ASTContext.cpp revision 97341620065b89f5197b846be94c4cfad5df2af4
1//===--- ASTContext.cpp - Context to hold long-lived AST nodes ------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements the ASTContext interface.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/AST/ASTContext.h"
15#include "clang/AST/Decl.h"
16#include "clang/AST/DeclObjC.h"
17#include "clang/Basic/TargetInfo.h"
18#include "llvm/ADT/SmallVector.h"
19#include "llvm/ADT/StringExtras.h"
20#include "llvm/Bitcode/Serialize.h"
21#include "llvm/Bitcode/Deserialize.h"
22
23using namespace clang;
24
25enum FloatingRank {
26  FloatRank, DoubleRank, LongDoubleRank
27};
28
29ASTContext::~ASTContext() {
30  // Deallocate all the types.
31  while (!Types.empty()) {
32    Types.back()->Destroy(*this);
33    Types.pop_back();
34  }
35
36  TUDecl->Destroy(*this);
37}
38
39void ASTContext::PrintStats() const {
40  fprintf(stderr, "*** AST Context Stats:\n");
41  fprintf(stderr, "  %d types total.\n", (int)Types.size());
42  unsigned NumBuiltin = 0, NumPointer = 0, NumArray = 0, NumFunctionP = 0;
43  unsigned NumVector = 0, NumComplex = 0;
44  unsigned NumFunctionNP = 0, NumTypeName = 0, NumTagged = 0, NumReference = 0;
45
46  unsigned NumTagStruct = 0, NumTagUnion = 0, NumTagEnum = 0, NumTagClass = 0;
47  unsigned NumObjCInterfaces = 0, NumObjCQualifiedInterfaces = 0;
48  unsigned NumObjCQualifiedIds = 0;
49  unsigned NumTypeOfTypes = 0, NumTypeOfExprs = 0;
50
51  for (unsigned i = 0, e = Types.size(); i != e; ++i) {
52    Type *T = Types[i];
53    if (isa<BuiltinType>(T))
54      ++NumBuiltin;
55    else if (isa<PointerType>(T))
56      ++NumPointer;
57    else if (isa<ReferenceType>(T))
58      ++NumReference;
59    else if (isa<ComplexType>(T))
60      ++NumComplex;
61    else if (isa<ArrayType>(T))
62      ++NumArray;
63    else if (isa<VectorType>(T))
64      ++NumVector;
65    else if (isa<FunctionTypeNoProto>(T))
66      ++NumFunctionNP;
67    else if (isa<FunctionTypeProto>(T))
68      ++NumFunctionP;
69    else if (isa<TypedefType>(T))
70      ++NumTypeName;
71    else if (TagType *TT = dyn_cast<TagType>(T)) {
72      ++NumTagged;
73      switch (TT->getDecl()->getKind()) {
74      default: assert(0 && "Unknown tagged type!");
75      case Decl::Struct: ++NumTagStruct; break;
76      case Decl::Union:  ++NumTagUnion; break;
77      case Decl::Class:  ++NumTagClass; break;
78      case Decl::Enum:   ++NumTagEnum; break;
79      }
80    } else if (isa<ObjCInterfaceType>(T))
81      ++NumObjCInterfaces;
82    else if (isa<ObjCQualifiedInterfaceType>(T))
83      ++NumObjCQualifiedInterfaces;
84    else if (isa<ObjCQualifiedIdType>(T))
85      ++NumObjCQualifiedIds;
86    else if (isa<TypeOfType>(T))
87      ++NumTypeOfTypes;
88    else if (isa<TypeOfExpr>(T))
89      ++NumTypeOfExprs;
90    else {
91      QualType(T, 0).dump();
92      assert(0 && "Unknown type!");
93    }
94  }
95
96  fprintf(stderr, "    %d builtin types\n", NumBuiltin);
97  fprintf(stderr, "    %d pointer types\n", NumPointer);
98  fprintf(stderr, "    %d reference types\n", NumReference);
99  fprintf(stderr, "    %d complex types\n", NumComplex);
100  fprintf(stderr, "    %d array types\n", NumArray);
101  fprintf(stderr, "    %d vector types\n", NumVector);
102  fprintf(stderr, "    %d function types with proto\n", NumFunctionP);
103  fprintf(stderr, "    %d function types with no proto\n", NumFunctionNP);
104  fprintf(stderr, "    %d typename (typedef) types\n", NumTypeName);
105  fprintf(stderr, "    %d tagged types\n", NumTagged);
106  fprintf(stderr, "      %d struct types\n", NumTagStruct);
107  fprintf(stderr, "      %d union types\n", NumTagUnion);
108  fprintf(stderr, "      %d class types\n", NumTagClass);
109  fprintf(stderr, "      %d enum types\n", NumTagEnum);
110  fprintf(stderr, "    %d interface types\n", NumObjCInterfaces);
111  fprintf(stderr, "    %d protocol qualified interface types\n",
112          NumObjCQualifiedInterfaces);
113  fprintf(stderr, "    %d protocol qualified id types\n",
114          NumObjCQualifiedIds);
115  fprintf(stderr, "    %d typeof types\n", NumTypeOfTypes);
116  fprintf(stderr, "    %d typeof exprs\n", NumTypeOfExprs);
117
118  fprintf(stderr, "Total bytes = %d\n", int(NumBuiltin*sizeof(BuiltinType)+
119    NumPointer*sizeof(PointerType)+NumArray*sizeof(ArrayType)+
120    NumComplex*sizeof(ComplexType)+NumVector*sizeof(VectorType)+
121    NumFunctionP*sizeof(FunctionTypeProto)+
122    NumFunctionNP*sizeof(FunctionTypeNoProto)+
123    NumTypeName*sizeof(TypedefType)+NumTagged*sizeof(TagType)+
124    NumTypeOfTypes*sizeof(TypeOfType)+NumTypeOfExprs*sizeof(TypeOfExpr)));
125}
126
127
128void ASTContext::InitBuiltinType(QualType &R, BuiltinType::Kind K) {
129  Types.push_back((R = QualType(new BuiltinType(K),0)).getTypePtr());
130}
131
132void ASTContext::InitBuiltinTypes() {
133  assert(VoidTy.isNull() && "Context reinitialized?");
134
135  // C99 6.2.5p19.
136  InitBuiltinType(VoidTy,              BuiltinType::Void);
137
138  // C99 6.2.5p2.
139  InitBuiltinType(BoolTy,              BuiltinType::Bool);
140  // C99 6.2.5p3.
141  if (Target.isCharSigned())
142    InitBuiltinType(CharTy,            BuiltinType::Char_S);
143  else
144    InitBuiltinType(CharTy,            BuiltinType::Char_U);
145  // C99 6.2.5p4.
146  InitBuiltinType(SignedCharTy,        BuiltinType::SChar);
147  InitBuiltinType(ShortTy,             BuiltinType::Short);
148  InitBuiltinType(IntTy,               BuiltinType::Int);
149  InitBuiltinType(LongTy,              BuiltinType::Long);
150  InitBuiltinType(LongLongTy,          BuiltinType::LongLong);
151
152  // C99 6.2.5p6.
153  InitBuiltinType(UnsignedCharTy,      BuiltinType::UChar);
154  InitBuiltinType(UnsignedShortTy,     BuiltinType::UShort);
155  InitBuiltinType(UnsignedIntTy,       BuiltinType::UInt);
156  InitBuiltinType(UnsignedLongTy,      BuiltinType::ULong);
157  InitBuiltinType(UnsignedLongLongTy,  BuiltinType::ULongLong);
158
159  // C99 6.2.5p10.
160  InitBuiltinType(FloatTy,             BuiltinType::Float);
161  InitBuiltinType(DoubleTy,            BuiltinType::Double);
162  InitBuiltinType(LongDoubleTy,        BuiltinType::LongDouble);
163
164  // C99 6.2.5p11.
165  FloatComplexTy      = getComplexType(FloatTy);
166  DoubleComplexTy     = getComplexType(DoubleTy);
167  LongDoubleComplexTy = getComplexType(LongDoubleTy);
168
169  BuiltinVaListType = QualType();
170  ObjCIdType = QualType();
171  IdStructType = 0;
172  ObjCClassType = QualType();
173  ClassStructType = 0;
174
175  ObjCConstantStringType = QualType();
176
177  // void * type
178  VoidPtrTy = getPointerType(VoidTy);
179}
180
181//===----------------------------------------------------------------------===//
182//                         Type Sizing and Analysis
183//===----------------------------------------------------------------------===//
184
185/// getTypeSize - Return the size of the specified type, in bits.  This method
186/// does not work on incomplete types.
187std::pair<uint64_t, unsigned>
188ASTContext::getTypeInfo(QualType T) {
189  T = getCanonicalType(T);
190  uint64_t Width;
191  unsigned Align;
192  switch (T->getTypeClass()) {
193  case Type::TypeName: assert(0 && "Not a canonical type!");
194  case Type::FunctionNoProto:
195  case Type::FunctionProto:
196  default:
197    assert(0 && "Incomplete types have no size!");
198  case Type::VariableArray:
199    assert(0 && "VLAs not implemented yet!");
200  case Type::ConstantArray: {
201    ConstantArrayType *CAT = cast<ConstantArrayType>(T);
202
203    std::pair<uint64_t, unsigned> EltInfo = getTypeInfo(CAT->getElementType());
204    Width = EltInfo.first*CAT->getSize().getZExtValue();
205    Align = EltInfo.second;
206    break;
207  }
208  case Type::ExtVector:
209  case Type::Vector: {
210    std::pair<uint64_t, unsigned> EltInfo =
211      getTypeInfo(cast<VectorType>(T)->getElementType());
212    Width = EltInfo.first*cast<VectorType>(T)->getNumElements();
213    // FIXME: This isn't right for unusual vectors
214    Align = Width;
215    break;
216  }
217
218  case Type::Builtin:
219    switch (cast<BuiltinType>(T)->getKind()) {
220    default: assert(0 && "Unknown builtin type!");
221    case BuiltinType::Void:
222      assert(0 && "Incomplete types have no size!");
223    case BuiltinType::Bool:
224      Width = Target.getBoolWidth();
225      Align = Target.getBoolAlign();
226      break;
227    case BuiltinType::Char_S:
228    case BuiltinType::Char_U:
229    case BuiltinType::UChar:
230    case BuiltinType::SChar:
231      Width = Target.getCharWidth();
232      Align = Target.getCharAlign();
233      break;
234    case BuiltinType::UShort:
235    case BuiltinType::Short:
236      Width = Target.getShortWidth();
237      Align = Target.getShortAlign();
238      break;
239    case BuiltinType::UInt:
240    case BuiltinType::Int:
241      Width = Target.getIntWidth();
242      Align = Target.getIntAlign();
243      break;
244    case BuiltinType::ULong:
245    case BuiltinType::Long:
246      Width = Target.getLongWidth();
247      Align = Target.getLongAlign();
248      break;
249    case BuiltinType::ULongLong:
250    case BuiltinType::LongLong:
251      Width = Target.getLongLongWidth();
252      Align = Target.getLongLongAlign();
253      break;
254    case BuiltinType::Float:
255      Width = Target.getFloatWidth();
256      Align = Target.getFloatAlign();
257      break;
258    case BuiltinType::Double:
259      Width = Target.getDoubleWidth();
260      Align = Target.getDoubleAlign();
261      break;
262    case BuiltinType::LongDouble:
263      Width = Target.getLongDoubleWidth();
264      Align = Target.getLongDoubleAlign();
265      break;
266    }
267    break;
268  case Type::ASQual:
269    // FIXME: Pointers into different addr spaces could have different sizes and
270    // alignment requirements: getPointerInfo should take an AddrSpace.
271    return getTypeInfo(QualType(cast<ASQualType>(T)->getBaseType(), 0));
272  case Type::ObjCQualifiedId:
273    Width = Target.getPointerWidth(0);
274    Align = Target.getPointerAlign(0);
275    break;
276  case Type::Pointer: {
277    unsigned AS = cast<PointerType>(T)->getPointeeType().getAddressSpace();
278    Width = Target.getPointerWidth(AS);
279    Align = Target.getPointerAlign(AS);
280    break;
281  }
282  case Type::Reference:
283    // "When applied to a reference or a reference type, the result is the size
284    // of the referenced type." C++98 5.3.3p2: expr.sizeof.
285    // FIXME: This is wrong for struct layout: a reference in a struct has
286    // pointer size.
287    return getTypeInfo(cast<ReferenceType>(T)->getPointeeType());
288
289  case Type::Complex: {
290    // Complex types have the same alignment as their elements, but twice the
291    // size.
292    std::pair<uint64_t, unsigned> EltInfo =
293      getTypeInfo(cast<ComplexType>(T)->getElementType());
294    Width = EltInfo.first*2;
295    Align = EltInfo.second;
296    break;
297  }
298  case Type::Tagged: {
299    if (EnumType *ET = dyn_cast<EnumType>(cast<TagType>(T)))
300      return getTypeInfo(ET->getDecl()->getIntegerType());
301
302    RecordType *RT = cast<RecordType>(T);
303    const ASTRecordLayout &Layout = getASTRecordLayout(RT->getDecl());
304    Width = Layout.getSize();
305    Align = Layout.getAlignment();
306    break;
307  }
308  }
309
310  assert(Align && (Align & (Align-1)) == 0 && "Alignment must be power of 2");
311  return std::make_pair(Width, Align);
312}
313
314/// getASTRecordLayout - Get or compute information about the layout of the
315/// specified record (struct/union/class), which indicates its size and field
316/// position information.
317const ASTRecordLayout &ASTContext::getASTRecordLayout(const RecordDecl *D) {
318  assert(D->isDefinition() && "Cannot get layout of forward declarations!");
319
320  // Look up this layout, if already laid out, return what we have.
321  const ASTRecordLayout *&Entry = ASTRecordLayouts[D];
322  if (Entry) return *Entry;
323
324  // Allocate and assign into ASTRecordLayouts here.  The "Entry" reference can
325  // be invalidated (dangle) if the ASTRecordLayouts hashtable is inserted into.
326  ASTRecordLayout *NewEntry = new ASTRecordLayout();
327  Entry = NewEntry;
328
329  uint64_t *FieldOffsets = new uint64_t[D->getNumMembers()];
330  uint64_t RecordSize = 0;
331  unsigned RecordAlign = 8;  // Default alignment = 1 byte = 8 bits.
332  bool StructIsPacked = D->getAttr<PackedAttr>();
333  bool IsUnion = (D->getKind() == Decl::Union);
334
335  if (const AlignedAttr *AA = D->getAttr<AlignedAttr>())
336    RecordAlign = std::max(RecordAlign, AA->getAlignment());
337
338  // Layout each field, for now, just sequentially, respecting alignment.  In
339  // the future, this will need to be tweakable by targets.
340  for (unsigned i = 0, e = D->getNumMembers(); i != e; ++i) {
341    const FieldDecl *FD = D->getMember(i);
342    bool FieldIsPacked = StructIsPacked || FD->getAttr<PackedAttr>();
343    uint64_t FieldOffset = IsUnion ? 0 : RecordSize;
344    uint64_t FieldSize;
345    unsigned FieldAlign;
346
347    if (const Expr *BitWidthExpr = FD->getBitWidth()) {
348      // TODO: Need to check this algorithm on other targets!
349      //       (tested on Linux-X86)
350      llvm::APSInt I(32);
351      bool BitWidthIsICE =
352        BitWidthExpr->isIntegerConstantExpr(I, *this);
353      assert (BitWidthIsICE  && "Invalid BitField size expression");
354      FieldSize = I.getZExtValue();
355
356      std::pair<uint64_t, unsigned> FieldInfo = getTypeInfo(FD->getType());
357      uint64_t TypeSize = FieldInfo.first;
358
359      FieldAlign = FieldInfo.second;
360      if (FieldIsPacked)
361        FieldAlign = 1;
362      if (const AlignedAttr *AA = FD->getAttr<AlignedAttr>())
363        FieldAlign = std::max(FieldAlign, AA->getAlignment());
364
365      // Check if we need to add padding to give the field the correct
366      // alignment.
367      if (FieldSize == 0 || (FieldOffset & (FieldAlign-1)) + FieldSize > TypeSize)
368        FieldOffset = (FieldOffset + (FieldAlign-1)) & ~(FieldAlign-1);
369
370      // Padding members don't affect overall alignment
371      if (!FD->getIdentifier())
372        FieldAlign = 1;
373    } else {
374      if (FD->getType()->isIncompleteType()) {
375        // This must be a flexible array member; we can't directly
376        // query getTypeInfo about these, so we figure it out here.
377        // Flexible array members don't have any size, but they
378        // have to be aligned appropriately for their element type.
379        FieldSize = 0;
380        const ArrayType* ATy = FD->getType()->getAsArrayType();
381        FieldAlign = getTypeAlign(ATy->getElementType());
382      } else {
383        std::pair<uint64_t, unsigned> FieldInfo = getTypeInfo(FD->getType());
384        FieldSize = FieldInfo.first;
385        FieldAlign = FieldInfo.second;
386      }
387
388      if (FieldIsPacked)
389        FieldAlign = 8;
390      if (const AlignedAttr *AA = FD->getAttr<AlignedAttr>())
391        FieldAlign = std::max(FieldAlign, AA->getAlignment());
392
393      // Round up the current record size to the field's alignment boundary.
394      FieldOffset = (FieldOffset + (FieldAlign-1)) & ~(FieldAlign-1);
395    }
396
397    // Place this field at the current location.
398    FieldOffsets[i] = FieldOffset;
399
400    // Reserve space for this field.
401    if (IsUnion) {
402      RecordSize = std::max(RecordSize, FieldSize);
403    } else {
404      RecordSize = FieldOffset + FieldSize;
405    }
406
407    // Remember max struct/class alignment.
408    RecordAlign = std::max(RecordAlign, FieldAlign);
409  }
410
411  // Finally, round the size of the total struct up to the alignment of the
412  // struct itself.
413  RecordSize = (RecordSize + (RecordAlign-1)) & ~(RecordAlign-1);
414
415  NewEntry->SetLayout(RecordSize, RecordAlign, FieldOffsets);
416  return *NewEntry;
417}
418
419//===----------------------------------------------------------------------===//
420//                   Type creation/memoization methods
421//===----------------------------------------------------------------------===//
422
423QualType ASTContext::getASQualType(QualType T, unsigned AddressSpace) {
424  QualType CanT = getCanonicalType(T);
425  if (CanT.getAddressSpace() == AddressSpace)
426    return T;
427
428  // Type's cannot have multiple ASQuals, therefore we know we only have to deal
429  // with CVR qualifiers from here on out.
430  assert(CanT.getAddressSpace() == 0 &&
431         "Type is already address space qualified");
432
433  // Check if we've already instantiated an address space qual'd type of this
434  // type.
435  llvm::FoldingSetNodeID ID;
436  ASQualType::Profile(ID, T.getTypePtr(), AddressSpace);
437  void *InsertPos = 0;
438  if (ASQualType *ASQy = ASQualTypes.FindNodeOrInsertPos(ID, InsertPos))
439    return QualType(ASQy, 0);
440
441  // If the base type isn't canonical, this won't be a canonical type either,
442  // so fill in the canonical type field.
443  QualType Canonical;
444  if (!T->isCanonical()) {
445    Canonical = getASQualType(CanT, AddressSpace);
446
447    // Get the new insert position for the node we care about.
448    ASQualType *NewIP = ASQualTypes.FindNodeOrInsertPos(ID, InsertPos);
449    assert(NewIP == 0 && "Shouldn't be in the map!");
450  }
451  ASQualType *New = new ASQualType(T.getTypePtr(), Canonical, AddressSpace);
452  ASQualTypes.InsertNode(New, InsertPos);
453  Types.push_back(New);
454  return QualType(New, T.getCVRQualifiers());
455}
456
457
458/// getComplexType - Return the uniqued reference to the type for a complex
459/// number with the specified element type.
460QualType ASTContext::getComplexType(QualType T) {
461  // Unique pointers, to guarantee there is only one pointer of a particular
462  // structure.
463  llvm::FoldingSetNodeID ID;
464  ComplexType::Profile(ID, T);
465
466  void *InsertPos = 0;
467  if (ComplexType *CT = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos))
468    return QualType(CT, 0);
469
470  // If the pointee type isn't canonical, this won't be a canonical type either,
471  // so fill in the canonical type field.
472  QualType Canonical;
473  if (!T->isCanonical()) {
474    Canonical = getComplexType(getCanonicalType(T));
475
476    // Get the new insert position for the node we care about.
477    ComplexType *NewIP = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos);
478    assert(NewIP == 0 && "Shouldn't be in the map!");
479  }
480  ComplexType *New = new ComplexType(T, Canonical);
481  Types.push_back(New);
482  ComplexTypes.InsertNode(New, InsertPos);
483  return QualType(New, 0);
484}
485
486
487/// getPointerType - Return the uniqued reference to the type for a pointer to
488/// the specified type.
489QualType ASTContext::getPointerType(QualType T) {
490  // Unique pointers, to guarantee there is only one pointer of a particular
491  // structure.
492  llvm::FoldingSetNodeID ID;
493  PointerType::Profile(ID, T);
494
495  void *InsertPos = 0;
496  if (PointerType *PT = PointerTypes.FindNodeOrInsertPos(ID, InsertPos))
497    return QualType(PT, 0);
498
499  // If the pointee type isn't canonical, this won't be a canonical type either,
500  // so fill in the canonical type field.
501  QualType Canonical;
502  if (!T->isCanonical()) {
503    Canonical = getPointerType(getCanonicalType(T));
504
505    // Get the new insert position for the node we care about.
506    PointerType *NewIP = PointerTypes.FindNodeOrInsertPos(ID, InsertPos);
507    assert(NewIP == 0 && "Shouldn't be in the map!");
508  }
509  PointerType *New = new PointerType(T, Canonical);
510  Types.push_back(New);
511  PointerTypes.InsertNode(New, InsertPos);
512  return QualType(New, 0);
513}
514
515/// getReferenceType - Return the uniqued reference to the type for a reference
516/// to the specified type.
517QualType ASTContext::getReferenceType(QualType T) {
518  // Unique pointers, to guarantee there is only one pointer of a particular
519  // structure.
520  llvm::FoldingSetNodeID ID;
521  ReferenceType::Profile(ID, T);
522
523  void *InsertPos = 0;
524  if (ReferenceType *RT = ReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
525    return QualType(RT, 0);
526
527  // If the referencee type isn't canonical, this won't be a canonical type
528  // either, so fill in the canonical type field.
529  QualType Canonical;
530  if (!T->isCanonical()) {
531    Canonical = getReferenceType(getCanonicalType(T));
532
533    // Get the new insert position for the node we care about.
534    ReferenceType *NewIP = ReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
535    assert(NewIP == 0 && "Shouldn't be in the map!");
536  }
537
538  ReferenceType *New = new ReferenceType(T, Canonical);
539  Types.push_back(New);
540  ReferenceTypes.InsertNode(New, InsertPos);
541  return QualType(New, 0);
542}
543
544/// getConstantArrayType - Return the unique reference to the type for an
545/// array of the specified element type.
546QualType ASTContext::getConstantArrayType(QualType EltTy,
547                                          const llvm::APInt &ArySize,
548                                          ArrayType::ArraySizeModifier ASM,
549                                          unsigned EltTypeQuals) {
550  llvm::FoldingSetNodeID ID;
551  ConstantArrayType::Profile(ID, EltTy, ArySize);
552
553  void *InsertPos = 0;
554  if (ConstantArrayType *ATP =
555      ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
556    return QualType(ATP, 0);
557
558  // If the element type isn't canonical, this won't be a canonical type either,
559  // so fill in the canonical type field.
560  QualType Canonical;
561  if (!EltTy->isCanonical()) {
562    Canonical = getConstantArrayType(getCanonicalType(EltTy), ArySize,
563                                     ASM, EltTypeQuals);
564    // Get the new insert position for the node we care about.
565    ConstantArrayType *NewIP =
566      ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
567
568    assert(NewIP == 0 && "Shouldn't be in the map!");
569  }
570
571  ConstantArrayType *New = new ConstantArrayType(EltTy, Canonical, ArySize,
572                                                 ASM, EltTypeQuals);
573  ConstantArrayTypes.InsertNode(New, InsertPos);
574  Types.push_back(New);
575  return QualType(New, 0);
576}
577
578/// getVariableArrayType - Returns a non-unique reference to the type for a
579/// variable array of the specified element type.
580QualType ASTContext::getVariableArrayType(QualType EltTy, Expr *NumElts,
581                                          ArrayType::ArraySizeModifier ASM,
582                                          unsigned EltTypeQuals) {
583  // Since we don't unique expressions, it isn't possible to unique VLA's
584  // that have an expression provided for their size.
585
586  VariableArrayType *New = new VariableArrayType(EltTy, QualType(), NumElts,
587                                                 ASM, EltTypeQuals);
588
589  VariableArrayTypes.push_back(New);
590  Types.push_back(New);
591  return QualType(New, 0);
592}
593
594QualType ASTContext::getIncompleteArrayType(QualType EltTy,
595                                            ArrayType::ArraySizeModifier ASM,
596                                            unsigned EltTypeQuals) {
597  llvm::FoldingSetNodeID ID;
598  IncompleteArrayType::Profile(ID, EltTy);
599
600  void *InsertPos = 0;
601  if (IncompleteArrayType *ATP =
602       IncompleteArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
603    return QualType(ATP, 0);
604
605  // If the element type isn't canonical, this won't be a canonical type
606  // either, so fill in the canonical type field.
607  QualType Canonical;
608
609  if (!EltTy->isCanonical()) {
610    Canonical = getIncompleteArrayType(getCanonicalType(EltTy),
611                                       ASM, EltTypeQuals);
612
613    // Get the new insert position for the node we care about.
614    IncompleteArrayType *NewIP =
615      IncompleteArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
616
617    assert(NewIP == 0 && "Shouldn't be in the map!");
618  }
619
620  IncompleteArrayType *New = new IncompleteArrayType(EltTy, Canonical,
621                                                     ASM, EltTypeQuals);
622
623  IncompleteArrayTypes.InsertNode(New, InsertPos);
624  Types.push_back(New);
625  return QualType(New, 0);
626}
627
628/// getVectorType - Return the unique reference to a vector type of
629/// the specified element type and size. VectorType must be a built-in type.
630QualType ASTContext::getVectorType(QualType vecType, unsigned NumElts) {
631  BuiltinType *baseType;
632
633  baseType = dyn_cast<BuiltinType>(getCanonicalType(vecType).getTypePtr());
634  assert(baseType != 0 && "getVectorType(): Expecting a built-in type");
635
636  // Check if we've already instantiated a vector of this type.
637  llvm::FoldingSetNodeID ID;
638  VectorType::Profile(ID, vecType, NumElts, Type::Vector);
639  void *InsertPos = 0;
640  if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
641    return QualType(VTP, 0);
642
643  // If the element type isn't canonical, this won't be a canonical type either,
644  // so fill in the canonical type field.
645  QualType Canonical;
646  if (!vecType->isCanonical()) {
647    Canonical = getVectorType(getCanonicalType(vecType), NumElts);
648
649    // Get the new insert position for the node we care about.
650    VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
651    assert(NewIP == 0 && "Shouldn't be in the map!");
652  }
653  VectorType *New = new VectorType(vecType, NumElts, Canonical);
654  VectorTypes.InsertNode(New, InsertPos);
655  Types.push_back(New);
656  return QualType(New, 0);
657}
658
659/// getExtVectorType - Return the unique reference to an extended vector type of
660/// the specified element type and size. VectorType must be a built-in type.
661QualType ASTContext::getExtVectorType(QualType vecType, unsigned NumElts) {
662  BuiltinType *baseType;
663
664  baseType = dyn_cast<BuiltinType>(getCanonicalType(vecType).getTypePtr());
665  assert(baseType != 0 && "getExtVectorType(): Expecting a built-in type");
666
667  // Check if we've already instantiated a vector of this type.
668  llvm::FoldingSetNodeID ID;
669  VectorType::Profile(ID, vecType, NumElts, Type::ExtVector);
670  void *InsertPos = 0;
671  if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
672    return QualType(VTP, 0);
673
674  // If the element type isn't canonical, this won't be a canonical type either,
675  // so fill in the canonical type field.
676  QualType Canonical;
677  if (!vecType->isCanonical()) {
678    Canonical = getExtVectorType(getCanonicalType(vecType), NumElts);
679
680    // Get the new insert position for the node we care about.
681    VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
682    assert(NewIP == 0 && "Shouldn't be in the map!");
683  }
684  ExtVectorType *New = new ExtVectorType(vecType, NumElts, Canonical);
685  VectorTypes.InsertNode(New, InsertPos);
686  Types.push_back(New);
687  return QualType(New, 0);
688}
689
690/// getFunctionTypeNoProto - Return a K&R style C function type like 'int()'.
691///
692QualType ASTContext::getFunctionTypeNoProto(QualType ResultTy) {
693  // Unique functions, to guarantee there is only one function of a particular
694  // structure.
695  llvm::FoldingSetNodeID ID;
696  FunctionTypeNoProto::Profile(ID, ResultTy);
697
698  void *InsertPos = 0;
699  if (FunctionTypeNoProto *FT =
700        FunctionTypeNoProtos.FindNodeOrInsertPos(ID, InsertPos))
701    return QualType(FT, 0);
702
703  QualType Canonical;
704  if (!ResultTy->isCanonical()) {
705    Canonical = getFunctionTypeNoProto(getCanonicalType(ResultTy));
706
707    // Get the new insert position for the node we care about.
708    FunctionTypeNoProto *NewIP =
709      FunctionTypeNoProtos.FindNodeOrInsertPos(ID, InsertPos);
710    assert(NewIP == 0 && "Shouldn't be in the map!");
711  }
712
713  FunctionTypeNoProto *New = new FunctionTypeNoProto(ResultTy, Canonical);
714  Types.push_back(New);
715  FunctionTypeNoProtos.InsertNode(New, InsertPos);
716  return QualType(New, 0);
717}
718
719/// getFunctionType - Return a normal function type with a typed argument
720/// list.  isVariadic indicates whether the argument list includes '...'.
721QualType ASTContext::getFunctionType(QualType ResultTy, QualType *ArgArray,
722                                     unsigned NumArgs, bool isVariadic) {
723  // Unique functions, to guarantee there is only one function of a particular
724  // structure.
725  llvm::FoldingSetNodeID ID;
726  FunctionTypeProto::Profile(ID, ResultTy, ArgArray, NumArgs, isVariadic);
727
728  void *InsertPos = 0;
729  if (FunctionTypeProto *FTP =
730        FunctionTypeProtos.FindNodeOrInsertPos(ID, InsertPos))
731    return QualType(FTP, 0);
732
733  // Determine whether the type being created is already canonical or not.
734  bool isCanonical = ResultTy->isCanonical();
735  for (unsigned i = 0; i != NumArgs && isCanonical; ++i)
736    if (!ArgArray[i]->isCanonical())
737      isCanonical = false;
738
739  // If this type isn't canonical, get the canonical version of it.
740  QualType Canonical;
741  if (!isCanonical) {
742    llvm::SmallVector<QualType, 16> CanonicalArgs;
743    CanonicalArgs.reserve(NumArgs);
744    for (unsigned i = 0; i != NumArgs; ++i)
745      CanonicalArgs.push_back(getCanonicalType(ArgArray[i]));
746
747    Canonical = getFunctionType(getCanonicalType(ResultTy),
748                                &CanonicalArgs[0], NumArgs,
749                                isVariadic);
750
751    // Get the new insert position for the node we care about.
752    FunctionTypeProto *NewIP =
753      FunctionTypeProtos.FindNodeOrInsertPos(ID, InsertPos);
754    assert(NewIP == 0 && "Shouldn't be in the map!");
755  }
756
757  // FunctionTypeProto objects are not allocated with new because they have a
758  // variable size array (for parameter types) at the end of them.
759  FunctionTypeProto *FTP =
760    (FunctionTypeProto*)malloc(sizeof(FunctionTypeProto) +
761                               NumArgs*sizeof(QualType));
762  new (FTP) FunctionTypeProto(ResultTy, ArgArray, NumArgs, isVariadic,
763                              Canonical);
764  Types.push_back(FTP);
765  FunctionTypeProtos.InsertNode(FTP, InsertPos);
766  return QualType(FTP, 0);
767}
768
769/// getTypeDeclType - Return the unique reference to the type for the
770/// specified type declaration.
771QualType ASTContext::getTypeDeclType(TypeDecl *Decl) {
772  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
773
774  if (TypedefDecl *Typedef = dyn_cast_or_null<TypedefDecl>(Decl))
775    return getTypedefType(Typedef);
776  else if (ObjCInterfaceDecl *ObjCInterface
777             = dyn_cast_or_null<ObjCInterfaceDecl>(Decl))
778    return getObjCInterfaceType(ObjCInterface);
779  else if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Decl)) {
780    Decl->TypeForDecl = new RecordType(Record);
781    Types.push_back(Decl->TypeForDecl);
782    return QualType(Decl->TypeForDecl, 0);
783  } else if (EnumDecl *Enum = dyn_cast_or_null<EnumDecl>(Decl)) {
784    Decl->TypeForDecl = new EnumType(Enum);
785    Types.push_back(Decl->TypeForDecl);
786    return QualType(Decl->TypeForDecl, 0);
787  } else
788    assert(false && "TypeDecl without a type?");
789}
790
791/// getTypedefType - Return the unique reference to the type for the
792/// specified typename decl.
793QualType ASTContext::getTypedefType(TypedefDecl *Decl) {
794  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
795
796  QualType Canonical = getCanonicalType(Decl->getUnderlyingType());
797  Decl->TypeForDecl = new TypedefType(Type::TypeName, Decl, Canonical);
798  Types.push_back(Decl->TypeForDecl);
799  return QualType(Decl->TypeForDecl, 0);
800}
801
802/// getObjCInterfaceType - Return the unique reference to the type for the
803/// specified ObjC interface decl.
804QualType ASTContext::getObjCInterfaceType(ObjCInterfaceDecl *Decl) {
805  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
806
807  Decl->TypeForDecl = new ObjCInterfaceType(Type::ObjCInterface, Decl);
808  Types.push_back(Decl->TypeForDecl);
809  return QualType(Decl->TypeForDecl, 0);
810}
811
812/// CmpProtocolNames - Comparison predicate for sorting protocols
813/// alphabetically.
814static bool CmpProtocolNames(const ObjCProtocolDecl *LHS,
815                            const ObjCProtocolDecl *RHS) {
816  return strcmp(LHS->getName(), RHS->getName()) < 0;
817}
818
819static void SortAndUniqueProtocols(ObjCProtocolDecl **&Protocols,
820                                   unsigned &NumProtocols) {
821  ObjCProtocolDecl **ProtocolsEnd = Protocols+NumProtocols;
822
823  // Sort protocols, keyed by name.
824  std::sort(Protocols, Protocols+NumProtocols, CmpProtocolNames);
825
826  // Remove duplicates.
827  ProtocolsEnd = std::unique(Protocols, ProtocolsEnd);
828  NumProtocols = ProtocolsEnd-Protocols;
829}
830
831
832/// getObjCQualifiedInterfaceType - Return a ObjCQualifiedInterfaceType type for
833/// the given interface decl and the conforming protocol list.
834QualType ASTContext::getObjCQualifiedInterfaceType(ObjCInterfaceDecl *Decl,
835                       ObjCProtocolDecl **Protocols, unsigned NumProtocols) {
836  // Sort the protocol list alphabetically to canonicalize it.
837  SortAndUniqueProtocols(Protocols, NumProtocols);
838
839  llvm::FoldingSetNodeID ID;
840  ObjCQualifiedInterfaceType::Profile(ID, Decl, Protocols, NumProtocols);
841
842  void *InsertPos = 0;
843  if (ObjCQualifiedInterfaceType *QT =
844      ObjCQualifiedInterfaceTypes.FindNodeOrInsertPos(ID, InsertPos))
845    return QualType(QT, 0);
846
847  // No Match;
848  ObjCQualifiedInterfaceType *QType =
849    new ObjCQualifiedInterfaceType(Decl, Protocols, NumProtocols);
850  Types.push_back(QType);
851  ObjCQualifiedInterfaceTypes.InsertNode(QType, InsertPos);
852  return QualType(QType, 0);
853}
854
855/// getObjCQualifiedIdType - Return an ObjCQualifiedIdType for the 'id' decl
856/// and the conforming protocol list.
857QualType ASTContext::getObjCQualifiedIdType(QualType idType,
858                                            ObjCProtocolDecl **Protocols,
859                                            unsigned NumProtocols) {
860  // Sort the protocol list alphabetically to canonicalize it.
861  SortAndUniqueProtocols(Protocols, NumProtocols);
862
863  llvm::FoldingSetNodeID ID;
864  ObjCQualifiedIdType::Profile(ID, Protocols, NumProtocols);
865
866  void *InsertPos = 0;
867  if (ObjCQualifiedIdType *QT =
868      ObjCQualifiedIdTypes.FindNodeOrInsertPos(ID, InsertPos))
869    return QualType(QT, 0);
870
871  // No Match;
872  QualType Canonical;
873  if (!idType->isCanonical()) {
874    Canonical = getObjCQualifiedIdType(getCanonicalType(idType),
875                                       Protocols, NumProtocols);
876    ObjCQualifiedIdType *NewQT =
877      ObjCQualifiedIdTypes.FindNodeOrInsertPos(ID, InsertPos);
878    assert(NewQT == 0 && "Shouldn't be in the map!");
879  }
880
881  ObjCQualifiedIdType *QType =
882    new ObjCQualifiedIdType(Canonical, Protocols, NumProtocols);
883  Types.push_back(QType);
884  ObjCQualifiedIdTypes.InsertNode(QType, InsertPos);
885  return QualType(QType, 0);
886}
887
888/// getTypeOfExpr - Unlike many "get<Type>" functions, we can't unique
889/// TypeOfExpr AST's (since expression's are never shared). For example,
890/// multiple declarations that refer to "typeof(x)" all contain different
891/// DeclRefExpr's. This doesn't effect the type checker, since it operates
892/// on canonical type's (which are always unique).
893QualType ASTContext::getTypeOfExpr(Expr *tofExpr) {
894  QualType Canonical = getCanonicalType(tofExpr->getType());
895  TypeOfExpr *toe = new TypeOfExpr(tofExpr, Canonical);
896  Types.push_back(toe);
897  return QualType(toe, 0);
898}
899
900/// getTypeOfType -  Unlike many "get<Type>" functions, we don't unique
901/// TypeOfType AST's. The only motivation to unique these nodes would be
902/// memory savings. Since typeof(t) is fairly uncommon, space shouldn't be
903/// an issue. This doesn't effect the type checker, since it operates
904/// on canonical type's (which are always unique).
905QualType ASTContext::getTypeOfType(QualType tofType) {
906  QualType Canonical = getCanonicalType(tofType);
907  TypeOfType *tot = new TypeOfType(tofType, Canonical);
908  Types.push_back(tot);
909  return QualType(tot, 0);
910}
911
912/// getTagDeclType - Return the unique reference to the type for the
913/// specified TagDecl (struct/union/class/enum) decl.
914QualType ASTContext::getTagDeclType(TagDecl *Decl) {
915  assert (Decl);
916  return getTypeDeclType(Decl);
917}
918
919/// getSizeType - Return the unique type for "size_t" (C99 7.17), the result
920/// of the sizeof operator (C99 6.5.3.4p4). The value is target dependent and
921/// needs to agree with the definition in <stddef.h>.
922QualType ASTContext::getSizeType() const {
923  // On Darwin, size_t is defined as a "long unsigned int".
924  // FIXME: should derive from "Target".
925  return UnsignedLongTy;
926}
927
928/// getWcharType - Return the unique type for "wchar_t" (C99 7.17), the
929/// width of characters in wide strings, The value is target dependent and
930/// needs to agree with the definition in <stddef.h>.
931QualType ASTContext::getWcharType() const {
932  // On Darwin, wchar_t is defined as a "int".
933  // FIXME: should derive from "Target".
934  return IntTy;
935}
936
937/// getPointerDiffType - Return the unique type for "ptrdiff_t" (ref?)
938/// defined in <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9).
939QualType ASTContext::getPointerDiffType() const {
940  // On Darwin, ptrdiff_t is defined as a "int". This seems like a bug...
941  // FIXME: should derive from "Target".
942  return IntTy;
943}
944
945//===----------------------------------------------------------------------===//
946//                              Type Operators
947//===----------------------------------------------------------------------===//
948
949/// getCanonicalType - Return the canonical (structural) type corresponding to
950/// the specified potentially non-canonical type.  The non-canonical version
951/// of a type may have many "decorated" versions of types.  Decorators can
952/// include typedefs, 'typeof' operators, etc. The returned type is guaranteed
953/// to be free of any of these, allowing two canonical types to be compared
954/// for exact equality with a simple pointer comparison.
955QualType ASTContext::getCanonicalType(QualType T) {
956  QualType CanType = T.getTypePtr()->getCanonicalTypeInternal();
957  return QualType(CanType.getTypePtr(),
958                  T.getCVRQualifiers() | CanType.getCVRQualifiers());
959}
960
961
962/// getArrayDecayedType - Return the properly qualified result of decaying the
963/// specified array type to a pointer.  This operation is non-trivial when
964/// handling typedefs etc.  The canonical type of "T" must be an array type,
965/// this returns a pointer to a properly qualified element of the array.
966///
967/// See C99 6.7.5.3p7 and C99 6.3.2.1p3.
968QualType ASTContext::getArrayDecayedType(QualType Ty) {
969  // Handle the common case where typedefs are not involved directly.
970  QualType EltTy;
971  unsigned ArrayQuals = 0;
972  unsigned PointerQuals = 0;
973  if (ArrayType *AT = dyn_cast<ArrayType>(Ty)) {
974    // Since T "isa" an array type, it could not have had an address space
975    // qualifier, just CVR qualifiers.  The properly qualified element pointer
976    // gets the union of the CVR qualifiers from the element and the array, and
977    // keeps any address space qualifier on the element type if present.
978    EltTy = AT->getElementType();
979    ArrayQuals = Ty.getCVRQualifiers();
980    PointerQuals = AT->getIndexTypeQualifier();
981  } else {
982    // Otherwise, we have an ASQualType or a typedef, etc.  Make sure we don't
983    // lose qualifiers when dealing with typedefs. Example:
984    //   typedef int arr[10];
985    //   void test2() {
986    //     const arr b;
987    //     b[4] = 1;
988    //   }
989    //
990    // The decayed type of b is "const int*" even though the element type of the
991    // array is "int".
992    QualType CanTy = getCanonicalType(Ty);
993    const ArrayType *PrettyArrayType = Ty->getAsArrayType();
994    assert(PrettyArrayType && "Not an array type!");
995
996    // Get the element type with 'getAsArrayType' so that we don't lose any
997    // typedefs in the element type of the array.
998    EltTy = PrettyArrayType->getElementType();
999
1000    // If the array was address-space qualifier, make sure to ASQual the element
1001    // type.  We can just grab the address space from the canonical type.
1002    if (unsigned AS = CanTy.getAddressSpace())
1003      EltTy = getASQualType(EltTy, AS);
1004
1005    // To properly handle [multiple levels of] typedefs, typeof's etc, we take
1006    // the CVR qualifiers directly from the canonical type, which is guaranteed
1007    // to have the full set unioned together.
1008    ArrayQuals = CanTy.getCVRQualifiers();
1009    PointerQuals = PrettyArrayType->getIndexTypeQualifier();
1010  }
1011
1012  // Apply any CVR qualifiers from the array type to the element type.  This
1013  // implements C99 6.7.3p8: "If the specification of an array type includes
1014  // any type qualifiers, the element type is so qualified, not the array type."
1015  EltTy = EltTy.getQualifiedType(ArrayQuals | EltTy.getCVRQualifiers());
1016
1017  QualType PtrTy = getPointerType(EltTy);
1018
1019  // int x[restrict 4] ->  int *restrict
1020  PtrTy = PtrTy.getQualifiedType(PointerQuals);
1021
1022  return PtrTy;
1023}
1024
1025/// getFloatingRank - Return a relative rank for floating point types.
1026/// This routine will assert if passed a built-in type that isn't a float.
1027static FloatingRank getFloatingRank(QualType T) {
1028  if (const ComplexType *CT = T->getAsComplexType())
1029    return getFloatingRank(CT->getElementType());
1030
1031  switch (T->getAsBuiltinType()->getKind()) {
1032  default: assert(0 && "getFloatingRank(): not a floating type");
1033  case BuiltinType::Float:      return FloatRank;
1034  case BuiltinType::Double:     return DoubleRank;
1035  case BuiltinType::LongDouble: return LongDoubleRank;
1036  }
1037}
1038
1039/// getFloatingTypeOfSizeWithinDomain - Returns a real floating
1040/// point or a complex type (based on typeDomain/typeSize).
1041/// 'typeDomain' is a real floating point or complex type.
1042/// 'typeSize' is a real floating point or complex type.
1043QualType ASTContext::getFloatingTypeOfSizeWithinDomain(QualType Size,
1044                                                       QualType Domain) const {
1045  FloatingRank EltRank = getFloatingRank(Size);
1046  if (Domain->isComplexType()) {
1047    switch (EltRank) {
1048    default: assert(0 && "getFloatingRank(): illegal value for rank");
1049    case FloatRank:      return FloatComplexTy;
1050    case DoubleRank:     return DoubleComplexTy;
1051    case LongDoubleRank: return LongDoubleComplexTy;
1052    }
1053  }
1054
1055  assert(Domain->isRealFloatingType() && "Unknown domain!");
1056  switch (EltRank) {
1057  default: assert(0 && "getFloatingRank(): illegal value for rank");
1058  case FloatRank:      return FloatTy;
1059  case DoubleRank:     return DoubleTy;
1060  case LongDoubleRank: return LongDoubleTy;
1061  }
1062}
1063
1064/// getFloatingTypeOrder - Compare the rank of the two specified floating
1065/// point types, ignoring the domain of the type (i.e. 'double' ==
1066/// '_Complex double').  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
1067/// LHS < RHS, return -1.
1068int ASTContext::getFloatingTypeOrder(QualType LHS, QualType RHS) {
1069  FloatingRank LHSR = getFloatingRank(LHS);
1070  FloatingRank RHSR = getFloatingRank(RHS);
1071
1072  if (LHSR == RHSR)
1073    return 0;
1074  if (LHSR > RHSR)
1075    return 1;
1076  return -1;
1077}
1078
1079/// getIntegerRank - Return an integer conversion rank (C99 6.3.1.1p1). This
1080/// routine will assert if passed a built-in type that isn't an integer or enum,
1081/// or if it is not canonicalized.
1082static unsigned getIntegerRank(Type *T) {
1083  assert(T->isCanonical() && "T should be canonicalized");
1084  if (isa<EnumType>(T))
1085    return 4;
1086
1087  switch (cast<BuiltinType>(T)->getKind()) {
1088  default: assert(0 && "getIntegerRank(): not a built-in integer");
1089  case BuiltinType::Bool:
1090    return 1;
1091  case BuiltinType::Char_S:
1092  case BuiltinType::Char_U:
1093  case BuiltinType::SChar:
1094  case BuiltinType::UChar:
1095    return 2;
1096  case BuiltinType::Short:
1097  case BuiltinType::UShort:
1098    return 3;
1099  case BuiltinType::Int:
1100  case BuiltinType::UInt:
1101    return 4;
1102  case BuiltinType::Long:
1103  case BuiltinType::ULong:
1104    return 5;
1105  case BuiltinType::LongLong:
1106  case BuiltinType::ULongLong:
1107    return 6;
1108  }
1109}
1110
1111/// getIntegerTypeOrder - Returns the highest ranked integer type:
1112/// C99 6.3.1.8p1.  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
1113/// LHS < RHS, return -1.
1114int ASTContext::getIntegerTypeOrder(QualType LHS, QualType RHS) {
1115  Type *LHSC = getCanonicalType(LHS).getTypePtr();
1116  Type *RHSC = getCanonicalType(RHS).getTypePtr();
1117  if (LHSC == RHSC) return 0;
1118
1119  bool LHSUnsigned = LHSC->isUnsignedIntegerType();
1120  bool RHSUnsigned = RHSC->isUnsignedIntegerType();
1121
1122  unsigned LHSRank = getIntegerRank(LHSC);
1123  unsigned RHSRank = getIntegerRank(RHSC);
1124
1125  if (LHSUnsigned == RHSUnsigned) {  // Both signed or both unsigned.
1126    if (LHSRank == RHSRank) return 0;
1127    return LHSRank > RHSRank ? 1 : -1;
1128  }
1129
1130  // Otherwise, the LHS is signed and the RHS is unsigned or visa versa.
1131  if (LHSUnsigned) {
1132    // If the unsigned [LHS] type is larger, return it.
1133    if (LHSRank >= RHSRank)
1134      return 1;
1135
1136    // If the signed type can represent all values of the unsigned type, it
1137    // wins.  Because we are dealing with 2's complement and types that are
1138    // powers of two larger than each other, this is always safe.
1139    return -1;
1140  }
1141
1142  // If the unsigned [RHS] type is larger, return it.
1143  if (RHSRank >= LHSRank)
1144    return -1;
1145
1146  // If the signed type can represent all values of the unsigned type, it
1147  // wins.  Because we are dealing with 2's complement and types that are
1148  // powers of two larger than each other, this is always safe.
1149  return 1;
1150}
1151
1152// getCFConstantStringType - Return the type used for constant CFStrings.
1153QualType ASTContext::getCFConstantStringType() {
1154  if (!CFConstantStringTypeDecl) {
1155    CFConstantStringTypeDecl =
1156      RecordDecl::Create(*this, Decl::Struct, TUDecl, SourceLocation(),
1157                         &Idents.get("NSConstantString"), 0);
1158    QualType FieldTypes[4];
1159
1160    // const int *isa;
1161    FieldTypes[0] = getPointerType(IntTy.getQualifiedType(QualType::Const));
1162    // int flags;
1163    FieldTypes[1] = IntTy;
1164    // const char *str;
1165    FieldTypes[2] = getPointerType(CharTy.getQualifiedType(QualType::Const));
1166    // long length;
1167    FieldTypes[3] = LongTy;
1168    // Create fields
1169    FieldDecl *FieldDecls[4];
1170
1171    for (unsigned i = 0; i < 4; ++i)
1172      FieldDecls[i] = FieldDecl::Create(*this, SourceLocation(), 0,
1173                                        FieldTypes[i]);
1174
1175    CFConstantStringTypeDecl->defineBody(FieldDecls, 4);
1176  }
1177
1178  return getTagDeclType(CFConstantStringTypeDecl);
1179}
1180
1181// This returns true if a type has been typedefed to BOOL:
1182// typedef <type> BOOL;
1183static bool isTypeTypedefedAsBOOL(QualType T) {
1184  if (const TypedefType *TT = dyn_cast<TypedefType>(T))
1185    return !strcmp(TT->getDecl()->getName(), "BOOL");
1186
1187  return false;
1188}
1189
1190/// getObjCEncodingTypeSize returns size of type for objective-c encoding
1191/// purpose.
1192int ASTContext::getObjCEncodingTypeSize(QualType type) {
1193  uint64_t sz = getTypeSize(type);
1194
1195  // Make all integer and enum types at least as large as an int
1196  if (sz > 0 && type->isIntegralType())
1197    sz = std::max(sz, getTypeSize(IntTy));
1198  // Treat arrays as pointers, since that's how they're passed in.
1199  else if (type->isArrayType())
1200    sz = getTypeSize(VoidPtrTy);
1201  return sz / getTypeSize(CharTy);
1202}
1203
1204/// getObjCEncodingForMethodDecl - Return the encoded type for this method
1205/// declaration.
1206void ASTContext::getObjCEncodingForMethodDecl(ObjCMethodDecl *Decl,
1207                                              std::string& S)
1208{
1209  // Encode type qualifer, 'in', 'inout', etc. for the return type.
1210  getObjCEncodingForTypeQualifier(Decl->getObjCDeclQualifier(), S);
1211  // Encode result type.
1212  getObjCEncodingForType(Decl->getResultType(), S, EncodingRecordTypes);
1213  // Compute size of all parameters.
1214  // Start with computing size of a pointer in number of bytes.
1215  // FIXME: There might(should) be a better way of doing this computation!
1216  SourceLocation Loc;
1217  int PtrSize = getTypeSize(VoidPtrTy) / getTypeSize(CharTy);
1218  // The first two arguments (self and _cmd) are pointers; account for
1219  // their size.
1220  int ParmOffset = 2 * PtrSize;
1221  int NumOfParams = Decl->getNumParams();
1222  for (int i = 0; i < NumOfParams; i++) {
1223    QualType PType = Decl->getParamDecl(i)->getType();
1224    int sz = getObjCEncodingTypeSize (PType);
1225    assert (sz > 0 && "getObjCEncodingForMethodDecl - Incomplete param type");
1226    ParmOffset += sz;
1227  }
1228  S += llvm::utostr(ParmOffset);
1229  S += "@0:";
1230  S += llvm::utostr(PtrSize);
1231
1232  // Argument types.
1233  ParmOffset = 2 * PtrSize;
1234  for (int i = 0; i < NumOfParams; i++) {
1235    QualType PType = Decl->getParamDecl(i)->getType();
1236    // Process argument qualifiers for user supplied arguments; such as,
1237    // 'in', 'inout', etc.
1238    getObjCEncodingForTypeQualifier(
1239      Decl->getParamDecl(i)->getObjCDeclQualifier(), S);
1240    getObjCEncodingForType(PType, S, EncodingRecordTypes);
1241    S += llvm::utostr(ParmOffset);
1242    ParmOffset += getObjCEncodingTypeSize(PType);
1243  }
1244}
1245
1246void ASTContext::getObjCEncodingForType(QualType T, std::string& S,
1247       llvm::SmallVector<const RecordType *, 8> &ERType) const
1248{
1249  // FIXME: This currently doesn't encode:
1250  // @ An object (whether statically typed or typed id)
1251  // # A class object (Class)
1252  // : A method selector (SEL)
1253  // {name=type...} A structure
1254  // (name=type...) A union
1255  // bnum A bit field of num bits
1256
1257  if (const BuiltinType *BT = T->getAsBuiltinType()) {
1258    char encoding;
1259    switch (BT->getKind()) {
1260    default: assert(0 && "Unhandled builtin type kind");
1261    case BuiltinType::Void:       encoding = 'v'; break;
1262    case BuiltinType::Bool:       encoding = 'B'; break;
1263    case BuiltinType::Char_U:
1264    case BuiltinType::UChar:      encoding = 'C'; break;
1265    case BuiltinType::UShort:     encoding = 'S'; break;
1266    case BuiltinType::UInt:       encoding = 'I'; break;
1267    case BuiltinType::ULong:      encoding = 'L'; break;
1268    case BuiltinType::ULongLong:  encoding = 'Q'; break;
1269    case BuiltinType::Char_S:
1270    case BuiltinType::SChar:      encoding = 'c'; break;
1271    case BuiltinType::Short:      encoding = 's'; break;
1272    case BuiltinType::Int:        encoding = 'i'; break;
1273    case BuiltinType::Long:       encoding = 'l'; break;
1274    case BuiltinType::LongLong:   encoding = 'q'; break;
1275    case BuiltinType::Float:      encoding = 'f'; break;
1276    case BuiltinType::Double:     encoding = 'd'; break;
1277    case BuiltinType::LongDouble: encoding = 'd'; break;
1278    }
1279
1280    S += encoding;
1281  }
1282  else if (T->isObjCQualifiedIdType()) {
1283    // Treat id<P...> same as 'id' for encoding purposes.
1284    return getObjCEncodingForType(getObjCIdType(), S, ERType);
1285
1286  }
1287  else if (const PointerType *PT = T->getAsPointerType()) {
1288    QualType PointeeTy = PT->getPointeeType();
1289    if (isObjCIdType(PointeeTy) || PointeeTy->isObjCInterfaceType()) {
1290      S += '@';
1291      return;
1292    } else if (isObjCClassType(PointeeTy)) {
1293      S += '#';
1294      return;
1295    } else if (isObjCSelType(PointeeTy)) {
1296      S += ':';
1297      return;
1298    }
1299
1300    if (PointeeTy->isCharType()) {
1301      // char pointer types should be encoded as '*' unless it is a
1302      // type that has been typedef'd to 'BOOL'.
1303      if (!isTypeTypedefedAsBOOL(PointeeTy)) {
1304        S += '*';
1305        return;
1306      }
1307    }
1308
1309    S += '^';
1310    getObjCEncodingForType(PT->getPointeeType(), S, ERType);
1311  } else if (const ArrayType *AT = T->getAsArrayType()) {
1312    S += '[';
1313
1314    if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
1315      S += llvm::utostr(CAT->getSize().getZExtValue());
1316    else
1317      assert(0 && "Unhandled array type!");
1318
1319    getObjCEncodingForType(AT->getElementType(), S, ERType);
1320    S += ']';
1321  } else if (T->getAsFunctionType()) {
1322    S += '?';
1323  } else if (const RecordType *RTy = T->getAsRecordType()) {
1324    RecordDecl *RDecl= RTy->getDecl();
1325    S += '{';
1326    S += RDecl->getName();
1327    bool found = false;
1328    for (unsigned i = 0, e = ERType.size(); i != e; ++i)
1329      if (ERType[i] == RTy) {
1330        found = true;
1331        break;
1332      }
1333    if (!found) {
1334      ERType.push_back(RTy);
1335      S += '=';
1336      for (int i = 0; i < RDecl->getNumMembers(); i++) {
1337        FieldDecl *field = RDecl->getMember(i);
1338        getObjCEncodingForType(field->getType(), S, ERType);
1339      }
1340      assert(ERType.back() == RTy && "Record Type stack mismatch.");
1341      ERType.pop_back();
1342    }
1343    S += '}';
1344  } else if (T->isEnumeralType()) {
1345    S += 'i';
1346  } else
1347    assert(0 && "@encode for type not implemented!");
1348}
1349
1350void ASTContext::getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT,
1351                                                 std::string& S) const {
1352  if (QT & Decl::OBJC_TQ_In)
1353    S += 'n';
1354  if (QT & Decl::OBJC_TQ_Inout)
1355    S += 'N';
1356  if (QT & Decl::OBJC_TQ_Out)
1357    S += 'o';
1358  if (QT & Decl::OBJC_TQ_Bycopy)
1359    S += 'O';
1360  if (QT & Decl::OBJC_TQ_Byref)
1361    S += 'R';
1362  if (QT & Decl::OBJC_TQ_Oneway)
1363    S += 'V';
1364}
1365
1366void ASTContext::setBuiltinVaListType(QualType T)
1367{
1368  assert(BuiltinVaListType.isNull() && "__builtin_va_list type already set!");
1369
1370  BuiltinVaListType = T;
1371}
1372
1373void ASTContext::setObjCIdType(TypedefDecl *TD)
1374{
1375  assert(ObjCIdType.isNull() && "'id' type already set!");
1376
1377  ObjCIdType = getTypedefType(TD);
1378
1379  // typedef struct objc_object *id;
1380  const PointerType *ptr = TD->getUnderlyingType()->getAsPointerType();
1381  assert(ptr && "'id' incorrectly typed");
1382  const RecordType *rec = ptr->getPointeeType()->getAsStructureType();
1383  assert(rec && "'id' incorrectly typed");
1384  IdStructType = rec;
1385}
1386
1387void ASTContext::setObjCSelType(TypedefDecl *TD)
1388{
1389  assert(ObjCSelType.isNull() && "'SEL' type already set!");
1390
1391  ObjCSelType = getTypedefType(TD);
1392
1393  // typedef struct objc_selector *SEL;
1394  const PointerType *ptr = TD->getUnderlyingType()->getAsPointerType();
1395  assert(ptr && "'SEL' incorrectly typed");
1396  const RecordType *rec = ptr->getPointeeType()->getAsStructureType();
1397  assert(rec && "'SEL' incorrectly typed");
1398  SelStructType = rec;
1399}
1400
1401void ASTContext::setObjCProtoType(QualType QT)
1402{
1403  assert(ObjCProtoType.isNull() && "'Protocol' type already set!");
1404  ObjCProtoType = QT;
1405}
1406
1407void ASTContext::setObjCClassType(TypedefDecl *TD)
1408{
1409  assert(ObjCClassType.isNull() && "'Class' type already set!");
1410
1411  ObjCClassType = getTypedefType(TD);
1412
1413  // typedef struct objc_class *Class;
1414  const PointerType *ptr = TD->getUnderlyingType()->getAsPointerType();
1415  assert(ptr && "'Class' incorrectly typed");
1416  const RecordType *rec = ptr->getPointeeType()->getAsStructureType();
1417  assert(rec && "'Class' incorrectly typed");
1418  ClassStructType = rec;
1419}
1420
1421void ASTContext::setObjCConstantStringInterface(ObjCInterfaceDecl *Decl) {
1422  assert(ObjCConstantStringType.isNull() &&
1423         "'NSConstantString' type already set!");
1424
1425  ObjCConstantStringType = getObjCInterfaceType(Decl);
1426}
1427
1428//===----------------------------------------------------------------------===//
1429//                        Type Compatibility Testing
1430//===----------------------------------------------------------------------===//
1431
1432/// C99 6.2.7p1: If both are complete types, then the following additional
1433/// requirements apply.
1434/// FIXME (handle compatibility across source files).
1435static bool areCompatTagTypes(TagType *LHS, TagType *RHS,
1436                              const ASTContext &C) {
1437  // "Class" and "id" are compatible built-in structure types.
1438  if (C.isObjCIdType(QualType(LHS, 0)) && C.isObjCClassType(QualType(RHS, 0)) ||
1439      C.isObjCClassType(QualType(LHS, 0)) && C.isObjCIdType(QualType(RHS, 0)))
1440    return true;
1441
1442  // Within a translation unit a tag type is only compatible with itself.  Self
1443  // equality is already handled by the time we get here.
1444  assert(LHS != RHS && "Self equality not handled!");
1445  return false;
1446}
1447
1448bool ASTContext::pointerTypesAreCompatible(QualType lhs, QualType rhs) {
1449  // C99 6.7.5.1p2: For two pointer types to be compatible, both shall be
1450  // identically qualified and both shall be pointers to compatible types.
1451  if (lhs.getCVRQualifiers() != rhs.getCVRQualifiers() ||
1452      lhs.getAddressSpace() != rhs.getAddressSpace())
1453    return false;
1454
1455  QualType ltype = cast<PointerType>(lhs.getCanonicalType())->getPointeeType();
1456  QualType rtype = cast<PointerType>(rhs.getCanonicalType())->getPointeeType();
1457
1458  return typesAreCompatible(ltype, rtype);
1459}
1460
1461bool ASTContext::functionTypesAreCompatible(QualType lhs, QualType rhs) {
1462  const FunctionType *lbase = cast<FunctionType>(lhs.getCanonicalType());
1463  const FunctionType *rbase = cast<FunctionType>(rhs.getCanonicalType());
1464  const FunctionTypeProto *lproto = dyn_cast<FunctionTypeProto>(lbase);
1465  const FunctionTypeProto *rproto = dyn_cast<FunctionTypeProto>(rbase);
1466
1467  // first check the return types (common between C99 and K&R).
1468  if (!typesAreCompatible(lbase->getResultType(), rbase->getResultType()))
1469    return false;
1470
1471  if (lproto && rproto) { // two C99 style function prototypes
1472    unsigned lproto_nargs = lproto->getNumArgs();
1473    unsigned rproto_nargs = rproto->getNumArgs();
1474
1475    if (lproto_nargs != rproto_nargs)
1476      return false;
1477
1478    // both prototypes have the same number of arguments.
1479    if ((lproto->isVariadic() && !rproto->isVariadic()) ||
1480        (rproto->isVariadic() && !lproto->isVariadic()))
1481      return false;
1482
1483    // The use of ellipsis agree...now check the argument types.
1484    for (unsigned i = 0; i < lproto_nargs; i++)
1485      // C99 6.7.5.3p15: ...and each parameter declared with qualified type
1486      // is taken as having the unqualified version of it's declared type.
1487      if (!typesAreCompatible(lproto->getArgType(i).getUnqualifiedType(),
1488                              rproto->getArgType(i).getUnqualifiedType()))
1489        return false;
1490    return true;
1491  }
1492
1493  if (!lproto && !rproto) // two K&R style function decls, nothing to do.
1494    return true;
1495
1496  // we have a mixture of K&R style with C99 prototypes
1497  const FunctionTypeProto *proto = lproto ? lproto : rproto;
1498  if (proto->isVariadic())
1499    return false;
1500
1501  // FIXME: Each parameter type T in the prototype must be compatible with the
1502  // type resulting from applying the usual argument conversions to T.
1503  return true;
1504}
1505
1506// C99 6.7.5.2p6
1507static bool areCompatArrayTypes(ArrayType *LHS, ArrayType *RHS, ASTContext &C) {
1508  // Constant arrays must be the same size to be compatible.
1509  if (const ConstantArrayType* LCAT = dyn_cast<ConstantArrayType>(LHS))
1510    if (const ConstantArrayType* RCAT = dyn_cast<ConstantArrayType>(RHS))
1511      if (RCAT->getSize() != LCAT->getSize())
1512        return false;
1513
1514  // Compatible arrays must have compatible element types
1515  return C.typesAreCompatible(LHS->getElementType(), RHS->getElementType());
1516}
1517
1518/// areCompatVectorTypes - Return true if the two specified vector types are
1519/// compatible.
1520static bool areCompatVectorTypes(const VectorType *LHS,
1521                                 const VectorType *RHS) {
1522  assert(LHS->isCanonical() && RHS->isCanonical());
1523  return LHS->getElementType() == RHS->getElementType() &&
1524  LHS->getNumElements() == RHS->getNumElements();
1525}
1526
1527/// areCompatObjCInterfaces - Return true if the two interface types are
1528/// compatible for assignment from RHS to LHS.  This handles validation of any
1529/// protocol qualifiers on the LHS or RHS.
1530///
1531static bool areCompatObjCInterfaces(const ObjCInterfaceType *LHS,
1532                                    const ObjCInterfaceType *RHS) {
1533  // Verify that the base decls are compatible: the RHS must be a subclass of
1534  // the LHS.
1535  if (!LHS->getDecl()->isSuperClassOf(RHS->getDecl()))
1536    return false;
1537
1538  // RHS must have a superset of the protocols in the LHS.  If the LHS is not
1539  // protocol qualified at all, then we are good.
1540  if (!isa<ObjCQualifiedInterfaceType>(LHS))
1541    return true;
1542
1543  // Okay, we know the LHS has protocol qualifiers.  If the RHS doesn't, then it
1544  // isn't a superset.
1545  if (!isa<ObjCQualifiedInterfaceType>(RHS))
1546    return true;  // FIXME: should return false!
1547
1548  // Finally, we must have two protocol-qualified interfaces.
1549  const ObjCQualifiedInterfaceType *LHSP =cast<ObjCQualifiedInterfaceType>(LHS);
1550  const ObjCQualifiedInterfaceType *RHSP =cast<ObjCQualifiedInterfaceType>(RHS);
1551  ObjCQualifiedInterfaceType::qual_iterator LHSPI = LHSP->qual_begin();
1552  ObjCQualifiedInterfaceType::qual_iterator LHSPE = LHSP->qual_end();
1553  ObjCQualifiedInterfaceType::qual_iterator RHSPI = RHSP->qual_begin();
1554  ObjCQualifiedInterfaceType::qual_iterator RHSPE = RHSP->qual_end();
1555
1556  // All protocols in LHS must have a presence in RHS.  Since the protocol lists
1557  // are both sorted alphabetically and have no duplicates, we can scan RHS and
1558  // LHS in a single parallel scan until we run out of elements in LHS.
1559  assert(LHSPI != LHSPE && "Empty LHS protocol list?");
1560  ObjCProtocolDecl *LHSProto = *LHSPI;
1561
1562  while (RHSPI != RHSPE) {
1563    ObjCProtocolDecl *RHSProto = *RHSPI++;
1564    // If the RHS has a protocol that the LHS doesn't, ignore it.
1565    if (RHSProto != LHSProto)
1566      continue;
1567
1568    // Otherwise, the RHS does have this element.
1569    ++LHSPI;
1570    if (LHSPI == LHSPE)
1571      return true;  // All protocols in LHS exist in RHS.
1572
1573    LHSProto = *LHSPI;
1574  }
1575
1576  // If we got here, we didn't find one of the LHS's protocols in the RHS list.
1577  return false;
1578}
1579
1580
1581/// typesAreCompatible - C99 6.7.3p9: For two qualified types to be compatible,
1582/// both shall have the identically qualified version of a compatible type.
1583/// C99 6.2.7p1: Two types have compatible types if their types are the
1584/// same. See 6.7.[2,3,5] for additional rules.
1585bool ASTContext::typesAreCompatible(QualType LHS_NC, QualType RHS_NC) {
1586  QualType LHS = LHS_NC.getCanonicalType();
1587  QualType RHS = RHS_NC.getCanonicalType();
1588
1589  // C++ [expr]: If an expression initially has the type "reference to T", the
1590  // type is adjusted to "T" prior to any further analysis, the expression
1591  // designates the object or function denoted by the reference, and the
1592  // expression is an lvalue.
1593  if (ReferenceType *RT = dyn_cast<ReferenceType>(LHS))
1594    LHS = RT->getPointeeType();
1595  if (ReferenceType *RT = dyn_cast<ReferenceType>(RHS))
1596    RHS = RT->getPointeeType();
1597
1598  // If two types are identical, they are compatible.
1599  if (LHS == RHS)
1600    return true;
1601
1602  // If qualifiers differ, the types are different.
1603  unsigned LHSAS = LHS.getAddressSpace(), RHSAS = RHS.getAddressSpace();
1604  if (LHS.getCVRQualifiers() != RHS.getCVRQualifiers() || LHSAS != RHSAS)
1605    return false;
1606
1607  // Strip off ASQual's if present.
1608  if (LHSAS) {
1609    LHS = LHS.getUnqualifiedType();
1610    RHS = RHS.getUnqualifiedType();
1611  }
1612
1613  Type::TypeClass LHSClass = LHS->getTypeClass();
1614  Type::TypeClass RHSClass = RHS->getTypeClass();
1615
1616  // We want to consider the two function types to be the same for these
1617  // comparisons, just force one to the other.
1618  if (LHSClass == Type::FunctionProto) LHSClass = Type::FunctionNoProto;
1619  if (RHSClass == Type::FunctionProto) RHSClass = Type::FunctionNoProto;
1620
1621  // Same as above for arrays
1622  if (LHSClass == Type::VariableArray || LHSClass == Type::IncompleteArray)
1623    LHSClass = Type::ConstantArray;
1624  if (RHSClass == Type::VariableArray || RHSClass == Type::IncompleteArray)
1625    RHSClass = Type::ConstantArray;
1626
1627  // Canonicalize ExtVector -> Vector.
1628  if (LHSClass == Type::ExtVector) LHSClass = Type::Vector;
1629  if (RHSClass == Type::ExtVector) RHSClass = Type::Vector;
1630
1631  // Consider qualified interfaces and interfaces the same.
1632  if (LHSClass == Type::ObjCQualifiedInterface) LHSClass = Type::ObjCInterface;
1633  if (RHSClass == Type::ObjCQualifiedInterface) RHSClass = Type::ObjCInterface;
1634
1635  // If the canonical type classes don't match.
1636  if (LHSClass != RHSClass) {
1637    // ID is compatible with all interface types.
1638    if (isa<ObjCInterfaceType>(LHS))
1639      return isObjCIdType(RHS);
1640    if (isa<ObjCInterfaceType>(RHS))
1641      return isObjCIdType(LHS);
1642
1643    // ID is compatible with all qualified id types.
1644    if (isa<ObjCQualifiedIdType>(LHS)) {
1645      if (const PointerType *PT = RHS->getAsPointerType())
1646        return isObjCIdType(PT->getPointeeType());
1647    }
1648    if (isa<ObjCQualifiedIdType>(RHS)) {
1649      if (const PointerType *PT = LHS->getAsPointerType())
1650        return isObjCIdType(PT->getPointeeType());
1651    }
1652    // C99 6.7.2.2p4: Each enumerated type shall be compatible with char,
1653    // a signed integer type, or an unsigned integer type.
1654    if (LHS->isEnumeralType() && RHS->isIntegralType()) {
1655      EnumDecl* EDecl = cast<EnumType>(LHS)->getDecl();
1656      return EDecl->getIntegerType() == RHS;
1657    }
1658    if (RHS->isEnumeralType() && LHS->isIntegralType()) {
1659      EnumDecl* EDecl = cast<EnumType>(RHS)->getDecl();
1660      return EDecl->getIntegerType() == LHS;
1661    }
1662
1663    return false;
1664  }
1665
1666  // The canonical type classes match.
1667  switch (LHSClass) {
1668  case Type::ASQual:
1669  case Type::FunctionProto:
1670  case Type::VariableArray:
1671  case Type::IncompleteArray:
1672  case Type::Reference:
1673  case Type::ObjCQualifiedInterface:
1674    assert(0 && "Canonicalized away above");
1675  case Type::Pointer:
1676    return pointerTypesAreCompatible(LHS, RHS);
1677  case Type::ConstantArray:
1678    return areCompatArrayTypes(cast<ArrayType>(LHS), cast<ArrayType>(RHS),
1679                               *this);
1680  case Type::FunctionNoProto:
1681    return functionTypesAreCompatible(LHS, RHS);
1682  case Type::Tagged: // handle structures, unions
1683    return areCompatTagTypes(cast<TagType>(LHS), cast<TagType>(RHS), *this);
1684  case Type::Builtin:
1685    // Only exactly equal builtin types are compatible, which is tested above.
1686    return false;
1687  case Type::Vector:
1688    return areCompatVectorTypes(cast<VectorType>(LHS), cast<VectorType>(RHS));
1689  case Type::ObjCInterface:
1690    return areCompatObjCInterfaces(cast<ObjCInterfaceType>(LHS),
1691                                   cast<ObjCInterfaceType>(RHS));
1692  default:
1693    assert(0 && "unexpected type");
1694  }
1695  return true; // should never get here...
1696}
1697
1698//===----------------------------------------------------------------------===//
1699//                         Serialization Support
1700//===----------------------------------------------------------------------===//
1701
1702/// Emit - Serialize an ASTContext object to Bitcode.
1703void ASTContext::Emit(llvm::Serializer& S) const {
1704  S.EmitRef(SourceMgr);
1705  S.EmitRef(Target);
1706  S.EmitRef(Idents);
1707  S.EmitRef(Selectors);
1708
1709  // Emit the size of the type vector so that we can reserve that size
1710  // when we reconstitute the ASTContext object.
1711  S.EmitInt(Types.size());
1712
1713  for (std::vector<Type*>::const_iterator I=Types.begin(), E=Types.end();
1714                                          I!=E;++I)
1715    (*I)->Emit(S);
1716
1717  S.EmitOwnedPtr(TUDecl);
1718
1719  // FIXME: S.EmitOwnedPtr(CFConstantStringTypeDecl);
1720}
1721
1722ASTContext* ASTContext::Create(llvm::Deserializer& D) {
1723  SourceManager &SM = D.ReadRef<SourceManager>();
1724  TargetInfo &t = D.ReadRef<TargetInfo>();
1725  IdentifierTable &idents = D.ReadRef<IdentifierTable>();
1726  SelectorTable &sels = D.ReadRef<SelectorTable>();
1727
1728  unsigned size_reserve = D.ReadInt();
1729
1730  ASTContext* A = new ASTContext(SM,t,idents,sels,size_reserve);
1731
1732  for (unsigned i = 0; i < size_reserve; ++i)
1733    Type::Create(*A,i,D);
1734
1735  A->TUDecl = cast<TranslationUnitDecl>(D.ReadOwnedPtr<Decl>(*A));
1736
1737  // FIXME: A->CFConstantStringTypeDecl = D.ReadOwnedPtr<RecordDecl>();
1738
1739  return A;
1740}
1741