ASTContext.cpp revision 10738d36b150aa65206890c1c845cdba076e4200
1//===--- ASTContext.cpp - Context to hold long-lived AST nodes ------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements the ASTContext interface.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/AST/ASTContext.h"
15#include "clang/AST/CharUnits.h"
16#include "clang/AST/DeclCXX.h"
17#include "clang/AST/DeclObjC.h"
18#include "clang/AST/DeclTemplate.h"
19#include "clang/AST/TypeLoc.h"
20#include "clang/AST/Expr.h"
21#include "clang/AST/ExprCXX.h"
22#include "clang/AST/ExternalASTSource.h"
23#include "clang/AST/ASTMutationListener.h"
24#include "clang/AST/RecordLayout.h"
25#include "clang/Basic/Builtins.h"
26#include "clang/Basic/SourceManager.h"
27#include "clang/Basic/TargetInfo.h"
28#include "llvm/ADT/SmallString.h"
29#include "llvm/ADT/StringExtras.h"
30#include "llvm/Support/MathExtras.h"
31#include "llvm/Support/raw_ostream.h"
32#include "CXXABI.h"
33
34using namespace clang;
35
36unsigned ASTContext::NumImplicitDefaultConstructors;
37unsigned ASTContext::NumImplicitDefaultConstructorsDeclared;
38unsigned ASTContext::NumImplicitCopyConstructors;
39unsigned ASTContext::NumImplicitCopyConstructorsDeclared;
40unsigned ASTContext::NumImplicitCopyAssignmentOperators;
41unsigned ASTContext::NumImplicitCopyAssignmentOperatorsDeclared;
42unsigned ASTContext::NumImplicitDestructors;
43unsigned ASTContext::NumImplicitDestructorsDeclared;
44
45enum FloatingRank {
46  FloatRank, DoubleRank, LongDoubleRank
47};
48
49void
50ASTContext::CanonicalTemplateTemplateParm::Profile(llvm::FoldingSetNodeID &ID,
51                                               TemplateTemplateParmDecl *Parm) {
52  ID.AddInteger(Parm->getDepth());
53  ID.AddInteger(Parm->getPosition());
54  // FIXME: Parameter pack
55
56  TemplateParameterList *Params = Parm->getTemplateParameters();
57  ID.AddInteger(Params->size());
58  for (TemplateParameterList::const_iterator P = Params->begin(),
59                                          PEnd = Params->end();
60       P != PEnd; ++P) {
61    if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*P)) {
62      ID.AddInteger(0);
63      ID.AddBoolean(TTP->isParameterPack());
64      continue;
65    }
66
67    if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(*P)) {
68      ID.AddInteger(1);
69      // FIXME: Parameter pack
70      ID.AddPointer(NTTP->getType().getAsOpaquePtr());
71      continue;
72    }
73
74    TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(*P);
75    ID.AddInteger(2);
76    Profile(ID, TTP);
77  }
78}
79
80TemplateTemplateParmDecl *
81ASTContext::getCanonicalTemplateTemplateParmDecl(
82                                                 TemplateTemplateParmDecl *TTP) {
83  // Check if we already have a canonical template template parameter.
84  llvm::FoldingSetNodeID ID;
85  CanonicalTemplateTemplateParm::Profile(ID, TTP);
86  void *InsertPos = 0;
87  CanonicalTemplateTemplateParm *Canonical
88    = CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos);
89  if (Canonical)
90    return Canonical->getParam();
91
92  // Build a canonical template parameter list.
93  TemplateParameterList *Params = TTP->getTemplateParameters();
94  llvm::SmallVector<NamedDecl *, 4> CanonParams;
95  CanonParams.reserve(Params->size());
96  for (TemplateParameterList::const_iterator P = Params->begin(),
97                                          PEnd = Params->end();
98       P != PEnd; ++P) {
99    if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*P))
100      CanonParams.push_back(
101                  TemplateTypeParmDecl::Create(*this, getTranslationUnitDecl(),
102                                               SourceLocation(), TTP->getDepth(),
103                                               TTP->getIndex(), 0, false,
104                                               TTP->isParameterPack()));
105    else if (NonTypeTemplateParmDecl *NTTP
106             = dyn_cast<NonTypeTemplateParmDecl>(*P))
107      CanonParams.push_back(
108            NonTypeTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
109                                            SourceLocation(), NTTP->getDepth(),
110                                            NTTP->getPosition(), 0,
111                                            getCanonicalType(NTTP->getType()),
112                                            NTTP->isParameterPack(),
113                                            0));
114    else
115      CanonParams.push_back(getCanonicalTemplateTemplateParmDecl(
116                                           cast<TemplateTemplateParmDecl>(*P)));
117  }
118
119  TemplateTemplateParmDecl *CanonTTP
120    = TemplateTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
121                                       SourceLocation(), TTP->getDepth(),
122                                       TTP->getPosition(), 0,
123                         TemplateParameterList::Create(*this, SourceLocation(),
124                                                       SourceLocation(),
125                                                       CanonParams.data(),
126                                                       CanonParams.size(),
127                                                       SourceLocation()));
128
129  // Get the new insert position for the node we care about.
130  Canonical = CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos);
131  assert(Canonical == 0 && "Shouldn't be in the map!");
132  (void)Canonical;
133
134  // Create the canonical template template parameter entry.
135  Canonical = new (*this) CanonicalTemplateTemplateParm(CanonTTP);
136  CanonTemplateTemplateParms.InsertNode(Canonical, InsertPos);
137  return CanonTTP;
138}
139
140CXXABI *ASTContext::createCXXABI(const TargetInfo &T) {
141  if (!LangOpts.CPlusPlus) return 0;
142
143  switch (T.getCXXABI()) {
144  case CXXABI_ARM:
145    return CreateARMCXXABI(*this);
146  case CXXABI_Itanium:
147    return CreateItaniumCXXABI(*this);
148  case CXXABI_Microsoft:
149    return CreateMicrosoftCXXABI(*this);
150  }
151  return 0;
152}
153
154ASTContext::ASTContext(const LangOptions& LOpts, SourceManager &SM,
155                       const TargetInfo &t,
156                       IdentifierTable &idents, SelectorTable &sels,
157                       Builtin::Context &builtins,
158                       unsigned size_reserve) :
159  TemplateSpecializationTypes(this_()),
160  DependentTemplateSpecializationTypes(this_()),
161  GlobalNestedNameSpecifier(0), IsInt128Installed(false),
162  CFConstantStringTypeDecl(0), NSConstantStringTypeDecl(0),
163  ObjCFastEnumerationStateTypeDecl(0), FILEDecl(0), jmp_bufDecl(0),
164  sigjmp_bufDecl(0), BlockDescriptorType(0), BlockDescriptorExtendedType(0),
165  NullTypeSourceInfo(QualType()),
166  SourceMgr(SM), LangOpts(LOpts), ABI(createCXXABI(t)), Target(t),
167  Idents(idents), Selectors(sels),
168  BuiltinInfo(builtins),
169  DeclarationNames(*this),
170  ExternalSource(0), Listener(0), PrintingPolicy(LOpts),
171  LastSDM(0, 0),
172  UniqueBlockByRefTypeID(0), UniqueBlockParmTypeID(0) {
173  ObjCIdRedefinitionType = QualType();
174  ObjCClassRedefinitionType = QualType();
175  ObjCSelRedefinitionType = QualType();
176  if (size_reserve > 0) Types.reserve(size_reserve);
177  TUDecl = TranslationUnitDecl::Create(*this);
178  InitBuiltinTypes();
179}
180
181ASTContext::~ASTContext() {
182  // Release the DenseMaps associated with DeclContext objects.
183  // FIXME: Is this the ideal solution?
184  ReleaseDeclContextMaps();
185
186  // Call all of the deallocation functions.
187  for (unsigned I = 0, N = Deallocations.size(); I != N; ++I)
188    Deallocations[I].first(Deallocations[I].second);
189
190  // Release all of the memory associated with overridden C++ methods.
191  for (llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::iterator
192         OM = OverriddenMethods.begin(), OMEnd = OverriddenMethods.end();
193       OM != OMEnd; ++OM)
194    OM->second.Destroy();
195
196  // ASTRecordLayout objects in ASTRecordLayouts must always be destroyed
197  // because they can contain DenseMaps.
198  for (llvm::DenseMap<const ObjCContainerDecl*,
199       const ASTRecordLayout*>::iterator
200       I = ObjCLayouts.begin(), E = ObjCLayouts.end(); I != E; )
201    // Increment in loop to prevent using deallocated memory.
202    if (ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second))
203      R->Destroy(*this);
204
205  for (llvm::DenseMap<const RecordDecl*, const ASTRecordLayout*>::iterator
206       I = ASTRecordLayouts.begin(), E = ASTRecordLayouts.end(); I != E; ) {
207    // Increment in loop to prevent using deallocated memory.
208    if (ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second))
209      R->Destroy(*this);
210  }
211
212  for (llvm::DenseMap<const Decl*, AttrVec*>::iterator A = DeclAttrs.begin(),
213                                                    AEnd = DeclAttrs.end();
214       A != AEnd; ++A)
215    A->second->~AttrVec();
216}
217
218void ASTContext::AddDeallocation(void (*Callback)(void*), void *Data) {
219  Deallocations.push_back(std::make_pair(Callback, Data));
220}
221
222void
223ASTContext::setExternalSource(llvm::OwningPtr<ExternalASTSource> &Source) {
224  ExternalSource.reset(Source.take());
225}
226
227void ASTContext::PrintStats() const {
228  fprintf(stderr, "*** AST Context Stats:\n");
229  fprintf(stderr, "  %d types total.\n", (int)Types.size());
230
231  unsigned counts[] = {
232#define TYPE(Name, Parent) 0,
233#define ABSTRACT_TYPE(Name, Parent)
234#include "clang/AST/TypeNodes.def"
235    0 // Extra
236  };
237
238  for (unsigned i = 0, e = Types.size(); i != e; ++i) {
239    Type *T = Types[i];
240    counts[(unsigned)T->getTypeClass()]++;
241  }
242
243  unsigned Idx = 0;
244  unsigned TotalBytes = 0;
245#define TYPE(Name, Parent)                                              \
246  if (counts[Idx])                                                      \
247    fprintf(stderr, "    %d %s types\n", (int)counts[Idx], #Name);      \
248  TotalBytes += counts[Idx] * sizeof(Name##Type);                       \
249  ++Idx;
250#define ABSTRACT_TYPE(Name, Parent)
251#include "clang/AST/TypeNodes.def"
252
253  fprintf(stderr, "Total bytes = %d\n", int(TotalBytes));
254
255  // Implicit special member functions.
256  fprintf(stderr, "  %u/%u implicit default constructors created\n",
257          NumImplicitDefaultConstructorsDeclared,
258          NumImplicitDefaultConstructors);
259  fprintf(stderr, "  %u/%u implicit copy constructors created\n",
260          NumImplicitCopyConstructorsDeclared,
261          NumImplicitCopyConstructors);
262  fprintf(stderr, "  %u/%u implicit copy assignment operators created\n",
263          NumImplicitCopyAssignmentOperatorsDeclared,
264          NumImplicitCopyAssignmentOperators);
265  fprintf(stderr, "  %u/%u implicit destructors created\n",
266          NumImplicitDestructorsDeclared, NumImplicitDestructors);
267
268  if (ExternalSource.get()) {
269    fprintf(stderr, "\n");
270    ExternalSource->PrintStats();
271  }
272
273  BumpAlloc.PrintStats();
274}
275
276
277void ASTContext::InitBuiltinType(CanQualType &R, BuiltinType::Kind K) {
278  BuiltinType *Ty = new (*this, TypeAlignment) BuiltinType(K);
279  R = CanQualType::CreateUnsafe(QualType(Ty, 0));
280  Types.push_back(Ty);
281}
282
283void ASTContext::InitBuiltinTypes() {
284  assert(VoidTy.isNull() && "Context reinitialized?");
285
286  // C99 6.2.5p19.
287  InitBuiltinType(VoidTy,              BuiltinType::Void);
288
289  // C99 6.2.5p2.
290  InitBuiltinType(BoolTy,              BuiltinType::Bool);
291  // C99 6.2.5p3.
292  if (LangOpts.CharIsSigned)
293    InitBuiltinType(CharTy,            BuiltinType::Char_S);
294  else
295    InitBuiltinType(CharTy,            BuiltinType::Char_U);
296  // C99 6.2.5p4.
297  InitBuiltinType(SignedCharTy,        BuiltinType::SChar);
298  InitBuiltinType(ShortTy,             BuiltinType::Short);
299  InitBuiltinType(IntTy,               BuiltinType::Int);
300  InitBuiltinType(LongTy,              BuiltinType::Long);
301  InitBuiltinType(LongLongTy,          BuiltinType::LongLong);
302
303  // C99 6.2.5p6.
304  InitBuiltinType(UnsignedCharTy,      BuiltinType::UChar);
305  InitBuiltinType(UnsignedShortTy,     BuiltinType::UShort);
306  InitBuiltinType(UnsignedIntTy,       BuiltinType::UInt);
307  InitBuiltinType(UnsignedLongTy,      BuiltinType::ULong);
308  InitBuiltinType(UnsignedLongLongTy,  BuiltinType::ULongLong);
309
310  // C99 6.2.5p10.
311  InitBuiltinType(FloatTy,             BuiltinType::Float);
312  InitBuiltinType(DoubleTy,            BuiltinType::Double);
313  InitBuiltinType(LongDoubleTy,        BuiltinType::LongDouble);
314
315  // GNU extension, 128-bit integers.
316  InitBuiltinType(Int128Ty,            BuiltinType::Int128);
317  InitBuiltinType(UnsignedInt128Ty,    BuiltinType::UInt128);
318
319  if (LangOpts.CPlusPlus) // C++ 3.9.1p5
320    InitBuiltinType(WCharTy,           BuiltinType::WChar);
321  else // C99
322    WCharTy = getFromTargetType(Target.getWCharType());
323
324  if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
325    InitBuiltinType(Char16Ty,           BuiltinType::Char16);
326  else // C99
327    Char16Ty = getFromTargetType(Target.getChar16Type());
328
329  if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
330    InitBuiltinType(Char32Ty,           BuiltinType::Char32);
331  else // C99
332    Char32Ty = getFromTargetType(Target.getChar32Type());
333
334  // Placeholder type for type-dependent expressions whose type is
335  // completely unknown. No code should ever check a type against
336  // DependentTy and users should never see it; however, it is here to
337  // help diagnose failures to properly check for type-dependent
338  // expressions.
339  InitBuiltinType(DependentTy,         BuiltinType::Dependent);
340
341  // Placeholder type for functions.
342  InitBuiltinType(OverloadTy,          BuiltinType::Overload);
343
344  // Placeholder type for C++0x auto declarations whose real type has
345  // not yet been deduced.
346  InitBuiltinType(UndeducedAutoTy,     BuiltinType::UndeducedAuto);
347
348  // C99 6.2.5p11.
349  FloatComplexTy      = getComplexType(FloatTy);
350  DoubleComplexTy     = getComplexType(DoubleTy);
351  LongDoubleComplexTy = getComplexType(LongDoubleTy);
352
353  BuiltinVaListType = QualType();
354
355  // "Builtin" typedefs set by Sema::ActOnTranslationUnitScope().
356  ObjCIdTypedefType = QualType();
357  ObjCClassTypedefType = QualType();
358  ObjCSelTypedefType = QualType();
359
360  // Builtin types for 'id', 'Class', and 'SEL'.
361  InitBuiltinType(ObjCBuiltinIdTy, BuiltinType::ObjCId);
362  InitBuiltinType(ObjCBuiltinClassTy, BuiltinType::ObjCClass);
363  InitBuiltinType(ObjCBuiltinSelTy, BuiltinType::ObjCSel);
364
365  ObjCConstantStringType = QualType();
366
367  // void * type
368  VoidPtrTy = getPointerType(VoidTy);
369
370  // nullptr type (C++0x 2.14.7)
371  InitBuiltinType(NullPtrTy,           BuiltinType::NullPtr);
372}
373
374Diagnostic &ASTContext::getDiagnostics() const {
375  return SourceMgr.getDiagnostics();
376}
377
378AttrVec& ASTContext::getDeclAttrs(const Decl *D) {
379  AttrVec *&Result = DeclAttrs[D];
380  if (!Result) {
381    void *Mem = Allocate(sizeof(AttrVec));
382    Result = new (Mem) AttrVec;
383  }
384
385  return *Result;
386}
387
388/// \brief Erase the attributes corresponding to the given declaration.
389void ASTContext::eraseDeclAttrs(const Decl *D) {
390  llvm::DenseMap<const Decl*, AttrVec*>::iterator Pos = DeclAttrs.find(D);
391  if (Pos != DeclAttrs.end()) {
392    Pos->second->~AttrVec();
393    DeclAttrs.erase(Pos);
394  }
395}
396
397
398MemberSpecializationInfo *
399ASTContext::getInstantiatedFromStaticDataMember(const VarDecl *Var) {
400  assert(Var->isStaticDataMember() && "Not a static data member");
401  llvm::DenseMap<const VarDecl *, MemberSpecializationInfo *>::iterator Pos
402    = InstantiatedFromStaticDataMember.find(Var);
403  if (Pos == InstantiatedFromStaticDataMember.end())
404    return 0;
405
406  return Pos->second;
407}
408
409void
410ASTContext::setInstantiatedFromStaticDataMember(VarDecl *Inst, VarDecl *Tmpl,
411                                                TemplateSpecializationKind TSK,
412                                          SourceLocation PointOfInstantiation) {
413  assert(Inst->isStaticDataMember() && "Not a static data member");
414  assert(Tmpl->isStaticDataMember() && "Not a static data member");
415  assert(!InstantiatedFromStaticDataMember[Inst] &&
416         "Already noted what static data member was instantiated from");
417  InstantiatedFromStaticDataMember[Inst]
418    = new (*this) MemberSpecializationInfo(Tmpl, TSK, PointOfInstantiation);
419}
420
421NamedDecl *
422ASTContext::getInstantiatedFromUsingDecl(UsingDecl *UUD) {
423  llvm::DenseMap<UsingDecl *, NamedDecl *>::const_iterator Pos
424    = InstantiatedFromUsingDecl.find(UUD);
425  if (Pos == InstantiatedFromUsingDecl.end())
426    return 0;
427
428  return Pos->second;
429}
430
431void
432ASTContext::setInstantiatedFromUsingDecl(UsingDecl *Inst, NamedDecl *Pattern) {
433  assert((isa<UsingDecl>(Pattern) ||
434          isa<UnresolvedUsingValueDecl>(Pattern) ||
435          isa<UnresolvedUsingTypenameDecl>(Pattern)) &&
436         "pattern decl is not a using decl");
437  assert(!InstantiatedFromUsingDecl[Inst] && "pattern already exists");
438  InstantiatedFromUsingDecl[Inst] = Pattern;
439}
440
441UsingShadowDecl *
442ASTContext::getInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst) {
443  llvm::DenseMap<UsingShadowDecl*, UsingShadowDecl*>::const_iterator Pos
444    = InstantiatedFromUsingShadowDecl.find(Inst);
445  if (Pos == InstantiatedFromUsingShadowDecl.end())
446    return 0;
447
448  return Pos->second;
449}
450
451void
452ASTContext::setInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst,
453                                               UsingShadowDecl *Pattern) {
454  assert(!InstantiatedFromUsingShadowDecl[Inst] && "pattern already exists");
455  InstantiatedFromUsingShadowDecl[Inst] = Pattern;
456}
457
458FieldDecl *ASTContext::getInstantiatedFromUnnamedFieldDecl(FieldDecl *Field) {
459  llvm::DenseMap<FieldDecl *, FieldDecl *>::iterator Pos
460    = InstantiatedFromUnnamedFieldDecl.find(Field);
461  if (Pos == InstantiatedFromUnnamedFieldDecl.end())
462    return 0;
463
464  return Pos->second;
465}
466
467void ASTContext::setInstantiatedFromUnnamedFieldDecl(FieldDecl *Inst,
468                                                     FieldDecl *Tmpl) {
469  assert(!Inst->getDeclName() && "Instantiated field decl is not unnamed");
470  assert(!Tmpl->getDeclName() && "Template field decl is not unnamed");
471  assert(!InstantiatedFromUnnamedFieldDecl[Inst] &&
472         "Already noted what unnamed field was instantiated from");
473
474  InstantiatedFromUnnamedFieldDecl[Inst] = Tmpl;
475}
476
477ASTContext::overridden_cxx_method_iterator
478ASTContext::overridden_methods_begin(const CXXMethodDecl *Method) const {
479  llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
480    = OverriddenMethods.find(Method);
481  if (Pos == OverriddenMethods.end())
482    return 0;
483
484  return Pos->second.begin();
485}
486
487ASTContext::overridden_cxx_method_iterator
488ASTContext::overridden_methods_end(const CXXMethodDecl *Method) const {
489  llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
490    = OverriddenMethods.find(Method);
491  if (Pos == OverriddenMethods.end())
492    return 0;
493
494  return Pos->second.end();
495}
496
497unsigned
498ASTContext::overridden_methods_size(const CXXMethodDecl *Method) const {
499  llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
500    = OverriddenMethods.find(Method);
501  if (Pos == OverriddenMethods.end())
502    return 0;
503
504  return Pos->second.size();
505}
506
507void ASTContext::addOverriddenMethod(const CXXMethodDecl *Method,
508                                     const CXXMethodDecl *Overridden) {
509  OverriddenMethods[Method].push_back(Overridden);
510}
511
512//===----------------------------------------------------------------------===//
513//                         Type Sizing and Analysis
514//===----------------------------------------------------------------------===//
515
516/// getFloatTypeSemantics - Return the APFloat 'semantics' for the specified
517/// scalar floating point type.
518const llvm::fltSemantics &ASTContext::getFloatTypeSemantics(QualType T) const {
519  const BuiltinType *BT = T->getAs<BuiltinType>();
520  assert(BT && "Not a floating point type!");
521  switch (BT->getKind()) {
522  default: assert(0 && "Not a floating point type!");
523  case BuiltinType::Float:      return Target.getFloatFormat();
524  case BuiltinType::Double:     return Target.getDoubleFormat();
525  case BuiltinType::LongDouble: return Target.getLongDoubleFormat();
526  }
527}
528
529/// getDeclAlign - Return a conservative estimate of the alignment of the
530/// specified decl.  Note that bitfields do not have a valid alignment, so
531/// this method will assert on them.
532/// If @p RefAsPointee, references are treated like their underlying type
533/// (for alignof), else they're treated like pointers (for CodeGen).
534CharUnits ASTContext::getDeclAlign(const Decl *D, bool RefAsPointee) {
535  unsigned Align = Target.getCharWidth();
536
537  bool UseAlignAttrOnly = false;
538  if (unsigned AlignFromAttr = D->getMaxAlignment()) {
539    Align = AlignFromAttr;
540
541    // __attribute__((aligned)) can increase or decrease alignment
542    // *except* on a struct or struct member, where it only increases
543    // alignment unless 'packed' is also specified.
544    //
545    // It is an error for [[align]] to decrease alignment, so we can
546    // ignore that possibility;  Sema should diagnose it.
547    if (isa<FieldDecl>(D)) {
548      UseAlignAttrOnly = D->hasAttr<PackedAttr>() ||
549        cast<FieldDecl>(D)->getParent()->hasAttr<PackedAttr>();
550    } else {
551      UseAlignAttrOnly = true;
552    }
553  }
554
555  if (UseAlignAttrOnly) {
556    // ignore type of value
557  } else if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
558    QualType T = VD->getType();
559    if (const ReferenceType* RT = T->getAs<ReferenceType>()) {
560      if (RefAsPointee)
561        T = RT->getPointeeType();
562      else
563        T = getPointerType(RT->getPointeeType());
564    }
565    if (!T->isIncompleteType() && !T->isFunctionType()) {
566      unsigned MinWidth = Target.getLargeArrayMinWidth();
567      unsigned ArrayAlign = Target.getLargeArrayAlign();
568      if (isa<VariableArrayType>(T) && MinWidth != 0)
569        Align = std::max(Align, ArrayAlign);
570      if (ConstantArrayType *CT = dyn_cast<ConstantArrayType>(T)) {
571        unsigned Size = getTypeSize(CT);
572        if (MinWidth != 0 && MinWidth <= Size)
573          Align = std::max(Align, ArrayAlign);
574      }
575      // Incomplete or function types default to 1.
576      while (isa<VariableArrayType>(T) || isa<IncompleteArrayType>(T))
577        T = cast<ArrayType>(T)->getElementType();
578
579      Align = std::max(Align, getPreferredTypeAlign(T.getTypePtr()));
580    }
581    if (const FieldDecl *FD = dyn_cast<FieldDecl>(VD)) {
582      // In the case of a field in a packed struct, we want the minimum
583      // of the alignment of the field and the alignment of the struct.
584      Align = std::min(Align,
585        getPreferredTypeAlign(FD->getParent()->getTypeForDecl()));
586    }
587  }
588
589  return CharUnits::fromQuantity(Align / Target.getCharWidth());
590}
591
592std::pair<CharUnits, CharUnits>
593ASTContext::getTypeInfoInChars(const Type *T) {
594  std::pair<uint64_t, unsigned> Info = getTypeInfo(T);
595  return std::make_pair(CharUnits::fromQuantity(Info.first / getCharWidth()),
596                        CharUnits::fromQuantity(Info.second / getCharWidth()));
597}
598
599std::pair<CharUnits, CharUnits>
600ASTContext::getTypeInfoInChars(QualType T) {
601  return getTypeInfoInChars(T.getTypePtr());
602}
603
604/// getTypeSize - Return the size of the specified type, in bits.  This method
605/// does not work on incomplete types.
606///
607/// FIXME: Pointers into different addr spaces could have different sizes and
608/// alignment requirements: getPointerInfo should take an AddrSpace, this
609/// should take a QualType, &c.
610std::pair<uint64_t, unsigned>
611ASTContext::getTypeInfo(const Type *T) {
612  uint64_t Width=0;
613  unsigned Align=8;
614  switch (T->getTypeClass()) {
615#define TYPE(Class, Base)
616#define ABSTRACT_TYPE(Class, Base)
617#define NON_CANONICAL_TYPE(Class, Base)
618#define DEPENDENT_TYPE(Class, Base) case Type::Class:
619#include "clang/AST/TypeNodes.def"
620    assert(false && "Should not see dependent types");
621    break;
622
623  case Type::FunctionNoProto:
624  case Type::FunctionProto:
625    // GCC extension: alignof(function) = 32 bits
626    Width = 0;
627    Align = 32;
628    break;
629
630  case Type::IncompleteArray:
631  case Type::VariableArray:
632    Width = 0;
633    Align = getTypeAlign(cast<ArrayType>(T)->getElementType());
634    break;
635
636  case Type::ConstantArray: {
637    const ConstantArrayType *CAT = cast<ConstantArrayType>(T);
638
639    std::pair<uint64_t, unsigned> EltInfo = getTypeInfo(CAT->getElementType());
640    Width = EltInfo.first*CAT->getSize().getZExtValue();
641    Align = EltInfo.second;
642    break;
643  }
644  case Type::ExtVector:
645  case Type::Vector: {
646    const VectorType *VT = cast<VectorType>(T);
647    std::pair<uint64_t, unsigned> EltInfo = getTypeInfo(VT->getElementType());
648    Width = EltInfo.first*VT->getNumElements();
649    Align = Width;
650    // If the alignment is not a power of 2, round up to the next power of 2.
651    // This happens for non-power-of-2 length vectors.
652    if (Align & (Align-1)) {
653      Align = llvm::NextPowerOf2(Align);
654      Width = llvm::RoundUpToAlignment(Width, Align);
655    }
656    break;
657  }
658
659  case Type::Builtin:
660    switch (cast<BuiltinType>(T)->getKind()) {
661    default: assert(0 && "Unknown builtin type!");
662    case BuiltinType::Void:
663      // GCC extension: alignof(void) = 8 bits.
664      Width = 0;
665      Align = 8;
666      break;
667
668    case BuiltinType::Bool:
669      Width = Target.getBoolWidth();
670      Align = Target.getBoolAlign();
671      break;
672    case BuiltinType::Char_S:
673    case BuiltinType::Char_U:
674    case BuiltinType::UChar:
675    case BuiltinType::SChar:
676      Width = Target.getCharWidth();
677      Align = Target.getCharAlign();
678      break;
679    case BuiltinType::WChar:
680      Width = Target.getWCharWidth();
681      Align = Target.getWCharAlign();
682      break;
683    case BuiltinType::Char16:
684      Width = Target.getChar16Width();
685      Align = Target.getChar16Align();
686      break;
687    case BuiltinType::Char32:
688      Width = Target.getChar32Width();
689      Align = Target.getChar32Align();
690      break;
691    case BuiltinType::UShort:
692    case BuiltinType::Short:
693      Width = Target.getShortWidth();
694      Align = Target.getShortAlign();
695      break;
696    case BuiltinType::UInt:
697    case BuiltinType::Int:
698      Width = Target.getIntWidth();
699      Align = Target.getIntAlign();
700      break;
701    case BuiltinType::ULong:
702    case BuiltinType::Long:
703      Width = Target.getLongWidth();
704      Align = Target.getLongAlign();
705      break;
706    case BuiltinType::ULongLong:
707    case BuiltinType::LongLong:
708      Width = Target.getLongLongWidth();
709      Align = Target.getLongLongAlign();
710      break;
711    case BuiltinType::Int128:
712    case BuiltinType::UInt128:
713      Width = 128;
714      Align = 128; // int128_t is 128-bit aligned on all targets.
715      break;
716    case BuiltinType::Float:
717      Width = Target.getFloatWidth();
718      Align = Target.getFloatAlign();
719      break;
720    case BuiltinType::Double:
721      Width = Target.getDoubleWidth();
722      Align = Target.getDoubleAlign();
723      break;
724    case BuiltinType::LongDouble:
725      Width = Target.getLongDoubleWidth();
726      Align = Target.getLongDoubleAlign();
727      break;
728    case BuiltinType::NullPtr:
729      Width = Target.getPointerWidth(0); // C++ 3.9.1p11: sizeof(nullptr_t)
730      Align = Target.getPointerAlign(0); //   == sizeof(void*)
731      break;
732    case BuiltinType::ObjCId:
733    case BuiltinType::ObjCClass:
734    case BuiltinType::ObjCSel:
735      Width = Target.getPointerWidth(0);
736      Align = Target.getPointerAlign(0);
737      break;
738    }
739    break;
740  case Type::ObjCObjectPointer:
741    Width = Target.getPointerWidth(0);
742    Align = Target.getPointerAlign(0);
743    break;
744  case Type::BlockPointer: {
745    unsigned AS = cast<BlockPointerType>(T)->getPointeeType().getAddressSpace();
746    Width = Target.getPointerWidth(AS);
747    Align = Target.getPointerAlign(AS);
748    break;
749  }
750  case Type::LValueReference:
751  case Type::RValueReference: {
752    // alignof and sizeof should never enter this code path here, so we go
753    // the pointer route.
754    unsigned AS = cast<ReferenceType>(T)->getPointeeType().getAddressSpace();
755    Width = Target.getPointerWidth(AS);
756    Align = Target.getPointerAlign(AS);
757    break;
758  }
759  case Type::Pointer: {
760    unsigned AS = cast<PointerType>(T)->getPointeeType().getAddressSpace();
761    Width = Target.getPointerWidth(AS);
762    Align = Target.getPointerAlign(AS);
763    break;
764  }
765  case Type::MemberPointer: {
766    const MemberPointerType *MPT = cast<MemberPointerType>(T);
767    std::pair<uint64_t, unsigned> PtrDiffInfo =
768      getTypeInfo(getPointerDiffType());
769    Width = PtrDiffInfo.first * ABI->getMemberPointerSize(MPT);
770    Align = PtrDiffInfo.second;
771    break;
772  }
773  case Type::Complex: {
774    // Complex types have the same alignment as their elements, but twice the
775    // size.
776    std::pair<uint64_t, unsigned> EltInfo =
777      getTypeInfo(cast<ComplexType>(T)->getElementType());
778    Width = EltInfo.first*2;
779    Align = EltInfo.second;
780    break;
781  }
782  case Type::ObjCObject:
783    return getTypeInfo(cast<ObjCObjectType>(T)->getBaseType().getTypePtr());
784  case Type::ObjCInterface: {
785    const ObjCInterfaceType *ObjCI = cast<ObjCInterfaceType>(T);
786    const ASTRecordLayout &Layout = getASTObjCInterfaceLayout(ObjCI->getDecl());
787    Width = Layout.getSize();
788    Align = Layout.getAlignment();
789    break;
790  }
791  case Type::Record:
792  case Type::Enum: {
793    const TagType *TT = cast<TagType>(T);
794
795    if (TT->getDecl()->isInvalidDecl()) {
796      Width = 1;
797      Align = 1;
798      break;
799    }
800
801    if (const EnumType *ET = dyn_cast<EnumType>(TT))
802      return getTypeInfo(ET->getDecl()->getIntegerType());
803
804    const RecordType *RT = cast<RecordType>(TT);
805    const ASTRecordLayout &Layout = getASTRecordLayout(RT->getDecl());
806    Width = Layout.getSize();
807    Align = Layout.getAlignment();
808    break;
809  }
810
811  case Type::SubstTemplateTypeParm:
812    return getTypeInfo(cast<SubstTemplateTypeParmType>(T)->
813                       getReplacementType().getTypePtr());
814
815  case Type::Paren:
816    return getTypeInfo(cast<ParenType>(T)->getInnerType().getTypePtr());
817
818  case Type::Typedef: {
819    const TypedefDecl *Typedef = cast<TypedefType>(T)->getDecl();
820    std::pair<uint64_t, unsigned> Info
821      = getTypeInfo(Typedef->getUnderlyingType().getTypePtr());
822    Align = std::max(Typedef->getMaxAlignment(), Info.second);
823    Width = Info.first;
824    break;
825  }
826
827  case Type::TypeOfExpr:
828    return getTypeInfo(cast<TypeOfExprType>(T)->getUnderlyingExpr()->getType()
829                         .getTypePtr());
830
831  case Type::TypeOf:
832    return getTypeInfo(cast<TypeOfType>(T)->getUnderlyingType().getTypePtr());
833
834  case Type::Decltype:
835    return getTypeInfo(cast<DecltypeType>(T)->getUnderlyingExpr()->getType()
836                        .getTypePtr());
837
838  case Type::Elaborated:
839    return getTypeInfo(cast<ElaboratedType>(T)->getNamedType().getTypePtr());
840
841  case Type::TemplateSpecialization:
842    assert(getCanonicalType(T) != T &&
843           "Cannot request the size of a dependent type");
844    // FIXME: this is likely to be wrong once we support template
845    // aliases, since a template alias could refer to a typedef that
846    // has an __aligned__ attribute on it.
847    return getTypeInfo(getCanonicalType(T));
848  }
849
850  assert(Align && (Align & (Align-1)) == 0 && "Alignment must be power of 2");
851  return std::make_pair(Width, Align);
852}
853
854/// getTypeSizeInChars - Return the size of the specified type, in characters.
855/// This method does not work on incomplete types.
856CharUnits ASTContext::getTypeSizeInChars(QualType T) {
857  return CharUnits::fromQuantity(getTypeSize(T) / getCharWidth());
858}
859CharUnits ASTContext::getTypeSizeInChars(const Type *T) {
860  return CharUnits::fromQuantity(getTypeSize(T) / getCharWidth());
861}
862
863/// getTypeAlignInChars - Return the ABI-specified alignment of a type, in
864/// characters. This method does not work on incomplete types.
865CharUnits ASTContext::getTypeAlignInChars(QualType T) {
866  return CharUnits::fromQuantity(getTypeAlign(T) / getCharWidth());
867}
868CharUnits ASTContext::getTypeAlignInChars(const Type *T) {
869  return CharUnits::fromQuantity(getTypeAlign(T) / getCharWidth());
870}
871
872/// getPreferredTypeAlign - Return the "preferred" alignment of the specified
873/// type for the current target in bits.  This can be different than the ABI
874/// alignment in cases where it is beneficial for performance to overalign
875/// a data type.
876unsigned ASTContext::getPreferredTypeAlign(const Type *T) {
877  unsigned ABIAlign = getTypeAlign(T);
878
879  // Double and long long should be naturally aligned if possible.
880  if (const ComplexType* CT = T->getAs<ComplexType>())
881    T = CT->getElementType().getTypePtr();
882  if (T->isSpecificBuiltinType(BuiltinType::Double) ||
883      T->isSpecificBuiltinType(BuiltinType::LongLong))
884    return std::max(ABIAlign, (unsigned)getTypeSize(T));
885
886  return ABIAlign;
887}
888
889/// ShallowCollectObjCIvars -
890/// Collect all ivars, including those synthesized, in the current class.
891///
892void ASTContext::ShallowCollectObjCIvars(const ObjCInterfaceDecl *OI,
893                                 llvm::SmallVectorImpl<ObjCIvarDecl*> &Ivars) {
894  // FIXME. This need be removed but there are two many places which
895  // assume const-ness of ObjCInterfaceDecl
896  ObjCInterfaceDecl *IDecl = const_cast<ObjCInterfaceDecl *>(OI);
897  for (ObjCIvarDecl *Iv = IDecl->all_declared_ivar_begin(); Iv;
898        Iv= Iv->getNextIvar())
899    Ivars.push_back(Iv);
900}
901
902/// DeepCollectObjCIvars -
903/// This routine first collects all declared, but not synthesized, ivars in
904/// super class and then collects all ivars, including those synthesized for
905/// current class. This routine is used for implementation of current class
906/// when all ivars, declared and synthesized are known.
907///
908void ASTContext::DeepCollectObjCIvars(const ObjCInterfaceDecl *OI,
909                                      bool leafClass,
910                                llvm::SmallVectorImpl<ObjCIvarDecl*> &Ivars) {
911  if (const ObjCInterfaceDecl *SuperClass = OI->getSuperClass())
912    DeepCollectObjCIvars(SuperClass, false, Ivars);
913  if (!leafClass) {
914    for (ObjCInterfaceDecl::ivar_iterator I = OI->ivar_begin(),
915         E = OI->ivar_end(); I != E; ++I)
916      Ivars.push_back(*I);
917  }
918  else
919    ShallowCollectObjCIvars(OI, Ivars);
920}
921
922/// CollectInheritedProtocols - Collect all protocols in current class and
923/// those inherited by it.
924void ASTContext::CollectInheritedProtocols(const Decl *CDecl,
925                          llvm::SmallPtrSet<ObjCProtocolDecl*, 8> &Protocols) {
926  if (const ObjCInterfaceDecl *OI = dyn_cast<ObjCInterfaceDecl>(CDecl)) {
927    // We can use protocol_iterator here instead of
928    // all_referenced_protocol_iterator since we are walking all categories.
929    for (ObjCInterfaceDecl::all_protocol_iterator P = OI->all_referenced_protocol_begin(),
930         PE = OI->all_referenced_protocol_end(); P != PE; ++P) {
931      ObjCProtocolDecl *Proto = (*P);
932      Protocols.insert(Proto);
933      for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
934           PE = Proto->protocol_end(); P != PE; ++P) {
935        Protocols.insert(*P);
936        CollectInheritedProtocols(*P, Protocols);
937      }
938    }
939
940    // Categories of this Interface.
941    for (const ObjCCategoryDecl *CDeclChain = OI->getCategoryList();
942         CDeclChain; CDeclChain = CDeclChain->getNextClassCategory())
943      CollectInheritedProtocols(CDeclChain, Protocols);
944    if (ObjCInterfaceDecl *SD = OI->getSuperClass())
945      while (SD) {
946        CollectInheritedProtocols(SD, Protocols);
947        SD = SD->getSuperClass();
948      }
949  } else if (const ObjCCategoryDecl *OC = dyn_cast<ObjCCategoryDecl>(CDecl)) {
950    for (ObjCCategoryDecl::protocol_iterator P = OC->protocol_begin(),
951         PE = OC->protocol_end(); P != PE; ++P) {
952      ObjCProtocolDecl *Proto = (*P);
953      Protocols.insert(Proto);
954      for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
955           PE = Proto->protocol_end(); P != PE; ++P)
956        CollectInheritedProtocols(*P, Protocols);
957    }
958  } else if (const ObjCProtocolDecl *OP = dyn_cast<ObjCProtocolDecl>(CDecl)) {
959    for (ObjCProtocolDecl::protocol_iterator P = OP->protocol_begin(),
960         PE = OP->protocol_end(); P != PE; ++P) {
961      ObjCProtocolDecl *Proto = (*P);
962      Protocols.insert(Proto);
963      for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
964           PE = Proto->protocol_end(); P != PE; ++P)
965        CollectInheritedProtocols(*P, Protocols);
966    }
967  }
968}
969
970unsigned ASTContext::CountNonClassIvars(const ObjCInterfaceDecl *OI) {
971  unsigned count = 0;
972  // Count ivars declared in class extension.
973  for (const ObjCCategoryDecl *CDecl = OI->getFirstClassExtension(); CDecl;
974       CDecl = CDecl->getNextClassExtension())
975    count += CDecl->ivar_size();
976
977  // Count ivar defined in this class's implementation.  This
978  // includes synthesized ivars.
979  if (ObjCImplementationDecl *ImplDecl = OI->getImplementation())
980    count += ImplDecl->ivar_size();
981
982  return count;
983}
984
985/// \brief Get the implementation of ObjCInterfaceDecl,or NULL if none exists.
986ObjCImplementationDecl *ASTContext::getObjCImplementation(ObjCInterfaceDecl *D) {
987  llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
988    I = ObjCImpls.find(D);
989  if (I != ObjCImpls.end())
990    return cast<ObjCImplementationDecl>(I->second);
991  return 0;
992}
993/// \brief Get the implementation of ObjCCategoryDecl, or NULL if none exists.
994ObjCCategoryImplDecl *ASTContext::getObjCImplementation(ObjCCategoryDecl *D) {
995  llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
996    I = ObjCImpls.find(D);
997  if (I != ObjCImpls.end())
998    return cast<ObjCCategoryImplDecl>(I->second);
999  return 0;
1000}
1001
1002/// \brief Set the implementation of ObjCInterfaceDecl.
1003void ASTContext::setObjCImplementation(ObjCInterfaceDecl *IFaceD,
1004                           ObjCImplementationDecl *ImplD) {
1005  assert(IFaceD && ImplD && "Passed null params");
1006  ObjCImpls[IFaceD] = ImplD;
1007}
1008/// \brief Set the implementation of ObjCCategoryDecl.
1009void ASTContext::setObjCImplementation(ObjCCategoryDecl *CatD,
1010                           ObjCCategoryImplDecl *ImplD) {
1011  assert(CatD && ImplD && "Passed null params");
1012  ObjCImpls[CatD] = ImplD;
1013}
1014
1015/// \brief Get the copy initialization expression of VarDecl,or NULL if
1016/// none exists.
1017Expr *ASTContext::getBlockVarCopyInits(const VarDecl*VD) {
1018  assert(VD && "Passed null params");
1019  assert(VD->hasAttr<BlocksAttr>() &&
1020         "getBlockVarCopyInits - not __block var");
1021  llvm::DenseMap<const VarDecl*, Expr*>::iterator
1022    I = BlockVarCopyInits.find(VD);
1023  return (I != BlockVarCopyInits.end()) ? cast<Expr>(I->second) : 0;
1024}
1025
1026/// \brief Set the copy inialization expression of a block var decl.
1027void ASTContext::setBlockVarCopyInits(VarDecl*VD, Expr* Init) {
1028  assert(VD && Init && "Passed null params");
1029  assert(VD->hasAttr<BlocksAttr>() &&
1030         "setBlockVarCopyInits - not __block var");
1031  BlockVarCopyInits[VD] = Init;
1032}
1033
1034/// \brief Allocate an uninitialized TypeSourceInfo.
1035///
1036/// The caller should initialize the memory held by TypeSourceInfo using
1037/// the TypeLoc wrappers.
1038///
1039/// \param T the type that will be the basis for type source info. This type
1040/// should refer to how the declarator was written in source code, not to
1041/// what type semantic analysis resolved the declarator to.
1042TypeSourceInfo *ASTContext::CreateTypeSourceInfo(QualType T,
1043                                                 unsigned DataSize) {
1044  if (!DataSize)
1045    DataSize = TypeLoc::getFullDataSizeForType(T);
1046  else
1047    assert(DataSize == TypeLoc::getFullDataSizeForType(T) &&
1048           "incorrect data size provided to CreateTypeSourceInfo!");
1049
1050  TypeSourceInfo *TInfo =
1051    (TypeSourceInfo*)BumpAlloc.Allocate(sizeof(TypeSourceInfo) + DataSize, 8);
1052  new (TInfo) TypeSourceInfo(T);
1053  return TInfo;
1054}
1055
1056TypeSourceInfo *ASTContext::getTrivialTypeSourceInfo(QualType T,
1057                                                     SourceLocation L) {
1058  TypeSourceInfo *DI = CreateTypeSourceInfo(T);
1059  DI->getTypeLoc().initialize(L);
1060  return DI;
1061}
1062
1063const ASTRecordLayout &
1064ASTContext::getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D) {
1065  return getObjCLayout(D, 0);
1066}
1067
1068const ASTRecordLayout &
1069ASTContext::getASTObjCImplementationLayout(const ObjCImplementationDecl *D) {
1070  return getObjCLayout(D->getClassInterface(), D);
1071}
1072
1073//===----------------------------------------------------------------------===//
1074//                   Type creation/memoization methods
1075//===----------------------------------------------------------------------===//
1076
1077QualType ASTContext::getExtQualType(const Type *TypeNode, Qualifiers Quals) {
1078  unsigned Fast = Quals.getFastQualifiers();
1079  Quals.removeFastQualifiers();
1080
1081  // Check if we've already instantiated this type.
1082  llvm::FoldingSetNodeID ID;
1083  ExtQuals::Profile(ID, TypeNode, Quals);
1084  void *InsertPos = 0;
1085  if (ExtQuals *EQ = ExtQualNodes.FindNodeOrInsertPos(ID, InsertPos)) {
1086    assert(EQ->getQualifiers() == Quals);
1087    QualType T = QualType(EQ, Fast);
1088    return T;
1089  }
1090
1091  ExtQuals *New = new (*this, TypeAlignment) ExtQuals(TypeNode, Quals);
1092  ExtQualNodes.InsertNode(New, InsertPos);
1093  QualType T = QualType(New, Fast);
1094  return T;
1095}
1096
1097QualType ASTContext::getAddrSpaceQualType(QualType T, unsigned AddressSpace) {
1098  QualType CanT = getCanonicalType(T);
1099  if (CanT.getAddressSpace() == AddressSpace)
1100    return T;
1101
1102  // If we are composing extended qualifiers together, merge together
1103  // into one ExtQuals node.
1104  QualifierCollector Quals;
1105  const Type *TypeNode = Quals.strip(T);
1106
1107  // If this type already has an address space specified, it cannot get
1108  // another one.
1109  assert(!Quals.hasAddressSpace() &&
1110         "Type cannot be in multiple addr spaces!");
1111  Quals.addAddressSpace(AddressSpace);
1112
1113  return getExtQualType(TypeNode, Quals);
1114}
1115
1116QualType ASTContext::getObjCGCQualType(QualType T,
1117                                       Qualifiers::GC GCAttr) {
1118  QualType CanT = getCanonicalType(T);
1119  if (CanT.getObjCGCAttr() == GCAttr)
1120    return T;
1121
1122  if (T->isPointerType()) {
1123    QualType Pointee = T->getAs<PointerType>()->getPointeeType();
1124    if (Pointee->isAnyPointerType()) {
1125      QualType ResultType = getObjCGCQualType(Pointee, GCAttr);
1126      return getPointerType(ResultType);
1127    }
1128  }
1129
1130  // If we are composing extended qualifiers together, merge together
1131  // into one ExtQuals node.
1132  QualifierCollector Quals;
1133  const Type *TypeNode = Quals.strip(T);
1134
1135  // If this type already has an ObjCGC specified, it cannot get
1136  // another one.
1137  assert(!Quals.hasObjCGCAttr() &&
1138         "Type cannot have multiple ObjCGCs!");
1139  Quals.addObjCGCAttr(GCAttr);
1140
1141  return getExtQualType(TypeNode, Quals);
1142}
1143
1144const FunctionType *ASTContext::adjustFunctionType(const FunctionType *T,
1145                                                   FunctionType::ExtInfo Info) {
1146  if (T->getExtInfo() == Info)
1147    return T;
1148
1149  QualType Result;
1150  if (const FunctionNoProtoType *FNPT = dyn_cast<FunctionNoProtoType>(T)) {
1151    Result = getFunctionNoProtoType(FNPT->getResultType(), Info);
1152  } else {
1153    const FunctionProtoType *FPT = cast<FunctionProtoType>(T);
1154    FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
1155    EPI.ExtInfo = Info;
1156    Result = getFunctionType(FPT->getResultType(), FPT->arg_type_begin(),
1157                             FPT->getNumArgs(), EPI);
1158  }
1159
1160  return cast<FunctionType>(Result.getTypePtr());
1161}
1162
1163/// getComplexType - Return the uniqued reference to the type for a complex
1164/// number with the specified element type.
1165QualType ASTContext::getComplexType(QualType T) {
1166  // Unique pointers, to guarantee there is only one pointer of a particular
1167  // structure.
1168  llvm::FoldingSetNodeID ID;
1169  ComplexType::Profile(ID, T);
1170
1171  void *InsertPos = 0;
1172  if (ComplexType *CT = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos))
1173    return QualType(CT, 0);
1174
1175  // If the pointee type isn't canonical, this won't be a canonical type either,
1176  // so fill in the canonical type field.
1177  QualType Canonical;
1178  if (!T.isCanonical()) {
1179    Canonical = getComplexType(getCanonicalType(T));
1180
1181    // Get the new insert position for the node we care about.
1182    ComplexType *NewIP = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos);
1183    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1184  }
1185  ComplexType *New = new (*this, TypeAlignment) ComplexType(T, Canonical);
1186  Types.push_back(New);
1187  ComplexTypes.InsertNode(New, InsertPos);
1188  return QualType(New, 0);
1189}
1190
1191/// getPointerType - Return the uniqued reference to the type for a pointer to
1192/// the specified type.
1193QualType ASTContext::getPointerType(QualType T) {
1194  // Unique pointers, to guarantee there is only one pointer of a particular
1195  // structure.
1196  llvm::FoldingSetNodeID ID;
1197  PointerType::Profile(ID, T);
1198
1199  void *InsertPos = 0;
1200  if (PointerType *PT = PointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1201    return QualType(PT, 0);
1202
1203  // If the pointee type isn't canonical, this won't be a canonical type either,
1204  // so fill in the canonical type field.
1205  QualType Canonical;
1206  if (!T.isCanonical()) {
1207    Canonical = getPointerType(getCanonicalType(T));
1208
1209    // Get the new insert position for the node we care about.
1210    PointerType *NewIP = PointerTypes.FindNodeOrInsertPos(ID, InsertPos);
1211    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1212  }
1213  PointerType *New = new (*this, TypeAlignment) PointerType(T, Canonical);
1214  Types.push_back(New);
1215  PointerTypes.InsertNode(New, InsertPos);
1216  return QualType(New, 0);
1217}
1218
1219/// getBlockPointerType - Return the uniqued reference to the type for
1220/// a pointer to the specified block.
1221QualType ASTContext::getBlockPointerType(QualType T) {
1222  assert(T->isFunctionType() && "block of function types only");
1223  // Unique pointers, to guarantee there is only one block of a particular
1224  // structure.
1225  llvm::FoldingSetNodeID ID;
1226  BlockPointerType::Profile(ID, T);
1227
1228  void *InsertPos = 0;
1229  if (BlockPointerType *PT =
1230        BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1231    return QualType(PT, 0);
1232
1233  // If the block pointee type isn't canonical, this won't be a canonical
1234  // type either so fill in the canonical type field.
1235  QualType Canonical;
1236  if (!T.isCanonical()) {
1237    Canonical = getBlockPointerType(getCanonicalType(T));
1238
1239    // Get the new insert position for the node we care about.
1240    BlockPointerType *NewIP =
1241      BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
1242    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1243  }
1244  BlockPointerType *New
1245    = new (*this, TypeAlignment) BlockPointerType(T, Canonical);
1246  Types.push_back(New);
1247  BlockPointerTypes.InsertNode(New, InsertPos);
1248  return QualType(New, 0);
1249}
1250
1251/// getLValueReferenceType - Return the uniqued reference to the type for an
1252/// lvalue reference to the specified type.
1253QualType ASTContext::getLValueReferenceType(QualType T, bool SpelledAsLValue) {
1254  // Unique pointers, to guarantee there is only one pointer of a particular
1255  // structure.
1256  llvm::FoldingSetNodeID ID;
1257  ReferenceType::Profile(ID, T, SpelledAsLValue);
1258
1259  void *InsertPos = 0;
1260  if (LValueReferenceType *RT =
1261        LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
1262    return QualType(RT, 0);
1263
1264  const ReferenceType *InnerRef = T->getAs<ReferenceType>();
1265
1266  // If the referencee type isn't canonical, this won't be a canonical type
1267  // either, so fill in the canonical type field.
1268  QualType Canonical;
1269  if (!SpelledAsLValue || InnerRef || !T.isCanonical()) {
1270    QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
1271    Canonical = getLValueReferenceType(getCanonicalType(PointeeType));
1272
1273    // Get the new insert position for the node we care about.
1274    LValueReferenceType *NewIP =
1275      LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
1276    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1277  }
1278
1279  LValueReferenceType *New
1280    = new (*this, TypeAlignment) LValueReferenceType(T, Canonical,
1281                                                     SpelledAsLValue);
1282  Types.push_back(New);
1283  LValueReferenceTypes.InsertNode(New, InsertPos);
1284
1285  return QualType(New, 0);
1286}
1287
1288/// getRValueReferenceType - Return the uniqued reference to the type for an
1289/// rvalue reference to the specified type.
1290QualType ASTContext::getRValueReferenceType(QualType T) {
1291  // Unique pointers, to guarantee there is only one pointer of a particular
1292  // structure.
1293  llvm::FoldingSetNodeID ID;
1294  ReferenceType::Profile(ID, T, false);
1295
1296  void *InsertPos = 0;
1297  if (RValueReferenceType *RT =
1298        RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
1299    return QualType(RT, 0);
1300
1301  const ReferenceType *InnerRef = T->getAs<ReferenceType>();
1302
1303  // If the referencee type isn't canonical, this won't be a canonical type
1304  // either, so fill in the canonical type field.
1305  QualType Canonical;
1306  if (InnerRef || !T.isCanonical()) {
1307    QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
1308    Canonical = getRValueReferenceType(getCanonicalType(PointeeType));
1309
1310    // Get the new insert position for the node we care about.
1311    RValueReferenceType *NewIP =
1312      RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
1313    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1314  }
1315
1316  RValueReferenceType *New
1317    = new (*this, TypeAlignment) RValueReferenceType(T, Canonical);
1318  Types.push_back(New);
1319  RValueReferenceTypes.InsertNode(New, InsertPos);
1320  return QualType(New, 0);
1321}
1322
1323/// getMemberPointerType - Return the uniqued reference to the type for a
1324/// member pointer to the specified type, in the specified class.
1325QualType ASTContext::getMemberPointerType(QualType T, const Type *Cls) {
1326  // Unique pointers, to guarantee there is only one pointer of a particular
1327  // structure.
1328  llvm::FoldingSetNodeID ID;
1329  MemberPointerType::Profile(ID, T, Cls);
1330
1331  void *InsertPos = 0;
1332  if (MemberPointerType *PT =
1333      MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1334    return QualType(PT, 0);
1335
1336  // If the pointee or class type isn't canonical, this won't be a canonical
1337  // type either, so fill in the canonical type field.
1338  QualType Canonical;
1339  if (!T.isCanonical() || !Cls->isCanonicalUnqualified()) {
1340    Canonical = getMemberPointerType(getCanonicalType(T),getCanonicalType(Cls));
1341
1342    // Get the new insert position for the node we care about.
1343    MemberPointerType *NewIP =
1344      MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
1345    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1346  }
1347  MemberPointerType *New
1348    = new (*this, TypeAlignment) MemberPointerType(T, Cls, Canonical);
1349  Types.push_back(New);
1350  MemberPointerTypes.InsertNode(New, InsertPos);
1351  return QualType(New, 0);
1352}
1353
1354/// getConstantArrayType - Return the unique reference to the type for an
1355/// array of the specified element type.
1356QualType ASTContext::getConstantArrayType(QualType EltTy,
1357                                          const llvm::APInt &ArySizeIn,
1358                                          ArrayType::ArraySizeModifier ASM,
1359                                          unsigned EltTypeQuals) {
1360  assert((EltTy->isDependentType() ||
1361          EltTy->isIncompleteType() || EltTy->isConstantSizeType()) &&
1362         "Constant array of VLAs is illegal!");
1363
1364  // Convert the array size into a canonical width matching the pointer size for
1365  // the target.
1366  llvm::APInt ArySize(ArySizeIn);
1367  ArySize =
1368    ArySize.zextOrTrunc(Target.getPointerWidth(EltTy.getAddressSpace()));
1369
1370  llvm::FoldingSetNodeID ID;
1371  ConstantArrayType::Profile(ID, EltTy, ArySize, ASM, EltTypeQuals);
1372
1373  void *InsertPos = 0;
1374  if (ConstantArrayType *ATP =
1375      ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
1376    return QualType(ATP, 0);
1377
1378  // If the element type isn't canonical, this won't be a canonical type either,
1379  // so fill in the canonical type field.
1380  QualType Canonical;
1381  if (!EltTy.isCanonical()) {
1382    Canonical = getConstantArrayType(getCanonicalType(EltTy), ArySize,
1383                                     ASM, EltTypeQuals);
1384    // Get the new insert position for the node we care about.
1385    ConstantArrayType *NewIP =
1386      ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
1387    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1388  }
1389
1390  ConstantArrayType *New = new(*this,TypeAlignment)
1391    ConstantArrayType(EltTy, Canonical, ArySize, ASM, EltTypeQuals);
1392  ConstantArrayTypes.InsertNode(New, InsertPos);
1393  Types.push_back(New);
1394  return QualType(New, 0);
1395}
1396
1397/// getIncompleteArrayType - Returns a unique reference to the type for a
1398/// incomplete array of the specified element type.
1399QualType ASTContext::getUnknownSizeVariableArrayType(QualType Ty) {
1400  QualType ElemTy = getBaseElementType(Ty);
1401  DeclarationName Name;
1402  llvm::SmallVector<QualType, 8> ATypes;
1403  QualType ATy = Ty;
1404  while (const ArrayType *AT = getAsArrayType(ATy)) {
1405    ATypes.push_back(ATy);
1406    ATy = AT->getElementType();
1407  }
1408  for (int i = ATypes.size() - 1; i >= 0; i--) {
1409    if (const VariableArrayType *VAT = getAsVariableArrayType(ATypes[i])) {
1410      ElemTy = getVariableArrayType(ElemTy, /*ArraySize*/0, ArrayType::Star,
1411                                    0, VAT->getBracketsRange());
1412    }
1413    else if (const ConstantArrayType *CAT = getAsConstantArrayType(ATypes[i])) {
1414      llvm::APSInt ConstVal(CAT->getSize());
1415      ElemTy = getConstantArrayType(ElemTy, ConstVal, ArrayType::Normal, 0);
1416    }
1417    else if (getAsIncompleteArrayType(ATypes[i])) {
1418      ElemTy = getVariableArrayType(ElemTy, /*ArraySize*/0, ArrayType::Normal,
1419                                    0, SourceRange());
1420    }
1421    else
1422      assert(false && "DependentArrayType is seen");
1423  }
1424  return ElemTy;
1425}
1426
1427/// getVariableArrayDecayedType - Returns a vla type where known sizes
1428/// are replaced with [*]
1429QualType ASTContext::getVariableArrayDecayedType(QualType Ty) {
1430  if (Ty->isPointerType()) {
1431    QualType BaseType = Ty->getAs<PointerType>()->getPointeeType();
1432    if (isa<VariableArrayType>(BaseType)) {
1433      ArrayType *AT = dyn_cast<ArrayType>(BaseType);
1434      VariableArrayType *VAT = cast<VariableArrayType>(AT);
1435      if (VAT->getSizeExpr()) {
1436        Ty = getUnknownSizeVariableArrayType(BaseType);
1437        Ty = getPointerType(Ty);
1438      }
1439    }
1440  }
1441  return Ty;
1442}
1443
1444
1445/// getVariableArrayType - Returns a non-unique reference to the type for a
1446/// variable array of the specified element type.
1447QualType ASTContext::getVariableArrayType(QualType EltTy,
1448                                          Expr *NumElts,
1449                                          ArrayType::ArraySizeModifier ASM,
1450                                          unsigned EltTypeQuals,
1451                                          SourceRange Brackets) {
1452  // Since we don't unique expressions, it isn't possible to unique VLA's
1453  // that have an expression provided for their size.
1454  QualType CanonType;
1455
1456  if (!EltTy.isCanonical()) {
1457    CanonType = getVariableArrayType(getCanonicalType(EltTy), NumElts, ASM,
1458                                     EltTypeQuals, Brackets);
1459  }
1460
1461  VariableArrayType *New = new(*this, TypeAlignment)
1462    VariableArrayType(EltTy, CanonType, NumElts, ASM, EltTypeQuals, Brackets);
1463
1464  VariableArrayTypes.push_back(New);
1465  Types.push_back(New);
1466  return QualType(New, 0);
1467}
1468
1469/// getDependentSizedArrayType - Returns a non-unique reference to
1470/// the type for a dependently-sized array of the specified element
1471/// type.
1472QualType ASTContext::getDependentSizedArrayType(QualType EltTy,
1473                                                Expr *NumElts,
1474                                                ArrayType::ArraySizeModifier ASM,
1475                                                unsigned EltTypeQuals,
1476                                                SourceRange Brackets) {
1477  assert((!NumElts || NumElts->isTypeDependent() ||
1478          NumElts->isValueDependent()) &&
1479         "Size must be type- or value-dependent!");
1480
1481  void *InsertPos = 0;
1482  DependentSizedArrayType *Canon = 0;
1483  llvm::FoldingSetNodeID ID;
1484
1485  QualType CanonicalEltTy = getCanonicalType(EltTy);
1486  if (NumElts) {
1487    // Dependently-sized array types that do not have a specified
1488    // number of elements will have their sizes deduced from an
1489    // initializer.
1490    DependentSizedArrayType::Profile(ID, *this, CanonicalEltTy, ASM,
1491                                     EltTypeQuals, NumElts);
1492
1493    Canon = DependentSizedArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
1494  }
1495
1496  DependentSizedArrayType *New;
1497  if (Canon) {
1498    // We already have a canonical version of this array type; use it as
1499    // the canonical type for a newly-built type.
1500    New = new (*this, TypeAlignment)
1501      DependentSizedArrayType(*this, EltTy, QualType(Canon, 0),
1502                              NumElts, ASM, EltTypeQuals, Brackets);
1503  } else if (CanonicalEltTy == EltTy) {
1504    // This is a canonical type. Record it.
1505    New = new (*this, TypeAlignment)
1506      DependentSizedArrayType(*this, EltTy, QualType(),
1507                              NumElts, ASM, EltTypeQuals, Brackets);
1508
1509    if (NumElts) {
1510#ifndef NDEBUG
1511      DependentSizedArrayType *CanonCheck
1512        = DependentSizedArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
1513      assert(!CanonCheck && "Dependent-sized canonical array type broken");
1514      (void)CanonCheck;
1515#endif
1516      DependentSizedArrayTypes.InsertNode(New, InsertPos);
1517    }
1518  } else {
1519    QualType Canon = getDependentSizedArrayType(CanonicalEltTy, NumElts,
1520                                                ASM, EltTypeQuals,
1521                                                SourceRange());
1522    New = new (*this, TypeAlignment)
1523      DependentSizedArrayType(*this, EltTy, Canon,
1524                              NumElts, ASM, EltTypeQuals, Brackets);
1525  }
1526
1527  Types.push_back(New);
1528  return QualType(New, 0);
1529}
1530
1531QualType ASTContext::getIncompleteArrayType(QualType EltTy,
1532                                            ArrayType::ArraySizeModifier ASM,
1533                                            unsigned EltTypeQuals) {
1534  llvm::FoldingSetNodeID ID;
1535  IncompleteArrayType::Profile(ID, EltTy, ASM, EltTypeQuals);
1536
1537  void *InsertPos = 0;
1538  if (IncompleteArrayType *ATP =
1539       IncompleteArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
1540    return QualType(ATP, 0);
1541
1542  // If the element type isn't canonical, this won't be a canonical type
1543  // either, so fill in the canonical type field.
1544  QualType Canonical;
1545
1546  if (!EltTy.isCanonical()) {
1547    Canonical = getIncompleteArrayType(getCanonicalType(EltTy),
1548                                       ASM, EltTypeQuals);
1549
1550    // Get the new insert position for the node we care about.
1551    IncompleteArrayType *NewIP =
1552      IncompleteArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
1553    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1554  }
1555
1556  IncompleteArrayType *New = new (*this, TypeAlignment)
1557    IncompleteArrayType(EltTy, Canonical, ASM, EltTypeQuals);
1558
1559  IncompleteArrayTypes.InsertNode(New, InsertPos);
1560  Types.push_back(New);
1561  return QualType(New, 0);
1562}
1563
1564/// getVectorType - Return the unique reference to a vector type of
1565/// the specified element type and size. VectorType must be a built-in type.
1566QualType ASTContext::getVectorType(QualType vecType, unsigned NumElts,
1567                                   VectorType::VectorKind VecKind) {
1568  BuiltinType *BaseType;
1569
1570  BaseType = dyn_cast<BuiltinType>(getCanonicalType(vecType).getTypePtr());
1571  assert(BaseType != 0 && "getVectorType(): Expecting a built-in type");
1572
1573  // Check if we've already instantiated a vector of this type.
1574  llvm::FoldingSetNodeID ID;
1575  VectorType::Profile(ID, vecType, NumElts, Type::Vector, VecKind);
1576
1577  void *InsertPos = 0;
1578  if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
1579    return QualType(VTP, 0);
1580
1581  // If the element type isn't canonical, this won't be a canonical type either,
1582  // so fill in the canonical type field.
1583  QualType Canonical;
1584  if (!vecType.isCanonical()) {
1585    Canonical = getVectorType(getCanonicalType(vecType), NumElts, VecKind);
1586
1587    // Get the new insert position for the node we care about.
1588    VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
1589    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1590  }
1591  VectorType *New = new (*this, TypeAlignment)
1592    VectorType(vecType, NumElts, Canonical, VecKind);
1593  VectorTypes.InsertNode(New, InsertPos);
1594  Types.push_back(New);
1595  return QualType(New, 0);
1596}
1597
1598/// getExtVectorType - Return the unique reference to an extended vector type of
1599/// the specified element type and size. VectorType must be a built-in type.
1600QualType ASTContext::getExtVectorType(QualType vecType, unsigned NumElts) {
1601  BuiltinType *baseType;
1602
1603  baseType = dyn_cast<BuiltinType>(getCanonicalType(vecType).getTypePtr());
1604  assert(baseType != 0 && "getExtVectorType(): Expecting a built-in type");
1605
1606  // Check if we've already instantiated a vector of this type.
1607  llvm::FoldingSetNodeID ID;
1608  VectorType::Profile(ID, vecType, NumElts, Type::ExtVector,
1609                      VectorType::GenericVector);
1610  void *InsertPos = 0;
1611  if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
1612    return QualType(VTP, 0);
1613
1614  // If the element type isn't canonical, this won't be a canonical type either,
1615  // so fill in the canonical type field.
1616  QualType Canonical;
1617  if (!vecType.isCanonical()) {
1618    Canonical = getExtVectorType(getCanonicalType(vecType), NumElts);
1619
1620    // Get the new insert position for the node we care about.
1621    VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
1622    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1623  }
1624  ExtVectorType *New = new (*this, TypeAlignment)
1625    ExtVectorType(vecType, NumElts, Canonical);
1626  VectorTypes.InsertNode(New, InsertPos);
1627  Types.push_back(New);
1628  return QualType(New, 0);
1629}
1630
1631QualType ASTContext::getDependentSizedExtVectorType(QualType vecType,
1632                                                    Expr *SizeExpr,
1633                                                    SourceLocation AttrLoc) {
1634  llvm::FoldingSetNodeID ID;
1635  DependentSizedExtVectorType::Profile(ID, *this, getCanonicalType(vecType),
1636                                       SizeExpr);
1637
1638  void *InsertPos = 0;
1639  DependentSizedExtVectorType *Canon
1640    = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
1641  DependentSizedExtVectorType *New;
1642  if (Canon) {
1643    // We already have a canonical version of this array type; use it as
1644    // the canonical type for a newly-built type.
1645    New = new (*this, TypeAlignment)
1646      DependentSizedExtVectorType(*this, vecType, QualType(Canon, 0),
1647                                  SizeExpr, AttrLoc);
1648  } else {
1649    QualType CanonVecTy = getCanonicalType(vecType);
1650    if (CanonVecTy == vecType) {
1651      New = new (*this, TypeAlignment)
1652        DependentSizedExtVectorType(*this, vecType, QualType(), SizeExpr,
1653                                    AttrLoc);
1654
1655      DependentSizedExtVectorType *CanonCheck
1656        = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
1657      assert(!CanonCheck && "Dependent-sized ext_vector canonical type broken");
1658      (void)CanonCheck;
1659      DependentSizedExtVectorTypes.InsertNode(New, InsertPos);
1660    } else {
1661      QualType Canon = getDependentSizedExtVectorType(CanonVecTy, SizeExpr,
1662                                                      SourceLocation());
1663      New = new (*this, TypeAlignment)
1664        DependentSizedExtVectorType(*this, vecType, Canon, SizeExpr, AttrLoc);
1665    }
1666  }
1667
1668  Types.push_back(New);
1669  return QualType(New, 0);
1670}
1671
1672/// getFunctionNoProtoType - Return a K&R style C function type like 'int()'.
1673///
1674QualType ASTContext::getFunctionNoProtoType(QualType ResultTy,
1675                                            const FunctionType::ExtInfo &Info) {
1676  const CallingConv CallConv = Info.getCC();
1677  // Unique functions, to guarantee there is only one function of a particular
1678  // structure.
1679  llvm::FoldingSetNodeID ID;
1680  FunctionNoProtoType::Profile(ID, ResultTy, Info);
1681
1682  void *InsertPos = 0;
1683  if (FunctionNoProtoType *FT =
1684        FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
1685    return QualType(FT, 0);
1686
1687  QualType Canonical;
1688  if (!ResultTy.isCanonical() ||
1689      getCanonicalCallConv(CallConv) != CallConv) {
1690    Canonical =
1691      getFunctionNoProtoType(getCanonicalType(ResultTy),
1692                     Info.withCallingConv(getCanonicalCallConv(CallConv)));
1693
1694    // Get the new insert position for the node we care about.
1695    FunctionNoProtoType *NewIP =
1696      FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
1697    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1698  }
1699
1700  FunctionNoProtoType *New = new (*this, TypeAlignment)
1701    FunctionNoProtoType(ResultTy, Canonical, Info);
1702  Types.push_back(New);
1703  FunctionNoProtoTypes.InsertNode(New, InsertPos);
1704  return QualType(New, 0);
1705}
1706
1707/// getFunctionType - Return a normal function type with a typed argument
1708/// list.  isVariadic indicates whether the argument list includes '...'.
1709QualType ASTContext::getFunctionType(QualType ResultTy,
1710                                     const QualType *ArgArray, unsigned NumArgs,
1711                                   const FunctionProtoType::ExtProtoInfo &EPI) {
1712  // Unique functions, to guarantee there is only one function of a particular
1713  // structure.
1714  llvm::FoldingSetNodeID ID;
1715  FunctionProtoType::Profile(ID, ResultTy, ArgArray, NumArgs, EPI);
1716
1717  void *InsertPos = 0;
1718  if (FunctionProtoType *FTP =
1719        FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
1720    return QualType(FTP, 0);
1721
1722  // Determine whether the type being created is already canonical or not.
1723  bool isCanonical = !EPI.HasExceptionSpec && ResultTy.isCanonical();
1724  for (unsigned i = 0; i != NumArgs && isCanonical; ++i)
1725    if (!ArgArray[i].isCanonicalAsParam())
1726      isCanonical = false;
1727
1728  const CallingConv CallConv = EPI.ExtInfo.getCC();
1729
1730  // If this type isn't canonical, get the canonical version of it.
1731  // The exception spec is not part of the canonical type.
1732  QualType Canonical;
1733  if (!isCanonical || getCanonicalCallConv(CallConv) != CallConv) {
1734    llvm::SmallVector<QualType, 16> CanonicalArgs;
1735    CanonicalArgs.reserve(NumArgs);
1736    for (unsigned i = 0; i != NumArgs; ++i)
1737      CanonicalArgs.push_back(getCanonicalParamType(ArgArray[i]));
1738
1739    FunctionProtoType::ExtProtoInfo CanonicalEPI = EPI;
1740    if (CanonicalEPI.HasExceptionSpec) {
1741      CanonicalEPI.HasExceptionSpec = false;
1742      CanonicalEPI.HasAnyExceptionSpec = false;
1743      CanonicalEPI.NumExceptions = 0;
1744    }
1745    CanonicalEPI.ExtInfo
1746      = CanonicalEPI.ExtInfo.withCallingConv(getCanonicalCallConv(CallConv));
1747
1748    Canonical = getFunctionType(getCanonicalType(ResultTy),
1749                                CanonicalArgs.data(), NumArgs,
1750                                CanonicalEPI);
1751
1752    // Get the new insert position for the node we care about.
1753    FunctionProtoType *NewIP =
1754      FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
1755    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1756  }
1757
1758  // FunctionProtoType objects are allocated with extra bytes after them
1759  // for two variable size arrays (for parameter and exception types) at the
1760  // end of them.
1761  size_t Size = sizeof(FunctionProtoType) +
1762                NumArgs * sizeof(QualType) +
1763                EPI.NumExceptions * sizeof(QualType);
1764  FunctionProtoType *FTP = (FunctionProtoType*) Allocate(Size, TypeAlignment);
1765  new (FTP) FunctionProtoType(ResultTy, ArgArray, NumArgs, Canonical, EPI);
1766  Types.push_back(FTP);
1767  FunctionProtoTypes.InsertNode(FTP, InsertPos);
1768  return QualType(FTP, 0);
1769}
1770
1771#ifndef NDEBUG
1772static bool NeedsInjectedClassNameType(const RecordDecl *D) {
1773  if (!isa<CXXRecordDecl>(D)) return false;
1774  const CXXRecordDecl *RD = cast<CXXRecordDecl>(D);
1775  if (isa<ClassTemplatePartialSpecializationDecl>(RD))
1776    return true;
1777  if (RD->getDescribedClassTemplate() &&
1778      !isa<ClassTemplateSpecializationDecl>(RD))
1779    return true;
1780  return false;
1781}
1782#endif
1783
1784/// getInjectedClassNameType - Return the unique reference to the
1785/// injected class name type for the specified templated declaration.
1786QualType ASTContext::getInjectedClassNameType(CXXRecordDecl *Decl,
1787                                              QualType TST) {
1788  assert(NeedsInjectedClassNameType(Decl));
1789  if (Decl->TypeForDecl) {
1790    assert(isa<InjectedClassNameType>(Decl->TypeForDecl));
1791  } else if (CXXRecordDecl *PrevDecl = Decl->getPreviousDeclaration()) {
1792    assert(PrevDecl->TypeForDecl && "previous declaration has no type");
1793    Decl->TypeForDecl = PrevDecl->TypeForDecl;
1794    assert(isa<InjectedClassNameType>(Decl->TypeForDecl));
1795  } else {
1796    Decl->TypeForDecl =
1797      new (*this, TypeAlignment) InjectedClassNameType(Decl, TST);
1798    Types.push_back(Decl->TypeForDecl);
1799  }
1800  return QualType(Decl->TypeForDecl, 0);
1801}
1802
1803/// getTypeDeclType - Return the unique reference to the type for the
1804/// specified type declaration.
1805QualType ASTContext::getTypeDeclTypeSlow(const TypeDecl *Decl) {
1806  assert(Decl && "Passed null for Decl param");
1807  assert(!Decl->TypeForDecl && "TypeForDecl present in slow case");
1808
1809  if (const TypedefDecl *Typedef = dyn_cast<TypedefDecl>(Decl))
1810    return getTypedefType(Typedef);
1811
1812  assert(!isa<TemplateTypeParmDecl>(Decl) &&
1813         "Template type parameter types are always available.");
1814
1815  if (const RecordDecl *Record = dyn_cast<RecordDecl>(Decl)) {
1816    assert(!Record->getPreviousDeclaration() &&
1817           "struct/union has previous declaration");
1818    assert(!NeedsInjectedClassNameType(Record));
1819    return getRecordType(Record);
1820  } else if (const EnumDecl *Enum = dyn_cast<EnumDecl>(Decl)) {
1821    assert(!Enum->getPreviousDeclaration() &&
1822           "enum has previous declaration");
1823    return getEnumType(Enum);
1824  } else if (const UnresolvedUsingTypenameDecl *Using =
1825               dyn_cast<UnresolvedUsingTypenameDecl>(Decl)) {
1826    Decl->TypeForDecl = new (*this, TypeAlignment) UnresolvedUsingType(Using);
1827  } else
1828    llvm_unreachable("TypeDecl without a type?");
1829
1830  Types.push_back(Decl->TypeForDecl);
1831  return QualType(Decl->TypeForDecl, 0);
1832}
1833
1834/// getTypedefType - Return the unique reference to the type for the
1835/// specified typename decl.
1836QualType
1837ASTContext::getTypedefType(const TypedefDecl *Decl, QualType Canonical) {
1838  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
1839
1840  if (Canonical.isNull())
1841    Canonical = getCanonicalType(Decl->getUnderlyingType());
1842  Decl->TypeForDecl = new(*this, TypeAlignment)
1843    TypedefType(Type::Typedef, Decl, Canonical);
1844  Types.push_back(Decl->TypeForDecl);
1845  return QualType(Decl->TypeForDecl, 0);
1846}
1847
1848QualType ASTContext::getRecordType(const RecordDecl *Decl) {
1849  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
1850
1851  if (const RecordDecl *PrevDecl = Decl->getPreviousDeclaration())
1852    if (PrevDecl->TypeForDecl)
1853      return QualType(Decl->TypeForDecl = PrevDecl->TypeForDecl, 0);
1854
1855  Decl->TypeForDecl = new (*this, TypeAlignment) RecordType(Decl);
1856  Types.push_back(Decl->TypeForDecl);
1857  return QualType(Decl->TypeForDecl, 0);
1858}
1859
1860QualType ASTContext::getEnumType(const EnumDecl *Decl) {
1861  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
1862
1863  if (const EnumDecl *PrevDecl = Decl->getPreviousDeclaration())
1864    if (PrevDecl->TypeForDecl)
1865      return QualType(Decl->TypeForDecl = PrevDecl->TypeForDecl, 0);
1866
1867  Decl->TypeForDecl = new (*this, TypeAlignment) EnumType(Decl);
1868  Types.push_back(Decl->TypeForDecl);
1869  return QualType(Decl->TypeForDecl, 0);
1870}
1871
1872/// \brief Retrieve a substitution-result type.
1873QualType
1874ASTContext::getSubstTemplateTypeParmType(const TemplateTypeParmType *Parm,
1875                                         QualType Replacement) {
1876  assert(Replacement.isCanonical()
1877         && "replacement types must always be canonical");
1878
1879  llvm::FoldingSetNodeID ID;
1880  SubstTemplateTypeParmType::Profile(ID, Parm, Replacement);
1881  void *InsertPos = 0;
1882  SubstTemplateTypeParmType *SubstParm
1883    = SubstTemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
1884
1885  if (!SubstParm) {
1886    SubstParm = new (*this, TypeAlignment)
1887      SubstTemplateTypeParmType(Parm, Replacement);
1888    Types.push_back(SubstParm);
1889    SubstTemplateTypeParmTypes.InsertNode(SubstParm, InsertPos);
1890  }
1891
1892  return QualType(SubstParm, 0);
1893}
1894
1895/// \brief Retrieve the template type parameter type for a template
1896/// parameter or parameter pack with the given depth, index, and (optionally)
1897/// name.
1898QualType ASTContext::getTemplateTypeParmType(unsigned Depth, unsigned Index,
1899                                             bool ParameterPack,
1900                                             IdentifierInfo *Name) {
1901  llvm::FoldingSetNodeID ID;
1902  TemplateTypeParmType::Profile(ID, Depth, Index, ParameterPack, Name);
1903  void *InsertPos = 0;
1904  TemplateTypeParmType *TypeParm
1905    = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
1906
1907  if (TypeParm)
1908    return QualType(TypeParm, 0);
1909
1910  if (Name) {
1911    QualType Canon = getTemplateTypeParmType(Depth, Index, ParameterPack);
1912    TypeParm = new (*this, TypeAlignment)
1913      TemplateTypeParmType(Depth, Index, ParameterPack, Name, Canon);
1914
1915    TemplateTypeParmType *TypeCheck
1916      = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
1917    assert(!TypeCheck && "Template type parameter canonical type broken");
1918    (void)TypeCheck;
1919  } else
1920    TypeParm = new (*this, TypeAlignment)
1921      TemplateTypeParmType(Depth, Index, ParameterPack);
1922
1923  Types.push_back(TypeParm);
1924  TemplateTypeParmTypes.InsertNode(TypeParm, InsertPos);
1925
1926  return QualType(TypeParm, 0);
1927}
1928
1929TypeSourceInfo *
1930ASTContext::getTemplateSpecializationTypeInfo(TemplateName Name,
1931                                              SourceLocation NameLoc,
1932                                        const TemplateArgumentListInfo &Args,
1933                                              QualType CanonType) {
1934  QualType TST = getTemplateSpecializationType(Name, Args, CanonType);
1935
1936  TypeSourceInfo *DI = CreateTypeSourceInfo(TST);
1937  TemplateSpecializationTypeLoc TL
1938    = cast<TemplateSpecializationTypeLoc>(DI->getTypeLoc());
1939  TL.setTemplateNameLoc(NameLoc);
1940  TL.setLAngleLoc(Args.getLAngleLoc());
1941  TL.setRAngleLoc(Args.getRAngleLoc());
1942  for (unsigned i = 0, e = TL.getNumArgs(); i != e; ++i)
1943    TL.setArgLocInfo(i, Args[i].getLocInfo());
1944  return DI;
1945}
1946
1947QualType
1948ASTContext::getTemplateSpecializationType(TemplateName Template,
1949                                          const TemplateArgumentListInfo &Args,
1950                                          QualType Canon) {
1951  unsigned NumArgs = Args.size();
1952
1953  llvm::SmallVector<TemplateArgument, 4> ArgVec;
1954  ArgVec.reserve(NumArgs);
1955  for (unsigned i = 0; i != NumArgs; ++i)
1956    ArgVec.push_back(Args[i].getArgument());
1957
1958  return getTemplateSpecializationType(Template, ArgVec.data(), NumArgs,
1959                                       Canon);
1960}
1961
1962QualType
1963ASTContext::getTemplateSpecializationType(TemplateName Template,
1964                                          const TemplateArgument *Args,
1965                                          unsigned NumArgs,
1966                                          QualType Canon) {
1967  if (!Canon.isNull())
1968    Canon = getCanonicalType(Canon);
1969  else
1970    Canon = getCanonicalTemplateSpecializationType(Template, Args, NumArgs);
1971
1972  // Allocate the (non-canonical) template specialization type, but don't
1973  // try to unique it: these types typically have location information that
1974  // we don't unique and don't want to lose.
1975  void *Mem = Allocate((sizeof(TemplateSpecializationType) +
1976                        sizeof(TemplateArgument) * NumArgs),
1977                       TypeAlignment);
1978  TemplateSpecializationType *Spec
1979    = new (Mem) TemplateSpecializationType(Template,
1980                                           Args, NumArgs,
1981                                           Canon);
1982
1983  Types.push_back(Spec);
1984  return QualType(Spec, 0);
1985}
1986
1987QualType
1988ASTContext::getCanonicalTemplateSpecializationType(TemplateName Template,
1989                                                   const TemplateArgument *Args,
1990                                                   unsigned NumArgs) {
1991  // Build the canonical template specialization type.
1992  TemplateName CanonTemplate = getCanonicalTemplateName(Template);
1993  llvm::SmallVector<TemplateArgument, 4> CanonArgs;
1994  CanonArgs.reserve(NumArgs);
1995  for (unsigned I = 0; I != NumArgs; ++I)
1996    CanonArgs.push_back(getCanonicalTemplateArgument(Args[I]));
1997
1998  // Determine whether this canonical template specialization type already
1999  // exists.
2000  llvm::FoldingSetNodeID ID;
2001  TemplateSpecializationType::Profile(ID, CanonTemplate,
2002                                      CanonArgs.data(), NumArgs, *this);
2003
2004  void *InsertPos = 0;
2005  TemplateSpecializationType *Spec
2006    = TemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
2007
2008  if (!Spec) {
2009    // Allocate a new canonical template specialization type.
2010    void *Mem = Allocate((sizeof(TemplateSpecializationType) +
2011                          sizeof(TemplateArgument) * NumArgs),
2012                         TypeAlignment);
2013    Spec = new (Mem) TemplateSpecializationType(CanonTemplate,
2014                                                CanonArgs.data(), NumArgs,
2015                                                QualType());
2016    Types.push_back(Spec);
2017    TemplateSpecializationTypes.InsertNode(Spec, InsertPos);
2018  }
2019
2020  assert(Spec->isDependentType() &&
2021         "Non-dependent template-id type must have a canonical type");
2022  return QualType(Spec, 0);
2023}
2024
2025QualType
2026ASTContext::getElaboratedType(ElaboratedTypeKeyword Keyword,
2027                              NestedNameSpecifier *NNS,
2028                              QualType NamedType) {
2029  llvm::FoldingSetNodeID ID;
2030  ElaboratedType::Profile(ID, Keyword, NNS, NamedType);
2031
2032  void *InsertPos = 0;
2033  ElaboratedType *T = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
2034  if (T)
2035    return QualType(T, 0);
2036
2037  QualType Canon = NamedType;
2038  if (!Canon.isCanonical()) {
2039    Canon = getCanonicalType(NamedType);
2040    ElaboratedType *CheckT = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
2041    assert(!CheckT && "Elaborated canonical type broken");
2042    (void)CheckT;
2043  }
2044
2045  T = new (*this) ElaboratedType(Keyword, NNS, NamedType, Canon);
2046  Types.push_back(T);
2047  ElaboratedTypes.InsertNode(T, InsertPos);
2048  return QualType(T, 0);
2049}
2050
2051QualType
2052ASTContext::getParenType(QualType InnerType) {
2053  llvm::FoldingSetNodeID ID;
2054  ParenType::Profile(ID, InnerType);
2055
2056  void *InsertPos = 0;
2057  ParenType *T = ParenTypes.FindNodeOrInsertPos(ID, InsertPos);
2058  if (T)
2059    return QualType(T, 0);
2060
2061  QualType Canon = InnerType;
2062  if (!Canon.isCanonical()) {
2063    Canon = getCanonicalType(InnerType);
2064    ParenType *CheckT = ParenTypes.FindNodeOrInsertPos(ID, InsertPos);
2065    assert(!CheckT && "Paren canonical type broken");
2066    (void)CheckT;
2067  }
2068
2069  T = new (*this) ParenType(InnerType, Canon);
2070  Types.push_back(T);
2071  ParenTypes.InsertNode(T, InsertPos);
2072  return QualType(T, 0);
2073}
2074
2075QualType ASTContext::getDependentNameType(ElaboratedTypeKeyword Keyword,
2076                                          NestedNameSpecifier *NNS,
2077                                          const IdentifierInfo *Name,
2078                                          QualType Canon) {
2079  assert(NNS->isDependent() && "nested-name-specifier must be dependent");
2080
2081  if (Canon.isNull()) {
2082    NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
2083    ElaboratedTypeKeyword CanonKeyword = Keyword;
2084    if (Keyword == ETK_None)
2085      CanonKeyword = ETK_Typename;
2086
2087    if (CanonNNS != NNS || CanonKeyword != Keyword)
2088      Canon = getDependentNameType(CanonKeyword, CanonNNS, Name);
2089  }
2090
2091  llvm::FoldingSetNodeID ID;
2092  DependentNameType::Profile(ID, Keyword, NNS, Name);
2093
2094  void *InsertPos = 0;
2095  DependentNameType *T
2096    = DependentNameTypes.FindNodeOrInsertPos(ID, InsertPos);
2097  if (T)
2098    return QualType(T, 0);
2099
2100  T = new (*this) DependentNameType(Keyword, NNS, Name, Canon);
2101  Types.push_back(T);
2102  DependentNameTypes.InsertNode(T, InsertPos);
2103  return QualType(T, 0);
2104}
2105
2106QualType
2107ASTContext::getDependentTemplateSpecializationType(
2108                                 ElaboratedTypeKeyword Keyword,
2109                                 NestedNameSpecifier *NNS,
2110                                 const IdentifierInfo *Name,
2111                                 const TemplateArgumentListInfo &Args) {
2112  // TODO: avoid this copy
2113  llvm::SmallVector<TemplateArgument, 16> ArgCopy;
2114  for (unsigned I = 0, E = Args.size(); I != E; ++I)
2115    ArgCopy.push_back(Args[I].getArgument());
2116  return getDependentTemplateSpecializationType(Keyword, NNS, Name,
2117                                                ArgCopy.size(),
2118                                                ArgCopy.data());
2119}
2120
2121QualType
2122ASTContext::getDependentTemplateSpecializationType(
2123                                 ElaboratedTypeKeyword Keyword,
2124                                 NestedNameSpecifier *NNS,
2125                                 const IdentifierInfo *Name,
2126                                 unsigned NumArgs,
2127                                 const TemplateArgument *Args) {
2128  assert(NNS->isDependent() && "nested-name-specifier must be dependent");
2129
2130  llvm::FoldingSetNodeID ID;
2131  DependentTemplateSpecializationType::Profile(ID, *this, Keyword, NNS,
2132                                               Name, NumArgs, Args);
2133
2134  void *InsertPos = 0;
2135  DependentTemplateSpecializationType *T
2136    = DependentTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
2137  if (T)
2138    return QualType(T, 0);
2139
2140  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
2141
2142  ElaboratedTypeKeyword CanonKeyword = Keyword;
2143  if (Keyword == ETK_None) CanonKeyword = ETK_Typename;
2144
2145  bool AnyNonCanonArgs = false;
2146  llvm::SmallVector<TemplateArgument, 16> CanonArgs(NumArgs);
2147  for (unsigned I = 0; I != NumArgs; ++I) {
2148    CanonArgs[I] = getCanonicalTemplateArgument(Args[I]);
2149    if (!CanonArgs[I].structurallyEquals(Args[I]))
2150      AnyNonCanonArgs = true;
2151  }
2152
2153  QualType Canon;
2154  if (AnyNonCanonArgs || CanonNNS != NNS || CanonKeyword != Keyword) {
2155    Canon = getDependentTemplateSpecializationType(CanonKeyword, CanonNNS,
2156                                                   Name, NumArgs,
2157                                                   CanonArgs.data());
2158
2159    // Find the insert position again.
2160    DependentTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
2161  }
2162
2163  void *Mem = Allocate((sizeof(DependentTemplateSpecializationType) +
2164                        sizeof(TemplateArgument) * NumArgs),
2165                       TypeAlignment);
2166  T = new (Mem) DependentTemplateSpecializationType(Keyword, NNS,
2167                                                    Name, NumArgs, Args, Canon);
2168  Types.push_back(T);
2169  DependentTemplateSpecializationTypes.InsertNode(T, InsertPos);
2170  return QualType(T, 0);
2171}
2172
2173QualType ASTContext::getPackExpansionType(QualType Pattern) {
2174  llvm::FoldingSetNodeID ID;
2175  PackExpansionType::Profile(ID, Pattern);
2176
2177  assert(Pattern->containsUnexpandedParameterPack() &&
2178         "Pack expansions must expand one or more parameter packs");
2179  void *InsertPos = 0;
2180  PackExpansionType *T
2181    = PackExpansionTypes.FindNodeOrInsertPos(ID, InsertPos);
2182  if (T)
2183    return QualType(T, 0);
2184
2185  QualType Canon;
2186  if (!Pattern.isCanonical()) {
2187    Canon = getPackExpansionType(getCanonicalType(Pattern));
2188
2189    // Find the insert position again.
2190    PackExpansionTypes.FindNodeOrInsertPos(ID, InsertPos);
2191  }
2192
2193  T = new (*this) PackExpansionType(Pattern, Canon);
2194  Types.push_back(T);
2195  PackExpansionTypes.InsertNode(T, InsertPos);
2196  return QualType(T, 0);
2197}
2198
2199/// CmpProtocolNames - Comparison predicate for sorting protocols
2200/// alphabetically.
2201static bool CmpProtocolNames(const ObjCProtocolDecl *LHS,
2202                            const ObjCProtocolDecl *RHS) {
2203  return LHS->getDeclName() < RHS->getDeclName();
2204}
2205
2206static bool areSortedAndUniqued(ObjCProtocolDecl * const *Protocols,
2207                                unsigned NumProtocols) {
2208  if (NumProtocols == 0) return true;
2209
2210  for (unsigned i = 1; i != NumProtocols; ++i)
2211    if (!CmpProtocolNames(Protocols[i-1], Protocols[i]))
2212      return false;
2213  return true;
2214}
2215
2216static void SortAndUniqueProtocols(ObjCProtocolDecl **Protocols,
2217                                   unsigned &NumProtocols) {
2218  ObjCProtocolDecl **ProtocolsEnd = Protocols+NumProtocols;
2219
2220  // Sort protocols, keyed by name.
2221  std::sort(Protocols, Protocols+NumProtocols, CmpProtocolNames);
2222
2223  // Remove duplicates.
2224  ProtocolsEnd = std::unique(Protocols, ProtocolsEnd);
2225  NumProtocols = ProtocolsEnd-Protocols;
2226}
2227
2228QualType ASTContext::getObjCObjectType(QualType BaseType,
2229                                       ObjCProtocolDecl * const *Protocols,
2230                                       unsigned NumProtocols) {
2231  // If the base type is an interface and there aren't any protocols
2232  // to add, then the interface type will do just fine.
2233  if (!NumProtocols && isa<ObjCInterfaceType>(BaseType))
2234    return BaseType;
2235
2236  // Look in the folding set for an existing type.
2237  llvm::FoldingSetNodeID ID;
2238  ObjCObjectTypeImpl::Profile(ID, BaseType, Protocols, NumProtocols);
2239  void *InsertPos = 0;
2240  if (ObjCObjectType *QT = ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos))
2241    return QualType(QT, 0);
2242
2243  // Build the canonical type, which has the canonical base type and
2244  // a sorted-and-uniqued list of protocols.
2245  QualType Canonical;
2246  bool ProtocolsSorted = areSortedAndUniqued(Protocols, NumProtocols);
2247  if (!ProtocolsSorted || !BaseType.isCanonical()) {
2248    if (!ProtocolsSorted) {
2249      llvm::SmallVector<ObjCProtocolDecl*, 8> Sorted(Protocols,
2250                                                     Protocols + NumProtocols);
2251      unsigned UniqueCount = NumProtocols;
2252
2253      SortAndUniqueProtocols(&Sorted[0], UniqueCount);
2254      Canonical = getObjCObjectType(getCanonicalType(BaseType),
2255                                    &Sorted[0], UniqueCount);
2256    } else {
2257      Canonical = getObjCObjectType(getCanonicalType(BaseType),
2258                                    Protocols, NumProtocols);
2259    }
2260
2261    // Regenerate InsertPos.
2262    ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos);
2263  }
2264
2265  unsigned Size = sizeof(ObjCObjectTypeImpl);
2266  Size += NumProtocols * sizeof(ObjCProtocolDecl *);
2267  void *Mem = Allocate(Size, TypeAlignment);
2268  ObjCObjectTypeImpl *T =
2269    new (Mem) ObjCObjectTypeImpl(Canonical, BaseType, Protocols, NumProtocols);
2270
2271  Types.push_back(T);
2272  ObjCObjectTypes.InsertNode(T, InsertPos);
2273  return QualType(T, 0);
2274}
2275
2276/// getObjCObjectPointerType - Return a ObjCObjectPointerType type for
2277/// the given object type.
2278QualType ASTContext::getObjCObjectPointerType(QualType ObjectT) {
2279  llvm::FoldingSetNodeID ID;
2280  ObjCObjectPointerType::Profile(ID, ObjectT);
2281
2282  void *InsertPos = 0;
2283  if (ObjCObjectPointerType *QT =
2284              ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
2285    return QualType(QT, 0);
2286
2287  // Find the canonical object type.
2288  QualType Canonical;
2289  if (!ObjectT.isCanonical()) {
2290    Canonical = getObjCObjectPointerType(getCanonicalType(ObjectT));
2291
2292    // Regenerate InsertPos.
2293    ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
2294  }
2295
2296  // No match.
2297  void *Mem = Allocate(sizeof(ObjCObjectPointerType), TypeAlignment);
2298  ObjCObjectPointerType *QType =
2299    new (Mem) ObjCObjectPointerType(Canonical, ObjectT);
2300
2301  Types.push_back(QType);
2302  ObjCObjectPointerTypes.InsertNode(QType, InsertPos);
2303  return QualType(QType, 0);
2304}
2305
2306/// getObjCInterfaceType - Return the unique reference to the type for the
2307/// specified ObjC interface decl. The list of protocols is optional.
2308QualType ASTContext::getObjCInterfaceType(const ObjCInterfaceDecl *Decl) {
2309  if (Decl->TypeForDecl)
2310    return QualType(Decl->TypeForDecl, 0);
2311
2312  // FIXME: redeclarations?
2313  void *Mem = Allocate(sizeof(ObjCInterfaceType), TypeAlignment);
2314  ObjCInterfaceType *T = new (Mem) ObjCInterfaceType(Decl);
2315  Decl->TypeForDecl = T;
2316  Types.push_back(T);
2317  return QualType(T, 0);
2318}
2319
2320/// getTypeOfExprType - Unlike many "get<Type>" functions, we can't unique
2321/// TypeOfExprType AST's (since expression's are never shared). For example,
2322/// multiple declarations that refer to "typeof(x)" all contain different
2323/// DeclRefExpr's. This doesn't effect the type checker, since it operates
2324/// on canonical type's (which are always unique).
2325QualType ASTContext::getTypeOfExprType(Expr *tofExpr) {
2326  TypeOfExprType *toe;
2327  if (tofExpr->isTypeDependent()) {
2328    llvm::FoldingSetNodeID ID;
2329    DependentTypeOfExprType::Profile(ID, *this, tofExpr);
2330
2331    void *InsertPos = 0;
2332    DependentTypeOfExprType *Canon
2333      = DependentTypeOfExprTypes.FindNodeOrInsertPos(ID, InsertPos);
2334    if (Canon) {
2335      // We already have a "canonical" version of an identical, dependent
2336      // typeof(expr) type. Use that as our canonical type.
2337      toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr,
2338                                          QualType((TypeOfExprType*)Canon, 0));
2339    }
2340    else {
2341      // Build a new, canonical typeof(expr) type.
2342      Canon
2343        = new (*this, TypeAlignment) DependentTypeOfExprType(*this, tofExpr);
2344      DependentTypeOfExprTypes.InsertNode(Canon, InsertPos);
2345      toe = Canon;
2346    }
2347  } else {
2348    QualType Canonical = getCanonicalType(tofExpr->getType());
2349    toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr, Canonical);
2350  }
2351  Types.push_back(toe);
2352  return QualType(toe, 0);
2353}
2354
2355/// getTypeOfType -  Unlike many "get<Type>" functions, we don't unique
2356/// TypeOfType AST's. The only motivation to unique these nodes would be
2357/// memory savings. Since typeof(t) is fairly uncommon, space shouldn't be
2358/// an issue. This doesn't effect the type checker, since it operates
2359/// on canonical type's (which are always unique).
2360QualType ASTContext::getTypeOfType(QualType tofType) {
2361  QualType Canonical = getCanonicalType(tofType);
2362  TypeOfType *tot = new (*this, TypeAlignment) TypeOfType(tofType, Canonical);
2363  Types.push_back(tot);
2364  return QualType(tot, 0);
2365}
2366
2367/// getDecltypeForExpr - Given an expr, will return the decltype for that
2368/// expression, according to the rules in C++0x [dcl.type.simple]p4
2369static QualType getDecltypeForExpr(const Expr *e, ASTContext &Context) {
2370  if (e->isTypeDependent())
2371    return Context.DependentTy;
2372
2373  // If e is an id expression or a class member access, decltype(e) is defined
2374  // as the type of the entity named by e.
2375  if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(e)) {
2376    if (const ValueDecl *VD = dyn_cast<ValueDecl>(DRE->getDecl()))
2377      return VD->getType();
2378  }
2379  if (const MemberExpr *ME = dyn_cast<MemberExpr>(e)) {
2380    if (const FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl()))
2381      return FD->getType();
2382  }
2383  // If e is a function call or an invocation of an overloaded operator,
2384  // (parentheses around e are ignored), decltype(e) is defined as the
2385  // return type of that function.
2386  if (const CallExpr *CE = dyn_cast<CallExpr>(e->IgnoreParens()))
2387    return CE->getCallReturnType();
2388
2389  QualType T = e->getType();
2390
2391  // Otherwise, where T is the type of e, if e is an lvalue, decltype(e) is
2392  // defined as T&, otherwise decltype(e) is defined as T.
2393  if (e->isLValue())
2394    T = Context.getLValueReferenceType(T);
2395
2396  return T;
2397}
2398
2399/// getDecltypeType -  Unlike many "get<Type>" functions, we don't unique
2400/// DecltypeType AST's. The only motivation to unique these nodes would be
2401/// memory savings. Since decltype(t) is fairly uncommon, space shouldn't be
2402/// an issue. This doesn't effect the type checker, since it operates
2403/// on canonical type's (which are always unique).
2404QualType ASTContext::getDecltypeType(Expr *e) {
2405  DecltypeType *dt;
2406  if (e->isTypeDependent()) {
2407    llvm::FoldingSetNodeID ID;
2408    DependentDecltypeType::Profile(ID, *this, e);
2409
2410    void *InsertPos = 0;
2411    DependentDecltypeType *Canon
2412      = DependentDecltypeTypes.FindNodeOrInsertPos(ID, InsertPos);
2413    if (Canon) {
2414      // We already have a "canonical" version of an equivalent, dependent
2415      // decltype type. Use that as our canonical type.
2416      dt = new (*this, TypeAlignment) DecltypeType(e, DependentTy,
2417                                       QualType((DecltypeType*)Canon, 0));
2418    }
2419    else {
2420      // Build a new, canonical typeof(expr) type.
2421      Canon = new (*this, TypeAlignment) DependentDecltypeType(*this, e);
2422      DependentDecltypeTypes.InsertNode(Canon, InsertPos);
2423      dt = Canon;
2424    }
2425  } else {
2426    QualType T = getDecltypeForExpr(e, *this);
2427    dt = new (*this, TypeAlignment) DecltypeType(e, T, getCanonicalType(T));
2428  }
2429  Types.push_back(dt);
2430  return QualType(dt, 0);
2431}
2432
2433/// getTagDeclType - Return the unique reference to the type for the
2434/// specified TagDecl (struct/union/class/enum) decl.
2435QualType ASTContext::getTagDeclType(const TagDecl *Decl) {
2436  assert (Decl);
2437  // FIXME: What is the design on getTagDeclType when it requires casting
2438  // away const?  mutable?
2439  return getTypeDeclType(const_cast<TagDecl*>(Decl));
2440}
2441
2442/// getSizeType - Return the unique type for "size_t" (C99 7.17), the result
2443/// of the sizeof operator (C99 6.5.3.4p4). The value is target dependent and
2444/// needs to agree with the definition in <stddef.h>.
2445CanQualType ASTContext::getSizeType() const {
2446  return getFromTargetType(Target.getSizeType());
2447}
2448
2449/// getSignedWCharType - Return the type of "signed wchar_t".
2450/// Used when in C++, as a GCC extension.
2451QualType ASTContext::getSignedWCharType() const {
2452  // FIXME: derive from "Target" ?
2453  return WCharTy;
2454}
2455
2456/// getUnsignedWCharType - Return the type of "unsigned wchar_t".
2457/// Used when in C++, as a GCC extension.
2458QualType ASTContext::getUnsignedWCharType() const {
2459  // FIXME: derive from "Target" ?
2460  return UnsignedIntTy;
2461}
2462
2463/// getPointerDiffType - Return the unique type for "ptrdiff_t" (ref?)
2464/// defined in <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9).
2465QualType ASTContext::getPointerDiffType() const {
2466  return getFromTargetType(Target.getPtrDiffType(0));
2467}
2468
2469//===----------------------------------------------------------------------===//
2470//                              Type Operators
2471//===----------------------------------------------------------------------===//
2472
2473CanQualType ASTContext::getCanonicalParamType(QualType T) {
2474  // Push qualifiers into arrays, and then discard any remaining
2475  // qualifiers.
2476  T = getCanonicalType(T);
2477  T = getVariableArrayDecayedType(T);
2478  const Type *Ty = T.getTypePtr();
2479  QualType Result;
2480  if (isa<ArrayType>(Ty)) {
2481    Result = getArrayDecayedType(QualType(Ty,0));
2482  } else if (isa<FunctionType>(Ty)) {
2483    Result = getPointerType(QualType(Ty, 0));
2484  } else {
2485    Result = QualType(Ty, 0);
2486  }
2487
2488  return CanQualType::CreateUnsafe(Result);
2489}
2490
2491/// getCanonicalType - Return the canonical (structural) type corresponding to
2492/// the specified potentially non-canonical type.  The non-canonical version
2493/// of a type may have many "decorated" versions of types.  Decorators can
2494/// include typedefs, 'typeof' operators, etc. The returned type is guaranteed
2495/// to be free of any of these, allowing two canonical types to be compared
2496/// for exact equality with a simple pointer comparison.
2497CanQualType ASTContext::getCanonicalType(QualType T) {
2498  QualifierCollector Quals;
2499  const Type *Ptr = Quals.strip(T);
2500  QualType CanType = Ptr->getCanonicalTypeInternal();
2501
2502  // The canonical internal type will be the canonical type *except*
2503  // that we push type qualifiers down through array types.
2504
2505  // If there are no new qualifiers to push down, stop here.
2506  if (!Quals.hasQualifiers())
2507    return CanQualType::CreateUnsafe(CanType);
2508
2509  // If the type qualifiers are on an array type, get the canonical
2510  // type of the array with the qualifiers applied to the element
2511  // type.
2512  ArrayType *AT = dyn_cast<ArrayType>(CanType);
2513  if (!AT)
2514    return CanQualType::CreateUnsafe(getQualifiedType(CanType, Quals));
2515
2516  // Get the canonical version of the element with the extra qualifiers on it.
2517  // This can recursively sink qualifiers through multiple levels of arrays.
2518  QualType NewEltTy = getQualifiedType(AT->getElementType(), Quals);
2519  NewEltTy = getCanonicalType(NewEltTy);
2520
2521  if (ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
2522    return CanQualType::CreateUnsafe(
2523             getConstantArrayType(NewEltTy, CAT->getSize(),
2524                                  CAT->getSizeModifier(),
2525                                  CAT->getIndexTypeCVRQualifiers()));
2526  if (IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT))
2527    return CanQualType::CreateUnsafe(
2528             getIncompleteArrayType(NewEltTy, IAT->getSizeModifier(),
2529                                    IAT->getIndexTypeCVRQualifiers()));
2530
2531  if (DependentSizedArrayType *DSAT = dyn_cast<DependentSizedArrayType>(AT))
2532    return CanQualType::CreateUnsafe(
2533             getDependentSizedArrayType(NewEltTy,
2534                                        DSAT->getSizeExpr(),
2535                                        DSAT->getSizeModifier(),
2536                                        DSAT->getIndexTypeCVRQualifiers(),
2537                        DSAT->getBracketsRange())->getCanonicalTypeInternal());
2538
2539  VariableArrayType *VAT = cast<VariableArrayType>(AT);
2540  return CanQualType::CreateUnsafe(getVariableArrayType(NewEltTy,
2541                                                        VAT->getSizeExpr(),
2542                                                        VAT->getSizeModifier(),
2543                                              VAT->getIndexTypeCVRQualifiers(),
2544                                                     VAT->getBracketsRange()));
2545}
2546
2547QualType ASTContext::getUnqualifiedArrayType(QualType T,
2548                                             Qualifiers &Quals) {
2549  Quals = T.getQualifiers();
2550  const ArrayType *AT = getAsArrayType(T);
2551  if (!AT) {
2552    return T.getUnqualifiedType();
2553  }
2554
2555  QualType Elt = AT->getElementType();
2556  QualType UnqualElt = getUnqualifiedArrayType(Elt, Quals);
2557  if (Elt == UnqualElt)
2558    return T;
2559
2560  if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) {
2561    return getConstantArrayType(UnqualElt, CAT->getSize(),
2562                                CAT->getSizeModifier(), 0);
2563  }
2564
2565  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) {
2566    return getIncompleteArrayType(UnqualElt, IAT->getSizeModifier(), 0);
2567  }
2568
2569  if (const VariableArrayType *VAT = dyn_cast<VariableArrayType>(AT)) {
2570    return getVariableArrayType(UnqualElt,
2571                                VAT->getSizeExpr(),
2572                                VAT->getSizeModifier(),
2573                                VAT->getIndexTypeCVRQualifiers(),
2574                                VAT->getBracketsRange());
2575  }
2576
2577  const DependentSizedArrayType *DSAT = cast<DependentSizedArrayType>(AT);
2578  return getDependentSizedArrayType(UnqualElt, DSAT->getSizeExpr(),
2579                                    DSAT->getSizeModifier(), 0,
2580                                    SourceRange());
2581}
2582
2583/// UnwrapSimilarPointerTypes - If T1 and T2 are pointer types  that
2584/// may be similar (C++ 4.4), replaces T1 and T2 with the type that
2585/// they point to and return true. If T1 and T2 aren't pointer types
2586/// or pointer-to-member types, or if they are not similar at this
2587/// level, returns false and leaves T1 and T2 unchanged. Top-level
2588/// qualifiers on T1 and T2 are ignored. This function will typically
2589/// be called in a loop that successively "unwraps" pointer and
2590/// pointer-to-member types to compare them at each level.
2591bool ASTContext::UnwrapSimilarPointerTypes(QualType &T1, QualType &T2) {
2592  const PointerType *T1PtrType = T1->getAs<PointerType>(),
2593                    *T2PtrType = T2->getAs<PointerType>();
2594  if (T1PtrType && T2PtrType) {
2595    T1 = T1PtrType->getPointeeType();
2596    T2 = T2PtrType->getPointeeType();
2597    return true;
2598  }
2599
2600  const MemberPointerType *T1MPType = T1->getAs<MemberPointerType>(),
2601                          *T2MPType = T2->getAs<MemberPointerType>();
2602  if (T1MPType && T2MPType &&
2603      hasSameUnqualifiedType(QualType(T1MPType->getClass(), 0),
2604                             QualType(T2MPType->getClass(), 0))) {
2605    T1 = T1MPType->getPointeeType();
2606    T2 = T2MPType->getPointeeType();
2607    return true;
2608  }
2609
2610  if (getLangOptions().ObjC1) {
2611    const ObjCObjectPointerType *T1OPType = T1->getAs<ObjCObjectPointerType>(),
2612                                *T2OPType = T2->getAs<ObjCObjectPointerType>();
2613    if (T1OPType && T2OPType) {
2614      T1 = T1OPType->getPointeeType();
2615      T2 = T2OPType->getPointeeType();
2616      return true;
2617    }
2618  }
2619
2620  // FIXME: Block pointers, too?
2621
2622  return false;
2623}
2624
2625DeclarationNameInfo ASTContext::getNameForTemplate(TemplateName Name,
2626                                                   SourceLocation NameLoc) {
2627  if (TemplateDecl *TD = Name.getAsTemplateDecl())
2628    // DNInfo work in progress: CHECKME: what about DNLoc?
2629    return DeclarationNameInfo(TD->getDeclName(), NameLoc);
2630
2631  if (DependentTemplateName *DTN = Name.getAsDependentTemplateName()) {
2632    DeclarationName DName;
2633    if (DTN->isIdentifier()) {
2634      DName = DeclarationNames.getIdentifier(DTN->getIdentifier());
2635      return DeclarationNameInfo(DName, NameLoc);
2636    } else {
2637      DName = DeclarationNames.getCXXOperatorName(DTN->getOperator());
2638      // DNInfo work in progress: FIXME: source locations?
2639      DeclarationNameLoc DNLoc;
2640      DNLoc.CXXOperatorName.BeginOpNameLoc = SourceLocation().getRawEncoding();
2641      DNLoc.CXXOperatorName.EndOpNameLoc = SourceLocation().getRawEncoding();
2642      return DeclarationNameInfo(DName, NameLoc, DNLoc);
2643    }
2644  }
2645
2646  OverloadedTemplateStorage *Storage = Name.getAsOverloadedTemplate();
2647  assert(Storage);
2648  // DNInfo work in progress: CHECKME: what about DNLoc?
2649  return DeclarationNameInfo((*Storage->begin())->getDeclName(), NameLoc);
2650}
2651
2652TemplateName ASTContext::getCanonicalTemplateName(TemplateName Name) {
2653  if (TemplateDecl *Template = Name.getAsTemplateDecl()) {
2654    if (TemplateTemplateParmDecl *TTP
2655                              = dyn_cast<TemplateTemplateParmDecl>(Template))
2656      Template = getCanonicalTemplateTemplateParmDecl(TTP);
2657
2658    // The canonical template name is the canonical template declaration.
2659    return TemplateName(cast<TemplateDecl>(Template->getCanonicalDecl()));
2660  }
2661
2662  assert(!Name.getAsOverloadedTemplate());
2663
2664  DependentTemplateName *DTN = Name.getAsDependentTemplateName();
2665  assert(DTN && "Non-dependent template names must refer to template decls.");
2666  return DTN->CanonicalTemplateName;
2667}
2668
2669bool ASTContext::hasSameTemplateName(TemplateName X, TemplateName Y) {
2670  X = getCanonicalTemplateName(X);
2671  Y = getCanonicalTemplateName(Y);
2672  return X.getAsVoidPointer() == Y.getAsVoidPointer();
2673}
2674
2675TemplateArgument
2676ASTContext::getCanonicalTemplateArgument(const TemplateArgument &Arg) {
2677  switch (Arg.getKind()) {
2678    case TemplateArgument::Null:
2679      return Arg;
2680
2681    case TemplateArgument::Expression:
2682      return Arg;
2683
2684    case TemplateArgument::Declaration:
2685      return TemplateArgument(Arg.getAsDecl()->getCanonicalDecl());
2686
2687    case TemplateArgument::Template:
2688      return TemplateArgument(getCanonicalTemplateName(Arg.getAsTemplate()));
2689
2690    case TemplateArgument::Integral:
2691      return TemplateArgument(*Arg.getAsIntegral(),
2692                              getCanonicalType(Arg.getIntegralType()));
2693
2694    case TemplateArgument::Type:
2695      return TemplateArgument(getCanonicalType(Arg.getAsType()));
2696
2697    case TemplateArgument::Pack: {
2698      if (Arg.pack_size() == 0)
2699        return Arg;
2700
2701      TemplateArgument *CanonArgs
2702        = new (*this) TemplateArgument[Arg.pack_size()];
2703      unsigned Idx = 0;
2704      for (TemplateArgument::pack_iterator A = Arg.pack_begin(),
2705                                        AEnd = Arg.pack_end();
2706           A != AEnd; (void)++A, ++Idx)
2707        CanonArgs[Idx] = getCanonicalTemplateArgument(*A);
2708
2709      return TemplateArgument(CanonArgs, Arg.pack_size());
2710    }
2711  }
2712
2713  // Silence GCC warning
2714  assert(false && "Unhandled template argument kind");
2715  return TemplateArgument();
2716}
2717
2718NestedNameSpecifier *
2719ASTContext::getCanonicalNestedNameSpecifier(NestedNameSpecifier *NNS) {
2720  if (!NNS)
2721    return 0;
2722
2723  switch (NNS->getKind()) {
2724  case NestedNameSpecifier::Identifier:
2725    // Canonicalize the prefix but keep the identifier the same.
2726    return NestedNameSpecifier::Create(*this,
2727                         getCanonicalNestedNameSpecifier(NNS->getPrefix()),
2728                                       NNS->getAsIdentifier());
2729
2730  case NestedNameSpecifier::Namespace:
2731    // A namespace is canonical; build a nested-name-specifier with
2732    // this namespace and no prefix.
2733    return NestedNameSpecifier::Create(*this, 0, NNS->getAsNamespace());
2734
2735  case NestedNameSpecifier::TypeSpec:
2736  case NestedNameSpecifier::TypeSpecWithTemplate: {
2737    QualType T = getCanonicalType(QualType(NNS->getAsType(), 0));
2738
2739    // If we have some kind of dependent-named type (e.g., "typename T::type"),
2740    // break it apart into its prefix and identifier, then reconsititute those
2741    // as the canonical nested-name-specifier. This is required to canonicalize
2742    // a dependent nested-name-specifier involving typedefs of dependent-name
2743    // types, e.g.,
2744    //   typedef typename T::type T1;
2745    //   typedef typename T1::type T2;
2746    if (const DependentNameType *DNT = T->getAs<DependentNameType>()) {
2747      NestedNameSpecifier *Prefix
2748        = getCanonicalNestedNameSpecifier(DNT->getQualifier());
2749      return NestedNameSpecifier::Create(*this, Prefix,
2750                           const_cast<IdentifierInfo *>(DNT->getIdentifier()));
2751    }
2752
2753    // Do the same thing as above, but with dependent-named specializations.
2754    if (const DependentTemplateSpecializationType *DTST
2755          = T->getAs<DependentTemplateSpecializationType>()) {
2756      NestedNameSpecifier *Prefix
2757        = getCanonicalNestedNameSpecifier(DTST->getQualifier());
2758      TemplateName Name
2759        = getDependentTemplateName(Prefix, DTST->getIdentifier());
2760      T = getTemplateSpecializationType(Name,
2761                                        DTST->getArgs(), DTST->getNumArgs());
2762      T = getCanonicalType(T);
2763    }
2764
2765    return NestedNameSpecifier::Create(*this, 0, false, T.getTypePtr());
2766  }
2767
2768  case NestedNameSpecifier::Global:
2769    // The global specifier is canonical and unique.
2770    return NNS;
2771  }
2772
2773  // Required to silence a GCC warning
2774  return 0;
2775}
2776
2777
2778const ArrayType *ASTContext::getAsArrayType(QualType T) {
2779  // Handle the non-qualified case efficiently.
2780  if (!T.hasLocalQualifiers()) {
2781    // Handle the common positive case fast.
2782    if (const ArrayType *AT = dyn_cast<ArrayType>(T))
2783      return AT;
2784  }
2785
2786  // Handle the common negative case fast.
2787  QualType CType = T->getCanonicalTypeInternal();
2788  if (!isa<ArrayType>(CType))
2789    return 0;
2790
2791  // Apply any qualifiers from the array type to the element type.  This
2792  // implements C99 6.7.3p8: "If the specification of an array type includes
2793  // any type qualifiers, the element type is so qualified, not the array type."
2794
2795  // If we get here, we either have type qualifiers on the type, or we have
2796  // sugar such as a typedef in the way.  If we have type qualifiers on the type
2797  // we must propagate them down into the element type.
2798
2799  QualifierCollector Qs;
2800  const Type *Ty = Qs.strip(T.getDesugaredType(*this));
2801
2802  // If we have a simple case, just return now.
2803  const ArrayType *ATy = dyn_cast<ArrayType>(Ty);
2804  if (ATy == 0 || Qs.empty())
2805    return ATy;
2806
2807  // Otherwise, we have an array and we have qualifiers on it.  Push the
2808  // qualifiers into the array element type and return a new array type.
2809  // Get the canonical version of the element with the extra qualifiers on it.
2810  // This can recursively sink qualifiers through multiple levels of arrays.
2811  QualType NewEltTy = getQualifiedType(ATy->getElementType(), Qs);
2812
2813  if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(ATy))
2814    return cast<ArrayType>(getConstantArrayType(NewEltTy, CAT->getSize(),
2815                                                CAT->getSizeModifier(),
2816                                           CAT->getIndexTypeCVRQualifiers()));
2817  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(ATy))
2818    return cast<ArrayType>(getIncompleteArrayType(NewEltTy,
2819                                                  IAT->getSizeModifier(),
2820                                           IAT->getIndexTypeCVRQualifiers()));
2821
2822  if (const DependentSizedArrayType *DSAT
2823        = dyn_cast<DependentSizedArrayType>(ATy))
2824    return cast<ArrayType>(
2825                     getDependentSizedArrayType(NewEltTy,
2826                                                DSAT->getSizeExpr(),
2827                                                DSAT->getSizeModifier(),
2828                                              DSAT->getIndexTypeCVRQualifiers(),
2829                                                DSAT->getBracketsRange()));
2830
2831  const VariableArrayType *VAT = cast<VariableArrayType>(ATy);
2832  return cast<ArrayType>(getVariableArrayType(NewEltTy,
2833                                              VAT->getSizeExpr(),
2834                                              VAT->getSizeModifier(),
2835                                              VAT->getIndexTypeCVRQualifiers(),
2836                                              VAT->getBracketsRange()));
2837}
2838
2839/// getArrayDecayedType - Return the properly qualified result of decaying the
2840/// specified array type to a pointer.  This operation is non-trivial when
2841/// handling typedefs etc.  The canonical type of "T" must be an array type,
2842/// this returns a pointer to a properly qualified element of the array.
2843///
2844/// See C99 6.7.5.3p7 and C99 6.3.2.1p3.
2845QualType ASTContext::getArrayDecayedType(QualType Ty) {
2846  // Get the element type with 'getAsArrayType' so that we don't lose any
2847  // typedefs in the element type of the array.  This also handles propagation
2848  // of type qualifiers from the array type into the element type if present
2849  // (C99 6.7.3p8).
2850  const ArrayType *PrettyArrayType = getAsArrayType(Ty);
2851  assert(PrettyArrayType && "Not an array type!");
2852
2853  QualType PtrTy = getPointerType(PrettyArrayType->getElementType());
2854
2855  // int x[restrict 4] ->  int *restrict
2856  return getQualifiedType(PtrTy, PrettyArrayType->getIndexTypeQualifiers());
2857}
2858
2859QualType ASTContext::getBaseElementType(QualType QT) {
2860  QualifierCollector Qs;
2861  while (const ArrayType *AT = getAsArrayType(QualType(Qs.strip(QT), 0)))
2862    QT = AT->getElementType();
2863  return Qs.apply(*this, QT);
2864}
2865
2866QualType ASTContext::getBaseElementType(const ArrayType *AT) {
2867  QualType ElemTy = AT->getElementType();
2868
2869  if (const ArrayType *AT = getAsArrayType(ElemTy))
2870    return getBaseElementType(AT);
2871
2872  return ElemTy;
2873}
2874
2875/// getConstantArrayElementCount - Returns number of constant array elements.
2876uint64_t
2877ASTContext::getConstantArrayElementCount(const ConstantArrayType *CA)  const {
2878  uint64_t ElementCount = 1;
2879  do {
2880    ElementCount *= CA->getSize().getZExtValue();
2881    CA = dyn_cast<ConstantArrayType>(CA->getElementType());
2882  } while (CA);
2883  return ElementCount;
2884}
2885
2886/// getFloatingRank - Return a relative rank for floating point types.
2887/// This routine will assert if passed a built-in type that isn't a float.
2888static FloatingRank getFloatingRank(QualType T) {
2889  if (const ComplexType *CT = T->getAs<ComplexType>())
2890    return getFloatingRank(CT->getElementType());
2891
2892  assert(T->getAs<BuiltinType>() && "getFloatingRank(): not a floating type");
2893  switch (T->getAs<BuiltinType>()->getKind()) {
2894  default: assert(0 && "getFloatingRank(): not a floating type");
2895  case BuiltinType::Float:      return FloatRank;
2896  case BuiltinType::Double:     return DoubleRank;
2897  case BuiltinType::LongDouble: return LongDoubleRank;
2898  }
2899}
2900
2901/// getFloatingTypeOfSizeWithinDomain - Returns a real floating
2902/// point or a complex type (based on typeDomain/typeSize).
2903/// 'typeDomain' is a real floating point or complex type.
2904/// 'typeSize' is a real floating point or complex type.
2905QualType ASTContext::getFloatingTypeOfSizeWithinDomain(QualType Size,
2906                                                       QualType Domain) const {
2907  FloatingRank EltRank = getFloatingRank(Size);
2908  if (Domain->isComplexType()) {
2909    switch (EltRank) {
2910    default: assert(0 && "getFloatingRank(): illegal value for rank");
2911    case FloatRank:      return FloatComplexTy;
2912    case DoubleRank:     return DoubleComplexTy;
2913    case LongDoubleRank: return LongDoubleComplexTy;
2914    }
2915  }
2916
2917  assert(Domain->isRealFloatingType() && "Unknown domain!");
2918  switch (EltRank) {
2919  default: assert(0 && "getFloatingRank(): illegal value for rank");
2920  case FloatRank:      return FloatTy;
2921  case DoubleRank:     return DoubleTy;
2922  case LongDoubleRank: return LongDoubleTy;
2923  }
2924}
2925
2926/// getFloatingTypeOrder - Compare the rank of the two specified floating
2927/// point types, ignoring the domain of the type (i.e. 'double' ==
2928/// '_Complex double').  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
2929/// LHS < RHS, return -1.
2930int ASTContext::getFloatingTypeOrder(QualType LHS, QualType RHS) {
2931  FloatingRank LHSR = getFloatingRank(LHS);
2932  FloatingRank RHSR = getFloatingRank(RHS);
2933
2934  if (LHSR == RHSR)
2935    return 0;
2936  if (LHSR > RHSR)
2937    return 1;
2938  return -1;
2939}
2940
2941/// getIntegerRank - Return an integer conversion rank (C99 6.3.1.1p1). This
2942/// routine will assert if passed a built-in type that isn't an integer or enum,
2943/// or if it is not canonicalized.
2944unsigned ASTContext::getIntegerRank(Type *T) {
2945  assert(T->isCanonicalUnqualified() && "T should be canonicalized");
2946  if (EnumType* ET = dyn_cast<EnumType>(T))
2947    T = ET->getDecl()->getPromotionType().getTypePtr();
2948
2949  if (T->isSpecificBuiltinType(BuiltinType::WChar))
2950    T = getFromTargetType(Target.getWCharType()).getTypePtr();
2951
2952  if (T->isSpecificBuiltinType(BuiltinType::Char16))
2953    T = getFromTargetType(Target.getChar16Type()).getTypePtr();
2954
2955  if (T->isSpecificBuiltinType(BuiltinType::Char32))
2956    T = getFromTargetType(Target.getChar32Type()).getTypePtr();
2957
2958  switch (cast<BuiltinType>(T)->getKind()) {
2959  default: assert(0 && "getIntegerRank(): not a built-in integer");
2960  case BuiltinType::Bool:
2961    return 1 + (getIntWidth(BoolTy) << 3);
2962  case BuiltinType::Char_S:
2963  case BuiltinType::Char_U:
2964  case BuiltinType::SChar:
2965  case BuiltinType::UChar:
2966    return 2 + (getIntWidth(CharTy) << 3);
2967  case BuiltinType::Short:
2968  case BuiltinType::UShort:
2969    return 3 + (getIntWidth(ShortTy) << 3);
2970  case BuiltinType::Int:
2971  case BuiltinType::UInt:
2972    return 4 + (getIntWidth(IntTy) << 3);
2973  case BuiltinType::Long:
2974  case BuiltinType::ULong:
2975    return 5 + (getIntWidth(LongTy) << 3);
2976  case BuiltinType::LongLong:
2977  case BuiltinType::ULongLong:
2978    return 6 + (getIntWidth(LongLongTy) << 3);
2979  case BuiltinType::Int128:
2980  case BuiltinType::UInt128:
2981    return 7 + (getIntWidth(Int128Ty) << 3);
2982  }
2983}
2984
2985/// \brief Whether this is a promotable bitfield reference according
2986/// to C99 6.3.1.1p2, bullet 2 (and GCC extensions).
2987///
2988/// \returns the type this bit-field will promote to, or NULL if no
2989/// promotion occurs.
2990QualType ASTContext::isPromotableBitField(Expr *E) {
2991  if (E->isTypeDependent() || E->isValueDependent())
2992    return QualType();
2993
2994  FieldDecl *Field = E->getBitField();
2995  if (!Field)
2996    return QualType();
2997
2998  QualType FT = Field->getType();
2999
3000  llvm::APSInt BitWidthAP = Field->getBitWidth()->EvaluateAsInt(*this);
3001  uint64_t BitWidth = BitWidthAP.getZExtValue();
3002  uint64_t IntSize = getTypeSize(IntTy);
3003  // GCC extension compatibility: if the bit-field size is less than or equal
3004  // to the size of int, it gets promoted no matter what its type is.
3005  // For instance, unsigned long bf : 4 gets promoted to signed int.
3006  if (BitWidth < IntSize)
3007    return IntTy;
3008
3009  if (BitWidth == IntSize)
3010    return FT->isSignedIntegerType() ? IntTy : UnsignedIntTy;
3011
3012  // Types bigger than int are not subject to promotions, and therefore act
3013  // like the base type.
3014  // FIXME: This doesn't quite match what gcc does, but what gcc does here
3015  // is ridiculous.
3016  return QualType();
3017}
3018
3019/// getPromotedIntegerType - Returns the type that Promotable will
3020/// promote to: C99 6.3.1.1p2, assuming that Promotable is a promotable
3021/// integer type.
3022QualType ASTContext::getPromotedIntegerType(QualType Promotable) {
3023  assert(!Promotable.isNull());
3024  assert(Promotable->isPromotableIntegerType());
3025  if (const EnumType *ET = Promotable->getAs<EnumType>())
3026    return ET->getDecl()->getPromotionType();
3027  if (Promotable->isSignedIntegerType())
3028    return IntTy;
3029  uint64_t PromotableSize = getTypeSize(Promotable);
3030  uint64_t IntSize = getTypeSize(IntTy);
3031  assert(Promotable->isUnsignedIntegerType() && PromotableSize <= IntSize);
3032  return (PromotableSize != IntSize) ? IntTy : UnsignedIntTy;
3033}
3034
3035/// getIntegerTypeOrder - Returns the highest ranked integer type:
3036/// C99 6.3.1.8p1.  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
3037/// LHS < RHS, return -1.
3038int ASTContext::getIntegerTypeOrder(QualType LHS, QualType RHS) {
3039  Type *LHSC = getCanonicalType(LHS).getTypePtr();
3040  Type *RHSC = getCanonicalType(RHS).getTypePtr();
3041  if (LHSC == RHSC) return 0;
3042
3043  bool LHSUnsigned = LHSC->isUnsignedIntegerType();
3044  bool RHSUnsigned = RHSC->isUnsignedIntegerType();
3045
3046  unsigned LHSRank = getIntegerRank(LHSC);
3047  unsigned RHSRank = getIntegerRank(RHSC);
3048
3049  if (LHSUnsigned == RHSUnsigned) {  // Both signed or both unsigned.
3050    if (LHSRank == RHSRank) return 0;
3051    return LHSRank > RHSRank ? 1 : -1;
3052  }
3053
3054  // Otherwise, the LHS is signed and the RHS is unsigned or visa versa.
3055  if (LHSUnsigned) {
3056    // If the unsigned [LHS] type is larger, return it.
3057    if (LHSRank >= RHSRank)
3058      return 1;
3059
3060    // If the signed type can represent all values of the unsigned type, it
3061    // wins.  Because we are dealing with 2's complement and types that are
3062    // powers of two larger than each other, this is always safe.
3063    return -1;
3064  }
3065
3066  // If the unsigned [RHS] type is larger, return it.
3067  if (RHSRank >= LHSRank)
3068    return -1;
3069
3070  // If the signed type can represent all values of the unsigned type, it
3071  // wins.  Because we are dealing with 2's complement and types that are
3072  // powers of two larger than each other, this is always safe.
3073  return 1;
3074}
3075
3076static RecordDecl *
3077CreateRecordDecl(ASTContext &Ctx, RecordDecl::TagKind TK, DeclContext *DC,
3078                 SourceLocation L, IdentifierInfo *Id) {
3079  if (Ctx.getLangOptions().CPlusPlus)
3080    return CXXRecordDecl::Create(Ctx, TK, DC, L, Id);
3081  else
3082    return RecordDecl::Create(Ctx, TK, DC, L, Id);
3083}
3084
3085// getCFConstantStringType - Return the type used for constant CFStrings.
3086QualType ASTContext::getCFConstantStringType() {
3087  if (!CFConstantStringTypeDecl) {
3088    CFConstantStringTypeDecl =
3089      CreateRecordDecl(*this, TTK_Struct, TUDecl, SourceLocation(),
3090                       &Idents.get("NSConstantString"));
3091    CFConstantStringTypeDecl->startDefinition();
3092
3093    QualType FieldTypes[4];
3094
3095    // const int *isa;
3096    FieldTypes[0] = getPointerType(IntTy.withConst());
3097    // int flags;
3098    FieldTypes[1] = IntTy;
3099    // const char *str;
3100    FieldTypes[2] = getPointerType(CharTy.withConst());
3101    // long length;
3102    FieldTypes[3] = LongTy;
3103
3104    // Create fields
3105    for (unsigned i = 0; i < 4; ++i) {
3106      FieldDecl *Field = FieldDecl::Create(*this, CFConstantStringTypeDecl,
3107                                           SourceLocation(), 0,
3108                                           FieldTypes[i], /*TInfo=*/0,
3109                                           /*BitWidth=*/0,
3110                                           /*Mutable=*/false);
3111      Field->setAccess(AS_public);
3112      CFConstantStringTypeDecl->addDecl(Field);
3113    }
3114
3115    CFConstantStringTypeDecl->completeDefinition();
3116  }
3117
3118  return getTagDeclType(CFConstantStringTypeDecl);
3119}
3120
3121void ASTContext::setCFConstantStringType(QualType T) {
3122  const RecordType *Rec = T->getAs<RecordType>();
3123  assert(Rec && "Invalid CFConstantStringType");
3124  CFConstantStringTypeDecl = Rec->getDecl();
3125}
3126
3127// getNSConstantStringType - Return the type used for constant NSStrings.
3128QualType ASTContext::getNSConstantStringType() {
3129  if (!NSConstantStringTypeDecl) {
3130    NSConstantStringTypeDecl =
3131    CreateRecordDecl(*this, TTK_Struct, TUDecl, SourceLocation(),
3132                     &Idents.get("__builtin_NSString"));
3133    NSConstantStringTypeDecl->startDefinition();
3134
3135    QualType FieldTypes[3];
3136
3137    // const int *isa;
3138    FieldTypes[0] = getPointerType(IntTy.withConst());
3139    // const char *str;
3140    FieldTypes[1] = getPointerType(CharTy.withConst());
3141    // unsigned int length;
3142    FieldTypes[2] = UnsignedIntTy;
3143
3144    // Create fields
3145    for (unsigned i = 0; i < 3; ++i) {
3146      FieldDecl *Field = FieldDecl::Create(*this, NSConstantStringTypeDecl,
3147                                           SourceLocation(), 0,
3148                                           FieldTypes[i], /*TInfo=*/0,
3149                                           /*BitWidth=*/0,
3150                                           /*Mutable=*/false);
3151      Field->setAccess(AS_public);
3152      NSConstantStringTypeDecl->addDecl(Field);
3153    }
3154
3155    NSConstantStringTypeDecl->completeDefinition();
3156  }
3157
3158  return getTagDeclType(NSConstantStringTypeDecl);
3159}
3160
3161void ASTContext::setNSConstantStringType(QualType T) {
3162  const RecordType *Rec = T->getAs<RecordType>();
3163  assert(Rec && "Invalid NSConstantStringType");
3164  NSConstantStringTypeDecl = Rec->getDecl();
3165}
3166
3167QualType ASTContext::getObjCFastEnumerationStateType() {
3168  if (!ObjCFastEnumerationStateTypeDecl) {
3169    ObjCFastEnumerationStateTypeDecl =
3170      CreateRecordDecl(*this, TTK_Struct, TUDecl, SourceLocation(),
3171                       &Idents.get("__objcFastEnumerationState"));
3172    ObjCFastEnumerationStateTypeDecl->startDefinition();
3173
3174    QualType FieldTypes[] = {
3175      UnsignedLongTy,
3176      getPointerType(ObjCIdTypedefType),
3177      getPointerType(UnsignedLongTy),
3178      getConstantArrayType(UnsignedLongTy,
3179                           llvm::APInt(32, 5), ArrayType::Normal, 0)
3180    };
3181
3182    for (size_t i = 0; i < 4; ++i) {
3183      FieldDecl *Field = FieldDecl::Create(*this,
3184                                           ObjCFastEnumerationStateTypeDecl,
3185                                           SourceLocation(), 0,
3186                                           FieldTypes[i], /*TInfo=*/0,
3187                                           /*BitWidth=*/0,
3188                                           /*Mutable=*/false);
3189      Field->setAccess(AS_public);
3190      ObjCFastEnumerationStateTypeDecl->addDecl(Field);
3191    }
3192
3193    ObjCFastEnumerationStateTypeDecl->completeDefinition();
3194  }
3195
3196  return getTagDeclType(ObjCFastEnumerationStateTypeDecl);
3197}
3198
3199QualType ASTContext::getBlockDescriptorType() {
3200  if (BlockDescriptorType)
3201    return getTagDeclType(BlockDescriptorType);
3202
3203  RecordDecl *T;
3204  // FIXME: Needs the FlagAppleBlock bit.
3205  T = CreateRecordDecl(*this, TTK_Struct, TUDecl, SourceLocation(),
3206                       &Idents.get("__block_descriptor"));
3207  T->startDefinition();
3208
3209  QualType FieldTypes[] = {
3210    UnsignedLongTy,
3211    UnsignedLongTy,
3212  };
3213
3214  const char *FieldNames[] = {
3215    "reserved",
3216    "Size"
3217  };
3218
3219  for (size_t i = 0; i < 2; ++i) {
3220    FieldDecl *Field = FieldDecl::Create(*this,
3221                                         T,
3222                                         SourceLocation(),
3223                                         &Idents.get(FieldNames[i]),
3224                                         FieldTypes[i], /*TInfo=*/0,
3225                                         /*BitWidth=*/0,
3226                                         /*Mutable=*/false);
3227    Field->setAccess(AS_public);
3228    T->addDecl(Field);
3229  }
3230
3231  T->completeDefinition();
3232
3233  BlockDescriptorType = T;
3234
3235  return getTagDeclType(BlockDescriptorType);
3236}
3237
3238void ASTContext::setBlockDescriptorType(QualType T) {
3239  const RecordType *Rec = T->getAs<RecordType>();
3240  assert(Rec && "Invalid BlockDescriptorType");
3241  BlockDescriptorType = Rec->getDecl();
3242}
3243
3244QualType ASTContext::getBlockDescriptorExtendedType() {
3245  if (BlockDescriptorExtendedType)
3246    return getTagDeclType(BlockDescriptorExtendedType);
3247
3248  RecordDecl *T;
3249  // FIXME: Needs the FlagAppleBlock bit.
3250  T = CreateRecordDecl(*this, TTK_Struct, TUDecl, SourceLocation(),
3251                       &Idents.get("__block_descriptor_withcopydispose"));
3252  T->startDefinition();
3253
3254  QualType FieldTypes[] = {
3255    UnsignedLongTy,
3256    UnsignedLongTy,
3257    getPointerType(VoidPtrTy),
3258    getPointerType(VoidPtrTy)
3259  };
3260
3261  const char *FieldNames[] = {
3262    "reserved",
3263    "Size",
3264    "CopyFuncPtr",
3265    "DestroyFuncPtr"
3266  };
3267
3268  for (size_t i = 0; i < 4; ++i) {
3269    FieldDecl *Field = FieldDecl::Create(*this,
3270                                         T,
3271                                         SourceLocation(),
3272                                         &Idents.get(FieldNames[i]),
3273                                         FieldTypes[i], /*TInfo=*/0,
3274                                         /*BitWidth=*/0,
3275                                         /*Mutable=*/false);
3276    Field->setAccess(AS_public);
3277    T->addDecl(Field);
3278  }
3279
3280  T->completeDefinition();
3281
3282  BlockDescriptorExtendedType = T;
3283
3284  return getTagDeclType(BlockDescriptorExtendedType);
3285}
3286
3287void ASTContext::setBlockDescriptorExtendedType(QualType T) {
3288  const RecordType *Rec = T->getAs<RecordType>();
3289  assert(Rec && "Invalid BlockDescriptorType");
3290  BlockDescriptorExtendedType = Rec->getDecl();
3291}
3292
3293bool ASTContext::BlockRequiresCopying(QualType Ty) {
3294  if (Ty->isBlockPointerType())
3295    return true;
3296  if (isObjCNSObjectType(Ty))
3297    return true;
3298  if (Ty->isObjCObjectPointerType())
3299    return true;
3300  if (getLangOptions().CPlusPlus) {
3301    if (const RecordType *RT = Ty->getAs<RecordType>()) {
3302      CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
3303      return RD->hasConstCopyConstructor(*this);
3304
3305    }
3306  }
3307  return false;
3308}
3309
3310QualType ASTContext::BuildByRefType(llvm::StringRef DeclName, QualType Ty) {
3311  //  type = struct __Block_byref_1_X {
3312  //    void *__isa;
3313  //    struct __Block_byref_1_X *__forwarding;
3314  //    unsigned int __flags;
3315  //    unsigned int __size;
3316  //    void *__copy_helper;            // as needed
3317  //    void *__destroy_help            // as needed
3318  //    int X;
3319  //  } *
3320
3321  bool HasCopyAndDispose = BlockRequiresCopying(Ty);
3322
3323  // FIXME: Move up
3324  llvm::SmallString<36> Name;
3325  llvm::raw_svector_ostream(Name) << "__Block_byref_" <<
3326                                  ++UniqueBlockByRefTypeID << '_' << DeclName;
3327  RecordDecl *T;
3328  T = CreateRecordDecl(*this, TTK_Struct, TUDecl, SourceLocation(),
3329                       &Idents.get(Name.str()));
3330  T->startDefinition();
3331  QualType Int32Ty = IntTy;
3332  assert(getIntWidth(IntTy) == 32 && "non-32bit int not supported");
3333  QualType FieldTypes[] = {
3334    getPointerType(VoidPtrTy),
3335    getPointerType(getTagDeclType(T)),
3336    Int32Ty,
3337    Int32Ty,
3338    getPointerType(VoidPtrTy),
3339    getPointerType(VoidPtrTy),
3340    Ty
3341  };
3342
3343  llvm::StringRef FieldNames[] = {
3344    "__isa",
3345    "__forwarding",
3346    "__flags",
3347    "__size",
3348    "__copy_helper",
3349    "__destroy_helper",
3350    DeclName,
3351  };
3352
3353  for (size_t i = 0; i < 7; ++i) {
3354    if (!HasCopyAndDispose && i >=4 && i <= 5)
3355      continue;
3356    FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(),
3357                                         &Idents.get(FieldNames[i]),
3358                                         FieldTypes[i], /*TInfo=*/0,
3359                                         /*BitWidth=*/0, /*Mutable=*/false);
3360    Field->setAccess(AS_public);
3361    T->addDecl(Field);
3362  }
3363
3364  T->completeDefinition();
3365
3366  return getPointerType(getTagDeclType(T));
3367}
3368
3369
3370QualType ASTContext::getBlockParmType(
3371  bool BlockHasCopyDispose,
3372  llvm::SmallVectorImpl<const Expr *> &Layout) {
3373
3374  // FIXME: Move up
3375  llvm::SmallString<36> Name;
3376  llvm::raw_svector_ostream(Name) << "__block_literal_"
3377                                  << ++UniqueBlockParmTypeID;
3378  RecordDecl *T;
3379  T = CreateRecordDecl(*this, TTK_Struct, TUDecl, SourceLocation(),
3380                       &Idents.get(Name.str()));
3381  T->startDefinition();
3382  QualType FieldTypes[] = {
3383    getPointerType(VoidPtrTy),
3384    IntTy,
3385    IntTy,
3386    getPointerType(VoidPtrTy),
3387    (BlockHasCopyDispose ?
3388     getPointerType(getBlockDescriptorExtendedType()) :
3389     getPointerType(getBlockDescriptorType()))
3390  };
3391
3392  const char *FieldNames[] = {
3393    "__isa",
3394    "__flags",
3395    "__reserved",
3396    "__FuncPtr",
3397    "__descriptor"
3398  };
3399
3400  for (size_t i = 0; i < 5; ++i) {
3401    FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(),
3402                                         &Idents.get(FieldNames[i]),
3403                                         FieldTypes[i], /*TInfo=*/0,
3404                                         /*BitWidth=*/0, /*Mutable=*/false);
3405    Field->setAccess(AS_public);
3406    T->addDecl(Field);
3407  }
3408
3409  for (unsigned i = 0; i < Layout.size(); ++i) {
3410    const Expr *E = Layout[i];
3411
3412    QualType FieldType = E->getType();
3413    IdentifierInfo *FieldName = 0;
3414    if (isa<CXXThisExpr>(E)) {
3415      FieldName = &Idents.get("this");
3416    } else if (const BlockDeclRefExpr *BDRE = dyn_cast<BlockDeclRefExpr>(E)) {
3417      const ValueDecl *D = BDRE->getDecl();
3418      FieldName = D->getIdentifier();
3419      if (BDRE->isByRef())
3420        FieldType = BuildByRefType(D->getName(), FieldType);
3421    } else {
3422      // Padding.
3423      assert(isa<ConstantArrayType>(FieldType) &&
3424             isa<DeclRefExpr>(E) &&
3425             !cast<DeclRefExpr>(E)->getDecl()->getDeclName() &&
3426             "doesn't match characteristics of padding decl");
3427    }
3428
3429    FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(),
3430                                         FieldName, FieldType, /*TInfo=*/0,
3431                                         /*BitWidth=*/0, /*Mutable=*/false);
3432    Field->setAccess(AS_public);
3433    T->addDecl(Field);
3434  }
3435
3436  T->completeDefinition();
3437
3438  return getPointerType(getTagDeclType(T));
3439}
3440
3441void ASTContext::setObjCFastEnumerationStateType(QualType T) {
3442  const RecordType *Rec = T->getAs<RecordType>();
3443  assert(Rec && "Invalid ObjCFAstEnumerationStateType");
3444  ObjCFastEnumerationStateTypeDecl = Rec->getDecl();
3445}
3446
3447// This returns true if a type has been typedefed to BOOL:
3448// typedef <type> BOOL;
3449static bool isTypeTypedefedAsBOOL(QualType T) {
3450  if (const TypedefType *TT = dyn_cast<TypedefType>(T))
3451    if (IdentifierInfo *II = TT->getDecl()->getIdentifier())
3452      return II->isStr("BOOL");
3453
3454  return false;
3455}
3456
3457/// getObjCEncodingTypeSize returns size of type for objective-c encoding
3458/// purpose.
3459CharUnits ASTContext::getObjCEncodingTypeSize(QualType type) {
3460  CharUnits sz = getTypeSizeInChars(type);
3461
3462  // Make all integer and enum types at least as large as an int
3463  if (sz.isPositive() && type->isIntegralOrEnumerationType())
3464    sz = std::max(sz, getTypeSizeInChars(IntTy));
3465  // Treat arrays as pointers, since that's how they're passed in.
3466  else if (type->isArrayType())
3467    sz = getTypeSizeInChars(VoidPtrTy);
3468  return sz;
3469}
3470
3471static inline
3472std::string charUnitsToString(const CharUnits &CU) {
3473  return llvm::itostr(CU.getQuantity());
3474}
3475
3476/// getObjCEncodingForBlockDecl - Return the encoded type for this block
3477/// declaration.
3478void ASTContext::getObjCEncodingForBlock(const BlockExpr *Expr,
3479                                             std::string& S) {
3480  const BlockDecl *Decl = Expr->getBlockDecl();
3481  QualType BlockTy =
3482      Expr->getType()->getAs<BlockPointerType>()->getPointeeType();
3483  // Encode result type.
3484  getObjCEncodingForType(BlockTy->getAs<FunctionType>()->getResultType(), S);
3485  // Compute size of all parameters.
3486  // Start with computing size of a pointer in number of bytes.
3487  // FIXME: There might(should) be a better way of doing this computation!
3488  SourceLocation Loc;
3489  CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy);
3490  CharUnits ParmOffset = PtrSize;
3491  for (BlockDecl::param_const_iterator PI = Decl->param_begin(),
3492       E = Decl->param_end(); PI != E; ++PI) {
3493    QualType PType = (*PI)->getType();
3494    CharUnits sz = getObjCEncodingTypeSize(PType);
3495    assert (sz.isPositive() && "BlockExpr - Incomplete param type");
3496    ParmOffset += sz;
3497  }
3498  // Size of the argument frame
3499  S += charUnitsToString(ParmOffset);
3500  // Block pointer and offset.
3501  S += "@?0";
3502  ParmOffset = PtrSize;
3503
3504  // Argument types.
3505  ParmOffset = PtrSize;
3506  for (BlockDecl::param_const_iterator PI = Decl->param_begin(), E =
3507       Decl->param_end(); PI != E; ++PI) {
3508    ParmVarDecl *PVDecl = *PI;
3509    QualType PType = PVDecl->getOriginalType();
3510    if (const ArrayType *AT =
3511          dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
3512      // Use array's original type only if it has known number of
3513      // elements.
3514      if (!isa<ConstantArrayType>(AT))
3515        PType = PVDecl->getType();
3516    } else if (PType->isFunctionType())
3517      PType = PVDecl->getType();
3518    getObjCEncodingForType(PType, S);
3519    S += charUnitsToString(ParmOffset);
3520    ParmOffset += getObjCEncodingTypeSize(PType);
3521  }
3522}
3523
3524/// getObjCEncodingForMethodDecl - Return the encoded type for this method
3525/// declaration.
3526void ASTContext::getObjCEncodingForMethodDecl(const ObjCMethodDecl *Decl,
3527                                              std::string& S) {
3528  // FIXME: This is not very efficient.
3529  // Encode type qualifer, 'in', 'inout', etc. for the return type.
3530  getObjCEncodingForTypeQualifier(Decl->getObjCDeclQualifier(), S);
3531  // Encode result type.
3532  getObjCEncodingForType(Decl->getResultType(), S);
3533  // Compute size of all parameters.
3534  // Start with computing size of a pointer in number of bytes.
3535  // FIXME: There might(should) be a better way of doing this computation!
3536  SourceLocation Loc;
3537  CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy);
3538  // The first two arguments (self and _cmd) are pointers; account for
3539  // their size.
3540  CharUnits ParmOffset = 2 * PtrSize;
3541  for (ObjCMethodDecl::param_iterator PI = Decl->param_begin(),
3542       E = Decl->sel_param_end(); PI != E; ++PI) {
3543    QualType PType = (*PI)->getType();
3544    CharUnits sz = getObjCEncodingTypeSize(PType);
3545    assert (sz.isPositive() &&
3546        "getObjCEncodingForMethodDecl - Incomplete param type");
3547    ParmOffset += sz;
3548  }
3549  S += charUnitsToString(ParmOffset);
3550  S += "@0:";
3551  S += charUnitsToString(PtrSize);
3552
3553  // Argument types.
3554  ParmOffset = 2 * PtrSize;
3555  for (ObjCMethodDecl::param_iterator PI = Decl->param_begin(),
3556       E = Decl->sel_param_end(); PI != E; ++PI) {
3557    ParmVarDecl *PVDecl = *PI;
3558    QualType PType = PVDecl->getOriginalType();
3559    if (const ArrayType *AT =
3560          dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
3561      // Use array's original type only if it has known number of
3562      // elements.
3563      if (!isa<ConstantArrayType>(AT))
3564        PType = PVDecl->getType();
3565    } else if (PType->isFunctionType())
3566      PType = PVDecl->getType();
3567    // Process argument qualifiers for user supplied arguments; such as,
3568    // 'in', 'inout', etc.
3569    getObjCEncodingForTypeQualifier(PVDecl->getObjCDeclQualifier(), S);
3570    getObjCEncodingForType(PType, S);
3571    S += charUnitsToString(ParmOffset);
3572    ParmOffset += getObjCEncodingTypeSize(PType);
3573  }
3574}
3575
3576/// getObjCEncodingForPropertyDecl - Return the encoded type for this
3577/// property declaration. If non-NULL, Container must be either an
3578/// ObjCCategoryImplDecl or ObjCImplementationDecl; it should only be
3579/// NULL when getting encodings for protocol properties.
3580/// Property attributes are stored as a comma-delimited C string. The simple
3581/// attributes readonly and bycopy are encoded as single characters. The
3582/// parametrized attributes, getter=name, setter=name, and ivar=name, are
3583/// encoded as single characters, followed by an identifier. Property types
3584/// are also encoded as a parametrized attribute. The characters used to encode
3585/// these attributes are defined by the following enumeration:
3586/// @code
3587/// enum PropertyAttributes {
3588/// kPropertyReadOnly = 'R',   // property is read-only.
3589/// kPropertyBycopy = 'C',     // property is a copy of the value last assigned
3590/// kPropertyByref = '&',  // property is a reference to the value last assigned
3591/// kPropertyDynamic = 'D',    // property is dynamic
3592/// kPropertyGetter = 'G',     // followed by getter selector name
3593/// kPropertySetter = 'S',     // followed by setter selector name
3594/// kPropertyInstanceVariable = 'V'  // followed by instance variable  name
3595/// kPropertyType = 't'              // followed by old-style type encoding.
3596/// kPropertyWeak = 'W'              // 'weak' property
3597/// kPropertyStrong = 'P'            // property GC'able
3598/// kPropertyNonAtomic = 'N'         // property non-atomic
3599/// };
3600/// @endcode
3601void ASTContext::getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD,
3602                                                const Decl *Container,
3603                                                std::string& S) {
3604  // Collect information from the property implementation decl(s).
3605  bool Dynamic = false;
3606  ObjCPropertyImplDecl *SynthesizePID = 0;
3607
3608  // FIXME: Duplicated code due to poor abstraction.
3609  if (Container) {
3610    if (const ObjCCategoryImplDecl *CID =
3611        dyn_cast<ObjCCategoryImplDecl>(Container)) {
3612      for (ObjCCategoryImplDecl::propimpl_iterator
3613             i = CID->propimpl_begin(), e = CID->propimpl_end();
3614           i != e; ++i) {
3615        ObjCPropertyImplDecl *PID = *i;
3616        if (PID->getPropertyDecl() == PD) {
3617          if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) {
3618            Dynamic = true;
3619          } else {
3620            SynthesizePID = PID;
3621          }
3622        }
3623      }
3624    } else {
3625      const ObjCImplementationDecl *OID=cast<ObjCImplementationDecl>(Container);
3626      for (ObjCCategoryImplDecl::propimpl_iterator
3627             i = OID->propimpl_begin(), e = OID->propimpl_end();
3628           i != e; ++i) {
3629        ObjCPropertyImplDecl *PID = *i;
3630        if (PID->getPropertyDecl() == PD) {
3631          if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) {
3632            Dynamic = true;
3633          } else {
3634            SynthesizePID = PID;
3635          }
3636        }
3637      }
3638    }
3639  }
3640
3641  // FIXME: This is not very efficient.
3642  S = "T";
3643
3644  // Encode result type.
3645  // GCC has some special rules regarding encoding of properties which
3646  // closely resembles encoding of ivars.
3647  getObjCEncodingForTypeImpl(PD->getType(), S, true, true, 0,
3648                             true /* outermost type */,
3649                             true /* encoding for property */);
3650
3651  if (PD->isReadOnly()) {
3652    S += ",R";
3653  } else {
3654    switch (PD->getSetterKind()) {
3655    case ObjCPropertyDecl::Assign: break;
3656    case ObjCPropertyDecl::Copy:   S += ",C"; break;
3657    case ObjCPropertyDecl::Retain: S += ",&"; break;
3658    }
3659  }
3660
3661  // It really isn't clear at all what this means, since properties
3662  // are "dynamic by default".
3663  if (Dynamic)
3664    S += ",D";
3665
3666  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_nonatomic)
3667    S += ",N";
3668
3669  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_getter) {
3670    S += ",G";
3671    S += PD->getGetterName().getAsString();
3672  }
3673
3674  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_setter) {
3675    S += ",S";
3676    S += PD->getSetterName().getAsString();
3677  }
3678
3679  if (SynthesizePID) {
3680    const ObjCIvarDecl *OID = SynthesizePID->getPropertyIvarDecl();
3681    S += ",V";
3682    S += OID->getNameAsString();
3683  }
3684
3685  // FIXME: OBJCGC: weak & strong
3686}
3687
3688/// getLegacyIntegralTypeEncoding -
3689/// Another legacy compatibility encoding: 32-bit longs are encoded as
3690/// 'l' or 'L' , but not always.  For typedefs, we need to use
3691/// 'i' or 'I' instead if encoding a struct field, or a pointer!
3692///
3693void ASTContext::getLegacyIntegralTypeEncoding (QualType &PointeeTy) const {
3694  if (isa<TypedefType>(PointeeTy.getTypePtr())) {
3695    if (const BuiltinType *BT = PointeeTy->getAs<BuiltinType>()) {
3696      if (BT->getKind() == BuiltinType::ULong &&
3697          ((const_cast<ASTContext *>(this))->getIntWidth(PointeeTy) == 32))
3698        PointeeTy = UnsignedIntTy;
3699      else
3700        if (BT->getKind() == BuiltinType::Long &&
3701            ((const_cast<ASTContext *>(this))->getIntWidth(PointeeTy) == 32))
3702          PointeeTy = IntTy;
3703    }
3704  }
3705}
3706
3707void ASTContext::getObjCEncodingForType(QualType T, std::string& S,
3708                                        const FieldDecl *Field) {
3709  // We follow the behavior of gcc, expanding structures which are
3710  // directly pointed to, and expanding embedded structures. Note that
3711  // these rules are sufficient to prevent recursive encoding of the
3712  // same type.
3713  getObjCEncodingForTypeImpl(T, S, true, true, Field,
3714                             true /* outermost type */);
3715}
3716
3717static char ObjCEncodingForPrimitiveKind(const ASTContext *C, QualType T) {
3718    switch (T->getAs<BuiltinType>()->getKind()) {
3719    default: assert(0 && "Unhandled builtin type kind");
3720    case BuiltinType::Void:       return 'v';
3721    case BuiltinType::Bool:       return 'B';
3722    case BuiltinType::Char_U:
3723    case BuiltinType::UChar:      return 'C';
3724    case BuiltinType::UShort:     return 'S';
3725    case BuiltinType::UInt:       return 'I';
3726    case BuiltinType::ULong:
3727        return
3728          (const_cast<ASTContext *>(C))->getIntWidth(T) == 32 ? 'L' : 'Q';
3729    case BuiltinType::UInt128:    return 'T';
3730    case BuiltinType::ULongLong:  return 'Q';
3731    case BuiltinType::Char_S:
3732    case BuiltinType::SChar:      return 'c';
3733    case BuiltinType::Short:      return 's';
3734    case BuiltinType::WChar:
3735    case BuiltinType::Int:        return 'i';
3736    case BuiltinType::Long:
3737      return
3738        (const_cast<ASTContext *>(C))->getIntWidth(T) == 32 ? 'l' : 'q';
3739    case BuiltinType::LongLong:   return 'q';
3740    case BuiltinType::Int128:     return 't';
3741    case BuiltinType::Float:      return 'f';
3742    case BuiltinType::Double:     return 'd';
3743    case BuiltinType::LongDouble: return 'D';
3744    }
3745}
3746
3747static void EncodeBitField(const ASTContext *Context, std::string& S,
3748                           QualType T, const FieldDecl *FD) {
3749  const Expr *E = FD->getBitWidth();
3750  assert(E && "bitfield width not there - getObjCEncodingForTypeImpl");
3751  ASTContext *Ctx = const_cast<ASTContext*>(Context);
3752  S += 'b';
3753  // The NeXT runtime encodes bit fields as b followed by the number of bits.
3754  // The GNU runtime requires more information; bitfields are encoded as b,
3755  // then the offset (in bits) of the first element, then the type of the
3756  // bitfield, then the size in bits.  For example, in this structure:
3757  //
3758  // struct
3759  // {
3760  //    int integer;
3761  //    int flags:2;
3762  // };
3763  // On a 32-bit system, the encoding for flags would be b2 for the NeXT
3764  // runtime, but b32i2 for the GNU runtime.  The reason for this extra
3765  // information is not especially sensible, but we're stuck with it for
3766  // compatibility with GCC, although providing it breaks anything that
3767  // actually uses runtime introspection and wants to work on both runtimes...
3768  if (!Ctx->getLangOptions().NeXTRuntime) {
3769    const RecordDecl *RD = FD->getParent();
3770    const ASTRecordLayout &RL = Ctx->getASTRecordLayout(RD);
3771    // FIXME: This same linear search is also used in ExprConstant - it might
3772    // be better if the FieldDecl stored its offset.  We'd be increasing the
3773    // size of the object slightly, but saving some time every time it is used.
3774    unsigned i = 0;
3775    for (RecordDecl::field_iterator Field = RD->field_begin(),
3776                                 FieldEnd = RD->field_end();
3777         Field != FieldEnd; (void)++Field, ++i) {
3778      if (*Field == FD)
3779        break;
3780    }
3781    S += llvm::utostr(RL.getFieldOffset(i));
3782    S += ObjCEncodingForPrimitiveKind(Context, T);
3783  }
3784  unsigned N = E->EvaluateAsInt(*Ctx).getZExtValue();
3785  S += llvm::utostr(N);
3786}
3787
3788// FIXME: Use SmallString for accumulating string.
3789void ASTContext::getObjCEncodingForTypeImpl(QualType T, std::string& S,
3790                                            bool ExpandPointedToStructures,
3791                                            bool ExpandStructures,
3792                                            const FieldDecl *FD,
3793                                            bool OutermostType,
3794                                            bool EncodingProperty) {
3795  if (T->getAs<BuiltinType>()) {
3796    if (FD && FD->isBitField())
3797      return EncodeBitField(this, S, T, FD);
3798    S += ObjCEncodingForPrimitiveKind(this, T);
3799    return;
3800  }
3801
3802  if (const ComplexType *CT = T->getAs<ComplexType>()) {
3803    S += 'j';
3804    getObjCEncodingForTypeImpl(CT->getElementType(), S, false, false, 0, false,
3805                               false);
3806    return;
3807  }
3808
3809  // encoding for pointer or r3eference types.
3810  QualType PointeeTy;
3811  if (const PointerType *PT = T->getAs<PointerType>()) {
3812    if (PT->isObjCSelType()) {
3813      S += ':';
3814      return;
3815    }
3816    PointeeTy = PT->getPointeeType();
3817  }
3818  else if (const ReferenceType *RT = T->getAs<ReferenceType>())
3819    PointeeTy = RT->getPointeeType();
3820  if (!PointeeTy.isNull()) {
3821    bool isReadOnly = false;
3822    // For historical/compatibility reasons, the read-only qualifier of the
3823    // pointee gets emitted _before_ the '^'.  The read-only qualifier of
3824    // the pointer itself gets ignored, _unless_ we are looking at a typedef!
3825    // Also, do not emit the 'r' for anything but the outermost type!
3826    if (isa<TypedefType>(T.getTypePtr())) {
3827      if (OutermostType && T.isConstQualified()) {
3828        isReadOnly = true;
3829        S += 'r';
3830      }
3831    } else if (OutermostType) {
3832      QualType P = PointeeTy;
3833      while (P->getAs<PointerType>())
3834        P = P->getAs<PointerType>()->getPointeeType();
3835      if (P.isConstQualified()) {
3836        isReadOnly = true;
3837        S += 'r';
3838      }
3839    }
3840    if (isReadOnly) {
3841      // Another legacy compatibility encoding. Some ObjC qualifier and type
3842      // combinations need to be rearranged.
3843      // Rewrite "in const" from "nr" to "rn"
3844      if (llvm::StringRef(S).endswith("nr"))
3845        S.replace(S.end()-2, S.end(), "rn");
3846    }
3847
3848    if (PointeeTy->isCharType()) {
3849      // char pointer types should be encoded as '*' unless it is a
3850      // type that has been typedef'd to 'BOOL'.
3851      if (!isTypeTypedefedAsBOOL(PointeeTy)) {
3852        S += '*';
3853        return;
3854      }
3855    } else if (const RecordType *RTy = PointeeTy->getAs<RecordType>()) {
3856      // GCC binary compat: Need to convert "struct objc_class *" to "#".
3857      if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_class")) {
3858        S += '#';
3859        return;
3860      }
3861      // GCC binary compat: Need to convert "struct objc_object *" to "@".
3862      if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_object")) {
3863        S += '@';
3864        return;
3865      }
3866      // fall through...
3867    }
3868    S += '^';
3869    getLegacyIntegralTypeEncoding(PointeeTy);
3870
3871    getObjCEncodingForTypeImpl(PointeeTy, S, false, ExpandPointedToStructures,
3872                               NULL);
3873    return;
3874  }
3875
3876  if (const ArrayType *AT =
3877      // Ignore type qualifiers etc.
3878        dyn_cast<ArrayType>(T->getCanonicalTypeInternal())) {
3879    if (isa<IncompleteArrayType>(AT)) {
3880      // Incomplete arrays are encoded as a pointer to the array element.
3881      S += '^';
3882
3883      getObjCEncodingForTypeImpl(AT->getElementType(), S,
3884                                 false, ExpandStructures, FD);
3885    } else {
3886      S += '[';
3887
3888      if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
3889        S += llvm::utostr(CAT->getSize().getZExtValue());
3890      else {
3891        //Variable length arrays are encoded as a regular array with 0 elements.
3892        assert(isa<VariableArrayType>(AT) && "Unknown array type!");
3893        S += '0';
3894      }
3895
3896      getObjCEncodingForTypeImpl(AT->getElementType(), S,
3897                                 false, ExpandStructures, FD);
3898      S += ']';
3899    }
3900    return;
3901  }
3902
3903  if (T->getAs<FunctionType>()) {
3904    S += '?';
3905    return;
3906  }
3907
3908  if (const RecordType *RTy = T->getAs<RecordType>()) {
3909    RecordDecl *RDecl = RTy->getDecl();
3910    S += RDecl->isUnion() ? '(' : '{';
3911    // Anonymous structures print as '?'
3912    if (const IdentifierInfo *II = RDecl->getIdentifier()) {
3913      S += II->getName();
3914      if (ClassTemplateSpecializationDecl *Spec
3915          = dyn_cast<ClassTemplateSpecializationDecl>(RDecl)) {
3916        const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
3917        std::string TemplateArgsStr
3918          = TemplateSpecializationType::PrintTemplateArgumentList(
3919                                            TemplateArgs.data(),
3920                                            TemplateArgs.size(),
3921                                            (*this).PrintingPolicy);
3922
3923        S += TemplateArgsStr;
3924      }
3925    } else {
3926      S += '?';
3927    }
3928    if (ExpandStructures) {
3929      S += '=';
3930      for (RecordDecl::field_iterator Field = RDecl->field_begin(),
3931                                   FieldEnd = RDecl->field_end();
3932           Field != FieldEnd; ++Field) {
3933        if (FD) {
3934          S += '"';
3935          S += Field->getNameAsString();
3936          S += '"';
3937        }
3938
3939        // Special case bit-fields.
3940        if (Field->isBitField()) {
3941          getObjCEncodingForTypeImpl(Field->getType(), S, false, true,
3942                                     (*Field));
3943        } else {
3944          QualType qt = Field->getType();
3945          getLegacyIntegralTypeEncoding(qt);
3946          getObjCEncodingForTypeImpl(qt, S, false, true,
3947                                     FD);
3948        }
3949      }
3950    }
3951    S += RDecl->isUnion() ? ')' : '}';
3952    return;
3953  }
3954
3955  if (T->isEnumeralType()) {
3956    if (FD && FD->isBitField())
3957      EncodeBitField(this, S, T, FD);
3958    else
3959      S += 'i';
3960    return;
3961  }
3962
3963  if (T->isBlockPointerType()) {
3964    S += "@?"; // Unlike a pointer-to-function, which is "^?".
3965    return;
3966  }
3967
3968  // Ignore protocol qualifiers when mangling at this level.
3969  if (const ObjCObjectType *OT = T->getAs<ObjCObjectType>())
3970    T = OT->getBaseType();
3971
3972  if (const ObjCInterfaceType *OIT = T->getAs<ObjCInterfaceType>()) {
3973    // @encode(class_name)
3974    ObjCInterfaceDecl *OI = OIT->getDecl();
3975    S += '{';
3976    const IdentifierInfo *II = OI->getIdentifier();
3977    S += II->getName();
3978    S += '=';
3979    llvm::SmallVector<ObjCIvarDecl*, 32> Ivars;
3980    DeepCollectObjCIvars(OI, true, Ivars);
3981    for (unsigned i = 0, e = Ivars.size(); i != e; ++i) {
3982      FieldDecl *Field = cast<FieldDecl>(Ivars[i]);
3983      if (Field->isBitField())
3984        getObjCEncodingForTypeImpl(Field->getType(), S, false, true, Field);
3985      else
3986        getObjCEncodingForTypeImpl(Field->getType(), S, false, true, FD);
3987    }
3988    S += '}';
3989    return;
3990  }
3991
3992  if (const ObjCObjectPointerType *OPT = T->getAs<ObjCObjectPointerType>()) {
3993    if (OPT->isObjCIdType()) {
3994      S += '@';
3995      return;
3996    }
3997
3998    if (OPT->isObjCClassType() || OPT->isObjCQualifiedClassType()) {
3999      // FIXME: Consider if we need to output qualifiers for 'Class<p>'.
4000      // Since this is a binary compatibility issue, need to consult with runtime
4001      // folks. Fortunately, this is a *very* obsure construct.
4002      S += '#';
4003      return;
4004    }
4005
4006    if (OPT->isObjCQualifiedIdType()) {
4007      getObjCEncodingForTypeImpl(getObjCIdType(), S,
4008                                 ExpandPointedToStructures,
4009                                 ExpandStructures, FD);
4010      if (FD || EncodingProperty) {
4011        // Note that we do extended encoding of protocol qualifer list
4012        // Only when doing ivar or property encoding.
4013        S += '"';
4014        for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(),
4015             E = OPT->qual_end(); I != E; ++I) {
4016          S += '<';
4017          S += (*I)->getNameAsString();
4018          S += '>';
4019        }
4020        S += '"';
4021      }
4022      return;
4023    }
4024
4025    QualType PointeeTy = OPT->getPointeeType();
4026    if (!EncodingProperty &&
4027        isa<TypedefType>(PointeeTy.getTypePtr())) {
4028      // Another historical/compatibility reason.
4029      // We encode the underlying type which comes out as
4030      // {...};
4031      S += '^';
4032      getObjCEncodingForTypeImpl(PointeeTy, S,
4033                                 false, ExpandPointedToStructures,
4034                                 NULL);
4035      return;
4036    }
4037
4038    S += '@';
4039    if (OPT->getInterfaceDecl() && (FD || EncodingProperty)) {
4040      S += '"';
4041      S += OPT->getInterfaceDecl()->getIdentifier()->getName();
4042      for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(),
4043           E = OPT->qual_end(); I != E; ++I) {
4044        S += '<';
4045        S += (*I)->getNameAsString();
4046        S += '>';
4047      }
4048      S += '"';
4049    }
4050    return;
4051  }
4052
4053  // gcc just blithely ignores member pointers.
4054  // TODO: maybe there should be a mangling for these
4055  if (T->getAs<MemberPointerType>())
4056    return;
4057
4058  if (T->isVectorType()) {
4059    // This matches gcc's encoding, even though technically it is
4060    // insufficient.
4061    // FIXME. We should do a better job than gcc.
4062    return;
4063  }
4064
4065  assert(0 && "@encode for type not implemented!");
4066}
4067
4068void ASTContext::getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT,
4069                                                 std::string& S) const {
4070  if (QT & Decl::OBJC_TQ_In)
4071    S += 'n';
4072  if (QT & Decl::OBJC_TQ_Inout)
4073    S += 'N';
4074  if (QT & Decl::OBJC_TQ_Out)
4075    S += 'o';
4076  if (QT & Decl::OBJC_TQ_Bycopy)
4077    S += 'O';
4078  if (QT & Decl::OBJC_TQ_Byref)
4079    S += 'R';
4080  if (QT & Decl::OBJC_TQ_Oneway)
4081    S += 'V';
4082}
4083
4084void ASTContext::setBuiltinVaListType(QualType T) {
4085  assert(BuiltinVaListType.isNull() && "__builtin_va_list type already set!");
4086
4087  BuiltinVaListType = T;
4088}
4089
4090void ASTContext::setObjCIdType(QualType T) {
4091  ObjCIdTypedefType = T;
4092}
4093
4094void ASTContext::setObjCSelType(QualType T) {
4095  ObjCSelTypedefType = T;
4096}
4097
4098void ASTContext::setObjCProtoType(QualType QT) {
4099  ObjCProtoType = QT;
4100}
4101
4102void ASTContext::setObjCClassType(QualType T) {
4103  ObjCClassTypedefType = T;
4104}
4105
4106void ASTContext::setObjCConstantStringInterface(ObjCInterfaceDecl *Decl) {
4107  assert(ObjCConstantStringType.isNull() &&
4108         "'NSConstantString' type already set!");
4109
4110  ObjCConstantStringType = getObjCInterfaceType(Decl);
4111}
4112
4113/// \brief Retrieve the template name that corresponds to a non-empty
4114/// lookup.
4115TemplateName ASTContext::getOverloadedTemplateName(UnresolvedSetIterator Begin,
4116                                                   UnresolvedSetIterator End) {
4117  unsigned size = End - Begin;
4118  assert(size > 1 && "set is not overloaded!");
4119
4120  void *memory = Allocate(sizeof(OverloadedTemplateStorage) +
4121                          size * sizeof(FunctionTemplateDecl*));
4122  OverloadedTemplateStorage *OT = new(memory) OverloadedTemplateStorage(size);
4123
4124  NamedDecl **Storage = OT->getStorage();
4125  for (UnresolvedSetIterator I = Begin; I != End; ++I) {
4126    NamedDecl *D = *I;
4127    assert(isa<FunctionTemplateDecl>(D) ||
4128           (isa<UsingShadowDecl>(D) &&
4129            isa<FunctionTemplateDecl>(D->getUnderlyingDecl())));
4130    *Storage++ = D;
4131  }
4132
4133  return TemplateName(OT);
4134}
4135
4136/// \brief Retrieve the template name that represents a qualified
4137/// template name such as \c std::vector.
4138TemplateName ASTContext::getQualifiedTemplateName(NestedNameSpecifier *NNS,
4139                                                  bool TemplateKeyword,
4140                                                  TemplateDecl *Template) {
4141  // FIXME: Canonicalization?
4142  llvm::FoldingSetNodeID ID;
4143  QualifiedTemplateName::Profile(ID, NNS, TemplateKeyword, Template);
4144
4145  void *InsertPos = 0;
4146  QualifiedTemplateName *QTN =
4147    QualifiedTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
4148  if (!QTN) {
4149    QTN = new (*this,4) QualifiedTemplateName(NNS, TemplateKeyword, Template);
4150    QualifiedTemplateNames.InsertNode(QTN, InsertPos);
4151  }
4152
4153  return TemplateName(QTN);
4154}
4155
4156/// \brief Retrieve the template name that represents a dependent
4157/// template name such as \c MetaFun::template apply.
4158TemplateName ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
4159                                                  const IdentifierInfo *Name) {
4160  assert((!NNS || NNS->isDependent()) &&
4161         "Nested name specifier must be dependent");
4162
4163  llvm::FoldingSetNodeID ID;
4164  DependentTemplateName::Profile(ID, NNS, Name);
4165
4166  void *InsertPos = 0;
4167  DependentTemplateName *QTN =
4168    DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
4169
4170  if (QTN)
4171    return TemplateName(QTN);
4172
4173  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
4174  if (CanonNNS == NNS) {
4175    QTN = new (*this,4) DependentTemplateName(NNS, Name);
4176  } else {
4177    TemplateName Canon = getDependentTemplateName(CanonNNS, Name);
4178    QTN = new (*this,4) DependentTemplateName(NNS, Name, Canon);
4179    DependentTemplateName *CheckQTN =
4180      DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
4181    assert(!CheckQTN && "Dependent type name canonicalization broken");
4182    (void)CheckQTN;
4183  }
4184
4185  DependentTemplateNames.InsertNode(QTN, InsertPos);
4186  return TemplateName(QTN);
4187}
4188
4189/// \brief Retrieve the template name that represents a dependent
4190/// template name such as \c MetaFun::template operator+.
4191TemplateName
4192ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
4193                                     OverloadedOperatorKind Operator) {
4194  assert((!NNS || NNS->isDependent()) &&
4195         "Nested name specifier must be dependent");
4196
4197  llvm::FoldingSetNodeID ID;
4198  DependentTemplateName::Profile(ID, NNS, Operator);
4199
4200  void *InsertPos = 0;
4201  DependentTemplateName *QTN
4202    = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
4203
4204  if (QTN)
4205    return TemplateName(QTN);
4206
4207  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
4208  if (CanonNNS == NNS) {
4209    QTN = new (*this,4) DependentTemplateName(NNS, Operator);
4210  } else {
4211    TemplateName Canon = getDependentTemplateName(CanonNNS, Operator);
4212    QTN = new (*this,4) DependentTemplateName(NNS, Operator, Canon);
4213
4214    DependentTemplateName *CheckQTN
4215      = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
4216    assert(!CheckQTN && "Dependent template name canonicalization broken");
4217    (void)CheckQTN;
4218  }
4219
4220  DependentTemplateNames.InsertNode(QTN, InsertPos);
4221  return TemplateName(QTN);
4222}
4223
4224/// getFromTargetType - Given one of the integer types provided by
4225/// TargetInfo, produce the corresponding type. The unsigned @p Type
4226/// is actually a value of type @c TargetInfo::IntType.
4227CanQualType ASTContext::getFromTargetType(unsigned Type) const {
4228  switch (Type) {
4229  case TargetInfo::NoInt: return CanQualType();
4230  case TargetInfo::SignedShort: return ShortTy;
4231  case TargetInfo::UnsignedShort: return UnsignedShortTy;
4232  case TargetInfo::SignedInt: return IntTy;
4233  case TargetInfo::UnsignedInt: return UnsignedIntTy;
4234  case TargetInfo::SignedLong: return LongTy;
4235  case TargetInfo::UnsignedLong: return UnsignedLongTy;
4236  case TargetInfo::SignedLongLong: return LongLongTy;
4237  case TargetInfo::UnsignedLongLong: return UnsignedLongLongTy;
4238  }
4239
4240  assert(false && "Unhandled TargetInfo::IntType value");
4241  return CanQualType();
4242}
4243
4244//===----------------------------------------------------------------------===//
4245//                        Type Predicates.
4246//===----------------------------------------------------------------------===//
4247
4248/// isObjCNSObjectType - Return true if this is an NSObject object using
4249/// NSObject attribute on a c-style pointer type.
4250/// FIXME - Make it work directly on types.
4251/// FIXME: Move to Type.
4252///
4253bool ASTContext::isObjCNSObjectType(QualType Ty) const {
4254  if (TypedefType *TDT = dyn_cast<TypedefType>(Ty)) {
4255    if (TypedefDecl *TD = TDT->getDecl())
4256      if (TD->getAttr<ObjCNSObjectAttr>())
4257        return true;
4258  }
4259  return false;
4260}
4261
4262/// getObjCGCAttr - Returns one of GCNone, Weak or Strong objc's
4263/// garbage collection attribute.
4264///
4265Qualifiers::GC ASTContext::getObjCGCAttrKind(const QualType &Ty) const {
4266  Qualifiers::GC GCAttrs = Qualifiers::GCNone;
4267  if (getLangOptions().ObjC1 &&
4268      getLangOptions().getGCMode() != LangOptions::NonGC) {
4269    GCAttrs = Ty.getObjCGCAttr();
4270    // Default behavious under objective-c's gc is for objective-c pointers
4271    // (or pointers to them) be treated as though they were declared
4272    // as __strong.
4273    if (GCAttrs == Qualifiers::GCNone) {
4274      if (Ty->isObjCObjectPointerType() || Ty->isBlockPointerType())
4275        GCAttrs = Qualifiers::Strong;
4276      else if (Ty->isPointerType())
4277        return getObjCGCAttrKind(Ty->getAs<PointerType>()->getPointeeType());
4278    }
4279    // Non-pointers have none gc'able attribute regardless of the attribute
4280    // set on them.
4281    else if (!Ty->isAnyPointerType() && !Ty->isBlockPointerType())
4282      return Qualifiers::GCNone;
4283  }
4284  return GCAttrs;
4285}
4286
4287//===----------------------------------------------------------------------===//
4288//                        Type Compatibility Testing
4289//===----------------------------------------------------------------------===//
4290
4291/// areCompatVectorTypes - Return true if the two specified vector types are
4292/// compatible.
4293static bool areCompatVectorTypes(const VectorType *LHS,
4294                                 const VectorType *RHS) {
4295  assert(LHS->isCanonicalUnqualified() && RHS->isCanonicalUnqualified());
4296  return LHS->getElementType() == RHS->getElementType() &&
4297         LHS->getNumElements() == RHS->getNumElements();
4298}
4299
4300bool ASTContext::areCompatibleVectorTypes(QualType FirstVec,
4301                                          QualType SecondVec) {
4302  assert(FirstVec->isVectorType() && "FirstVec should be a vector type");
4303  assert(SecondVec->isVectorType() && "SecondVec should be a vector type");
4304
4305  if (hasSameUnqualifiedType(FirstVec, SecondVec))
4306    return true;
4307
4308  // Treat Neon vector types and most AltiVec vector types as if they are the
4309  // equivalent GCC vector types.
4310  const VectorType *First = FirstVec->getAs<VectorType>();
4311  const VectorType *Second = SecondVec->getAs<VectorType>();
4312  if (First->getNumElements() == Second->getNumElements() &&
4313      hasSameType(First->getElementType(), Second->getElementType()) &&
4314      First->getVectorKind() != VectorType::AltiVecPixel &&
4315      First->getVectorKind() != VectorType::AltiVecBool &&
4316      Second->getVectorKind() != VectorType::AltiVecPixel &&
4317      Second->getVectorKind() != VectorType::AltiVecBool)
4318    return true;
4319
4320  return false;
4321}
4322
4323//===----------------------------------------------------------------------===//
4324// ObjCQualifiedIdTypesAreCompatible - Compatibility testing for qualified id's.
4325//===----------------------------------------------------------------------===//
4326
4327/// ProtocolCompatibleWithProtocol - return 'true' if 'lProto' is in the
4328/// inheritance hierarchy of 'rProto'.
4329bool ASTContext::ProtocolCompatibleWithProtocol(ObjCProtocolDecl *lProto,
4330                                                ObjCProtocolDecl *rProto) {
4331  if (lProto == rProto)
4332    return true;
4333  for (ObjCProtocolDecl::protocol_iterator PI = rProto->protocol_begin(),
4334       E = rProto->protocol_end(); PI != E; ++PI)
4335    if (ProtocolCompatibleWithProtocol(lProto, *PI))
4336      return true;
4337  return false;
4338}
4339
4340/// QualifiedIdConformsQualifiedId - compare id<p,...> with id<p1,...>
4341/// return true if lhs's protocols conform to rhs's protocol; false
4342/// otherwise.
4343bool ASTContext::QualifiedIdConformsQualifiedId(QualType lhs, QualType rhs) {
4344  if (lhs->isObjCQualifiedIdType() && rhs->isObjCQualifiedIdType())
4345    return ObjCQualifiedIdTypesAreCompatible(lhs, rhs, false);
4346  return false;
4347}
4348
4349/// ObjCQualifiedClassTypesAreCompatible - compare  Class<p,...> and
4350/// Class<p1, ...>.
4351bool ASTContext::ObjCQualifiedClassTypesAreCompatible(QualType lhs,
4352                                                      QualType rhs) {
4353  const ObjCObjectPointerType *lhsQID = lhs->getAs<ObjCObjectPointerType>();
4354  const ObjCObjectPointerType *rhsOPT = rhs->getAs<ObjCObjectPointerType>();
4355  assert ((lhsQID && rhsOPT) && "ObjCQualifiedClassTypesAreCompatible");
4356
4357  for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
4358       E = lhsQID->qual_end(); I != E; ++I) {
4359    bool match = false;
4360    ObjCProtocolDecl *lhsProto = *I;
4361    for (ObjCObjectPointerType::qual_iterator J = rhsOPT->qual_begin(),
4362         E = rhsOPT->qual_end(); J != E; ++J) {
4363      ObjCProtocolDecl *rhsProto = *J;
4364      if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto)) {
4365        match = true;
4366        break;
4367      }
4368    }
4369    if (!match)
4370      return false;
4371  }
4372  return true;
4373}
4374
4375/// ObjCQualifiedIdTypesAreCompatible - We know that one of lhs/rhs is an
4376/// ObjCQualifiedIDType.
4377bool ASTContext::ObjCQualifiedIdTypesAreCompatible(QualType lhs, QualType rhs,
4378                                                   bool compare) {
4379  // Allow id<P..> and an 'id' or void* type in all cases.
4380  if (lhs->isVoidPointerType() ||
4381      lhs->isObjCIdType() || lhs->isObjCClassType())
4382    return true;
4383  else if (rhs->isVoidPointerType() ||
4384           rhs->isObjCIdType() || rhs->isObjCClassType())
4385    return true;
4386
4387  if (const ObjCObjectPointerType *lhsQID = lhs->getAsObjCQualifiedIdType()) {
4388    const ObjCObjectPointerType *rhsOPT = rhs->getAs<ObjCObjectPointerType>();
4389
4390    if (!rhsOPT) return false;
4391
4392    if (rhsOPT->qual_empty()) {
4393      // If the RHS is a unqualified interface pointer "NSString*",
4394      // make sure we check the class hierarchy.
4395      if (ObjCInterfaceDecl *rhsID = rhsOPT->getInterfaceDecl()) {
4396        for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
4397             E = lhsQID->qual_end(); I != E; ++I) {
4398          // when comparing an id<P> on lhs with a static type on rhs,
4399          // see if static class implements all of id's protocols, directly or
4400          // through its super class and categories.
4401          if (!rhsID->ClassImplementsProtocol(*I, true))
4402            return false;
4403        }
4404      }
4405      // If there are no qualifiers and no interface, we have an 'id'.
4406      return true;
4407    }
4408    // Both the right and left sides have qualifiers.
4409    for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
4410         E = lhsQID->qual_end(); I != E; ++I) {
4411      ObjCProtocolDecl *lhsProto = *I;
4412      bool match = false;
4413
4414      // when comparing an id<P> on lhs with a static type on rhs,
4415      // see if static class implements all of id's protocols, directly or
4416      // through its super class and categories.
4417      for (ObjCObjectPointerType::qual_iterator J = rhsOPT->qual_begin(),
4418           E = rhsOPT->qual_end(); J != E; ++J) {
4419        ObjCProtocolDecl *rhsProto = *J;
4420        if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
4421            (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
4422          match = true;
4423          break;
4424        }
4425      }
4426      // If the RHS is a qualified interface pointer "NSString<P>*",
4427      // make sure we check the class hierarchy.
4428      if (ObjCInterfaceDecl *rhsID = rhsOPT->getInterfaceDecl()) {
4429        for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
4430             E = lhsQID->qual_end(); I != E; ++I) {
4431          // when comparing an id<P> on lhs with a static type on rhs,
4432          // see if static class implements all of id's protocols, directly or
4433          // through its super class and categories.
4434          if (rhsID->ClassImplementsProtocol(*I, true)) {
4435            match = true;
4436            break;
4437          }
4438        }
4439      }
4440      if (!match)
4441        return false;
4442    }
4443
4444    return true;
4445  }
4446
4447  const ObjCObjectPointerType *rhsQID = rhs->getAsObjCQualifiedIdType();
4448  assert(rhsQID && "One of the LHS/RHS should be id<x>");
4449
4450  if (const ObjCObjectPointerType *lhsOPT =
4451        lhs->getAsObjCInterfacePointerType()) {
4452    // If both the right and left sides have qualifiers.
4453    for (ObjCObjectPointerType::qual_iterator I = lhsOPT->qual_begin(),
4454         E = lhsOPT->qual_end(); I != E; ++I) {
4455      ObjCProtocolDecl *lhsProto = *I;
4456      bool match = false;
4457
4458      // when comparing an id<P> on rhs with a static type on lhs,
4459      // see if static class implements all of id's protocols, directly or
4460      // through its super class and categories.
4461      // First, lhs protocols in the qualifier list must be found, direct
4462      // or indirect in rhs's qualifier list or it is a mismatch.
4463      for (ObjCObjectPointerType::qual_iterator J = rhsQID->qual_begin(),
4464           E = rhsQID->qual_end(); J != E; ++J) {
4465        ObjCProtocolDecl *rhsProto = *J;
4466        if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
4467            (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
4468          match = true;
4469          break;
4470        }
4471      }
4472      if (!match)
4473        return false;
4474    }
4475
4476    // Static class's protocols, or its super class or category protocols
4477    // must be found, direct or indirect in rhs's qualifier list or it is a mismatch.
4478    if (ObjCInterfaceDecl *lhsID = lhsOPT->getInterfaceDecl()) {
4479      llvm::SmallPtrSet<ObjCProtocolDecl *, 8> LHSInheritedProtocols;
4480      CollectInheritedProtocols(lhsID, LHSInheritedProtocols);
4481      // This is rather dubious but matches gcc's behavior. If lhs has
4482      // no type qualifier and its class has no static protocol(s)
4483      // assume that it is mismatch.
4484      if (LHSInheritedProtocols.empty() && lhsOPT->qual_empty())
4485        return false;
4486      for (llvm::SmallPtrSet<ObjCProtocolDecl*,8>::iterator I =
4487           LHSInheritedProtocols.begin(),
4488           E = LHSInheritedProtocols.end(); I != E; ++I) {
4489        bool match = false;
4490        ObjCProtocolDecl *lhsProto = (*I);
4491        for (ObjCObjectPointerType::qual_iterator J = rhsQID->qual_begin(),
4492             E = rhsQID->qual_end(); J != E; ++J) {
4493          ObjCProtocolDecl *rhsProto = *J;
4494          if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
4495              (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
4496            match = true;
4497            break;
4498          }
4499        }
4500        if (!match)
4501          return false;
4502      }
4503    }
4504    return true;
4505  }
4506  return false;
4507}
4508
4509/// canAssignObjCInterfaces - Return true if the two interface types are
4510/// compatible for assignment from RHS to LHS.  This handles validation of any
4511/// protocol qualifiers on the LHS or RHS.
4512///
4513bool ASTContext::canAssignObjCInterfaces(const ObjCObjectPointerType *LHSOPT,
4514                                         const ObjCObjectPointerType *RHSOPT) {
4515  const ObjCObjectType* LHS = LHSOPT->getObjectType();
4516  const ObjCObjectType* RHS = RHSOPT->getObjectType();
4517
4518  // If either type represents the built-in 'id' or 'Class' types, return true.
4519  if (LHS->isObjCUnqualifiedIdOrClass() ||
4520      RHS->isObjCUnqualifiedIdOrClass())
4521    return true;
4522
4523  if (LHS->isObjCQualifiedId() || RHS->isObjCQualifiedId())
4524    return ObjCQualifiedIdTypesAreCompatible(QualType(LHSOPT,0),
4525                                             QualType(RHSOPT,0),
4526                                             false);
4527
4528  if (LHS->isObjCQualifiedClass() && RHS->isObjCQualifiedClass())
4529    return ObjCQualifiedClassTypesAreCompatible(QualType(LHSOPT,0),
4530                                                QualType(RHSOPT,0));
4531
4532  // If we have 2 user-defined types, fall into that path.
4533  if (LHS->getInterface() && RHS->getInterface())
4534    return canAssignObjCInterfaces(LHS, RHS);
4535
4536  return false;
4537}
4538
4539/// canAssignObjCInterfacesInBlockPointer - This routine is specifically written
4540/// for providing type-safty for objective-c pointers used to pass/return
4541/// arguments in block literals. When passed as arguments, passing 'A*' where
4542/// 'id' is expected is not OK. Passing 'Sub *" where 'Super *" is expected is
4543/// not OK. For the return type, the opposite is not OK.
4544bool ASTContext::canAssignObjCInterfacesInBlockPointer(
4545                                         const ObjCObjectPointerType *LHSOPT,
4546                                         const ObjCObjectPointerType *RHSOPT) {
4547  if (RHSOPT->isObjCBuiltinType() || LHSOPT->isObjCIdType())
4548    return true;
4549
4550  if (LHSOPT->isObjCBuiltinType()) {
4551    return RHSOPT->isObjCBuiltinType() || RHSOPT->isObjCQualifiedIdType();
4552  }
4553
4554  if (LHSOPT->isObjCQualifiedIdType() || RHSOPT->isObjCQualifiedIdType())
4555    return ObjCQualifiedIdTypesAreCompatible(QualType(LHSOPT,0),
4556                                             QualType(RHSOPT,0),
4557                                             false);
4558
4559  const ObjCInterfaceType* LHS = LHSOPT->getInterfaceType();
4560  const ObjCInterfaceType* RHS = RHSOPT->getInterfaceType();
4561  if (LHS && RHS)  { // We have 2 user-defined types.
4562    if (LHS != RHS) {
4563      if (LHS->getDecl()->isSuperClassOf(RHS->getDecl()))
4564        return false;
4565      if (RHS->getDecl()->isSuperClassOf(LHS->getDecl()))
4566        return true;
4567    }
4568    else
4569      return true;
4570  }
4571  return false;
4572}
4573
4574/// getIntersectionOfProtocols - This routine finds the intersection of set
4575/// of protocols inherited from two distinct objective-c pointer objects.
4576/// It is used to build composite qualifier list of the composite type of
4577/// the conditional expression involving two objective-c pointer objects.
4578static
4579void getIntersectionOfProtocols(ASTContext &Context,
4580                                const ObjCObjectPointerType *LHSOPT,
4581                                const ObjCObjectPointerType *RHSOPT,
4582      llvm::SmallVectorImpl<ObjCProtocolDecl *> &IntersectionOfProtocols) {
4583
4584  const ObjCObjectType* LHS = LHSOPT->getObjectType();
4585  const ObjCObjectType* RHS = RHSOPT->getObjectType();
4586  assert(LHS->getInterface() && "LHS must have an interface base");
4587  assert(RHS->getInterface() && "RHS must have an interface base");
4588
4589  llvm::SmallPtrSet<ObjCProtocolDecl *, 8> InheritedProtocolSet;
4590  unsigned LHSNumProtocols = LHS->getNumProtocols();
4591  if (LHSNumProtocols > 0)
4592    InheritedProtocolSet.insert(LHS->qual_begin(), LHS->qual_end());
4593  else {
4594    llvm::SmallPtrSet<ObjCProtocolDecl *, 8> LHSInheritedProtocols;
4595    Context.CollectInheritedProtocols(LHS->getInterface(),
4596                                      LHSInheritedProtocols);
4597    InheritedProtocolSet.insert(LHSInheritedProtocols.begin(),
4598                                LHSInheritedProtocols.end());
4599  }
4600
4601  unsigned RHSNumProtocols = RHS->getNumProtocols();
4602  if (RHSNumProtocols > 0) {
4603    ObjCProtocolDecl **RHSProtocols =
4604      const_cast<ObjCProtocolDecl **>(RHS->qual_begin());
4605    for (unsigned i = 0; i < RHSNumProtocols; ++i)
4606      if (InheritedProtocolSet.count(RHSProtocols[i]))
4607        IntersectionOfProtocols.push_back(RHSProtocols[i]);
4608  }
4609  else {
4610    llvm::SmallPtrSet<ObjCProtocolDecl *, 8> RHSInheritedProtocols;
4611    Context.CollectInheritedProtocols(RHS->getInterface(),
4612                                      RHSInheritedProtocols);
4613    for (llvm::SmallPtrSet<ObjCProtocolDecl*,8>::iterator I =
4614         RHSInheritedProtocols.begin(),
4615         E = RHSInheritedProtocols.end(); I != E; ++I)
4616      if (InheritedProtocolSet.count((*I)))
4617        IntersectionOfProtocols.push_back((*I));
4618  }
4619}
4620
4621/// areCommonBaseCompatible - Returns common base class of the two classes if
4622/// one found. Note that this is O'2 algorithm. But it will be called as the
4623/// last type comparison in a ?-exp of ObjC pointer types before a
4624/// warning is issued. So, its invokation is extremely rare.
4625QualType ASTContext::areCommonBaseCompatible(
4626                                          const ObjCObjectPointerType *Lptr,
4627                                          const ObjCObjectPointerType *Rptr) {
4628  const ObjCObjectType *LHS = Lptr->getObjectType();
4629  const ObjCObjectType *RHS = Rptr->getObjectType();
4630  const ObjCInterfaceDecl* LDecl = LHS->getInterface();
4631  const ObjCInterfaceDecl* RDecl = RHS->getInterface();
4632  if (!LDecl || !RDecl)
4633    return QualType();
4634
4635  while ((LDecl = LDecl->getSuperClass())) {
4636    LHS = cast<ObjCInterfaceType>(getObjCInterfaceType(LDecl));
4637    if (canAssignObjCInterfaces(LHS, RHS)) {
4638      llvm::SmallVector<ObjCProtocolDecl *, 8> Protocols;
4639      getIntersectionOfProtocols(*this, Lptr, Rptr, Protocols);
4640
4641      QualType Result = QualType(LHS, 0);
4642      if (!Protocols.empty())
4643        Result = getObjCObjectType(Result, Protocols.data(), Protocols.size());
4644      Result = getObjCObjectPointerType(Result);
4645      return Result;
4646    }
4647  }
4648
4649  return QualType();
4650}
4651
4652bool ASTContext::canAssignObjCInterfaces(const ObjCObjectType *LHS,
4653                                         const ObjCObjectType *RHS) {
4654  assert(LHS->getInterface() && "LHS is not an interface type");
4655  assert(RHS->getInterface() && "RHS is not an interface type");
4656
4657  // Verify that the base decls are compatible: the RHS must be a subclass of
4658  // the LHS.
4659  if (!LHS->getInterface()->isSuperClassOf(RHS->getInterface()))
4660    return false;
4661
4662  // RHS must have a superset of the protocols in the LHS.  If the LHS is not
4663  // protocol qualified at all, then we are good.
4664  if (LHS->getNumProtocols() == 0)
4665    return true;
4666
4667  // Okay, we know the LHS has protocol qualifiers.  If the RHS doesn't, then it
4668  // isn't a superset.
4669  if (RHS->getNumProtocols() == 0)
4670    return true;  // FIXME: should return false!
4671
4672  for (ObjCObjectType::qual_iterator LHSPI = LHS->qual_begin(),
4673                                     LHSPE = LHS->qual_end();
4674       LHSPI != LHSPE; LHSPI++) {
4675    bool RHSImplementsProtocol = false;
4676
4677    // If the RHS doesn't implement the protocol on the left, the types
4678    // are incompatible.
4679    for (ObjCObjectType::qual_iterator RHSPI = RHS->qual_begin(),
4680                                       RHSPE = RHS->qual_end();
4681         RHSPI != RHSPE; RHSPI++) {
4682      if ((*RHSPI)->lookupProtocolNamed((*LHSPI)->getIdentifier())) {
4683        RHSImplementsProtocol = true;
4684        break;
4685      }
4686    }
4687    // FIXME: For better diagnostics, consider passing back the protocol name.
4688    if (!RHSImplementsProtocol)
4689      return false;
4690  }
4691  // The RHS implements all protocols listed on the LHS.
4692  return true;
4693}
4694
4695bool ASTContext::areComparableObjCPointerTypes(QualType LHS, QualType RHS) {
4696  // get the "pointed to" types
4697  const ObjCObjectPointerType *LHSOPT = LHS->getAs<ObjCObjectPointerType>();
4698  const ObjCObjectPointerType *RHSOPT = RHS->getAs<ObjCObjectPointerType>();
4699
4700  if (!LHSOPT || !RHSOPT)
4701    return false;
4702
4703  return canAssignObjCInterfaces(LHSOPT, RHSOPT) ||
4704         canAssignObjCInterfaces(RHSOPT, LHSOPT);
4705}
4706
4707bool ASTContext::canBindObjCObjectType(QualType To, QualType From) {
4708  return canAssignObjCInterfaces(
4709                getObjCObjectPointerType(To)->getAs<ObjCObjectPointerType>(),
4710                getObjCObjectPointerType(From)->getAs<ObjCObjectPointerType>());
4711}
4712
4713/// typesAreCompatible - C99 6.7.3p9: For two qualified types to be compatible,
4714/// both shall have the identically qualified version of a compatible type.
4715/// C99 6.2.7p1: Two types have compatible types if their types are the
4716/// same. See 6.7.[2,3,5] for additional rules.
4717bool ASTContext::typesAreCompatible(QualType LHS, QualType RHS,
4718                                    bool CompareUnqualified) {
4719  if (getLangOptions().CPlusPlus)
4720    return hasSameType(LHS, RHS);
4721
4722  return !mergeTypes(LHS, RHS, false, CompareUnqualified).isNull();
4723}
4724
4725bool ASTContext::typesAreBlockPointerCompatible(QualType LHS, QualType RHS) {
4726  return !mergeTypes(LHS, RHS, true).isNull();
4727}
4728
4729/// mergeTransparentUnionType - if T is a transparent union type and a member
4730/// of T is compatible with SubType, return the merged type, else return
4731/// QualType()
4732QualType ASTContext::mergeTransparentUnionType(QualType T, QualType SubType,
4733                                               bool OfBlockPointer,
4734                                               bool Unqualified) {
4735  if (const RecordType *UT = T->getAsUnionType()) {
4736    RecordDecl *UD = UT->getDecl();
4737    if (UD->hasAttr<TransparentUnionAttr>()) {
4738      for (RecordDecl::field_iterator it = UD->field_begin(),
4739           itend = UD->field_end(); it != itend; ++it) {
4740        QualType ET = it->getType().getUnqualifiedType();
4741        QualType MT = mergeTypes(ET, SubType, OfBlockPointer, Unqualified);
4742        if (!MT.isNull())
4743          return MT;
4744      }
4745    }
4746  }
4747
4748  return QualType();
4749}
4750
4751/// mergeFunctionArgumentTypes - merge two types which appear as function
4752/// argument types
4753QualType ASTContext::mergeFunctionArgumentTypes(QualType lhs, QualType rhs,
4754                                                bool OfBlockPointer,
4755                                                bool Unqualified) {
4756  // GNU extension: two types are compatible if they appear as a function
4757  // argument, one of the types is a transparent union type and the other
4758  // type is compatible with a union member
4759  QualType lmerge = mergeTransparentUnionType(lhs, rhs, OfBlockPointer,
4760                                              Unqualified);
4761  if (!lmerge.isNull())
4762    return lmerge;
4763
4764  QualType rmerge = mergeTransparentUnionType(rhs, lhs, OfBlockPointer,
4765                                              Unqualified);
4766  if (!rmerge.isNull())
4767    return rmerge;
4768
4769  return mergeTypes(lhs, rhs, OfBlockPointer, Unqualified);
4770}
4771
4772QualType ASTContext::mergeFunctionTypes(QualType lhs, QualType rhs,
4773                                        bool OfBlockPointer,
4774                                        bool Unqualified) {
4775  const FunctionType *lbase = lhs->getAs<FunctionType>();
4776  const FunctionType *rbase = rhs->getAs<FunctionType>();
4777  const FunctionProtoType *lproto = dyn_cast<FunctionProtoType>(lbase);
4778  const FunctionProtoType *rproto = dyn_cast<FunctionProtoType>(rbase);
4779  bool allLTypes = true;
4780  bool allRTypes = true;
4781
4782  // Check return type
4783  QualType retType;
4784  if (OfBlockPointer)
4785    retType = mergeTypes(rbase->getResultType(), lbase->getResultType(), true,
4786                         Unqualified);
4787  else
4788    retType = mergeTypes(lbase->getResultType(), rbase->getResultType(), false,
4789                         Unqualified);
4790  if (retType.isNull()) return QualType();
4791
4792  if (Unqualified)
4793    retType = retType.getUnqualifiedType();
4794
4795  CanQualType LRetType = getCanonicalType(lbase->getResultType());
4796  CanQualType RRetType = getCanonicalType(rbase->getResultType());
4797  if (Unqualified) {
4798    LRetType = LRetType.getUnqualifiedType();
4799    RRetType = RRetType.getUnqualifiedType();
4800  }
4801
4802  if (getCanonicalType(retType) != LRetType)
4803    allLTypes = false;
4804  if (getCanonicalType(retType) != RRetType)
4805    allRTypes = false;
4806
4807  // FIXME: double check this
4808  // FIXME: should we error if lbase->getRegParmAttr() != 0 &&
4809  //                           rbase->getRegParmAttr() != 0 &&
4810  //                           lbase->getRegParmAttr() != rbase->getRegParmAttr()?
4811  FunctionType::ExtInfo lbaseInfo = lbase->getExtInfo();
4812  FunctionType::ExtInfo rbaseInfo = rbase->getExtInfo();
4813
4814  // Compatible functions must have compatible calling conventions
4815  if (!isSameCallConv(lbaseInfo.getCC(), rbaseInfo.getCC()))
4816    return QualType();
4817
4818  // Regparm is part of the calling convention.
4819  if (lbaseInfo.getRegParm() != rbaseInfo.getRegParm())
4820    return QualType();
4821
4822  // It's noreturn if either type is.
4823  // FIXME: some uses, e.g. conditional exprs, really want this to be 'both'.
4824  bool NoReturn = lbaseInfo.getNoReturn() || rbaseInfo.getNoReturn();
4825  if (NoReturn != lbaseInfo.getNoReturn())
4826    allLTypes = false;
4827  if (NoReturn != rbaseInfo.getNoReturn())
4828    allRTypes = false;
4829
4830  FunctionType::ExtInfo einfo(NoReturn,
4831                              lbaseInfo.getRegParm(),
4832                              lbaseInfo.getCC());
4833
4834  if (lproto && rproto) { // two C99 style function prototypes
4835    assert(!lproto->hasExceptionSpec() && !rproto->hasExceptionSpec() &&
4836           "C++ shouldn't be here");
4837    unsigned lproto_nargs = lproto->getNumArgs();
4838    unsigned rproto_nargs = rproto->getNumArgs();
4839
4840    // Compatible functions must have the same number of arguments
4841    if (lproto_nargs != rproto_nargs)
4842      return QualType();
4843
4844    // Variadic and non-variadic functions aren't compatible
4845    if (lproto->isVariadic() != rproto->isVariadic())
4846      return QualType();
4847
4848    if (lproto->getTypeQuals() != rproto->getTypeQuals())
4849      return QualType();
4850
4851    // Check argument compatibility
4852    llvm::SmallVector<QualType, 10> types;
4853    for (unsigned i = 0; i < lproto_nargs; i++) {
4854      QualType largtype = lproto->getArgType(i).getUnqualifiedType();
4855      QualType rargtype = rproto->getArgType(i).getUnqualifiedType();
4856      QualType argtype = mergeFunctionArgumentTypes(largtype, rargtype,
4857                                                    OfBlockPointer,
4858                                                    Unqualified);
4859      if (argtype.isNull()) return QualType();
4860
4861      if (Unqualified)
4862        argtype = argtype.getUnqualifiedType();
4863
4864      types.push_back(argtype);
4865      if (Unqualified) {
4866        largtype = largtype.getUnqualifiedType();
4867        rargtype = rargtype.getUnqualifiedType();
4868      }
4869
4870      if (getCanonicalType(argtype) != getCanonicalType(largtype))
4871        allLTypes = false;
4872      if (getCanonicalType(argtype) != getCanonicalType(rargtype))
4873        allRTypes = false;
4874    }
4875    if (allLTypes) return lhs;
4876    if (allRTypes) return rhs;
4877
4878    FunctionProtoType::ExtProtoInfo EPI = lproto->getExtProtoInfo();
4879    EPI.ExtInfo = einfo;
4880    return getFunctionType(retType, types.begin(), types.size(), EPI);
4881  }
4882
4883  if (lproto) allRTypes = false;
4884  if (rproto) allLTypes = false;
4885
4886  const FunctionProtoType *proto = lproto ? lproto : rproto;
4887  if (proto) {
4888    assert(!proto->hasExceptionSpec() && "C++ shouldn't be here");
4889    if (proto->isVariadic()) return QualType();
4890    // Check that the types are compatible with the types that
4891    // would result from default argument promotions (C99 6.7.5.3p15).
4892    // The only types actually affected are promotable integer
4893    // types and floats, which would be passed as a different
4894    // type depending on whether the prototype is visible.
4895    unsigned proto_nargs = proto->getNumArgs();
4896    for (unsigned i = 0; i < proto_nargs; ++i) {
4897      QualType argTy = proto->getArgType(i);
4898
4899      // Look at the promotion type of enum types, since that is the type used
4900      // to pass enum values.
4901      if (const EnumType *Enum = argTy->getAs<EnumType>())
4902        argTy = Enum->getDecl()->getPromotionType();
4903
4904      if (argTy->isPromotableIntegerType() ||
4905          getCanonicalType(argTy).getUnqualifiedType() == FloatTy)
4906        return QualType();
4907    }
4908
4909    if (allLTypes) return lhs;
4910    if (allRTypes) return rhs;
4911
4912    FunctionProtoType::ExtProtoInfo EPI = proto->getExtProtoInfo();
4913    EPI.ExtInfo = einfo;
4914    return getFunctionType(retType, proto->arg_type_begin(),
4915                           proto->getNumArgs(), EPI);
4916  }
4917
4918  if (allLTypes) return lhs;
4919  if (allRTypes) return rhs;
4920  return getFunctionNoProtoType(retType, einfo);
4921}
4922
4923QualType ASTContext::mergeTypes(QualType LHS, QualType RHS,
4924                                bool OfBlockPointer,
4925                                bool Unqualified) {
4926  // C++ [expr]: If an expression initially has the type "reference to T", the
4927  // type is adjusted to "T" prior to any further analysis, the expression
4928  // designates the object or function denoted by the reference, and the
4929  // expression is an lvalue unless the reference is an rvalue reference and
4930  // the expression is a function call (possibly inside parentheses).
4931  assert(!LHS->getAs<ReferenceType>() && "LHS is a reference type?");
4932  assert(!RHS->getAs<ReferenceType>() && "RHS is a reference type?");
4933
4934  if (Unqualified) {
4935    LHS = LHS.getUnqualifiedType();
4936    RHS = RHS.getUnqualifiedType();
4937  }
4938
4939  QualType LHSCan = getCanonicalType(LHS),
4940           RHSCan = getCanonicalType(RHS);
4941
4942  // If two types are identical, they are compatible.
4943  if (LHSCan == RHSCan)
4944    return LHS;
4945
4946  // If the qualifiers are different, the types aren't compatible... mostly.
4947  Qualifiers LQuals = LHSCan.getLocalQualifiers();
4948  Qualifiers RQuals = RHSCan.getLocalQualifiers();
4949  if (LQuals != RQuals) {
4950    // If any of these qualifiers are different, we have a type
4951    // mismatch.
4952    if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() ||
4953        LQuals.getAddressSpace() != RQuals.getAddressSpace())
4954      return QualType();
4955
4956    // Exactly one GC qualifier difference is allowed: __strong is
4957    // okay if the other type has no GC qualifier but is an Objective
4958    // C object pointer (i.e. implicitly strong by default).  We fix
4959    // this by pretending that the unqualified type was actually
4960    // qualified __strong.
4961    Qualifiers::GC GC_L = LQuals.getObjCGCAttr();
4962    Qualifiers::GC GC_R = RQuals.getObjCGCAttr();
4963    assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements");
4964
4965    if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak)
4966      return QualType();
4967
4968    if (GC_L == Qualifiers::Strong && RHSCan->isObjCObjectPointerType()) {
4969      return mergeTypes(LHS, getObjCGCQualType(RHS, Qualifiers::Strong));
4970    }
4971    if (GC_R == Qualifiers::Strong && LHSCan->isObjCObjectPointerType()) {
4972      return mergeTypes(getObjCGCQualType(LHS, Qualifiers::Strong), RHS);
4973    }
4974    return QualType();
4975  }
4976
4977  // Okay, qualifiers are equal.
4978
4979  Type::TypeClass LHSClass = LHSCan->getTypeClass();
4980  Type::TypeClass RHSClass = RHSCan->getTypeClass();
4981
4982  // We want to consider the two function types to be the same for these
4983  // comparisons, just force one to the other.
4984  if (LHSClass == Type::FunctionProto) LHSClass = Type::FunctionNoProto;
4985  if (RHSClass == Type::FunctionProto) RHSClass = Type::FunctionNoProto;
4986
4987  // Same as above for arrays
4988  if (LHSClass == Type::VariableArray || LHSClass == Type::IncompleteArray)
4989    LHSClass = Type::ConstantArray;
4990  if (RHSClass == Type::VariableArray || RHSClass == Type::IncompleteArray)
4991    RHSClass = Type::ConstantArray;
4992
4993  // ObjCInterfaces are just specialized ObjCObjects.
4994  if (LHSClass == Type::ObjCInterface) LHSClass = Type::ObjCObject;
4995  if (RHSClass == Type::ObjCInterface) RHSClass = Type::ObjCObject;
4996
4997  // Canonicalize ExtVector -> Vector.
4998  if (LHSClass == Type::ExtVector) LHSClass = Type::Vector;
4999  if (RHSClass == Type::ExtVector) RHSClass = Type::Vector;
5000
5001  // If the canonical type classes don't match.
5002  if (LHSClass != RHSClass) {
5003    // C99 6.7.2.2p4: Each enumerated type shall be compatible with char,
5004    // a signed integer type, or an unsigned integer type.
5005    // Compatibility is based on the underlying type, not the promotion
5006    // type.
5007    if (const EnumType* ETy = LHS->getAs<EnumType>()) {
5008      if (ETy->getDecl()->getIntegerType() == RHSCan.getUnqualifiedType())
5009        return RHS;
5010    }
5011    if (const EnumType* ETy = RHS->getAs<EnumType>()) {
5012      if (ETy->getDecl()->getIntegerType() == LHSCan.getUnqualifiedType())
5013        return LHS;
5014    }
5015
5016    return QualType();
5017  }
5018
5019  // The canonical type classes match.
5020  switch (LHSClass) {
5021#define TYPE(Class, Base)
5022#define ABSTRACT_TYPE(Class, Base)
5023#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
5024#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
5025#define DEPENDENT_TYPE(Class, Base) case Type::Class:
5026#include "clang/AST/TypeNodes.def"
5027    assert(false && "Non-canonical and dependent types shouldn't get here");
5028    return QualType();
5029
5030  case Type::LValueReference:
5031  case Type::RValueReference:
5032  case Type::MemberPointer:
5033    assert(false && "C++ should never be in mergeTypes");
5034    return QualType();
5035
5036  case Type::ObjCInterface:
5037  case Type::IncompleteArray:
5038  case Type::VariableArray:
5039  case Type::FunctionProto:
5040  case Type::ExtVector:
5041    assert(false && "Types are eliminated above");
5042    return QualType();
5043
5044  case Type::Pointer:
5045  {
5046    // Merge two pointer types, while trying to preserve typedef info
5047    QualType LHSPointee = LHS->getAs<PointerType>()->getPointeeType();
5048    QualType RHSPointee = RHS->getAs<PointerType>()->getPointeeType();
5049    if (Unqualified) {
5050      LHSPointee = LHSPointee.getUnqualifiedType();
5051      RHSPointee = RHSPointee.getUnqualifiedType();
5052    }
5053    QualType ResultType = mergeTypes(LHSPointee, RHSPointee, false,
5054                                     Unqualified);
5055    if (ResultType.isNull()) return QualType();
5056    if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
5057      return LHS;
5058    if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
5059      return RHS;
5060    return getPointerType(ResultType);
5061  }
5062  case Type::BlockPointer:
5063  {
5064    // Merge two block pointer types, while trying to preserve typedef info
5065    QualType LHSPointee = LHS->getAs<BlockPointerType>()->getPointeeType();
5066    QualType RHSPointee = RHS->getAs<BlockPointerType>()->getPointeeType();
5067    if (Unqualified) {
5068      LHSPointee = LHSPointee.getUnqualifiedType();
5069      RHSPointee = RHSPointee.getUnqualifiedType();
5070    }
5071    QualType ResultType = mergeTypes(LHSPointee, RHSPointee, OfBlockPointer,
5072                                     Unqualified);
5073    if (ResultType.isNull()) return QualType();
5074    if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
5075      return LHS;
5076    if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
5077      return RHS;
5078    return getBlockPointerType(ResultType);
5079  }
5080  case Type::ConstantArray:
5081  {
5082    const ConstantArrayType* LCAT = getAsConstantArrayType(LHS);
5083    const ConstantArrayType* RCAT = getAsConstantArrayType(RHS);
5084    if (LCAT && RCAT && RCAT->getSize() != LCAT->getSize())
5085      return QualType();
5086
5087    QualType LHSElem = getAsArrayType(LHS)->getElementType();
5088    QualType RHSElem = getAsArrayType(RHS)->getElementType();
5089    if (Unqualified) {
5090      LHSElem = LHSElem.getUnqualifiedType();
5091      RHSElem = RHSElem.getUnqualifiedType();
5092    }
5093
5094    QualType ResultType = mergeTypes(LHSElem, RHSElem, false, Unqualified);
5095    if (ResultType.isNull()) return QualType();
5096    if (LCAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
5097      return LHS;
5098    if (RCAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
5099      return RHS;
5100    if (LCAT) return getConstantArrayType(ResultType, LCAT->getSize(),
5101                                          ArrayType::ArraySizeModifier(), 0);
5102    if (RCAT) return getConstantArrayType(ResultType, RCAT->getSize(),
5103                                          ArrayType::ArraySizeModifier(), 0);
5104    const VariableArrayType* LVAT = getAsVariableArrayType(LHS);
5105    const VariableArrayType* RVAT = getAsVariableArrayType(RHS);
5106    if (LVAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
5107      return LHS;
5108    if (RVAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
5109      return RHS;
5110    if (LVAT) {
5111      // FIXME: This isn't correct! But tricky to implement because
5112      // the array's size has to be the size of LHS, but the type
5113      // has to be different.
5114      return LHS;
5115    }
5116    if (RVAT) {
5117      // FIXME: This isn't correct! But tricky to implement because
5118      // the array's size has to be the size of RHS, but the type
5119      // has to be different.
5120      return RHS;
5121    }
5122    if (getCanonicalType(LHSElem) == getCanonicalType(ResultType)) return LHS;
5123    if (getCanonicalType(RHSElem) == getCanonicalType(ResultType)) return RHS;
5124    return getIncompleteArrayType(ResultType,
5125                                  ArrayType::ArraySizeModifier(), 0);
5126  }
5127  case Type::FunctionNoProto:
5128    return mergeFunctionTypes(LHS, RHS, OfBlockPointer, Unqualified);
5129  case Type::Record:
5130  case Type::Enum:
5131    return QualType();
5132  case Type::Builtin:
5133    // Only exactly equal builtin types are compatible, which is tested above.
5134    return QualType();
5135  case Type::Complex:
5136    // Distinct complex types are incompatible.
5137    return QualType();
5138  case Type::Vector:
5139    // FIXME: The merged type should be an ExtVector!
5140    if (areCompatVectorTypes(LHSCan->getAs<VectorType>(),
5141                             RHSCan->getAs<VectorType>()))
5142      return LHS;
5143    return QualType();
5144  case Type::ObjCObject: {
5145    // Check if the types are assignment compatible.
5146    // FIXME: This should be type compatibility, e.g. whether
5147    // "LHS x; RHS x;" at global scope is legal.
5148    const ObjCObjectType* LHSIface = LHS->getAs<ObjCObjectType>();
5149    const ObjCObjectType* RHSIface = RHS->getAs<ObjCObjectType>();
5150    if (canAssignObjCInterfaces(LHSIface, RHSIface))
5151      return LHS;
5152
5153    return QualType();
5154  }
5155  case Type::ObjCObjectPointer: {
5156    if (OfBlockPointer) {
5157      if (canAssignObjCInterfacesInBlockPointer(
5158                                          LHS->getAs<ObjCObjectPointerType>(),
5159                                          RHS->getAs<ObjCObjectPointerType>()))
5160      return LHS;
5161      return QualType();
5162    }
5163    if (canAssignObjCInterfaces(LHS->getAs<ObjCObjectPointerType>(),
5164                                RHS->getAs<ObjCObjectPointerType>()))
5165      return LHS;
5166
5167    return QualType();
5168    }
5169  }
5170
5171  return QualType();
5172}
5173
5174/// mergeObjCGCQualifiers - This routine merges ObjC's GC attribute of 'LHS' and
5175/// 'RHS' attributes and returns the merged version; including for function
5176/// return types.
5177QualType ASTContext::mergeObjCGCQualifiers(QualType LHS, QualType RHS) {
5178  QualType LHSCan = getCanonicalType(LHS),
5179  RHSCan = getCanonicalType(RHS);
5180  // If two types are identical, they are compatible.
5181  if (LHSCan == RHSCan)
5182    return LHS;
5183  if (RHSCan->isFunctionType()) {
5184    if (!LHSCan->isFunctionType())
5185      return QualType();
5186    QualType OldReturnType =
5187      cast<FunctionType>(RHSCan.getTypePtr())->getResultType();
5188    QualType NewReturnType =
5189      cast<FunctionType>(LHSCan.getTypePtr())->getResultType();
5190    QualType ResReturnType =
5191      mergeObjCGCQualifiers(NewReturnType, OldReturnType);
5192    if (ResReturnType.isNull())
5193      return QualType();
5194    if (ResReturnType == NewReturnType || ResReturnType == OldReturnType) {
5195      // id foo(); ... __strong id foo(); or: __strong id foo(); ... id foo();
5196      // In either case, use OldReturnType to build the new function type.
5197      const FunctionType *F = LHS->getAs<FunctionType>();
5198      if (const FunctionProtoType *FPT = cast<FunctionProtoType>(F)) {
5199        FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
5200        EPI.ExtInfo = getFunctionExtInfo(LHS);
5201        QualType ResultType
5202          = getFunctionType(OldReturnType, FPT->arg_type_begin(),
5203                            FPT->getNumArgs(), EPI);
5204        return ResultType;
5205      }
5206    }
5207    return QualType();
5208  }
5209
5210  // If the qualifiers are different, the types can still be merged.
5211  Qualifiers LQuals = LHSCan.getLocalQualifiers();
5212  Qualifiers RQuals = RHSCan.getLocalQualifiers();
5213  if (LQuals != RQuals) {
5214    // If any of these qualifiers are different, we have a type mismatch.
5215    if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() ||
5216        LQuals.getAddressSpace() != RQuals.getAddressSpace())
5217      return QualType();
5218
5219    // Exactly one GC qualifier difference is allowed: __strong is
5220    // okay if the other type has no GC qualifier but is an Objective
5221    // C object pointer (i.e. implicitly strong by default).  We fix
5222    // this by pretending that the unqualified type was actually
5223    // qualified __strong.
5224    Qualifiers::GC GC_L = LQuals.getObjCGCAttr();
5225    Qualifiers::GC GC_R = RQuals.getObjCGCAttr();
5226    assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements");
5227
5228    if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak)
5229      return QualType();
5230
5231    if (GC_L == Qualifiers::Strong)
5232      return LHS;
5233    if (GC_R == Qualifiers::Strong)
5234      return RHS;
5235    return QualType();
5236  }
5237
5238  if (LHSCan->isObjCObjectPointerType() && RHSCan->isObjCObjectPointerType()) {
5239    QualType LHSBaseQT = LHS->getAs<ObjCObjectPointerType>()->getPointeeType();
5240    QualType RHSBaseQT = RHS->getAs<ObjCObjectPointerType>()->getPointeeType();
5241    QualType ResQT = mergeObjCGCQualifiers(LHSBaseQT, RHSBaseQT);
5242    if (ResQT == LHSBaseQT)
5243      return LHS;
5244    if (ResQT == RHSBaseQT)
5245      return RHS;
5246  }
5247  return QualType();
5248}
5249
5250//===----------------------------------------------------------------------===//
5251//                         Integer Predicates
5252//===----------------------------------------------------------------------===//
5253
5254unsigned ASTContext::getIntWidth(QualType T) {
5255  if (EnumType *ET = dyn_cast<EnumType>(T))
5256    T = ET->getDecl()->getIntegerType();
5257  if (T->isBooleanType())
5258    return 1;
5259  // For builtin types, just use the standard type sizing method
5260  return (unsigned)getTypeSize(T);
5261}
5262
5263QualType ASTContext::getCorrespondingUnsignedType(QualType T) {
5264  assert(T->hasSignedIntegerRepresentation() && "Unexpected type");
5265
5266  // Turn <4 x signed int> -> <4 x unsigned int>
5267  if (const VectorType *VTy = T->getAs<VectorType>())
5268    return getVectorType(getCorrespondingUnsignedType(VTy->getElementType()),
5269                         VTy->getNumElements(), VTy->getVectorKind());
5270
5271  // For enums, we return the unsigned version of the base type.
5272  if (const EnumType *ETy = T->getAs<EnumType>())
5273    T = ETy->getDecl()->getIntegerType();
5274
5275  const BuiltinType *BTy = T->getAs<BuiltinType>();
5276  assert(BTy && "Unexpected signed integer type");
5277  switch (BTy->getKind()) {
5278  case BuiltinType::Char_S:
5279  case BuiltinType::SChar:
5280    return UnsignedCharTy;
5281  case BuiltinType::Short:
5282    return UnsignedShortTy;
5283  case BuiltinType::Int:
5284    return UnsignedIntTy;
5285  case BuiltinType::Long:
5286    return UnsignedLongTy;
5287  case BuiltinType::LongLong:
5288    return UnsignedLongLongTy;
5289  case BuiltinType::Int128:
5290    return UnsignedInt128Ty;
5291  default:
5292    assert(0 && "Unexpected signed integer type");
5293    return QualType();
5294  }
5295}
5296
5297ExternalASTSource::~ExternalASTSource() { }
5298
5299void ExternalASTSource::PrintStats() { }
5300
5301ASTMutationListener::~ASTMutationListener() { }
5302
5303
5304//===----------------------------------------------------------------------===//
5305//                          Builtin Type Computation
5306//===----------------------------------------------------------------------===//
5307
5308/// DecodeTypeFromStr - This decodes one type descriptor from Str, advancing the
5309/// pointer over the consumed characters.  This returns the resultant type.  If
5310/// AllowTypeModifiers is false then modifier like * are not parsed, just basic
5311/// types.  This allows "v2i*" to be parsed as a pointer to a v2i instead of
5312/// a vector of "i*".
5313///
5314/// RequiresICE is filled in on return to indicate whether the value is required
5315/// to be an Integer Constant Expression.
5316static QualType DecodeTypeFromStr(const char *&Str, ASTContext &Context,
5317                                  ASTContext::GetBuiltinTypeError &Error,
5318                                  bool &RequiresICE,
5319                                  bool AllowTypeModifiers) {
5320  // Modifiers.
5321  int HowLong = 0;
5322  bool Signed = false, Unsigned = false;
5323  RequiresICE = false;
5324
5325  // Read the prefixed modifiers first.
5326  bool Done = false;
5327  while (!Done) {
5328    switch (*Str++) {
5329    default: Done = true; --Str; break;
5330    case 'I':
5331      RequiresICE = true;
5332      break;
5333    case 'S':
5334      assert(!Unsigned && "Can't use both 'S' and 'U' modifiers!");
5335      assert(!Signed && "Can't use 'S' modifier multiple times!");
5336      Signed = true;
5337      break;
5338    case 'U':
5339      assert(!Signed && "Can't use both 'S' and 'U' modifiers!");
5340      assert(!Unsigned && "Can't use 'S' modifier multiple times!");
5341      Unsigned = true;
5342      break;
5343    case 'L':
5344      assert(HowLong <= 2 && "Can't have LLLL modifier");
5345      ++HowLong;
5346      break;
5347    }
5348  }
5349
5350  QualType Type;
5351
5352  // Read the base type.
5353  switch (*Str++) {
5354  default: assert(0 && "Unknown builtin type letter!");
5355  case 'v':
5356    assert(HowLong == 0 && !Signed && !Unsigned &&
5357           "Bad modifiers used with 'v'!");
5358    Type = Context.VoidTy;
5359    break;
5360  case 'f':
5361    assert(HowLong == 0 && !Signed && !Unsigned &&
5362           "Bad modifiers used with 'f'!");
5363    Type = Context.FloatTy;
5364    break;
5365  case 'd':
5366    assert(HowLong < 2 && !Signed && !Unsigned &&
5367           "Bad modifiers used with 'd'!");
5368    if (HowLong)
5369      Type = Context.LongDoubleTy;
5370    else
5371      Type = Context.DoubleTy;
5372    break;
5373  case 's':
5374    assert(HowLong == 0 && "Bad modifiers used with 's'!");
5375    if (Unsigned)
5376      Type = Context.UnsignedShortTy;
5377    else
5378      Type = Context.ShortTy;
5379    break;
5380  case 'i':
5381    if (HowLong == 3)
5382      Type = Unsigned ? Context.UnsignedInt128Ty : Context.Int128Ty;
5383    else if (HowLong == 2)
5384      Type = Unsigned ? Context.UnsignedLongLongTy : Context.LongLongTy;
5385    else if (HowLong == 1)
5386      Type = Unsigned ? Context.UnsignedLongTy : Context.LongTy;
5387    else
5388      Type = Unsigned ? Context.UnsignedIntTy : Context.IntTy;
5389    break;
5390  case 'c':
5391    assert(HowLong == 0 && "Bad modifiers used with 'c'!");
5392    if (Signed)
5393      Type = Context.SignedCharTy;
5394    else if (Unsigned)
5395      Type = Context.UnsignedCharTy;
5396    else
5397      Type = Context.CharTy;
5398    break;
5399  case 'b': // boolean
5400    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'b'!");
5401    Type = Context.BoolTy;
5402    break;
5403  case 'z':  // size_t.
5404    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'z'!");
5405    Type = Context.getSizeType();
5406    break;
5407  case 'F':
5408    Type = Context.getCFConstantStringType();
5409    break;
5410  case 'G':
5411    Type = Context.getObjCIdType();
5412    break;
5413  case 'H':
5414    Type = Context.getObjCSelType();
5415    break;
5416  case 'a':
5417    Type = Context.getBuiltinVaListType();
5418    assert(!Type.isNull() && "builtin va list type not initialized!");
5419    break;
5420  case 'A':
5421    // This is a "reference" to a va_list; however, what exactly
5422    // this means depends on how va_list is defined. There are two
5423    // different kinds of va_list: ones passed by value, and ones
5424    // passed by reference.  An example of a by-value va_list is
5425    // x86, where va_list is a char*. An example of by-ref va_list
5426    // is x86-64, where va_list is a __va_list_tag[1]. For x86,
5427    // we want this argument to be a char*&; for x86-64, we want
5428    // it to be a __va_list_tag*.
5429    Type = Context.getBuiltinVaListType();
5430    assert(!Type.isNull() && "builtin va list type not initialized!");
5431    if (Type->isArrayType())
5432      Type = Context.getArrayDecayedType(Type);
5433    else
5434      Type = Context.getLValueReferenceType(Type);
5435    break;
5436  case 'V': {
5437    char *End;
5438    unsigned NumElements = strtoul(Str, &End, 10);
5439    assert(End != Str && "Missing vector size");
5440    Str = End;
5441
5442    QualType ElementType = DecodeTypeFromStr(Str, Context, Error,
5443                                             RequiresICE, false);
5444    assert(!RequiresICE && "Can't require vector ICE");
5445
5446    // TODO: No way to make AltiVec vectors in builtins yet.
5447    Type = Context.getVectorType(ElementType, NumElements,
5448                                 VectorType::GenericVector);
5449    break;
5450  }
5451  case 'X': {
5452    QualType ElementType = DecodeTypeFromStr(Str, Context, Error, RequiresICE,
5453                                             false);
5454    assert(!RequiresICE && "Can't require complex ICE");
5455    Type = Context.getComplexType(ElementType);
5456    break;
5457  }
5458  case 'P':
5459    Type = Context.getFILEType();
5460    if (Type.isNull()) {
5461      Error = ASTContext::GE_Missing_stdio;
5462      return QualType();
5463    }
5464    break;
5465  case 'J':
5466    if (Signed)
5467      Type = Context.getsigjmp_bufType();
5468    else
5469      Type = Context.getjmp_bufType();
5470
5471    if (Type.isNull()) {
5472      Error = ASTContext::GE_Missing_setjmp;
5473      return QualType();
5474    }
5475    break;
5476  }
5477
5478  // If there are modifiers and if we're allowed to parse them, go for it.
5479  Done = !AllowTypeModifiers;
5480  while (!Done) {
5481    switch (char c = *Str++) {
5482    default: Done = true; --Str; break;
5483    case '*':
5484    case '&': {
5485      // Both pointers and references can have their pointee types
5486      // qualified with an address space.
5487      char *End;
5488      unsigned AddrSpace = strtoul(Str, &End, 10);
5489      if (End != Str && AddrSpace != 0) {
5490        Type = Context.getAddrSpaceQualType(Type, AddrSpace);
5491        Str = End;
5492      }
5493      if (c == '*')
5494        Type = Context.getPointerType(Type);
5495      else
5496        Type = Context.getLValueReferenceType(Type);
5497      break;
5498    }
5499    // FIXME: There's no way to have a built-in with an rvalue ref arg.
5500    case 'C':
5501      Type = Type.withConst();
5502      break;
5503    case 'D':
5504      Type = Context.getVolatileType(Type);
5505      break;
5506    }
5507  }
5508
5509  assert((!RequiresICE || Type->isIntegralOrEnumerationType()) &&
5510         "Integer constant 'I' type must be an integer");
5511
5512  return Type;
5513}
5514
5515/// GetBuiltinType - Return the type for the specified builtin.
5516QualType ASTContext::GetBuiltinType(unsigned Id,
5517                                    GetBuiltinTypeError &Error,
5518                                    unsigned *IntegerConstantArgs) {
5519  const char *TypeStr = BuiltinInfo.GetTypeString(Id);
5520
5521  llvm::SmallVector<QualType, 8> ArgTypes;
5522
5523  bool RequiresICE = false;
5524  Error = GE_None;
5525  QualType ResType = DecodeTypeFromStr(TypeStr, *this, Error,
5526                                       RequiresICE, true);
5527  if (Error != GE_None)
5528    return QualType();
5529
5530  assert(!RequiresICE && "Result of intrinsic cannot be required to be an ICE");
5531
5532  while (TypeStr[0] && TypeStr[0] != '.') {
5533    QualType Ty = DecodeTypeFromStr(TypeStr, *this, Error, RequiresICE, true);
5534    if (Error != GE_None)
5535      return QualType();
5536
5537    // If this argument is required to be an IntegerConstantExpression and the
5538    // caller cares, fill in the bitmask we return.
5539    if (RequiresICE && IntegerConstantArgs)
5540      *IntegerConstantArgs |= 1 << ArgTypes.size();
5541
5542    // Do array -> pointer decay.  The builtin should use the decayed type.
5543    if (Ty->isArrayType())
5544      Ty = getArrayDecayedType(Ty);
5545
5546    ArgTypes.push_back(Ty);
5547  }
5548
5549  assert((TypeStr[0] != '.' || TypeStr[1] == 0) &&
5550         "'.' should only occur at end of builtin type list!");
5551
5552  FunctionType::ExtInfo EI;
5553  if (BuiltinInfo.isNoReturn(Id)) EI = EI.withNoReturn(true);
5554
5555  bool Variadic = (TypeStr[0] == '.');
5556
5557  // We really shouldn't be making a no-proto type here, especially in C++.
5558  if (ArgTypes.empty() && Variadic)
5559    return getFunctionNoProtoType(ResType, EI);
5560
5561  FunctionProtoType::ExtProtoInfo EPI;
5562  EPI.ExtInfo = EI;
5563  EPI.Variadic = Variadic;
5564
5565  return getFunctionType(ResType, ArgTypes.data(), ArgTypes.size(), EPI);
5566}
5567
5568GVALinkage ASTContext::GetGVALinkageForFunction(const FunctionDecl *FD) {
5569  GVALinkage External = GVA_StrongExternal;
5570
5571  Linkage L = FD->getLinkage();
5572  if (L == ExternalLinkage && getLangOptions().CPlusPlus &&
5573      FD->getType()->getLinkage() == UniqueExternalLinkage)
5574    L = UniqueExternalLinkage;
5575
5576  switch (L) {
5577  case NoLinkage:
5578  case InternalLinkage:
5579  case UniqueExternalLinkage:
5580    return GVA_Internal;
5581
5582  case ExternalLinkage:
5583    switch (FD->getTemplateSpecializationKind()) {
5584    case TSK_Undeclared:
5585    case TSK_ExplicitSpecialization:
5586      External = GVA_StrongExternal;
5587      break;
5588
5589    case TSK_ExplicitInstantiationDefinition:
5590      return GVA_ExplicitTemplateInstantiation;
5591
5592    case TSK_ExplicitInstantiationDeclaration:
5593    case TSK_ImplicitInstantiation:
5594      External = GVA_TemplateInstantiation;
5595      break;
5596    }
5597  }
5598
5599  if (!FD->isInlined())
5600    return External;
5601
5602  if (!getLangOptions().CPlusPlus || FD->hasAttr<GNUInlineAttr>()) {
5603    // GNU or C99 inline semantics. Determine whether this symbol should be
5604    // externally visible.
5605    if (FD->isInlineDefinitionExternallyVisible())
5606      return External;
5607
5608    // C99 inline semantics, where the symbol is not externally visible.
5609    return GVA_C99Inline;
5610  }
5611
5612  // C++0x [temp.explicit]p9:
5613  //   [ Note: The intent is that an inline function that is the subject of
5614  //   an explicit instantiation declaration will still be implicitly
5615  //   instantiated when used so that the body can be considered for
5616  //   inlining, but that no out-of-line copy of the inline function would be
5617  //   generated in the translation unit. -- end note ]
5618  if (FD->getTemplateSpecializationKind()
5619                                       == TSK_ExplicitInstantiationDeclaration)
5620    return GVA_C99Inline;
5621
5622  return GVA_CXXInline;
5623}
5624
5625GVALinkage ASTContext::GetGVALinkageForVariable(const VarDecl *VD) {
5626  // If this is a static data member, compute the kind of template
5627  // specialization. Otherwise, this variable is not part of a
5628  // template.
5629  TemplateSpecializationKind TSK = TSK_Undeclared;
5630  if (VD->isStaticDataMember())
5631    TSK = VD->getTemplateSpecializationKind();
5632
5633  Linkage L = VD->getLinkage();
5634  if (L == ExternalLinkage && getLangOptions().CPlusPlus &&
5635      VD->getType()->getLinkage() == UniqueExternalLinkage)
5636    L = UniqueExternalLinkage;
5637
5638  switch (L) {
5639  case NoLinkage:
5640  case InternalLinkage:
5641  case UniqueExternalLinkage:
5642    return GVA_Internal;
5643
5644  case ExternalLinkage:
5645    switch (TSK) {
5646    case TSK_Undeclared:
5647    case TSK_ExplicitSpecialization:
5648      return GVA_StrongExternal;
5649
5650    case TSK_ExplicitInstantiationDeclaration:
5651      llvm_unreachable("Variable should not be instantiated");
5652      // Fall through to treat this like any other instantiation.
5653
5654    case TSK_ExplicitInstantiationDefinition:
5655      return GVA_ExplicitTemplateInstantiation;
5656
5657    case TSK_ImplicitInstantiation:
5658      return GVA_TemplateInstantiation;
5659    }
5660  }
5661
5662  return GVA_StrongExternal;
5663}
5664
5665bool ASTContext::DeclMustBeEmitted(const Decl *D) {
5666  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
5667    if (!VD->isFileVarDecl())
5668      return false;
5669  } else if (!isa<FunctionDecl>(D))
5670    return false;
5671
5672  // Weak references don't produce any output by themselves.
5673  if (D->hasAttr<WeakRefAttr>())
5674    return false;
5675
5676  // Aliases and used decls are required.
5677  if (D->hasAttr<AliasAttr>() || D->hasAttr<UsedAttr>())
5678    return true;
5679
5680  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
5681    // Forward declarations aren't required.
5682    if (!FD->isThisDeclarationADefinition())
5683      return false;
5684
5685    // Constructors and destructors are required.
5686    if (FD->hasAttr<ConstructorAttr>() || FD->hasAttr<DestructorAttr>())
5687      return true;
5688
5689    // The key function for a class is required.
5690    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
5691      const CXXRecordDecl *RD = MD->getParent();
5692      if (MD->isOutOfLine() && RD->isDynamicClass()) {
5693        const CXXMethodDecl *KeyFunc = getKeyFunction(RD);
5694        if (KeyFunc && KeyFunc->getCanonicalDecl() == MD->getCanonicalDecl())
5695          return true;
5696      }
5697    }
5698
5699    GVALinkage Linkage = GetGVALinkageForFunction(FD);
5700
5701    // static, static inline, always_inline, and extern inline functions can
5702    // always be deferred.  Normal inline functions can be deferred in C99/C++.
5703    // Implicit template instantiations can also be deferred in C++.
5704    if (Linkage == GVA_Internal  || Linkage == GVA_C99Inline ||
5705        Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation)
5706      return false;
5707    return true;
5708  }
5709
5710  const VarDecl *VD = cast<VarDecl>(D);
5711  assert(VD->isFileVarDecl() && "Expected file scoped var");
5712
5713  if (VD->isThisDeclarationADefinition() == VarDecl::DeclarationOnly)
5714    return false;
5715
5716  // Structs that have non-trivial constructors or destructors are required.
5717
5718  // FIXME: Handle references.
5719  if (const RecordType *RT = VD->getType()->getAs<RecordType>()) {
5720    if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
5721      if (RD->hasDefinition() &&
5722          (!RD->hasTrivialConstructor() || !RD->hasTrivialDestructor()))
5723        return true;
5724    }
5725  }
5726
5727  GVALinkage L = GetGVALinkageForVariable(VD);
5728  if (L == GVA_Internal || L == GVA_TemplateInstantiation) {
5729    if (!(VD->getInit() && VD->getInit()->HasSideEffects(*this)))
5730      return false;
5731  }
5732
5733  return true;
5734}
5735
5736CallingConv ASTContext::getDefaultMethodCallConv() {
5737  // Pass through to the C++ ABI object
5738  return ABI->getDefaultMethodCallConv();
5739}
5740
5741bool ASTContext::isNearlyEmpty(const CXXRecordDecl *RD) {
5742  // Pass through to the C++ ABI object
5743  return ABI->isNearlyEmpty(RD);
5744}
5745
5746CXXABI::~CXXABI() {}
5747