ASTContext.cpp revision da04639a40e01d8d2ee891c075b271fd272d3d53
1//===--- ASTContext.cpp - Context to hold long-lived AST nodes ------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements the ASTContext interface.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/AST/ASTContext.h"
15#include "clang/AST/DeclCXX.h"
16#include "clang/AST/DeclObjC.h"
17#include "clang/AST/DeclTemplate.h"
18#include "clang/AST/Expr.h"
19#include "clang/AST/RecordLayout.h"
20#include "clang/Basic/SourceManager.h"
21#include "clang/Basic/TargetInfo.h"
22#include "llvm/ADT/StringExtras.h"
23#include "llvm/Bitcode/Serialize.h"
24#include "llvm/Bitcode/Deserialize.h"
25#include "llvm/Support/MathExtras.h"
26#include "llvm/Support/MemoryBuffer.h"
27using namespace clang;
28
29enum FloatingRank {
30  FloatRank, DoubleRank, LongDoubleRank
31};
32
33ASTContext::ASTContext(const LangOptions& LOpts, SourceManager &SM,
34                       TargetInfo &t,
35                       IdentifierTable &idents, SelectorTable &sels,
36                       bool FreeMem, unsigned size_reserve) :
37  GlobalNestedNameSpecifier(0), CFConstantStringTypeDecl(0),
38  ObjCFastEnumerationStateTypeDecl(0), SourceMgr(SM), LangOpts(LOpts),
39  FreeMemory(FreeMem), Target(t), Idents(idents), Selectors(sels) {
40  if (size_reserve > 0) Types.reserve(size_reserve);
41  InitBuiltinTypes();
42  BuiltinInfo.InitializeBuiltins(idents, Target, LangOpts.NoBuiltin);
43  TUDecl = TranslationUnitDecl::Create(*this);
44}
45
46ASTContext::~ASTContext() {
47  // Deallocate all the types.
48  while (!Types.empty()) {
49    Types.back()->Destroy(*this);
50    Types.pop_back();
51  }
52
53  {
54    llvm::DenseMap<const RecordDecl*, const ASTRecordLayout*>::iterator
55      I = ASTRecordLayouts.begin(), E = ASTRecordLayouts.end();
56    while (I != E) {
57      ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second);
58      delete R;
59    }
60  }
61
62  {
63    llvm::DenseMap<const ObjCInterfaceDecl*, const ASTRecordLayout*>::iterator
64      I = ASTObjCInterfaces.begin(), E = ASTObjCInterfaces.end();
65    while (I != E) {
66      ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second);
67      delete R;
68    }
69  }
70
71  {
72    llvm::DenseMap<const ObjCInterfaceDecl*, const RecordDecl*>::iterator
73      I = ASTRecordForInterface.begin(), E = ASTRecordForInterface.end();
74    while (I != E) {
75      RecordDecl *R = const_cast<RecordDecl*>((I++)->second);
76      R->Destroy(*this);
77    }
78  }
79
80  // Destroy nested-name-specifiers.
81  for (llvm::FoldingSet<NestedNameSpecifier>::iterator
82         NNS = NestedNameSpecifiers.begin(),
83         NNSEnd = NestedNameSpecifiers.end();
84       NNS != NNSEnd;
85       /* Increment in loop */)
86    (*NNS++).Destroy(*this);
87
88  if (GlobalNestedNameSpecifier)
89    GlobalNestedNameSpecifier->Destroy(*this);
90
91  TUDecl->Destroy(*this);
92}
93
94void ASTContext::PrintStats() const {
95  fprintf(stderr, "*** AST Context Stats:\n");
96  fprintf(stderr, "  %d types total.\n", (int)Types.size());
97  unsigned NumBuiltin = 0, NumPointer = 0, NumArray = 0, NumFunctionP = 0;
98  unsigned NumVector = 0, NumComplex = 0, NumBlockPointer = 0;
99  unsigned NumFunctionNP = 0, NumTypeName = 0, NumTagged = 0;
100  unsigned NumLValueReference = 0, NumRValueReference = 0, NumMemberPointer = 0;
101
102  unsigned NumTagStruct = 0, NumTagUnion = 0, NumTagEnum = 0, NumTagClass = 0;
103  unsigned NumObjCInterfaces = 0, NumObjCQualifiedInterfaces = 0;
104  unsigned NumObjCQualifiedIds = 0;
105  unsigned NumTypeOfTypes = 0, NumTypeOfExprTypes = 0;
106
107  for (unsigned i = 0, e = Types.size(); i != e; ++i) {
108    Type *T = Types[i];
109    if (isa<BuiltinType>(T))
110      ++NumBuiltin;
111    else if (isa<PointerType>(T))
112      ++NumPointer;
113    else if (isa<BlockPointerType>(T))
114      ++NumBlockPointer;
115    else if (isa<LValueReferenceType>(T))
116      ++NumLValueReference;
117    else if (isa<RValueReferenceType>(T))
118      ++NumRValueReference;
119    else if (isa<MemberPointerType>(T))
120      ++NumMemberPointer;
121    else if (isa<ComplexType>(T))
122      ++NumComplex;
123    else if (isa<ArrayType>(T))
124      ++NumArray;
125    else if (isa<VectorType>(T))
126      ++NumVector;
127    else if (isa<FunctionNoProtoType>(T))
128      ++NumFunctionNP;
129    else if (isa<FunctionProtoType>(T))
130      ++NumFunctionP;
131    else if (isa<TypedefType>(T))
132      ++NumTypeName;
133    else if (TagType *TT = dyn_cast<TagType>(T)) {
134      ++NumTagged;
135      switch (TT->getDecl()->getTagKind()) {
136      default: assert(0 && "Unknown tagged type!");
137      case TagDecl::TK_struct: ++NumTagStruct; break;
138      case TagDecl::TK_union:  ++NumTagUnion; break;
139      case TagDecl::TK_class:  ++NumTagClass; break;
140      case TagDecl::TK_enum:   ++NumTagEnum; break;
141      }
142    } else if (isa<ObjCInterfaceType>(T))
143      ++NumObjCInterfaces;
144    else if (isa<ObjCQualifiedInterfaceType>(T))
145      ++NumObjCQualifiedInterfaces;
146    else if (isa<ObjCQualifiedIdType>(T))
147      ++NumObjCQualifiedIds;
148    else if (isa<TypeOfType>(T))
149      ++NumTypeOfTypes;
150    else if (isa<TypeOfExprType>(T))
151      ++NumTypeOfExprTypes;
152    else {
153      QualType(T, 0).dump();
154      assert(0 && "Unknown type!");
155    }
156  }
157
158  fprintf(stderr, "    %d builtin types\n", NumBuiltin);
159  fprintf(stderr, "    %d pointer types\n", NumPointer);
160  fprintf(stderr, "    %d block pointer types\n", NumBlockPointer);
161  fprintf(stderr, "    %d lvalue reference types\n", NumLValueReference);
162  fprintf(stderr, "    %d rvalue reference types\n", NumRValueReference);
163  fprintf(stderr, "    %d member pointer types\n", NumMemberPointer);
164  fprintf(stderr, "    %d complex types\n", NumComplex);
165  fprintf(stderr, "    %d array types\n", NumArray);
166  fprintf(stderr, "    %d vector types\n", NumVector);
167  fprintf(stderr, "    %d function types with proto\n", NumFunctionP);
168  fprintf(stderr, "    %d function types with no proto\n", NumFunctionNP);
169  fprintf(stderr, "    %d typename (typedef) types\n", NumTypeName);
170  fprintf(stderr, "    %d tagged types\n", NumTagged);
171  fprintf(stderr, "      %d struct types\n", NumTagStruct);
172  fprintf(stderr, "      %d union types\n", NumTagUnion);
173  fprintf(stderr, "      %d class types\n", NumTagClass);
174  fprintf(stderr, "      %d enum types\n", NumTagEnum);
175  fprintf(stderr, "    %d interface types\n", NumObjCInterfaces);
176  fprintf(stderr, "    %d protocol qualified interface types\n",
177          NumObjCQualifiedInterfaces);
178  fprintf(stderr, "    %d protocol qualified id types\n",
179          NumObjCQualifiedIds);
180  fprintf(stderr, "    %d typeof types\n", NumTypeOfTypes);
181  fprintf(stderr, "    %d typeof exprs\n", NumTypeOfExprTypes);
182
183  fprintf(stderr, "Total bytes = %d\n", int(NumBuiltin*sizeof(BuiltinType)+
184    NumPointer*sizeof(PointerType)+NumArray*sizeof(ArrayType)+
185    NumComplex*sizeof(ComplexType)+NumVector*sizeof(VectorType)+
186    NumLValueReference*sizeof(LValueReferenceType)+
187    NumRValueReference*sizeof(RValueReferenceType)+
188    NumMemberPointer*sizeof(MemberPointerType)+
189    NumFunctionP*sizeof(FunctionProtoType)+
190    NumFunctionNP*sizeof(FunctionNoProtoType)+
191    NumTypeName*sizeof(TypedefType)+NumTagged*sizeof(TagType)+
192    NumTypeOfTypes*sizeof(TypeOfType)+NumTypeOfExprTypes*sizeof(TypeOfExprType)));
193}
194
195
196void ASTContext::InitBuiltinType(QualType &R, BuiltinType::Kind K) {
197  Types.push_back((R = QualType(new (*this,8) BuiltinType(K),0)).getTypePtr());
198}
199
200void ASTContext::InitBuiltinTypes() {
201  assert(VoidTy.isNull() && "Context reinitialized?");
202
203  // C99 6.2.5p19.
204  InitBuiltinType(VoidTy,              BuiltinType::Void);
205
206  // C99 6.2.5p2.
207  InitBuiltinType(BoolTy,              BuiltinType::Bool);
208  // C99 6.2.5p3.
209  if (Target.isCharSigned())
210    InitBuiltinType(CharTy,            BuiltinType::Char_S);
211  else
212    InitBuiltinType(CharTy,            BuiltinType::Char_U);
213  // C99 6.2.5p4.
214  InitBuiltinType(SignedCharTy,        BuiltinType::SChar);
215  InitBuiltinType(ShortTy,             BuiltinType::Short);
216  InitBuiltinType(IntTy,               BuiltinType::Int);
217  InitBuiltinType(LongTy,              BuiltinType::Long);
218  InitBuiltinType(LongLongTy,          BuiltinType::LongLong);
219
220  // C99 6.2.5p6.
221  InitBuiltinType(UnsignedCharTy,      BuiltinType::UChar);
222  InitBuiltinType(UnsignedShortTy,     BuiltinType::UShort);
223  InitBuiltinType(UnsignedIntTy,       BuiltinType::UInt);
224  InitBuiltinType(UnsignedLongTy,      BuiltinType::ULong);
225  InitBuiltinType(UnsignedLongLongTy,  BuiltinType::ULongLong);
226
227  // C99 6.2.5p10.
228  InitBuiltinType(FloatTy,             BuiltinType::Float);
229  InitBuiltinType(DoubleTy,            BuiltinType::Double);
230  InitBuiltinType(LongDoubleTy,        BuiltinType::LongDouble);
231
232  if (LangOpts.CPlusPlus) // C++ 3.9.1p5
233    InitBuiltinType(WCharTy,           BuiltinType::WChar);
234  else // C99
235    WCharTy = getFromTargetType(Target.getWCharType());
236
237  // Placeholder type for functions.
238  InitBuiltinType(OverloadTy,          BuiltinType::Overload);
239
240  // Placeholder type for type-dependent expressions whose type is
241  // completely unknown. No code should ever check a type against
242  // DependentTy and users should never see it; however, it is here to
243  // help diagnose failures to properly check for type-dependent
244  // expressions.
245  InitBuiltinType(DependentTy,         BuiltinType::Dependent);
246
247  // C99 6.2.5p11.
248  FloatComplexTy      = getComplexType(FloatTy);
249  DoubleComplexTy     = getComplexType(DoubleTy);
250  LongDoubleComplexTy = getComplexType(LongDoubleTy);
251
252  BuiltinVaListType = QualType();
253  ObjCIdType = QualType();
254  IdStructType = 0;
255  ObjCClassType = QualType();
256  ClassStructType = 0;
257
258  ObjCConstantStringType = QualType();
259
260  // void * type
261  VoidPtrTy = getPointerType(VoidTy);
262}
263
264//===----------------------------------------------------------------------===//
265//                         Type Sizing and Analysis
266//===----------------------------------------------------------------------===//
267
268/// getFloatTypeSemantics - Return the APFloat 'semantics' for the specified
269/// scalar floating point type.
270const llvm::fltSemantics &ASTContext::getFloatTypeSemantics(QualType T) const {
271  const BuiltinType *BT = T->getAsBuiltinType();
272  assert(BT && "Not a floating point type!");
273  switch (BT->getKind()) {
274  default: assert(0 && "Not a floating point type!");
275  case BuiltinType::Float:      return Target.getFloatFormat();
276  case BuiltinType::Double:     return Target.getDoubleFormat();
277  case BuiltinType::LongDouble: return Target.getLongDoubleFormat();
278  }
279}
280
281/// getDeclAlign - Return a conservative estimate of the alignment of the
282/// specified decl.  Note that bitfields do not have a valid alignment, so
283/// this method will assert on them.
284unsigned ASTContext::getDeclAlignInBytes(const Decl *D) {
285  unsigned Align = Target.getCharWidth();
286
287  if (const AlignedAttr* AA = D->getAttr<AlignedAttr>())
288    Align = std::max(Align, AA->getAlignment());
289
290  if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
291    QualType T = VD->getType();
292    // Incomplete or function types default to 1.
293    if (!T->isIncompleteType() && !T->isFunctionType()) {
294      while (isa<VariableArrayType>(T) || isa<IncompleteArrayType>(T))
295        T = cast<ArrayType>(T)->getElementType();
296
297      Align = std::max(Align, getPreferredTypeAlign(T.getTypePtr()));
298    }
299  }
300
301  return Align / Target.getCharWidth();
302}
303
304/// getTypeSize - Return the size of the specified type, in bits.  This method
305/// does not work on incomplete types.
306std::pair<uint64_t, unsigned>
307ASTContext::getTypeInfo(const Type *T) {
308  T = getCanonicalType(T);
309  uint64_t Width=0;
310  unsigned Align=8;
311  switch (T->getTypeClass()) {
312#define TYPE(Class, Base)
313#define ABSTRACT_TYPE(Class, Base)
314#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
315#define DEPENDENT_TYPE(Class, Base) case Type::Class:
316#include "clang/AST/TypeNodes.def"
317    assert(false && "Should not see non-canonical or dependent types");
318    break;
319
320  case Type::FunctionNoProto:
321  case Type::FunctionProto:
322  case Type::IncompleteArray:
323    assert(0 && "Incomplete types have no size!");
324  case Type::VariableArray:
325    assert(0 && "VLAs not implemented yet!");
326  case Type::ConstantArray: {
327    const ConstantArrayType *CAT = cast<ConstantArrayType>(T);
328
329    std::pair<uint64_t, unsigned> EltInfo = getTypeInfo(CAT->getElementType());
330    Width = EltInfo.first*CAT->getSize().getZExtValue();
331    Align = EltInfo.second;
332    break;
333  }
334  case Type::ExtVector:
335  case Type::Vector: {
336    std::pair<uint64_t, unsigned> EltInfo =
337      getTypeInfo(cast<VectorType>(T)->getElementType());
338    Width = EltInfo.first*cast<VectorType>(T)->getNumElements();
339    Align = Width;
340    // If the alignment is not a power of 2, round up to the next power of 2.
341    // This happens for non-power-of-2 length vectors.
342    // FIXME: this should probably be a target property.
343    Align = 1 << llvm::Log2_32_Ceil(Align);
344    break;
345  }
346
347  case Type::Builtin:
348    switch (cast<BuiltinType>(T)->getKind()) {
349    default: assert(0 && "Unknown builtin type!");
350    case BuiltinType::Void:
351      assert(0 && "Incomplete types have no size!");
352    case BuiltinType::Bool:
353      Width = Target.getBoolWidth();
354      Align = Target.getBoolAlign();
355      break;
356    case BuiltinType::Char_S:
357    case BuiltinType::Char_U:
358    case BuiltinType::UChar:
359    case BuiltinType::SChar:
360      Width = Target.getCharWidth();
361      Align = Target.getCharAlign();
362      break;
363    case BuiltinType::WChar:
364      Width = Target.getWCharWidth();
365      Align = Target.getWCharAlign();
366      break;
367    case BuiltinType::UShort:
368    case BuiltinType::Short:
369      Width = Target.getShortWidth();
370      Align = Target.getShortAlign();
371      break;
372    case BuiltinType::UInt:
373    case BuiltinType::Int:
374      Width = Target.getIntWidth();
375      Align = Target.getIntAlign();
376      break;
377    case BuiltinType::ULong:
378    case BuiltinType::Long:
379      Width = Target.getLongWidth();
380      Align = Target.getLongAlign();
381      break;
382    case BuiltinType::ULongLong:
383    case BuiltinType::LongLong:
384      Width = Target.getLongLongWidth();
385      Align = Target.getLongLongAlign();
386      break;
387    case BuiltinType::Float:
388      Width = Target.getFloatWidth();
389      Align = Target.getFloatAlign();
390      break;
391    case BuiltinType::Double:
392      Width = Target.getDoubleWidth();
393      Align = Target.getDoubleAlign();
394      break;
395    case BuiltinType::LongDouble:
396      Width = Target.getLongDoubleWidth();
397      Align = Target.getLongDoubleAlign();
398      break;
399    }
400    break;
401  case Type::FixedWidthInt:
402    // FIXME: This isn't precisely correct; the width/alignment should depend
403    // on the available types for the target
404    Width = cast<FixedWidthIntType>(T)->getWidth();
405    Width = std::max(llvm::NextPowerOf2(Width - 1), (uint64_t)8);
406    Align = Width;
407    break;
408  case Type::ExtQual:
409    // FIXME: Pointers into different addr spaces could have different sizes and
410    // alignment requirements: getPointerInfo should take an AddrSpace.
411    return getTypeInfo(QualType(cast<ExtQualType>(T)->getBaseType(), 0));
412  case Type::ObjCQualifiedId:
413  case Type::ObjCQualifiedClass:
414  case Type::ObjCQualifiedInterface:
415    Width = Target.getPointerWidth(0);
416    Align = Target.getPointerAlign(0);
417    break;
418  case Type::BlockPointer: {
419    unsigned AS = cast<BlockPointerType>(T)->getPointeeType().getAddressSpace();
420    Width = Target.getPointerWidth(AS);
421    Align = Target.getPointerAlign(AS);
422    break;
423  }
424  case Type::Pointer: {
425    unsigned AS = cast<PointerType>(T)->getPointeeType().getAddressSpace();
426    Width = Target.getPointerWidth(AS);
427    Align = Target.getPointerAlign(AS);
428    break;
429  }
430  case Type::LValueReference:
431  case Type::RValueReference:
432    // "When applied to a reference or a reference type, the result is the size
433    // of the referenced type." C++98 5.3.3p2: expr.sizeof.
434    // FIXME: This is wrong for struct layout: a reference in a struct has
435    // pointer size.
436    return getTypeInfo(cast<ReferenceType>(T)->getPointeeType());
437  case Type::MemberPointer: {
438    // FIXME: This is not only platform- but also ABI-dependent. We follow
439    // the GCC ABI, where pointers to data are one pointer large, pointers to
440    // functions two pointers. But if we want to support ABI compatibility with
441    // other compilers too, we need to delegate this completely to TargetInfo
442    // or some ABI abstraction layer.
443    QualType Pointee = cast<MemberPointerType>(T)->getPointeeType();
444    unsigned AS = Pointee.getAddressSpace();
445    Width = Target.getPointerWidth(AS);
446    if (Pointee->isFunctionType())
447      Width *= 2;
448    Align = Target.getPointerAlign(AS);
449    // GCC aligns at single pointer width.
450  }
451  case Type::Complex: {
452    // Complex types have the same alignment as their elements, but twice the
453    // size.
454    std::pair<uint64_t, unsigned> EltInfo =
455      getTypeInfo(cast<ComplexType>(T)->getElementType());
456    Width = EltInfo.first*2;
457    Align = EltInfo.second;
458    break;
459  }
460  case Type::ObjCInterface: {
461    const ObjCInterfaceType *ObjCI = cast<ObjCInterfaceType>(T);
462    const ASTRecordLayout &Layout = getASTObjCInterfaceLayout(ObjCI->getDecl());
463    Width = Layout.getSize();
464    Align = Layout.getAlignment();
465    break;
466  }
467  case Type::Record:
468  case Type::Enum: {
469    const TagType *TT = cast<TagType>(T);
470
471    if (TT->getDecl()->isInvalidDecl()) {
472      Width = 1;
473      Align = 1;
474      break;
475    }
476
477    if (const EnumType *ET = dyn_cast<EnumType>(TT))
478      return getTypeInfo(ET->getDecl()->getIntegerType());
479
480    const RecordType *RT = cast<RecordType>(TT);
481    const ASTRecordLayout &Layout = getASTRecordLayout(RT->getDecl());
482    Width = Layout.getSize();
483    Align = Layout.getAlignment();
484    break;
485  }
486
487  case Type::TemplateSpecialization:
488    assert(false && "Dependent types have no size");
489    break;
490  }
491
492  assert(Align && (Align & (Align-1)) == 0 && "Alignment must be power of 2");
493  return std::make_pair(Width, Align);
494}
495
496/// getPreferredTypeAlign - Return the "preferred" alignment of the specified
497/// type for the current target in bits.  This can be different than the ABI
498/// alignment in cases where it is beneficial for performance to overalign
499/// a data type.
500unsigned ASTContext::getPreferredTypeAlign(const Type *T) {
501  unsigned ABIAlign = getTypeAlign(T);
502
503  // Doubles should be naturally aligned if possible.
504  if (T->isSpecificBuiltinType(BuiltinType::Double))
505    return std::max(ABIAlign, 64U);
506
507  return ABIAlign;
508}
509
510
511/// LayoutField - Field layout.
512void ASTRecordLayout::LayoutField(const FieldDecl *FD, unsigned FieldNo,
513                                  bool IsUnion, unsigned StructPacking,
514                                  ASTContext &Context) {
515  unsigned FieldPacking = StructPacking;
516  uint64_t FieldOffset = IsUnion ? 0 : Size;
517  uint64_t FieldSize;
518  unsigned FieldAlign;
519
520  // FIXME: Should this override struct packing? Probably we want to
521  // take the minimum?
522  if (const PackedAttr *PA = FD->getAttr<PackedAttr>())
523    FieldPacking = PA->getAlignment();
524
525  if (const Expr *BitWidthExpr = FD->getBitWidth()) {
526    // TODO: Need to check this algorithm on other targets!
527    //       (tested on Linux-X86)
528    FieldSize =
529      BitWidthExpr->getIntegerConstantExprValue(Context).getZExtValue();
530
531    std::pair<uint64_t, unsigned> FieldInfo =
532      Context.getTypeInfo(FD->getType());
533    uint64_t TypeSize = FieldInfo.first;
534
535    // Determine the alignment of this bitfield. The packing
536    // attributes define a maximum and the alignment attribute defines
537    // a minimum.
538    // FIXME: What is the right behavior when the specified alignment
539    // is smaller than the specified packing?
540    FieldAlign = FieldInfo.second;
541    if (FieldPacking)
542      FieldAlign = std::min(FieldAlign, FieldPacking);
543    if (const AlignedAttr *AA = FD->getAttr<AlignedAttr>())
544      FieldAlign = std::max(FieldAlign, AA->getAlignment());
545
546    // Check if we need to add padding to give the field the correct
547    // alignment.
548    if (FieldSize == 0 || (FieldOffset & (FieldAlign-1)) + FieldSize > TypeSize)
549      FieldOffset = (FieldOffset + (FieldAlign-1)) & ~(FieldAlign-1);
550
551    // Padding members don't affect overall alignment
552    if (!FD->getIdentifier())
553      FieldAlign = 1;
554  } else {
555    if (FD->getType()->isIncompleteArrayType()) {
556      // This is a flexible array member; we can't directly
557      // query getTypeInfo about these, so we figure it out here.
558      // Flexible array members don't have any size, but they
559      // have to be aligned appropriately for their element type.
560      FieldSize = 0;
561      const ArrayType* ATy = Context.getAsArrayType(FD->getType());
562      FieldAlign = Context.getTypeAlign(ATy->getElementType());
563    } else {
564      std::pair<uint64_t, unsigned> FieldInfo =
565        Context.getTypeInfo(FD->getType());
566      FieldSize = FieldInfo.first;
567      FieldAlign = FieldInfo.second;
568    }
569
570    // Determine the alignment of this bitfield. The packing
571    // attributes define a maximum and the alignment attribute defines
572    // a minimum. Additionally, the packing alignment must be at least
573    // a byte for non-bitfields.
574    //
575    // FIXME: What is the right behavior when the specified alignment
576    // is smaller than the specified packing?
577    if (FieldPacking)
578      FieldAlign = std::min(FieldAlign, std::max(8U, FieldPacking));
579    if (const AlignedAttr *AA = FD->getAttr<AlignedAttr>())
580      FieldAlign = std::max(FieldAlign, AA->getAlignment());
581
582    // Round up the current record size to the field's alignment boundary.
583    FieldOffset = (FieldOffset + (FieldAlign-1)) & ~(FieldAlign-1);
584  }
585
586  // Place this field at the current location.
587  FieldOffsets[FieldNo] = FieldOffset;
588
589  // Reserve space for this field.
590  if (IsUnion) {
591    Size = std::max(Size, FieldSize);
592  } else {
593    Size = FieldOffset + FieldSize;
594  }
595
596  // Remember max struct/class alignment.
597  Alignment = std::max(Alignment, FieldAlign);
598}
599
600void ASTContext::CollectObjCIvars(const ObjCInterfaceDecl *OI,
601                             std::vector<FieldDecl*> &Fields) const {
602  const ObjCInterfaceDecl *SuperClass = OI->getSuperClass();
603  if (SuperClass)
604    CollectObjCIvars(SuperClass, Fields);
605  for (ObjCInterfaceDecl::ivar_iterator I = OI->ivar_begin(),
606       E = OI->ivar_end(); I != E; ++I) {
607    ObjCIvarDecl *IVDecl = (*I);
608    if (!IVDecl->isInvalidDecl())
609      Fields.push_back(cast<FieldDecl>(IVDecl));
610  }
611  // look into properties.
612  for (ObjCInterfaceDecl::prop_iterator I = OI->prop_begin(),
613       E = OI->prop_end(); I != E; ++I) {
614    ObjCPropertyDecl *PDecl = (*I);
615    if (ObjCIvarDecl *IV = PDecl->getPropertyIvarDecl())
616      Fields.push_back(cast<FieldDecl>(IV));
617  }
618}
619
620/// addRecordToClass - produces record info. for the class for its
621/// ivars and all those inherited.
622///
623const RecordDecl *ASTContext::addRecordToClass(const ObjCInterfaceDecl *D)
624{
625  const RecordDecl *&RD = ASTRecordForInterface[D];
626  if (RD)
627    return RD;
628  std::vector<FieldDecl*> RecFields;
629  CollectObjCIvars(D, RecFields);
630  RecordDecl *NewRD = RecordDecl::Create(*this, TagDecl::TK_struct, 0,
631                                         D->getLocation(),
632                                         D->getIdentifier());
633  /// FIXME! Can do collection of ivars and adding to the record while
634  /// doing it.
635  for (unsigned int i = 0; i != RecFields.size(); i++) {
636    FieldDecl *Field =  FieldDecl::Create(*this, NewRD,
637                                          RecFields[i]->getLocation(),
638                                          RecFields[i]->getIdentifier(),
639                                          RecFields[i]->getType(),
640                                          RecFields[i]->getBitWidth(), false);
641    NewRD->addDecl(Field);
642  }
643  NewRD->completeDefinition(*this);
644  RD = NewRD;
645  return RD;
646}
647
648/// setFieldDecl - maps a field for the given Ivar reference node.
649//
650void ASTContext::setFieldDecl(const ObjCInterfaceDecl *OI,
651                              const ObjCIvarDecl *Ivar,
652                              const ObjCIvarRefExpr *MRef) {
653  ASTFieldForIvarRef[MRef] = OI->lookupFieldDeclForIvar(*this, Ivar);
654}
655
656/// getASTObjcInterfaceLayout - Get or compute information about the layout of
657/// the specified Objective C, which indicates its size and ivar
658/// position information.
659const ASTRecordLayout &
660ASTContext::getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D) {
661  // Look up this layout, if already laid out, return what we have.
662  const ASTRecordLayout *&Entry = ASTObjCInterfaces[D];
663  if (Entry) return *Entry;
664
665  // Allocate and assign into ASTRecordLayouts here.  The "Entry" reference can
666  // be invalidated (dangle) if the ASTRecordLayouts hashtable is inserted into.
667  ASTRecordLayout *NewEntry = NULL;
668  unsigned FieldCount = D->ivar_size();
669  if (ObjCInterfaceDecl *SD = D->getSuperClass()) {
670    FieldCount++;
671    const ASTRecordLayout &SL = getASTObjCInterfaceLayout(SD);
672    unsigned Alignment = SL.getAlignment();
673    uint64_t Size = SL.getSize();
674    NewEntry = new ASTRecordLayout(Size, Alignment);
675    NewEntry->InitializeLayout(FieldCount);
676    // Super class is at the beginning of the layout.
677    NewEntry->SetFieldOffset(0, 0);
678  } else {
679    NewEntry = new ASTRecordLayout();
680    NewEntry->InitializeLayout(FieldCount);
681  }
682  Entry = NewEntry;
683
684  unsigned StructPacking = 0;
685  if (const PackedAttr *PA = D->getAttr<PackedAttr>())
686    StructPacking = PA->getAlignment();
687
688  if (const AlignedAttr *AA = D->getAttr<AlignedAttr>())
689    NewEntry->SetAlignment(std::max(NewEntry->getAlignment(),
690                                    AA->getAlignment()));
691
692  // Layout each ivar sequentially.
693  unsigned i = 0;
694  for (ObjCInterfaceDecl::ivar_iterator IVI = D->ivar_begin(),
695       IVE = D->ivar_end(); IVI != IVE; ++IVI) {
696    const ObjCIvarDecl* Ivar = (*IVI);
697    NewEntry->LayoutField(Ivar, i++, false, StructPacking, *this);
698  }
699
700  // Finally, round the size of the total struct up to the alignment of the
701  // struct itself.
702  NewEntry->FinalizeLayout();
703  return *NewEntry;
704}
705
706/// getASTRecordLayout - Get or compute information about the layout of the
707/// specified record (struct/union/class), which indicates its size and field
708/// position information.
709const ASTRecordLayout &ASTContext::getASTRecordLayout(const RecordDecl *D) {
710  D = D->getDefinition(*this);
711  assert(D && "Cannot get layout of forward declarations!");
712
713  // Look up this layout, if already laid out, return what we have.
714  const ASTRecordLayout *&Entry = ASTRecordLayouts[D];
715  if (Entry) return *Entry;
716
717  // Allocate and assign into ASTRecordLayouts here.  The "Entry" reference can
718  // be invalidated (dangle) if the ASTRecordLayouts hashtable is inserted into.
719  ASTRecordLayout *NewEntry = new ASTRecordLayout();
720  Entry = NewEntry;
721
722  // FIXME: Avoid linear walk through the fields, if possible.
723  NewEntry->InitializeLayout(std::distance(D->field_begin(), D->field_end()));
724  bool IsUnion = D->isUnion();
725
726  unsigned StructPacking = 0;
727  if (const PackedAttr *PA = D->getAttr<PackedAttr>())
728    StructPacking = PA->getAlignment();
729
730  if (const AlignedAttr *AA = D->getAttr<AlignedAttr>())
731    NewEntry->SetAlignment(std::max(NewEntry->getAlignment(),
732                                    AA->getAlignment()));
733
734  // Layout each field, for now, just sequentially, respecting alignment.  In
735  // the future, this will need to be tweakable by targets.
736  unsigned FieldIdx = 0;
737  for (RecordDecl::field_iterator Field = D->field_begin(),
738                               FieldEnd = D->field_end();
739       Field != FieldEnd; (void)++Field, ++FieldIdx)
740    NewEntry->LayoutField(*Field, FieldIdx, IsUnion, StructPacking, *this);
741
742  // Finally, round the size of the total struct up to the alignment of the
743  // struct itself.
744  NewEntry->FinalizeLayout();
745  return *NewEntry;
746}
747
748//===----------------------------------------------------------------------===//
749//                   Type creation/memoization methods
750//===----------------------------------------------------------------------===//
751
752QualType ASTContext::getAddrSpaceQualType(QualType T, unsigned AddressSpace) {
753  QualType CanT = getCanonicalType(T);
754  if (CanT.getAddressSpace() == AddressSpace)
755    return T;
756
757  // If we are composing extended qualifiers together, merge together into one
758  // ExtQualType node.
759  unsigned CVRQuals = T.getCVRQualifiers();
760  QualType::GCAttrTypes GCAttr = QualType::GCNone;
761  Type *TypeNode = T.getTypePtr();
762
763  if (ExtQualType *EQT = dyn_cast<ExtQualType>(TypeNode)) {
764    // If this type already has an address space specified, it cannot get
765    // another one.
766    assert(EQT->getAddressSpace() == 0 &&
767           "Type cannot be in multiple addr spaces!");
768    GCAttr = EQT->getObjCGCAttr();
769    TypeNode = EQT->getBaseType();
770  }
771
772  // Check if we've already instantiated this type.
773  llvm::FoldingSetNodeID ID;
774  ExtQualType::Profile(ID, TypeNode, AddressSpace, GCAttr);
775  void *InsertPos = 0;
776  if (ExtQualType *EXTQy = ExtQualTypes.FindNodeOrInsertPos(ID, InsertPos))
777    return QualType(EXTQy, CVRQuals);
778
779  // If the base type isn't canonical, this won't be a canonical type either,
780  // so fill in the canonical type field.
781  QualType Canonical;
782  if (!TypeNode->isCanonical()) {
783    Canonical = getAddrSpaceQualType(CanT, AddressSpace);
784
785    // Update InsertPos, the previous call could have invalidated it.
786    ExtQualType *NewIP = ExtQualTypes.FindNodeOrInsertPos(ID, InsertPos);
787    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
788  }
789  ExtQualType *New =
790    new (*this, 8) ExtQualType(TypeNode, Canonical, AddressSpace, GCAttr);
791  ExtQualTypes.InsertNode(New, InsertPos);
792  Types.push_back(New);
793  return QualType(New, CVRQuals);
794}
795
796QualType ASTContext::getObjCGCQualType(QualType T,
797                                       QualType::GCAttrTypes GCAttr) {
798  QualType CanT = getCanonicalType(T);
799  if (CanT.getObjCGCAttr() == GCAttr)
800    return T;
801
802  // If we are composing extended qualifiers together, merge together into one
803  // ExtQualType node.
804  unsigned CVRQuals = T.getCVRQualifiers();
805  Type *TypeNode = T.getTypePtr();
806  unsigned AddressSpace = 0;
807
808  if (ExtQualType *EQT = dyn_cast<ExtQualType>(TypeNode)) {
809    // If this type already has an address space specified, it cannot get
810    // another one.
811    assert(EQT->getObjCGCAttr() == QualType::GCNone &&
812           "Type cannot be in multiple addr spaces!");
813    AddressSpace = EQT->getAddressSpace();
814    TypeNode = EQT->getBaseType();
815  }
816
817  // Check if we've already instantiated an gc qual'd type of this type.
818  llvm::FoldingSetNodeID ID;
819  ExtQualType::Profile(ID, TypeNode, AddressSpace, GCAttr);
820  void *InsertPos = 0;
821  if (ExtQualType *EXTQy = ExtQualTypes.FindNodeOrInsertPos(ID, InsertPos))
822    return QualType(EXTQy, CVRQuals);
823
824  // If the base type isn't canonical, this won't be a canonical type either,
825  // so fill in the canonical type field.
826  // FIXME: Isn't this also not canonical if the base type is a array
827  // or pointer type?  I can't find any documentation for objc_gc, though...
828  QualType Canonical;
829  if (!T->isCanonical()) {
830    Canonical = getObjCGCQualType(CanT, GCAttr);
831
832    // Update InsertPos, the previous call could have invalidated it.
833    ExtQualType *NewIP = ExtQualTypes.FindNodeOrInsertPos(ID, InsertPos);
834    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
835  }
836  ExtQualType *New =
837    new (*this, 8) ExtQualType(TypeNode, Canonical, AddressSpace, GCAttr);
838  ExtQualTypes.InsertNode(New, InsertPos);
839  Types.push_back(New);
840  return QualType(New, CVRQuals);
841}
842
843/// getComplexType - Return the uniqued reference to the type for a complex
844/// number with the specified element type.
845QualType ASTContext::getComplexType(QualType T) {
846  // Unique pointers, to guarantee there is only one pointer of a particular
847  // structure.
848  llvm::FoldingSetNodeID ID;
849  ComplexType::Profile(ID, T);
850
851  void *InsertPos = 0;
852  if (ComplexType *CT = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos))
853    return QualType(CT, 0);
854
855  // If the pointee type isn't canonical, this won't be a canonical type either,
856  // so fill in the canonical type field.
857  QualType Canonical;
858  if (!T->isCanonical()) {
859    Canonical = getComplexType(getCanonicalType(T));
860
861    // Get the new insert position for the node we care about.
862    ComplexType *NewIP = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos);
863    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
864  }
865  ComplexType *New = new (*this,8) ComplexType(T, Canonical);
866  Types.push_back(New);
867  ComplexTypes.InsertNode(New, InsertPos);
868  return QualType(New, 0);
869}
870
871QualType ASTContext::getFixedWidthIntType(unsigned Width, bool Signed) {
872  llvm::DenseMap<unsigned, FixedWidthIntType*> &Map = Signed ?
873     SignedFixedWidthIntTypes : UnsignedFixedWidthIntTypes;
874  FixedWidthIntType *&Entry = Map[Width];
875  if (!Entry)
876    Entry = new FixedWidthIntType(Width, Signed);
877  return QualType(Entry, 0);
878}
879
880/// getPointerType - Return the uniqued reference to the type for a pointer to
881/// the specified type.
882QualType ASTContext::getPointerType(QualType T) {
883  // Unique pointers, to guarantee there is only one pointer of a particular
884  // structure.
885  llvm::FoldingSetNodeID ID;
886  PointerType::Profile(ID, T);
887
888  void *InsertPos = 0;
889  if (PointerType *PT = PointerTypes.FindNodeOrInsertPos(ID, InsertPos))
890    return QualType(PT, 0);
891
892  // If the pointee type isn't canonical, this won't be a canonical type either,
893  // so fill in the canonical type field.
894  QualType Canonical;
895  if (!T->isCanonical()) {
896    Canonical = getPointerType(getCanonicalType(T));
897
898    // Get the new insert position for the node we care about.
899    PointerType *NewIP = PointerTypes.FindNodeOrInsertPos(ID, InsertPos);
900    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
901  }
902  PointerType *New = new (*this,8) PointerType(T, Canonical);
903  Types.push_back(New);
904  PointerTypes.InsertNode(New, InsertPos);
905  return QualType(New, 0);
906}
907
908/// getBlockPointerType - Return the uniqued reference to the type for
909/// a pointer to the specified block.
910QualType ASTContext::getBlockPointerType(QualType T) {
911  assert(T->isFunctionType() && "block of function types only");
912  // Unique pointers, to guarantee there is only one block of a particular
913  // structure.
914  llvm::FoldingSetNodeID ID;
915  BlockPointerType::Profile(ID, T);
916
917  void *InsertPos = 0;
918  if (BlockPointerType *PT =
919        BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
920    return QualType(PT, 0);
921
922  // If the block pointee type isn't canonical, this won't be a canonical
923  // type either so fill in the canonical type field.
924  QualType Canonical;
925  if (!T->isCanonical()) {
926    Canonical = getBlockPointerType(getCanonicalType(T));
927
928    // Get the new insert position for the node we care about.
929    BlockPointerType *NewIP =
930      BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
931    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
932  }
933  BlockPointerType *New = new (*this,8) BlockPointerType(T, Canonical);
934  Types.push_back(New);
935  BlockPointerTypes.InsertNode(New, InsertPos);
936  return QualType(New, 0);
937}
938
939/// getLValueReferenceType - Return the uniqued reference to the type for an
940/// lvalue reference to the specified type.
941QualType ASTContext::getLValueReferenceType(QualType T) {
942  // Unique pointers, to guarantee there is only one pointer of a particular
943  // structure.
944  llvm::FoldingSetNodeID ID;
945  ReferenceType::Profile(ID, T);
946
947  void *InsertPos = 0;
948  if (LValueReferenceType *RT =
949        LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
950    return QualType(RT, 0);
951
952  // If the referencee type isn't canonical, this won't be a canonical type
953  // either, so fill in the canonical type field.
954  QualType Canonical;
955  if (!T->isCanonical()) {
956    Canonical = getLValueReferenceType(getCanonicalType(T));
957
958    // Get the new insert position for the node we care about.
959    LValueReferenceType *NewIP =
960      LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
961    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
962  }
963
964  LValueReferenceType *New = new (*this,8) LValueReferenceType(T, Canonical);
965  Types.push_back(New);
966  LValueReferenceTypes.InsertNode(New, InsertPos);
967  return QualType(New, 0);
968}
969
970/// getRValueReferenceType - Return the uniqued reference to the type for an
971/// rvalue reference to the specified type.
972QualType ASTContext::getRValueReferenceType(QualType T) {
973  // Unique pointers, to guarantee there is only one pointer of a particular
974  // structure.
975  llvm::FoldingSetNodeID ID;
976  ReferenceType::Profile(ID, T);
977
978  void *InsertPos = 0;
979  if (RValueReferenceType *RT =
980        RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
981    return QualType(RT, 0);
982
983  // If the referencee type isn't canonical, this won't be a canonical type
984  // either, so fill in the canonical type field.
985  QualType Canonical;
986  if (!T->isCanonical()) {
987    Canonical = getRValueReferenceType(getCanonicalType(T));
988
989    // Get the new insert position for the node we care about.
990    RValueReferenceType *NewIP =
991      RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
992    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
993  }
994
995  RValueReferenceType *New = new (*this,8) RValueReferenceType(T, Canonical);
996  Types.push_back(New);
997  RValueReferenceTypes.InsertNode(New, InsertPos);
998  return QualType(New, 0);
999}
1000
1001/// getMemberPointerType - Return the uniqued reference to the type for a
1002/// member pointer to the specified type, in the specified class.
1003QualType ASTContext::getMemberPointerType(QualType T, const Type *Cls)
1004{
1005  // Unique pointers, to guarantee there is only one pointer of a particular
1006  // structure.
1007  llvm::FoldingSetNodeID ID;
1008  MemberPointerType::Profile(ID, T, Cls);
1009
1010  void *InsertPos = 0;
1011  if (MemberPointerType *PT =
1012      MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1013    return QualType(PT, 0);
1014
1015  // If the pointee or class type isn't canonical, this won't be a canonical
1016  // type either, so fill in the canonical type field.
1017  QualType Canonical;
1018  if (!T->isCanonical()) {
1019    Canonical = getMemberPointerType(getCanonicalType(T),getCanonicalType(Cls));
1020
1021    // Get the new insert position for the node we care about.
1022    MemberPointerType *NewIP =
1023      MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
1024    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1025  }
1026  MemberPointerType *New = new (*this,8) MemberPointerType(T, Cls, Canonical);
1027  Types.push_back(New);
1028  MemberPointerTypes.InsertNode(New, InsertPos);
1029  return QualType(New, 0);
1030}
1031
1032/// getConstantArrayType - Return the unique reference to the type for an
1033/// array of the specified element type.
1034QualType ASTContext::getConstantArrayType(QualType EltTy,
1035                                          const llvm::APInt &ArySize,
1036                                          ArrayType::ArraySizeModifier ASM,
1037                                          unsigned EltTypeQuals) {
1038  llvm::FoldingSetNodeID ID;
1039  ConstantArrayType::Profile(ID, EltTy, ArySize, ASM, EltTypeQuals);
1040
1041  void *InsertPos = 0;
1042  if (ConstantArrayType *ATP =
1043      ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
1044    return QualType(ATP, 0);
1045
1046  // If the element type isn't canonical, this won't be a canonical type either,
1047  // so fill in the canonical type field.
1048  QualType Canonical;
1049  if (!EltTy->isCanonical()) {
1050    Canonical = getConstantArrayType(getCanonicalType(EltTy), ArySize,
1051                                     ASM, EltTypeQuals);
1052    // Get the new insert position for the node we care about.
1053    ConstantArrayType *NewIP =
1054      ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
1055    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1056  }
1057
1058  ConstantArrayType *New =
1059    new(*this,8)ConstantArrayType(EltTy, Canonical, ArySize, ASM, EltTypeQuals);
1060  ConstantArrayTypes.InsertNode(New, InsertPos);
1061  Types.push_back(New);
1062  return QualType(New, 0);
1063}
1064
1065/// getVariableArrayType - Returns a non-unique reference to the type for a
1066/// variable array of the specified element type.
1067QualType ASTContext::getVariableArrayType(QualType EltTy, Expr *NumElts,
1068                                          ArrayType::ArraySizeModifier ASM,
1069                                          unsigned EltTypeQuals) {
1070  // Since we don't unique expressions, it isn't possible to unique VLA's
1071  // that have an expression provided for their size.
1072
1073  VariableArrayType *New =
1074    new(*this,8)VariableArrayType(EltTy,QualType(), NumElts, ASM, EltTypeQuals);
1075
1076  VariableArrayTypes.push_back(New);
1077  Types.push_back(New);
1078  return QualType(New, 0);
1079}
1080
1081/// getDependentSizedArrayType - Returns a non-unique reference to
1082/// the type for a dependently-sized array of the specified element
1083/// type. FIXME: We will need these to be uniqued, or at least
1084/// comparable, at some point.
1085QualType ASTContext::getDependentSizedArrayType(QualType EltTy, Expr *NumElts,
1086                                                ArrayType::ArraySizeModifier ASM,
1087                                                unsigned EltTypeQuals) {
1088  assert((NumElts->isTypeDependent() || NumElts->isValueDependent()) &&
1089         "Size must be type- or value-dependent!");
1090
1091  // Since we don't unique expressions, it isn't possible to unique
1092  // dependently-sized array types.
1093
1094  DependentSizedArrayType *New =
1095      new (*this,8) DependentSizedArrayType(EltTy, QualType(), NumElts,
1096                                            ASM, EltTypeQuals);
1097
1098  DependentSizedArrayTypes.push_back(New);
1099  Types.push_back(New);
1100  return QualType(New, 0);
1101}
1102
1103QualType ASTContext::getIncompleteArrayType(QualType EltTy,
1104                                            ArrayType::ArraySizeModifier ASM,
1105                                            unsigned EltTypeQuals) {
1106  llvm::FoldingSetNodeID ID;
1107  IncompleteArrayType::Profile(ID, EltTy, ASM, EltTypeQuals);
1108
1109  void *InsertPos = 0;
1110  if (IncompleteArrayType *ATP =
1111       IncompleteArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
1112    return QualType(ATP, 0);
1113
1114  // If the element type isn't canonical, this won't be a canonical type
1115  // either, so fill in the canonical type field.
1116  QualType Canonical;
1117
1118  if (!EltTy->isCanonical()) {
1119    Canonical = getIncompleteArrayType(getCanonicalType(EltTy),
1120                                       ASM, EltTypeQuals);
1121
1122    // Get the new insert position for the node we care about.
1123    IncompleteArrayType *NewIP =
1124      IncompleteArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
1125    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1126  }
1127
1128  IncompleteArrayType *New = new (*this,8) IncompleteArrayType(EltTy, Canonical,
1129                                                           ASM, EltTypeQuals);
1130
1131  IncompleteArrayTypes.InsertNode(New, InsertPos);
1132  Types.push_back(New);
1133  return QualType(New, 0);
1134}
1135
1136/// getVectorType - Return the unique reference to a vector type of
1137/// the specified element type and size. VectorType must be a built-in type.
1138QualType ASTContext::getVectorType(QualType vecType, unsigned NumElts) {
1139  BuiltinType *baseType;
1140
1141  baseType = dyn_cast<BuiltinType>(getCanonicalType(vecType).getTypePtr());
1142  assert(baseType != 0 && "getVectorType(): Expecting a built-in type");
1143
1144  // Check if we've already instantiated a vector of this type.
1145  llvm::FoldingSetNodeID ID;
1146  VectorType::Profile(ID, vecType, NumElts, Type::Vector);
1147  void *InsertPos = 0;
1148  if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
1149    return QualType(VTP, 0);
1150
1151  // If the element type isn't canonical, this won't be a canonical type either,
1152  // so fill in the canonical type field.
1153  QualType Canonical;
1154  if (!vecType->isCanonical()) {
1155    Canonical = getVectorType(getCanonicalType(vecType), NumElts);
1156
1157    // Get the new insert position for the node we care about.
1158    VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
1159    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1160  }
1161  VectorType *New = new (*this,8) VectorType(vecType, NumElts, Canonical);
1162  VectorTypes.InsertNode(New, InsertPos);
1163  Types.push_back(New);
1164  return QualType(New, 0);
1165}
1166
1167/// getExtVectorType - Return the unique reference to an extended vector type of
1168/// the specified element type and size. VectorType must be a built-in type.
1169QualType ASTContext::getExtVectorType(QualType vecType, unsigned NumElts) {
1170  BuiltinType *baseType;
1171
1172  baseType = dyn_cast<BuiltinType>(getCanonicalType(vecType).getTypePtr());
1173  assert(baseType != 0 && "getExtVectorType(): Expecting a built-in type");
1174
1175  // Check if we've already instantiated a vector of this type.
1176  llvm::FoldingSetNodeID ID;
1177  VectorType::Profile(ID, vecType, NumElts, Type::ExtVector);
1178  void *InsertPos = 0;
1179  if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
1180    return QualType(VTP, 0);
1181
1182  // If the element type isn't canonical, this won't be a canonical type either,
1183  // so fill in the canonical type field.
1184  QualType Canonical;
1185  if (!vecType->isCanonical()) {
1186    Canonical = getExtVectorType(getCanonicalType(vecType), NumElts);
1187
1188    // Get the new insert position for the node we care about.
1189    VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
1190    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1191  }
1192  ExtVectorType *New = new (*this,8) ExtVectorType(vecType, NumElts, Canonical);
1193  VectorTypes.InsertNode(New, InsertPos);
1194  Types.push_back(New);
1195  return QualType(New, 0);
1196}
1197
1198/// getFunctionNoProtoType - Return a K&R style C function type like 'int()'.
1199///
1200QualType ASTContext::getFunctionNoProtoType(QualType ResultTy) {
1201  // Unique functions, to guarantee there is only one function of a particular
1202  // structure.
1203  llvm::FoldingSetNodeID ID;
1204  FunctionNoProtoType::Profile(ID, ResultTy);
1205
1206  void *InsertPos = 0;
1207  if (FunctionNoProtoType *FT =
1208        FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
1209    return QualType(FT, 0);
1210
1211  QualType Canonical;
1212  if (!ResultTy->isCanonical()) {
1213    Canonical = getFunctionNoProtoType(getCanonicalType(ResultTy));
1214
1215    // Get the new insert position for the node we care about.
1216    FunctionNoProtoType *NewIP =
1217      FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
1218    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1219  }
1220
1221  FunctionNoProtoType *New =new(*this,8)FunctionNoProtoType(ResultTy,Canonical);
1222  Types.push_back(New);
1223  FunctionNoProtoTypes.InsertNode(New, InsertPos);
1224  return QualType(New, 0);
1225}
1226
1227/// getFunctionType - Return a normal function type with a typed argument
1228/// list.  isVariadic indicates whether the argument list includes '...'.
1229QualType ASTContext::getFunctionType(QualType ResultTy,const QualType *ArgArray,
1230                                     unsigned NumArgs, bool isVariadic,
1231                                     unsigned TypeQuals) {
1232  // Unique functions, to guarantee there is only one function of a particular
1233  // structure.
1234  llvm::FoldingSetNodeID ID;
1235  FunctionProtoType::Profile(ID, ResultTy, ArgArray, NumArgs, isVariadic,
1236                             TypeQuals);
1237
1238  void *InsertPos = 0;
1239  if (FunctionProtoType *FTP =
1240        FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
1241    return QualType(FTP, 0);
1242
1243  // Determine whether the type being created is already canonical or not.
1244  bool isCanonical = ResultTy->isCanonical();
1245  for (unsigned i = 0; i != NumArgs && isCanonical; ++i)
1246    if (!ArgArray[i]->isCanonical())
1247      isCanonical = false;
1248
1249  // If this type isn't canonical, get the canonical version of it.
1250  QualType Canonical;
1251  if (!isCanonical) {
1252    llvm::SmallVector<QualType, 16> CanonicalArgs;
1253    CanonicalArgs.reserve(NumArgs);
1254    for (unsigned i = 0; i != NumArgs; ++i)
1255      CanonicalArgs.push_back(getCanonicalType(ArgArray[i]));
1256
1257    Canonical = getFunctionType(getCanonicalType(ResultTy),
1258                                &CanonicalArgs[0], NumArgs,
1259                                isVariadic, TypeQuals);
1260
1261    // Get the new insert position for the node we care about.
1262    FunctionProtoType *NewIP =
1263      FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
1264    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1265  }
1266
1267  // FunctionProtoType objects are allocated with extra bytes after them
1268  // for a variable size array (for parameter types) at the end of them.
1269  FunctionProtoType *FTP =
1270    (FunctionProtoType*)Allocate(sizeof(FunctionProtoType) +
1271                                 NumArgs*sizeof(QualType), 8);
1272  new (FTP) FunctionProtoType(ResultTy, ArgArray, NumArgs, isVariadic,
1273                              TypeQuals, Canonical);
1274  Types.push_back(FTP);
1275  FunctionProtoTypes.InsertNode(FTP, InsertPos);
1276  return QualType(FTP, 0);
1277}
1278
1279/// getTypeDeclType - Return the unique reference to the type for the
1280/// specified type declaration.
1281QualType ASTContext::getTypeDeclType(TypeDecl *Decl, TypeDecl* PrevDecl) {
1282  assert(Decl && "Passed null for Decl param");
1283  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
1284
1285  if (TypedefDecl *Typedef = dyn_cast<TypedefDecl>(Decl))
1286    return getTypedefType(Typedef);
1287  else if (isa<TemplateTypeParmDecl>(Decl)) {
1288    assert(false && "Template type parameter types are always available.");
1289  } else if (ObjCInterfaceDecl *ObjCInterface = dyn_cast<ObjCInterfaceDecl>(Decl))
1290    return getObjCInterfaceType(ObjCInterface);
1291
1292  if (RecordDecl *Record = dyn_cast<RecordDecl>(Decl)) {
1293    if (PrevDecl)
1294      Decl->TypeForDecl = PrevDecl->TypeForDecl;
1295    else
1296      Decl->TypeForDecl = new (*this,8) RecordType(Record);
1297  }
1298  else if (EnumDecl *Enum = dyn_cast<EnumDecl>(Decl)) {
1299    if (PrevDecl)
1300      Decl->TypeForDecl = PrevDecl->TypeForDecl;
1301    else
1302      Decl->TypeForDecl = new (*this,8) EnumType(Enum);
1303  }
1304  else
1305    assert(false && "TypeDecl without a type?");
1306
1307  if (!PrevDecl) Types.push_back(Decl->TypeForDecl);
1308  return QualType(Decl->TypeForDecl, 0);
1309}
1310
1311/// getTypedefType - Return the unique reference to the type for the
1312/// specified typename decl.
1313QualType ASTContext::getTypedefType(TypedefDecl *Decl) {
1314  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
1315
1316  QualType Canonical = getCanonicalType(Decl->getUnderlyingType());
1317  Decl->TypeForDecl = new(*this,8) TypedefType(Type::Typedef, Decl, Canonical);
1318  Types.push_back(Decl->TypeForDecl);
1319  return QualType(Decl->TypeForDecl, 0);
1320}
1321
1322/// getObjCInterfaceType - Return the unique reference to the type for the
1323/// specified ObjC interface decl.
1324QualType ASTContext::getObjCInterfaceType(ObjCInterfaceDecl *Decl) {
1325  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
1326
1327  Decl->TypeForDecl = new(*this,8) ObjCInterfaceType(Type::ObjCInterface, Decl);
1328  Types.push_back(Decl->TypeForDecl);
1329  return QualType(Decl->TypeForDecl, 0);
1330}
1331
1332/// buildObjCInterfaceType - Returns a new type for the interface
1333/// declaration, regardless. It also removes any previously built
1334/// record declaration so caller can rebuild it.
1335QualType ASTContext::buildObjCInterfaceType(ObjCInterfaceDecl *Decl) {
1336  const RecordDecl *&RD = ASTRecordForInterface[Decl];
1337  if (RD)
1338    RD = 0;
1339  Decl->TypeForDecl = new(*this,8) ObjCInterfaceType(Type::ObjCInterface, Decl);
1340  Types.push_back(Decl->TypeForDecl);
1341  return QualType(Decl->TypeForDecl, 0);
1342}
1343
1344/// \brief Retrieve the template type parameter type for a template
1345/// parameter with the given depth, index, and (optionally) name.
1346QualType ASTContext::getTemplateTypeParmType(unsigned Depth, unsigned Index,
1347                                             IdentifierInfo *Name) {
1348  llvm::FoldingSetNodeID ID;
1349  TemplateTypeParmType::Profile(ID, Depth, Index, Name);
1350  void *InsertPos = 0;
1351  TemplateTypeParmType *TypeParm
1352    = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
1353
1354  if (TypeParm)
1355    return QualType(TypeParm, 0);
1356
1357  if (Name)
1358    TypeParm = new (*this, 8) TemplateTypeParmType(Depth, Index, Name,
1359                                         getTemplateTypeParmType(Depth, Index));
1360  else
1361    TypeParm = new (*this, 8) TemplateTypeParmType(Depth, Index);
1362
1363  Types.push_back(TypeParm);
1364  TemplateTypeParmTypes.InsertNode(TypeParm, InsertPos);
1365
1366  return QualType(TypeParm, 0);
1367}
1368
1369QualType
1370ASTContext::getTemplateSpecializationType(TemplateName Template,
1371                                          const TemplateArgument *Args,
1372                                          unsigned NumArgs,
1373                                          QualType Canon) {
1374  if (!Canon.isNull())
1375    Canon = getCanonicalType(Canon);
1376
1377  llvm::FoldingSetNodeID ID;
1378  TemplateSpecializationType::Profile(ID, Template, Args, NumArgs);
1379
1380  void *InsertPos = 0;
1381  TemplateSpecializationType *Spec
1382    = TemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
1383
1384  if (Spec)
1385    return QualType(Spec, 0);
1386
1387  void *Mem = Allocate((sizeof(TemplateSpecializationType) +
1388                        sizeof(TemplateArgument) * NumArgs),
1389                       8);
1390  Spec = new (Mem) TemplateSpecializationType(Template, Args, NumArgs, Canon);
1391  Types.push_back(Spec);
1392  TemplateSpecializationTypes.InsertNode(Spec, InsertPos);
1393
1394  return QualType(Spec, 0);
1395}
1396
1397QualType
1398ASTContext::getQualifiedNameType(NestedNameSpecifier *NNS,
1399                                 QualType NamedType) {
1400  llvm::FoldingSetNodeID ID;
1401  QualifiedNameType::Profile(ID, NNS, NamedType);
1402
1403  void *InsertPos = 0;
1404  QualifiedNameType *T
1405    = QualifiedNameTypes.FindNodeOrInsertPos(ID, InsertPos);
1406  if (T)
1407    return QualType(T, 0);
1408
1409  T = new (*this) QualifiedNameType(NNS, NamedType,
1410                                    getCanonicalType(NamedType));
1411  Types.push_back(T);
1412  QualifiedNameTypes.InsertNode(T, InsertPos);
1413  return QualType(T, 0);
1414}
1415
1416QualType ASTContext::getTypenameType(NestedNameSpecifier *NNS,
1417                                     const IdentifierInfo *Name,
1418                                     QualType Canon) {
1419  assert(NNS->isDependent() && "nested-name-specifier must be dependent");
1420
1421  if (Canon.isNull()) {
1422    NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
1423    if (CanonNNS != NNS)
1424      Canon = getTypenameType(CanonNNS, Name);
1425  }
1426
1427  llvm::FoldingSetNodeID ID;
1428  TypenameType::Profile(ID, NNS, Name);
1429
1430  void *InsertPos = 0;
1431  TypenameType *T
1432    = TypenameTypes.FindNodeOrInsertPos(ID, InsertPos);
1433  if (T)
1434    return QualType(T, 0);
1435
1436  T = new (*this) TypenameType(NNS, Name, Canon);
1437  Types.push_back(T);
1438  TypenameTypes.InsertNode(T, InsertPos);
1439  return QualType(T, 0);
1440}
1441
1442/// CmpProtocolNames - Comparison predicate for sorting protocols
1443/// alphabetically.
1444static bool CmpProtocolNames(const ObjCProtocolDecl *LHS,
1445                            const ObjCProtocolDecl *RHS) {
1446  return LHS->getDeclName() < RHS->getDeclName();
1447}
1448
1449static void SortAndUniqueProtocols(ObjCProtocolDecl **&Protocols,
1450                                   unsigned &NumProtocols) {
1451  ObjCProtocolDecl **ProtocolsEnd = Protocols+NumProtocols;
1452
1453  // Sort protocols, keyed by name.
1454  std::sort(Protocols, Protocols+NumProtocols, CmpProtocolNames);
1455
1456  // Remove duplicates.
1457  ProtocolsEnd = std::unique(Protocols, ProtocolsEnd);
1458  NumProtocols = ProtocolsEnd-Protocols;
1459}
1460
1461
1462/// getObjCQualifiedInterfaceType - Return a ObjCQualifiedInterfaceType type for
1463/// the given interface decl and the conforming protocol list.
1464QualType ASTContext::getObjCQualifiedInterfaceType(ObjCInterfaceDecl *Decl,
1465                       ObjCProtocolDecl **Protocols, unsigned NumProtocols) {
1466  // Sort the protocol list alphabetically to canonicalize it.
1467  SortAndUniqueProtocols(Protocols, NumProtocols);
1468
1469  llvm::FoldingSetNodeID ID;
1470  ObjCQualifiedInterfaceType::Profile(ID, Decl, Protocols, NumProtocols);
1471
1472  void *InsertPos = 0;
1473  if (ObjCQualifiedInterfaceType *QT =
1474      ObjCQualifiedInterfaceTypes.FindNodeOrInsertPos(ID, InsertPos))
1475    return QualType(QT, 0);
1476
1477  // No Match;
1478  ObjCQualifiedInterfaceType *QType =
1479    new (*this,8) ObjCQualifiedInterfaceType(Decl, Protocols, NumProtocols);
1480
1481  Types.push_back(QType);
1482  ObjCQualifiedInterfaceTypes.InsertNode(QType, InsertPos);
1483  return QualType(QType, 0);
1484}
1485
1486/// getObjCQualifiedIdType - Return an ObjCQualifiedIdType for the 'id' decl
1487/// and the conforming protocol list.
1488QualType ASTContext::getObjCQualifiedIdType(ObjCProtocolDecl **Protocols,
1489                                            unsigned NumProtocols) {
1490  // Sort the protocol list alphabetically to canonicalize it.
1491  SortAndUniqueProtocols(Protocols, NumProtocols);
1492
1493  llvm::FoldingSetNodeID ID;
1494  ObjCQualifiedIdType::Profile(ID, Protocols, NumProtocols);
1495
1496  void *InsertPos = 0;
1497  if (ObjCQualifiedIdType *QT =
1498        ObjCQualifiedIdTypes.FindNodeOrInsertPos(ID, InsertPos))
1499    return QualType(QT, 0);
1500
1501  // No Match;
1502  ObjCQualifiedIdType *QType =
1503    new (*this,8) ObjCQualifiedIdType(Protocols, NumProtocols);
1504  Types.push_back(QType);
1505  ObjCQualifiedIdTypes.InsertNode(QType, InsertPos);
1506  return QualType(QType, 0);
1507}
1508
1509/// getTypeOfExprType - Unlike many "get<Type>" functions, we can't unique
1510/// TypeOfExprType AST's (since expression's are never shared). For example,
1511/// multiple declarations that refer to "typeof(x)" all contain different
1512/// DeclRefExpr's. This doesn't effect the type checker, since it operates
1513/// on canonical type's (which are always unique).
1514QualType ASTContext::getTypeOfExprType(Expr *tofExpr) {
1515  QualType Canonical = getCanonicalType(tofExpr->getType());
1516  TypeOfExprType *toe = new (*this,8) TypeOfExprType(tofExpr, Canonical);
1517  Types.push_back(toe);
1518  return QualType(toe, 0);
1519}
1520
1521/// getTypeOfType -  Unlike many "get<Type>" functions, we don't unique
1522/// TypeOfType AST's. The only motivation to unique these nodes would be
1523/// memory savings. Since typeof(t) is fairly uncommon, space shouldn't be
1524/// an issue. This doesn't effect the type checker, since it operates
1525/// on canonical type's (which are always unique).
1526QualType ASTContext::getTypeOfType(QualType tofType) {
1527  QualType Canonical = getCanonicalType(tofType);
1528  TypeOfType *tot = new (*this,8) TypeOfType(tofType, Canonical);
1529  Types.push_back(tot);
1530  return QualType(tot, 0);
1531}
1532
1533/// getTagDeclType - Return the unique reference to the type for the
1534/// specified TagDecl (struct/union/class/enum) decl.
1535QualType ASTContext::getTagDeclType(TagDecl *Decl) {
1536  assert (Decl);
1537  return getTypeDeclType(Decl);
1538}
1539
1540/// getSizeType - Return the unique type for "size_t" (C99 7.17), the result
1541/// of the sizeof operator (C99 6.5.3.4p4). The value is target dependent and
1542/// needs to agree with the definition in <stddef.h>.
1543QualType ASTContext::getSizeType() const {
1544  return getFromTargetType(Target.getSizeType());
1545}
1546
1547/// getSignedWCharType - Return the type of "signed wchar_t".
1548/// Used when in C++, as a GCC extension.
1549QualType ASTContext::getSignedWCharType() const {
1550  // FIXME: derive from "Target" ?
1551  return WCharTy;
1552}
1553
1554/// getUnsignedWCharType - Return the type of "unsigned wchar_t".
1555/// Used when in C++, as a GCC extension.
1556QualType ASTContext::getUnsignedWCharType() const {
1557  // FIXME: derive from "Target" ?
1558  return UnsignedIntTy;
1559}
1560
1561/// getPointerDiffType - Return the unique type for "ptrdiff_t" (ref?)
1562/// defined in <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9).
1563QualType ASTContext::getPointerDiffType() const {
1564  return getFromTargetType(Target.getPtrDiffType(0));
1565}
1566
1567//===----------------------------------------------------------------------===//
1568//                              Type Operators
1569//===----------------------------------------------------------------------===//
1570
1571/// getCanonicalType - Return the canonical (structural) type corresponding to
1572/// the specified potentially non-canonical type.  The non-canonical version
1573/// of a type may have many "decorated" versions of types.  Decorators can
1574/// include typedefs, 'typeof' operators, etc. The returned type is guaranteed
1575/// to be free of any of these, allowing two canonical types to be compared
1576/// for exact equality with a simple pointer comparison.
1577QualType ASTContext::getCanonicalType(QualType T) {
1578  QualType CanType = T.getTypePtr()->getCanonicalTypeInternal();
1579
1580  // If the result has type qualifiers, make sure to canonicalize them as well.
1581  unsigned TypeQuals = T.getCVRQualifiers() | CanType.getCVRQualifiers();
1582  if (TypeQuals == 0) return CanType;
1583
1584  // If the type qualifiers are on an array type, get the canonical type of the
1585  // array with the qualifiers applied to the element type.
1586  ArrayType *AT = dyn_cast<ArrayType>(CanType);
1587  if (!AT)
1588    return CanType.getQualifiedType(TypeQuals);
1589
1590  // Get the canonical version of the element with the extra qualifiers on it.
1591  // This can recursively sink qualifiers through multiple levels of arrays.
1592  QualType NewEltTy=AT->getElementType().getWithAdditionalQualifiers(TypeQuals);
1593  NewEltTy = getCanonicalType(NewEltTy);
1594
1595  if (ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
1596    return getConstantArrayType(NewEltTy, CAT->getSize(),CAT->getSizeModifier(),
1597                                CAT->getIndexTypeQualifier());
1598  if (IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT))
1599    return getIncompleteArrayType(NewEltTy, IAT->getSizeModifier(),
1600                                  IAT->getIndexTypeQualifier());
1601
1602  if (DependentSizedArrayType *DSAT = dyn_cast<DependentSizedArrayType>(AT))
1603    return getDependentSizedArrayType(NewEltTy, DSAT->getSizeExpr(),
1604                                      DSAT->getSizeModifier(),
1605                                      DSAT->getIndexTypeQualifier());
1606
1607  VariableArrayType *VAT = cast<VariableArrayType>(AT);
1608  return getVariableArrayType(NewEltTy, VAT->getSizeExpr(),
1609                              VAT->getSizeModifier(),
1610                              VAT->getIndexTypeQualifier());
1611}
1612
1613NestedNameSpecifier *
1614ASTContext::getCanonicalNestedNameSpecifier(NestedNameSpecifier *NNS) {
1615  if (!NNS)
1616    return 0;
1617
1618  switch (NNS->getKind()) {
1619  case NestedNameSpecifier::Identifier:
1620    // Canonicalize the prefix but keep the identifier the same.
1621    return NestedNameSpecifier::Create(*this,
1622                         getCanonicalNestedNameSpecifier(NNS->getPrefix()),
1623                                       NNS->getAsIdentifier());
1624
1625  case NestedNameSpecifier::Namespace:
1626    // A namespace is canonical; build a nested-name-specifier with
1627    // this namespace and no prefix.
1628    return NestedNameSpecifier::Create(*this, 0, NNS->getAsNamespace());
1629
1630  case NestedNameSpecifier::TypeSpec:
1631  case NestedNameSpecifier::TypeSpecWithTemplate: {
1632    QualType T = getCanonicalType(QualType(NNS->getAsType(), 0));
1633    NestedNameSpecifier *Prefix = 0;
1634
1635    // FIXME: This isn't the right check!
1636    if (T->isDependentType())
1637      Prefix = getCanonicalNestedNameSpecifier(NNS->getPrefix());
1638
1639    return NestedNameSpecifier::Create(*this, Prefix,
1640                 NNS->getKind() == NestedNameSpecifier::TypeSpecWithTemplate,
1641                                       T.getTypePtr());
1642  }
1643
1644  case NestedNameSpecifier::Global:
1645    // The global specifier is canonical and unique.
1646    return NNS;
1647  }
1648
1649  // Required to silence a GCC warning
1650  return 0;
1651}
1652
1653
1654const ArrayType *ASTContext::getAsArrayType(QualType T) {
1655  // Handle the non-qualified case efficiently.
1656  if (T.getCVRQualifiers() == 0) {
1657    // Handle the common positive case fast.
1658    if (const ArrayType *AT = dyn_cast<ArrayType>(T))
1659      return AT;
1660  }
1661
1662  // Handle the common negative case fast, ignoring CVR qualifiers.
1663  QualType CType = T->getCanonicalTypeInternal();
1664
1665  // Make sure to look through type qualifiers (like ExtQuals) for the negative
1666  // test.
1667  if (!isa<ArrayType>(CType) &&
1668      !isa<ArrayType>(CType.getUnqualifiedType()))
1669    return 0;
1670
1671  // Apply any CVR qualifiers from the array type to the element type.  This
1672  // implements C99 6.7.3p8: "If the specification of an array type includes
1673  // any type qualifiers, the element type is so qualified, not the array type."
1674
1675  // If we get here, we either have type qualifiers on the type, or we have
1676  // sugar such as a typedef in the way.  If we have type qualifiers on the type
1677  // we must propagate them down into the elemeng type.
1678  unsigned CVRQuals = T.getCVRQualifiers();
1679  unsigned AddrSpace = 0;
1680  Type *Ty = T.getTypePtr();
1681
1682  // Rip through ExtQualType's and typedefs to get to a concrete type.
1683  while (1) {
1684    if (const ExtQualType *EXTQT = dyn_cast<ExtQualType>(Ty)) {
1685      AddrSpace = EXTQT->getAddressSpace();
1686      Ty = EXTQT->getBaseType();
1687    } else {
1688      T = Ty->getDesugaredType();
1689      if (T.getTypePtr() == Ty && T.getCVRQualifiers() == 0)
1690        break;
1691      CVRQuals |= T.getCVRQualifiers();
1692      Ty = T.getTypePtr();
1693    }
1694  }
1695
1696  // If we have a simple case, just return now.
1697  const ArrayType *ATy = dyn_cast<ArrayType>(Ty);
1698  if (ATy == 0 || (AddrSpace == 0 && CVRQuals == 0))
1699    return ATy;
1700
1701  // Otherwise, we have an array and we have qualifiers on it.  Push the
1702  // qualifiers into the array element type and return a new array type.
1703  // Get the canonical version of the element with the extra qualifiers on it.
1704  // This can recursively sink qualifiers through multiple levels of arrays.
1705  QualType NewEltTy = ATy->getElementType();
1706  if (AddrSpace)
1707    NewEltTy = getAddrSpaceQualType(NewEltTy, AddrSpace);
1708  NewEltTy = NewEltTy.getWithAdditionalQualifiers(CVRQuals);
1709
1710  if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(ATy))
1711    return cast<ArrayType>(getConstantArrayType(NewEltTy, CAT->getSize(),
1712                                                CAT->getSizeModifier(),
1713                                                CAT->getIndexTypeQualifier()));
1714  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(ATy))
1715    return cast<ArrayType>(getIncompleteArrayType(NewEltTy,
1716                                                  IAT->getSizeModifier(),
1717                                                 IAT->getIndexTypeQualifier()));
1718
1719  if (const DependentSizedArrayType *DSAT
1720        = dyn_cast<DependentSizedArrayType>(ATy))
1721    return cast<ArrayType>(
1722                     getDependentSizedArrayType(NewEltTy,
1723                                                DSAT->getSizeExpr(),
1724                                                DSAT->getSizeModifier(),
1725                                                DSAT->getIndexTypeQualifier()));
1726
1727  const VariableArrayType *VAT = cast<VariableArrayType>(ATy);
1728  return cast<ArrayType>(getVariableArrayType(NewEltTy, VAT->getSizeExpr(),
1729                                              VAT->getSizeModifier(),
1730                                              VAT->getIndexTypeQualifier()));
1731}
1732
1733
1734/// getArrayDecayedType - Return the properly qualified result of decaying the
1735/// specified array type to a pointer.  This operation is non-trivial when
1736/// handling typedefs etc.  The canonical type of "T" must be an array type,
1737/// this returns a pointer to a properly qualified element of the array.
1738///
1739/// See C99 6.7.5.3p7 and C99 6.3.2.1p3.
1740QualType ASTContext::getArrayDecayedType(QualType Ty) {
1741  // Get the element type with 'getAsArrayType' so that we don't lose any
1742  // typedefs in the element type of the array.  This also handles propagation
1743  // of type qualifiers from the array type into the element type if present
1744  // (C99 6.7.3p8).
1745  const ArrayType *PrettyArrayType = getAsArrayType(Ty);
1746  assert(PrettyArrayType && "Not an array type!");
1747
1748  QualType PtrTy = getPointerType(PrettyArrayType->getElementType());
1749
1750  // int x[restrict 4] ->  int *restrict
1751  return PtrTy.getQualifiedType(PrettyArrayType->getIndexTypeQualifier());
1752}
1753
1754QualType ASTContext::getBaseElementType(const VariableArrayType *VAT) {
1755  QualType ElemTy = VAT->getElementType();
1756
1757  if (const VariableArrayType *VAT = getAsVariableArrayType(ElemTy))
1758    return getBaseElementType(VAT);
1759
1760  return ElemTy;
1761}
1762
1763/// getFloatingRank - Return a relative rank for floating point types.
1764/// This routine will assert if passed a built-in type that isn't a float.
1765static FloatingRank getFloatingRank(QualType T) {
1766  if (const ComplexType *CT = T->getAsComplexType())
1767    return getFloatingRank(CT->getElementType());
1768
1769  assert(T->getAsBuiltinType() && "getFloatingRank(): not a floating type");
1770  switch (T->getAsBuiltinType()->getKind()) {
1771  default: assert(0 && "getFloatingRank(): not a floating type");
1772  case BuiltinType::Float:      return FloatRank;
1773  case BuiltinType::Double:     return DoubleRank;
1774  case BuiltinType::LongDouble: return LongDoubleRank;
1775  }
1776}
1777
1778/// getFloatingTypeOfSizeWithinDomain - Returns a real floating
1779/// point or a complex type (based on typeDomain/typeSize).
1780/// 'typeDomain' is a real floating point or complex type.
1781/// 'typeSize' is a real floating point or complex type.
1782QualType ASTContext::getFloatingTypeOfSizeWithinDomain(QualType Size,
1783                                                       QualType Domain) const {
1784  FloatingRank EltRank = getFloatingRank(Size);
1785  if (Domain->isComplexType()) {
1786    switch (EltRank) {
1787    default: assert(0 && "getFloatingRank(): illegal value for rank");
1788    case FloatRank:      return FloatComplexTy;
1789    case DoubleRank:     return DoubleComplexTy;
1790    case LongDoubleRank: return LongDoubleComplexTy;
1791    }
1792  }
1793
1794  assert(Domain->isRealFloatingType() && "Unknown domain!");
1795  switch (EltRank) {
1796  default: assert(0 && "getFloatingRank(): illegal value for rank");
1797  case FloatRank:      return FloatTy;
1798  case DoubleRank:     return DoubleTy;
1799  case LongDoubleRank: return LongDoubleTy;
1800  }
1801}
1802
1803/// getFloatingTypeOrder - Compare the rank of the two specified floating
1804/// point types, ignoring the domain of the type (i.e. 'double' ==
1805/// '_Complex double').  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
1806/// LHS < RHS, return -1.
1807int ASTContext::getFloatingTypeOrder(QualType LHS, QualType RHS) {
1808  FloatingRank LHSR = getFloatingRank(LHS);
1809  FloatingRank RHSR = getFloatingRank(RHS);
1810
1811  if (LHSR == RHSR)
1812    return 0;
1813  if (LHSR > RHSR)
1814    return 1;
1815  return -1;
1816}
1817
1818/// getIntegerRank - Return an integer conversion rank (C99 6.3.1.1p1). This
1819/// routine will assert if passed a built-in type that isn't an integer or enum,
1820/// or if it is not canonicalized.
1821unsigned ASTContext::getIntegerRank(Type *T) {
1822  assert(T->isCanonical() && "T should be canonicalized");
1823  if (EnumType* ET = dyn_cast<EnumType>(T))
1824    T = ET->getDecl()->getIntegerType().getTypePtr();
1825
1826  // There are two things which impact the integer rank: the width, and
1827  // the ordering of builtins.  The builtin ordering is encoded in the
1828  // bottom three bits; the width is encoded in the bits above that.
1829  if (FixedWidthIntType* FWIT = dyn_cast<FixedWidthIntType>(T)) {
1830    return FWIT->getWidth() << 3;
1831  }
1832
1833  switch (cast<BuiltinType>(T)->getKind()) {
1834  default: assert(0 && "getIntegerRank(): not a built-in integer");
1835  case BuiltinType::Bool:
1836    return 1 + (getIntWidth(BoolTy) << 3);
1837  case BuiltinType::Char_S:
1838  case BuiltinType::Char_U:
1839  case BuiltinType::SChar:
1840  case BuiltinType::UChar:
1841    return 2 + (getIntWidth(CharTy) << 3);
1842  case BuiltinType::Short:
1843  case BuiltinType::UShort:
1844    return 3 + (getIntWidth(ShortTy) << 3);
1845  case BuiltinType::Int:
1846  case BuiltinType::UInt:
1847    return 4 + (getIntWidth(IntTy) << 3);
1848  case BuiltinType::Long:
1849  case BuiltinType::ULong:
1850    return 5 + (getIntWidth(LongTy) << 3);
1851  case BuiltinType::LongLong:
1852  case BuiltinType::ULongLong:
1853    return 6 + (getIntWidth(LongLongTy) << 3);
1854  }
1855}
1856
1857/// getIntegerTypeOrder - Returns the highest ranked integer type:
1858/// C99 6.3.1.8p1.  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
1859/// LHS < RHS, return -1.
1860int ASTContext::getIntegerTypeOrder(QualType LHS, QualType RHS) {
1861  Type *LHSC = getCanonicalType(LHS).getTypePtr();
1862  Type *RHSC = getCanonicalType(RHS).getTypePtr();
1863  if (LHSC == RHSC) return 0;
1864
1865  bool LHSUnsigned = LHSC->isUnsignedIntegerType();
1866  bool RHSUnsigned = RHSC->isUnsignedIntegerType();
1867
1868  unsigned LHSRank = getIntegerRank(LHSC);
1869  unsigned RHSRank = getIntegerRank(RHSC);
1870
1871  if (LHSUnsigned == RHSUnsigned) {  // Both signed or both unsigned.
1872    if (LHSRank == RHSRank) return 0;
1873    return LHSRank > RHSRank ? 1 : -1;
1874  }
1875
1876  // Otherwise, the LHS is signed and the RHS is unsigned or visa versa.
1877  if (LHSUnsigned) {
1878    // If the unsigned [LHS] type is larger, return it.
1879    if (LHSRank >= RHSRank)
1880      return 1;
1881
1882    // If the signed type can represent all values of the unsigned type, it
1883    // wins.  Because we are dealing with 2's complement and types that are
1884    // powers of two larger than each other, this is always safe.
1885    return -1;
1886  }
1887
1888  // If the unsigned [RHS] type is larger, return it.
1889  if (RHSRank >= LHSRank)
1890    return -1;
1891
1892  // If the signed type can represent all values of the unsigned type, it
1893  // wins.  Because we are dealing with 2's complement and types that are
1894  // powers of two larger than each other, this is always safe.
1895  return 1;
1896}
1897
1898// getCFConstantStringType - Return the type used for constant CFStrings.
1899QualType ASTContext::getCFConstantStringType() {
1900  if (!CFConstantStringTypeDecl) {
1901    CFConstantStringTypeDecl =
1902      RecordDecl::Create(*this, TagDecl::TK_struct, TUDecl, SourceLocation(),
1903                         &Idents.get("NSConstantString"));
1904    QualType FieldTypes[4];
1905
1906    // const int *isa;
1907    FieldTypes[0] = getPointerType(IntTy.getQualifiedType(QualType::Const));
1908    // int flags;
1909    FieldTypes[1] = IntTy;
1910    // const char *str;
1911    FieldTypes[2] = getPointerType(CharTy.getQualifiedType(QualType::Const));
1912    // long length;
1913    FieldTypes[3] = LongTy;
1914
1915    // Create fields
1916    for (unsigned i = 0; i < 4; ++i) {
1917      FieldDecl *Field = FieldDecl::Create(*this, CFConstantStringTypeDecl,
1918                                           SourceLocation(), 0,
1919                                           FieldTypes[i], /*BitWidth=*/0,
1920                                           /*Mutable=*/false);
1921      CFConstantStringTypeDecl->addDecl(Field);
1922    }
1923
1924    CFConstantStringTypeDecl->completeDefinition(*this);
1925  }
1926
1927  return getTagDeclType(CFConstantStringTypeDecl);
1928}
1929
1930QualType ASTContext::getObjCFastEnumerationStateType()
1931{
1932  if (!ObjCFastEnumerationStateTypeDecl) {
1933    ObjCFastEnumerationStateTypeDecl =
1934      RecordDecl::Create(*this, TagDecl::TK_struct, TUDecl, SourceLocation(),
1935                         &Idents.get("__objcFastEnumerationState"));
1936
1937    QualType FieldTypes[] = {
1938      UnsignedLongTy,
1939      getPointerType(ObjCIdType),
1940      getPointerType(UnsignedLongTy),
1941      getConstantArrayType(UnsignedLongTy,
1942                           llvm::APInt(32, 5), ArrayType::Normal, 0)
1943    };
1944
1945    for (size_t i = 0; i < 4; ++i) {
1946      FieldDecl *Field = FieldDecl::Create(*this,
1947                                           ObjCFastEnumerationStateTypeDecl,
1948                                           SourceLocation(), 0,
1949                                           FieldTypes[i], /*BitWidth=*/0,
1950                                           /*Mutable=*/false);
1951      ObjCFastEnumerationStateTypeDecl->addDecl(Field);
1952    }
1953
1954    ObjCFastEnumerationStateTypeDecl->completeDefinition(*this);
1955  }
1956
1957  return getTagDeclType(ObjCFastEnumerationStateTypeDecl);
1958}
1959
1960// This returns true if a type has been typedefed to BOOL:
1961// typedef <type> BOOL;
1962static bool isTypeTypedefedAsBOOL(QualType T) {
1963  if (const TypedefType *TT = dyn_cast<TypedefType>(T))
1964    if (IdentifierInfo *II = TT->getDecl()->getIdentifier())
1965      return II->isStr("BOOL");
1966
1967  return false;
1968}
1969
1970/// getObjCEncodingTypeSize returns size of type for objective-c encoding
1971/// purpose.
1972int ASTContext::getObjCEncodingTypeSize(QualType type) {
1973  uint64_t sz = getTypeSize(type);
1974
1975  // Make all integer and enum types at least as large as an int
1976  if (sz > 0 && type->isIntegralType())
1977    sz = std::max(sz, getTypeSize(IntTy));
1978  // Treat arrays as pointers, since that's how they're passed in.
1979  else if (type->isArrayType())
1980    sz = getTypeSize(VoidPtrTy);
1981  return sz / getTypeSize(CharTy);
1982}
1983
1984/// getObjCEncodingForMethodDecl - Return the encoded type for this method
1985/// declaration.
1986void ASTContext::getObjCEncodingForMethodDecl(const ObjCMethodDecl *Decl,
1987                                              std::string& S) {
1988  // FIXME: This is not very efficient.
1989  // Encode type qualifer, 'in', 'inout', etc. for the return type.
1990  getObjCEncodingForTypeQualifier(Decl->getObjCDeclQualifier(), S);
1991  // Encode result type.
1992  getObjCEncodingForType(Decl->getResultType(), S);
1993  // Compute size of all parameters.
1994  // Start with computing size of a pointer in number of bytes.
1995  // FIXME: There might(should) be a better way of doing this computation!
1996  SourceLocation Loc;
1997  int PtrSize = getTypeSize(VoidPtrTy) / getTypeSize(CharTy);
1998  // The first two arguments (self and _cmd) are pointers; account for
1999  // their size.
2000  int ParmOffset = 2 * PtrSize;
2001  for (ObjCMethodDecl::param_iterator PI = Decl->param_begin(),
2002       E = Decl->param_end(); PI != E; ++PI) {
2003    QualType PType = (*PI)->getType();
2004    int sz = getObjCEncodingTypeSize(PType);
2005    assert (sz > 0 && "getObjCEncodingForMethodDecl - Incomplete param type");
2006    ParmOffset += sz;
2007  }
2008  S += llvm::utostr(ParmOffset);
2009  S += "@0:";
2010  S += llvm::utostr(PtrSize);
2011
2012  // Argument types.
2013  ParmOffset = 2 * PtrSize;
2014  for (ObjCMethodDecl::param_iterator PI = Decl->param_begin(),
2015       E = Decl->param_end(); PI != E; ++PI) {
2016    ParmVarDecl *PVDecl = *PI;
2017    QualType PType = PVDecl->getOriginalType();
2018    if (const ArrayType *AT =
2019          dyn_cast<ArrayType>(PType->getCanonicalTypeInternal()))
2020        // Use array's original type only if it has known number of
2021        // elements.
2022        if (!dyn_cast<ConstantArrayType>(AT))
2023          PType = PVDecl->getType();
2024    // Process argument qualifiers for user supplied arguments; such as,
2025    // 'in', 'inout', etc.
2026    getObjCEncodingForTypeQualifier(PVDecl->getObjCDeclQualifier(), S);
2027    getObjCEncodingForType(PType, S);
2028    S += llvm::utostr(ParmOffset);
2029    ParmOffset += getObjCEncodingTypeSize(PType);
2030  }
2031}
2032
2033/// getObjCEncodingForPropertyDecl - Return the encoded type for this
2034/// property declaration. If non-NULL, Container must be either an
2035/// ObjCCategoryImplDecl or ObjCImplementationDecl; it should only be
2036/// NULL when getting encodings for protocol properties.
2037/// Property attributes are stored as a comma-delimited C string. The simple
2038/// attributes readonly and bycopy are encoded as single characters. The
2039/// parametrized attributes, getter=name, setter=name, and ivar=name, are
2040/// encoded as single characters, followed by an identifier. Property types
2041/// are also encoded as a parametrized attribute. The characters used to encode
2042/// these attributes are defined by the following enumeration:
2043/// @code
2044/// enum PropertyAttributes {
2045/// kPropertyReadOnly = 'R',   // property is read-only.
2046/// kPropertyBycopy = 'C',     // property is a copy of the value last assigned
2047/// kPropertyByref = '&',  // property is a reference to the value last assigned
2048/// kPropertyDynamic = 'D',    // property is dynamic
2049/// kPropertyGetter = 'G',     // followed by getter selector name
2050/// kPropertySetter = 'S',     // followed by setter selector name
2051/// kPropertyInstanceVariable = 'V'  // followed by instance variable  name
2052/// kPropertyType = 't'              // followed by old-style type encoding.
2053/// kPropertyWeak = 'W'              // 'weak' property
2054/// kPropertyStrong = 'P'            // property GC'able
2055/// kPropertyNonAtomic = 'N'         // property non-atomic
2056/// };
2057/// @endcode
2058void ASTContext::getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD,
2059                                                const Decl *Container,
2060                                                std::string& S) {
2061  // Collect information from the property implementation decl(s).
2062  bool Dynamic = false;
2063  ObjCPropertyImplDecl *SynthesizePID = 0;
2064
2065  // FIXME: Duplicated code due to poor abstraction.
2066  if (Container) {
2067    if (const ObjCCategoryImplDecl *CID =
2068        dyn_cast<ObjCCategoryImplDecl>(Container)) {
2069      for (ObjCCategoryImplDecl::propimpl_iterator
2070             i = CID->propimpl_begin(), e = CID->propimpl_end(); i != e; ++i) {
2071        ObjCPropertyImplDecl *PID = *i;
2072        if (PID->getPropertyDecl() == PD) {
2073          if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) {
2074            Dynamic = true;
2075          } else {
2076            SynthesizePID = PID;
2077          }
2078        }
2079      }
2080    } else {
2081      const ObjCImplementationDecl *OID=cast<ObjCImplementationDecl>(Container);
2082      for (ObjCCategoryImplDecl::propimpl_iterator
2083             i = OID->propimpl_begin(), e = OID->propimpl_end(); i != e; ++i) {
2084        ObjCPropertyImplDecl *PID = *i;
2085        if (PID->getPropertyDecl() == PD) {
2086          if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) {
2087            Dynamic = true;
2088          } else {
2089            SynthesizePID = PID;
2090          }
2091        }
2092      }
2093    }
2094  }
2095
2096  // FIXME: This is not very efficient.
2097  S = "T";
2098
2099  // Encode result type.
2100  // GCC has some special rules regarding encoding of properties which
2101  // closely resembles encoding of ivars.
2102  getObjCEncodingForTypeImpl(PD->getType(), S, true, true, NULL,
2103                             true /* outermost type */,
2104                             true /* encoding for property */);
2105
2106  if (PD->isReadOnly()) {
2107    S += ",R";
2108  } else {
2109    switch (PD->getSetterKind()) {
2110    case ObjCPropertyDecl::Assign: break;
2111    case ObjCPropertyDecl::Copy:   S += ",C"; break;
2112    case ObjCPropertyDecl::Retain: S += ",&"; break;
2113    }
2114  }
2115
2116  // It really isn't clear at all what this means, since properties
2117  // are "dynamic by default".
2118  if (Dynamic)
2119    S += ",D";
2120
2121  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_nonatomic)
2122    S += ",N";
2123
2124  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_getter) {
2125    S += ",G";
2126    S += PD->getGetterName().getAsString();
2127  }
2128
2129  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_setter) {
2130    S += ",S";
2131    S += PD->getSetterName().getAsString();
2132  }
2133
2134  if (SynthesizePID) {
2135    const ObjCIvarDecl *OID = SynthesizePID->getPropertyIvarDecl();
2136    S += ",V";
2137    S += OID->getNameAsString();
2138  }
2139
2140  // FIXME: OBJCGC: weak & strong
2141}
2142
2143/// getLegacyIntegralTypeEncoding -
2144/// Another legacy compatibility encoding: 32-bit longs are encoded as
2145/// 'l' or 'L' , but not always.  For typedefs, we need to use
2146/// 'i' or 'I' instead if encoding a struct field, or a pointer!
2147///
2148void ASTContext::getLegacyIntegralTypeEncoding (QualType &PointeeTy) const {
2149  if (dyn_cast<TypedefType>(PointeeTy.getTypePtr())) {
2150    if (const BuiltinType *BT = PointeeTy->getAsBuiltinType()) {
2151      if (BT->getKind() == BuiltinType::ULong &&
2152          ((const_cast<ASTContext *>(this))->getIntWidth(PointeeTy) == 32))
2153        PointeeTy = UnsignedIntTy;
2154      else
2155        if (BT->getKind() == BuiltinType::Long &&
2156            ((const_cast<ASTContext *>(this))->getIntWidth(PointeeTy) == 32))
2157          PointeeTy = IntTy;
2158    }
2159  }
2160}
2161
2162void ASTContext::getObjCEncodingForType(QualType T, std::string& S,
2163                                        FieldDecl *Field) const {
2164  // We follow the behavior of gcc, expanding structures which are
2165  // directly pointed to, and expanding embedded structures. Note that
2166  // these rules are sufficient to prevent recursive encoding of the
2167  // same type.
2168  getObjCEncodingForTypeImpl(T, S, true, true, Field,
2169                             true /* outermost type */);
2170}
2171
2172static void EncodeBitField(const ASTContext *Context, std::string& S,
2173                           FieldDecl *FD) {
2174  const Expr *E = FD->getBitWidth();
2175  assert(E && "bitfield width not there - getObjCEncodingForTypeImpl");
2176  ASTContext *Ctx = const_cast<ASTContext*>(Context);
2177  unsigned N = E->getIntegerConstantExprValue(*Ctx).getZExtValue();
2178  S += 'b';
2179  S += llvm::utostr(N);
2180}
2181
2182void ASTContext::getObjCEncodingForTypeImpl(QualType T, std::string& S,
2183                                            bool ExpandPointedToStructures,
2184                                            bool ExpandStructures,
2185                                            FieldDecl *FD,
2186                                            bool OutermostType,
2187                                            bool EncodingProperty) const {
2188  if (const BuiltinType *BT = T->getAsBuiltinType()) {
2189    if (FD && FD->isBitField()) {
2190      EncodeBitField(this, S, FD);
2191    }
2192    else {
2193      char encoding;
2194      switch (BT->getKind()) {
2195      default: assert(0 && "Unhandled builtin type kind");
2196      case BuiltinType::Void:       encoding = 'v'; break;
2197      case BuiltinType::Bool:       encoding = 'B'; break;
2198      case BuiltinType::Char_U:
2199      case BuiltinType::UChar:      encoding = 'C'; break;
2200      case BuiltinType::UShort:     encoding = 'S'; break;
2201      case BuiltinType::UInt:       encoding = 'I'; break;
2202      case BuiltinType::ULong:
2203          encoding =
2204            (const_cast<ASTContext *>(this))->getIntWidth(T) == 32 ? 'L' : 'Q';
2205          break;
2206      case BuiltinType::ULongLong:  encoding = 'Q'; break;
2207      case BuiltinType::Char_S:
2208      case BuiltinType::SChar:      encoding = 'c'; break;
2209      case BuiltinType::Short:      encoding = 's'; break;
2210      case BuiltinType::Int:        encoding = 'i'; break;
2211      case BuiltinType::Long:
2212        encoding =
2213          (const_cast<ASTContext *>(this))->getIntWidth(T) == 32 ? 'l' : 'q';
2214        break;
2215      case BuiltinType::LongLong:   encoding = 'q'; break;
2216      case BuiltinType::Float:      encoding = 'f'; break;
2217      case BuiltinType::Double:     encoding = 'd'; break;
2218      case BuiltinType::LongDouble: encoding = 'd'; break;
2219      }
2220
2221      S += encoding;
2222    }
2223  }
2224  else if (T->isObjCQualifiedIdType()) {
2225    getObjCEncodingForTypeImpl(getObjCIdType(), S,
2226                               ExpandPointedToStructures,
2227                               ExpandStructures, FD);
2228    if (FD || EncodingProperty) {
2229      // Note that we do extended encoding of protocol qualifer list
2230      // Only when doing ivar or property encoding.
2231      const ObjCQualifiedIdType *QIDT = T->getAsObjCQualifiedIdType();
2232      S += '"';
2233      for (unsigned i =0; i < QIDT->getNumProtocols(); i++) {
2234        ObjCProtocolDecl *Proto = QIDT->getProtocols(i);
2235        S += '<';
2236        S += Proto->getNameAsString();
2237        S += '>';
2238      }
2239      S += '"';
2240    }
2241    return;
2242  }
2243  else if (const PointerType *PT = T->getAsPointerType()) {
2244    QualType PointeeTy = PT->getPointeeType();
2245    bool isReadOnly = false;
2246    // For historical/compatibility reasons, the read-only qualifier of the
2247    // pointee gets emitted _before_ the '^'.  The read-only qualifier of
2248    // the pointer itself gets ignored, _unless_ we are looking at a typedef!
2249    // Also, do not emit the 'r' for anything but the outermost type!
2250    if (dyn_cast<TypedefType>(T.getTypePtr())) {
2251      if (OutermostType && T.isConstQualified()) {
2252        isReadOnly = true;
2253        S += 'r';
2254      }
2255    }
2256    else if (OutermostType) {
2257      QualType P = PointeeTy;
2258      while (P->getAsPointerType())
2259        P = P->getAsPointerType()->getPointeeType();
2260      if (P.isConstQualified()) {
2261        isReadOnly = true;
2262        S += 'r';
2263      }
2264    }
2265    if (isReadOnly) {
2266      // Another legacy compatibility encoding. Some ObjC qualifier and type
2267      // combinations need to be rearranged.
2268      // Rewrite "in const" from "nr" to "rn"
2269      const char * s = S.c_str();
2270      int len = S.length();
2271      if (len >= 2 && s[len-2] == 'n' && s[len-1] == 'r') {
2272        std::string replace = "rn";
2273        S.replace(S.end()-2, S.end(), replace);
2274      }
2275    }
2276    if (isObjCIdStructType(PointeeTy)) {
2277      S += '@';
2278      return;
2279    }
2280    else if (PointeeTy->isObjCInterfaceType()) {
2281      if (!EncodingProperty &&
2282          isa<TypedefType>(PointeeTy.getTypePtr())) {
2283        // Another historical/compatibility reason.
2284        // We encode the underlying type which comes out as
2285        // {...};
2286        S += '^';
2287        getObjCEncodingForTypeImpl(PointeeTy, S,
2288                                   false, ExpandPointedToStructures,
2289                                   NULL);
2290        return;
2291      }
2292      S += '@';
2293      if (FD || EncodingProperty) {
2294        const ObjCInterfaceType *OIT =
2295                PointeeTy.getUnqualifiedType()->getAsObjCInterfaceType();
2296        ObjCInterfaceDecl *OI = OIT->getDecl();
2297        S += '"';
2298        S += OI->getNameAsCString();
2299        for (unsigned i =0; i < OIT->getNumProtocols(); i++) {
2300          ObjCProtocolDecl *Proto = OIT->getProtocol(i);
2301          S += '<';
2302          S += Proto->getNameAsString();
2303          S += '>';
2304        }
2305        S += '"';
2306      }
2307      return;
2308    } else if (isObjCClassStructType(PointeeTy)) {
2309      S += '#';
2310      return;
2311    } else if (isObjCSelType(PointeeTy)) {
2312      S += ':';
2313      return;
2314    }
2315
2316    if (PointeeTy->isCharType()) {
2317      // char pointer types should be encoded as '*' unless it is a
2318      // type that has been typedef'd to 'BOOL'.
2319      if (!isTypeTypedefedAsBOOL(PointeeTy)) {
2320        S += '*';
2321        return;
2322      }
2323    }
2324
2325    S += '^';
2326    getLegacyIntegralTypeEncoding(PointeeTy);
2327
2328    getObjCEncodingForTypeImpl(PointeeTy, S,
2329                               false, ExpandPointedToStructures,
2330                               NULL);
2331  } else if (const ArrayType *AT =
2332               // Ignore type qualifiers etc.
2333               dyn_cast<ArrayType>(T->getCanonicalTypeInternal())) {
2334    if (isa<IncompleteArrayType>(AT)) {
2335      // Incomplete arrays are encoded as a pointer to the array element.
2336      S += '^';
2337
2338      getObjCEncodingForTypeImpl(AT->getElementType(), S,
2339                                 false, ExpandStructures, FD);
2340    } else {
2341      S += '[';
2342
2343      if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
2344        S += llvm::utostr(CAT->getSize().getZExtValue());
2345      else {
2346        //Variable length arrays are encoded as a regular array with 0 elements.
2347        assert(isa<VariableArrayType>(AT) && "Unknown array type!");
2348        S += '0';
2349      }
2350
2351      getObjCEncodingForTypeImpl(AT->getElementType(), S,
2352                                 false, ExpandStructures, FD);
2353      S += ']';
2354    }
2355  } else if (T->getAsFunctionType()) {
2356    S += '?';
2357  } else if (const RecordType *RTy = T->getAsRecordType()) {
2358    RecordDecl *RDecl = RTy->getDecl();
2359    S += RDecl->isUnion() ? '(' : '{';
2360    // Anonymous structures print as '?'
2361    if (const IdentifierInfo *II = RDecl->getIdentifier()) {
2362      S += II->getName();
2363    } else {
2364      S += '?';
2365    }
2366    if (ExpandStructures) {
2367      S += '=';
2368      for (RecordDecl::field_iterator Field = RDecl->field_begin(),
2369                                   FieldEnd = RDecl->field_end();
2370           Field != FieldEnd; ++Field) {
2371        if (FD) {
2372          S += '"';
2373          S += Field->getNameAsString();
2374          S += '"';
2375        }
2376
2377        // Special case bit-fields.
2378        if (Field->isBitField()) {
2379          getObjCEncodingForTypeImpl(Field->getType(), S, false, true,
2380                                     (*Field));
2381        } else {
2382          QualType qt = Field->getType();
2383          getLegacyIntegralTypeEncoding(qt);
2384          getObjCEncodingForTypeImpl(qt, S, false, true,
2385                                     FD);
2386        }
2387      }
2388    }
2389    S += RDecl->isUnion() ? ')' : '}';
2390  } else if (T->isEnumeralType()) {
2391    if (FD && FD->isBitField())
2392      EncodeBitField(this, S, FD);
2393    else
2394      S += 'i';
2395  } else if (T->isBlockPointerType()) {
2396    S += "@?"; // Unlike a pointer-to-function, which is "^?".
2397  } else if (T->isObjCInterfaceType()) {
2398    // @encode(class_name)
2399    ObjCInterfaceDecl *OI = T->getAsObjCInterfaceType()->getDecl();
2400    S += '{';
2401    const IdentifierInfo *II = OI->getIdentifier();
2402    S += II->getName();
2403    S += '=';
2404    std::vector<FieldDecl*> RecFields;
2405    CollectObjCIvars(OI, RecFields);
2406    for (unsigned int i = 0; i != RecFields.size(); i++) {
2407      if (RecFields[i]->isBitField())
2408        getObjCEncodingForTypeImpl(RecFields[i]->getType(), S, false, true,
2409                                   RecFields[i]);
2410      else
2411        getObjCEncodingForTypeImpl(RecFields[i]->getType(), S, false, true,
2412                                   FD);
2413    }
2414    S += '}';
2415  }
2416  else
2417    assert(0 && "@encode for type not implemented!");
2418}
2419
2420void ASTContext::getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT,
2421                                                 std::string& S) const {
2422  if (QT & Decl::OBJC_TQ_In)
2423    S += 'n';
2424  if (QT & Decl::OBJC_TQ_Inout)
2425    S += 'N';
2426  if (QT & Decl::OBJC_TQ_Out)
2427    S += 'o';
2428  if (QT & Decl::OBJC_TQ_Bycopy)
2429    S += 'O';
2430  if (QT & Decl::OBJC_TQ_Byref)
2431    S += 'R';
2432  if (QT & Decl::OBJC_TQ_Oneway)
2433    S += 'V';
2434}
2435
2436void ASTContext::setBuiltinVaListType(QualType T)
2437{
2438  assert(BuiltinVaListType.isNull() && "__builtin_va_list type already set!");
2439
2440  BuiltinVaListType = T;
2441}
2442
2443void ASTContext::setObjCIdType(TypedefDecl *TD)
2444{
2445  ObjCIdType = getTypedefType(TD);
2446
2447  // typedef struct objc_object *id;
2448  const PointerType *ptr = TD->getUnderlyingType()->getAsPointerType();
2449  // User error - caller will issue diagnostics.
2450  if (!ptr)
2451    return;
2452  const RecordType *rec = ptr->getPointeeType()->getAsStructureType();
2453  // User error - caller will issue diagnostics.
2454  if (!rec)
2455    return;
2456  IdStructType = rec;
2457}
2458
2459void ASTContext::setObjCSelType(TypedefDecl *TD)
2460{
2461  ObjCSelType = getTypedefType(TD);
2462
2463  // typedef struct objc_selector *SEL;
2464  const PointerType *ptr = TD->getUnderlyingType()->getAsPointerType();
2465  if (!ptr)
2466    return;
2467  const RecordType *rec = ptr->getPointeeType()->getAsStructureType();
2468  if (!rec)
2469    return;
2470  SelStructType = rec;
2471}
2472
2473void ASTContext::setObjCProtoType(QualType QT)
2474{
2475  ObjCProtoType = QT;
2476}
2477
2478void ASTContext::setObjCClassType(TypedefDecl *TD)
2479{
2480  ObjCClassType = getTypedefType(TD);
2481
2482  // typedef struct objc_class *Class;
2483  const PointerType *ptr = TD->getUnderlyingType()->getAsPointerType();
2484  assert(ptr && "'Class' incorrectly typed");
2485  const RecordType *rec = ptr->getPointeeType()->getAsStructureType();
2486  assert(rec && "'Class' incorrectly typed");
2487  ClassStructType = rec;
2488}
2489
2490void ASTContext::setObjCConstantStringInterface(ObjCInterfaceDecl *Decl) {
2491  assert(ObjCConstantStringType.isNull() &&
2492         "'NSConstantString' type already set!");
2493
2494  ObjCConstantStringType = getObjCInterfaceType(Decl);
2495}
2496
2497/// \brief Retrieve the template name that represents a qualified
2498/// template name such as \c std::vector.
2499TemplateName ASTContext::getQualifiedTemplateName(NestedNameSpecifier *NNS,
2500                                                  bool TemplateKeyword,
2501                                                  TemplateDecl *Template) {
2502  llvm::FoldingSetNodeID ID;
2503  QualifiedTemplateName::Profile(ID, NNS, TemplateKeyword, Template);
2504
2505  void *InsertPos = 0;
2506  QualifiedTemplateName *QTN =
2507    QualifiedTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
2508  if (!QTN) {
2509    QTN = new (*this,4) QualifiedTemplateName(NNS, TemplateKeyword, Template);
2510    QualifiedTemplateNames.InsertNode(QTN, InsertPos);
2511  }
2512
2513  return TemplateName(QTN);
2514}
2515
2516/// \brief Retrieve the template name that represents a dependent
2517/// template name such as \c MetaFun::template apply.
2518TemplateName ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
2519                                                  const IdentifierInfo *Name) {
2520  assert(NNS->isDependent() && "Nested name specifier must be dependent");
2521
2522  llvm::FoldingSetNodeID ID;
2523  DependentTemplateName::Profile(ID, NNS, Name);
2524
2525  void *InsertPos = 0;
2526  DependentTemplateName *QTN =
2527    DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
2528
2529  if (QTN)
2530    return TemplateName(QTN);
2531
2532  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
2533  if (CanonNNS == NNS) {
2534    QTN = new (*this,4) DependentTemplateName(NNS, Name);
2535  } else {
2536    TemplateName Canon = getDependentTemplateName(CanonNNS, Name);
2537    QTN = new (*this,4) DependentTemplateName(NNS, Name, Canon);
2538  }
2539
2540  DependentTemplateNames.InsertNode(QTN, InsertPos);
2541  return TemplateName(QTN);
2542}
2543
2544/// getFromTargetType - Given one of the integer types provided by
2545/// TargetInfo, produce the corresponding type. The unsigned @p Type
2546/// is actually a value of type @c TargetInfo::IntType.
2547QualType ASTContext::getFromTargetType(unsigned Type) const {
2548  switch (Type) {
2549  case TargetInfo::NoInt: return QualType();
2550  case TargetInfo::SignedShort: return ShortTy;
2551  case TargetInfo::UnsignedShort: return UnsignedShortTy;
2552  case TargetInfo::SignedInt: return IntTy;
2553  case TargetInfo::UnsignedInt: return UnsignedIntTy;
2554  case TargetInfo::SignedLong: return LongTy;
2555  case TargetInfo::UnsignedLong: return UnsignedLongTy;
2556  case TargetInfo::SignedLongLong: return LongLongTy;
2557  case TargetInfo::UnsignedLongLong: return UnsignedLongLongTy;
2558  }
2559
2560  assert(false && "Unhandled TargetInfo::IntType value");
2561  return QualType();
2562}
2563
2564//===----------------------------------------------------------------------===//
2565//                        Type Predicates.
2566//===----------------------------------------------------------------------===//
2567
2568/// isObjCNSObjectType - Return true if this is an NSObject object using
2569/// NSObject attribute on a c-style pointer type.
2570/// FIXME - Make it work directly on types.
2571///
2572bool ASTContext::isObjCNSObjectType(QualType Ty) const {
2573  if (TypedefType *TDT = dyn_cast<TypedefType>(Ty)) {
2574    if (TypedefDecl *TD = TDT->getDecl())
2575      if (TD->getAttr<ObjCNSObjectAttr>())
2576        return true;
2577  }
2578  return false;
2579}
2580
2581/// isObjCObjectPointerType - Returns true if type is an Objective-C pointer
2582/// to an object type.  This includes "id" and "Class" (two 'special' pointers
2583/// to struct), Interface* (pointer to ObjCInterfaceType) and id<P> (qualified
2584/// ID type).
2585bool ASTContext::isObjCObjectPointerType(QualType Ty) const {
2586  if (Ty->isObjCQualifiedIdType())
2587    return true;
2588
2589  // Blocks are objects.
2590  if (Ty->isBlockPointerType())
2591    return true;
2592
2593  // All other object types are pointers.
2594  if (!Ty->isPointerType())
2595    return false;
2596
2597  // Check to see if this is 'id' or 'Class', both of which are typedefs for
2598  // pointer types.  This looks for the typedef specifically, not for the
2599  // underlying type.
2600  if (Ty.getUnqualifiedType() == getObjCIdType() ||
2601      Ty.getUnqualifiedType() == getObjCClassType())
2602    return true;
2603
2604  // If this a pointer to an interface (e.g. NSString*), it is ok.
2605  if (Ty->getAsPointerType()->getPointeeType()->isObjCInterfaceType())
2606    return true;
2607
2608  // If is has NSObject attribute, OK as well.
2609  return isObjCNSObjectType(Ty);
2610}
2611
2612/// getObjCGCAttr - Returns one of GCNone, Weak or Strong objc's
2613/// garbage collection attribute.
2614///
2615QualType::GCAttrTypes ASTContext::getObjCGCAttrKind(const QualType &Ty) const {
2616  QualType::GCAttrTypes GCAttrs = QualType::GCNone;
2617  if (getLangOptions().ObjC1 &&
2618      getLangOptions().getGCMode() != LangOptions::NonGC) {
2619    GCAttrs = Ty.getObjCGCAttr();
2620    // Default behavious under objective-c's gc is for objective-c pointers
2621    // (or pointers to them) be treated as though they were declared
2622    // as __strong.
2623    if (GCAttrs == QualType::GCNone) {
2624      if (isObjCObjectPointerType(Ty))
2625        GCAttrs = QualType::Strong;
2626      else if (Ty->isPointerType())
2627        return getObjCGCAttrKind(Ty->getAsPointerType()->getPointeeType());
2628    }
2629  }
2630  return GCAttrs;
2631}
2632
2633//===----------------------------------------------------------------------===//
2634//                        Type Compatibility Testing
2635//===----------------------------------------------------------------------===//
2636
2637/// typesAreBlockCompatible - This routine is called when comparing two
2638/// block types. Types must be strictly compatible here. For example,
2639/// C unfortunately doesn't produce an error for the following:
2640///
2641///   int (*emptyArgFunc)();
2642///   int (*intArgList)(int) = emptyArgFunc;
2643///
2644/// For blocks, we will produce an error for the following (similar to C++):
2645///
2646///   int (^emptyArgBlock)();
2647///   int (^intArgBlock)(int) = emptyArgBlock;
2648///
2649/// FIXME: When the dust settles on this integration, fold this into mergeTypes.
2650///
2651bool ASTContext::typesAreBlockCompatible(QualType lhs, QualType rhs) {
2652  const FunctionType *lbase = lhs->getAsFunctionType();
2653  const FunctionType *rbase = rhs->getAsFunctionType();
2654  const FunctionProtoType *lproto = dyn_cast<FunctionProtoType>(lbase);
2655  const FunctionProtoType *rproto = dyn_cast<FunctionProtoType>(rbase);
2656  if (lproto && rproto)
2657    return !mergeTypes(lhs, rhs).isNull();
2658  return false;
2659}
2660
2661/// areCompatVectorTypes - Return true if the two specified vector types are
2662/// compatible.
2663static bool areCompatVectorTypes(const VectorType *LHS,
2664                                 const VectorType *RHS) {
2665  assert(LHS->isCanonical() && RHS->isCanonical());
2666  return LHS->getElementType() == RHS->getElementType() &&
2667         LHS->getNumElements() == RHS->getNumElements();
2668}
2669
2670/// canAssignObjCInterfaces - Return true if the two interface types are
2671/// compatible for assignment from RHS to LHS.  This handles validation of any
2672/// protocol qualifiers on the LHS or RHS.
2673///
2674bool ASTContext::canAssignObjCInterfaces(const ObjCInterfaceType *LHS,
2675                                         const ObjCInterfaceType *RHS) {
2676  // Verify that the base decls are compatible: the RHS must be a subclass of
2677  // the LHS.
2678  if (!LHS->getDecl()->isSuperClassOf(RHS->getDecl()))
2679    return false;
2680
2681  // RHS must have a superset of the protocols in the LHS.  If the LHS is not
2682  // protocol qualified at all, then we are good.
2683  if (!isa<ObjCQualifiedInterfaceType>(LHS))
2684    return true;
2685
2686  // Okay, we know the LHS has protocol qualifiers.  If the RHS doesn't, then it
2687  // isn't a superset.
2688  if (!isa<ObjCQualifiedInterfaceType>(RHS))
2689    return true;  // FIXME: should return false!
2690
2691  // Finally, we must have two protocol-qualified interfaces.
2692  const ObjCQualifiedInterfaceType *LHSP =cast<ObjCQualifiedInterfaceType>(LHS);
2693  const ObjCQualifiedInterfaceType *RHSP =cast<ObjCQualifiedInterfaceType>(RHS);
2694
2695  // All LHS protocols must have a presence on the RHS.
2696  assert(LHSP->qual_begin() != LHSP->qual_end() && "Empty LHS protocol list?");
2697
2698  for (ObjCQualifiedInterfaceType::qual_iterator LHSPI = LHSP->qual_begin(),
2699                                                 LHSPE = LHSP->qual_end();
2700       LHSPI != LHSPE; LHSPI++) {
2701    bool RHSImplementsProtocol = false;
2702
2703    // If the RHS doesn't implement the protocol on the left, the types
2704    // are incompatible.
2705    for (ObjCQualifiedInterfaceType::qual_iterator RHSPI = RHSP->qual_begin(),
2706                                                   RHSPE = RHSP->qual_end();
2707         !RHSImplementsProtocol && (RHSPI != RHSPE); RHSPI++) {
2708      if ((*RHSPI)->lookupProtocolNamed((*LHSPI)->getIdentifier()))
2709        RHSImplementsProtocol = true;
2710    }
2711    // FIXME: For better diagnostics, consider passing back the protocol name.
2712    if (!RHSImplementsProtocol)
2713      return false;
2714  }
2715  // The RHS implements all protocols listed on the LHS.
2716  return true;
2717}
2718
2719bool ASTContext::areComparableObjCPointerTypes(QualType LHS, QualType RHS) {
2720  // get the "pointed to" types
2721  const PointerType *LHSPT = LHS->getAsPointerType();
2722  const PointerType *RHSPT = RHS->getAsPointerType();
2723
2724  if (!LHSPT || !RHSPT)
2725    return false;
2726
2727  QualType lhptee = LHSPT->getPointeeType();
2728  QualType rhptee = RHSPT->getPointeeType();
2729  const ObjCInterfaceType* LHSIface = lhptee->getAsObjCInterfaceType();
2730  const ObjCInterfaceType* RHSIface = rhptee->getAsObjCInterfaceType();
2731  // ID acts sort of like void* for ObjC interfaces
2732  if (LHSIface && isObjCIdStructType(rhptee))
2733    return true;
2734  if (RHSIface && isObjCIdStructType(lhptee))
2735    return true;
2736  if (!LHSIface || !RHSIface)
2737    return false;
2738  return canAssignObjCInterfaces(LHSIface, RHSIface) ||
2739         canAssignObjCInterfaces(RHSIface, LHSIface);
2740}
2741
2742/// typesAreCompatible - C99 6.7.3p9: For two qualified types to be compatible,
2743/// both shall have the identically qualified version of a compatible type.
2744/// C99 6.2.7p1: Two types have compatible types if their types are the
2745/// same. See 6.7.[2,3,5] for additional rules.
2746bool ASTContext::typesAreCompatible(QualType LHS, QualType RHS) {
2747  return !mergeTypes(LHS, RHS).isNull();
2748}
2749
2750QualType ASTContext::mergeFunctionTypes(QualType lhs, QualType rhs) {
2751  const FunctionType *lbase = lhs->getAsFunctionType();
2752  const FunctionType *rbase = rhs->getAsFunctionType();
2753  const FunctionProtoType *lproto = dyn_cast<FunctionProtoType>(lbase);
2754  const FunctionProtoType *rproto = dyn_cast<FunctionProtoType>(rbase);
2755  bool allLTypes = true;
2756  bool allRTypes = true;
2757
2758  // Check return type
2759  QualType retType = mergeTypes(lbase->getResultType(), rbase->getResultType());
2760  if (retType.isNull()) return QualType();
2761  if (getCanonicalType(retType) != getCanonicalType(lbase->getResultType()))
2762    allLTypes = false;
2763  if (getCanonicalType(retType) != getCanonicalType(rbase->getResultType()))
2764    allRTypes = false;
2765
2766  if (lproto && rproto) { // two C99 style function prototypes
2767    unsigned lproto_nargs = lproto->getNumArgs();
2768    unsigned rproto_nargs = rproto->getNumArgs();
2769
2770    // Compatible functions must have the same number of arguments
2771    if (lproto_nargs != rproto_nargs)
2772      return QualType();
2773
2774    // Variadic and non-variadic functions aren't compatible
2775    if (lproto->isVariadic() != rproto->isVariadic())
2776      return QualType();
2777
2778    if (lproto->getTypeQuals() != rproto->getTypeQuals())
2779      return QualType();
2780
2781    // Check argument compatibility
2782    llvm::SmallVector<QualType, 10> types;
2783    for (unsigned i = 0; i < lproto_nargs; i++) {
2784      QualType largtype = lproto->getArgType(i).getUnqualifiedType();
2785      QualType rargtype = rproto->getArgType(i).getUnqualifiedType();
2786      QualType argtype = mergeTypes(largtype, rargtype);
2787      if (argtype.isNull()) return QualType();
2788      types.push_back(argtype);
2789      if (getCanonicalType(argtype) != getCanonicalType(largtype))
2790        allLTypes = false;
2791      if (getCanonicalType(argtype) != getCanonicalType(rargtype))
2792        allRTypes = false;
2793    }
2794    if (allLTypes) return lhs;
2795    if (allRTypes) return rhs;
2796    return getFunctionType(retType, types.begin(), types.size(),
2797                           lproto->isVariadic(), lproto->getTypeQuals());
2798  }
2799
2800  if (lproto) allRTypes = false;
2801  if (rproto) allLTypes = false;
2802
2803  const FunctionProtoType *proto = lproto ? lproto : rproto;
2804  if (proto) {
2805    if (proto->isVariadic()) return QualType();
2806    // Check that the types are compatible with the types that
2807    // would result from default argument promotions (C99 6.7.5.3p15).
2808    // The only types actually affected are promotable integer
2809    // types and floats, which would be passed as a different
2810    // type depending on whether the prototype is visible.
2811    unsigned proto_nargs = proto->getNumArgs();
2812    for (unsigned i = 0; i < proto_nargs; ++i) {
2813      QualType argTy = proto->getArgType(i);
2814      if (argTy->isPromotableIntegerType() ||
2815          getCanonicalType(argTy).getUnqualifiedType() == FloatTy)
2816        return QualType();
2817    }
2818
2819    if (allLTypes) return lhs;
2820    if (allRTypes) return rhs;
2821    return getFunctionType(retType, proto->arg_type_begin(),
2822                           proto->getNumArgs(), lproto->isVariadic(),
2823                           lproto->getTypeQuals());
2824  }
2825
2826  if (allLTypes) return lhs;
2827  if (allRTypes) return rhs;
2828  return getFunctionNoProtoType(retType);
2829}
2830
2831QualType ASTContext::mergeTypes(QualType LHS, QualType RHS) {
2832  // C++ [expr]: If an expression initially has the type "reference to T", the
2833  // type is adjusted to "T" prior to any further analysis, the expression
2834  // designates the object or function denoted by the reference, and the
2835  // expression is an lvalue unless the reference is an rvalue reference and
2836  // the expression is a function call (possibly inside parentheses).
2837  // FIXME: C++ shouldn't be going through here!  The rules are different
2838  // enough that they should be handled separately.
2839  // FIXME: Merging of lvalue and rvalue references is incorrect. C++ *really*
2840  // shouldn't be going through here!
2841  if (const ReferenceType *RT = LHS->getAsReferenceType())
2842    LHS = RT->getPointeeType();
2843  if (const ReferenceType *RT = RHS->getAsReferenceType())
2844    RHS = RT->getPointeeType();
2845
2846  QualType LHSCan = getCanonicalType(LHS),
2847           RHSCan = getCanonicalType(RHS);
2848
2849  // If two types are identical, they are compatible.
2850  if (LHSCan == RHSCan)
2851    return LHS;
2852
2853  // If the qualifiers are different, the types aren't compatible
2854  // Note that we handle extended qualifiers later, in the
2855  // case for ExtQualType.
2856  if (LHSCan.getCVRQualifiers() != RHSCan.getCVRQualifiers())
2857    return QualType();
2858
2859  Type::TypeClass LHSClass = LHSCan->getTypeClass();
2860  Type::TypeClass RHSClass = RHSCan->getTypeClass();
2861
2862  // We want to consider the two function types to be the same for these
2863  // comparisons, just force one to the other.
2864  if (LHSClass == Type::FunctionProto) LHSClass = Type::FunctionNoProto;
2865  if (RHSClass == Type::FunctionProto) RHSClass = Type::FunctionNoProto;
2866
2867  // Same as above for arrays
2868  if (LHSClass == Type::VariableArray || LHSClass == Type::IncompleteArray)
2869    LHSClass = Type::ConstantArray;
2870  if (RHSClass == Type::VariableArray || RHSClass == Type::IncompleteArray)
2871    RHSClass = Type::ConstantArray;
2872
2873  // Canonicalize ExtVector -> Vector.
2874  if (LHSClass == Type::ExtVector) LHSClass = Type::Vector;
2875  if (RHSClass == Type::ExtVector) RHSClass = Type::Vector;
2876
2877  // Consider qualified interfaces and interfaces the same.
2878  if (LHSClass == Type::ObjCQualifiedInterface) LHSClass = Type::ObjCInterface;
2879  if (RHSClass == Type::ObjCQualifiedInterface) RHSClass = Type::ObjCInterface;
2880
2881  // If the canonical type classes don't match.
2882  if (LHSClass != RHSClass) {
2883    const ObjCInterfaceType* LHSIface = LHS->getAsObjCInterfaceType();
2884    const ObjCInterfaceType* RHSIface = RHS->getAsObjCInterfaceType();
2885
2886    // ID acts sort of like void* for ObjC interfaces
2887    if (LHSIface && isObjCIdStructType(RHS))
2888      return LHS;
2889    if (RHSIface && isObjCIdStructType(LHS))
2890      return RHS;
2891
2892    // ID is compatible with all qualified id types.
2893    if (LHS->isObjCQualifiedIdType()) {
2894      if (const PointerType *PT = RHS->getAsPointerType()) {
2895        QualType pType = PT->getPointeeType();
2896        if (isObjCIdStructType(pType))
2897          return LHS;
2898        // FIXME: need to use ObjCQualifiedIdTypesAreCompatible(LHS, RHS, true).
2899        // Unfortunately, this API is part of Sema (which we don't have access
2900        // to. Need to refactor. The following check is insufficient, since we
2901        // need to make sure the class implements the protocol.
2902        if (pType->isObjCInterfaceType())
2903          return LHS;
2904      }
2905    }
2906    if (RHS->isObjCQualifiedIdType()) {
2907      if (const PointerType *PT = LHS->getAsPointerType()) {
2908        QualType pType = PT->getPointeeType();
2909        if (isObjCIdStructType(pType))
2910          return RHS;
2911        // FIXME: need to use ObjCQualifiedIdTypesAreCompatible(LHS, RHS, true).
2912        // Unfortunately, this API is part of Sema (which we don't have access
2913        // to. Need to refactor. The following check is insufficient, since we
2914        // need to make sure the class implements the protocol.
2915        if (pType->isObjCInterfaceType())
2916          return RHS;
2917      }
2918    }
2919    // C99 6.7.2.2p4: Each enumerated type shall be compatible with char,
2920    // a signed integer type, or an unsigned integer type.
2921    if (const EnumType* ETy = LHS->getAsEnumType()) {
2922      if (ETy->getDecl()->getIntegerType() == RHSCan.getUnqualifiedType())
2923        return RHS;
2924    }
2925    if (const EnumType* ETy = RHS->getAsEnumType()) {
2926      if (ETy->getDecl()->getIntegerType() == LHSCan.getUnqualifiedType())
2927        return LHS;
2928    }
2929
2930    return QualType();
2931  }
2932
2933  // The canonical type classes match.
2934  switch (LHSClass) {
2935#define TYPE(Class, Base)
2936#define ABSTRACT_TYPE(Class, Base)
2937#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
2938#define DEPENDENT_TYPE(Class, Base) case Type::Class:
2939#include "clang/AST/TypeNodes.def"
2940    assert(false && "Non-canonical and dependent types shouldn't get here");
2941    return QualType();
2942
2943  case Type::LValueReference:
2944  case Type::RValueReference:
2945  case Type::MemberPointer:
2946    assert(false && "C++ should never be in mergeTypes");
2947    return QualType();
2948
2949  case Type::IncompleteArray:
2950  case Type::VariableArray:
2951  case Type::FunctionProto:
2952  case Type::ExtVector:
2953  case Type::ObjCQualifiedInterface:
2954    assert(false && "Types are eliminated above");
2955    return QualType();
2956
2957  case Type::Pointer:
2958  {
2959    // Merge two pointer types, while trying to preserve typedef info
2960    QualType LHSPointee = LHS->getAsPointerType()->getPointeeType();
2961    QualType RHSPointee = RHS->getAsPointerType()->getPointeeType();
2962    QualType ResultType = mergeTypes(LHSPointee, RHSPointee);
2963    if (ResultType.isNull()) return QualType();
2964    if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
2965      return LHS;
2966    if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
2967      return RHS;
2968    return getPointerType(ResultType);
2969  }
2970  case Type::BlockPointer:
2971  {
2972    // Merge two block pointer types, while trying to preserve typedef info
2973    QualType LHSPointee = LHS->getAsBlockPointerType()->getPointeeType();
2974    QualType RHSPointee = RHS->getAsBlockPointerType()->getPointeeType();
2975    QualType ResultType = mergeTypes(LHSPointee, RHSPointee);
2976    if (ResultType.isNull()) return QualType();
2977    if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
2978      return LHS;
2979    if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
2980      return RHS;
2981    return getBlockPointerType(ResultType);
2982  }
2983  case Type::ConstantArray:
2984  {
2985    const ConstantArrayType* LCAT = getAsConstantArrayType(LHS);
2986    const ConstantArrayType* RCAT = getAsConstantArrayType(RHS);
2987    if (LCAT && RCAT && RCAT->getSize() != LCAT->getSize())
2988      return QualType();
2989
2990    QualType LHSElem = getAsArrayType(LHS)->getElementType();
2991    QualType RHSElem = getAsArrayType(RHS)->getElementType();
2992    QualType ResultType = mergeTypes(LHSElem, RHSElem);
2993    if (ResultType.isNull()) return QualType();
2994    if (LCAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
2995      return LHS;
2996    if (RCAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
2997      return RHS;
2998    if (LCAT) return getConstantArrayType(ResultType, LCAT->getSize(),
2999                                          ArrayType::ArraySizeModifier(), 0);
3000    if (RCAT) return getConstantArrayType(ResultType, RCAT->getSize(),
3001                                          ArrayType::ArraySizeModifier(), 0);
3002    const VariableArrayType* LVAT = getAsVariableArrayType(LHS);
3003    const VariableArrayType* RVAT = getAsVariableArrayType(RHS);
3004    if (LVAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
3005      return LHS;
3006    if (RVAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
3007      return RHS;
3008    if (LVAT) {
3009      // FIXME: This isn't correct! But tricky to implement because
3010      // the array's size has to be the size of LHS, but the type
3011      // has to be different.
3012      return LHS;
3013    }
3014    if (RVAT) {
3015      // FIXME: This isn't correct! But tricky to implement because
3016      // the array's size has to be the size of RHS, but the type
3017      // has to be different.
3018      return RHS;
3019    }
3020    if (getCanonicalType(LHSElem) == getCanonicalType(ResultType)) return LHS;
3021    if (getCanonicalType(RHSElem) == getCanonicalType(ResultType)) return RHS;
3022    return getIncompleteArrayType(ResultType, ArrayType::ArraySizeModifier(),0);
3023  }
3024  case Type::FunctionNoProto:
3025    return mergeFunctionTypes(LHS, RHS);
3026  case Type::Record:
3027  case Type::Enum:
3028    // FIXME: Why are these compatible?
3029    if (isObjCIdStructType(LHS) && isObjCClassStructType(RHS)) return LHS;
3030    if (isObjCClassStructType(LHS) && isObjCIdStructType(RHS)) return LHS;
3031    return QualType();
3032  case Type::Builtin:
3033    // Only exactly equal builtin types are compatible, which is tested above.
3034    return QualType();
3035  case Type::Complex:
3036    // Distinct complex types are incompatible.
3037    return QualType();
3038  case Type::Vector:
3039    // FIXME: The merged type should be an ExtVector!
3040    if (areCompatVectorTypes(LHS->getAsVectorType(), RHS->getAsVectorType()))
3041      return LHS;
3042    return QualType();
3043  case Type::ObjCInterface: {
3044    // Check if the interfaces are assignment compatible.
3045    // FIXME: This should be type compatibility, e.g. whether
3046    // "LHS x; RHS x;" at global scope is legal.
3047    const ObjCInterfaceType* LHSIface = LHS->getAsObjCInterfaceType();
3048    const ObjCInterfaceType* RHSIface = RHS->getAsObjCInterfaceType();
3049    if (LHSIface && RHSIface &&
3050        canAssignObjCInterfaces(LHSIface, RHSIface))
3051      return LHS;
3052
3053    return QualType();
3054  }
3055  case Type::ObjCQualifiedId:
3056    // Distinct qualified id's are not compatible.
3057    return QualType();
3058  case Type::FixedWidthInt:
3059    // Distinct fixed-width integers are not compatible.
3060    return QualType();
3061  case Type::ObjCQualifiedClass:
3062    // Distinct qualified classes are not compatible.
3063    return QualType();
3064  case Type::ExtQual:
3065    // FIXME: ExtQual types can be compatible even if they're not
3066    // identical!
3067    return QualType();
3068    // First attempt at an implementation, but I'm not really sure it's
3069    // right...
3070#if 0
3071    ExtQualType* LQual = cast<ExtQualType>(LHSCan);
3072    ExtQualType* RQual = cast<ExtQualType>(RHSCan);
3073    if (LQual->getAddressSpace() != RQual->getAddressSpace() ||
3074        LQual->getObjCGCAttr() != RQual->getObjCGCAttr())
3075      return QualType();
3076    QualType LHSBase, RHSBase, ResultType, ResCanUnqual;
3077    LHSBase = QualType(LQual->getBaseType(), 0);
3078    RHSBase = QualType(RQual->getBaseType(), 0);
3079    ResultType = mergeTypes(LHSBase, RHSBase);
3080    if (ResultType.isNull()) return QualType();
3081    ResCanUnqual = getCanonicalType(ResultType).getUnqualifiedType();
3082    if (LHSCan.getUnqualifiedType() == ResCanUnqual)
3083      return LHS;
3084    if (RHSCan.getUnqualifiedType() == ResCanUnqual)
3085      return RHS;
3086    ResultType = getAddrSpaceQualType(ResultType, LQual->getAddressSpace());
3087    ResultType = getObjCGCQualType(ResultType, LQual->getObjCGCAttr());
3088    ResultType.setCVRQualifiers(LHSCan.getCVRQualifiers());
3089    return ResultType;
3090#endif
3091
3092  case Type::TemplateSpecialization:
3093    assert(false && "Dependent types have no size");
3094    break;
3095  }
3096
3097  return QualType();
3098}
3099
3100//===----------------------------------------------------------------------===//
3101//                         Integer Predicates
3102//===----------------------------------------------------------------------===//
3103
3104unsigned ASTContext::getIntWidth(QualType T) {
3105  if (T == BoolTy)
3106    return 1;
3107  if (FixedWidthIntType* FWIT = dyn_cast<FixedWidthIntType>(T)) {
3108    return FWIT->getWidth();
3109  }
3110  // For builtin types, just use the standard type sizing method
3111  return (unsigned)getTypeSize(T);
3112}
3113
3114QualType ASTContext::getCorrespondingUnsignedType(QualType T) {
3115  assert(T->isSignedIntegerType() && "Unexpected type");
3116  if (const EnumType* ETy = T->getAsEnumType())
3117    T = ETy->getDecl()->getIntegerType();
3118  const BuiltinType* BTy = T->getAsBuiltinType();
3119  assert (BTy && "Unexpected signed integer type");
3120  switch (BTy->getKind()) {
3121  case BuiltinType::Char_S:
3122  case BuiltinType::SChar:
3123    return UnsignedCharTy;
3124  case BuiltinType::Short:
3125    return UnsignedShortTy;
3126  case BuiltinType::Int:
3127    return UnsignedIntTy;
3128  case BuiltinType::Long:
3129    return UnsignedLongTy;
3130  case BuiltinType::LongLong:
3131    return UnsignedLongLongTy;
3132  default:
3133    assert(0 && "Unexpected signed integer type");
3134    return QualType();
3135  }
3136}
3137
3138
3139//===----------------------------------------------------------------------===//
3140//                         Serialization Support
3141//===----------------------------------------------------------------------===//
3142
3143enum {
3144  BasicMetadataBlock = 1,
3145  ASTContextBlock = 2,
3146  DeclsBlock = 3
3147};
3148
3149void ASTContext::EmitASTBitcodeBuffer(std::vector<unsigned char> &Buffer) const{
3150  // Create bitstream.
3151  llvm::BitstreamWriter Stream(Buffer);
3152
3153  // Emit the preamble.
3154  Stream.Emit((unsigned)'B', 8);
3155  Stream.Emit((unsigned)'C', 8);
3156  Stream.Emit(0xC, 4);
3157  Stream.Emit(0xF, 4);
3158  Stream.Emit(0xE, 4);
3159  Stream.Emit(0x0, 4);
3160
3161  // Create serializer.
3162  llvm::Serializer S(Stream);
3163
3164  // ===---------------------------------------------------===/
3165  //      Serialize the "Translation Unit" metadata.
3166  // ===---------------------------------------------------===/
3167
3168  // Emit ASTContext.
3169  S.EnterBlock(ASTContextBlock);
3170  S.EmitOwnedPtr(this);
3171  S.ExitBlock();      // exit "ASTContextBlock"
3172
3173  S.EnterBlock(BasicMetadataBlock);
3174
3175  // Block for SourceManager and Target.  Allows easy skipping
3176  // around to the block for the Selectors during deserialization.
3177  S.EnterBlock();
3178
3179  // Emit the SourceManager.
3180  S.Emit(getSourceManager());
3181
3182  // Emit the Target.
3183  S.EmitPtr(&Target);
3184  S.EmitCStr(Target.getTargetTriple());
3185
3186  S.ExitBlock(); // exit "SourceManager and Target Block"
3187
3188  // Emit the Selectors.
3189  S.Emit(Selectors);
3190
3191  // Emit the Identifier Table.
3192  S.Emit(Idents);
3193
3194  S.ExitBlock(); // exit "BasicMetadataBlock"
3195}
3196
3197
3198/// Emit - Serialize an ASTContext object to Bitcode.
3199void ASTContext::Emit(llvm::Serializer& S) const {
3200  S.Emit(LangOpts);
3201  S.EmitRef(SourceMgr);
3202  S.EmitRef(Target);
3203  S.EmitRef(Idents);
3204  S.EmitRef(Selectors);
3205
3206  // Emit the size of the type vector so that we can reserve that size
3207  // when we reconstitute the ASTContext object.
3208  S.EmitInt(Types.size());
3209
3210  for (std::vector<Type*>::const_iterator I=Types.begin(), E=Types.end();
3211                                          I!=E;++I)
3212    (*I)->Emit(S);
3213
3214  S.EmitOwnedPtr(TUDecl);
3215
3216  // FIXME: S.EmitOwnedPtr(CFConstantStringTypeDecl);
3217}
3218
3219
3220ASTContext *ASTContext::ReadASTBitcodeBuffer(llvm::MemoryBuffer &Buffer,
3221                                             FileManager &FMgr) {
3222  // Check if the file is of the proper length.
3223  if (Buffer.getBufferSize() & 0x3) {
3224    // FIXME: Provide diagnostic: "Length should be a multiple of 4 bytes."
3225    return 0;
3226  }
3227
3228  // Create the bitstream reader.
3229  unsigned char *BufPtr = (unsigned char *)Buffer.getBufferStart();
3230  llvm::BitstreamReader Stream(BufPtr, BufPtr+Buffer.getBufferSize());
3231
3232  if (Stream.Read(8) != 'B' ||
3233      Stream.Read(8) != 'C' ||
3234      Stream.Read(4) != 0xC ||
3235      Stream.Read(4) != 0xF ||
3236      Stream.Read(4) != 0xE ||
3237      Stream.Read(4) != 0x0) {
3238    // FIXME: Provide diagnostic.
3239    return NULL;
3240  }
3241
3242  // Create the deserializer.
3243  llvm::Deserializer Dezr(Stream);
3244
3245  // ===---------------------------------------------------===/
3246  //      Deserialize the "Translation Unit" metadata.
3247  // ===---------------------------------------------------===/
3248
3249  // Skip to the BasicMetaDataBlock.  First jump to ASTContextBlock
3250  // (which will appear earlier) and record its location.
3251
3252  bool FoundBlock = Dezr.SkipToBlock(ASTContextBlock);
3253  assert (FoundBlock);
3254
3255  llvm::Deserializer::Location ASTContextBlockLoc =
3256  Dezr.getCurrentBlockLocation();
3257
3258  FoundBlock = Dezr.SkipToBlock(BasicMetadataBlock);
3259  assert (FoundBlock);
3260
3261  // Read the SourceManager.
3262  SourceManager::CreateAndRegister(Dezr, FMgr);
3263
3264  { // Read the TargetInfo.
3265    llvm::SerializedPtrID PtrID = Dezr.ReadPtrID();
3266    char* triple = Dezr.ReadCStr(NULL,0,true);
3267    Dezr.RegisterPtr(PtrID, TargetInfo::CreateTargetInfo(std::string(triple)));
3268    delete [] triple;
3269  }
3270
3271  // For Selectors, we must read the identifier table first because the
3272  //  SelectorTable depends on the identifiers being already deserialized.
3273  llvm::Deserializer::Location SelectorBlkLoc = Dezr.getCurrentBlockLocation();
3274  Dezr.SkipBlock();
3275
3276  // Read the identifier table.
3277  IdentifierTable::CreateAndRegister(Dezr);
3278
3279  // Now jump back and read the selectors.
3280  Dezr.JumpTo(SelectorBlkLoc);
3281  SelectorTable::CreateAndRegister(Dezr);
3282
3283  // Now jump back to ASTContextBlock and read the ASTContext.
3284  Dezr.JumpTo(ASTContextBlockLoc);
3285  return Dezr.ReadOwnedPtr<ASTContext>();
3286}
3287
3288ASTContext* ASTContext::Create(llvm::Deserializer& D) {
3289
3290  // Read the language options.
3291  LangOptions LOpts;
3292  LOpts.Read(D);
3293
3294  SourceManager &SM = D.ReadRef<SourceManager>();
3295  TargetInfo &t = D.ReadRef<TargetInfo>();
3296  IdentifierTable &idents = D.ReadRef<IdentifierTable>();
3297  SelectorTable &sels = D.ReadRef<SelectorTable>();
3298
3299  unsigned size_reserve = D.ReadInt();
3300
3301  ASTContext* A = new ASTContext(LOpts, SM, t, idents, sels,
3302                                 size_reserve);
3303
3304  for (unsigned i = 0; i < size_reserve; ++i)
3305    Type::Create(*A,i,D);
3306
3307  A->TUDecl = cast<TranslationUnitDecl>(D.ReadOwnedPtr<Decl>(*A));
3308
3309  // FIXME: A->CFConstantStringTypeDecl = D.ReadOwnedPtr<RecordDecl>();
3310
3311  return A;
3312}
3313