ASTContext.cpp revision 023df37c27ee8035664fb62f206ca58f4e2a169d
15f016e2cb5d11daeb237544de1c5d59f20fe1a6eReid Spencer//===--- ASTContext.cpp - Context to hold long-lived AST nodes ------------===//
25f016e2cb5d11daeb237544de1c5d59f20fe1a6eReid Spencer//
35f016e2cb5d11daeb237544de1c5d59f20fe1a6eReid Spencer//                     The LLVM Compiler Infrastructure
45f016e2cb5d11daeb237544de1c5d59f20fe1a6eReid Spencer//
50bc735ffcfb223c0186419547abaa5c84482663eChris Lattner// This file is distributed under the University of Illinois Open Source
60bc735ffcfb223c0186419547abaa5c84482663eChris Lattner// License. See LICENSE.TXT for details.
75f016e2cb5d11daeb237544de1c5d59f20fe1a6eReid Spencer//
85f016e2cb5d11daeb237544de1c5d59f20fe1a6eReid Spencer//===----------------------------------------------------------------------===//
95f016e2cb5d11daeb237544de1c5d59f20fe1a6eReid Spencer//
105f016e2cb5d11daeb237544de1c5d59f20fe1a6eReid Spencer//  This file implements the ASTContext interface.
115f016e2cb5d11daeb237544de1c5d59f20fe1a6eReid Spencer//
125f016e2cb5d11daeb237544de1c5d59f20fe1a6eReid Spencer//===----------------------------------------------------------------------===//
135f016e2cb5d11daeb237544de1c5d59f20fe1a6eReid Spencer
14ec55c941f2846db48bce4ed6dd2ce339e1a48962Ted Kremenek#include "clang/AST/ASTContext.h"
1543b628cd47ecdc3caf640d79b3ad7ecef0f2c285Chris Lattner#include "clang/AST/CharUnits.h"
16ec55c941f2846db48bce4ed6dd2ce339e1a48962Ted Kremenek#include "clang/AST/DeclCXX.h"
178fe83e1df954d72c0f4ffc15d20a5222ec151c21Benjamin Kramer#include "clang/AST/DeclObjC.h"
1823e47c6b6e8ccdd8daa378ab2a879644425c72d8Daniel Dunbar#include "clang/AST/DeclTemplate.h"
1903201fbbdeb3eb7f465610b09c281ee6aa84e3caTed Kremenek#include "clang/AST/TypeLoc.h"
2003201fbbdeb3eb7f465610b09c281ee6aa84e3caTed Kremenek#include "clang/AST/Expr.h"
215f016e2cb5d11daeb237544de1c5d59f20fe1a6eReid Spencer#include "clang/AST/ExprCXX.h"
225f016e2cb5d11daeb237544de1c5d59f20fe1a6eReid Spencer#include "clang/AST/ExternalASTSource.h"
23d6471f7c1921c7802804ce3ff6fe9768310f72b9David Blaikie#include "clang/AST/ASTMutationListener.h"
243fdf4b071dc79fae778fb5f376485480756c76a3Chris Lattner#include "clang/AST/RecordLayout.h"
253fdf4b071dc79fae778fb5f376485480756c76a3Chris Lattner#include "clang/AST/Mangle.h"
26d6471f7c1921c7802804ce3ff6fe9768310f72b9David Blaikie#include "clang/Basic/Builtins.h"
27b54d8af9a66cc20a6a9a9219c7eaea8df7ee7fd4Chris Lattner#include "clang/Basic/SourceManager.h"
285f9e272e632e951b1efe824cd16acb4d96077930Chris Lattner#include "clang/Basic/TargetInfo.h"
290673cb30340aadaede7b795c763b00f6b64e611cChandler Carruth#include "llvm/ADT/SmallString.h"
30341785ec52f87c0803ba52dc88faac4e136f8593Bill Wendling#include "llvm/ADT/StringExtras.h"
313fdf4b071dc79fae778fb5f376485480756c76a3Chris Lattner#include "llvm/Support/MathExtras.h"
3222caddc91d2f6186739c6b20ec58ed38cd68e595Chris Lattner#include "llvm/Support/raw_ostream.h"
3322caddc91d2f6186739c6b20ec58ed38cd68e595Chris Lattner#include "CXXABI.h"
3422caddc91d2f6186739c6b20ec58ed38cd68e595Chris Lattner
3522caddc91d2f6186739c6b20ec58ed38cd68e595Chris Lattnerusing namespace clang;
36d6471f7c1921c7802804ce3ff6fe9768310f72b9David Blaikie
37c93dc7889644293e318e19d82830ea2acc45b678Dylan Noblesmithunsigned ASTContext::NumImplicitDefaultConstructors;
3878ad0b98848c17a0a11847fa1d456e2dfec8aa2fDavid Blaikieunsigned ASTContext::NumImplicitDefaultConstructorsDeclared;
3933e4e70c8c0a17e0ccb7465d96556b077a68ecb1Argyrios Kyrtzidisunsigned ASTContext::NumImplicitCopyConstructors;
4033e4e70c8c0a17e0ccb7465d96556b077a68ecb1Argyrios Kyrtzidisunsigned ASTContext::NumImplicitCopyConstructorsDeclared;
413fdf4b071dc79fae778fb5f376485480756c76a3Chris Lattnerunsigned ASTContext::NumImplicitCopyAssignmentOperators;
4292dd386e3f05d176b45a638199d51f536bd9d1c4Chris Lattnerunsigned ASTContext::NumImplicitCopyAssignmentOperatorsDeclared;
431eb4433ac451dc16f4133a88af2d002ac26c58efMike Stumpunsigned ASTContext::NumImplicitDestructors;
44cc5888d833caf90ebda37f24da40d2cd06b4d820Douglas Gregorunsigned ASTContext::NumImplicitDestructorsDeclared;
45cc5888d833caf90ebda37f24da40d2cd06b4d820Douglas Gregor
46cc5888d833caf90ebda37f24da40d2cd06b4d820Douglas Gregorenum FloatingRank {
471e473ccb0e0f6fd1954bef330f7193c1a3fb3ba1Ted Kremenek  FloatRank, DoubleRank, LongDoubleRank
48cc5888d833caf90ebda37f24da40d2cd06b4d820Douglas Gregor};
49cc5888d833caf90ebda37f24da40d2cd06b4d820Douglas Gregor
50cc5888d833caf90ebda37f24da40d2cd06b4d820Douglas Gregorvoid
51246b6aa6763de8c617d564ef33123a8f3293a80eRichard TrieuASTContext::CanonicalTemplateTemplateParm::Profile(llvm::FoldingSetNodeID &ID,
52246b6aa6763de8c617d564ef33123a8f3293a80eRichard Trieu                                               TemplateTemplateParmDecl *Parm) {
53246b6aa6763de8c617d564ef33123a8f3293a80eRichard Trieu  ID.AddInteger(Parm->getDepth());
54cc5888d833caf90ebda37f24da40d2cd06b4d820Douglas Gregor  ID.AddInteger(Parm->getPosition());
55cc5888d833caf90ebda37f24da40d2cd06b4d820Douglas Gregor  ID.AddBoolean(Parm->isParameterPack());
56cc5888d833caf90ebda37f24da40d2cd06b4d820Douglas Gregor
57cc5888d833caf90ebda37f24da40d2cd06b4d820Douglas Gregor  TemplateParameterList *Params = Parm->getTemplateParameters();
58cc5888d833caf90ebda37f24da40d2cd06b4d820Douglas Gregor  ID.AddInteger(Params->size());
5908d6e032a2a0a8656d12b3b7b93942987bb12eb7Richard Smith  for (TemplateParameterList::const_iterator P = Params->begin(),
60cc5888d833caf90ebda37f24da40d2cd06b4d820Douglas Gregor                                          PEnd = Params->end();
61abc563f554951259bbe0315055cad92ee14d87e4Douglas Gregor       P != PEnd; ++P) {
62182745ae7892bca0842d9c023370ade5f8d1c6e8Chris Lattner    if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*P)) {
63182745ae7892bca0842d9c023370ade5f8d1c6e8Chris Lattner      ID.AddInteger(0);
64d6471f7c1921c7802804ce3ff6fe9768310f72b9David Blaikie      ID.AddBoolean(TTP->isParameterPack());
6533e4e70c8c0a17e0ccb7465d96556b077a68ecb1Argyrios Kyrtzidis      continue;
6633e4e70c8c0a17e0ccb7465d96556b077a68ecb1Argyrios Kyrtzidis    }
67182745ae7892bca0842d9c023370ade5f8d1c6e8Chris Lattner
68182745ae7892bca0842d9c023370ade5f8d1c6e8Chris Lattner    if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(*P)) {
6978ad0b98848c17a0a11847fa1d456e2dfec8aa2fDavid Blaikie      ID.AddInteger(1);
70d6471f7c1921c7802804ce3ff6fe9768310f72b9David Blaikie      ID.AddBoolean(NTTP->isParameterPack());
714f5e21e24fb9e6ec473a13f83b5c9a2c41501a70Douglas Gregor      ID.AddPointer(NTTP->getType().getAsOpaquePtr());
724f5e21e24fb9e6ec473a13f83b5c9a2c41501a70Douglas Gregor      if (NTTP->isExpandedParameterPack()) {
734f5e21e24fb9e6ec473a13f83b5c9a2c41501a70Douglas Gregor        ID.AddBoolean(true);
744f5e21e24fb9e6ec473a13f83b5c9a2c41501a70Douglas Gregor        ID.AddInteger(NTTP->getNumExpansionTypes());
754f5e21e24fb9e6ec473a13f83b5c9a2c41501a70Douglas Gregor        for (unsigned I = 0, N = NTTP->getNumExpansionTypes(); I != N; ++I)
764f5e21e24fb9e6ec473a13f83b5c9a2c41501a70Douglas Gregor          ID.AddPointer(NTTP->getExpansionType(I).getAsOpaquePtr());
7704ae2df026b275aae5dddfc0db5ca55ff4e62179Chris Lattner      } else
78d6471f7c1921c7802804ce3ff6fe9768310f72b9David Blaikie        ID.AddBoolean(false);
790827408865e32789e0ec4b8113a302ccdc531423Argyrios Kyrtzidis      continue;
8004ae2df026b275aae5dddfc0db5ca55ff4e62179Chris Lattner    }
8104ae2df026b275aae5dddfc0db5ca55ff4e62179Chris Lattner
82d6471f7c1921c7802804ce3ff6fe9768310f72b9David Blaikie    TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(*P);
830827408865e32789e0ec4b8113a302ccdc531423Argyrios Kyrtzidis    ID.AddInteger(2);
8404ae2df026b275aae5dddfc0db5ca55ff4e62179Chris Lattner    Profile(ID, TTP);
8504ae2df026b275aae5dddfc0db5ca55ff4e62179Chris Lattner  }
860827408865e32789e0ec4b8113a302ccdc531423Argyrios Kyrtzidis}
870827408865e32789e0ec4b8113a302ccdc531423Argyrios Kyrtzidis
880827408865e32789e0ec4b8113a302ccdc531423Argyrios KyrtzidisTemplateTemplateParmDecl *
890827408865e32789e0ec4b8113a302ccdc531423Argyrios KyrtzidisASTContext::getCanonicalTemplateTemplateParmDecl(
900827408865e32789e0ec4b8113a302ccdc531423Argyrios Kyrtzidis                                          TemplateTemplateParmDecl *TTP) const {
9104ae2df026b275aae5dddfc0db5ca55ff4e62179Chris Lattner  // Check if we already have a canonical template template parameter.
9204ae2df026b275aae5dddfc0db5ca55ff4e62179Chris Lattner  llvm::FoldingSetNodeID ID;
9304ae2df026b275aae5dddfc0db5ca55ff4e62179Chris Lattner  CanonicalTemplateTemplateParm::Profile(ID, TTP);
94d6471f7c1921c7802804ce3ff6fe9768310f72b9David Blaikie  void *InsertPos = 0;
95abc563f554951259bbe0315055cad92ee14d87e4Douglas Gregor  CanonicalTemplateTemplateParm *Canonical
96abc563f554951259bbe0315055cad92ee14d87e4Douglas Gregor    = CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos);
9785bea9777d444ccbcc086d98f075fe666c2e865dDouglas Gregor  if (Canonical)
98abc563f554951259bbe0315055cad92ee14d87e4Douglas Gregor    return Canonical->getParam();
99abc563f554951259bbe0315055cad92ee14d87e4Douglas Gregor
100abc563f554951259bbe0315055cad92ee14d87e4Douglas Gregor  // Build a canonical template parameter list.
101abc563f554951259bbe0315055cad92ee14d87e4Douglas Gregor  TemplateParameterList *Params = TTP->getTemplateParameters();
102c0a575f9b791a25c94b1c3c832dd73ec564646bbArgyrios Kyrtzidis  llvm::SmallVector<NamedDecl *, 4> CanonParams;
103c0a575f9b791a25c94b1c3c832dd73ec564646bbArgyrios Kyrtzidis  CanonParams.reserve(Params->size());
10485bea9777d444ccbcc086d98f075fe666c2e865dDouglas Gregor  for (TemplateParameterList::const_iterator P = Params->begin(),
105abc563f554951259bbe0315055cad92ee14d87e4Douglas Gregor                                          PEnd = Params->end();
10633e4e70c8c0a17e0ccb7465d96556b077a68ecb1Argyrios Kyrtzidis       P != PEnd; ++P) {
107d6471f7c1921c7802804ce3ff6fe9768310f72b9David Blaikie    if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*P))
108d6471f7c1921c7802804ce3ff6fe9768310f72b9David Blaikie      CanonParams.push_back(
10933e4e70c8c0a17e0ccb7465d96556b077a68ecb1Argyrios Kyrtzidis                  TemplateTypeParmDecl::Create(*this, getTranslationUnitDecl(),
11033e4e70c8c0a17e0ccb7465d96556b077a68ecb1Argyrios Kyrtzidis                                               SourceLocation(),
111abc563f554951259bbe0315055cad92ee14d87e4Douglas Gregor                                               SourceLocation(),
112dc0a2da1038cc725ad23d070e6a0d03078b7300dArgyrios Kyrtzidis                                               TTP->getDepth(),
113dc0a2da1038cc725ad23d070e6a0d03078b7300dArgyrios Kyrtzidis                                               TTP->getIndex(), 0, false,
114dc0a2da1038cc725ad23d070e6a0d03078b7300dArgyrios Kyrtzidis                                               TTP->isParameterPack()));
115dc0a2da1038cc725ad23d070e6a0d03078b7300dArgyrios Kyrtzidis    else if (NonTypeTemplateParmDecl *NTTP
116dc0a2da1038cc725ad23d070e6a0d03078b7300dArgyrios Kyrtzidis             = dyn_cast<NonTypeTemplateParmDecl>(*P)) {
117dc0a2da1038cc725ad23d070e6a0d03078b7300dArgyrios Kyrtzidis      QualType T = getCanonicalType(NTTP->getType());
118dc0a2da1038cc725ad23d070e6a0d03078b7300dArgyrios Kyrtzidis      TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(T);
119dc0a2da1038cc725ad23d070e6a0d03078b7300dArgyrios Kyrtzidis      NonTypeTemplateParmDecl *Param;
120dc0a2da1038cc725ad23d070e6a0d03078b7300dArgyrios Kyrtzidis      if (NTTP->isExpandedParameterPack()) {
121dc0a2da1038cc725ad23d070e6a0d03078b7300dArgyrios Kyrtzidis        llvm::SmallVector<QualType, 2> ExpandedTypes;
122abc563f554951259bbe0315055cad92ee14d87e4Douglas Gregor        llvm::SmallVector<TypeSourceInfo *, 2> ExpandedTInfos;
1235f016e2cb5d11daeb237544de1c5d59f20fe1a6eReid Spencer        for (unsigned I = 0, N = NTTP->getNumExpansionTypes(); I != N; ++I) {
124d6471f7c1921c7802804ce3ff6fe9768310f72b9David Blaikie          ExpandedTypes.push_back(getCanonicalType(NTTP->getExpansionType(I)));
125dfaee4922b990fbf33808b91b961dc27df585030Chad Rosier          ExpandedTInfos.push_back(
12693ea5cb0edf8e509c5113e70cb05ee247c9bdf6bDouglas Gregor                                getTrivialTypeSourceInfo(ExpandedTypes.back()));
12793ea5cb0edf8e509c5113e70cb05ee247c9bdf6bDouglas Gregor        }
12893ea5cb0edf8e509c5113e70cb05ee247c9bdf6bDouglas Gregor
12993ea5cb0edf8e509c5113e70cb05ee247c9bdf6bDouglas Gregor        Param = NonTypeTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
1309e2dac9c9b6bc4384c816a447cca6516a03c89f2Douglas Gregor                                                SourceLocation(),
1319e2dac9c9b6bc4384c816a447cca6516a03c89f2Douglas Gregor                                                SourceLocation(),
13293ea5cb0edf8e509c5113e70cb05ee247c9bdf6bDouglas Gregor                                                NTTP->getDepth(),
13393ea5cb0edf8e509c5113e70cb05ee247c9bdf6bDouglas Gregor                                                NTTP->getPosition(), 0,
134d6471f7c1921c7802804ce3ff6fe9768310f72b9David Blaikie                                                T,
13593ea5cb0edf8e509c5113e70cb05ee247c9bdf6bDouglas Gregor                                                TInfo,
13693ea5cb0edf8e509c5113e70cb05ee247c9bdf6bDouglas Gregor                                                ExpandedTypes.data(),
13793ea5cb0edf8e509c5113e70cb05ee247c9bdf6bDouglas Gregor                                                ExpandedTypes.size(),
13893ea5cb0edf8e509c5113e70cb05ee247c9bdf6bDouglas Gregor                                                ExpandedTInfos.data());
13993ea5cb0edf8e509c5113e70cb05ee247c9bdf6bDouglas Gregor      } else {
14093ea5cb0edf8e509c5113e70cb05ee247c9bdf6bDouglas Gregor        Param = NonTypeTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
141d6471f7c1921c7802804ce3ff6fe9768310f72b9David Blaikie                                                SourceLocation(),
142d6471f7c1921c7802804ce3ff6fe9768310f72b9David Blaikie                                                SourceLocation(),
1430827408865e32789e0ec4b8113a302ccdc531423Argyrios Kyrtzidis                                                NTTP->getDepth(),
1440827408865e32789e0ec4b8113a302ccdc531423Argyrios Kyrtzidis                                                NTTP->getPosition(), 0,
1450827408865e32789e0ec4b8113a302ccdc531423Argyrios Kyrtzidis                                                T,
1460827408865e32789e0ec4b8113a302ccdc531423Argyrios Kyrtzidis                                                NTTP->isParameterPack(),
1470827408865e32789e0ec4b8113a302ccdc531423Argyrios Kyrtzidis                                                TInfo);
1480827408865e32789e0ec4b8113a302ccdc531423Argyrios Kyrtzidis      }
1490827408865e32789e0ec4b8113a302ccdc531423Argyrios Kyrtzidis      CanonParams.push_back(Param);
1500827408865e32789e0ec4b8113a302ccdc531423Argyrios Kyrtzidis
1510827408865e32789e0ec4b8113a302ccdc531423Argyrios Kyrtzidis    } else
1520827408865e32789e0ec4b8113a302ccdc531423Argyrios Kyrtzidis      CanonParams.push_back(getCanonicalTemplateTemplateParmDecl(
1530827408865e32789e0ec4b8113a302ccdc531423Argyrios Kyrtzidis                                           cast<TemplateTemplateParmDecl>(*P)));
1540827408865e32789e0ec4b8113a302ccdc531423Argyrios Kyrtzidis  }
1550827408865e32789e0ec4b8113a302ccdc531423Argyrios Kyrtzidis
1560827408865e32789e0ec4b8113a302ccdc531423Argyrios Kyrtzidis  TemplateTemplateParmDecl *CanonTTP
1570827408865e32789e0ec4b8113a302ccdc531423Argyrios Kyrtzidis    = TemplateTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
1580827408865e32789e0ec4b8113a302ccdc531423Argyrios Kyrtzidis                                       SourceLocation(), TTP->getDepth(),
1590827408865e32789e0ec4b8113a302ccdc531423Argyrios Kyrtzidis                                       TTP->getPosition(),
1600827408865e32789e0ec4b8113a302ccdc531423Argyrios Kyrtzidis                                       TTP->isParameterPack(),
161d6471f7c1921c7802804ce3ff6fe9768310f72b9David Blaikie                                       0,
162dfaee4922b990fbf33808b91b961dc27df585030Chad Rosier                         TemplateParameterList::Create(*this, SourceLocation(),
1630827408865e32789e0ec4b8113a302ccdc531423Argyrios Kyrtzidis                                                       SourceLocation(),
1640827408865e32789e0ec4b8113a302ccdc531423Argyrios Kyrtzidis                                                       CanonParams.data(),
1650827408865e32789e0ec4b8113a302ccdc531423Argyrios Kyrtzidis                                                       CanonParams.size(),
1660827408865e32789e0ec4b8113a302ccdc531423Argyrios Kyrtzidis                                                       SourceLocation()));
1670827408865e32789e0ec4b8113a302ccdc531423Argyrios Kyrtzidis
1680827408865e32789e0ec4b8113a302ccdc531423Argyrios Kyrtzidis  // Get the new insert position for the node we care about.
1690827408865e32789e0ec4b8113a302ccdc531423Argyrios Kyrtzidis  Canonical = CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos);
1700827408865e32789e0ec4b8113a302ccdc531423Argyrios Kyrtzidis  assert(Canonical == 0 && "Shouldn't be in the map!");
1710827408865e32789e0ec4b8113a302ccdc531423Argyrios Kyrtzidis  (void)Canonical;
1727a0a31ce0cd38147bfe853f71a3f7261444ddf4cChad Rosier
1737a0a31ce0cd38147bfe853f71a3f7261444ddf4cChad Rosier  // Create the canonical template template parameter entry.
1747a0a31ce0cd38147bfe853f71a3f7261444ddf4cChad Rosier  Canonical = new (*this) CanonicalTemplateTemplateParm(CanonTTP);
1757a0a31ce0cd38147bfe853f71a3f7261444ddf4cChad Rosier  CanonTemplateTemplateParms.InsertNode(Canonical, InsertPos);
1767a0a31ce0cd38147bfe853f71a3f7261444ddf4cChad Rosier  return CanonTTP;
1777a0a31ce0cd38147bfe853f71a3f7261444ddf4cChad Rosier}
1787a0a31ce0cd38147bfe853f71a3f7261444ddf4cChad Rosier
17987429a05ff66fe6460eaa4855fd0da574e26bf7bArgyrios KyrtzidisCXXABI *ASTContext::createCXXABI(const TargetInfo &T) {
18053201a86f775c064b62ec25742106c7b43ba8749Daniel Dunbar  if (!LangOpts.CPlusPlus) return 0;
1810827408865e32789e0ec4b8113a302ccdc531423Argyrios Kyrtzidis
1820827408865e32789e0ec4b8113a302ccdc531423Argyrios Kyrtzidis  switch (T.getCXXABI()) {
18309ea68d17bc0fc0b16d287ad4d3f61fe7def4f17Daniel Dunbar  case CXXABI_ARM:
1840827408865e32789e0ec4b8113a302ccdc531423Argyrios Kyrtzidis    return CreateARMCXXABI(*this);
1850827408865e32789e0ec4b8113a302ccdc531423Argyrios Kyrtzidis  case CXXABI_Itanium:
1860827408865e32789e0ec4b8113a302ccdc531423Argyrios Kyrtzidis    return CreateItaniumCXXABI(*this);
1870827408865e32789e0ec4b8113a302ccdc531423Argyrios Kyrtzidis  case CXXABI_Microsoft:
1880827408865e32789e0ec4b8113a302ccdc531423Argyrios Kyrtzidis    return CreateMicrosoftCXXABI(*this);
1890827408865e32789e0ec4b8113a302ccdc531423Argyrios Kyrtzidis  }
1900827408865e32789e0ec4b8113a302ccdc531423Argyrios Kyrtzidis  return 0;
191fc8f0e14ad142ed811e90fbd9a30e419e301c717Chris Lattner}
1920827408865e32789e0ec4b8113a302ccdc531423Argyrios Kyrtzidis
1930827408865e32789e0ec4b8113a302ccdc531423Argyrios Kyrtzidisstatic const LangAS::Map &getAddressSpaceMap(const TargetInfo &T,
1940827408865e32789e0ec4b8113a302ccdc531423Argyrios Kyrtzidis                                             const LangOptions &LOpts) {
1950827408865e32789e0ec4b8113a302ccdc531423Argyrios Kyrtzidis  if (LOpts.FakeAddressSpaceMap) {
19609ea68d17bc0fc0b16d287ad4d3f61fe7def4f17Daniel Dunbar    // The fake address space map must have a distinct entry for each
1970827408865e32789e0ec4b8113a302ccdc531423Argyrios Kyrtzidis    // language-specific address space.
1980827408865e32789e0ec4b8113a302ccdc531423Argyrios Kyrtzidis    static const unsigned FakeAddrSpaceMap[] = {
1990827408865e32789e0ec4b8113a302ccdc531423Argyrios Kyrtzidis      1, // opencl_global
2000827408865e32789e0ec4b8113a302ccdc531423Argyrios Kyrtzidis      2, // opencl_local
2010827408865e32789e0ec4b8113a302ccdc531423Argyrios Kyrtzidis      3  // opencl_constant
2020827408865e32789e0ec4b8113a302ccdc531423Argyrios Kyrtzidis    };
2030827408865e32789e0ec4b8113a302ccdc531423Argyrios Kyrtzidis    return FakeAddrSpaceMap;
2040827408865e32789e0ec4b8113a302ccdc531423Argyrios Kyrtzidis  } else {
2050827408865e32789e0ec4b8113a302ccdc531423Argyrios Kyrtzidis    return T.getAddressSpaceMap();
2060827408865e32789e0ec4b8113a302ccdc531423Argyrios Kyrtzidis  }
2070827408865e32789e0ec4b8113a302ccdc531423Argyrios Kyrtzidis}
2080827408865e32789e0ec4b8113a302ccdc531423Argyrios Kyrtzidis
20909ea68d17bc0fc0b16d287ad4d3f61fe7def4f17Daniel DunbarASTContext::ASTContext(const LangOptions& LOpts, SourceManager &SM,
2100827408865e32789e0ec4b8113a302ccdc531423Argyrios Kyrtzidis                       const TargetInfo &t,
2110827408865e32789e0ec4b8113a302ccdc531423Argyrios Kyrtzidis                       IdentifierTable &idents, SelectorTable &sels,
2120827408865e32789e0ec4b8113a302ccdc531423Argyrios Kyrtzidis                       Builtin::Context &builtins,
2130827408865e32789e0ec4b8113a302ccdc531423Argyrios Kyrtzidis                       unsigned size_reserve) :
21409ea68d17bc0fc0b16d287ad4d3f61fe7def4f17Daniel Dunbar  FunctionProtoTypes(this_()),
2150827408865e32789e0ec4b8113a302ccdc531423Argyrios Kyrtzidis  TemplateSpecializationTypes(this_()),
2160827408865e32789e0ec4b8113a302ccdc531423Argyrios Kyrtzidis  DependentTemplateSpecializationTypes(this_()),
2170827408865e32789e0ec4b8113a302ccdc531423Argyrios Kyrtzidis  GlobalNestedNameSpecifier(0), IsInt128Installed(false),
2180827408865e32789e0ec4b8113a302ccdc531423Argyrios Kyrtzidis  CFConstantStringTypeDecl(0), NSConstantStringTypeDecl(0),
2190827408865e32789e0ec4b8113a302ccdc531423Argyrios Kyrtzidis  ObjCFastEnumerationStateTypeDecl(0), FILEDecl(0), jmp_bufDecl(0),
2200827408865e32789e0ec4b8113a302ccdc531423Argyrios Kyrtzidis  sigjmp_bufDecl(0), BlockDescriptorType(0), BlockDescriptorExtendedType(0),
2210827408865e32789e0ec4b8113a302ccdc531423Argyrios Kyrtzidis  cudaConfigureCallDecl(0),
2220827408865e32789e0ec4b8113a302ccdc531423Argyrios Kyrtzidis  NullTypeSourceInfo(QualType()),
22309ea68d17bc0fc0b16d287ad4d3f61fe7def4f17Daniel Dunbar  SourceMgr(SM), LangOpts(LOpts), ABI(createCXXABI(t)),
2240827408865e32789e0ec4b8113a302ccdc531423Argyrios Kyrtzidis  AddrSpaceMap(getAddressSpaceMap(t, LOpts)), Target(t),
2250827408865e32789e0ec4b8113a302ccdc531423Argyrios Kyrtzidis  Idents(idents), Selectors(sels),
2260827408865e32789e0ec4b8113a302ccdc531423Argyrios Kyrtzidis  BuiltinInfo(builtins),
2270827408865e32789e0ec4b8113a302ccdc531423Argyrios Kyrtzidis  DeclarationNames(*this),
2283f8394669673451061f57ced81f0a2cae087f119Daniel Dunbar  ExternalSource(0), Listener(0), PrintingPolicy(LOpts),
2293f8394669673451061f57ced81f0a2cae087f119Daniel Dunbar  LastSDM(0, 0),
2303f8394669673451061f57ced81f0a2cae087f119Daniel Dunbar  UniqueBlockByRefTypeID(0) {
2313f8394669673451061f57ced81f0a2cae087f119Daniel Dunbar  ObjCIdRedefinitionType = QualType();
2323f8394669673451061f57ced81f0a2cae087f119Daniel Dunbar  ObjCClassRedefinitionType = QualType();
2333f8394669673451061f57ced81f0a2cae087f119Daniel Dunbar  ObjCSelRedefinitionType = QualType();
2343f8394669673451061f57ced81f0a2cae087f119Daniel Dunbar  if (size_reserve > 0) Types.reserve(size_reserve);
2353f8394669673451061f57ced81f0a2cae087f119Daniel Dunbar  TUDecl = TranslationUnitDecl::Create(*this);
2363f8394669673451061f57ced81f0a2cae087f119Daniel Dunbar  InitBuiltinTypes();
2373f8394669673451061f57ced81f0a2cae087f119Daniel Dunbar}
2383f8394669673451061f57ced81f0a2cae087f119Daniel Dunbar
2393f8394669673451061f57ced81f0a2cae087f119Daniel DunbarASTContext::~ASTContext() {
2403f8394669673451061f57ced81f0a2cae087f119Daniel Dunbar  // Release the DenseMaps associated with DeclContext objects.
2413f8394669673451061f57ced81f0a2cae087f119Daniel Dunbar  // FIXME: Is this the ideal solution?
2423f8394669673451061f57ced81f0a2cae087f119Daniel Dunbar  ReleaseDeclContextMaps();
2433f22509ebf91aa96658ca6e5c5c0b926d8d62e34Chad Rosier
2443f22509ebf91aa96658ca6e5c5c0b926d8d62e34Chad Rosier  // Call all of the deallocation functions.
2453f22509ebf91aa96658ca6e5c5c0b926d8d62e34Chad Rosier  for (unsigned I = 0, N = Deallocations.size(); I != N; ++I)
2463f22509ebf91aa96658ca6e5c5c0b926d8d62e34Chad Rosier    Deallocations[I].first(Deallocations[I].second);
2473f22509ebf91aa96658ca6e5c5c0b926d8d62e34Chad Rosier
2483f22509ebf91aa96658ca6e5c5c0b926d8d62e34Chad Rosier  // Release all of the memory associated with overridden C++ methods.
2493f22509ebf91aa96658ca6e5c5c0b926d8d62e34Chad Rosier  for (llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::iterator
2503f22509ebf91aa96658ca6e5c5c0b926d8d62e34Chad Rosier         OM = OverriddenMethods.begin(), OMEnd = OverriddenMethods.end();
2513f22509ebf91aa96658ca6e5c5c0b926d8d62e34Chad Rosier       OM != OMEnd; ++OM)
2523f22509ebf91aa96658ca6e5c5c0b926d8d62e34Chad Rosier    OM->second.Destroy();
2533f22509ebf91aa96658ca6e5c5c0b926d8d62e34Chad Rosier
2543f22509ebf91aa96658ca6e5c5c0b926d8d62e34Chad Rosier  // ASTRecordLayout objects in ASTRecordLayouts must always be destroyed
2553f22509ebf91aa96658ca6e5c5c0b926d8d62e34Chad Rosier  // because they can contain DenseMaps.
2563f22509ebf91aa96658ca6e5c5c0b926d8d62e34Chad Rosier  for (llvm::DenseMap<const ObjCContainerDecl*,
2573f22509ebf91aa96658ca6e5c5c0b926d8d62e34Chad Rosier       const ASTRecordLayout*>::iterator
2583f22509ebf91aa96658ca6e5c5c0b926d8d62e34Chad Rosier       I = ObjCLayouts.begin(), E = ObjCLayouts.end(); I != E; )
2593f22509ebf91aa96658ca6e5c5c0b926d8d62e34Chad Rosier    // Increment in loop to prevent using deallocated memory.
2603f22509ebf91aa96658ca6e5c5c0b926d8d62e34Chad Rosier    if (ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second))
2614aa8f2bce0f498152d624f748712a991adc23fddDaniel Dunbar      R->Destroy(*this);
2624aa8f2bce0f498152d624f748712a991adc23fddDaniel Dunbar
263a5e41333b06fdf036d58495490eb14d6a0a3fcf7Daniel Dunbar  for (llvm::DenseMap<const RecordDecl*, const ASTRecordLayout*>::iterator
264a5e41333b06fdf036d58495490eb14d6a0a3fcf7Daniel Dunbar       I = ASTRecordLayouts.begin(), E = ASTRecordLayouts.end(); I != E; ) {
265a5e41333b06fdf036d58495490eb14d6a0a3fcf7Daniel Dunbar    // Increment in loop to prevent using deallocated memory.
266a5e41333b06fdf036d58495490eb14d6a0a3fcf7Daniel Dunbar    if (ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second))
267a5e41333b06fdf036d58495490eb14d6a0a3fcf7Daniel Dunbar      R->Destroy(*this);
268a5e41333b06fdf036d58495490eb14d6a0a3fcf7Daniel Dunbar  }
269a5e41333b06fdf036d58495490eb14d6a0a3fcf7Daniel Dunbar
270a5e41333b06fdf036d58495490eb14d6a0a3fcf7Daniel Dunbar  for (llvm::DenseMap<const Decl*, AttrVec*>::iterator A = DeclAttrs.begin(),
271a5e41333b06fdf036d58495490eb14d6a0a3fcf7Daniel Dunbar                                                    AEnd = DeclAttrs.end();
272a5e41333b06fdf036d58495490eb14d6a0a3fcf7Daniel Dunbar       A != AEnd; ++A)
273a5e41333b06fdf036d58495490eb14d6a0a3fcf7Daniel Dunbar    A->second->~AttrVec();
274a5e41333b06fdf036d58495490eb14d6a0a3fcf7Daniel Dunbar}
275a5e41333b06fdf036d58495490eb14d6a0a3fcf7Daniel Dunbar
276a5e41333b06fdf036d58495490eb14d6a0a3fcf7Daniel Dunbarvoid ASTContext::AddDeallocation(void (*Callback)(void*), void *Data) {
277a5e41333b06fdf036d58495490eb14d6a0a3fcf7Daniel Dunbar  Deallocations.push_back(std::make_pair(Callback, Data));
278a5e41333b06fdf036d58495490eb14d6a0a3fcf7Daniel Dunbar}
279a5e41333b06fdf036d58495490eb14d6a0a3fcf7Daniel Dunbar
280a5e41333b06fdf036d58495490eb14d6a0a3fcf7Daniel Dunbarvoid
281be1aa410274b28fc143c47c814f07c989f4534d6Daniel DunbarASTContext::setExternalSource(llvm::OwningPtr<ExternalASTSource> &Source) {
282be1aa410274b28fc143c47c814f07c989f4534d6Daniel Dunbar  ExternalSource.reset(Source.take());
283be1aa410274b28fc143c47c814f07c989f4534d6Daniel Dunbar}
284be1aa410274b28fc143c47c814f07c989f4534d6Daniel Dunbar
285a5e41333b06fdf036d58495490eb14d6a0a3fcf7Daniel Dunbarvoid ASTContext::PrintStats() const {
286a5e41333b06fdf036d58495490eb14d6a0a3fcf7Daniel Dunbar  fprintf(stderr, "*** AST Context Stats:\n");
287a5e41333b06fdf036d58495490eb14d6a0a3fcf7Daniel Dunbar  fprintf(stderr, "  %d types total.\n", (int)Types.size());
288a5e41333b06fdf036d58495490eb14d6a0a3fcf7Daniel Dunbar
2894aa8f2bce0f498152d624f748712a991adc23fddDaniel Dunbar  unsigned counts[] = {
2904aa8f2bce0f498152d624f748712a991adc23fddDaniel Dunbar#define TYPE(Name, Parent) 0,
2913f22509ebf91aa96658ca6e5c5c0b926d8d62e34Chad Rosier#define ABSTRACT_TYPE(Name, Parent)
2923f22509ebf91aa96658ca6e5c5c0b926d8d62e34Chad Rosier#include "clang/AST/TypeNodes.def"
2933f22509ebf91aa96658ca6e5c5c0b926d8d62e34Chad Rosier    0 // Extra
2943f22509ebf91aa96658ca6e5c5c0b926d8d62e34Chad Rosier  };
2953f22509ebf91aa96658ca6e5c5c0b926d8d62e34Chad Rosier
2963f22509ebf91aa96658ca6e5c5c0b926d8d62e34Chad Rosier  for (unsigned i = 0, e = Types.size(); i != e; ++i) {
2973f22509ebf91aa96658ca6e5c5c0b926d8d62e34Chad Rosier    Type *T = Types[i];
2983f22509ebf91aa96658ca6e5c5c0b926d8d62e34Chad Rosier    counts[(unsigned)T->getTypeClass()]++;
2993f22509ebf91aa96658ca6e5c5c0b926d8d62e34Chad Rosier  }
3003f22509ebf91aa96658ca6e5c5c0b926d8d62e34Chad Rosier
3013f22509ebf91aa96658ca6e5c5c0b926d8d62e34Chad Rosier  unsigned Idx = 0;
3023f22509ebf91aa96658ca6e5c5c0b926d8d62e34Chad Rosier  unsigned TotalBytes = 0;
3033f22509ebf91aa96658ca6e5c5c0b926d8d62e34Chad Rosier#define TYPE(Name, Parent)                                              \
3043f22509ebf91aa96658ca6e5c5c0b926d8d62e34Chad Rosier  if (counts[Idx])                                                      \
3053f22509ebf91aa96658ca6e5c5c0b926d8d62e34Chad Rosier    fprintf(stderr, "    %d %s types\n", (int)counts[Idx], #Name);      \
3063f22509ebf91aa96658ca6e5c5c0b926d8d62e34Chad Rosier  TotalBytes += counts[Idx] * sizeof(Name##Type);                       \
3073f22509ebf91aa96658ca6e5c5c0b926d8d62e34Chad Rosier  ++Idx;
3084aa8f2bce0f498152d624f748712a991adc23fddDaniel Dunbar#define ABSTRACT_TYPE(Name, Parent)
3094aa8f2bce0f498152d624f748712a991adc23fddDaniel Dunbar#include "clang/AST/TypeNodes.def"
310a5e41333b06fdf036d58495490eb14d6a0a3fcf7Daniel Dunbar
311a5e41333b06fdf036d58495490eb14d6a0a3fcf7Daniel Dunbar  fprintf(stderr, "Total bytes = %d\n", int(TotalBytes));
312a5e41333b06fdf036d58495490eb14d6a0a3fcf7Daniel Dunbar
313a5e41333b06fdf036d58495490eb14d6a0a3fcf7Daniel Dunbar  // Implicit special member functions.
314a5e41333b06fdf036d58495490eb14d6a0a3fcf7Daniel Dunbar  fprintf(stderr, "  %u/%u implicit default constructors created\n",
315a5e41333b06fdf036d58495490eb14d6a0a3fcf7Daniel Dunbar          NumImplicitDefaultConstructorsDeclared,
316a5e41333b06fdf036d58495490eb14d6a0a3fcf7Daniel Dunbar          NumImplicitDefaultConstructors);
317a5e41333b06fdf036d58495490eb14d6a0a3fcf7Daniel Dunbar  fprintf(stderr, "  %u/%u implicit copy constructors created\n",
318a5e41333b06fdf036d58495490eb14d6a0a3fcf7Daniel Dunbar          NumImplicitCopyConstructorsDeclared,
319a5e41333b06fdf036d58495490eb14d6a0a3fcf7Daniel Dunbar          NumImplicitCopyConstructors);
320a5e41333b06fdf036d58495490eb14d6a0a3fcf7Daniel Dunbar  fprintf(stderr, "  %u/%u implicit copy assignment operators created\n",
321a5e41333b06fdf036d58495490eb14d6a0a3fcf7Daniel Dunbar          NumImplicitCopyAssignmentOperatorsDeclared,
322a5e41333b06fdf036d58495490eb14d6a0a3fcf7Daniel Dunbar          NumImplicitCopyAssignmentOperators);
323a5e41333b06fdf036d58495490eb14d6a0a3fcf7Daniel Dunbar  fprintf(stderr, "  %u/%u implicit destructors created\n",
324a5e41333b06fdf036d58495490eb14d6a0a3fcf7Daniel Dunbar          NumImplicitDestructorsDeclared, NumImplicitDestructors);
325a5e41333b06fdf036d58495490eb14d6a0a3fcf7Daniel Dunbar
326a5e41333b06fdf036d58495490eb14d6a0a3fcf7Daniel Dunbar  if (ExternalSource.get()) {
327a5e41333b06fdf036d58495490eb14d6a0a3fcf7Daniel Dunbar    fprintf(stderr, "\n");
328be1aa410274b28fc143c47c814f07c989f4534d6Daniel Dunbar    ExternalSource->PrintStats();
329be1aa410274b28fc143c47c814f07c989f4534d6Daniel Dunbar  }
330be1aa410274b28fc143c47c814f07c989f4534d6Daniel Dunbar
331a5e41333b06fdf036d58495490eb14d6a0a3fcf7Daniel Dunbar  BumpAlloc.PrintStats();
332a5e41333b06fdf036d58495490eb14d6a0a3fcf7Daniel Dunbar}
333a5e41333b06fdf036d58495490eb14d6a0a3fcf7Daniel Dunbar
334a5e41333b06fdf036d58495490eb14d6a0a3fcf7Daniel Dunbar
3354aa8f2bce0f498152d624f748712a991adc23fddDaniel Dunbarvoid ASTContext::InitBuiltinType(CanQualType &R, BuiltinType::Kind K) {
3364aa8f2bce0f498152d624f748712a991adc23fddDaniel Dunbar  BuiltinType *Ty = new (*this, TypeAlignment) BuiltinType(K);
33782e6411d004064a29f03a3ea8b8919f297bfa843Argyrios Kyrtzidis  R = CanQualType::CreateUnsafe(QualType(Ty, 0));
33811583c757bac6ce5c342f2eb572055dd2619a657Argyrios Kyrtzidis  Types.push_back(Ty);
33911583c757bac6ce5c342f2eb572055dd2619a657Argyrios Kyrtzidis}
34011583c757bac6ce5c342f2eb572055dd2619a657Argyrios Kyrtzidis
34111583c757bac6ce5c342f2eb572055dd2619a657Argyrios Kyrtzidisvoid ASTContext::InitBuiltinTypes() {
34211583c757bac6ce5c342f2eb572055dd2619a657Argyrios Kyrtzidis  assert(VoidTy.isNull() && "Context reinitialized?");
34311583c757bac6ce5c342f2eb572055dd2619a657Argyrios Kyrtzidis
34411583c757bac6ce5c342f2eb572055dd2619a657Argyrios Kyrtzidis  // C99 6.2.5p19.
34511583c757bac6ce5c342f2eb572055dd2619a657Argyrios Kyrtzidis  InitBuiltinType(VoidTy,              BuiltinType::Void);
34611583c757bac6ce5c342f2eb572055dd2619a657Argyrios Kyrtzidis
34711583c757bac6ce5c342f2eb572055dd2619a657Argyrios Kyrtzidis  // C99 6.2.5p2.
34811583c757bac6ce5c342f2eb572055dd2619a657Argyrios Kyrtzidis  InitBuiltinType(BoolTy,              BuiltinType::Bool);
349d6471f7c1921c7802804ce3ff6fe9768310f72b9David Blaikie  // C99 6.2.5p3.
350e59abb56ce0e1c206fb80bd945a0c358b0abe1efArgyrios Kyrtzidis  if (LangOpts.CharIsSigned)
351e59abb56ce0e1c206fb80bd945a0c358b0abe1efArgyrios Kyrtzidis    InitBuiltinType(CharTy,            BuiltinType::Char_S);
352e59abb56ce0e1c206fb80bd945a0c358b0abe1efArgyrios Kyrtzidis  else
353e59abb56ce0e1c206fb80bd945a0c358b0abe1efArgyrios Kyrtzidis    InitBuiltinType(CharTy,            BuiltinType::Char_U);
354e59abb56ce0e1c206fb80bd945a0c358b0abe1efArgyrios Kyrtzidis  // C99 6.2.5p4.
355e59abb56ce0e1c206fb80bd945a0c358b0abe1efArgyrios Kyrtzidis  InitBuiltinType(SignedCharTy,        BuiltinType::SChar);
356e59abb56ce0e1c206fb80bd945a0c358b0abe1efArgyrios Kyrtzidis  InitBuiltinType(ShortTy,             BuiltinType::Short);
357981e279b95f3a71e2268124b1abaae050ec200dcDaniel Dunbar  InitBuiltinType(IntTy,               BuiltinType::Int);
358e59abb56ce0e1c206fb80bd945a0c358b0abe1efArgyrios Kyrtzidis  InitBuiltinType(LongTy,              BuiltinType::Long);
359e59abb56ce0e1c206fb80bd945a0c358b0abe1efArgyrios Kyrtzidis  InitBuiltinType(LongLongTy,          BuiltinType::LongLong);
360e59abb56ce0e1c206fb80bd945a0c358b0abe1efArgyrios Kyrtzidis
361e59abb56ce0e1c206fb80bd945a0c358b0abe1efArgyrios Kyrtzidis  // C99 6.2.5p6.
362e59abb56ce0e1c206fb80bd945a0c358b0abe1efArgyrios Kyrtzidis  InitBuiltinType(UnsignedCharTy,      BuiltinType::UChar);
363e59abb56ce0e1c206fb80bd945a0c358b0abe1efArgyrios Kyrtzidis  InitBuiltinType(UnsignedShortTy,     BuiltinType::UShort);
364e59abb56ce0e1c206fb80bd945a0c358b0abe1efArgyrios Kyrtzidis  InitBuiltinType(UnsignedIntTy,       BuiltinType::UInt);
365981e279b95f3a71e2268124b1abaae050ec200dcDaniel Dunbar  InitBuiltinType(UnsignedLongTy,      BuiltinType::ULong);
366981e279b95f3a71e2268124b1abaae050ec200dcDaniel Dunbar  InitBuiltinType(UnsignedLongLongTy,  BuiltinType::ULongLong);
367981e279b95f3a71e2268124b1abaae050ec200dcDaniel Dunbar
368e59abb56ce0e1c206fb80bd945a0c358b0abe1efArgyrios Kyrtzidis  // C99 6.2.5p10.
369e59abb56ce0e1c206fb80bd945a0c358b0abe1efArgyrios Kyrtzidis  InitBuiltinType(FloatTy,             BuiltinType::Float);
370e59abb56ce0e1c206fb80bd945a0c358b0abe1efArgyrios Kyrtzidis  InitBuiltinType(DoubleTy,            BuiltinType::Double);
371981e279b95f3a71e2268124b1abaae050ec200dcDaniel Dunbar  InitBuiltinType(LongDoubleTy,        BuiltinType::LongDouble);
372e59abb56ce0e1c206fb80bd945a0c358b0abe1efArgyrios Kyrtzidis
37378ad0b98848c17a0a11847fa1d456e2dfec8aa2fDavid Blaikie  // GNU extension, 128-bit integers.
374e59abb56ce0e1c206fb80bd945a0c358b0abe1efArgyrios Kyrtzidis  InitBuiltinType(Int128Ty,            BuiltinType::Int128);
37540847cfb58acc3cac7d68727df9455ac45f2e118David Blaikie  InitBuiltinType(UnsignedInt128Ty,    BuiltinType::UInt128);
376e59abb56ce0e1c206fb80bd945a0c358b0abe1efArgyrios Kyrtzidis
377e59abb56ce0e1c206fb80bd945a0c358b0abe1efArgyrios Kyrtzidis  if (LangOpts.CPlusPlus) { // C++ 3.9.1p5
378d6471f7c1921c7802804ce3ff6fe9768310f72b9David Blaikie    if (TargetInfo::isTypeSigned(Target.getWCharType()))
379e59abb56ce0e1c206fb80bd945a0c358b0abe1efArgyrios Kyrtzidis      InitBuiltinType(WCharTy,           BuiltinType::WChar_S);
380e59abb56ce0e1c206fb80bd945a0c358b0abe1efArgyrios Kyrtzidis    else  // -fshort-wchar makes wchar_t be unsigned.
381e59abb56ce0e1c206fb80bd945a0c358b0abe1efArgyrios Kyrtzidis      InitBuiltinType(WCharTy,           BuiltinType::WChar_U);
382e59abb56ce0e1c206fb80bd945a0c358b0abe1efArgyrios Kyrtzidis  } else // C99
383e59abb56ce0e1c206fb80bd945a0c358b0abe1efArgyrios Kyrtzidis    WCharTy = getFromTargetType(Target.getWCharType());
384e59abb56ce0e1c206fb80bd945a0c358b0abe1efArgyrios Kyrtzidis
385c6d64a26c28bbeee50e06c94c4f4c08e610327b7Jordan Rose  if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
386c6d64a26c28bbeee50e06c94c4f4c08e610327b7Jordan Rose    InitBuiltinType(Char16Ty,           BuiltinType::Char16);
387c6d64a26c28bbeee50e06c94c4f4c08e610327b7Jordan Rose  else // C99
388c6d64a26c28bbeee50e06c94c4f4c08e610327b7Jordan Rose    Char16Ty = getFromTargetType(Target.getChar16Type());
389c6d64a26c28bbeee50e06c94c4f4c08e610327b7Jordan Rose
390c6d64a26c28bbeee50e06c94c4f4c08e610327b7Jordan Rose  if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
391c6d64a26c28bbeee50e06c94c4f4c08e610327b7Jordan Rose    InitBuiltinType(Char32Ty,           BuiltinType::Char32);
392c6d64a26c28bbeee50e06c94c4f4c08e610327b7Jordan Rose  else // C99
393c6d64a26c28bbeee50e06c94c4f4c08e610327b7Jordan Rose    Char32Ty = getFromTargetType(Target.getChar32Type());
394c6d64a26c28bbeee50e06c94c4f4c08e610327b7Jordan Rose
395c6d64a26c28bbeee50e06c94c4f4c08e610327b7Jordan Rose  // Placeholder type for type-dependent expressions whose type is
396c6d64a26c28bbeee50e06c94c4f4c08e610327b7Jordan Rose  // completely unknown. No code should ever check a type against
397c6d64a26c28bbeee50e06c94c4f4c08e610327b7Jordan Rose  // DependentTy and users should never see it; however, it is here to
398c6d64a26c28bbeee50e06c94c4f4c08e610327b7Jordan Rose  // help diagnose failures to properly check for type-dependent
399c6d64a26c28bbeee50e06c94c4f4c08e610327b7Jordan Rose  // expressions.
400c6d64a26c28bbeee50e06c94c4f4c08e610327b7Jordan Rose  InitBuiltinType(DependentTy,         BuiltinType::Dependent);
401c6d64a26c28bbeee50e06c94c4f4c08e610327b7Jordan Rose
402c6d64a26c28bbeee50e06c94c4f4c08e610327b7Jordan Rose  // Placeholder type for functions.
403c6d64a26c28bbeee50e06c94c4f4c08e610327b7Jordan Rose  InitBuiltinType(OverloadTy,          BuiltinType::Overload);
404c6d64a26c28bbeee50e06c94c4f4c08e610327b7Jordan Rose
405c6d64a26c28bbeee50e06c94c4f4c08e610327b7Jordan Rose  // Placeholder type for bound members.
40693ea5cb0edf8e509c5113e70cb05ee247c9bdf6bDouglas Gregor  InitBuiltinType(BoundMemberTy,       BuiltinType::BoundMember);
40793ea5cb0edf8e509c5113e70cb05ee247c9bdf6bDouglas Gregor
4083054f097f813d19090bdb23645dcd48df71d1a89Daniel Dunbar  // "any" type; useful for debugger-like clients.
4093054f097f813d19090bdb23645dcd48df71d1a89Daniel Dunbar  InitBuiltinType(UnknownAnyTy,        BuiltinType::UnknownAny);
41093ea5cb0edf8e509c5113e70cb05ee247c9bdf6bDouglas Gregor
41193ea5cb0edf8e509c5113e70cb05ee247c9bdf6bDouglas Gregor  // C99 6.2.5p11.
412c6d64a26c28bbeee50e06c94c4f4c08e610327b7Jordan Rose  FloatComplexTy      = getComplexType(FloatTy);
4133054f097f813d19090bdb23645dcd48df71d1a89Daniel Dunbar  DoubleComplexTy     = getComplexType(DoubleTy);
41493ea5cb0edf8e509c5113e70cb05ee247c9bdf6bDouglas Gregor  LongDoubleComplexTy = getComplexType(LongDoubleTy);
41593ea5cb0edf8e509c5113e70cb05ee247c9bdf6bDouglas Gregor
41693ea5cb0edf8e509c5113e70cb05ee247c9bdf6bDouglas Gregor  BuiltinVaListType = QualType();
41793ea5cb0edf8e509c5113e70cb05ee247c9bdf6bDouglas Gregor
4187bfaaaecb3113f955db31e8d8a51acffd1bc0c27Nico Weber  // "Builtin" typedefs set by Sema::ActOnTranslationUnitScope().
41978ad0b98848c17a0a11847fa1d456e2dfec8aa2fDavid Blaikie  ObjCIdTypedefType = QualType();
4207bfaaaecb3113f955db31e8d8a51acffd1bc0c27Nico Weber  ObjCClassTypedefType = QualType();
42178ad0b98848c17a0a11847fa1d456e2dfec8aa2fDavid Blaikie  ObjCSelTypedefType = QualType();
42240847cfb58acc3cac7d68727df9455ac45f2e118David Blaikie
423f2224d89a6ae65a3839529e26d0f6d025d83d6bbArgyrios Kyrtzidis  // Builtin types for 'id', 'Class', and 'SEL'.
424f2224d89a6ae65a3839529e26d0f6d025d83d6bbArgyrios Kyrtzidis  InitBuiltinType(ObjCBuiltinIdTy, BuiltinType::ObjCId);
425f2224d89a6ae65a3839529e26d0f6d025d83d6bbArgyrios Kyrtzidis  InitBuiltinType(ObjCBuiltinClassTy, BuiltinType::ObjCClass);
426d6471f7c1921c7802804ce3ff6fe9768310f72b9David Blaikie  InitBuiltinType(ObjCBuiltinSelTy, BuiltinType::ObjCSel);
427f2224d89a6ae65a3839529e26d0f6d025d83d6bbArgyrios Kyrtzidis
428d6471f7c1921c7802804ce3ff6fe9768310f72b9David Blaikie  ObjCConstantStringType = QualType();
429f2224d89a6ae65a3839529e26d0f6d025d83d6bbArgyrios Kyrtzidis
430f2224d89a6ae65a3839529e26d0f6d025d83d6bbArgyrios Kyrtzidis  // void * type
431f4c839657742b823cea1a95b18422f1ba74d3dddChris Lattner  VoidPtrTy = getPointerType(VoidTy);
432af7ae4e8160fc5c23e471f2125b3fe5911e3532aChris Lattner
433af7ae4e8160fc5c23e471f2125b3fe5911e3532aChris Lattner  // nullptr type (C++0x 2.14.7)
434af7ae4e8160fc5c23e471f2125b3fe5911e3532aChris Lattner  InitBuiltinType(NullPtrTy,           BuiltinType::NullPtr);
435af7ae4e8160fc5c23e471f2125b3fe5911e3532aChris Lattner}
436af7ae4e8160fc5c23e471f2125b3fe5911e3532aChris Lattner
437af7ae4e8160fc5c23e471f2125b3fe5911e3532aChris LattnerDiagnostic &ASTContext::getDiagnostics() const {
438af7ae4e8160fc5c23e471f2125b3fe5911e3532aChris Lattner  return SourceMgr.getDiagnostics();
439909c182f6a0e6169475eef6a71add14555b6162cJohn McCall}
440909c182f6a0e6169475eef6a71add14555b6162cJohn McCall
441909c182f6a0e6169475eef6a71add14555b6162cJohn McCallAttrVec& ASTContext::getDeclAttrs(const Decl *D) {
442909c182f6a0e6169475eef6a71add14555b6162cJohn McCall  AttrVec *&Result = DeclAttrs[D];
443909c182f6a0e6169475eef6a71add14555b6162cJohn McCall  if (!Result) {
444909c182f6a0e6169475eef6a71add14555b6162cJohn McCall    void *Mem = Allocate(sizeof(AttrVec));
445909c182f6a0e6169475eef6a71add14555b6162cJohn McCall    Result = new (Mem) AttrVec;
446909c182f6a0e6169475eef6a71add14555b6162cJohn McCall  }
447909c182f6a0e6169475eef6a71add14555b6162cJohn McCall
448909c182f6a0e6169475eef6a71add14555b6162cJohn McCall  return *Result;
449909c182f6a0e6169475eef6a71add14555b6162cJohn McCall}
450909c182f6a0e6169475eef6a71add14555b6162cJohn McCall
451909c182f6a0e6169475eef6a71add14555b6162cJohn McCall/// \brief Erase the attributes corresponding to the given declaration.
452909c182f6a0e6169475eef6a71add14555b6162cJohn McCallvoid ASTContext::eraseDeclAttrs(const Decl *D) {
453909c182f6a0e6169475eef6a71add14555b6162cJohn McCall  llvm::DenseMap<const Decl*, AttrVec*>::iterator Pos = DeclAttrs.find(D);
454909c182f6a0e6169475eef6a71add14555b6162cJohn McCall  if (Pos != DeclAttrs.end()) {
455909c182f6a0e6169475eef6a71add14555b6162cJohn McCall    Pos->second->~AttrVec();
456909c182f6a0e6169475eef6a71add14555b6162cJohn McCall    DeclAttrs.erase(Pos);
457909c182f6a0e6169475eef6a71add14555b6162cJohn McCall  }
458909c182f6a0e6169475eef6a71add14555b6162cJohn McCall}
459909c182f6a0e6169475eef6a71add14555b6162cJohn McCall
460909c182f6a0e6169475eef6a71add14555b6162cJohn McCallMemberSpecializationInfo *
461909c182f6a0e6169475eef6a71add14555b6162cJohn McCallASTContext::getInstantiatedFromStaticDataMember(const VarDecl *Var) {
462909c182f6a0e6169475eef6a71add14555b6162cJohn McCall  assert(Var->isStaticDataMember() && "Not a static data member");
463909c182f6a0e6169475eef6a71add14555b6162cJohn McCall  llvm::DenseMap<const VarDecl *, MemberSpecializationInfo *>::iterator Pos
464909c182f6a0e6169475eef6a71add14555b6162cJohn McCall    = InstantiatedFromStaticDataMember.find(Var);
465909c182f6a0e6169475eef6a71add14555b6162cJohn McCall  if (Pos == InstantiatedFromStaticDataMember.end())
466af7ae4e8160fc5c23e471f2125b3fe5911e3532aChris Lattner    return 0;
467af7ae4e8160fc5c23e471f2125b3fe5911e3532aChris Lattner
468af7ae4e8160fc5c23e471f2125b3fe5911e3532aChris Lattner  return Pos->second;
469af7ae4e8160fc5c23e471f2125b3fe5911e3532aChris Lattner}
470af7ae4e8160fc5c23e471f2125b3fe5911e3532aChris Lattner
47140847cfb58acc3cac7d68727df9455ac45f2e118David Blaikievoid
472af7ae4e8160fc5c23e471f2125b3fe5911e3532aChris LattnerASTContext::setInstantiatedFromStaticDataMember(VarDecl *Inst, VarDecl *Tmpl,
4735f9e272e632e951b1efe824cd16acb4d96077930Chris Lattner                                                TemplateSpecializationKind TSK,
474af7ae4e8160fc5c23e471f2125b3fe5911e3532aChris Lattner                                          SourceLocation PointOfInstantiation) {
4751eb4433ac451dc16f4133a88af2d002ac26c58efMike Stump  assert(Inst->isStaticDataMember() && "Not a static data member");
476af7ae4e8160fc5c23e471f2125b3fe5911e3532aChris Lattner  assert(Tmpl->isStaticDataMember() && "Not a static data member");
477af7ae4e8160fc5c23e471f2125b3fe5911e3532aChris Lattner  assert(!InstantiatedFromStaticDataMember[Inst] &&
478909c182f6a0e6169475eef6a71add14555b6162cJohn McCall         "Already noted what static data member was instantiated from");
479af7ae4e8160fc5c23e471f2125b3fe5911e3532aChris Lattner  InstantiatedFromStaticDataMember[Inst]
480af7ae4e8160fc5c23e471f2125b3fe5911e3532aChris Lattner    = new (*this) MemberSpecializationInfo(Tmpl, TSK, PointOfInstantiation);
481af7ae4e8160fc5c23e471f2125b3fe5911e3532aChris Lattner}
482af7ae4e8160fc5c23e471f2125b3fe5911e3532aChris Lattner
483af7ae4e8160fc5c23e471f2125b3fe5911e3532aChris LattnerNamedDecl *
4841eb4433ac451dc16f4133a88af2d002ac26c58efMike StumpASTContext::getInstantiatedFromUsingDecl(UsingDecl *UUD) {
485af7ae4e8160fc5c23e471f2125b3fe5911e3532aChris Lattner  llvm::DenseMap<UsingDecl *, NamedDecl *>::const_iterator Pos
486909c182f6a0e6169475eef6a71add14555b6162cJohn McCall    = InstantiatedFromUsingDecl.find(UUD);
4879f28614bf1a8387000d8df57a713fcf69e198145John McCall  if (Pos == InstantiatedFromUsingDecl.end())
4889f28614bf1a8387000d8df57a713fcf69e198145John McCall    return 0;
4899f28614bf1a8387000d8df57a713fcf69e198145John McCall
490af7ae4e8160fc5c23e471f2125b3fe5911e3532aChris Lattner  return Pos->second;
491af7ae4e8160fc5c23e471f2125b3fe5911e3532aChris Lattner}
492af7ae4e8160fc5c23e471f2125b3fe5911e3532aChris Lattner
493af7ae4e8160fc5c23e471f2125b3fe5911e3532aChris Lattnervoid
494af7ae4e8160fc5c23e471f2125b3fe5911e3532aChris LattnerASTContext::setInstantiatedFromUsingDecl(UsingDecl *Inst, NamedDecl *Pattern) {
495af7ae4e8160fc5c23e471f2125b3fe5911e3532aChris Lattner  assert((isa<UsingDecl>(Pattern) ||
4965f9e272e632e951b1efe824cd16acb4d96077930Chris Lattner          isa<UnresolvedUsingValueDecl>(Pattern) ||
497af7ae4e8160fc5c23e471f2125b3fe5911e3532aChris Lattner          isa<UnresolvedUsingTypenameDecl>(Pattern)) &&
498af7ae4e8160fc5c23e471f2125b3fe5911e3532aChris Lattner         "pattern decl is not a using decl");
499af7ae4e8160fc5c23e471f2125b3fe5911e3532aChris Lattner  assert(!InstantiatedFromUsingDecl[Inst] && "pattern already exists");
500af7ae4e8160fc5c23e471f2125b3fe5911e3532aChris Lattner  InstantiatedFromUsingDecl[Inst] = Pattern;
5013be16b7d9d0ab075461ed3498b4c01b30b517c0eJohn McCall}
5023be16b7d9d0ab075461ed3498b4c01b30b517c0eJohn McCall
5033be16b7d9d0ab075461ed3498b4c01b30b517c0eJohn McCallUsingShadowDecl *
5043be16b7d9d0ab075461ed3498b4c01b30b517c0eJohn McCallASTContext::getInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst) {
5053be16b7d9d0ab075461ed3498b4c01b30b517c0eJohn McCall  llvm::DenseMap<UsingShadowDecl*, UsingShadowDecl*>::const_iterator Pos
5065f9e272e632e951b1efe824cd16acb4d96077930Chris Lattner    = InstantiatedFromUsingShadowDecl.find(Inst);
5073be16b7d9d0ab075461ed3498b4c01b30b517c0eJohn McCall  if (Pos == InstantiatedFromUsingShadowDecl.end())
5083be16b7d9d0ab075461ed3498b4c01b30b517c0eJohn McCall    return 0;
5093be16b7d9d0ab075461ed3498b4c01b30b517c0eJohn McCall
5103be16b7d9d0ab075461ed3498b4c01b30b517c0eJohn McCall  return Pos->second;
5113be16b7d9d0ab075461ed3498b4c01b30b517c0eJohn McCall}
5123be16b7d9d0ab075461ed3498b4c01b30b517c0eJohn McCall
5133be16b7d9d0ab075461ed3498b4c01b30b517c0eJohn McCallvoid
5143be16b7d9d0ab075461ed3498b4c01b30b517c0eJohn McCallASTContext::setInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst,
5153be16b7d9d0ab075461ed3498b4c01b30b517c0eJohn McCall                                               UsingShadowDecl *Pattern) {
5163be16b7d9d0ab075461ed3498b4c01b30b517c0eJohn McCall  assert(!InstantiatedFromUsingShadowDecl[Inst] && "pattern already exists");
5173be16b7d9d0ab075461ed3498b4c01b30b517c0eJohn McCall  InstantiatedFromUsingShadowDecl[Inst] = Pattern;
5183be16b7d9d0ab075461ed3498b4c01b30b517c0eJohn McCall}
5193be16b7d9d0ab075461ed3498b4c01b30b517c0eJohn McCall
5203be16b7d9d0ab075461ed3498b4c01b30b517c0eJohn McCallFieldDecl *ASTContext::getInstantiatedFromUnnamedFieldDecl(FieldDecl *Field) {
5213be16b7d9d0ab075461ed3498b4c01b30b517c0eJohn McCall  llvm::DenseMap<FieldDecl *, FieldDecl *>::iterator Pos
5223be16b7d9d0ab075461ed3498b4c01b30b517c0eJohn McCall    = InstantiatedFromUnnamedFieldDecl.find(Field);
5233be16b7d9d0ab075461ed3498b4c01b30b517c0eJohn McCall  if (Pos == InstantiatedFromUnnamedFieldDecl.end())
5243be16b7d9d0ab075461ed3498b4c01b30b517c0eJohn McCall    return 0;
5253be16b7d9d0ab075461ed3498b4c01b30b517c0eJohn McCall
5263be16b7d9d0ab075461ed3498b4c01b30b517c0eJohn McCall  return Pos->second;
5273be16b7d9d0ab075461ed3498b4c01b30b517c0eJohn McCall}
5283be16b7d9d0ab075461ed3498b4c01b30b517c0eJohn McCall
5293be16b7d9d0ab075461ed3498b4c01b30b517c0eJohn McCallvoid ASTContext::setInstantiatedFromUnnamedFieldDecl(FieldDecl *Inst,
5303be16b7d9d0ab075461ed3498b4c01b30b517c0eJohn McCall                                                     FieldDecl *Tmpl) {
5313be16b7d9d0ab075461ed3498b4c01b30b517c0eJohn McCall  assert(!Inst->getDeclName() && "Instantiated field decl is not unnamed");
532af7ae4e8160fc5c23e471f2125b3fe5911e3532aChris Lattner  assert(!Tmpl->getDeclName() && "Template field decl is not unnamed");
533e4c452c4c7b9124fe94a96f559ff077d59cdf996Sebastian Redl  assert(!InstantiatedFromUnnamedFieldDecl[Inst] &&
534d2aa7c90e7646c509f3493fa8548635ccf4a2d0aChris Lattner         "Already noted what unnamed field was instantiated from");
535e4c452c4c7b9124fe94a96f559ff077d59cdf996Sebastian Redl
536e4c452c4c7b9124fe94a96f559ff077d59cdf996Sebastian Redl  InstantiatedFromUnnamedFieldDecl[Inst] = Tmpl;
537e4c452c4c7b9124fe94a96f559ff077d59cdf996Sebastian Redl}
538e4c452c4c7b9124fe94a96f559ff077d59cdf996Sebastian Redl
539e4c452c4c7b9124fe94a96f559ff077d59cdf996Sebastian Redlbool ASTContext::ZeroBitfieldFollowsNonBitfield(const FieldDecl *FD,
540e4c452c4c7b9124fe94a96f559ff077d59cdf996Sebastian Redl                                    const FieldDecl *LastFD) const {
541e4c452c4c7b9124fe94a96f559ff077d59cdf996Sebastian Redl  return (FD->isBitField() && LastFD && !LastFD->isBitField() &&
542e4c452c4c7b9124fe94a96f559ff077d59cdf996Sebastian Redl          FD->getBitWidth()-> EvaluateAsInt(*this).getZExtValue() == 0);
543e4c452c4c7b9124fe94a96f559ff077d59cdf996Sebastian Redl
544e4c452c4c7b9124fe94a96f559ff077d59cdf996Sebastian Redl}
545e4c452c4c7b9124fe94a96f559ff077d59cdf996Sebastian Redl
546d2aa7c90e7646c509f3493fa8548635ccf4a2d0aChris Lattnerbool ASTContext::ZeroBitfieldFollowsBitfield(const FieldDecl *FD,
547e4c452c4c7b9124fe94a96f559ff077d59cdf996Sebastian Redl                                             const FieldDecl *LastFD) const {
548e4c452c4c7b9124fe94a96f559ff077d59cdf996Sebastian Redl  return (FD->isBitField() && LastFD && LastFD->isBitField() &&
549e4c452c4c7b9124fe94a96f559ff077d59cdf996Sebastian Redl          FD->getBitWidth()-> EvaluateAsInt(*this).getZExtValue() == 0 &&
550e4c452c4c7b9124fe94a96f559ff077d59cdf996Sebastian Redl          LastFD->getBitWidth()-> EvaluateAsInt(*this).getZExtValue() != 0);
551e4c452c4c7b9124fe94a96f559ff077d59cdf996Sebastian Redl
552e4c452c4c7b9124fe94a96f559ff077d59cdf996Sebastian Redl}
553e4c452c4c7b9124fe94a96f559ff077d59cdf996Sebastian Redl
554e4c452c4c7b9124fe94a96f559ff077d59cdf996Sebastian Redlbool ASTContext::BitfieldFollowsBitfield(const FieldDecl *FD,
555e4c452c4c7b9124fe94a96f559ff077d59cdf996Sebastian Redl                                         const FieldDecl *LastFD) const {
556e4c452c4c7b9124fe94a96f559ff077d59cdf996Sebastian Redl  return (FD->isBitField() && LastFD && LastFD->isBitField() &&
557e4c452c4c7b9124fe94a96f559ff077d59cdf996Sebastian Redl          FD->getBitWidth()-> EvaluateAsInt(*this).getZExtValue() &&
558e4c452c4c7b9124fe94a96f559ff077d59cdf996Sebastian Redl          LastFD->getBitWidth()-> EvaluateAsInt(*this).getZExtValue());
559e4c452c4c7b9124fe94a96f559ff077d59cdf996Sebastian Redl}
560e4c452c4c7b9124fe94a96f559ff077d59cdf996Sebastian Redl
561e4c452c4c7b9124fe94a96f559ff077d59cdf996Sebastian Redlbool ASTContext::NoneBitfieldFollowsBitfield(const FieldDecl *FD,
562e4c452c4c7b9124fe94a96f559ff077d59cdf996Sebastian Redl                                         const FieldDecl *LastFD) const {
563d2aa7c90e7646c509f3493fa8548635ccf4a2d0aChris Lattner  return (!FD->isBitField() && LastFD && LastFD->isBitField() &&
564e4c452c4c7b9124fe94a96f559ff077d59cdf996Sebastian Redl          LastFD->getBitWidth()-> EvaluateAsInt(*this).getZExtValue());
565e4c452c4c7b9124fe94a96f559ff077d59cdf996Sebastian Redl}
566e4c452c4c7b9124fe94a96f559ff077d59cdf996Sebastian Redl
567e4c452c4c7b9124fe94a96f559ff077d59cdf996Sebastian Redlbool ASTContext::BitfieldFollowsNoneBitfield(const FieldDecl *FD,
568e4c452c4c7b9124fe94a96f559ff077d59cdf996Sebastian Redl                                             const FieldDecl *LastFD) const {
569e4c452c4c7b9124fe94a96f559ff077d59cdf996Sebastian Redl  return (FD->isBitField() && LastFD && !LastFD->isBitField() &&
570e4c452c4c7b9124fe94a96f559ff077d59cdf996Sebastian Redl          FD->getBitWidth()-> EvaluateAsInt(*this).getZExtValue());
571e4c452c4c7b9124fe94a96f559ff077d59cdf996Sebastian Redl}
572e4c452c4c7b9124fe94a96f559ff077d59cdf996Sebastian Redl
573e4c452c4c7b9124fe94a96f559ff077d59cdf996Sebastian RedlASTContext::overridden_cxx_method_iterator
574e4c452c4c7b9124fe94a96f559ff077d59cdf996Sebastian RedlASTContext::overridden_methods_begin(const CXXMethodDecl *Method) const {
575e4c452c4c7b9124fe94a96f559ff077d59cdf996Sebastian Redl  llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
576e4c452c4c7b9124fe94a96f559ff077d59cdf996Sebastian Redl    = OverriddenMethods.find(Method);
577e4c452c4c7b9124fe94a96f559ff077d59cdf996Sebastian Redl  if (Pos == OverriddenMethods.end())
578e4c452c4c7b9124fe94a96f559ff077d59cdf996Sebastian Redl    return 0;
579e4c452c4c7b9124fe94a96f559ff077d59cdf996Sebastian Redl
580e20653219732b03294130999415fc3aa92d2336aSebastian Redl  return Pos->second.begin();
581e4c452c4c7b9124fe94a96f559ff077d59cdf996Sebastian Redl}
582e4c452c4c7b9124fe94a96f559ff077d59cdf996Sebastian Redl
583e4c452c4c7b9124fe94a96f559ff077d59cdf996Sebastian RedlASTContext::overridden_cxx_method_iterator
584e4c452c4c7b9124fe94a96f559ff077d59cdf996Sebastian RedlASTContext::overridden_methods_end(const CXXMethodDecl *Method) const {
585e4c452c4c7b9124fe94a96f559ff077d59cdf996Sebastian Redl  llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
586e4c452c4c7b9124fe94a96f559ff077d59cdf996Sebastian Redl    = OverriddenMethods.find(Method);
587e4c452c4c7b9124fe94a96f559ff077d59cdf996Sebastian Redl  if (Pos == OverriddenMethods.end())
588e4c452c4c7b9124fe94a96f559ff077d59cdf996Sebastian Redl    return 0;
5891eb4433ac451dc16f4133a88af2d002ac26c58efMike Stump
590e4c452c4c7b9124fe94a96f559ff077d59cdf996Sebastian Redl  return Pos->second.end();
591e4c452c4c7b9124fe94a96f559ff077d59cdf996Sebastian Redl}
592e4c452c4c7b9124fe94a96f559ff077d59cdf996Sebastian Redl
593e4c452c4c7b9124fe94a96f559ff077d59cdf996Sebastian Redlunsigned
594e4c452c4c7b9124fe94a96f559ff077d59cdf996Sebastian RedlASTContext::overridden_methods_size(const CXXMethodDecl *Method) const {
595e4c452c4c7b9124fe94a96f559ff077d59cdf996Sebastian Redl  llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
596e4c452c4c7b9124fe94a96f559ff077d59cdf996Sebastian Redl    = OverriddenMethods.find(Method);
597e4c452c4c7b9124fe94a96f559ff077d59cdf996Sebastian Redl  if (Pos == OverriddenMethods.end())
598e4c452c4c7b9124fe94a96f559ff077d59cdf996Sebastian Redl    return 0;
599e4c452c4c7b9124fe94a96f559ff077d59cdf996Sebastian Redl
600e4c452c4c7b9124fe94a96f559ff077d59cdf996Sebastian Redl  return Pos->second.size();
601e4c452c4c7b9124fe94a96f559ff077d59cdf996Sebastian Redl}
602e4c452c4c7b9124fe94a96f559ff077d59cdf996Sebastian Redl
603e4c452c4c7b9124fe94a96f559ff077d59cdf996Sebastian Redlvoid ASTContext::addOverriddenMethod(const CXXMethodDecl *Method,
604e4c452c4c7b9124fe94a96f559ff077d59cdf996Sebastian Redl                                     const CXXMethodDecl *Overridden) {
605e4c452c4c7b9124fe94a96f559ff077d59cdf996Sebastian Redl  OverriddenMethods[Method].push_back(Overridden);
606e4c452c4c7b9124fe94a96f559ff077d59cdf996Sebastian Redl}
607e4c452c4c7b9124fe94a96f559ff077d59cdf996Sebastian Redl
608e4c452c4c7b9124fe94a96f559ff077d59cdf996Sebastian Redl//===----------------------------------------------------------------------===//
609e4c452c4c7b9124fe94a96f559ff077d59cdf996Sebastian Redl//                         Type Sizing and Analysis
610e4c452c4c7b9124fe94a96f559ff077d59cdf996Sebastian Redl//===----------------------------------------------------------------------===//
611e4c452c4c7b9124fe94a96f559ff077d59cdf996Sebastian Redl
612e4c452c4c7b9124fe94a96f559ff077d59cdf996Sebastian Redl/// getFloatTypeSemantics - Return the APFloat 'semantics' for the specified
613e4c452c4c7b9124fe94a96f559ff077d59cdf996Sebastian Redl/// scalar floating point type.
614e4c452c4c7b9124fe94a96f559ff077d59cdf996Sebastian Redlconst llvm::fltSemantics &ASTContext::getFloatTypeSemantics(QualType T) const {
615e4c452c4c7b9124fe94a96f559ff077d59cdf996Sebastian Redl  const BuiltinType *BT = T->getAs<BuiltinType>();
616e4c452c4c7b9124fe94a96f559ff077d59cdf996Sebastian Redl  assert(BT && "Not a floating point type!");
617e4c452c4c7b9124fe94a96f559ff077d59cdf996Sebastian Redl  switch (BT->getKind()) {
618e4c452c4c7b9124fe94a96f559ff077d59cdf996Sebastian Redl  default: assert(0 && "Not a floating point type!");
619e4c452c4c7b9124fe94a96f559ff077d59cdf996Sebastian Redl  case BuiltinType::Float:      return Target.getFloatFormat();
620e4c452c4c7b9124fe94a96f559ff077d59cdf996Sebastian Redl  case BuiltinType::Double:     return Target.getDoubleFormat();
621e4c452c4c7b9124fe94a96f559ff077d59cdf996Sebastian Redl  case BuiltinType::LongDouble: return Target.getLongDoubleFormat();
622e4c452c4c7b9124fe94a96f559ff077d59cdf996Sebastian Redl  }
623e4c452c4c7b9124fe94a96f559ff077d59cdf996Sebastian Redl}
624e4c452c4c7b9124fe94a96f559ff077d59cdf996Sebastian Redl
625e4c452c4c7b9124fe94a96f559ff077d59cdf996Sebastian Redl/// getDeclAlign - Return a conservative estimate of the alignment of the
626e4c452c4c7b9124fe94a96f559ff077d59cdf996Sebastian Redl/// specified decl.  Note that bitfields do not have a valid alignment, so
627e4c452c4c7b9124fe94a96f559ff077d59cdf996Sebastian Redl/// this method will assert on them.
628e4c452c4c7b9124fe94a96f559ff077d59cdf996Sebastian Redl/// If @p RefAsPointee, references are treated like their underlying type
62940847cfb58acc3cac7d68727df9455ac45f2e118David Blaikie/// (for alignof), else they're treated like pointers (for CodeGen).
630e4c452c4c7b9124fe94a96f559ff077d59cdf996Sebastian RedlCharUnits ASTContext::getDeclAlign(const Decl *D, bool RefAsPointee) const {
6315f9e272e632e951b1efe824cd16acb4d96077930Chris Lattner  unsigned Align = Target.getCharWidth();
632e4c452c4c7b9124fe94a96f559ff077d59cdf996Sebastian Redl
633e4c452c4c7b9124fe94a96f559ff077d59cdf996Sebastian Redl  bool UseAlignAttrOnly = false;
634e4c452c4c7b9124fe94a96f559ff077d59cdf996Sebastian Redl  if (unsigned AlignFromAttr = D->getMaxAlignment()) {
635e4c452c4c7b9124fe94a96f559ff077d59cdf996Sebastian Redl    Align = AlignFromAttr;
636e4c452c4c7b9124fe94a96f559ff077d59cdf996Sebastian Redl
637e4c452c4c7b9124fe94a96f559ff077d59cdf996Sebastian Redl    // __attribute__((aligned)) can increase or decrease alignment
638e4c452c4c7b9124fe94a96f559ff077d59cdf996Sebastian Redl    // *except* on a struct or struct member, where it only increases
639e4c452c4c7b9124fe94a96f559ff077d59cdf996Sebastian Redl    // alignment unless 'packed' is also specified.
640e4c452c4c7b9124fe94a96f559ff077d59cdf996Sebastian Redl    //
641e4c452c4c7b9124fe94a96f559ff077d59cdf996Sebastian Redl    // It is an error for [[align]] to decrease alignment, so we can
642909c182f6a0e6169475eef6a71add14555b6162cJohn McCall    // ignore that possibility;  Sema should diagnose it.
643e53a44bcd342e964a3c69bc27734f01e23f5fec8John McCall    if (isa<FieldDecl>(D)) {
644e53a44bcd342e964a3c69bc27734f01e23f5fec8John McCall      UseAlignAttrOnly = D->hasAttr<PackedAttr>() ||
645e53a44bcd342e964a3c69bc27734f01e23f5fec8John McCall        cast<FieldDecl>(D)->getParent()->hasAttr<PackedAttr>();
646e53a44bcd342e964a3c69bc27734f01e23f5fec8John McCall    } else {
647e4c452c4c7b9124fe94a96f559ff077d59cdf996Sebastian Redl      UseAlignAttrOnly = true;
648e4c452c4c7b9124fe94a96f559ff077d59cdf996Sebastian Redl    }
649909c182f6a0e6169475eef6a71add14555b6162cJohn McCall  }
650e4c452c4c7b9124fe94a96f559ff077d59cdf996Sebastian Redl  else if (isa<FieldDecl>(D))
651e4c452c4c7b9124fe94a96f559ff077d59cdf996Sebastian Redl      UseAlignAttrOnly =
652e4c452c4c7b9124fe94a96f559ff077d59cdf996Sebastian Redl        D->hasAttr<PackedAttr>() ||
653e4c452c4c7b9124fe94a96f559ff077d59cdf996Sebastian Redl        cast<FieldDecl>(D)->getParent()->hasAttr<PackedAttr>();
654f4c839657742b823cea1a95b18422f1ba74d3dddChris Lattner
655f4c839657742b823cea1a95b18422f1ba74d3dddChris Lattner  // If we're using the align attribute only, just ignore everything
656f4c839657742b823cea1a95b18422f1ba74d3dddChris Lattner  // else about the declaration and its type.
65740847cfb58acc3cac7d68727df9455ac45f2e118David Blaikie  if (UseAlignAttrOnly) {
6585f9e272e632e951b1efe824cd16acb4d96077930Chris Lattner    // do nothing
659e59abb56ce0e1c206fb80bd945a0c358b0abe1efArgyrios Kyrtzidis
660e59abb56ce0e1c206fb80bd945a0c358b0abe1efArgyrios Kyrtzidis  } else if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
661e59abb56ce0e1c206fb80bd945a0c358b0abe1efArgyrios Kyrtzidis    QualType T = VD->getType();
662e59abb56ce0e1c206fb80bd945a0c358b0abe1efArgyrios Kyrtzidis    if (const ReferenceType* RT = T->getAs<ReferenceType>()) {
663e59abb56ce0e1c206fb80bd945a0c358b0abe1efArgyrios Kyrtzidis      if (RefAsPointee)
6645f9e272e632e951b1efe824cd16acb4d96077930Chris Lattner        T = RT->getPointeeType();
665477aab6782795e7472055a54108d2df270ce1a89Argyrios Kyrtzidis      else
6661eb4433ac451dc16f4133a88af2d002ac26c58efMike Stump        T = getPointerType(RT->getPointeeType());
667477aab6782795e7472055a54108d2df270ce1a89Argyrios Kyrtzidis    }
6689f28614bf1a8387000d8df57a713fcf69e198145John McCall    if (!T->isIncompleteType() && !T->isFunctionType()) {
6699f28614bf1a8387000d8df57a713fcf69e198145John McCall      // Adjust alignments of declarations with array type by the
67040847cfb58acc3cac7d68727df9455ac45f2e118David Blaikie      // large-array alignment on the target.
6719f28614bf1a8387000d8df57a713fcf69e198145John McCall      unsigned MinWidth = Target.getLargeArrayMinWidth();
6725f9e272e632e951b1efe824cd16acb4d96077930Chris Lattner      const ArrayType *arrayType;
6739f28614bf1a8387000d8df57a713fcf69e198145John McCall      if (MinWidth && (arrayType = getAsArrayType(T))) {
674b54d8af9a66cc20a6a9a9219c7eaea8df7ee7fd4Chris Lattner        if (isa<VariableArrayType>(arrayType))
675b54d8af9a66cc20a6a9a9219c7eaea8df7ee7fd4Chris Lattner          Align = std::max(Align, Target.getLargeArrayAlign());
676b54d8af9a66cc20a6a9a9219c7eaea8df7ee7fd4Chris Lattner        else if (isa<ConstantArrayType>(arrayType) &&
677b54d8af9a66cc20a6a9a9219c7eaea8df7ee7fd4Chris Lattner                 MinWidth <= getTypeSize(cast<ConstantArrayType>(arrayType)))
678d6471f7c1921c7802804ce3ff6fe9768310f72b9David Blaikie          Align = std::max(Align, Target.getLargeArrayAlign());
6790673cb30340aadaede7b795c763b00f6b64e611cChandler Carruth
6800673cb30340aadaede7b795c763b00f6b64e611cChandler Carruth        // Walk through any array types while we're at it.
6810673cb30340aadaede7b795c763b00f6b64e611cChandler Carruth        T = getBaseElementType(arrayType);
6825f9e272e632e951b1efe824cd16acb4d96077930Chris Lattner      }
683246b6aa6763de8c617d564ef33123a8f3293a80eRichard Trieu      Align = std::max(Align, getPreferredTypeAlign(T.getTypePtr()));
684246b6aa6763de8c617d564ef33123a8f3293a80eRichard Trieu    }
6850673cb30340aadaede7b795c763b00f6b64e611cChandler Carruth
686d6471f7c1921c7802804ce3ff6fe9768310f72b9David Blaikie    // Fields can be subject to extra alignment constraints, like if
6870673cb30340aadaede7b795c763b00f6b64e611cChandler Carruth    // the field is packed, the struct is packed, or the struct has a
6880673cb30340aadaede7b795c763b00f6b64e611cChandler Carruth    // a max-field-alignment constraint (#pragma pack).  So calculate
689f4c839657742b823cea1a95b18422f1ba74d3dddChris Lattner    // the actual alignment of the field within the struct, and then
690f4c839657742b823cea1a95b18422f1ba74d3dddChris Lattner    // (as we're expected to) constrain that by the alignment of the type.
691f4c839657742b823cea1a95b18422f1ba74d3dddChris Lattner    if (const FieldDecl *field = dyn_cast<FieldDecl>(VD)) {
692f4c839657742b823cea1a95b18422f1ba74d3dddChris Lattner      // So calculate the alignment of the field.
693f4c839657742b823cea1a95b18422f1ba74d3dddChris Lattner      const ASTRecordLayout &layout = getASTRecordLayout(field->getParent());
694f4c839657742b823cea1a95b18422f1ba74d3dddChris Lattner
695af7ae4e8160fc5c23e471f2125b3fe5911e3532aChris Lattner      // Start with the record's overall alignment.
696909c182f6a0e6169475eef6a71add14555b6162cJohn McCall      unsigned fieldAlign = toBits(layout.getAlignment());
697909c182f6a0e6169475eef6a71add14555b6162cJohn McCall
698f4c839657742b823cea1a95b18422f1ba74d3dddChris Lattner      // Use the GCD of that and the offset within the record.
699af7ae4e8160fc5c23e471f2125b3fe5911e3532aChris Lattner      uint64_t offset = layout.getFieldOffset(field->getFieldIndex());
700af7ae4e8160fc5c23e471f2125b3fe5911e3532aChris Lattner      if (offset > 0) {
7011eb4433ac451dc16f4133a88af2d002ac26c58efMike Stump        // Alignment is always a power of 2, so the GCD will be a power of 2,
702af7ae4e8160fc5c23e471f2125b3fe5911e3532aChris Lattner        // which means we get to do this crazy thing instead of Euclid's.
703af7ae4e8160fc5c23e471f2125b3fe5911e3532aChris Lattner        uint64_t lowBitOfOffset = offset & (~offset + 1);
7041eb4433ac451dc16f4133a88af2d002ac26c58efMike Stump        if (lowBitOfOffset < fieldAlign)
705af7ae4e8160fc5c23e471f2125b3fe5911e3532aChris Lattner          fieldAlign = static_cast<unsigned>(lowBitOfOffset);
706af7ae4e8160fc5c23e471f2125b3fe5911e3532aChris Lattner      }
707af7ae4e8160fc5c23e471f2125b3fe5911e3532aChris Lattner
708af7ae4e8160fc5c23e471f2125b3fe5911e3532aChris Lattner      Align = std::min(Align, fieldAlign);
709af7ae4e8160fc5c23e471f2125b3fe5911e3532aChris Lattner    }
710af7ae4e8160fc5c23e471f2125b3fe5911e3532aChris Lattner  }
711af7ae4e8160fc5c23e471f2125b3fe5911e3532aChris Lattner
7121eb4433ac451dc16f4133a88af2d002ac26c58efMike Stump  return toCharUnitsFromBits(Align);
713af7ae4e8160fc5c23e471f2125b3fe5911e3532aChris Lattner}
714af7ae4e8160fc5c23e471f2125b3fe5911e3532aChris Lattner
715af7ae4e8160fc5c23e471f2125b3fe5911e3532aChris Lattnerstd::pair<CharUnits, CharUnits>
716af7ae4e8160fc5c23e471f2125b3fe5911e3532aChris LattnerASTContext::getTypeInfoInChars(const Type *T) const {
717af7ae4e8160fc5c23e471f2125b3fe5911e3532aChris Lattner  std::pair<uint64_t, unsigned> Info = getTypeInfo(T);
718af7ae4e8160fc5c23e471f2125b3fe5911e3532aChris Lattner  return std::make_pair(toCharUnitsFromBits(Info.first),
719af7ae4e8160fc5c23e471f2125b3fe5911e3532aChris Lattner                        toCharUnitsFromBits(Info.second));
720f4c839657742b823cea1a95b18422f1ba74d3dddChris Lattner}
721af7ae4e8160fc5c23e471f2125b3fe5911e3532aChris Lattner
722af7ae4e8160fc5c23e471f2125b3fe5911e3532aChris Lattnerstd::pair<CharUnits, CharUnits>
723af7ae4e8160fc5c23e471f2125b3fe5911e3532aChris LattnerASTContext::getTypeInfoInChars(QualType T) const {
724af7ae4e8160fc5c23e471f2125b3fe5911e3532aChris Lattner  return getTypeInfoInChars(T.getTypePtr());
7251eb4433ac451dc16f4133a88af2d002ac26c58efMike Stump}
726909c182f6a0e6169475eef6a71add14555b6162cJohn McCall
727909c182f6a0e6169475eef6a71add14555b6162cJohn McCall/// getTypeSize - Return the size of the specified type, in bits.  This method
728af7ae4e8160fc5c23e471f2125b3fe5911e3532aChris Lattner/// does not work on incomplete types.
729af7ae4e8160fc5c23e471f2125b3fe5911e3532aChris Lattner///
730f4c839657742b823cea1a95b18422f1ba74d3dddChris Lattner/// FIXME: Pointers into different addr spaces could have different sizes and
731af7ae4e8160fc5c23e471f2125b3fe5911e3532aChris Lattner/// alignment requirements: getPointerInfo should take an AddrSpace, this
7321eb4433ac451dc16f4133a88af2d002ac26c58efMike Stump/// should take a QualType, &c.
733af7ae4e8160fc5c23e471f2125b3fe5911e3532aChris Lattnerstd::pair<uint64_t, unsigned>
73422caddc91d2f6186739c6b20ec58ed38cd68e595Chris LattnerASTContext::getTypeInfo(const Type *T) const {
735af7ae4e8160fc5c23e471f2125b3fe5911e3532aChris Lattner  uint64_t Width=0;
736246b6aa6763de8c617d564ef33123a8f3293a80eRichard Trieu  unsigned Align=8;
737246b6aa6763de8c617d564ef33123a8f3293a80eRichard Trieu  switch (T->getTypeClass()) {
738246b6aa6763de8c617d564ef33123a8f3293a80eRichard Trieu#define TYPE(Class, Base)
739d6471f7c1921c7802804ce3ff6fe9768310f72b9David Blaikie#define ABSTRACT_TYPE(Class, Base)
740246b6aa6763de8c617d564ef33123a8f3293a80eRichard Trieu#define NON_CANONICAL_TYPE(Class, Base)
741246b6aa6763de8c617d564ef33123a8f3293a80eRichard Trieu#define DEPENDENT_TYPE(Class, Base) case Type::Class:
742246b6aa6763de8c617d564ef33123a8f3293a80eRichard Trieu#include "clang/AST/TypeNodes.def"
743246b6aa6763de8c617d564ef33123a8f3293a80eRichard Trieu    assert(false && "Should not see dependent types");
744246b6aa6763de8c617d564ef33123a8f3293a80eRichard Trieu    break;
745246b6aa6763de8c617d564ef33123a8f3293a80eRichard Trieu
746246b6aa6763de8c617d564ef33123a8f3293a80eRichard Trieu  case Type::FunctionNoProto:
747246b6aa6763de8c617d564ef33123a8f3293a80eRichard Trieu  case Type::FunctionProto:
748246b6aa6763de8c617d564ef33123a8f3293a80eRichard Trieu    // GCC extension: alignof(function) = 32 bits
749246b6aa6763de8c617d564ef33123a8f3293a80eRichard Trieu    Width = 0;
750b54d8af9a66cc20a6a9a9219c7eaea8df7ee7fd4Chris Lattner    Align = 32;
751b54d8af9a66cc20a6a9a9219c7eaea8df7ee7fd4Chris Lattner    break;
75208631c5fa053867146b5ee8be658c229f6bf127cChris Lattner
753d6471f7c1921c7802804ce3ff6fe9768310f72b9David Blaikie  case Type::IncompleteArray:
75422caddc91d2f6186739c6b20ec58ed38cd68e595Chris Lattner  case Type::VariableArray:
755af7ae4e8160fc5c23e471f2125b3fe5911e3532aChris Lattner    Width = 0;
756af7ae4e8160fc5c23e471f2125b3fe5911e3532aChris Lattner    Align = getTypeAlign(cast<ArrayType>(T)->getElementType());
757af7ae4e8160fc5c23e471f2125b3fe5911e3532aChris Lattner    break;
758af7ae4e8160fc5c23e471f2125b3fe5911e3532aChris Lattner
759d6471f7c1921c7802804ce3ff6fe9768310f72b9David Blaikie  case Type::ConstantArray: {
76022caddc91d2f6186739c6b20ec58ed38cd68e595Chris Lattner    const ConstantArrayType *CAT = cast<ConstantArrayType>(T);
761af7ae4e8160fc5c23e471f2125b3fe5911e3532aChris Lattner
762e46e354ecb9a04c8d3724ae2b0f95f4424e3f69cDaniel Dunbar    std::pair<uint64_t, unsigned> EltInfo = getTypeInfo(CAT->getElementType());
763e46e354ecb9a04c8d3724ae2b0f95f4424e3f69cDaniel Dunbar    Width = EltInfo.first*CAT->getSize().getZExtValue();
764e46e354ecb9a04c8d3724ae2b0f95f4424e3f69cDaniel Dunbar    Align = EltInfo.second;
765e46e354ecb9a04c8d3724ae2b0f95f4424e3f69cDaniel Dunbar    Width = llvm::RoundUpToAlignment(Width, Align);
7661eb4433ac451dc16f4133a88af2d002ac26c58efMike Stump    break;
767af7ae4e8160fc5c23e471f2125b3fe5911e3532aChris Lattner  }
768af7ae4e8160fc5c23e471f2125b3fe5911e3532aChris Lattner  case Type::ExtVector:
769af7ae4e8160fc5c23e471f2125b3fe5911e3532aChris Lattner  case Type::Vector: {
77008631c5fa053867146b5ee8be658c229f6bf127cChris Lattner    const VectorType *VT = cast<VectorType>(T);
771d6471f7c1921c7802804ce3ff6fe9768310f72b9David Blaikie    std::pair<uint64_t, unsigned> EltInfo = getTypeInfo(VT->getElementType());
77222caddc91d2f6186739c6b20ec58ed38cd68e595Chris Lattner    Width = EltInfo.first*VT->getNumElements();
7731eb4433ac451dc16f4133a88af2d002ac26c58efMike Stump    Align = Width;
774af7ae4e8160fc5c23e471f2125b3fe5911e3532aChris Lattner    // If the alignment is not a power of 2, round up to the next power of 2.
775e53a44bcd342e964a3c69bc27734f01e23f5fec8John McCall    // This happens for non-power-of-2 length vectors.
776e53a44bcd342e964a3c69bc27734f01e23f5fec8John McCall    if (Align & (Align-1)) {
777af7ae4e8160fc5c23e471f2125b3fe5911e3532aChris Lattner      Align = llvm::NextPowerOf2(Align);
778af7ae4e8160fc5c23e471f2125b3fe5911e3532aChris Lattner      Width = llvm::RoundUpToAlignment(Width, Align);
779e4c452c4c7b9124fe94a96f559ff077d59cdf996Sebastian Redl    }
780e53a44bcd342e964a3c69bc27734f01e23f5fec8John McCall    break;
781e53a44bcd342e964a3c69bc27734f01e23f5fec8John McCall  }
7823be16b7d9d0ab075461ed3498b4c01b30b517c0eJohn McCall
7833be16b7d9d0ab075461ed3498b4c01b30b517c0eJohn McCall  case Type::Builtin:
784af7ae4e8160fc5c23e471f2125b3fe5911e3532aChris Lattner    switch (cast<BuiltinType>(T)->getKind()) {
785af7ae4e8160fc5c23e471f2125b3fe5911e3532aChris Lattner    default: assert(0 && "Unknown builtin type!");
78623e47c6b6e8ccdd8daa378ab2a879644425c72d8Daniel Dunbar    case BuiltinType::Void:
78730bc96544346bea42921cf6837e66cef80d664b4Chris Lattner      // GCC extension: alignof(void) = 8 bits.
788af7ae4e8160fc5c23e471f2125b3fe5911e3532aChris Lattner      Width = 0;
789af7ae4e8160fc5c23e471f2125b3fe5911e3532aChris Lattner      Align = 8;
790d6471f7c1921c7802804ce3ff6fe9768310f72b9David Blaikie      break;
79122caddc91d2f6186739c6b20ec58ed38cd68e595Chris Lattner
7921eb4433ac451dc16f4133a88af2d002ac26c58efMike Stump    case BuiltinType::Bool:
793af7ae4e8160fc5c23e471f2125b3fe5911e3532aChris Lattner      Width = Target.getBoolWidth();
7949f28614bf1a8387000d8df57a713fcf69e198145John McCall      Align = Target.getBoolAlign();
795af7ae4e8160fc5c23e471f2125b3fe5911e3532aChris Lattner      break;
796af7ae4e8160fc5c23e471f2125b3fe5911e3532aChris Lattner    case BuiltinType::Char_S:
797e4c452c4c7b9124fe94a96f559ff077d59cdf996Sebastian Redl    case BuiltinType::Char_U:
798e53a44bcd342e964a3c69bc27734f01e23f5fec8John McCall    case BuiltinType::UChar:
799e53a44bcd342e964a3c69bc27734f01e23f5fec8John McCall    case BuiltinType::SChar:
8003be16b7d9d0ab075461ed3498b4c01b30b517c0eJohn McCall      Width = Target.getCharWidth();
8013be16b7d9d0ab075461ed3498b4c01b30b517c0eJohn McCall      Align = Target.getCharAlign();
802af7ae4e8160fc5c23e471f2125b3fe5911e3532aChris Lattner      break;
803af7ae4e8160fc5c23e471f2125b3fe5911e3532aChris Lattner    case BuiltinType::WChar_S:
80423e47c6b6e8ccdd8daa378ab2a879644425c72d8Daniel Dunbar    case BuiltinType::WChar_U:
80530bc96544346bea42921cf6837e66cef80d664b4Chris Lattner      Width = Target.getWCharWidth();
80622caddc91d2f6186739c6b20ec58ed38cd68e595Chris Lattner      Align = Target.getWCharAlign();
807af7ae4e8160fc5c23e471f2125b3fe5911e3532aChris Lattner      break;
80808631c5fa053867146b5ee8be658c229f6bf127cChris Lattner    case BuiltinType::Char16:
809d6471f7c1921c7802804ce3ff6fe9768310f72b9David Blaikie      Width = Target.getChar16Width();
81008631c5fa053867146b5ee8be658c229f6bf127cChris Lattner      Align = Target.getChar16Align();
81108631c5fa053867146b5ee8be658c229f6bf127cChris Lattner      break;
812e46e354ecb9a04c8d3724ae2b0f95f4424e3f69cDaniel Dunbar    case BuiltinType::Char32:
813e46e354ecb9a04c8d3724ae2b0f95f4424e3f69cDaniel Dunbar      Width = Target.getChar32Width();
814e46e354ecb9a04c8d3724ae2b0f95f4424e3f69cDaniel Dunbar      Align = Target.getChar32Align();
815e46e354ecb9a04c8d3724ae2b0f95f4424e3f69cDaniel Dunbar      break;
816e46e354ecb9a04c8d3724ae2b0f95f4424e3f69cDaniel Dunbar    case BuiltinType::UShort:
817e46e354ecb9a04c8d3724ae2b0f95f4424e3f69cDaniel Dunbar    case BuiltinType::Short:
818e46e354ecb9a04c8d3724ae2b0f95f4424e3f69cDaniel Dunbar      Width = Target.getShortWidth();
819e46e354ecb9a04c8d3724ae2b0f95f4424e3f69cDaniel Dunbar      Align = Target.getShortAlign();
82001eb9b9683535d8a65c704ad2c545903409e2d36Daniel Dunbar      break;
82108631c5fa053867146b5ee8be658c229f6bf127cChris Lattner    case BuiltinType::UInt:
82208631c5fa053867146b5ee8be658c229f6bf127cChris Lattner    case BuiltinType::Int:
823d6471f7c1921c7802804ce3ff6fe9768310f72b9David Blaikie      Width = Target.getIntWidth();
824d6471f7c1921c7802804ce3ff6fe9768310f72b9David Blaikie      Align = Target.getIntAlign();
825d6471f7c1921c7802804ce3ff6fe9768310f72b9David Blaikie      break;
826d6471f7c1921c7802804ce3ff6fe9768310f72b9David Blaikie    case BuiltinType::ULong:
827d6471f7c1921c7802804ce3ff6fe9768310f72b9David Blaikie    case BuiltinType::Long:
828b54d8af9a66cc20a6a9a9219c7eaea8df7ee7fd4Chris Lattner      Width = Target.getLongWidth();
8293fdf4b071dc79fae778fb5f376485480756c76a3Chris Lattner      Align = Target.getLongAlign();
830b54d8af9a66cc20a6a9a9219c7eaea8df7ee7fd4Chris Lattner      break;
831b54d8af9a66cc20a6a9a9219c7eaea8df7ee7fd4Chris Lattner    case BuiltinType::ULongLong:
8320673cb30340aadaede7b795c763b00f6b64e611cChandler Carruth    case BuiltinType::LongLong:
83322caddc91d2f6186739c6b20ec58ed38cd68e595Chris Lattner      Width = Target.getLongLongWidth();
834246b6aa6763de8c617d564ef33123a8f3293a80eRichard Trieu      Align = Target.getLongLongAlign();
835246b6aa6763de8c617d564ef33123a8f3293a80eRichard Trieu      break;
836246b6aa6763de8c617d564ef33123a8f3293a80eRichard Trieu    case BuiltinType::Int128:
837246b6aa6763de8c617d564ef33123a8f3293a80eRichard Trieu    case BuiltinType::UInt128:
838246b6aa6763de8c617d564ef33123a8f3293a80eRichard Trieu      Width = 128;
839246b6aa6763de8c617d564ef33123a8f3293a80eRichard Trieu      Align = 128; // int128_t is 128-bit aligned on all targets.
840246b6aa6763de8c617d564ef33123a8f3293a80eRichard Trieu      break;
8415409d28b6167032696f4915bb765a6f7db579f3fRichard Trieu    case BuiltinType::Float:
842246b6aa6763de8c617d564ef33123a8f3293a80eRichard Trieu      Width = Target.getFloatWidth();
843246b6aa6763de8c617d564ef33123a8f3293a80eRichard Trieu      Align = Target.getFloatAlign();
844529cdf4c2ef0985dd6f4b7b68ab76e6a1a5082d5Richard Trieu      break;
845529cdf4c2ef0985dd6f4b7b68ab76e6a1a5082d5Richard Trieu    case BuiltinType::Double:
846529cdf4c2ef0985dd6f4b7b68ab76e6a1a5082d5Richard Trieu      Width = Target.getDoubleWidth();
847246b6aa6763de8c617d564ef33123a8f3293a80eRichard Trieu      Align = Target.getDoubleAlign();
848246b6aa6763de8c617d564ef33123a8f3293a80eRichard Trieu      break;
849246b6aa6763de8c617d564ef33123a8f3293a80eRichard Trieu    case BuiltinType::LongDouble:
850246b6aa6763de8c617d564ef33123a8f3293a80eRichard Trieu      Width = Target.getLongDoubleWidth();
851246b6aa6763de8c617d564ef33123a8f3293a80eRichard Trieu      Align = Target.getLongDoubleAlign();
852246b6aa6763de8c617d564ef33123a8f3293a80eRichard Trieu      break;
853246b6aa6763de8c617d564ef33123a8f3293a80eRichard Trieu    case BuiltinType::NullPtr:
854246b6aa6763de8c617d564ef33123a8f3293a80eRichard Trieu      Width = Target.getPointerWidth(0); // C++ 3.9.1p11: sizeof(nullptr_t)
855246b6aa6763de8c617d564ef33123a8f3293a80eRichard Trieu      Align = Target.getPointerAlign(0); //   == sizeof(void*)
856246b6aa6763de8c617d564ef33123a8f3293a80eRichard Trieu      break;
857246b6aa6763de8c617d564ef33123a8f3293a80eRichard Trieu    case BuiltinType::ObjCId:
858529cdf4c2ef0985dd6f4b7b68ab76e6a1a5082d5Richard Trieu    case BuiltinType::ObjCClass:
859529cdf4c2ef0985dd6f4b7b68ab76e6a1a5082d5Richard Trieu    case BuiltinType::ObjCSel:
860246b6aa6763de8c617d564ef33123a8f3293a80eRichard Trieu      Width = Target.getPointerWidth(0);
861529cdf4c2ef0985dd6f4b7b68ab76e6a1a5082d5Richard Trieu      Align = Target.getPointerAlign(0);
862246b6aa6763de8c617d564ef33123a8f3293a80eRichard Trieu      break;
863246b6aa6763de8c617d564ef33123a8f3293a80eRichard Trieu    }
864246b6aa6763de8c617d564ef33123a8f3293a80eRichard Trieu    break;
865246b6aa6763de8c617d564ef33123a8f3293a80eRichard Trieu  case Type::ObjCObjectPointer:
866529cdf4c2ef0985dd6f4b7b68ab76e6a1a5082d5Richard Trieu    Width = Target.getPointerWidth(0);
867529cdf4c2ef0985dd6f4b7b68ab76e6a1a5082d5Richard Trieu    Align = Target.getPointerAlign(0);
868246b6aa6763de8c617d564ef33123a8f3293a80eRichard Trieu    break;
869246b6aa6763de8c617d564ef33123a8f3293a80eRichard Trieu  case Type::BlockPointer: {
870529cdf4c2ef0985dd6f4b7b68ab76e6a1a5082d5Richard Trieu    unsigned AS = getTargetAddressSpace(
871246b6aa6763de8c617d564ef33123a8f3293a80eRichard Trieu        cast<BlockPointerType>(T)->getPointeeType());
872246b6aa6763de8c617d564ef33123a8f3293a80eRichard Trieu    Width = Target.getPointerWidth(AS);
873246b6aa6763de8c617d564ef33123a8f3293a80eRichard Trieu    Align = Target.getPointerAlign(AS);
874246b6aa6763de8c617d564ef33123a8f3293a80eRichard Trieu    break;
875246b6aa6763de8c617d564ef33123a8f3293a80eRichard Trieu  }
876246b6aa6763de8c617d564ef33123a8f3293a80eRichard Trieu  case Type::LValueReference:
877246b6aa6763de8c617d564ef33123a8f3293a80eRichard Trieu  case Type::RValueReference: {
878246b6aa6763de8c617d564ef33123a8f3293a80eRichard Trieu    // alignof and sizeof should never enter this code path here, so we go
879246b6aa6763de8c617d564ef33123a8f3293a80eRichard Trieu    // the pointer route.
8805409d28b6167032696f4915bb765a6f7db579f3fRichard Trieu    unsigned AS = getTargetAddressSpace(
8815409d28b6167032696f4915bb765a6f7db579f3fRichard Trieu        cast<ReferenceType>(T)->getPointeeType());
8825409d28b6167032696f4915bb765a6f7db579f3fRichard Trieu    Width = Target.getPointerWidth(AS);
8835409d28b6167032696f4915bb765a6f7db579f3fRichard Trieu    Align = Target.getPointerAlign(AS);
884246b6aa6763de8c617d564ef33123a8f3293a80eRichard Trieu    break;
885529cdf4c2ef0985dd6f4b7b68ab76e6a1a5082d5Richard Trieu  }
886246b6aa6763de8c617d564ef33123a8f3293a80eRichard Trieu  case Type::Pointer: {
887246b6aa6763de8c617d564ef33123a8f3293a80eRichard Trieu    unsigned AS = getTargetAddressSpace(cast<PointerType>(T)->getPointeeType());
888246b6aa6763de8c617d564ef33123a8f3293a80eRichard Trieu    Width = Target.getPointerWidth(AS);
889246b6aa6763de8c617d564ef33123a8f3293a80eRichard Trieu    Align = Target.getPointerAlign(AS);
890246b6aa6763de8c617d564ef33123a8f3293a80eRichard Trieu    break;
891246b6aa6763de8c617d564ef33123a8f3293a80eRichard Trieu  }
892246b6aa6763de8c617d564ef33123a8f3293a80eRichard Trieu  case Type::MemberPointer: {
893246b6aa6763de8c617d564ef33123a8f3293a80eRichard Trieu    const MemberPointerType *MPT = cast<MemberPointerType>(T);
8945409d28b6167032696f4915bb765a6f7db579f3fRichard Trieu    std::pair<uint64_t, unsigned> PtrDiffInfo =
8955409d28b6167032696f4915bb765a6f7db579f3fRichard Trieu      getTypeInfo(getPointerDiffType());
8965409d28b6167032696f4915bb765a6f7db579f3fRichard Trieu    Width = PtrDiffInfo.first * ABI->getMemberPointerSize(MPT);
8975409d28b6167032696f4915bb765a6f7db579f3fRichard Trieu    Align = PtrDiffInfo.second;
898246b6aa6763de8c617d564ef33123a8f3293a80eRichard Trieu    break;
899529cdf4c2ef0985dd6f4b7b68ab76e6a1a5082d5Richard Trieu  }
900246b6aa6763de8c617d564ef33123a8f3293a80eRichard Trieu  case Type::Complex: {
9017bfaaaecb3113f955db31e8d8a51acffd1bc0c27Nico Weber    // Complex types have the same alignment as their elements, but twice the
902b54d8af9a66cc20a6a9a9219c7eaea8df7ee7fd4Chris Lattner    // size.
903b54d8af9a66cc20a6a9a9219c7eaea8df7ee7fd4Chris Lattner    std::pair<uint64_t, unsigned> EltInfo =
904b54d8af9a66cc20a6a9a9219c7eaea8df7ee7fd4Chris Lattner      getTypeInfo(cast<ComplexType>(T)->getElementType());
905b54d8af9a66cc20a6a9a9219c7eaea8df7ee7fd4Chris Lattner    Width = EltInfo.first*2;
906246b6aa6763de8c617d564ef33123a8f3293a80eRichard Trieu    Align = EltInfo.second;
907246b6aa6763de8c617d564ef33123a8f3293a80eRichard Trieu    break;
908246b6aa6763de8c617d564ef33123a8f3293a80eRichard Trieu  }
909b54d8af9a66cc20a6a9a9219c7eaea8df7ee7fd4Chris Lattner  case Type::ObjCObject:
910b54d8af9a66cc20a6a9a9219c7eaea8df7ee7fd4Chris Lattner    return getTypeInfo(cast<ObjCObjectType>(T)->getBaseType().getTypePtr());
911d6471f7c1921c7802804ce3ff6fe9768310f72b9David Blaikie  case Type::ObjCInterface: {
912b54d8af9a66cc20a6a9a9219c7eaea8df7ee7fd4Chris Lattner    const ObjCInterfaceType *ObjCI = cast<ObjCInterfaceType>(T);
913b54d8af9a66cc20a6a9a9219c7eaea8df7ee7fd4Chris Lattner    const ASTRecordLayout &Layout = getASTObjCInterfaceLayout(ObjCI->getDecl());
9147bfaaaecb3113f955db31e8d8a51acffd1bc0c27Nico Weber    Width = toBits(Layout.getSize());
915246b6aa6763de8c617d564ef33123a8f3293a80eRichard Trieu    Align = toBits(Layout.getAlignment());
916246b6aa6763de8c617d564ef33123a8f3293a80eRichard Trieu    break;
917246b6aa6763de8c617d564ef33123a8f3293a80eRichard Trieu  }
9187bfaaaecb3113f955db31e8d8a51acffd1bc0c27Nico Weber  case Type::Record:
919cabe66811fe43835b8c5a0854552768fc53261e3Ted Kremenek  case Type::Enum: {
920a88084b78fd4ca5d3d858c14b02414f8cc399f02Douglas Gregor    const TagType *TT = cast<TagType>(T);
921a88084b78fd4ca5d3d858c14b02414f8cc399f02Douglas Gregor
922d6471f7c1921c7802804ce3ff6fe9768310f72b9David Blaikie    if (TT->getDecl()->isInvalidDecl()) {
9235f9e272e632e951b1efe824cd16acb4d96077930Chris Lattner      Width = 8;
924a6a32e295379570b489cc041053d2cd53bcafd1cBenjamin Kramer      Align = 8;
925a88084b78fd4ca5d3d858c14b02414f8cc399f02Douglas Gregor      break;
926d6471f7c1921c7802804ce3ff6fe9768310f72b9David Blaikie    }
92740847cfb58acc3cac7d68727df9455ac45f2e118David Blaikie
928aa5f135f8db82b5e5fb1640fd51f8078e0b2d82dDouglas Gregor    if (const EnumType *ET = dyn_cast<EnumType>(TT))
929aa5f135f8db82b5e5fb1640fd51f8078e0b2d82dDouglas Gregor      return getTypeInfo(ET->getDecl()->getIntegerType());
93033e4e70c8c0a17e0ccb7465d96556b077a68ecb1Argyrios Kyrtzidis
93133e4e70c8c0a17e0ccb7465d96556b077a68ecb1Argyrios Kyrtzidis    const RecordType *RT = cast<RecordType>(TT);
93233e4e70c8c0a17e0ccb7465d96556b077a68ecb1Argyrios Kyrtzidis    const ASTRecordLayout &Layout = getASTRecordLayout(RT->getDecl());
93333e4e70c8c0a17e0ccb7465d96556b077a68ecb1Argyrios Kyrtzidis    Width = toBits(Layout.getSize());
934f7ccbad5d9949e7ddd1cbef43d482553b811e026Dylan Noblesmith    Align = toBits(Layout.getAlignment());
935a88084b78fd4ca5d3d858c14b02414f8cc399f02Douglas Gregor    break;
936a88084b78fd4ca5d3d858c14b02414f8cc399f02Douglas Gregor  }
937a88084b78fd4ca5d3d858c14b02414f8cc399f02Douglas Gregor
938a88084b78fd4ca5d3d858c14b02414f8cc399f02Douglas Gregor  case Type::SubstTemplateTypeParm:
939a88084b78fd4ca5d3d858c14b02414f8cc399f02Douglas Gregor    return getTypeInfo(cast<SubstTemplateTypeParmType>(T)->
940a88084b78fd4ca5d3d858c14b02414f8cc399f02Douglas Gregor                       getReplacementType().getTypePtr());
941a88084b78fd4ca5d3d858c14b02414f8cc399f02Douglas Gregor
942849b243d4065f56742a4677d6dc8277609a151f8Douglas Gregor  case Type::Auto: {
943849b243d4065f56742a4677d6dc8277609a151f8Douglas Gregor    const AutoType *A = cast<AutoType>(T);
944849b243d4065f56742a4677d6dc8277609a151f8Douglas Gregor    assert(A->isDeduced() && "Cannot request the size of a dependent type");
945a88084b78fd4ca5d3d858c14b02414f8cc399f02Douglas Gregor    return getTypeInfo(A->getDeducedType().getTypePtr());
946a88084b78fd4ca5d3d858c14b02414f8cc399f02Douglas Gregor  }
947d6471f7c1921c7802804ce3ff6fe9768310f72b9David Blaikie
9485f9e272e632e951b1efe824cd16acb4d96077930Chris Lattner  case Type::Paren:
9492d3ba4f5a923a90c3fc290ddfba5e36c2d0a9b46Chris Lattner    return getTypeInfo(cast<ParenType>(T)->getInnerType().getTypePtr());
9502d3ba4f5a923a90c3fc290ddfba5e36c2d0a9b46Chris Lattner
951f62d43d2afe1960755a1b5813cae1e5983bcac1bDouglas Gregor  case Type::Typedef: {
952f62d43d2afe1960755a1b5813cae1e5983bcac1bDouglas Gregor    const TypedefNameDecl *Typedef = cast<TypedefType>(T)->getDecl();
953f62d43d2afe1960755a1b5813cae1e5983bcac1bDouglas Gregor    std::pair<uint64_t, unsigned> Info
954f62d43d2afe1960755a1b5813cae1e5983bcac1bDouglas Gregor      = getTypeInfo(Typedef->getUnderlyingType().getTypePtr());
955f62d43d2afe1960755a1b5813cae1e5983bcac1bDouglas Gregor    // If the typedef has an aligned attribute on it, it overrides any computed
956f62d43d2afe1960755a1b5813cae1e5983bcac1bDouglas Gregor    // alignment we have.  This violates the GCC documentation (which says that
957a88084b78fd4ca5d3d858c14b02414f8cc399f02Douglas Gregor    // attribute(aligned) can only round up) but matches its implementation.
958a88084b78fd4ca5d3d858c14b02414f8cc399f02Douglas Gregor    if (unsigned AttrAlign = Typedef->getMaxAlignment())
959cabe66811fe43835b8c5a0854552768fc53261e3Ted Kremenek      Align = AttrAlign;
960cabe66811fe43835b8c5a0854552768fc53261e3Ted Kremenek    else
96178ad0b98848c17a0a11847fa1d456e2dfec8aa2fDavid Blaikie      Align = Info.second;
962d6471f7c1921c7802804ce3ff6fe9768310f72b9David Blaikie    Width = Info.first;
96378ad0b98848c17a0a11847fa1d456e2dfec8aa2fDavid Blaikie    break;
964fe6b2d481d91140923f4541f273b253291884214Douglas Gregor  }
96599ba9e3bd70671f3441fb974895f226a83ce0e66David Blaikie
96699ba9e3bd70671f3441fb974895f226a83ce0e66David Blaikie  case Type::TypeOfExpr:
967d7a3e2c5f61cd4893f95b69a424fe4def3aa0f69Benjamin Kramer    return getTypeInfo(cast<TypeOfExprType>(T)->getUnderlyingExpr()->getType()
968fe6b2d481d91140923f4541f273b253291884214Douglas Gregor                         .getTypePtr());
969fe6b2d481d91140923f4541f273b253291884214Douglas Gregor
970fe6b2d481d91140923f4541f273b253291884214Douglas Gregor  case Type::TypeOf:
971fe6b2d481d91140923f4541f273b253291884214Douglas Gregor    return getTypeInfo(cast<TypeOfType>(T)->getUnderlyingType().getTypePtr());
972fe6b2d481d91140923f4541f273b253291884214Douglas Gregor
973d7a3e2c5f61cd4893f95b69a424fe4def3aa0f69Benjamin Kramer  case Type::Decltype:
974dfaee4922b990fbf33808b91b961dc27df585030Chad Rosier    return getTypeInfo(cast<DecltypeType>(T)->getUnderlyingExpr()->getType()
975dfaee4922b990fbf33808b91b961dc27df585030Chad Rosier                        .getTypePtr());
976dfaee4922b990fbf33808b91b961dc27df585030Chad Rosier
977dfaee4922b990fbf33808b91b961dc27df585030Chad Rosier  case Type::Elaborated:
978dfaee4922b990fbf33808b91b961dc27df585030Chad Rosier    return getTypeInfo(cast<ElaboratedType>(T)->getNamedType().getTypePtr());
979fe6b2d481d91140923f4541f273b253291884214Douglas Gregor
980  case Type::Attributed:
981    return getTypeInfo(
982                  cast<AttributedType>(T)->getEquivalentType().getTypePtr());
983
984  case Type::TemplateSpecialization: {
985    assert(getCanonicalType(T) != T &&
986           "Cannot request the size of a dependent type");
987    const TemplateSpecializationType *TST = cast<TemplateSpecializationType>(T);
988    // A type alias template specialization may refer to a typedef with the
989    // aligned attribute on it.
990    if (TST->isTypeAlias())
991      return getTypeInfo(TST->getAliasedType().getTypePtr());
992    else
993      return getTypeInfo(getCanonicalType(T));
994  }
995
996  }
997
998  assert(Align && (Align & (Align-1)) == 0 && "Alignment must be power of 2");
999  return std::make_pair(Width, Align);
1000}
1001
1002/// toCharUnitsFromBits - Convert a size in bits to a size in characters.
1003CharUnits ASTContext::toCharUnitsFromBits(int64_t BitSize) const {
1004  return CharUnits::fromQuantity(BitSize / getCharWidth());
1005}
1006
1007/// toBits - Convert a size in characters to a size in characters.
1008int64_t ASTContext::toBits(CharUnits CharSize) const {
1009  return CharSize.getQuantity() * getCharWidth();
1010}
1011
1012/// getTypeSizeInChars - Return the size of the specified type, in characters.
1013/// This method does not work on incomplete types.
1014CharUnits ASTContext::getTypeSizeInChars(QualType T) const {
1015  return toCharUnitsFromBits(getTypeSize(T));
1016}
1017CharUnits ASTContext::getTypeSizeInChars(const Type *T) const {
1018  return toCharUnitsFromBits(getTypeSize(T));
1019}
1020
1021/// getTypeAlignInChars - Return the ABI-specified alignment of a type, in
1022/// characters. This method does not work on incomplete types.
1023CharUnits ASTContext::getTypeAlignInChars(QualType T) const {
1024  return toCharUnitsFromBits(getTypeAlign(T));
1025}
1026CharUnits ASTContext::getTypeAlignInChars(const Type *T) const {
1027  return toCharUnitsFromBits(getTypeAlign(T));
1028}
1029
1030/// getPreferredTypeAlign - Return the "preferred" alignment of the specified
1031/// type for the current target in bits.  This can be different than the ABI
1032/// alignment in cases where it is beneficial for performance to overalign
1033/// a data type.
1034unsigned ASTContext::getPreferredTypeAlign(const Type *T) const {
1035  unsigned ABIAlign = getTypeAlign(T);
1036
1037  // Double and long long should be naturally aligned if possible.
1038  if (const ComplexType* CT = T->getAs<ComplexType>())
1039    T = CT->getElementType().getTypePtr();
1040  if (T->isSpecificBuiltinType(BuiltinType::Double) ||
1041      T->isSpecificBuiltinType(BuiltinType::LongLong))
1042    return std::max(ABIAlign, (unsigned)getTypeSize(T));
1043
1044  return ABIAlign;
1045}
1046
1047/// ShallowCollectObjCIvars -
1048/// Collect all ivars, including those synthesized, in the current class.
1049///
1050void ASTContext::ShallowCollectObjCIvars(const ObjCInterfaceDecl *OI,
1051                            llvm::SmallVectorImpl<ObjCIvarDecl*> &Ivars) const {
1052  // FIXME. This need be removed but there are two many places which
1053  // assume const-ness of ObjCInterfaceDecl
1054  ObjCInterfaceDecl *IDecl = const_cast<ObjCInterfaceDecl *>(OI);
1055  for (ObjCIvarDecl *Iv = IDecl->all_declared_ivar_begin(); Iv;
1056        Iv= Iv->getNextIvar())
1057    Ivars.push_back(Iv);
1058}
1059
1060/// DeepCollectObjCIvars -
1061/// This routine first collects all declared, but not synthesized, ivars in
1062/// super class and then collects all ivars, including those synthesized for
1063/// current class. This routine is used for implementation of current class
1064/// when all ivars, declared and synthesized are known.
1065///
1066void ASTContext::DeepCollectObjCIvars(const ObjCInterfaceDecl *OI,
1067                                      bool leafClass,
1068                            llvm::SmallVectorImpl<ObjCIvarDecl*> &Ivars) const {
1069  if (const ObjCInterfaceDecl *SuperClass = OI->getSuperClass())
1070    DeepCollectObjCIvars(SuperClass, false, Ivars);
1071  if (!leafClass) {
1072    for (ObjCInterfaceDecl::ivar_iterator I = OI->ivar_begin(),
1073         E = OI->ivar_end(); I != E; ++I)
1074      Ivars.push_back(*I);
1075  }
1076  else
1077    ShallowCollectObjCIvars(OI, Ivars);
1078}
1079
1080/// CollectInheritedProtocols - Collect all protocols in current class and
1081/// those inherited by it.
1082void ASTContext::CollectInheritedProtocols(const Decl *CDecl,
1083                          llvm::SmallPtrSet<ObjCProtocolDecl*, 8> &Protocols) {
1084  if (const ObjCInterfaceDecl *OI = dyn_cast<ObjCInterfaceDecl>(CDecl)) {
1085    // We can use protocol_iterator here instead of
1086    // all_referenced_protocol_iterator since we are walking all categories.
1087    for (ObjCInterfaceDecl::all_protocol_iterator P = OI->all_referenced_protocol_begin(),
1088         PE = OI->all_referenced_protocol_end(); P != PE; ++P) {
1089      ObjCProtocolDecl *Proto = (*P);
1090      Protocols.insert(Proto);
1091      for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
1092           PE = Proto->protocol_end(); P != PE; ++P) {
1093        Protocols.insert(*P);
1094        CollectInheritedProtocols(*P, Protocols);
1095      }
1096    }
1097
1098    // Categories of this Interface.
1099    for (const ObjCCategoryDecl *CDeclChain = OI->getCategoryList();
1100         CDeclChain; CDeclChain = CDeclChain->getNextClassCategory())
1101      CollectInheritedProtocols(CDeclChain, Protocols);
1102    if (ObjCInterfaceDecl *SD = OI->getSuperClass())
1103      while (SD) {
1104        CollectInheritedProtocols(SD, Protocols);
1105        SD = SD->getSuperClass();
1106      }
1107  } else if (const ObjCCategoryDecl *OC = dyn_cast<ObjCCategoryDecl>(CDecl)) {
1108    for (ObjCCategoryDecl::protocol_iterator P = OC->protocol_begin(),
1109         PE = OC->protocol_end(); P != PE; ++P) {
1110      ObjCProtocolDecl *Proto = (*P);
1111      Protocols.insert(Proto);
1112      for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
1113           PE = Proto->protocol_end(); P != PE; ++P)
1114        CollectInheritedProtocols(*P, Protocols);
1115    }
1116  } else if (const ObjCProtocolDecl *OP = dyn_cast<ObjCProtocolDecl>(CDecl)) {
1117    for (ObjCProtocolDecl::protocol_iterator P = OP->protocol_begin(),
1118         PE = OP->protocol_end(); P != PE; ++P) {
1119      ObjCProtocolDecl *Proto = (*P);
1120      Protocols.insert(Proto);
1121      for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
1122           PE = Proto->protocol_end(); P != PE; ++P)
1123        CollectInheritedProtocols(*P, Protocols);
1124    }
1125  }
1126}
1127
1128unsigned ASTContext::CountNonClassIvars(const ObjCInterfaceDecl *OI) const {
1129  unsigned count = 0;
1130  // Count ivars declared in class extension.
1131  for (const ObjCCategoryDecl *CDecl = OI->getFirstClassExtension(); CDecl;
1132       CDecl = CDecl->getNextClassExtension())
1133    count += CDecl->ivar_size();
1134
1135  // Count ivar defined in this class's implementation.  This
1136  // includes synthesized ivars.
1137  if (ObjCImplementationDecl *ImplDecl = OI->getImplementation())
1138    count += ImplDecl->ivar_size();
1139
1140  return count;
1141}
1142
1143/// \brief Get the implementation of ObjCInterfaceDecl,or NULL if none exists.
1144ObjCImplementationDecl *ASTContext::getObjCImplementation(ObjCInterfaceDecl *D) {
1145  llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
1146    I = ObjCImpls.find(D);
1147  if (I != ObjCImpls.end())
1148    return cast<ObjCImplementationDecl>(I->second);
1149  return 0;
1150}
1151/// \brief Get the implementation of ObjCCategoryDecl, or NULL if none exists.
1152ObjCCategoryImplDecl *ASTContext::getObjCImplementation(ObjCCategoryDecl *D) {
1153  llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
1154    I = ObjCImpls.find(D);
1155  if (I != ObjCImpls.end())
1156    return cast<ObjCCategoryImplDecl>(I->second);
1157  return 0;
1158}
1159
1160/// \brief Set the implementation of ObjCInterfaceDecl.
1161void ASTContext::setObjCImplementation(ObjCInterfaceDecl *IFaceD,
1162                           ObjCImplementationDecl *ImplD) {
1163  assert(IFaceD && ImplD && "Passed null params");
1164  ObjCImpls[IFaceD] = ImplD;
1165}
1166/// \brief Set the implementation of ObjCCategoryDecl.
1167void ASTContext::setObjCImplementation(ObjCCategoryDecl *CatD,
1168                           ObjCCategoryImplDecl *ImplD) {
1169  assert(CatD && ImplD && "Passed null params");
1170  ObjCImpls[CatD] = ImplD;
1171}
1172
1173/// \brief Get the copy initialization expression of VarDecl,or NULL if
1174/// none exists.
1175Expr *ASTContext::getBlockVarCopyInits(const VarDecl*VD) {
1176  assert(VD && "Passed null params");
1177  assert(VD->hasAttr<BlocksAttr>() &&
1178         "getBlockVarCopyInits - not __block var");
1179  llvm::DenseMap<const VarDecl*, Expr*>::iterator
1180    I = BlockVarCopyInits.find(VD);
1181  return (I != BlockVarCopyInits.end()) ? cast<Expr>(I->second) : 0;
1182}
1183
1184/// \brief Set the copy inialization expression of a block var decl.
1185void ASTContext::setBlockVarCopyInits(VarDecl*VD, Expr* Init) {
1186  assert(VD && Init && "Passed null params");
1187  assert(VD->hasAttr<BlocksAttr>() &&
1188         "setBlockVarCopyInits - not __block var");
1189  BlockVarCopyInits[VD] = Init;
1190}
1191
1192/// \brief Allocate an uninitialized TypeSourceInfo.
1193///
1194/// The caller should initialize the memory held by TypeSourceInfo using
1195/// the TypeLoc wrappers.
1196///
1197/// \param T the type that will be the basis for type source info. This type
1198/// should refer to how the declarator was written in source code, not to
1199/// what type semantic analysis resolved the declarator to.
1200TypeSourceInfo *ASTContext::CreateTypeSourceInfo(QualType T,
1201                                                 unsigned DataSize) const {
1202  if (!DataSize)
1203    DataSize = TypeLoc::getFullDataSizeForType(T);
1204  else
1205    assert(DataSize == TypeLoc::getFullDataSizeForType(T) &&
1206           "incorrect data size provided to CreateTypeSourceInfo!");
1207
1208  TypeSourceInfo *TInfo =
1209    (TypeSourceInfo*)BumpAlloc.Allocate(sizeof(TypeSourceInfo) + DataSize, 8);
1210  new (TInfo) TypeSourceInfo(T);
1211  return TInfo;
1212}
1213
1214TypeSourceInfo *ASTContext::getTrivialTypeSourceInfo(QualType T,
1215                                                     SourceLocation L) const {
1216  TypeSourceInfo *DI = CreateTypeSourceInfo(T);
1217  DI->getTypeLoc().initialize(const_cast<ASTContext &>(*this), L);
1218  return DI;
1219}
1220
1221const ASTRecordLayout &
1222ASTContext::getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D) const {
1223  return getObjCLayout(D, 0);
1224}
1225
1226const ASTRecordLayout &
1227ASTContext::getASTObjCImplementationLayout(
1228                                        const ObjCImplementationDecl *D) const {
1229  return getObjCLayout(D->getClassInterface(), D);
1230}
1231
1232//===----------------------------------------------------------------------===//
1233//                   Type creation/memoization methods
1234//===----------------------------------------------------------------------===//
1235
1236QualType
1237ASTContext::getExtQualType(const Type *baseType, Qualifiers quals) const {
1238  unsigned fastQuals = quals.getFastQualifiers();
1239  quals.removeFastQualifiers();
1240
1241  // Check if we've already instantiated this type.
1242  llvm::FoldingSetNodeID ID;
1243  ExtQuals::Profile(ID, baseType, quals);
1244  void *insertPos = 0;
1245  if (ExtQuals *eq = ExtQualNodes.FindNodeOrInsertPos(ID, insertPos)) {
1246    assert(eq->getQualifiers() == quals);
1247    return QualType(eq, fastQuals);
1248  }
1249
1250  // If the base type is not canonical, make the appropriate canonical type.
1251  QualType canon;
1252  if (!baseType->isCanonicalUnqualified()) {
1253    SplitQualType canonSplit = baseType->getCanonicalTypeInternal().split();
1254    canonSplit.second.addConsistentQualifiers(quals);
1255    canon = getExtQualType(canonSplit.first, canonSplit.second);
1256
1257    // Re-find the insert position.
1258    (void) ExtQualNodes.FindNodeOrInsertPos(ID, insertPos);
1259  }
1260
1261  ExtQuals *eq = new (*this, TypeAlignment) ExtQuals(baseType, canon, quals);
1262  ExtQualNodes.InsertNode(eq, insertPos);
1263  return QualType(eq, fastQuals);
1264}
1265
1266QualType
1267ASTContext::getAddrSpaceQualType(QualType T, unsigned AddressSpace) const {
1268  QualType CanT = getCanonicalType(T);
1269  if (CanT.getAddressSpace() == AddressSpace)
1270    return T;
1271
1272  // If we are composing extended qualifiers together, merge together
1273  // into one ExtQuals node.
1274  QualifierCollector Quals;
1275  const Type *TypeNode = Quals.strip(T);
1276
1277  // If this type already has an address space specified, it cannot get
1278  // another one.
1279  assert(!Quals.hasAddressSpace() &&
1280         "Type cannot be in multiple addr spaces!");
1281  Quals.addAddressSpace(AddressSpace);
1282
1283  return getExtQualType(TypeNode, Quals);
1284}
1285
1286QualType ASTContext::getObjCGCQualType(QualType T,
1287                                       Qualifiers::GC GCAttr) const {
1288  QualType CanT = getCanonicalType(T);
1289  if (CanT.getObjCGCAttr() == GCAttr)
1290    return T;
1291
1292  if (const PointerType *ptr = T->getAs<PointerType>()) {
1293    QualType Pointee = ptr->getPointeeType();
1294    if (Pointee->isAnyPointerType()) {
1295      QualType ResultType = getObjCGCQualType(Pointee, GCAttr);
1296      return getPointerType(ResultType);
1297    }
1298  }
1299
1300  // If we are composing extended qualifiers together, merge together
1301  // into one ExtQuals node.
1302  QualifierCollector Quals;
1303  const Type *TypeNode = Quals.strip(T);
1304
1305  // If this type already has an ObjCGC specified, it cannot get
1306  // another one.
1307  assert(!Quals.hasObjCGCAttr() &&
1308         "Type cannot have multiple ObjCGCs!");
1309  Quals.addObjCGCAttr(GCAttr);
1310
1311  return getExtQualType(TypeNode, Quals);
1312}
1313
1314const FunctionType *ASTContext::adjustFunctionType(const FunctionType *T,
1315                                                   FunctionType::ExtInfo Info) {
1316  if (T->getExtInfo() == Info)
1317    return T;
1318
1319  QualType Result;
1320  if (const FunctionNoProtoType *FNPT = dyn_cast<FunctionNoProtoType>(T)) {
1321    Result = getFunctionNoProtoType(FNPT->getResultType(), Info);
1322  } else {
1323    const FunctionProtoType *FPT = cast<FunctionProtoType>(T);
1324    FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
1325    EPI.ExtInfo = Info;
1326    Result = getFunctionType(FPT->getResultType(), FPT->arg_type_begin(),
1327                             FPT->getNumArgs(), EPI);
1328  }
1329
1330  return cast<FunctionType>(Result.getTypePtr());
1331}
1332
1333/// getComplexType - Return the uniqued reference to the type for a complex
1334/// number with the specified element type.
1335QualType ASTContext::getComplexType(QualType T) const {
1336  // Unique pointers, to guarantee there is only one pointer of a particular
1337  // structure.
1338  llvm::FoldingSetNodeID ID;
1339  ComplexType::Profile(ID, T);
1340
1341  void *InsertPos = 0;
1342  if (ComplexType *CT = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos))
1343    return QualType(CT, 0);
1344
1345  // If the pointee type isn't canonical, this won't be a canonical type either,
1346  // so fill in the canonical type field.
1347  QualType Canonical;
1348  if (!T.isCanonical()) {
1349    Canonical = getComplexType(getCanonicalType(T));
1350
1351    // Get the new insert position for the node we care about.
1352    ComplexType *NewIP = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos);
1353    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1354  }
1355  ComplexType *New = new (*this, TypeAlignment) ComplexType(T, Canonical);
1356  Types.push_back(New);
1357  ComplexTypes.InsertNode(New, InsertPos);
1358  return QualType(New, 0);
1359}
1360
1361/// getPointerType - Return the uniqued reference to the type for a pointer to
1362/// the specified type.
1363QualType ASTContext::getPointerType(QualType T) const {
1364  // Unique pointers, to guarantee there is only one pointer of a particular
1365  // structure.
1366  llvm::FoldingSetNodeID ID;
1367  PointerType::Profile(ID, T);
1368
1369  void *InsertPos = 0;
1370  if (PointerType *PT = PointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1371    return QualType(PT, 0);
1372
1373  // If the pointee type isn't canonical, this won't be a canonical type either,
1374  // so fill in the canonical type field.
1375  QualType Canonical;
1376  if (!T.isCanonical()) {
1377    Canonical = getPointerType(getCanonicalType(T));
1378
1379    // Get the new insert position for the node we care about.
1380    PointerType *NewIP = PointerTypes.FindNodeOrInsertPos(ID, InsertPos);
1381    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1382  }
1383  PointerType *New = new (*this, TypeAlignment) PointerType(T, Canonical);
1384  Types.push_back(New);
1385  PointerTypes.InsertNode(New, InsertPos);
1386  return QualType(New, 0);
1387}
1388
1389/// getBlockPointerType - Return the uniqued reference to the type for
1390/// a pointer to the specified block.
1391QualType ASTContext::getBlockPointerType(QualType T) const {
1392  assert(T->isFunctionType() && "block of function types only");
1393  // Unique pointers, to guarantee there is only one block of a particular
1394  // structure.
1395  llvm::FoldingSetNodeID ID;
1396  BlockPointerType::Profile(ID, T);
1397
1398  void *InsertPos = 0;
1399  if (BlockPointerType *PT =
1400        BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1401    return QualType(PT, 0);
1402
1403  // If the block pointee type isn't canonical, this won't be a canonical
1404  // type either so fill in the canonical type field.
1405  QualType Canonical;
1406  if (!T.isCanonical()) {
1407    Canonical = getBlockPointerType(getCanonicalType(T));
1408
1409    // Get the new insert position for the node we care about.
1410    BlockPointerType *NewIP =
1411      BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
1412    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1413  }
1414  BlockPointerType *New
1415    = new (*this, TypeAlignment) BlockPointerType(T, Canonical);
1416  Types.push_back(New);
1417  BlockPointerTypes.InsertNode(New, InsertPos);
1418  return QualType(New, 0);
1419}
1420
1421/// getLValueReferenceType - Return the uniqued reference to the type for an
1422/// lvalue reference to the specified type.
1423QualType
1424ASTContext::getLValueReferenceType(QualType T, bool SpelledAsLValue) const {
1425  // Unique pointers, to guarantee there is only one pointer of a particular
1426  // structure.
1427  llvm::FoldingSetNodeID ID;
1428  ReferenceType::Profile(ID, T, SpelledAsLValue);
1429
1430  void *InsertPos = 0;
1431  if (LValueReferenceType *RT =
1432        LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
1433    return QualType(RT, 0);
1434
1435  const ReferenceType *InnerRef = T->getAs<ReferenceType>();
1436
1437  // If the referencee type isn't canonical, this won't be a canonical type
1438  // either, so fill in the canonical type field.
1439  QualType Canonical;
1440  if (!SpelledAsLValue || InnerRef || !T.isCanonical()) {
1441    QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
1442    Canonical = getLValueReferenceType(getCanonicalType(PointeeType));
1443
1444    // Get the new insert position for the node we care about.
1445    LValueReferenceType *NewIP =
1446      LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
1447    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1448  }
1449
1450  LValueReferenceType *New
1451    = new (*this, TypeAlignment) LValueReferenceType(T, Canonical,
1452                                                     SpelledAsLValue);
1453  Types.push_back(New);
1454  LValueReferenceTypes.InsertNode(New, InsertPos);
1455
1456  return QualType(New, 0);
1457}
1458
1459/// getRValueReferenceType - Return the uniqued reference to the type for an
1460/// rvalue reference to the specified type.
1461QualType ASTContext::getRValueReferenceType(QualType T) const {
1462  // Unique pointers, to guarantee there is only one pointer of a particular
1463  // structure.
1464  llvm::FoldingSetNodeID ID;
1465  ReferenceType::Profile(ID, T, false);
1466
1467  void *InsertPos = 0;
1468  if (RValueReferenceType *RT =
1469        RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
1470    return QualType(RT, 0);
1471
1472  const ReferenceType *InnerRef = T->getAs<ReferenceType>();
1473
1474  // If the referencee type isn't canonical, this won't be a canonical type
1475  // either, so fill in the canonical type field.
1476  QualType Canonical;
1477  if (InnerRef || !T.isCanonical()) {
1478    QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
1479    Canonical = getRValueReferenceType(getCanonicalType(PointeeType));
1480
1481    // Get the new insert position for the node we care about.
1482    RValueReferenceType *NewIP =
1483      RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
1484    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1485  }
1486
1487  RValueReferenceType *New
1488    = new (*this, TypeAlignment) RValueReferenceType(T, Canonical);
1489  Types.push_back(New);
1490  RValueReferenceTypes.InsertNode(New, InsertPos);
1491  return QualType(New, 0);
1492}
1493
1494/// getMemberPointerType - Return the uniqued reference to the type for a
1495/// member pointer to the specified type, in the specified class.
1496QualType ASTContext::getMemberPointerType(QualType T, const Type *Cls) const {
1497  // Unique pointers, to guarantee there is only one pointer of a particular
1498  // structure.
1499  llvm::FoldingSetNodeID ID;
1500  MemberPointerType::Profile(ID, T, Cls);
1501
1502  void *InsertPos = 0;
1503  if (MemberPointerType *PT =
1504      MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1505    return QualType(PT, 0);
1506
1507  // If the pointee or class type isn't canonical, this won't be a canonical
1508  // type either, so fill in the canonical type field.
1509  QualType Canonical;
1510  if (!T.isCanonical() || !Cls->isCanonicalUnqualified()) {
1511    Canonical = getMemberPointerType(getCanonicalType(T),getCanonicalType(Cls));
1512
1513    // Get the new insert position for the node we care about.
1514    MemberPointerType *NewIP =
1515      MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
1516    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1517  }
1518  MemberPointerType *New
1519    = new (*this, TypeAlignment) MemberPointerType(T, Cls, Canonical);
1520  Types.push_back(New);
1521  MemberPointerTypes.InsertNode(New, InsertPos);
1522  return QualType(New, 0);
1523}
1524
1525/// getConstantArrayType - Return the unique reference to the type for an
1526/// array of the specified element type.
1527QualType ASTContext::getConstantArrayType(QualType EltTy,
1528                                          const llvm::APInt &ArySizeIn,
1529                                          ArrayType::ArraySizeModifier ASM,
1530                                          unsigned IndexTypeQuals) const {
1531  assert((EltTy->isDependentType() ||
1532          EltTy->isIncompleteType() || EltTy->isConstantSizeType()) &&
1533         "Constant array of VLAs is illegal!");
1534
1535  // Convert the array size into a canonical width matching the pointer size for
1536  // the target.
1537  llvm::APInt ArySize(ArySizeIn);
1538  ArySize =
1539    ArySize.zextOrTrunc(Target.getPointerWidth(getTargetAddressSpace(EltTy)));
1540
1541  llvm::FoldingSetNodeID ID;
1542  ConstantArrayType::Profile(ID, EltTy, ArySize, ASM, IndexTypeQuals);
1543
1544  void *InsertPos = 0;
1545  if (ConstantArrayType *ATP =
1546      ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
1547    return QualType(ATP, 0);
1548
1549  // If the element type isn't canonical or has qualifiers, this won't
1550  // be a canonical type either, so fill in the canonical type field.
1551  QualType Canon;
1552  if (!EltTy.isCanonical() || EltTy.hasLocalQualifiers()) {
1553    SplitQualType canonSplit = getCanonicalType(EltTy).split();
1554    Canon = getConstantArrayType(QualType(canonSplit.first, 0), ArySize,
1555                                 ASM, IndexTypeQuals);
1556    Canon = getQualifiedType(Canon, canonSplit.second);
1557
1558    // Get the new insert position for the node we care about.
1559    ConstantArrayType *NewIP =
1560      ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
1561    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1562  }
1563
1564  ConstantArrayType *New = new(*this,TypeAlignment)
1565    ConstantArrayType(EltTy, Canon, ArySize, ASM, IndexTypeQuals);
1566  ConstantArrayTypes.InsertNode(New, InsertPos);
1567  Types.push_back(New);
1568  return QualType(New, 0);
1569}
1570
1571/// getVariableArrayDecayedType - Turns the given type, which may be
1572/// variably-modified, into the corresponding type with all the known
1573/// sizes replaced with [*].
1574QualType ASTContext::getVariableArrayDecayedType(QualType type) const {
1575  // Vastly most common case.
1576  if (!type->isVariablyModifiedType()) return type;
1577
1578  QualType result;
1579
1580  SplitQualType split = type.getSplitDesugaredType();
1581  const Type *ty = split.first;
1582  switch (ty->getTypeClass()) {
1583#define TYPE(Class, Base)
1584#define ABSTRACT_TYPE(Class, Base)
1585#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
1586#include "clang/AST/TypeNodes.def"
1587    llvm_unreachable("didn't desugar past all non-canonical types?");
1588
1589  // These types should never be variably-modified.
1590  case Type::Builtin:
1591  case Type::Complex:
1592  case Type::Vector:
1593  case Type::ExtVector:
1594  case Type::DependentSizedExtVector:
1595  case Type::ObjCObject:
1596  case Type::ObjCInterface:
1597  case Type::ObjCObjectPointer:
1598  case Type::Record:
1599  case Type::Enum:
1600  case Type::UnresolvedUsing:
1601  case Type::TypeOfExpr:
1602  case Type::TypeOf:
1603  case Type::Decltype:
1604  case Type::DependentName:
1605  case Type::InjectedClassName:
1606  case Type::TemplateSpecialization:
1607  case Type::DependentTemplateSpecialization:
1608  case Type::TemplateTypeParm:
1609  case Type::SubstTemplateTypeParmPack:
1610  case Type::Auto:
1611  case Type::PackExpansion:
1612    llvm_unreachable("type should never be variably-modified");
1613
1614  // These types can be variably-modified but should never need to
1615  // further decay.
1616  case Type::FunctionNoProto:
1617  case Type::FunctionProto:
1618  case Type::BlockPointer:
1619  case Type::MemberPointer:
1620    return type;
1621
1622  // These types can be variably-modified.  All these modifications
1623  // preserve structure except as noted by comments.
1624  // TODO: if we ever care about optimizing VLAs, there are no-op
1625  // optimizations available here.
1626  case Type::Pointer:
1627    result = getPointerType(getVariableArrayDecayedType(
1628                              cast<PointerType>(ty)->getPointeeType()));
1629    break;
1630
1631  case Type::LValueReference: {
1632    const LValueReferenceType *lv = cast<LValueReferenceType>(ty);
1633    result = getLValueReferenceType(
1634                 getVariableArrayDecayedType(lv->getPointeeType()),
1635                                    lv->isSpelledAsLValue());
1636    break;
1637  }
1638
1639  case Type::RValueReference: {
1640    const RValueReferenceType *lv = cast<RValueReferenceType>(ty);
1641    result = getRValueReferenceType(
1642                 getVariableArrayDecayedType(lv->getPointeeType()));
1643    break;
1644  }
1645
1646  case Type::ConstantArray: {
1647    const ConstantArrayType *cat = cast<ConstantArrayType>(ty);
1648    result = getConstantArrayType(
1649                 getVariableArrayDecayedType(cat->getElementType()),
1650                                  cat->getSize(),
1651                                  cat->getSizeModifier(),
1652                                  cat->getIndexTypeCVRQualifiers());
1653    break;
1654  }
1655
1656  case Type::DependentSizedArray: {
1657    const DependentSizedArrayType *dat = cast<DependentSizedArrayType>(ty);
1658    result = getDependentSizedArrayType(
1659                 getVariableArrayDecayedType(dat->getElementType()),
1660                                        dat->getSizeExpr(),
1661                                        dat->getSizeModifier(),
1662                                        dat->getIndexTypeCVRQualifiers(),
1663                                        dat->getBracketsRange());
1664    break;
1665  }
1666
1667  // Turn incomplete types into [*] types.
1668  case Type::IncompleteArray: {
1669    const IncompleteArrayType *iat = cast<IncompleteArrayType>(ty);
1670    result = getVariableArrayType(
1671                 getVariableArrayDecayedType(iat->getElementType()),
1672                                  /*size*/ 0,
1673                                  ArrayType::Normal,
1674                                  iat->getIndexTypeCVRQualifiers(),
1675                                  SourceRange());
1676    break;
1677  }
1678
1679  // Turn VLA types into [*] types.
1680  case Type::VariableArray: {
1681    const VariableArrayType *vat = cast<VariableArrayType>(ty);
1682    result = getVariableArrayType(
1683                 getVariableArrayDecayedType(vat->getElementType()),
1684                                  /*size*/ 0,
1685                                  ArrayType::Star,
1686                                  vat->getIndexTypeCVRQualifiers(),
1687                                  vat->getBracketsRange());
1688    break;
1689  }
1690  }
1691
1692  // Apply the top-level qualifiers from the original.
1693  return getQualifiedType(result, split.second);
1694}
1695
1696/// getVariableArrayType - Returns a non-unique reference to the type for a
1697/// variable array of the specified element type.
1698QualType ASTContext::getVariableArrayType(QualType EltTy,
1699                                          Expr *NumElts,
1700                                          ArrayType::ArraySizeModifier ASM,
1701                                          unsigned IndexTypeQuals,
1702                                          SourceRange Brackets) const {
1703  // Since we don't unique expressions, it isn't possible to unique VLA's
1704  // that have an expression provided for their size.
1705  QualType Canon;
1706
1707  // Be sure to pull qualifiers off the element type.
1708  if (!EltTy.isCanonical() || EltTy.hasLocalQualifiers()) {
1709    SplitQualType canonSplit = getCanonicalType(EltTy).split();
1710    Canon = getVariableArrayType(QualType(canonSplit.first, 0), NumElts, ASM,
1711                                 IndexTypeQuals, Brackets);
1712    Canon = getQualifiedType(Canon, canonSplit.second);
1713  }
1714
1715  VariableArrayType *New = new(*this, TypeAlignment)
1716    VariableArrayType(EltTy, Canon, NumElts, ASM, IndexTypeQuals, Brackets);
1717
1718  VariableArrayTypes.push_back(New);
1719  Types.push_back(New);
1720  return QualType(New, 0);
1721}
1722
1723/// getDependentSizedArrayType - Returns a non-unique reference to
1724/// the type for a dependently-sized array of the specified element
1725/// type.
1726QualType ASTContext::getDependentSizedArrayType(QualType elementType,
1727                                                Expr *numElements,
1728                                                ArrayType::ArraySizeModifier ASM,
1729                                                unsigned elementTypeQuals,
1730                                                SourceRange brackets) const {
1731  assert((!numElements || numElements->isTypeDependent() ||
1732          numElements->isValueDependent()) &&
1733         "Size must be type- or value-dependent!");
1734
1735  // Dependently-sized array types that do not have a specified number
1736  // of elements will have their sizes deduced from a dependent
1737  // initializer.  We do no canonicalization here at all, which is okay
1738  // because they can't be used in most locations.
1739  if (!numElements) {
1740    DependentSizedArrayType *newType
1741      = new (*this, TypeAlignment)
1742          DependentSizedArrayType(*this, elementType, QualType(),
1743                                  numElements, ASM, elementTypeQuals,
1744                                  brackets);
1745    Types.push_back(newType);
1746    return QualType(newType, 0);
1747  }
1748
1749  // Otherwise, we actually build a new type every time, but we
1750  // also build a canonical type.
1751
1752  SplitQualType canonElementType = getCanonicalType(elementType).split();
1753
1754  void *insertPos = 0;
1755  llvm::FoldingSetNodeID ID;
1756  DependentSizedArrayType::Profile(ID, *this,
1757                                   QualType(canonElementType.first, 0),
1758                                   ASM, elementTypeQuals, numElements);
1759
1760  // Look for an existing type with these properties.
1761  DependentSizedArrayType *canonTy =
1762    DependentSizedArrayTypes.FindNodeOrInsertPos(ID, insertPos);
1763
1764  // If we don't have one, build one.
1765  if (!canonTy) {
1766    canonTy = new (*this, TypeAlignment)
1767      DependentSizedArrayType(*this, QualType(canonElementType.first, 0),
1768                              QualType(), numElements, ASM, elementTypeQuals,
1769                              brackets);
1770    DependentSizedArrayTypes.InsertNode(canonTy, insertPos);
1771    Types.push_back(canonTy);
1772  }
1773
1774  // Apply qualifiers from the element type to the array.
1775  QualType canon = getQualifiedType(QualType(canonTy,0),
1776                                    canonElementType.second);
1777
1778  // If we didn't need extra canonicalization for the element type,
1779  // then just use that as our result.
1780  if (QualType(canonElementType.first, 0) == elementType)
1781    return canon;
1782
1783  // Otherwise, we need to build a type which follows the spelling
1784  // of the element type.
1785  DependentSizedArrayType *sugaredType
1786    = new (*this, TypeAlignment)
1787        DependentSizedArrayType(*this, elementType, canon, numElements,
1788                                ASM, elementTypeQuals, brackets);
1789  Types.push_back(sugaredType);
1790  return QualType(sugaredType, 0);
1791}
1792
1793QualType ASTContext::getIncompleteArrayType(QualType elementType,
1794                                            ArrayType::ArraySizeModifier ASM,
1795                                            unsigned elementTypeQuals) const {
1796  llvm::FoldingSetNodeID ID;
1797  IncompleteArrayType::Profile(ID, elementType, ASM, elementTypeQuals);
1798
1799  void *insertPos = 0;
1800  if (IncompleteArrayType *iat =
1801       IncompleteArrayTypes.FindNodeOrInsertPos(ID, insertPos))
1802    return QualType(iat, 0);
1803
1804  // If the element type isn't canonical, this won't be a canonical type
1805  // either, so fill in the canonical type field.  We also have to pull
1806  // qualifiers off the element type.
1807  QualType canon;
1808
1809  if (!elementType.isCanonical() || elementType.hasLocalQualifiers()) {
1810    SplitQualType canonSplit = getCanonicalType(elementType).split();
1811    canon = getIncompleteArrayType(QualType(canonSplit.first, 0),
1812                                   ASM, elementTypeQuals);
1813    canon = getQualifiedType(canon, canonSplit.second);
1814
1815    // Get the new insert position for the node we care about.
1816    IncompleteArrayType *existing =
1817      IncompleteArrayTypes.FindNodeOrInsertPos(ID, insertPos);
1818    assert(!existing && "Shouldn't be in the map!"); (void) existing;
1819  }
1820
1821  IncompleteArrayType *newType = new (*this, TypeAlignment)
1822    IncompleteArrayType(elementType, canon, ASM, elementTypeQuals);
1823
1824  IncompleteArrayTypes.InsertNode(newType, insertPos);
1825  Types.push_back(newType);
1826  return QualType(newType, 0);
1827}
1828
1829/// getVectorType - Return the unique reference to a vector type of
1830/// the specified element type and size. VectorType must be a built-in type.
1831QualType ASTContext::getVectorType(QualType vecType, unsigned NumElts,
1832                                   VectorType::VectorKind VecKind) const {
1833  assert(vecType->isBuiltinType());
1834
1835  // Check if we've already instantiated a vector of this type.
1836  llvm::FoldingSetNodeID ID;
1837  VectorType::Profile(ID, vecType, NumElts, Type::Vector, VecKind);
1838
1839  void *InsertPos = 0;
1840  if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
1841    return QualType(VTP, 0);
1842
1843  // If the element type isn't canonical, this won't be a canonical type either,
1844  // so fill in the canonical type field.
1845  QualType Canonical;
1846  if (!vecType.isCanonical()) {
1847    Canonical = getVectorType(getCanonicalType(vecType), NumElts, VecKind);
1848
1849    // Get the new insert position for the node we care about.
1850    VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
1851    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1852  }
1853  VectorType *New = new (*this, TypeAlignment)
1854    VectorType(vecType, NumElts, Canonical, VecKind);
1855  VectorTypes.InsertNode(New, InsertPos);
1856  Types.push_back(New);
1857  return QualType(New, 0);
1858}
1859
1860/// getExtVectorType - Return the unique reference to an extended vector type of
1861/// the specified element type and size. VectorType must be a built-in type.
1862QualType
1863ASTContext::getExtVectorType(QualType vecType, unsigned NumElts) const {
1864  assert(vecType->isBuiltinType());
1865
1866  // Check if we've already instantiated a vector of this type.
1867  llvm::FoldingSetNodeID ID;
1868  VectorType::Profile(ID, vecType, NumElts, Type::ExtVector,
1869                      VectorType::GenericVector);
1870  void *InsertPos = 0;
1871  if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
1872    return QualType(VTP, 0);
1873
1874  // If the element type isn't canonical, this won't be a canonical type either,
1875  // so fill in the canonical type field.
1876  QualType Canonical;
1877  if (!vecType.isCanonical()) {
1878    Canonical = getExtVectorType(getCanonicalType(vecType), NumElts);
1879
1880    // Get the new insert position for the node we care about.
1881    VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
1882    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1883  }
1884  ExtVectorType *New = new (*this, TypeAlignment)
1885    ExtVectorType(vecType, NumElts, Canonical);
1886  VectorTypes.InsertNode(New, InsertPos);
1887  Types.push_back(New);
1888  return QualType(New, 0);
1889}
1890
1891QualType
1892ASTContext::getDependentSizedExtVectorType(QualType vecType,
1893                                           Expr *SizeExpr,
1894                                           SourceLocation AttrLoc) const {
1895  llvm::FoldingSetNodeID ID;
1896  DependentSizedExtVectorType::Profile(ID, *this, getCanonicalType(vecType),
1897                                       SizeExpr);
1898
1899  void *InsertPos = 0;
1900  DependentSizedExtVectorType *Canon
1901    = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
1902  DependentSizedExtVectorType *New;
1903  if (Canon) {
1904    // We already have a canonical version of this array type; use it as
1905    // the canonical type for a newly-built type.
1906    New = new (*this, TypeAlignment)
1907      DependentSizedExtVectorType(*this, vecType, QualType(Canon, 0),
1908                                  SizeExpr, AttrLoc);
1909  } else {
1910    QualType CanonVecTy = getCanonicalType(vecType);
1911    if (CanonVecTy == vecType) {
1912      New = new (*this, TypeAlignment)
1913        DependentSizedExtVectorType(*this, vecType, QualType(), SizeExpr,
1914                                    AttrLoc);
1915
1916      DependentSizedExtVectorType *CanonCheck
1917        = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
1918      assert(!CanonCheck && "Dependent-sized ext_vector canonical type broken");
1919      (void)CanonCheck;
1920      DependentSizedExtVectorTypes.InsertNode(New, InsertPos);
1921    } else {
1922      QualType Canon = getDependentSizedExtVectorType(CanonVecTy, SizeExpr,
1923                                                      SourceLocation());
1924      New = new (*this, TypeAlignment)
1925        DependentSizedExtVectorType(*this, vecType, Canon, SizeExpr, AttrLoc);
1926    }
1927  }
1928
1929  Types.push_back(New);
1930  return QualType(New, 0);
1931}
1932
1933/// getFunctionNoProtoType - Return a K&R style C function type like 'int()'.
1934///
1935QualType
1936ASTContext::getFunctionNoProtoType(QualType ResultTy,
1937                                   const FunctionType::ExtInfo &Info) const {
1938  const CallingConv DefaultCC = Info.getCC();
1939  const CallingConv CallConv = (LangOpts.MRTD && DefaultCC == CC_Default) ?
1940                               CC_X86StdCall : DefaultCC;
1941  // Unique functions, to guarantee there is only one function of a particular
1942  // structure.
1943  llvm::FoldingSetNodeID ID;
1944  FunctionNoProtoType::Profile(ID, ResultTy, Info);
1945
1946  void *InsertPos = 0;
1947  if (FunctionNoProtoType *FT =
1948        FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
1949    return QualType(FT, 0);
1950
1951  QualType Canonical;
1952  if (!ResultTy.isCanonical() ||
1953      getCanonicalCallConv(CallConv) != CallConv) {
1954    Canonical =
1955      getFunctionNoProtoType(getCanonicalType(ResultTy),
1956                     Info.withCallingConv(getCanonicalCallConv(CallConv)));
1957
1958    // Get the new insert position for the node we care about.
1959    FunctionNoProtoType *NewIP =
1960      FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
1961    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1962  }
1963
1964  FunctionProtoType::ExtInfo newInfo = Info.withCallingConv(CallConv);
1965  FunctionNoProtoType *New = new (*this, TypeAlignment)
1966    FunctionNoProtoType(ResultTy, Canonical, newInfo);
1967  Types.push_back(New);
1968  FunctionNoProtoTypes.InsertNode(New, InsertPos);
1969  return QualType(New, 0);
1970}
1971
1972/// getFunctionType - Return a normal function type with a typed argument
1973/// list.  isVariadic indicates whether the argument list includes '...'.
1974QualType
1975ASTContext::getFunctionType(QualType ResultTy,
1976                            const QualType *ArgArray, unsigned NumArgs,
1977                            const FunctionProtoType::ExtProtoInfo &EPI) const {
1978  // Unique functions, to guarantee there is only one function of a particular
1979  // structure.
1980  llvm::FoldingSetNodeID ID;
1981  FunctionProtoType::Profile(ID, ResultTy, ArgArray, NumArgs, EPI, *this);
1982
1983  void *InsertPos = 0;
1984  if (FunctionProtoType *FTP =
1985        FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
1986    return QualType(FTP, 0);
1987
1988  // Determine whether the type being created is already canonical or not.
1989  bool isCanonical= EPI.ExceptionSpecType == EST_None && ResultTy.isCanonical();
1990  for (unsigned i = 0; i != NumArgs && isCanonical; ++i)
1991    if (!ArgArray[i].isCanonicalAsParam())
1992      isCanonical = false;
1993
1994  const CallingConv DefaultCC = EPI.ExtInfo.getCC();
1995  const CallingConv CallConv = (LangOpts.MRTD && DefaultCC == CC_Default) ?
1996                               CC_X86StdCall : DefaultCC;
1997
1998  // If this type isn't canonical, get the canonical version of it.
1999  // The exception spec is not part of the canonical type.
2000  QualType Canonical;
2001  if (!isCanonical || getCanonicalCallConv(CallConv) != CallConv) {
2002    llvm::SmallVector<QualType, 16> CanonicalArgs;
2003    CanonicalArgs.reserve(NumArgs);
2004    for (unsigned i = 0; i != NumArgs; ++i)
2005      CanonicalArgs.push_back(getCanonicalParamType(ArgArray[i]));
2006
2007    FunctionProtoType::ExtProtoInfo CanonicalEPI = EPI;
2008    CanonicalEPI.ExceptionSpecType = EST_None;
2009    CanonicalEPI.NumExceptions = 0;
2010    CanonicalEPI.ExtInfo
2011      = CanonicalEPI.ExtInfo.withCallingConv(getCanonicalCallConv(CallConv));
2012
2013    Canonical = getFunctionType(getCanonicalType(ResultTy),
2014                                CanonicalArgs.data(), NumArgs,
2015                                CanonicalEPI);
2016
2017    // Get the new insert position for the node we care about.
2018    FunctionProtoType *NewIP =
2019      FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
2020    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2021  }
2022
2023  // FunctionProtoType objects are allocated with extra bytes after them
2024  // for two variable size arrays (for parameter and exception types) at the
2025  // end of them. Instead of the exception types, there could be a noexcept
2026  // expression and a context pointer.
2027  size_t Size = sizeof(FunctionProtoType) +
2028                NumArgs * sizeof(QualType);
2029  if (EPI.ExceptionSpecType == EST_Dynamic)
2030    Size += EPI.NumExceptions * sizeof(QualType);
2031  else if (EPI.ExceptionSpecType == EST_ComputedNoexcept) {
2032    Size += sizeof(Expr*);
2033  }
2034  FunctionProtoType *FTP = (FunctionProtoType*) Allocate(Size, TypeAlignment);
2035  FunctionProtoType::ExtProtoInfo newEPI = EPI;
2036  newEPI.ExtInfo = EPI.ExtInfo.withCallingConv(CallConv);
2037  new (FTP) FunctionProtoType(ResultTy, ArgArray, NumArgs, Canonical, newEPI);
2038  Types.push_back(FTP);
2039  FunctionProtoTypes.InsertNode(FTP, InsertPos);
2040  return QualType(FTP, 0);
2041}
2042
2043#ifndef NDEBUG
2044static bool NeedsInjectedClassNameType(const RecordDecl *D) {
2045  if (!isa<CXXRecordDecl>(D)) return false;
2046  const CXXRecordDecl *RD = cast<CXXRecordDecl>(D);
2047  if (isa<ClassTemplatePartialSpecializationDecl>(RD))
2048    return true;
2049  if (RD->getDescribedClassTemplate() &&
2050      !isa<ClassTemplateSpecializationDecl>(RD))
2051    return true;
2052  return false;
2053}
2054#endif
2055
2056/// getInjectedClassNameType - Return the unique reference to the
2057/// injected class name type for the specified templated declaration.
2058QualType ASTContext::getInjectedClassNameType(CXXRecordDecl *Decl,
2059                                              QualType TST) const {
2060  assert(NeedsInjectedClassNameType(Decl));
2061  if (Decl->TypeForDecl) {
2062    assert(isa<InjectedClassNameType>(Decl->TypeForDecl));
2063  } else if (CXXRecordDecl *PrevDecl = Decl->getPreviousDeclaration()) {
2064    assert(PrevDecl->TypeForDecl && "previous declaration has no type");
2065    Decl->TypeForDecl = PrevDecl->TypeForDecl;
2066    assert(isa<InjectedClassNameType>(Decl->TypeForDecl));
2067  } else {
2068    Type *newType =
2069      new (*this, TypeAlignment) InjectedClassNameType(Decl, TST);
2070    Decl->TypeForDecl = newType;
2071    Types.push_back(newType);
2072  }
2073  return QualType(Decl->TypeForDecl, 0);
2074}
2075
2076/// getTypeDeclType - Return the unique reference to the type for the
2077/// specified type declaration.
2078QualType ASTContext::getTypeDeclTypeSlow(const TypeDecl *Decl) const {
2079  assert(Decl && "Passed null for Decl param");
2080  assert(!Decl->TypeForDecl && "TypeForDecl present in slow case");
2081
2082  if (const TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Decl))
2083    return getTypedefType(Typedef);
2084
2085  assert(!isa<TemplateTypeParmDecl>(Decl) &&
2086         "Template type parameter types are always available.");
2087
2088  if (const RecordDecl *Record = dyn_cast<RecordDecl>(Decl)) {
2089    assert(!Record->getPreviousDeclaration() &&
2090           "struct/union has previous declaration");
2091    assert(!NeedsInjectedClassNameType(Record));
2092    return getRecordType(Record);
2093  } else if (const EnumDecl *Enum = dyn_cast<EnumDecl>(Decl)) {
2094    assert(!Enum->getPreviousDeclaration() &&
2095           "enum has previous declaration");
2096    return getEnumType(Enum);
2097  } else if (const UnresolvedUsingTypenameDecl *Using =
2098               dyn_cast<UnresolvedUsingTypenameDecl>(Decl)) {
2099    Type *newType = new (*this, TypeAlignment) UnresolvedUsingType(Using);
2100    Decl->TypeForDecl = newType;
2101    Types.push_back(newType);
2102  } else
2103    llvm_unreachable("TypeDecl without a type?");
2104
2105  return QualType(Decl->TypeForDecl, 0);
2106}
2107
2108/// getTypedefType - Return the unique reference to the type for the
2109/// specified typedef name decl.
2110QualType
2111ASTContext::getTypedefType(const TypedefNameDecl *Decl,
2112                           QualType Canonical) const {
2113  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
2114
2115  if (Canonical.isNull())
2116    Canonical = getCanonicalType(Decl->getUnderlyingType());
2117  TypedefType *newType = new(*this, TypeAlignment)
2118    TypedefType(Type::Typedef, Decl, Canonical);
2119  Decl->TypeForDecl = newType;
2120  Types.push_back(newType);
2121  return QualType(newType, 0);
2122}
2123
2124QualType ASTContext::getRecordType(const RecordDecl *Decl) const {
2125  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
2126
2127  if (const RecordDecl *PrevDecl = Decl->getPreviousDeclaration())
2128    if (PrevDecl->TypeForDecl)
2129      return QualType(Decl->TypeForDecl = PrevDecl->TypeForDecl, 0);
2130
2131  RecordType *newType = new (*this, TypeAlignment) RecordType(Decl);
2132  Decl->TypeForDecl = newType;
2133  Types.push_back(newType);
2134  return QualType(newType, 0);
2135}
2136
2137QualType ASTContext::getEnumType(const EnumDecl *Decl) const {
2138  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
2139
2140  if (const EnumDecl *PrevDecl = Decl->getPreviousDeclaration())
2141    if (PrevDecl->TypeForDecl)
2142      return QualType(Decl->TypeForDecl = PrevDecl->TypeForDecl, 0);
2143
2144  EnumType *newType = new (*this, TypeAlignment) EnumType(Decl);
2145  Decl->TypeForDecl = newType;
2146  Types.push_back(newType);
2147  return QualType(newType, 0);
2148}
2149
2150QualType ASTContext::getAttributedType(AttributedType::Kind attrKind,
2151                                       QualType modifiedType,
2152                                       QualType equivalentType) {
2153  llvm::FoldingSetNodeID id;
2154  AttributedType::Profile(id, attrKind, modifiedType, equivalentType);
2155
2156  void *insertPos = 0;
2157  AttributedType *type = AttributedTypes.FindNodeOrInsertPos(id, insertPos);
2158  if (type) return QualType(type, 0);
2159
2160  QualType canon = getCanonicalType(equivalentType);
2161  type = new (*this, TypeAlignment)
2162           AttributedType(canon, attrKind, modifiedType, equivalentType);
2163
2164  Types.push_back(type);
2165  AttributedTypes.InsertNode(type, insertPos);
2166
2167  return QualType(type, 0);
2168}
2169
2170
2171/// \brief Retrieve a substitution-result type.
2172QualType
2173ASTContext::getSubstTemplateTypeParmType(const TemplateTypeParmType *Parm,
2174                                         QualType Replacement) const {
2175  assert(Replacement.isCanonical()
2176         && "replacement types must always be canonical");
2177
2178  llvm::FoldingSetNodeID ID;
2179  SubstTemplateTypeParmType::Profile(ID, Parm, Replacement);
2180  void *InsertPos = 0;
2181  SubstTemplateTypeParmType *SubstParm
2182    = SubstTemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
2183
2184  if (!SubstParm) {
2185    SubstParm = new (*this, TypeAlignment)
2186      SubstTemplateTypeParmType(Parm, Replacement);
2187    Types.push_back(SubstParm);
2188    SubstTemplateTypeParmTypes.InsertNode(SubstParm, InsertPos);
2189  }
2190
2191  return QualType(SubstParm, 0);
2192}
2193
2194/// \brief Retrieve a
2195QualType ASTContext::getSubstTemplateTypeParmPackType(
2196                                          const TemplateTypeParmType *Parm,
2197                                              const TemplateArgument &ArgPack) {
2198#ifndef NDEBUG
2199  for (TemplateArgument::pack_iterator P = ArgPack.pack_begin(),
2200                                    PEnd = ArgPack.pack_end();
2201       P != PEnd; ++P) {
2202    assert(P->getKind() == TemplateArgument::Type &&"Pack contains a non-type");
2203    assert(P->getAsType().isCanonical() && "Pack contains non-canonical type");
2204  }
2205#endif
2206
2207  llvm::FoldingSetNodeID ID;
2208  SubstTemplateTypeParmPackType::Profile(ID, Parm, ArgPack);
2209  void *InsertPos = 0;
2210  if (SubstTemplateTypeParmPackType *SubstParm
2211        = SubstTemplateTypeParmPackTypes.FindNodeOrInsertPos(ID, InsertPos))
2212    return QualType(SubstParm, 0);
2213
2214  QualType Canon;
2215  if (!Parm->isCanonicalUnqualified()) {
2216    Canon = getCanonicalType(QualType(Parm, 0));
2217    Canon = getSubstTemplateTypeParmPackType(cast<TemplateTypeParmType>(Canon),
2218                                             ArgPack);
2219    SubstTemplateTypeParmPackTypes.FindNodeOrInsertPos(ID, InsertPos);
2220  }
2221
2222  SubstTemplateTypeParmPackType *SubstParm
2223    = new (*this, TypeAlignment) SubstTemplateTypeParmPackType(Parm, Canon,
2224                                                               ArgPack);
2225  Types.push_back(SubstParm);
2226  SubstTemplateTypeParmTypes.InsertNode(SubstParm, InsertPos);
2227  return QualType(SubstParm, 0);
2228}
2229
2230/// \brief Retrieve the template type parameter type for a template
2231/// parameter or parameter pack with the given depth, index, and (optionally)
2232/// name.
2233QualType ASTContext::getTemplateTypeParmType(unsigned Depth, unsigned Index,
2234                                             bool ParameterPack,
2235                                             TemplateTypeParmDecl *TTPDecl) const {
2236  llvm::FoldingSetNodeID ID;
2237  TemplateTypeParmType::Profile(ID, Depth, Index, ParameterPack, TTPDecl);
2238  void *InsertPos = 0;
2239  TemplateTypeParmType *TypeParm
2240    = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
2241
2242  if (TypeParm)
2243    return QualType(TypeParm, 0);
2244
2245  if (TTPDecl) {
2246    QualType Canon = getTemplateTypeParmType(Depth, Index, ParameterPack);
2247    TypeParm = new (*this, TypeAlignment) TemplateTypeParmType(TTPDecl, Canon);
2248
2249    TemplateTypeParmType *TypeCheck
2250      = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
2251    assert(!TypeCheck && "Template type parameter canonical type broken");
2252    (void)TypeCheck;
2253  } else
2254    TypeParm = new (*this, TypeAlignment)
2255      TemplateTypeParmType(Depth, Index, ParameterPack);
2256
2257  Types.push_back(TypeParm);
2258  TemplateTypeParmTypes.InsertNode(TypeParm, InsertPos);
2259
2260  return QualType(TypeParm, 0);
2261}
2262
2263TypeSourceInfo *
2264ASTContext::getTemplateSpecializationTypeInfo(TemplateName Name,
2265                                              SourceLocation NameLoc,
2266                                        const TemplateArgumentListInfo &Args,
2267                                              QualType Underlying) const {
2268  assert(!Name.getAsDependentTemplateName() &&
2269         "No dependent template names here!");
2270  QualType TST = getTemplateSpecializationType(Name, Args, Underlying);
2271
2272  TypeSourceInfo *DI = CreateTypeSourceInfo(TST);
2273  TemplateSpecializationTypeLoc TL
2274    = cast<TemplateSpecializationTypeLoc>(DI->getTypeLoc());
2275  TL.setTemplateNameLoc(NameLoc);
2276  TL.setLAngleLoc(Args.getLAngleLoc());
2277  TL.setRAngleLoc(Args.getRAngleLoc());
2278  for (unsigned i = 0, e = TL.getNumArgs(); i != e; ++i)
2279    TL.setArgLocInfo(i, Args[i].getLocInfo());
2280  return DI;
2281}
2282
2283QualType
2284ASTContext::getTemplateSpecializationType(TemplateName Template,
2285                                          const TemplateArgumentListInfo &Args,
2286                                          QualType Underlying) const {
2287  assert(!Template.getAsDependentTemplateName() &&
2288         "No dependent template names here!");
2289
2290  unsigned NumArgs = Args.size();
2291
2292  llvm::SmallVector<TemplateArgument, 4> ArgVec;
2293  ArgVec.reserve(NumArgs);
2294  for (unsigned i = 0; i != NumArgs; ++i)
2295    ArgVec.push_back(Args[i].getArgument());
2296
2297  return getTemplateSpecializationType(Template, ArgVec.data(), NumArgs,
2298                                       Underlying);
2299}
2300
2301QualType
2302ASTContext::getTemplateSpecializationType(TemplateName Template,
2303                                          const TemplateArgument *Args,
2304                                          unsigned NumArgs,
2305                                          QualType Underlying) const {
2306  assert(!Template.getAsDependentTemplateName() &&
2307         "No dependent template names here!");
2308  // Look through qualified template names.
2309  if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName())
2310    Template = TemplateName(QTN->getTemplateDecl());
2311
2312  bool isTypeAlias =
2313    Template.getAsTemplateDecl() &&
2314    isa<TypeAliasTemplateDecl>(Template.getAsTemplateDecl());
2315
2316  QualType CanonType;
2317  if (!Underlying.isNull())
2318    CanonType = getCanonicalType(Underlying);
2319  else {
2320    assert(!isTypeAlias &&
2321           "Underlying type for template alias must be computed by caller");
2322    CanonType = getCanonicalTemplateSpecializationType(Template, Args,
2323                                                       NumArgs);
2324  }
2325
2326  // Allocate the (non-canonical) template specialization type, but don't
2327  // try to unique it: these types typically have location information that
2328  // we don't unique and don't want to lose.
2329  void *Mem = Allocate(sizeof(TemplateSpecializationType) +
2330                       sizeof(TemplateArgument) * NumArgs +
2331                       (isTypeAlias ? sizeof(QualType) : 0),
2332                       TypeAlignment);
2333  TemplateSpecializationType *Spec
2334    = new (Mem) TemplateSpecializationType(Template,
2335                                           Args, NumArgs,
2336                                           CanonType,
2337                                         isTypeAlias ? Underlying : QualType());
2338
2339  Types.push_back(Spec);
2340  return QualType(Spec, 0);
2341}
2342
2343QualType
2344ASTContext::getCanonicalTemplateSpecializationType(TemplateName Template,
2345                                                   const TemplateArgument *Args,
2346                                                   unsigned NumArgs) const {
2347  assert(!Template.getAsDependentTemplateName() &&
2348         "No dependent template names here!");
2349  assert((!Template.getAsTemplateDecl() ||
2350          !isa<TypeAliasTemplateDecl>(Template.getAsTemplateDecl())) &&
2351         "Underlying type for template alias must be computed by caller");
2352
2353  // Look through qualified template names.
2354  if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName())
2355    Template = TemplateName(QTN->getTemplateDecl());
2356
2357  // Build the canonical template specialization type.
2358  TemplateName CanonTemplate = getCanonicalTemplateName(Template);
2359  llvm::SmallVector<TemplateArgument, 4> CanonArgs;
2360  CanonArgs.reserve(NumArgs);
2361  for (unsigned I = 0; I != NumArgs; ++I)
2362    CanonArgs.push_back(getCanonicalTemplateArgument(Args[I]));
2363
2364  // Determine whether this canonical template specialization type already
2365  // exists.
2366  llvm::FoldingSetNodeID ID;
2367  TemplateSpecializationType::Profile(ID, CanonTemplate,
2368                                      CanonArgs.data(), NumArgs, *this);
2369
2370  void *InsertPos = 0;
2371  TemplateSpecializationType *Spec
2372    = TemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
2373
2374  if (!Spec) {
2375    // Allocate a new canonical template specialization type.
2376    void *Mem = Allocate((sizeof(TemplateSpecializationType) +
2377                          sizeof(TemplateArgument) * NumArgs),
2378                         TypeAlignment);
2379    Spec = new (Mem) TemplateSpecializationType(CanonTemplate,
2380                                                CanonArgs.data(), NumArgs,
2381                                                QualType(), QualType());
2382    Types.push_back(Spec);
2383    TemplateSpecializationTypes.InsertNode(Spec, InsertPos);
2384  }
2385
2386  assert(Spec->isDependentType() &&
2387         "Non-dependent template-id type must have a canonical type");
2388  return QualType(Spec, 0);
2389}
2390
2391QualType
2392ASTContext::getElaboratedType(ElaboratedTypeKeyword Keyword,
2393                              NestedNameSpecifier *NNS,
2394                              QualType NamedType) const {
2395  llvm::FoldingSetNodeID ID;
2396  ElaboratedType::Profile(ID, Keyword, NNS, NamedType);
2397
2398  void *InsertPos = 0;
2399  ElaboratedType *T = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
2400  if (T)
2401    return QualType(T, 0);
2402
2403  QualType Canon = NamedType;
2404  if (!Canon.isCanonical()) {
2405    Canon = getCanonicalType(NamedType);
2406    ElaboratedType *CheckT = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
2407    assert(!CheckT && "Elaborated canonical type broken");
2408    (void)CheckT;
2409  }
2410
2411  T = new (*this) ElaboratedType(Keyword, NNS, NamedType, Canon);
2412  Types.push_back(T);
2413  ElaboratedTypes.InsertNode(T, InsertPos);
2414  return QualType(T, 0);
2415}
2416
2417QualType
2418ASTContext::getParenType(QualType InnerType) const {
2419  llvm::FoldingSetNodeID ID;
2420  ParenType::Profile(ID, InnerType);
2421
2422  void *InsertPos = 0;
2423  ParenType *T = ParenTypes.FindNodeOrInsertPos(ID, InsertPos);
2424  if (T)
2425    return QualType(T, 0);
2426
2427  QualType Canon = InnerType;
2428  if (!Canon.isCanonical()) {
2429    Canon = getCanonicalType(InnerType);
2430    ParenType *CheckT = ParenTypes.FindNodeOrInsertPos(ID, InsertPos);
2431    assert(!CheckT && "Paren canonical type broken");
2432    (void)CheckT;
2433  }
2434
2435  T = new (*this) ParenType(InnerType, Canon);
2436  Types.push_back(T);
2437  ParenTypes.InsertNode(T, InsertPos);
2438  return QualType(T, 0);
2439}
2440
2441QualType ASTContext::getDependentNameType(ElaboratedTypeKeyword Keyword,
2442                                          NestedNameSpecifier *NNS,
2443                                          const IdentifierInfo *Name,
2444                                          QualType Canon) const {
2445  assert(NNS->isDependent() && "nested-name-specifier must be dependent");
2446
2447  if (Canon.isNull()) {
2448    NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
2449    ElaboratedTypeKeyword CanonKeyword = Keyword;
2450    if (Keyword == ETK_None)
2451      CanonKeyword = ETK_Typename;
2452
2453    if (CanonNNS != NNS || CanonKeyword != Keyword)
2454      Canon = getDependentNameType(CanonKeyword, CanonNNS, Name);
2455  }
2456
2457  llvm::FoldingSetNodeID ID;
2458  DependentNameType::Profile(ID, Keyword, NNS, Name);
2459
2460  void *InsertPos = 0;
2461  DependentNameType *T
2462    = DependentNameTypes.FindNodeOrInsertPos(ID, InsertPos);
2463  if (T)
2464    return QualType(T, 0);
2465
2466  T = new (*this) DependentNameType(Keyword, NNS, Name, Canon);
2467  Types.push_back(T);
2468  DependentNameTypes.InsertNode(T, InsertPos);
2469  return QualType(T, 0);
2470}
2471
2472QualType
2473ASTContext::getDependentTemplateSpecializationType(
2474                                 ElaboratedTypeKeyword Keyword,
2475                                 NestedNameSpecifier *NNS,
2476                                 const IdentifierInfo *Name,
2477                                 const TemplateArgumentListInfo &Args) const {
2478  // TODO: avoid this copy
2479  llvm::SmallVector<TemplateArgument, 16> ArgCopy;
2480  for (unsigned I = 0, E = Args.size(); I != E; ++I)
2481    ArgCopy.push_back(Args[I].getArgument());
2482  return getDependentTemplateSpecializationType(Keyword, NNS, Name,
2483                                                ArgCopy.size(),
2484                                                ArgCopy.data());
2485}
2486
2487QualType
2488ASTContext::getDependentTemplateSpecializationType(
2489                                 ElaboratedTypeKeyword Keyword,
2490                                 NestedNameSpecifier *NNS,
2491                                 const IdentifierInfo *Name,
2492                                 unsigned NumArgs,
2493                                 const TemplateArgument *Args) const {
2494  assert((!NNS || NNS->isDependent()) &&
2495         "nested-name-specifier must be dependent");
2496
2497  llvm::FoldingSetNodeID ID;
2498  DependentTemplateSpecializationType::Profile(ID, *this, Keyword, NNS,
2499                                               Name, NumArgs, Args);
2500
2501  void *InsertPos = 0;
2502  DependentTemplateSpecializationType *T
2503    = DependentTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
2504  if (T)
2505    return QualType(T, 0);
2506
2507  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
2508
2509  ElaboratedTypeKeyword CanonKeyword = Keyword;
2510  if (Keyword == ETK_None) CanonKeyword = ETK_Typename;
2511
2512  bool AnyNonCanonArgs = false;
2513  llvm::SmallVector<TemplateArgument, 16> CanonArgs(NumArgs);
2514  for (unsigned I = 0; I != NumArgs; ++I) {
2515    CanonArgs[I] = getCanonicalTemplateArgument(Args[I]);
2516    if (!CanonArgs[I].structurallyEquals(Args[I]))
2517      AnyNonCanonArgs = true;
2518  }
2519
2520  QualType Canon;
2521  if (AnyNonCanonArgs || CanonNNS != NNS || CanonKeyword != Keyword) {
2522    Canon = getDependentTemplateSpecializationType(CanonKeyword, CanonNNS,
2523                                                   Name, NumArgs,
2524                                                   CanonArgs.data());
2525
2526    // Find the insert position again.
2527    DependentTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
2528  }
2529
2530  void *Mem = Allocate((sizeof(DependentTemplateSpecializationType) +
2531                        sizeof(TemplateArgument) * NumArgs),
2532                       TypeAlignment);
2533  T = new (Mem) DependentTemplateSpecializationType(Keyword, NNS,
2534                                                    Name, NumArgs, Args, Canon);
2535  Types.push_back(T);
2536  DependentTemplateSpecializationTypes.InsertNode(T, InsertPos);
2537  return QualType(T, 0);
2538}
2539
2540QualType ASTContext::getPackExpansionType(QualType Pattern,
2541                                      llvm::Optional<unsigned> NumExpansions) {
2542  llvm::FoldingSetNodeID ID;
2543  PackExpansionType::Profile(ID, Pattern, NumExpansions);
2544
2545  assert(Pattern->containsUnexpandedParameterPack() &&
2546         "Pack expansions must expand one or more parameter packs");
2547  void *InsertPos = 0;
2548  PackExpansionType *T
2549    = PackExpansionTypes.FindNodeOrInsertPos(ID, InsertPos);
2550  if (T)
2551    return QualType(T, 0);
2552
2553  QualType Canon;
2554  if (!Pattern.isCanonical()) {
2555    Canon = getPackExpansionType(getCanonicalType(Pattern), NumExpansions);
2556
2557    // Find the insert position again.
2558    PackExpansionTypes.FindNodeOrInsertPos(ID, InsertPos);
2559  }
2560
2561  T = new (*this) PackExpansionType(Pattern, Canon, NumExpansions);
2562  Types.push_back(T);
2563  PackExpansionTypes.InsertNode(T, InsertPos);
2564  return QualType(T, 0);
2565}
2566
2567/// CmpProtocolNames - Comparison predicate for sorting protocols
2568/// alphabetically.
2569static bool CmpProtocolNames(const ObjCProtocolDecl *LHS,
2570                            const ObjCProtocolDecl *RHS) {
2571  return LHS->getDeclName() < RHS->getDeclName();
2572}
2573
2574static bool areSortedAndUniqued(ObjCProtocolDecl * const *Protocols,
2575                                unsigned NumProtocols) {
2576  if (NumProtocols == 0) return true;
2577
2578  for (unsigned i = 1; i != NumProtocols; ++i)
2579    if (!CmpProtocolNames(Protocols[i-1], Protocols[i]))
2580      return false;
2581  return true;
2582}
2583
2584static void SortAndUniqueProtocols(ObjCProtocolDecl **Protocols,
2585                                   unsigned &NumProtocols) {
2586  ObjCProtocolDecl **ProtocolsEnd = Protocols+NumProtocols;
2587
2588  // Sort protocols, keyed by name.
2589  std::sort(Protocols, Protocols+NumProtocols, CmpProtocolNames);
2590
2591  // Remove duplicates.
2592  ProtocolsEnd = std::unique(Protocols, ProtocolsEnd);
2593  NumProtocols = ProtocolsEnd-Protocols;
2594}
2595
2596QualType ASTContext::getObjCObjectType(QualType BaseType,
2597                                       ObjCProtocolDecl * const *Protocols,
2598                                       unsigned NumProtocols) const {
2599  // If the base type is an interface and there aren't any protocols
2600  // to add, then the interface type will do just fine.
2601  if (!NumProtocols && isa<ObjCInterfaceType>(BaseType))
2602    return BaseType;
2603
2604  // Look in the folding set for an existing type.
2605  llvm::FoldingSetNodeID ID;
2606  ObjCObjectTypeImpl::Profile(ID, BaseType, Protocols, NumProtocols);
2607  void *InsertPos = 0;
2608  if (ObjCObjectType *QT = ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos))
2609    return QualType(QT, 0);
2610
2611  // Build the canonical type, which has the canonical base type and
2612  // a sorted-and-uniqued list of protocols.
2613  QualType Canonical;
2614  bool ProtocolsSorted = areSortedAndUniqued(Protocols, NumProtocols);
2615  if (!ProtocolsSorted || !BaseType.isCanonical()) {
2616    if (!ProtocolsSorted) {
2617      llvm::SmallVector<ObjCProtocolDecl*, 8> Sorted(Protocols,
2618                                                     Protocols + NumProtocols);
2619      unsigned UniqueCount = NumProtocols;
2620
2621      SortAndUniqueProtocols(&Sorted[0], UniqueCount);
2622      Canonical = getObjCObjectType(getCanonicalType(BaseType),
2623                                    &Sorted[0], UniqueCount);
2624    } else {
2625      Canonical = getObjCObjectType(getCanonicalType(BaseType),
2626                                    Protocols, NumProtocols);
2627    }
2628
2629    // Regenerate InsertPos.
2630    ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos);
2631  }
2632
2633  unsigned Size = sizeof(ObjCObjectTypeImpl);
2634  Size += NumProtocols * sizeof(ObjCProtocolDecl *);
2635  void *Mem = Allocate(Size, TypeAlignment);
2636  ObjCObjectTypeImpl *T =
2637    new (Mem) ObjCObjectTypeImpl(Canonical, BaseType, Protocols, NumProtocols);
2638
2639  Types.push_back(T);
2640  ObjCObjectTypes.InsertNode(T, InsertPos);
2641  return QualType(T, 0);
2642}
2643
2644/// getObjCObjectPointerType - Return a ObjCObjectPointerType type for
2645/// the given object type.
2646QualType ASTContext::getObjCObjectPointerType(QualType ObjectT) const {
2647  llvm::FoldingSetNodeID ID;
2648  ObjCObjectPointerType::Profile(ID, ObjectT);
2649
2650  void *InsertPos = 0;
2651  if (ObjCObjectPointerType *QT =
2652              ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
2653    return QualType(QT, 0);
2654
2655  // Find the canonical object type.
2656  QualType Canonical;
2657  if (!ObjectT.isCanonical()) {
2658    Canonical = getObjCObjectPointerType(getCanonicalType(ObjectT));
2659
2660    // Regenerate InsertPos.
2661    ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
2662  }
2663
2664  // No match.
2665  void *Mem = Allocate(sizeof(ObjCObjectPointerType), TypeAlignment);
2666  ObjCObjectPointerType *QType =
2667    new (Mem) ObjCObjectPointerType(Canonical, ObjectT);
2668
2669  Types.push_back(QType);
2670  ObjCObjectPointerTypes.InsertNode(QType, InsertPos);
2671  return QualType(QType, 0);
2672}
2673
2674/// getObjCInterfaceType - Return the unique reference to the type for the
2675/// specified ObjC interface decl. The list of protocols is optional.
2676QualType ASTContext::getObjCInterfaceType(const ObjCInterfaceDecl *Decl) const {
2677  if (Decl->TypeForDecl)
2678    return QualType(Decl->TypeForDecl, 0);
2679
2680  // FIXME: redeclarations?
2681  void *Mem = Allocate(sizeof(ObjCInterfaceType), TypeAlignment);
2682  ObjCInterfaceType *T = new (Mem) ObjCInterfaceType(Decl);
2683  Decl->TypeForDecl = T;
2684  Types.push_back(T);
2685  return QualType(T, 0);
2686}
2687
2688/// getTypeOfExprType - Unlike many "get<Type>" functions, we can't unique
2689/// TypeOfExprType AST's (since expression's are never shared). For example,
2690/// multiple declarations that refer to "typeof(x)" all contain different
2691/// DeclRefExpr's. This doesn't effect the type checker, since it operates
2692/// on canonical type's (which are always unique).
2693QualType ASTContext::getTypeOfExprType(Expr *tofExpr) const {
2694  TypeOfExprType *toe;
2695  if (tofExpr->isTypeDependent()) {
2696    llvm::FoldingSetNodeID ID;
2697    DependentTypeOfExprType::Profile(ID, *this, tofExpr);
2698
2699    void *InsertPos = 0;
2700    DependentTypeOfExprType *Canon
2701      = DependentTypeOfExprTypes.FindNodeOrInsertPos(ID, InsertPos);
2702    if (Canon) {
2703      // We already have a "canonical" version of an identical, dependent
2704      // typeof(expr) type. Use that as our canonical type.
2705      toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr,
2706                                          QualType((TypeOfExprType*)Canon, 0));
2707    }
2708    else {
2709      // Build a new, canonical typeof(expr) type.
2710      Canon
2711        = new (*this, TypeAlignment) DependentTypeOfExprType(*this, tofExpr);
2712      DependentTypeOfExprTypes.InsertNode(Canon, InsertPos);
2713      toe = Canon;
2714    }
2715  } else {
2716    QualType Canonical = getCanonicalType(tofExpr->getType());
2717    toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr, Canonical);
2718  }
2719  Types.push_back(toe);
2720  return QualType(toe, 0);
2721}
2722
2723/// getTypeOfType -  Unlike many "get<Type>" functions, we don't unique
2724/// TypeOfType AST's. The only motivation to unique these nodes would be
2725/// memory savings. Since typeof(t) is fairly uncommon, space shouldn't be
2726/// an issue. This doesn't effect the type checker, since it operates
2727/// on canonical type's (which are always unique).
2728QualType ASTContext::getTypeOfType(QualType tofType) const {
2729  QualType Canonical = getCanonicalType(tofType);
2730  TypeOfType *tot = new (*this, TypeAlignment) TypeOfType(tofType, Canonical);
2731  Types.push_back(tot);
2732  return QualType(tot, 0);
2733}
2734
2735/// getDecltypeForExpr - Given an expr, will return the decltype for that
2736/// expression, according to the rules in C++0x [dcl.type.simple]p4
2737static QualType getDecltypeForExpr(const Expr *e, const ASTContext &Context) {
2738  if (e->isTypeDependent())
2739    return Context.DependentTy;
2740
2741  // If e is an id expression or a class member access, decltype(e) is defined
2742  // as the type of the entity named by e.
2743  if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(e)) {
2744    if (const ValueDecl *VD = dyn_cast<ValueDecl>(DRE->getDecl()))
2745      return VD->getType();
2746  }
2747  if (const MemberExpr *ME = dyn_cast<MemberExpr>(e)) {
2748    if (const FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl()))
2749      return FD->getType();
2750  }
2751  // If e is a function call or an invocation of an overloaded operator,
2752  // (parentheses around e are ignored), decltype(e) is defined as the
2753  // return type of that function.
2754  if (const CallExpr *CE = dyn_cast<CallExpr>(e->IgnoreParens()))
2755    return CE->getCallReturnType();
2756
2757  QualType T = e->getType();
2758
2759  // Otherwise, where T is the type of e, if e is an lvalue, decltype(e) is
2760  // defined as T&, otherwise decltype(e) is defined as T.
2761  if (e->isLValue())
2762    T = Context.getLValueReferenceType(T);
2763
2764  return T;
2765}
2766
2767/// getDecltypeType -  Unlike many "get<Type>" functions, we don't unique
2768/// DecltypeType AST's. The only motivation to unique these nodes would be
2769/// memory savings. Since decltype(t) is fairly uncommon, space shouldn't be
2770/// an issue. This doesn't effect the type checker, since it operates
2771/// on canonical type's (which are always unique).
2772QualType ASTContext::getDecltypeType(Expr *e) const {
2773  DecltypeType *dt;
2774  if (e->isTypeDependent()) {
2775    llvm::FoldingSetNodeID ID;
2776    DependentDecltypeType::Profile(ID, *this, e);
2777
2778    void *InsertPos = 0;
2779    DependentDecltypeType *Canon
2780      = DependentDecltypeTypes.FindNodeOrInsertPos(ID, InsertPos);
2781    if (Canon) {
2782      // We already have a "canonical" version of an equivalent, dependent
2783      // decltype type. Use that as our canonical type.
2784      dt = new (*this, TypeAlignment) DecltypeType(e, DependentTy,
2785                                       QualType((DecltypeType*)Canon, 0));
2786    }
2787    else {
2788      // Build a new, canonical typeof(expr) type.
2789      Canon = new (*this, TypeAlignment) DependentDecltypeType(*this, e);
2790      DependentDecltypeTypes.InsertNode(Canon, InsertPos);
2791      dt = Canon;
2792    }
2793  } else {
2794    QualType T = getDecltypeForExpr(e, *this);
2795    dt = new (*this, TypeAlignment) DecltypeType(e, T, getCanonicalType(T));
2796  }
2797  Types.push_back(dt);
2798  return QualType(dt, 0);
2799}
2800
2801/// getAutoType - We only unique auto types after they've been deduced.
2802QualType ASTContext::getAutoType(QualType DeducedType) const {
2803  void *InsertPos = 0;
2804  if (!DeducedType.isNull()) {
2805    // Look in the folding set for an existing type.
2806    llvm::FoldingSetNodeID ID;
2807    AutoType::Profile(ID, DeducedType);
2808    if (AutoType *AT = AutoTypes.FindNodeOrInsertPos(ID, InsertPos))
2809      return QualType(AT, 0);
2810  }
2811
2812  AutoType *AT = new (*this, TypeAlignment) AutoType(DeducedType);
2813  Types.push_back(AT);
2814  if (InsertPos)
2815    AutoTypes.InsertNode(AT, InsertPos);
2816  return QualType(AT, 0);
2817}
2818
2819/// getAutoDeductType - Get type pattern for deducing against 'auto'.
2820QualType ASTContext::getAutoDeductType() const {
2821  if (AutoDeductTy.isNull())
2822    AutoDeductTy = getAutoType(QualType());
2823  assert(!AutoDeductTy.isNull() && "can't build 'auto' pattern");
2824  return AutoDeductTy;
2825}
2826
2827/// getAutoRRefDeductType - Get type pattern for deducing against 'auto &&'.
2828QualType ASTContext::getAutoRRefDeductType() const {
2829  if (AutoRRefDeductTy.isNull())
2830    AutoRRefDeductTy = getRValueReferenceType(getAutoDeductType());
2831  assert(!AutoRRefDeductTy.isNull() && "can't build 'auto &&' pattern");
2832  return AutoRRefDeductTy;
2833}
2834
2835/// getTagDeclType - Return the unique reference to the type for the
2836/// specified TagDecl (struct/union/class/enum) decl.
2837QualType ASTContext::getTagDeclType(const TagDecl *Decl) const {
2838  assert (Decl);
2839  // FIXME: What is the design on getTagDeclType when it requires casting
2840  // away const?  mutable?
2841  return getTypeDeclType(const_cast<TagDecl*>(Decl));
2842}
2843
2844/// getSizeType - Return the unique type for "size_t" (C99 7.17), the result
2845/// of the sizeof operator (C99 6.5.3.4p4). The value is target dependent and
2846/// needs to agree with the definition in <stddef.h>.
2847CanQualType ASTContext::getSizeType() const {
2848  return getFromTargetType(Target.getSizeType());
2849}
2850
2851/// getSignedWCharType - Return the type of "signed wchar_t".
2852/// Used when in C++, as a GCC extension.
2853QualType ASTContext::getSignedWCharType() const {
2854  // FIXME: derive from "Target" ?
2855  return WCharTy;
2856}
2857
2858/// getUnsignedWCharType - Return the type of "unsigned wchar_t".
2859/// Used when in C++, as a GCC extension.
2860QualType ASTContext::getUnsignedWCharType() const {
2861  // FIXME: derive from "Target" ?
2862  return UnsignedIntTy;
2863}
2864
2865/// getPointerDiffType - Return the unique type for "ptrdiff_t" (ref?)
2866/// defined in <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9).
2867QualType ASTContext::getPointerDiffType() const {
2868  return getFromTargetType(Target.getPtrDiffType(0));
2869}
2870
2871//===----------------------------------------------------------------------===//
2872//                              Type Operators
2873//===----------------------------------------------------------------------===//
2874
2875CanQualType ASTContext::getCanonicalParamType(QualType T) const {
2876  // Push qualifiers into arrays, and then discard any remaining
2877  // qualifiers.
2878  T = getCanonicalType(T);
2879  T = getVariableArrayDecayedType(T);
2880  const Type *Ty = T.getTypePtr();
2881  QualType Result;
2882  if (isa<ArrayType>(Ty)) {
2883    Result = getArrayDecayedType(QualType(Ty,0));
2884  } else if (isa<FunctionType>(Ty)) {
2885    Result = getPointerType(QualType(Ty, 0));
2886  } else {
2887    Result = QualType(Ty, 0);
2888  }
2889
2890  return CanQualType::CreateUnsafe(Result);
2891}
2892
2893
2894QualType ASTContext::getUnqualifiedArrayType(QualType type,
2895                                             Qualifiers &quals) {
2896  SplitQualType splitType = type.getSplitUnqualifiedType();
2897
2898  // FIXME: getSplitUnqualifiedType() actually walks all the way to
2899  // the unqualified desugared type and then drops it on the floor.
2900  // We then have to strip that sugar back off with
2901  // getUnqualifiedDesugaredType(), which is silly.
2902  const ArrayType *AT =
2903    dyn_cast<ArrayType>(splitType.first->getUnqualifiedDesugaredType());
2904
2905  // If we don't have an array, just use the results in splitType.
2906  if (!AT) {
2907    quals = splitType.second;
2908    return QualType(splitType.first, 0);
2909  }
2910
2911  // Otherwise, recurse on the array's element type.
2912  QualType elementType = AT->getElementType();
2913  QualType unqualElementType = getUnqualifiedArrayType(elementType, quals);
2914
2915  // If that didn't change the element type, AT has no qualifiers, so we
2916  // can just use the results in splitType.
2917  if (elementType == unqualElementType) {
2918    assert(quals.empty()); // from the recursive call
2919    quals = splitType.second;
2920    return QualType(splitType.first, 0);
2921  }
2922
2923  // Otherwise, add in the qualifiers from the outermost type, then
2924  // build the type back up.
2925  quals.addConsistentQualifiers(splitType.second);
2926
2927  if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) {
2928    return getConstantArrayType(unqualElementType, CAT->getSize(),
2929                                CAT->getSizeModifier(), 0);
2930  }
2931
2932  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) {
2933    return getIncompleteArrayType(unqualElementType, IAT->getSizeModifier(), 0);
2934  }
2935
2936  if (const VariableArrayType *VAT = dyn_cast<VariableArrayType>(AT)) {
2937    return getVariableArrayType(unqualElementType,
2938                                VAT->getSizeExpr(),
2939                                VAT->getSizeModifier(),
2940                                VAT->getIndexTypeCVRQualifiers(),
2941                                VAT->getBracketsRange());
2942  }
2943
2944  const DependentSizedArrayType *DSAT = cast<DependentSizedArrayType>(AT);
2945  return getDependentSizedArrayType(unqualElementType, DSAT->getSizeExpr(),
2946                                    DSAT->getSizeModifier(), 0,
2947                                    SourceRange());
2948}
2949
2950/// UnwrapSimilarPointerTypes - If T1 and T2 are pointer types  that
2951/// may be similar (C++ 4.4), replaces T1 and T2 with the type that
2952/// they point to and return true. If T1 and T2 aren't pointer types
2953/// or pointer-to-member types, or if they are not similar at this
2954/// level, returns false and leaves T1 and T2 unchanged. Top-level
2955/// qualifiers on T1 and T2 are ignored. This function will typically
2956/// be called in a loop that successively "unwraps" pointer and
2957/// pointer-to-member types to compare them at each level.
2958bool ASTContext::UnwrapSimilarPointerTypes(QualType &T1, QualType &T2) {
2959  const PointerType *T1PtrType = T1->getAs<PointerType>(),
2960                    *T2PtrType = T2->getAs<PointerType>();
2961  if (T1PtrType && T2PtrType) {
2962    T1 = T1PtrType->getPointeeType();
2963    T2 = T2PtrType->getPointeeType();
2964    return true;
2965  }
2966
2967  const MemberPointerType *T1MPType = T1->getAs<MemberPointerType>(),
2968                          *T2MPType = T2->getAs<MemberPointerType>();
2969  if (T1MPType && T2MPType &&
2970      hasSameUnqualifiedType(QualType(T1MPType->getClass(), 0),
2971                             QualType(T2MPType->getClass(), 0))) {
2972    T1 = T1MPType->getPointeeType();
2973    T2 = T2MPType->getPointeeType();
2974    return true;
2975  }
2976
2977  if (getLangOptions().ObjC1) {
2978    const ObjCObjectPointerType *T1OPType = T1->getAs<ObjCObjectPointerType>(),
2979                                *T2OPType = T2->getAs<ObjCObjectPointerType>();
2980    if (T1OPType && T2OPType) {
2981      T1 = T1OPType->getPointeeType();
2982      T2 = T2OPType->getPointeeType();
2983      return true;
2984    }
2985  }
2986
2987  // FIXME: Block pointers, too?
2988
2989  return false;
2990}
2991
2992DeclarationNameInfo
2993ASTContext::getNameForTemplate(TemplateName Name,
2994                               SourceLocation NameLoc) const {
2995  if (TemplateDecl *TD = Name.getAsTemplateDecl())
2996    // DNInfo work in progress: CHECKME: what about DNLoc?
2997    return DeclarationNameInfo(TD->getDeclName(), NameLoc);
2998
2999  if (DependentTemplateName *DTN = Name.getAsDependentTemplateName()) {
3000    DeclarationName DName;
3001    if (DTN->isIdentifier()) {
3002      DName = DeclarationNames.getIdentifier(DTN->getIdentifier());
3003      return DeclarationNameInfo(DName, NameLoc);
3004    } else {
3005      DName = DeclarationNames.getCXXOperatorName(DTN->getOperator());
3006      // DNInfo work in progress: FIXME: source locations?
3007      DeclarationNameLoc DNLoc;
3008      DNLoc.CXXOperatorName.BeginOpNameLoc = SourceLocation().getRawEncoding();
3009      DNLoc.CXXOperatorName.EndOpNameLoc = SourceLocation().getRawEncoding();
3010      return DeclarationNameInfo(DName, NameLoc, DNLoc);
3011    }
3012  }
3013
3014  OverloadedTemplateStorage *Storage = Name.getAsOverloadedTemplate();
3015  assert(Storage);
3016  // DNInfo work in progress: CHECKME: what about DNLoc?
3017  return DeclarationNameInfo((*Storage->begin())->getDeclName(), NameLoc);
3018}
3019
3020TemplateName ASTContext::getCanonicalTemplateName(TemplateName Name) const {
3021  if (TemplateDecl *Template = Name.getAsTemplateDecl()) {
3022    if (TemplateTemplateParmDecl *TTP
3023                              = dyn_cast<TemplateTemplateParmDecl>(Template))
3024      Template = getCanonicalTemplateTemplateParmDecl(TTP);
3025
3026    // The canonical template name is the canonical template declaration.
3027    return TemplateName(cast<TemplateDecl>(Template->getCanonicalDecl()));
3028  }
3029
3030  if (SubstTemplateTemplateParmPackStorage *SubstPack
3031                                  = Name.getAsSubstTemplateTemplateParmPack()) {
3032    TemplateTemplateParmDecl *CanonParam
3033      = getCanonicalTemplateTemplateParmDecl(SubstPack->getParameterPack());
3034    TemplateArgument CanonArgPack
3035      = getCanonicalTemplateArgument(SubstPack->getArgumentPack());
3036    return getSubstTemplateTemplateParmPack(CanonParam, CanonArgPack);
3037  }
3038
3039  assert(!Name.getAsOverloadedTemplate());
3040
3041  DependentTemplateName *DTN = Name.getAsDependentTemplateName();
3042  assert(DTN && "Non-dependent template names must refer to template decls.");
3043  return DTN->CanonicalTemplateName;
3044}
3045
3046bool ASTContext::hasSameTemplateName(TemplateName X, TemplateName Y) {
3047  X = getCanonicalTemplateName(X);
3048  Y = getCanonicalTemplateName(Y);
3049  return X.getAsVoidPointer() == Y.getAsVoidPointer();
3050}
3051
3052TemplateArgument
3053ASTContext::getCanonicalTemplateArgument(const TemplateArgument &Arg) const {
3054  switch (Arg.getKind()) {
3055    case TemplateArgument::Null:
3056      return Arg;
3057
3058    case TemplateArgument::Expression:
3059      return Arg;
3060
3061    case TemplateArgument::Declaration:
3062      return TemplateArgument(Arg.getAsDecl()->getCanonicalDecl());
3063
3064    case TemplateArgument::Template:
3065      return TemplateArgument(getCanonicalTemplateName(Arg.getAsTemplate()));
3066
3067    case TemplateArgument::TemplateExpansion:
3068      return TemplateArgument(getCanonicalTemplateName(
3069                                         Arg.getAsTemplateOrTemplatePattern()),
3070                              Arg.getNumTemplateExpansions());
3071
3072    case TemplateArgument::Integral:
3073      return TemplateArgument(*Arg.getAsIntegral(),
3074                              getCanonicalType(Arg.getIntegralType()));
3075
3076    case TemplateArgument::Type:
3077      return TemplateArgument(getCanonicalType(Arg.getAsType()));
3078
3079    case TemplateArgument::Pack: {
3080      if (Arg.pack_size() == 0)
3081        return Arg;
3082
3083      TemplateArgument *CanonArgs
3084        = new (*this) TemplateArgument[Arg.pack_size()];
3085      unsigned Idx = 0;
3086      for (TemplateArgument::pack_iterator A = Arg.pack_begin(),
3087                                        AEnd = Arg.pack_end();
3088           A != AEnd; (void)++A, ++Idx)
3089        CanonArgs[Idx] = getCanonicalTemplateArgument(*A);
3090
3091      return TemplateArgument(CanonArgs, Arg.pack_size());
3092    }
3093  }
3094
3095  // Silence GCC warning
3096  assert(false && "Unhandled template argument kind");
3097  return TemplateArgument();
3098}
3099
3100NestedNameSpecifier *
3101ASTContext::getCanonicalNestedNameSpecifier(NestedNameSpecifier *NNS) const {
3102  if (!NNS)
3103    return 0;
3104
3105  switch (NNS->getKind()) {
3106  case NestedNameSpecifier::Identifier:
3107    // Canonicalize the prefix but keep the identifier the same.
3108    return NestedNameSpecifier::Create(*this,
3109                         getCanonicalNestedNameSpecifier(NNS->getPrefix()),
3110                                       NNS->getAsIdentifier());
3111
3112  case NestedNameSpecifier::Namespace:
3113    // A namespace is canonical; build a nested-name-specifier with
3114    // this namespace and no prefix.
3115    return NestedNameSpecifier::Create(*this, 0,
3116                                 NNS->getAsNamespace()->getOriginalNamespace());
3117
3118  case NestedNameSpecifier::NamespaceAlias:
3119    // A namespace is canonical; build a nested-name-specifier with
3120    // this namespace and no prefix.
3121    return NestedNameSpecifier::Create(*this, 0,
3122                                    NNS->getAsNamespaceAlias()->getNamespace()
3123                                                      ->getOriginalNamespace());
3124
3125  case NestedNameSpecifier::TypeSpec:
3126  case NestedNameSpecifier::TypeSpecWithTemplate: {
3127    QualType T = getCanonicalType(QualType(NNS->getAsType(), 0));
3128
3129    // If we have some kind of dependent-named type (e.g., "typename T::type"),
3130    // break it apart into its prefix and identifier, then reconsititute those
3131    // as the canonical nested-name-specifier. This is required to canonicalize
3132    // a dependent nested-name-specifier involving typedefs of dependent-name
3133    // types, e.g.,
3134    //   typedef typename T::type T1;
3135    //   typedef typename T1::type T2;
3136    if (const DependentNameType *DNT = T->getAs<DependentNameType>()) {
3137      NestedNameSpecifier *Prefix
3138        = getCanonicalNestedNameSpecifier(DNT->getQualifier());
3139      return NestedNameSpecifier::Create(*this, Prefix,
3140                           const_cast<IdentifierInfo *>(DNT->getIdentifier()));
3141    }
3142
3143    // Do the same thing as above, but with dependent-named specializations.
3144    if (const DependentTemplateSpecializationType *DTST
3145          = T->getAs<DependentTemplateSpecializationType>()) {
3146      NestedNameSpecifier *Prefix
3147        = getCanonicalNestedNameSpecifier(DTST->getQualifier());
3148
3149      T = getDependentTemplateSpecializationType(DTST->getKeyword(),
3150                                                 Prefix, DTST->getIdentifier(),
3151                                                 DTST->getNumArgs(),
3152                                                 DTST->getArgs());
3153      T = getCanonicalType(T);
3154    }
3155
3156    return NestedNameSpecifier::Create(*this, 0, false,
3157                                       const_cast<Type*>(T.getTypePtr()));
3158  }
3159
3160  case NestedNameSpecifier::Global:
3161    // The global specifier is canonical and unique.
3162    return NNS;
3163  }
3164
3165  // Required to silence a GCC warning
3166  return 0;
3167}
3168
3169
3170const ArrayType *ASTContext::getAsArrayType(QualType T) const {
3171  // Handle the non-qualified case efficiently.
3172  if (!T.hasLocalQualifiers()) {
3173    // Handle the common positive case fast.
3174    if (const ArrayType *AT = dyn_cast<ArrayType>(T))
3175      return AT;
3176  }
3177
3178  // Handle the common negative case fast.
3179  if (!isa<ArrayType>(T.getCanonicalType()))
3180    return 0;
3181
3182  // Apply any qualifiers from the array type to the element type.  This
3183  // implements C99 6.7.3p8: "If the specification of an array type includes
3184  // any type qualifiers, the element type is so qualified, not the array type."
3185
3186  // If we get here, we either have type qualifiers on the type, or we have
3187  // sugar such as a typedef in the way.  If we have type qualifiers on the type
3188  // we must propagate them down into the element type.
3189
3190  SplitQualType split = T.getSplitDesugaredType();
3191  Qualifiers qs = split.second;
3192
3193  // If we have a simple case, just return now.
3194  const ArrayType *ATy = dyn_cast<ArrayType>(split.first);
3195  if (ATy == 0 || qs.empty())
3196    return ATy;
3197
3198  // Otherwise, we have an array and we have qualifiers on it.  Push the
3199  // qualifiers into the array element type and return a new array type.
3200  QualType NewEltTy = getQualifiedType(ATy->getElementType(), qs);
3201
3202  if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(ATy))
3203    return cast<ArrayType>(getConstantArrayType(NewEltTy, CAT->getSize(),
3204                                                CAT->getSizeModifier(),
3205                                           CAT->getIndexTypeCVRQualifiers()));
3206  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(ATy))
3207    return cast<ArrayType>(getIncompleteArrayType(NewEltTy,
3208                                                  IAT->getSizeModifier(),
3209                                           IAT->getIndexTypeCVRQualifiers()));
3210
3211  if (const DependentSizedArrayType *DSAT
3212        = dyn_cast<DependentSizedArrayType>(ATy))
3213    return cast<ArrayType>(
3214                     getDependentSizedArrayType(NewEltTy,
3215                                                DSAT->getSizeExpr(),
3216                                                DSAT->getSizeModifier(),
3217                                              DSAT->getIndexTypeCVRQualifiers(),
3218                                                DSAT->getBracketsRange()));
3219
3220  const VariableArrayType *VAT = cast<VariableArrayType>(ATy);
3221  return cast<ArrayType>(getVariableArrayType(NewEltTy,
3222                                              VAT->getSizeExpr(),
3223                                              VAT->getSizeModifier(),
3224                                              VAT->getIndexTypeCVRQualifiers(),
3225                                              VAT->getBracketsRange()));
3226}
3227
3228/// getArrayDecayedType - Return the properly qualified result of decaying the
3229/// specified array type to a pointer.  This operation is non-trivial when
3230/// handling typedefs etc.  The canonical type of "T" must be an array type,
3231/// this returns a pointer to a properly qualified element of the array.
3232///
3233/// See C99 6.7.5.3p7 and C99 6.3.2.1p3.
3234QualType ASTContext::getArrayDecayedType(QualType Ty) const {
3235  // Get the element type with 'getAsArrayType' so that we don't lose any
3236  // typedefs in the element type of the array.  This also handles propagation
3237  // of type qualifiers from the array type into the element type if present
3238  // (C99 6.7.3p8).
3239  const ArrayType *PrettyArrayType = getAsArrayType(Ty);
3240  assert(PrettyArrayType && "Not an array type!");
3241
3242  QualType PtrTy = getPointerType(PrettyArrayType->getElementType());
3243
3244  // int x[restrict 4] ->  int *restrict
3245  return getQualifiedType(PtrTy, PrettyArrayType->getIndexTypeQualifiers());
3246}
3247
3248QualType ASTContext::getBaseElementType(const ArrayType *array) const {
3249  return getBaseElementType(array->getElementType());
3250}
3251
3252QualType ASTContext::getBaseElementType(QualType type) const {
3253  Qualifiers qs;
3254  while (true) {
3255    SplitQualType split = type.getSplitDesugaredType();
3256    const ArrayType *array = split.first->getAsArrayTypeUnsafe();
3257    if (!array) break;
3258
3259    type = array->getElementType();
3260    qs.addConsistentQualifiers(split.second);
3261  }
3262
3263  return getQualifiedType(type, qs);
3264}
3265
3266/// getConstantArrayElementCount - Returns number of constant array elements.
3267uint64_t
3268ASTContext::getConstantArrayElementCount(const ConstantArrayType *CA)  const {
3269  uint64_t ElementCount = 1;
3270  do {
3271    ElementCount *= CA->getSize().getZExtValue();
3272    CA = dyn_cast<ConstantArrayType>(CA->getElementType());
3273  } while (CA);
3274  return ElementCount;
3275}
3276
3277/// getFloatingRank - Return a relative rank for floating point types.
3278/// This routine will assert if passed a built-in type that isn't a float.
3279static FloatingRank getFloatingRank(QualType T) {
3280  if (const ComplexType *CT = T->getAs<ComplexType>())
3281    return getFloatingRank(CT->getElementType());
3282
3283  assert(T->getAs<BuiltinType>() && "getFloatingRank(): not a floating type");
3284  switch (T->getAs<BuiltinType>()->getKind()) {
3285  default: assert(0 && "getFloatingRank(): not a floating type");
3286  case BuiltinType::Float:      return FloatRank;
3287  case BuiltinType::Double:     return DoubleRank;
3288  case BuiltinType::LongDouble: return LongDoubleRank;
3289  }
3290}
3291
3292/// getFloatingTypeOfSizeWithinDomain - Returns a real floating
3293/// point or a complex type (based on typeDomain/typeSize).
3294/// 'typeDomain' is a real floating point or complex type.
3295/// 'typeSize' is a real floating point or complex type.
3296QualType ASTContext::getFloatingTypeOfSizeWithinDomain(QualType Size,
3297                                                       QualType Domain) const {
3298  FloatingRank EltRank = getFloatingRank(Size);
3299  if (Domain->isComplexType()) {
3300    switch (EltRank) {
3301    default: assert(0 && "getFloatingRank(): illegal value for rank");
3302    case FloatRank:      return FloatComplexTy;
3303    case DoubleRank:     return DoubleComplexTy;
3304    case LongDoubleRank: return LongDoubleComplexTy;
3305    }
3306  }
3307
3308  assert(Domain->isRealFloatingType() && "Unknown domain!");
3309  switch (EltRank) {
3310  default: assert(0 && "getFloatingRank(): illegal value for rank");
3311  case FloatRank:      return FloatTy;
3312  case DoubleRank:     return DoubleTy;
3313  case LongDoubleRank: return LongDoubleTy;
3314  }
3315}
3316
3317/// getFloatingTypeOrder - Compare the rank of the two specified floating
3318/// point types, ignoring the domain of the type (i.e. 'double' ==
3319/// '_Complex double').  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
3320/// LHS < RHS, return -1.
3321int ASTContext::getFloatingTypeOrder(QualType LHS, QualType RHS) const {
3322  FloatingRank LHSR = getFloatingRank(LHS);
3323  FloatingRank RHSR = getFloatingRank(RHS);
3324
3325  if (LHSR == RHSR)
3326    return 0;
3327  if (LHSR > RHSR)
3328    return 1;
3329  return -1;
3330}
3331
3332/// getIntegerRank - Return an integer conversion rank (C99 6.3.1.1p1). This
3333/// routine will assert if passed a built-in type that isn't an integer or enum,
3334/// or if it is not canonicalized.
3335unsigned ASTContext::getIntegerRank(const Type *T) const {
3336  assert(T->isCanonicalUnqualified() && "T should be canonicalized");
3337  if (const EnumType* ET = dyn_cast<EnumType>(T))
3338    T = ET->getDecl()->getPromotionType().getTypePtr();
3339
3340  if (T->isSpecificBuiltinType(BuiltinType::WChar_S) ||
3341      T->isSpecificBuiltinType(BuiltinType::WChar_U))
3342    T = getFromTargetType(Target.getWCharType()).getTypePtr();
3343
3344  if (T->isSpecificBuiltinType(BuiltinType::Char16))
3345    T = getFromTargetType(Target.getChar16Type()).getTypePtr();
3346
3347  if (T->isSpecificBuiltinType(BuiltinType::Char32))
3348    T = getFromTargetType(Target.getChar32Type()).getTypePtr();
3349
3350  switch (cast<BuiltinType>(T)->getKind()) {
3351  default: assert(0 && "getIntegerRank(): not a built-in integer");
3352  case BuiltinType::Bool:
3353    return 1 + (getIntWidth(BoolTy) << 3);
3354  case BuiltinType::Char_S:
3355  case BuiltinType::Char_U:
3356  case BuiltinType::SChar:
3357  case BuiltinType::UChar:
3358    return 2 + (getIntWidth(CharTy) << 3);
3359  case BuiltinType::Short:
3360  case BuiltinType::UShort:
3361    return 3 + (getIntWidth(ShortTy) << 3);
3362  case BuiltinType::Int:
3363  case BuiltinType::UInt:
3364    return 4 + (getIntWidth(IntTy) << 3);
3365  case BuiltinType::Long:
3366  case BuiltinType::ULong:
3367    return 5 + (getIntWidth(LongTy) << 3);
3368  case BuiltinType::LongLong:
3369  case BuiltinType::ULongLong:
3370    return 6 + (getIntWidth(LongLongTy) << 3);
3371  case BuiltinType::Int128:
3372  case BuiltinType::UInt128:
3373    return 7 + (getIntWidth(Int128Ty) << 3);
3374  }
3375}
3376
3377/// \brief Whether this is a promotable bitfield reference according
3378/// to C99 6.3.1.1p2, bullet 2 (and GCC extensions).
3379///
3380/// \returns the type this bit-field will promote to, or NULL if no
3381/// promotion occurs.
3382QualType ASTContext::isPromotableBitField(Expr *E) const {
3383  if (E->isTypeDependent() || E->isValueDependent())
3384    return QualType();
3385
3386  FieldDecl *Field = E->getBitField();
3387  if (!Field)
3388    return QualType();
3389
3390  QualType FT = Field->getType();
3391
3392  llvm::APSInt BitWidthAP = Field->getBitWidth()->EvaluateAsInt(*this);
3393  uint64_t BitWidth = BitWidthAP.getZExtValue();
3394  uint64_t IntSize = getTypeSize(IntTy);
3395  // GCC extension compatibility: if the bit-field size is less than or equal
3396  // to the size of int, it gets promoted no matter what its type is.
3397  // For instance, unsigned long bf : 4 gets promoted to signed int.
3398  if (BitWidth < IntSize)
3399    return IntTy;
3400
3401  if (BitWidth == IntSize)
3402    return FT->isSignedIntegerType() ? IntTy : UnsignedIntTy;
3403
3404  // Types bigger than int are not subject to promotions, and therefore act
3405  // like the base type.
3406  // FIXME: This doesn't quite match what gcc does, but what gcc does here
3407  // is ridiculous.
3408  return QualType();
3409}
3410
3411/// getPromotedIntegerType - Returns the type that Promotable will
3412/// promote to: C99 6.3.1.1p2, assuming that Promotable is a promotable
3413/// integer type.
3414QualType ASTContext::getPromotedIntegerType(QualType Promotable) const {
3415  assert(!Promotable.isNull());
3416  assert(Promotable->isPromotableIntegerType());
3417  if (const EnumType *ET = Promotable->getAs<EnumType>())
3418    return ET->getDecl()->getPromotionType();
3419  if (Promotable->isSignedIntegerType())
3420    return IntTy;
3421  uint64_t PromotableSize = getTypeSize(Promotable);
3422  uint64_t IntSize = getTypeSize(IntTy);
3423  assert(Promotable->isUnsignedIntegerType() && PromotableSize <= IntSize);
3424  return (PromotableSize != IntSize) ? IntTy : UnsignedIntTy;
3425}
3426
3427/// getIntegerTypeOrder - Returns the highest ranked integer type:
3428/// C99 6.3.1.8p1.  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
3429/// LHS < RHS, return -1.
3430int ASTContext::getIntegerTypeOrder(QualType LHS, QualType RHS) const {
3431  const Type *LHSC = getCanonicalType(LHS).getTypePtr();
3432  const Type *RHSC = getCanonicalType(RHS).getTypePtr();
3433  if (LHSC == RHSC) return 0;
3434
3435  bool LHSUnsigned = LHSC->isUnsignedIntegerType();
3436  bool RHSUnsigned = RHSC->isUnsignedIntegerType();
3437
3438  unsigned LHSRank = getIntegerRank(LHSC);
3439  unsigned RHSRank = getIntegerRank(RHSC);
3440
3441  if (LHSUnsigned == RHSUnsigned) {  // Both signed or both unsigned.
3442    if (LHSRank == RHSRank) return 0;
3443    return LHSRank > RHSRank ? 1 : -1;
3444  }
3445
3446  // Otherwise, the LHS is signed and the RHS is unsigned or visa versa.
3447  if (LHSUnsigned) {
3448    // If the unsigned [LHS] type is larger, return it.
3449    if (LHSRank >= RHSRank)
3450      return 1;
3451
3452    // If the signed type can represent all values of the unsigned type, it
3453    // wins.  Because we are dealing with 2's complement and types that are
3454    // powers of two larger than each other, this is always safe.
3455    return -1;
3456  }
3457
3458  // If the unsigned [RHS] type is larger, return it.
3459  if (RHSRank >= LHSRank)
3460    return -1;
3461
3462  // If the signed type can represent all values of the unsigned type, it
3463  // wins.  Because we are dealing with 2's complement and types that are
3464  // powers of two larger than each other, this is always safe.
3465  return 1;
3466}
3467
3468static RecordDecl *
3469CreateRecordDecl(const ASTContext &Ctx, RecordDecl::TagKind TK,
3470                 DeclContext *DC, IdentifierInfo *Id) {
3471  SourceLocation Loc;
3472  if (Ctx.getLangOptions().CPlusPlus)
3473    return CXXRecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id);
3474  else
3475    return RecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id);
3476}
3477
3478// getCFConstantStringType - Return the type used for constant CFStrings.
3479QualType ASTContext::getCFConstantStringType() const {
3480  if (!CFConstantStringTypeDecl) {
3481    CFConstantStringTypeDecl =
3482      CreateRecordDecl(*this, TTK_Struct, TUDecl,
3483                       &Idents.get("NSConstantString"));
3484    CFConstantStringTypeDecl->startDefinition();
3485
3486    QualType FieldTypes[4];
3487
3488    // const int *isa;
3489    FieldTypes[0] = getPointerType(IntTy.withConst());
3490    // int flags;
3491    FieldTypes[1] = IntTy;
3492    // const char *str;
3493    FieldTypes[2] = getPointerType(CharTy.withConst());
3494    // long length;
3495    FieldTypes[3] = LongTy;
3496
3497    // Create fields
3498    for (unsigned i = 0; i < 4; ++i) {
3499      FieldDecl *Field = FieldDecl::Create(*this, CFConstantStringTypeDecl,
3500                                           SourceLocation(),
3501                                           SourceLocation(), 0,
3502                                           FieldTypes[i], /*TInfo=*/0,
3503                                           /*BitWidth=*/0,
3504                                           /*Mutable=*/false);
3505      Field->setAccess(AS_public);
3506      CFConstantStringTypeDecl->addDecl(Field);
3507    }
3508
3509    CFConstantStringTypeDecl->completeDefinition();
3510  }
3511
3512  return getTagDeclType(CFConstantStringTypeDecl);
3513}
3514
3515void ASTContext::setCFConstantStringType(QualType T) {
3516  const RecordType *Rec = T->getAs<RecordType>();
3517  assert(Rec && "Invalid CFConstantStringType");
3518  CFConstantStringTypeDecl = Rec->getDecl();
3519}
3520
3521// getNSConstantStringType - Return the type used for constant NSStrings.
3522QualType ASTContext::getNSConstantStringType() const {
3523  if (!NSConstantStringTypeDecl) {
3524    NSConstantStringTypeDecl =
3525    CreateRecordDecl(*this, TTK_Struct, TUDecl,
3526                     &Idents.get("__builtin_NSString"));
3527    NSConstantStringTypeDecl->startDefinition();
3528
3529    QualType FieldTypes[3];
3530
3531    // const int *isa;
3532    FieldTypes[0] = getPointerType(IntTy.withConst());
3533    // const char *str;
3534    FieldTypes[1] = getPointerType(CharTy.withConst());
3535    // unsigned int length;
3536    FieldTypes[2] = UnsignedIntTy;
3537
3538    // Create fields
3539    for (unsigned i = 0; i < 3; ++i) {
3540      FieldDecl *Field = FieldDecl::Create(*this, NSConstantStringTypeDecl,
3541                                           SourceLocation(),
3542                                           SourceLocation(), 0,
3543                                           FieldTypes[i], /*TInfo=*/0,
3544                                           /*BitWidth=*/0,
3545                                           /*Mutable=*/false);
3546      Field->setAccess(AS_public);
3547      NSConstantStringTypeDecl->addDecl(Field);
3548    }
3549
3550    NSConstantStringTypeDecl->completeDefinition();
3551  }
3552
3553  return getTagDeclType(NSConstantStringTypeDecl);
3554}
3555
3556void ASTContext::setNSConstantStringType(QualType T) {
3557  const RecordType *Rec = T->getAs<RecordType>();
3558  assert(Rec && "Invalid NSConstantStringType");
3559  NSConstantStringTypeDecl = Rec->getDecl();
3560}
3561
3562QualType ASTContext::getObjCFastEnumerationStateType() const {
3563  if (!ObjCFastEnumerationStateTypeDecl) {
3564    ObjCFastEnumerationStateTypeDecl =
3565      CreateRecordDecl(*this, TTK_Struct, TUDecl,
3566                       &Idents.get("__objcFastEnumerationState"));
3567    ObjCFastEnumerationStateTypeDecl->startDefinition();
3568
3569    QualType FieldTypes[] = {
3570      UnsignedLongTy,
3571      getPointerType(ObjCIdTypedefType),
3572      getPointerType(UnsignedLongTy),
3573      getConstantArrayType(UnsignedLongTy,
3574                           llvm::APInt(32, 5), ArrayType::Normal, 0)
3575    };
3576
3577    for (size_t i = 0; i < 4; ++i) {
3578      FieldDecl *Field = FieldDecl::Create(*this,
3579                                           ObjCFastEnumerationStateTypeDecl,
3580                                           SourceLocation(),
3581                                           SourceLocation(), 0,
3582                                           FieldTypes[i], /*TInfo=*/0,
3583                                           /*BitWidth=*/0,
3584                                           /*Mutable=*/false);
3585      Field->setAccess(AS_public);
3586      ObjCFastEnumerationStateTypeDecl->addDecl(Field);
3587    }
3588
3589    ObjCFastEnumerationStateTypeDecl->completeDefinition();
3590  }
3591
3592  return getTagDeclType(ObjCFastEnumerationStateTypeDecl);
3593}
3594
3595QualType ASTContext::getBlockDescriptorType() const {
3596  if (BlockDescriptorType)
3597    return getTagDeclType(BlockDescriptorType);
3598
3599  RecordDecl *T;
3600  // FIXME: Needs the FlagAppleBlock bit.
3601  T = CreateRecordDecl(*this, TTK_Struct, TUDecl,
3602                       &Idents.get("__block_descriptor"));
3603  T->startDefinition();
3604
3605  QualType FieldTypes[] = {
3606    UnsignedLongTy,
3607    UnsignedLongTy,
3608  };
3609
3610  const char *FieldNames[] = {
3611    "reserved",
3612    "Size"
3613  };
3614
3615  for (size_t i = 0; i < 2; ++i) {
3616    FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(),
3617                                         SourceLocation(),
3618                                         &Idents.get(FieldNames[i]),
3619                                         FieldTypes[i], /*TInfo=*/0,
3620                                         /*BitWidth=*/0,
3621                                         /*Mutable=*/false);
3622    Field->setAccess(AS_public);
3623    T->addDecl(Field);
3624  }
3625
3626  T->completeDefinition();
3627
3628  BlockDescriptorType = T;
3629
3630  return getTagDeclType(BlockDescriptorType);
3631}
3632
3633void ASTContext::setBlockDescriptorType(QualType T) {
3634  const RecordType *Rec = T->getAs<RecordType>();
3635  assert(Rec && "Invalid BlockDescriptorType");
3636  BlockDescriptorType = Rec->getDecl();
3637}
3638
3639QualType ASTContext::getBlockDescriptorExtendedType() const {
3640  if (BlockDescriptorExtendedType)
3641    return getTagDeclType(BlockDescriptorExtendedType);
3642
3643  RecordDecl *T;
3644  // FIXME: Needs the FlagAppleBlock bit.
3645  T = CreateRecordDecl(*this, TTK_Struct, TUDecl,
3646                       &Idents.get("__block_descriptor_withcopydispose"));
3647  T->startDefinition();
3648
3649  QualType FieldTypes[] = {
3650    UnsignedLongTy,
3651    UnsignedLongTy,
3652    getPointerType(VoidPtrTy),
3653    getPointerType(VoidPtrTy)
3654  };
3655
3656  const char *FieldNames[] = {
3657    "reserved",
3658    "Size",
3659    "CopyFuncPtr",
3660    "DestroyFuncPtr"
3661  };
3662
3663  for (size_t i = 0; i < 4; ++i) {
3664    FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(),
3665                                         SourceLocation(),
3666                                         &Idents.get(FieldNames[i]),
3667                                         FieldTypes[i], /*TInfo=*/0,
3668                                         /*BitWidth=*/0,
3669                                         /*Mutable=*/false);
3670    Field->setAccess(AS_public);
3671    T->addDecl(Field);
3672  }
3673
3674  T->completeDefinition();
3675
3676  BlockDescriptorExtendedType = T;
3677
3678  return getTagDeclType(BlockDescriptorExtendedType);
3679}
3680
3681void ASTContext::setBlockDescriptorExtendedType(QualType T) {
3682  const RecordType *Rec = T->getAs<RecordType>();
3683  assert(Rec && "Invalid BlockDescriptorType");
3684  BlockDescriptorExtendedType = Rec->getDecl();
3685}
3686
3687bool ASTContext::BlockRequiresCopying(QualType Ty) const {
3688  if (Ty->isBlockPointerType())
3689    return true;
3690  if (isObjCNSObjectType(Ty))
3691    return true;
3692  if (Ty->isObjCObjectPointerType())
3693    return true;
3694  if (getLangOptions().CPlusPlus) {
3695    if (const RecordType *RT = Ty->getAs<RecordType>()) {
3696      CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
3697      return RD->hasConstCopyConstructor(*this);
3698
3699    }
3700  }
3701  return false;
3702}
3703
3704QualType
3705ASTContext::BuildByRefType(llvm::StringRef DeclName, QualType Ty) const {
3706  //  type = struct __Block_byref_1_X {
3707  //    void *__isa;
3708  //    struct __Block_byref_1_X *__forwarding;
3709  //    unsigned int __flags;
3710  //    unsigned int __size;
3711  //    void *__copy_helper;            // as needed
3712  //    void *__destroy_help            // as needed
3713  //    int X;
3714  //  } *
3715
3716  bool HasCopyAndDispose = BlockRequiresCopying(Ty);
3717
3718  // FIXME: Move up
3719  llvm::SmallString<36> Name;
3720  llvm::raw_svector_ostream(Name) << "__Block_byref_" <<
3721                                  ++UniqueBlockByRefTypeID << '_' << DeclName;
3722  RecordDecl *T;
3723  T = CreateRecordDecl(*this, TTK_Struct, TUDecl, &Idents.get(Name.str()));
3724  T->startDefinition();
3725  QualType Int32Ty = IntTy;
3726  assert(getIntWidth(IntTy) == 32 && "non-32bit int not supported");
3727  QualType FieldTypes[] = {
3728    getPointerType(VoidPtrTy),
3729    getPointerType(getTagDeclType(T)),
3730    Int32Ty,
3731    Int32Ty,
3732    getPointerType(VoidPtrTy),
3733    getPointerType(VoidPtrTy),
3734    Ty
3735  };
3736
3737  llvm::StringRef FieldNames[] = {
3738    "__isa",
3739    "__forwarding",
3740    "__flags",
3741    "__size",
3742    "__copy_helper",
3743    "__destroy_helper",
3744    DeclName,
3745  };
3746
3747  for (size_t i = 0; i < 7; ++i) {
3748    if (!HasCopyAndDispose && i >=4 && i <= 5)
3749      continue;
3750    FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(),
3751                                         SourceLocation(),
3752                                         &Idents.get(FieldNames[i]),
3753                                         FieldTypes[i], /*TInfo=*/0,
3754                                         /*BitWidth=*/0, /*Mutable=*/false);
3755    Field->setAccess(AS_public);
3756    T->addDecl(Field);
3757  }
3758
3759  T->completeDefinition();
3760
3761  return getPointerType(getTagDeclType(T));
3762}
3763
3764void ASTContext::setObjCFastEnumerationStateType(QualType T) {
3765  const RecordType *Rec = T->getAs<RecordType>();
3766  assert(Rec && "Invalid ObjCFAstEnumerationStateType");
3767  ObjCFastEnumerationStateTypeDecl = Rec->getDecl();
3768}
3769
3770// This returns true if a type has been typedefed to BOOL:
3771// typedef <type> BOOL;
3772static bool isTypeTypedefedAsBOOL(QualType T) {
3773  if (const TypedefType *TT = dyn_cast<TypedefType>(T))
3774    if (IdentifierInfo *II = TT->getDecl()->getIdentifier())
3775      return II->isStr("BOOL");
3776
3777  return false;
3778}
3779
3780/// getObjCEncodingTypeSize returns size of type for objective-c encoding
3781/// purpose.
3782CharUnits ASTContext::getObjCEncodingTypeSize(QualType type) const {
3783  CharUnits sz = getTypeSizeInChars(type);
3784
3785  // Make all integer and enum types at least as large as an int
3786  if (sz.isPositive() && type->isIntegralOrEnumerationType())
3787    sz = std::max(sz, getTypeSizeInChars(IntTy));
3788  // Treat arrays as pointers, since that's how they're passed in.
3789  else if (type->isArrayType())
3790    sz = getTypeSizeInChars(VoidPtrTy);
3791  return sz;
3792}
3793
3794static inline
3795std::string charUnitsToString(const CharUnits &CU) {
3796  return llvm::itostr(CU.getQuantity());
3797}
3798
3799/// getObjCEncodingForBlock - Return the encoded type for this block
3800/// declaration.
3801std::string ASTContext::getObjCEncodingForBlock(const BlockExpr *Expr) const {
3802  std::string S;
3803
3804  const BlockDecl *Decl = Expr->getBlockDecl();
3805  QualType BlockTy =
3806      Expr->getType()->getAs<BlockPointerType>()->getPointeeType();
3807  // Encode result type.
3808  getObjCEncodingForType(BlockTy->getAs<FunctionType>()->getResultType(), S);
3809  // Compute size of all parameters.
3810  // Start with computing size of a pointer in number of bytes.
3811  // FIXME: There might(should) be a better way of doing this computation!
3812  SourceLocation Loc;
3813  CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy);
3814  CharUnits ParmOffset = PtrSize;
3815  for (BlockDecl::param_const_iterator PI = Decl->param_begin(),
3816       E = Decl->param_end(); PI != E; ++PI) {
3817    QualType PType = (*PI)->getType();
3818    CharUnits sz = getObjCEncodingTypeSize(PType);
3819    assert (sz.isPositive() && "BlockExpr - Incomplete param type");
3820    ParmOffset += sz;
3821  }
3822  // Size of the argument frame
3823  S += charUnitsToString(ParmOffset);
3824  // Block pointer and offset.
3825  S += "@?0";
3826  ParmOffset = PtrSize;
3827
3828  // Argument types.
3829  ParmOffset = PtrSize;
3830  for (BlockDecl::param_const_iterator PI = Decl->param_begin(), E =
3831       Decl->param_end(); PI != E; ++PI) {
3832    ParmVarDecl *PVDecl = *PI;
3833    QualType PType = PVDecl->getOriginalType();
3834    if (const ArrayType *AT =
3835          dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
3836      // Use array's original type only if it has known number of
3837      // elements.
3838      if (!isa<ConstantArrayType>(AT))
3839        PType = PVDecl->getType();
3840    } else if (PType->isFunctionType())
3841      PType = PVDecl->getType();
3842    getObjCEncodingForType(PType, S);
3843    S += charUnitsToString(ParmOffset);
3844    ParmOffset += getObjCEncodingTypeSize(PType);
3845  }
3846
3847  return S;
3848}
3849
3850void ASTContext::getObjCEncodingForFunctionDecl(const FunctionDecl *Decl,
3851                                                std::string& S) {
3852  // Encode result type.
3853  getObjCEncodingForType(Decl->getResultType(), S);
3854  CharUnits ParmOffset;
3855  // Compute size of all parameters.
3856  for (FunctionDecl::param_const_iterator PI = Decl->param_begin(),
3857       E = Decl->param_end(); PI != E; ++PI) {
3858    QualType PType = (*PI)->getType();
3859    CharUnits sz = getObjCEncodingTypeSize(PType);
3860    assert (sz.isPositive() &&
3861        "getObjCEncodingForMethodDecl - Incomplete param type");
3862    ParmOffset += sz;
3863  }
3864  S += charUnitsToString(ParmOffset);
3865  ParmOffset = CharUnits::Zero();
3866
3867  // Argument types.
3868  for (FunctionDecl::param_const_iterator PI = Decl->param_begin(),
3869       E = Decl->param_end(); PI != E; ++PI) {
3870    ParmVarDecl *PVDecl = *PI;
3871    QualType PType = PVDecl->getOriginalType();
3872    if (const ArrayType *AT =
3873          dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
3874      // Use array's original type only if it has known number of
3875      // elements.
3876      if (!isa<ConstantArrayType>(AT))
3877        PType = PVDecl->getType();
3878    } else if (PType->isFunctionType())
3879      PType = PVDecl->getType();
3880    getObjCEncodingForType(PType, S);
3881    S += charUnitsToString(ParmOffset);
3882    ParmOffset += getObjCEncodingTypeSize(PType);
3883  }
3884}
3885
3886/// getObjCEncodingForMethodDecl - Return the encoded type for this method
3887/// declaration.
3888void ASTContext::getObjCEncodingForMethodDecl(const ObjCMethodDecl *Decl,
3889                                              std::string& S) const {
3890  // FIXME: This is not very efficient.
3891  // Encode type qualifer, 'in', 'inout', etc. for the return type.
3892  getObjCEncodingForTypeQualifier(Decl->getObjCDeclQualifier(), S);
3893  // Encode result type.
3894  getObjCEncodingForType(Decl->getResultType(), S);
3895  // Compute size of all parameters.
3896  // Start with computing size of a pointer in number of bytes.
3897  // FIXME: There might(should) be a better way of doing this computation!
3898  SourceLocation Loc;
3899  CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy);
3900  // The first two arguments (self and _cmd) are pointers; account for
3901  // their size.
3902  CharUnits ParmOffset = 2 * PtrSize;
3903  for (ObjCMethodDecl::param_iterator PI = Decl->param_begin(),
3904       E = Decl->sel_param_end(); PI != E; ++PI) {
3905    QualType PType = (*PI)->getType();
3906    CharUnits sz = getObjCEncodingTypeSize(PType);
3907    assert (sz.isPositive() &&
3908        "getObjCEncodingForMethodDecl - Incomplete param type");
3909    ParmOffset += sz;
3910  }
3911  S += charUnitsToString(ParmOffset);
3912  S += "@0:";
3913  S += charUnitsToString(PtrSize);
3914
3915  // Argument types.
3916  ParmOffset = 2 * PtrSize;
3917  for (ObjCMethodDecl::param_iterator PI = Decl->param_begin(),
3918       E = Decl->sel_param_end(); PI != E; ++PI) {
3919    ParmVarDecl *PVDecl = *PI;
3920    QualType PType = PVDecl->getOriginalType();
3921    if (const ArrayType *AT =
3922          dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
3923      // Use array's original type only if it has known number of
3924      // elements.
3925      if (!isa<ConstantArrayType>(AT))
3926        PType = PVDecl->getType();
3927    } else if (PType->isFunctionType())
3928      PType = PVDecl->getType();
3929    // Process argument qualifiers for user supplied arguments; such as,
3930    // 'in', 'inout', etc.
3931    getObjCEncodingForTypeQualifier(PVDecl->getObjCDeclQualifier(), S);
3932    getObjCEncodingForType(PType, S);
3933    S += charUnitsToString(ParmOffset);
3934    ParmOffset += getObjCEncodingTypeSize(PType);
3935  }
3936}
3937
3938/// getObjCEncodingForPropertyDecl - Return the encoded type for this
3939/// property declaration. If non-NULL, Container must be either an
3940/// ObjCCategoryImplDecl or ObjCImplementationDecl; it should only be
3941/// NULL when getting encodings for protocol properties.
3942/// Property attributes are stored as a comma-delimited C string. The simple
3943/// attributes readonly and bycopy are encoded as single characters. The
3944/// parametrized attributes, getter=name, setter=name, and ivar=name, are
3945/// encoded as single characters, followed by an identifier. Property types
3946/// are also encoded as a parametrized attribute. The characters used to encode
3947/// these attributes are defined by the following enumeration:
3948/// @code
3949/// enum PropertyAttributes {
3950/// kPropertyReadOnly = 'R',   // property is read-only.
3951/// kPropertyBycopy = 'C',     // property is a copy of the value last assigned
3952/// kPropertyByref = '&',  // property is a reference to the value last assigned
3953/// kPropertyDynamic = 'D',    // property is dynamic
3954/// kPropertyGetter = 'G',     // followed by getter selector name
3955/// kPropertySetter = 'S',     // followed by setter selector name
3956/// kPropertyInstanceVariable = 'V'  // followed by instance variable  name
3957/// kPropertyType = 't'              // followed by old-style type encoding.
3958/// kPropertyWeak = 'W'              // 'weak' property
3959/// kPropertyStrong = 'P'            // property GC'able
3960/// kPropertyNonAtomic = 'N'         // property non-atomic
3961/// };
3962/// @endcode
3963void ASTContext::getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD,
3964                                                const Decl *Container,
3965                                                std::string& S) const {
3966  // Collect information from the property implementation decl(s).
3967  bool Dynamic = false;
3968  ObjCPropertyImplDecl *SynthesizePID = 0;
3969
3970  // FIXME: Duplicated code due to poor abstraction.
3971  if (Container) {
3972    if (const ObjCCategoryImplDecl *CID =
3973        dyn_cast<ObjCCategoryImplDecl>(Container)) {
3974      for (ObjCCategoryImplDecl::propimpl_iterator
3975             i = CID->propimpl_begin(), e = CID->propimpl_end();
3976           i != e; ++i) {
3977        ObjCPropertyImplDecl *PID = *i;
3978        if (PID->getPropertyDecl() == PD) {
3979          if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) {
3980            Dynamic = true;
3981          } else {
3982            SynthesizePID = PID;
3983          }
3984        }
3985      }
3986    } else {
3987      const ObjCImplementationDecl *OID=cast<ObjCImplementationDecl>(Container);
3988      for (ObjCCategoryImplDecl::propimpl_iterator
3989             i = OID->propimpl_begin(), e = OID->propimpl_end();
3990           i != e; ++i) {
3991        ObjCPropertyImplDecl *PID = *i;
3992        if (PID->getPropertyDecl() == PD) {
3993          if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) {
3994            Dynamic = true;
3995          } else {
3996            SynthesizePID = PID;
3997          }
3998        }
3999      }
4000    }
4001  }
4002
4003  // FIXME: This is not very efficient.
4004  S = "T";
4005
4006  // Encode result type.
4007  // GCC has some special rules regarding encoding of properties which
4008  // closely resembles encoding of ivars.
4009  getObjCEncodingForTypeImpl(PD->getType(), S, true, true, 0,
4010                             true /* outermost type */,
4011                             true /* encoding for property */);
4012
4013  if (PD->isReadOnly()) {
4014    S += ",R";
4015  } else {
4016    switch (PD->getSetterKind()) {
4017    case ObjCPropertyDecl::Assign: break;
4018    case ObjCPropertyDecl::Copy:   S += ",C"; break;
4019    case ObjCPropertyDecl::Retain: S += ",&"; break;
4020    }
4021  }
4022
4023  // It really isn't clear at all what this means, since properties
4024  // are "dynamic by default".
4025  if (Dynamic)
4026    S += ",D";
4027
4028  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_nonatomic)
4029    S += ",N";
4030
4031  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_getter) {
4032    S += ",G";
4033    S += PD->getGetterName().getAsString();
4034  }
4035
4036  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_setter) {
4037    S += ",S";
4038    S += PD->getSetterName().getAsString();
4039  }
4040
4041  if (SynthesizePID) {
4042    const ObjCIvarDecl *OID = SynthesizePID->getPropertyIvarDecl();
4043    S += ",V";
4044    S += OID->getNameAsString();
4045  }
4046
4047  // FIXME: OBJCGC: weak & strong
4048}
4049
4050/// getLegacyIntegralTypeEncoding -
4051/// Another legacy compatibility encoding: 32-bit longs are encoded as
4052/// 'l' or 'L' , but not always.  For typedefs, we need to use
4053/// 'i' or 'I' instead if encoding a struct field, or a pointer!
4054///
4055void ASTContext::getLegacyIntegralTypeEncoding (QualType &PointeeTy) const {
4056  if (isa<TypedefType>(PointeeTy.getTypePtr())) {
4057    if (const BuiltinType *BT = PointeeTy->getAs<BuiltinType>()) {
4058      if (BT->getKind() == BuiltinType::ULong && getIntWidth(PointeeTy) == 32)
4059        PointeeTy = UnsignedIntTy;
4060      else
4061        if (BT->getKind() == BuiltinType::Long && getIntWidth(PointeeTy) == 32)
4062          PointeeTy = IntTy;
4063    }
4064  }
4065}
4066
4067void ASTContext::getObjCEncodingForType(QualType T, std::string& S,
4068                                        const FieldDecl *Field) const {
4069  // We follow the behavior of gcc, expanding structures which are
4070  // directly pointed to, and expanding embedded structures. Note that
4071  // these rules are sufficient to prevent recursive encoding of the
4072  // same type.
4073  getObjCEncodingForTypeImpl(T, S, true, true, Field,
4074                             true /* outermost type */);
4075}
4076
4077static char ObjCEncodingForPrimitiveKind(const ASTContext *C, QualType T) {
4078    switch (T->getAs<BuiltinType>()->getKind()) {
4079    default: assert(0 && "Unhandled builtin type kind");
4080    case BuiltinType::Void:       return 'v';
4081    case BuiltinType::Bool:       return 'B';
4082    case BuiltinType::Char_U:
4083    case BuiltinType::UChar:      return 'C';
4084    case BuiltinType::UShort:     return 'S';
4085    case BuiltinType::UInt:       return 'I';
4086    case BuiltinType::ULong:
4087        return C->getIntWidth(T) == 32 ? 'L' : 'Q';
4088    case BuiltinType::UInt128:    return 'T';
4089    case BuiltinType::ULongLong:  return 'Q';
4090    case BuiltinType::Char_S:
4091    case BuiltinType::SChar:      return 'c';
4092    case BuiltinType::Short:      return 's';
4093    case BuiltinType::WChar_S:
4094    case BuiltinType::WChar_U:
4095    case BuiltinType::Int:        return 'i';
4096    case BuiltinType::Long:
4097      return C->getIntWidth(T) == 32 ? 'l' : 'q';
4098    case BuiltinType::LongLong:   return 'q';
4099    case BuiltinType::Int128:     return 't';
4100    case BuiltinType::Float:      return 'f';
4101    case BuiltinType::Double:     return 'd';
4102    case BuiltinType::LongDouble: return 'D';
4103    }
4104}
4105
4106static void EncodeBitField(const ASTContext *Ctx, std::string& S,
4107                           QualType T, const FieldDecl *FD) {
4108  const Expr *E = FD->getBitWidth();
4109  assert(E && "bitfield width not there - getObjCEncodingForTypeImpl");
4110  S += 'b';
4111  // The NeXT runtime encodes bit fields as b followed by the number of bits.
4112  // The GNU runtime requires more information; bitfields are encoded as b,
4113  // then the offset (in bits) of the first element, then the type of the
4114  // bitfield, then the size in bits.  For example, in this structure:
4115  //
4116  // struct
4117  // {
4118  //    int integer;
4119  //    int flags:2;
4120  // };
4121  // On a 32-bit system, the encoding for flags would be b2 for the NeXT
4122  // runtime, but b32i2 for the GNU runtime.  The reason for this extra
4123  // information is not especially sensible, but we're stuck with it for
4124  // compatibility with GCC, although providing it breaks anything that
4125  // actually uses runtime introspection and wants to work on both runtimes...
4126  if (!Ctx->getLangOptions().NeXTRuntime) {
4127    const RecordDecl *RD = FD->getParent();
4128    const ASTRecordLayout &RL = Ctx->getASTRecordLayout(RD);
4129    // FIXME: This same linear search is also used in ExprConstant - it might
4130    // be better if the FieldDecl stored its offset.  We'd be increasing the
4131    // size of the object slightly, but saving some time every time it is used.
4132    unsigned i = 0;
4133    for (RecordDecl::field_iterator Field = RD->field_begin(),
4134                                 FieldEnd = RD->field_end();
4135         Field != FieldEnd; (void)++Field, ++i) {
4136      if (*Field == FD)
4137        break;
4138    }
4139    S += llvm::utostr(RL.getFieldOffset(i));
4140    if (T->isEnumeralType())
4141      S += 'i';
4142    else
4143      S += ObjCEncodingForPrimitiveKind(Ctx, T);
4144  }
4145  unsigned N = E->EvaluateAsInt(*Ctx).getZExtValue();
4146  S += llvm::utostr(N);
4147}
4148
4149// FIXME: Use SmallString for accumulating string.
4150void ASTContext::getObjCEncodingForTypeImpl(QualType T, std::string& S,
4151                                            bool ExpandPointedToStructures,
4152                                            bool ExpandStructures,
4153                                            const FieldDecl *FD,
4154                                            bool OutermostType,
4155                                            bool EncodingProperty) const {
4156  if (T->getAs<BuiltinType>()) {
4157    if (FD && FD->isBitField())
4158      return EncodeBitField(this, S, T, FD);
4159    S += ObjCEncodingForPrimitiveKind(this, T);
4160    return;
4161  }
4162
4163  if (const ComplexType *CT = T->getAs<ComplexType>()) {
4164    S += 'j';
4165    getObjCEncodingForTypeImpl(CT->getElementType(), S, false, false, 0, false,
4166                               false);
4167    return;
4168  }
4169
4170  // encoding for pointer or r3eference types.
4171  QualType PointeeTy;
4172  if (const PointerType *PT = T->getAs<PointerType>()) {
4173    if (PT->isObjCSelType()) {
4174      S += ':';
4175      return;
4176    }
4177    PointeeTy = PT->getPointeeType();
4178  }
4179  else if (const ReferenceType *RT = T->getAs<ReferenceType>())
4180    PointeeTy = RT->getPointeeType();
4181  if (!PointeeTy.isNull()) {
4182    bool isReadOnly = false;
4183    // For historical/compatibility reasons, the read-only qualifier of the
4184    // pointee gets emitted _before_ the '^'.  The read-only qualifier of
4185    // the pointer itself gets ignored, _unless_ we are looking at a typedef!
4186    // Also, do not emit the 'r' for anything but the outermost type!
4187    if (isa<TypedefType>(T.getTypePtr())) {
4188      if (OutermostType && T.isConstQualified()) {
4189        isReadOnly = true;
4190        S += 'r';
4191      }
4192    } else if (OutermostType) {
4193      QualType P = PointeeTy;
4194      while (P->getAs<PointerType>())
4195        P = P->getAs<PointerType>()->getPointeeType();
4196      if (P.isConstQualified()) {
4197        isReadOnly = true;
4198        S += 'r';
4199      }
4200    }
4201    if (isReadOnly) {
4202      // Another legacy compatibility encoding. Some ObjC qualifier and type
4203      // combinations need to be rearranged.
4204      // Rewrite "in const" from "nr" to "rn"
4205      if (llvm::StringRef(S).endswith("nr"))
4206        S.replace(S.end()-2, S.end(), "rn");
4207    }
4208
4209    if (PointeeTy->isCharType()) {
4210      // char pointer types should be encoded as '*' unless it is a
4211      // type that has been typedef'd to 'BOOL'.
4212      if (!isTypeTypedefedAsBOOL(PointeeTy)) {
4213        S += '*';
4214        return;
4215      }
4216    } else if (const RecordType *RTy = PointeeTy->getAs<RecordType>()) {
4217      // GCC binary compat: Need to convert "struct objc_class *" to "#".
4218      if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_class")) {
4219        S += '#';
4220        return;
4221      }
4222      // GCC binary compat: Need to convert "struct objc_object *" to "@".
4223      if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_object")) {
4224        S += '@';
4225        return;
4226      }
4227      // fall through...
4228    }
4229    S += '^';
4230    getLegacyIntegralTypeEncoding(PointeeTy);
4231
4232    getObjCEncodingForTypeImpl(PointeeTy, S, false, ExpandPointedToStructures,
4233                               NULL);
4234    return;
4235  }
4236
4237  if (const ArrayType *AT =
4238      // Ignore type qualifiers etc.
4239        dyn_cast<ArrayType>(T->getCanonicalTypeInternal())) {
4240    if (isa<IncompleteArrayType>(AT)) {
4241      // Incomplete arrays are encoded as a pointer to the array element.
4242      S += '^';
4243
4244      getObjCEncodingForTypeImpl(AT->getElementType(), S,
4245                                 false, ExpandStructures, FD);
4246    } else {
4247      S += '[';
4248
4249      if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
4250        S += llvm::utostr(CAT->getSize().getZExtValue());
4251      else {
4252        //Variable length arrays are encoded as a regular array with 0 elements.
4253        assert(isa<VariableArrayType>(AT) && "Unknown array type!");
4254        S += '0';
4255      }
4256
4257      getObjCEncodingForTypeImpl(AT->getElementType(), S,
4258                                 false, ExpandStructures, FD);
4259      S += ']';
4260    }
4261    return;
4262  }
4263
4264  if (T->getAs<FunctionType>()) {
4265    S += '?';
4266    return;
4267  }
4268
4269  if (const RecordType *RTy = T->getAs<RecordType>()) {
4270    RecordDecl *RDecl = RTy->getDecl();
4271    S += RDecl->isUnion() ? '(' : '{';
4272    // Anonymous structures print as '?'
4273    if (const IdentifierInfo *II = RDecl->getIdentifier()) {
4274      S += II->getName();
4275      if (ClassTemplateSpecializationDecl *Spec
4276          = dyn_cast<ClassTemplateSpecializationDecl>(RDecl)) {
4277        const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
4278        std::string TemplateArgsStr
4279          = TemplateSpecializationType::PrintTemplateArgumentList(
4280                                            TemplateArgs.data(),
4281                                            TemplateArgs.size(),
4282                                            (*this).PrintingPolicy);
4283
4284        S += TemplateArgsStr;
4285      }
4286    } else {
4287      S += '?';
4288    }
4289    if (ExpandStructures) {
4290      S += '=';
4291      for (RecordDecl::field_iterator Field = RDecl->field_begin(),
4292                                   FieldEnd = RDecl->field_end();
4293           Field != FieldEnd; ++Field) {
4294        if (FD) {
4295          S += '"';
4296          S += Field->getNameAsString();
4297          S += '"';
4298        }
4299
4300        // Special case bit-fields.
4301        if (Field->isBitField()) {
4302          getObjCEncodingForTypeImpl(Field->getType(), S, false, true,
4303                                     (*Field));
4304        } else {
4305          QualType qt = Field->getType();
4306          getLegacyIntegralTypeEncoding(qt);
4307          getObjCEncodingForTypeImpl(qt, S, false, true,
4308                                     FD);
4309        }
4310      }
4311    }
4312    S += RDecl->isUnion() ? ')' : '}';
4313    return;
4314  }
4315
4316  if (T->isEnumeralType()) {
4317    if (FD && FD->isBitField())
4318      EncodeBitField(this, S, T, FD);
4319    else
4320      S += 'i';
4321    return;
4322  }
4323
4324  if (T->isBlockPointerType()) {
4325    S += "@?"; // Unlike a pointer-to-function, which is "^?".
4326    return;
4327  }
4328
4329  // Ignore protocol qualifiers when mangling at this level.
4330  if (const ObjCObjectType *OT = T->getAs<ObjCObjectType>())
4331    T = OT->getBaseType();
4332
4333  if (const ObjCInterfaceType *OIT = T->getAs<ObjCInterfaceType>()) {
4334    // @encode(class_name)
4335    ObjCInterfaceDecl *OI = OIT->getDecl();
4336    S += '{';
4337    const IdentifierInfo *II = OI->getIdentifier();
4338    S += II->getName();
4339    S += '=';
4340    llvm::SmallVector<ObjCIvarDecl*, 32> Ivars;
4341    DeepCollectObjCIvars(OI, true, Ivars);
4342    for (unsigned i = 0, e = Ivars.size(); i != e; ++i) {
4343      FieldDecl *Field = cast<FieldDecl>(Ivars[i]);
4344      if (Field->isBitField())
4345        getObjCEncodingForTypeImpl(Field->getType(), S, false, true, Field);
4346      else
4347        getObjCEncodingForTypeImpl(Field->getType(), S, false, true, FD);
4348    }
4349    S += '}';
4350    return;
4351  }
4352
4353  if (const ObjCObjectPointerType *OPT = T->getAs<ObjCObjectPointerType>()) {
4354    if (OPT->isObjCIdType()) {
4355      S += '@';
4356      return;
4357    }
4358
4359    if (OPT->isObjCClassType() || OPT->isObjCQualifiedClassType()) {
4360      // FIXME: Consider if we need to output qualifiers for 'Class<p>'.
4361      // Since this is a binary compatibility issue, need to consult with runtime
4362      // folks. Fortunately, this is a *very* obsure construct.
4363      S += '#';
4364      return;
4365    }
4366
4367    if (OPT->isObjCQualifiedIdType()) {
4368      getObjCEncodingForTypeImpl(getObjCIdType(), S,
4369                                 ExpandPointedToStructures,
4370                                 ExpandStructures, FD);
4371      if (FD || EncodingProperty) {
4372        // Note that we do extended encoding of protocol qualifer list
4373        // Only when doing ivar or property encoding.
4374        S += '"';
4375        for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(),
4376             E = OPT->qual_end(); I != E; ++I) {
4377          S += '<';
4378          S += (*I)->getNameAsString();
4379          S += '>';
4380        }
4381        S += '"';
4382      }
4383      return;
4384    }
4385
4386    QualType PointeeTy = OPT->getPointeeType();
4387    if (!EncodingProperty &&
4388        isa<TypedefType>(PointeeTy.getTypePtr())) {
4389      // Another historical/compatibility reason.
4390      // We encode the underlying type which comes out as
4391      // {...};
4392      S += '^';
4393      getObjCEncodingForTypeImpl(PointeeTy, S,
4394                                 false, ExpandPointedToStructures,
4395                                 NULL);
4396      return;
4397    }
4398
4399    S += '@';
4400    if (OPT->getInterfaceDecl() && (FD || EncodingProperty)) {
4401      S += '"';
4402      S += OPT->getInterfaceDecl()->getIdentifier()->getName();
4403      for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(),
4404           E = OPT->qual_end(); I != E; ++I) {
4405        S += '<';
4406        S += (*I)->getNameAsString();
4407        S += '>';
4408      }
4409      S += '"';
4410    }
4411    return;
4412  }
4413
4414  // gcc just blithely ignores member pointers.
4415  // TODO: maybe there should be a mangling for these
4416  if (T->getAs<MemberPointerType>())
4417    return;
4418
4419  if (T->isVectorType()) {
4420    // This matches gcc's encoding, even though technically it is
4421    // insufficient.
4422    // FIXME. We should do a better job than gcc.
4423    return;
4424  }
4425
4426  assert(0 && "@encode for type not implemented!");
4427}
4428
4429void ASTContext::getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT,
4430                                                 std::string& S) const {
4431  if (QT & Decl::OBJC_TQ_In)
4432    S += 'n';
4433  if (QT & Decl::OBJC_TQ_Inout)
4434    S += 'N';
4435  if (QT & Decl::OBJC_TQ_Out)
4436    S += 'o';
4437  if (QT & Decl::OBJC_TQ_Bycopy)
4438    S += 'O';
4439  if (QT & Decl::OBJC_TQ_Byref)
4440    S += 'R';
4441  if (QT & Decl::OBJC_TQ_Oneway)
4442    S += 'V';
4443}
4444
4445void ASTContext::setBuiltinVaListType(QualType T) {
4446  assert(BuiltinVaListType.isNull() && "__builtin_va_list type already set!");
4447
4448  BuiltinVaListType = T;
4449}
4450
4451void ASTContext::setObjCIdType(QualType T) {
4452  ObjCIdTypedefType = T;
4453}
4454
4455void ASTContext::setObjCSelType(QualType T) {
4456  ObjCSelTypedefType = T;
4457}
4458
4459void ASTContext::setObjCProtoType(QualType QT) {
4460  ObjCProtoType = QT;
4461}
4462
4463void ASTContext::setObjCClassType(QualType T) {
4464  ObjCClassTypedefType = T;
4465}
4466
4467void ASTContext::setObjCConstantStringInterface(ObjCInterfaceDecl *Decl) {
4468  assert(ObjCConstantStringType.isNull() &&
4469         "'NSConstantString' type already set!");
4470
4471  ObjCConstantStringType = getObjCInterfaceType(Decl);
4472}
4473
4474/// \brief Retrieve the template name that corresponds to a non-empty
4475/// lookup.
4476TemplateName
4477ASTContext::getOverloadedTemplateName(UnresolvedSetIterator Begin,
4478                                      UnresolvedSetIterator End) const {
4479  unsigned size = End - Begin;
4480  assert(size > 1 && "set is not overloaded!");
4481
4482  void *memory = Allocate(sizeof(OverloadedTemplateStorage) +
4483                          size * sizeof(FunctionTemplateDecl*));
4484  OverloadedTemplateStorage *OT = new(memory) OverloadedTemplateStorage(size);
4485
4486  NamedDecl **Storage = OT->getStorage();
4487  for (UnresolvedSetIterator I = Begin; I != End; ++I) {
4488    NamedDecl *D = *I;
4489    assert(isa<FunctionTemplateDecl>(D) ||
4490           (isa<UsingShadowDecl>(D) &&
4491            isa<FunctionTemplateDecl>(D->getUnderlyingDecl())));
4492    *Storage++ = D;
4493  }
4494
4495  return TemplateName(OT);
4496}
4497
4498/// \brief Retrieve the template name that represents a qualified
4499/// template name such as \c std::vector.
4500TemplateName
4501ASTContext::getQualifiedTemplateName(NestedNameSpecifier *NNS,
4502                                     bool TemplateKeyword,
4503                                     TemplateDecl *Template) const {
4504  assert(NNS && "Missing nested-name-specifier in qualified template name");
4505
4506  // FIXME: Canonicalization?
4507  llvm::FoldingSetNodeID ID;
4508  QualifiedTemplateName::Profile(ID, NNS, TemplateKeyword, Template);
4509
4510  void *InsertPos = 0;
4511  QualifiedTemplateName *QTN =
4512    QualifiedTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
4513  if (!QTN) {
4514    QTN = new (*this,4) QualifiedTemplateName(NNS, TemplateKeyword, Template);
4515    QualifiedTemplateNames.InsertNode(QTN, InsertPos);
4516  }
4517
4518  return TemplateName(QTN);
4519}
4520
4521/// \brief Retrieve the template name that represents a dependent
4522/// template name such as \c MetaFun::template apply.
4523TemplateName
4524ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
4525                                     const IdentifierInfo *Name) const {
4526  assert((!NNS || NNS->isDependent()) &&
4527         "Nested name specifier must be dependent");
4528
4529  llvm::FoldingSetNodeID ID;
4530  DependentTemplateName::Profile(ID, NNS, Name);
4531
4532  void *InsertPos = 0;
4533  DependentTemplateName *QTN =
4534    DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
4535
4536  if (QTN)
4537    return TemplateName(QTN);
4538
4539  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
4540  if (CanonNNS == NNS) {
4541    QTN = new (*this,4) DependentTemplateName(NNS, Name);
4542  } else {
4543    TemplateName Canon = getDependentTemplateName(CanonNNS, Name);
4544    QTN = new (*this,4) DependentTemplateName(NNS, Name, Canon);
4545    DependentTemplateName *CheckQTN =
4546      DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
4547    assert(!CheckQTN && "Dependent type name canonicalization broken");
4548    (void)CheckQTN;
4549  }
4550
4551  DependentTemplateNames.InsertNode(QTN, InsertPos);
4552  return TemplateName(QTN);
4553}
4554
4555/// \brief Retrieve the template name that represents a dependent
4556/// template name such as \c MetaFun::template operator+.
4557TemplateName
4558ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
4559                                     OverloadedOperatorKind Operator) const {
4560  assert((!NNS || NNS->isDependent()) &&
4561         "Nested name specifier must be dependent");
4562
4563  llvm::FoldingSetNodeID ID;
4564  DependentTemplateName::Profile(ID, NNS, Operator);
4565
4566  void *InsertPos = 0;
4567  DependentTemplateName *QTN
4568    = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
4569
4570  if (QTN)
4571    return TemplateName(QTN);
4572
4573  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
4574  if (CanonNNS == NNS) {
4575    QTN = new (*this,4) DependentTemplateName(NNS, Operator);
4576  } else {
4577    TemplateName Canon = getDependentTemplateName(CanonNNS, Operator);
4578    QTN = new (*this,4) DependentTemplateName(NNS, Operator, Canon);
4579
4580    DependentTemplateName *CheckQTN
4581      = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
4582    assert(!CheckQTN && "Dependent template name canonicalization broken");
4583    (void)CheckQTN;
4584  }
4585
4586  DependentTemplateNames.InsertNode(QTN, InsertPos);
4587  return TemplateName(QTN);
4588}
4589
4590TemplateName
4591ASTContext::getSubstTemplateTemplateParmPack(TemplateTemplateParmDecl *Param,
4592                                       const TemplateArgument &ArgPack) const {
4593  ASTContext &Self = const_cast<ASTContext &>(*this);
4594  llvm::FoldingSetNodeID ID;
4595  SubstTemplateTemplateParmPackStorage::Profile(ID, Self, Param, ArgPack);
4596
4597  void *InsertPos = 0;
4598  SubstTemplateTemplateParmPackStorage *Subst
4599    = SubstTemplateTemplateParmPacks.FindNodeOrInsertPos(ID, InsertPos);
4600
4601  if (!Subst) {
4602    Subst = new (*this) SubstTemplateTemplateParmPackStorage(Self, Param,
4603                                                           ArgPack.pack_size(),
4604                                                         ArgPack.pack_begin());
4605    SubstTemplateTemplateParmPacks.InsertNode(Subst, InsertPos);
4606  }
4607
4608  return TemplateName(Subst);
4609}
4610
4611/// getFromTargetType - Given one of the integer types provided by
4612/// TargetInfo, produce the corresponding type. The unsigned @p Type
4613/// is actually a value of type @c TargetInfo::IntType.
4614CanQualType ASTContext::getFromTargetType(unsigned Type) const {
4615  switch (Type) {
4616  case TargetInfo::NoInt: return CanQualType();
4617  case TargetInfo::SignedShort: return ShortTy;
4618  case TargetInfo::UnsignedShort: return UnsignedShortTy;
4619  case TargetInfo::SignedInt: return IntTy;
4620  case TargetInfo::UnsignedInt: return UnsignedIntTy;
4621  case TargetInfo::SignedLong: return LongTy;
4622  case TargetInfo::UnsignedLong: return UnsignedLongTy;
4623  case TargetInfo::SignedLongLong: return LongLongTy;
4624  case TargetInfo::UnsignedLongLong: return UnsignedLongLongTy;
4625  }
4626
4627  assert(false && "Unhandled TargetInfo::IntType value");
4628  return CanQualType();
4629}
4630
4631//===----------------------------------------------------------------------===//
4632//                        Type Predicates.
4633//===----------------------------------------------------------------------===//
4634
4635/// isObjCNSObjectType - Return true if this is an NSObject object using
4636/// NSObject attribute on a c-style pointer type.
4637/// FIXME - Make it work directly on types.
4638/// FIXME: Move to Type.
4639///
4640bool ASTContext::isObjCNSObjectType(QualType Ty) const {
4641  if (const TypedefType *TDT = dyn_cast<TypedefType>(Ty)) {
4642    if (TypedefNameDecl *TD = TDT->getDecl())
4643      if (TD->getAttr<ObjCNSObjectAttr>())
4644        return true;
4645  }
4646  return false;
4647}
4648
4649/// getObjCGCAttr - Returns one of GCNone, Weak or Strong objc's
4650/// garbage collection attribute.
4651///
4652Qualifiers::GC ASTContext::getObjCGCAttrKind(QualType Ty) const {
4653  if (getLangOptions().getGCMode() == LangOptions::NonGC)
4654    return Qualifiers::GCNone;
4655
4656  assert(getLangOptions().ObjC1);
4657  Qualifiers::GC GCAttrs = Ty.getObjCGCAttr();
4658
4659  // Default behaviour under objective-C's gc is for ObjC pointers
4660  // (or pointers to them) be treated as though they were declared
4661  // as __strong.
4662  if (GCAttrs == Qualifiers::GCNone) {
4663    if (Ty->isObjCObjectPointerType() || Ty->isBlockPointerType())
4664      return Qualifiers::Strong;
4665    else if (Ty->isPointerType())
4666      return getObjCGCAttrKind(Ty->getAs<PointerType>()->getPointeeType());
4667  } else {
4668    // It's not valid to set GC attributes on anything that isn't a
4669    // pointer.
4670#ifndef NDEBUG
4671    QualType CT = Ty->getCanonicalTypeInternal();
4672    while (const ArrayType *AT = dyn_cast<ArrayType>(CT))
4673      CT = AT->getElementType();
4674    assert(CT->isAnyPointerType() || CT->isBlockPointerType());
4675#endif
4676  }
4677  return GCAttrs;
4678}
4679
4680//===----------------------------------------------------------------------===//
4681//                        Type Compatibility Testing
4682//===----------------------------------------------------------------------===//
4683
4684/// areCompatVectorTypes - Return true if the two specified vector types are
4685/// compatible.
4686static bool areCompatVectorTypes(const VectorType *LHS,
4687                                 const VectorType *RHS) {
4688  assert(LHS->isCanonicalUnqualified() && RHS->isCanonicalUnqualified());
4689  return LHS->getElementType() == RHS->getElementType() &&
4690         LHS->getNumElements() == RHS->getNumElements();
4691}
4692
4693bool ASTContext::areCompatibleVectorTypes(QualType FirstVec,
4694                                          QualType SecondVec) {
4695  assert(FirstVec->isVectorType() && "FirstVec should be a vector type");
4696  assert(SecondVec->isVectorType() && "SecondVec should be a vector type");
4697
4698  if (hasSameUnqualifiedType(FirstVec, SecondVec))
4699    return true;
4700
4701  // Treat Neon vector types and most AltiVec vector types as if they are the
4702  // equivalent GCC vector types.
4703  const VectorType *First = FirstVec->getAs<VectorType>();
4704  const VectorType *Second = SecondVec->getAs<VectorType>();
4705  if (First->getNumElements() == Second->getNumElements() &&
4706      hasSameType(First->getElementType(), Second->getElementType()) &&
4707      First->getVectorKind() != VectorType::AltiVecPixel &&
4708      First->getVectorKind() != VectorType::AltiVecBool &&
4709      Second->getVectorKind() != VectorType::AltiVecPixel &&
4710      Second->getVectorKind() != VectorType::AltiVecBool)
4711    return true;
4712
4713  return false;
4714}
4715
4716//===----------------------------------------------------------------------===//
4717// ObjCQualifiedIdTypesAreCompatible - Compatibility testing for qualified id's.
4718//===----------------------------------------------------------------------===//
4719
4720/// ProtocolCompatibleWithProtocol - return 'true' if 'lProto' is in the
4721/// inheritance hierarchy of 'rProto'.
4722bool
4723ASTContext::ProtocolCompatibleWithProtocol(ObjCProtocolDecl *lProto,
4724                                           ObjCProtocolDecl *rProto) const {
4725  if (lProto == rProto)
4726    return true;
4727  for (ObjCProtocolDecl::protocol_iterator PI = rProto->protocol_begin(),
4728       E = rProto->protocol_end(); PI != E; ++PI)
4729    if (ProtocolCompatibleWithProtocol(lProto, *PI))
4730      return true;
4731  return false;
4732}
4733
4734/// QualifiedIdConformsQualifiedId - compare id<p,...> with id<p1,...>
4735/// return true if lhs's protocols conform to rhs's protocol; false
4736/// otherwise.
4737bool ASTContext::QualifiedIdConformsQualifiedId(QualType lhs, QualType rhs) {
4738  if (lhs->isObjCQualifiedIdType() && rhs->isObjCQualifiedIdType())
4739    return ObjCQualifiedIdTypesAreCompatible(lhs, rhs, false);
4740  return false;
4741}
4742
4743/// ObjCQualifiedClassTypesAreCompatible - compare  Class<p,...> and
4744/// Class<p1, ...>.
4745bool ASTContext::ObjCQualifiedClassTypesAreCompatible(QualType lhs,
4746                                                      QualType rhs) {
4747  const ObjCObjectPointerType *lhsQID = lhs->getAs<ObjCObjectPointerType>();
4748  const ObjCObjectPointerType *rhsOPT = rhs->getAs<ObjCObjectPointerType>();
4749  assert ((lhsQID && rhsOPT) && "ObjCQualifiedClassTypesAreCompatible");
4750
4751  for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
4752       E = lhsQID->qual_end(); I != E; ++I) {
4753    bool match = false;
4754    ObjCProtocolDecl *lhsProto = *I;
4755    for (ObjCObjectPointerType::qual_iterator J = rhsOPT->qual_begin(),
4756         E = rhsOPT->qual_end(); J != E; ++J) {
4757      ObjCProtocolDecl *rhsProto = *J;
4758      if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto)) {
4759        match = true;
4760        break;
4761      }
4762    }
4763    if (!match)
4764      return false;
4765  }
4766  return true;
4767}
4768
4769/// ObjCQualifiedIdTypesAreCompatible - We know that one of lhs/rhs is an
4770/// ObjCQualifiedIDType.
4771bool ASTContext::ObjCQualifiedIdTypesAreCompatible(QualType lhs, QualType rhs,
4772                                                   bool compare) {
4773  // Allow id<P..> and an 'id' or void* type in all cases.
4774  if (lhs->isVoidPointerType() ||
4775      lhs->isObjCIdType() || lhs->isObjCClassType())
4776    return true;
4777  else if (rhs->isVoidPointerType() ||
4778           rhs->isObjCIdType() || rhs->isObjCClassType())
4779    return true;
4780
4781  if (const ObjCObjectPointerType *lhsQID = lhs->getAsObjCQualifiedIdType()) {
4782    const ObjCObjectPointerType *rhsOPT = rhs->getAs<ObjCObjectPointerType>();
4783
4784    if (!rhsOPT) return false;
4785
4786    if (rhsOPT->qual_empty()) {
4787      // If the RHS is a unqualified interface pointer "NSString*",
4788      // make sure we check the class hierarchy.
4789      if (ObjCInterfaceDecl *rhsID = rhsOPT->getInterfaceDecl()) {
4790        for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
4791             E = lhsQID->qual_end(); I != E; ++I) {
4792          // when comparing an id<P> on lhs with a static type on rhs,
4793          // see if static class implements all of id's protocols, directly or
4794          // through its super class and categories.
4795          if (!rhsID->ClassImplementsProtocol(*I, true))
4796            return false;
4797        }
4798      }
4799      // If there are no qualifiers and no interface, we have an 'id'.
4800      return true;
4801    }
4802    // Both the right and left sides have qualifiers.
4803    for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
4804         E = lhsQID->qual_end(); I != E; ++I) {
4805      ObjCProtocolDecl *lhsProto = *I;
4806      bool match = false;
4807
4808      // when comparing an id<P> on lhs with a static type on rhs,
4809      // see if static class implements all of id's protocols, directly or
4810      // through its super class and categories.
4811      for (ObjCObjectPointerType::qual_iterator J = rhsOPT->qual_begin(),
4812           E = rhsOPT->qual_end(); J != E; ++J) {
4813        ObjCProtocolDecl *rhsProto = *J;
4814        if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
4815            (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
4816          match = true;
4817          break;
4818        }
4819      }
4820      // If the RHS is a qualified interface pointer "NSString<P>*",
4821      // make sure we check the class hierarchy.
4822      if (ObjCInterfaceDecl *rhsID = rhsOPT->getInterfaceDecl()) {
4823        for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
4824             E = lhsQID->qual_end(); I != E; ++I) {
4825          // when comparing an id<P> on lhs with a static type on rhs,
4826          // see if static class implements all of id's protocols, directly or
4827          // through its super class and categories.
4828          if (rhsID->ClassImplementsProtocol(*I, true)) {
4829            match = true;
4830            break;
4831          }
4832        }
4833      }
4834      if (!match)
4835        return false;
4836    }
4837
4838    return true;
4839  }
4840
4841  const ObjCObjectPointerType *rhsQID = rhs->getAsObjCQualifiedIdType();
4842  assert(rhsQID && "One of the LHS/RHS should be id<x>");
4843
4844  if (const ObjCObjectPointerType *lhsOPT =
4845        lhs->getAsObjCInterfacePointerType()) {
4846    // If both the right and left sides have qualifiers.
4847    for (ObjCObjectPointerType::qual_iterator I = lhsOPT->qual_begin(),
4848         E = lhsOPT->qual_end(); I != E; ++I) {
4849      ObjCProtocolDecl *lhsProto = *I;
4850      bool match = false;
4851
4852      // when comparing an id<P> on rhs with a static type on lhs,
4853      // see if static class implements all of id's protocols, directly or
4854      // through its super class and categories.
4855      // First, lhs protocols in the qualifier list must be found, direct
4856      // or indirect in rhs's qualifier list or it is a mismatch.
4857      for (ObjCObjectPointerType::qual_iterator J = rhsQID->qual_begin(),
4858           E = rhsQID->qual_end(); J != E; ++J) {
4859        ObjCProtocolDecl *rhsProto = *J;
4860        if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
4861            (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
4862          match = true;
4863          break;
4864        }
4865      }
4866      if (!match)
4867        return false;
4868    }
4869
4870    // Static class's protocols, or its super class or category protocols
4871    // must be found, direct or indirect in rhs's qualifier list or it is a mismatch.
4872    if (ObjCInterfaceDecl *lhsID = lhsOPT->getInterfaceDecl()) {
4873      llvm::SmallPtrSet<ObjCProtocolDecl *, 8> LHSInheritedProtocols;
4874      CollectInheritedProtocols(lhsID, LHSInheritedProtocols);
4875      // This is rather dubious but matches gcc's behavior. If lhs has
4876      // no type qualifier and its class has no static protocol(s)
4877      // assume that it is mismatch.
4878      if (LHSInheritedProtocols.empty() && lhsOPT->qual_empty())
4879        return false;
4880      for (llvm::SmallPtrSet<ObjCProtocolDecl*,8>::iterator I =
4881           LHSInheritedProtocols.begin(),
4882           E = LHSInheritedProtocols.end(); I != E; ++I) {
4883        bool match = false;
4884        ObjCProtocolDecl *lhsProto = (*I);
4885        for (ObjCObjectPointerType::qual_iterator J = rhsQID->qual_begin(),
4886             E = rhsQID->qual_end(); J != E; ++J) {
4887          ObjCProtocolDecl *rhsProto = *J;
4888          if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
4889              (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
4890            match = true;
4891            break;
4892          }
4893        }
4894        if (!match)
4895          return false;
4896      }
4897    }
4898    return true;
4899  }
4900  return false;
4901}
4902
4903/// canAssignObjCInterfaces - Return true if the two interface types are
4904/// compatible for assignment from RHS to LHS.  This handles validation of any
4905/// protocol qualifiers on the LHS or RHS.
4906///
4907bool ASTContext::canAssignObjCInterfaces(const ObjCObjectPointerType *LHSOPT,
4908                                         const ObjCObjectPointerType *RHSOPT) {
4909  const ObjCObjectType* LHS = LHSOPT->getObjectType();
4910  const ObjCObjectType* RHS = RHSOPT->getObjectType();
4911
4912  // If either type represents the built-in 'id' or 'Class' types, return true.
4913  if (LHS->isObjCUnqualifiedIdOrClass() ||
4914      RHS->isObjCUnqualifiedIdOrClass())
4915    return true;
4916
4917  if (LHS->isObjCQualifiedId() || RHS->isObjCQualifiedId())
4918    return ObjCQualifiedIdTypesAreCompatible(QualType(LHSOPT,0),
4919                                             QualType(RHSOPT,0),
4920                                             false);
4921
4922  if (LHS->isObjCQualifiedClass() && RHS->isObjCQualifiedClass())
4923    return ObjCQualifiedClassTypesAreCompatible(QualType(LHSOPT,0),
4924                                                QualType(RHSOPT,0));
4925
4926  // If we have 2 user-defined types, fall into that path.
4927  if (LHS->getInterface() && RHS->getInterface())
4928    return canAssignObjCInterfaces(LHS, RHS);
4929
4930  return false;
4931}
4932
4933/// canAssignObjCInterfacesInBlockPointer - This routine is specifically written
4934/// for providing type-safety for objective-c pointers used to pass/return
4935/// arguments in block literals. When passed as arguments, passing 'A*' where
4936/// 'id' is expected is not OK. Passing 'Sub *" where 'Super *" is expected is
4937/// not OK. For the return type, the opposite is not OK.
4938bool ASTContext::canAssignObjCInterfacesInBlockPointer(
4939                                         const ObjCObjectPointerType *LHSOPT,
4940                                         const ObjCObjectPointerType *RHSOPT,
4941                                         bool BlockReturnType) {
4942  if (RHSOPT->isObjCBuiltinType() || LHSOPT->isObjCIdType())
4943    return true;
4944
4945  if (LHSOPT->isObjCBuiltinType()) {
4946    return RHSOPT->isObjCBuiltinType() || RHSOPT->isObjCQualifiedIdType();
4947  }
4948
4949  if (LHSOPT->isObjCQualifiedIdType() || RHSOPT->isObjCQualifiedIdType())
4950    return ObjCQualifiedIdTypesAreCompatible(QualType(LHSOPT,0),
4951                                             QualType(RHSOPT,0),
4952                                             false);
4953
4954  const ObjCInterfaceType* LHS = LHSOPT->getInterfaceType();
4955  const ObjCInterfaceType* RHS = RHSOPT->getInterfaceType();
4956  if (LHS && RHS)  { // We have 2 user-defined types.
4957    if (LHS != RHS) {
4958      if (LHS->getDecl()->isSuperClassOf(RHS->getDecl()))
4959        return BlockReturnType;
4960      if (RHS->getDecl()->isSuperClassOf(LHS->getDecl()))
4961        return !BlockReturnType;
4962    }
4963    else
4964      return true;
4965  }
4966  return false;
4967}
4968
4969/// getIntersectionOfProtocols - This routine finds the intersection of set
4970/// of protocols inherited from two distinct objective-c pointer objects.
4971/// It is used to build composite qualifier list of the composite type of
4972/// the conditional expression involving two objective-c pointer objects.
4973static
4974void getIntersectionOfProtocols(ASTContext &Context,
4975                                const ObjCObjectPointerType *LHSOPT,
4976                                const ObjCObjectPointerType *RHSOPT,
4977      llvm::SmallVectorImpl<ObjCProtocolDecl *> &IntersectionOfProtocols) {
4978
4979  const ObjCObjectType* LHS = LHSOPT->getObjectType();
4980  const ObjCObjectType* RHS = RHSOPT->getObjectType();
4981  assert(LHS->getInterface() && "LHS must have an interface base");
4982  assert(RHS->getInterface() && "RHS must have an interface base");
4983
4984  llvm::SmallPtrSet<ObjCProtocolDecl *, 8> InheritedProtocolSet;
4985  unsigned LHSNumProtocols = LHS->getNumProtocols();
4986  if (LHSNumProtocols > 0)
4987    InheritedProtocolSet.insert(LHS->qual_begin(), LHS->qual_end());
4988  else {
4989    llvm::SmallPtrSet<ObjCProtocolDecl *, 8> LHSInheritedProtocols;
4990    Context.CollectInheritedProtocols(LHS->getInterface(),
4991                                      LHSInheritedProtocols);
4992    InheritedProtocolSet.insert(LHSInheritedProtocols.begin(),
4993                                LHSInheritedProtocols.end());
4994  }
4995
4996  unsigned RHSNumProtocols = RHS->getNumProtocols();
4997  if (RHSNumProtocols > 0) {
4998    ObjCProtocolDecl **RHSProtocols =
4999      const_cast<ObjCProtocolDecl **>(RHS->qual_begin());
5000    for (unsigned i = 0; i < RHSNumProtocols; ++i)
5001      if (InheritedProtocolSet.count(RHSProtocols[i]))
5002        IntersectionOfProtocols.push_back(RHSProtocols[i]);
5003  }
5004  else {
5005    llvm::SmallPtrSet<ObjCProtocolDecl *, 8> RHSInheritedProtocols;
5006    Context.CollectInheritedProtocols(RHS->getInterface(),
5007                                      RHSInheritedProtocols);
5008    for (llvm::SmallPtrSet<ObjCProtocolDecl*,8>::iterator I =
5009         RHSInheritedProtocols.begin(),
5010         E = RHSInheritedProtocols.end(); I != E; ++I)
5011      if (InheritedProtocolSet.count((*I)))
5012        IntersectionOfProtocols.push_back((*I));
5013  }
5014}
5015
5016/// areCommonBaseCompatible - Returns common base class of the two classes if
5017/// one found. Note that this is O'2 algorithm. But it will be called as the
5018/// last type comparison in a ?-exp of ObjC pointer types before a
5019/// warning is issued. So, its invokation is extremely rare.
5020QualType ASTContext::areCommonBaseCompatible(
5021                                          const ObjCObjectPointerType *Lptr,
5022                                          const ObjCObjectPointerType *Rptr) {
5023  const ObjCObjectType *LHS = Lptr->getObjectType();
5024  const ObjCObjectType *RHS = Rptr->getObjectType();
5025  const ObjCInterfaceDecl* LDecl = LHS->getInterface();
5026  const ObjCInterfaceDecl* RDecl = RHS->getInterface();
5027  if (!LDecl || !RDecl || (LDecl == RDecl))
5028    return QualType();
5029
5030  do {
5031    LHS = cast<ObjCInterfaceType>(getObjCInterfaceType(LDecl));
5032    if (canAssignObjCInterfaces(LHS, RHS)) {
5033      llvm::SmallVector<ObjCProtocolDecl *, 8> Protocols;
5034      getIntersectionOfProtocols(*this, Lptr, Rptr, Protocols);
5035
5036      QualType Result = QualType(LHS, 0);
5037      if (!Protocols.empty())
5038        Result = getObjCObjectType(Result, Protocols.data(), Protocols.size());
5039      Result = getObjCObjectPointerType(Result);
5040      return Result;
5041    }
5042  } while ((LDecl = LDecl->getSuperClass()));
5043
5044  return QualType();
5045}
5046
5047bool ASTContext::canAssignObjCInterfaces(const ObjCObjectType *LHS,
5048                                         const ObjCObjectType *RHS) {
5049  assert(LHS->getInterface() && "LHS is not an interface type");
5050  assert(RHS->getInterface() && "RHS is not an interface type");
5051
5052  // Verify that the base decls are compatible: the RHS must be a subclass of
5053  // the LHS.
5054  if (!LHS->getInterface()->isSuperClassOf(RHS->getInterface()))
5055    return false;
5056
5057  // RHS must have a superset of the protocols in the LHS.  If the LHS is not
5058  // protocol qualified at all, then we are good.
5059  if (LHS->getNumProtocols() == 0)
5060    return true;
5061
5062  // Okay, we know the LHS has protocol qualifiers.  If the RHS doesn't,
5063  // more detailed analysis is required.
5064  if (RHS->getNumProtocols() == 0) {
5065    // OK, if LHS is a superclass of RHS *and*
5066    // this superclass is assignment compatible with LHS.
5067    // false otherwise.
5068    bool IsSuperClass =
5069      LHS->getInterface()->isSuperClassOf(RHS->getInterface());
5070    if (IsSuperClass) {
5071      // OK if conversion of LHS to SuperClass results in narrowing of types
5072      // ; i.e., SuperClass may implement at least one of the protocols
5073      // in LHS's protocol list. Example, SuperObj<P1> = lhs<P1,P2> is ok.
5074      // But not SuperObj<P1,P2,P3> = lhs<P1,P2>.
5075      llvm::SmallPtrSet<ObjCProtocolDecl *, 8> SuperClassInheritedProtocols;
5076      CollectInheritedProtocols(RHS->getInterface(), SuperClassInheritedProtocols);
5077      // If super class has no protocols, it is not a match.
5078      if (SuperClassInheritedProtocols.empty())
5079        return false;
5080
5081      for (ObjCObjectType::qual_iterator LHSPI = LHS->qual_begin(),
5082           LHSPE = LHS->qual_end();
5083           LHSPI != LHSPE; LHSPI++) {
5084        bool SuperImplementsProtocol = false;
5085        ObjCProtocolDecl *LHSProto = (*LHSPI);
5086
5087        for (llvm::SmallPtrSet<ObjCProtocolDecl*,8>::iterator I =
5088             SuperClassInheritedProtocols.begin(),
5089             E = SuperClassInheritedProtocols.end(); I != E; ++I) {
5090          ObjCProtocolDecl *SuperClassProto = (*I);
5091          if (SuperClassProto->lookupProtocolNamed(LHSProto->getIdentifier())) {
5092            SuperImplementsProtocol = true;
5093            break;
5094          }
5095        }
5096        if (!SuperImplementsProtocol)
5097          return false;
5098      }
5099      return true;
5100    }
5101    return false;
5102  }
5103
5104  for (ObjCObjectType::qual_iterator LHSPI = LHS->qual_begin(),
5105                                     LHSPE = LHS->qual_end();
5106       LHSPI != LHSPE; LHSPI++) {
5107    bool RHSImplementsProtocol = false;
5108
5109    // If the RHS doesn't implement the protocol on the left, the types
5110    // are incompatible.
5111    for (ObjCObjectType::qual_iterator RHSPI = RHS->qual_begin(),
5112                                       RHSPE = RHS->qual_end();
5113         RHSPI != RHSPE; RHSPI++) {
5114      if ((*RHSPI)->lookupProtocolNamed((*LHSPI)->getIdentifier())) {
5115        RHSImplementsProtocol = true;
5116        break;
5117      }
5118    }
5119    // FIXME: For better diagnostics, consider passing back the protocol name.
5120    if (!RHSImplementsProtocol)
5121      return false;
5122  }
5123  // The RHS implements all protocols listed on the LHS.
5124  return true;
5125}
5126
5127bool ASTContext::areComparableObjCPointerTypes(QualType LHS, QualType RHS) {
5128  // get the "pointed to" types
5129  const ObjCObjectPointerType *LHSOPT = LHS->getAs<ObjCObjectPointerType>();
5130  const ObjCObjectPointerType *RHSOPT = RHS->getAs<ObjCObjectPointerType>();
5131
5132  if (!LHSOPT || !RHSOPT)
5133    return false;
5134
5135  return canAssignObjCInterfaces(LHSOPT, RHSOPT) ||
5136         canAssignObjCInterfaces(RHSOPT, LHSOPT);
5137}
5138
5139bool ASTContext::canBindObjCObjectType(QualType To, QualType From) {
5140  return canAssignObjCInterfaces(
5141                getObjCObjectPointerType(To)->getAs<ObjCObjectPointerType>(),
5142                getObjCObjectPointerType(From)->getAs<ObjCObjectPointerType>());
5143}
5144
5145/// typesAreCompatible - C99 6.7.3p9: For two qualified types to be compatible,
5146/// both shall have the identically qualified version of a compatible type.
5147/// C99 6.2.7p1: Two types have compatible types if their types are the
5148/// same. See 6.7.[2,3,5] for additional rules.
5149bool ASTContext::typesAreCompatible(QualType LHS, QualType RHS,
5150                                    bool CompareUnqualified) {
5151  if (getLangOptions().CPlusPlus)
5152    return hasSameType(LHS, RHS);
5153
5154  return !mergeTypes(LHS, RHS, false, CompareUnqualified).isNull();
5155}
5156
5157bool ASTContext::typesAreBlockPointerCompatible(QualType LHS, QualType RHS) {
5158  return !mergeTypes(LHS, RHS, true).isNull();
5159}
5160
5161/// mergeTransparentUnionType - if T is a transparent union type and a member
5162/// of T is compatible with SubType, return the merged type, else return
5163/// QualType()
5164QualType ASTContext::mergeTransparentUnionType(QualType T, QualType SubType,
5165                                               bool OfBlockPointer,
5166                                               bool Unqualified) {
5167  if (const RecordType *UT = T->getAsUnionType()) {
5168    RecordDecl *UD = UT->getDecl();
5169    if (UD->hasAttr<TransparentUnionAttr>()) {
5170      for (RecordDecl::field_iterator it = UD->field_begin(),
5171           itend = UD->field_end(); it != itend; ++it) {
5172        QualType ET = it->getType().getUnqualifiedType();
5173        QualType MT = mergeTypes(ET, SubType, OfBlockPointer, Unqualified);
5174        if (!MT.isNull())
5175          return MT;
5176      }
5177    }
5178  }
5179
5180  return QualType();
5181}
5182
5183/// mergeFunctionArgumentTypes - merge two types which appear as function
5184/// argument types
5185QualType ASTContext::mergeFunctionArgumentTypes(QualType lhs, QualType rhs,
5186                                                bool OfBlockPointer,
5187                                                bool Unqualified) {
5188  // GNU extension: two types are compatible if they appear as a function
5189  // argument, one of the types is a transparent union type and the other
5190  // type is compatible with a union member
5191  QualType lmerge = mergeTransparentUnionType(lhs, rhs, OfBlockPointer,
5192                                              Unqualified);
5193  if (!lmerge.isNull())
5194    return lmerge;
5195
5196  QualType rmerge = mergeTransparentUnionType(rhs, lhs, OfBlockPointer,
5197                                              Unqualified);
5198  if (!rmerge.isNull())
5199    return rmerge;
5200
5201  return mergeTypes(lhs, rhs, OfBlockPointer, Unqualified);
5202}
5203
5204QualType ASTContext::mergeFunctionTypes(QualType lhs, QualType rhs,
5205                                        bool OfBlockPointer,
5206                                        bool Unqualified) {
5207  const FunctionType *lbase = lhs->getAs<FunctionType>();
5208  const FunctionType *rbase = rhs->getAs<FunctionType>();
5209  const FunctionProtoType *lproto = dyn_cast<FunctionProtoType>(lbase);
5210  const FunctionProtoType *rproto = dyn_cast<FunctionProtoType>(rbase);
5211  bool allLTypes = true;
5212  bool allRTypes = true;
5213
5214  // Check return type
5215  QualType retType;
5216  if (OfBlockPointer) {
5217    QualType RHS = rbase->getResultType();
5218    QualType LHS = lbase->getResultType();
5219    bool UnqualifiedResult = Unqualified;
5220    if (!UnqualifiedResult)
5221      UnqualifiedResult = (!RHS.hasQualifiers() && LHS.hasQualifiers());
5222    retType = mergeTypes(LHS, RHS, true, UnqualifiedResult, true);
5223  }
5224  else
5225    retType = mergeTypes(lbase->getResultType(), rbase->getResultType(), false,
5226                         Unqualified);
5227  if (retType.isNull()) return QualType();
5228
5229  if (Unqualified)
5230    retType = retType.getUnqualifiedType();
5231
5232  CanQualType LRetType = getCanonicalType(lbase->getResultType());
5233  CanQualType RRetType = getCanonicalType(rbase->getResultType());
5234  if (Unqualified) {
5235    LRetType = LRetType.getUnqualifiedType();
5236    RRetType = RRetType.getUnqualifiedType();
5237  }
5238
5239  if (getCanonicalType(retType) != LRetType)
5240    allLTypes = false;
5241  if (getCanonicalType(retType) != RRetType)
5242    allRTypes = false;
5243
5244  // FIXME: double check this
5245  // FIXME: should we error if lbase->getRegParmAttr() != 0 &&
5246  //                           rbase->getRegParmAttr() != 0 &&
5247  //                           lbase->getRegParmAttr() != rbase->getRegParmAttr()?
5248  FunctionType::ExtInfo lbaseInfo = lbase->getExtInfo();
5249  FunctionType::ExtInfo rbaseInfo = rbase->getExtInfo();
5250
5251  // Compatible functions must have compatible calling conventions
5252  if (!isSameCallConv(lbaseInfo.getCC(), rbaseInfo.getCC()))
5253    return QualType();
5254
5255  // Regparm is part of the calling convention.
5256  if (lbaseInfo.getHasRegParm() != rbaseInfo.getHasRegParm())
5257    return QualType();
5258  if (lbaseInfo.getRegParm() != rbaseInfo.getRegParm())
5259    return QualType();
5260
5261  // It's noreturn if either type is.
5262  // FIXME: some uses, e.g. conditional exprs, really want this to be 'both'.
5263  bool NoReturn = lbaseInfo.getNoReturn() || rbaseInfo.getNoReturn();
5264  if (NoReturn != lbaseInfo.getNoReturn())
5265    allLTypes = false;
5266  if (NoReturn != rbaseInfo.getNoReturn())
5267    allRTypes = false;
5268
5269  FunctionType::ExtInfo einfo(NoReturn,
5270                              lbaseInfo.getHasRegParm(),
5271                              lbaseInfo.getRegParm(),
5272                              lbaseInfo.getCC());
5273
5274  if (lproto && rproto) { // two C99 style function prototypes
5275    assert(!lproto->hasExceptionSpec() && !rproto->hasExceptionSpec() &&
5276           "C++ shouldn't be here");
5277    unsigned lproto_nargs = lproto->getNumArgs();
5278    unsigned rproto_nargs = rproto->getNumArgs();
5279
5280    // Compatible functions must have the same number of arguments
5281    if (lproto_nargs != rproto_nargs)
5282      return QualType();
5283
5284    // Variadic and non-variadic functions aren't compatible
5285    if (lproto->isVariadic() != rproto->isVariadic())
5286      return QualType();
5287
5288    if (lproto->getTypeQuals() != rproto->getTypeQuals())
5289      return QualType();
5290
5291    // Check argument compatibility
5292    llvm::SmallVector<QualType, 10> types;
5293    for (unsigned i = 0; i < lproto_nargs; i++) {
5294      QualType largtype = lproto->getArgType(i).getUnqualifiedType();
5295      QualType rargtype = rproto->getArgType(i).getUnqualifiedType();
5296      QualType argtype = mergeFunctionArgumentTypes(largtype, rargtype,
5297                                                    OfBlockPointer,
5298                                                    Unqualified);
5299      if (argtype.isNull()) return QualType();
5300
5301      if (Unqualified)
5302        argtype = argtype.getUnqualifiedType();
5303
5304      types.push_back(argtype);
5305      if (Unqualified) {
5306        largtype = largtype.getUnqualifiedType();
5307        rargtype = rargtype.getUnqualifiedType();
5308      }
5309
5310      if (getCanonicalType(argtype) != getCanonicalType(largtype))
5311        allLTypes = false;
5312      if (getCanonicalType(argtype) != getCanonicalType(rargtype))
5313        allRTypes = false;
5314    }
5315    if (allLTypes) return lhs;
5316    if (allRTypes) return rhs;
5317
5318    FunctionProtoType::ExtProtoInfo EPI = lproto->getExtProtoInfo();
5319    EPI.ExtInfo = einfo;
5320    return getFunctionType(retType, types.begin(), types.size(), EPI);
5321  }
5322
5323  if (lproto) allRTypes = false;
5324  if (rproto) allLTypes = false;
5325
5326  const FunctionProtoType *proto = lproto ? lproto : rproto;
5327  if (proto) {
5328    assert(!proto->hasExceptionSpec() && "C++ shouldn't be here");
5329    if (proto->isVariadic()) return QualType();
5330    // Check that the types are compatible with the types that
5331    // would result from default argument promotions (C99 6.7.5.3p15).
5332    // The only types actually affected are promotable integer
5333    // types and floats, which would be passed as a different
5334    // type depending on whether the prototype is visible.
5335    unsigned proto_nargs = proto->getNumArgs();
5336    for (unsigned i = 0; i < proto_nargs; ++i) {
5337      QualType argTy = proto->getArgType(i);
5338
5339      // Look at the promotion type of enum types, since that is the type used
5340      // to pass enum values.
5341      if (const EnumType *Enum = argTy->getAs<EnumType>())
5342        argTy = Enum->getDecl()->getPromotionType();
5343
5344      if (argTy->isPromotableIntegerType() ||
5345          getCanonicalType(argTy).getUnqualifiedType() == FloatTy)
5346        return QualType();
5347    }
5348
5349    if (allLTypes) return lhs;
5350    if (allRTypes) return rhs;
5351
5352    FunctionProtoType::ExtProtoInfo EPI = proto->getExtProtoInfo();
5353    EPI.ExtInfo = einfo;
5354    return getFunctionType(retType, proto->arg_type_begin(),
5355                           proto->getNumArgs(), EPI);
5356  }
5357
5358  if (allLTypes) return lhs;
5359  if (allRTypes) return rhs;
5360  return getFunctionNoProtoType(retType, einfo);
5361}
5362
5363QualType ASTContext::mergeTypes(QualType LHS, QualType RHS,
5364                                bool OfBlockPointer,
5365                                bool Unqualified, bool BlockReturnType) {
5366  // C++ [expr]: If an expression initially has the type "reference to T", the
5367  // type is adjusted to "T" prior to any further analysis, the expression
5368  // designates the object or function denoted by the reference, and the
5369  // expression is an lvalue unless the reference is an rvalue reference and
5370  // the expression is a function call (possibly inside parentheses).
5371  assert(!LHS->getAs<ReferenceType>() && "LHS is a reference type?");
5372  assert(!RHS->getAs<ReferenceType>() && "RHS is a reference type?");
5373
5374  if (Unqualified) {
5375    LHS = LHS.getUnqualifiedType();
5376    RHS = RHS.getUnqualifiedType();
5377  }
5378
5379  QualType LHSCan = getCanonicalType(LHS),
5380           RHSCan = getCanonicalType(RHS);
5381
5382  // If two types are identical, they are compatible.
5383  if (LHSCan == RHSCan)
5384    return LHS;
5385
5386  // If the qualifiers are different, the types aren't compatible... mostly.
5387  Qualifiers LQuals = LHSCan.getLocalQualifiers();
5388  Qualifiers RQuals = RHSCan.getLocalQualifiers();
5389  if (LQuals != RQuals) {
5390    // If any of these qualifiers are different, we have a type
5391    // mismatch.
5392    if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() ||
5393        LQuals.getAddressSpace() != RQuals.getAddressSpace())
5394      return QualType();
5395
5396    // Exactly one GC qualifier difference is allowed: __strong is
5397    // okay if the other type has no GC qualifier but is an Objective
5398    // C object pointer (i.e. implicitly strong by default).  We fix
5399    // this by pretending that the unqualified type was actually
5400    // qualified __strong.
5401    Qualifiers::GC GC_L = LQuals.getObjCGCAttr();
5402    Qualifiers::GC GC_R = RQuals.getObjCGCAttr();
5403    assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements");
5404
5405    if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak)
5406      return QualType();
5407
5408    if (GC_L == Qualifiers::Strong && RHSCan->isObjCObjectPointerType()) {
5409      return mergeTypes(LHS, getObjCGCQualType(RHS, Qualifiers::Strong));
5410    }
5411    if (GC_R == Qualifiers::Strong && LHSCan->isObjCObjectPointerType()) {
5412      return mergeTypes(getObjCGCQualType(LHS, Qualifiers::Strong), RHS);
5413    }
5414    return QualType();
5415  }
5416
5417  // Okay, qualifiers are equal.
5418
5419  Type::TypeClass LHSClass = LHSCan->getTypeClass();
5420  Type::TypeClass RHSClass = RHSCan->getTypeClass();
5421
5422  // We want to consider the two function types to be the same for these
5423  // comparisons, just force one to the other.
5424  if (LHSClass == Type::FunctionProto) LHSClass = Type::FunctionNoProto;
5425  if (RHSClass == Type::FunctionProto) RHSClass = Type::FunctionNoProto;
5426
5427  // Same as above for arrays
5428  if (LHSClass == Type::VariableArray || LHSClass == Type::IncompleteArray)
5429    LHSClass = Type::ConstantArray;
5430  if (RHSClass == Type::VariableArray || RHSClass == Type::IncompleteArray)
5431    RHSClass = Type::ConstantArray;
5432
5433  // ObjCInterfaces are just specialized ObjCObjects.
5434  if (LHSClass == Type::ObjCInterface) LHSClass = Type::ObjCObject;
5435  if (RHSClass == Type::ObjCInterface) RHSClass = Type::ObjCObject;
5436
5437  // Canonicalize ExtVector -> Vector.
5438  if (LHSClass == Type::ExtVector) LHSClass = Type::Vector;
5439  if (RHSClass == Type::ExtVector) RHSClass = Type::Vector;
5440
5441  // If the canonical type classes don't match.
5442  if (LHSClass != RHSClass) {
5443    // C99 6.7.2.2p4: Each enumerated type shall be compatible with char,
5444    // a signed integer type, or an unsigned integer type.
5445    // Compatibility is based on the underlying type, not the promotion
5446    // type.
5447    if (const EnumType* ETy = LHS->getAs<EnumType>()) {
5448      if (ETy->getDecl()->getIntegerType() == RHSCan.getUnqualifiedType())
5449        return RHS;
5450    }
5451    if (const EnumType* ETy = RHS->getAs<EnumType>()) {
5452      if (ETy->getDecl()->getIntegerType() == LHSCan.getUnqualifiedType())
5453        return LHS;
5454    }
5455
5456    return QualType();
5457  }
5458
5459  // The canonical type classes match.
5460  switch (LHSClass) {
5461#define TYPE(Class, Base)
5462#define ABSTRACT_TYPE(Class, Base)
5463#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
5464#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
5465#define DEPENDENT_TYPE(Class, Base) case Type::Class:
5466#include "clang/AST/TypeNodes.def"
5467    assert(false && "Non-canonical and dependent types shouldn't get here");
5468    return QualType();
5469
5470  case Type::LValueReference:
5471  case Type::RValueReference:
5472  case Type::MemberPointer:
5473    assert(false && "C++ should never be in mergeTypes");
5474    return QualType();
5475
5476  case Type::ObjCInterface:
5477  case Type::IncompleteArray:
5478  case Type::VariableArray:
5479  case Type::FunctionProto:
5480  case Type::ExtVector:
5481    assert(false && "Types are eliminated above");
5482    return QualType();
5483
5484  case Type::Pointer:
5485  {
5486    // Merge two pointer types, while trying to preserve typedef info
5487    QualType LHSPointee = LHS->getAs<PointerType>()->getPointeeType();
5488    QualType RHSPointee = RHS->getAs<PointerType>()->getPointeeType();
5489    if (Unqualified) {
5490      LHSPointee = LHSPointee.getUnqualifiedType();
5491      RHSPointee = RHSPointee.getUnqualifiedType();
5492    }
5493    QualType ResultType = mergeTypes(LHSPointee, RHSPointee, false,
5494                                     Unqualified);
5495    if (ResultType.isNull()) return QualType();
5496    if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
5497      return LHS;
5498    if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
5499      return RHS;
5500    return getPointerType(ResultType);
5501  }
5502  case Type::BlockPointer:
5503  {
5504    // Merge two block pointer types, while trying to preserve typedef info
5505    QualType LHSPointee = LHS->getAs<BlockPointerType>()->getPointeeType();
5506    QualType RHSPointee = RHS->getAs<BlockPointerType>()->getPointeeType();
5507    if (Unqualified) {
5508      LHSPointee = LHSPointee.getUnqualifiedType();
5509      RHSPointee = RHSPointee.getUnqualifiedType();
5510    }
5511    QualType ResultType = mergeTypes(LHSPointee, RHSPointee, OfBlockPointer,
5512                                     Unqualified);
5513    if (ResultType.isNull()) return QualType();
5514    if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
5515      return LHS;
5516    if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
5517      return RHS;
5518    return getBlockPointerType(ResultType);
5519  }
5520  case Type::ConstantArray:
5521  {
5522    const ConstantArrayType* LCAT = getAsConstantArrayType(LHS);
5523    const ConstantArrayType* RCAT = getAsConstantArrayType(RHS);
5524    if (LCAT && RCAT && RCAT->getSize() != LCAT->getSize())
5525      return QualType();
5526
5527    QualType LHSElem = getAsArrayType(LHS)->getElementType();
5528    QualType RHSElem = getAsArrayType(RHS)->getElementType();
5529    if (Unqualified) {
5530      LHSElem = LHSElem.getUnqualifiedType();
5531      RHSElem = RHSElem.getUnqualifiedType();
5532    }
5533
5534    QualType ResultType = mergeTypes(LHSElem, RHSElem, false, Unqualified);
5535    if (ResultType.isNull()) return QualType();
5536    if (LCAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
5537      return LHS;
5538    if (RCAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
5539      return RHS;
5540    if (LCAT) return getConstantArrayType(ResultType, LCAT->getSize(),
5541                                          ArrayType::ArraySizeModifier(), 0);
5542    if (RCAT) return getConstantArrayType(ResultType, RCAT->getSize(),
5543                                          ArrayType::ArraySizeModifier(), 0);
5544    const VariableArrayType* LVAT = getAsVariableArrayType(LHS);
5545    const VariableArrayType* RVAT = getAsVariableArrayType(RHS);
5546    if (LVAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
5547      return LHS;
5548    if (RVAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
5549      return RHS;
5550    if (LVAT) {
5551      // FIXME: This isn't correct! But tricky to implement because
5552      // the array's size has to be the size of LHS, but the type
5553      // has to be different.
5554      return LHS;
5555    }
5556    if (RVAT) {
5557      // FIXME: This isn't correct! But tricky to implement because
5558      // the array's size has to be the size of RHS, but the type
5559      // has to be different.
5560      return RHS;
5561    }
5562    if (getCanonicalType(LHSElem) == getCanonicalType(ResultType)) return LHS;
5563    if (getCanonicalType(RHSElem) == getCanonicalType(ResultType)) return RHS;
5564    return getIncompleteArrayType(ResultType,
5565                                  ArrayType::ArraySizeModifier(), 0);
5566  }
5567  case Type::FunctionNoProto:
5568    return mergeFunctionTypes(LHS, RHS, OfBlockPointer, Unqualified);
5569  case Type::Record:
5570  case Type::Enum:
5571    return QualType();
5572  case Type::Builtin:
5573    // Only exactly equal builtin types are compatible, which is tested above.
5574    return QualType();
5575  case Type::Complex:
5576    // Distinct complex types are incompatible.
5577    return QualType();
5578  case Type::Vector:
5579    // FIXME: The merged type should be an ExtVector!
5580    if (areCompatVectorTypes(LHSCan->getAs<VectorType>(),
5581                             RHSCan->getAs<VectorType>()))
5582      return LHS;
5583    return QualType();
5584  case Type::ObjCObject: {
5585    // Check if the types are assignment compatible.
5586    // FIXME: This should be type compatibility, e.g. whether
5587    // "LHS x; RHS x;" at global scope is legal.
5588    const ObjCObjectType* LHSIface = LHS->getAs<ObjCObjectType>();
5589    const ObjCObjectType* RHSIface = RHS->getAs<ObjCObjectType>();
5590    if (canAssignObjCInterfaces(LHSIface, RHSIface))
5591      return LHS;
5592
5593    return QualType();
5594  }
5595  case Type::ObjCObjectPointer: {
5596    if (OfBlockPointer) {
5597      if (canAssignObjCInterfacesInBlockPointer(
5598                                          LHS->getAs<ObjCObjectPointerType>(),
5599                                          RHS->getAs<ObjCObjectPointerType>(),
5600                                          BlockReturnType))
5601      return LHS;
5602      return QualType();
5603    }
5604    if (canAssignObjCInterfaces(LHS->getAs<ObjCObjectPointerType>(),
5605                                RHS->getAs<ObjCObjectPointerType>()))
5606      return LHS;
5607
5608    return QualType();
5609    }
5610  }
5611
5612  return QualType();
5613}
5614
5615/// mergeObjCGCQualifiers - This routine merges ObjC's GC attribute of 'LHS' and
5616/// 'RHS' attributes and returns the merged version; including for function
5617/// return types.
5618QualType ASTContext::mergeObjCGCQualifiers(QualType LHS, QualType RHS) {
5619  QualType LHSCan = getCanonicalType(LHS),
5620  RHSCan = getCanonicalType(RHS);
5621  // If two types are identical, they are compatible.
5622  if (LHSCan == RHSCan)
5623    return LHS;
5624  if (RHSCan->isFunctionType()) {
5625    if (!LHSCan->isFunctionType())
5626      return QualType();
5627    QualType OldReturnType =
5628      cast<FunctionType>(RHSCan.getTypePtr())->getResultType();
5629    QualType NewReturnType =
5630      cast<FunctionType>(LHSCan.getTypePtr())->getResultType();
5631    QualType ResReturnType =
5632      mergeObjCGCQualifiers(NewReturnType, OldReturnType);
5633    if (ResReturnType.isNull())
5634      return QualType();
5635    if (ResReturnType == NewReturnType || ResReturnType == OldReturnType) {
5636      // id foo(); ... __strong id foo(); or: __strong id foo(); ... id foo();
5637      // In either case, use OldReturnType to build the new function type.
5638      const FunctionType *F = LHS->getAs<FunctionType>();
5639      if (const FunctionProtoType *FPT = cast<FunctionProtoType>(F)) {
5640        FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
5641        EPI.ExtInfo = getFunctionExtInfo(LHS);
5642        QualType ResultType
5643          = getFunctionType(OldReturnType, FPT->arg_type_begin(),
5644                            FPT->getNumArgs(), EPI);
5645        return ResultType;
5646      }
5647    }
5648    return QualType();
5649  }
5650
5651  // If the qualifiers are different, the types can still be merged.
5652  Qualifiers LQuals = LHSCan.getLocalQualifiers();
5653  Qualifiers RQuals = RHSCan.getLocalQualifiers();
5654  if (LQuals != RQuals) {
5655    // If any of these qualifiers are different, we have a type mismatch.
5656    if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() ||
5657        LQuals.getAddressSpace() != RQuals.getAddressSpace())
5658      return QualType();
5659
5660    // Exactly one GC qualifier difference is allowed: __strong is
5661    // okay if the other type has no GC qualifier but is an Objective
5662    // C object pointer (i.e. implicitly strong by default).  We fix
5663    // this by pretending that the unqualified type was actually
5664    // qualified __strong.
5665    Qualifiers::GC GC_L = LQuals.getObjCGCAttr();
5666    Qualifiers::GC GC_R = RQuals.getObjCGCAttr();
5667    assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements");
5668
5669    if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak)
5670      return QualType();
5671
5672    if (GC_L == Qualifiers::Strong)
5673      return LHS;
5674    if (GC_R == Qualifiers::Strong)
5675      return RHS;
5676    return QualType();
5677  }
5678
5679  if (LHSCan->isObjCObjectPointerType() && RHSCan->isObjCObjectPointerType()) {
5680    QualType LHSBaseQT = LHS->getAs<ObjCObjectPointerType>()->getPointeeType();
5681    QualType RHSBaseQT = RHS->getAs<ObjCObjectPointerType>()->getPointeeType();
5682    QualType ResQT = mergeObjCGCQualifiers(LHSBaseQT, RHSBaseQT);
5683    if (ResQT == LHSBaseQT)
5684      return LHS;
5685    if (ResQT == RHSBaseQT)
5686      return RHS;
5687  }
5688  return QualType();
5689}
5690
5691//===----------------------------------------------------------------------===//
5692//                         Integer Predicates
5693//===----------------------------------------------------------------------===//
5694
5695unsigned ASTContext::getIntWidth(QualType T) const {
5696  if (const EnumType *ET = dyn_cast<EnumType>(T))
5697    T = ET->getDecl()->getIntegerType();
5698  if (T->isBooleanType())
5699    return 1;
5700  // For builtin types, just use the standard type sizing method
5701  return (unsigned)getTypeSize(T);
5702}
5703
5704QualType ASTContext::getCorrespondingUnsignedType(QualType T) {
5705  assert(T->hasSignedIntegerRepresentation() && "Unexpected type");
5706
5707  // Turn <4 x signed int> -> <4 x unsigned int>
5708  if (const VectorType *VTy = T->getAs<VectorType>())
5709    return getVectorType(getCorrespondingUnsignedType(VTy->getElementType()),
5710                         VTy->getNumElements(), VTy->getVectorKind());
5711
5712  // For enums, we return the unsigned version of the base type.
5713  if (const EnumType *ETy = T->getAs<EnumType>())
5714    T = ETy->getDecl()->getIntegerType();
5715
5716  const BuiltinType *BTy = T->getAs<BuiltinType>();
5717  assert(BTy && "Unexpected signed integer type");
5718  switch (BTy->getKind()) {
5719  case BuiltinType::Char_S:
5720  case BuiltinType::SChar:
5721    return UnsignedCharTy;
5722  case BuiltinType::Short:
5723    return UnsignedShortTy;
5724  case BuiltinType::Int:
5725    return UnsignedIntTy;
5726  case BuiltinType::Long:
5727    return UnsignedLongTy;
5728  case BuiltinType::LongLong:
5729    return UnsignedLongLongTy;
5730  case BuiltinType::Int128:
5731    return UnsignedInt128Ty;
5732  default:
5733    assert(0 && "Unexpected signed integer type");
5734    return QualType();
5735  }
5736}
5737
5738ASTMutationListener::~ASTMutationListener() { }
5739
5740
5741//===----------------------------------------------------------------------===//
5742//                          Builtin Type Computation
5743//===----------------------------------------------------------------------===//
5744
5745/// DecodeTypeFromStr - This decodes one type descriptor from Str, advancing the
5746/// pointer over the consumed characters.  This returns the resultant type.  If
5747/// AllowTypeModifiers is false then modifier like * are not parsed, just basic
5748/// types.  This allows "v2i*" to be parsed as a pointer to a v2i instead of
5749/// a vector of "i*".
5750///
5751/// RequiresICE is filled in on return to indicate whether the value is required
5752/// to be an Integer Constant Expression.
5753static QualType DecodeTypeFromStr(const char *&Str, const ASTContext &Context,
5754                                  ASTContext::GetBuiltinTypeError &Error,
5755                                  bool &RequiresICE,
5756                                  bool AllowTypeModifiers) {
5757  // Modifiers.
5758  int HowLong = 0;
5759  bool Signed = false, Unsigned = false;
5760  RequiresICE = false;
5761
5762  // Read the prefixed modifiers first.
5763  bool Done = false;
5764  while (!Done) {
5765    switch (*Str++) {
5766    default: Done = true; --Str; break;
5767    case 'I':
5768      RequiresICE = true;
5769      break;
5770    case 'S':
5771      assert(!Unsigned && "Can't use both 'S' and 'U' modifiers!");
5772      assert(!Signed && "Can't use 'S' modifier multiple times!");
5773      Signed = true;
5774      break;
5775    case 'U':
5776      assert(!Signed && "Can't use both 'S' and 'U' modifiers!");
5777      assert(!Unsigned && "Can't use 'S' modifier multiple times!");
5778      Unsigned = true;
5779      break;
5780    case 'L':
5781      assert(HowLong <= 2 && "Can't have LLLL modifier");
5782      ++HowLong;
5783      break;
5784    }
5785  }
5786
5787  QualType Type;
5788
5789  // Read the base type.
5790  switch (*Str++) {
5791  default: assert(0 && "Unknown builtin type letter!");
5792  case 'v':
5793    assert(HowLong == 0 && !Signed && !Unsigned &&
5794           "Bad modifiers used with 'v'!");
5795    Type = Context.VoidTy;
5796    break;
5797  case 'f':
5798    assert(HowLong == 0 && !Signed && !Unsigned &&
5799           "Bad modifiers used with 'f'!");
5800    Type = Context.FloatTy;
5801    break;
5802  case 'd':
5803    assert(HowLong < 2 && !Signed && !Unsigned &&
5804           "Bad modifiers used with 'd'!");
5805    if (HowLong)
5806      Type = Context.LongDoubleTy;
5807    else
5808      Type = Context.DoubleTy;
5809    break;
5810  case 's':
5811    assert(HowLong == 0 && "Bad modifiers used with 's'!");
5812    if (Unsigned)
5813      Type = Context.UnsignedShortTy;
5814    else
5815      Type = Context.ShortTy;
5816    break;
5817  case 'i':
5818    if (HowLong == 3)
5819      Type = Unsigned ? Context.UnsignedInt128Ty : Context.Int128Ty;
5820    else if (HowLong == 2)
5821      Type = Unsigned ? Context.UnsignedLongLongTy : Context.LongLongTy;
5822    else if (HowLong == 1)
5823      Type = Unsigned ? Context.UnsignedLongTy : Context.LongTy;
5824    else
5825      Type = Unsigned ? Context.UnsignedIntTy : Context.IntTy;
5826    break;
5827  case 'c':
5828    assert(HowLong == 0 && "Bad modifiers used with 'c'!");
5829    if (Signed)
5830      Type = Context.SignedCharTy;
5831    else if (Unsigned)
5832      Type = Context.UnsignedCharTy;
5833    else
5834      Type = Context.CharTy;
5835    break;
5836  case 'b': // boolean
5837    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'b'!");
5838    Type = Context.BoolTy;
5839    break;
5840  case 'z':  // size_t.
5841    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'z'!");
5842    Type = Context.getSizeType();
5843    break;
5844  case 'F':
5845    Type = Context.getCFConstantStringType();
5846    break;
5847  case 'G':
5848    Type = Context.getObjCIdType();
5849    break;
5850  case 'H':
5851    Type = Context.getObjCSelType();
5852    break;
5853  case 'a':
5854    Type = Context.getBuiltinVaListType();
5855    assert(!Type.isNull() && "builtin va list type not initialized!");
5856    break;
5857  case 'A':
5858    // This is a "reference" to a va_list; however, what exactly
5859    // this means depends on how va_list is defined. There are two
5860    // different kinds of va_list: ones passed by value, and ones
5861    // passed by reference.  An example of a by-value va_list is
5862    // x86, where va_list is a char*. An example of by-ref va_list
5863    // is x86-64, where va_list is a __va_list_tag[1]. For x86,
5864    // we want this argument to be a char*&; for x86-64, we want
5865    // it to be a __va_list_tag*.
5866    Type = Context.getBuiltinVaListType();
5867    assert(!Type.isNull() && "builtin va list type not initialized!");
5868    if (Type->isArrayType())
5869      Type = Context.getArrayDecayedType(Type);
5870    else
5871      Type = Context.getLValueReferenceType(Type);
5872    break;
5873  case 'V': {
5874    char *End;
5875    unsigned NumElements = strtoul(Str, &End, 10);
5876    assert(End != Str && "Missing vector size");
5877    Str = End;
5878
5879    QualType ElementType = DecodeTypeFromStr(Str, Context, Error,
5880                                             RequiresICE, false);
5881    assert(!RequiresICE && "Can't require vector ICE");
5882
5883    // TODO: No way to make AltiVec vectors in builtins yet.
5884    Type = Context.getVectorType(ElementType, NumElements,
5885                                 VectorType::GenericVector);
5886    break;
5887  }
5888  case 'X': {
5889    QualType ElementType = DecodeTypeFromStr(Str, Context, Error, RequiresICE,
5890                                             false);
5891    assert(!RequiresICE && "Can't require complex ICE");
5892    Type = Context.getComplexType(ElementType);
5893    break;
5894  }
5895  case 'P':
5896    Type = Context.getFILEType();
5897    if (Type.isNull()) {
5898      Error = ASTContext::GE_Missing_stdio;
5899      return QualType();
5900    }
5901    break;
5902  case 'J':
5903    if (Signed)
5904      Type = Context.getsigjmp_bufType();
5905    else
5906      Type = Context.getjmp_bufType();
5907
5908    if (Type.isNull()) {
5909      Error = ASTContext::GE_Missing_setjmp;
5910      return QualType();
5911    }
5912    break;
5913  }
5914
5915  // If there are modifiers and if we're allowed to parse them, go for it.
5916  Done = !AllowTypeModifiers;
5917  while (!Done) {
5918    switch (char c = *Str++) {
5919    default: Done = true; --Str; break;
5920    case '*':
5921    case '&': {
5922      // Both pointers and references can have their pointee types
5923      // qualified with an address space.
5924      char *End;
5925      unsigned AddrSpace = strtoul(Str, &End, 10);
5926      if (End != Str && AddrSpace != 0) {
5927        Type = Context.getAddrSpaceQualType(Type, AddrSpace);
5928        Str = End;
5929      }
5930      if (c == '*')
5931        Type = Context.getPointerType(Type);
5932      else
5933        Type = Context.getLValueReferenceType(Type);
5934      break;
5935    }
5936    // FIXME: There's no way to have a built-in with an rvalue ref arg.
5937    case 'C':
5938      Type = Type.withConst();
5939      break;
5940    case 'D':
5941      Type = Context.getVolatileType(Type);
5942      break;
5943    }
5944  }
5945
5946  assert((!RequiresICE || Type->isIntegralOrEnumerationType()) &&
5947         "Integer constant 'I' type must be an integer");
5948
5949  return Type;
5950}
5951
5952/// GetBuiltinType - Return the type for the specified builtin.
5953QualType ASTContext::GetBuiltinType(unsigned Id,
5954                                    GetBuiltinTypeError &Error,
5955                                    unsigned *IntegerConstantArgs) const {
5956  const char *TypeStr = BuiltinInfo.GetTypeString(Id);
5957
5958  llvm::SmallVector<QualType, 8> ArgTypes;
5959
5960  bool RequiresICE = false;
5961  Error = GE_None;
5962  QualType ResType = DecodeTypeFromStr(TypeStr, *this, Error,
5963                                       RequiresICE, true);
5964  if (Error != GE_None)
5965    return QualType();
5966
5967  assert(!RequiresICE && "Result of intrinsic cannot be required to be an ICE");
5968
5969  while (TypeStr[0] && TypeStr[0] != '.') {
5970    QualType Ty = DecodeTypeFromStr(TypeStr, *this, Error, RequiresICE, true);
5971    if (Error != GE_None)
5972      return QualType();
5973
5974    // If this argument is required to be an IntegerConstantExpression and the
5975    // caller cares, fill in the bitmask we return.
5976    if (RequiresICE && IntegerConstantArgs)
5977      *IntegerConstantArgs |= 1 << ArgTypes.size();
5978
5979    // Do array -> pointer decay.  The builtin should use the decayed type.
5980    if (Ty->isArrayType())
5981      Ty = getArrayDecayedType(Ty);
5982
5983    ArgTypes.push_back(Ty);
5984  }
5985
5986  assert((TypeStr[0] != '.' || TypeStr[1] == 0) &&
5987         "'.' should only occur at end of builtin type list!");
5988
5989  FunctionType::ExtInfo EI;
5990  if (BuiltinInfo.isNoReturn(Id)) EI = EI.withNoReturn(true);
5991
5992  bool Variadic = (TypeStr[0] == '.');
5993
5994  // We really shouldn't be making a no-proto type here, especially in C++.
5995  if (ArgTypes.empty() && Variadic)
5996    return getFunctionNoProtoType(ResType, EI);
5997
5998  FunctionProtoType::ExtProtoInfo EPI;
5999  EPI.ExtInfo = EI;
6000  EPI.Variadic = Variadic;
6001
6002  return getFunctionType(ResType, ArgTypes.data(), ArgTypes.size(), EPI);
6003}
6004
6005GVALinkage ASTContext::GetGVALinkageForFunction(const FunctionDecl *FD) {
6006  GVALinkage External = GVA_StrongExternal;
6007
6008  Linkage L = FD->getLinkage();
6009  switch (L) {
6010  case NoLinkage:
6011  case InternalLinkage:
6012  case UniqueExternalLinkage:
6013    return GVA_Internal;
6014
6015  case ExternalLinkage:
6016    switch (FD->getTemplateSpecializationKind()) {
6017    case TSK_Undeclared:
6018    case TSK_ExplicitSpecialization:
6019      External = GVA_StrongExternal;
6020      break;
6021
6022    case TSK_ExplicitInstantiationDefinition:
6023      return GVA_ExplicitTemplateInstantiation;
6024
6025    case TSK_ExplicitInstantiationDeclaration:
6026    case TSK_ImplicitInstantiation:
6027      External = GVA_TemplateInstantiation;
6028      break;
6029    }
6030  }
6031
6032  if (!FD->isInlined())
6033    return External;
6034
6035  if (!getLangOptions().CPlusPlus || FD->hasAttr<GNUInlineAttr>()) {
6036    // GNU or C99 inline semantics. Determine whether this symbol should be
6037    // externally visible.
6038    if (FD->isInlineDefinitionExternallyVisible())
6039      return External;
6040
6041    // C99 inline semantics, where the symbol is not externally visible.
6042    return GVA_C99Inline;
6043  }
6044
6045  // C++0x [temp.explicit]p9:
6046  //   [ Note: The intent is that an inline function that is the subject of
6047  //   an explicit instantiation declaration will still be implicitly
6048  //   instantiated when used so that the body can be considered for
6049  //   inlining, but that no out-of-line copy of the inline function would be
6050  //   generated in the translation unit. -- end note ]
6051  if (FD->getTemplateSpecializationKind()
6052                                       == TSK_ExplicitInstantiationDeclaration)
6053    return GVA_C99Inline;
6054
6055  return GVA_CXXInline;
6056}
6057
6058GVALinkage ASTContext::GetGVALinkageForVariable(const VarDecl *VD) {
6059  // If this is a static data member, compute the kind of template
6060  // specialization. Otherwise, this variable is not part of a
6061  // template.
6062  TemplateSpecializationKind TSK = TSK_Undeclared;
6063  if (VD->isStaticDataMember())
6064    TSK = VD->getTemplateSpecializationKind();
6065
6066  Linkage L = VD->getLinkage();
6067  if (L == ExternalLinkage && getLangOptions().CPlusPlus &&
6068      VD->getType()->getLinkage() == UniqueExternalLinkage)
6069    L = UniqueExternalLinkage;
6070
6071  switch (L) {
6072  case NoLinkage:
6073  case InternalLinkage:
6074  case UniqueExternalLinkage:
6075    return GVA_Internal;
6076
6077  case ExternalLinkage:
6078    switch (TSK) {
6079    case TSK_Undeclared:
6080    case TSK_ExplicitSpecialization:
6081      return GVA_StrongExternal;
6082
6083    case TSK_ExplicitInstantiationDeclaration:
6084      llvm_unreachable("Variable should not be instantiated");
6085      // Fall through to treat this like any other instantiation.
6086
6087    case TSK_ExplicitInstantiationDefinition:
6088      return GVA_ExplicitTemplateInstantiation;
6089
6090    case TSK_ImplicitInstantiation:
6091      return GVA_TemplateInstantiation;
6092    }
6093  }
6094
6095  return GVA_StrongExternal;
6096}
6097
6098bool ASTContext::DeclMustBeEmitted(const Decl *D) {
6099  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
6100    if (!VD->isFileVarDecl())
6101      return false;
6102  } else if (!isa<FunctionDecl>(D))
6103    return false;
6104
6105  // Weak references don't produce any output by themselves.
6106  if (D->hasAttr<WeakRefAttr>())
6107    return false;
6108
6109  // Aliases and used decls are required.
6110  if (D->hasAttr<AliasAttr>() || D->hasAttr<UsedAttr>())
6111    return true;
6112
6113  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
6114    // Forward declarations aren't required.
6115    if (!FD->doesThisDeclarationHaveABody())
6116      return false;
6117
6118    // Constructors and destructors are required.
6119    if (FD->hasAttr<ConstructorAttr>() || FD->hasAttr<DestructorAttr>())
6120      return true;
6121
6122    // The key function for a class is required.
6123    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
6124      const CXXRecordDecl *RD = MD->getParent();
6125      if (MD->isOutOfLine() && RD->isDynamicClass()) {
6126        const CXXMethodDecl *KeyFunc = getKeyFunction(RD);
6127        if (KeyFunc && KeyFunc->getCanonicalDecl() == MD->getCanonicalDecl())
6128          return true;
6129      }
6130    }
6131
6132    GVALinkage Linkage = GetGVALinkageForFunction(FD);
6133
6134    // static, static inline, always_inline, and extern inline functions can
6135    // always be deferred.  Normal inline functions can be deferred in C99/C++.
6136    // Implicit template instantiations can also be deferred in C++.
6137    if (Linkage == GVA_Internal  || Linkage == GVA_C99Inline ||
6138        Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation)
6139      return false;
6140    return true;
6141  }
6142
6143  const VarDecl *VD = cast<VarDecl>(D);
6144  assert(VD->isFileVarDecl() && "Expected file scoped var");
6145
6146  if (VD->isThisDeclarationADefinition() == VarDecl::DeclarationOnly)
6147    return false;
6148
6149  // Structs that have non-trivial constructors or destructors are required.
6150
6151  // FIXME: Handle references.
6152  // FIXME: Be more selective about which constructors we care about.
6153  if (const RecordType *RT = VD->getType()->getAs<RecordType>()) {
6154    if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
6155      if (RD->hasDefinition() && !(RD->hasTrivialDefaultConstructor() &&
6156                                   RD->hasTrivialCopyConstructor() &&
6157                                   RD->hasTrivialMoveConstructor() &&
6158                                   RD->hasTrivialDestructor()))
6159        return true;
6160    }
6161  }
6162
6163  GVALinkage L = GetGVALinkageForVariable(VD);
6164  if (L == GVA_Internal || L == GVA_TemplateInstantiation) {
6165    if (!(VD->getInit() && VD->getInit()->HasSideEffects(*this)))
6166      return false;
6167  }
6168
6169  return true;
6170}
6171
6172CallingConv ASTContext::getDefaultMethodCallConv() {
6173  // Pass through to the C++ ABI object
6174  return ABI->getDefaultMethodCallConv();
6175}
6176
6177bool ASTContext::isNearlyEmpty(const CXXRecordDecl *RD) const {
6178  // Pass through to the C++ ABI object
6179  return ABI->isNearlyEmpty(RD);
6180}
6181
6182MangleContext *ASTContext::createMangleContext() {
6183  switch (Target.getCXXABI()) {
6184  case CXXABI_ARM:
6185  case CXXABI_Itanium:
6186    return createItaniumMangleContext(*this, getDiagnostics());
6187  case CXXABI_Microsoft:
6188    return createMicrosoftMangleContext(*this, getDiagnostics());
6189  }
6190  assert(0 && "Unsupported ABI");
6191  return 0;
6192}
6193
6194CXXABI::~CXXABI() {}
6195
6196size_t ASTContext::getSideTableAllocatedMemory() const {
6197  size_t bytes = 0;
6198  bytes += ASTRecordLayouts.getMemorySize();
6199  bytes += ObjCLayouts.getMemorySize();
6200  bytes += KeyFunctions.getMemorySize();
6201  bytes += ObjCImpls.getMemorySize();
6202  bytes += BlockVarCopyInits.getMemorySize();
6203  bytes += DeclAttrs.getMemorySize();
6204  bytes += InstantiatedFromStaticDataMember.getMemorySize();
6205  bytes += InstantiatedFromUsingDecl.getMemorySize();
6206  bytes += InstantiatedFromUsingShadowDecl.getMemorySize();
6207  bytes += InstantiatedFromUnnamedFieldDecl.getMemorySize();
6208  return bytes;
6209}
6210
6211