ASTContext.cpp revision e664977aca2a05a77abab5a06dc0fb69e870cfb9
1//===--- ASTContext.cpp - Context to hold long-lived AST nodes ------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements the ASTContext interface.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/AST/ASTContext.h"
15#include "clang/AST/CharUnits.h"
16#include "clang/AST/DeclCXX.h"
17#include "clang/AST/DeclObjC.h"
18#include "clang/AST/DeclTemplate.h"
19#include "clang/AST/TypeLoc.h"
20#include "clang/AST/Expr.h"
21#include "clang/AST/ExprCXX.h"
22#include "clang/AST/ExternalASTSource.h"
23#include "clang/AST/ASTMutationListener.h"
24#include "clang/AST/RecordLayout.h"
25#include "clang/AST/Mangle.h"
26#include "clang/Basic/Builtins.h"
27#include "clang/Basic/SourceManager.h"
28#include "clang/Basic/TargetInfo.h"
29#include "llvm/ADT/SmallString.h"
30#include "llvm/ADT/StringExtras.h"
31#include "llvm/Support/MathExtras.h"
32#include "llvm/Support/raw_ostream.h"
33#include "llvm/Support/Capacity.h"
34#include "CXXABI.h"
35#include <map>
36
37using namespace clang;
38
39unsigned ASTContext::NumImplicitDefaultConstructors;
40unsigned ASTContext::NumImplicitDefaultConstructorsDeclared;
41unsigned ASTContext::NumImplicitCopyConstructors;
42unsigned ASTContext::NumImplicitCopyConstructorsDeclared;
43unsigned ASTContext::NumImplicitMoveConstructors;
44unsigned ASTContext::NumImplicitMoveConstructorsDeclared;
45unsigned ASTContext::NumImplicitCopyAssignmentOperators;
46unsigned ASTContext::NumImplicitCopyAssignmentOperatorsDeclared;
47unsigned ASTContext::NumImplicitMoveAssignmentOperators;
48unsigned ASTContext::NumImplicitMoveAssignmentOperatorsDeclared;
49unsigned ASTContext::NumImplicitDestructors;
50unsigned ASTContext::NumImplicitDestructorsDeclared;
51
52enum FloatingRank {
53  HalfRank, FloatRank, DoubleRank, LongDoubleRank
54};
55
56void
57ASTContext::CanonicalTemplateTemplateParm::Profile(llvm::FoldingSetNodeID &ID,
58                                               TemplateTemplateParmDecl *Parm) {
59  ID.AddInteger(Parm->getDepth());
60  ID.AddInteger(Parm->getPosition());
61  ID.AddBoolean(Parm->isParameterPack());
62
63  TemplateParameterList *Params = Parm->getTemplateParameters();
64  ID.AddInteger(Params->size());
65  for (TemplateParameterList::const_iterator P = Params->begin(),
66                                          PEnd = Params->end();
67       P != PEnd; ++P) {
68    if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*P)) {
69      ID.AddInteger(0);
70      ID.AddBoolean(TTP->isParameterPack());
71      continue;
72    }
73
74    if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(*P)) {
75      ID.AddInteger(1);
76      ID.AddBoolean(NTTP->isParameterPack());
77      ID.AddPointer(NTTP->getType().getAsOpaquePtr());
78      if (NTTP->isExpandedParameterPack()) {
79        ID.AddBoolean(true);
80        ID.AddInteger(NTTP->getNumExpansionTypes());
81        for (unsigned I = 0, N = NTTP->getNumExpansionTypes(); I != N; ++I)
82          ID.AddPointer(NTTP->getExpansionType(I).getAsOpaquePtr());
83      } else
84        ID.AddBoolean(false);
85      continue;
86    }
87
88    TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(*P);
89    ID.AddInteger(2);
90    Profile(ID, TTP);
91  }
92}
93
94TemplateTemplateParmDecl *
95ASTContext::getCanonicalTemplateTemplateParmDecl(
96                                          TemplateTemplateParmDecl *TTP) const {
97  // Check if we already have a canonical template template parameter.
98  llvm::FoldingSetNodeID ID;
99  CanonicalTemplateTemplateParm::Profile(ID, TTP);
100  void *InsertPos = 0;
101  CanonicalTemplateTemplateParm *Canonical
102    = CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos);
103  if (Canonical)
104    return Canonical->getParam();
105
106  // Build a canonical template parameter list.
107  TemplateParameterList *Params = TTP->getTemplateParameters();
108  SmallVector<NamedDecl *, 4> CanonParams;
109  CanonParams.reserve(Params->size());
110  for (TemplateParameterList::const_iterator P = Params->begin(),
111                                          PEnd = Params->end();
112       P != PEnd; ++P) {
113    if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*P))
114      CanonParams.push_back(
115                  TemplateTypeParmDecl::Create(*this, getTranslationUnitDecl(),
116                                               SourceLocation(),
117                                               SourceLocation(),
118                                               TTP->getDepth(),
119                                               TTP->getIndex(), 0, false,
120                                               TTP->isParameterPack()));
121    else if (NonTypeTemplateParmDecl *NTTP
122             = dyn_cast<NonTypeTemplateParmDecl>(*P)) {
123      QualType T = getCanonicalType(NTTP->getType());
124      TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(T);
125      NonTypeTemplateParmDecl *Param;
126      if (NTTP->isExpandedParameterPack()) {
127        SmallVector<QualType, 2> ExpandedTypes;
128        SmallVector<TypeSourceInfo *, 2> ExpandedTInfos;
129        for (unsigned I = 0, N = NTTP->getNumExpansionTypes(); I != N; ++I) {
130          ExpandedTypes.push_back(getCanonicalType(NTTP->getExpansionType(I)));
131          ExpandedTInfos.push_back(
132                                getTrivialTypeSourceInfo(ExpandedTypes.back()));
133        }
134
135        Param = NonTypeTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
136                                                SourceLocation(),
137                                                SourceLocation(),
138                                                NTTP->getDepth(),
139                                                NTTP->getPosition(), 0,
140                                                T,
141                                                TInfo,
142                                                ExpandedTypes.data(),
143                                                ExpandedTypes.size(),
144                                                ExpandedTInfos.data());
145      } else {
146        Param = NonTypeTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
147                                                SourceLocation(),
148                                                SourceLocation(),
149                                                NTTP->getDepth(),
150                                                NTTP->getPosition(), 0,
151                                                T,
152                                                NTTP->isParameterPack(),
153                                                TInfo);
154      }
155      CanonParams.push_back(Param);
156
157    } else
158      CanonParams.push_back(getCanonicalTemplateTemplateParmDecl(
159                                           cast<TemplateTemplateParmDecl>(*P)));
160  }
161
162  TemplateTemplateParmDecl *CanonTTP
163    = TemplateTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
164                                       SourceLocation(), TTP->getDepth(),
165                                       TTP->getPosition(),
166                                       TTP->isParameterPack(),
167                                       0,
168                         TemplateParameterList::Create(*this, SourceLocation(),
169                                                       SourceLocation(),
170                                                       CanonParams.data(),
171                                                       CanonParams.size(),
172                                                       SourceLocation()));
173
174  // Get the new insert position for the node we care about.
175  Canonical = CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos);
176  assert(Canonical == 0 && "Shouldn't be in the map!");
177  (void)Canonical;
178
179  // Create the canonical template template parameter entry.
180  Canonical = new (*this) CanonicalTemplateTemplateParm(CanonTTP);
181  CanonTemplateTemplateParms.InsertNode(Canonical, InsertPos);
182  return CanonTTP;
183}
184
185CXXABI *ASTContext::createCXXABI(const TargetInfo &T) {
186  if (!LangOpts.CPlusPlus) return 0;
187
188  switch (T.getCXXABI()) {
189  case CXXABI_ARM:
190    return CreateARMCXXABI(*this);
191  case CXXABI_Itanium:
192    return CreateItaniumCXXABI(*this);
193  case CXXABI_Microsoft:
194    return CreateMicrosoftCXXABI(*this);
195  }
196  return 0;
197}
198
199static const LangAS::Map *getAddressSpaceMap(const TargetInfo &T,
200                                             const LangOptions &LOpts) {
201  if (LOpts.FakeAddressSpaceMap) {
202    // The fake address space map must have a distinct entry for each
203    // language-specific address space.
204    static const unsigned FakeAddrSpaceMap[] = {
205      1, // opencl_global
206      2, // opencl_local
207      3  // opencl_constant
208    };
209    return &FakeAddrSpaceMap;
210  } else {
211    return &T.getAddressSpaceMap();
212  }
213}
214
215ASTContext::ASTContext(LangOptions& LOpts, SourceManager &SM,
216                       const TargetInfo *t,
217                       IdentifierTable &idents, SelectorTable &sels,
218                       Builtin::Context &builtins,
219                       unsigned size_reserve,
220                       bool DelayInitialization)
221  : FunctionProtoTypes(this_()),
222    TemplateSpecializationTypes(this_()),
223    DependentTemplateSpecializationTypes(this_()),
224    SubstTemplateTemplateParmPacks(this_()),
225    GlobalNestedNameSpecifier(0),
226    Int128Decl(0), UInt128Decl(0),
227    ObjCIdDecl(0), ObjCSelDecl(0), ObjCClassDecl(0),
228    CFConstantStringTypeDecl(0), ObjCInstanceTypeDecl(0),
229    FILEDecl(0),
230    jmp_bufDecl(0), sigjmp_bufDecl(0), ucontext_tDecl(0),
231    BlockDescriptorType(0), BlockDescriptorExtendedType(0),
232    cudaConfigureCallDecl(0),
233    NullTypeSourceInfo(QualType()),
234    FirstLocalImport(), LastLocalImport(),
235    SourceMgr(SM), LangOpts(LOpts),
236    AddrSpaceMap(0), Target(t), PrintingPolicy(LOpts),
237    Idents(idents), Selectors(sels),
238    BuiltinInfo(builtins),
239    DeclarationNames(*this),
240    ExternalSource(0), Listener(0),
241    LastSDM(0, 0),
242    UniqueBlockByRefTypeID(0)
243{
244  if (size_reserve > 0) Types.reserve(size_reserve);
245  TUDecl = TranslationUnitDecl::Create(*this);
246
247  if (!DelayInitialization) {
248    assert(t && "No target supplied for ASTContext initialization");
249    InitBuiltinTypes(*t);
250  }
251}
252
253ASTContext::~ASTContext() {
254  // Release the DenseMaps associated with DeclContext objects.
255  // FIXME: Is this the ideal solution?
256  ReleaseDeclContextMaps();
257
258  // Call all of the deallocation functions.
259  for (unsigned I = 0, N = Deallocations.size(); I != N; ++I)
260    Deallocations[I].first(Deallocations[I].second);
261
262  // Release all of the memory associated with overridden C++ methods.
263  for (llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::iterator
264         OM = OverriddenMethods.begin(), OMEnd = OverriddenMethods.end();
265       OM != OMEnd; ++OM)
266    OM->second.Destroy();
267
268  // ASTRecordLayout objects in ASTRecordLayouts must always be destroyed
269  // because they can contain DenseMaps.
270  for (llvm::DenseMap<const ObjCContainerDecl*,
271       const ASTRecordLayout*>::iterator
272       I = ObjCLayouts.begin(), E = ObjCLayouts.end(); I != E; )
273    // Increment in loop to prevent using deallocated memory.
274    if (ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second))
275      R->Destroy(*this);
276
277  for (llvm::DenseMap<const RecordDecl*, const ASTRecordLayout*>::iterator
278       I = ASTRecordLayouts.begin(), E = ASTRecordLayouts.end(); I != E; ) {
279    // Increment in loop to prevent using deallocated memory.
280    if (ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second))
281      R->Destroy(*this);
282  }
283
284  for (llvm::DenseMap<const Decl*, AttrVec*>::iterator A = DeclAttrs.begin(),
285                                                    AEnd = DeclAttrs.end();
286       A != AEnd; ++A)
287    A->second->~AttrVec();
288}
289
290void ASTContext::AddDeallocation(void (*Callback)(void*), void *Data) {
291  Deallocations.push_back(std::make_pair(Callback, Data));
292}
293
294void
295ASTContext::setExternalSource(llvm::OwningPtr<ExternalASTSource> &Source) {
296  ExternalSource.reset(Source.take());
297}
298
299void ASTContext::PrintStats() const {
300  llvm::errs() << "\n*** AST Context Stats:\n";
301  llvm::errs() << "  " << Types.size() << " types total.\n";
302
303  unsigned counts[] = {
304#define TYPE(Name, Parent) 0,
305#define ABSTRACT_TYPE(Name, Parent)
306#include "clang/AST/TypeNodes.def"
307    0 // Extra
308  };
309
310  for (unsigned i = 0, e = Types.size(); i != e; ++i) {
311    Type *T = Types[i];
312    counts[(unsigned)T->getTypeClass()]++;
313  }
314
315  unsigned Idx = 0;
316  unsigned TotalBytes = 0;
317#define TYPE(Name, Parent)                                              \
318  if (counts[Idx])                                                      \
319    llvm::errs() << "    " << counts[Idx] << " " << #Name               \
320                 << " types\n";                                         \
321  TotalBytes += counts[Idx] * sizeof(Name##Type);                       \
322  ++Idx;
323#define ABSTRACT_TYPE(Name, Parent)
324#include "clang/AST/TypeNodes.def"
325
326  llvm::errs() << "Total bytes = " << TotalBytes << "\n";
327
328  // Implicit special member functions.
329  llvm::errs() << NumImplicitDefaultConstructorsDeclared << "/"
330               << NumImplicitDefaultConstructors
331               << " implicit default constructors created\n";
332  llvm::errs() << NumImplicitCopyConstructorsDeclared << "/"
333               << NumImplicitCopyConstructors
334               << " implicit copy constructors created\n";
335  if (getLangOptions().CPlusPlus)
336    llvm::errs() << NumImplicitMoveConstructorsDeclared << "/"
337                 << NumImplicitMoveConstructors
338                 << " implicit move constructors created\n";
339  llvm::errs() << NumImplicitCopyAssignmentOperatorsDeclared << "/"
340               << NumImplicitCopyAssignmentOperators
341               << " implicit copy assignment operators created\n";
342  if (getLangOptions().CPlusPlus)
343    llvm::errs() << NumImplicitMoveAssignmentOperatorsDeclared << "/"
344                 << NumImplicitMoveAssignmentOperators
345                 << " implicit move assignment operators created\n";
346  llvm::errs() << NumImplicitDestructorsDeclared << "/"
347               << NumImplicitDestructors
348               << " implicit destructors created\n";
349
350  if (ExternalSource.get()) {
351    llvm::errs() << "\n";
352    ExternalSource->PrintStats();
353  }
354
355  BumpAlloc.PrintStats();
356}
357
358TypedefDecl *ASTContext::getInt128Decl() const {
359  if (!Int128Decl) {
360    TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(Int128Ty);
361    Int128Decl = TypedefDecl::Create(const_cast<ASTContext &>(*this),
362                                     getTranslationUnitDecl(),
363                                     SourceLocation(),
364                                     SourceLocation(),
365                                     &Idents.get("__int128_t"),
366                                     TInfo);
367  }
368
369  return Int128Decl;
370}
371
372TypedefDecl *ASTContext::getUInt128Decl() const {
373  if (!UInt128Decl) {
374    TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(UnsignedInt128Ty);
375    UInt128Decl = TypedefDecl::Create(const_cast<ASTContext &>(*this),
376                                     getTranslationUnitDecl(),
377                                     SourceLocation(),
378                                     SourceLocation(),
379                                     &Idents.get("__uint128_t"),
380                                     TInfo);
381  }
382
383  return UInt128Decl;
384}
385
386void ASTContext::InitBuiltinType(CanQualType &R, BuiltinType::Kind K) {
387  BuiltinType *Ty = new (*this, TypeAlignment) BuiltinType(K);
388  R = CanQualType::CreateUnsafe(QualType(Ty, 0));
389  Types.push_back(Ty);
390}
391
392void ASTContext::InitBuiltinTypes(const TargetInfo &Target) {
393  assert((!this->Target || this->Target == &Target) &&
394         "Incorrect target reinitialization");
395  assert(VoidTy.isNull() && "Context reinitialized?");
396
397  this->Target = &Target;
398
399  ABI.reset(createCXXABI(Target));
400  AddrSpaceMap = getAddressSpaceMap(Target, LangOpts);
401
402  // C99 6.2.5p19.
403  InitBuiltinType(VoidTy,              BuiltinType::Void);
404
405  // C99 6.2.5p2.
406  InitBuiltinType(BoolTy,              BuiltinType::Bool);
407  // C99 6.2.5p3.
408  if (LangOpts.CharIsSigned)
409    InitBuiltinType(CharTy,            BuiltinType::Char_S);
410  else
411    InitBuiltinType(CharTy,            BuiltinType::Char_U);
412  // C99 6.2.5p4.
413  InitBuiltinType(SignedCharTy,        BuiltinType::SChar);
414  InitBuiltinType(ShortTy,             BuiltinType::Short);
415  InitBuiltinType(IntTy,               BuiltinType::Int);
416  InitBuiltinType(LongTy,              BuiltinType::Long);
417  InitBuiltinType(LongLongTy,          BuiltinType::LongLong);
418
419  // C99 6.2.5p6.
420  InitBuiltinType(UnsignedCharTy,      BuiltinType::UChar);
421  InitBuiltinType(UnsignedShortTy,     BuiltinType::UShort);
422  InitBuiltinType(UnsignedIntTy,       BuiltinType::UInt);
423  InitBuiltinType(UnsignedLongTy,      BuiltinType::ULong);
424  InitBuiltinType(UnsignedLongLongTy,  BuiltinType::ULongLong);
425
426  // C99 6.2.5p10.
427  InitBuiltinType(FloatTy,             BuiltinType::Float);
428  InitBuiltinType(DoubleTy,            BuiltinType::Double);
429  InitBuiltinType(LongDoubleTy,        BuiltinType::LongDouble);
430
431  // GNU extension, 128-bit integers.
432  InitBuiltinType(Int128Ty,            BuiltinType::Int128);
433  InitBuiltinType(UnsignedInt128Ty,    BuiltinType::UInt128);
434
435  if (LangOpts.CPlusPlus) { // C++ 3.9.1p5
436    if (TargetInfo::isTypeSigned(Target.getWCharType()))
437      InitBuiltinType(WCharTy,           BuiltinType::WChar_S);
438    else  // -fshort-wchar makes wchar_t be unsigned.
439      InitBuiltinType(WCharTy,           BuiltinType::WChar_U);
440  } else // C99
441    WCharTy = getFromTargetType(Target.getWCharType());
442
443  if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
444    InitBuiltinType(Char16Ty,           BuiltinType::Char16);
445  else // C99
446    Char16Ty = getFromTargetType(Target.getChar16Type());
447
448  if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
449    InitBuiltinType(Char32Ty,           BuiltinType::Char32);
450  else // C99
451    Char32Ty = getFromTargetType(Target.getChar32Type());
452
453  // Placeholder type for type-dependent expressions whose type is
454  // completely unknown. No code should ever check a type against
455  // DependentTy and users should never see it; however, it is here to
456  // help diagnose failures to properly check for type-dependent
457  // expressions.
458  InitBuiltinType(DependentTy,         BuiltinType::Dependent);
459
460  // Placeholder type for functions.
461  InitBuiltinType(OverloadTy,          BuiltinType::Overload);
462
463  // Placeholder type for bound members.
464  InitBuiltinType(BoundMemberTy,       BuiltinType::BoundMember);
465
466  // Placeholder type for pseudo-objects.
467  InitBuiltinType(PseudoObjectTy,      BuiltinType::PseudoObject);
468
469  // "any" type; useful for debugger-like clients.
470  InitBuiltinType(UnknownAnyTy,        BuiltinType::UnknownAny);
471
472  // Placeholder type for unbridged ARC casts.
473  InitBuiltinType(ARCUnbridgedCastTy,  BuiltinType::ARCUnbridgedCast);
474
475  // C99 6.2.5p11.
476  FloatComplexTy      = getComplexType(FloatTy);
477  DoubleComplexTy     = getComplexType(DoubleTy);
478  LongDoubleComplexTy = getComplexType(LongDoubleTy);
479
480  BuiltinVaListType = QualType();
481
482  // Builtin types for 'id', 'Class', and 'SEL'.
483  InitBuiltinType(ObjCBuiltinIdTy, BuiltinType::ObjCId);
484  InitBuiltinType(ObjCBuiltinClassTy, BuiltinType::ObjCClass);
485  InitBuiltinType(ObjCBuiltinSelTy, BuiltinType::ObjCSel);
486
487  ObjCConstantStringType = QualType();
488
489  // void * type
490  VoidPtrTy = getPointerType(VoidTy);
491
492  // nullptr type (C++0x 2.14.7)
493  InitBuiltinType(NullPtrTy,           BuiltinType::NullPtr);
494
495  // half type (OpenCL 6.1.1.1) / ARM NEON __fp16
496  InitBuiltinType(HalfTy, BuiltinType::Half);
497}
498
499DiagnosticsEngine &ASTContext::getDiagnostics() const {
500  return SourceMgr.getDiagnostics();
501}
502
503AttrVec& ASTContext::getDeclAttrs(const Decl *D) {
504  AttrVec *&Result = DeclAttrs[D];
505  if (!Result) {
506    void *Mem = Allocate(sizeof(AttrVec));
507    Result = new (Mem) AttrVec;
508  }
509
510  return *Result;
511}
512
513/// \brief Erase the attributes corresponding to the given declaration.
514void ASTContext::eraseDeclAttrs(const Decl *D) {
515  llvm::DenseMap<const Decl*, AttrVec*>::iterator Pos = DeclAttrs.find(D);
516  if (Pos != DeclAttrs.end()) {
517    Pos->second->~AttrVec();
518    DeclAttrs.erase(Pos);
519  }
520}
521
522MemberSpecializationInfo *
523ASTContext::getInstantiatedFromStaticDataMember(const VarDecl *Var) {
524  assert(Var->isStaticDataMember() && "Not a static data member");
525  llvm::DenseMap<const VarDecl *, MemberSpecializationInfo *>::iterator Pos
526    = InstantiatedFromStaticDataMember.find(Var);
527  if (Pos == InstantiatedFromStaticDataMember.end())
528    return 0;
529
530  return Pos->second;
531}
532
533void
534ASTContext::setInstantiatedFromStaticDataMember(VarDecl *Inst, VarDecl *Tmpl,
535                                                TemplateSpecializationKind TSK,
536                                          SourceLocation PointOfInstantiation) {
537  assert(Inst->isStaticDataMember() && "Not a static data member");
538  assert(Tmpl->isStaticDataMember() && "Not a static data member");
539  assert(!InstantiatedFromStaticDataMember[Inst] &&
540         "Already noted what static data member was instantiated from");
541  InstantiatedFromStaticDataMember[Inst]
542    = new (*this) MemberSpecializationInfo(Tmpl, TSK, PointOfInstantiation);
543}
544
545FunctionDecl *ASTContext::getClassScopeSpecializationPattern(
546                                                     const FunctionDecl *FD){
547  assert(FD && "Specialization is 0");
548  llvm::DenseMap<const FunctionDecl*, FunctionDecl *>::const_iterator Pos
549    = ClassScopeSpecializationPattern.find(FD);
550  if (Pos == ClassScopeSpecializationPattern.end())
551    return 0;
552
553  return Pos->second;
554}
555
556void ASTContext::setClassScopeSpecializationPattern(FunctionDecl *FD,
557                                        FunctionDecl *Pattern) {
558  assert(FD && "Specialization is 0");
559  assert(Pattern && "Class scope specialization pattern is 0");
560  ClassScopeSpecializationPattern[FD] = Pattern;
561}
562
563NamedDecl *
564ASTContext::getInstantiatedFromUsingDecl(UsingDecl *UUD) {
565  llvm::DenseMap<UsingDecl *, NamedDecl *>::const_iterator Pos
566    = InstantiatedFromUsingDecl.find(UUD);
567  if (Pos == InstantiatedFromUsingDecl.end())
568    return 0;
569
570  return Pos->second;
571}
572
573void
574ASTContext::setInstantiatedFromUsingDecl(UsingDecl *Inst, NamedDecl *Pattern) {
575  assert((isa<UsingDecl>(Pattern) ||
576          isa<UnresolvedUsingValueDecl>(Pattern) ||
577          isa<UnresolvedUsingTypenameDecl>(Pattern)) &&
578         "pattern decl is not a using decl");
579  assert(!InstantiatedFromUsingDecl[Inst] && "pattern already exists");
580  InstantiatedFromUsingDecl[Inst] = Pattern;
581}
582
583UsingShadowDecl *
584ASTContext::getInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst) {
585  llvm::DenseMap<UsingShadowDecl*, UsingShadowDecl*>::const_iterator Pos
586    = InstantiatedFromUsingShadowDecl.find(Inst);
587  if (Pos == InstantiatedFromUsingShadowDecl.end())
588    return 0;
589
590  return Pos->second;
591}
592
593void
594ASTContext::setInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst,
595                                               UsingShadowDecl *Pattern) {
596  assert(!InstantiatedFromUsingShadowDecl[Inst] && "pattern already exists");
597  InstantiatedFromUsingShadowDecl[Inst] = Pattern;
598}
599
600FieldDecl *ASTContext::getInstantiatedFromUnnamedFieldDecl(FieldDecl *Field) {
601  llvm::DenseMap<FieldDecl *, FieldDecl *>::iterator Pos
602    = InstantiatedFromUnnamedFieldDecl.find(Field);
603  if (Pos == InstantiatedFromUnnamedFieldDecl.end())
604    return 0;
605
606  return Pos->second;
607}
608
609void ASTContext::setInstantiatedFromUnnamedFieldDecl(FieldDecl *Inst,
610                                                     FieldDecl *Tmpl) {
611  assert(!Inst->getDeclName() && "Instantiated field decl is not unnamed");
612  assert(!Tmpl->getDeclName() && "Template field decl is not unnamed");
613  assert(!InstantiatedFromUnnamedFieldDecl[Inst] &&
614         "Already noted what unnamed field was instantiated from");
615
616  InstantiatedFromUnnamedFieldDecl[Inst] = Tmpl;
617}
618
619bool ASTContext::ZeroBitfieldFollowsNonBitfield(const FieldDecl *FD,
620                                    const FieldDecl *LastFD) const {
621  return (FD->isBitField() && LastFD && !LastFD->isBitField() &&
622          FD->getBitWidthValue(*this) == 0);
623}
624
625bool ASTContext::ZeroBitfieldFollowsBitfield(const FieldDecl *FD,
626                                             const FieldDecl *LastFD) const {
627  return (FD->isBitField() && LastFD && LastFD->isBitField() &&
628          FD->getBitWidthValue(*this) == 0 &&
629          LastFD->getBitWidthValue(*this) != 0);
630}
631
632bool ASTContext::BitfieldFollowsBitfield(const FieldDecl *FD,
633                                         const FieldDecl *LastFD) const {
634  return (FD->isBitField() && LastFD && LastFD->isBitField() &&
635          FD->getBitWidthValue(*this) &&
636          LastFD->getBitWidthValue(*this));
637}
638
639bool ASTContext::NonBitfieldFollowsBitfield(const FieldDecl *FD,
640                                         const FieldDecl *LastFD) const {
641  return (!FD->isBitField() && LastFD && LastFD->isBitField() &&
642          LastFD->getBitWidthValue(*this));
643}
644
645bool ASTContext::BitfieldFollowsNonBitfield(const FieldDecl *FD,
646                                             const FieldDecl *LastFD) const {
647  return (FD->isBitField() && LastFD && !LastFD->isBitField() &&
648          FD->getBitWidthValue(*this));
649}
650
651ASTContext::overridden_cxx_method_iterator
652ASTContext::overridden_methods_begin(const CXXMethodDecl *Method) const {
653  llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
654    = OverriddenMethods.find(Method);
655  if (Pos == OverriddenMethods.end())
656    return 0;
657
658  return Pos->second.begin();
659}
660
661ASTContext::overridden_cxx_method_iterator
662ASTContext::overridden_methods_end(const CXXMethodDecl *Method) const {
663  llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
664    = OverriddenMethods.find(Method);
665  if (Pos == OverriddenMethods.end())
666    return 0;
667
668  return Pos->second.end();
669}
670
671unsigned
672ASTContext::overridden_methods_size(const CXXMethodDecl *Method) const {
673  llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
674    = OverriddenMethods.find(Method);
675  if (Pos == OverriddenMethods.end())
676    return 0;
677
678  return Pos->second.size();
679}
680
681void ASTContext::addOverriddenMethod(const CXXMethodDecl *Method,
682                                     const CXXMethodDecl *Overridden) {
683  OverriddenMethods[Method].push_back(Overridden);
684}
685
686void ASTContext::addedLocalImportDecl(ImportDecl *Import) {
687  assert(!Import->NextLocalImport && "Import declaration already in the chain");
688  assert(!Import->isFromASTFile() && "Non-local import declaration");
689  if (!FirstLocalImport) {
690    FirstLocalImport = Import;
691    LastLocalImport = Import;
692    return;
693  }
694
695  LastLocalImport->NextLocalImport = Import;
696  LastLocalImport = Import;
697}
698
699//===----------------------------------------------------------------------===//
700//                         Type Sizing and Analysis
701//===----------------------------------------------------------------------===//
702
703/// getFloatTypeSemantics - Return the APFloat 'semantics' for the specified
704/// scalar floating point type.
705const llvm::fltSemantics &ASTContext::getFloatTypeSemantics(QualType T) const {
706  const BuiltinType *BT = T->getAs<BuiltinType>();
707  assert(BT && "Not a floating point type!");
708  switch (BT->getKind()) {
709  default: llvm_unreachable("Not a floating point type!");
710  case BuiltinType::Half:       return Target->getHalfFormat();
711  case BuiltinType::Float:      return Target->getFloatFormat();
712  case BuiltinType::Double:     return Target->getDoubleFormat();
713  case BuiltinType::LongDouble: return Target->getLongDoubleFormat();
714  }
715}
716
717/// getDeclAlign - Return a conservative estimate of the alignment of the
718/// specified decl.  Note that bitfields do not have a valid alignment, so
719/// this method will assert on them.
720/// If @p RefAsPointee, references are treated like their underlying type
721/// (for alignof), else they're treated like pointers (for CodeGen).
722CharUnits ASTContext::getDeclAlign(const Decl *D, bool RefAsPointee) const {
723  unsigned Align = Target->getCharWidth();
724
725  bool UseAlignAttrOnly = false;
726  if (unsigned AlignFromAttr = D->getMaxAlignment()) {
727    Align = AlignFromAttr;
728
729    // __attribute__((aligned)) can increase or decrease alignment
730    // *except* on a struct or struct member, where it only increases
731    // alignment unless 'packed' is also specified.
732    //
733    // It is an error for alignas to decrease alignment, so we can
734    // ignore that possibility;  Sema should diagnose it.
735    if (isa<FieldDecl>(D)) {
736      UseAlignAttrOnly = D->hasAttr<PackedAttr>() ||
737        cast<FieldDecl>(D)->getParent()->hasAttr<PackedAttr>();
738    } else {
739      UseAlignAttrOnly = true;
740    }
741  }
742  else if (isa<FieldDecl>(D))
743      UseAlignAttrOnly =
744        D->hasAttr<PackedAttr>() ||
745        cast<FieldDecl>(D)->getParent()->hasAttr<PackedAttr>();
746
747  // If we're using the align attribute only, just ignore everything
748  // else about the declaration and its type.
749  if (UseAlignAttrOnly) {
750    // do nothing
751
752  } else if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
753    QualType T = VD->getType();
754    if (const ReferenceType* RT = T->getAs<ReferenceType>()) {
755      if (RefAsPointee)
756        T = RT->getPointeeType();
757      else
758        T = getPointerType(RT->getPointeeType());
759    }
760    if (!T->isIncompleteType() && !T->isFunctionType()) {
761      // Adjust alignments of declarations with array type by the
762      // large-array alignment on the target.
763      unsigned MinWidth = Target->getLargeArrayMinWidth();
764      const ArrayType *arrayType;
765      if (MinWidth && (arrayType = getAsArrayType(T))) {
766        if (isa<VariableArrayType>(arrayType))
767          Align = std::max(Align, Target->getLargeArrayAlign());
768        else if (isa<ConstantArrayType>(arrayType) &&
769                 MinWidth <= getTypeSize(cast<ConstantArrayType>(arrayType)))
770          Align = std::max(Align, Target->getLargeArrayAlign());
771
772        // Walk through any array types while we're at it.
773        T = getBaseElementType(arrayType);
774      }
775      Align = std::max(Align, getPreferredTypeAlign(T.getTypePtr()));
776    }
777
778    // Fields can be subject to extra alignment constraints, like if
779    // the field is packed, the struct is packed, or the struct has a
780    // a max-field-alignment constraint (#pragma pack).  So calculate
781    // the actual alignment of the field within the struct, and then
782    // (as we're expected to) constrain that by the alignment of the type.
783    if (const FieldDecl *field = dyn_cast<FieldDecl>(VD)) {
784      // So calculate the alignment of the field.
785      const ASTRecordLayout &layout = getASTRecordLayout(field->getParent());
786
787      // Start with the record's overall alignment.
788      unsigned fieldAlign = toBits(layout.getAlignment());
789
790      // Use the GCD of that and the offset within the record.
791      uint64_t offset = layout.getFieldOffset(field->getFieldIndex());
792      if (offset > 0) {
793        // Alignment is always a power of 2, so the GCD will be a power of 2,
794        // which means we get to do this crazy thing instead of Euclid's.
795        uint64_t lowBitOfOffset = offset & (~offset + 1);
796        if (lowBitOfOffset < fieldAlign)
797          fieldAlign = static_cast<unsigned>(lowBitOfOffset);
798      }
799
800      Align = std::min(Align, fieldAlign);
801    }
802  }
803
804  return toCharUnitsFromBits(Align);
805}
806
807std::pair<CharUnits, CharUnits>
808ASTContext::getTypeInfoInChars(const Type *T) const {
809  std::pair<uint64_t, unsigned> Info = getTypeInfo(T);
810  return std::make_pair(toCharUnitsFromBits(Info.first),
811                        toCharUnitsFromBits(Info.second));
812}
813
814std::pair<CharUnits, CharUnits>
815ASTContext::getTypeInfoInChars(QualType T) const {
816  return getTypeInfoInChars(T.getTypePtr());
817}
818
819/// getTypeSize - Return the size of the specified type, in bits.  This method
820/// does not work on incomplete types.
821///
822/// FIXME: Pointers into different addr spaces could have different sizes and
823/// alignment requirements: getPointerInfo should take an AddrSpace, this
824/// should take a QualType, &c.
825std::pair<uint64_t, unsigned>
826ASTContext::getTypeInfo(const Type *T) const {
827  uint64_t Width=0;
828  unsigned Align=8;
829  switch (T->getTypeClass()) {
830#define TYPE(Class, Base)
831#define ABSTRACT_TYPE(Class, Base)
832#define NON_CANONICAL_TYPE(Class, Base)
833#define DEPENDENT_TYPE(Class, Base) case Type::Class:
834#include "clang/AST/TypeNodes.def"
835    llvm_unreachable("Should not see dependent types");
836    break;
837
838  case Type::FunctionNoProto:
839  case Type::FunctionProto:
840    // GCC extension: alignof(function) = 32 bits
841    Width = 0;
842    Align = 32;
843    break;
844
845  case Type::IncompleteArray:
846  case Type::VariableArray:
847    Width = 0;
848    Align = getTypeAlign(cast<ArrayType>(T)->getElementType());
849    break;
850
851  case Type::ConstantArray: {
852    const ConstantArrayType *CAT = cast<ConstantArrayType>(T);
853
854    std::pair<uint64_t, unsigned> EltInfo = getTypeInfo(CAT->getElementType());
855    Width = EltInfo.first*CAT->getSize().getZExtValue();
856    Align = EltInfo.second;
857    Width = llvm::RoundUpToAlignment(Width, Align);
858    break;
859  }
860  case Type::ExtVector:
861  case Type::Vector: {
862    const VectorType *VT = cast<VectorType>(T);
863    std::pair<uint64_t, unsigned> EltInfo = getTypeInfo(VT->getElementType());
864    Width = EltInfo.first*VT->getNumElements();
865    Align = Width;
866    // If the alignment is not a power of 2, round up to the next power of 2.
867    // This happens for non-power-of-2 length vectors.
868    if (Align & (Align-1)) {
869      Align = llvm::NextPowerOf2(Align);
870      Width = llvm::RoundUpToAlignment(Width, Align);
871    }
872    break;
873  }
874
875  case Type::Builtin:
876    switch (cast<BuiltinType>(T)->getKind()) {
877    default: llvm_unreachable("Unknown builtin type!");
878    case BuiltinType::Void:
879      // GCC extension: alignof(void) = 8 bits.
880      Width = 0;
881      Align = 8;
882      break;
883
884    case BuiltinType::Bool:
885      Width = Target->getBoolWidth();
886      Align = Target->getBoolAlign();
887      break;
888    case BuiltinType::Char_S:
889    case BuiltinType::Char_U:
890    case BuiltinType::UChar:
891    case BuiltinType::SChar:
892      Width = Target->getCharWidth();
893      Align = Target->getCharAlign();
894      break;
895    case BuiltinType::WChar_S:
896    case BuiltinType::WChar_U:
897      Width = Target->getWCharWidth();
898      Align = Target->getWCharAlign();
899      break;
900    case BuiltinType::Char16:
901      Width = Target->getChar16Width();
902      Align = Target->getChar16Align();
903      break;
904    case BuiltinType::Char32:
905      Width = Target->getChar32Width();
906      Align = Target->getChar32Align();
907      break;
908    case BuiltinType::UShort:
909    case BuiltinType::Short:
910      Width = Target->getShortWidth();
911      Align = Target->getShortAlign();
912      break;
913    case BuiltinType::UInt:
914    case BuiltinType::Int:
915      Width = Target->getIntWidth();
916      Align = Target->getIntAlign();
917      break;
918    case BuiltinType::ULong:
919    case BuiltinType::Long:
920      Width = Target->getLongWidth();
921      Align = Target->getLongAlign();
922      break;
923    case BuiltinType::ULongLong:
924    case BuiltinType::LongLong:
925      Width = Target->getLongLongWidth();
926      Align = Target->getLongLongAlign();
927      break;
928    case BuiltinType::Int128:
929    case BuiltinType::UInt128:
930      Width = 128;
931      Align = 128; // int128_t is 128-bit aligned on all targets.
932      break;
933    case BuiltinType::Half:
934      Width = Target->getHalfWidth();
935      Align = Target->getHalfAlign();
936      break;
937    case BuiltinType::Float:
938      Width = Target->getFloatWidth();
939      Align = Target->getFloatAlign();
940      break;
941    case BuiltinType::Double:
942      Width = Target->getDoubleWidth();
943      Align = Target->getDoubleAlign();
944      break;
945    case BuiltinType::LongDouble:
946      Width = Target->getLongDoubleWidth();
947      Align = Target->getLongDoubleAlign();
948      break;
949    case BuiltinType::NullPtr:
950      Width = Target->getPointerWidth(0); // C++ 3.9.1p11: sizeof(nullptr_t)
951      Align = Target->getPointerAlign(0); //   == sizeof(void*)
952      break;
953    case BuiltinType::ObjCId:
954    case BuiltinType::ObjCClass:
955    case BuiltinType::ObjCSel:
956      Width = Target->getPointerWidth(0);
957      Align = Target->getPointerAlign(0);
958      break;
959    }
960    break;
961  case Type::ObjCObjectPointer:
962    Width = Target->getPointerWidth(0);
963    Align = Target->getPointerAlign(0);
964    break;
965  case Type::BlockPointer: {
966    unsigned AS = getTargetAddressSpace(
967        cast<BlockPointerType>(T)->getPointeeType());
968    Width = Target->getPointerWidth(AS);
969    Align = Target->getPointerAlign(AS);
970    break;
971  }
972  case Type::LValueReference:
973  case Type::RValueReference: {
974    // alignof and sizeof should never enter this code path here, so we go
975    // the pointer route.
976    unsigned AS = getTargetAddressSpace(
977        cast<ReferenceType>(T)->getPointeeType());
978    Width = Target->getPointerWidth(AS);
979    Align = Target->getPointerAlign(AS);
980    break;
981  }
982  case Type::Pointer: {
983    unsigned AS = getTargetAddressSpace(cast<PointerType>(T)->getPointeeType());
984    Width = Target->getPointerWidth(AS);
985    Align = Target->getPointerAlign(AS);
986    break;
987  }
988  case Type::MemberPointer: {
989    const MemberPointerType *MPT = cast<MemberPointerType>(T);
990    std::pair<uint64_t, unsigned> PtrDiffInfo =
991      getTypeInfo(getPointerDiffType());
992    Width = PtrDiffInfo.first * ABI->getMemberPointerSize(MPT);
993    Align = PtrDiffInfo.second;
994    break;
995  }
996  case Type::Complex: {
997    // Complex types have the same alignment as their elements, but twice the
998    // size.
999    std::pair<uint64_t, unsigned> EltInfo =
1000      getTypeInfo(cast<ComplexType>(T)->getElementType());
1001    Width = EltInfo.first*2;
1002    Align = EltInfo.second;
1003    break;
1004  }
1005  case Type::ObjCObject:
1006    return getTypeInfo(cast<ObjCObjectType>(T)->getBaseType().getTypePtr());
1007  case Type::ObjCInterface: {
1008    const ObjCInterfaceType *ObjCI = cast<ObjCInterfaceType>(T);
1009    const ASTRecordLayout &Layout = getASTObjCInterfaceLayout(ObjCI->getDecl());
1010    Width = toBits(Layout.getSize());
1011    Align = toBits(Layout.getAlignment());
1012    break;
1013  }
1014  case Type::Record:
1015  case Type::Enum: {
1016    const TagType *TT = cast<TagType>(T);
1017
1018    if (TT->getDecl()->isInvalidDecl()) {
1019      Width = 8;
1020      Align = 8;
1021      break;
1022    }
1023
1024    if (const EnumType *ET = dyn_cast<EnumType>(TT))
1025      return getTypeInfo(ET->getDecl()->getIntegerType());
1026
1027    const RecordType *RT = cast<RecordType>(TT);
1028    const ASTRecordLayout &Layout = getASTRecordLayout(RT->getDecl());
1029    Width = toBits(Layout.getSize());
1030    Align = toBits(Layout.getAlignment());
1031    break;
1032  }
1033
1034  case Type::SubstTemplateTypeParm:
1035    return getTypeInfo(cast<SubstTemplateTypeParmType>(T)->
1036                       getReplacementType().getTypePtr());
1037
1038  case Type::Auto: {
1039    const AutoType *A = cast<AutoType>(T);
1040    assert(A->isDeduced() && "Cannot request the size of a dependent type");
1041    return getTypeInfo(A->getDeducedType().getTypePtr());
1042  }
1043
1044  case Type::Paren:
1045    return getTypeInfo(cast<ParenType>(T)->getInnerType().getTypePtr());
1046
1047  case Type::Typedef: {
1048    const TypedefNameDecl *Typedef = cast<TypedefType>(T)->getDecl();
1049    std::pair<uint64_t, unsigned> Info
1050      = getTypeInfo(Typedef->getUnderlyingType().getTypePtr());
1051    // If the typedef has an aligned attribute on it, it overrides any computed
1052    // alignment we have.  This violates the GCC documentation (which says that
1053    // attribute(aligned) can only round up) but matches its implementation.
1054    if (unsigned AttrAlign = Typedef->getMaxAlignment())
1055      Align = AttrAlign;
1056    else
1057      Align = Info.second;
1058    Width = Info.first;
1059    break;
1060  }
1061
1062  case Type::TypeOfExpr:
1063    return getTypeInfo(cast<TypeOfExprType>(T)->getUnderlyingExpr()->getType()
1064                         .getTypePtr());
1065
1066  case Type::TypeOf:
1067    return getTypeInfo(cast<TypeOfType>(T)->getUnderlyingType().getTypePtr());
1068
1069  case Type::Decltype:
1070    return getTypeInfo(cast<DecltypeType>(T)->getUnderlyingExpr()->getType()
1071                        .getTypePtr());
1072
1073  case Type::UnaryTransform:
1074    return getTypeInfo(cast<UnaryTransformType>(T)->getUnderlyingType());
1075
1076  case Type::Elaborated:
1077    return getTypeInfo(cast<ElaboratedType>(T)->getNamedType().getTypePtr());
1078
1079  case Type::Attributed:
1080    return getTypeInfo(
1081                  cast<AttributedType>(T)->getEquivalentType().getTypePtr());
1082
1083  case Type::TemplateSpecialization: {
1084    assert(getCanonicalType(T) != T &&
1085           "Cannot request the size of a dependent type");
1086    const TemplateSpecializationType *TST = cast<TemplateSpecializationType>(T);
1087    // A type alias template specialization may refer to a typedef with the
1088    // aligned attribute on it.
1089    if (TST->isTypeAlias())
1090      return getTypeInfo(TST->getAliasedType().getTypePtr());
1091    else
1092      return getTypeInfo(getCanonicalType(T));
1093  }
1094
1095  case Type::Atomic: {
1096    std::pair<uint64_t, unsigned> Info
1097      = getTypeInfo(cast<AtomicType>(T)->getValueType());
1098    Width = Info.first;
1099    Align = Info.second;
1100    if (Width != 0 && Width <= Target->getMaxAtomicPromoteWidth() &&
1101        llvm::isPowerOf2_64(Width)) {
1102      // We can potentially perform lock-free atomic operations for this
1103      // type; promote the alignment appropriately.
1104      // FIXME: We could potentially promote the width here as well...
1105      // is that worthwhile?  (Non-struct atomic types generally have
1106      // power-of-two size anyway, but structs might not.  Requires a bit
1107      // of implementation work to make sure we zero out the extra bits.)
1108      Align = static_cast<unsigned>(Width);
1109    }
1110  }
1111
1112  }
1113
1114  assert(llvm::isPowerOf2_32(Align) && "Alignment must be power of 2");
1115  return std::make_pair(Width, Align);
1116}
1117
1118/// toCharUnitsFromBits - Convert a size in bits to a size in characters.
1119CharUnits ASTContext::toCharUnitsFromBits(int64_t BitSize) const {
1120  return CharUnits::fromQuantity(BitSize / getCharWidth());
1121}
1122
1123/// toBits - Convert a size in characters to a size in characters.
1124int64_t ASTContext::toBits(CharUnits CharSize) const {
1125  return CharSize.getQuantity() * getCharWidth();
1126}
1127
1128/// getTypeSizeInChars - Return the size of the specified type, in characters.
1129/// This method does not work on incomplete types.
1130CharUnits ASTContext::getTypeSizeInChars(QualType T) const {
1131  return toCharUnitsFromBits(getTypeSize(T));
1132}
1133CharUnits ASTContext::getTypeSizeInChars(const Type *T) const {
1134  return toCharUnitsFromBits(getTypeSize(T));
1135}
1136
1137/// getTypeAlignInChars - Return the ABI-specified alignment of a type, in
1138/// characters. This method does not work on incomplete types.
1139CharUnits ASTContext::getTypeAlignInChars(QualType T) const {
1140  return toCharUnitsFromBits(getTypeAlign(T));
1141}
1142CharUnits ASTContext::getTypeAlignInChars(const Type *T) const {
1143  return toCharUnitsFromBits(getTypeAlign(T));
1144}
1145
1146/// getPreferredTypeAlign - Return the "preferred" alignment of the specified
1147/// type for the current target in bits.  This can be different than the ABI
1148/// alignment in cases where it is beneficial for performance to overalign
1149/// a data type.
1150unsigned ASTContext::getPreferredTypeAlign(const Type *T) const {
1151  unsigned ABIAlign = getTypeAlign(T);
1152
1153  // Double and long long should be naturally aligned if possible.
1154  if (const ComplexType* CT = T->getAs<ComplexType>())
1155    T = CT->getElementType().getTypePtr();
1156  if (T->isSpecificBuiltinType(BuiltinType::Double) ||
1157      T->isSpecificBuiltinType(BuiltinType::LongLong))
1158    return std::max(ABIAlign, (unsigned)getTypeSize(T));
1159
1160  return ABIAlign;
1161}
1162
1163/// DeepCollectObjCIvars -
1164/// This routine first collects all declared, but not synthesized, ivars in
1165/// super class and then collects all ivars, including those synthesized for
1166/// current class. This routine is used for implementation of current class
1167/// when all ivars, declared and synthesized are known.
1168///
1169void ASTContext::DeepCollectObjCIvars(const ObjCInterfaceDecl *OI,
1170                                      bool leafClass,
1171                            SmallVectorImpl<const ObjCIvarDecl*> &Ivars) const {
1172  if (const ObjCInterfaceDecl *SuperClass = OI->getSuperClass())
1173    DeepCollectObjCIvars(SuperClass, false, Ivars);
1174  if (!leafClass) {
1175    for (ObjCInterfaceDecl::ivar_iterator I = OI->ivar_begin(),
1176         E = OI->ivar_end(); I != E; ++I)
1177      Ivars.push_back(*I);
1178  } else {
1179    ObjCInterfaceDecl *IDecl = const_cast<ObjCInterfaceDecl *>(OI);
1180    for (const ObjCIvarDecl *Iv = IDecl->all_declared_ivar_begin(); Iv;
1181         Iv= Iv->getNextIvar())
1182      Ivars.push_back(Iv);
1183  }
1184}
1185
1186/// CollectInheritedProtocols - Collect all protocols in current class and
1187/// those inherited by it.
1188void ASTContext::CollectInheritedProtocols(const Decl *CDecl,
1189                          llvm::SmallPtrSet<ObjCProtocolDecl*, 8> &Protocols) {
1190  if (const ObjCInterfaceDecl *OI = dyn_cast<ObjCInterfaceDecl>(CDecl)) {
1191    // We can use protocol_iterator here instead of
1192    // all_referenced_protocol_iterator since we are walking all categories.
1193    for (ObjCInterfaceDecl::all_protocol_iterator P = OI->all_referenced_protocol_begin(),
1194         PE = OI->all_referenced_protocol_end(); P != PE; ++P) {
1195      ObjCProtocolDecl *Proto = (*P);
1196      Protocols.insert(Proto);
1197      for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
1198           PE = Proto->protocol_end(); P != PE; ++P) {
1199        Protocols.insert(*P);
1200        CollectInheritedProtocols(*P, Protocols);
1201      }
1202    }
1203
1204    // Categories of this Interface.
1205    for (const ObjCCategoryDecl *CDeclChain = OI->getCategoryList();
1206         CDeclChain; CDeclChain = CDeclChain->getNextClassCategory())
1207      CollectInheritedProtocols(CDeclChain, Protocols);
1208    if (ObjCInterfaceDecl *SD = OI->getSuperClass())
1209      while (SD) {
1210        CollectInheritedProtocols(SD, Protocols);
1211        SD = SD->getSuperClass();
1212      }
1213  } else if (const ObjCCategoryDecl *OC = dyn_cast<ObjCCategoryDecl>(CDecl)) {
1214    for (ObjCCategoryDecl::protocol_iterator P = OC->protocol_begin(),
1215         PE = OC->protocol_end(); P != PE; ++P) {
1216      ObjCProtocolDecl *Proto = (*P);
1217      Protocols.insert(Proto);
1218      for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
1219           PE = Proto->protocol_end(); P != PE; ++P)
1220        CollectInheritedProtocols(*P, Protocols);
1221    }
1222  } else if (const ObjCProtocolDecl *OP = dyn_cast<ObjCProtocolDecl>(CDecl)) {
1223    for (ObjCProtocolDecl::protocol_iterator P = OP->protocol_begin(),
1224         PE = OP->protocol_end(); P != PE; ++P) {
1225      ObjCProtocolDecl *Proto = (*P);
1226      Protocols.insert(Proto);
1227      for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
1228           PE = Proto->protocol_end(); P != PE; ++P)
1229        CollectInheritedProtocols(*P, Protocols);
1230    }
1231  }
1232}
1233
1234unsigned ASTContext::CountNonClassIvars(const ObjCInterfaceDecl *OI) const {
1235  unsigned count = 0;
1236  // Count ivars declared in class extension.
1237  for (const ObjCCategoryDecl *CDecl = OI->getFirstClassExtension(); CDecl;
1238       CDecl = CDecl->getNextClassExtension())
1239    count += CDecl->ivar_size();
1240
1241  // Count ivar defined in this class's implementation.  This
1242  // includes synthesized ivars.
1243  if (ObjCImplementationDecl *ImplDecl = OI->getImplementation())
1244    count += ImplDecl->ivar_size();
1245
1246  return count;
1247}
1248
1249/// \brief Get the implementation of ObjCInterfaceDecl,or NULL if none exists.
1250ObjCImplementationDecl *ASTContext::getObjCImplementation(ObjCInterfaceDecl *D) {
1251  llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
1252    I = ObjCImpls.find(D);
1253  if (I != ObjCImpls.end())
1254    return cast<ObjCImplementationDecl>(I->second);
1255  return 0;
1256}
1257/// \brief Get the implementation of ObjCCategoryDecl, or NULL if none exists.
1258ObjCCategoryImplDecl *ASTContext::getObjCImplementation(ObjCCategoryDecl *D) {
1259  llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
1260    I = ObjCImpls.find(D);
1261  if (I != ObjCImpls.end())
1262    return cast<ObjCCategoryImplDecl>(I->second);
1263  return 0;
1264}
1265
1266/// \brief Set the implementation of ObjCInterfaceDecl.
1267void ASTContext::setObjCImplementation(ObjCInterfaceDecl *IFaceD,
1268                           ObjCImplementationDecl *ImplD) {
1269  assert(IFaceD && ImplD && "Passed null params");
1270  ObjCImpls[IFaceD] = ImplD;
1271}
1272/// \brief Set the implementation of ObjCCategoryDecl.
1273void ASTContext::setObjCImplementation(ObjCCategoryDecl *CatD,
1274                           ObjCCategoryImplDecl *ImplD) {
1275  assert(CatD && ImplD && "Passed null params");
1276  ObjCImpls[CatD] = ImplD;
1277}
1278
1279ObjCInterfaceDecl *ASTContext::getObjContainingInterface(NamedDecl *ND) const {
1280  if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(ND->getDeclContext()))
1281    return ID;
1282  if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(ND->getDeclContext()))
1283    return CD->getClassInterface();
1284  if (ObjCImplDecl *IMD = dyn_cast<ObjCImplDecl>(ND->getDeclContext()))
1285    return IMD->getClassInterface();
1286
1287  return 0;
1288}
1289
1290/// \brief Get the copy initialization expression of VarDecl,or NULL if
1291/// none exists.
1292Expr *ASTContext::getBlockVarCopyInits(const VarDecl*VD) {
1293  assert(VD && "Passed null params");
1294  assert(VD->hasAttr<BlocksAttr>() &&
1295         "getBlockVarCopyInits - not __block var");
1296  llvm::DenseMap<const VarDecl*, Expr*>::iterator
1297    I = BlockVarCopyInits.find(VD);
1298  return (I != BlockVarCopyInits.end()) ? cast<Expr>(I->second) : 0;
1299}
1300
1301/// \brief Set the copy inialization expression of a block var decl.
1302void ASTContext::setBlockVarCopyInits(VarDecl*VD, Expr* Init) {
1303  assert(VD && Init && "Passed null params");
1304  assert(VD->hasAttr<BlocksAttr>() &&
1305         "setBlockVarCopyInits - not __block var");
1306  BlockVarCopyInits[VD] = Init;
1307}
1308
1309/// \brief Allocate an uninitialized TypeSourceInfo.
1310///
1311/// The caller should initialize the memory held by TypeSourceInfo using
1312/// the TypeLoc wrappers.
1313///
1314/// \param T the type that will be the basis for type source info. This type
1315/// should refer to how the declarator was written in source code, not to
1316/// what type semantic analysis resolved the declarator to.
1317TypeSourceInfo *ASTContext::CreateTypeSourceInfo(QualType T,
1318                                                 unsigned DataSize) const {
1319  if (!DataSize)
1320    DataSize = TypeLoc::getFullDataSizeForType(T);
1321  else
1322    assert(DataSize == TypeLoc::getFullDataSizeForType(T) &&
1323           "incorrect data size provided to CreateTypeSourceInfo!");
1324
1325  TypeSourceInfo *TInfo =
1326    (TypeSourceInfo*)BumpAlloc.Allocate(sizeof(TypeSourceInfo) + DataSize, 8);
1327  new (TInfo) TypeSourceInfo(T);
1328  return TInfo;
1329}
1330
1331TypeSourceInfo *ASTContext::getTrivialTypeSourceInfo(QualType T,
1332                                                     SourceLocation L) const {
1333  TypeSourceInfo *DI = CreateTypeSourceInfo(T);
1334  DI->getTypeLoc().initialize(const_cast<ASTContext &>(*this), L);
1335  return DI;
1336}
1337
1338const ASTRecordLayout &
1339ASTContext::getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D) const {
1340  return getObjCLayout(D, 0);
1341}
1342
1343const ASTRecordLayout &
1344ASTContext::getASTObjCImplementationLayout(
1345                                        const ObjCImplementationDecl *D) const {
1346  return getObjCLayout(D->getClassInterface(), D);
1347}
1348
1349//===----------------------------------------------------------------------===//
1350//                   Type creation/memoization methods
1351//===----------------------------------------------------------------------===//
1352
1353QualType
1354ASTContext::getExtQualType(const Type *baseType, Qualifiers quals) const {
1355  unsigned fastQuals = quals.getFastQualifiers();
1356  quals.removeFastQualifiers();
1357
1358  // Check if we've already instantiated this type.
1359  llvm::FoldingSetNodeID ID;
1360  ExtQuals::Profile(ID, baseType, quals);
1361  void *insertPos = 0;
1362  if (ExtQuals *eq = ExtQualNodes.FindNodeOrInsertPos(ID, insertPos)) {
1363    assert(eq->getQualifiers() == quals);
1364    return QualType(eq, fastQuals);
1365  }
1366
1367  // If the base type is not canonical, make the appropriate canonical type.
1368  QualType canon;
1369  if (!baseType->isCanonicalUnqualified()) {
1370    SplitQualType canonSplit = baseType->getCanonicalTypeInternal().split();
1371    canonSplit.second.addConsistentQualifiers(quals);
1372    canon = getExtQualType(canonSplit.first, canonSplit.second);
1373
1374    // Re-find the insert position.
1375    (void) ExtQualNodes.FindNodeOrInsertPos(ID, insertPos);
1376  }
1377
1378  ExtQuals *eq = new (*this, TypeAlignment) ExtQuals(baseType, canon, quals);
1379  ExtQualNodes.InsertNode(eq, insertPos);
1380  return QualType(eq, fastQuals);
1381}
1382
1383QualType
1384ASTContext::getAddrSpaceQualType(QualType T, unsigned AddressSpace) const {
1385  QualType CanT = getCanonicalType(T);
1386  if (CanT.getAddressSpace() == AddressSpace)
1387    return T;
1388
1389  // If we are composing extended qualifiers together, merge together
1390  // into one ExtQuals node.
1391  QualifierCollector Quals;
1392  const Type *TypeNode = Quals.strip(T);
1393
1394  // If this type already has an address space specified, it cannot get
1395  // another one.
1396  assert(!Quals.hasAddressSpace() &&
1397         "Type cannot be in multiple addr spaces!");
1398  Quals.addAddressSpace(AddressSpace);
1399
1400  return getExtQualType(TypeNode, Quals);
1401}
1402
1403QualType ASTContext::getObjCGCQualType(QualType T,
1404                                       Qualifiers::GC GCAttr) const {
1405  QualType CanT = getCanonicalType(T);
1406  if (CanT.getObjCGCAttr() == GCAttr)
1407    return T;
1408
1409  if (const PointerType *ptr = T->getAs<PointerType>()) {
1410    QualType Pointee = ptr->getPointeeType();
1411    if (Pointee->isAnyPointerType()) {
1412      QualType ResultType = getObjCGCQualType(Pointee, GCAttr);
1413      return getPointerType(ResultType);
1414    }
1415  }
1416
1417  // If we are composing extended qualifiers together, merge together
1418  // into one ExtQuals node.
1419  QualifierCollector Quals;
1420  const Type *TypeNode = Quals.strip(T);
1421
1422  // If this type already has an ObjCGC specified, it cannot get
1423  // another one.
1424  assert(!Quals.hasObjCGCAttr() &&
1425         "Type cannot have multiple ObjCGCs!");
1426  Quals.addObjCGCAttr(GCAttr);
1427
1428  return getExtQualType(TypeNode, Quals);
1429}
1430
1431const FunctionType *ASTContext::adjustFunctionType(const FunctionType *T,
1432                                                   FunctionType::ExtInfo Info) {
1433  if (T->getExtInfo() == Info)
1434    return T;
1435
1436  QualType Result;
1437  if (const FunctionNoProtoType *FNPT = dyn_cast<FunctionNoProtoType>(T)) {
1438    Result = getFunctionNoProtoType(FNPT->getResultType(), Info);
1439  } else {
1440    const FunctionProtoType *FPT = cast<FunctionProtoType>(T);
1441    FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
1442    EPI.ExtInfo = Info;
1443    Result = getFunctionType(FPT->getResultType(), FPT->arg_type_begin(),
1444                             FPT->getNumArgs(), EPI);
1445  }
1446
1447  return cast<FunctionType>(Result.getTypePtr());
1448}
1449
1450/// getComplexType - Return the uniqued reference to the type for a complex
1451/// number with the specified element type.
1452QualType ASTContext::getComplexType(QualType T) const {
1453  // Unique pointers, to guarantee there is only one pointer of a particular
1454  // structure.
1455  llvm::FoldingSetNodeID ID;
1456  ComplexType::Profile(ID, T);
1457
1458  void *InsertPos = 0;
1459  if (ComplexType *CT = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos))
1460    return QualType(CT, 0);
1461
1462  // If the pointee type isn't canonical, this won't be a canonical type either,
1463  // so fill in the canonical type field.
1464  QualType Canonical;
1465  if (!T.isCanonical()) {
1466    Canonical = getComplexType(getCanonicalType(T));
1467
1468    // Get the new insert position for the node we care about.
1469    ComplexType *NewIP = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos);
1470    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1471  }
1472  ComplexType *New = new (*this, TypeAlignment) ComplexType(T, Canonical);
1473  Types.push_back(New);
1474  ComplexTypes.InsertNode(New, InsertPos);
1475  return QualType(New, 0);
1476}
1477
1478/// getPointerType - Return the uniqued reference to the type for a pointer to
1479/// the specified type.
1480QualType ASTContext::getPointerType(QualType T) const {
1481  // Unique pointers, to guarantee there is only one pointer of a particular
1482  // structure.
1483  llvm::FoldingSetNodeID ID;
1484  PointerType::Profile(ID, T);
1485
1486  void *InsertPos = 0;
1487  if (PointerType *PT = PointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1488    return QualType(PT, 0);
1489
1490  // If the pointee type isn't canonical, this won't be a canonical type either,
1491  // so fill in the canonical type field.
1492  QualType Canonical;
1493  if (!T.isCanonical()) {
1494    Canonical = getPointerType(getCanonicalType(T));
1495
1496    // Get the new insert position for the node we care about.
1497    PointerType *NewIP = PointerTypes.FindNodeOrInsertPos(ID, InsertPos);
1498    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1499  }
1500  PointerType *New = new (*this, TypeAlignment) PointerType(T, Canonical);
1501  Types.push_back(New);
1502  PointerTypes.InsertNode(New, InsertPos);
1503  return QualType(New, 0);
1504}
1505
1506/// getBlockPointerType - Return the uniqued reference to the type for
1507/// a pointer to the specified block.
1508QualType ASTContext::getBlockPointerType(QualType T) const {
1509  assert(T->isFunctionType() && "block of function types only");
1510  // Unique pointers, to guarantee there is only one block of a particular
1511  // structure.
1512  llvm::FoldingSetNodeID ID;
1513  BlockPointerType::Profile(ID, T);
1514
1515  void *InsertPos = 0;
1516  if (BlockPointerType *PT =
1517        BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1518    return QualType(PT, 0);
1519
1520  // If the block pointee type isn't canonical, this won't be a canonical
1521  // type either so fill in the canonical type field.
1522  QualType Canonical;
1523  if (!T.isCanonical()) {
1524    Canonical = getBlockPointerType(getCanonicalType(T));
1525
1526    // Get the new insert position for the node we care about.
1527    BlockPointerType *NewIP =
1528      BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
1529    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1530  }
1531  BlockPointerType *New
1532    = new (*this, TypeAlignment) BlockPointerType(T, Canonical);
1533  Types.push_back(New);
1534  BlockPointerTypes.InsertNode(New, InsertPos);
1535  return QualType(New, 0);
1536}
1537
1538/// getLValueReferenceType - Return the uniqued reference to the type for an
1539/// lvalue reference to the specified type.
1540QualType
1541ASTContext::getLValueReferenceType(QualType T, bool SpelledAsLValue) const {
1542  assert(getCanonicalType(T) != OverloadTy &&
1543         "Unresolved overloaded function type");
1544
1545  // Unique pointers, to guarantee there is only one pointer of a particular
1546  // structure.
1547  llvm::FoldingSetNodeID ID;
1548  ReferenceType::Profile(ID, T, SpelledAsLValue);
1549
1550  void *InsertPos = 0;
1551  if (LValueReferenceType *RT =
1552        LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
1553    return QualType(RT, 0);
1554
1555  const ReferenceType *InnerRef = T->getAs<ReferenceType>();
1556
1557  // If the referencee type isn't canonical, this won't be a canonical type
1558  // either, so fill in the canonical type field.
1559  QualType Canonical;
1560  if (!SpelledAsLValue || InnerRef || !T.isCanonical()) {
1561    QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
1562    Canonical = getLValueReferenceType(getCanonicalType(PointeeType));
1563
1564    // Get the new insert position for the node we care about.
1565    LValueReferenceType *NewIP =
1566      LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
1567    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1568  }
1569
1570  LValueReferenceType *New
1571    = new (*this, TypeAlignment) LValueReferenceType(T, Canonical,
1572                                                     SpelledAsLValue);
1573  Types.push_back(New);
1574  LValueReferenceTypes.InsertNode(New, InsertPos);
1575
1576  return QualType(New, 0);
1577}
1578
1579/// getRValueReferenceType - Return the uniqued reference to the type for an
1580/// rvalue reference to the specified type.
1581QualType ASTContext::getRValueReferenceType(QualType T) const {
1582  // Unique pointers, to guarantee there is only one pointer of a particular
1583  // structure.
1584  llvm::FoldingSetNodeID ID;
1585  ReferenceType::Profile(ID, T, false);
1586
1587  void *InsertPos = 0;
1588  if (RValueReferenceType *RT =
1589        RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
1590    return QualType(RT, 0);
1591
1592  const ReferenceType *InnerRef = T->getAs<ReferenceType>();
1593
1594  // If the referencee type isn't canonical, this won't be a canonical type
1595  // either, so fill in the canonical type field.
1596  QualType Canonical;
1597  if (InnerRef || !T.isCanonical()) {
1598    QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
1599    Canonical = getRValueReferenceType(getCanonicalType(PointeeType));
1600
1601    // Get the new insert position for the node we care about.
1602    RValueReferenceType *NewIP =
1603      RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
1604    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1605  }
1606
1607  RValueReferenceType *New
1608    = new (*this, TypeAlignment) RValueReferenceType(T, Canonical);
1609  Types.push_back(New);
1610  RValueReferenceTypes.InsertNode(New, InsertPos);
1611  return QualType(New, 0);
1612}
1613
1614/// getMemberPointerType - Return the uniqued reference to the type for a
1615/// member pointer to the specified type, in the specified class.
1616QualType ASTContext::getMemberPointerType(QualType T, const Type *Cls) const {
1617  // Unique pointers, to guarantee there is only one pointer of a particular
1618  // structure.
1619  llvm::FoldingSetNodeID ID;
1620  MemberPointerType::Profile(ID, T, Cls);
1621
1622  void *InsertPos = 0;
1623  if (MemberPointerType *PT =
1624      MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1625    return QualType(PT, 0);
1626
1627  // If the pointee or class type isn't canonical, this won't be a canonical
1628  // type either, so fill in the canonical type field.
1629  QualType Canonical;
1630  if (!T.isCanonical() || !Cls->isCanonicalUnqualified()) {
1631    Canonical = getMemberPointerType(getCanonicalType(T),getCanonicalType(Cls));
1632
1633    // Get the new insert position for the node we care about.
1634    MemberPointerType *NewIP =
1635      MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
1636    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1637  }
1638  MemberPointerType *New
1639    = new (*this, TypeAlignment) MemberPointerType(T, Cls, Canonical);
1640  Types.push_back(New);
1641  MemberPointerTypes.InsertNode(New, InsertPos);
1642  return QualType(New, 0);
1643}
1644
1645/// getConstantArrayType - Return the unique reference to the type for an
1646/// array of the specified element type.
1647QualType ASTContext::getConstantArrayType(QualType EltTy,
1648                                          const llvm::APInt &ArySizeIn,
1649                                          ArrayType::ArraySizeModifier ASM,
1650                                          unsigned IndexTypeQuals) const {
1651  assert((EltTy->isDependentType() ||
1652          EltTy->isIncompleteType() || EltTy->isConstantSizeType()) &&
1653         "Constant array of VLAs is illegal!");
1654
1655  // Convert the array size into a canonical width matching the pointer size for
1656  // the target.
1657  llvm::APInt ArySize(ArySizeIn);
1658  ArySize =
1659    ArySize.zextOrTrunc(Target->getPointerWidth(getTargetAddressSpace(EltTy)));
1660
1661  llvm::FoldingSetNodeID ID;
1662  ConstantArrayType::Profile(ID, EltTy, ArySize, ASM, IndexTypeQuals);
1663
1664  void *InsertPos = 0;
1665  if (ConstantArrayType *ATP =
1666      ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
1667    return QualType(ATP, 0);
1668
1669  // If the element type isn't canonical or has qualifiers, this won't
1670  // be a canonical type either, so fill in the canonical type field.
1671  QualType Canon;
1672  if (!EltTy.isCanonical() || EltTy.hasLocalQualifiers()) {
1673    SplitQualType canonSplit = getCanonicalType(EltTy).split();
1674    Canon = getConstantArrayType(QualType(canonSplit.first, 0), ArySize,
1675                                 ASM, IndexTypeQuals);
1676    Canon = getQualifiedType(Canon, canonSplit.second);
1677
1678    // Get the new insert position for the node we care about.
1679    ConstantArrayType *NewIP =
1680      ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
1681    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1682  }
1683
1684  ConstantArrayType *New = new(*this,TypeAlignment)
1685    ConstantArrayType(EltTy, Canon, ArySize, ASM, IndexTypeQuals);
1686  ConstantArrayTypes.InsertNode(New, InsertPos);
1687  Types.push_back(New);
1688  return QualType(New, 0);
1689}
1690
1691/// getVariableArrayDecayedType - Turns the given type, which may be
1692/// variably-modified, into the corresponding type with all the known
1693/// sizes replaced with [*].
1694QualType ASTContext::getVariableArrayDecayedType(QualType type) const {
1695  // Vastly most common case.
1696  if (!type->isVariablyModifiedType()) return type;
1697
1698  QualType result;
1699
1700  SplitQualType split = type.getSplitDesugaredType();
1701  const Type *ty = split.first;
1702  switch (ty->getTypeClass()) {
1703#define TYPE(Class, Base)
1704#define ABSTRACT_TYPE(Class, Base)
1705#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
1706#include "clang/AST/TypeNodes.def"
1707    llvm_unreachable("didn't desugar past all non-canonical types?");
1708
1709  // These types should never be variably-modified.
1710  case Type::Builtin:
1711  case Type::Complex:
1712  case Type::Vector:
1713  case Type::ExtVector:
1714  case Type::DependentSizedExtVector:
1715  case Type::ObjCObject:
1716  case Type::ObjCInterface:
1717  case Type::ObjCObjectPointer:
1718  case Type::Record:
1719  case Type::Enum:
1720  case Type::UnresolvedUsing:
1721  case Type::TypeOfExpr:
1722  case Type::TypeOf:
1723  case Type::Decltype:
1724  case Type::UnaryTransform:
1725  case Type::DependentName:
1726  case Type::InjectedClassName:
1727  case Type::TemplateSpecialization:
1728  case Type::DependentTemplateSpecialization:
1729  case Type::TemplateTypeParm:
1730  case Type::SubstTemplateTypeParmPack:
1731  case Type::Auto:
1732  case Type::PackExpansion:
1733    llvm_unreachable("type should never be variably-modified");
1734
1735  // These types can be variably-modified but should never need to
1736  // further decay.
1737  case Type::FunctionNoProto:
1738  case Type::FunctionProto:
1739  case Type::BlockPointer:
1740  case Type::MemberPointer:
1741    return type;
1742
1743  // These types can be variably-modified.  All these modifications
1744  // preserve structure except as noted by comments.
1745  // TODO: if we ever care about optimizing VLAs, there are no-op
1746  // optimizations available here.
1747  case Type::Pointer:
1748    result = getPointerType(getVariableArrayDecayedType(
1749                              cast<PointerType>(ty)->getPointeeType()));
1750    break;
1751
1752  case Type::LValueReference: {
1753    const LValueReferenceType *lv = cast<LValueReferenceType>(ty);
1754    result = getLValueReferenceType(
1755                 getVariableArrayDecayedType(lv->getPointeeType()),
1756                                    lv->isSpelledAsLValue());
1757    break;
1758  }
1759
1760  case Type::RValueReference: {
1761    const RValueReferenceType *lv = cast<RValueReferenceType>(ty);
1762    result = getRValueReferenceType(
1763                 getVariableArrayDecayedType(lv->getPointeeType()));
1764    break;
1765  }
1766
1767  case Type::Atomic: {
1768    const AtomicType *at = cast<AtomicType>(ty);
1769    result = getAtomicType(getVariableArrayDecayedType(at->getValueType()));
1770    break;
1771  }
1772
1773  case Type::ConstantArray: {
1774    const ConstantArrayType *cat = cast<ConstantArrayType>(ty);
1775    result = getConstantArrayType(
1776                 getVariableArrayDecayedType(cat->getElementType()),
1777                                  cat->getSize(),
1778                                  cat->getSizeModifier(),
1779                                  cat->getIndexTypeCVRQualifiers());
1780    break;
1781  }
1782
1783  case Type::DependentSizedArray: {
1784    const DependentSizedArrayType *dat = cast<DependentSizedArrayType>(ty);
1785    result = getDependentSizedArrayType(
1786                 getVariableArrayDecayedType(dat->getElementType()),
1787                                        dat->getSizeExpr(),
1788                                        dat->getSizeModifier(),
1789                                        dat->getIndexTypeCVRQualifiers(),
1790                                        dat->getBracketsRange());
1791    break;
1792  }
1793
1794  // Turn incomplete types into [*] types.
1795  case Type::IncompleteArray: {
1796    const IncompleteArrayType *iat = cast<IncompleteArrayType>(ty);
1797    result = getVariableArrayType(
1798                 getVariableArrayDecayedType(iat->getElementType()),
1799                                  /*size*/ 0,
1800                                  ArrayType::Normal,
1801                                  iat->getIndexTypeCVRQualifiers(),
1802                                  SourceRange());
1803    break;
1804  }
1805
1806  // Turn VLA types into [*] types.
1807  case Type::VariableArray: {
1808    const VariableArrayType *vat = cast<VariableArrayType>(ty);
1809    result = getVariableArrayType(
1810                 getVariableArrayDecayedType(vat->getElementType()),
1811                                  /*size*/ 0,
1812                                  ArrayType::Star,
1813                                  vat->getIndexTypeCVRQualifiers(),
1814                                  vat->getBracketsRange());
1815    break;
1816  }
1817  }
1818
1819  // Apply the top-level qualifiers from the original.
1820  return getQualifiedType(result, split.second);
1821}
1822
1823/// getVariableArrayType - Returns a non-unique reference to the type for a
1824/// variable array of the specified element type.
1825QualType ASTContext::getVariableArrayType(QualType EltTy,
1826                                          Expr *NumElts,
1827                                          ArrayType::ArraySizeModifier ASM,
1828                                          unsigned IndexTypeQuals,
1829                                          SourceRange Brackets) const {
1830  // Since we don't unique expressions, it isn't possible to unique VLA's
1831  // that have an expression provided for their size.
1832  QualType Canon;
1833
1834  // Be sure to pull qualifiers off the element type.
1835  if (!EltTy.isCanonical() || EltTy.hasLocalQualifiers()) {
1836    SplitQualType canonSplit = getCanonicalType(EltTy).split();
1837    Canon = getVariableArrayType(QualType(canonSplit.first, 0), NumElts, ASM,
1838                                 IndexTypeQuals, Brackets);
1839    Canon = getQualifiedType(Canon, canonSplit.second);
1840  }
1841
1842  VariableArrayType *New = new(*this, TypeAlignment)
1843    VariableArrayType(EltTy, Canon, NumElts, ASM, IndexTypeQuals, Brackets);
1844
1845  VariableArrayTypes.push_back(New);
1846  Types.push_back(New);
1847  return QualType(New, 0);
1848}
1849
1850/// getDependentSizedArrayType - Returns a non-unique reference to
1851/// the type for a dependently-sized array of the specified element
1852/// type.
1853QualType ASTContext::getDependentSizedArrayType(QualType elementType,
1854                                                Expr *numElements,
1855                                                ArrayType::ArraySizeModifier ASM,
1856                                                unsigned elementTypeQuals,
1857                                                SourceRange brackets) const {
1858  assert((!numElements || numElements->isTypeDependent() ||
1859          numElements->isValueDependent()) &&
1860         "Size must be type- or value-dependent!");
1861
1862  // Dependently-sized array types that do not have a specified number
1863  // of elements will have their sizes deduced from a dependent
1864  // initializer.  We do no canonicalization here at all, which is okay
1865  // because they can't be used in most locations.
1866  if (!numElements) {
1867    DependentSizedArrayType *newType
1868      = new (*this, TypeAlignment)
1869          DependentSizedArrayType(*this, elementType, QualType(),
1870                                  numElements, ASM, elementTypeQuals,
1871                                  brackets);
1872    Types.push_back(newType);
1873    return QualType(newType, 0);
1874  }
1875
1876  // Otherwise, we actually build a new type every time, but we
1877  // also build a canonical type.
1878
1879  SplitQualType canonElementType = getCanonicalType(elementType).split();
1880
1881  void *insertPos = 0;
1882  llvm::FoldingSetNodeID ID;
1883  DependentSizedArrayType::Profile(ID, *this,
1884                                   QualType(canonElementType.first, 0),
1885                                   ASM, elementTypeQuals, numElements);
1886
1887  // Look for an existing type with these properties.
1888  DependentSizedArrayType *canonTy =
1889    DependentSizedArrayTypes.FindNodeOrInsertPos(ID, insertPos);
1890
1891  // If we don't have one, build one.
1892  if (!canonTy) {
1893    canonTy = new (*this, TypeAlignment)
1894      DependentSizedArrayType(*this, QualType(canonElementType.first, 0),
1895                              QualType(), numElements, ASM, elementTypeQuals,
1896                              brackets);
1897    DependentSizedArrayTypes.InsertNode(canonTy, insertPos);
1898    Types.push_back(canonTy);
1899  }
1900
1901  // Apply qualifiers from the element type to the array.
1902  QualType canon = getQualifiedType(QualType(canonTy,0),
1903                                    canonElementType.second);
1904
1905  // If we didn't need extra canonicalization for the element type,
1906  // then just use that as our result.
1907  if (QualType(canonElementType.first, 0) == elementType)
1908    return canon;
1909
1910  // Otherwise, we need to build a type which follows the spelling
1911  // of the element type.
1912  DependentSizedArrayType *sugaredType
1913    = new (*this, TypeAlignment)
1914        DependentSizedArrayType(*this, elementType, canon, numElements,
1915                                ASM, elementTypeQuals, brackets);
1916  Types.push_back(sugaredType);
1917  return QualType(sugaredType, 0);
1918}
1919
1920QualType ASTContext::getIncompleteArrayType(QualType elementType,
1921                                            ArrayType::ArraySizeModifier ASM,
1922                                            unsigned elementTypeQuals) const {
1923  llvm::FoldingSetNodeID ID;
1924  IncompleteArrayType::Profile(ID, elementType, ASM, elementTypeQuals);
1925
1926  void *insertPos = 0;
1927  if (IncompleteArrayType *iat =
1928       IncompleteArrayTypes.FindNodeOrInsertPos(ID, insertPos))
1929    return QualType(iat, 0);
1930
1931  // If the element type isn't canonical, this won't be a canonical type
1932  // either, so fill in the canonical type field.  We also have to pull
1933  // qualifiers off the element type.
1934  QualType canon;
1935
1936  if (!elementType.isCanonical() || elementType.hasLocalQualifiers()) {
1937    SplitQualType canonSplit = getCanonicalType(elementType).split();
1938    canon = getIncompleteArrayType(QualType(canonSplit.first, 0),
1939                                   ASM, elementTypeQuals);
1940    canon = getQualifiedType(canon, canonSplit.second);
1941
1942    // Get the new insert position for the node we care about.
1943    IncompleteArrayType *existing =
1944      IncompleteArrayTypes.FindNodeOrInsertPos(ID, insertPos);
1945    assert(!existing && "Shouldn't be in the map!"); (void) existing;
1946  }
1947
1948  IncompleteArrayType *newType = new (*this, TypeAlignment)
1949    IncompleteArrayType(elementType, canon, ASM, elementTypeQuals);
1950
1951  IncompleteArrayTypes.InsertNode(newType, insertPos);
1952  Types.push_back(newType);
1953  return QualType(newType, 0);
1954}
1955
1956/// getVectorType - Return the unique reference to a vector type of
1957/// the specified element type and size. VectorType must be a built-in type.
1958QualType ASTContext::getVectorType(QualType vecType, unsigned NumElts,
1959                                   VectorType::VectorKind VecKind) const {
1960  assert(vecType->isBuiltinType());
1961
1962  // Check if we've already instantiated a vector of this type.
1963  llvm::FoldingSetNodeID ID;
1964  VectorType::Profile(ID, vecType, NumElts, Type::Vector, VecKind);
1965
1966  void *InsertPos = 0;
1967  if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
1968    return QualType(VTP, 0);
1969
1970  // If the element type isn't canonical, this won't be a canonical type either,
1971  // so fill in the canonical type field.
1972  QualType Canonical;
1973  if (!vecType.isCanonical()) {
1974    Canonical = getVectorType(getCanonicalType(vecType), NumElts, VecKind);
1975
1976    // Get the new insert position for the node we care about.
1977    VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
1978    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1979  }
1980  VectorType *New = new (*this, TypeAlignment)
1981    VectorType(vecType, NumElts, Canonical, VecKind);
1982  VectorTypes.InsertNode(New, InsertPos);
1983  Types.push_back(New);
1984  return QualType(New, 0);
1985}
1986
1987/// getExtVectorType - Return the unique reference to an extended vector type of
1988/// the specified element type and size. VectorType must be a built-in type.
1989QualType
1990ASTContext::getExtVectorType(QualType vecType, unsigned NumElts) const {
1991  assert(vecType->isBuiltinType() || vecType->isDependentType());
1992
1993  // Check if we've already instantiated a vector of this type.
1994  llvm::FoldingSetNodeID ID;
1995  VectorType::Profile(ID, vecType, NumElts, Type::ExtVector,
1996                      VectorType::GenericVector);
1997  void *InsertPos = 0;
1998  if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
1999    return QualType(VTP, 0);
2000
2001  // If the element type isn't canonical, this won't be a canonical type either,
2002  // so fill in the canonical type field.
2003  QualType Canonical;
2004  if (!vecType.isCanonical()) {
2005    Canonical = getExtVectorType(getCanonicalType(vecType), NumElts);
2006
2007    // Get the new insert position for the node we care about.
2008    VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
2009    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2010  }
2011  ExtVectorType *New = new (*this, TypeAlignment)
2012    ExtVectorType(vecType, NumElts, Canonical);
2013  VectorTypes.InsertNode(New, InsertPos);
2014  Types.push_back(New);
2015  return QualType(New, 0);
2016}
2017
2018QualType
2019ASTContext::getDependentSizedExtVectorType(QualType vecType,
2020                                           Expr *SizeExpr,
2021                                           SourceLocation AttrLoc) const {
2022  llvm::FoldingSetNodeID ID;
2023  DependentSizedExtVectorType::Profile(ID, *this, getCanonicalType(vecType),
2024                                       SizeExpr);
2025
2026  void *InsertPos = 0;
2027  DependentSizedExtVectorType *Canon
2028    = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
2029  DependentSizedExtVectorType *New;
2030  if (Canon) {
2031    // We already have a canonical version of this array type; use it as
2032    // the canonical type for a newly-built type.
2033    New = new (*this, TypeAlignment)
2034      DependentSizedExtVectorType(*this, vecType, QualType(Canon, 0),
2035                                  SizeExpr, AttrLoc);
2036  } else {
2037    QualType CanonVecTy = getCanonicalType(vecType);
2038    if (CanonVecTy == vecType) {
2039      New = new (*this, TypeAlignment)
2040        DependentSizedExtVectorType(*this, vecType, QualType(), SizeExpr,
2041                                    AttrLoc);
2042
2043      DependentSizedExtVectorType *CanonCheck
2044        = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
2045      assert(!CanonCheck && "Dependent-sized ext_vector canonical type broken");
2046      (void)CanonCheck;
2047      DependentSizedExtVectorTypes.InsertNode(New, InsertPos);
2048    } else {
2049      QualType Canon = getDependentSizedExtVectorType(CanonVecTy, SizeExpr,
2050                                                      SourceLocation());
2051      New = new (*this, TypeAlignment)
2052        DependentSizedExtVectorType(*this, vecType, Canon, SizeExpr, AttrLoc);
2053    }
2054  }
2055
2056  Types.push_back(New);
2057  return QualType(New, 0);
2058}
2059
2060/// getFunctionNoProtoType - Return a K&R style C function type like 'int()'.
2061///
2062QualType
2063ASTContext::getFunctionNoProtoType(QualType ResultTy,
2064                                   const FunctionType::ExtInfo &Info) const {
2065  const CallingConv DefaultCC = Info.getCC();
2066  const CallingConv CallConv = (LangOpts.MRTD && DefaultCC == CC_Default) ?
2067                               CC_X86StdCall : DefaultCC;
2068  // Unique functions, to guarantee there is only one function of a particular
2069  // structure.
2070  llvm::FoldingSetNodeID ID;
2071  FunctionNoProtoType::Profile(ID, ResultTy, Info);
2072
2073  void *InsertPos = 0;
2074  if (FunctionNoProtoType *FT =
2075        FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
2076    return QualType(FT, 0);
2077
2078  QualType Canonical;
2079  if (!ResultTy.isCanonical() ||
2080      getCanonicalCallConv(CallConv) != CallConv) {
2081    Canonical =
2082      getFunctionNoProtoType(getCanonicalType(ResultTy),
2083                     Info.withCallingConv(getCanonicalCallConv(CallConv)));
2084
2085    // Get the new insert position for the node we care about.
2086    FunctionNoProtoType *NewIP =
2087      FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
2088    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2089  }
2090
2091  FunctionProtoType::ExtInfo newInfo = Info.withCallingConv(CallConv);
2092  FunctionNoProtoType *New = new (*this, TypeAlignment)
2093    FunctionNoProtoType(ResultTy, Canonical, newInfo);
2094  Types.push_back(New);
2095  FunctionNoProtoTypes.InsertNode(New, InsertPos);
2096  return QualType(New, 0);
2097}
2098
2099/// getFunctionType - Return a normal function type with a typed argument
2100/// list.  isVariadic indicates whether the argument list includes '...'.
2101QualType
2102ASTContext::getFunctionType(QualType ResultTy,
2103                            const QualType *ArgArray, unsigned NumArgs,
2104                            const FunctionProtoType::ExtProtoInfo &EPI) const {
2105  // Unique functions, to guarantee there is only one function of a particular
2106  // structure.
2107  llvm::FoldingSetNodeID ID;
2108  FunctionProtoType::Profile(ID, ResultTy, ArgArray, NumArgs, EPI, *this);
2109
2110  void *InsertPos = 0;
2111  if (FunctionProtoType *FTP =
2112        FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
2113    return QualType(FTP, 0);
2114
2115  // Determine whether the type being created is already canonical or not.
2116  bool isCanonical= EPI.ExceptionSpecType == EST_None && ResultTy.isCanonical();
2117  for (unsigned i = 0; i != NumArgs && isCanonical; ++i)
2118    if (!ArgArray[i].isCanonicalAsParam())
2119      isCanonical = false;
2120
2121  const CallingConv DefaultCC = EPI.ExtInfo.getCC();
2122  const CallingConv CallConv = (LangOpts.MRTD && DefaultCC == CC_Default) ?
2123                               CC_X86StdCall : DefaultCC;
2124
2125  // If this type isn't canonical, get the canonical version of it.
2126  // The exception spec is not part of the canonical type.
2127  QualType Canonical;
2128  if (!isCanonical || getCanonicalCallConv(CallConv) != CallConv) {
2129    SmallVector<QualType, 16> CanonicalArgs;
2130    CanonicalArgs.reserve(NumArgs);
2131    for (unsigned i = 0; i != NumArgs; ++i)
2132      CanonicalArgs.push_back(getCanonicalParamType(ArgArray[i]));
2133
2134    FunctionProtoType::ExtProtoInfo CanonicalEPI = EPI;
2135    CanonicalEPI.ExceptionSpecType = EST_None;
2136    CanonicalEPI.NumExceptions = 0;
2137    CanonicalEPI.ExtInfo
2138      = CanonicalEPI.ExtInfo.withCallingConv(getCanonicalCallConv(CallConv));
2139
2140    Canonical = getFunctionType(getCanonicalType(ResultTy),
2141                                CanonicalArgs.data(), NumArgs,
2142                                CanonicalEPI);
2143
2144    // Get the new insert position for the node we care about.
2145    FunctionProtoType *NewIP =
2146      FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
2147    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2148  }
2149
2150  // FunctionProtoType objects are allocated with extra bytes after
2151  // them for three variable size arrays at the end:
2152  //  - parameter types
2153  //  - exception types
2154  //  - consumed-arguments flags
2155  // Instead of the exception types, there could be a noexcept
2156  // expression.
2157  size_t Size = sizeof(FunctionProtoType) +
2158                NumArgs * sizeof(QualType);
2159  if (EPI.ExceptionSpecType == EST_Dynamic)
2160    Size += EPI.NumExceptions * sizeof(QualType);
2161  else if (EPI.ExceptionSpecType == EST_ComputedNoexcept) {
2162    Size += sizeof(Expr*);
2163  }
2164  if (EPI.ConsumedArguments)
2165    Size += NumArgs * sizeof(bool);
2166
2167  FunctionProtoType *FTP = (FunctionProtoType*) Allocate(Size, TypeAlignment);
2168  FunctionProtoType::ExtProtoInfo newEPI = EPI;
2169  newEPI.ExtInfo = EPI.ExtInfo.withCallingConv(CallConv);
2170  new (FTP) FunctionProtoType(ResultTy, ArgArray, NumArgs, Canonical, newEPI);
2171  Types.push_back(FTP);
2172  FunctionProtoTypes.InsertNode(FTP, InsertPos);
2173  return QualType(FTP, 0);
2174}
2175
2176#ifndef NDEBUG
2177static bool NeedsInjectedClassNameType(const RecordDecl *D) {
2178  if (!isa<CXXRecordDecl>(D)) return false;
2179  const CXXRecordDecl *RD = cast<CXXRecordDecl>(D);
2180  if (isa<ClassTemplatePartialSpecializationDecl>(RD))
2181    return true;
2182  if (RD->getDescribedClassTemplate() &&
2183      !isa<ClassTemplateSpecializationDecl>(RD))
2184    return true;
2185  return false;
2186}
2187#endif
2188
2189/// getInjectedClassNameType - Return the unique reference to the
2190/// injected class name type for the specified templated declaration.
2191QualType ASTContext::getInjectedClassNameType(CXXRecordDecl *Decl,
2192                                              QualType TST) const {
2193  assert(NeedsInjectedClassNameType(Decl));
2194  if (Decl->TypeForDecl) {
2195    assert(isa<InjectedClassNameType>(Decl->TypeForDecl));
2196  } else if (CXXRecordDecl *PrevDecl = Decl->getPreviousDeclaration()) {
2197    assert(PrevDecl->TypeForDecl && "previous declaration has no type");
2198    Decl->TypeForDecl = PrevDecl->TypeForDecl;
2199    assert(isa<InjectedClassNameType>(Decl->TypeForDecl));
2200  } else {
2201    Type *newType =
2202      new (*this, TypeAlignment) InjectedClassNameType(Decl, TST);
2203    Decl->TypeForDecl = newType;
2204    Types.push_back(newType);
2205  }
2206  return QualType(Decl->TypeForDecl, 0);
2207}
2208
2209/// getTypeDeclType - Return the unique reference to the type for the
2210/// specified type declaration.
2211QualType ASTContext::getTypeDeclTypeSlow(const TypeDecl *Decl) const {
2212  assert(Decl && "Passed null for Decl param");
2213  assert(!Decl->TypeForDecl && "TypeForDecl present in slow case");
2214
2215  if (const TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Decl))
2216    return getTypedefType(Typedef);
2217
2218  assert(!isa<TemplateTypeParmDecl>(Decl) &&
2219         "Template type parameter types are always available.");
2220
2221  if (const RecordDecl *Record = dyn_cast<RecordDecl>(Decl)) {
2222    assert(!Record->getPreviousDeclaration() &&
2223           "struct/union has previous declaration");
2224    assert(!NeedsInjectedClassNameType(Record));
2225    return getRecordType(Record);
2226  } else if (const EnumDecl *Enum = dyn_cast<EnumDecl>(Decl)) {
2227    assert(!Enum->getPreviousDeclaration() &&
2228           "enum has previous declaration");
2229    return getEnumType(Enum);
2230  } else if (const UnresolvedUsingTypenameDecl *Using =
2231               dyn_cast<UnresolvedUsingTypenameDecl>(Decl)) {
2232    Type *newType = new (*this, TypeAlignment) UnresolvedUsingType(Using);
2233    Decl->TypeForDecl = newType;
2234    Types.push_back(newType);
2235  } else
2236    llvm_unreachable("TypeDecl without a type?");
2237
2238  return QualType(Decl->TypeForDecl, 0);
2239}
2240
2241/// getTypedefType - Return the unique reference to the type for the
2242/// specified typedef name decl.
2243QualType
2244ASTContext::getTypedefType(const TypedefNameDecl *Decl,
2245                           QualType Canonical) const {
2246  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
2247
2248  if (Canonical.isNull())
2249    Canonical = getCanonicalType(Decl->getUnderlyingType());
2250  TypedefType *newType = new(*this, TypeAlignment)
2251    TypedefType(Type::Typedef, Decl, Canonical);
2252  Decl->TypeForDecl = newType;
2253  Types.push_back(newType);
2254  return QualType(newType, 0);
2255}
2256
2257QualType ASTContext::getRecordType(const RecordDecl *Decl) const {
2258  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
2259
2260  if (const RecordDecl *PrevDecl = Decl->getPreviousDeclaration())
2261    if (PrevDecl->TypeForDecl)
2262      return QualType(Decl->TypeForDecl = PrevDecl->TypeForDecl, 0);
2263
2264  RecordType *newType = new (*this, TypeAlignment) RecordType(Decl);
2265  Decl->TypeForDecl = newType;
2266  Types.push_back(newType);
2267  return QualType(newType, 0);
2268}
2269
2270QualType ASTContext::getEnumType(const EnumDecl *Decl) const {
2271  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
2272
2273  if (const EnumDecl *PrevDecl = Decl->getPreviousDeclaration())
2274    if (PrevDecl->TypeForDecl)
2275      return QualType(Decl->TypeForDecl = PrevDecl->TypeForDecl, 0);
2276
2277  EnumType *newType = new (*this, TypeAlignment) EnumType(Decl);
2278  Decl->TypeForDecl = newType;
2279  Types.push_back(newType);
2280  return QualType(newType, 0);
2281}
2282
2283QualType ASTContext::getAttributedType(AttributedType::Kind attrKind,
2284                                       QualType modifiedType,
2285                                       QualType equivalentType) {
2286  llvm::FoldingSetNodeID id;
2287  AttributedType::Profile(id, attrKind, modifiedType, equivalentType);
2288
2289  void *insertPos = 0;
2290  AttributedType *type = AttributedTypes.FindNodeOrInsertPos(id, insertPos);
2291  if (type) return QualType(type, 0);
2292
2293  QualType canon = getCanonicalType(equivalentType);
2294  type = new (*this, TypeAlignment)
2295           AttributedType(canon, attrKind, modifiedType, equivalentType);
2296
2297  Types.push_back(type);
2298  AttributedTypes.InsertNode(type, insertPos);
2299
2300  return QualType(type, 0);
2301}
2302
2303
2304/// \brief Retrieve a substitution-result type.
2305QualType
2306ASTContext::getSubstTemplateTypeParmType(const TemplateTypeParmType *Parm,
2307                                         QualType Replacement) const {
2308  assert(Replacement.isCanonical()
2309         && "replacement types must always be canonical");
2310
2311  llvm::FoldingSetNodeID ID;
2312  SubstTemplateTypeParmType::Profile(ID, Parm, Replacement);
2313  void *InsertPos = 0;
2314  SubstTemplateTypeParmType *SubstParm
2315    = SubstTemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
2316
2317  if (!SubstParm) {
2318    SubstParm = new (*this, TypeAlignment)
2319      SubstTemplateTypeParmType(Parm, Replacement);
2320    Types.push_back(SubstParm);
2321    SubstTemplateTypeParmTypes.InsertNode(SubstParm, InsertPos);
2322  }
2323
2324  return QualType(SubstParm, 0);
2325}
2326
2327/// \brief Retrieve a
2328QualType ASTContext::getSubstTemplateTypeParmPackType(
2329                                          const TemplateTypeParmType *Parm,
2330                                              const TemplateArgument &ArgPack) {
2331#ifndef NDEBUG
2332  for (TemplateArgument::pack_iterator P = ArgPack.pack_begin(),
2333                                    PEnd = ArgPack.pack_end();
2334       P != PEnd; ++P) {
2335    assert(P->getKind() == TemplateArgument::Type &&"Pack contains a non-type");
2336    assert(P->getAsType().isCanonical() && "Pack contains non-canonical type");
2337  }
2338#endif
2339
2340  llvm::FoldingSetNodeID ID;
2341  SubstTemplateTypeParmPackType::Profile(ID, Parm, ArgPack);
2342  void *InsertPos = 0;
2343  if (SubstTemplateTypeParmPackType *SubstParm
2344        = SubstTemplateTypeParmPackTypes.FindNodeOrInsertPos(ID, InsertPos))
2345    return QualType(SubstParm, 0);
2346
2347  QualType Canon;
2348  if (!Parm->isCanonicalUnqualified()) {
2349    Canon = getCanonicalType(QualType(Parm, 0));
2350    Canon = getSubstTemplateTypeParmPackType(cast<TemplateTypeParmType>(Canon),
2351                                             ArgPack);
2352    SubstTemplateTypeParmPackTypes.FindNodeOrInsertPos(ID, InsertPos);
2353  }
2354
2355  SubstTemplateTypeParmPackType *SubstParm
2356    = new (*this, TypeAlignment) SubstTemplateTypeParmPackType(Parm, Canon,
2357                                                               ArgPack);
2358  Types.push_back(SubstParm);
2359  SubstTemplateTypeParmTypes.InsertNode(SubstParm, InsertPos);
2360  return QualType(SubstParm, 0);
2361}
2362
2363/// \brief Retrieve the template type parameter type for a template
2364/// parameter or parameter pack with the given depth, index, and (optionally)
2365/// name.
2366QualType ASTContext::getTemplateTypeParmType(unsigned Depth, unsigned Index,
2367                                             bool ParameterPack,
2368                                             TemplateTypeParmDecl *TTPDecl) const {
2369  llvm::FoldingSetNodeID ID;
2370  TemplateTypeParmType::Profile(ID, Depth, Index, ParameterPack, TTPDecl);
2371  void *InsertPos = 0;
2372  TemplateTypeParmType *TypeParm
2373    = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
2374
2375  if (TypeParm)
2376    return QualType(TypeParm, 0);
2377
2378  if (TTPDecl) {
2379    QualType Canon = getTemplateTypeParmType(Depth, Index, ParameterPack);
2380    TypeParm = new (*this, TypeAlignment) TemplateTypeParmType(TTPDecl, Canon);
2381
2382    TemplateTypeParmType *TypeCheck
2383      = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
2384    assert(!TypeCheck && "Template type parameter canonical type broken");
2385    (void)TypeCheck;
2386  } else
2387    TypeParm = new (*this, TypeAlignment)
2388      TemplateTypeParmType(Depth, Index, ParameterPack);
2389
2390  Types.push_back(TypeParm);
2391  TemplateTypeParmTypes.InsertNode(TypeParm, InsertPos);
2392
2393  return QualType(TypeParm, 0);
2394}
2395
2396TypeSourceInfo *
2397ASTContext::getTemplateSpecializationTypeInfo(TemplateName Name,
2398                                              SourceLocation NameLoc,
2399                                        const TemplateArgumentListInfo &Args,
2400                                              QualType Underlying) const {
2401  assert(!Name.getAsDependentTemplateName() &&
2402         "No dependent template names here!");
2403  QualType TST = getTemplateSpecializationType(Name, Args, Underlying);
2404
2405  TypeSourceInfo *DI = CreateTypeSourceInfo(TST);
2406  TemplateSpecializationTypeLoc TL
2407    = cast<TemplateSpecializationTypeLoc>(DI->getTypeLoc());
2408  TL.setTemplateNameLoc(NameLoc);
2409  TL.setLAngleLoc(Args.getLAngleLoc());
2410  TL.setRAngleLoc(Args.getRAngleLoc());
2411  for (unsigned i = 0, e = TL.getNumArgs(); i != e; ++i)
2412    TL.setArgLocInfo(i, Args[i].getLocInfo());
2413  return DI;
2414}
2415
2416QualType
2417ASTContext::getTemplateSpecializationType(TemplateName Template,
2418                                          const TemplateArgumentListInfo &Args,
2419                                          QualType Underlying) const {
2420  assert(!Template.getAsDependentTemplateName() &&
2421         "No dependent template names here!");
2422
2423  unsigned NumArgs = Args.size();
2424
2425  SmallVector<TemplateArgument, 4> ArgVec;
2426  ArgVec.reserve(NumArgs);
2427  for (unsigned i = 0; i != NumArgs; ++i)
2428    ArgVec.push_back(Args[i].getArgument());
2429
2430  return getTemplateSpecializationType(Template, ArgVec.data(), NumArgs,
2431                                       Underlying);
2432}
2433
2434QualType
2435ASTContext::getTemplateSpecializationType(TemplateName Template,
2436                                          const TemplateArgument *Args,
2437                                          unsigned NumArgs,
2438                                          QualType Underlying) const {
2439  assert(!Template.getAsDependentTemplateName() &&
2440         "No dependent template names here!");
2441  // Look through qualified template names.
2442  if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName())
2443    Template = TemplateName(QTN->getTemplateDecl());
2444
2445  bool isTypeAlias =
2446    Template.getAsTemplateDecl() &&
2447    isa<TypeAliasTemplateDecl>(Template.getAsTemplateDecl());
2448
2449  QualType CanonType;
2450  if (!Underlying.isNull())
2451    CanonType = getCanonicalType(Underlying);
2452  else {
2453    assert(!isTypeAlias &&
2454           "Underlying type for template alias must be computed by caller");
2455    CanonType = getCanonicalTemplateSpecializationType(Template, Args,
2456                                                       NumArgs);
2457  }
2458
2459  // Allocate the (non-canonical) template specialization type, but don't
2460  // try to unique it: these types typically have location information that
2461  // we don't unique and don't want to lose.
2462  void *Mem = Allocate(sizeof(TemplateSpecializationType) +
2463                       sizeof(TemplateArgument) * NumArgs +
2464                       (isTypeAlias ? sizeof(QualType) : 0),
2465                       TypeAlignment);
2466  TemplateSpecializationType *Spec
2467    = new (Mem) TemplateSpecializationType(Template,
2468                                           Args, NumArgs,
2469                                           CanonType,
2470                                         isTypeAlias ? Underlying : QualType());
2471
2472  Types.push_back(Spec);
2473  return QualType(Spec, 0);
2474}
2475
2476QualType
2477ASTContext::getCanonicalTemplateSpecializationType(TemplateName Template,
2478                                                   const TemplateArgument *Args,
2479                                                   unsigned NumArgs) const {
2480  assert(!Template.getAsDependentTemplateName() &&
2481         "No dependent template names here!");
2482  assert((!Template.getAsTemplateDecl() ||
2483          !isa<TypeAliasTemplateDecl>(Template.getAsTemplateDecl())) &&
2484         "Underlying type for template alias must be computed by caller");
2485
2486  // Look through qualified template names.
2487  if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName())
2488    Template = TemplateName(QTN->getTemplateDecl());
2489
2490  // Build the canonical template specialization type.
2491  TemplateName CanonTemplate = getCanonicalTemplateName(Template);
2492  SmallVector<TemplateArgument, 4> CanonArgs;
2493  CanonArgs.reserve(NumArgs);
2494  for (unsigned I = 0; I != NumArgs; ++I)
2495    CanonArgs.push_back(getCanonicalTemplateArgument(Args[I]));
2496
2497  // Determine whether this canonical template specialization type already
2498  // exists.
2499  llvm::FoldingSetNodeID ID;
2500  TemplateSpecializationType::Profile(ID, CanonTemplate,
2501                                      CanonArgs.data(), NumArgs, *this);
2502
2503  void *InsertPos = 0;
2504  TemplateSpecializationType *Spec
2505    = TemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
2506
2507  if (!Spec) {
2508    // Allocate a new canonical template specialization type.
2509    void *Mem = Allocate((sizeof(TemplateSpecializationType) +
2510                          sizeof(TemplateArgument) * NumArgs),
2511                         TypeAlignment);
2512    Spec = new (Mem) TemplateSpecializationType(CanonTemplate,
2513                                                CanonArgs.data(), NumArgs,
2514                                                QualType(), QualType());
2515    Types.push_back(Spec);
2516    TemplateSpecializationTypes.InsertNode(Spec, InsertPos);
2517  }
2518
2519  assert(Spec->isDependentType() &&
2520         "Non-dependent template-id type must have a canonical type");
2521  return QualType(Spec, 0);
2522}
2523
2524QualType
2525ASTContext::getElaboratedType(ElaboratedTypeKeyword Keyword,
2526                              NestedNameSpecifier *NNS,
2527                              QualType NamedType) const {
2528  llvm::FoldingSetNodeID ID;
2529  ElaboratedType::Profile(ID, Keyword, NNS, NamedType);
2530
2531  void *InsertPos = 0;
2532  ElaboratedType *T = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
2533  if (T)
2534    return QualType(T, 0);
2535
2536  QualType Canon = NamedType;
2537  if (!Canon.isCanonical()) {
2538    Canon = getCanonicalType(NamedType);
2539    ElaboratedType *CheckT = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
2540    assert(!CheckT && "Elaborated canonical type broken");
2541    (void)CheckT;
2542  }
2543
2544  T = new (*this) ElaboratedType(Keyword, NNS, NamedType, Canon);
2545  Types.push_back(T);
2546  ElaboratedTypes.InsertNode(T, InsertPos);
2547  return QualType(T, 0);
2548}
2549
2550QualType
2551ASTContext::getParenType(QualType InnerType) const {
2552  llvm::FoldingSetNodeID ID;
2553  ParenType::Profile(ID, InnerType);
2554
2555  void *InsertPos = 0;
2556  ParenType *T = ParenTypes.FindNodeOrInsertPos(ID, InsertPos);
2557  if (T)
2558    return QualType(T, 0);
2559
2560  QualType Canon = InnerType;
2561  if (!Canon.isCanonical()) {
2562    Canon = getCanonicalType(InnerType);
2563    ParenType *CheckT = ParenTypes.FindNodeOrInsertPos(ID, InsertPos);
2564    assert(!CheckT && "Paren canonical type broken");
2565    (void)CheckT;
2566  }
2567
2568  T = new (*this) ParenType(InnerType, Canon);
2569  Types.push_back(T);
2570  ParenTypes.InsertNode(T, InsertPos);
2571  return QualType(T, 0);
2572}
2573
2574QualType ASTContext::getDependentNameType(ElaboratedTypeKeyword Keyword,
2575                                          NestedNameSpecifier *NNS,
2576                                          const IdentifierInfo *Name,
2577                                          QualType Canon) const {
2578  assert(NNS->isDependent() && "nested-name-specifier must be dependent");
2579
2580  if (Canon.isNull()) {
2581    NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
2582    ElaboratedTypeKeyword CanonKeyword = Keyword;
2583    if (Keyword == ETK_None)
2584      CanonKeyword = ETK_Typename;
2585
2586    if (CanonNNS != NNS || CanonKeyword != Keyword)
2587      Canon = getDependentNameType(CanonKeyword, CanonNNS, Name);
2588  }
2589
2590  llvm::FoldingSetNodeID ID;
2591  DependentNameType::Profile(ID, Keyword, NNS, Name);
2592
2593  void *InsertPos = 0;
2594  DependentNameType *T
2595    = DependentNameTypes.FindNodeOrInsertPos(ID, InsertPos);
2596  if (T)
2597    return QualType(T, 0);
2598
2599  T = new (*this) DependentNameType(Keyword, NNS, Name, Canon);
2600  Types.push_back(T);
2601  DependentNameTypes.InsertNode(T, InsertPos);
2602  return QualType(T, 0);
2603}
2604
2605QualType
2606ASTContext::getDependentTemplateSpecializationType(
2607                                 ElaboratedTypeKeyword Keyword,
2608                                 NestedNameSpecifier *NNS,
2609                                 const IdentifierInfo *Name,
2610                                 const TemplateArgumentListInfo &Args) const {
2611  // TODO: avoid this copy
2612  SmallVector<TemplateArgument, 16> ArgCopy;
2613  for (unsigned I = 0, E = Args.size(); I != E; ++I)
2614    ArgCopy.push_back(Args[I].getArgument());
2615  return getDependentTemplateSpecializationType(Keyword, NNS, Name,
2616                                                ArgCopy.size(),
2617                                                ArgCopy.data());
2618}
2619
2620QualType
2621ASTContext::getDependentTemplateSpecializationType(
2622                                 ElaboratedTypeKeyword Keyword,
2623                                 NestedNameSpecifier *NNS,
2624                                 const IdentifierInfo *Name,
2625                                 unsigned NumArgs,
2626                                 const TemplateArgument *Args) const {
2627  assert((!NNS || NNS->isDependent()) &&
2628         "nested-name-specifier must be dependent");
2629
2630  llvm::FoldingSetNodeID ID;
2631  DependentTemplateSpecializationType::Profile(ID, *this, Keyword, NNS,
2632                                               Name, NumArgs, Args);
2633
2634  void *InsertPos = 0;
2635  DependentTemplateSpecializationType *T
2636    = DependentTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
2637  if (T)
2638    return QualType(T, 0);
2639
2640  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
2641
2642  ElaboratedTypeKeyword CanonKeyword = Keyword;
2643  if (Keyword == ETK_None) CanonKeyword = ETK_Typename;
2644
2645  bool AnyNonCanonArgs = false;
2646  SmallVector<TemplateArgument, 16> CanonArgs(NumArgs);
2647  for (unsigned I = 0; I != NumArgs; ++I) {
2648    CanonArgs[I] = getCanonicalTemplateArgument(Args[I]);
2649    if (!CanonArgs[I].structurallyEquals(Args[I]))
2650      AnyNonCanonArgs = true;
2651  }
2652
2653  QualType Canon;
2654  if (AnyNonCanonArgs || CanonNNS != NNS || CanonKeyword != Keyword) {
2655    Canon = getDependentTemplateSpecializationType(CanonKeyword, CanonNNS,
2656                                                   Name, NumArgs,
2657                                                   CanonArgs.data());
2658
2659    // Find the insert position again.
2660    DependentTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
2661  }
2662
2663  void *Mem = Allocate((sizeof(DependentTemplateSpecializationType) +
2664                        sizeof(TemplateArgument) * NumArgs),
2665                       TypeAlignment);
2666  T = new (Mem) DependentTemplateSpecializationType(Keyword, NNS,
2667                                                    Name, NumArgs, Args, Canon);
2668  Types.push_back(T);
2669  DependentTemplateSpecializationTypes.InsertNode(T, InsertPos);
2670  return QualType(T, 0);
2671}
2672
2673QualType ASTContext::getPackExpansionType(QualType Pattern,
2674                                      llvm::Optional<unsigned> NumExpansions) {
2675  llvm::FoldingSetNodeID ID;
2676  PackExpansionType::Profile(ID, Pattern, NumExpansions);
2677
2678  assert(Pattern->containsUnexpandedParameterPack() &&
2679         "Pack expansions must expand one or more parameter packs");
2680  void *InsertPos = 0;
2681  PackExpansionType *T
2682    = PackExpansionTypes.FindNodeOrInsertPos(ID, InsertPos);
2683  if (T)
2684    return QualType(T, 0);
2685
2686  QualType Canon;
2687  if (!Pattern.isCanonical()) {
2688    Canon = getPackExpansionType(getCanonicalType(Pattern), NumExpansions);
2689
2690    // Find the insert position again.
2691    PackExpansionTypes.FindNodeOrInsertPos(ID, InsertPos);
2692  }
2693
2694  T = new (*this) PackExpansionType(Pattern, Canon, NumExpansions);
2695  Types.push_back(T);
2696  PackExpansionTypes.InsertNode(T, InsertPos);
2697  return QualType(T, 0);
2698}
2699
2700/// CmpProtocolNames - Comparison predicate for sorting protocols
2701/// alphabetically.
2702static bool CmpProtocolNames(const ObjCProtocolDecl *LHS,
2703                            const ObjCProtocolDecl *RHS) {
2704  return LHS->getDeclName() < RHS->getDeclName();
2705}
2706
2707static bool areSortedAndUniqued(ObjCProtocolDecl * const *Protocols,
2708                                unsigned NumProtocols) {
2709  if (NumProtocols == 0) return true;
2710
2711  for (unsigned i = 1; i != NumProtocols; ++i)
2712    if (!CmpProtocolNames(Protocols[i-1], Protocols[i]))
2713      return false;
2714  return true;
2715}
2716
2717static void SortAndUniqueProtocols(ObjCProtocolDecl **Protocols,
2718                                   unsigned &NumProtocols) {
2719  ObjCProtocolDecl **ProtocolsEnd = Protocols+NumProtocols;
2720
2721  // Sort protocols, keyed by name.
2722  std::sort(Protocols, Protocols+NumProtocols, CmpProtocolNames);
2723
2724  // Remove duplicates.
2725  ProtocolsEnd = std::unique(Protocols, ProtocolsEnd);
2726  NumProtocols = ProtocolsEnd-Protocols;
2727}
2728
2729QualType ASTContext::getObjCObjectType(QualType BaseType,
2730                                       ObjCProtocolDecl * const *Protocols,
2731                                       unsigned NumProtocols) const {
2732  // If the base type is an interface and there aren't any protocols
2733  // to add, then the interface type will do just fine.
2734  if (!NumProtocols && isa<ObjCInterfaceType>(BaseType))
2735    return BaseType;
2736
2737  // Look in the folding set for an existing type.
2738  llvm::FoldingSetNodeID ID;
2739  ObjCObjectTypeImpl::Profile(ID, BaseType, Protocols, NumProtocols);
2740  void *InsertPos = 0;
2741  if (ObjCObjectType *QT = ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos))
2742    return QualType(QT, 0);
2743
2744  // Build the canonical type, which has the canonical base type and
2745  // a sorted-and-uniqued list of protocols.
2746  QualType Canonical;
2747  bool ProtocolsSorted = areSortedAndUniqued(Protocols, NumProtocols);
2748  if (!ProtocolsSorted || !BaseType.isCanonical()) {
2749    if (!ProtocolsSorted) {
2750      SmallVector<ObjCProtocolDecl*, 8> Sorted(Protocols,
2751                                                     Protocols + NumProtocols);
2752      unsigned UniqueCount = NumProtocols;
2753
2754      SortAndUniqueProtocols(&Sorted[0], UniqueCount);
2755      Canonical = getObjCObjectType(getCanonicalType(BaseType),
2756                                    &Sorted[0], UniqueCount);
2757    } else {
2758      Canonical = getObjCObjectType(getCanonicalType(BaseType),
2759                                    Protocols, NumProtocols);
2760    }
2761
2762    // Regenerate InsertPos.
2763    ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos);
2764  }
2765
2766  unsigned Size = sizeof(ObjCObjectTypeImpl);
2767  Size += NumProtocols * sizeof(ObjCProtocolDecl *);
2768  void *Mem = Allocate(Size, TypeAlignment);
2769  ObjCObjectTypeImpl *T =
2770    new (Mem) ObjCObjectTypeImpl(Canonical, BaseType, Protocols, NumProtocols);
2771
2772  Types.push_back(T);
2773  ObjCObjectTypes.InsertNode(T, InsertPos);
2774  return QualType(T, 0);
2775}
2776
2777/// getObjCObjectPointerType - Return a ObjCObjectPointerType type for
2778/// the given object type.
2779QualType ASTContext::getObjCObjectPointerType(QualType ObjectT) const {
2780  llvm::FoldingSetNodeID ID;
2781  ObjCObjectPointerType::Profile(ID, ObjectT);
2782
2783  void *InsertPos = 0;
2784  if (ObjCObjectPointerType *QT =
2785              ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
2786    return QualType(QT, 0);
2787
2788  // Find the canonical object type.
2789  QualType Canonical;
2790  if (!ObjectT.isCanonical()) {
2791    Canonical = getObjCObjectPointerType(getCanonicalType(ObjectT));
2792
2793    // Regenerate InsertPos.
2794    ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
2795  }
2796
2797  // No match.
2798  void *Mem = Allocate(sizeof(ObjCObjectPointerType), TypeAlignment);
2799  ObjCObjectPointerType *QType =
2800    new (Mem) ObjCObjectPointerType(Canonical, ObjectT);
2801
2802  Types.push_back(QType);
2803  ObjCObjectPointerTypes.InsertNode(QType, InsertPos);
2804  return QualType(QType, 0);
2805}
2806
2807/// getObjCInterfaceType - Return the unique reference to the type for the
2808/// specified ObjC interface decl. The list of protocols is optional.
2809QualType ASTContext::getObjCInterfaceType(const ObjCInterfaceDecl *Decl) const {
2810  if (Decl->TypeForDecl)
2811    return QualType(Decl->TypeForDecl, 0);
2812
2813  // FIXME: redeclarations?
2814  void *Mem = Allocate(sizeof(ObjCInterfaceType), TypeAlignment);
2815  ObjCInterfaceType *T = new (Mem) ObjCInterfaceType(Decl);
2816  Decl->TypeForDecl = T;
2817  Types.push_back(T);
2818  return QualType(T, 0);
2819}
2820
2821/// getTypeOfExprType - Unlike many "get<Type>" functions, we can't unique
2822/// TypeOfExprType AST's (since expression's are never shared). For example,
2823/// multiple declarations that refer to "typeof(x)" all contain different
2824/// DeclRefExpr's. This doesn't effect the type checker, since it operates
2825/// on canonical type's (which are always unique).
2826QualType ASTContext::getTypeOfExprType(Expr *tofExpr) const {
2827  TypeOfExprType *toe;
2828  if (tofExpr->isTypeDependent()) {
2829    llvm::FoldingSetNodeID ID;
2830    DependentTypeOfExprType::Profile(ID, *this, tofExpr);
2831
2832    void *InsertPos = 0;
2833    DependentTypeOfExprType *Canon
2834      = DependentTypeOfExprTypes.FindNodeOrInsertPos(ID, InsertPos);
2835    if (Canon) {
2836      // We already have a "canonical" version of an identical, dependent
2837      // typeof(expr) type. Use that as our canonical type.
2838      toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr,
2839                                          QualType((TypeOfExprType*)Canon, 0));
2840    } else {
2841      // Build a new, canonical typeof(expr) type.
2842      Canon
2843        = new (*this, TypeAlignment) DependentTypeOfExprType(*this, tofExpr);
2844      DependentTypeOfExprTypes.InsertNode(Canon, InsertPos);
2845      toe = Canon;
2846    }
2847  } else {
2848    QualType Canonical = getCanonicalType(tofExpr->getType());
2849    toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr, Canonical);
2850  }
2851  Types.push_back(toe);
2852  return QualType(toe, 0);
2853}
2854
2855/// getTypeOfType -  Unlike many "get<Type>" functions, we don't unique
2856/// TypeOfType AST's. The only motivation to unique these nodes would be
2857/// memory savings. Since typeof(t) is fairly uncommon, space shouldn't be
2858/// an issue. This doesn't effect the type checker, since it operates
2859/// on canonical type's (which are always unique).
2860QualType ASTContext::getTypeOfType(QualType tofType) const {
2861  QualType Canonical = getCanonicalType(tofType);
2862  TypeOfType *tot = new (*this, TypeAlignment) TypeOfType(tofType, Canonical);
2863  Types.push_back(tot);
2864  return QualType(tot, 0);
2865}
2866
2867/// getDecltypeForExpr - Given an expr, will return the decltype for that
2868/// expression, according to the rules in C++0x [dcl.type.simple]p4
2869static QualType getDecltypeForExpr(const Expr *e, const ASTContext &Context) {
2870  if (e->isTypeDependent())
2871    return Context.DependentTy;
2872
2873  // If e is an id expression or a class member access, decltype(e) is defined
2874  // as the type of the entity named by e.
2875  if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(e)) {
2876    if (const ValueDecl *VD = dyn_cast<ValueDecl>(DRE->getDecl()))
2877      return VD->getType();
2878  }
2879  if (const MemberExpr *ME = dyn_cast<MemberExpr>(e)) {
2880    if (const FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl()))
2881      return FD->getType();
2882  }
2883  // If e is a function call or an invocation of an overloaded operator,
2884  // (parentheses around e are ignored), decltype(e) is defined as the
2885  // return type of that function.
2886  if (const CallExpr *CE = dyn_cast<CallExpr>(e->IgnoreParens()))
2887    return CE->getCallReturnType();
2888
2889  QualType T = e->getType();
2890
2891  // Otherwise, where T is the type of e, if e is an lvalue, decltype(e) is
2892  // defined as T&, otherwise decltype(e) is defined as T.
2893  if (e->isLValue())
2894    T = Context.getLValueReferenceType(T);
2895
2896  return T;
2897}
2898
2899/// getDecltypeType -  Unlike many "get<Type>" functions, we don't unique
2900/// DecltypeType AST's. The only motivation to unique these nodes would be
2901/// memory savings. Since decltype(t) is fairly uncommon, space shouldn't be
2902/// an issue. This doesn't effect the type checker, since it operates
2903/// on canonical types (which are always unique).
2904QualType ASTContext::getDecltypeType(Expr *e) const {
2905  DecltypeType *dt;
2906
2907  // C++0x [temp.type]p2:
2908  //   If an expression e involves a template parameter, decltype(e) denotes a
2909  //   unique dependent type. Two such decltype-specifiers refer to the same
2910  //   type only if their expressions are equivalent (14.5.6.1).
2911  if (e->isInstantiationDependent()) {
2912    llvm::FoldingSetNodeID ID;
2913    DependentDecltypeType::Profile(ID, *this, e);
2914
2915    void *InsertPos = 0;
2916    DependentDecltypeType *Canon
2917      = DependentDecltypeTypes.FindNodeOrInsertPos(ID, InsertPos);
2918    if (Canon) {
2919      // We already have a "canonical" version of an equivalent, dependent
2920      // decltype type. Use that as our canonical type.
2921      dt = new (*this, TypeAlignment) DecltypeType(e, DependentTy,
2922                                       QualType((DecltypeType*)Canon, 0));
2923    } else {
2924      // Build a new, canonical typeof(expr) type.
2925      Canon = new (*this, TypeAlignment) DependentDecltypeType(*this, e);
2926      DependentDecltypeTypes.InsertNode(Canon, InsertPos);
2927      dt = Canon;
2928    }
2929  } else {
2930    QualType T = getDecltypeForExpr(e, *this);
2931    dt = new (*this, TypeAlignment) DecltypeType(e, T, getCanonicalType(T));
2932  }
2933  Types.push_back(dt);
2934  return QualType(dt, 0);
2935}
2936
2937/// getUnaryTransformationType - We don't unique these, since the memory
2938/// savings are minimal and these are rare.
2939QualType ASTContext::getUnaryTransformType(QualType BaseType,
2940                                           QualType UnderlyingType,
2941                                           UnaryTransformType::UTTKind Kind)
2942    const {
2943  UnaryTransformType *Ty =
2944    new (*this, TypeAlignment) UnaryTransformType (BaseType, UnderlyingType,
2945                                                   Kind,
2946                                 UnderlyingType->isDependentType() ?
2947                                    QualType() : UnderlyingType);
2948  Types.push_back(Ty);
2949  return QualType(Ty, 0);
2950}
2951
2952/// getAutoType - We only unique auto types after they've been deduced.
2953QualType ASTContext::getAutoType(QualType DeducedType) const {
2954  void *InsertPos = 0;
2955  if (!DeducedType.isNull()) {
2956    // Look in the folding set for an existing type.
2957    llvm::FoldingSetNodeID ID;
2958    AutoType::Profile(ID, DeducedType);
2959    if (AutoType *AT = AutoTypes.FindNodeOrInsertPos(ID, InsertPos))
2960      return QualType(AT, 0);
2961  }
2962
2963  AutoType *AT = new (*this, TypeAlignment) AutoType(DeducedType);
2964  Types.push_back(AT);
2965  if (InsertPos)
2966    AutoTypes.InsertNode(AT, InsertPos);
2967  return QualType(AT, 0);
2968}
2969
2970/// getAtomicType - Return the uniqued reference to the atomic type for
2971/// the given value type.
2972QualType ASTContext::getAtomicType(QualType T) const {
2973  // Unique pointers, to guarantee there is only one pointer of a particular
2974  // structure.
2975  llvm::FoldingSetNodeID ID;
2976  AtomicType::Profile(ID, T);
2977
2978  void *InsertPos = 0;
2979  if (AtomicType *AT = AtomicTypes.FindNodeOrInsertPos(ID, InsertPos))
2980    return QualType(AT, 0);
2981
2982  // If the atomic value type isn't canonical, this won't be a canonical type
2983  // either, so fill in the canonical type field.
2984  QualType Canonical;
2985  if (!T.isCanonical()) {
2986    Canonical = getAtomicType(getCanonicalType(T));
2987
2988    // Get the new insert position for the node we care about.
2989    AtomicType *NewIP = AtomicTypes.FindNodeOrInsertPos(ID, InsertPos);
2990    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2991  }
2992  AtomicType *New = new (*this, TypeAlignment) AtomicType(T, Canonical);
2993  Types.push_back(New);
2994  AtomicTypes.InsertNode(New, InsertPos);
2995  return QualType(New, 0);
2996}
2997
2998/// getAutoDeductType - Get type pattern for deducing against 'auto'.
2999QualType ASTContext::getAutoDeductType() const {
3000  if (AutoDeductTy.isNull())
3001    AutoDeductTy = getAutoType(QualType());
3002  assert(!AutoDeductTy.isNull() && "can't build 'auto' pattern");
3003  return AutoDeductTy;
3004}
3005
3006/// getAutoRRefDeductType - Get type pattern for deducing against 'auto &&'.
3007QualType ASTContext::getAutoRRefDeductType() const {
3008  if (AutoRRefDeductTy.isNull())
3009    AutoRRefDeductTy = getRValueReferenceType(getAutoDeductType());
3010  assert(!AutoRRefDeductTy.isNull() && "can't build 'auto &&' pattern");
3011  return AutoRRefDeductTy;
3012}
3013
3014/// getTagDeclType - Return the unique reference to the type for the
3015/// specified TagDecl (struct/union/class/enum) decl.
3016QualType ASTContext::getTagDeclType(const TagDecl *Decl) const {
3017  assert (Decl);
3018  // FIXME: What is the design on getTagDeclType when it requires casting
3019  // away const?  mutable?
3020  return getTypeDeclType(const_cast<TagDecl*>(Decl));
3021}
3022
3023/// getSizeType - Return the unique type for "size_t" (C99 7.17), the result
3024/// of the sizeof operator (C99 6.5.3.4p4). The value is target dependent and
3025/// needs to agree with the definition in <stddef.h>.
3026CanQualType ASTContext::getSizeType() const {
3027  return getFromTargetType(Target->getSizeType());
3028}
3029
3030/// getIntMaxType - Return the unique type for "intmax_t" (C99 7.18.1.5).
3031CanQualType ASTContext::getIntMaxType() const {
3032  return getFromTargetType(Target->getIntMaxType());
3033}
3034
3035/// getUIntMaxType - Return the unique type for "uintmax_t" (C99 7.18.1.5).
3036CanQualType ASTContext::getUIntMaxType() const {
3037  return getFromTargetType(Target->getUIntMaxType());
3038}
3039
3040/// getSignedWCharType - Return the type of "signed wchar_t".
3041/// Used when in C++, as a GCC extension.
3042QualType ASTContext::getSignedWCharType() const {
3043  // FIXME: derive from "Target" ?
3044  return WCharTy;
3045}
3046
3047/// getUnsignedWCharType - Return the type of "unsigned wchar_t".
3048/// Used when in C++, as a GCC extension.
3049QualType ASTContext::getUnsignedWCharType() const {
3050  // FIXME: derive from "Target" ?
3051  return UnsignedIntTy;
3052}
3053
3054/// getPointerDiffType - Return the unique type for "ptrdiff_t" (C99 7.17)
3055/// defined in <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9).
3056QualType ASTContext::getPointerDiffType() const {
3057  return getFromTargetType(Target->getPtrDiffType(0));
3058}
3059
3060//===----------------------------------------------------------------------===//
3061//                              Type Operators
3062//===----------------------------------------------------------------------===//
3063
3064CanQualType ASTContext::getCanonicalParamType(QualType T) const {
3065  // Push qualifiers into arrays, and then discard any remaining
3066  // qualifiers.
3067  T = getCanonicalType(T);
3068  T = getVariableArrayDecayedType(T);
3069  const Type *Ty = T.getTypePtr();
3070  QualType Result;
3071  if (isa<ArrayType>(Ty)) {
3072    Result = getArrayDecayedType(QualType(Ty,0));
3073  } else if (isa<FunctionType>(Ty)) {
3074    Result = getPointerType(QualType(Ty, 0));
3075  } else {
3076    Result = QualType(Ty, 0);
3077  }
3078
3079  return CanQualType::CreateUnsafe(Result);
3080}
3081
3082QualType ASTContext::getUnqualifiedArrayType(QualType type,
3083                                             Qualifiers &quals) {
3084  SplitQualType splitType = type.getSplitUnqualifiedType();
3085
3086  // FIXME: getSplitUnqualifiedType() actually walks all the way to
3087  // the unqualified desugared type and then drops it on the floor.
3088  // We then have to strip that sugar back off with
3089  // getUnqualifiedDesugaredType(), which is silly.
3090  const ArrayType *AT =
3091    dyn_cast<ArrayType>(splitType.first->getUnqualifiedDesugaredType());
3092
3093  // If we don't have an array, just use the results in splitType.
3094  if (!AT) {
3095    quals = splitType.second;
3096    return QualType(splitType.first, 0);
3097  }
3098
3099  // Otherwise, recurse on the array's element type.
3100  QualType elementType = AT->getElementType();
3101  QualType unqualElementType = getUnqualifiedArrayType(elementType, quals);
3102
3103  // If that didn't change the element type, AT has no qualifiers, so we
3104  // can just use the results in splitType.
3105  if (elementType == unqualElementType) {
3106    assert(quals.empty()); // from the recursive call
3107    quals = splitType.second;
3108    return QualType(splitType.first, 0);
3109  }
3110
3111  // Otherwise, add in the qualifiers from the outermost type, then
3112  // build the type back up.
3113  quals.addConsistentQualifiers(splitType.second);
3114
3115  if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) {
3116    return getConstantArrayType(unqualElementType, CAT->getSize(),
3117                                CAT->getSizeModifier(), 0);
3118  }
3119
3120  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) {
3121    return getIncompleteArrayType(unqualElementType, IAT->getSizeModifier(), 0);
3122  }
3123
3124  if (const VariableArrayType *VAT = dyn_cast<VariableArrayType>(AT)) {
3125    return getVariableArrayType(unqualElementType,
3126                                VAT->getSizeExpr(),
3127                                VAT->getSizeModifier(),
3128                                VAT->getIndexTypeCVRQualifiers(),
3129                                VAT->getBracketsRange());
3130  }
3131
3132  const DependentSizedArrayType *DSAT = cast<DependentSizedArrayType>(AT);
3133  return getDependentSizedArrayType(unqualElementType, DSAT->getSizeExpr(),
3134                                    DSAT->getSizeModifier(), 0,
3135                                    SourceRange());
3136}
3137
3138/// UnwrapSimilarPointerTypes - If T1 and T2 are pointer types  that
3139/// may be similar (C++ 4.4), replaces T1 and T2 with the type that
3140/// they point to and return true. If T1 and T2 aren't pointer types
3141/// or pointer-to-member types, or if they are not similar at this
3142/// level, returns false and leaves T1 and T2 unchanged. Top-level
3143/// qualifiers on T1 and T2 are ignored. This function will typically
3144/// be called in a loop that successively "unwraps" pointer and
3145/// pointer-to-member types to compare them at each level.
3146bool ASTContext::UnwrapSimilarPointerTypes(QualType &T1, QualType &T2) {
3147  const PointerType *T1PtrType = T1->getAs<PointerType>(),
3148                    *T2PtrType = T2->getAs<PointerType>();
3149  if (T1PtrType && T2PtrType) {
3150    T1 = T1PtrType->getPointeeType();
3151    T2 = T2PtrType->getPointeeType();
3152    return true;
3153  }
3154
3155  const MemberPointerType *T1MPType = T1->getAs<MemberPointerType>(),
3156                          *T2MPType = T2->getAs<MemberPointerType>();
3157  if (T1MPType && T2MPType &&
3158      hasSameUnqualifiedType(QualType(T1MPType->getClass(), 0),
3159                             QualType(T2MPType->getClass(), 0))) {
3160    T1 = T1MPType->getPointeeType();
3161    T2 = T2MPType->getPointeeType();
3162    return true;
3163  }
3164
3165  if (getLangOptions().ObjC1) {
3166    const ObjCObjectPointerType *T1OPType = T1->getAs<ObjCObjectPointerType>(),
3167                                *T2OPType = T2->getAs<ObjCObjectPointerType>();
3168    if (T1OPType && T2OPType) {
3169      T1 = T1OPType->getPointeeType();
3170      T2 = T2OPType->getPointeeType();
3171      return true;
3172    }
3173  }
3174
3175  // FIXME: Block pointers, too?
3176
3177  return false;
3178}
3179
3180DeclarationNameInfo
3181ASTContext::getNameForTemplate(TemplateName Name,
3182                               SourceLocation NameLoc) const {
3183  switch (Name.getKind()) {
3184  case TemplateName::QualifiedTemplate:
3185  case TemplateName::Template:
3186    // DNInfo work in progress: CHECKME: what about DNLoc?
3187    return DeclarationNameInfo(Name.getAsTemplateDecl()->getDeclName(),
3188                               NameLoc);
3189
3190  case TemplateName::OverloadedTemplate: {
3191    OverloadedTemplateStorage *Storage = Name.getAsOverloadedTemplate();
3192    // DNInfo work in progress: CHECKME: what about DNLoc?
3193    return DeclarationNameInfo((*Storage->begin())->getDeclName(), NameLoc);
3194  }
3195
3196  case TemplateName::DependentTemplate: {
3197    DependentTemplateName *DTN = Name.getAsDependentTemplateName();
3198    DeclarationName DName;
3199    if (DTN->isIdentifier()) {
3200      DName = DeclarationNames.getIdentifier(DTN->getIdentifier());
3201      return DeclarationNameInfo(DName, NameLoc);
3202    } else {
3203      DName = DeclarationNames.getCXXOperatorName(DTN->getOperator());
3204      // DNInfo work in progress: FIXME: source locations?
3205      DeclarationNameLoc DNLoc;
3206      DNLoc.CXXOperatorName.BeginOpNameLoc = SourceLocation().getRawEncoding();
3207      DNLoc.CXXOperatorName.EndOpNameLoc = SourceLocation().getRawEncoding();
3208      return DeclarationNameInfo(DName, NameLoc, DNLoc);
3209    }
3210  }
3211
3212  case TemplateName::SubstTemplateTemplateParm: {
3213    SubstTemplateTemplateParmStorage *subst
3214      = Name.getAsSubstTemplateTemplateParm();
3215    return DeclarationNameInfo(subst->getParameter()->getDeclName(),
3216                               NameLoc);
3217  }
3218
3219  case TemplateName::SubstTemplateTemplateParmPack: {
3220    SubstTemplateTemplateParmPackStorage *subst
3221      = Name.getAsSubstTemplateTemplateParmPack();
3222    return DeclarationNameInfo(subst->getParameterPack()->getDeclName(),
3223                               NameLoc);
3224  }
3225  }
3226
3227  llvm_unreachable("bad template name kind!");
3228}
3229
3230TemplateName ASTContext::getCanonicalTemplateName(TemplateName Name) const {
3231  switch (Name.getKind()) {
3232  case TemplateName::QualifiedTemplate:
3233  case TemplateName::Template: {
3234    TemplateDecl *Template = Name.getAsTemplateDecl();
3235    if (TemplateTemplateParmDecl *TTP
3236          = dyn_cast<TemplateTemplateParmDecl>(Template))
3237      Template = getCanonicalTemplateTemplateParmDecl(TTP);
3238
3239    // The canonical template name is the canonical template declaration.
3240    return TemplateName(cast<TemplateDecl>(Template->getCanonicalDecl()));
3241  }
3242
3243  case TemplateName::OverloadedTemplate:
3244    llvm_unreachable("cannot canonicalize overloaded template");
3245
3246  case TemplateName::DependentTemplate: {
3247    DependentTemplateName *DTN = Name.getAsDependentTemplateName();
3248    assert(DTN && "Non-dependent template names must refer to template decls.");
3249    return DTN->CanonicalTemplateName;
3250  }
3251
3252  case TemplateName::SubstTemplateTemplateParm: {
3253    SubstTemplateTemplateParmStorage *subst
3254      = Name.getAsSubstTemplateTemplateParm();
3255    return getCanonicalTemplateName(subst->getReplacement());
3256  }
3257
3258  case TemplateName::SubstTemplateTemplateParmPack: {
3259    SubstTemplateTemplateParmPackStorage *subst
3260                                  = Name.getAsSubstTemplateTemplateParmPack();
3261    TemplateTemplateParmDecl *canonParameter
3262      = getCanonicalTemplateTemplateParmDecl(subst->getParameterPack());
3263    TemplateArgument canonArgPack
3264      = getCanonicalTemplateArgument(subst->getArgumentPack());
3265    return getSubstTemplateTemplateParmPack(canonParameter, canonArgPack);
3266  }
3267  }
3268
3269  llvm_unreachable("bad template name!");
3270}
3271
3272bool ASTContext::hasSameTemplateName(TemplateName X, TemplateName Y) {
3273  X = getCanonicalTemplateName(X);
3274  Y = getCanonicalTemplateName(Y);
3275  return X.getAsVoidPointer() == Y.getAsVoidPointer();
3276}
3277
3278TemplateArgument
3279ASTContext::getCanonicalTemplateArgument(const TemplateArgument &Arg) const {
3280  switch (Arg.getKind()) {
3281    case TemplateArgument::Null:
3282      return Arg;
3283
3284    case TemplateArgument::Expression:
3285      return Arg;
3286
3287    case TemplateArgument::Declaration:
3288      return TemplateArgument(Arg.getAsDecl()->getCanonicalDecl());
3289
3290    case TemplateArgument::Template:
3291      return TemplateArgument(getCanonicalTemplateName(Arg.getAsTemplate()));
3292
3293    case TemplateArgument::TemplateExpansion:
3294      return TemplateArgument(getCanonicalTemplateName(
3295                                         Arg.getAsTemplateOrTemplatePattern()),
3296                              Arg.getNumTemplateExpansions());
3297
3298    case TemplateArgument::Integral:
3299      return TemplateArgument(*Arg.getAsIntegral(),
3300                              getCanonicalType(Arg.getIntegralType()));
3301
3302    case TemplateArgument::Type:
3303      return TemplateArgument(getCanonicalType(Arg.getAsType()));
3304
3305    case TemplateArgument::Pack: {
3306      if (Arg.pack_size() == 0)
3307        return Arg;
3308
3309      TemplateArgument *CanonArgs
3310        = new (*this) TemplateArgument[Arg.pack_size()];
3311      unsigned Idx = 0;
3312      for (TemplateArgument::pack_iterator A = Arg.pack_begin(),
3313                                        AEnd = Arg.pack_end();
3314           A != AEnd; (void)++A, ++Idx)
3315        CanonArgs[Idx] = getCanonicalTemplateArgument(*A);
3316
3317      return TemplateArgument(CanonArgs, Arg.pack_size());
3318    }
3319  }
3320
3321  // Silence GCC warning
3322  llvm_unreachable("Unhandled template argument kind");
3323}
3324
3325NestedNameSpecifier *
3326ASTContext::getCanonicalNestedNameSpecifier(NestedNameSpecifier *NNS) const {
3327  if (!NNS)
3328    return 0;
3329
3330  switch (NNS->getKind()) {
3331  case NestedNameSpecifier::Identifier:
3332    // Canonicalize the prefix but keep the identifier the same.
3333    return NestedNameSpecifier::Create(*this,
3334                         getCanonicalNestedNameSpecifier(NNS->getPrefix()),
3335                                       NNS->getAsIdentifier());
3336
3337  case NestedNameSpecifier::Namespace:
3338    // A namespace is canonical; build a nested-name-specifier with
3339    // this namespace and no prefix.
3340    return NestedNameSpecifier::Create(*this, 0,
3341                                 NNS->getAsNamespace()->getOriginalNamespace());
3342
3343  case NestedNameSpecifier::NamespaceAlias:
3344    // A namespace is canonical; build a nested-name-specifier with
3345    // this namespace and no prefix.
3346    return NestedNameSpecifier::Create(*this, 0,
3347                                    NNS->getAsNamespaceAlias()->getNamespace()
3348                                                      ->getOriginalNamespace());
3349
3350  case NestedNameSpecifier::TypeSpec:
3351  case NestedNameSpecifier::TypeSpecWithTemplate: {
3352    QualType T = getCanonicalType(QualType(NNS->getAsType(), 0));
3353
3354    // If we have some kind of dependent-named type (e.g., "typename T::type"),
3355    // break it apart into its prefix and identifier, then reconsititute those
3356    // as the canonical nested-name-specifier. This is required to canonicalize
3357    // a dependent nested-name-specifier involving typedefs of dependent-name
3358    // types, e.g.,
3359    //   typedef typename T::type T1;
3360    //   typedef typename T1::type T2;
3361    if (const DependentNameType *DNT = T->getAs<DependentNameType>()) {
3362      NestedNameSpecifier *Prefix
3363        = getCanonicalNestedNameSpecifier(DNT->getQualifier());
3364      return NestedNameSpecifier::Create(*this, Prefix,
3365                           const_cast<IdentifierInfo *>(DNT->getIdentifier()));
3366    }
3367
3368    // Do the same thing as above, but with dependent-named specializations.
3369    if (const DependentTemplateSpecializationType *DTST
3370          = T->getAs<DependentTemplateSpecializationType>()) {
3371      NestedNameSpecifier *Prefix
3372        = getCanonicalNestedNameSpecifier(DTST->getQualifier());
3373
3374      T = getDependentTemplateSpecializationType(DTST->getKeyword(),
3375                                                 Prefix, DTST->getIdentifier(),
3376                                                 DTST->getNumArgs(),
3377                                                 DTST->getArgs());
3378      T = getCanonicalType(T);
3379    }
3380
3381    return NestedNameSpecifier::Create(*this, 0, false,
3382                                       const_cast<Type*>(T.getTypePtr()));
3383  }
3384
3385  case NestedNameSpecifier::Global:
3386    // The global specifier is canonical and unique.
3387    return NNS;
3388  }
3389
3390  // Required to silence a GCC warning
3391  return 0;
3392}
3393
3394
3395const ArrayType *ASTContext::getAsArrayType(QualType T) const {
3396  // Handle the non-qualified case efficiently.
3397  if (!T.hasLocalQualifiers()) {
3398    // Handle the common positive case fast.
3399    if (const ArrayType *AT = dyn_cast<ArrayType>(T))
3400      return AT;
3401  }
3402
3403  // Handle the common negative case fast.
3404  if (!isa<ArrayType>(T.getCanonicalType()))
3405    return 0;
3406
3407  // Apply any qualifiers from the array type to the element type.  This
3408  // implements C99 6.7.3p8: "If the specification of an array type includes
3409  // any type qualifiers, the element type is so qualified, not the array type."
3410
3411  // If we get here, we either have type qualifiers on the type, or we have
3412  // sugar such as a typedef in the way.  If we have type qualifiers on the type
3413  // we must propagate them down into the element type.
3414
3415  SplitQualType split = T.getSplitDesugaredType();
3416  Qualifiers qs = split.second;
3417
3418  // If we have a simple case, just return now.
3419  const ArrayType *ATy = dyn_cast<ArrayType>(split.first);
3420  if (ATy == 0 || qs.empty())
3421    return ATy;
3422
3423  // Otherwise, we have an array and we have qualifiers on it.  Push the
3424  // qualifiers into the array element type and return a new array type.
3425  QualType NewEltTy = getQualifiedType(ATy->getElementType(), qs);
3426
3427  if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(ATy))
3428    return cast<ArrayType>(getConstantArrayType(NewEltTy, CAT->getSize(),
3429                                                CAT->getSizeModifier(),
3430                                           CAT->getIndexTypeCVRQualifiers()));
3431  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(ATy))
3432    return cast<ArrayType>(getIncompleteArrayType(NewEltTy,
3433                                                  IAT->getSizeModifier(),
3434                                           IAT->getIndexTypeCVRQualifiers()));
3435
3436  if (const DependentSizedArrayType *DSAT
3437        = dyn_cast<DependentSizedArrayType>(ATy))
3438    return cast<ArrayType>(
3439                     getDependentSizedArrayType(NewEltTy,
3440                                                DSAT->getSizeExpr(),
3441                                                DSAT->getSizeModifier(),
3442                                              DSAT->getIndexTypeCVRQualifiers(),
3443                                                DSAT->getBracketsRange()));
3444
3445  const VariableArrayType *VAT = cast<VariableArrayType>(ATy);
3446  return cast<ArrayType>(getVariableArrayType(NewEltTy,
3447                                              VAT->getSizeExpr(),
3448                                              VAT->getSizeModifier(),
3449                                              VAT->getIndexTypeCVRQualifiers(),
3450                                              VAT->getBracketsRange()));
3451}
3452
3453QualType ASTContext::getAdjustedParameterType(QualType T) {
3454  // C99 6.7.5.3p7:
3455  //   A declaration of a parameter as "array of type" shall be
3456  //   adjusted to "qualified pointer to type", where the type
3457  //   qualifiers (if any) are those specified within the [ and ] of
3458  //   the array type derivation.
3459  if (T->isArrayType())
3460    return getArrayDecayedType(T);
3461
3462  // C99 6.7.5.3p8:
3463  //   A declaration of a parameter as "function returning type"
3464  //   shall be adjusted to "pointer to function returning type", as
3465  //   in 6.3.2.1.
3466  if (T->isFunctionType())
3467    return getPointerType(T);
3468
3469  return T;
3470}
3471
3472QualType ASTContext::getSignatureParameterType(QualType T) {
3473  T = getVariableArrayDecayedType(T);
3474  T = getAdjustedParameterType(T);
3475  return T.getUnqualifiedType();
3476}
3477
3478/// getArrayDecayedType - Return the properly qualified result of decaying the
3479/// specified array type to a pointer.  This operation is non-trivial when
3480/// handling typedefs etc.  The canonical type of "T" must be an array type,
3481/// this returns a pointer to a properly qualified element of the array.
3482///
3483/// See C99 6.7.5.3p7 and C99 6.3.2.1p3.
3484QualType ASTContext::getArrayDecayedType(QualType Ty) const {
3485  // Get the element type with 'getAsArrayType' so that we don't lose any
3486  // typedefs in the element type of the array.  This also handles propagation
3487  // of type qualifiers from the array type into the element type if present
3488  // (C99 6.7.3p8).
3489  const ArrayType *PrettyArrayType = getAsArrayType(Ty);
3490  assert(PrettyArrayType && "Not an array type!");
3491
3492  QualType PtrTy = getPointerType(PrettyArrayType->getElementType());
3493
3494  // int x[restrict 4] ->  int *restrict
3495  return getQualifiedType(PtrTy, PrettyArrayType->getIndexTypeQualifiers());
3496}
3497
3498QualType ASTContext::getBaseElementType(const ArrayType *array) const {
3499  return getBaseElementType(array->getElementType());
3500}
3501
3502QualType ASTContext::getBaseElementType(QualType type) const {
3503  Qualifiers qs;
3504  while (true) {
3505    SplitQualType split = type.getSplitDesugaredType();
3506    const ArrayType *array = split.first->getAsArrayTypeUnsafe();
3507    if (!array) break;
3508
3509    type = array->getElementType();
3510    qs.addConsistentQualifiers(split.second);
3511  }
3512
3513  return getQualifiedType(type, qs);
3514}
3515
3516/// getConstantArrayElementCount - Returns number of constant array elements.
3517uint64_t
3518ASTContext::getConstantArrayElementCount(const ConstantArrayType *CA)  const {
3519  uint64_t ElementCount = 1;
3520  do {
3521    ElementCount *= CA->getSize().getZExtValue();
3522    CA = dyn_cast<ConstantArrayType>(CA->getElementType());
3523  } while (CA);
3524  return ElementCount;
3525}
3526
3527/// getFloatingRank - Return a relative rank for floating point types.
3528/// This routine will assert if passed a built-in type that isn't a float.
3529static FloatingRank getFloatingRank(QualType T) {
3530  if (const ComplexType *CT = T->getAs<ComplexType>())
3531    return getFloatingRank(CT->getElementType());
3532
3533  assert(T->getAs<BuiltinType>() && "getFloatingRank(): not a floating type");
3534  switch (T->getAs<BuiltinType>()->getKind()) {
3535  default: llvm_unreachable("getFloatingRank(): not a floating type");
3536  case BuiltinType::Half:       return HalfRank;
3537  case BuiltinType::Float:      return FloatRank;
3538  case BuiltinType::Double:     return DoubleRank;
3539  case BuiltinType::LongDouble: return LongDoubleRank;
3540  }
3541}
3542
3543/// getFloatingTypeOfSizeWithinDomain - Returns a real floating
3544/// point or a complex type (based on typeDomain/typeSize).
3545/// 'typeDomain' is a real floating point or complex type.
3546/// 'typeSize' is a real floating point or complex type.
3547QualType ASTContext::getFloatingTypeOfSizeWithinDomain(QualType Size,
3548                                                       QualType Domain) const {
3549  FloatingRank EltRank = getFloatingRank(Size);
3550  if (Domain->isComplexType()) {
3551    switch (EltRank) {
3552    default: llvm_unreachable("getFloatingRank(): illegal value for rank");
3553    case FloatRank:      return FloatComplexTy;
3554    case DoubleRank:     return DoubleComplexTy;
3555    case LongDoubleRank: return LongDoubleComplexTy;
3556    }
3557  }
3558
3559  assert(Domain->isRealFloatingType() && "Unknown domain!");
3560  switch (EltRank) {
3561  default: llvm_unreachable("getFloatingRank(): illegal value for rank");
3562  case FloatRank:      return FloatTy;
3563  case DoubleRank:     return DoubleTy;
3564  case LongDoubleRank: return LongDoubleTy;
3565  }
3566}
3567
3568/// getFloatingTypeOrder - Compare the rank of the two specified floating
3569/// point types, ignoring the domain of the type (i.e. 'double' ==
3570/// '_Complex double').  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
3571/// LHS < RHS, return -1.
3572int ASTContext::getFloatingTypeOrder(QualType LHS, QualType RHS) const {
3573  FloatingRank LHSR = getFloatingRank(LHS);
3574  FloatingRank RHSR = getFloatingRank(RHS);
3575
3576  if (LHSR == RHSR)
3577    return 0;
3578  if (LHSR > RHSR)
3579    return 1;
3580  return -1;
3581}
3582
3583/// getIntegerRank - Return an integer conversion rank (C99 6.3.1.1p1). This
3584/// routine will assert if passed a built-in type that isn't an integer or enum,
3585/// or if it is not canonicalized.
3586unsigned ASTContext::getIntegerRank(const Type *T) const {
3587  assert(T->isCanonicalUnqualified() && "T should be canonicalized");
3588
3589  switch (cast<BuiltinType>(T)->getKind()) {
3590  default: llvm_unreachable("getIntegerRank(): not a built-in integer");
3591  case BuiltinType::Bool:
3592    return 1 + (getIntWidth(BoolTy) << 3);
3593  case BuiltinType::Char_S:
3594  case BuiltinType::Char_U:
3595  case BuiltinType::SChar:
3596  case BuiltinType::UChar:
3597    return 2 + (getIntWidth(CharTy) << 3);
3598  case BuiltinType::Short:
3599  case BuiltinType::UShort:
3600    return 3 + (getIntWidth(ShortTy) << 3);
3601  case BuiltinType::Int:
3602  case BuiltinType::UInt:
3603    return 4 + (getIntWidth(IntTy) << 3);
3604  case BuiltinType::Long:
3605  case BuiltinType::ULong:
3606    return 5 + (getIntWidth(LongTy) << 3);
3607  case BuiltinType::LongLong:
3608  case BuiltinType::ULongLong:
3609    return 6 + (getIntWidth(LongLongTy) << 3);
3610  case BuiltinType::Int128:
3611  case BuiltinType::UInt128:
3612    return 7 + (getIntWidth(Int128Ty) << 3);
3613  }
3614}
3615
3616/// \brief Whether this is a promotable bitfield reference according
3617/// to C99 6.3.1.1p2, bullet 2 (and GCC extensions).
3618///
3619/// \returns the type this bit-field will promote to, or NULL if no
3620/// promotion occurs.
3621QualType ASTContext::isPromotableBitField(Expr *E) const {
3622  if (E->isTypeDependent() || E->isValueDependent())
3623    return QualType();
3624
3625  FieldDecl *Field = E->getBitField();
3626  if (!Field)
3627    return QualType();
3628
3629  QualType FT = Field->getType();
3630
3631  uint64_t BitWidth = Field->getBitWidthValue(*this);
3632  uint64_t IntSize = getTypeSize(IntTy);
3633  // GCC extension compatibility: if the bit-field size is less than or equal
3634  // to the size of int, it gets promoted no matter what its type is.
3635  // For instance, unsigned long bf : 4 gets promoted to signed int.
3636  if (BitWidth < IntSize)
3637    return IntTy;
3638
3639  if (BitWidth == IntSize)
3640    return FT->isSignedIntegerType() ? IntTy : UnsignedIntTy;
3641
3642  // Types bigger than int are not subject to promotions, and therefore act
3643  // like the base type.
3644  // FIXME: This doesn't quite match what gcc does, but what gcc does here
3645  // is ridiculous.
3646  return QualType();
3647}
3648
3649/// getPromotedIntegerType - Returns the type that Promotable will
3650/// promote to: C99 6.3.1.1p2, assuming that Promotable is a promotable
3651/// integer type.
3652QualType ASTContext::getPromotedIntegerType(QualType Promotable) const {
3653  assert(!Promotable.isNull());
3654  assert(Promotable->isPromotableIntegerType());
3655  if (const EnumType *ET = Promotable->getAs<EnumType>())
3656    return ET->getDecl()->getPromotionType();
3657
3658  if (const BuiltinType *BT = Promotable->getAs<BuiltinType>()) {
3659    // C++ [conv.prom]: A prvalue of type char16_t, char32_t, or wchar_t
3660    // (3.9.1) can be converted to a prvalue of the first of the following
3661    // types that can represent all the values of its underlying type:
3662    // int, unsigned int, long int, unsigned long int, long long int, or
3663    // unsigned long long int [...]
3664    // FIXME: Is there some better way to compute this?
3665    if (BT->getKind() == BuiltinType::WChar_S ||
3666        BT->getKind() == BuiltinType::WChar_U ||
3667        BT->getKind() == BuiltinType::Char16 ||
3668        BT->getKind() == BuiltinType::Char32) {
3669      bool FromIsSigned = BT->getKind() == BuiltinType::WChar_S;
3670      uint64_t FromSize = getTypeSize(BT);
3671      QualType PromoteTypes[] = { IntTy, UnsignedIntTy, LongTy, UnsignedLongTy,
3672                                  LongLongTy, UnsignedLongLongTy };
3673      for (size_t Idx = 0; Idx < llvm::array_lengthof(PromoteTypes); ++Idx) {
3674        uint64_t ToSize = getTypeSize(PromoteTypes[Idx]);
3675        if (FromSize < ToSize ||
3676            (FromSize == ToSize &&
3677             FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType()))
3678          return PromoteTypes[Idx];
3679      }
3680      llvm_unreachable("char type should fit into long long");
3681    }
3682  }
3683
3684  // At this point, we should have a signed or unsigned integer type.
3685  if (Promotable->isSignedIntegerType())
3686    return IntTy;
3687  uint64_t PromotableSize = getTypeSize(Promotable);
3688  uint64_t IntSize = getTypeSize(IntTy);
3689  assert(Promotable->isUnsignedIntegerType() && PromotableSize <= IntSize);
3690  return (PromotableSize != IntSize) ? IntTy : UnsignedIntTy;
3691}
3692
3693/// \brief Recurses in pointer/array types until it finds an objc retainable
3694/// type and returns its ownership.
3695Qualifiers::ObjCLifetime ASTContext::getInnerObjCOwnership(QualType T) const {
3696  while (!T.isNull()) {
3697    if (T.getObjCLifetime() != Qualifiers::OCL_None)
3698      return T.getObjCLifetime();
3699    if (T->isArrayType())
3700      T = getBaseElementType(T);
3701    else if (const PointerType *PT = T->getAs<PointerType>())
3702      T = PT->getPointeeType();
3703    else if (const ReferenceType *RT = T->getAs<ReferenceType>())
3704      T = RT->getPointeeType();
3705    else
3706      break;
3707  }
3708
3709  return Qualifiers::OCL_None;
3710}
3711
3712/// getIntegerTypeOrder - Returns the highest ranked integer type:
3713/// C99 6.3.1.8p1.  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
3714/// LHS < RHS, return -1.
3715int ASTContext::getIntegerTypeOrder(QualType LHS, QualType RHS) const {
3716  const Type *LHSC = getCanonicalType(LHS).getTypePtr();
3717  const Type *RHSC = getCanonicalType(RHS).getTypePtr();
3718  if (LHSC == RHSC) return 0;
3719
3720  bool LHSUnsigned = LHSC->isUnsignedIntegerType();
3721  bool RHSUnsigned = RHSC->isUnsignedIntegerType();
3722
3723  unsigned LHSRank = getIntegerRank(LHSC);
3724  unsigned RHSRank = getIntegerRank(RHSC);
3725
3726  if (LHSUnsigned == RHSUnsigned) {  // Both signed or both unsigned.
3727    if (LHSRank == RHSRank) return 0;
3728    return LHSRank > RHSRank ? 1 : -1;
3729  }
3730
3731  // Otherwise, the LHS is signed and the RHS is unsigned or visa versa.
3732  if (LHSUnsigned) {
3733    // If the unsigned [LHS] type is larger, return it.
3734    if (LHSRank >= RHSRank)
3735      return 1;
3736
3737    // If the signed type can represent all values of the unsigned type, it
3738    // wins.  Because we are dealing with 2's complement and types that are
3739    // powers of two larger than each other, this is always safe.
3740    return -1;
3741  }
3742
3743  // If the unsigned [RHS] type is larger, return it.
3744  if (RHSRank >= LHSRank)
3745    return -1;
3746
3747  // If the signed type can represent all values of the unsigned type, it
3748  // wins.  Because we are dealing with 2's complement and types that are
3749  // powers of two larger than each other, this is always safe.
3750  return 1;
3751}
3752
3753static RecordDecl *
3754CreateRecordDecl(const ASTContext &Ctx, RecordDecl::TagKind TK,
3755                 DeclContext *DC, IdentifierInfo *Id) {
3756  SourceLocation Loc;
3757  if (Ctx.getLangOptions().CPlusPlus)
3758    return CXXRecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id);
3759  else
3760    return RecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id);
3761}
3762
3763// getCFConstantStringType - Return the type used for constant CFStrings.
3764QualType ASTContext::getCFConstantStringType() const {
3765  if (!CFConstantStringTypeDecl) {
3766    CFConstantStringTypeDecl =
3767      CreateRecordDecl(*this, TTK_Struct, TUDecl,
3768                       &Idents.get("NSConstantString"));
3769    CFConstantStringTypeDecl->startDefinition();
3770
3771    QualType FieldTypes[4];
3772
3773    // const int *isa;
3774    FieldTypes[0] = getPointerType(IntTy.withConst());
3775    // int flags;
3776    FieldTypes[1] = IntTy;
3777    // const char *str;
3778    FieldTypes[2] = getPointerType(CharTy.withConst());
3779    // long length;
3780    FieldTypes[3] = LongTy;
3781
3782    // Create fields
3783    for (unsigned i = 0; i < 4; ++i) {
3784      FieldDecl *Field = FieldDecl::Create(*this, CFConstantStringTypeDecl,
3785                                           SourceLocation(),
3786                                           SourceLocation(), 0,
3787                                           FieldTypes[i], /*TInfo=*/0,
3788                                           /*BitWidth=*/0,
3789                                           /*Mutable=*/false,
3790                                           /*HasInit=*/false);
3791      Field->setAccess(AS_public);
3792      CFConstantStringTypeDecl->addDecl(Field);
3793    }
3794
3795    CFConstantStringTypeDecl->completeDefinition();
3796  }
3797
3798  return getTagDeclType(CFConstantStringTypeDecl);
3799}
3800
3801void ASTContext::setCFConstantStringType(QualType T) {
3802  const RecordType *Rec = T->getAs<RecordType>();
3803  assert(Rec && "Invalid CFConstantStringType");
3804  CFConstantStringTypeDecl = Rec->getDecl();
3805}
3806
3807QualType ASTContext::getBlockDescriptorType() const {
3808  if (BlockDescriptorType)
3809    return getTagDeclType(BlockDescriptorType);
3810
3811  RecordDecl *T;
3812  // FIXME: Needs the FlagAppleBlock bit.
3813  T = CreateRecordDecl(*this, TTK_Struct, TUDecl,
3814                       &Idents.get("__block_descriptor"));
3815  T->startDefinition();
3816
3817  QualType FieldTypes[] = {
3818    UnsignedLongTy,
3819    UnsignedLongTy,
3820  };
3821
3822  const char *FieldNames[] = {
3823    "reserved",
3824    "Size"
3825  };
3826
3827  for (size_t i = 0; i < 2; ++i) {
3828    FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(),
3829                                         SourceLocation(),
3830                                         &Idents.get(FieldNames[i]),
3831                                         FieldTypes[i], /*TInfo=*/0,
3832                                         /*BitWidth=*/0,
3833                                         /*Mutable=*/false,
3834                                         /*HasInit=*/false);
3835    Field->setAccess(AS_public);
3836    T->addDecl(Field);
3837  }
3838
3839  T->completeDefinition();
3840
3841  BlockDescriptorType = T;
3842
3843  return getTagDeclType(BlockDescriptorType);
3844}
3845
3846QualType ASTContext::getBlockDescriptorExtendedType() const {
3847  if (BlockDescriptorExtendedType)
3848    return getTagDeclType(BlockDescriptorExtendedType);
3849
3850  RecordDecl *T;
3851  // FIXME: Needs the FlagAppleBlock bit.
3852  T = CreateRecordDecl(*this, TTK_Struct, TUDecl,
3853                       &Idents.get("__block_descriptor_withcopydispose"));
3854  T->startDefinition();
3855
3856  QualType FieldTypes[] = {
3857    UnsignedLongTy,
3858    UnsignedLongTy,
3859    getPointerType(VoidPtrTy),
3860    getPointerType(VoidPtrTy)
3861  };
3862
3863  const char *FieldNames[] = {
3864    "reserved",
3865    "Size",
3866    "CopyFuncPtr",
3867    "DestroyFuncPtr"
3868  };
3869
3870  for (size_t i = 0; i < 4; ++i) {
3871    FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(),
3872                                         SourceLocation(),
3873                                         &Idents.get(FieldNames[i]),
3874                                         FieldTypes[i], /*TInfo=*/0,
3875                                         /*BitWidth=*/0,
3876                                         /*Mutable=*/false,
3877                                         /*HasInit=*/false);
3878    Field->setAccess(AS_public);
3879    T->addDecl(Field);
3880  }
3881
3882  T->completeDefinition();
3883
3884  BlockDescriptorExtendedType = T;
3885
3886  return getTagDeclType(BlockDescriptorExtendedType);
3887}
3888
3889bool ASTContext::BlockRequiresCopying(QualType Ty) const {
3890  if (Ty->isObjCRetainableType())
3891    return true;
3892  if (getLangOptions().CPlusPlus) {
3893    if (const RecordType *RT = Ty->getAs<RecordType>()) {
3894      CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
3895      return RD->hasConstCopyConstructor();
3896
3897    }
3898  }
3899  return false;
3900}
3901
3902QualType
3903ASTContext::BuildByRefType(StringRef DeclName, QualType Ty) const {
3904  //  type = struct __Block_byref_1_X {
3905  //    void *__isa;
3906  //    struct __Block_byref_1_X *__forwarding;
3907  //    unsigned int __flags;
3908  //    unsigned int __size;
3909  //    void *__copy_helper;            // as needed
3910  //    void *__destroy_help            // as needed
3911  //    int X;
3912  //  } *
3913
3914  bool HasCopyAndDispose = BlockRequiresCopying(Ty);
3915
3916  // FIXME: Move up
3917  llvm::SmallString<36> Name;
3918  llvm::raw_svector_ostream(Name) << "__Block_byref_" <<
3919                                  ++UniqueBlockByRefTypeID << '_' << DeclName;
3920  RecordDecl *T;
3921  T = CreateRecordDecl(*this, TTK_Struct, TUDecl, &Idents.get(Name.str()));
3922  T->startDefinition();
3923  QualType Int32Ty = IntTy;
3924  assert(getIntWidth(IntTy) == 32 && "non-32bit int not supported");
3925  QualType FieldTypes[] = {
3926    getPointerType(VoidPtrTy),
3927    getPointerType(getTagDeclType(T)),
3928    Int32Ty,
3929    Int32Ty,
3930    getPointerType(VoidPtrTy),
3931    getPointerType(VoidPtrTy),
3932    Ty
3933  };
3934
3935  StringRef FieldNames[] = {
3936    "__isa",
3937    "__forwarding",
3938    "__flags",
3939    "__size",
3940    "__copy_helper",
3941    "__destroy_helper",
3942    DeclName,
3943  };
3944
3945  for (size_t i = 0; i < 7; ++i) {
3946    if (!HasCopyAndDispose && i >=4 && i <= 5)
3947      continue;
3948    FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(),
3949                                         SourceLocation(),
3950                                         &Idents.get(FieldNames[i]),
3951                                         FieldTypes[i], /*TInfo=*/0,
3952                                         /*BitWidth=*/0, /*Mutable=*/false,
3953                                         /*HasInit=*/false);
3954    Field->setAccess(AS_public);
3955    T->addDecl(Field);
3956  }
3957
3958  T->completeDefinition();
3959
3960  return getPointerType(getTagDeclType(T));
3961}
3962
3963TypedefDecl *ASTContext::getObjCInstanceTypeDecl() {
3964  if (!ObjCInstanceTypeDecl)
3965    ObjCInstanceTypeDecl = TypedefDecl::Create(*this,
3966                                               getTranslationUnitDecl(),
3967                                               SourceLocation(),
3968                                               SourceLocation(),
3969                                               &Idents.get("instancetype"),
3970                                     getTrivialTypeSourceInfo(getObjCIdType()));
3971  return ObjCInstanceTypeDecl;
3972}
3973
3974// This returns true if a type has been typedefed to BOOL:
3975// typedef <type> BOOL;
3976static bool isTypeTypedefedAsBOOL(QualType T) {
3977  if (const TypedefType *TT = dyn_cast<TypedefType>(T))
3978    if (IdentifierInfo *II = TT->getDecl()->getIdentifier())
3979      return II->isStr("BOOL");
3980
3981  return false;
3982}
3983
3984/// getObjCEncodingTypeSize returns size of type for objective-c encoding
3985/// purpose.
3986CharUnits ASTContext::getObjCEncodingTypeSize(QualType type) const {
3987  if (!type->isIncompleteArrayType() && type->isIncompleteType())
3988    return CharUnits::Zero();
3989
3990  CharUnits sz = getTypeSizeInChars(type);
3991
3992  // Make all integer and enum types at least as large as an int
3993  if (sz.isPositive() && type->isIntegralOrEnumerationType())
3994    sz = std::max(sz, getTypeSizeInChars(IntTy));
3995  // Treat arrays as pointers, since that's how they're passed in.
3996  else if (type->isArrayType())
3997    sz = getTypeSizeInChars(VoidPtrTy);
3998  return sz;
3999}
4000
4001static inline
4002std::string charUnitsToString(const CharUnits &CU) {
4003  return llvm::itostr(CU.getQuantity());
4004}
4005
4006/// getObjCEncodingForBlock - Return the encoded type for this block
4007/// declaration.
4008std::string ASTContext::getObjCEncodingForBlock(const BlockExpr *Expr) const {
4009  std::string S;
4010
4011  const BlockDecl *Decl = Expr->getBlockDecl();
4012  QualType BlockTy =
4013      Expr->getType()->getAs<BlockPointerType>()->getPointeeType();
4014  // Encode result type.
4015  getObjCEncodingForType(BlockTy->getAs<FunctionType>()->getResultType(), S);
4016  // Compute size of all parameters.
4017  // Start with computing size of a pointer in number of bytes.
4018  // FIXME: There might(should) be a better way of doing this computation!
4019  SourceLocation Loc;
4020  CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy);
4021  CharUnits ParmOffset = PtrSize;
4022  for (BlockDecl::param_const_iterator PI = Decl->param_begin(),
4023       E = Decl->param_end(); PI != E; ++PI) {
4024    QualType PType = (*PI)->getType();
4025    CharUnits sz = getObjCEncodingTypeSize(PType);
4026    assert (sz.isPositive() && "BlockExpr - Incomplete param type");
4027    ParmOffset += sz;
4028  }
4029  // Size of the argument frame
4030  S += charUnitsToString(ParmOffset);
4031  // Block pointer and offset.
4032  S += "@?0";
4033
4034  // Argument types.
4035  ParmOffset = PtrSize;
4036  for (BlockDecl::param_const_iterator PI = Decl->param_begin(), E =
4037       Decl->param_end(); PI != E; ++PI) {
4038    ParmVarDecl *PVDecl = *PI;
4039    QualType PType = PVDecl->getOriginalType();
4040    if (const ArrayType *AT =
4041          dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
4042      // Use array's original type only if it has known number of
4043      // elements.
4044      if (!isa<ConstantArrayType>(AT))
4045        PType = PVDecl->getType();
4046    } else if (PType->isFunctionType())
4047      PType = PVDecl->getType();
4048    getObjCEncodingForType(PType, S);
4049    S += charUnitsToString(ParmOffset);
4050    ParmOffset += getObjCEncodingTypeSize(PType);
4051  }
4052
4053  return S;
4054}
4055
4056bool ASTContext::getObjCEncodingForFunctionDecl(const FunctionDecl *Decl,
4057                                                std::string& S) {
4058  // Encode result type.
4059  getObjCEncodingForType(Decl->getResultType(), S);
4060  CharUnits ParmOffset;
4061  // Compute size of all parameters.
4062  for (FunctionDecl::param_const_iterator PI = Decl->param_begin(),
4063       E = Decl->param_end(); PI != E; ++PI) {
4064    QualType PType = (*PI)->getType();
4065    CharUnits sz = getObjCEncodingTypeSize(PType);
4066    if (sz.isZero())
4067      return true;
4068
4069    assert (sz.isPositive() &&
4070        "getObjCEncodingForFunctionDecl - Incomplete param type");
4071    ParmOffset += sz;
4072  }
4073  S += charUnitsToString(ParmOffset);
4074  ParmOffset = CharUnits::Zero();
4075
4076  // Argument types.
4077  for (FunctionDecl::param_const_iterator PI = Decl->param_begin(),
4078       E = Decl->param_end(); PI != E; ++PI) {
4079    ParmVarDecl *PVDecl = *PI;
4080    QualType PType = PVDecl->getOriginalType();
4081    if (const ArrayType *AT =
4082          dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
4083      // Use array's original type only if it has known number of
4084      // elements.
4085      if (!isa<ConstantArrayType>(AT))
4086        PType = PVDecl->getType();
4087    } else if (PType->isFunctionType())
4088      PType = PVDecl->getType();
4089    getObjCEncodingForType(PType, S);
4090    S += charUnitsToString(ParmOffset);
4091    ParmOffset += getObjCEncodingTypeSize(PType);
4092  }
4093
4094  return false;
4095}
4096
4097/// getObjCEncodingForMethodParameter - Return the encoded type for a single
4098/// method parameter or return type. If Extended, include class names and
4099/// block object types.
4100void ASTContext::getObjCEncodingForMethodParameter(Decl::ObjCDeclQualifier QT,
4101                                                   QualType T, std::string& S,
4102                                                   bool Extended) const {
4103  // Encode type qualifer, 'in', 'inout', etc. for the parameter.
4104  getObjCEncodingForTypeQualifier(QT, S);
4105  // Encode parameter type.
4106  getObjCEncodingForTypeImpl(T, S, true, true, 0,
4107                             true     /*OutermostType*/,
4108                             false    /*EncodingProperty*/,
4109                             false    /*StructField*/,
4110                             Extended /*EncodeBlockParameters*/,
4111                             Extended /*EncodeClassNames*/);
4112}
4113
4114/// getObjCEncodingForMethodDecl - Return the encoded type for this method
4115/// declaration.
4116bool ASTContext::getObjCEncodingForMethodDecl(const ObjCMethodDecl *Decl,
4117                                              std::string& S,
4118                                              bool Extended) const {
4119  // FIXME: This is not very efficient.
4120  // Encode return type.
4121  getObjCEncodingForMethodParameter(Decl->getObjCDeclQualifier(),
4122                                    Decl->getResultType(), S, Extended);
4123  // Compute size of all parameters.
4124  // Start with computing size of a pointer in number of bytes.
4125  // FIXME: There might(should) be a better way of doing this computation!
4126  SourceLocation Loc;
4127  CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy);
4128  // The first two arguments (self and _cmd) are pointers; account for
4129  // their size.
4130  CharUnits ParmOffset = 2 * PtrSize;
4131  for (ObjCMethodDecl::param_const_iterator PI = Decl->param_begin(),
4132       E = Decl->sel_param_end(); PI != E; ++PI) {
4133    QualType PType = (*PI)->getType();
4134    CharUnits sz = getObjCEncodingTypeSize(PType);
4135    if (sz.isZero())
4136      return true;
4137
4138    assert (sz.isPositive() &&
4139        "getObjCEncodingForMethodDecl - Incomplete param type");
4140    ParmOffset += sz;
4141  }
4142  S += charUnitsToString(ParmOffset);
4143  S += "@0:";
4144  S += charUnitsToString(PtrSize);
4145
4146  // Argument types.
4147  ParmOffset = 2 * PtrSize;
4148  for (ObjCMethodDecl::param_const_iterator PI = Decl->param_begin(),
4149       E = Decl->sel_param_end(); PI != E; ++PI) {
4150    const ParmVarDecl *PVDecl = *PI;
4151    QualType PType = PVDecl->getOriginalType();
4152    if (const ArrayType *AT =
4153          dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
4154      // Use array's original type only if it has known number of
4155      // elements.
4156      if (!isa<ConstantArrayType>(AT))
4157        PType = PVDecl->getType();
4158    } else if (PType->isFunctionType())
4159      PType = PVDecl->getType();
4160    getObjCEncodingForMethodParameter(PVDecl->getObjCDeclQualifier(),
4161                                      PType, S, Extended);
4162    S += charUnitsToString(ParmOffset);
4163    ParmOffset += getObjCEncodingTypeSize(PType);
4164  }
4165
4166  return false;
4167}
4168
4169/// getObjCEncodingForPropertyDecl - Return the encoded type for this
4170/// property declaration. If non-NULL, Container must be either an
4171/// ObjCCategoryImplDecl or ObjCImplementationDecl; it should only be
4172/// NULL when getting encodings for protocol properties.
4173/// Property attributes are stored as a comma-delimited C string. The simple
4174/// attributes readonly and bycopy are encoded as single characters. The
4175/// parametrized attributes, getter=name, setter=name, and ivar=name, are
4176/// encoded as single characters, followed by an identifier. Property types
4177/// are also encoded as a parametrized attribute. The characters used to encode
4178/// these attributes are defined by the following enumeration:
4179/// @code
4180/// enum PropertyAttributes {
4181/// kPropertyReadOnly = 'R',   // property is read-only.
4182/// kPropertyBycopy = 'C',     // property is a copy of the value last assigned
4183/// kPropertyByref = '&',  // property is a reference to the value last assigned
4184/// kPropertyDynamic = 'D',    // property is dynamic
4185/// kPropertyGetter = 'G',     // followed by getter selector name
4186/// kPropertySetter = 'S',     // followed by setter selector name
4187/// kPropertyInstanceVariable = 'V'  // followed by instance variable  name
4188/// kPropertyType = 't'              // followed by old-style type encoding.
4189/// kPropertyWeak = 'W'              // 'weak' property
4190/// kPropertyStrong = 'P'            // property GC'able
4191/// kPropertyNonAtomic = 'N'         // property non-atomic
4192/// };
4193/// @endcode
4194void ASTContext::getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD,
4195                                                const Decl *Container,
4196                                                std::string& S) const {
4197  // Collect information from the property implementation decl(s).
4198  bool Dynamic = false;
4199  ObjCPropertyImplDecl *SynthesizePID = 0;
4200
4201  // FIXME: Duplicated code due to poor abstraction.
4202  if (Container) {
4203    if (const ObjCCategoryImplDecl *CID =
4204        dyn_cast<ObjCCategoryImplDecl>(Container)) {
4205      for (ObjCCategoryImplDecl::propimpl_iterator
4206             i = CID->propimpl_begin(), e = CID->propimpl_end();
4207           i != e; ++i) {
4208        ObjCPropertyImplDecl *PID = *i;
4209        if (PID->getPropertyDecl() == PD) {
4210          if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) {
4211            Dynamic = true;
4212          } else {
4213            SynthesizePID = PID;
4214          }
4215        }
4216      }
4217    } else {
4218      const ObjCImplementationDecl *OID=cast<ObjCImplementationDecl>(Container);
4219      for (ObjCCategoryImplDecl::propimpl_iterator
4220             i = OID->propimpl_begin(), e = OID->propimpl_end();
4221           i != e; ++i) {
4222        ObjCPropertyImplDecl *PID = *i;
4223        if (PID->getPropertyDecl() == PD) {
4224          if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) {
4225            Dynamic = true;
4226          } else {
4227            SynthesizePID = PID;
4228          }
4229        }
4230      }
4231    }
4232  }
4233
4234  // FIXME: This is not very efficient.
4235  S = "T";
4236
4237  // Encode result type.
4238  // GCC has some special rules regarding encoding of properties which
4239  // closely resembles encoding of ivars.
4240  getObjCEncodingForTypeImpl(PD->getType(), S, true, true, 0,
4241                             true /* outermost type */,
4242                             true /* encoding for property */);
4243
4244  if (PD->isReadOnly()) {
4245    S += ",R";
4246  } else {
4247    switch (PD->getSetterKind()) {
4248    case ObjCPropertyDecl::Assign: break;
4249    case ObjCPropertyDecl::Copy:   S += ",C"; break;
4250    case ObjCPropertyDecl::Retain: S += ",&"; break;
4251    case ObjCPropertyDecl::Weak:   S += ",W"; break;
4252    }
4253  }
4254
4255  // It really isn't clear at all what this means, since properties
4256  // are "dynamic by default".
4257  if (Dynamic)
4258    S += ",D";
4259
4260  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_nonatomic)
4261    S += ",N";
4262
4263  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_getter) {
4264    S += ",G";
4265    S += PD->getGetterName().getAsString();
4266  }
4267
4268  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_setter) {
4269    S += ",S";
4270    S += PD->getSetterName().getAsString();
4271  }
4272
4273  if (SynthesizePID) {
4274    const ObjCIvarDecl *OID = SynthesizePID->getPropertyIvarDecl();
4275    S += ",V";
4276    S += OID->getNameAsString();
4277  }
4278
4279  // FIXME: OBJCGC: weak & strong
4280}
4281
4282/// getLegacyIntegralTypeEncoding -
4283/// Another legacy compatibility encoding: 32-bit longs are encoded as
4284/// 'l' or 'L' , but not always.  For typedefs, we need to use
4285/// 'i' or 'I' instead if encoding a struct field, or a pointer!
4286///
4287void ASTContext::getLegacyIntegralTypeEncoding (QualType &PointeeTy) const {
4288  if (isa<TypedefType>(PointeeTy.getTypePtr())) {
4289    if (const BuiltinType *BT = PointeeTy->getAs<BuiltinType>()) {
4290      if (BT->getKind() == BuiltinType::ULong && getIntWidth(PointeeTy) == 32)
4291        PointeeTy = UnsignedIntTy;
4292      else
4293        if (BT->getKind() == BuiltinType::Long && getIntWidth(PointeeTy) == 32)
4294          PointeeTy = IntTy;
4295    }
4296  }
4297}
4298
4299void ASTContext::getObjCEncodingForType(QualType T, std::string& S,
4300                                        const FieldDecl *Field) const {
4301  // We follow the behavior of gcc, expanding structures which are
4302  // directly pointed to, and expanding embedded structures. Note that
4303  // these rules are sufficient to prevent recursive encoding of the
4304  // same type.
4305  getObjCEncodingForTypeImpl(T, S, true, true, Field,
4306                             true /* outermost type */);
4307}
4308
4309static char ObjCEncodingForPrimitiveKind(const ASTContext *C, QualType T) {
4310    switch (T->getAs<BuiltinType>()->getKind()) {
4311    default: llvm_unreachable("Unhandled builtin type kind");
4312    case BuiltinType::Void:       return 'v';
4313    case BuiltinType::Bool:       return 'B';
4314    case BuiltinType::Char_U:
4315    case BuiltinType::UChar:      return 'C';
4316    case BuiltinType::UShort:     return 'S';
4317    case BuiltinType::UInt:       return 'I';
4318    case BuiltinType::ULong:
4319        return C->getIntWidth(T) == 32 ? 'L' : 'Q';
4320    case BuiltinType::UInt128:    return 'T';
4321    case BuiltinType::ULongLong:  return 'Q';
4322    case BuiltinType::Char_S:
4323    case BuiltinType::SChar:      return 'c';
4324    case BuiltinType::Short:      return 's';
4325    case BuiltinType::WChar_S:
4326    case BuiltinType::WChar_U:
4327    case BuiltinType::Int:        return 'i';
4328    case BuiltinType::Long:
4329      return C->getIntWidth(T) == 32 ? 'l' : 'q';
4330    case BuiltinType::LongLong:   return 'q';
4331    case BuiltinType::Int128:     return 't';
4332    case BuiltinType::Float:      return 'f';
4333    case BuiltinType::Double:     return 'd';
4334    case BuiltinType::LongDouble: return 'D';
4335    }
4336}
4337
4338static char ObjCEncodingForEnumType(const ASTContext *C, const EnumType *ET) {
4339  EnumDecl *Enum = ET->getDecl();
4340
4341  // The encoding of an non-fixed enum type is always 'i', regardless of size.
4342  if (!Enum->isFixed())
4343    return 'i';
4344
4345  // The encoding of a fixed enum type matches its fixed underlying type.
4346  return ObjCEncodingForPrimitiveKind(C, Enum->getIntegerType());
4347}
4348
4349static void EncodeBitField(const ASTContext *Ctx, std::string& S,
4350                           QualType T, const FieldDecl *FD) {
4351  assert(FD->isBitField() && "not a bitfield - getObjCEncodingForTypeImpl");
4352  S += 'b';
4353  // The NeXT runtime encodes bit fields as b followed by the number of bits.
4354  // The GNU runtime requires more information; bitfields are encoded as b,
4355  // then the offset (in bits) of the first element, then the type of the
4356  // bitfield, then the size in bits.  For example, in this structure:
4357  //
4358  // struct
4359  // {
4360  //    int integer;
4361  //    int flags:2;
4362  // };
4363  // On a 32-bit system, the encoding for flags would be b2 for the NeXT
4364  // runtime, but b32i2 for the GNU runtime.  The reason for this extra
4365  // information is not especially sensible, but we're stuck with it for
4366  // compatibility with GCC, although providing it breaks anything that
4367  // actually uses runtime introspection and wants to work on both runtimes...
4368  if (!Ctx->getLangOptions().NeXTRuntime) {
4369    const RecordDecl *RD = FD->getParent();
4370    const ASTRecordLayout &RL = Ctx->getASTRecordLayout(RD);
4371    S += llvm::utostr(RL.getFieldOffset(FD->getFieldIndex()));
4372    if (const EnumType *ET = T->getAs<EnumType>())
4373      S += ObjCEncodingForEnumType(Ctx, ET);
4374    else
4375      S += ObjCEncodingForPrimitiveKind(Ctx, T);
4376  }
4377  S += llvm::utostr(FD->getBitWidthValue(*Ctx));
4378}
4379
4380// FIXME: Use SmallString for accumulating string.
4381void ASTContext::getObjCEncodingForTypeImpl(QualType T, std::string& S,
4382                                            bool ExpandPointedToStructures,
4383                                            bool ExpandStructures,
4384                                            const FieldDecl *FD,
4385                                            bool OutermostType,
4386                                            bool EncodingProperty,
4387                                            bool StructField,
4388                                            bool EncodeBlockParameters,
4389                                            bool EncodeClassNames) const {
4390  if (T->getAs<BuiltinType>()) {
4391    if (FD && FD->isBitField())
4392      return EncodeBitField(this, S, T, FD);
4393    S += ObjCEncodingForPrimitiveKind(this, T);
4394    return;
4395  }
4396
4397  if (const ComplexType *CT = T->getAs<ComplexType>()) {
4398    S += 'j';
4399    getObjCEncodingForTypeImpl(CT->getElementType(), S, false, false, 0, false,
4400                               false);
4401    return;
4402  }
4403
4404  // encoding for pointer or r3eference types.
4405  QualType PointeeTy;
4406  if (const PointerType *PT = T->getAs<PointerType>()) {
4407    if (PT->isObjCSelType()) {
4408      S += ':';
4409      return;
4410    }
4411    PointeeTy = PT->getPointeeType();
4412  }
4413  else if (const ReferenceType *RT = T->getAs<ReferenceType>())
4414    PointeeTy = RT->getPointeeType();
4415  if (!PointeeTy.isNull()) {
4416    bool isReadOnly = false;
4417    // For historical/compatibility reasons, the read-only qualifier of the
4418    // pointee gets emitted _before_ the '^'.  The read-only qualifier of
4419    // the pointer itself gets ignored, _unless_ we are looking at a typedef!
4420    // Also, do not emit the 'r' for anything but the outermost type!
4421    if (isa<TypedefType>(T.getTypePtr())) {
4422      if (OutermostType && T.isConstQualified()) {
4423        isReadOnly = true;
4424        S += 'r';
4425      }
4426    } else if (OutermostType) {
4427      QualType P = PointeeTy;
4428      while (P->getAs<PointerType>())
4429        P = P->getAs<PointerType>()->getPointeeType();
4430      if (P.isConstQualified()) {
4431        isReadOnly = true;
4432        S += 'r';
4433      }
4434    }
4435    if (isReadOnly) {
4436      // Another legacy compatibility encoding. Some ObjC qualifier and type
4437      // combinations need to be rearranged.
4438      // Rewrite "in const" from "nr" to "rn"
4439      if (StringRef(S).endswith("nr"))
4440        S.replace(S.end()-2, S.end(), "rn");
4441    }
4442
4443    if (PointeeTy->isCharType()) {
4444      // char pointer types should be encoded as '*' unless it is a
4445      // type that has been typedef'd to 'BOOL'.
4446      if (!isTypeTypedefedAsBOOL(PointeeTy)) {
4447        S += '*';
4448        return;
4449      }
4450    } else if (const RecordType *RTy = PointeeTy->getAs<RecordType>()) {
4451      // GCC binary compat: Need to convert "struct objc_class *" to "#".
4452      if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_class")) {
4453        S += '#';
4454        return;
4455      }
4456      // GCC binary compat: Need to convert "struct objc_object *" to "@".
4457      if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_object")) {
4458        S += '@';
4459        return;
4460      }
4461      // fall through...
4462    }
4463    S += '^';
4464    getLegacyIntegralTypeEncoding(PointeeTy);
4465
4466    getObjCEncodingForTypeImpl(PointeeTy, S, false, ExpandPointedToStructures,
4467                               NULL);
4468    return;
4469  }
4470
4471  if (const ArrayType *AT =
4472      // Ignore type qualifiers etc.
4473        dyn_cast<ArrayType>(T->getCanonicalTypeInternal())) {
4474    if (isa<IncompleteArrayType>(AT) && !StructField) {
4475      // Incomplete arrays are encoded as a pointer to the array element.
4476      S += '^';
4477
4478      getObjCEncodingForTypeImpl(AT->getElementType(), S,
4479                                 false, ExpandStructures, FD);
4480    } else {
4481      S += '[';
4482
4483      if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) {
4484        if (getTypeSize(CAT->getElementType()) == 0)
4485          S += '0';
4486        else
4487          S += llvm::utostr(CAT->getSize().getZExtValue());
4488      } else {
4489        //Variable length arrays are encoded as a regular array with 0 elements.
4490        assert((isa<VariableArrayType>(AT) || isa<IncompleteArrayType>(AT)) &&
4491               "Unknown array type!");
4492        S += '0';
4493      }
4494
4495      getObjCEncodingForTypeImpl(AT->getElementType(), S,
4496                                 false, ExpandStructures, FD);
4497      S += ']';
4498    }
4499    return;
4500  }
4501
4502  if (T->getAs<FunctionType>()) {
4503    S += '?';
4504    return;
4505  }
4506
4507  if (const RecordType *RTy = T->getAs<RecordType>()) {
4508    RecordDecl *RDecl = RTy->getDecl();
4509    S += RDecl->isUnion() ? '(' : '{';
4510    // Anonymous structures print as '?'
4511    if (const IdentifierInfo *II = RDecl->getIdentifier()) {
4512      S += II->getName();
4513      if (ClassTemplateSpecializationDecl *Spec
4514          = dyn_cast<ClassTemplateSpecializationDecl>(RDecl)) {
4515        const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
4516        std::string TemplateArgsStr
4517          = TemplateSpecializationType::PrintTemplateArgumentList(
4518                                            TemplateArgs.data(),
4519                                            TemplateArgs.size(),
4520                                            (*this).getPrintingPolicy());
4521
4522        S += TemplateArgsStr;
4523      }
4524    } else {
4525      S += '?';
4526    }
4527    if (ExpandStructures) {
4528      S += '=';
4529      if (!RDecl->isUnion()) {
4530        getObjCEncodingForStructureImpl(RDecl, S, FD);
4531      } else {
4532        for (RecordDecl::field_iterator Field = RDecl->field_begin(),
4533                                     FieldEnd = RDecl->field_end();
4534             Field != FieldEnd; ++Field) {
4535          if (FD) {
4536            S += '"';
4537            S += Field->getNameAsString();
4538            S += '"';
4539          }
4540
4541          // Special case bit-fields.
4542          if (Field->isBitField()) {
4543            getObjCEncodingForTypeImpl(Field->getType(), S, false, true,
4544                                       (*Field));
4545          } else {
4546            QualType qt = Field->getType();
4547            getLegacyIntegralTypeEncoding(qt);
4548            getObjCEncodingForTypeImpl(qt, S, false, true,
4549                                       FD, /*OutermostType*/false,
4550                                       /*EncodingProperty*/false,
4551                                       /*StructField*/true);
4552          }
4553        }
4554      }
4555    }
4556    S += RDecl->isUnion() ? ')' : '}';
4557    return;
4558  }
4559
4560  if (const EnumType *ET = T->getAs<EnumType>()) {
4561    if (FD && FD->isBitField())
4562      EncodeBitField(this, S, T, FD);
4563    else
4564      S += ObjCEncodingForEnumType(this, ET);
4565    return;
4566  }
4567
4568  if (const BlockPointerType *BT = T->getAs<BlockPointerType>()) {
4569    S += "@?"; // Unlike a pointer-to-function, which is "^?".
4570    if (EncodeBlockParameters) {
4571      const FunctionType *FT = BT->getPointeeType()->getAs<FunctionType>();
4572
4573      S += '<';
4574      // Block return type
4575      getObjCEncodingForTypeImpl(FT->getResultType(), S,
4576                                 ExpandPointedToStructures, ExpandStructures,
4577                                 FD,
4578                                 false /* OutermostType */,
4579                                 EncodingProperty,
4580                                 false /* StructField */,
4581                                 EncodeBlockParameters,
4582                                 EncodeClassNames);
4583      // Block self
4584      S += "@?";
4585      // Block parameters
4586      if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(FT)) {
4587        for (FunctionProtoType::arg_type_iterator I = FPT->arg_type_begin(),
4588               E = FPT->arg_type_end(); I && (I != E); ++I) {
4589          getObjCEncodingForTypeImpl(*I, S,
4590                                     ExpandPointedToStructures,
4591                                     ExpandStructures,
4592                                     FD,
4593                                     false /* OutermostType */,
4594                                     EncodingProperty,
4595                                     false /* StructField */,
4596                                     EncodeBlockParameters,
4597                                     EncodeClassNames);
4598        }
4599      }
4600      S += '>';
4601    }
4602    return;
4603  }
4604
4605  // Ignore protocol qualifiers when mangling at this level.
4606  if (const ObjCObjectType *OT = T->getAs<ObjCObjectType>())
4607    T = OT->getBaseType();
4608
4609  if (const ObjCInterfaceType *OIT = T->getAs<ObjCInterfaceType>()) {
4610    // @encode(class_name)
4611    ObjCInterfaceDecl *OI = OIT->getDecl();
4612    S += '{';
4613    const IdentifierInfo *II = OI->getIdentifier();
4614    S += II->getName();
4615    S += '=';
4616    SmallVector<const ObjCIvarDecl*, 32> Ivars;
4617    DeepCollectObjCIvars(OI, true, Ivars);
4618    for (unsigned i = 0, e = Ivars.size(); i != e; ++i) {
4619      const FieldDecl *Field = cast<FieldDecl>(Ivars[i]);
4620      if (Field->isBitField())
4621        getObjCEncodingForTypeImpl(Field->getType(), S, false, true, Field);
4622      else
4623        getObjCEncodingForTypeImpl(Field->getType(), S, false, true, FD);
4624    }
4625    S += '}';
4626    return;
4627  }
4628
4629  if (const ObjCObjectPointerType *OPT = T->getAs<ObjCObjectPointerType>()) {
4630    if (OPT->isObjCIdType()) {
4631      S += '@';
4632      return;
4633    }
4634
4635    if (OPT->isObjCClassType() || OPT->isObjCQualifiedClassType()) {
4636      // FIXME: Consider if we need to output qualifiers for 'Class<p>'.
4637      // Since this is a binary compatibility issue, need to consult with runtime
4638      // folks. Fortunately, this is a *very* obsure construct.
4639      S += '#';
4640      return;
4641    }
4642
4643    if (OPT->isObjCQualifiedIdType()) {
4644      getObjCEncodingForTypeImpl(getObjCIdType(), S,
4645                                 ExpandPointedToStructures,
4646                                 ExpandStructures, FD);
4647      if (FD || EncodingProperty || EncodeClassNames) {
4648        // Note that we do extended encoding of protocol qualifer list
4649        // Only when doing ivar or property encoding.
4650        S += '"';
4651        for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(),
4652             E = OPT->qual_end(); I != E; ++I) {
4653          S += '<';
4654          S += (*I)->getNameAsString();
4655          S += '>';
4656        }
4657        S += '"';
4658      }
4659      return;
4660    }
4661
4662    QualType PointeeTy = OPT->getPointeeType();
4663    if (!EncodingProperty &&
4664        isa<TypedefType>(PointeeTy.getTypePtr())) {
4665      // Another historical/compatibility reason.
4666      // We encode the underlying type which comes out as
4667      // {...};
4668      S += '^';
4669      getObjCEncodingForTypeImpl(PointeeTy, S,
4670                                 false, ExpandPointedToStructures,
4671                                 NULL);
4672      return;
4673    }
4674
4675    S += '@';
4676    if (OPT->getInterfaceDecl() &&
4677        (FD || EncodingProperty || EncodeClassNames)) {
4678      S += '"';
4679      S += OPT->getInterfaceDecl()->getIdentifier()->getName();
4680      for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(),
4681           E = OPT->qual_end(); I != E; ++I) {
4682        S += '<';
4683        S += (*I)->getNameAsString();
4684        S += '>';
4685      }
4686      S += '"';
4687    }
4688    return;
4689  }
4690
4691  // gcc just blithely ignores member pointers.
4692  // TODO: maybe there should be a mangling for these
4693  if (T->getAs<MemberPointerType>())
4694    return;
4695
4696  if (T->isVectorType()) {
4697    // This matches gcc's encoding, even though technically it is
4698    // insufficient.
4699    // FIXME. We should do a better job than gcc.
4700    return;
4701  }
4702
4703  llvm_unreachable("@encode for type not implemented!");
4704}
4705
4706void ASTContext::getObjCEncodingForStructureImpl(RecordDecl *RDecl,
4707                                                 std::string &S,
4708                                                 const FieldDecl *FD,
4709                                                 bool includeVBases) const {
4710  assert(RDecl && "Expected non-null RecordDecl");
4711  assert(!RDecl->isUnion() && "Should not be called for unions");
4712  if (!RDecl->getDefinition())
4713    return;
4714
4715  CXXRecordDecl *CXXRec = dyn_cast<CXXRecordDecl>(RDecl);
4716  std::multimap<uint64_t, NamedDecl *> FieldOrBaseOffsets;
4717  const ASTRecordLayout &layout = getASTRecordLayout(RDecl);
4718
4719  if (CXXRec) {
4720    for (CXXRecordDecl::base_class_iterator
4721           BI = CXXRec->bases_begin(),
4722           BE = CXXRec->bases_end(); BI != BE; ++BI) {
4723      if (!BI->isVirtual()) {
4724        CXXRecordDecl *base = BI->getType()->getAsCXXRecordDecl();
4725        if (base->isEmpty())
4726          continue;
4727        uint64_t offs = layout.getBaseClassOffsetInBits(base);
4728        FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
4729                                  std::make_pair(offs, base));
4730      }
4731    }
4732  }
4733
4734  unsigned i = 0;
4735  for (RecordDecl::field_iterator Field = RDecl->field_begin(),
4736                               FieldEnd = RDecl->field_end();
4737       Field != FieldEnd; ++Field, ++i) {
4738    uint64_t offs = layout.getFieldOffset(i);
4739    FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
4740                              std::make_pair(offs, *Field));
4741  }
4742
4743  if (CXXRec && includeVBases) {
4744    for (CXXRecordDecl::base_class_iterator
4745           BI = CXXRec->vbases_begin(),
4746           BE = CXXRec->vbases_end(); BI != BE; ++BI) {
4747      CXXRecordDecl *base = BI->getType()->getAsCXXRecordDecl();
4748      if (base->isEmpty())
4749        continue;
4750      uint64_t offs = layout.getVBaseClassOffsetInBits(base);
4751      if (FieldOrBaseOffsets.find(offs) == FieldOrBaseOffsets.end())
4752        FieldOrBaseOffsets.insert(FieldOrBaseOffsets.end(),
4753                                  std::make_pair(offs, base));
4754    }
4755  }
4756
4757  CharUnits size;
4758  if (CXXRec) {
4759    size = includeVBases ? layout.getSize() : layout.getNonVirtualSize();
4760  } else {
4761    size = layout.getSize();
4762  }
4763
4764  uint64_t CurOffs = 0;
4765  std::multimap<uint64_t, NamedDecl *>::iterator
4766    CurLayObj = FieldOrBaseOffsets.begin();
4767
4768  if ((CurLayObj != FieldOrBaseOffsets.end() && CurLayObj->first != 0) ||
4769      (CurLayObj == FieldOrBaseOffsets.end() &&
4770         CXXRec && CXXRec->isDynamicClass())) {
4771    assert(CXXRec && CXXRec->isDynamicClass() &&
4772           "Offset 0 was empty but no VTable ?");
4773    if (FD) {
4774      S += "\"_vptr$";
4775      std::string recname = CXXRec->getNameAsString();
4776      if (recname.empty()) recname = "?";
4777      S += recname;
4778      S += '"';
4779    }
4780    S += "^^?";
4781    CurOffs += getTypeSize(VoidPtrTy);
4782  }
4783
4784  if (!RDecl->hasFlexibleArrayMember()) {
4785    // Mark the end of the structure.
4786    uint64_t offs = toBits(size);
4787    FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
4788                              std::make_pair(offs, (NamedDecl*)0));
4789  }
4790
4791  for (; CurLayObj != FieldOrBaseOffsets.end(); ++CurLayObj) {
4792    assert(CurOffs <= CurLayObj->first);
4793
4794    if (CurOffs < CurLayObj->first) {
4795      uint64_t padding = CurLayObj->first - CurOffs;
4796      // FIXME: There doesn't seem to be a way to indicate in the encoding that
4797      // packing/alignment of members is different that normal, in which case
4798      // the encoding will be out-of-sync with the real layout.
4799      // If the runtime switches to just consider the size of types without
4800      // taking into account alignment, we could make padding explicit in the
4801      // encoding (e.g. using arrays of chars). The encoding strings would be
4802      // longer then though.
4803      CurOffs += padding;
4804    }
4805
4806    NamedDecl *dcl = CurLayObj->second;
4807    if (dcl == 0)
4808      break; // reached end of structure.
4809
4810    if (CXXRecordDecl *base = dyn_cast<CXXRecordDecl>(dcl)) {
4811      // We expand the bases without their virtual bases since those are going
4812      // in the initial structure. Note that this differs from gcc which
4813      // expands virtual bases each time one is encountered in the hierarchy,
4814      // making the encoding type bigger than it really is.
4815      getObjCEncodingForStructureImpl(base, S, FD, /*includeVBases*/false);
4816      assert(!base->isEmpty());
4817      CurOffs += toBits(getASTRecordLayout(base).getNonVirtualSize());
4818    } else {
4819      FieldDecl *field = cast<FieldDecl>(dcl);
4820      if (FD) {
4821        S += '"';
4822        S += field->getNameAsString();
4823        S += '"';
4824      }
4825
4826      if (field->isBitField()) {
4827        EncodeBitField(this, S, field->getType(), field);
4828        CurOffs += field->getBitWidthValue(*this);
4829      } else {
4830        QualType qt = field->getType();
4831        getLegacyIntegralTypeEncoding(qt);
4832        getObjCEncodingForTypeImpl(qt, S, false, true, FD,
4833                                   /*OutermostType*/false,
4834                                   /*EncodingProperty*/false,
4835                                   /*StructField*/true);
4836        CurOffs += getTypeSize(field->getType());
4837      }
4838    }
4839  }
4840}
4841
4842void ASTContext::getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT,
4843                                                 std::string& S) const {
4844  if (QT & Decl::OBJC_TQ_In)
4845    S += 'n';
4846  if (QT & Decl::OBJC_TQ_Inout)
4847    S += 'N';
4848  if (QT & Decl::OBJC_TQ_Out)
4849    S += 'o';
4850  if (QT & Decl::OBJC_TQ_Bycopy)
4851    S += 'O';
4852  if (QT & Decl::OBJC_TQ_Byref)
4853    S += 'R';
4854  if (QT & Decl::OBJC_TQ_Oneway)
4855    S += 'V';
4856}
4857
4858void ASTContext::setBuiltinVaListType(QualType T) {
4859  assert(BuiltinVaListType.isNull() && "__builtin_va_list type already set!");
4860
4861  BuiltinVaListType = T;
4862}
4863
4864TypedefDecl *ASTContext::getObjCIdDecl() const {
4865  if (!ObjCIdDecl) {
4866    QualType T = getObjCObjectType(ObjCBuiltinIdTy, 0, 0);
4867    T = getObjCObjectPointerType(T);
4868    TypeSourceInfo *IdInfo = getTrivialTypeSourceInfo(T);
4869    ObjCIdDecl = TypedefDecl::Create(const_cast<ASTContext &>(*this),
4870                                     getTranslationUnitDecl(),
4871                                     SourceLocation(), SourceLocation(),
4872                                     &Idents.get("id"), IdInfo);
4873  }
4874
4875  return ObjCIdDecl;
4876}
4877
4878TypedefDecl *ASTContext::getObjCSelDecl() const {
4879  if (!ObjCSelDecl) {
4880    QualType SelT = getPointerType(ObjCBuiltinSelTy);
4881    TypeSourceInfo *SelInfo = getTrivialTypeSourceInfo(SelT);
4882    ObjCSelDecl = TypedefDecl::Create(const_cast<ASTContext &>(*this),
4883                                      getTranslationUnitDecl(),
4884                                      SourceLocation(), SourceLocation(),
4885                                      &Idents.get("SEL"), SelInfo);
4886  }
4887  return ObjCSelDecl;
4888}
4889
4890void ASTContext::setObjCProtoType(QualType QT) {
4891  ObjCProtoType = QT;
4892}
4893
4894TypedefDecl *ASTContext::getObjCClassDecl() const {
4895  if (!ObjCClassDecl) {
4896    QualType T = getObjCObjectType(ObjCBuiltinClassTy, 0, 0);
4897    T = getObjCObjectPointerType(T);
4898    TypeSourceInfo *ClassInfo = getTrivialTypeSourceInfo(T);
4899    ObjCClassDecl = TypedefDecl::Create(const_cast<ASTContext &>(*this),
4900                                        getTranslationUnitDecl(),
4901                                        SourceLocation(), SourceLocation(),
4902                                        &Idents.get("Class"), ClassInfo);
4903  }
4904
4905  return ObjCClassDecl;
4906}
4907
4908void ASTContext::setObjCConstantStringInterface(ObjCInterfaceDecl *Decl) {
4909  assert(ObjCConstantStringType.isNull() &&
4910         "'NSConstantString' type already set!");
4911
4912  ObjCConstantStringType = getObjCInterfaceType(Decl);
4913}
4914
4915/// \brief Retrieve the template name that corresponds to a non-empty
4916/// lookup.
4917TemplateName
4918ASTContext::getOverloadedTemplateName(UnresolvedSetIterator Begin,
4919                                      UnresolvedSetIterator End) const {
4920  unsigned size = End - Begin;
4921  assert(size > 1 && "set is not overloaded!");
4922
4923  void *memory = Allocate(sizeof(OverloadedTemplateStorage) +
4924                          size * sizeof(FunctionTemplateDecl*));
4925  OverloadedTemplateStorage *OT = new(memory) OverloadedTemplateStorage(size);
4926
4927  NamedDecl **Storage = OT->getStorage();
4928  for (UnresolvedSetIterator I = Begin; I != End; ++I) {
4929    NamedDecl *D = *I;
4930    assert(isa<FunctionTemplateDecl>(D) ||
4931           (isa<UsingShadowDecl>(D) &&
4932            isa<FunctionTemplateDecl>(D->getUnderlyingDecl())));
4933    *Storage++ = D;
4934  }
4935
4936  return TemplateName(OT);
4937}
4938
4939/// \brief Retrieve the template name that represents a qualified
4940/// template name such as \c std::vector.
4941TemplateName
4942ASTContext::getQualifiedTemplateName(NestedNameSpecifier *NNS,
4943                                     bool TemplateKeyword,
4944                                     TemplateDecl *Template) const {
4945  assert(NNS && "Missing nested-name-specifier in qualified template name");
4946
4947  // FIXME: Canonicalization?
4948  llvm::FoldingSetNodeID ID;
4949  QualifiedTemplateName::Profile(ID, NNS, TemplateKeyword, Template);
4950
4951  void *InsertPos = 0;
4952  QualifiedTemplateName *QTN =
4953    QualifiedTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
4954  if (!QTN) {
4955    QTN = new (*this,4) QualifiedTemplateName(NNS, TemplateKeyword, Template);
4956    QualifiedTemplateNames.InsertNode(QTN, InsertPos);
4957  }
4958
4959  return TemplateName(QTN);
4960}
4961
4962/// \brief Retrieve the template name that represents a dependent
4963/// template name such as \c MetaFun::template apply.
4964TemplateName
4965ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
4966                                     const IdentifierInfo *Name) const {
4967  assert((!NNS || NNS->isDependent()) &&
4968         "Nested name specifier must be dependent");
4969
4970  llvm::FoldingSetNodeID ID;
4971  DependentTemplateName::Profile(ID, NNS, Name);
4972
4973  void *InsertPos = 0;
4974  DependentTemplateName *QTN =
4975    DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
4976
4977  if (QTN)
4978    return TemplateName(QTN);
4979
4980  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
4981  if (CanonNNS == NNS) {
4982    QTN = new (*this,4) DependentTemplateName(NNS, Name);
4983  } else {
4984    TemplateName Canon = getDependentTemplateName(CanonNNS, Name);
4985    QTN = new (*this,4) DependentTemplateName(NNS, Name, Canon);
4986    DependentTemplateName *CheckQTN =
4987      DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
4988    assert(!CheckQTN && "Dependent type name canonicalization broken");
4989    (void)CheckQTN;
4990  }
4991
4992  DependentTemplateNames.InsertNode(QTN, InsertPos);
4993  return TemplateName(QTN);
4994}
4995
4996/// \brief Retrieve the template name that represents a dependent
4997/// template name such as \c MetaFun::template operator+.
4998TemplateName
4999ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
5000                                     OverloadedOperatorKind Operator) const {
5001  assert((!NNS || NNS->isDependent()) &&
5002         "Nested name specifier must be dependent");
5003
5004  llvm::FoldingSetNodeID ID;
5005  DependentTemplateName::Profile(ID, NNS, Operator);
5006
5007  void *InsertPos = 0;
5008  DependentTemplateName *QTN
5009    = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
5010
5011  if (QTN)
5012    return TemplateName(QTN);
5013
5014  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
5015  if (CanonNNS == NNS) {
5016    QTN = new (*this,4) DependentTemplateName(NNS, Operator);
5017  } else {
5018    TemplateName Canon = getDependentTemplateName(CanonNNS, Operator);
5019    QTN = new (*this,4) DependentTemplateName(NNS, Operator, Canon);
5020
5021    DependentTemplateName *CheckQTN
5022      = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
5023    assert(!CheckQTN && "Dependent template name canonicalization broken");
5024    (void)CheckQTN;
5025  }
5026
5027  DependentTemplateNames.InsertNode(QTN, InsertPos);
5028  return TemplateName(QTN);
5029}
5030
5031TemplateName
5032ASTContext::getSubstTemplateTemplateParm(TemplateTemplateParmDecl *param,
5033                                         TemplateName replacement) const {
5034  llvm::FoldingSetNodeID ID;
5035  SubstTemplateTemplateParmStorage::Profile(ID, param, replacement);
5036
5037  void *insertPos = 0;
5038  SubstTemplateTemplateParmStorage *subst
5039    = SubstTemplateTemplateParms.FindNodeOrInsertPos(ID, insertPos);
5040
5041  if (!subst) {
5042    subst = new (*this) SubstTemplateTemplateParmStorage(param, replacement);
5043    SubstTemplateTemplateParms.InsertNode(subst, insertPos);
5044  }
5045
5046  return TemplateName(subst);
5047}
5048
5049TemplateName
5050ASTContext::getSubstTemplateTemplateParmPack(TemplateTemplateParmDecl *Param,
5051                                       const TemplateArgument &ArgPack) const {
5052  ASTContext &Self = const_cast<ASTContext &>(*this);
5053  llvm::FoldingSetNodeID ID;
5054  SubstTemplateTemplateParmPackStorage::Profile(ID, Self, Param, ArgPack);
5055
5056  void *InsertPos = 0;
5057  SubstTemplateTemplateParmPackStorage *Subst
5058    = SubstTemplateTemplateParmPacks.FindNodeOrInsertPos(ID, InsertPos);
5059
5060  if (!Subst) {
5061    Subst = new (*this) SubstTemplateTemplateParmPackStorage(Param,
5062                                                           ArgPack.pack_size(),
5063                                                         ArgPack.pack_begin());
5064    SubstTemplateTemplateParmPacks.InsertNode(Subst, InsertPos);
5065  }
5066
5067  return TemplateName(Subst);
5068}
5069
5070/// getFromTargetType - Given one of the integer types provided by
5071/// TargetInfo, produce the corresponding type. The unsigned @p Type
5072/// is actually a value of type @c TargetInfo::IntType.
5073CanQualType ASTContext::getFromTargetType(unsigned Type) const {
5074  switch (Type) {
5075  case TargetInfo::NoInt: return CanQualType();
5076  case TargetInfo::SignedShort: return ShortTy;
5077  case TargetInfo::UnsignedShort: return UnsignedShortTy;
5078  case TargetInfo::SignedInt: return IntTy;
5079  case TargetInfo::UnsignedInt: return UnsignedIntTy;
5080  case TargetInfo::SignedLong: return LongTy;
5081  case TargetInfo::UnsignedLong: return UnsignedLongTy;
5082  case TargetInfo::SignedLongLong: return LongLongTy;
5083  case TargetInfo::UnsignedLongLong: return UnsignedLongLongTy;
5084  }
5085
5086  llvm_unreachable("Unhandled TargetInfo::IntType value");
5087}
5088
5089//===----------------------------------------------------------------------===//
5090//                        Type Predicates.
5091//===----------------------------------------------------------------------===//
5092
5093/// getObjCGCAttr - Returns one of GCNone, Weak or Strong objc's
5094/// garbage collection attribute.
5095///
5096Qualifiers::GC ASTContext::getObjCGCAttrKind(QualType Ty) const {
5097  if (getLangOptions().getGC() == LangOptions::NonGC)
5098    return Qualifiers::GCNone;
5099
5100  assert(getLangOptions().ObjC1);
5101  Qualifiers::GC GCAttrs = Ty.getObjCGCAttr();
5102
5103  // Default behaviour under objective-C's gc is for ObjC pointers
5104  // (or pointers to them) be treated as though they were declared
5105  // as __strong.
5106  if (GCAttrs == Qualifiers::GCNone) {
5107    if (Ty->isObjCObjectPointerType() || Ty->isBlockPointerType())
5108      return Qualifiers::Strong;
5109    else if (Ty->isPointerType())
5110      return getObjCGCAttrKind(Ty->getAs<PointerType>()->getPointeeType());
5111  } else {
5112    // It's not valid to set GC attributes on anything that isn't a
5113    // pointer.
5114#ifndef NDEBUG
5115    QualType CT = Ty->getCanonicalTypeInternal();
5116    while (const ArrayType *AT = dyn_cast<ArrayType>(CT))
5117      CT = AT->getElementType();
5118    assert(CT->isAnyPointerType() || CT->isBlockPointerType());
5119#endif
5120  }
5121  return GCAttrs;
5122}
5123
5124//===----------------------------------------------------------------------===//
5125//                        Type Compatibility Testing
5126//===----------------------------------------------------------------------===//
5127
5128/// areCompatVectorTypes - Return true if the two specified vector types are
5129/// compatible.
5130static bool areCompatVectorTypes(const VectorType *LHS,
5131                                 const VectorType *RHS) {
5132  assert(LHS->isCanonicalUnqualified() && RHS->isCanonicalUnqualified());
5133  return LHS->getElementType() == RHS->getElementType() &&
5134         LHS->getNumElements() == RHS->getNumElements();
5135}
5136
5137bool ASTContext::areCompatibleVectorTypes(QualType FirstVec,
5138                                          QualType SecondVec) {
5139  assert(FirstVec->isVectorType() && "FirstVec should be a vector type");
5140  assert(SecondVec->isVectorType() && "SecondVec should be a vector type");
5141
5142  if (hasSameUnqualifiedType(FirstVec, SecondVec))
5143    return true;
5144
5145  // Treat Neon vector types and most AltiVec vector types as if they are the
5146  // equivalent GCC vector types.
5147  const VectorType *First = FirstVec->getAs<VectorType>();
5148  const VectorType *Second = SecondVec->getAs<VectorType>();
5149  if (First->getNumElements() == Second->getNumElements() &&
5150      hasSameType(First->getElementType(), Second->getElementType()) &&
5151      First->getVectorKind() != VectorType::AltiVecPixel &&
5152      First->getVectorKind() != VectorType::AltiVecBool &&
5153      Second->getVectorKind() != VectorType::AltiVecPixel &&
5154      Second->getVectorKind() != VectorType::AltiVecBool)
5155    return true;
5156
5157  return false;
5158}
5159
5160//===----------------------------------------------------------------------===//
5161// ObjCQualifiedIdTypesAreCompatible - Compatibility testing for qualified id's.
5162//===----------------------------------------------------------------------===//
5163
5164/// ProtocolCompatibleWithProtocol - return 'true' if 'lProto' is in the
5165/// inheritance hierarchy of 'rProto'.
5166bool
5167ASTContext::ProtocolCompatibleWithProtocol(ObjCProtocolDecl *lProto,
5168                                           ObjCProtocolDecl *rProto) const {
5169  if (lProto == rProto)
5170    return true;
5171  for (ObjCProtocolDecl::protocol_iterator PI = rProto->protocol_begin(),
5172       E = rProto->protocol_end(); PI != E; ++PI)
5173    if (ProtocolCompatibleWithProtocol(lProto, *PI))
5174      return true;
5175  return false;
5176}
5177
5178/// QualifiedIdConformsQualifiedId - compare id<p,...> with id<p1,...>
5179/// return true if lhs's protocols conform to rhs's protocol; false
5180/// otherwise.
5181bool ASTContext::QualifiedIdConformsQualifiedId(QualType lhs, QualType rhs) {
5182  if (lhs->isObjCQualifiedIdType() && rhs->isObjCQualifiedIdType())
5183    return ObjCQualifiedIdTypesAreCompatible(lhs, rhs, false);
5184  return false;
5185}
5186
5187/// ObjCQualifiedClassTypesAreCompatible - compare  Class<p,...> and
5188/// Class<p1, ...>.
5189bool ASTContext::ObjCQualifiedClassTypesAreCompatible(QualType lhs,
5190                                                      QualType rhs) {
5191  const ObjCObjectPointerType *lhsQID = lhs->getAs<ObjCObjectPointerType>();
5192  const ObjCObjectPointerType *rhsOPT = rhs->getAs<ObjCObjectPointerType>();
5193  assert ((lhsQID && rhsOPT) && "ObjCQualifiedClassTypesAreCompatible");
5194
5195  for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
5196       E = lhsQID->qual_end(); I != E; ++I) {
5197    bool match = false;
5198    ObjCProtocolDecl *lhsProto = *I;
5199    for (ObjCObjectPointerType::qual_iterator J = rhsOPT->qual_begin(),
5200         E = rhsOPT->qual_end(); J != E; ++J) {
5201      ObjCProtocolDecl *rhsProto = *J;
5202      if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto)) {
5203        match = true;
5204        break;
5205      }
5206    }
5207    if (!match)
5208      return false;
5209  }
5210  return true;
5211}
5212
5213/// ObjCQualifiedIdTypesAreCompatible - We know that one of lhs/rhs is an
5214/// ObjCQualifiedIDType.
5215bool ASTContext::ObjCQualifiedIdTypesAreCompatible(QualType lhs, QualType rhs,
5216                                                   bool compare) {
5217  // Allow id<P..> and an 'id' or void* type in all cases.
5218  if (lhs->isVoidPointerType() ||
5219      lhs->isObjCIdType() || lhs->isObjCClassType())
5220    return true;
5221  else if (rhs->isVoidPointerType() ||
5222           rhs->isObjCIdType() || rhs->isObjCClassType())
5223    return true;
5224
5225  if (const ObjCObjectPointerType *lhsQID = lhs->getAsObjCQualifiedIdType()) {
5226    const ObjCObjectPointerType *rhsOPT = rhs->getAs<ObjCObjectPointerType>();
5227
5228    if (!rhsOPT) return false;
5229
5230    if (rhsOPT->qual_empty()) {
5231      // If the RHS is a unqualified interface pointer "NSString*",
5232      // make sure we check the class hierarchy.
5233      if (ObjCInterfaceDecl *rhsID = rhsOPT->getInterfaceDecl()) {
5234        for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
5235             E = lhsQID->qual_end(); I != E; ++I) {
5236          // when comparing an id<P> on lhs with a static type on rhs,
5237          // see if static class implements all of id's protocols, directly or
5238          // through its super class and categories.
5239          if (!rhsID->ClassImplementsProtocol(*I, true))
5240            return false;
5241        }
5242      }
5243      // If there are no qualifiers and no interface, we have an 'id'.
5244      return true;
5245    }
5246    // Both the right and left sides have qualifiers.
5247    for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
5248         E = lhsQID->qual_end(); I != E; ++I) {
5249      ObjCProtocolDecl *lhsProto = *I;
5250      bool match = false;
5251
5252      // when comparing an id<P> on lhs with a static type on rhs,
5253      // see if static class implements all of id's protocols, directly or
5254      // through its super class and categories.
5255      for (ObjCObjectPointerType::qual_iterator J = rhsOPT->qual_begin(),
5256           E = rhsOPT->qual_end(); J != E; ++J) {
5257        ObjCProtocolDecl *rhsProto = *J;
5258        if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
5259            (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
5260          match = true;
5261          break;
5262        }
5263      }
5264      // If the RHS is a qualified interface pointer "NSString<P>*",
5265      // make sure we check the class hierarchy.
5266      if (ObjCInterfaceDecl *rhsID = rhsOPT->getInterfaceDecl()) {
5267        for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
5268             E = lhsQID->qual_end(); I != E; ++I) {
5269          // when comparing an id<P> on lhs with a static type on rhs,
5270          // see if static class implements all of id's protocols, directly or
5271          // through its super class and categories.
5272          if (rhsID->ClassImplementsProtocol(*I, true)) {
5273            match = true;
5274            break;
5275          }
5276        }
5277      }
5278      if (!match)
5279        return false;
5280    }
5281
5282    return true;
5283  }
5284
5285  const ObjCObjectPointerType *rhsQID = rhs->getAsObjCQualifiedIdType();
5286  assert(rhsQID && "One of the LHS/RHS should be id<x>");
5287
5288  if (const ObjCObjectPointerType *lhsOPT =
5289        lhs->getAsObjCInterfacePointerType()) {
5290    // If both the right and left sides have qualifiers.
5291    for (ObjCObjectPointerType::qual_iterator I = lhsOPT->qual_begin(),
5292         E = lhsOPT->qual_end(); I != E; ++I) {
5293      ObjCProtocolDecl *lhsProto = *I;
5294      bool match = false;
5295
5296      // when comparing an id<P> on rhs with a static type on lhs,
5297      // see if static class implements all of id's protocols, directly or
5298      // through its super class and categories.
5299      // First, lhs protocols in the qualifier list must be found, direct
5300      // or indirect in rhs's qualifier list or it is a mismatch.
5301      for (ObjCObjectPointerType::qual_iterator J = rhsQID->qual_begin(),
5302           E = rhsQID->qual_end(); J != E; ++J) {
5303        ObjCProtocolDecl *rhsProto = *J;
5304        if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
5305            (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
5306          match = true;
5307          break;
5308        }
5309      }
5310      if (!match)
5311        return false;
5312    }
5313
5314    // Static class's protocols, or its super class or category protocols
5315    // must be found, direct or indirect in rhs's qualifier list or it is a mismatch.
5316    if (ObjCInterfaceDecl *lhsID = lhsOPT->getInterfaceDecl()) {
5317      llvm::SmallPtrSet<ObjCProtocolDecl *, 8> LHSInheritedProtocols;
5318      CollectInheritedProtocols(lhsID, LHSInheritedProtocols);
5319      // This is rather dubious but matches gcc's behavior. If lhs has
5320      // no type qualifier and its class has no static protocol(s)
5321      // assume that it is mismatch.
5322      if (LHSInheritedProtocols.empty() && lhsOPT->qual_empty())
5323        return false;
5324      for (llvm::SmallPtrSet<ObjCProtocolDecl*,8>::iterator I =
5325           LHSInheritedProtocols.begin(),
5326           E = LHSInheritedProtocols.end(); I != E; ++I) {
5327        bool match = false;
5328        ObjCProtocolDecl *lhsProto = (*I);
5329        for (ObjCObjectPointerType::qual_iterator J = rhsQID->qual_begin(),
5330             E = rhsQID->qual_end(); J != E; ++J) {
5331          ObjCProtocolDecl *rhsProto = *J;
5332          if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
5333              (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
5334            match = true;
5335            break;
5336          }
5337        }
5338        if (!match)
5339          return false;
5340      }
5341    }
5342    return true;
5343  }
5344  return false;
5345}
5346
5347/// canAssignObjCInterfaces - Return true if the two interface types are
5348/// compatible for assignment from RHS to LHS.  This handles validation of any
5349/// protocol qualifiers on the LHS or RHS.
5350///
5351bool ASTContext::canAssignObjCInterfaces(const ObjCObjectPointerType *LHSOPT,
5352                                         const ObjCObjectPointerType *RHSOPT) {
5353  const ObjCObjectType* LHS = LHSOPT->getObjectType();
5354  const ObjCObjectType* RHS = RHSOPT->getObjectType();
5355
5356  // If either type represents the built-in 'id' or 'Class' types, return true.
5357  if (LHS->isObjCUnqualifiedIdOrClass() ||
5358      RHS->isObjCUnqualifiedIdOrClass())
5359    return true;
5360
5361  if (LHS->isObjCQualifiedId() || RHS->isObjCQualifiedId())
5362    return ObjCQualifiedIdTypesAreCompatible(QualType(LHSOPT,0),
5363                                             QualType(RHSOPT,0),
5364                                             false);
5365
5366  if (LHS->isObjCQualifiedClass() && RHS->isObjCQualifiedClass())
5367    return ObjCQualifiedClassTypesAreCompatible(QualType(LHSOPT,0),
5368                                                QualType(RHSOPT,0));
5369
5370  // If we have 2 user-defined types, fall into that path.
5371  if (LHS->getInterface() && RHS->getInterface())
5372    return canAssignObjCInterfaces(LHS, RHS);
5373
5374  return false;
5375}
5376
5377/// canAssignObjCInterfacesInBlockPointer - This routine is specifically written
5378/// for providing type-safety for objective-c pointers used to pass/return
5379/// arguments in block literals. When passed as arguments, passing 'A*' where
5380/// 'id' is expected is not OK. Passing 'Sub *" where 'Super *" is expected is
5381/// not OK. For the return type, the opposite is not OK.
5382bool ASTContext::canAssignObjCInterfacesInBlockPointer(
5383                                         const ObjCObjectPointerType *LHSOPT,
5384                                         const ObjCObjectPointerType *RHSOPT,
5385                                         bool BlockReturnType) {
5386  if (RHSOPT->isObjCBuiltinType() || LHSOPT->isObjCIdType())
5387    return true;
5388
5389  if (LHSOPT->isObjCBuiltinType()) {
5390    return RHSOPT->isObjCBuiltinType() || RHSOPT->isObjCQualifiedIdType();
5391  }
5392
5393  if (LHSOPT->isObjCQualifiedIdType() || RHSOPT->isObjCQualifiedIdType())
5394    return ObjCQualifiedIdTypesAreCompatible(QualType(LHSOPT,0),
5395                                             QualType(RHSOPT,0),
5396                                             false);
5397
5398  const ObjCInterfaceType* LHS = LHSOPT->getInterfaceType();
5399  const ObjCInterfaceType* RHS = RHSOPT->getInterfaceType();
5400  if (LHS && RHS)  { // We have 2 user-defined types.
5401    if (LHS != RHS) {
5402      if (LHS->getDecl()->isSuperClassOf(RHS->getDecl()))
5403        return BlockReturnType;
5404      if (RHS->getDecl()->isSuperClassOf(LHS->getDecl()))
5405        return !BlockReturnType;
5406    }
5407    else
5408      return true;
5409  }
5410  return false;
5411}
5412
5413/// getIntersectionOfProtocols - This routine finds the intersection of set
5414/// of protocols inherited from two distinct objective-c pointer objects.
5415/// It is used to build composite qualifier list of the composite type of
5416/// the conditional expression involving two objective-c pointer objects.
5417static
5418void getIntersectionOfProtocols(ASTContext &Context,
5419                                const ObjCObjectPointerType *LHSOPT,
5420                                const ObjCObjectPointerType *RHSOPT,
5421      SmallVectorImpl<ObjCProtocolDecl *> &IntersectionOfProtocols) {
5422
5423  const ObjCObjectType* LHS = LHSOPT->getObjectType();
5424  const ObjCObjectType* RHS = RHSOPT->getObjectType();
5425  assert(LHS->getInterface() && "LHS must have an interface base");
5426  assert(RHS->getInterface() && "RHS must have an interface base");
5427
5428  llvm::SmallPtrSet<ObjCProtocolDecl *, 8> InheritedProtocolSet;
5429  unsigned LHSNumProtocols = LHS->getNumProtocols();
5430  if (LHSNumProtocols > 0)
5431    InheritedProtocolSet.insert(LHS->qual_begin(), LHS->qual_end());
5432  else {
5433    llvm::SmallPtrSet<ObjCProtocolDecl *, 8> LHSInheritedProtocols;
5434    Context.CollectInheritedProtocols(LHS->getInterface(),
5435                                      LHSInheritedProtocols);
5436    InheritedProtocolSet.insert(LHSInheritedProtocols.begin(),
5437                                LHSInheritedProtocols.end());
5438  }
5439
5440  unsigned RHSNumProtocols = RHS->getNumProtocols();
5441  if (RHSNumProtocols > 0) {
5442    ObjCProtocolDecl **RHSProtocols =
5443      const_cast<ObjCProtocolDecl **>(RHS->qual_begin());
5444    for (unsigned i = 0; i < RHSNumProtocols; ++i)
5445      if (InheritedProtocolSet.count(RHSProtocols[i]))
5446        IntersectionOfProtocols.push_back(RHSProtocols[i]);
5447  } else {
5448    llvm::SmallPtrSet<ObjCProtocolDecl *, 8> RHSInheritedProtocols;
5449    Context.CollectInheritedProtocols(RHS->getInterface(),
5450                                      RHSInheritedProtocols);
5451    for (llvm::SmallPtrSet<ObjCProtocolDecl*,8>::iterator I =
5452         RHSInheritedProtocols.begin(),
5453         E = RHSInheritedProtocols.end(); I != E; ++I)
5454      if (InheritedProtocolSet.count((*I)))
5455        IntersectionOfProtocols.push_back((*I));
5456  }
5457}
5458
5459/// areCommonBaseCompatible - Returns common base class of the two classes if
5460/// one found. Note that this is O'2 algorithm. But it will be called as the
5461/// last type comparison in a ?-exp of ObjC pointer types before a
5462/// warning is issued. So, its invokation is extremely rare.
5463QualType ASTContext::areCommonBaseCompatible(
5464                                          const ObjCObjectPointerType *Lptr,
5465                                          const ObjCObjectPointerType *Rptr) {
5466  const ObjCObjectType *LHS = Lptr->getObjectType();
5467  const ObjCObjectType *RHS = Rptr->getObjectType();
5468  const ObjCInterfaceDecl* LDecl = LHS->getInterface();
5469  const ObjCInterfaceDecl* RDecl = RHS->getInterface();
5470  if (!LDecl || !RDecl || (LDecl == RDecl))
5471    return QualType();
5472
5473  do {
5474    LHS = cast<ObjCInterfaceType>(getObjCInterfaceType(LDecl));
5475    if (canAssignObjCInterfaces(LHS, RHS)) {
5476      SmallVector<ObjCProtocolDecl *, 8> Protocols;
5477      getIntersectionOfProtocols(*this, Lptr, Rptr, Protocols);
5478
5479      QualType Result = QualType(LHS, 0);
5480      if (!Protocols.empty())
5481        Result = getObjCObjectType(Result, Protocols.data(), Protocols.size());
5482      Result = getObjCObjectPointerType(Result);
5483      return Result;
5484    }
5485  } while ((LDecl = LDecl->getSuperClass()));
5486
5487  return QualType();
5488}
5489
5490bool ASTContext::canAssignObjCInterfaces(const ObjCObjectType *LHS,
5491                                         const ObjCObjectType *RHS) {
5492  assert(LHS->getInterface() && "LHS is not an interface type");
5493  assert(RHS->getInterface() && "RHS is not an interface type");
5494
5495  // Verify that the base decls are compatible: the RHS must be a subclass of
5496  // the LHS.
5497  if (!LHS->getInterface()->isSuperClassOf(RHS->getInterface()))
5498    return false;
5499
5500  // RHS must have a superset of the protocols in the LHS.  If the LHS is not
5501  // protocol qualified at all, then we are good.
5502  if (LHS->getNumProtocols() == 0)
5503    return true;
5504
5505  // Okay, we know the LHS has protocol qualifiers.  If the RHS doesn't,
5506  // more detailed analysis is required.
5507  if (RHS->getNumProtocols() == 0) {
5508    // OK, if LHS is a superclass of RHS *and*
5509    // this superclass is assignment compatible with LHS.
5510    // false otherwise.
5511    bool IsSuperClass =
5512      LHS->getInterface()->isSuperClassOf(RHS->getInterface());
5513    if (IsSuperClass) {
5514      // OK if conversion of LHS to SuperClass results in narrowing of types
5515      // ; i.e., SuperClass may implement at least one of the protocols
5516      // in LHS's protocol list. Example, SuperObj<P1> = lhs<P1,P2> is ok.
5517      // But not SuperObj<P1,P2,P3> = lhs<P1,P2>.
5518      llvm::SmallPtrSet<ObjCProtocolDecl *, 8> SuperClassInheritedProtocols;
5519      CollectInheritedProtocols(RHS->getInterface(), SuperClassInheritedProtocols);
5520      // If super class has no protocols, it is not a match.
5521      if (SuperClassInheritedProtocols.empty())
5522        return false;
5523
5524      for (ObjCObjectType::qual_iterator LHSPI = LHS->qual_begin(),
5525           LHSPE = LHS->qual_end();
5526           LHSPI != LHSPE; LHSPI++) {
5527        bool SuperImplementsProtocol = false;
5528        ObjCProtocolDecl *LHSProto = (*LHSPI);
5529
5530        for (llvm::SmallPtrSet<ObjCProtocolDecl*,8>::iterator I =
5531             SuperClassInheritedProtocols.begin(),
5532             E = SuperClassInheritedProtocols.end(); I != E; ++I) {
5533          ObjCProtocolDecl *SuperClassProto = (*I);
5534          if (SuperClassProto->lookupProtocolNamed(LHSProto->getIdentifier())) {
5535            SuperImplementsProtocol = true;
5536            break;
5537          }
5538        }
5539        if (!SuperImplementsProtocol)
5540          return false;
5541      }
5542      return true;
5543    }
5544    return false;
5545  }
5546
5547  for (ObjCObjectType::qual_iterator LHSPI = LHS->qual_begin(),
5548                                     LHSPE = LHS->qual_end();
5549       LHSPI != LHSPE; LHSPI++) {
5550    bool RHSImplementsProtocol = false;
5551
5552    // If the RHS doesn't implement the protocol on the left, the types
5553    // are incompatible.
5554    for (ObjCObjectType::qual_iterator RHSPI = RHS->qual_begin(),
5555                                       RHSPE = RHS->qual_end();
5556         RHSPI != RHSPE; RHSPI++) {
5557      if ((*RHSPI)->lookupProtocolNamed((*LHSPI)->getIdentifier())) {
5558        RHSImplementsProtocol = true;
5559        break;
5560      }
5561    }
5562    // FIXME: For better diagnostics, consider passing back the protocol name.
5563    if (!RHSImplementsProtocol)
5564      return false;
5565  }
5566  // The RHS implements all protocols listed on the LHS.
5567  return true;
5568}
5569
5570bool ASTContext::areComparableObjCPointerTypes(QualType LHS, QualType RHS) {
5571  // get the "pointed to" types
5572  const ObjCObjectPointerType *LHSOPT = LHS->getAs<ObjCObjectPointerType>();
5573  const ObjCObjectPointerType *RHSOPT = RHS->getAs<ObjCObjectPointerType>();
5574
5575  if (!LHSOPT || !RHSOPT)
5576    return false;
5577
5578  return canAssignObjCInterfaces(LHSOPT, RHSOPT) ||
5579         canAssignObjCInterfaces(RHSOPT, LHSOPT);
5580}
5581
5582bool ASTContext::canBindObjCObjectType(QualType To, QualType From) {
5583  return canAssignObjCInterfaces(
5584                getObjCObjectPointerType(To)->getAs<ObjCObjectPointerType>(),
5585                getObjCObjectPointerType(From)->getAs<ObjCObjectPointerType>());
5586}
5587
5588/// typesAreCompatible - C99 6.7.3p9: For two qualified types to be compatible,
5589/// both shall have the identically qualified version of a compatible type.
5590/// C99 6.2.7p1: Two types have compatible types if their types are the
5591/// same. See 6.7.[2,3,5] for additional rules.
5592bool ASTContext::typesAreCompatible(QualType LHS, QualType RHS,
5593                                    bool CompareUnqualified) {
5594  if (getLangOptions().CPlusPlus)
5595    return hasSameType(LHS, RHS);
5596
5597  return !mergeTypes(LHS, RHS, false, CompareUnqualified).isNull();
5598}
5599
5600bool ASTContext::propertyTypesAreCompatible(QualType LHS, QualType RHS) {
5601  return typesAreCompatible(LHS, RHS);
5602}
5603
5604bool ASTContext::typesAreBlockPointerCompatible(QualType LHS, QualType RHS) {
5605  return !mergeTypes(LHS, RHS, true).isNull();
5606}
5607
5608/// mergeTransparentUnionType - if T is a transparent union type and a member
5609/// of T is compatible with SubType, return the merged type, else return
5610/// QualType()
5611QualType ASTContext::mergeTransparentUnionType(QualType T, QualType SubType,
5612                                               bool OfBlockPointer,
5613                                               bool Unqualified) {
5614  if (const RecordType *UT = T->getAsUnionType()) {
5615    RecordDecl *UD = UT->getDecl();
5616    if (UD->hasAttr<TransparentUnionAttr>()) {
5617      for (RecordDecl::field_iterator it = UD->field_begin(),
5618           itend = UD->field_end(); it != itend; ++it) {
5619        QualType ET = it->getType().getUnqualifiedType();
5620        QualType MT = mergeTypes(ET, SubType, OfBlockPointer, Unqualified);
5621        if (!MT.isNull())
5622          return MT;
5623      }
5624    }
5625  }
5626
5627  return QualType();
5628}
5629
5630/// mergeFunctionArgumentTypes - merge two types which appear as function
5631/// argument types
5632QualType ASTContext::mergeFunctionArgumentTypes(QualType lhs, QualType rhs,
5633                                                bool OfBlockPointer,
5634                                                bool Unqualified) {
5635  // GNU extension: two types are compatible if they appear as a function
5636  // argument, one of the types is a transparent union type and the other
5637  // type is compatible with a union member
5638  QualType lmerge = mergeTransparentUnionType(lhs, rhs, OfBlockPointer,
5639                                              Unqualified);
5640  if (!lmerge.isNull())
5641    return lmerge;
5642
5643  QualType rmerge = mergeTransparentUnionType(rhs, lhs, OfBlockPointer,
5644                                              Unqualified);
5645  if (!rmerge.isNull())
5646    return rmerge;
5647
5648  return mergeTypes(lhs, rhs, OfBlockPointer, Unqualified);
5649}
5650
5651QualType ASTContext::mergeFunctionTypes(QualType lhs, QualType rhs,
5652                                        bool OfBlockPointer,
5653                                        bool Unqualified) {
5654  const FunctionType *lbase = lhs->getAs<FunctionType>();
5655  const FunctionType *rbase = rhs->getAs<FunctionType>();
5656  const FunctionProtoType *lproto = dyn_cast<FunctionProtoType>(lbase);
5657  const FunctionProtoType *rproto = dyn_cast<FunctionProtoType>(rbase);
5658  bool allLTypes = true;
5659  bool allRTypes = true;
5660
5661  // Check return type
5662  QualType retType;
5663  if (OfBlockPointer) {
5664    QualType RHS = rbase->getResultType();
5665    QualType LHS = lbase->getResultType();
5666    bool UnqualifiedResult = Unqualified;
5667    if (!UnqualifiedResult)
5668      UnqualifiedResult = (!RHS.hasQualifiers() && LHS.hasQualifiers());
5669    retType = mergeTypes(LHS, RHS, true, UnqualifiedResult, true);
5670  }
5671  else
5672    retType = mergeTypes(lbase->getResultType(), rbase->getResultType(), false,
5673                         Unqualified);
5674  if (retType.isNull()) return QualType();
5675
5676  if (Unqualified)
5677    retType = retType.getUnqualifiedType();
5678
5679  CanQualType LRetType = getCanonicalType(lbase->getResultType());
5680  CanQualType RRetType = getCanonicalType(rbase->getResultType());
5681  if (Unqualified) {
5682    LRetType = LRetType.getUnqualifiedType();
5683    RRetType = RRetType.getUnqualifiedType();
5684  }
5685
5686  if (getCanonicalType(retType) != LRetType)
5687    allLTypes = false;
5688  if (getCanonicalType(retType) != RRetType)
5689    allRTypes = false;
5690
5691  // FIXME: double check this
5692  // FIXME: should we error if lbase->getRegParmAttr() != 0 &&
5693  //                           rbase->getRegParmAttr() != 0 &&
5694  //                           lbase->getRegParmAttr() != rbase->getRegParmAttr()?
5695  FunctionType::ExtInfo lbaseInfo = lbase->getExtInfo();
5696  FunctionType::ExtInfo rbaseInfo = rbase->getExtInfo();
5697
5698  // Compatible functions must have compatible calling conventions
5699  if (!isSameCallConv(lbaseInfo.getCC(), rbaseInfo.getCC()))
5700    return QualType();
5701
5702  // Regparm is part of the calling convention.
5703  if (lbaseInfo.getHasRegParm() != rbaseInfo.getHasRegParm())
5704    return QualType();
5705  if (lbaseInfo.getRegParm() != rbaseInfo.getRegParm())
5706    return QualType();
5707
5708  if (lbaseInfo.getProducesResult() != rbaseInfo.getProducesResult())
5709    return QualType();
5710
5711  // functypes which return are preferred over those that do not.
5712  if (lbaseInfo.getNoReturn() && !rbaseInfo.getNoReturn())
5713    allLTypes = false;
5714  else if (!lbaseInfo.getNoReturn() && rbaseInfo.getNoReturn())
5715    allRTypes = false;
5716  // FIXME: some uses, e.g. conditional exprs, really want this to be 'both'.
5717  bool NoReturn = lbaseInfo.getNoReturn() || rbaseInfo.getNoReturn();
5718
5719  FunctionType::ExtInfo einfo = lbaseInfo.withNoReturn(NoReturn);
5720
5721  if (lproto && rproto) { // two C99 style function prototypes
5722    assert(!lproto->hasExceptionSpec() && !rproto->hasExceptionSpec() &&
5723           "C++ shouldn't be here");
5724    unsigned lproto_nargs = lproto->getNumArgs();
5725    unsigned rproto_nargs = rproto->getNumArgs();
5726
5727    // Compatible functions must have the same number of arguments
5728    if (lproto_nargs != rproto_nargs)
5729      return QualType();
5730
5731    // Variadic and non-variadic functions aren't compatible
5732    if (lproto->isVariadic() != rproto->isVariadic())
5733      return QualType();
5734
5735    if (lproto->getTypeQuals() != rproto->getTypeQuals())
5736      return QualType();
5737
5738    if (LangOpts.ObjCAutoRefCount &&
5739        !FunctionTypesMatchOnNSConsumedAttrs(rproto, lproto))
5740      return QualType();
5741
5742    // Check argument compatibility
5743    SmallVector<QualType, 10> types;
5744    for (unsigned i = 0; i < lproto_nargs; i++) {
5745      QualType largtype = lproto->getArgType(i).getUnqualifiedType();
5746      QualType rargtype = rproto->getArgType(i).getUnqualifiedType();
5747      QualType argtype = mergeFunctionArgumentTypes(largtype, rargtype,
5748                                                    OfBlockPointer,
5749                                                    Unqualified);
5750      if (argtype.isNull()) return QualType();
5751
5752      if (Unqualified)
5753        argtype = argtype.getUnqualifiedType();
5754
5755      types.push_back(argtype);
5756      if (Unqualified) {
5757        largtype = largtype.getUnqualifiedType();
5758        rargtype = rargtype.getUnqualifiedType();
5759      }
5760
5761      if (getCanonicalType(argtype) != getCanonicalType(largtype))
5762        allLTypes = false;
5763      if (getCanonicalType(argtype) != getCanonicalType(rargtype))
5764        allRTypes = false;
5765    }
5766
5767    if (allLTypes) return lhs;
5768    if (allRTypes) return rhs;
5769
5770    FunctionProtoType::ExtProtoInfo EPI = lproto->getExtProtoInfo();
5771    EPI.ExtInfo = einfo;
5772    return getFunctionType(retType, types.begin(), types.size(), EPI);
5773  }
5774
5775  if (lproto) allRTypes = false;
5776  if (rproto) allLTypes = false;
5777
5778  const FunctionProtoType *proto = lproto ? lproto : rproto;
5779  if (proto) {
5780    assert(!proto->hasExceptionSpec() && "C++ shouldn't be here");
5781    if (proto->isVariadic()) return QualType();
5782    // Check that the types are compatible with the types that
5783    // would result from default argument promotions (C99 6.7.5.3p15).
5784    // The only types actually affected are promotable integer
5785    // types and floats, which would be passed as a different
5786    // type depending on whether the prototype is visible.
5787    unsigned proto_nargs = proto->getNumArgs();
5788    for (unsigned i = 0; i < proto_nargs; ++i) {
5789      QualType argTy = proto->getArgType(i);
5790
5791      // Look at the promotion type of enum types, since that is the type used
5792      // to pass enum values.
5793      if (const EnumType *Enum = argTy->getAs<EnumType>())
5794        argTy = Enum->getDecl()->getPromotionType();
5795
5796      if (argTy->isPromotableIntegerType() ||
5797          getCanonicalType(argTy).getUnqualifiedType() == FloatTy)
5798        return QualType();
5799    }
5800
5801    if (allLTypes) return lhs;
5802    if (allRTypes) return rhs;
5803
5804    FunctionProtoType::ExtProtoInfo EPI = proto->getExtProtoInfo();
5805    EPI.ExtInfo = einfo;
5806    return getFunctionType(retType, proto->arg_type_begin(),
5807                           proto->getNumArgs(), EPI);
5808  }
5809
5810  if (allLTypes) return lhs;
5811  if (allRTypes) return rhs;
5812  return getFunctionNoProtoType(retType, einfo);
5813}
5814
5815QualType ASTContext::mergeTypes(QualType LHS, QualType RHS,
5816                                bool OfBlockPointer,
5817                                bool Unqualified, bool BlockReturnType) {
5818  // C++ [expr]: If an expression initially has the type "reference to T", the
5819  // type is adjusted to "T" prior to any further analysis, the expression
5820  // designates the object or function denoted by the reference, and the
5821  // expression is an lvalue unless the reference is an rvalue reference and
5822  // the expression is a function call (possibly inside parentheses).
5823  assert(!LHS->getAs<ReferenceType>() && "LHS is a reference type?");
5824  assert(!RHS->getAs<ReferenceType>() && "RHS is a reference type?");
5825
5826  if (Unqualified) {
5827    LHS = LHS.getUnqualifiedType();
5828    RHS = RHS.getUnqualifiedType();
5829  }
5830
5831  QualType LHSCan = getCanonicalType(LHS),
5832           RHSCan = getCanonicalType(RHS);
5833
5834  // If two types are identical, they are compatible.
5835  if (LHSCan == RHSCan)
5836    return LHS;
5837
5838  // If the qualifiers are different, the types aren't compatible... mostly.
5839  Qualifiers LQuals = LHSCan.getLocalQualifiers();
5840  Qualifiers RQuals = RHSCan.getLocalQualifiers();
5841  if (LQuals != RQuals) {
5842    // If any of these qualifiers are different, we have a type
5843    // mismatch.
5844    if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() ||
5845        LQuals.getAddressSpace() != RQuals.getAddressSpace() ||
5846        LQuals.getObjCLifetime() != RQuals.getObjCLifetime())
5847      return QualType();
5848
5849    // Exactly one GC qualifier difference is allowed: __strong is
5850    // okay if the other type has no GC qualifier but is an Objective
5851    // C object pointer (i.e. implicitly strong by default).  We fix
5852    // this by pretending that the unqualified type was actually
5853    // qualified __strong.
5854    Qualifiers::GC GC_L = LQuals.getObjCGCAttr();
5855    Qualifiers::GC GC_R = RQuals.getObjCGCAttr();
5856    assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements");
5857
5858    if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak)
5859      return QualType();
5860
5861    if (GC_L == Qualifiers::Strong && RHSCan->isObjCObjectPointerType()) {
5862      return mergeTypes(LHS, getObjCGCQualType(RHS, Qualifiers::Strong));
5863    }
5864    if (GC_R == Qualifiers::Strong && LHSCan->isObjCObjectPointerType()) {
5865      return mergeTypes(getObjCGCQualType(LHS, Qualifiers::Strong), RHS);
5866    }
5867    return QualType();
5868  }
5869
5870  // Okay, qualifiers are equal.
5871
5872  Type::TypeClass LHSClass = LHSCan->getTypeClass();
5873  Type::TypeClass RHSClass = RHSCan->getTypeClass();
5874
5875  // We want to consider the two function types to be the same for these
5876  // comparisons, just force one to the other.
5877  if (LHSClass == Type::FunctionProto) LHSClass = Type::FunctionNoProto;
5878  if (RHSClass == Type::FunctionProto) RHSClass = Type::FunctionNoProto;
5879
5880  // Same as above for arrays
5881  if (LHSClass == Type::VariableArray || LHSClass == Type::IncompleteArray)
5882    LHSClass = Type::ConstantArray;
5883  if (RHSClass == Type::VariableArray || RHSClass == Type::IncompleteArray)
5884    RHSClass = Type::ConstantArray;
5885
5886  // ObjCInterfaces are just specialized ObjCObjects.
5887  if (LHSClass == Type::ObjCInterface) LHSClass = Type::ObjCObject;
5888  if (RHSClass == Type::ObjCInterface) RHSClass = Type::ObjCObject;
5889
5890  // Canonicalize ExtVector -> Vector.
5891  if (LHSClass == Type::ExtVector) LHSClass = Type::Vector;
5892  if (RHSClass == Type::ExtVector) RHSClass = Type::Vector;
5893
5894  // If the canonical type classes don't match.
5895  if (LHSClass != RHSClass) {
5896    // C99 6.7.2.2p4: Each enumerated type shall be compatible with char,
5897    // a signed integer type, or an unsigned integer type.
5898    // Compatibility is based on the underlying type, not the promotion
5899    // type.
5900    if (const EnumType* ETy = LHS->getAs<EnumType>()) {
5901      if (ETy->getDecl()->getIntegerType() == RHSCan.getUnqualifiedType())
5902        return RHS;
5903    }
5904    if (const EnumType* ETy = RHS->getAs<EnumType>()) {
5905      if (ETy->getDecl()->getIntegerType() == LHSCan.getUnqualifiedType())
5906        return LHS;
5907    }
5908
5909    return QualType();
5910  }
5911
5912  // The canonical type classes match.
5913  switch (LHSClass) {
5914#define TYPE(Class, Base)
5915#define ABSTRACT_TYPE(Class, Base)
5916#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
5917#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
5918#define DEPENDENT_TYPE(Class, Base) case Type::Class:
5919#include "clang/AST/TypeNodes.def"
5920    llvm_unreachable("Non-canonical and dependent types shouldn't get here");
5921
5922  case Type::LValueReference:
5923  case Type::RValueReference:
5924  case Type::MemberPointer:
5925    llvm_unreachable("C++ should never be in mergeTypes");
5926
5927  case Type::ObjCInterface:
5928  case Type::IncompleteArray:
5929  case Type::VariableArray:
5930  case Type::FunctionProto:
5931  case Type::ExtVector:
5932    llvm_unreachable("Types are eliminated above");
5933
5934  case Type::Pointer:
5935  {
5936    // Merge two pointer types, while trying to preserve typedef info
5937    QualType LHSPointee = LHS->getAs<PointerType>()->getPointeeType();
5938    QualType RHSPointee = RHS->getAs<PointerType>()->getPointeeType();
5939    if (Unqualified) {
5940      LHSPointee = LHSPointee.getUnqualifiedType();
5941      RHSPointee = RHSPointee.getUnqualifiedType();
5942    }
5943    QualType ResultType = mergeTypes(LHSPointee, RHSPointee, false,
5944                                     Unqualified);
5945    if (ResultType.isNull()) return QualType();
5946    if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
5947      return LHS;
5948    if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
5949      return RHS;
5950    return getPointerType(ResultType);
5951  }
5952  case Type::BlockPointer:
5953  {
5954    // Merge two block pointer types, while trying to preserve typedef info
5955    QualType LHSPointee = LHS->getAs<BlockPointerType>()->getPointeeType();
5956    QualType RHSPointee = RHS->getAs<BlockPointerType>()->getPointeeType();
5957    if (Unqualified) {
5958      LHSPointee = LHSPointee.getUnqualifiedType();
5959      RHSPointee = RHSPointee.getUnqualifiedType();
5960    }
5961    QualType ResultType = mergeTypes(LHSPointee, RHSPointee, OfBlockPointer,
5962                                     Unqualified);
5963    if (ResultType.isNull()) return QualType();
5964    if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
5965      return LHS;
5966    if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
5967      return RHS;
5968    return getBlockPointerType(ResultType);
5969  }
5970  case Type::Atomic:
5971  {
5972    // Merge two pointer types, while trying to preserve typedef info
5973    QualType LHSValue = LHS->getAs<AtomicType>()->getValueType();
5974    QualType RHSValue = RHS->getAs<AtomicType>()->getValueType();
5975    if (Unqualified) {
5976      LHSValue = LHSValue.getUnqualifiedType();
5977      RHSValue = RHSValue.getUnqualifiedType();
5978    }
5979    QualType ResultType = mergeTypes(LHSValue, RHSValue, false,
5980                                     Unqualified);
5981    if (ResultType.isNull()) return QualType();
5982    if (getCanonicalType(LHSValue) == getCanonicalType(ResultType))
5983      return LHS;
5984    if (getCanonicalType(RHSValue) == getCanonicalType(ResultType))
5985      return RHS;
5986    return getAtomicType(ResultType);
5987  }
5988  case Type::ConstantArray:
5989  {
5990    const ConstantArrayType* LCAT = getAsConstantArrayType(LHS);
5991    const ConstantArrayType* RCAT = getAsConstantArrayType(RHS);
5992    if (LCAT && RCAT && RCAT->getSize() != LCAT->getSize())
5993      return QualType();
5994
5995    QualType LHSElem = getAsArrayType(LHS)->getElementType();
5996    QualType RHSElem = getAsArrayType(RHS)->getElementType();
5997    if (Unqualified) {
5998      LHSElem = LHSElem.getUnqualifiedType();
5999      RHSElem = RHSElem.getUnqualifiedType();
6000    }
6001
6002    QualType ResultType = mergeTypes(LHSElem, RHSElem, false, Unqualified);
6003    if (ResultType.isNull()) return QualType();
6004    if (LCAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
6005      return LHS;
6006    if (RCAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
6007      return RHS;
6008    if (LCAT) return getConstantArrayType(ResultType, LCAT->getSize(),
6009                                          ArrayType::ArraySizeModifier(), 0);
6010    if (RCAT) return getConstantArrayType(ResultType, RCAT->getSize(),
6011                                          ArrayType::ArraySizeModifier(), 0);
6012    const VariableArrayType* LVAT = getAsVariableArrayType(LHS);
6013    const VariableArrayType* RVAT = getAsVariableArrayType(RHS);
6014    if (LVAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
6015      return LHS;
6016    if (RVAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
6017      return RHS;
6018    if (LVAT) {
6019      // FIXME: This isn't correct! But tricky to implement because
6020      // the array's size has to be the size of LHS, but the type
6021      // has to be different.
6022      return LHS;
6023    }
6024    if (RVAT) {
6025      // FIXME: This isn't correct! But tricky to implement because
6026      // the array's size has to be the size of RHS, but the type
6027      // has to be different.
6028      return RHS;
6029    }
6030    if (getCanonicalType(LHSElem) == getCanonicalType(ResultType)) return LHS;
6031    if (getCanonicalType(RHSElem) == getCanonicalType(ResultType)) return RHS;
6032    return getIncompleteArrayType(ResultType,
6033                                  ArrayType::ArraySizeModifier(), 0);
6034  }
6035  case Type::FunctionNoProto:
6036    return mergeFunctionTypes(LHS, RHS, OfBlockPointer, Unqualified);
6037  case Type::Record:
6038  case Type::Enum:
6039    return QualType();
6040  case Type::Builtin:
6041    // Only exactly equal builtin types are compatible, which is tested above.
6042    return QualType();
6043  case Type::Complex:
6044    // Distinct complex types are incompatible.
6045    return QualType();
6046  case Type::Vector:
6047    // FIXME: The merged type should be an ExtVector!
6048    if (areCompatVectorTypes(LHSCan->getAs<VectorType>(),
6049                             RHSCan->getAs<VectorType>()))
6050      return LHS;
6051    return QualType();
6052  case Type::ObjCObject: {
6053    // Check if the types are assignment compatible.
6054    // FIXME: This should be type compatibility, e.g. whether
6055    // "LHS x; RHS x;" at global scope is legal.
6056    const ObjCObjectType* LHSIface = LHS->getAs<ObjCObjectType>();
6057    const ObjCObjectType* RHSIface = RHS->getAs<ObjCObjectType>();
6058    if (canAssignObjCInterfaces(LHSIface, RHSIface))
6059      return LHS;
6060
6061    return QualType();
6062  }
6063  case Type::ObjCObjectPointer: {
6064    if (OfBlockPointer) {
6065      if (canAssignObjCInterfacesInBlockPointer(
6066                                          LHS->getAs<ObjCObjectPointerType>(),
6067                                          RHS->getAs<ObjCObjectPointerType>(),
6068                                          BlockReturnType))
6069      return LHS;
6070      return QualType();
6071    }
6072    if (canAssignObjCInterfaces(LHS->getAs<ObjCObjectPointerType>(),
6073                                RHS->getAs<ObjCObjectPointerType>()))
6074      return LHS;
6075
6076    return QualType();
6077    }
6078  }
6079
6080  return QualType();
6081}
6082
6083bool ASTContext::FunctionTypesMatchOnNSConsumedAttrs(
6084                   const FunctionProtoType *FromFunctionType,
6085                   const FunctionProtoType *ToFunctionType) {
6086  if (FromFunctionType->hasAnyConsumedArgs() !=
6087      ToFunctionType->hasAnyConsumedArgs())
6088    return false;
6089  FunctionProtoType::ExtProtoInfo FromEPI =
6090    FromFunctionType->getExtProtoInfo();
6091  FunctionProtoType::ExtProtoInfo ToEPI =
6092    ToFunctionType->getExtProtoInfo();
6093  if (FromEPI.ConsumedArguments && ToEPI.ConsumedArguments)
6094    for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumArgs();
6095         ArgIdx != NumArgs; ++ArgIdx)  {
6096      if (FromEPI.ConsumedArguments[ArgIdx] !=
6097          ToEPI.ConsumedArguments[ArgIdx])
6098        return false;
6099    }
6100  return true;
6101}
6102
6103/// mergeObjCGCQualifiers - This routine merges ObjC's GC attribute of 'LHS' and
6104/// 'RHS' attributes and returns the merged version; including for function
6105/// return types.
6106QualType ASTContext::mergeObjCGCQualifiers(QualType LHS, QualType RHS) {
6107  QualType LHSCan = getCanonicalType(LHS),
6108  RHSCan = getCanonicalType(RHS);
6109  // If two types are identical, they are compatible.
6110  if (LHSCan == RHSCan)
6111    return LHS;
6112  if (RHSCan->isFunctionType()) {
6113    if (!LHSCan->isFunctionType())
6114      return QualType();
6115    QualType OldReturnType =
6116      cast<FunctionType>(RHSCan.getTypePtr())->getResultType();
6117    QualType NewReturnType =
6118      cast<FunctionType>(LHSCan.getTypePtr())->getResultType();
6119    QualType ResReturnType =
6120      mergeObjCGCQualifiers(NewReturnType, OldReturnType);
6121    if (ResReturnType.isNull())
6122      return QualType();
6123    if (ResReturnType == NewReturnType || ResReturnType == OldReturnType) {
6124      // id foo(); ... __strong id foo(); or: __strong id foo(); ... id foo();
6125      // In either case, use OldReturnType to build the new function type.
6126      const FunctionType *F = LHS->getAs<FunctionType>();
6127      if (const FunctionProtoType *FPT = cast<FunctionProtoType>(F)) {
6128        FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
6129        EPI.ExtInfo = getFunctionExtInfo(LHS);
6130        QualType ResultType
6131          = getFunctionType(OldReturnType, FPT->arg_type_begin(),
6132                            FPT->getNumArgs(), EPI);
6133        return ResultType;
6134      }
6135    }
6136    return QualType();
6137  }
6138
6139  // If the qualifiers are different, the types can still be merged.
6140  Qualifiers LQuals = LHSCan.getLocalQualifiers();
6141  Qualifiers RQuals = RHSCan.getLocalQualifiers();
6142  if (LQuals != RQuals) {
6143    // If any of these qualifiers are different, we have a type mismatch.
6144    if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() ||
6145        LQuals.getAddressSpace() != RQuals.getAddressSpace())
6146      return QualType();
6147
6148    // Exactly one GC qualifier difference is allowed: __strong is
6149    // okay if the other type has no GC qualifier but is an Objective
6150    // C object pointer (i.e. implicitly strong by default).  We fix
6151    // this by pretending that the unqualified type was actually
6152    // qualified __strong.
6153    Qualifiers::GC GC_L = LQuals.getObjCGCAttr();
6154    Qualifiers::GC GC_R = RQuals.getObjCGCAttr();
6155    assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements");
6156
6157    if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak)
6158      return QualType();
6159
6160    if (GC_L == Qualifiers::Strong)
6161      return LHS;
6162    if (GC_R == Qualifiers::Strong)
6163      return RHS;
6164    return QualType();
6165  }
6166
6167  if (LHSCan->isObjCObjectPointerType() && RHSCan->isObjCObjectPointerType()) {
6168    QualType LHSBaseQT = LHS->getAs<ObjCObjectPointerType>()->getPointeeType();
6169    QualType RHSBaseQT = RHS->getAs<ObjCObjectPointerType>()->getPointeeType();
6170    QualType ResQT = mergeObjCGCQualifiers(LHSBaseQT, RHSBaseQT);
6171    if (ResQT == LHSBaseQT)
6172      return LHS;
6173    if (ResQT == RHSBaseQT)
6174      return RHS;
6175  }
6176  return QualType();
6177}
6178
6179//===----------------------------------------------------------------------===//
6180//                         Integer Predicates
6181//===----------------------------------------------------------------------===//
6182
6183unsigned ASTContext::getIntWidth(QualType T) const {
6184  if (const EnumType *ET = dyn_cast<EnumType>(T))
6185    T = ET->getDecl()->getIntegerType();
6186  if (T->isBooleanType())
6187    return 1;
6188  // For builtin types, just use the standard type sizing method
6189  return (unsigned)getTypeSize(T);
6190}
6191
6192QualType ASTContext::getCorrespondingUnsignedType(QualType T) {
6193  assert(T->hasSignedIntegerRepresentation() && "Unexpected type");
6194
6195  // Turn <4 x signed int> -> <4 x unsigned int>
6196  if (const VectorType *VTy = T->getAs<VectorType>())
6197    return getVectorType(getCorrespondingUnsignedType(VTy->getElementType()),
6198                         VTy->getNumElements(), VTy->getVectorKind());
6199
6200  // For enums, we return the unsigned version of the base type.
6201  if (const EnumType *ETy = T->getAs<EnumType>())
6202    T = ETy->getDecl()->getIntegerType();
6203
6204  const BuiltinType *BTy = T->getAs<BuiltinType>();
6205  assert(BTy && "Unexpected signed integer type");
6206  switch (BTy->getKind()) {
6207  case BuiltinType::Char_S:
6208  case BuiltinType::SChar:
6209    return UnsignedCharTy;
6210  case BuiltinType::Short:
6211    return UnsignedShortTy;
6212  case BuiltinType::Int:
6213    return UnsignedIntTy;
6214  case BuiltinType::Long:
6215    return UnsignedLongTy;
6216  case BuiltinType::LongLong:
6217    return UnsignedLongLongTy;
6218  case BuiltinType::Int128:
6219    return UnsignedInt128Ty;
6220  default:
6221    llvm_unreachable("Unexpected signed integer type");
6222  }
6223}
6224
6225ASTMutationListener::~ASTMutationListener() { }
6226
6227
6228//===----------------------------------------------------------------------===//
6229//                          Builtin Type Computation
6230//===----------------------------------------------------------------------===//
6231
6232/// DecodeTypeFromStr - This decodes one type descriptor from Str, advancing the
6233/// pointer over the consumed characters.  This returns the resultant type.  If
6234/// AllowTypeModifiers is false then modifier like * are not parsed, just basic
6235/// types.  This allows "v2i*" to be parsed as a pointer to a v2i instead of
6236/// a vector of "i*".
6237///
6238/// RequiresICE is filled in on return to indicate whether the value is required
6239/// to be an Integer Constant Expression.
6240static QualType DecodeTypeFromStr(const char *&Str, const ASTContext &Context,
6241                                  ASTContext::GetBuiltinTypeError &Error,
6242                                  bool &RequiresICE,
6243                                  bool AllowTypeModifiers) {
6244  // Modifiers.
6245  int HowLong = 0;
6246  bool Signed = false, Unsigned = false;
6247  RequiresICE = false;
6248
6249  // Read the prefixed modifiers first.
6250  bool Done = false;
6251  while (!Done) {
6252    switch (*Str++) {
6253    default: Done = true; --Str; break;
6254    case 'I':
6255      RequiresICE = true;
6256      break;
6257    case 'S':
6258      assert(!Unsigned && "Can't use both 'S' and 'U' modifiers!");
6259      assert(!Signed && "Can't use 'S' modifier multiple times!");
6260      Signed = true;
6261      break;
6262    case 'U':
6263      assert(!Signed && "Can't use both 'S' and 'U' modifiers!");
6264      assert(!Unsigned && "Can't use 'S' modifier multiple times!");
6265      Unsigned = true;
6266      break;
6267    case 'L':
6268      assert(HowLong <= 2 && "Can't have LLLL modifier");
6269      ++HowLong;
6270      break;
6271    }
6272  }
6273
6274  QualType Type;
6275
6276  // Read the base type.
6277  switch (*Str++) {
6278  default: llvm_unreachable("Unknown builtin type letter!");
6279  case 'v':
6280    assert(HowLong == 0 && !Signed && !Unsigned &&
6281           "Bad modifiers used with 'v'!");
6282    Type = Context.VoidTy;
6283    break;
6284  case 'f':
6285    assert(HowLong == 0 && !Signed && !Unsigned &&
6286           "Bad modifiers used with 'f'!");
6287    Type = Context.FloatTy;
6288    break;
6289  case 'd':
6290    assert(HowLong < 2 && !Signed && !Unsigned &&
6291           "Bad modifiers used with 'd'!");
6292    if (HowLong)
6293      Type = Context.LongDoubleTy;
6294    else
6295      Type = Context.DoubleTy;
6296    break;
6297  case 's':
6298    assert(HowLong == 0 && "Bad modifiers used with 's'!");
6299    if (Unsigned)
6300      Type = Context.UnsignedShortTy;
6301    else
6302      Type = Context.ShortTy;
6303    break;
6304  case 'i':
6305    if (HowLong == 3)
6306      Type = Unsigned ? Context.UnsignedInt128Ty : Context.Int128Ty;
6307    else if (HowLong == 2)
6308      Type = Unsigned ? Context.UnsignedLongLongTy : Context.LongLongTy;
6309    else if (HowLong == 1)
6310      Type = Unsigned ? Context.UnsignedLongTy : Context.LongTy;
6311    else
6312      Type = Unsigned ? Context.UnsignedIntTy : Context.IntTy;
6313    break;
6314  case 'c':
6315    assert(HowLong == 0 && "Bad modifiers used with 'c'!");
6316    if (Signed)
6317      Type = Context.SignedCharTy;
6318    else if (Unsigned)
6319      Type = Context.UnsignedCharTy;
6320    else
6321      Type = Context.CharTy;
6322    break;
6323  case 'b': // boolean
6324    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'b'!");
6325    Type = Context.BoolTy;
6326    break;
6327  case 'z':  // size_t.
6328    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'z'!");
6329    Type = Context.getSizeType();
6330    break;
6331  case 'F':
6332    Type = Context.getCFConstantStringType();
6333    break;
6334  case 'G':
6335    Type = Context.getObjCIdType();
6336    break;
6337  case 'H':
6338    Type = Context.getObjCSelType();
6339    break;
6340  case 'a':
6341    Type = Context.getBuiltinVaListType();
6342    assert(!Type.isNull() && "builtin va list type not initialized!");
6343    break;
6344  case 'A':
6345    // This is a "reference" to a va_list; however, what exactly
6346    // this means depends on how va_list is defined. There are two
6347    // different kinds of va_list: ones passed by value, and ones
6348    // passed by reference.  An example of a by-value va_list is
6349    // x86, where va_list is a char*. An example of by-ref va_list
6350    // is x86-64, where va_list is a __va_list_tag[1]. For x86,
6351    // we want this argument to be a char*&; for x86-64, we want
6352    // it to be a __va_list_tag*.
6353    Type = Context.getBuiltinVaListType();
6354    assert(!Type.isNull() && "builtin va list type not initialized!");
6355    if (Type->isArrayType())
6356      Type = Context.getArrayDecayedType(Type);
6357    else
6358      Type = Context.getLValueReferenceType(Type);
6359    break;
6360  case 'V': {
6361    char *End;
6362    unsigned NumElements = strtoul(Str, &End, 10);
6363    assert(End != Str && "Missing vector size");
6364    Str = End;
6365
6366    QualType ElementType = DecodeTypeFromStr(Str, Context, Error,
6367                                             RequiresICE, false);
6368    assert(!RequiresICE && "Can't require vector ICE");
6369
6370    // TODO: No way to make AltiVec vectors in builtins yet.
6371    Type = Context.getVectorType(ElementType, NumElements,
6372                                 VectorType::GenericVector);
6373    break;
6374  }
6375  case 'X': {
6376    QualType ElementType = DecodeTypeFromStr(Str, Context, Error, RequiresICE,
6377                                             false);
6378    assert(!RequiresICE && "Can't require complex ICE");
6379    Type = Context.getComplexType(ElementType);
6380    break;
6381  }
6382  case 'Y' : {
6383    Type = Context.getPointerDiffType();
6384    break;
6385  }
6386  case 'P':
6387    Type = Context.getFILEType();
6388    if (Type.isNull()) {
6389      Error = ASTContext::GE_Missing_stdio;
6390      return QualType();
6391    }
6392    break;
6393  case 'J':
6394    if (Signed)
6395      Type = Context.getsigjmp_bufType();
6396    else
6397      Type = Context.getjmp_bufType();
6398
6399    if (Type.isNull()) {
6400      Error = ASTContext::GE_Missing_setjmp;
6401      return QualType();
6402    }
6403    break;
6404  case 'K':
6405    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'K'!");
6406    Type = Context.getucontext_tType();
6407
6408    if (Type.isNull()) {
6409      Error = ASTContext::GE_Missing_ucontext;
6410      return QualType();
6411    }
6412    break;
6413  }
6414
6415  // If there are modifiers and if we're allowed to parse them, go for it.
6416  Done = !AllowTypeModifiers;
6417  while (!Done) {
6418    switch (char c = *Str++) {
6419    default: Done = true; --Str; break;
6420    case '*':
6421    case '&': {
6422      // Both pointers and references can have their pointee types
6423      // qualified with an address space.
6424      char *End;
6425      unsigned AddrSpace = strtoul(Str, &End, 10);
6426      if (End != Str && AddrSpace != 0) {
6427        Type = Context.getAddrSpaceQualType(Type, AddrSpace);
6428        Str = End;
6429      }
6430      if (c == '*')
6431        Type = Context.getPointerType(Type);
6432      else
6433        Type = Context.getLValueReferenceType(Type);
6434      break;
6435    }
6436    // FIXME: There's no way to have a built-in with an rvalue ref arg.
6437    case 'C':
6438      Type = Type.withConst();
6439      break;
6440    case 'D':
6441      Type = Context.getVolatileType(Type);
6442      break;
6443    }
6444  }
6445
6446  assert((!RequiresICE || Type->isIntegralOrEnumerationType()) &&
6447         "Integer constant 'I' type must be an integer");
6448
6449  return Type;
6450}
6451
6452/// GetBuiltinType - Return the type for the specified builtin.
6453QualType ASTContext::GetBuiltinType(unsigned Id,
6454                                    GetBuiltinTypeError &Error,
6455                                    unsigned *IntegerConstantArgs) const {
6456  const char *TypeStr = BuiltinInfo.GetTypeString(Id);
6457
6458  SmallVector<QualType, 8> ArgTypes;
6459
6460  bool RequiresICE = false;
6461  Error = GE_None;
6462  QualType ResType = DecodeTypeFromStr(TypeStr, *this, Error,
6463                                       RequiresICE, true);
6464  if (Error != GE_None)
6465    return QualType();
6466
6467  assert(!RequiresICE && "Result of intrinsic cannot be required to be an ICE");
6468
6469  while (TypeStr[0] && TypeStr[0] != '.') {
6470    QualType Ty = DecodeTypeFromStr(TypeStr, *this, Error, RequiresICE, true);
6471    if (Error != GE_None)
6472      return QualType();
6473
6474    // If this argument is required to be an IntegerConstantExpression and the
6475    // caller cares, fill in the bitmask we return.
6476    if (RequiresICE && IntegerConstantArgs)
6477      *IntegerConstantArgs |= 1 << ArgTypes.size();
6478
6479    // Do array -> pointer decay.  The builtin should use the decayed type.
6480    if (Ty->isArrayType())
6481      Ty = getArrayDecayedType(Ty);
6482
6483    ArgTypes.push_back(Ty);
6484  }
6485
6486  assert((TypeStr[0] != '.' || TypeStr[1] == 0) &&
6487         "'.' should only occur at end of builtin type list!");
6488
6489  FunctionType::ExtInfo EI;
6490  if (BuiltinInfo.isNoReturn(Id)) EI = EI.withNoReturn(true);
6491
6492  bool Variadic = (TypeStr[0] == '.');
6493
6494  // We really shouldn't be making a no-proto type here, especially in C++.
6495  if (ArgTypes.empty() && Variadic)
6496    return getFunctionNoProtoType(ResType, EI);
6497
6498  FunctionProtoType::ExtProtoInfo EPI;
6499  EPI.ExtInfo = EI;
6500  EPI.Variadic = Variadic;
6501
6502  return getFunctionType(ResType, ArgTypes.data(), ArgTypes.size(), EPI);
6503}
6504
6505GVALinkage ASTContext::GetGVALinkageForFunction(const FunctionDecl *FD) {
6506  GVALinkage External = GVA_StrongExternal;
6507
6508  Linkage L = FD->getLinkage();
6509  switch (L) {
6510  case NoLinkage:
6511  case InternalLinkage:
6512  case UniqueExternalLinkage:
6513    return GVA_Internal;
6514
6515  case ExternalLinkage:
6516    switch (FD->getTemplateSpecializationKind()) {
6517    case TSK_Undeclared:
6518    case TSK_ExplicitSpecialization:
6519      External = GVA_StrongExternal;
6520      break;
6521
6522    case TSK_ExplicitInstantiationDefinition:
6523      return GVA_ExplicitTemplateInstantiation;
6524
6525    case TSK_ExplicitInstantiationDeclaration:
6526    case TSK_ImplicitInstantiation:
6527      External = GVA_TemplateInstantiation;
6528      break;
6529    }
6530  }
6531
6532  if (!FD->isInlined())
6533    return External;
6534
6535  if (!getLangOptions().CPlusPlus || FD->hasAttr<GNUInlineAttr>()) {
6536    // GNU or C99 inline semantics. Determine whether this symbol should be
6537    // externally visible.
6538    if (FD->isInlineDefinitionExternallyVisible())
6539      return External;
6540
6541    // C99 inline semantics, where the symbol is not externally visible.
6542    return GVA_C99Inline;
6543  }
6544
6545  // C++0x [temp.explicit]p9:
6546  //   [ Note: The intent is that an inline function that is the subject of
6547  //   an explicit instantiation declaration will still be implicitly
6548  //   instantiated when used so that the body can be considered for
6549  //   inlining, but that no out-of-line copy of the inline function would be
6550  //   generated in the translation unit. -- end note ]
6551  if (FD->getTemplateSpecializationKind()
6552                                       == TSK_ExplicitInstantiationDeclaration)
6553    return GVA_C99Inline;
6554
6555  return GVA_CXXInline;
6556}
6557
6558GVALinkage ASTContext::GetGVALinkageForVariable(const VarDecl *VD) {
6559  // If this is a static data member, compute the kind of template
6560  // specialization. Otherwise, this variable is not part of a
6561  // template.
6562  TemplateSpecializationKind TSK = TSK_Undeclared;
6563  if (VD->isStaticDataMember())
6564    TSK = VD->getTemplateSpecializationKind();
6565
6566  Linkage L = VD->getLinkage();
6567  if (L == ExternalLinkage && getLangOptions().CPlusPlus &&
6568      VD->getType()->getLinkage() == UniqueExternalLinkage)
6569    L = UniqueExternalLinkage;
6570
6571  switch (L) {
6572  case NoLinkage:
6573  case InternalLinkage:
6574  case UniqueExternalLinkage:
6575    return GVA_Internal;
6576
6577  case ExternalLinkage:
6578    switch (TSK) {
6579    case TSK_Undeclared:
6580    case TSK_ExplicitSpecialization:
6581      return GVA_StrongExternal;
6582
6583    case TSK_ExplicitInstantiationDeclaration:
6584      llvm_unreachable("Variable should not be instantiated");
6585      // Fall through to treat this like any other instantiation.
6586
6587    case TSK_ExplicitInstantiationDefinition:
6588      return GVA_ExplicitTemplateInstantiation;
6589
6590    case TSK_ImplicitInstantiation:
6591      return GVA_TemplateInstantiation;
6592    }
6593  }
6594
6595  return GVA_StrongExternal;
6596}
6597
6598bool ASTContext::DeclMustBeEmitted(const Decl *D) {
6599  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
6600    if (!VD->isFileVarDecl())
6601      return false;
6602  } else if (!isa<FunctionDecl>(D))
6603    return false;
6604
6605  // Weak references don't produce any output by themselves.
6606  if (D->hasAttr<WeakRefAttr>())
6607    return false;
6608
6609  // Aliases and used decls are required.
6610  if (D->hasAttr<AliasAttr>() || D->hasAttr<UsedAttr>())
6611    return true;
6612
6613  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
6614    // Forward declarations aren't required.
6615    if (!FD->doesThisDeclarationHaveABody())
6616      return FD->doesDeclarationForceExternallyVisibleDefinition();
6617
6618    // Constructors and destructors are required.
6619    if (FD->hasAttr<ConstructorAttr>() || FD->hasAttr<DestructorAttr>())
6620      return true;
6621
6622    // The key function for a class is required.
6623    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
6624      const CXXRecordDecl *RD = MD->getParent();
6625      if (MD->isOutOfLine() && RD->isDynamicClass()) {
6626        const CXXMethodDecl *KeyFunc = getKeyFunction(RD);
6627        if (KeyFunc && KeyFunc->getCanonicalDecl() == MD->getCanonicalDecl())
6628          return true;
6629      }
6630    }
6631
6632    GVALinkage Linkage = GetGVALinkageForFunction(FD);
6633
6634    // static, static inline, always_inline, and extern inline functions can
6635    // always be deferred.  Normal inline functions can be deferred in C99/C++.
6636    // Implicit template instantiations can also be deferred in C++.
6637    if (Linkage == GVA_Internal  || Linkage == GVA_C99Inline ||
6638        Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation)
6639      return false;
6640    return true;
6641  }
6642
6643  const VarDecl *VD = cast<VarDecl>(D);
6644  assert(VD->isFileVarDecl() && "Expected file scoped var");
6645
6646  if (VD->isThisDeclarationADefinition() == VarDecl::DeclarationOnly)
6647    return false;
6648
6649  // Structs that have non-trivial constructors or destructors are required.
6650
6651  // FIXME: Handle references.
6652  // FIXME: Be more selective about which constructors we care about.
6653  if (const RecordType *RT = VD->getType()->getAs<RecordType>()) {
6654    if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
6655      if (RD->hasDefinition() && !(RD->hasTrivialDefaultConstructor() &&
6656                                   RD->hasTrivialCopyConstructor() &&
6657                                   RD->hasTrivialMoveConstructor() &&
6658                                   RD->hasTrivialDestructor()))
6659        return true;
6660    }
6661  }
6662
6663  GVALinkage L = GetGVALinkageForVariable(VD);
6664  if (L == GVA_Internal || L == GVA_TemplateInstantiation) {
6665    if (!(VD->getInit() && VD->getInit()->HasSideEffects(*this)))
6666      return false;
6667  }
6668
6669  return true;
6670}
6671
6672CallingConv ASTContext::getDefaultMethodCallConv() {
6673  // Pass through to the C++ ABI object
6674  return ABI->getDefaultMethodCallConv();
6675}
6676
6677bool ASTContext::isNearlyEmpty(const CXXRecordDecl *RD) const {
6678  // Pass through to the C++ ABI object
6679  return ABI->isNearlyEmpty(RD);
6680}
6681
6682MangleContext *ASTContext::createMangleContext() {
6683  switch (Target->getCXXABI()) {
6684  case CXXABI_ARM:
6685  case CXXABI_Itanium:
6686    return createItaniumMangleContext(*this, getDiagnostics());
6687  case CXXABI_Microsoft:
6688    return createMicrosoftMangleContext(*this, getDiagnostics());
6689  }
6690  llvm_unreachable("Unsupported ABI");
6691}
6692
6693CXXABI::~CXXABI() {}
6694
6695size_t ASTContext::getSideTableAllocatedMemory() const {
6696  return ASTRecordLayouts.getMemorySize()
6697    + llvm::capacity_in_bytes(ObjCLayouts)
6698    + llvm::capacity_in_bytes(KeyFunctions)
6699    + llvm::capacity_in_bytes(ObjCImpls)
6700    + llvm::capacity_in_bytes(BlockVarCopyInits)
6701    + llvm::capacity_in_bytes(DeclAttrs)
6702    + llvm::capacity_in_bytes(InstantiatedFromStaticDataMember)
6703    + llvm::capacity_in_bytes(InstantiatedFromUsingDecl)
6704    + llvm::capacity_in_bytes(InstantiatedFromUsingShadowDecl)
6705    + llvm::capacity_in_bytes(InstantiatedFromUnnamedFieldDecl)
6706    + llvm::capacity_in_bytes(OverriddenMethods)
6707    + llvm::capacity_in_bytes(Types)
6708    + llvm::capacity_in_bytes(VariableArrayTypes)
6709    + llvm::capacity_in_bytes(ClassScopeSpecializationPattern);
6710}
6711
6712void ASTContext::setParameterIndex(const ParmVarDecl *D, unsigned int index) {
6713  ParamIndices[D] = index;
6714}
6715
6716unsigned ASTContext::getParameterIndex(const ParmVarDecl *D) const {
6717  ParameterIndexTable::const_iterator I = ParamIndices.find(D);
6718  assert(I != ParamIndices.end() &&
6719         "ParmIndices lacks entry set by ParmVarDecl");
6720  return I->second;
6721}
6722