType();
7251      RHSValue = RHSValue.getUnqualifiedType();
7252    }
7253    QualType ResultType = mergeTypes(LHSValue, RHSValue, false,
7254                                     Unqualified);
7255    if (ResultType.isNull()) return QualType();
7256    if (getCanonicalType(LHSValue) == getCanonicalType(ResultType))
7257      return LHS;
7258    if (getCanonicalType(RHSValue) == getCanonicalType(ResultType))
7259      return RHS;
7260    return getAtomicType(ResultType);
7261  }
7262  case Type::ConstantArray:
7263  {
7264    const ConstantArrayType* LCAT = getAsConstantArrayType(LHS);
7265    const ConstantArrayType* RCAT = getAsConstantArrayType(RHS);
7266    if (LCAT && RCAT && RCAT->getSize() != LCAT->getSize())
7267      return QualType();
7268
7269    QualType LHSElem = getAsArrayType(LHS)->getElementType();
7270    QualType RHSElem = getAsArrayType(RHS)->getElementType();
7271    if (Unqualified) {
7272      LHSElem = LHSElem.getUnqualifiedType();
7273      RHSElem = RHSElem.getUnqualifiedType();
7274    }
7275
7276    QualType ResultType = mergeTypes(LHSElem, RHSElem, false, Unqualified);
7277    if (ResultType.isNull()) return QualType();
7278    if (LCAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
7279      return LHS;
7280    if (RCAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
7281      return RHS;
7282    if (LCAT) return getConstantArrayType(ResultType, LCAT->getSize(),
7283                                          ArrayType::ArraySizeModifier(), 0);
7284    if (RCAT) return getConstantArrayType(ResultType, RCAT->getSize(),
7285                                          ArrayType::ArraySizeModifier(), 0);
7286    const VariableArrayType* LVAT = getAsVariableArrayType(LHS);
7287    const VariableArrayType* RVAT = getAsVariableArrayType(RHS);
7288    if (LVAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
7289      return LHS;
7290    if (RVAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
7291      return RHS;
7292    if (LVAT) {
7293      // FIXME: This isn't correct! But tricky to implement because
7294      // the array's size has to be the size of LHS, but the type
7295      // has to be different.
7296      return LHS;
7297    }
7298    if (RVAT) {
7299      // FIXME: This isn't correct! But tricky to implement because
7300      // the array's size has to be the size of RHS, but the type
7301      // has to be different.
7302      return RHS;
7303    }
7304    if (getCanonicalType(LHSElem) == getCanonicalType(ResultType)) return LHS;
7305    if (getCanonicalType(RHSElem) == getCanonicalType(ResultType)) return RHS;
7306    return getIncompleteArrayType(ResultType,
7307                                  ArrayType::ArraySizeModifier(), 0);
7308  }
7309  case Type::FunctionNoProto:
7310    return mergeFunctionTypes(LHS, RHS, OfBlockPointer, Unqualified);
7311  case Type::Record:
7312  case Type::Enum:
7313    return QualType();
7314  case Type::Builtin:
7315    // Only exactly equal builtin types are compatible, which is tested above.
7316    return QualType();
7317  case Type::Complex:
7318    // Distinct complex types are incompatible.
7319    return QualType();
7320  case Type::Vector:
7321    // FIXME: The merged type should be an ExtVector!
7322    if (areCompatVectorTypes(LHSCan->getAs<VectorType>(),
7323                             RHSCan->getAs<VectorType>()))
7324      return LHS;
7325    return QualType();
7326  case Type::ObjCObject: {
7327    // Check if the types are assignment compatible.
7328    // FIXME: This should be type compatibility, e.g. whether
7329    // "LHS x; RHS x;" at global scope is legal.
7330    const ObjCObjectType* LHSIface = LHS->getAs<ObjCObjectType>();
7331    const ObjCObjectType* RHSIface = RHS->getAs<ObjCObjectType>();
7332    if (canAssignObjCInterfaces(LHSIface, RHSIface))
7333      return LHS;
7334
7335    return QualType();
7336  }
7337  case Type::ObjCObjectPointer: {
7338    if (OfBlockPointer) {
7339      if (canAssignObjCInterfacesInBlockPointer(
7340                                          LHS->getAs<ObjCObjectPointerType>(),
7341                                          RHS->getAs<ObjCObjectPointerType>(),
7342                                          BlockReturnType))
7343        return LHS;
7344      return QualType();
7345    }
7346    if (canAssignObjCInterfaces(LHS->getAs<ObjCObjectPointerType>(),
7347                                RHS->getAs<ObjCObjectPointerType>()))
7348      return LHS;
7349
7350    return QualType();
7351  }
7352  }
7353
7354  llvm_unreachable("Invalid Type::Class!");
7355}
7356
7357bool ASTContext::FunctionTypesMatchOnNSConsumedAttrs(
7358                   const FunctionProtoType *FromFunctionType,
7359                   const FunctionProtoType *ToFunctionType) {
7360  if (FromFunctionType->hasAnyConsumedArgs() !=
7361      ToFunctionType->hasAnyConsumedArgs())
7362    return false;
7363  FunctionProtoType::ExtProtoInfo FromEPI =
7364    FromFunctionType->getExtProtoInfo();
7365  FunctionProtoType::ExtProtoInfo ToEPI =
7366    ToFunctionType->getExtProtoInfo();
7367  if (FromEPI.ConsumedArguments && ToEPI.ConsumedArguments)
7368    for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumArgs();
7369         ArgIdx != NumArgs; ++ArgIdx)  {
7370      if (FromEPI.ConsumedArguments[ArgIdx] !=
7371          ToEPI.ConsumedArguments[ArgIdx])
7372        return false;
7373    }
7374  return true;
7375}
7376
7377/// mergeObjCGCQualifiers - This routine merges ObjC's GC attribute of 'LHS' and
7378/// 'RHS' attributes and returns the merged version; including for function
7379/// return types.
7380QualType ASTContext::mergeObjCGCQualifiers(QualType LHS, QualType RHS) {
7381  QualType LHSCan = getCanonicalType(LHS),
7382  RHSCan = getCanonicalType(RHS);
7383  // If two types are identical, they are compatible.
7384  if (LHSCan == RHSCan)
7385    return LHS;
7386  if (RHSCan->isFunctionType()) {
7387    if (!LHSCan->isFunctionType())
7388      return QualType();
7389    QualType OldReturnType =
7390      cast<FunctionType>(RHSCan.getTypePtr())->getResultType();
7391    QualType NewReturnType =
7392      cast<FunctionType>(LHSCan.getTypePtr())->getResultType();
7393    QualType ResReturnType =
7394      mergeObjCGCQualifiers(NewReturnType, OldReturnType);
7395    if (ResReturnType.isNull())
7396      return QualType();
7397    if (ResReturnType == NewReturnType || ResReturnType == OldReturnType) {
7398      // id foo(); ... __strong id foo(); or: __strong id foo(); ... id foo();
7399      // In either case, use OldReturnType to build the new function type.
7400      const FunctionType *F = LHS->getAs<FunctionType>();
7401      if (const FunctionProtoType *FPT = cast<FunctionProtoType>(F)) {
7402        FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
7403        EPI.ExtInfo = getFunctionExtInfo(LHS);
7404        QualType ResultType =
7405            getFunctionType(OldReturnType, FPT->getArgTypes(), EPI);
7406        return ResultType;
7407      }
7408    }
7409    return QualType();
7410  }
7411
7412  // If the qualifiers are different, the types can still be merged.
7413  Qualifiers LQuals = LHSCan.getLocalQualifiers();
7414  Qualifiers RQuals = RHSCan.getLocalQualifiers();
7415  if (LQuals != RQuals) {
7416    // If any of these qualifiers are different, we have a type mismatch.
7417    if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() ||
7418        LQuals.getAddressSpace() != RQuals.getAddressSpace())
7419      return QualType();
7420
7421    // Exactly one GC qualifier difference is allowed: __strong is
7422    // okay if the other type has no GC qualifier but is an Objective
7423    // C object pointer (i.e. implicitly strong by default).  We fix
7424    // this by pretending that the unqualified type was actually
7425    // qualified __strong.
7426    Qualifiers::GC GC_L = LQuals.getObjCGCAttr();
7427    Qualifiers::GC GC_R = RQuals.getObjCGCAttr();
7428    assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements");
7429
7430    if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak)
7431      return QualType();
7432
7433    if (GC_L == Qualifiers::Strong)
7434      return LHS;
7435    if (GC_R == Qualifiers::Strong)
7436      return RHS;
7437    return QualType();
7438  }
7439
7440  if (LHSCan->isObjCObjectPointerType() && RHSCan->isObjCObjectPointerType()) {
7441    QualType LHSBaseQT = LHS->getAs<ObjCObjectPointerType>()->getPointeeType();
7442    QualType RHSBaseQT = RHS->getAs<ObjCObjectPointerType>()->getPointeeType();
7443    QualType ResQT = mergeObjCGCQualifiers(LHSBaseQT, RHSBaseQT);
7444    if (ResQT == LHSBaseQT)
7445      return LHS;
7446    if (ResQT == RHSBaseQT)
7447      return RHS;
7448  }
7449  return QualType();
7450}
7451
7452//===----------------------------------------------------------------------===//
7453//                         Integer Predicates
7454//===----------------------------------------------------------------------===//
7455
7456unsigned ASTContext::getIntWidth(QualType T) const {
7457  if (const EnumType *ET = dyn_cast<EnumType>(T))
7458    T = ET->getDecl()->getIntegerType();
7459  if (T->isBooleanType())
7460    return 1;
7461  // For builtin types, just use the standard type sizing method
7462  return (unsigned)getTypeSize(T);
7463}
7464
7465QualType ASTContext::getCorrespondingUnsignedType(QualType T) const {
7466  assert(T->hasSignedIntegerRepresentation() && "Unexpected type");
7467
7468  // Turn <4 x signed int> -> <4 x unsigned int>
7469  if (const VectorType *VTy = T->getAs<VectorType>())
7470    return getVectorType(getCorrespondingUnsignedType(VTy->getElementType()),
7471                         VTy->getNumElements(), VTy->getVectorKind());
7472
7473  // For enums, we return the unsigned version of the base type.
7474  if (const EnumType *ETy = T->getAs<EnumType>())
7475    T = ETy->getDecl()->getIntegerType();
7476
7477  const BuiltinType *BTy = T->getAs<BuiltinType>();
7478  assert(BTy && "Unexpected signed integer type");
7479  switch (BTy->getKind()) {
7480  case BuiltinType::Char_S:
7481  case BuiltinType::SChar:
7482    return UnsignedCharTy;
7483  case BuiltinType::Short:
7484    return UnsignedShortTy;
7485  case BuiltinType::Int:
7486    return UnsignedIntTy;
7487  case BuiltinType::Long:
7488    return UnsignedLongTy;
7489  case BuiltinType::LongLong:
7490    return UnsignedLongLongTy;
7491  case BuiltinType::Int128:
7492    return UnsignedInt128Ty;
7493  default:
7494    llvm_unreachable("Unexpected signed integer type");
7495  }
7496}
7497
7498ASTMutationListener::~ASTMutationListener() { }
7499
7500void ASTMutationListener::DeducedReturnType(const FunctionDecl *FD,
7501                                            QualType ReturnType) {}
7502
7503//===----------------------------------------------------------------------===//
7504//                          Builtin Type Computation
7505//===----------------------------------------------------------------------===//
7506
7507/// DecodeTypeFromStr - This decodes one type descriptor from Str, advancing the
7508/// pointer over the consumed characters.  This returns the resultant type.  If
7509/// AllowTypeModifiers is false then modifier like * are not parsed, just basic
7510/// types.  This allows "v2i*" to be parsed as a pointer to a v2i instead of
7511/// a vector of "i*".
7512///
7513/// RequiresICE is filled in on return to indicate whether the value is required
7514/// to be an Integer Constant Expression.
7515static QualType DecodeTypeFromStr(const char *&Str, const ASTContext &Context,
7516                                  ASTContext::GetBuiltinTypeError &Error,
7517                                  bool &RequiresICE,
7518                                  bool AllowTypeModifiers) {
7519  // Modifiers.
7520  int HowLong = 0;
7521  bool Signed = false, Unsigned = false;
7522  RequiresICE = false;
7523
7524  // Read the prefixed modifiers first.
7525  bool Done = false;
7526  while (!Done) {
7527    switch (*Str++) {
7528    default: Done = true; --Str; break;
7529    case 'I':
7530      RequiresICE = true;
7531      break;
7532    case 'S':
7533      assert(!Unsigned && "Can't use both 'S' and 'U' modifiers!");
7534      assert(!Signed && "Can't use 'S' modifier multiple times!");
7535      Signed = true;
7536      break;
7537    case 'U':
7538      assert(!Signed && "Can't use both 'S' and 'U' modifiers!");
7539      assert(!Unsigned && "Can't use 'S' modifier multiple times!");
7540      Unsigned = true;
7541      break;
7542    case 'L':
7543      assert(HowLong <= 2 && "Can't have LLLL modifier");
7544      ++HowLong;
7545      break;
7546    }
7547  }
7548
7549  QualType Type;
7550
7551  // Read the base type.
7552  switch (*Str++) {
7553  default: llvm_unreachable("Unknown builtin type letter!");
7554  case 'v':
7555    assert(HowLong == 0 && !Signed && !Unsigned &&
7556           "Bad modifiers used with 'v'!");
7557    Type = Context.VoidTy;
7558    break;
7559  case 'f':
7560    assert(HowLong == 0 && !Signed && !Unsigned &&
7561           "Bad modifiers used with 'f'!");
7562    Type = Context.FloatTy;
7563    break;
7564  case 'd':
7565    assert(HowLong < 2 && !Signed && !Unsigned &&
7566           "Bad modifiers used with 'd'!");
7567    if (HowLong)
7568      Type = Context.LongDoubleTy;
7569    else
7570      Type = Context.DoubleTy;
7571    break;
7572  case 's':
7573    assert(HowLong == 0 && "Bad modifiers used with 's'!");
7574    if (Unsigned)
7575      Type = Context.UnsignedShortTy;
7576    else
7577      Type = Context.ShortTy;
7578    break;
7579  case 'i':
7580    if (HowLong == 3)
7581      Type = Unsigned ? Context.UnsignedInt128Ty : Context.Int128Ty;
7582    else if (HowLong == 2)
7583      Type = Unsigned ? Context.UnsignedLongLongTy : Context.LongLongTy;
7584    else if (HowLong == 1)
7585      Type = Unsigned ? Context.UnsignedLongTy : Context.LongTy;
7586    else
7587      Type = Unsigned ? Context.UnsignedIntTy : Context.IntTy;
7588    break;
7589  case 'c':
7590    assert(HowLong == 0 && "Bad modifiers used with 'c'!");
7591    if (Signed)
7592      Type = Context.SignedCharTy;
7593    else if (Unsigned)
7594      Type = Context.UnsignedCharTy;
7595    else
7596      Type = Context.CharTy;
7597    break;
7598  case 'b': // boolean
7599    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'b'!");
7600    Type = Context.BoolTy;
7601    break;
7602  case 'z':  // size_t.
7603    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'z'!");
7604    Type = Context.getSizeType();
7605    break;
7606  case 'F':
7607    Type = Context.getCFConstantStringType();
7608    break;
7609  case 'G':
7610    Type = Context.getObjCIdType();
7611    break;
7612  case 'H':
7613    Type = Context.getObjCSelType();
7614    break;
7615  case 'M':
7616    Type = Context.getObjCSuperType();
7617    break;
7618  case 'a':
7619    Type = Context.getBuiltinVaListType();
7620    assert(!Type.isNull() && "builtin va list type not initialized!");
7621    break;
7622  case 'A':
7623    // This is a "reference" to a va_list; however, what exactly
7624    // this means depends on how va_list is defined. There are two
7625    // different kinds of va_list: ones passed by value, and ones
7626    // passed by reference.  An example of a by-value va_list is
7627    // x86, where va_list is a char*. An example of by-ref va_list
7628    // is x86-64, where va_list is a __va_list_tag[1]. For x86,
7629    // we want this argument to be a char*&; for x86-64, we want
7630    // it to be a __va_list_tag*.
7631    Type = Context.getBuiltinVaListType();
7632    assert(!Type.isNull() && "builtin va list type not initialized!");
7633    if (Type->isArrayType())
7634      Type = Context.getArrayDecayedType(Type);
7635    else
7636      Type = Context.getLValueReferenceType(Type);
7637    break;
7638  case 'V': {
7639    char *End;
7640    unsigned NumElements = strtoul(Str, &End, 10);
7641    assert(End != Str && "Missing vector size");
7642    Str = End;
7643
7644    QualType ElementType = DecodeTypeFromStr(Str, Context, Error,
7645                                             RequiresICE, false);
7646    assert(!RequiresICE && "Can't require vector ICE");
7647
7648    // TODO: No way to make AltiVec vectors in builtins yet.
7649    Type = Context.getVectorType(ElementType, NumElements,
7650                                 VectorType::GenericVector);
7651    break;
7652  }
7653  case 'E': {
7654    char *End;
7655
7656    unsigned NumElements = strtoul(Str, &End, 10);
7657    assert(End != Str && "Missing vector size");
7658
7659    Str = End;
7660
7661    QualType ElementType = DecodeTypeFromStr(Str, Context, Error, RequiresICE,
7662                                             false);
7663    Type = Context.getExtVectorType(ElementType, NumElements);
7664    break;
7665  }
7666  case 'X': {
7667    QualType ElementType = DecodeTypeFromStr(Str, Context, Error, RequiresICE,
7668                                             false);
7669    assert(!RequiresICE && "Can't require complex ICE");
7670    Type = Context.getComplexType(ElementType);
7671    break;
7672  }
7673  case 'Y' : {
7674    Type = Context.getPointerDiffType();
7675    break;
7676  }
7677  case 'P':
7678    Type = Context.getFILEType();
7679    if (Type.isNull()) {
7680      Error = ASTContext::GE_Missing_stdio;
7681      return QualType();
7682    }
7683    break;
7684  case 'J':
7685    if (Signed)
7686      Type = Context.getsigjmp_bufType();
7687    else
7688      Type = Context.getjmp_bufType();
7689
7690    if (Type.isNull()) {
7691      Error = ASTContext::GE_Missing_setjmp;
7692      return QualType();
7693    }
7694    break;
7695  case 'K':
7696    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'K'!");
7697    Type = Context.getucontext_tType();
7698
7699    if (Type.isNull()) {
7700      Error = ASTContext::GE_Missing_ucontext;
7701      return QualType();
7702    }
7703    break;
7704  case 'p':
7705    Type = Context.getProcessIDType();
7706    break;
7707  }
7708
7709  // If there are modifiers and if we're allowed to parse them, go for it.
7710  Done = !AllowTypeModifiers;
7711  while (!Done) {
7712    switch (char c = *Str++) {
7713    default: Done = true; --Str; break;
7714    case '*':
7715    case '&': {
7716      // Both pointers and references can have their pointee types
7717      // qualified with an address space.
7718      char *End;
7719      unsigned AddrSpace = strtoul(Str, &End, 10);
7720      if (End != Str && AddrSpace != 0) {
7721        Type = Context.getAddrSpaceQualType(Type, AddrSpace);
7722        Str = End;
7723      }
7724      if (c == '*')
7725        Type = Context.getPointerType(Type);
7726      else
7727        Type = Context.getLValueReferenceType(Type);
7728      break;
7729    }
7730    // FIXME: There's no way to have a built-in with an rvalue ref arg.
7731    case 'C':
7732      Type = Type.withConst();
7733      break;
7734    case 'D':
7735      Type = Context.getVolatileType(Type);
7736      break;
7737    case 'R':
7738      Type = Type.withRestrict();
7739      break;
7740    }
7741  }
7742
7743  assert((!RequiresICE || Type->isIntegralOrEnumerationType()) &&
7744         "Integer constant 'I' type must be an integer");
7745
7746  return Type;
7747}
7748
7749/// GetBuiltinType - Return the type for the specified builtin.
7750QualType ASTContext::GetBuiltinType(unsigned Id,
7751                                    GetBuiltinTypeError &Error,
7752                                    unsigned *IntegerConstantArgs) const {
7753  const char *TypeStr = BuiltinInfo.GetTypeString(Id);
7754
7755  SmallVector<QualType, 8> ArgTypes;
7756
7757  bool RequiresICE = false;
7758  Error = GE_None;
7759  QualType ResType = DecodeTypeFromStr(TypeStr, *this, Error,
7760                                       RequiresICE, true);
7761  if (Error != GE_None)
7762    return QualType();
7763
7764  assert(!RequiresICE && "Result of intrinsic cannot be required to be an ICE");
7765
7766  while (TypeStr[0] && TypeStr[0] != '.') {
7767    QualType Ty = DecodeTypeFromStr(TypeStr, *this, Error, RequiresICE, true);
7768    if (Error != GE_None)
7769      return QualType();
7770
7771    // If this argument is required to be an IntegerConstantExpression and the
7772    // caller cares, fill in the bitmask we return.
7773    if (RequiresICE && IntegerConstantArgs)
7774      *IntegerConstantArgs |= 1 << ArgTypes.size();
7775
7776    // Do array -> pointer decay.  The builtin should use the decayed type.
7777    if (Ty->isArrayType())
7778      Ty = getArrayDecayedType(Ty);
7779
7780    ArgTypes.push_back(Ty);
7781  }
7782
7783  assert((TypeStr[0] != '.' || TypeStr[1] == 0) &&
7784         "'.' should only occur at end of builtin type list!");
7785
7786  FunctionType::ExtInfo EI;
7787  if (BuiltinInfo.isNoReturn(Id)) EI = EI.withNoReturn(true);
7788
7789  bool Variadic = (TypeStr[0] == '.');
7790
7791  // We really shouldn't be making a no-proto type here, especially in C++.
7792  if (ArgTypes.empty() && Variadic)
7793    return getFunctionNoProtoType(ResType, EI);
7794
7795  FunctionProtoType::ExtProtoInfo EPI;
7796  EPI.ExtInfo = EI;
7797  EPI.Variadic = Variadic;
7798
7799  return getFunctionType(ResType, ArgTypes, EPI);
7800}
7801
7802GVALinkage ASTContext::GetGVALinkageForFunction(const FunctionDecl *FD) {
7803  if (!FD->isExternallyVisible())
7804    return GVA_Internal;
7805
7806  GVALinkage External = GVA_StrongExternal;
7807  switch (FD->getTemplateSpecializationKind()) {
7808  case TSK_Undeclared:
7809  case TSK_ExplicitSpecialization:
7810    External = GVA_StrongExternal;
7811    break;
7812
7813  case TSK_ExplicitInstantiationDefinition:
7814    return GVA_ExplicitTemplateInstantiation;
7815
7816  case TSK_ExplicitInstantiationDeclaration:
7817  case TSK_ImplicitInstantiation:
7818    External = GVA_TemplateInstantiation;
7819    break;
7820  }
7821
7822  if (!FD->isInlined())
7823    return External;
7824
7825  if ((!getLangOpts().CPlusPlus && !getLangOpts().MicrosoftMode) ||
7826      FD->hasAttr<GNUInlineAttr>()) {
7827    // GNU or C99 inline semantics. Determine whether this symbol should be
7828    // externally visible.
7829    if (FD->isInlineDefinitionExternallyVisible())
7830      return External;
7831
7832    // C99 inline semantics, where the symbol is not externally visible.
7833    return GVA_C99Inline;
7834  }
7835
7836  // C++0x [temp.explicit]p9:
7837  //   [ Note: The intent is that an inline function that is the subject of
7838  //   an explicit instantiation declaration will still be implicitly
7839  //   instantiated when used so that the body can be considered for
7840  //   inlining, but that no out-of-line copy of the inline function would be
7841  //   generated in the translation unit. -- end note ]
7842  if (FD->getTemplateSpecializationKind()
7843                                       == TSK_ExplicitInstantiationDeclaration)
7844    return GVA_C99Inline;
7845
7846  return GVA_CXXInline;
7847}
7848
7849GVALinkage ASTContext::GetGVALinkageForVariable(const VarDecl *VD) {
7850  if (!VD->isExternallyVisible())
7851    return GVA_Internal;
7852
7853  // If this is a static data member, compute the kind of template
7854  // specialization. Otherwise, this variable is not part of a
7855  // template.
7856  TemplateSpecializationKind TSK = TSK_Undeclared;
7857  if (VD->isStaticDataMember())
7858    TSK = VD->getTemplateSpecializationKind();
7859
7860  switch (TSK) {
7861  case TSK_Undeclared:
7862  case TSK_ExplicitSpecialization:
7863    return GVA_StrongExternal;
7864
7865  case TSK_ExplicitInstantiationDeclaration:
7866    llvm_unreachable("Variable should not be instantiated");
7867  // Fall through to treat this like any other instantiation.
7868
7869  case TSK_ExplicitInstantiationDefinition:
7870    return GVA_ExplicitTemplateInstantiation;
7871
7872  case TSK_ImplicitInstantiation:
7873    return GVA_TemplateInstantiation;
7874  }
7875
7876  llvm_unreachable("Invalid Linkage!");
7877}
7878
7879bool ASTContext::DeclMustBeEmitted(const Decl *D) {
7880  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
7881    if (!VD->isFileVarDecl())
7882      return false;
7883  } else if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
7884    // We never need to emit an uninstantiated function template.
7885    if (FD->getTemplatedKind() == FunctionDecl::TK_FunctionTemplate)
7886      return false;
7887  } else
7888    return false;
7889
7890  // If this is a member of a class template, we do not need to emit it.
7891  if (D->getDeclContext()->isDependentContext())
7892    return false;
7893
7894  // Weak references don't produce any output by themselves.
7895  if (D->hasAttr<WeakRefAttr>())
7896    return false;
7897
7898  // Aliases and used decls are required.
7899  if (D->hasAttr<AliasAttr>() || D->hasAttr<UsedAttr>())
7900    return true;
7901
7902  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
7903    // Forward declarations aren't required.
7904    if (!FD->doesThisDeclarationHaveABody())
7905      return FD->doesDeclarationForceExternallyVisibleDefinition();
7906
7907    // Constructors and destructors are required.
7908    if (FD->hasAttr<ConstructorAttr>() || FD->hasAttr<DestructorAttr>())
7909      return true;
7910
7911    // The key function for a class is required.  This rule only comes
7912    // into play when inline functions can be key functions, though.
7913    if (getTargetInfo().getCXXABI().canKeyFunctionBeInline()) {
7914      if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
7915        const CXXRecordDecl *RD = MD->getParent();
7916        if (MD->isOutOfLine() && RD->isDynamicClass()) {
7917          const CXXMethodDecl *KeyFunc = getCurrentKeyFunction(RD);
7918          if (KeyFunc && KeyFunc->getCanonicalDecl() == MD->getCanonicalDecl())
7919            return true;
7920        }
7921      }
7922    }
7923
7924    GVALinkage Linkage = GetGVALinkageForFunction(FD);
7925
7926    // static, static inline, always_inline, and extern inline functions can
7927    // always be deferred.  Normal inline functions can be deferred in C99/C++.
7928    // Implicit template instantiations can also be deferred in C++.
7929    if (Linkage == GVA_Internal  || Linkage == GVA_C99Inline ||
7930        Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation)
7931      return false;
7932    return true;
7933  }
7934
7935  const VarDecl *VD = cast<VarDecl>(D);
7936  assert(VD->isFileVarDecl() && "Expected file scoped var");
7937
7938  if (VD->isThisDeclarationADefinition() == VarDecl::DeclarationOnly)
7939    return false;
7940
7941  // Variables that can be needed in other TUs are required.
7942  GVALinkage L = GetGVALinkageForVariable(VD);
7943  if (L != GVA_Internal && L != GVA_TemplateInstantiation)
7944    return true;
7945
7946  // Variables that have destruction with side-effects are required.
7947  if (VD->getType().isDestructedType())
7948    return true;
7949
7950  // Variables that have initialization with side-effects are required.
7951  if (VD->getInit() && VD->getInit()->HasSideEffects(*this))
7952    return true;
7953
7954  return false;
7955}
7956
7957CallingConv ASTContext::getDefaultCXXMethodCallConv(bool isVariadic) {
7958  // Pass through to the C++ ABI object
7959  return ABI->getDefaultMethodCallConv(isVariadic);
7960}
7961
7962CallingConv ASTContext::getCanonicalCallConv(CallingConv CC) const {
7963  if (CC == CC_C && !LangOpts.MRTD &&
7964      getTargetInfo().getCXXABI().isMemberFunctionCCDefault())
7965    return CC_Default;
7966  return CC;
7967}
7968
7969bool ASTContext::isNearlyEmpty(const CXXRecordDecl *RD) const {
7970  // Pass through to the C++ ABI object
7971  return ABI->isNearlyEmpty(RD);
7972}
7973
7974MangleContext *ASTContext::createMangleContext() {
7975  switch (Target->getCXXABI().getKind()) {
7976  case TargetCXXABI::GenericAArch64:
7977  case TargetCXXABI::GenericItanium:
7978  case TargetCXXABI::GenericARM:
7979  case TargetCXXABI::iOS:
7980    return createItaniumMangleContext(*this, getDiagnostics());
7981  case TargetCXXABI::Microsoft:
7982    return createMicrosoftMangleContext(*this, getDiagnostics());
7983  }
7984  llvm_unreachable("Unsupported ABI");
7985}
7986
7987CXXABI::~CXXABI() {}
7988
7989size_t ASTContext::getSideTableAllocatedMemory() const {
7990  return ASTRecordLayouts.getMemorySize() +
7991         llvm::capacity_in_bytes(ObjCLayouts) +
7992         llvm::capacity_in_bytes(KeyFunctions) +
7993         llvm::capacity_in_bytes(ObjCImpls) +
7994         llvm::capacity_in_bytes(BlockVarCopyInits) +
7995         llvm::capacity_in_bytes(DeclAttrs) +
7996         llvm::capacity_in_bytes(TemplateOrInstantiation) +
7997         llvm::capacity_in_bytes(InstantiatedFromUsingDecl) +
7998         llvm::capacity_in_bytes(InstantiatedFromUsingShadowDecl) +
7999         llvm::capacity_in_bytes(InstantiatedFromUnnamedFieldDecl) +
8000         llvm::capacity_in_bytes(OverriddenMethods) +
8001         llvm::capacity_in_bytes(Types) +
8002         llvm::capacity_in_bytes(VariableArrayTypes) +
8003         llvm::capacity_in_bytes(ClassScopeSpecializationPattern);
8004}
8005
8006void ASTContext::setManglingNumber(const NamedDecl *ND, unsigned Number) {
8007  if (Number > 1)
8008    MangleNumbers[ND] = Number;
8009}
8010
8011unsigned ASTContext::getManglingNumber(const NamedDecl *ND) const {
8012  llvm::DenseMap<const NamedDecl *, unsigned>::const_iterator I =
8013    MangleNumbers.find(ND);
8014  return I != MangleNumbers.end() ? I->second : 1;
8015}
8016
8017MangleNumberingContext &
8018ASTContext::getManglingNumberContext(const DeclContext *DC) {
8019  return MangleNumberingContexts[DC];
8020}
8021
8022void ASTContext::setParameterIndex(const ParmVarDecl *D, unsigned int index) {
8023  ParamIndices[D] = index;
8024}
8025
8026unsigned ASTContext::getParameterIndex(const ParmVarDecl *D) const {
8027  ParameterIndexTable::const_iterator I = ParamIndices.find(D);
8028  assert(I != ParamIndices.end() &&
8029         "ParmIndices lacks entry set by ParmVarDecl");
8030  return I->second;
8031}
8032
8033APValue *
8034ASTContext::getMaterializedTemporaryValue(const MaterializeTemporaryExpr *E,
8035                                          bool MayCreate) {
8036  assert(E && E->getStorageDuration() == SD_Static &&
8037         "don't need to cache the computed value for this temporary");
8038  if (MayCreate)
8039    return &MaterializedTemporaryValues[E];
8040
8041  llvm::DenseMap<const MaterializeTemporaryExpr *, APValue>::iterator I =
8042      MaterializedTemporaryValues.find(E);
8043  return I == MaterializedTemporaryValues.end() ? 0 : &I->second;
8044}
8045
8046bool ASTContext::AtomicUsesUnsupportedLibcall(const AtomicExpr *E) const {
8047  const llvm::Triple &T = getTargetInfo().getTriple();
8048  if (!T.isOSDarwin())
8049    return false;
8050
8051  QualType AtomicTy = E->getPtr()->getType()->getPointeeType();
8052  CharUnits sizeChars = getTypeSizeInChars(AtomicTy);
8053  uint64_t Size = sizeChars.getQuantity();
8054  CharUnits alignChars = getTypeAlignInChars(AtomicTy);
8055  unsigned Align = alignChars.getQuantity();
8056  unsigned MaxInlineWidthInBits = getTargetInfo().getMaxAtomicInlineWidth();
8057  return (Size != Align || toBits(sizeChars) > MaxInlineWidthInBits);
8058}
8059
8060namespace {
8061
8062  /// \brief A \c RecursiveASTVisitor that builds a map from nodes to their
8063  /// parents as defined by the \c RecursiveASTVisitor.
8064  ///
8065  /// Note that the relationship described here is purely in terms of AST
8066  /// traversal - there are other relationships (for example declaration context)
8067  /// in the AST that are better modeled by special matchers.
8068  ///
8069  /// FIXME: Currently only builds up the map using \c Stmt and \c Decl nodes.
8070  class ParentMapASTVisitor : public RecursiveASTVisitor<ParentMapASTVisitor> {
8071
8072  public:
8073    /// \brief Builds and returns the translation unit's parent map.
8074    ///
8075    ///  The caller takes ownership of the returned \c ParentMap.
8076    static ASTContext::ParentMap *buildMap(TranslationUnitDecl &TU) {
8077      ParentMapASTVisitor Visitor(new ASTContext::ParentMap);
8078      Visitor.TraverseDecl(&TU);
8079      return Visitor.Parents;
8080    }
8081
8082  private:
8083    typedef RecursiveASTVisitor<ParentMapASTVisitor> VisitorBase;
8084
8085    ParentMapASTVisitor(ASTContext::ParentMap *Parents) : Parents(Parents) {
8086    }
8087
8088    bool shouldVisitTemplateInstantiations() const {
8089      return true;
8090    }
8091    bool shouldVisitImplicitCode() const {
8092      return true;
8093    }
8094    // Disables data recursion. We intercept Traverse* methods in the RAV, which
8095    // are not triggered during data recursion.
8096    bool shouldUseDataRecursionFor(clang::Stmt *S) const {
8097      return false;
8098    }
8099
8100    template <typename T>
8101    bool TraverseNode(T *Node, bool(VisitorBase:: *traverse) (T *)) {
8102      if (Node == NULL)
8103        return true;
8104      if (ParentStack.size() > 0)
8105        // FIXME: Currently we add the same parent multiple times, for example
8106        // when we visit all subexpressions of template instantiations; this is
8107        // suboptimal, bug benign: the only way to visit those is with
8108        // hasAncestor / hasParent, and those do not create new matches.
8109        // The plan is to enable DynTypedNode to be storable in a map or hash
8110        // map. The main problem there is to implement hash functions /
8111        // comparison operators for all types that DynTypedNode supports that
8112        // do not have pointer identity.
8113        (*Parents)[Node].push_back(ParentStack.back());
8114      ParentStack.push_back(ast_type_traits::DynTypedNode::create(*Node));
8115      bool Result = (this ->* traverse) (Node);
8116      ParentStack.pop_back();
8117      return Result;
8118    }
8119
8120    bool TraverseDecl(Decl *DeclNode) {
8121      return TraverseNode(DeclNode, &VisitorBase::TraverseDecl);
8122    }
8123
8124    bool TraverseStmt(Stmt *StmtNode) {
8125      return TraverseNode(StmtNode, &VisitorBase::TraverseStmt);
8126    }
8127
8128    ASTContext::ParentMap *Parents;
8129    llvm::SmallVector<ast_type_traits::DynTypedNode, 16> ParentStack;
8130
8131    friend class RecursiveASTVisitor<ParentMapASTVisitor>;
8132  };
8133
8134} // end namespace
8135
8136ASTContext::ParentVector
8137ASTContext::getParents(const ast_type_traits::DynTypedNode &Node) {
8138  assert(Node.getMemoizationData() &&
8139         "Invariant broken: only nodes that support memoization may be "
8140         "used in the parent map.");
8141  if (!AllParents) {
8142    // We always need to run over the whole translation unit, as
8143    // hasAncestor can escape any subtree.
8144    AllParents.reset(
8145        ParentMapASTVisitor::buildMap(*getTranslationUnitDecl()));
8146  }
8147  ParentMap::const_iterator I = AllParents->find(Node.getMemoizationData());
8148  if (I == AllParents->end()) {
8149    return ParentVector();
8150  }
8151  return I->second;
8152}
8153
8154bool
8155ASTContext::ObjCMethodsAreEqual(const ObjCMethodDecl *MethodDecl,
8156                                const ObjCMethodDecl *MethodImpl) {
8157  // No point trying to match an unavailable/deprecated mothod.
8158  if (MethodDecl->hasAttr<UnavailableAttr>()
8159      || MethodDecl->hasAttr<DeprecatedAttr>())
8160    return false;
8161  if (MethodDecl->getObjCDeclQualifier() !=
8162      MethodImpl->getObjCDeclQualifier())
8163    return false;
8164  if (!hasSameType(MethodDecl->getResultType(),
8165                   MethodImpl->getResultType()))
8166    return false;
8167
8168  if (MethodDecl->param_size() != MethodImpl->param_size())
8169    return false;
8170
8171  for (ObjCMethodDecl::param_const_iterator IM = MethodImpl->param_begin(),
8172       IF = MethodDecl->param_begin(), EM = MethodImpl->param_end(),
8173       EF = MethodDecl->param_end();
8174       IM != EM && IF != EF; ++IM, ++IF) {
8175    const ParmVarDecl *DeclVar = (*IF);
8176    const ParmVarDecl *ImplVar = (*IM);
8177    if (ImplVar->getObjCDeclQualifier() != DeclVar->getObjCDeclQualifier())
8178      return false;
8179    if (!hasSameType(DeclVar->getType(), ImplVar->getType()))
8180      return false;
8181  }
8182  return (MethodDecl->isVariadic() == MethodImpl->isVariadic());
8183
8184}
8185