ASTContext.cpp revision 127102b5196ffe04bdb70fd553fe62c265ab10a9
1//===--- ASTContext.cpp - Context to hold long-lived AST nodes ------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements the ASTContext interface.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/AST/ASTContext.h"
15#include "clang/AST/DeclCXX.h"
16#include "clang/AST/DeclObjC.h"
17#include "clang/AST/DeclTemplate.h"
18#include "clang/AST/Expr.h"
19#include "clang/AST/ExternalASTSource.h"
20#include "clang/AST/RecordLayout.h"
21#include "clang/Basic/Builtins.h"
22#include "clang/Basic/SourceManager.h"
23#include "clang/Basic/TargetInfo.h"
24#include "llvm/ADT/StringExtras.h"
25#include "llvm/Support/MathExtras.h"
26#include "llvm/Support/MemoryBuffer.h"
27using namespace clang;
28
29enum FloatingRank {
30  FloatRank, DoubleRank, LongDoubleRank
31};
32
33ASTContext::ASTContext(const LangOptions& LOpts, SourceManager &SM,
34                       TargetInfo &t,
35                       IdentifierTable &idents, SelectorTable &sels,
36                       Builtin::Context &builtins,
37                       bool FreeMem, unsigned size_reserve) :
38  GlobalNestedNameSpecifier(0), CFConstantStringTypeDecl(0),
39  ObjCFastEnumerationStateTypeDecl(0), SourceMgr(SM), LangOpts(LOpts),
40  FreeMemory(FreeMem), Target(t), Idents(idents), Selectors(sels),
41  BuiltinInfo(builtins), ExternalSource(0) {
42  if (size_reserve > 0) Types.reserve(size_reserve);
43  InitBuiltinTypes();
44  TUDecl = TranslationUnitDecl::Create(*this);
45  PrintingPolicy.CPlusPlus = LangOpts.CPlusPlus;
46}
47
48ASTContext::~ASTContext() {
49  // Deallocate all the types.
50  while (!Types.empty()) {
51    Types.back()->Destroy(*this);
52    Types.pop_back();
53  }
54
55  {
56    llvm::DenseMap<const RecordDecl*, const ASTRecordLayout*>::iterator
57      I = ASTRecordLayouts.begin(), E = ASTRecordLayouts.end();
58    while (I != E) {
59      ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second);
60      delete R;
61    }
62  }
63
64  {
65    llvm::DenseMap<const ObjCContainerDecl*, const ASTRecordLayout*>::iterator
66      I = ObjCLayouts.begin(), E = ObjCLayouts.end();
67    while (I != E) {
68      ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second);
69      delete R;
70    }
71  }
72
73  // Destroy nested-name-specifiers.
74  for (llvm::FoldingSet<NestedNameSpecifier>::iterator
75         NNS = NestedNameSpecifiers.begin(),
76         NNSEnd = NestedNameSpecifiers.end();
77       NNS != NNSEnd;
78       /* Increment in loop */)
79    (*NNS++).Destroy(*this);
80
81  if (GlobalNestedNameSpecifier)
82    GlobalNestedNameSpecifier->Destroy(*this);
83
84  TUDecl->Destroy(*this);
85}
86
87void
88ASTContext::setExternalSource(llvm::OwningPtr<ExternalASTSource> &Source) {
89  ExternalSource.reset(Source.take());
90}
91
92void ASTContext::PrintStats() const {
93  fprintf(stderr, "*** AST Context Stats:\n");
94  fprintf(stderr, "  %d types total.\n", (int)Types.size());
95
96  unsigned counts[] = {
97#define TYPE(Name, Parent) 0,
98#define ABSTRACT_TYPE(Name, Parent)
99#include "clang/AST/TypeNodes.def"
100    0 // Extra
101  };
102
103  for (unsigned i = 0, e = Types.size(); i != e; ++i) {
104    Type *T = Types[i];
105    counts[(unsigned)T->getTypeClass()]++;
106  }
107
108  unsigned Idx = 0;
109  unsigned TotalBytes = 0;
110#define TYPE(Name, Parent)                                              \
111  if (counts[Idx])                                                      \
112    fprintf(stderr, "    %d %s types\n", (int)counts[Idx], #Name);      \
113  TotalBytes += counts[Idx] * sizeof(Name##Type);                       \
114  ++Idx;
115#define ABSTRACT_TYPE(Name, Parent)
116#include "clang/AST/TypeNodes.def"
117
118  fprintf(stderr, "Total bytes = %d\n", int(TotalBytes));
119
120  if (ExternalSource.get()) {
121    fprintf(stderr, "\n");
122    ExternalSource->PrintStats();
123  }
124}
125
126
127void ASTContext::InitBuiltinType(QualType &R, BuiltinType::Kind K) {
128  Types.push_back((R = QualType(new (*this,8) BuiltinType(K),0)).getTypePtr());
129}
130
131void ASTContext::InitBuiltinTypes() {
132  assert(VoidTy.isNull() && "Context reinitialized?");
133
134  // C99 6.2.5p19.
135  InitBuiltinType(VoidTy,              BuiltinType::Void);
136
137  // C99 6.2.5p2.
138  InitBuiltinType(BoolTy,              BuiltinType::Bool);
139  // C99 6.2.5p3.
140  if (LangOpts.CharIsSigned)
141    InitBuiltinType(CharTy,            BuiltinType::Char_S);
142  else
143    InitBuiltinType(CharTy,            BuiltinType::Char_U);
144  // C99 6.2.5p4.
145  InitBuiltinType(SignedCharTy,        BuiltinType::SChar);
146  InitBuiltinType(ShortTy,             BuiltinType::Short);
147  InitBuiltinType(IntTy,               BuiltinType::Int);
148  InitBuiltinType(LongTy,              BuiltinType::Long);
149  InitBuiltinType(LongLongTy,          BuiltinType::LongLong);
150
151  // C99 6.2.5p6.
152  InitBuiltinType(UnsignedCharTy,      BuiltinType::UChar);
153  InitBuiltinType(UnsignedShortTy,     BuiltinType::UShort);
154  InitBuiltinType(UnsignedIntTy,       BuiltinType::UInt);
155  InitBuiltinType(UnsignedLongTy,      BuiltinType::ULong);
156  InitBuiltinType(UnsignedLongLongTy,  BuiltinType::ULongLong);
157
158  // C99 6.2.5p10.
159  InitBuiltinType(FloatTy,             BuiltinType::Float);
160  InitBuiltinType(DoubleTy,            BuiltinType::Double);
161  InitBuiltinType(LongDoubleTy,        BuiltinType::LongDouble);
162
163  // GNU extension, 128-bit integers.
164  InitBuiltinType(Int128Ty,            BuiltinType::Int128);
165  InitBuiltinType(UnsignedInt128Ty,    BuiltinType::UInt128);
166
167  if (LangOpts.CPlusPlus) // C++ 3.9.1p5
168    InitBuiltinType(WCharTy,           BuiltinType::WChar);
169  else // C99
170    WCharTy = getFromTargetType(Target.getWCharType());
171
172  // Placeholder type for functions.
173  InitBuiltinType(OverloadTy,          BuiltinType::Overload);
174
175  // Placeholder type for type-dependent expressions whose type is
176  // completely unknown. No code should ever check a type against
177  // DependentTy and users should never see it; however, it is here to
178  // help diagnose failures to properly check for type-dependent
179  // expressions.
180  InitBuiltinType(DependentTy,         BuiltinType::Dependent);
181
182  // Placeholder type for C++0x auto declarations whose real type has
183  // not yet been deduced.
184  InitBuiltinType(UndeducedAutoTy, BuiltinType::UndeducedAuto);
185
186  // C99 6.2.5p11.
187  FloatComplexTy      = getComplexType(FloatTy);
188  DoubleComplexTy     = getComplexType(DoubleTy);
189  LongDoubleComplexTy = getComplexType(LongDoubleTy);
190
191  BuiltinVaListType = QualType();
192  ObjCIdType = QualType();
193  IdStructType = 0;
194  ObjCClassType = QualType();
195  ClassStructType = 0;
196
197  ObjCConstantStringType = QualType();
198
199  // void * type
200  VoidPtrTy = getPointerType(VoidTy);
201
202  // nullptr type (C++0x 2.14.7)
203  InitBuiltinType(NullPtrTy,           BuiltinType::NullPtr);
204}
205
206//===----------------------------------------------------------------------===//
207//                         Type Sizing and Analysis
208//===----------------------------------------------------------------------===//
209
210/// getFloatTypeSemantics - Return the APFloat 'semantics' for the specified
211/// scalar floating point type.
212const llvm::fltSemantics &ASTContext::getFloatTypeSemantics(QualType T) const {
213  const BuiltinType *BT = T->getAsBuiltinType();
214  assert(BT && "Not a floating point type!");
215  switch (BT->getKind()) {
216  default: assert(0 && "Not a floating point type!");
217  case BuiltinType::Float:      return Target.getFloatFormat();
218  case BuiltinType::Double:     return Target.getDoubleFormat();
219  case BuiltinType::LongDouble: return Target.getLongDoubleFormat();
220  }
221}
222
223/// getDeclAlign - Return a conservative estimate of the alignment of the
224/// specified decl.  Note that bitfields do not have a valid alignment, so
225/// this method will assert on them.
226unsigned ASTContext::getDeclAlignInBytes(const Decl *D) {
227  unsigned Align = Target.getCharWidth();
228
229  if (const AlignedAttr* AA = D->getAttr<AlignedAttr>(*this))
230    Align = std::max(Align, AA->getAlignment());
231
232  if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
233    QualType T = VD->getType();
234    if (const ReferenceType* RT = T->getAsReferenceType()) {
235      unsigned AS = RT->getPointeeType().getAddressSpace();
236      Align = Target.getPointerAlign(AS);
237    } else if (!T->isIncompleteType() && !T->isFunctionType()) {
238      // Incomplete or function types default to 1.
239      while (isa<VariableArrayType>(T) || isa<IncompleteArrayType>(T))
240        T = cast<ArrayType>(T)->getElementType();
241
242      Align = std::max(Align, getPreferredTypeAlign(T.getTypePtr()));
243    }
244  }
245
246  return Align / Target.getCharWidth();
247}
248
249/// getTypeSize - Return the size of the specified type, in bits.  This method
250/// does not work on incomplete types.
251std::pair<uint64_t, unsigned>
252ASTContext::getTypeInfo(const Type *T) {
253  uint64_t Width=0;
254  unsigned Align=8;
255  switch (T->getTypeClass()) {
256#define TYPE(Class, Base)
257#define ABSTRACT_TYPE(Class, Base)
258#define NON_CANONICAL_TYPE(Class, Base)
259#define DEPENDENT_TYPE(Class, Base) case Type::Class:
260#include "clang/AST/TypeNodes.def"
261    assert(false && "Should not see dependent types");
262    break;
263
264  case Type::FunctionNoProto:
265  case Type::FunctionProto:
266    // GCC extension: alignof(function) = 32 bits
267    Width = 0;
268    Align = 32;
269    break;
270
271  case Type::IncompleteArray:
272  case Type::VariableArray:
273    Width = 0;
274    Align = getTypeAlign(cast<ArrayType>(T)->getElementType());
275    break;
276
277  case Type::ConstantArray: {
278    const ConstantArrayType *CAT = cast<ConstantArrayType>(T);
279
280    std::pair<uint64_t, unsigned> EltInfo = getTypeInfo(CAT->getElementType());
281    Width = EltInfo.first*CAT->getSize().getZExtValue();
282    Align = EltInfo.second;
283    break;
284  }
285  case Type::ExtVector:
286  case Type::Vector: {
287    std::pair<uint64_t, unsigned> EltInfo =
288      getTypeInfo(cast<VectorType>(T)->getElementType());
289    Width = EltInfo.first*cast<VectorType>(T)->getNumElements();
290    Align = Width;
291    // If the alignment is not a power of 2, round up to the next power of 2.
292    // This happens for non-power-of-2 length vectors.
293    // FIXME: this should probably be a target property.
294    Align = 1 << llvm::Log2_32_Ceil(Align);
295    break;
296  }
297
298  case Type::Builtin:
299    switch (cast<BuiltinType>(T)->getKind()) {
300    default: assert(0 && "Unknown builtin type!");
301    case BuiltinType::Void:
302      // GCC extension: alignof(void) = 8 bits.
303      Width = 0;
304      Align = 8;
305      break;
306
307    case BuiltinType::Bool:
308      Width = Target.getBoolWidth();
309      Align = Target.getBoolAlign();
310      break;
311    case BuiltinType::Char_S:
312    case BuiltinType::Char_U:
313    case BuiltinType::UChar:
314    case BuiltinType::SChar:
315      Width = Target.getCharWidth();
316      Align = Target.getCharAlign();
317      break;
318    case BuiltinType::WChar:
319      Width = Target.getWCharWidth();
320      Align = Target.getWCharAlign();
321      break;
322    case BuiltinType::UShort:
323    case BuiltinType::Short:
324      Width = Target.getShortWidth();
325      Align = Target.getShortAlign();
326      break;
327    case BuiltinType::UInt:
328    case BuiltinType::Int:
329      Width = Target.getIntWidth();
330      Align = Target.getIntAlign();
331      break;
332    case BuiltinType::ULong:
333    case BuiltinType::Long:
334      Width = Target.getLongWidth();
335      Align = Target.getLongAlign();
336      break;
337    case BuiltinType::ULongLong:
338    case BuiltinType::LongLong:
339      Width = Target.getLongLongWidth();
340      Align = Target.getLongLongAlign();
341      break;
342    case BuiltinType::Int128:
343    case BuiltinType::UInt128:
344      Width = 128;
345      Align = 128; // int128_t is 128-bit aligned on all targets.
346      break;
347    case BuiltinType::Float:
348      Width = Target.getFloatWidth();
349      Align = Target.getFloatAlign();
350      break;
351    case BuiltinType::Double:
352      Width = Target.getDoubleWidth();
353      Align = Target.getDoubleAlign();
354      break;
355    case BuiltinType::LongDouble:
356      Width = Target.getLongDoubleWidth();
357      Align = Target.getLongDoubleAlign();
358      break;
359    case BuiltinType::NullPtr:
360      Width = Target.getPointerWidth(0); // C++ 3.9.1p11: sizeof(nullptr_t)
361      Align = Target.getPointerAlign(0); //   == sizeof(void*)
362      break;
363    }
364    break;
365  case Type::FixedWidthInt:
366    // FIXME: This isn't precisely correct; the width/alignment should depend
367    // on the available types for the target
368    Width = cast<FixedWidthIntType>(T)->getWidth();
369    Width = std::max(llvm::NextPowerOf2(Width - 1), (uint64_t)8);
370    Align = Width;
371    break;
372  case Type::ExtQual:
373    // FIXME: Pointers into different addr spaces could have different sizes and
374    // alignment requirements: getPointerInfo should take an AddrSpace.
375    return getTypeInfo(QualType(cast<ExtQualType>(T)->getBaseType(), 0));
376  case Type::ObjCObjectPointer:
377  case Type::ObjCQualifiedInterface:
378    Width = Target.getPointerWidth(0);
379    Align = Target.getPointerAlign(0);
380    break;
381  case Type::BlockPointer: {
382    unsigned AS = cast<BlockPointerType>(T)->getPointeeType().getAddressSpace();
383    Width = Target.getPointerWidth(AS);
384    Align = Target.getPointerAlign(AS);
385    break;
386  }
387  case Type::Pointer: {
388    unsigned AS = cast<PointerType>(T)->getPointeeType().getAddressSpace();
389    Width = Target.getPointerWidth(AS);
390    Align = Target.getPointerAlign(AS);
391    break;
392  }
393  case Type::LValueReference:
394  case Type::RValueReference:
395    // "When applied to a reference or a reference type, the result is the size
396    // of the referenced type." C++98 5.3.3p2: expr.sizeof.
397    // FIXME: This is wrong for struct layout: a reference in a struct has
398    // pointer size.
399    return getTypeInfo(cast<ReferenceType>(T)->getPointeeType());
400  case Type::MemberPointer: {
401    // FIXME: This is ABI dependent. We use the Itanium C++ ABI.
402    // http://www.codesourcery.com/public/cxx-abi/abi.html#member-pointers
403    // If we ever want to support other ABIs this needs to be abstracted.
404
405    QualType Pointee = cast<MemberPointerType>(T)->getPointeeType();
406    std::pair<uint64_t, unsigned> PtrDiffInfo =
407      getTypeInfo(getPointerDiffType());
408    Width = PtrDiffInfo.first;
409    if (Pointee->isFunctionType())
410      Width *= 2;
411    Align = PtrDiffInfo.second;
412    break;
413  }
414  case Type::Complex: {
415    // Complex types have the same alignment as their elements, but twice the
416    // size.
417    std::pair<uint64_t, unsigned> EltInfo =
418      getTypeInfo(cast<ComplexType>(T)->getElementType());
419    Width = EltInfo.first*2;
420    Align = EltInfo.second;
421    break;
422  }
423  case Type::ObjCInterface: {
424    const ObjCInterfaceType *ObjCI = cast<ObjCInterfaceType>(T);
425    const ASTRecordLayout &Layout = getASTObjCInterfaceLayout(ObjCI->getDecl());
426    Width = Layout.getSize();
427    Align = Layout.getAlignment();
428    break;
429  }
430  case Type::Record:
431  case Type::Enum: {
432    const TagType *TT = cast<TagType>(T);
433
434    if (TT->getDecl()->isInvalidDecl()) {
435      Width = 1;
436      Align = 1;
437      break;
438    }
439
440    if (const EnumType *ET = dyn_cast<EnumType>(TT))
441      return getTypeInfo(ET->getDecl()->getIntegerType());
442
443    const RecordType *RT = cast<RecordType>(TT);
444    const ASTRecordLayout &Layout = getASTRecordLayout(RT->getDecl());
445    Width = Layout.getSize();
446    Align = Layout.getAlignment();
447    break;
448  }
449
450  case Type::Typedef: {
451    const TypedefDecl *Typedef = cast<TypedefType>(T)->getDecl();
452    if (const AlignedAttr *Aligned = Typedef->getAttr<AlignedAttr>(*this)) {
453      Align = Aligned->getAlignment();
454      Width = getTypeSize(Typedef->getUnderlyingType().getTypePtr());
455    } else
456      return getTypeInfo(Typedef->getUnderlyingType().getTypePtr());
457    break;
458  }
459
460  case Type::TypeOfExpr:
461    return getTypeInfo(cast<TypeOfExprType>(T)->getUnderlyingExpr()->getType()
462                         .getTypePtr());
463
464  case Type::TypeOf:
465    return getTypeInfo(cast<TypeOfType>(T)->getUnderlyingType().getTypePtr());
466
467  case Type::Decltype:
468    return getTypeInfo(cast<DecltypeType>(T)->getUnderlyingExpr()->getType()
469                        .getTypePtr());
470
471  case Type::QualifiedName:
472    return getTypeInfo(cast<QualifiedNameType>(T)->getNamedType().getTypePtr());
473
474  case Type::TemplateSpecialization:
475    assert(getCanonicalType(T) != T &&
476           "Cannot request the size of a dependent type");
477    // FIXME: this is likely to be wrong once we support template
478    // aliases, since a template alias could refer to a typedef that
479    // has an __aligned__ attribute on it.
480    return getTypeInfo(getCanonicalType(T));
481  }
482
483  assert(Align && (Align & (Align-1)) == 0 && "Alignment must be power of 2");
484  return std::make_pair(Width, Align);
485}
486
487/// getPreferredTypeAlign - Return the "preferred" alignment of the specified
488/// type for the current target in bits.  This can be different than the ABI
489/// alignment in cases where it is beneficial for performance to overalign
490/// a data type.
491unsigned ASTContext::getPreferredTypeAlign(const Type *T) {
492  unsigned ABIAlign = getTypeAlign(T);
493
494  // Double and long long should be naturally aligned if possible.
495  if (const ComplexType* CT = T->getAsComplexType())
496    T = CT->getElementType().getTypePtr();
497  if (T->isSpecificBuiltinType(BuiltinType::Double) ||
498      T->isSpecificBuiltinType(BuiltinType::LongLong))
499    return std::max(ABIAlign, (unsigned)getTypeSize(T));
500
501  return ABIAlign;
502}
503
504
505/// LayoutField - Field layout.
506void ASTRecordLayout::LayoutField(const FieldDecl *FD, unsigned FieldNo,
507                                  bool IsUnion, unsigned StructPacking,
508                                  ASTContext &Context) {
509  unsigned FieldPacking = StructPacking;
510  uint64_t FieldOffset = IsUnion ? 0 : Size;
511  uint64_t FieldSize;
512  unsigned FieldAlign;
513
514  // FIXME: Should this override struct packing? Probably we want to
515  // take the minimum?
516  if (const PackedAttr *PA = FD->getAttr<PackedAttr>(Context))
517    FieldPacking = PA->getAlignment();
518
519  if (const Expr *BitWidthExpr = FD->getBitWidth()) {
520    // TODO: Need to check this algorithm on other targets!
521    //       (tested on Linux-X86)
522    FieldSize = BitWidthExpr->EvaluateAsInt(Context).getZExtValue();
523
524    std::pair<uint64_t, unsigned> FieldInfo =
525      Context.getTypeInfo(FD->getType());
526    uint64_t TypeSize = FieldInfo.first;
527
528    // Determine the alignment of this bitfield. The packing
529    // attributes define a maximum and the alignment attribute defines
530    // a minimum.
531    // FIXME: What is the right behavior when the specified alignment
532    // is smaller than the specified packing?
533    FieldAlign = FieldInfo.second;
534    if (FieldPacking)
535      FieldAlign = std::min(FieldAlign, FieldPacking);
536    if (const AlignedAttr *AA = FD->getAttr<AlignedAttr>(Context))
537      FieldAlign = std::max(FieldAlign, AA->getAlignment());
538
539    // Check if we need to add padding to give the field the correct
540    // alignment.
541    if (FieldSize == 0 || (FieldOffset & (FieldAlign-1)) + FieldSize > TypeSize)
542      FieldOffset = (FieldOffset + (FieldAlign-1)) & ~(FieldAlign-1);
543
544    // Padding members don't affect overall alignment
545    if (!FD->getIdentifier())
546      FieldAlign = 1;
547  } else {
548    if (FD->getType()->isIncompleteArrayType()) {
549      // This is a flexible array member; we can't directly
550      // query getTypeInfo about these, so we figure it out here.
551      // Flexible array members don't have any size, but they
552      // have to be aligned appropriately for their element type.
553      FieldSize = 0;
554      const ArrayType* ATy = Context.getAsArrayType(FD->getType());
555      FieldAlign = Context.getTypeAlign(ATy->getElementType());
556    } else if (const ReferenceType *RT = FD->getType()->getAsReferenceType()) {
557      unsigned AS = RT->getPointeeType().getAddressSpace();
558      FieldSize = Context.Target.getPointerWidth(AS);
559      FieldAlign = Context.Target.getPointerAlign(AS);
560    } else {
561      std::pair<uint64_t, unsigned> FieldInfo =
562        Context.getTypeInfo(FD->getType());
563      FieldSize = FieldInfo.first;
564      FieldAlign = FieldInfo.second;
565    }
566
567    // Determine the alignment of this bitfield. The packing
568    // attributes define a maximum and the alignment attribute defines
569    // a minimum. Additionally, the packing alignment must be at least
570    // a byte for non-bitfields.
571    //
572    // FIXME: What is the right behavior when the specified alignment
573    // is smaller than the specified packing?
574    if (FieldPacking)
575      FieldAlign = std::min(FieldAlign, std::max(8U, FieldPacking));
576    if (const AlignedAttr *AA = FD->getAttr<AlignedAttr>(Context))
577      FieldAlign = std::max(FieldAlign, AA->getAlignment());
578
579    // Round up the current record size to the field's alignment boundary.
580    FieldOffset = (FieldOffset + (FieldAlign-1)) & ~(FieldAlign-1);
581  }
582
583  // Place this field at the current location.
584  FieldOffsets[FieldNo] = FieldOffset;
585
586  // Reserve space for this field.
587  if (IsUnion) {
588    Size = std::max(Size, FieldSize);
589  } else {
590    Size = FieldOffset + FieldSize;
591  }
592
593  // Remember the next available offset.
594  NextOffset = Size;
595
596  // Remember max struct/class alignment.
597  Alignment = std::max(Alignment, FieldAlign);
598}
599
600static void CollectLocalObjCIvars(ASTContext *Ctx,
601                                  const ObjCInterfaceDecl *OI,
602                                  llvm::SmallVectorImpl<FieldDecl*> &Fields) {
603  for (ObjCInterfaceDecl::ivar_iterator I = OI->ivar_begin(),
604       E = OI->ivar_end(); I != E; ++I) {
605    ObjCIvarDecl *IVDecl = *I;
606    if (!IVDecl->isInvalidDecl())
607      Fields.push_back(cast<FieldDecl>(IVDecl));
608  }
609}
610
611void ASTContext::CollectObjCIvars(const ObjCInterfaceDecl *OI,
612                             llvm::SmallVectorImpl<FieldDecl*> &Fields) {
613  if (const ObjCInterfaceDecl *SuperClass = OI->getSuperClass())
614    CollectObjCIvars(SuperClass, Fields);
615  CollectLocalObjCIvars(this, OI, Fields);
616}
617
618/// ShallowCollectObjCIvars -
619/// Collect all ivars, including those synthesized, in the current class.
620///
621void ASTContext::ShallowCollectObjCIvars(const ObjCInterfaceDecl *OI,
622                                 llvm::SmallVectorImpl<ObjCIvarDecl*> &Ivars,
623                                 bool CollectSynthesized) {
624  for (ObjCInterfaceDecl::ivar_iterator I = OI->ivar_begin(),
625         E = OI->ivar_end(); I != E; ++I) {
626     Ivars.push_back(*I);
627  }
628  if (CollectSynthesized)
629    CollectSynthesizedIvars(OI, Ivars);
630}
631
632void ASTContext::CollectProtocolSynthesizedIvars(const ObjCProtocolDecl *PD,
633                                llvm::SmallVectorImpl<ObjCIvarDecl*> &Ivars) {
634  for (ObjCContainerDecl::prop_iterator I = PD->prop_begin(*this),
635       E = PD->prop_end(*this); I != E; ++I)
636    if (ObjCIvarDecl *Ivar = (*I)->getPropertyIvarDecl())
637      Ivars.push_back(Ivar);
638
639  // Also look into nested protocols.
640  for (ObjCProtocolDecl::protocol_iterator P = PD->protocol_begin(),
641       E = PD->protocol_end(); P != E; ++P)
642    CollectProtocolSynthesizedIvars(*P, Ivars);
643}
644
645/// CollectSynthesizedIvars -
646/// This routine collect synthesized ivars for the designated class.
647///
648void ASTContext::CollectSynthesizedIvars(const ObjCInterfaceDecl *OI,
649                                llvm::SmallVectorImpl<ObjCIvarDecl*> &Ivars) {
650  for (ObjCInterfaceDecl::prop_iterator I = OI->prop_begin(*this),
651       E = OI->prop_end(*this); I != E; ++I) {
652    if (ObjCIvarDecl *Ivar = (*I)->getPropertyIvarDecl())
653      Ivars.push_back(Ivar);
654  }
655  // Also look into interface's protocol list for properties declared
656  // in the protocol and whose ivars are synthesized.
657  for (ObjCInterfaceDecl::protocol_iterator P = OI->protocol_begin(),
658       PE = OI->protocol_end(); P != PE; ++P) {
659    ObjCProtocolDecl *PD = (*P);
660    CollectProtocolSynthesizedIvars(PD, Ivars);
661  }
662}
663
664unsigned ASTContext::CountProtocolSynthesizedIvars(const ObjCProtocolDecl *PD) {
665  unsigned count = 0;
666  for (ObjCContainerDecl::prop_iterator I = PD->prop_begin(*this),
667       E = PD->prop_end(*this); I != E; ++I)
668    if ((*I)->getPropertyIvarDecl())
669      ++count;
670
671  // Also look into nested protocols.
672  for (ObjCProtocolDecl::protocol_iterator P = PD->protocol_begin(),
673       E = PD->protocol_end(); P != E; ++P)
674    count += CountProtocolSynthesizedIvars(*P);
675  return count;
676}
677
678unsigned ASTContext::CountSynthesizedIvars(const ObjCInterfaceDecl *OI)
679{
680  unsigned count = 0;
681  for (ObjCInterfaceDecl::prop_iterator I = OI->prop_begin(*this),
682       E = OI->prop_end(*this); I != E; ++I) {
683    if ((*I)->getPropertyIvarDecl())
684      ++count;
685  }
686  // Also look into interface's protocol list for properties declared
687  // in the protocol and whose ivars are synthesized.
688  for (ObjCInterfaceDecl::protocol_iterator P = OI->protocol_begin(),
689       PE = OI->protocol_end(); P != PE; ++P) {
690    ObjCProtocolDecl *PD = (*P);
691    count += CountProtocolSynthesizedIvars(PD);
692  }
693  return count;
694}
695
696/// getInterfaceLayoutImpl - Get or compute information about the
697/// layout of the given interface.
698///
699/// \param Impl - If given, also include the layout of the interface's
700/// implementation. This may differ by including synthesized ivars.
701const ASTRecordLayout &
702ASTContext::getObjCLayout(const ObjCInterfaceDecl *D,
703                          const ObjCImplementationDecl *Impl) {
704  assert(!D->isForwardDecl() && "Invalid interface decl!");
705
706  // Look up this layout, if already laid out, return what we have.
707  ObjCContainerDecl *Key =
708    Impl ? (ObjCContainerDecl*) Impl : (ObjCContainerDecl*) D;
709  if (const ASTRecordLayout *Entry = ObjCLayouts[Key])
710    return *Entry;
711
712  unsigned FieldCount = D->ivar_size();
713  // Add in synthesized ivar count if laying out an implementation.
714  if (Impl) {
715    unsigned SynthCount = CountSynthesizedIvars(D);
716    FieldCount += SynthCount;
717    // If there aren't any sythesized ivars then reuse the interface
718    // entry. Note we can't cache this because we simply free all
719    // entries later; however we shouldn't look up implementations
720    // frequently.
721    if (SynthCount == 0)
722      return getObjCLayout(D, 0);
723  }
724
725  ASTRecordLayout *NewEntry = NULL;
726  if (ObjCInterfaceDecl *SD = D->getSuperClass()) {
727    const ASTRecordLayout &SL = getASTObjCInterfaceLayout(SD);
728    unsigned Alignment = SL.getAlignment();
729
730    // We start laying out ivars not at the end of the superclass
731    // structure, but at the next byte following the last field.
732    uint64_t Size = llvm::RoundUpToAlignment(SL.NextOffset, 8);
733
734    ObjCLayouts[Key] = NewEntry = new ASTRecordLayout(Size, Alignment);
735    NewEntry->InitializeLayout(FieldCount);
736  } else {
737    ObjCLayouts[Key] = NewEntry = new ASTRecordLayout();
738    NewEntry->InitializeLayout(FieldCount);
739  }
740
741  unsigned StructPacking = 0;
742  if (const PackedAttr *PA = D->getAttr<PackedAttr>(*this))
743    StructPacking = PA->getAlignment();
744
745  if (const AlignedAttr *AA = D->getAttr<AlignedAttr>(*this))
746    NewEntry->SetAlignment(std::max(NewEntry->getAlignment(),
747                                    AA->getAlignment()));
748
749  // Layout each ivar sequentially.
750  unsigned i = 0;
751  llvm::SmallVector<ObjCIvarDecl*, 16> Ivars;
752  ShallowCollectObjCIvars(D, Ivars, Impl);
753  for (unsigned k = 0, e = Ivars.size(); k != e; ++k)
754       NewEntry->LayoutField(Ivars[k], i++, false, StructPacking, *this);
755
756  // Finally, round the size of the total struct up to the alignment of the
757  // struct itself.
758  NewEntry->FinalizeLayout();
759  return *NewEntry;
760}
761
762const ASTRecordLayout &
763ASTContext::getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D) {
764  return getObjCLayout(D, 0);
765}
766
767const ASTRecordLayout &
768ASTContext::getASTObjCImplementationLayout(const ObjCImplementationDecl *D) {
769  return getObjCLayout(D->getClassInterface(), D);
770}
771
772/// getASTRecordLayout - Get or compute information about the layout of the
773/// specified record (struct/union/class), which indicates its size and field
774/// position information.
775const ASTRecordLayout &ASTContext::getASTRecordLayout(const RecordDecl *D) {
776  D = D->getDefinition(*this);
777  assert(D && "Cannot get layout of forward declarations!");
778
779  // Look up this layout, if already laid out, return what we have.
780  const ASTRecordLayout *&Entry = ASTRecordLayouts[D];
781  if (Entry) return *Entry;
782
783  // Allocate and assign into ASTRecordLayouts here.  The "Entry" reference can
784  // be invalidated (dangle) if the ASTRecordLayouts hashtable is inserted into.
785  ASTRecordLayout *NewEntry = new ASTRecordLayout();
786  Entry = NewEntry;
787
788  // FIXME: Avoid linear walk through the fields, if possible.
789  NewEntry->InitializeLayout(std::distance(D->field_begin(*this),
790                                           D->field_end(*this)));
791  bool IsUnion = D->isUnion();
792
793  unsigned StructPacking = 0;
794  if (const PackedAttr *PA = D->getAttr<PackedAttr>(*this))
795    StructPacking = PA->getAlignment();
796
797  if (const AlignedAttr *AA = D->getAttr<AlignedAttr>(*this))
798    NewEntry->SetAlignment(std::max(NewEntry->getAlignment(),
799                                    AA->getAlignment()));
800
801  // Layout each field, for now, just sequentially, respecting alignment.  In
802  // the future, this will need to be tweakable by targets.
803  unsigned FieldIdx = 0;
804  for (RecordDecl::field_iterator Field = D->field_begin(*this),
805                               FieldEnd = D->field_end(*this);
806       Field != FieldEnd; (void)++Field, ++FieldIdx)
807    NewEntry->LayoutField(*Field, FieldIdx, IsUnion, StructPacking, *this);
808
809  // Finally, round the size of the total struct up to the alignment of the
810  // struct itself.
811  NewEntry->FinalizeLayout(getLangOptions().CPlusPlus);
812  return *NewEntry;
813}
814
815//===----------------------------------------------------------------------===//
816//                   Type creation/memoization methods
817//===----------------------------------------------------------------------===//
818
819QualType ASTContext::getAddrSpaceQualType(QualType T, unsigned AddressSpace) {
820  QualType CanT = getCanonicalType(T);
821  if (CanT.getAddressSpace() == AddressSpace)
822    return T;
823
824  // If we are composing extended qualifiers together, merge together into one
825  // ExtQualType node.
826  unsigned CVRQuals = T.getCVRQualifiers();
827  QualType::GCAttrTypes GCAttr = QualType::GCNone;
828  Type *TypeNode = T.getTypePtr();
829
830  if (ExtQualType *EQT = dyn_cast<ExtQualType>(TypeNode)) {
831    // If this type already has an address space specified, it cannot get
832    // another one.
833    assert(EQT->getAddressSpace() == 0 &&
834           "Type cannot be in multiple addr spaces!");
835    GCAttr = EQT->getObjCGCAttr();
836    TypeNode = EQT->getBaseType();
837  }
838
839  // Check if we've already instantiated this type.
840  llvm::FoldingSetNodeID ID;
841  ExtQualType::Profile(ID, TypeNode, AddressSpace, GCAttr);
842  void *InsertPos = 0;
843  if (ExtQualType *EXTQy = ExtQualTypes.FindNodeOrInsertPos(ID, InsertPos))
844    return QualType(EXTQy, CVRQuals);
845
846  // If the base type isn't canonical, this won't be a canonical type either,
847  // so fill in the canonical type field.
848  QualType Canonical;
849  if (!TypeNode->isCanonical()) {
850    Canonical = getAddrSpaceQualType(CanT, AddressSpace);
851
852    // Update InsertPos, the previous call could have invalidated it.
853    ExtQualType *NewIP = ExtQualTypes.FindNodeOrInsertPos(ID, InsertPos);
854    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
855  }
856  ExtQualType *New =
857    new (*this, 8) ExtQualType(TypeNode, Canonical, AddressSpace, GCAttr);
858  ExtQualTypes.InsertNode(New, InsertPos);
859  Types.push_back(New);
860  return QualType(New, CVRQuals);
861}
862
863QualType ASTContext::getObjCGCQualType(QualType T,
864                                       QualType::GCAttrTypes GCAttr) {
865  QualType CanT = getCanonicalType(T);
866  if (CanT.getObjCGCAttr() == GCAttr)
867    return T;
868
869  if (T->isPointerType()) {
870    QualType Pointee = T->getAsPointerType()->getPointeeType();
871    if (Pointee->isPointerType()) {
872      QualType ResultType = getObjCGCQualType(Pointee, GCAttr);
873      return getPointerType(ResultType);
874    }
875  }
876  // If we are composing extended qualifiers together, merge together into one
877  // ExtQualType node.
878  unsigned CVRQuals = T.getCVRQualifiers();
879  Type *TypeNode = T.getTypePtr();
880  unsigned AddressSpace = 0;
881
882  if (ExtQualType *EQT = dyn_cast<ExtQualType>(TypeNode)) {
883    // If this type already has an address space specified, it cannot get
884    // another one.
885    assert(EQT->getObjCGCAttr() == QualType::GCNone &&
886           "Type cannot be in multiple addr spaces!");
887    AddressSpace = EQT->getAddressSpace();
888    TypeNode = EQT->getBaseType();
889  }
890
891  // Check if we've already instantiated an gc qual'd type of this type.
892  llvm::FoldingSetNodeID ID;
893  ExtQualType::Profile(ID, TypeNode, AddressSpace, GCAttr);
894  void *InsertPos = 0;
895  if (ExtQualType *EXTQy = ExtQualTypes.FindNodeOrInsertPos(ID, InsertPos))
896    return QualType(EXTQy, CVRQuals);
897
898  // If the base type isn't canonical, this won't be a canonical type either,
899  // so fill in the canonical type field.
900  // FIXME: Isn't this also not canonical if the base type is a array
901  // or pointer type?  I can't find any documentation for objc_gc, though...
902  QualType Canonical;
903  if (!T->isCanonical()) {
904    Canonical = getObjCGCQualType(CanT, GCAttr);
905
906    // Update InsertPos, the previous call could have invalidated it.
907    ExtQualType *NewIP = ExtQualTypes.FindNodeOrInsertPos(ID, InsertPos);
908    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
909  }
910  ExtQualType *New =
911    new (*this, 8) ExtQualType(TypeNode, Canonical, AddressSpace, GCAttr);
912  ExtQualTypes.InsertNode(New, InsertPos);
913  Types.push_back(New);
914  return QualType(New, CVRQuals);
915}
916
917/// getComplexType - Return the uniqued reference to the type for a complex
918/// number with the specified element type.
919QualType ASTContext::getComplexType(QualType T) {
920  // Unique pointers, to guarantee there is only one pointer of a particular
921  // structure.
922  llvm::FoldingSetNodeID ID;
923  ComplexType::Profile(ID, T);
924
925  void *InsertPos = 0;
926  if (ComplexType *CT = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos))
927    return QualType(CT, 0);
928
929  // If the pointee type isn't canonical, this won't be a canonical type either,
930  // so fill in the canonical type field.
931  QualType Canonical;
932  if (!T->isCanonical()) {
933    Canonical = getComplexType(getCanonicalType(T));
934
935    // Get the new insert position for the node we care about.
936    ComplexType *NewIP = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos);
937    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
938  }
939  ComplexType *New = new (*this,8) ComplexType(T, Canonical);
940  Types.push_back(New);
941  ComplexTypes.InsertNode(New, InsertPos);
942  return QualType(New, 0);
943}
944
945QualType ASTContext::getFixedWidthIntType(unsigned Width, bool Signed) {
946  llvm::DenseMap<unsigned, FixedWidthIntType*> &Map = Signed ?
947     SignedFixedWidthIntTypes : UnsignedFixedWidthIntTypes;
948  FixedWidthIntType *&Entry = Map[Width];
949  if (!Entry)
950    Entry = new FixedWidthIntType(Width, Signed);
951  return QualType(Entry, 0);
952}
953
954/// getPointerType - Return the uniqued reference to the type for a pointer to
955/// the specified type.
956QualType ASTContext::getPointerType(QualType T) {
957  // Unique pointers, to guarantee there is only one pointer of a particular
958  // structure.
959  llvm::FoldingSetNodeID ID;
960  PointerType::Profile(ID, T);
961
962  void *InsertPos = 0;
963  if (PointerType *PT = PointerTypes.FindNodeOrInsertPos(ID, InsertPos))
964    return QualType(PT, 0);
965
966  // If the pointee type isn't canonical, this won't be a canonical type either,
967  // so fill in the canonical type field.
968  QualType Canonical;
969  if (!T->isCanonical()) {
970    Canonical = getPointerType(getCanonicalType(T));
971
972    // Get the new insert position for the node we care about.
973    PointerType *NewIP = PointerTypes.FindNodeOrInsertPos(ID, InsertPos);
974    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
975  }
976  PointerType *New = new (*this,8) PointerType(T, Canonical);
977  Types.push_back(New);
978  PointerTypes.InsertNode(New, InsertPos);
979  return QualType(New, 0);
980}
981
982/// getBlockPointerType - Return the uniqued reference to the type for
983/// a pointer to the specified block.
984QualType ASTContext::getBlockPointerType(QualType T) {
985  assert(T->isFunctionType() && "block of function types only");
986  // Unique pointers, to guarantee there is only one block of a particular
987  // structure.
988  llvm::FoldingSetNodeID ID;
989  BlockPointerType::Profile(ID, T);
990
991  void *InsertPos = 0;
992  if (BlockPointerType *PT =
993        BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
994    return QualType(PT, 0);
995
996  // If the block pointee type isn't canonical, this won't be a canonical
997  // type either so fill in the canonical type field.
998  QualType Canonical;
999  if (!T->isCanonical()) {
1000    Canonical = getBlockPointerType(getCanonicalType(T));
1001
1002    // Get the new insert position for the node we care about.
1003    BlockPointerType *NewIP =
1004      BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
1005    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1006  }
1007  BlockPointerType *New = new (*this,8) BlockPointerType(T, Canonical);
1008  Types.push_back(New);
1009  BlockPointerTypes.InsertNode(New, InsertPos);
1010  return QualType(New, 0);
1011}
1012
1013/// getLValueReferenceType - Return the uniqued reference to the type for an
1014/// lvalue reference to the specified type.
1015QualType ASTContext::getLValueReferenceType(QualType T) {
1016  // Unique pointers, to guarantee there is only one pointer of a particular
1017  // structure.
1018  llvm::FoldingSetNodeID ID;
1019  ReferenceType::Profile(ID, T);
1020
1021  void *InsertPos = 0;
1022  if (LValueReferenceType *RT =
1023        LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
1024    return QualType(RT, 0);
1025
1026  // If the referencee type isn't canonical, this won't be a canonical type
1027  // either, so fill in the canonical type field.
1028  QualType Canonical;
1029  if (!T->isCanonical()) {
1030    Canonical = getLValueReferenceType(getCanonicalType(T));
1031
1032    // Get the new insert position for the node we care about.
1033    LValueReferenceType *NewIP =
1034      LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
1035    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1036  }
1037
1038  LValueReferenceType *New = new (*this,8) LValueReferenceType(T, Canonical);
1039  Types.push_back(New);
1040  LValueReferenceTypes.InsertNode(New, InsertPos);
1041  return QualType(New, 0);
1042}
1043
1044/// getRValueReferenceType - Return the uniqued reference to the type for an
1045/// rvalue reference to the specified type.
1046QualType ASTContext::getRValueReferenceType(QualType T) {
1047  // Unique pointers, to guarantee there is only one pointer of a particular
1048  // structure.
1049  llvm::FoldingSetNodeID ID;
1050  ReferenceType::Profile(ID, T);
1051
1052  void *InsertPos = 0;
1053  if (RValueReferenceType *RT =
1054        RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
1055    return QualType(RT, 0);
1056
1057  // If the referencee type isn't canonical, this won't be a canonical type
1058  // either, so fill in the canonical type field.
1059  QualType Canonical;
1060  if (!T->isCanonical()) {
1061    Canonical = getRValueReferenceType(getCanonicalType(T));
1062
1063    // Get the new insert position for the node we care about.
1064    RValueReferenceType *NewIP =
1065      RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
1066    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1067  }
1068
1069  RValueReferenceType *New = new (*this,8) RValueReferenceType(T, Canonical);
1070  Types.push_back(New);
1071  RValueReferenceTypes.InsertNode(New, InsertPos);
1072  return QualType(New, 0);
1073}
1074
1075/// getMemberPointerType - Return the uniqued reference to the type for a
1076/// member pointer to the specified type, in the specified class.
1077QualType ASTContext::getMemberPointerType(QualType T, const Type *Cls)
1078{
1079  // Unique pointers, to guarantee there is only one pointer of a particular
1080  // structure.
1081  llvm::FoldingSetNodeID ID;
1082  MemberPointerType::Profile(ID, T, Cls);
1083
1084  void *InsertPos = 0;
1085  if (MemberPointerType *PT =
1086      MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1087    return QualType(PT, 0);
1088
1089  // If the pointee or class type isn't canonical, this won't be a canonical
1090  // type either, so fill in the canonical type field.
1091  QualType Canonical;
1092  if (!T->isCanonical()) {
1093    Canonical = getMemberPointerType(getCanonicalType(T),getCanonicalType(Cls));
1094
1095    // Get the new insert position for the node we care about.
1096    MemberPointerType *NewIP =
1097      MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
1098    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1099  }
1100  MemberPointerType *New = new (*this,8) MemberPointerType(T, Cls, Canonical);
1101  Types.push_back(New);
1102  MemberPointerTypes.InsertNode(New, InsertPos);
1103  return QualType(New, 0);
1104}
1105
1106/// getConstantArrayType - Return the unique reference to the type for an
1107/// array of the specified element type.
1108QualType ASTContext::getConstantArrayType(QualType EltTy,
1109                                          const llvm::APInt &ArySizeIn,
1110                                          ArrayType::ArraySizeModifier ASM,
1111                                          unsigned EltTypeQuals) {
1112  assert((EltTy->isDependentType() || EltTy->isConstantSizeType()) &&
1113         "Constant array of VLAs is illegal!");
1114
1115  // Convert the array size into a canonical width matching the pointer size for
1116  // the target.
1117  llvm::APInt ArySize(ArySizeIn);
1118  ArySize.zextOrTrunc(Target.getPointerWidth(EltTy.getAddressSpace()));
1119
1120  llvm::FoldingSetNodeID ID;
1121  ConstantArrayType::Profile(ID, EltTy, ArySize, ASM, EltTypeQuals);
1122
1123  void *InsertPos = 0;
1124  if (ConstantArrayType *ATP =
1125      ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
1126    return QualType(ATP, 0);
1127
1128  // If the element type isn't canonical, this won't be a canonical type either,
1129  // so fill in the canonical type field.
1130  QualType Canonical;
1131  if (!EltTy->isCanonical()) {
1132    Canonical = getConstantArrayType(getCanonicalType(EltTy), ArySize,
1133                                     ASM, EltTypeQuals);
1134    // Get the new insert position for the node we care about.
1135    ConstantArrayType *NewIP =
1136      ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
1137    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1138  }
1139
1140  ConstantArrayType *New =
1141    new(*this,8)ConstantArrayType(EltTy, Canonical, ArySize, ASM, EltTypeQuals);
1142  ConstantArrayTypes.InsertNode(New, InsertPos);
1143  Types.push_back(New);
1144  return QualType(New, 0);
1145}
1146
1147/// getVariableArrayType - Returns a non-unique reference to the type for a
1148/// variable array of the specified element type.
1149QualType ASTContext::getVariableArrayType(QualType EltTy, Expr *NumElts,
1150                                          ArrayType::ArraySizeModifier ASM,
1151                                          unsigned EltTypeQuals) {
1152  // Since we don't unique expressions, it isn't possible to unique VLA's
1153  // that have an expression provided for their size.
1154
1155  VariableArrayType *New =
1156    new(*this,8)VariableArrayType(EltTy,QualType(), NumElts, ASM, EltTypeQuals);
1157
1158  VariableArrayTypes.push_back(New);
1159  Types.push_back(New);
1160  return QualType(New, 0);
1161}
1162
1163/// getDependentSizedArrayType - Returns a non-unique reference to
1164/// the type for a dependently-sized array of the specified element
1165/// type. FIXME: We will need these to be uniqued, or at least
1166/// comparable, at some point.
1167QualType ASTContext::getDependentSizedArrayType(QualType EltTy, Expr *NumElts,
1168                                                ArrayType::ArraySizeModifier ASM,
1169                                                unsigned EltTypeQuals) {
1170  assert((NumElts->isTypeDependent() || NumElts->isValueDependent()) &&
1171         "Size must be type- or value-dependent!");
1172
1173  // Since we don't unique expressions, it isn't possible to unique
1174  // dependently-sized array types.
1175
1176  DependentSizedArrayType *New =
1177      new (*this,8) DependentSizedArrayType(EltTy, QualType(), NumElts,
1178                                            ASM, EltTypeQuals);
1179
1180  DependentSizedArrayTypes.push_back(New);
1181  Types.push_back(New);
1182  return QualType(New, 0);
1183}
1184
1185QualType ASTContext::getIncompleteArrayType(QualType EltTy,
1186                                            ArrayType::ArraySizeModifier ASM,
1187                                            unsigned EltTypeQuals) {
1188  llvm::FoldingSetNodeID ID;
1189  IncompleteArrayType::Profile(ID, EltTy, ASM, EltTypeQuals);
1190
1191  void *InsertPos = 0;
1192  if (IncompleteArrayType *ATP =
1193       IncompleteArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
1194    return QualType(ATP, 0);
1195
1196  // If the element type isn't canonical, this won't be a canonical type
1197  // either, so fill in the canonical type field.
1198  QualType Canonical;
1199
1200  if (!EltTy->isCanonical()) {
1201    Canonical = getIncompleteArrayType(getCanonicalType(EltTy),
1202                                       ASM, EltTypeQuals);
1203
1204    // Get the new insert position for the node we care about.
1205    IncompleteArrayType *NewIP =
1206      IncompleteArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
1207    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1208  }
1209
1210  IncompleteArrayType *New = new (*this,8) IncompleteArrayType(EltTy, Canonical,
1211                                                           ASM, EltTypeQuals);
1212
1213  IncompleteArrayTypes.InsertNode(New, InsertPos);
1214  Types.push_back(New);
1215  return QualType(New, 0);
1216}
1217
1218/// getVectorType - Return the unique reference to a vector type of
1219/// the specified element type and size. VectorType must be a built-in type.
1220QualType ASTContext::getVectorType(QualType vecType, unsigned NumElts) {
1221  BuiltinType *baseType;
1222
1223  baseType = dyn_cast<BuiltinType>(getCanonicalType(vecType).getTypePtr());
1224  assert(baseType != 0 && "getVectorType(): Expecting a built-in type");
1225
1226  // Check if we've already instantiated a vector of this type.
1227  llvm::FoldingSetNodeID ID;
1228  VectorType::Profile(ID, vecType, NumElts, Type::Vector);
1229  void *InsertPos = 0;
1230  if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
1231    return QualType(VTP, 0);
1232
1233  // If the element type isn't canonical, this won't be a canonical type either,
1234  // so fill in the canonical type field.
1235  QualType Canonical;
1236  if (!vecType->isCanonical()) {
1237    Canonical = getVectorType(getCanonicalType(vecType), NumElts);
1238
1239    // Get the new insert position for the node we care about.
1240    VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
1241    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1242  }
1243  VectorType *New = new (*this,8) VectorType(vecType, NumElts, Canonical);
1244  VectorTypes.InsertNode(New, InsertPos);
1245  Types.push_back(New);
1246  return QualType(New, 0);
1247}
1248
1249/// getExtVectorType - Return the unique reference to an extended vector type of
1250/// the specified element type and size. VectorType must be a built-in type.
1251QualType ASTContext::getExtVectorType(QualType vecType, unsigned NumElts) {
1252  BuiltinType *baseType;
1253
1254  baseType = dyn_cast<BuiltinType>(getCanonicalType(vecType).getTypePtr());
1255  assert(baseType != 0 && "getExtVectorType(): Expecting a built-in type");
1256
1257  // Check if we've already instantiated a vector of this type.
1258  llvm::FoldingSetNodeID ID;
1259  VectorType::Profile(ID, vecType, NumElts, Type::ExtVector);
1260  void *InsertPos = 0;
1261  if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
1262    return QualType(VTP, 0);
1263
1264  // If the element type isn't canonical, this won't be a canonical type either,
1265  // so fill in the canonical type field.
1266  QualType Canonical;
1267  if (!vecType->isCanonical()) {
1268    Canonical = getExtVectorType(getCanonicalType(vecType), NumElts);
1269
1270    // Get the new insert position for the node we care about.
1271    VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
1272    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1273  }
1274  ExtVectorType *New = new (*this,8) ExtVectorType(vecType, NumElts, Canonical);
1275  VectorTypes.InsertNode(New, InsertPos);
1276  Types.push_back(New);
1277  return QualType(New, 0);
1278}
1279
1280QualType ASTContext::getDependentSizedExtVectorType(QualType vecType,
1281                                                    Expr *SizeExpr,
1282                                                    SourceLocation AttrLoc) {
1283  DependentSizedExtVectorType *New =
1284      new (*this,8) DependentSizedExtVectorType(vecType, QualType(),
1285                                                SizeExpr, AttrLoc);
1286
1287  DependentSizedExtVectorTypes.push_back(New);
1288  Types.push_back(New);
1289  return QualType(New, 0);
1290}
1291
1292/// getFunctionNoProtoType - Return a K&R style C function type like 'int()'.
1293///
1294QualType ASTContext::getFunctionNoProtoType(QualType ResultTy) {
1295  // Unique functions, to guarantee there is only one function of a particular
1296  // structure.
1297  llvm::FoldingSetNodeID ID;
1298  FunctionNoProtoType::Profile(ID, ResultTy);
1299
1300  void *InsertPos = 0;
1301  if (FunctionNoProtoType *FT =
1302        FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
1303    return QualType(FT, 0);
1304
1305  QualType Canonical;
1306  if (!ResultTy->isCanonical()) {
1307    Canonical = getFunctionNoProtoType(getCanonicalType(ResultTy));
1308
1309    // Get the new insert position for the node we care about.
1310    FunctionNoProtoType *NewIP =
1311      FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
1312    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1313  }
1314
1315  FunctionNoProtoType *New =new(*this,8)FunctionNoProtoType(ResultTy,Canonical);
1316  Types.push_back(New);
1317  FunctionNoProtoTypes.InsertNode(New, InsertPos);
1318  return QualType(New, 0);
1319}
1320
1321/// getFunctionType - Return a normal function type with a typed argument
1322/// list.  isVariadic indicates whether the argument list includes '...'.
1323QualType ASTContext::getFunctionType(QualType ResultTy,const QualType *ArgArray,
1324                                     unsigned NumArgs, bool isVariadic,
1325                                     unsigned TypeQuals, bool hasExceptionSpec,
1326                                     bool hasAnyExceptionSpec, unsigned NumExs,
1327                                     const QualType *ExArray) {
1328  // Unique functions, to guarantee there is only one function of a particular
1329  // structure.
1330  llvm::FoldingSetNodeID ID;
1331  FunctionProtoType::Profile(ID, ResultTy, ArgArray, NumArgs, isVariadic,
1332                             TypeQuals, hasExceptionSpec, hasAnyExceptionSpec,
1333                             NumExs, ExArray);
1334
1335  void *InsertPos = 0;
1336  if (FunctionProtoType *FTP =
1337        FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
1338    return QualType(FTP, 0);
1339
1340  // Determine whether the type being created is already canonical or not.
1341  bool isCanonical = ResultTy->isCanonical();
1342  if (hasExceptionSpec)
1343    isCanonical = false;
1344  for (unsigned i = 0; i != NumArgs && isCanonical; ++i)
1345    if (!ArgArray[i]->isCanonical())
1346      isCanonical = false;
1347
1348  // If this type isn't canonical, get the canonical version of it.
1349  // The exception spec is not part of the canonical type.
1350  QualType Canonical;
1351  if (!isCanonical) {
1352    llvm::SmallVector<QualType, 16> CanonicalArgs;
1353    CanonicalArgs.reserve(NumArgs);
1354    for (unsigned i = 0; i != NumArgs; ++i)
1355      CanonicalArgs.push_back(getCanonicalType(ArgArray[i]));
1356
1357    Canonical = getFunctionType(getCanonicalType(ResultTy),
1358                                CanonicalArgs.data(), NumArgs,
1359                                isVariadic, TypeQuals);
1360
1361    // Get the new insert position for the node we care about.
1362    FunctionProtoType *NewIP =
1363      FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
1364    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1365  }
1366
1367  // FunctionProtoType objects are allocated with extra bytes after them
1368  // for two variable size arrays (for parameter and exception types) at the
1369  // end of them.
1370  FunctionProtoType *FTP =
1371    (FunctionProtoType*)Allocate(sizeof(FunctionProtoType) +
1372                                 NumArgs*sizeof(QualType) +
1373                                 NumExs*sizeof(QualType), 8);
1374  new (FTP) FunctionProtoType(ResultTy, ArgArray, NumArgs, isVariadic,
1375                              TypeQuals, hasExceptionSpec, hasAnyExceptionSpec,
1376                              ExArray, NumExs, Canonical);
1377  Types.push_back(FTP);
1378  FunctionProtoTypes.InsertNode(FTP, InsertPos);
1379  return QualType(FTP, 0);
1380}
1381
1382/// getTypeDeclType - Return the unique reference to the type for the
1383/// specified type declaration.
1384QualType ASTContext::getTypeDeclType(TypeDecl *Decl, TypeDecl* PrevDecl) {
1385  assert(Decl && "Passed null for Decl param");
1386  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
1387
1388  if (TypedefDecl *Typedef = dyn_cast<TypedefDecl>(Decl))
1389    return getTypedefType(Typedef);
1390  else if (isa<TemplateTypeParmDecl>(Decl)) {
1391    assert(false && "Template type parameter types are always available.");
1392  } else if (ObjCInterfaceDecl *ObjCInterface = dyn_cast<ObjCInterfaceDecl>(Decl))
1393    return getObjCInterfaceType(ObjCInterface);
1394
1395  if (RecordDecl *Record = dyn_cast<RecordDecl>(Decl)) {
1396    if (PrevDecl)
1397      Decl->TypeForDecl = PrevDecl->TypeForDecl;
1398    else
1399      Decl->TypeForDecl = new (*this,8) RecordType(Record);
1400  }
1401  else if (EnumDecl *Enum = dyn_cast<EnumDecl>(Decl)) {
1402    if (PrevDecl)
1403      Decl->TypeForDecl = PrevDecl->TypeForDecl;
1404    else
1405      Decl->TypeForDecl = new (*this,8) EnumType(Enum);
1406  }
1407  else
1408    assert(false && "TypeDecl without a type?");
1409
1410  if (!PrevDecl) Types.push_back(Decl->TypeForDecl);
1411  return QualType(Decl->TypeForDecl, 0);
1412}
1413
1414/// getTypedefType - Return the unique reference to the type for the
1415/// specified typename decl.
1416QualType ASTContext::getTypedefType(TypedefDecl *Decl) {
1417  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
1418
1419  QualType Canonical = getCanonicalType(Decl->getUnderlyingType());
1420  Decl->TypeForDecl = new(*this,8) TypedefType(Type::Typedef, Decl, Canonical);
1421  Types.push_back(Decl->TypeForDecl);
1422  return QualType(Decl->TypeForDecl, 0);
1423}
1424
1425/// getObjCInterfaceType - Return the unique reference to the type for the
1426/// specified ObjC interface decl.
1427QualType ASTContext::getObjCInterfaceType(const ObjCInterfaceDecl *Decl) {
1428  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
1429
1430  ObjCInterfaceDecl *OID = const_cast<ObjCInterfaceDecl*>(Decl);
1431  Decl->TypeForDecl = new(*this,8) ObjCInterfaceType(Type::ObjCInterface, OID);
1432  Types.push_back(Decl->TypeForDecl);
1433  return QualType(Decl->TypeForDecl, 0);
1434}
1435
1436/// \brief Retrieve the template type parameter type for a template
1437/// parameter or parameter pack with the given depth, index, and (optionally)
1438/// name.
1439QualType ASTContext::getTemplateTypeParmType(unsigned Depth, unsigned Index,
1440                                             bool ParameterPack,
1441                                             IdentifierInfo *Name) {
1442  llvm::FoldingSetNodeID ID;
1443  TemplateTypeParmType::Profile(ID, Depth, Index, ParameterPack, Name);
1444  void *InsertPos = 0;
1445  TemplateTypeParmType *TypeParm
1446    = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
1447
1448  if (TypeParm)
1449    return QualType(TypeParm, 0);
1450
1451  if (Name) {
1452    QualType Canon = getTemplateTypeParmType(Depth, Index, ParameterPack);
1453    TypeParm = new (*this, 8) TemplateTypeParmType(Depth, Index, ParameterPack,
1454                                                   Name, Canon);
1455  } else
1456    TypeParm = new (*this, 8) TemplateTypeParmType(Depth, Index, ParameterPack);
1457
1458  Types.push_back(TypeParm);
1459  TemplateTypeParmTypes.InsertNode(TypeParm, InsertPos);
1460
1461  return QualType(TypeParm, 0);
1462}
1463
1464QualType
1465ASTContext::getTemplateSpecializationType(TemplateName Template,
1466                                          const TemplateArgument *Args,
1467                                          unsigned NumArgs,
1468                                          QualType Canon) {
1469  if (!Canon.isNull())
1470    Canon = getCanonicalType(Canon);
1471
1472  llvm::FoldingSetNodeID ID;
1473  TemplateSpecializationType::Profile(ID, Template, Args, NumArgs);
1474
1475  void *InsertPos = 0;
1476  TemplateSpecializationType *Spec
1477    = TemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
1478
1479  if (Spec)
1480    return QualType(Spec, 0);
1481
1482  void *Mem = Allocate((sizeof(TemplateSpecializationType) +
1483                        sizeof(TemplateArgument) * NumArgs),
1484                       8);
1485  Spec = new (Mem) TemplateSpecializationType(Template, Args, NumArgs, Canon);
1486  Types.push_back(Spec);
1487  TemplateSpecializationTypes.InsertNode(Spec, InsertPos);
1488
1489  return QualType(Spec, 0);
1490}
1491
1492QualType
1493ASTContext::getQualifiedNameType(NestedNameSpecifier *NNS,
1494                                 QualType NamedType) {
1495  llvm::FoldingSetNodeID ID;
1496  QualifiedNameType::Profile(ID, NNS, NamedType);
1497
1498  void *InsertPos = 0;
1499  QualifiedNameType *T
1500    = QualifiedNameTypes.FindNodeOrInsertPos(ID, InsertPos);
1501  if (T)
1502    return QualType(T, 0);
1503
1504  T = new (*this) QualifiedNameType(NNS, NamedType,
1505                                    getCanonicalType(NamedType));
1506  Types.push_back(T);
1507  QualifiedNameTypes.InsertNode(T, InsertPos);
1508  return QualType(T, 0);
1509}
1510
1511QualType ASTContext::getTypenameType(NestedNameSpecifier *NNS,
1512                                     const IdentifierInfo *Name,
1513                                     QualType Canon) {
1514  assert(NNS->isDependent() && "nested-name-specifier must be dependent");
1515
1516  if (Canon.isNull()) {
1517    NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
1518    if (CanonNNS != NNS)
1519      Canon = getTypenameType(CanonNNS, Name);
1520  }
1521
1522  llvm::FoldingSetNodeID ID;
1523  TypenameType::Profile(ID, NNS, Name);
1524
1525  void *InsertPos = 0;
1526  TypenameType *T
1527    = TypenameTypes.FindNodeOrInsertPos(ID, InsertPos);
1528  if (T)
1529    return QualType(T, 0);
1530
1531  T = new (*this) TypenameType(NNS, Name, Canon);
1532  Types.push_back(T);
1533  TypenameTypes.InsertNode(T, InsertPos);
1534  return QualType(T, 0);
1535}
1536
1537QualType
1538ASTContext::getTypenameType(NestedNameSpecifier *NNS,
1539                            const TemplateSpecializationType *TemplateId,
1540                            QualType Canon) {
1541  assert(NNS->isDependent() && "nested-name-specifier must be dependent");
1542
1543  if (Canon.isNull()) {
1544    NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
1545    QualType CanonType = getCanonicalType(QualType(TemplateId, 0));
1546    if (CanonNNS != NNS || CanonType != QualType(TemplateId, 0)) {
1547      const TemplateSpecializationType *CanonTemplateId
1548        = CanonType->getAsTemplateSpecializationType();
1549      assert(CanonTemplateId &&
1550             "Canonical type must also be a template specialization type");
1551      Canon = getTypenameType(CanonNNS, CanonTemplateId);
1552    }
1553  }
1554
1555  llvm::FoldingSetNodeID ID;
1556  TypenameType::Profile(ID, NNS, TemplateId);
1557
1558  void *InsertPos = 0;
1559  TypenameType *T
1560    = TypenameTypes.FindNodeOrInsertPos(ID, InsertPos);
1561  if (T)
1562    return QualType(T, 0);
1563
1564  T = new (*this) TypenameType(NNS, TemplateId, Canon);
1565  Types.push_back(T);
1566  TypenameTypes.InsertNode(T, InsertPos);
1567  return QualType(T, 0);
1568}
1569
1570/// CmpProtocolNames - Comparison predicate for sorting protocols
1571/// alphabetically.
1572static bool CmpProtocolNames(const ObjCProtocolDecl *LHS,
1573                            const ObjCProtocolDecl *RHS) {
1574  return LHS->getDeclName() < RHS->getDeclName();
1575}
1576
1577static void SortAndUniqueProtocols(ObjCProtocolDecl **&Protocols,
1578                                   unsigned &NumProtocols) {
1579  ObjCProtocolDecl **ProtocolsEnd = Protocols+NumProtocols;
1580
1581  // Sort protocols, keyed by name.
1582  std::sort(Protocols, Protocols+NumProtocols, CmpProtocolNames);
1583
1584  // Remove duplicates.
1585  ProtocolsEnd = std::unique(Protocols, ProtocolsEnd);
1586  NumProtocols = ProtocolsEnd-Protocols;
1587}
1588
1589/// getObjCObjectPointerType - Return a ObjCObjectPointerType type for
1590/// the given interface decl and the conforming protocol list.
1591QualType ASTContext::getObjCObjectPointerType(ObjCInterfaceDecl *Decl,
1592                                              ObjCProtocolDecl **Protocols,
1593                                              unsigned NumProtocols) {
1594  // Sort the protocol list alphabetically to canonicalize it.
1595  if (NumProtocols)
1596    SortAndUniqueProtocols(Protocols, NumProtocols);
1597
1598  llvm::FoldingSetNodeID ID;
1599  ObjCObjectPointerType::Profile(ID, Decl, Protocols, NumProtocols);
1600
1601  void *InsertPos = 0;
1602  if (ObjCObjectPointerType *QT =
1603              ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1604    return QualType(QT, 0);
1605
1606  // No Match;
1607  ObjCObjectPointerType *QType =
1608    new (*this,8) ObjCObjectPointerType(Decl, Protocols, NumProtocols);
1609
1610  Types.push_back(QType);
1611  ObjCObjectPointerTypes.InsertNode(QType, InsertPos);
1612  return QualType(QType, 0);
1613}
1614
1615/// getObjCQualifiedInterfaceType - Return a ObjCQualifiedInterfaceType type for
1616/// the given interface decl and the conforming protocol list.
1617QualType ASTContext::getObjCQualifiedInterfaceType(ObjCInterfaceDecl *Decl,
1618                       ObjCProtocolDecl **Protocols, unsigned NumProtocols) {
1619  // Sort the protocol list alphabetically to canonicalize it.
1620  SortAndUniqueProtocols(Protocols, NumProtocols);
1621
1622  llvm::FoldingSetNodeID ID;
1623  ObjCQualifiedInterfaceType::Profile(ID, Decl, Protocols, NumProtocols);
1624
1625  void *InsertPos = 0;
1626  if (ObjCQualifiedInterfaceType *QT =
1627      ObjCQualifiedInterfaceTypes.FindNodeOrInsertPos(ID, InsertPos))
1628    return QualType(QT, 0);
1629
1630  // No Match;
1631  ObjCQualifiedInterfaceType *QType =
1632    new (*this,8) ObjCQualifiedInterfaceType(Decl, Protocols, NumProtocols);
1633
1634  Types.push_back(QType);
1635  ObjCQualifiedInterfaceTypes.InsertNode(QType, InsertPos);
1636  return QualType(QType, 0);
1637}
1638
1639/// getTypeOfExprType - Unlike many "get<Type>" functions, we can't unique
1640/// TypeOfExprType AST's (since expression's are never shared). For example,
1641/// multiple declarations that refer to "typeof(x)" all contain different
1642/// DeclRefExpr's. This doesn't effect the type checker, since it operates
1643/// on canonical type's (which are always unique).
1644QualType ASTContext::getTypeOfExprType(Expr *tofExpr) {
1645  QualType Canonical = getCanonicalType(tofExpr->getType());
1646  TypeOfExprType *toe = new (*this,8) TypeOfExprType(tofExpr, Canonical);
1647  Types.push_back(toe);
1648  return QualType(toe, 0);
1649}
1650
1651/// getTypeOfType -  Unlike many "get<Type>" functions, we don't unique
1652/// TypeOfType AST's. The only motivation to unique these nodes would be
1653/// memory savings. Since typeof(t) is fairly uncommon, space shouldn't be
1654/// an issue. This doesn't effect the type checker, since it operates
1655/// on canonical type's (which are always unique).
1656QualType ASTContext::getTypeOfType(QualType tofType) {
1657  QualType Canonical = getCanonicalType(tofType);
1658  TypeOfType *tot = new (*this,8) TypeOfType(tofType, Canonical);
1659  Types.push_back(tot);
1660  return QualType(tot, 0);
1661}
1662
1663/// getDecltypeForExpr - Given an expr, will return the decltype for that
1664/// expression, according to the rules in C++0x [dcl.type.simple]p4
1665static QualType getDecltypeForExpr(const Expr *e, ASTContext &Context) {
1666  if (e->isTypeDependent())
1667    return Context.DependentTy;
1668
1669  // If e is an id expression or a class member access, decltype(e) is defined
1670  // as the type of the entity named by e.
1671  if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(e)) {
1672    if (const ValueDecl *VD = dyn_cast<ValueDecl>(DRE->getDecl()))
1673      return VD->getType();
1674  }
1675  if (const MemberExpr *ME = dyn_cast<MemberExpr>(e)) {
1676    if (const FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl()))
1677      return FD->getType();
1678  }
1679  // If e is a function call or an invocation of an overloaded operator,
1680  // (parentheses around e are ignored), decltype(e) is defined as the
1681  // return type of that function.
1682  if (const CallExpr *CE = dyn_cast<CallExpr>(e->IgnoreParens()))
1683    return CE->getCallReturnType();
1684
1685  QualType T = e->getType();
1686
1687  // Otherwise, where T is the type of e, if e is an lvalue, decltype(e) is
1688  // defined as T&, otherwise decltype(e) is defined as T.
1689  if (e->isLvalue(Context) == Expr::LV_Valid)
1690    T = Context.getLValueReferenceType(T);
1691
1692  return T;
1693}
1694
1695/// getDecltypeType -  Unlike many "get<Type>" functions, we don't unique
1696/// DecltypeType AST's. The only motivation to unique these nodes would be
1697/// memory savings. Since decltype(t) is fairly uncommon, space shouldn't be
1698/// an issue. This doesn't effect the type checker, since it operates
1699/// on canonical type's (which are always unique).
1700QualType ASTContext::getDecltypeType(Expr *e) {
1701  QualType T = getDecltypeForExpr(e, *this);
1702  DecltypeType *dt = new (*this, 8) DecltypeType(e, getCanonicalType(T));
1703  Types.push_back(dt);
1704  return QualType(dt, 0);
1705}
1706
1707/// getTagDeclType - Return the unique reference to the type for the
1708/// specified TagDecl (struct/union/class/enum) decl.
1709QualType ASTContext::getTagDeclType(TagDecl *Decl) {
1710  assert (Decl);
1711  return getTypeDeclType(Decl);
1712}
1713
1714/// getSizeType - Return the unique type for "size_t" (C99 7.17), the result
1715/// of the sizeof operator (C99 6.5.3.4p4). The value is target dependent and
1716/// needs to agree with the definition in <stddef.h>.
1717QualType ASTContext::getSizeType() const {
1718  return getFromTargetType(Target.getSizeType());
1719}
1720
1721/// getSignedWCharType - Return the type of "signed wchar_t".
1722/// Used when in C++, as a GCC extension.
1723QualType ASTContext::getSignedWCharType() const {
1724  // FIXME: derive from "Target" ?
1725  return WCharTy;
1726}
1727
1728/// getUnsignedWCharType - Return the type of "unsigned wchar_t".
1729/// Used when in C++, as a GCC extension.
1730QualType ASTContext::getUnsignedWCharType() const {
1731  // FIXME: derive from "Target" ?
1732  return UnsignedIntTy;
1733}
1734
1735/// getPointerDiffType - Return the unique type for "ptrdiff_t" (ref?)
1736/// defined in <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9).
1737QualType ASTContext::getPointerDiffType() const {
1738  return getFromTargetType(Target.getPtrDiffType(0));
1739}
1740
1741//===----------------------------------------------------------------------===//
1742//                              Type Operators
1743//===----------------------------------------------------------------------===//
1744
1745/// getCanonicalType - Return the canonical (structural) type corresponding to
1746/// the specified potentially non-canonical type.  The non-canonical version
1747/// of a type may have many "decorated" versions of types.  Decorators can
1748/// include typedefs, 'typeof' operators, etc. The returned type is guaranteed
1749/// to be free of any of these, allowing two canonical types to be compared
1750/// for exact equality with a simple pointer comparison.
1751QualType ASTContext::getCanonicalType(QualType T) {
1752  QualType CanType = T.getTypePtr()->getCanonicalTypeInternal();
1753
1754  // If the result has type qualifiers, make sure to canonicalize them as well.
1755  unsigned TypeQuals = T.getCVRQualifiers() | CanType.getCVRQualifiers();
1756  if (TypeQuals == 0) return CanType;
1757
1758  // If the type qualifiers are on an array type, get the canonical type of the
1759  // array with the qualifiers applied to the element type.
1760  ArrayType *AT = dyn_cast<ArrayType>(CanType);
1761  if (!AT)
1762    return CanType.getQualifiedType(TypeQuals);
1763
1764  // Get the canonical version of the element with the extra qualifiers on it.
1765  // This can recursively sink qualifiers through multiple levels of arrays.
1766  QualType NewEltTy=AT->getElementType().getWithAdditionalQualifiers(TypeQuals);
1767  NewEltTy = getCanonicalType(NewEltTy);
1768
1769  if (ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
1770    return getConstantArrayType(NewEltTy, CAT->getSize(),CAT->getSizeModifier(),
1771                                CAT->getIndexTypeQualifier());
1772  if (IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT))
1773    return getIncompleteArrayType(NewEltTy, IAT->getSizeModifier(),
1774                                  IAT->getIndexTypeQualifier());
1775
1776  if (DependentSizedArrayType *DSAT = dyn_cast<DependentSizedArrayType>(AT))
1777    return getDependentSizedArrayType(NewEltTy, DSAT->getSizeExpr(),
1778                                      DSAT->getSizeModifier(),
1779                                      DSAT->getIndexTypeQualifier());
1780
1781  VariableArrayType *VAT = cast<VariableArrayType>(AT);
1782  return getVariableArrayType(NewEltTy, VAT->getSizeExpr(),
1783                              VAT->getSizeModifier(),
1784                              VAT->getIndexTypeQualifier());
1785}
1786
1787Decl *ASTContext::getCanonicalDecl(Decl *D) {
1788  if (!D)
1789    return 0;
1790
1791  if (TagDecl *Tag = dyn_cast<TagDecl>(D)) {
1792    QualType T = getTagDeclType(Tag);
1793    return cast<TagDecl>(cast<TagType>(T.getTypePtr()->CanonicalType)
1794                         ->getDecl());
1795  }
1796
1797  if (ClassTemplateDecl *Template = dyn_cast<ClassTemplateDecl>(D)) {
1798    while (Template->getPreviousDeclaration())
1799      Template = Template->getPreviousDeclaration();
1800    return Template;
1801  }
1802
1803  if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) {
1804    while (Function->getPreviousDeclaration())
1805      Function = Function->getPreviousDeclaration();
1806    return const_cast<FunctionDecl *>(Function);
1807  }
1808
1809  if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D)) {
1810    while (FunTmpl->getPreviousDeclaration())
1811      FunTmpl = FunTmpl->getPreviousDeclaration();
1812    return FunTmpl;
1813  }
1814
1815  if (const VarDecl *Var = dyn_cast<VarDecl>(D)) {
1816    while (Var->getPreviousDeclaration())
1817      Var = Var->getPreviousDeclaration();
1818    return const_cast<VarDecl *>(Var);
1819  }
1820
1821  return D;
1822}
1823
1824TemplateName ASTContext::getCanonicalTemplateName(TemplateName Name) {
1825  // If this template name refers to a template, the canonical
1826  // template name merely stores the template itself.
1827  if (TemplateDecl *Template = Name.getAsTemplateDecl())
1828    return TemplateName(cast<TemplateDecl>(getCanonicalDecl(Template)));
1829
1830  DependentTemplateName *DTN = Name.getAsDependentTemplateName();
1831  assert(DTN && "Non-dependent template names must refer to template decls.");
1832  return DTN->CanonicalTemplateName;
1833}
1834
1835NestedNameSpecifier *
1836ASTContext::getCanonicalNestedNameSpecifier(NestedNameSpecifier *NNS) {
1837  if (!NNS)
1838    return 0;
1839
1840  switch (NNS->getKind()) {
1841  case NestedNameSpecifier::Identifier:
1842    // Canonicalize the prefix but keep the identifier the same.
1843    return NestedNameSpecifier::Create(*this,
1844                         getCanonicalNestedNameSpecifier(NNS->getPrefix()),
1845                                       NNS->getAsIdentifier());
1846
1847  case NestedNameSpecifier::Namespace:
1848    // A namespace is canonical; build a nested-name-specifier with
1849    // this namespace and no prefix.
1850    return NestedNameSpecifier::Create(*this, 0, NNS->getAsNamespace());
1851
1852  case NestedNameSpecifier::TypeSpec:
1853  case NestedNameSpecifier::TypeSpecWithTemplate: {
1854    QualType T = getCanonicalType(QualType(NNS->getAsType(), 0));
1855    NestedNameSpecifier *Prefix = 0;
1856
1857    // FIXME: This isn't the right check!
1858    if (T->isDependentType())
1859      Prefix = getCanonicalNestedNameSpecifier(NNS->getPrefix());
1860
1861    return NestedNameSpecifier::Create(*this, Prefix,
1862                 NNS->getKind() == NestedNameSpecifier::TypeSpecWithTemplate,
1863                                       T.getTypePtr());
1864  }
1865
1866  case NestedNameSpecifier::Global:
1867    // The global specifier is canonical and unique.
1868    return NNS;
1869  }
1870
1871  // Required to silence a GCC warning
1872  return 0;
1873}
1874
1875
1876const ArrayType *ASTContext::getAsArrayType(QualType T) {
1877  // Handle the non-qualified case efficiently.
1878  if (T.getCVRQualifiers() == 0) {
1879    // Handle the common positive case fast.
1880    if (const ArrayType *AT = dyn_cast<ArrayType>(T))
1881      return AT;
1882  }
1883
1884  // Handle the common negative case fast, ignoring CVR qualifiers.
1885  QualType CType = T->getCanonicalTypeInternal();
1886
1887  // Make sure to look through type qualifiers (like ExtQuals) for the negative
1888  // test.
1889  if (!isa<ArrayType>(CType) &&
1890      !isa<ArrayType>(CType.getUnqualifiedType()))
1891    return 0;
1892
1893  // Apply any CVR qualifiers from the array type to the element type.  This
1894  // implements C99 6.7.3p8: "If the specification of an array type includes
1895  // any type qualifiers, the element type is so qualified, not the array type."
1896
1897  // If we get here, we either have type qualifiers on the type, or we have
1898  // sugar such as a typedef in the way.  If we have type qualifiers on the type
1899  // we must propagate them down into the elemeng type.
1900  unsigned CVRQuals = T.getCVRQualifiers();
1901  unsigned AddrSpace = 0;
1902  Type *Ty = T.getTypePtr();
1903
1904  // Rip through ExtQualType's and typedefs to get to a concrete type.
1905  while (1) {
1906    if (const ExtQualType *EXTQT = dyn_cast<ExtQualType>(Ty)) {
1907      AddrSpace = EXTQT->getAddressSpace();
1908      Ty = EXTQT->getBaseType();
1909    } else {
1910      T = Ty->getDesugaredType();
1911      if (T.getTypePtr() == Ty && T.getCVRQualifiers() == 0)
1912        break;
1913      CVRQuals |= T.getCVRQualifiers();
1914      Ty = T.getTypePtr();
1915    }
1916  }
1917
1918  // If we have a simple case, just return now.
1919  const ArrayType *ATy = dyn_cast<ArrayType>(Ty);
1920  if (ATy == 0 || (AddrSpace == 0 && CVRQuals == 0))
1921    return ATy;
1922
1923  // Otherwise, we have an array and we have qualifiers on it.  Push the
1924  // qualifiers into the array element type and return a new array type.
1925  // Get the canonical version of the element with the extra qualifiers on it.
1926  // This can recursively sink qualifiers through multiple levels of arrays.
1927  QualType NewEltTy = ATy->getElementType();
1928  if (AddrSpace)
1929    NewEltTy = getAddrSpaceQualType(NewEltTy, AddrSpace);
1930  NewEltTy = NewEltTy.getWithAdditionalQualifiers(CVRQuals);
1931
1932  if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(ATy))
1933    return cast<ArrayType>(getConstantArrayType(NewEltTy, CAT->getSize(),
1934                                                CAT->getSizeModifier(),
1935                                                CAT->getIndexTypeQualifier()));
1936  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(ATy))
1937    return cast<ArrayType>(getIncompleteArrayType(NewEltTy,
1938                                                  IAT->getSizeModifier(),
1939                                                 IAT->getIndexTypeQualifier()));
1940
1941  if (const DependentSizedArrayType *DSAT
1942        = dyn_cast<DependentSizedArrayType>(ATy))
1943    return cast<ArrayType>(
1944                     getDependentSizedArrayType(NewEltTy,
1945                                                DSAT->getSizeExpr(),
1946                                                DSAT->getSizeModifier(),
1947                                                DSAT->getIndexTypeQualifier()));
1948
1949  const VariableArrayType *VAT = cast<VariableArrayType>(ATy);
1950  return cast<ArrayType>(getVariableArrayType(NewEltTy, VAT->getSizeExpr(),
1951                                              VAT->getSizeModifier(),
1952                                              VAT->getIndexTypeQualifier()));
1953}
1954
1955
1956/// getArrayDecayedType - Return the properly qualified result of decaying the
1957/// specified array type to a pointer.  This operation is non-trivial when
1958/// handling typedefs etc.  The canonical type of "T" must be an array type,
1959/// this returns a pointer to a properly qualified element of the array.
1960///
1961/// See C99 6.7.5.3p7 and C99 6.3.2.1p3.
1962QualType ASTContext::getArrayDecayedType(QualType Ty) {
1963  // Get the element type with 'getAsArrayType' so that we don't lose any
1964  // typedefs in the element type of the array.  This also handles propagation
1965  // of type qualifiers from the array type into the element type if present
1966  // (C99 6.7.3p8).
1967  const ArrayType *PrettyArrayType = getAsArrayType(Ty);
1968  assert(PrettyArrayType && "Not an array type!");
1969
1970  QualType PtrTy = getPointerType(PrettyArrayType->getElementType());
1971
1972  // int x[restrict 4] ->  int *restrict
1973  return PtrTy.getQualifiedType(PrettyArrayType->getIndexTypeQualifier());
1974}
1975
1976QualType ASTContext::getBaseElementType(const VariableArrayType *VAT) {
1977  QualType ElemTy = VAT->getElementType();
1978
1979  if (const VariableArrayType *VAT = getAsVariableArrayType(ElemTy))
1980    return getBaseElementType(VAT);
1981
1982  return ElemTy;
1983}
1984
1985/// getFloatingRank - Return a relative rank for floating point types.
1986/// This routine will assert if passed a built-in type that isn't a float.
1987static FloatingRank getFloatingRank(QualType T) {
1988  if (const ComplexType *CT = T->getAsComplexType())
1989    return getFloatingRank(CT->getElementType());
1990
1991  assert(T->getAsBuiltinType() && "getFloatingRank(): not a floating type");
1992  switch (T->getAsBuiltinType()->getKind()) {
1993  default: assert(0 && "getFloatingRank(): not a floating type");
1994  case BuiltinType::Float:      return FloatRank;
1995  case BuiltinType::Double:     return DoubleRank;
1996  case BuiltinType::LongDouble: return LongDoubleRank;
1997  }
1998}
1999
2000/// getFloatingTypeOfSizeWithinDomain - Returns a real floating
2001/// point or a complex type (based on typeDomain/typeSize).
2002/// 'typeDomain' is a real floating point or complex type.
2003/// 'typeSize' is a real floating point or complex type.
2004QualType ASTContext::getFloatingTypeOfSizeWithinDomain(QualType Size,
2005                                                       QualType Domain) const {
2006  FloatingRank EltRank = getFloatingRank(Size);
2007  if (Domain->isComplexType()) {
2008    switch (EltRank) {
2009    default: assert(0 && "getFloatingRank(): illegal value for rank");
2010    case FloatRank:      return FloatComplexTy;
2011    case DoubleRank:     return DoubleComplexTy;
2012    case LongDoubleRank: return LongDoubleComplexTy;
2013    }
2014  }
2015
2016  assert(Domain->isRealFloatingType() && "Unknown domain!");
2017  switch (EltRank) {
2018  default: assert(0 && "getFloatingRank(): illegal value for rank");
2019  case FloatRank:      return FloatTy;
2020  case DoubleRank:     return DoubleTy;
2021  case LongDoubleRank: return LongDoubleTy;
2022  }
2023}
2024
2025/// getFloatingTypeOrder - Compare the rank of the two specified floating
2026/// point types, ignoring the domain of the type (i.e. 'double' ==
2027/// '_Complex double').  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
2028/// LHS < RHS, return -1.
2029int ASTContext::getFloatingTypeOrder(QualType LHS, QualType RHS) {
2030  FloatingRank LHSR = getFloatingRank(LHS);
2031  FloatingRank RHSR = getFloatingRank(RHS);
2032
2033  if (LHSR == RHSR)
2034    return 0;
2035  if (LHSR > RHSR)
2036    return 1;
2037  return -1;
2038}
2039
2040/// getIntegerRank - Return an integer conversion rank (C99 6.3.1.1p1). This
2041/// routine will assert if passed a built-in type that isn't an integer or enum,
2042/// or if it is not canonicalized.
2043unsigned ASTContext::getIntegerRank(Type *T) {
2044  assert(T->isCanonical() && "T should be canonicalized");
2045  if (EnumType* ET = dyn_cast<EnumType>(T))
2046    T = ET->getDecl()->getIntegerType().getTypePtr();
2047
2048  // There are two things which impact the integer rank: the width, and
2049  // the ordering of builtins.  The builtin ordering is encoded in the
2050  // bottom three bits; the width is encoded in the bits above that.
2051  if (FixedWidthIntType* FWIT = dyn_cast<FixedWidthIntType>(T))
2052    return FWIT->getWidth() << 3;
2053
2054  switch (cast<BuiltinType>(T)->getKind()) {
2055  default: assert(0 && "getIntegerRank(): not a built-in integer");
2056  case BuiltinType::Bool:
2057    return 1 + (getIntWidth(BoolTy) << 3);
2058  case BuiltinType::Char_S:
2059  case BuiltinType::Char_U:
2060  case BuiltinType::SChar:
2061  case BuiltinType::UChar:
2062    return 2 + (getIntWidth(CharTy) << 3);
2063  case BuiltinType::Short:
2064  case BuiltinType::UShort:
2065    return 3 + (getIntWidth(ShortTy) << 3);
2066  case BuiltinType::Int:
2067  case BuiltinType::UInt:
2068    return 4 + (getIntWidth(IntTy) << 3);
2069  case BuiltinType::Long:
2070  case BuiltinType::ULong:
2071    return 5 + (getIntWidth(LongTy) << 3);
2072  case BuiltinType::LongLong:
2073  case BuiltinType::ULongLong:
2074    return 6 + (getIntWidth(LongLongTy) << 3);
2075  case BuiltinType::Int128:
2076  case BuiltinType::UInt128:
2077    return 7 + (getIntWidth(Int128Ty) << 3);
2078  }
2079}
2080
2081/// getIntegerTypeOrder - Returns the highest ranked integer type:
2082/// C99 6.3.1.8p1.  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
2083/// LHS < RHS, return -1.
2084int ASTContext::getIntegerTypeOrder(QualType LHS, QualType RHS) {
2085  Type *LHSC = getCanonicalType(LHS).getTypePtr();
2086  Type *RHSC = getCanonicalType(RHS).getTypePtr();
2087  if (LHSC == RHSC) return 0;
2088
2089  bool LHSUnsigned = LHSC->isUnsignedIntegerType();
2090  bool RHSUnsigned = RHSC->isUnsignedIntegerType();
2091
2092  unsigned LHSRank = getIntegerRank(LHSC);
2093  unsigned RHSRank = getIntegerRank(RHSC);
2094
2095  if (LHSUnsigned == RHSUnsigned) {  // Both signed or both unsigned.
2096    if (LHSRank == RHSRank) return 0;
2097    return LHSRank > RHSRank ? 1 : -1;
2098  }
2099
2100  // Otherwise, the LHS is signed and the RHS is unsigned or visa versa.
2101  if (LHSUnsigned) {
2102    // If the unsigned [LHS] type is larger, return it.
2103    if (LHSRank >= RHSRank)
2104      return 1;
2105
2106    // If the signed type can represent all values of the unsigned type, it
2107    // wins.  Because we are dealing with 2's complement and types that are
2108    // powers of two larger than each other, this is always safe.
2109    return -1;
2110  }
2111
2112  // If the unsigned [RHS] type is larger, return it.
2113  if (RHSRank >= LHSRank)
2114    return -1;
2115
2116  // If the signed type can represent all values of the unsigned type, it
2117  // wins.  Because we are dealing with 2's complement and types that are
2118  // powers of two larger than each other, this is always safe.
2119  return 1;
2120}
2121
2122// getCFConstantStringType - Return the type used for constant CFStrings.
2123QualType ASTContext::getCFConstantStringType() {
2124  if (!CFConstantStringTypeDecl) {
2125    CFConstantStringTypeDecl =
2126      RecordDecl::Create(*this, TagDecl::TK_struct, TUDecl, SourceLocation(),
2127                         &Idents.get("NSConstantString"));
2128    QualType FieldTypes[4];
2129
2130    // const int *isa;
2131    FieldTypes[0] = getPointerType(IntTy.getQualifiedType(QualType::Const));
2132    // int flags;
2133    FieldTypes[1] = IntTy;
2134    // const char *str;
2135    FieldTypes[2] = getPointerType(CharTy.getQualifiedType(QualType::Const));
2136    // long length;
2137    FieldTypes[3] = LongTy;
2138
2139    // Create fields
2140    for (unsigned i = 0; i < 4; ++i) {
2141      FieldDecl *Field = FieldDecl::Create(*this, CFConstantStringTypeDecl,
2142                                           SourceLocation(), 0,
2143                                           FieldTypes[i], /*BitWidth=*/0,
2144                                           /*Mutable=*/false);
2145      CFConstantStringTypeDecl->addDecl(*this, Field);
2146    }
2147
2148    CFConstantStringTypeDecl->completeDefinition(*this);
2149  }
2150
2151  return getTagDeclType(CFConstantStringTypeDecl);
2152}
2153
2154void ASTContext::setCFConstantStringType(QualType T) {
2155  const RecordType *Rec = T->getAsRecordType();
2156  assert(Rec && "Invalid CFConstantStringType");
2157  CFConstantStringTypeDecl = Rec->getDecl();
2158}
2159
2160QualType ASTContext::getObjCFastEnumerationStateType()
2161{
2162  if (!ObjCFastEnumerationStateTypeDecl) {
2163    ObjCFastEnumerationStateTypeDecl =
2164      RecordDecl::Create(*this, TagDecl::TK_struct, TUDecl, SourceLocation(),
2165                         &Idents.get("__objcFastEnumerationState"));
2166
2167    QualType FieldTypes[] = {
2168      UnsignedLongTy,
2169      getPointerType(ObjCIdType),
2170      getPointerType(UnsignedLongTy),
2171      getConstantArrayType(UnsignedLongTy,
2172                           llvm::APInt(32, 5), ArrayType::Normal, 0)
2173    };
2174
2175    for (size_t i = 0; i < 4; ++i) {
2176      FieldDecl *Field = FieldDecl::Create(*this,
2177                                           ObjCFastEnumerationStateTypeDecl,
2178                                           SourceLocation(), 0,
2179                                           FieldTypes[i], /*BitWidth=*/0,
2180                                           /*Mutable=*/false);
2181      ObjCFastEnumerationStateTypeDecl->addDecl(*this, Field);
2182    }
2183
2184    ObjCFastEnumerationStateTypeDecl->completeDefinition(*this);
2185  }
2186
2187  return getTagDeclType(ObjCFastEnumerationStateTypeDecl);
2188}
2189
2190void ASTContext::setObjCFastEnumerationStateType(QualType T) {
2191  const RecordType *Rec = T->getAsRecordType();
2192  assert(Rec && "Invalid ObjCFAstEnumerationStateType");
2193  ObjCFastEnumerationStateTypeDecl = Rec->getDecl();
2194}
2195
2196// This returns true if a type has been typedefed to BOOL:
2197// typedef <type> BOOL;
2198static bool isTypeTypedefedAsBOOL(QualType T) {
2199  if (const TypedefType *TT = dyn_cast<TypedefType>(T))
2200    if (IdentifierInfo *II = TT->getDecl()->getIdentifier())
2201      return II->isStr("BOOL");
2202
2203  return false;
2204}
2205
2206/// getObjCEncodingTypeSize returns size of type for objective-c encoding
2207/// purpose.
2208int ASTContext::getObjCEncodingTypeSize(QualType type) {
2209  uint64_t sz = getTypeSize(type);
2210
2211  // Make all integer and enum types at least as large as an int
2212  if (sz > 0 && type->isIntegralType())
2213    sz = std::max(sz, getTypeSize(IntTy));
2214  // Treat arrays as pointers, since that's how they're passed in.
2215  else if (type->isArrayType())
2216    sz = getTypeSize(VoidPtrTy);
2217  return sz / getTypeSize(CharTy);
2218}
2219
2220/// getObjCEncodingForMethodDecl - Return the encoded type for this method
2221/// declaration.
2222void ASTContext::getObjCEncodingForMethodDecl(const ObjCMethodDecl *Decl,
2223                                              std::string& S) {
2224  // FIXME: This is not very efficient.
2225  // Encode type qualifer, 'in', 'inout', etc. for the return type.
2226  getObjCEncodingForTypeQualifier(Decl->getObjCDeclQualifier(), S);
2227  // Encode result type.
2228  getObjCEncodingForType(Decl->getResultType(), S);
2229  // Compute size of all parameters.
2230  // Start with computing size of a pointer in number of bytes.
2231  // FIXME: There might(should) be a better way of doing this computation!
2232  SourceLocation Loc;
2233  int PtrSize = getTypeSize(VoidPtrTy) / getTypeSize(CharTy);
2234  // The first two arguments (self and _cmd) are pointers; account for
2235  // their size.
2236  int ParmOffset = 2 * PtrSize;
2237  for (ObjCMethodDecl::param_iterator PI = Decl->param_begin(),
2238       E = Decl->param_end(); PI != E; ++PI) {
2239    QualType PType = (*PI)->getType();
2240    int sz = getObjCEncodingTypeSize(PType);
2241    assert (sz > 0 && "getObjCEncodingForMethodDecl - Incomplete param type");
2242    ParmOffset += sz;
2243  }
2244  S += llvm::utostr(ParmOffset);
2245  S += "@0:";
2246  S += llvm::utostr(PtrSize);
2247
2248  // Argument types.
2249  ParmOffset = 2 * PtrSize;
2250  for (ObjCMethodDecl::param_iterator PI = Decl->param_begin(),
2251       E = Decl->param_end(); PI != E; ++PI) {
2252    ParmVarDecl *PVDecl = *PI;
2253    QualType PType = PVDecl->getOriginalType();
2254    if (const ArrayType *AT =
2255          dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
2256      // Use array's original type only if it has known number of
2257      // elements.
2258      if (!isa<ConstantArrayType>(AT))
2259        PType = PVDecl->getType();
2260    } else if (PType->isFunctionType())
2261      PType = PVDecl->getType();
2262    // Process argument qualifiers for user supplied arguments; such as,
2263    // 'in', 'inout', etc.
2264    getObjCEncodingForTypeQualifier(PVDecl->getObjCDeclQualifier(), S);
2265    getObjCEncodingForType(PType, S);
2266    S += llvm::utostr(ParmOffset);
2267    ParmOffset += getObjCEncodingTypeSize(PType);
2268  }
2269}
2270
2271/// getObjCEncodingForPropertyDecl - Return the encoded type for this
2272/// property declaration. If non-NULL, Container must be either an
2273/// ObjCCategoryImplDecl or ObjCImplementationDecl; it should only be
2274/// NULL when getting encodings for protocol properties.
2275/// Property attributes are stored as a comma-delimited C string. The simple
2276/// attributes readonly and bycopy are encoded as single characters. The
2277/// parametrized attributes, getter=name, setter=name, and ivar=name, are
2278/// encoded as single characters, followed by an identifier. Property types
2279/// are also encoded as a parametrized attribute. The characters used to encode
2280/// these attributes are defined by the following enumeration:
2281/// @code
2282/// enum PropertyAttributes {
2283/// kPropertyReadOnly = 'R',   // property is read-only.
2284/// kPropertyBycopy = 'C',     // property is a copy of the value last assigned
2285/// kPropertyByref = '&',  // property is a reference to the value last assigned
2286/// kPropertyDynamic = 'D',    // property is dynamic
2287/// kPropertyGetter = 'G',     // followed by getter selector name
2288/// kPropertySetter = 'S',     // followed by setter selector name
2289/// kPropertyInstanceVariable = 'V'  // followed by instance variable  name
2290/// kPropertyType = 't'              // followed by old-style type encoding.
2291/// kPropertyWeak = 'W'              // 'weak' property
2292/// kPropertyStrong = 'P'            // property GC'able
2293/// kPropertyNonAtomic = 'N'         // property non-atomic
2294/// };
2295/// @endcode
2296void ASTContext::getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD,
2297                                                const Decl *Container,
2298                                                std::string& S) {
2299  // Collect information from the property implementation decl(s).
2300  bool Dynamic = false;
2301  ObjCPropertyImplDecl *SynthesizePID = 0;
2302
2303  // FIXME: Duplicated code due to poor abstraction.
2304  if (Container) {
2305    if (const ObjCCategoryImplDecl *CID =
2306        dyn_cast<ObjCCategoryImplDecl>(Container)) {
2307      for (ObjCCategoryImplDecl::propimpl_iterator
2308             i = CID->propimpl_begin(*this), e = CID->propimpl_end(*this);
2309           i != e; ++i) {
2310        ObjCPropertyImplDecl *PID = *i;
2311        if (PID->getPropertyDecl() == PD) {
2312          if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) {
2313            Dynamic = true;
2314          } else {
2315            SynthesizePID = PID;
2316          }
2317        }
2318      }
2319    } else {
2320      const ObjCImplementationDecl *OID=cast<ObjCImplementationDecl>(Container);
2321      for (ObjCCategoryImplDecl::propimpl_iterator
2322             i = OID->propimpl_begin(*this), e = OID->propimpl_end(*this);
2323           i != e; ++i) {
2324        ObjCPropertyImplDecl *PID = *i;
2325        if (PID->getPropertyDecl() == PD) {
2326          if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) {
2327            Dynamic = true;
2328          } else {
2329            SynthesizePID = PID;
2330          }
2331        }
2332      }
2333    }
2334  }
2335
2336  // FIXME: This is not very efficient.
2337  S = "T";
2338
2339  // Encode result type.
2340  // GCC has some special rules regarding encoding of properties which
2341  // closely resembles encoding of ivars.
2342  getObjCEncodingForTypeImpl(PD->getType(), S, true, true, 0,
2343                             true /* outermost type */,
2344                             true /* encoding for property */);
2345
2346  if (PD->isReadOnly()) {
2347    S += ",R";
2348  } else {
2349    switch (PD->getSetterKind()) {
2350    case ObjCPropertyDecl::Assign: break;
2351    case ObjCPropertyDecl::Copy:   S += ",C"; break;
2352    case ObjCPropertyDecl::Retain: S += ",&"; break;
2353    }
2354  }
2355
2356  // It really isn't clear at all what this means, since properties
2357  // are "dynamic by default".
2358  if (Dynamic)
2359    S += ",D";
2360
2361  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_nonatomic)
2362    S += ",N";
2363
2364  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_getter) {
2365    S += ",G";
2366    S += PD->getGetterName().getAsString();
2367  }
2368
2369  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_setter) {
2370    S += ",S";
2371    S += PD->getSetterName().getAsString();
2372  }
2373
2374  if (SynthesizePID) {
2375    const ObjCIvarDecl *OID = SynthesizePID->getPropertyIvarDecl();
2376    S += ",V";
2377    S += OID->getNameAsString();
2378  }
2379
2380  // FIXME: OBJCGC: weak & strong
2381}
2382
2383/// getLegacyIntegralTypeEncoding -
2384/// Another legacy compatibility encoding: 32-bit longs are encoded as
2385/// 'l' or 'L' , but not always.  For typedefs, we need to use
2386/// 'i' or 'I' instead if encoding a struct field, or a pointer!
2387///
2388void ASTContext::getLegacyIntegralTypeEncoding (QualType &PointeeTy) const {
2389  if (dyn_cast<TypedefType>(PointeeTy.getTypePtr())) {
2390    if (const BuiltinType *BT = PointeeTy->getAsBuiltinType()) {
2391      if (BT->getKind() == BuiltinType::ULong &&
2392          ((const_cast<ASTContext *>(this))->getIntWidth(PointeeTy) == 32))
2393        PointeeTy = UnsignedIntTy;
2394      else
2395        if (BT->getKind() == BuiltinType::Long &&
2396            ((const_cast<ASTContext *>(this))->getIntWidth(PointeeTy) == 32))
2397          PointeeTy = IntTy;
2398    }
2399  }
2400}
2401
2402void ASTContext::getObjCEncodingForType(QualType T, std::string& S,
2403                                        const FieldDecl *Field) {
2404  // We follow the behavior of gcc, expanding structures which are
2405  // directly pointed to, and expanding embedded structures. Note that
2406  // these rules are sufficient to prevent recursive encoding of the
2407  // same type.
2408  getObjCEncodingForTypeImpl(T, S, true, true, Field,
2409                             true /* outermost type */);
2410}
2411
2412static void EncodeBitField(const ASTContext *Context, std::string& S,
2413                           const FieldDecl *FD) {
2414  const Expr *E = FD->getBitWidth();
2415  assert(E && "bitfield width not there - getObjCEncodingForTypeImpl");
2416  ASTContext *Ctx = const_cast<ASTContext*>(Context);
2417  unsigned N = E->EvaluateAsInt(*Ctx).getZExtValue();
2418  S += 'b';
2419  S += llvm::utostr(N);
2420}
2421
2422void ASTContext::getObjCEncodingForTypeImpl(QualType T, std::string& S,
2423                                            bool ExpandPointedToStructures,
2424                                            bool ExpandStructures,
2425                                            const FieldDecl *FD,
2426                                            bool OutermostType,
2427                                            bool EncodingProperty) {
2428  if (const BuiltinType *BT = T->getAsBuiltinType()) {
2429    if (FD && FD->isBitField()) {
2430      EncodeBitField(this, S, FD);
2431    }
2432    else {
2433      char encoding;
2434      switch (BT->getKind()) {
2435      default: assert(0 && "Unhandled builtin type kind");
2436      case BuiltinType::Void:       encoding = 'v'; break;
2437      case BuiltinType::Bool:       encoding = 'B'; break;
2438      case BuiltinType::Char_U:
2439      case BuiltinType::UChar:      encoding = 'C'; break;
2440      case BuiltinType::UShort:     encoding = 'S'; break;
2441      case BuiltinType::UInt:       encoding = 'I'; break;
2442      case BuiltinType::ULong:
2443          encoding =
2444            (const_cast<ASTContext *>(this))->getIntWidth(T) == 32 ? 'L' : 'Q';
2445          break;
2446      case BuiltinType::UInt128:    encoding = 'T'; break;
2447      case BuiltinType::ULongLong:  encoding = 'Q'; break;
2448      case BuiltinType::Char_S:
2449      case BuiltinType::SChar:      encoding = 'c'; break;
2450      case BuiltinType::Short:      encoding = 's'; break;
2451      case BuiltinType::Int:        encoding = 'i'; break;
2452      case BuiltinType::Long:
2453        encoding =
2454          (const_cast<ASTContext *>(this))->getIntWidth(T) == 32 ? 'l' : 'q';
2455        break;
2456      case BuiltinType::LongLong:   encoding = 'q'; break;
2457      case BuiltinType::Int128:     encoding = 't'; break;
2458      case BuiltinType::Float:      encoding = 'f'; break;
2459      case BuiltinType::Double:     encoding = 'd'; break;
2460      case BuiltinType::LongDouble: encoding = 'd'; break;
2461      }
2462
2463      S += encoding;
2464    }
2465  } else if (const ComplexType *CT = T->getAsComplexType()) {
2466    S += 'j';
2467    getObjCEncodingForTypeImpl(CT->getElementType(), S, false, false, 0, false,
2468                               false);
2469  } else if (T->isObjCQualifiedIdType()) {
2470    getObjCEncodingForTypeImpl(getObjCIdType(), S,
2471                               ExpandPointedToStructures,
2472                               ExpandStructures, FD);
2473    if (FD || EncodingProperty) {
2474      // Note that we do extended encoding of protocol qualifer list
2475      // Only when doing ivar or property encoding.
2476      const ObjCObjectPointerType *QIDT = T->getAsObjCQualifiedIdType();
2477      S += '"';
2478      for (ObjCObjectPointerType::qual_iterator I = QIDT->qual_begin(),
2479           E = QIDT->qual_end(); I != E; ++I) {
2480        S += '<';
2481        S += (*I)->getNameAsString();
2482        S += '>';
2483      }
2484      S += '"';
2485    }
2486    return;
2487  }
2488  else if (const PointerType *PT = T->getAsPointerType()) {
2489    QualType PointeeTy = PT->getPointeeType();
2490    bool isReadOnly = false;
2491    // For historical/compatibility reasons, the read-only qualifier of the
2492    // pointee gets emitted _before_ the '^'.  The read-only qualifier of
2493    // the pointer itself gets ignored, _unless_ we are looking at a typedef!
2494    // Also, do not emit the 'r' for anything but the outermost type!
2495    if (dyn_cast<TypedefType>(T.getTypePtr())) {
2496      if (OutermostType && T.isConstQualified()) {
2497        isReadOnly = true;
2498        S += 'r';
2499      }
2500    }
2501    else if (OutermostType) {
2502      QualType P = PointeeTy;
2503      while (P->getAsPointerType())
2504        P = P->getAsPointerType()->getPointeeType();
2505      if (P.isConstQualified()) {
2506        isReadOnly = true;
2507        S += 'r';
2508      }
2509    }
2510    if (isReadOnly) {
2511      // Another legacy compatibility encoding. Some ObjC qualifier and type
2512      // combinations need to be rearranged.
2513      // Rewrite "in const" from "nr" to "rn"
2514      const char * s = S.c_str();
2515      int len = S.length();
2516      if (len >= 2 && s[len-2] == 'n' && s[len-1] == 'r') {
2517        std::string replace = "rn";
2518        S.replace(S.end()-2, S.end(), replace);
2519      }
2520    }
2521    if (isObjCIdStructType(PointeeTy)) {
2522      S += '@';
2523      return;
2524    }
2525    else if (PointeeTy->isObjCInterfaceType()) {
2526      if (!EncodingProperty &&
2527          isa<TypedefType>(PointeeTy.getTypePtr())) {
2528        // Another historical/compatibility reason.
2529        // We encode the underlying type which comes out as
2530        // {...};
2531        S += '^';
2532        getObjCEncodingForTypeImpl(PointeeTy, S,
2533                                   false, ExpandPointedToStructures,
2534                                   NULL);
2535        return;
2536      }
2537      S += '@';
2538      if (FD || EncodingProperty) {
2539        const ObjCInterfaceType *OIT =
2540                PointeeTy.getUnqualifiedType()->getAsObjCInterfaceType();
2541        ObjCInterfaceDecl *OI = OIT->getDecl();
2542        S += '"';
2543        S += OI->getNameAsCString();
2544        for (ObjCInterfaceType::qual_iterator I = OIT->qual_begin(),
2545             E = OIT->qual_end(); I != E; ++I) {
2546          S += '<';
2547          S += (*I)->getNameAsString();
2548          S += '>';
2549        }
2550        S += '"';
2551      }
2552      return;
2553    } else if (isObjCClassStructType(PointeeTy)) {
2554      S += '#';
2555      return;
2556    } else if (isObjCSelType(PointeeTy)) {
2557      S += ':';
2558      return;
2559    }
2560
2561    if (PointeeTy->isCharType()) {
2562      // char pointer types should be encoded as '*' unless it is a
2563      // type that has been typedef'd to 'BOOL'.
2564      if (!isTypeTypedefedAsBOOL(PointeeTy)) {
2565        S += '*';
2566        return;
2567      }
2568    }
2569
2570    S += '^';
2571    getLegacyIntegralTypeEncoding(PointeeTy);
2572
2573    getObjCEncodingForTypeImpl(PointeeTy, S,
2574                               false, ExpandPointedToStructures,
2575                               NULL);
2576  } else if (const ArrayType *AT =
2577               // Ignore type qualifiers etc.
2578               dyn_cast<ArrayType>(T->getCanonicalTypeInternal())) {
2579    if (isa<IncompleteArrayType>(AT)) {
2580      // Incomplete arrays are encoded as a pointer to the array element.
2581      S += '^';
2582
2583      getObjCEncodingForTypeImpl(AT->getElementType(), S,
2584                                 false, ExpandStructures, FD);
2585    } else {
2586      S += '[';
2587
2588      if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
2589        S += llvm::utostr(CAT->getSize().getZExtValue());
2590      else {
2591        //Variable length arrays are encoded as a regular array with 0 elements.
2592        assert(isa<VariableArrayType>(AT) && "Unknown array type!");
2593        S += '0';
2594      }
2595
2596      getObjCEncodingForTypeImpl(AT->getElementType(), S,
2597                                 false, ExpandStructures, FD);
2598      S += ']';
2599    }
2600  } else if (T->getAsFunctionType()) {
2601    S += '?';
2602  } else if (const RecordType *RTy = T->getAsRecordType()) {
2603    RecordDecl *RDecl = RTy->getDecl();
2604    S += RDecl->isUnion() ? '(' : '{';
2605    // Anonymous structures print as '?'
2606    if (const IdentifierInfo *II = RDecl->getIdentifier()) {
2607      S += II->getName();
2608    } else {
2609      S += '?';
2610    }
2611    if (ExpandStructures) {
2612      S += '=';
2613      for (RecordDecl::field_iterator Field = RDecl->field_begin(*this),
2614                                   FieldEnd = RDecl->field_end(*this);
2615           Field != FieldEnd; ++Field) {
2616        if (FD) {
2617          S += '"';
2618          S += Field->getNameAsString();
2619          S += '"';
2620        }
2621
2622        // Special case bit-fields.
2623        if (Field->isBitField()) {
2624          getObjCEncodingForTypeImpl(Field->getType(), S, false, true,
2625                                     (*Field));
2626        } else {
2627          QualType qt = Field->getType();
2628          getLegacyIntegralTypeEncoding(qt);
2629          getObjCEncodingForTypeImpl(qt, S, false, true,
2630                                     FD);
2631        }
2632      }
2633    }
2634    S += RDecl->isUnion() ? ')' : '}';
2635  } else if (T->isEnumeralType()) {
2636    if (FD && FD->isBitField())
2637      EncodeBitField(this, S, FD);
2638    else
2639      S += 'i';
2640  } else if (T->isBlockPointerType()) {
2641    S += "@?"; // Unlike a pointer-to-function, which is "^?".
2642  } else if (T->isObjCInterfaceType()) {
2643    // @encode(class_name)
2644    ObjCInterfaceDecl *OI = T->getAsObjCInterfaceType()->getDecl();
2645    S += '{';
2646    const IdentifierInfo *II = OI->getIdentifier();
2647    S += II->getName();
2648    S += '=';
2649    llvm::SmallVector<FieldDecl*, 32> RecFields;
2650    CollectObjCIvars(OI, RecFields);
2651    for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
2652      if (RecFields[i]->isBitField())
2653        getObjCEncodingForTypeImpl(RecFields[i]->getType(), S, false, true,
2654                                   RecFields[i]);
2655      else
2656        getObjCEncodingForTypeImpl(RecFields[i]->getType(), S, false, true,
2657                                   FD);
2658    }
2659    S += '}';
2660  }
2661  else
2662    assert(0 && "@encode for type not implemented!");
2663}
2664
2665void ASTContext::getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT,
2666                                                 std::string& S) const {
2667  if (QT & Decl::OBJC_TQ_In)
2668    S += 'n';
2669  if (QT & Decl::OBJC_TQ_Inout)
2670    S += 'N';
2671  if (QT & Decl::OBJC_TQ_Out)
2672    S += 'o';
2673  if (QT & Decl::OBJC_TQ_Bycopy)
2674    S += 'O';
2675  if (QT & Decl::OBJC_TQ_Byref)
2676    S += 'R';
2677  if (QT & Decl::OBJC_TQ_Oneway)
2678    S += 'V';
2679}
2680
2681void ASTContext::setBuiltinVaListType(QualType T)
2682{
2683  assert(BuiltinVaListType.isNull() && "__builtin_va_list type already set!");
2684
2685  BuiltinVaListType = T;
2686}
2687
2688void ASTContext::setObjCIdType(QualType T)
2689{
2690  ObjCIdType = T;
2691
2692  const TypedefType *TT = T->getAsTypedefType();
2693  if (!TT)
2694    return;
2695
2696  TypedefDecl *TD = TT->getDecl();
2697
2698  // typedef struct objc_object *id;
2699  const PointerType *ptr = TD->getUnderlyingType()->getAsPointerType();
2700  // User error - caller will issue diagnostics.
2701  if (!ptr)
2702    return;
2703  const RecordType *rec = ptr->getPointeeType()->getAsStructureType();
2704  // User error - caller will issue diagnostics.
2705  if (!rec)
2706    return;
2707  IdStructType = rec;
2708}
2709
2710void ASTContext::setObjCSelType(QualType T)
2711{
2712  ObjCSelType = T;
2713
2714  const TypedefType *TT = T->getAsTypedefType();
2715  if (!TT)
2716    return;
2717  TypedefDecl *TD = TT->getDecl();
2718
2719  // typedef struct objc_selector *SEL;
2720  const PointerType *ptr = TD->getUnderlyingType()->getAsPointerType();
2721  if (!ptr)
2722    return;
2723  const RecordType *rec = ptr->getPointeeType()->getAsStructureType();
2724  if (!rec)
2725    return;
2726  SelStructType = rec;
2727}
2728
2729void ASTContext::setObjCProtoType(QualType QT)
2730{
2731  ObjCProtoType = QT;
2732}
2733
2734void ASTContext::setObjCClassType(QualType T)
2735{
2736  ObjCClassType = T;
2737
2738  const TypedefType *TT = T->getAsTypedefType();
2739  if (!TT)
2740    return;
2741  TypedefDecl *TD = TT->getDecl();
2742
2743  // typedef struct objc_class *Class;
2744  const PointerType *ptr = TD->getUnderlyingType()->getAsPointerType();
2745  assert(ptr && "'Class' incorrectly typed");
2746  const RecordType *rec = ptr->getPointeeType()->getAsStructureType();
2747  assert(rec && "'Class' incorrectly typed");
2748  ClassStructType = rec;
2749}
2750
2751void ASTContext::setObjCConstantStringInterface(ObjCInterfaceDecl *Decl) {
2752  assert(ObjCConstantStringType.isNull() &&
2753         "'NSConstantString' type already set!");
2754
2755  ObjCConstantStringType = getObjCInterfaceType(Decl);
2756}
2757
2758/// \brief Retrieve the template name that represents a qualified
2759/// template name such as \c std::vector.
2760TemplateName ASTContext::getQualifiedTemplateName(NestedNameSpecifier *NNS,
2761                                                  bool TemplateKeyword,
2762                                                  TemplateDecl *Template) {
2763  llvm::FoldingSetNodeID ID;
2764  QualifiedTemplateName::Profile(ID, NNS, TemplateKeyword, Template);
2765
2766  void *InsertPos = 0;
2767  QualifiedTemplateName *QTN =
2768    QualifiedTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
2769  if (!QTN) {
2770    QTN = new (*this,4) QualifiedTemplateName(NNS, TemplateKeyword, Template);
2771    QualifiedTemplateNames.InsertNode(QTN, InsertPos);
2772  }
2773
2774  return TemplateName(QTN);
2775}
2776
2777/// \brief Retrieve the template name that represents a dependent
2778/// template name such as \c MetaFun::template apply.
2779TemplateName ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
2780                                                  const IdentifierInfo *Name) {
2781  assert(NNS->isDependent() && "Nested name specifier must be dependent");
2782
2783  llvm::FoldingSetNodeID ID;
2784  DependentTemplateName::Profile(ID, NNS, Name);
2785
2786  void *InsertPos = 0;
2787  DependentTemplateName *QTN =
2788    DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
2789
2790  if (QTN)
2791    return TemplateName(QTN);
2792
2793  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
2794  if (CanonNNS == NNS) {
2795    QTN = new (*this,4) DependentTemplateName(NNS, Name);
2796  } else {
2797    TemplateName Canon = getDependentTemplateName(CanonNNS, Name);
2798    QTN = new (*this,4) DependentTemplateName(NNS, Name, Canon);
2799  }
2800
2801  DependentTemplateNames.InsertNode(QTN, InsertPos);
2802  return TemplateName(QTN);
2803}
2804
2805/// getFromTargetType - Given one of the integer types provided by
2806/// TargetInfo, produce the corresponding type. The unsigned @p Type
2807/// is actually a value of type @c TargetInfo::IntType.
2808QualType ASTContext::getFromTargetType(unsigned Type) const {
2809  switch (Type) {
2810  case TargetInfo::NoInt: return QualType();
2811  case TargetInfo::SignedShort: return ShortTy;
2812  case TargetInfo::UnsignedShort: return UnsignedShortTy;
2813  case TargetInfo::SignedInt: return IntTy;
2814  case TargetInfo::UnsignedInt: return UnsignedIntTy;
2815  case TargetInfo::SignedLong: return LongTy;
2816  case TargetInfo::UnsignedLong: return UnsignedLongTy;
2817  case TargetInfo::SignedLongLong: return LongLongTy;
2818  case TargetInfo::UnsignedLongLong: return UnsignedLongLongTy;
2819  }
2820
2821  assert(false && "Unhandled TargetInfo::IntType value");
2822  return QualType();
2823}
2824
2825//===----------------------------------------------------------------------===//
2826//                        Type Predicates.
2827//===----------------------------------------------------------------------===//
2828
2829/// isObjCNSObjectType - Return true if this is an NSObject object using
2830/// NSObject attribute on a c-style pointer type.
2831/// FIXME - Make it work directly on types.
2832///
2833bool ASTContext::isObjCNSObjectType(QualType Ty) const {
2834  if (TypedefType *TDT = dyn_cast<TypedefType>(Ty)) {
2835    if (TypedefDecl *TD = TDT->getDecl())
2836      if (TD->getAttr<ObjCNSObjectAttr>(*const_cast<ASTContext*>(this)))
2837        return true;
2838  }
2839  return false;
2840}
2841
2842/// isObjCObjectPointerType - Returns true if type is an Objective-C pointer
2843/// to an object type.  This includes "id" and "Class" (two 'special' pointers
2844/// to struct), Interface* (pointer to ObjCInterfaceType) and id<P> (qualified
2845/// ID type).
2846bool ASTContext::isObjCObjectPointerType(QualType Ty) const {
2847  if (Ty->isObjCQualifiedIdType())
2848    return true;
2849
2850  // Blocks are objects.
2851  if (Ty->isBlockPointerType())
2852    return true;
2853
2854  // All other object types are pointers.
2855  const PointerType *PT = Ty->getAsPointerType();
2856  if (PT == 0)
2857    return false;
2858
2859  // If this a pointer to an interface (e.g. NSString*), it is ok.
2860  if (PT->getPointeeType()->isObjCInterfaceType() ||
2861      // If is has NSObject attribute, OK as well.
2862      isObjCNSObjectType(Ty))
2863    return true;
2864
2865  // Check to see if this is 'id' or 'Class', both of which are typedefs for
2866  // pointer types.  This looks for the typedef specifically, not for the
2867  // underlying type.  Iteratively strip off typedefs so that we can handle
2868  // typedefs of typedefs.
2869  while (TypedefType *TDT = dyn_cast<TypedefType>(Ty)) {
2870    if (Ty.getUnqualifiedType() == getObjCIdType() ||
2871        Ty.getUnqualifiedType() == getObjCClassType())
2872      return true;
2873
2874    Ty = TDT->getDecl()->getUnderlyingType();
2875  }
2876
2877  return false;
2878}
2879
2880/// getObjCGCAttr - Returns one of GCNone, Weak or Strong objc's
2881/// garbage collection attribute.
2882///
2883QualType::GCAttrTypes ASTContext::getObjCGCAttrKind(const QualType &Ty) const {
2884  QualType::GCAttrTypes GCAttrs = QualType::GCNone;
2885  if (getLangOptions().ObjC1 &&
2886      getLangOptions().getGCMode() != LangOptions::NonGC) {
2887    GCAttrs = Ty.getObjCGCAttr();
2888    // Default behavious under objective-c's gc is for objective-c pointers
2889    // (or pointers to them) be treated as though they were declared
2890    // as __strong.
2891    if (GCAttrs == QualType::GCNone) {
2892      if (isObjCObjectPointerType(Ty))
2893        GCAttrs = QualType::Strong;
2894      else if (Ty->isPointerType())
2895        return getObjCGCAttrKind(Ty->getAsPointerType()->getPointeeType());
2896    }
2897    // Non-pointers have none gc'able attribute regardless of the attribute
2898    // set on them.
2899    else if (!Ty->isPointerType() && !isObjCObjectPointerType(Ty))
2900      return QualType::GCNone;
2901  }
2902  return GCAttrs;
2903}
2904
2905//===----------------------------------------------------------------------===//
2906//                        Type Compatibility Testing
2907//===----------------------------------------------------------------------===//
2908
2909/// areCompatVectorTypes - Return true if the two specified vector types are
2910/// compatible.
2911static bool areCompatVectorTypes(const VectorType *LHS,
2912                                 const VectorType *RHS) {
2913  assert(LHS->isCanonical() && RHS->isCanonical());
2914  return LHS->getElementType() == RHS->getElementType() &&
2915         LHS->getNumElements() == RHS->getNumElements();
2916}
2917
2918/// canAssignObjCInterfaces - Return true if the two interface types are
2919/// compatible for assignment from RHS to LHS.  This handles validation of any
2920/// protocol qualifiers on the LHS or RHS.
2921///
2922bool ASTContext::canAssignObjCInterfaces(const ObjCInterfaceType *LHS,
2923                                         const ObjCInterfaceType *RHS) {
2924  // Verify that the base decls are compatible: the RHS must be a subclass of
2925  // the LHS.
2926  if (!LHS->getDecl()->isSuperClassOf(RHS->getDecl()))
2927    return false;
2928
2929  // RHS must have a superset of the protocols in the LHS.  If the LHS is not
2930  // protocol qualified at all, then we are good.
2931  if (!isa<ObjCQualifiedInterfaceType>(LHS))
2932    return true;
2933
2934  // Okay, we know the LHS has protocol qualifiers.  If the RHS doesn't, then it
2935  // isn't a superset.
2936  if (!isa<ObjCQualifiedInterfaceType>(RHS))
2937    return true;  // FIXME: should return false!
2938
2939  // Finally, we must have two protocol-qualified interfaces.
2940  const ObjCQualifiedInterfaceType *LHSP =cast<ObjCQualifiedInterfaceType>(LHS);
2941  const ObjCQualifiedInterfaceType *RHSP =cast<ObjCQualifiedInterfaceType>(RHS);
2942
2943  // All LHS protocols must have a presence on the RHS.
2944  assert(LHSP->qual_begin() != LHSP->qual_end() && "Empty LHS protocol list?");
2945
2946  for (ObjCQualifiedInterfaceType::qual_iterator LHSPI = LHSP->qual_begin(),
2947                                                 LHSPE = LHSP->qual_end();
2948       LHSPI != LHSPE; LHSPI++) {
2949    bool RHSImplementsProtocol = false;
2950
2951    // If the RHS doesn't implement the protocol on the left, the types
2952    // are incompatible.
2953    for (ObjCQualifiedInterfaceType::qual_iterator RHSPI = RHSP->qual_begin(),
2954                                                   RHSPE = RHSP->qual_end();
2955         !RHSImplementsProtocol && (RHSPI != RHSPE); RHSPI++) {
2956      if ((*RHSPI)->lookupProtocolNamed((*LHSPI)->getIdentifier()))
2957        RHSImplementsProtocol = true;
2958    }
2959    // FIXME: For better diagnostics, consider passing back the protocol name.
2960    if (!RHSImplementsProtocol)
2961      return false;
2962  }
2963  // The RHS implements all protocols listed on the LHS.
2964  return true;
2965}
2966
2967bool ASTContext::areComparableObjCPointerTypes(QualType LHS, QualType RHS) {
2968  // get the "pointed to" types
2969  const PointerType *LHSPT = LHS->getAsPointerType();
2970  const PointerType *RHSPT = RHS->getAsPointerType();
2971
2972  if (!LHSPT || !RHSPT)
2973    return false;
2974
2975  QualType lhptee = LHSPT->getPointeeType();
2976  QualType rhptee = RHSPT->getPointeeType();
2977  const ObjCInterfaceType* LHSIface = lhptee->getAsObjCInterfaceType();
2978  const ObjCInterfaceType* RHSIface = rhptee->getAsObjCInterfaceType();
2979  // ID acts sort of like void* for ObjC interfaces
2980  if (LHSIface && isObjCIdStructType(rhptee))
2981    return true;
2982  if (RHSIface && isObjCIdStructType(lhptee))
2983    return true;
2984  if (!LHSIface || !RHSIface)
2985    return false;
2986  return canAssignObjCInterfaces(LHSIface, RHSIface) ||
2987         canAssignObjCInterfaces(RHSIface, LHSIface);
2988}
2989
2990/// typesAreCompatible - C99 6.7.3p9: For two qualified types to be compatible,
2991/// both shall have the identically qualified version of a compatible type.
2992/// C99 6.2.7p1: Two types have compatible types if their types are the
2993/// same. See 6.7.[2,3,5] for additional rules.
2994bool ASTContext::typesAreCompatible(QualType LHS, QualType RHS) {
2995  return !mergeTypes(LHS, RHS).isNull();
2996}
2997
2998QualType ASTContext::mergeFunctionTypes(QualType lhs, QualType rhs) {
2999  const FunctionType *lbase = lhs->getAsFunctionType();
3000  const FunctionType *rbase = rhs->getAsFunctionType();
3001  const FunctionProtoType *lproto = dyn_cast<FunctionProtoType>(lbase);
3002  const FunctionProtoType *rproto = dyn_cast<FunctionProtoType>(rbase);
3003  bool allLTypes = true;
3004  bool allRTypes = true;
3005
3006  // Check return type
3007  QualType retType = mergeTypes(lbase->getResultType(), rbase->getResultType());
3008  if (retType.isNull()) return QualType();
3009  if (getCanonicalType(retType) != getCanonicalType(lbase->getResultType()))
3010    allLTypes = false;
3011  if (getCanonicalType(retType) != getCanonicalType(rbase->getResultType()))
3012    allRTypes = false;
3013
3014  if (lproto && rproto) { // two C99 style function prototypes
3015    assert(!lproto->hasExceptionSpec() && !rproto->hasExceptionSpec() &&
3016           "C++ shouldn't be here");
3017    unsigned lproto_nargs = lproto->getNumArgs();
3018    unsigned rproto_nargs = rproto->getNumArgs();
3019
3020    // Compatible functions must have the same number of arguments
3021    if (lproto_nargs != rproto_nargs)
3022      return QualType();
3023
3024    // Variadic and non-variadic functions aren't compatible
3025    if (lproto->isVariadic() != rproto->isVariadic())
3026      return QualType();
3027
3028    if (lproto->getTypeQuals() != rproto->getTypeQuals())
3029      return QualType();
3030
3031    // Check argument compatibility
3032    llvm::SmallVector<QualType, 10> types;
3033    for (unsigned i = 0; i < lproto_nargs; i++) {
3034      QualType largtype = lproto->getArgType(i).getUnqualifiedType();
3035      QualType rargtype = rproto->getArgType(i).getUnqualifiedType();
3036      QualType argtype = mergeTypes(largtype, rargtype);
3037      if (argtype.isNull()) return QualType();
3038      types.push_back(argtype);
3039      if (getCanonicalType(argtype) != getCanonicalType(largtype))
3040        allLTypes = false;
3041      if (getCanonicalType(argtype) != getCanonicalType(rargtype))
3042        allRTypes = false;
3043    }
3044    if (allLTypes) return lhs;
3045    if (allRTypes) return rhs;
3046    return getFunctionType(retType, types.begin(), types.size(),
3047                           lproto->isVariadic(), lproto->getTypeQuals());
3048  }
3049
3050  if (lproto) allRTypes = false;
3051  if (rproto) allLTypes = false;
3052
3053  const FunctionProtoType *proto = lproto ? lproto : rproto;
3054  if (proto) {
3055    assert(!proto->hasExceptionSpec() && "C++ shouldn't be here");
3056    if (proto->isVariadic()) return QualType();
3057    // Check that the types are compatible with the types that
3058    // would result from default argument promotions (C99 6.7.5.3p15).
3059    // The only types actually affected are promotable integer
3060    // types and floats, which would be passed as a different
3061    // type depending on whether the prototype is visible.
3062    unsigned proto_nargs = proto->getNumArgs();
3063    for (unsigned i = 0; i < proto_nargs; ++i) {
3064      QualType argTy = proto->getArgType(i);
3065      if (argTy->isPromotableIntegerType() ||
3066          getCanonicalType(argTy).getUnqualifiedType() == FloatTy)
3067        return QualType();
3068    }
3069
3070    if (allLTypes) return lhs;
3071    if (allRTypes) return rhs;
3072    return getFunctionType(retType, proto->arg_type_begin(),
3073                           proto->getNumArgs(), lproto->isVariadic(),
3074                           lproto->getTypeQuals());
3075  }
3076
3077  if (allLTypes) return lhs;
3078  if (allRTypes) return rhs;
3079  return getFunctionNoProtoType(retType);
3080}
3081
3082QualType ASTContext::mergeTypes(QualType LHS, QualType RHS) {
3083  // C++ [expr]: If an expression initially has the type "reference to T", the
3084  // type is adjusted to "T" prior to any further analysis, the expression
3085  // designates the object or function denoted by the reference, and the
3086  // expression is an lvalue unless the reference is an rvalue reference and
3087  // the expression is a function call (possibly inside parentheses).
3088  // FIXME: C++ shouldn't be going through here!  The rules are different
3089  // enough that they should be handled separately.
3090  // FIXME: Merging of lvalue and rvalue references is incorrect. C++ *really*
3091  // shouldn't be going through here!
3092  if (const ReferenceType *RT = LHS->getAsReferenceType())
3093    LHS = RT->getPointeeType();
3094  if (const ReferenceType *RT = RHS->getAsReferenceType())
3095    RHS = RT->getPointeeType();
3096
3097  QualType LHSCan = getCanonicalType(LHS),
3098           RHSCan = getCanonicalType(RHS);
3099
3100  // If two types are identical, they are compatible.
3101  if (LHSCan == RHSCan)
3102    return LHS;
3103
3104  // If the qualifiers are different, the types aren't compatible
3105  // Note that we handle extended qualifiers later, in the
3106  // case for ExtQualType.
3107  if (LHSCan.getCVRQualifiers() != RHSCan.getCVRQualifiers())
3108    return QualType();
3109
3110  Type::TypeClass LHSClass = LHSCan->getTypeClass();
3111  Type::TypeClass RHSClass = RHSCan->getTypeClass();
3112
3113  // We want to consider the two function types to be the same for these
3114  // comparisons, just force one to the other.
3115  if (LHSClass == Type::FunctionProto) LHSClass = Type::FunctionNoProto;
3116  if (RHSClass == Type::FunctionProto) RHSClass = Type::FunctionNoProto;
3117
3118  // Strip off objc_gc attributes off the top level so they can be merged.
3119  // This is a complete mess, but the attribute itself doesn't make much sense.
3120  if (RHSClass == Type::ExtQual) {
3121    QualType::GCAttrTypes GCAttr = RHSCan.getObjCGCAttr();
3122    if (GCAttr != QualType::GCNone) {
3123      QualType::GCAttrTypes GCLHSAttr = LHSCan.getObjCGCAttr();
3124      // __weak attribute must appear on both declarations.
3125      // __strong attribue is redundant if other decl is an objective-c
3126      // object pointer (or decorated with __strong attribute); otherwise
3127      // issue error.
3128      if ((GCAttr == QualType::Weak && GCLHSAttr != GCAttr) ||
3129          (GCAttr == QualType::Strong && GCLHSAttr != GCAttr &&
3130           LHSCan->isPointerType() && !isObjCObjectPointerType(LHSCan) &&
3131           !isObjCIdStructType(LHSCan->getAsPointerType()->getPointeeType())))
3132        return QualType();
3133
3134      RHS = QualType(cast<ExtQualType>(RHS.getDesugaredType())->getBaseType(),
3135                     RHS.getCVRQualifiers());
3136      QualType Result = mergeTypes(LHS, RHS);
3137      if (!Result.isNull()) {
3138        if (Result.getObjCGCAttr() == QualType::GCNone)
3139          Result = getObjCGCQualType(Result, GCAttr);
3140        else if (Result.getObjCGCAttr() != GCAttr)
3141          Result = QualType();
3142      }
3143      return Result;
3144    }
3145  }
3146  if (LHSClass == Type::ExtQual) {
3147    QualType::GCAttrTypes GCAttr = LHSCan.getObjCGCAttr();
3148    if (GCAttr != QualType::GCNone) {
3149      QualType::GCAttrTypes GCRHSAttr = RHSCan.getObjCGCAttr();
3150      // __weak attribute must appear on both declarations. __strong
3151      // __strong attribue is redundant if other decl is an objective-c
3152      // object pointer (or decorated with __strong attribute); otherwise
3153      // issue error.
3154      if ((GCAttr == QualType::Weak && GCRHSAttr != GCAttr) ||
3155          (GCAttr == QualType::Strong && GCRHSAttr != GCAttr &&
3156           RHSCan->isPointerType() && !isObjCObjectPointerType(RHSCan) &&
3157           !isObjCIdStructType(RHSCan->getAsPointerType()->getPointeeType())))
3158        return QualType();
3159
3160      LHS = QualType(cast<ExtQualType>(LHS.getDesugaredType())->getBaseType(),
3161                     LHS.getCVRQualifiers());
3162      QualType Result = mergeTypes(LHS, RHS);
3163      if (!Result.isNull()) {
3164        if (Result.getObjCGCAttr() == QualType::GCNone)
3165          Result = getObjCGCQualType(Result, GCAttr);
3166        else if (Result.getObjCGCAttr() != GCAttr)
3167          Result = QualType();
3168      }
3169      return Result;
3170    }
3171  }
3172
3173  // Same as above for arrays
3174  if (LHSClass == Type::VariableArray || LHSClass == Type::IncompleteArray)
3175    LHSClass = Type::ConstantArray;
3176  if (RHSClass == Type::VariableArray || RHSClass == Type::IncompleteArray)
3177    RHSClass = Type::ConstantArray;
3178
3179  // Canonicalize ExtVector -> Vector.
3180  if (LHSClass == Type::ExtVector) LHSClass = Type::Vector;
3181  if (RHSClass == Type::ExtVector) RHSClass = Type::Vector;
3182
3183  // Consider qualified interfaces and interfaces the same.
3184  if (LHSClass == Type::ObjCQualifiedInterface) LHSClass = Type::ObjCInterface;
3185  if (RHSClass == Type::ObjCQualifiedInterface) RHSClass = Type::ObjCInterface;
3186
3187  // If the canonical type classes don't match.
3188  if (LHSClass != RHSClass) {
3189    const ObjCInterfaceType* LHSIface = LHS->getAsObjCInterfaceType();
3190    const ObjCInterfaceType* RHSIface = RHS->getAsObjCInterfaceType();
3191
3192    // 'id' and 'Class' act sort of like void* for ObjC interfaces
3193    if (LHSIface && (isObjCIdStructType(RHS) || isObjCClassStructType(RHS)))
3194      return LHS;
3195    if (RHSIface && (isObjCIdStructType(LHS) || isObjCClassStructType(LHS)))
3196      return RHS;
3197
3198    // ID is compatible with all qualified id types.
3199    if (LHS->isObjCQualifiedIdType()) {
3200      if (const PointerType *PT = RHS->getAsPointerType()) {
3201        QualType pType = PT->getPointeeType();
3202        if (isObjCIdStructType(pType) || isObjCClassStructType(pType))
3203          return LHS;
3204        // FIXME: need to use ObjCQualifiedIdTypesAreCompatible(LHS, RHS, true).
3205        // Unfortunately, this API is part of Sema (which we don't have access
3206        // to. Need to refactor. The following check is insufficient, since we
3207        // need to make sure the class implements the protocol.
3208        if (pType->isObjCInterfaceType())
3209          return LHS;
3210      }
3211    }
3212    if (RHS->isObjCQualifiedIdType()) {
3213      if (const PointerType *PT = LHS->getAsPointerType()) {
3214        QualType pType = PT->getPointeeType();
3215        if (isObjCIdStructType(pType) || isObjCClassStructType(pType))
3216          return RHS;
3217        // FIXME: need to use ObjCQualifiedIdTypesAreCompatible(LHS, RHS, true).
3218        // Unfortunately, this API is part of Sema (which we don't have access
3219        // to. Need to refactor. The following check is insufficient, since we
3220        // need to make sure the class implements the protocol.
3221        if (pType->isObjCInterfaceType())
3222          return RHS;
3223      }
3224    }
3225    // C99 6.7.2.2p4: Each enumerated type shall be compatible with char,
3226    // a signed integer type, or an unsigned integer type.
3227    if (const EnumType* ETy = LHS->getAsEnumType()) {
3228      if (ETy->getDecl()->getIntegerType() == RHSCan.getUnqualifiedType())
3229        return RHS;
3230    }
3231    if (const EnumType* ETy = RHS->getAsEnumType()) {
3232      if (ETy->getDecl()->getIntegerType() == LHSCan.getUnqualifiedType())
3233        return LHS;
3234    }
3235
3236    return QualType();
3237  }
3238
3239  // The canonical type classes match.
3240  switch (LHSClass) {
3241#define TYPE(Class, Base)
3242#define ABSTRACT_TYPE(Class, Base)
3243#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
3244#define DEPENDENT_TYPE(Class, Base) case Type::Class:
3245#include "clang/AST/TypeNodes.def"
3246    assert(false && "Non-canonical and dependent types shouldn't get here");
3247    return QualType();
3248
3249  case Type::LValueReference:
3250  case Type::RValueReference:
3251  case Type::MemberPointer:
3252    assert(false && "C++ should never be in mergeTypes");
3253    return QualType();
3254
3255  case Type::IncompleteArray:
3256  case Type::VariableArray:
3257  case Type::FunctionProto:
3258  case Type::ExtVector:
3259  case Type::ObjCQualifiedInterface:
3260    assert(false && "Types are eliminated above");
3261    return QualType();
3262
3263  case Type::Pointer:
3264  {
3265    // Merge two pointer types, while trying to preserve typedef info
3266    QualType LHSPointee = LHS->getAsPointerType()->getPointeeType();
3267    QualType RHSPointee = RHS->getAsPointerType()->getPointeeType();
3268    QualType ResultType = mergeTypes(LHSPointee, RHSPointee);
3269    if (ResultType.isNull()) return QualType();
3270    if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
3271      return LHS;
3272    if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
3273      return RHS;
3274    return getPointerType(ResultType);
3275  }
3276  case Type::BlockPointer:
3277  {
3278    // Merge two block pointer types, while trying to preserve typedef info
3279    QualType LHSPointee = LHS->getAsBlockPointerType()->getPointeeType();
3280    QualType RHSPointee = RHS->getAsBlockPointerType()->getPointeeType();
3281    QualType ResultType = mergeTypes(LHSPointee, RHSPointee);
3282    if (ResultType.isNull()) return QualType();
3283    if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
3284      return LHS;
3285    if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
3286      return RHS;
3287    return getBlockPointerType(ResultType);
3288  }
3289  case Type::ConstantArray:
3290  {
3291    const ConstantArrayType* LCAT = getAsConstantArrayType(LHS);
3292    const ConstantArrayType* RCAT = getAsConstantArrayType(RHS);
3293    if (LCAT && RCAT && RCAT->getSize() != LCAT->getSize())
3294      return QualType();
3295
3296    QualType LHSElem = getAsArrayType(LHS)->getElementType();
3297    QualType RHSElem = getAsArrayType(RHS)->getElementType();
3298    QualType ResultType = mergeTypes(LHSElem, RHSElem);
3299    if (ResultType.isNull()) return QualType();
3300    if (LCAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
3301      return LHS;
3302    if (RCAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
3303      return RHS;
3304    if (LCAT) return getConstantArrayType(ResultType, LCAT->getSize(),
3305                                          ArrayType::ArraySizeModifier(), 0);
3306    if (RCAT) return getConstantArrayType(ResultType, RCAT->getSize(),
3307                                          ArrayType::ArraySizeModifier(), 0);
3308    const VariableArrayType* LVAT = getAsVariableArrayType(LHS);
3309    const VariableArrayType* RVAT = getAsVariableArrayType(RHS);
3310    if (LVAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
3311      return LHS;
3312    if (RVAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
3313      return RHS;
3314    if (LVAT) {
3315      // FIXME: This isn't correct! But tricky to implement because
3316      // the array's size has to be the size of LHS, but the type
3317      // has to be different.
3318      return LHS;
3319    }
3320    if (RVAT) {
3321      // FIXME: This isn't correct! But tricky to implement because
3322      // the array's size has to be the size of RHS, but the type
3323      // has to be different.
3324      return RHS;
3325    }
3326    if (getCanonicalType(LHSElem) == getCanonicalType(ResultType)) return LHS;
3327    if (getCanonicalType(RHSElem) == getCanonicalType(ResultType)) return RHS;
3328    return getIncompleteArrayType(ResultType, ArrayType::ArraySizeModifier(),0);
3329  }
3330  case Type::FunctionNoProto:
3331    return mergeFunctionTypes(LHS, RHS);
3332  case Type::Record:
3333  case Type::Enum:
3334    // FIXME: Why are these compatible?
3335    if (isObjCIdStructType(LHS) && isObjCClassStructType(RHS)) return LHS;
3336    if (isObjCClassStructType(LHS) && isObjCIdStructType(RHS)) return LHS;
3337    return QualType();
3338  case Type::Builtin:
3339    // Only exactly equal builtin types are compatible, which is tested above.
3340    return QualType();
3341  case Type::Complex:
3342    // Distinct complex types are incompatible.
3343    return QualType();
3344  case Type::Vector:
3345    // FIXME: The merged type should be an ExtVector!
3346    if (areCompatVectorTypes(LHS->getAsVectorType(), RHS->getAsVectorType()))
3347      return LHS;
3348    return QualType();
3349  case Type::ObjCInterface: {
3350    // Check if the interfaces are assignment compatible.
3351    // FIXME: This should be type compatibility, e.g. whether
3352    // "LHS x; RHS x;" at global scope is legal.
3353    const ObjCInterfaceType* LHSIface = LHS->getAsObjCInterfaceType();
3354    const ObjCInterfaceType* RHSIface = RHS->getAsObjCInterfaceType();
3355    if (LHSIface && RHSIface &&
3356        canAssignObjCInterfaces(LHSIface, RHSIface))
3357      return LHS;
3358
3359    return QualType();
3360  }
3361  case Type::ObjCObjectPointer:
3362    // FIXME: finish
3363    // Distinct qualified id's are not compatible.
3364    return QualType();
3365  case Type::FixedWidthInt:
3366    // Distinct fixed-width integers are not compatible.
3367    return QualType();
3368  case Type::ExtQual:
3369    // FIXME: ExtQual types can be compatible even if they're not
3370    // identical!
3371    return QualType();
3372    // First attempt at an implementation, but I'm not really sure it's
3373    // right...
3374#if 0
3375    ExtQualType* LQual = cast<ExtQualType>(LHSCan);
3376    ExtQualType* RQual = cast<ExtQualType>(RHSCan);
3377    if (LQual->getAddressSpace() != RQual->getAddressSpace() ||
3378        LQual->getObjCGCAttr() != RQual->getObjCGCAttr())
3379      return QualType();
3380    QualType LHSBase, RHSBase, ResultType, ResCanUnqual;
3381    LHSBase = QualType(LQual->getBaseType(), 0);
3382    RHSBase = QualType(RQual->getBaseType(), 0);
3383    ResultType = mergeTypes(LHSBase, RHSBase);
3384    if (ResultType.isNull()) return QualType();
3385    ResCanUnqual = getCanonicalType(ResultType).getUnqualifiedType();
3386    if (LHSCan.getUnqualifiedType() == ResCanUnqual)
3387      return LHS;
3388    if (RHSCan.getUnqualifiedType() == ResCanUnqual)
3389      return RHS;
3390    ResultType = getAddrSpaceQualType(ResultType, LQual->getAddressSpace());
3391    ResultType = getObjCGCQualType(ResultType, LQual->getObjCGCAttr());
3392    ResultType.setCVRQualifiers(LHSCan.getCVRQualifiers());
3393    return ResultType;
3394#endif
3395
3396  case Type::TemplateSpecialization:
3397    assert(false && "Dependent types have no size");
3398    break;
3399  }
3400
3401  return QualType();
3402}
3403
3404//===----------------------------------------------------------------------===//
3405//                         Integer Predicates
3406//===----------------------------------------------------------------------===//
3407
3408unsigned ASTContext::getIntWidth(QualType T) {
3409  if (T == BoolTy)
3410    return 1;
3411  if (FixedWidthIntType* FWIT = dyn_cast<FixedWidthIntType>(T)) {
3412    return FWIT->getWidth();
3413  }
3414  // For builtin types, just use the standard type sizing method
3415  return (unsigned)getTypeSize(T);
3416}
3417
3418QualType ASTContext::getCorrespondingUnsignedType(QualType T) {
3419  assert(T->isSignedIntegerType() && "Unexpected type");
3420  if (const EnumType* ETy = T->getAsEnumType())
3421    T = ETy->getDecl()->getIntegerType();
3422  const BuiltinType* BTy = T->getAsBuiltinType();
3423  assert (BTy && "Unexpected signed integer type");
3424  switch (BTy->getKind()) {
3425  case BuiltinType::Char_S:
3426  case BuiltinType::SChar:
3427    return UnsignedCharTy;
3428  case BuiltinType::Short:
3429    return UnsignedShortTy;
3430  case BuiltinType::Int:
3431    return UnsignedIntTy;
3432  case BuiltinType::Long:
3433    return UnsignedLongTy;
3434  case BuiltinType::LongLong:
3435    return UnsignedLongLongTy;
3436  case BuiltinType::Int128:
3437    return UnsignedInt128Ty;
3438  default:
3439    assert(0 && "Unexpected signed integer type");
3440    return QualType();
3441  }
3442}
3443
3444ExternalASTSource::~ExternalASTSource() { }
3445
3446void ExternalASTSource::PrintStats() { }
3447
3448
3449//===----------------------------------------------------------------------===//
3450//                          Builtin Type Computation
3451//===----------------------------------------------------------------------===//
3452
3453/// DecodeTypeFromStr - This decodes one type descriptor from Str, advancing the
3454/// pointer over the consumed characters.  This returns the resultant type.
3455static QualType DecodeTypeFromStr(const char *&Str, ASTContext &Context,
3456                                  ASTContext::GetBuiltinTypeError &Error,
3457                                  bool AllowTypeModifiers = true) {
3458  // Modifiers.
3459  int HowLong = 0;
3460  bool Signed = false, Unsigned = false;
3461
3462  // Read the modifiers first.
3463  bool Done = false;
3464  while (!Done) {
3465    switch (*Str++) {
3466    default: Done = true; --Str; break;
3467    case 'S':
3468      assert(!Unsigned && "Can't use both 'S' and 'U' modifiers!");
3469      assert(!Signed && "Can't use 'S' modifier multiple times!");
3470      Signed = true;
3471      break;
3472    case 'U':
3473      assert(!Signed && "Can't use both 'S' and 'U' modifiers!");
3474      assert(!Unsigned && "Can't use 'S' modifier multiple times!");
3475      Unsigned = true;
3476      break;
3477    case 'L':
3478      assert(HowLong <= 2 && "Can't have LLLL modifier");
3479      ++HowLong;
3480      break;
3481    }
3482  }
3483
3484  QualType Type;
3485
3486  // Read the base type.
3487  switch (*Str++) {
3488  default: assert(0 && "Unknown builtin type letter!");
3489  case 'v':
3490    assert(HowLong == 0 && !Signed && !Unsigned &&
3491           "Bad modifiers used with 'v'!");
3492    Type = Context.VoidTy;
3493    break;
3494  case 'f':
3495    assert(HowLong == 0 && !Signed && !Unsigned &&
3496           "Bad modifiers used with 'f'!");
3497    Type = Context.FloatTy;
3498    break;
3499  case 'd':
3500    assert(HowLong < 2 && !Signed && !Unsigned &&
3501           "Bad modifiers used with 'd'!");
3502    if (HowLong)
3503      Type = Context.LongDoubleTy;
3504    else
3505      Type = Context.DoubleTy;
3506    break;
3507  case 's':
3508    assert(HowLong == 0 && "Bad modifiers used with 's'!");
3509    if (Unsigned)
3510      Type = Context.UnsignedShortTy;
3511    else
3512      Type = Context.ShortTy;
3513    break;
3514  case 'i':
3515    if (HowLong == 3)
3516      Type = Unsigned ? Context.UnsignedInt128Ty : Context.Int128Ty;
3517    else if (HowLong == 2)
3518      Type = Unsigned ? Context.UnsignedLongLongTy : Context.LongLongTy;
3519    else if (HowLong == 1)
3520      Type = Unsigned ? Context.UnsignedLongTy : Context.LongTy;
3521    else
3522      Type = Unsigned ? Context.UnsignedIntTy : Context.IntTy;
3523    break;
3524  case 'c':
3525    assert(HowLong == 0 && "Bad modifiers used with 'c'!");
3526    if (Signed)
3527      Type = Context.SignedCharTy;
3528    else if (Unsigned)
3529      Type = Context.UnsignedCharTy;
3530    else
3531      Type = Context.CharTy;
3532    break;
3533  case 'b': // boolean
3534    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'b'!");
3535    Type = Context.BoolTy;
3536    break;
3537  case 'z':  // size_t.
3538    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'z'!");
3539    Type = Context.getSizeType();
3540    break;
3541  case 'F':
3542    Type = Context.getCFConstantStringType();
3543    break;
3544  case 'a':
3545    Type = Context.getBuiltinVaListType();
3546    assert(!Type.isNull() && "builtin va list type not initialized!");
3547    break;
3548  case 'A':
3549    // This is a "reference" to a va_list; however, what exactly
3550    // this means depends on how va_list is defined. There are two
3551    // different kinds of va_list: ones passed by value, and ones
3552    // passed by reference.  An example of a by-value va_list is
3553    // x86, where va_list is a char*. An example of by-ref va_list
3554    // is x86-64, where va_list is a __va_list_tag[1]. For x86,
3555    // we want this argument to be a char*&; for x86-64, we want
3556    // it to be a __va_list_tag*.
3557    Type = Context.getBuiltinVaListType();
3558    assert(!Type.isNull() && "builtin va list type not initialized!");
3559    if (Type->isArrayType()) {
3560      Type = Context.getArrayDecayedType(Type);
3561    } else {
3562      Type = Context.getLValueReferenceType(Type);
3563    }
3564    break;
3565  case 'V': {
3566    char *End;
3567
3568    unsigned NumElements = strtoul(Str, &End, 10);
3569    assert(End != Str && "Missing vector size");
3570
3571    Str = End;
3572
3573    QualType ElementType = DecodeTypeFromStr(Str, Context, Error, false);
3574    Type = Context.getVectorType(ElementType, NumElements);
3575    break;
3576  }
3577  case 'P': {
3578    IdentifierInfo *II = &Context.Idents.get("FILE");
3579    DeclContext::lookup_result Lookup
3580      = Context.getTranslationUnitDecl()->lookup(Context, II);
3581    if (Lookup.first != Lookup.second && isa<TypeDecl>(*Lookup.first)) {
3582      Type = Context.getTypeDeclType(cast<TypeDecl>(*Lookup.first));
3583      break;
3584    }
3585    else {
3586      Error = ASTContext::GE_Missing_FILE;
3587      return QualType();
3588    }
3589  }
3590  }
3591
3592  if (!AllowTypeModifiers)
3593    return Type;
3594
3595  Done = false;
3596  while (!Done) {
3597    switch (*Str++) {
3598      default: Done = true; --Str; break;
3599      case '*':
3600        Type = Context.getPointerType(Type);
3601        break;
3602      case '&':
3603        Type = Context.getLValueReferenceType(Type);
3604        break;
3605      // FIXME: There's no way to have a built-in with an rvalue ref arg.
3606      case 'C':
3607        Type = Type.getQualifiedType(QualType::Const);
3608        break;
3609    }
3610  }
3611
3612  return Type;
3613}
3614
3615/// GetBuiltinType - Return the type for the specified builtin.
3616QualType ASTContext::GetBuiltinType(unsigned id,
3617                                    GetBuiltinTypeError &Error) {
3618  const char *TypeStr = BuiltinInfo.GetTypeString(id);
3619
3620  llvm::SmallVector<QualType, 8> ArgTypes;
3621
3622  Error = GE_None;
3623  QualType ResType = DecodeTypeFromStr(TypeStr, *this, Error);
3624  if (Error != GE_None)
3625    return QualType();
3626  while (TypeStr[0] && TypeStr[0] != '.') {
3627    QualType Ty = DecodeTypeFromStr(TypeStr, *this, Error);
3628    if (Error != GE_None)
3629      return QualType();
3630
3631    // Do array -> pointer decay.  The builtin should use the decayed type.
3632    if (Ty->isArrayType())
3633      Ty = getArrayDecayedType(Ty);
3634
3635    ArgTypes.push_back(Ty);
3636  }
3637
3638  assert((TypeStr[0] != '.' || TypeStr[1] == 0) &&
3639         "'.' should only occur at end of builtin type list!");
3640
3641  // handle untyped/variadic arguments "T c99Style();" or "T cppStyle(...);".
3642  if (ArgTypes.size() == 0 && TypeStr[0] == '.')
3643    return getFunctionNoProtoType(ResType);
3644  return getFunctionType(ResType, ArgTypes.data(), ArgTypes.size(),
3645                         TypeStr[0] == '.', 0);
3646}
3647