ASTContext.cpp revision 15f92bad58c8650b1306729744b1a1230197497a
1//===--- ASTContext.cpp - Context to hold long-lived AST nodes ------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements the ASTContext interface.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/AST/ASTContext.h"
15#include "CXXABI.h"
16#include "clang/AST/ASTMutationListener.h"
17#include "clang/AST/Attr.h"
18#include "clang/AST/CharUnits.h"
19#include "clang/AST/Comment.h"
20#include "clang/AST/CommentCommandTraits.h"
21#include "clang/AST/DeclCXX.h"
22#include "clang/AST/DeclObjC.h"
23#include "clang/AST/DeclTemplate.h"
24#include "clang/AST/Expr.h"
25#include "clang/AST/ExprCXX.h"
26#include "clang/AST/ExternalASTSource.h"
27#include "clang/AST/Mangle.h"
28#include "clang/AST/RecordLayout.h"
29#include "clang/AST/TypeLoc.h"
30#include "clang/Basic/Builtins.h"
31#include "clang/Basic/SourceManager.h"
32#include "clang/Basic/TargetInfo.h"
33#include "llvm/ADT/SmallString.h"
34#include "llvm/ADT/StringExtras.h"
35#include "llvm/Support/Capacity.h"
36#include "llvm/Support/MathExtras.h"
37#include "llvm/Support/raw_ostream.h"
38#include <map>
39
40using namespace clang;
41
42unsigned ASTContext::NumImplicitDefaultConstructors;
43unsigned ASTContext::NumImplicitDefaultConstructorsDeclared;
44unsigned ASTContext::NumImplicitCopyConstructors;
45unsigned ASTContext::NumImplicitCopyConstructorsDeclared;
46unsigned ASTContext::NumImplicitMoveConstructors;
47unsigned ASTContext::NumImplicitMoveConstructorsDeclared;
48unsigned ASTContext::NumImplicitCopyAssignmentOperators;
49unsigned ASTContext::NumImplicitCopyAssignmentOperatorsDeclared;
50unsigned ASTContext::NumImplicitMoveAssignmentOperators;
51unsigned ASTContext::NumImplicitMoveAssignmentOperatorsDeclared;
52unsigned ASTContext::NumImplicitDestructors;
53unsigned ASTContext::NumImplicitDestructorsDeclared;
54
55enum FloatingRank {
56  HalfRank, FloatRank, DoubleRank, LongDoubleRank
57};
58
59RawComment *ASTContext::getRawCommentForDeclNoCache(const Decl *D) const {
60  if (!CommentsLoaded && ExternalSource) {
61    ExternalSource->ReadComments();
62    CommentsLoaded = true;
63  }
64
65  assert(D);
66
67  // User can not attach documentation to implicit declarations.
68  if (D->isImplicit())
69    return NULL;
70
71  // User can not attach documentation to implicit instantiations.
72  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
73    if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
74      return NULL;
75  }
76
77  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
78    if (VD->isStaticDataMember() &&
79        VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
80      return NULL;
81  }
82
83  if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(D)) {
84    if (CRD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
85      return NULL;
86  }
87
88  if (const ClassTemplateSpecializationDecl *CTSD =
89          dyn_cast<ClassTemplateSpecializationDecl>(D)) {
90    TemplateSpecializationKind TSK = CTSD->getSpecializationKind();
91    if (TSK == TSK_ImplicitInstantiation ||
92        TSK == TSK_Undeclared)
93      return NULL;
94  }
95
96  if (const EnumDecl *ED = dyn_cast<EnumDecl>(D)) {
97    if (ED->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
98      return NULL;
99  }
100  if (const TagDecl *TD = dyn_cast<TagDecl>(D)) {
101    // When tag declaration (but not definition!) is part of the
102    // decl-specifier-seq of some other declaration, it doesn't get comment
103    if (TD->isEmbeddedInDeclarator() && !TD->isCompleteDefinition())
104      return NULL;
105  }
106  // TODO: handle comments for function parameters properly.
107  if (isa<ParmVarDecl>(D))
108    return NULL;
109
110  // TODO: we could look up template parameter documentation in the template
111  // documentation.
112  if (isa<TemplateTypeParmDecl>(D) ||
113      isa<NonTypeTemplateParmDecl>(D) ||
114      isa<TemplateTemplateParmDecl>(D))
115    return NULL;
116
117  ArrayRef<RawComment *> RawComments = Comments.getComments();
118
119  // If there are no comments anywhere, we won't find anything.
120  if (RawComments.empty())
121    return NULL;
122
123  // Find declaration location.
124  // For Objective-C declarations we generally don't expect to have multiple
125  // declarators, thus use declaration starting location as the "declaration
126  // location".
127  // For all other declarations multiple declarators are used quite frequently,
128  // so we use the location of the identifier as the "declaration location".
129  SourceLocation DeclLoc;
130  if (isa<ObjCMethodDecl>(D) || isa<ObjCContainerDecl>(D) ||
131      isa<ObjCPropertyDecl>(D) ||
132      isa<RedeclarableTemplateDecl>(D) ||
133      isa<ClassTemplateSpecializationDecl>(D))
134    DeclLoc = D->getLocStart();
135  else
136    DeclLoc = D->getLocation();
137
138  // If the declaration doesn't map directly to a location in a file, we
139  // can't find the comment.
140  if (DeclLoc.isInvalid() || !DeclLoc.isFileID())
141    return NULL;
142
143  // Find the comment that occurs just after this declaration.
144  ArrayRef<RawComment *>::iterator Comment;
145  {
146    // When searching for comments during parsing, the comment we are looking
147    // for is usually among the last two comments we parsed -- check them
148    // first.
149    RawComment CommentAtDeclLoc(
150        SourceMgr, SourceRange(DeclLoc), false,
151        LangOpts.CommentOpts.ParseAllComments);
152    BeforeThanCompare<RawComment> Compare(SourceMgr);
153    ArrayRef<RawComment *>::iterator MaybeBeforeDecl = RawComments.end() - 1;
154    bool Found = Compare(*MaybeBeforeDecl, &CommentAtDeclLoc);
155    if (!Found && RawComments.size() >= 2) {
156      MaybeBeforeDecl--;
157      Found = Compare(*MaybeBeforeDecl, &CommentAtDeclLoc);
158    }
159
160    if (Found) {
161      Comment = MaybeBeforeDecl + 1;
162      assert(Comment == std::lower_bound(RawComments.begin(), RawComments.end(),
163                                         &CommentAtDeclLoc, Compare));
164    } else {
165      // Slow path.
166      Comment = std::lower_bound(RawComments.begin(), RawComments.end(),
167                                 &CommentAtDeclLoc, Compare);
168    }
169  }
170
171  // Decompose the location for the declaration and find the beginning of the
172  // file buffer.
173  std::pair<FileID, unsigned> DeclLocDecomp = SourceMgr.getDecomposedLoc(DeclLoc);
174
175  // First check whether we have a trailing comment.
176  if (Comment != RawComments.end() &&
177      (*Comment)->isDocumentation() && (*Comment)->isTrailingComment() &&
178      (isa<FieldDecl>(D) || isa<EnumConstantDecl>(D) || isa<VarDecl>(D))) {
179    std::pair<FileID, unsigned> CommentBeginDecomp
180      = SourceMgr.getDecomposedLoc((*Comment)->getSourceRange().getBegin());
181    // Check that Doxygen trailing comment comes after the declaration, starts
182    // on the same line and in the same file as the declaration.
183    if (DeclLocDecomp.first == CommentBeginDecomp.first &&
184        SourceMgr.getLineNumber(DeclLocDecomp.first, DeclLocDecomp.second)
185          == SourceMgr.getLineNumber(CommentBeginDecomp.first,
186                                     CommentBeginDecomp.second)) {
187      return *Comment;
188    }
189  }
190
191  // The comment just after the declaration was not a trailing comment.
192  // Let's look at the previous comment.
193  if (Comment == RawComments.begin())
194    return NULL;
195  --Comment;
196
197  // Check that we actually have a non-member Doxygen comment.
198  if (!(*Comment)->isDocumentation() || (*Comment)->isTrailingComment())
199    return NULL;
200
201  // Decompose the end of the comment.
202  std::pair<FileID, unsigned> CommentEndDecomp
203    = SourceMgr.getDecomposedLoc((*Comment)->getSourceRange().getEnd());
204
205  // If the comment and the declaration aren't in the same file, then they
206  // aren't related.
207  if (DeclLocDecomp.first != CommentEndDecomp.first)
208    return NULL;
209
210  // Get the corresponding buffer.
211  bool Invalid = false;
212  const char *Buffer = SourceMgr.getBufferData(DeclLocDecomp.first,
213                                               &Invalid).data();
214  if (Invalid)
215    return NULL;
216
217  // Extract text between the comment and declaration.
218  StringRef Text(Buffer + CommentEndDecomp.second,
219                 DeclLocDecomp.second - CommentEndDecomp.second);
220
221  // There should be no other declarations or preprocessor directives between
222  // comment and declaration.
223  if (Text.find_first_of(",;{}#@") != StringRef::npos)
224    return NULL;
225
226  return *Comment;
227}
228
229namespace {
230/// If we have a 'templated' declaration for a template, adjust 'D' to
231/// refer to the actual template.
232/// If we have an implicit instantiation, adjust 'D' to refer to template.
233const Decl *adjustDeclToTemplate(const Decl *D) {
234  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
235    // Is this function declaration part of a function template?
236    if (const FunctionTemplateDecl *FTD = FD->getDescribedFunctionTemplate())
237      return FTD;
238
239    // Nothing to do if function is not an implicit instantiation.
240    if (FD->getTemplateSpecializationKind() != TSK_ImplicitInstantiation)
241      return D;
242
243    // Function is an implicit instantiation of a function template?
244    if (const FunctionTemplateDecl *FTD = FD->getPrimaryTemplate())
245      return FTD;
246
247    // Function is instantiated from a member definition of a class template?
248    if (const FunctionDecl *MemberDecl =
249            FD->getInstantiatedFromMemberFunction())
250      return MemberDecl;
251
252    return D;
253  }
254  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
255    // Static data member is instantiated from a member definition of a class
256    // template?
257    if (VD->isStaticDataMember())
258      if (const VarDecl *MemberDecl = VD->getInstantiatedFromStaticDataMember())
259        return MemberDecl;
260
261    return D;
262  }
263  if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(D)) {
264    // Is this class declaration part of a class template?
265    if (const ClassTemplateDecl *CTD = CRD->getDescribedClassTemplate())
266      return CTD;
267
268    // Class is an implicit instantiation of a class template or partial
269    // specialization?
270    if (const ClassTemplateSpecializationDecl *CTSD =
271            dyn_cast<ClassTemplateSpecializationDecl>(CRD)) {
272      if (CTSD->getSpecializationKind() != TSK_ImplicitInstantiation)
273        return D;
274      llvm::PointerUnion<ClassTemplateDecl *,
275                         ClassTemplatePartialSpecializationDecl *>
276          PU = CTSD->getSpecializedTemplateOrPartial();
277      return PU.is<ClassTemplateDecl*>() ?
278          static_cast<const Decl*>(PU.get<ClassTemplateDecl *>()) :
279          static_cast<const Decl*>(
280              PU.get<ClassTemplatePartialSpecializationDecl *>());
281    }
282
283    // Class is instantiated from a member definition of a class template?
284    if (const MemberSpecializationInfo *Info =
285                   CRD->getMemberSpecializationInfo())
286      return Info->getInstantiatedFrom();
287
288    return D;
289  }
290  if (const EnumDecl *ED = dyn_cast<EnumDecl>(D)) {
291    // Enum is instantiated from a member definition of a class template?
292    if (const EnumDecl *MemberDecl = ED->getInstantiatedFromMemberEnum())
293      return MemberDecl;
294
295    return D;
296  }
297  // FIXME: Adjust alias templates?
298  return D;
299}
300} // unnamed namespace
301
302const RawComment *ASTContext::getRawCommentForAnyRedecl(
303                                                const Decl *D,
304                                                const Decl **OriginalDecl) const {
305  D = adjustDeclToTemplate(D);
306
307  // Check whether we have cached a comment for this declaration already.
308  {
309    llvm::DenseMap<const Decl *, RawCommentAndCacheFlags>::iterator Pos =
310        RedeclComments.find(D);
311    if (Pos != RedeclComments.end()) {
312      const RawCommentAndCacheFlags &Raw = Pos->second;
313      if (Raw.getKind() != RawCommentAndCacheFlags::NoCommentInDecl) {
314        if (OriginalDecl)
315          *OriginalDecl = Raw.getOriginalDecl();
316        return Raw.getRaw();
317      }
318    }
319  }
320
321  // Search for comments attached to declarations in the redeclaration chain.
322  const RawComment *RC = NULL;
323  const Decl *OriginalDeclForRC = NULL;
324  for (Decl::redecl_iterator I = D->redecls_begin(),
325                             E = D->redecls_end();
326       I != E; ++I) {
327    llvm::DenseMap<const Decl *, RawCommentAndCacheFlags>::iterator Pos =
328        RedeclComments.find(*I);
329    if (Pos != RedeclComments.end()) {
330      const RawCommentAndCacheFlags &Raw = Pos->second;
331      if (Raw.getKind() != RawCommentAndCacheFlags::NoCommentInDecl) {
332        RC = Raw.getRaw();
333        OriginalDeclForRC = Raw.getOriginalDecl();
334        break;
335      }
336    } else {
337      RC = getRawCommentForDeclNoCache(*I);
338      OriginalDeclForRC = *I;
339      RawCommentAndCacheFlags Raw;
340      if (RC) {
341        Raw.setRaw(RC);
342        Raw.setKind(RawCommentAndCacheFlags::FromDecl);
343      } else
344        Raw.setKind(RawCommentAndCacheFlags::NoCommentInDecl);
345      Raw.setOriginalDecl(*I);
346      RedeclComments[*I] = Raw;
347      if (RC)
348        break;
349    }
350  }
351
352  // If we found a comment, it should be a documentation comment.
353  assert(!RC || RC->isDocumentation());
354
355  if (OriginalDecl)
356    *OriginalDecl = OriginalDeclForRC;
357
358  // Update cache for every declaration in the redeclaration chain.
359  RawCommentAndCacheFlags Raw;
360  Raw.setRaw(RC);
361  Raw.setKind(RawCommentAndCacheFlags::FromRedecl);
362  Raw.setOriginalDecl(OriginalDeclForRC);
363
364  for (Decl::redecl_iterator I = D->redecls_begin(),
365                             E = D->redecls_end();
366       I != E; ++I) {
367    RawCommentAndCacheFlags &R = RedeclComments[*I];
368    if (R.getKind() == RawCommentAndCacheFlags::NoCommentInDecl)
369      R = Raw;
370  }
371
372  return RC;
373}
374
375static void addRedeclaredMethods(const ObjCMethodDecl *ObjCMethod,
376                   SmallVectorImpl<const NamedDecl *> &Redeclared) {
377  const DeclContext *DC = ObjCMethod->getDeclContext();
378  if (const ObjCImplDecl *IMD = dyn_cast<ObjCImplDecl>(DC)) {
379    const ObjCInterfaceDecl *ID = IMD->getClassInterface();
380    if (!ID)
381      return;
382    // Add redeclared method here.
383    for (ObjCInterfaceDecl::known_extensions_iterator
384           Ext = ID->known_extensions_begin(),
385           ExtEnd = ID->known_extensions_end();
386         Ext != ExtEnd; ++Ext) {
387      if (ObjCMethodDecl *RedeclaredMethod =
388            Ext->getMethod(ObjCMethod->getSelector(),
389                                  ObjCMethod->isInstanceMethod()))
390        Redeclared.push_back(RedeclaredMethod);
391    }
392  }
393}
394
395comments::FullComment *ASTContext::cloneFullComment(comments::FullComment *FC,
396                                                    const Decl *D) const {
397  comments::DeclInfo *ThisDeclInfo = new (*this) comments::DeclInfo;
398  ThisDeclInfo->CommentDecl = D;
399  ThisDeclInfo->IsFilled = false;
400  ThisDeclInfo->fill();
401  ThisDeclInfo->CommentDecl = FC->getDecl();
402  comments::FullComment *CFC =
403    new (*this) comments::FullComment(FC->getBlocks(),
404                                      ThisDeclInfo);
405  return CFC;
406
407}
408
409comments::FullComment *ASTContext::getCommentForDecl(
410                                              const Decl *D,
411                                              const Preprocessor *PP) const {
412  D = adjustDeclToTemplate(D);
413
414  const Decl *Canonical = D->getCanonicalDecl();
415  llvm::DenseMap<const Decl *, comments::FullComment *>::iterator Pos =
416      ParsedComments.find(Canonical);
417
418  if (Pos != ParsedComments.end()) {
419    if (Canonical != D) {
420      comments::FullComment *FC = Pos->second;
421      comments::FullComment *CFC = cloneFullComment(FC, D);
422      return CFC;
423    }
424    return Pos->second;
425  }
426
427  const Decl *OriginalDecl;
428
429  const RawComment *RC = getRawCommentForAnyRedecl(D, &OriginalDecl);
430  if (!RC) {
431    if (isa<ObjCMethodDecl>(D) || isa<FunctionDecl>(D)) {
432      SmallVector<const NamedDecl*, 8> Overridden;
433      const ObjCMethodDecl *OMD = dyn_cast<ObjCMethodDecl>(D);
434      if (OMD && OMD->isPropertyAccessor())
435        if (const ObjCPropertyDecl *PDecl = OMD->findPropertyDecl())
436          if (comments::FullComment *FC = getCommentForDecl(PDecl, PP))
437            return cloneFullComment(FC, D);
438      if (OMD)
439        addRedeclaredMethods(OMD, Overridden);
440      getOverriddenMethods(dyn_cast<NamedDecl>(D), Overridden);
441      for (unsigned i = 0, e = Overridden.size(); i < e; i++)
442        if (comments::FullComment *FC = getCommentForDecl(Overridden[i], PP))
443          return cloneFullComment(FC, D);
444    }
445    else if (const TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(D)) {
446      // Attach any tag type's documentation to its typedef if latter
447      // does not have one of its own.
448      QualType QT = TD->getUnderlyingType();
449      if (const TagType *TT = QT->getAs<TagType>())
450        if (const Decl *TD = TT->getDecl())
451          if (comments::FullComment *FC = getCommentForDecl(TD, PP))
452            return cloneFullComment(FC, D);
453    }
454    else if (const ObjCInterfaceDecl *IC = dyn_cast<ObjCInterfaceDecl>(D)) {
455      while (IC->getSuperClass()) {
456        IC = IC->getSuperClass();
457        if (comments::FullComment *FC = getCommentForDecl(IC, PP))
458          return cloneFullComment(FC, D);
459      }
460    }
461    else if (const ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(D)) {
462      if (const ObjCInterfaceDecl *IC = CD->getClassInterface())
463        if (comments::FullComment *FC = getCommentForDecl(IC, PP))
464          return cloneFullComment(FC, D);
465    }
466    else if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D)) {
467      if (!(RD = RD->getDefinition()))
468        return NULL;
469      // Check non-virtual bases.
470      for (CXXRecordDecl::base_class_const_iterator I =
471           RD->bases_begin(), E = RD->bases_end(); I != E; ++I) {
472        if (I->isVirtual() || (I->getAccessSpecifier() != AS_public))
473          continue;
474        QualType Ty = I->getType();
475        if (Ty.isNull())
476          continue;
477        if (const CXXRecordDecl *NonVirtualBase = Ty->getAsCXXRecordDecl()) {
478          if (!(NonVirtualBase= NonVirtualBase->getDefinition()))
479            continue;
480
481          if (comments::FullComment *FC = getCommentForDecl((NonVirtualBase), PP))
482            return cloneFullComment(FC, D);
483        }
484      }
485      // Check virtual bases.
486      for (CXXRecordDecl::base_class_const_iterator I =
487           RD->vbases_begin(), E = RD->vbases_end(); I != E; ++I) {
488        if (I->getAccessSpecifier() != AS_public)
489          continue;
490        QualType Ty = I->getType();
491        if (Ty.isNull())
492          continue;
493        if (const CXXRecordDecl *VirtualBase = Ty->getAsCXXRecordDecl()) {
494          if (!(VirtualBase= VirtualBase->getDefinition()))
495            continue;
496          if (comments::FullComment *FC = getCommentForDecl((VirtualBase), PP))
497            return cloneFullComment(FC, D);
498        }
499      }
500    }
501    return NULL;
502  }
503
504  // If the RawComment was attached to other redeclaration of this Decl, we
505  // should parse the comment in context of that other Decl.  This is important
506  // because comments can contain references to parameter names which can be
507  // different across redeclarations.
508  if (D != OriginalDecl)
509    return getCommentForDecl(OriginalDecl, PP);
510
511  comments::FullComment *FC = RC->parse(*this, PP, D);
512  ParsedComments[Canonical] = FC;
513  return FC;
514}
515
516void
517ASTContext::CanonicalTemplateTemplateParm::Profile(llvm::FoldingSetNodeID &ID,
518                                               TemplateTemplateParmDecl *Parm) {
519  ID.AddInteger(Parm->getDepth());
520  ID.AddInteger(Parm->getPosition());
521  ID.AddBoolean(Parm->isParameterPack());
522
523  TemplateParameterList *Params = Parm->getTemplateParameters();
524  ID.AddInteger(Params->size());
525  for (TemplateParameterList::const_iterator P = Params->begin(),
526                                          PEnd = Params->end();
527       P != PEnd; ++P) {
528    if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*P)) {
529      ID.AddInteger(0);
530      ID.AddBoolean(TTP->isParameterPack());
531      continue;
532    }
533
534    if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(*P)) {
535      ID.AddInteger(1);
536      ID.AddBoolean(NTTP->isParameterPack());
537      ID.AddPointer(NTTP->getType().getCanonicalType().getAsOpaquePtr());
538      if (NTTP->isExpandedParameterPack()) {
539        ID.AddBoolean(true);
540        ID.AddInteger(NTTP->getNumExpansionTypes());
541        for (unsigned I = 0, N = NTTP->getNumExpansionTypes(); I != N; ++I) {
542          QualType T = NTTP->getExpansionType(I);
543          ID.AddPointer(T.getCanonicalType().getAsOpaquePtr());
544        }
545      } else
546        ID.AddBoolean(false);
547      continue;
548    }
549
550    TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(*P);
551    ID.AddInteger(2);
552    Profile(ID, TTP);
553  }
554}
555
556TemplateTemplateParmDecl *
557ASTContext::getCanonicalTemplateTemplateParmDecl(
558                                          TemplateTemplateParmDecl *TTP) const {
559  // Check if we already have a canonical template template parameter.
560  llvm::FoldingSetNodeID ID;
561  CanonicalTemplateTemplateParm::Profile(ID, TTP);
562  void *InsertPos = 0;
563  CanonicalTemplateTemplateParm *Canonical
564    = CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos);
565  if (Canonical)
566    return Canonical->getParam();
567
568  // Build a canonical template parameter list.
569  TemplateParameterList *Params = TTP->getTemplateParameters();
570  SmallVector<NamedDecl *, 4> CanonParams;
571  CanonParams.reserve(Params->size());
572  for (TemplateParameterList::const_iterator P = Params->begin(),
573                                          PEnd = Params->end();
574       P != PEnd; ++P) {
575    if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*P))
576      CanonParams.push_back(
577                  TemplateTypeParmDecl::Create(*this, getTranslationUnitDecl(),
578                                               SourceLocation(),
579                                               SourceLocation(),
580                                               TTP->getDepth(),
581                                               TTP->getIndex(), 0, false,
582                                               TTP->isParameterPack()));
583    else if (NonTypeTemplateParmDecl *NTTP
584             = dyn_cast<NonTypeTemplateParmDecl>(*P)) {
585      QualType T = getCanonicalType(NTTP->getType());
586      TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(T);
587      NonTypeTemplateParmDecl *Param;
588      if (NTTP->isExpandedParameterPack()) {
589        SmallVector<QualType, 2> ExpandedTypes;
590        SmallVector<TypeSourceInfo *, 2> ExpandedTInfos;
591        for (unsigned I = 0, N = NTTP->getNumExpansionTypes(); I != N; ++I) {
592          ExpandedTypes.push_back(getCanonicalType(NTTP->getExpansionType(I)));
593          ExpandedTInfos.push_back(
594                                getTrivialTypeSourceInfo(ExpandedTypes.back()));
595        }
596
597        Param = NonTypeTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
598                                                SourceLocation(),
599                                                SourceLocation(),
600                                                NTTP->getDepth(),
601                                                NTTP->getPosition(), 0,
602                                                T,
603                                                TInfo,
604                                                ExpandedTypes.data(),
605                                                ExpandedTypes.size(),
606                                                ExpandedTInfos.data());
607      } else {
608        Param = NonTypeTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
609                                                SourceLocation(),
610                                                SourceLocation(),
611                                                NTTP->getDepth(),
612                                                NTTP->getPosition(), 0,
613                                                T,
614                                                NTTP->isParameterPack(),
615                                                TInfo);
616      }
617      CanonParams.push_back(Param);
618
619    } else
620      CanonParams.push_back(getCanonicalTemplateTemplateParmDecl(
621                                           cast<TemplateTemplateParmDecl>(*P)));
622  }
623
624  TemplateTemplateParmDecl *CanonTTP
625    = TemplateTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
626                                       SourceLocation(), TTP->getDepth(),
627                                       TTP->getPosition(),
628                                       TTP->isParameterPack(),
629                                       0,
630                         TemplateParameterList::Create(*this, SourceLocation(),
631                                                       SourceLocation(),
632                                                       CanonParams.data(),
633                                                       CanonParams.size(),
634                                                       SourceLocation()));
635
636  // Get the new insert position for the node we care about.
637  Canonical = CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos);
638  assert(Canonical == 0 && "Shouldn't be in the map!");
639  (void)Canonical;
640
641  // Create the canonical template template parameter entry.
642  Canonical = new (*this) CanonicalTemplateTemplateParm(CanonTTP);
643  CanonTemplateTemplateParms.InsertNode(Canonical, InsertPos);
644  return CanonTTP;
645}
646
647CXXABI *ASTContext::createCXXABI(const TargetInfo &T) {
648  if (!LangOpts.CPlusPlus) return 0;
649
650  switch (T.getCXXABI().getKind()) {
651  case TargetCXXABI::GenericARM:
652  case TargetCXXABI::iOS:
653    return CreateARMCXXABI(*this);
654  case TargetCXXABI::GenericAArch64: // Same as Itanium at this level
655  case TargetCXXABI::GenericItanium:
656    return CreateItaniumCXXABI(*this);
657  case TargetCXXABI::Microsoft:
658    return CreateMicrosoftCXXABI(*this);
659  }
660  llvm_unreachable("Invalid CXXABI type!");
661}
662
663static const LangAS::Map *getAddressSpaceMap(const TargetInfo &T,
664                                             const LangOptions &LOpts) {
665  if (LOpts.FakeAddressSpaceMap) {
666    // The fake address space map must have a distinct entry for each
667    // language-specific address space.
668    static const unsigned FakeAddrSpaceMap[] = {
669      1, // opencl_global
670      2, // opencl_local
671      3, // opencl_constant
672      4, // cuda_device
673      5, // cuda_constant
674      6  // cuda_shared
675    };
676    return &FakeAddrSpaceMap;
677  } else {
678    return &T.getAddressSpaceMap();
679  }
680}
681
682ASTContext::ASTContext(LangOptions& LOpts, SourceManager &SM,
683                       const TargetInfo *t,
684                       IdentifierTable &idents, SelectorTable &sels,
685                       Builtin::Context &builtins,
686                       unsigned size_reserve,
687                       bool DelayInitialization)
688  : FunctionProtoTypes(this_()),
689    TemplateSpecializationTypes(this_()),
690    DependentTemplateSpecializationTypes(this_()),
691    SubstTemplateTemplateParmPacks(this_()),
692    GlobalNestedNameSpecifier(0),
693    Int128Decl(0), UInt128Decl(0),
694    BuiltinVaListDecl(0),
695    ObjCIdDecl(0), ObjCSelDecl(0), ObjCClassDecl(0), ObjCProtocolClassDecl(0),
696    BOOLDecl(0),
697    CFConstantStringTypeDecl(0), ObjCInstanceTypeDecl(0),
698    FILEDecl(0),
699    jmp_bufDecl(0), sigjmp_bufDecl(0), ucontext_tDecl(0),
700    BlockDescriptorType(0), BlockDescriptorExtendedType(0),
701    cudaConfigureCallDecl(0),
702    NullTypeSourceInfo(QualType()),
703    FirstLocalImport(), LastLocalImport(),
704    SourceMgr(SM), LangOpts(LOpts),
705    AddrSpaceMap(0), Target(t), PrintingPolicy(LOpts),
706    Idents(idents), Selectors(sels),
707    BuiltinInfo(builtins),
708    DeclarationNames(*this),
709    ExternalSource(0), Listener(0),
710    Comments(SM), CommentsLoaded(false),
711    CommentCommandTraits(BumpAlloc, LOpts.CommentOpts),
712    LastSDM(0, 0),
713    UniqueBlockByRefTypeID(0)
714{
715  if (size_reserve > 0) Types.reserve(size_reserve);
716  TUDecl = TranslationUnitDecl::Create(*this);
717
718  if (!DelayInitialization) {
719    assert(t && "No target supplied for ASTContext initialization");
720    InitBuiltinTypes(*t);
721  }
722}
723
724ASTContext::~ASTContext() {
725  // Release the DenseMaps associated with DeclContext objects.
726  // FIXME: Is this the ideal solution?
727  ReleaseDeclContextMaps();
728
729  // Call all of the deallocation functions.
730  for (unsigned I = 0, N = Deallocations.size(); I != N; ++I)
731    Deallocations[I].first(Deallocations[I].second);
732
733  // ASTRecordLayout objects in ASTRecordLayouts must always be destroyed
734  // because they can contain DenseMaps.
735  for (llvm::DenseMap<const ObjCContainerDecl*,
736       const ASTRecordLayout*>::iterator
737       I = ObjCLayouts.begin(), E = ObjCLayouts.end(); I != E; )
738    // Increment in loop to prevent using deallocated memory.
739    if (ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second))
740      R->Destroy(*this);
741
742  for (llvm::DenseMap<const RecordDecl*, const ASTRecordLayout*>::iterator
743       I = ASTRecordLayouts.begin(), E = ASTRecordLayouts.end(); I != E; ) {
744    // Increment in loop to prevent using deallocated memory.
745    if (ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second))
746      R->Destroy(*this);
747  }
748
749  for (llvm::DenseMap<const Decl*, AttrVec*>::iterator A = DeclAttrs.begin(),
750                                                    AEnd = DeclAttrs.end();
751       A != AEnd; ++A)
752    A->second->~AttrVec();
753}
754
755void ASTContext::AddDeallocation(void (*Callback)(void*), void *Data) {
756  Deallocations.push_back(std::make_pair(Callback, Data));
757}
758
759void
760ASTContext::setExternalSource(OwningPtr<ExternalASTSource> &Source) {
761  ExternalSource.reset(Source.take());
762}
763
764void ASTContext::PrintStats() const {
765  llvm::errs() << "\n*** AST Context Stats:\n";
766  llvm::errs() << "  " << Types.size() << " types total.\n";
767
768  unsigned counts[] = {
769#define TYPE(Name, Parent) 0,
770#define ABSTRACT_TYPE(Name, Parent)
771#include "clang/AST/TypeNodes.def"
772    0 // Extra
773  };
774
775  for (unsigned i = 0, e = Types.size(); i != e; ++i) {
776    Type *T = Types[i];
777    counts[(unsigned)T->getTypeClass()]++;
778  }
779
780  unsigned Idx = 0;
781  unsigned TotalBytes = 0;
782#define TYPE(Name, Parent)                                              \
783  if (counts[Idx])                                                      \
784    llvm::errs() << "    " << counts[Idx] << " " << #Name               \
785                 << " types\n";                                         \
786  TotalBytes += counts[Idx] * sizeof(Name##Type);                       \
787  ++Idx;
788#define ABSTRACT_TYPE(Name, Parent)
789#include "clang/AST/TypeNodes.def"
790
791  llvm::errs() << "Total bytes = " << TotalBytes << "\n";
792
793  // Implicit special member functions.
794  llvm::errs() << NumImplicitDefaultConstructorsDeclared << "/"
795               << NumImplicitDefaultConstructors
796               << " implicit default constructors created\n";
797  llvm::errs() << NumImplicitCopyConstructorsDeclared << "/"
798               << NumImplicitCopyConstructors
799               << " implicit copy constructors created\n";
800  if (getLangOpts().CPlusPlus)
801    llvm::errs() << NumImplicitMoveConstructorsDeclared << "/"
802                 << NumImplicitMoveConstructors
803                 << " implicit move constructors created\n";
804  llvm::errs() << NumImplicitCopyAssignmentOperatorsDeclared << "/"
805               << NumImplicitCopyAssignmentOperators
806               << " implicit copy assignment operators created\n";
807  if (getLangOpts().CPlusPlus)
808    llvm::errs() << NumImplicitMoveAssignmentOperatorsDeclared << "/"
809                 << NumImplicitMoveAssignmentOperators
810                 << " implicit move assignment operators created\n";
811  llvm::errs() << NumImplicitDestructorsDeclared << "/"
812               << NumImplicitDestructors
813               << " implicit destructors created\n";
814
815  if (ExternalSource.get()) {
816    llvm::errs() << "\n";
817    ExternalSource->PrintStats();
818  }
819
820  BumpAlloc.PrintStats();
821}
822
823TypedefDecl *ASTContext::getInt128Decl() const {
824  if (!Int128Decl) {
825    TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(Int128Ty);
826    Int128Decl = TypedefDecl::Create(const_cast<ASTContext &>(*this),
827                                     getTranslationUnitDecl(),
828                                     SourceLocation(),
829                                     SourceLocation(),
830                                     &Idents.get("__int128_t"),
831                                     TInfo);
832  }
833
834  return Int128Decl;
835}
836
837TypedefDecl *ASTContext::getUInt128Decl() const {
838  if (!UInt128Decl) {
839    TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(UnsignedInt128Ty);
840    UInt128Decl = TypedefDecl::Create(const_cast<ASTContext &>(*this),
841                                     getTranslationUnitDecl(),
842                                     SourceLocation(),
843                                     SourceLocation(),
844                                     &Idents.get("__uint128_t"),
845                                     TInfo);
846  }
847
848  return UInt128Decl;
849}
850
851void ASTContext::InitBuiltinType(CanQualType &R, BuiltinType::Kind K) {
852  BuiltinType *Ty = new (*this, TypeAlignment) BuiltinType(K);
853  R = CanQualType::CreateUnsafe(QualType(Ty, 0));
854  Types.push_back(Ty);
855}
856
857void ASTContext::InitBuiltinTypes(const TargetInfo &Target) {
858  assert((!this->Target || this->Target == &Target) &&
859         "Incorrect target reinitialization");
860  assert(VoidTy.isNull() && "Context reinitialized?");
861
862  this->Target = &Target;
863
864  ABI.reset(createCXXABI(Target));
865  AddrSpaceMap = getAddressSpaceMap(Target, LangOpts);
866
867  // C99 6.2.5p19.
868  InitBuiltinType(VoidTy,              BuiltinType::Void);
869
870  // C99 6.2.5p2.
871  InitBuiltinType(BoolTy,              BuiltinType::Bool);
872  // C99 6.2.5p3.
873  if (LangOpts.CharIsSigned)
874    InitBuiltinType(CharTy,            BuiltinType::Char_S);
875  else
876    InitBuiltinType(CharTy,            BuiltinType::Char_U);
877  // C99 6.2.5p4.
878  InitBuiltinType(SignedCharTy,        BuiltinType::SChar);
879  InitBuiltinType(ShortTy,             BuiltinType::Short);
880  InitBuiltinType(IntTy,               BuiltinType::Int);
881  InitBuiltinType(LongTy,              BuiltinType::Long);
882  InitBuiltinType(LongLongTy,          BuiltinType::LongLong);
883
884  // C99 6.2.5p6.
885  InitBuiltinType(UnsignedCharTy,      BuiltinType::UChar);
886  InitBuiltinType(UnsignedShortTy,     BuiltinType::UShort);
887  InitBuiltinType(UnsignedIntTy,       BuiltinType::UInt);
888  InitBuiltinType(UnsignedLongTy,      BuiltinType::ULong);
889  InitBuiltinType(UnsignedLongLongTy,  BuiltinType::ULongLong);
890
891  // C99 6.2.5p10.
892  InitBuiltinType(FloatTy,             BuiltinType::Float);
893  InitBuiltinType(DoubleTy,            BuiltinType::Double);
894  InitBuiltinType(LongDoubleTy,        BuiltinType::LongDouble);
895
896  // GNU extension, 128-bit integers.
897  InitBuiltinType(Int128Ty,            BuiltinType::Int128);
898  InitBuiltinType(UnsignedInt128Ty,    BuiltinType::UInt128);
899
900  // C++ 3.9.1p5
901  if (TargetInfo::isTypeSigned(Target.getWCharType()))
902    InitBuiltinType(WCharTy,           BuiltinType::WChar_S);
903  else  // -fshort-wchar makes wchar_t be unsigned.
904    InitBuiltinType(WCharTy,           BuiltinType::WChar_U);
905  if (LangOpts.CPlusPlus && LangOpts.WChar)
906    WideCharTy = WCharTy;
907  else {
908    // C99 (or C++ using -fno-wchar).
909    WideCharTy = getFromTargetType(Target.getWCharType());
910  }
911
912  WIntTy = getFromTargetType(Target.getWIntType());
913
914  if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
915    InitBuiltinType(Char16Ty,           BuiltinType::Char16);
916  else // C99
917    Char16Ty = getFromTargetType(Target.getChar16Type());
918
919  if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
920    InitBuiltinType(Char32Ty,           BuiltinType::Char32);
921  else // C99
922    Char32Ty = getFromTargetType(Target.getChar32Type());
923
924  // Placeholder type for type-dependent expressions whose type is
925  // completely unknown. No code should ever check a type against
926  // DependentTy and users should never see it; however, it is here to
927  // help diagnose failures to properly check for type-dependent
928  // expressions.
929  InitBuiltinType(DependentTy,         BuiltinType::Dependent);
930
931  // Placeholder type for functions.
932  InitBuiltinType(OverloadTy,          BuiltinType::Overload);
933
934  // Placeholder type for bound members.
935  InitBuiltinType(BoundMemberTy,       BuiltinType::BoundMember);
936
937  // Placeholder type for pseudo-objects.
938  InitBuiltinType(PseudoObjectTy,      BuiltinType::PseudoObject);
939
940  // "any" type; useful for debugger-like clients.
941  InitBuiltinType(UnknownAnyTy,        BuiltinType::UnknownAny);
942
943  // Placeholder type for unbridged ARC casts.
944  InitBuiltinType(ARCUnbridgedCastTy,  BuiltinType::ARCUnbridgedCast);
945
946  // Placeholder type for builtin functions.
947  InitBuiltinType(BuiltinFnTy,  BuiltinType::BuiltinFn);
948
949  // C99 6.2.5p11.
950  FloatComplexTy      = getComplexType(FloatTy);
951  DoubleComplexTy     = getComplexType(DoubleTy);
952  LongDoubleComplexTy = getComplexType(LongDoubleTy);
953
954  // Builtin types for 'id', 'Class', and 'SEL'.
955  InitBuiltinType(ObjCBuiltinIdTy, BuiltinType::ObjCId);
956  InitBuiltinType(ObjCBuiltinClassTy, BuiltinType::ObjCClass);
957  InitBuiltinType(ObjCBuiltinSelTy, BuiltinType::ObjCSel);
958
959  if (LangOpts.OpenCL) {
960    InitBuiltinType(OCLImage1dTy, BuiltinType::OCLImage1d);
961    InitBuiltinType(OCLImage1dArrayTy, BuiltinType::OCLImage1dArray);
962    InitBuiltinType(OCLImage1dBufferTy, BuiltinType::OCLImage1dBuffer);
963    InitBuiltinType(OCLImage2dTy, BuiltinType::OCLImage2d);
964    InitBuiltinType(OCLImage2dArrayTy, BuiltinType::OCLImage2dArray);
965    InitBuiltinType(OCLImage3dTy, BuiltinType::OCLImage3d);
966
967    InitBuiltinType(OCLSamplerTy, BuiltinType::OCLSampler);
968    InitBuiltinType(OCLEventTy, BuiltinType::OCLEvent);
969  }
970
971  // Builtin type for __objc_yes and __objc_no
972  ObjCBuiltinBoolTy = (Target.useSignedCharForObjCBool() ?
973                       SignedCharTy : BoolTy);
974
975  ObjCConstantStringType = QualType();
976
977  ObjCSuperType = QualType();
978
979  // void * type
980  VoidPtrTy = getPointerType(VoidTy);
981
982  // nullptr type (C++0x 2.14.7)
983  InitBuiltinType(NullPtrTy,           BuiltinType::NullPtr);
984
985  // half type (OpenCL 6.1.1.1) / ARM NEON __fp16
986  InitBuiltinType(HalfTy, BuiltinType::Half);
987
988  // Builtin type used to help define __builtin_va_list.
989  VaListTagTy = QualType();
990}
991
992DiagnosticsEngine &ASTContext::getDiagnostics() const {
993  return SourceMgr.getDiagnostics();
994}
995
996AttrVec& ASTContext::getDeclAttrs(const Decl *D) {
997  AttrVec *&Result = DeclAttrs[D];
998  if (!Result) {
999    void *Mem = Allocate(sizeof(AttrVec));
1000    Result = new (Mem) AttrVec;
1001  }
1002
1003  return *Result;
1004}
1005
1006/// \brief Erase the attributes corresponding to the given declaration.
1007void ASTContext::eraseDeclAttrs(const Decl *D) {
1008  llvm::DenseMap<const Decl*, AttrVec*>::iterator Pos = DeclAttrs.find(D);
1009  if (Pos != DeclAttrs.end()) {
1010    Pos->second->~AttrVec();
1011    DeclAttrs.erase(Pos);
1012  }
1013}
1014
1015MemberSpecializationInfo *
1016ASTContext::getInstantiatedFromStaticDataMember(const VarDecl *Var) {
1017  assert(Var->isStaticDataMember() && "Not a static data member");
1018  llvm::DenseMap<const VarDecl *, MemberSpecializationInfo *>::iterator Pos
1019    = InstantiatedFromStaticDataMember.find(Var);
1020  if (Pos == InstantiatedFromStaticDataMember.end())
1021    return 0;
1022
1023  return Pos->second;
1024}
1025
1026void
1027ASTContext::setInstantiatedFromStaticDataMember(VarDecl *Inst, VarDecl *Tmpl,
1028                                                TemplateSpecializationKind TSK,
1029                                          SourceLocation PointOfInstantiation) {
1030  assert(Inst->isStaticDataMember() && "Not a static data member");
1031  assert(Tmpl->isStaticDataMember() && "Not a static data member");
1032  assert(!InstantiatedFromStaticDataMember[Inst] &&
1033         "Already noted what static data member was instantiated from");
1034  InstantiatedFromStaticDataMember[Inst]
1035    = new (*this) MemberSpecializationInfo(Tmpl, TSK, PointOfInstantiation);
1036}
1037
1038FunctionDecl *ASTContext::getClassScopeSpecializationPattern(
1039                                                     const FunctionDecl *FD){
1040  assert(FD && "Specialization is 0");
1041  llvm::DenseMap<const FunctionDecl*, FunctionDecl *>::const_iterator Pos
1042    = ClassScopeSpecializationPattern.find(FD);
1043  if (Pos == ClassScopeSpecializationPattern.end())
1044    return 0;
1045
1046  return Pos->second;
1047}
1048
1049void ASTContext::setClassScopeSpecializationPattern(FunctionDecl *FD,
1050                                        FunctionDecl *Pattern) {
1051  assert(FD && "Specialization is 0");
1052  assert(Pattern && "Class scope specialization pattern is 0");
1053  ClassScopeSpecializationPattern[FD] = Pattern;
1054}
1055
1056NamedDecl *
1057ASTContext::getInstantiatedFromUsingDecl(UsingDecl *UUD) {
1058  llvm::DenseMap<UsingDecl *, NamedDecl *>::const_iterator Pos
1059    = InstantiatedFromUsingDecl.find(UUD);
1060  if (Pos == InstantiatedFromUsingDecl.end())
1061    return 0;
1062
1063  return Pos->second;
1064}
1065
1066void
1067ASTContext::setInstantiatedFromUsingDecl(UsingDecl *Inst, NamedDecl *Pattern) {
1068  assert((isa<UsingDecl>(Pattern) ||
1069          isa<UnresolvedUsingValueDecl>(Pattern) ||
1070          isa<UnresolvedUsingTypenameDecl>(Pattern)) &&
1071         "pattern decl is not a using decl");
1072  assert(!InstantiatedFromUsingDecl[Inst] && "pattern already exists");
1073  InstantiatedFromUsingDecl[Inst] = Pattern;
1074}
1075
1076UsingShadowDecl *
1077ASTContext::getInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst) {
1078  llvm::DenseMap<UsingShadowDecl*, UsingShadowDecl*>::const_iterator Pos
1079    = InstantiatedFromUsingShadowDecl.find(Inst);
1080  if (Pos == InstantiatedFromUsingShadowDecl.end())
1081    return 0;
1082
1083  return Pos->second;
1084}
1085
1086void
1087ASTContext::setInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst,
1088                                               UsingShadowDecl *Pattern) {
1089  assert(!InstantiatedFromUsingShadowDecl[Inst] && "pattern already exists");
1090  InstantiatedFromUsingShadowDecl[Inst] = Pattern;
1091}
1092
1093FieldDecl *ASTContext::getInstantiatedFromUnnamedFieldDecl(FieldDecl *Field) {
1094  llvm::DenseMap<FieldDecl *, FieldDecl *>::iterator Pos
1095    = InstantiatedFromUnnamedFieldDecl.find(Field);
1096  if (Pos == InstantiatedFromUnnamedFieldDecl.end())
1097    return 0;
1098
1099  return Pos->second;
1100}
1101
1102void ASTContext::setInstantiatedFromUnnamedFieldDecl(FieldDecl *Inst,
1103                                                     FieldDecl *Tmpl) {
1104  assert(!Inst->getDeclName() && "Instantiated field decl is not unnamed");
1105  assert(!Tmpl->getDeclName() && "Template field decl is not unnamed");
1106  assert(!InstantiatedFromUnnamedFieldDecl[Inst] &&
1107         "Already noted what unnamed field was instantiated from");
1108
1109  InstantiatedFromUnnamedFieldDecl[Inst] = Tmpl;
1110}
1111
1112bool ASTContext::ZeroBitfieldFollowsNonBitfield(const FieldDecl *FD,
1113                                    const FieldDecl *LastFD) const {
1114  return (FD->isBitField() && LastFD && !LastFD->isBitField() &&
1115          FD->getBitWidthValue(*this) == 0);
1116}
1117
1118bool ASTContext::ZeroBitfieldFollowsBitfield(const FieldDecl *FD,
1119                                             const FieldDecl *LastFD) const {
1120  return (FD->isBitField() && LastFD && LastFD->isBitField() &&
1121          FD->getBitWidthValue(*this) == 0 &&
1122          LastFD->getBitWidthValue(*this) != 0);
1123}
1124
1125bool ASTContext::BitfieldFollowsBitfield(const FieldDecl *FD,
1126                                         const FieldDecl *LastFD) const {
1127  return (FD->isBitField() && LastFD && LastFD->isBitField() &&
1128          FD->getBitWidthValue(*this) &&
1129          LastFD->getBitWidthValue(*this));
1130}
1131
1132bool ASTContext::NonBitfieldFollowsBitfield(const FieldDecl *FD,
1133                                         const FieldDecl *LastFD) const {
1134  return (!FD->isBitField() && LastFD && LastFD->isBitField() &&
1135          LastFD->getBitWidthValue(*this));
1136}
1137
1138bool ASTContext::BitfieldFollowsNonBitfield(const FieldDecl *FD,
1139                                             const FieldDecl *LastFD) const {
1140  return (FD->isBitField() && LastFD && !LastFD->isBitField() &&
1141          FD->getBitWidthValue(*this));
1142}
1143
1144ASTContext::overridden_cxx_method_iterator
1145ASTContext::overridden_methods_begin(const CXXMethodDecl *Method) const {
1146  llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
1147    = OverriddenMethods.find(Method->getCanonicalDecl());
1148  if (Pos == OverriddenMethods.end())
1149    return 0;
1150
1151  return Pos->second.begin();
1152}
1153
1154ASTContext::overridden_cxx_method_iterator
1155ASTContext::overridden_methods_end(const CXXMethodDecl *Method) const {
1156  llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
1157    = OverriddenMethods.find(Method->getCanonicalDecl());
1158  if (Pos == OverriddenMethods.end())
1159    return 0;
1160
1161  return Pos->second.end();
1162}
1163
1164unsigned
1165ASTContext::overridden_methods_size(const CXXMethodDecl *Method) const {
1166  llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
1167    = OverriddenMethods.find(Method->getCanonicalDecl());
1168  if (Pos == OverriddenMethods.end())
1169    return 0;
1170
1171  return Pos->second.size();
1172}
1173
1174void ASTContext::addOverriddenMethod(const CXXMethodDecl *Method,
1175                                     const CXXMethodDecl *Overridden) {
1176  assert(Method->isCanonicalDecl() && Overridden->isCanonicalDecl());
1177  OverriddenMethods[Method].push_back(Overridden);
1178}
1179
1180void ASTContext::getOverriddenMethods(
1181                      const NamedDecl *D,
1182                      SmallVectorImpl<const NamedDecl *> &Overridden) const {
1183  assert(D);
1184
1185  if (const CXXMethodDecl *CXXMethod = dyn_cast<CXXMethodDecl>(D)) {
1186    Overridden.append(overridden_methods_begin(CXXMethod),
1187                      overridden_methods_end(CXXMethod));
1188    return;
1189  }
1190
1191  const ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(D);
1192  if (!Method)
1193    return;
1194
1195  SmallVector<const ObjCMethodDecl *, 8> OverDecls;
1196  Method->getOverriddenMethods(OverDecls);
1197  Overridden.append(OverDecls.begin(), OverDecls.end());
1198}
1199
1200void ASTContext::addedLocalImportDecl(ImportDecl *Import) {
1201  assert(!Import->NextLocalImport && "Import declaration already in the chain");
1202  assert(!Import->isFromASTFile() && "Non-local import declaration");
1203  if (!FirstLocalImport) {
1204    FirstLocalImport = Import;
1205    LastLocalImport = Import;
1206    return;
1207  }
1208
1209  LastLocalImport->NextLocalImport = Import;
1210  LastLocalImport = Import;
1211}
1212
1213//===----------------------------------------------------------------------===//
1214//                         Type Sizing and Analysis
1215//===----------------------------------------------------------------------===//
1216
1217/// getFloatTypeSemantics - Return the APFloat 'semantics' for the specified
1218/// scalar floating point type.
1219const llvm::fltSemantics &ASTContext::getFloatTypeSemantics(QualType T) const {
1220  const BuiltinType *BT = T->getAs<BuiltinType>();
1221  assert(BT && "Not a floating point type!");
1222  switch (BT->getKind()) {
1223  default: llvm_unreachable("Not a floating point type!");
1224  case BuiltinType::Half:       return Target->getHalfFormat();
1225  case BuiltinType::Float:      return Target->getFloatFormat();
1226  case BuiltinType::Double:     return Target->getDoubleFormat();
1227  case BuiltinType::LongDouble: return Target->getLongDoubleFormat();
1228  }
1229}
1230
1231/// getDeclAlign - Return a conservative estimate of the alignment of the
1232/// specified decl.  Note that bitfields do not have a valid alignment, so
1233/// this method will assert on them.
1234/// If @p RefAsPointee, references are treated like their underlying type
1235/// (for alignof), else they're treated like pointers (for CodeGen).
1236CharUnits ASTContext::getDeclAlign(const Decl *D, bool RefAsPointee) const {
1237  unsigned Align = Target->getCharWidth();
1238
1239  bool UseAlignAttrOnly = false;
1240  if (unsigned AlignFromAttr = D->getMaxAlignment()) {
1241    Align = AlignFromAttr;
1242
1243    // __attribute__((aligned)) can increase or decrease alignment
1244    // *except* on a struct or struct member, where it only increases
1245    // alignment unless 'packed' is also specified.
1246    //
1247    // It is an error for alignas to decrease alignment, so we can
1248    // ignore that possibility;  Sema should diagnose it.
1249    if (isa<FieldDecl>(D)) {
1250      UseAlignAttrOnly = D->hasAttr<PackedAttr>() ||
1251        cast<FieldDecl>(D)->getParent()->hasAttr<PackedAttr>();
1252    } else {
1253      UseAlignAttrOnly = true;
1254    }
1255  }
1256  else if (isa<FieldDecl>(D))
1257      UseAlignAttrOnly =
1258        D->hasAttr<PackedAttr>() ||
1259        cast<FieldDecl>(D)->getParent()->hasAttr<PackedAttr>();
1260
1261  // If we're using the align attribute only, just ignore everything
1262  // else about the declaration and its type.
1263  if (UseAlignAttrOnly) {
1264    // do nothing
1265
1266  } else if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
1267    QualType T = VD->getType();
1268    if (const ReferenceType* RT = T->getAs<ReferenceType>()) {
1269      if (RefAsPointee)
1270        T = RT->getPointeeType();
1271      else
1272        T = getPointerType(RT->getPointeeType());
1273    }
1274    if (!T->isIncompleteType() && !T->isFunctionType()) {
1275      // Adjust alignments of declarations with array type by the
1276      // large-array alignment on the target.
1277      unsigned MinWidth = Target->getLargeArrayMinWidth();
1278      const ArrayType *arrayType;
1279      if (MinWidth && (arrayType = getAsArrayType(T))) {
1280        if (isa<VariableArrayType>(arrayType))
1281          Align = std::max(Align, Target->getLargeArrayAlign());
1282        else if (isa<ConstantArrayType>(arrayType) &&
1283                 MinWidth <= getTypeSize(cast<ConstantArrayType>(arrayType)))
1284          Align = std::max(Align, Target->getLargeArrayAlign());
1285
1286        // Walk through any array types while we're at it.
1287        T = getBaseElementType(arrayType);
1288      }
1289      Align = std::max(Align, getPreferredTypeAlign(T.getTypePtr()));
1290      if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1291        if (VD->hasGlobalStorage())
1292          Align = std::max(Align, getTargetInfo().getMinGlobalAlign());
1293      }
1294    }
1295
1296    // Fields can be subject to extra alignment constraints, like if
1297    // the field is packed, the struct is packed, or the struct has a
1298    // a max-field-alignment constraint (#pragma pack).  So calculate
1299    // the actual alignment of the field within the struct, and then
1300    // (as we're expected to) constrain that by the alignment of the type.
1301    if (const FieldDecl *field = dyn_cast<FieldDecl>(VD)) {
1302      // So calculate the alignment of the field.
1303      const ASTRecordLayout &layout = getASTRecordLayout(field->getParent());
1304
1305      // Start with the record's overall alignment.
1306      unsigned fieldAlign = toBits(layout.getAlignment());
1307
1308      // Use the GCD of that and the offset within the record.
1309      uint64_t offset = layout.getFieldOffset(field->getFieldIndex());
1310      if (offset > 0) {
1311        // Alignment is always a power of 2, so the GCD will be a power of 2,
1312        // which means we get to do this crazy thing instead of Euclid's.
1313        uint64_t lowBitOfOffset = offset & (~offset + 1);
1314        if (lowBitOfOffset < fieldAlign)
1315          fieldAlign = static_cast<unsigned>(lowBitOfOffset);
1316      }
1317
1318      Align = std::min(Align, fieldAlign);
1319    }
1320  }
1321
1322  return toCharUnitsFromBits(Align);
1323}
1324
1325// getTypeInfoDataSizeInChars - Return the size of a type, in
1326// chars. If the type is a record, its data size is returned.  This is
1327// the size of the memcpy that's performed when assigning this type
1328// using a trivial copy/move assignment operator.
1329std::pair<CharUnits, CharUnits>
1330ASTContext::getTypeInfoDataSizeInChars(QualType T) const {
1331  std::pair<CharUnits, CharUnits> sizeAndAlign = getTypeInfoInChars(T);
1332
1333  // In C++, objects can sometimes be allocated into the tail padding
1334  // of a base-class subobject.  We decide whether that's possible
1335  // during class layout, so here we can just trust the layout results.
1336  if (getLangOpts().CPlusPlus) {
1337    if (const RecordType *RT = T->getAs<RecordType>()) {
1338      const ASTRecordLayout &layout = getASTRecordLayout(RT->getDecl());
1339      sizeAndAlign.first = layout.getDataSize();
1340    }
1341  }
1342
1343  return sizeAndAlign;
1344}
1345
1346std::pair<CharUnits, CharUnits>
1347ASTContext::getTypeInfoInChars(const Type *T) const {
1348  std::pair<uint64_t, unsigned> Info = getTypeInfo(T);
1349  return std::make_pair(toCharUnitsFromBits(Info.first),
1350                        toCharUnitsFromBits(Info.second));
1351}
1352
1353std::pair<CharUnits, CharUnits>
1354ASTContext::getTypeInfoInChars(QualType T) const {
1355  return getTypeInfoInChars(T.getTypePtr());
1356}
1357
1358std::pair<uint64_t, unsigned> ASTContext::getTypeInfo(const Type *T) const {
1359  TypeInfoMap::iterator it = MemoizedTypeInfo.find(T);
1360  if (it != MemoizedTypeInfo.end())
1361    return it->second;
1362
1363  std::pair<uint64_t, unsigned> Info = getTypeInfoImpl(T);
1364  MemoizedTypeInfo.insert(std::make_pair(T, Info));
1365  return Info;
1366}
1367
1368/// getTypeInfoImpl - Return the size of the specified type, in bits.  This
1369/// method does not work on incomplete types.
1370///
1371/// FIXME: Pointers into different addr spaces could have different sizes and
1372/// alignment requirements: getPointerInfo should take an AddrSpace, this
1373/// should take a QualType, &c.
1374std::pair<uint64_t, unsigned>
1375ASTContext::getTypeInfoImpl(const Type *T) const {
1376  uint64_t Width=0;
1377  unsigned Align=8;
1378  switch (T->getTypeClass()) {
1379#define TYPE(Class, Base)
1380#define ABSTRACT_TYPE(Class, Base)
1381#define NON_CANONICAL_TYPE(Class, Base)
1382#define DEPENDENT_TYPE(Class, Base) case Type::Class:
1383#include "clang/AST/TypeNodes.def"
1384    llvm_unreachable("Should not see dependent types");
1385
1386  case Type::FunctionNoProto:
1387  case Type::FunctionProto:
1388    // GCC extension: alignof(function) = 32 bits
1389    Width = 0;
1390    Align = 32;
1391    break;
1392
1393  case Type::IncompleteArray:
1394  case Type::VariableArray:
1395    Width = 0;
1396    Align = getTypeAlign(cast<ArrayType>(T)->getElementType());
1397    break;
1398
1399  case Type::ConstantArray: {
1400    const ConstantArrayType *CAT = cast<ConstantArrayType>(T);
1401
1402    std::pair<uint64_t, unsigned> EltInfo = getTypeInfo(CAT->getElementType());
1403    uint64_t Size = CAT->getSize().getZExtValue();
1404    assert((Size == 0 || EltInfo.first <= (uint64_t)(-1)/Size) &&
1405           "Overflow in array type bit size evaluation");
1406    Width = EltInfo.first*Size;
1407    Align = EltInfo.second;
1408    Width = llvm::RoundUpToAlignment(Width, Align);
1409    break;
1410  }
1411  case Type::ExtVector:
1412  case Type::Vector: {
1413    const VectorType *VT = cast<VectorType>(T);
1414    std::pair<uint64_t, unsigned> EltInfo = getTypeInfo(VT->getElementType());
1415    Width = EltInfo.first*VT->getNumElements();
1416    Align = Width;
1417    // If the alignment is not a power of 2, round up to the next power of 2.
1418    // This happens for non-power-of-2 length vectors.
1419    if (Align & (Align-1)) {
1420      Align = llvm::NextPowerOf2(Align);
1421      Width = llvm::RoundUpToAlignment(Width, Align);
1422    }
1423    // Adjust the alignment based on the target max.
1424    uint64_t TargetVectorAlign = Target->getMaxVectorAlign();
1425    if (TargetVectorAlign && TargetVectorAlign < Align)
1426      Align = TargetVectorAlign;
1427    break;
1428  }
1429
1430  case Type::Builtin:
1431    switch (cast<BuiltinType>(T)->getKind()) {
1432    default: llvm_unreachable("Unknown builtin type!");
1433    case BuiltinType::Void:
1434      // GCC extension: alignof(void) = 8 bits.
1435      Width = 0;
1436      Align = 8;
1437      break;
1438
1439    case BuiltinType::Bool:
1440      Width = Target->getBoolWidth();
1441      Align = Target->getBoolAlign();
1442      break;
1443    case BuiltinType::Char_S:
1444    case BuiltinType::Char_U:
1445    case BuiltinType::UChar:
1446    case BuiltinType::SChar:
1447      Width = Target->getCharWidth();
1448      Align = Target->getCharAlign();
1449      break;
1450    case BuiltinType::WChar_S:
1451    case BuiltinType::WChar_U:
1452      Width = Target->getWCharWidth();
1453      Align = Target->getWCharAlign();
1454      break;
1455    case BuiltinType::Char16:
1456      Width = Target->getChar16Width();
1457      Align = Target->getChar16Align();
1458      break;
1459    case BuiltinType::Char32:
1460      Width = Target->getChar32Width();
1461      Align = Target->getChar32Align();
1462      break;
1463    case BuiltinType::UShort:
1464    case BuiltinType::Short:
1465      Width = Target->getShortWidth();
1466      Align = Target->getShortAlign();
1467      break;
1468    case BuiltinType::UInt:
1469    case BuiltinType::Int:
1470      Width = Target->getIntWidth();
1471      Align = Target->getIntAlign();
1472      break;
1473    case BuiltinType::ULong:
1474    case BuiltinType::Long:
1475      Width = Target->getLongWidth();
1476      Align = Target->getLongAlign();
1477      break;
1478    case BuiltinType::ULongLong:
1479    case BuiltinType::LongLong:
1480      Width = Target->getLongLongWidth();
1481      Align = Target->getLongLongAlign();
1482      break;
1483    case BuiltinType::Int128:
1484    case BuiltinType::UInt128:
1485      Width = 128;
1486      Align = 128; // int128_t is 128-bit aligned on all targets.
1487      break;
1488    case BuiltinType::Half:
1489      Width = Target->getHalfWidth();
1490      Align = Target->getHalfAlign();
1491      break;
1492    case BuiltinType::Float:
1493      Width = Target->getFloatWidth();
1494      Align = Target->getFloatAlign();
1495      break;
1496    case BuiltinType::Double:
1497      Width = Target->getDoubleWidth();
1498      Align = Target->getDoubleAlign();
1499      break;
1500    case BuiltinType::LongDouble:
1501      Width = Target->getLongDoubleWidth();
1502      Align = Target->getLongDoubleAlign();
1503      break;
1504    case BuiltinType::NullPtr:
1505      Width = Target->getPointerWidth(0); // C++ 3.9.1p11: sizeof(nullptr_t)
1506      Align = Target->getPointerAlign(0); //   == sizeof(void*)
1507      break;
1508    case BuiltinType::ObjCId:
1509    case BuiltinType::ObjCClass:
1510    case BuiltinType::ObjCSel:
1511      Width = Target->getPointerWidth(0);
1512      Align = Target->getPointerAlign(0);
1513      break;
1514    case BuiltinType::OCLSampler:
1515      // Samplers are modeled as integers.
1516      Width = Target->getIntWidth();
1517      Align = Target->getIntAlign();
1518      break;
1519    case BuiltinType::OCLEvent:
1520    case BuiltinType::OCLImage1d:
1521    case BuiltinType::OCLImage1dArray:
1522    case BuiltinType::OCLImage1dBuffer:
1523    case BuiltinType::OCLImage2d:
1524    case BuiltinType::OCLImage2dArray:
1525    case BuiltinType::OCLImage3d:
1526      // Currently these types are pointers to opaque types.
1527      Width = Target->getPointerWidth(0);
1528      Align = Target->getPointerAlign(0);
1529      break;
1530    }
1531    break;
1532  case Type::ObjCObjectPointer:
1533    Width = Target->getPointerWidth(0);
1534    Align = Target->getPointerAlign(0);
1535    break;
1536  case Type::BlockPointer: {
1537    unsigned AS = getTargetAddressSpace(
1538        cast<BlockPointerType>(T)->getPointeeType());
1539    Width = Target->getPointerWidth(AS);
1540    Align = Target->getPointerAlign(AS);
1541    break;
1542  }
1543  case Type::LValueReference:
1544  case Type::RValueReference: {
1545    // alignof and sizeof should never enter this code path here, so we go
1546    // the pointer route.
1547    unsigned AS = getTargetAddressSpace(
1548        cast<ReferenceType>(T)->getPointeeType());
1549    Width = Target->getPointerWidth(AS);
1550    Align = Target->getPointerAlign(AS);
1551    break;
1552  }
1553  case Type::Pointer: {
1554    unsigned AS = getTargetAddressSpace(cast<PointerType>(T)->getPointeeType());
1555    Width = Target->getPointerWidth(AS);
1556    Align = Target->getPointerAlign(AS);
1557    break;
1558  }
1559  case Type::MemberPointer: {
1560    const MemberPointerType *MPT = cast<MemberPointerType>(T);
1561    llvm::tie(Width, Align) = ABI->getMemberPointerWidthAndAlign(MPT);
1562    break;
1563  }
1564  case Type::Complex: {
1565    // Complex types have the same alignment as their elements, but twice the
1566    // size.
1567    std::pair<uint64_t, unsigned> EltInfo =
1568      getTypeInfo(cast<ComplexType>(T)->getElementType());
1569    Width = EltInfo.first*2;
1570    Align = EltInfo.second;
1571    break;
1572  }
1573  case Type::ObjCObject:
1574    return getTypeInfo(cast<ObjCObjectType>(T)->getBaseType().getTypePtr());
1575  case Type::ObjCInterface: {
1576    const ObjCInterfaceType *ObjCI = cast<ObjCInterfaceType>(T);
1577    const ASTRecordLayout &Layout = getASTObjCInterfaceLayout(ObjCI->getDecl());
1578    Width = toBits(Layout.getSize());
1579    Align = toBits(Layout.getAlignment());
1580    break;
1581  }
1582  case Type::Record:
1583  case Type::Enum: {
1584    const TagType *TT = cast<TagType>(T);
1585
1586    if (TT->getDecl()->isInvalidDecl()) {
1587      Width = 8;
1588      Align = 8;
1589      break;
1590    }
1591
1592    if (const EnumType *ET = dyn_cast<EnumType>(TT))
1593      return getTypeInfo(ET->getDecl()->getIntegerType());
1594
1595    const RecordType *RT = cast<RecordType>(TT);
1596    const ASTRecordLayout &Layout = getASTRecordLayout(RT->getDecl());
1597    Width = toBits(Layout.getSize());
1598    Align = toBits(Layout.getAlignment());
1599    break;
1600  }
1601
1602  case Type::SubstTemplateTypeParm:
1603    return getTypeInfo(cast<SubstTemplateTypeParmType>(T)->
1604                       getReplacementType().getTypePtr());
1605
1606  case Type::Auto: {
1607    const AutoType *A = cast<AutoType>(T);
1608    assert(!A->getDeducedType().isNull() &&
1609           "cannot request the size of an undeduced or dependent auto type");
1610    return getTypeInfo(A->getDeducedType().getTypePtr());
1611  }
1612
1613  case Type::Paren:
1614    return getTypeInfo(cast<ParenType>(T)->getInnerType().getTypePtr());
1615
1616  case Type::Typedef: {
1617    const TypedefNameDecl *Typedef = cast<TypedefType>(T)->getDecl();
1618    std::pair<uint64_t, unsigned> Info
1619      = getTypeInfo(Typedef->getUnderlyingType().getTypePtr());
1620    // If the typedef has an aligned attribute on it, it overrides any computed
1621    // alignment we have.  This violates the GCC documentation (which says that
1622    // attribute(aligned) can only round up) but matches its implementation.
1623    if (unsigned AttrAlign = Typedef->getMaxAlignment())
1624      Align = AttrAlign;
1625    else
1626      Align = Info.second;
1627    Width = Info.first;
1628    break;
1629  }
1630
1631  case Type::TypeOfExpr:
1632    return getTypeInfo(cast<TypeOfExprType>(T)->getUnderlyingExpr()->getType()
1633                         .getTypePtr());
1634
1635  case Type::TypeOf:
1636    return getTypeInfo(cast<TypeOfType>(T)->getUnderlyingType().getTypePtr());
1637
1638  case Type::Decltype:
1639    return getTypeInfo(cast<DecltypeType>(T)->getUnderlyingExpr()->getType()
1640                        .getTypePtr());
1641
1642  case Type::UnaryTransform:
1643    return getTypeInfo(cast<UnaryTransformType>(T)->getUnderlyingType());
1644
1645  case Type::Elaborated:
1646    return getTypeInfo(cast<ElaboratedType>(T)->getNamedType().getTypePtr());
1647
1648  case Type::Attributed:
1649    return getTypeInfo(
1650                  cast<AttributedType>(T)->getEquivalentType().getTypePtr());
1651
1652  case Type::TemplateSpecialization: {
1653    assert(getCanonicalType(T) != T &&
1654           "Cannot request the size of a dependent type");
1655    const TemplateSpecializationType *TST = cast<TemplateSpecializationType>(T);
1656    // A type alias template specialization may refer to a typedef with the
1657    // aligned attribute on it.
1658    if (TST->isTypeAlias())
1659      return getTypeInfo(TST->getAliasedType().getTypePtr());
1660    else
1661      return getTypeInfo(getCanonicalType(T));
1662  }
1663
1664  case Type::Atomic: {
1665    // Start with the base type information.
1666    std::pair<uint64_t, unsigned> Info
1667      = getTypeInfo(cast<AtomicType>(T)->getValueType());
1668    Width = Info.first;
1669    Align = Info.second;
1670
1671    // If the size of the type doesn't exceed the platform's max
1672    // atomic promotion width, make the size and alignment more
1673    // favorable to atomic operations:
1674    if (Width != 0 && Width <= Target->getMaxAtomicPromoteWidth()) {
1675      // Round the size up to a power of 2.
1676      if (!llvm::isPowerOf2_64(Width))
1677        Width = llvm::NextPowerOf2(Width);
1678
1679      // Set the alignment equal to the size.
1680      Align = static_cast<unsigned>(Width);
1681    }
1682  }
1683
1684  }
1685
1686  assert(llvm::isPowerOf2_32(Align) && "Alignment must be power of 2");
1687  return std::make_pair(Width, Align);
1688}
1689
1690/// toCharUnitsFromBits - Convert a size in bits to a size in characters.
1691CharUnits ASTContext::toCharUnitsFromBits(int64_t BitSize) const {
1692  return CharUnits::fromQuantity(BitSize / getCharWidth());
1693}
1694
1695/// toBits - Convert a size in characters to a size in characters.
1696int64_t ASTContext::toBits(CharUnits CharSize) const {
1697  return CharSize.getQuantity() * getCharWidth();
1698}
1699
1700/// getTypeSizeInChars - Return the size of the specified type, in characters.
1701/// This method does not work on incomplete types.
1702CharUnits ASTContext::getTypeSizeInChars(QualType T) const {
1703  return toCharUnitsFromBits(getTypeSize(T));
1704}
1705CharUnits ASTContext::getTypeSizeInChars(const Type *T) const {
1706  return toCharUnitsFromBits(getTypeSize(T));
1707}
1708
1709/// getTypeAlignInChars - Return the ABI-specified alignment of a type, in
1710/// characters. This method does not work on incomplete types.
1711CharUnits ASTContext::getTypeAlignInChars(QualType T) const {
1712  return toCharUnitsFromBits(getTypeAlign(T));
1713}
1714CharUnits ASTContext::getTypeAlignInChars(const Type *T) const {
1715  return toCharUnitsFromBits(getTypeAlign(T));
1716}
1717
1718/// getPreferredTypeAlign - Return the "preferred" alignment of the specified
1719/// type for the current target in bits.  This can be different than the ABI
1720/// alignment in cases where it is beneficial for performance to overalign
1721/// a data type.
1722unsigned ASTContext::getPreferredTypeAlign(const Type *T) const {
1723  unsigned ABIAlign = getTypeAlign(T);
1724
1725  // Double and long long should be naturally aligned if possible.
1726  if (const ComplexType* CT = T->getAs<ComplexType>())
1727    T = CT->getElementType().getTypePtr();
1728  if (T->isSpecificBuiltinType(BuiltinType::Double) ||
1729      T->isSpecificBuiltinType(BuiltinType::LongLong) ||
1730      T->isSpecificBuiltinType(BuiltinType::ULongLong))
1731    return std::max(ABIAlign, (unsigned)getTypeSize(T));
1732
1733  return ABIAlign;
1734}
1735
1736/// getAlignOfGlobalVar - Return the alignment in bits that should be given
1737/// to a global variable of the specified type.
1738unsigned ASTContext::getAlignOfGlobalVar(QualType T) const {
1739  return std::max(getTypeAlign(T), getTargetInfo().getMinGlobalAlign());
1740}
1741
1742/// getAlignOfGlobalVarInChars - Return the alignment in characters that
1743/// should be given to a global variable of the specified type.
1744CharUnits ASTContext::getAlignOfGlobalVarInChars(QualType T) const {
1745  return toCharUnitsFromBits(getAlignOfGlobalVar(T));
1746}
1747
1748/// DeepCollectObjCIvars -
1749/// This routine first collects all declared, but not synthesized, ivars in
1750/// super class and then collects all ivars, including those synthesized for
1751/// current class. This routine is used for implementation of current class
1752/// when all ivars, declared and synthesized are known.
1753///
1754void ASTContext::DeepCollectObjCIvars(const ObjCInterfaceDecl *OI,
1755                                      bool leafClass,
1756                            SmallVectorImpl<const ObjCIvarDecl*> &Ivars) const {
1757  if (const ObjCInterfaceDecl *SuperClass = OI->getSuperClass())
1758    DeepCollectObjCIvars(SuperClass, false, Ivars);
1759  if (!leafClass) {
1760    for (ObjCInterfaceDecl::ivar_iterator I = OI->ivar_begin(),
1761         E = OI->ivar_end(); I != E; ++I)
1762      Ivars.push_back(*I);
1763  } else {
1764    ObjCInterfaceDecl *IDecl = const_cast<ObjCInterfaceDecl *>(OI);
1765    for (const ObjCIvarDecl *Iv = IDecl->all_declared_ivar_begin(); Iv;
1766         Iv= Iv->getNextIvar())
1767      Ivars.push_back(Iv);
1768  }
1769}
1770
1771/// CollectInheritedProtocols - Collect all protocols in current class and
1772/// those inherited by it.
1773void ASTContext::CollectInheritedProtocols(const Decl *CDecl,
1774                          llvm::SmallPtrSet<ObjCProtocolDecl*, 8> &Protocols) {
1775  if (const ObjCInterfaceDecl *OI = dyn_cast<ObjCInterfaceDecl>(CDecl)) {
1776    // We can use protocol_iterator here instead of
1777    // all_referenced_protocol_iterator since we are walking all categories.
1778    for (ObjCInterfaceDecl::all_protocol_iterator P = OI->all_referenced_protocol_begin(),
1779         PE = OI->all_referenced_protocol_end(); P != PE; ++P) {
1780      ObjCProtocolDecl *Proto = (*P);
1781      Protocols.insert(Proto->getCanonicalDecl());
1782      for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
1783           PE = Proto->protocol_end(); P != PE; ++P) {
1784        Protocols.insert((*P)->getCanonicalDecl());
1785        CollectInheritedProtocols(*P, Protocols);
1786      }
1787    }
1788
1789    // Categories of this Interface.
1790    for (ObjCInterfaceDecl::visible_categories_iterator
1791           Cat = OI->visible_categories_begin(),
1792           CatEnd = OI->visible_categories_end();
1793         Cat != CatEnd; ++Cat) {
1794      CollectInheritedProtocols(*Cat, Protocols);
1795    }
1796
1797    if (ObjCInterfaceDecl *SD = OI->getSuperClass())
1798      while (SD) {
1799        CollectInheritedProtocols(SD, Protocols);
1800        SD = SD->getSuperClass();
1801      }
1802  } else if (const ObjCCategoryDecl *OC = dyn_cast<ObjCCategoryDecl>(CDecl)) {
1803    for (ObjCCategoryDecl::protocol_iterator P = OC->protocol_begin(),
1804         PE = OC->protocol_end(); P != PE; ++P) {
1805      ObjCProtocolDecl *Proto = (*P);
1806      Protocols.insert(Proto->getCanonicalDecl());
1807      for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
1808           PE = Proto->protocol_end(); P != PE; ++P)
1809        CollectInheritedProtocols(*P, Protocols);
1810    }
1811  } else if (const ObjCProtocolDecl *OP = dyn_cast<ObjCProtocolDecl>(CDecl)) {
1812    for (ObjCProtocolDecl::protocol_iterator P = OP->protocol_begin(),
1813         PE = OP->protocol_end(); P != PE; ++P) {
1814      ObjCProtocolDecl *Proto = (*P);
1815      Protocols.insert(Proto->getCanonicalDecl());
1816      for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
1817           PE = Proto->protocol_end(); P != PE; ++P)
1818        CollectInheritedProtocols(*P, Protocols);
1819    }
1820  }
1821}
1822
1823unsigned ASTContext::CountNonClassIvars(const ObjCInterfaceDecl *OI) const {
1824  unsigned count = 0;
1825  // Count ivars declared in class extension.
1826  for (ObjCInterfaceDecl::known_extensions_iterator
1827         Ext = OI->known_extensions_begin(),
1828         ExtEnd = OI->known_extensions_end();
1829       Ext != ExtEnd; ++Ext) {
1830    count += Ext->ivar_size();
1831  }
1832
1833  // Count ivar defined in this class's implementation.  This
1834  // includes synthesized ivars.
1835  if (ObjCImplementationDecl *ImplDecl = OI->getImplementation())
1836    count += ImplDecl->ivar_size();
1837
1838  return count;
1839}
1840
1841bool ASTContext::isSentinelNullExpr(const Expr *E) {
1842  if (!E)
1843    return false;
1844
1845  // nullptr_t is always treated as null.
1846  if (E->getType()->isNullPtrType()) return true;
1847
1848  if (E->getType()->isAnyPointerType() &&
1849      E->IgnoreParenCasts()->isNullPointerConstant(*this,
1850                                                Expr::NPC_ValueDependentIsNull))
1851    return true;
1852
1853  // Unfortunately, __null has type 'int'.
1854  if (isa<GNUNullExpr>(E)) return true;
1855
1856  return false;
1857}
1858
1859/// \brief Get the implementation of ObjCInterfaceDecl,or NULL if none exists.
1860ObjCImplementationDecl *ASTContext::getObjCImplementation(ObjCInterfaceDecl *D) {
1861  llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
1862    I = ObjCImpls.find(D);
1863  if (I != ObjCImpls.end())
1864    return cast<ObjCImplementationDecl>(I->second);
1865  return 0;
1866}
1867/// \brief Get the implementation of ObjCCategoryDecl, or NULL if none exists.
1868ObjCCategoryImplDecl *ASTContext::getObjCImplementation(ObjCCategoryDecl *D) {
1869  llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
1870    I = ObjCImpls.find(D);
1871  if (I != ObjCImpls.end())
1872    return cast<ObjCCategoryImplDecl>(I->second);
1873  return 0;
1874}
1875
1876/// \brief Set the implementation of ObjCInterfaceDecl.
1877void ASTContext::setObjCImplementation(ObjCInterfaceDecl *IFaceD,
1878                           ObjCImplementationDecl *ImplD) {
1879  assert(IFaceD && ImplD && "Passed null params");
1880  ObjCImpls[IFaceD] = ImplD;
1881}
1882/// \brief Set the implementation of ObjCCategoryDecl.
1883void ASTContext::setObjCImplementation(ObjCCategoryDecl *CatD,
1884                           ObjCCategoryImplDecl *ImplD) {
1885  assert(CatD && ImplD && "Passed null params");
1886  ObjCImpls[CatD] = ImplD;
1887}
1888
1889const ObjCInterfaceDecl *ASTContext::getObjContainingInterface(
1890                                              const NamedDecl *ND) const {
1891  if (const ObjCInterfaceDecl *ID =
1892          dyn_cast<ObjCInterfaceDecl>(ND->getDeclContext()))
1893    return ID;
1894  if (const ObjCCategoryDecl *CD =
1895          dyn_cast<ObjCCategoryDecl>(ND->getDeclContext()))
1896    return CD->getClassInterface();
1897  if (const ObjCImplDecl *IMD =
1898          dyn_cast<ObjCImplDecl>(ND->getDeclContext()))
1899    return IMD->getClassInterface();
1900
1901  return 0;
1902}
1903
1904/// \brief Get the copy initialization expression of VarDecl,or NULL if
1905/// none exists.
1906Expr *ASTContext::getBlockVarCopyInits(const VarDecl*VD) {
1907  assert(VD && "Passed null params");
1908  assert(VD->hasAttr<BlocksAttr>() &&
1909         "getBlockVarCopyInits - not __block var");
1910  llvm::DenseMap<const VarDecl*, Expr*>::iterator
1911    I = BlockVarCopyInits.find(VD);
1912  return (I != BlockVarCopyInits.end()) ? cast<Expr>(I->second) : 0;
1913}
1914
1915/// \brief Set the copy inialization expression of a block var decl.
1916void ASTContext::setBlockVarCopyInits(VarDecl*VD, Expr* Init) {
1917  assert(VD && Init && "Passed null params");
1918  assert(VD->hasAttr<BlocksAttr>() &&
1919         "setBlockVarCopyInits - not __block var");
1920  BlockVarCopyInits[VD] = Init;
1921}
1922
1923TypeSourceInfo *ASTContext::CreateTypeSourceInfo(QualType T,
1924                                                 unsigned DataSize) const {
1925  if (!DataSize)
1926    DataSize = TypeLoc::getFullDataSizeForType(T);
1927  else
1928    assert(DataSize == TypeLoc::getFullDataSizeForType(T) &&
1929           "incorrect data size provided to CreateTypeSourceInfo!");
1930
1931  TypeSourceInfo *TInfo =
1932    (TypeSourceInfo*)BumpAlloc.Allocate(sizeof(TypeSourceInfo) + DataSize, 8);
1933  new (TInfo) TypeSourceInfo(T);
1934  return TInfo;
1935}
1936
1937TypeSourceInfo *ASTContext::getTrivialTypeSourceInfo(QualType T,
1938                                                     SourceLocation L) const {
1939  TypeSourceInfo *DI = CreateTypeSourceInfo(T);
1940  DI->getTypeLoc().initialize(const_cast<ASTContext &>(*this), L);
1941  return DI;
1942}
1943
1944const ASTRecordLayout &
1945ASTContext::getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D) const {
1946  return getObjCLayout(D, 0);
1947}
1948
1949const ASTRecordLayout &
1950ASTContext::getASTObjCImplementationLayout(
1951                                        const ObjCImplementationDecl *D) const {
1952  return getObjCLayout(D->getClassInterface(), D);
1953}
1954
1955//===----------------------------------------------------------------------===//
1956//                   Type creation/memoization methods
1957//===----------------------------------------------------------------------===//
1958
1959QualType
1960ASTContext::getExtQualType(const Type *baseType, Qualifiers quals) const {
1961  unsigned fastQuals = quals.getFastQualifiers();
1962  quals.removeFastQualifiers();
1963
1964  // Check if we've already instantiated this type.
1965  llvm::FoldingSetNodeID ID;
1966  ExtQuals::Profile(ID, baseType, quals);
1967  void *insertPos = 0;
1968  if (ExtQuals *eq = ExtQualNodes.FindNodeOrInsertPos(ID, insertPos)) {
1969    assert(eq->getQualifiers() == quals);
1970    return QualType(eq, fastQuals);
1971  }
1972
1973  // If the base type is not canonical, make the appropriate canonical type.
1974  QualType canon;
1975  if (!baseType->isCanonicalUnqualified()) {
1976    SplitQualType canonSplit = baseType->getCanonicalTypeInternal().split();
1977    canonSplit.Quals.addConsistentQualifiers(quals);
1978    canon = getExtQualType(canonSplit.Ty, canonSplit.Quals);
1979
1980    // Re-find the insert position.
1981    (void) ExtQualNodes.FindNodeOrInsertPos(ID, insertPos);
1982  }
1983
1984  ExtQuals *eq = new (*this, TypeAlignment) ExtQuals(baseType, canon, quals);
1985  ExtQualNodes.InsertNode(eq, insertPos);
1986  return QualType(eq, fastQuals);
1987}
1988
1989QualType
1990ASTContext::getAddrSpaceQualType(QualType T, unsigned AddressSpace) const {
1991  QualType CanT = getCanonicalType(T);
1992  if (CanT.getAddressSpace() == AddressSpace)
1993    return T;
1994
1995  // If we are composing extended qualifiers together, merge together
1996  // into one ExtQuals node.
1997  QualifierCollector Quals;
1998  const Type *TypeNode = Quals.strip(T);
1999
2000  // If this type already has an address space specified, it cannot get
2001  // another one.
2002  assert(!Quals.hasAddressSpace() &&
2003         "Type cannot be in multiple addr spaces!");
2004  Quals.addAddressSpace(AddressSpace);
2005
2006  return getExtQualType(TypeNode, Quals);
2007}
2008
2009QualType ASTContext::getObjCGCQualType(QualType T,
2010                                       Qualifiers::GC GCAttr) const {
2011  QualType CanT = getCanonicalType(T);
2012  if (CanT.getObjCGCAttr() == GCAttr)
2013    return T;
2014
2015  if (const PointerType *ptr = T->getAs<PointerType>()) {
2016    QualType Pointee = ptr->getPointeeType();
2017    if (Pointee->isAnyPointerType()) {
2018      QualType ResultType = getObjCGCQualType(Pointee, GCAttr);
2019      return getPointerType(ResultType);
2020    }
2021  }
2022
2023  // If we are composing extended qualifiers together, merge together
2024  // into one ExtQuals node.
2025  QualifierCollector Quals;
2026  const Type *TypeNode = Quals.strip(T);
2027
2028  // If this type already has an ObjCGC specified, it cannot get
2029  // another one.
2030  assert(!Quals.hasObjCGCAttr() &&
2031         "Type cannot have multiple ObjCGCs!");
2032  Quals.addObjCGCAttr(GCAttr);
2033
2034  return getExtQualType(TypeNode, Quals);
2035}
2036
2037const FunctionType *ASTContext::adjustFunctionType(const FunctionType *T,
2038                                                   FunctionType::ExtInfo Info) {
2039  if (T->getExtInfo() == Info)
2040    return T;
2041
2042  QualType Result;
2043  if (const FunctionNoProtoType *FNPT = dyn_cast<FunctionNoProtoType>(T)) {
2044    Result = getFunctionNoProtoType(FNPT->getResultType(), Info);
2045  } else {
2046    const FunctionProtoType *FPT = cast<FunctionProtoType>(T);
2047    FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
2048    EPI.ExtInfo = Info;
2049    Result = getFunctionType(FPT->getResultType(),
2050                             ArrayRef<QualType>(FPT->arg_type_begin(),
2051                                                FPT->getNumArgs()),
2052                             EPI);
2053  }
2054
2055  return cast<FunctionType>(Result.getTypePtr());
2056}
2057
2058void ASTContext::adjustDeducedFunctionResultType(FunctionDecl *FD,
2059                                                 QualType ResultType) {
2060  // FIXME: Need to inform serialization code about this!
2061  for (FD = FD->getMostRecentDecl(); FD; FD = FD->getPreviousDecl()) {
2062    const FunctionProtoType *FPT = FD->getType()->castAs<FunctionProtoType>();
2063    FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
2064    FD->setType(getFunctionType(ResultType, FPT->getArgTypes(), EPI));
2065  }
2066}
2067
2068/// getComplexType - Return the uniqued reference to the type for a complex
2069/// number with the specified element type.
2070QualType ASTContext::getComplexType(QualType T) const {
2071  // Unique pointers, to guarantee there is only one pointer of a particular
2072  // structure.
2073  llvm::FoldingSetNodeID ID;
2074  ComplexType::Profile(ID, T);
2075
2076  void *InsertPos = 0;
2077  if (ComplexType *CT = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos))
2078    return QualType(CT, 0);
2079
2080  // If the pointee type isn't canonical, this won't be a canonical type either,
2081  // so fill in the canonical type field.
2082  QualType Canonical;
2083  if (!T.isCanonical()) {
2084    Canonical = getComplexType(getCanonicalType(T));
2085
2086    // Get the new insert position for the node we care about.
2087    ComplexType *NewIP = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos);
2088    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2089  }
2090  ComplexType *New = new (*this, TypeAlignment) ComplexType(T, Canonical);
2091  Types.push_back(New);
2092  ComplexTypes.InsertNode(New, InsertPos);
2093  return QualType(New, 0);
2094}
2095
2096/// getPointerType - Return the uniqued reference to the type for a pointer to
2097/// the specified type.
2098QualType ASTContext::getPointerType(QualType T) const {
2099  // Unique pointers, to guarantee there is only one pointer of a particular
2100  // structure.
2101  llvm::FoldingSetNodeID ID;
2102  PointerType::Profile(ID, T);
2103
2104  void *InsertPos = 0;
2105  if (PointerType *PT = PointerTypes.FindNodeOrInsertPos(ID, InsertPos))
2106    return QualType(PT, 0);
2107
2108  // If the pointee type isn't canonical, this won't be a canonical type either,
2109  // so fill in the canonical type field.
2110  QualType Canonical;
2111  if (!T.isCanonical()) {
2112    Canonical = getPointerType(getCanonicalType(T));
2113
2114    // Get the new insert position for the node we care about.
2115    PointerType *NewIP = PointerTypes.FindNodeOrInsertPos(ID, InsertPos);
2116    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2117  }
2118  PointerType *New = new (*this, TypeAlignment) PointerType(T, Canonical);
2119  Types.push_back(New);
2120  PointerTypes.InsertNode(New, InsertPos);
2121  return QualType(New, 0);
2122}
2123
2124/// getBlockPointerType - Return the uniqued reference to the type for
2125/// a pointer to the specified block.
2126QualType ASTContext::getBlockPointerType(QualType T) const {
2127  assert(T->isFunctionType() && "block of function types only");
2128  // Unique pointers, to guarantee there is only one block of a particular
2129  // structure.
2130  llvm::FoldingSetNodeID ID;
2131  BlockPointerType::Profile(ID, T);
2132
2133  void *InsertPos = 0;
2134  if (BlockPointerType *PT =
2135        BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
2136    return QualType(PT, 0);
2137
2138  // If the block pointee type isn't canonical, this won't be a canonical
2139  // type either so fill in the canonical type field.
2140  QualType Canonical;
2141  if (!T.isCanonical()) {
2142    Canonical = getBlockPointerType(getCanonicalType(T));
2143
2144    // Get the new insert position for the node we care about.
2145    BlockPointerType *NewIP =
2146      BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
2147    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2148  }
2149  BlockPointerType *New
2150    = new (*this, TypeAlignment) BlockPointerType(T, Canonical);
2151  Types.push_back(New);
2152  BlockPointerTypes.InsertNode(New, InsertPos);
2153  return QualType(New, 0);
2154}
2155
2156/// getLValueReferenceType - Return the uniqued reference to the type for an
2157/// lvalue reference to the specified type.
2158QualType
2159ASTContext::getLValueReferenceType(QualType T, bool SpelledAsLValue) const {
2160  assert(getCanonicalType(T) != OverloadTy &&
2161         "Unresolved overloaded function type");
2162
2163  // Unique pointers, to guarantee there is only one pointer of a particular
2164  // structure.
2165  llvm::FoldingSetNodeID ID;
2166  ReferenceType::Profile(ID, T, SpelledAsLValue);
2167
2168  void *InsertPos = 0;
2169  if (LValueReferenceType *RT =
2170        LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
2171    return QualType(RT, 0);
2172
2173  const ReferenceType *InnerRef = T->getAs<ReferenceType>();
2174
2175  // If the referencee type isn't canonical, this won't be a canonical type
2176  // either, so fill in the canonical type field.
2177  QualType Canonical;
2178  if (!SpelledAsLValue || InnerRef || !T.isCanonical()) {
2179    QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
2180    Canonical = getLValueReferenceType(getCanonicalType(PointeeType));
2181
2182    // Get the new insert position for the node we care about.
2183    LValueReferenceType *NewIP =
2184      LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
2185    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2186  }
2187
2188  LValueReferenceType *New
2189    = new (*this, TypeAlignment) LValueReferenceType(T, Canonical,
2190                                                     SpelledAsLValue);
2191  Types.push_back(New);
2192  LValueReferenceTypes.InsertNode(New, InsertPos);
2193
2194  return QualType(New, 0);
2195}
2196
2197/// getRValueReferenceType - Return the uniqued reference to the type for an
2198/// rvalue reference to the specified type.
2199QualType ASTContext::getRValueReferenceType(QualType T) const {
2200  // Unique pointers, to guarantee there is only one pointer of a particular
2201  // structure.
2202  llvm::FoldingSetNodeID ID;
2203  ReferenceType::Profile(ID, T, false);
2204
2205  void *InsertPos = 0;
2206  if (RValueReferenceType *RT =
2207        RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
2208    return QualType(RT, 0);
2209
2210  const ReferenceType *InnerRef = T->getAs<ReferenceType>();
2211
2212  // If the referencee type isn't canonical, this won't be a canonical type
2213  // either, so fill in the canonical type field.
2214  QualType Canonical;
2215  if (InnerRef || !T.isCanonical()) {
2216    QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
2217    Canonical = getRValueReferenceType(getCanonicalType(PointeeType));
2218
2219    // Get the new insert position for the node we care about.
2220    RValueReferenceType *NewIP =
2221      RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
2222    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2223  }
2224
2225  RValueReferenceType *New
2226    = new (*this, TypeAlignment) RValueReferenceType(T, Canonical);
2227  Types.push_back(New);
2228  RValueReferenceTypes.InsertNode(New, InsertPos);
2229  return QualType(New, 0);
2230}
2231
2232/// getMemberPointerType - Return the uniqued reference to the type for a
2233/// member pointer to the specified type, in the specified class.
2234QualType ASTContext::getMemberPointerType(QualType T, const Type *Cls) const {
2235  // Unique pointers, to guarantee there is only one pointer of a particular
2236  // structure.
2237  llvm::FoldingSetNodeID ID;
2238  MemberPointerType::Profile(ID, T, Cls);
2239
2240  void *InsertPos = 0;
2241  if (MemberPointerType *PT =
2242      MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
2243    return QualType(PT, 0);
2244
2245  // If the pointee or class type isn't canonical, this won't be a canonical
2246  // type either, so fill in the canonical type field.
2247  QualType Canonical;
2248  if (!T.isCanonical() || !Cls->isCanonicalUnqualified()) {
2249    Canonical = getMemberPointerType(getCanonicalType(T),getCanonicalType(Cls));
2250
2251    // Get the new insert position for the node we care about.
2252    MemberPointerType *NewIP =
2253      MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
2254    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2255  }
2256  MemberPointerType *New
2257    = new (*this, TypeAlignment) MemberPointerType(T, Cls, Canonical);
2258  Types.push_back(New);
2259  MemberPointerTypes.InsertNode(New, InsertPos);
2260  return QualType(New, 0);
2261}
2262
2263/// getConstantArrayType - Return the unique reference to the type for an
2264/// array of the specified element type.
2265QualType ASTContext::getConstantArrayType(QualType EltTy,
2266                                          const llvm::APInt &ArySizeIn,
2267                                          ArrayType::ArraySizeModifier ASM,
2268                                          unsigned IndexTypeQuals) const {
2269  assert((EltTy->isDependentType() ||
2270          EltTy->isIncompleteType() || EltTy->isConstantSizeType()) &&
2271         "Constant array of VLAs is illegal!");
2272
2273  // Convert the array size into a canonical width matching the pointer size for
2274  // the target.
2275  llvm::APInt ArySize(ArySizeIn);
2276  ArySize =
2277    ArySize.zextOrTrunc(Target->getPointerWidth(getTargetAddressSpace(EltTy)));
2278
2279  llvm::FoldingSetNodeID ID;
2280  ConstantArrayType::Profile(ID, EltTy, ArySize, ASM, IndexTypeQuals);
2281
2282  void *InsertPos = 0;
2283  if (ConstantArrayType *ATP =
2284      ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
2285    return QualType(ATP, 0);
2286
2287  // If the element type isn't canonical or has qualifiers, this won't
2288  // be a canonical type either, so fill in the canonical type field.
2289  QualType Canon;
2290  if (!EltTy.isCanonical() || EltTy.hasLocalQualifiers()) {
2291    SplitQualType canonSplit = getCanonicalType(EltTy).split();
2292    Canon = getConstantArrayType(QualType(canonSplit.Ty, 0), ArySize,
2293                                 ASM, IndexTypeQuals);
2294    Canon = getQualifiedType(Canon, canonSplit.Quals);
2295
2296    // Get the new insert position for the node we care about.
2297    ConstantArrayType *NewIP =
2298      ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
2299    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2300  }
2301
2302  ConstantArrayType *New = new(*this,TypeAlignment)
2303    ConstantArrayType(EltTy, Canon, ArySize, ASM, IndexTypeQuals);
2304  ConstantArrayTypes.InsertNode(New, InsertPos);
2305  Types.push_back(New);
2306  return QualType(New, 0);
2307}
2308
2309/// getVariableArrayDecayedType - Turns the given type, which may be
2310/// variably-modified, into the corresponding type with all the known
2311/// sizes replaced with [*].
2312QualType ASTContext::getVariableArrayDecayedType(QualType type) const {
2313  // Vastly most common case.
2314  if (!type->isVariablyModifiedType()) return type;
2315
2316  QualType result;
2317
2318  SplitQualType split = type.getSplitDesugaredType();
2319  const Type *ty = split.Ty;
2320  switch (ty->getTypeClass()) {
2321#define TYPE(Class, Base)
2322#define ABSTRACT_TYPE(Class, Base)
2323#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
2324#include "clang/AST/TypeNodes.def"
2325    llvm_unreachable("didn't desugar past all non-canonical types?");
2326
2327  // These types should never be variably-modified.
2328  case Type::Builtin:
2329  case Type::Complex:
2330  case Type::Vector:
2331  case Type::ExtVector:
2332  case Type::DependentSizedExtVector:
2333  case Type::ObjCObject:
2334  case Type::ObjCInterface:
2335  case Type::ObjCObjectPointer:
2336  case Type::Record:
2337  case Type::Enum:
2338  case Type::UnresolvedUsing:
2339  case Type::TypeOfExpr:
2340  case Type::TypeOf:
2341  case Type::Decltype:
2342  case Type::UnaryTransform:
2343  case Type::DependentName:
2344  case Type::InjectedClassName:
2345  case Type::TemplateSpecialization:
2346  case Type::DependentTemplateSpecialization:
2347  case Type::TemplateTypeParm:
2348  case Type::SubstTemplateTypeParmPack:
2349  case Type::Auto:
2350  case Type::PackExpansion:
2351    llvm_unreachable("type should never be variably-modified");
2352
2353  // These types can be variably-modified but should never need to
2354  // further decay.
2355  case Type::FunctionNoProto:
2356  case Type::FunctionProto:
2357  case Type::BlockPointer:
2358  case Type::MemberPointer:
2359    return type;
2360
2361  // These types can be variably-modified.  All these modifications
2362  // preserve structure except as noted by comments.
2363  // TODO: if we ever care about optimizing VLAs, there are no-op
2364  // optimizations available here.
2365  case Type::Pointer:
2366    result = getPointerType(getVariableArrayDecayedType(
2367                              cast<PointerType>(ty)->getPointeeType()));
2368    break;
2369
2370  case Type::LValueReference: {
2371    const LValueReferenceType *lv = cast<LValueReferenceType>(ty);
2372    result = getLValueReferenceType(
2373                 getVariableArrayDecayedType(lv->getPointeeType()),
2374                                    lv->isSpelledAsLValue());
2375    break;
2376  }
2377
2378  case Type::RValueReference: {
2379    const RValueReferenceType *lv = cast<RValueReferenceType>(ty);
2380    result = getRValueReferenceType(
2381                 getVariableArrayDecayedType(lv->getPointeeType()));
2382    break;
2383  }
2384
2385  case Type::Atomic: {
2386    const AtomicType *at = cast<AtomicType>(ty);
2387    result = getAtomicType(getVariableArrayDecayedType(at->getValueType()));
2388    break;
2389  }
2390
2391  case Type::ConstantArray: {
2392    const ConstantArrayType *cat = cast<ConstantArrayType>(ty);
2393    result = getConstantArrayType(
2394                 getVariableArrayDecayedType(cat->getElementType()),
2395                                  cat->getSize(),
2396                                  cat->getSizeModifier(),
2397                                  cat->getIndexTypeCVRQualifiers());
2398    break;
2399  }
2400
2401  case Type::DependentSizedArray: {
2402    const DependentSizedArrayType *dat = cast<DependentSizedArrayType>(ty);
2403    result = getDependentSizedArrayType(
2404                 getVariableArrayDecayedType(dat->getElementType()),
2405                                        dat->getSizeExpr(),
2406                                        dat->getSizeModifier(),
2407                                        dat->getIndexTypeCVRQualifiers(),
2408                                        dat->getBracketsRange());
2409    break;
2410  }
2411
2412  // Turn incomplete types into [*] types.
2413  case Type::IncompleteArray: {
2414    const IncompleteArrayType *iat = cast<IncompleteArrayType>(ty);
2415    result = getVariableArrayType(
2416                 getVariableArrayDecayedType(iat->getElementType()),
2417                                  /*size*/ 0,
2418                                  ArrayType::Normal,
2419                                  iat->getIndexTypeCVRQualifiers(),
2420                                  SourceRange());
2421    break;
2422  }
2423
2424  // Turn VLA types into [*] types.
2425  case Type::VariableArray: {
2426    const VariableArrayType *vat = cast<VariableArrayType>(ty);
2427    result = getVariableArrayType(
2428                 getVariableArrayDecayedType(vat->getElementType()),
2429                                  /*size*/ 0,
2430                                  ArrayType::Star,
2431                                  vat->getIndexTypeCVRQualifiers(),
2432                                  vat->getBracketsRange());
2433    break;
2434  }
2435  }
2436
2437  // Apply the top-level qualifiers from the original.
2438  return getQualifiedType(result, split.Quals);
2439}
2440
2441/// getVariableArrayType - Returns a non-unique reference to the type for a
2442/// variable array of the specified element type.
2443QualType ASTContext::getVariableArrayType(QualType EltTy,
2444                                          Expr *NumElts,
2445                                          ArrayType::ArraySizeModifier ASM,
2446                                          unsigned IndexTypeQuals,
2447                                          SourceRange Brackets) const {
2448  // Since we don't unique expressions, it isn't possible to unique VLA's
2449  // that have an expression provided for their size.
2450  QualType Canon;
2451
2452  // Be sure to pull qualifiers off the element type.
2453  if (!EltTy.isCanonical() || EltTy.hasLocalQualifiers()) {
2454    SplitQualType canonSplit = getCanonicalType(EltTy).split();
2455    Canon = getVariableArrayType(QualType(canonSplit.Ty, 0), NumElts, ASM,
2456                                 IndexTypeQuals, Brackets);
2457    Canon = getQualifiedType(Canon, canonSplit.Quals);
2458  }
2459
2460  VariableArrayType *New = new(*this, TypeAlignment)
2461    VariableArrayType(EltTy, Canon, NumElts, ASM, IndexTypeQuals, Brackets);
2462
2463  VariableArrayTypes.push_back(New);
2464  Types.push_back(New);
2465  return QualType(New, 0);
2466}
2467
2468/// getDependentSizedArrayType - Returns a non-unique reference to
2469/// the type for a dependently-sized array of the specified element
2470/// type.
2471QualType ASTContext::getDependentSizedArrayType(QualType elementType,
2472                                                Expr *numElements,
2473                                                ArrayType::ArraySizeModifier ASM,
2474                                                unsigned elementTypeQuals,
2475                                                SourceRange brackets) const {
2476  assert((!numElements || numElements->isTypeDependent() ||
2477          numElements->isValueDependent()) &&
2478         "Size must be type- or value-dependent!");
2479
2480  // Dependently-sized array types that do not have a specified number
2481  // of elements will have their sizes deduced from a dependent
2482  // initializer.  We do no canonicalization here at all, which is okay
2483  // because they can't be used in most locations.
2484  if (!numElements) {
2485    DependentSizedArrayType *newType
2486      = new (*this, TypeAlignment)
2487          DependentSizedArrayType(*this, elementType, QualType(),
2488                                  numElements, ASM, elementTypeQuals,
2489                                  brackets);
2490    Types.push_back(newType);
2491    return QualType(newType, 0);
2492  }
2493
2494  // Otherwise, we actually build a new type every time, but we
2495  // also build a canonical type.
2496
2497  SplitQualType canonElementType = getCanonicalType(elementType).split();
2498
2499  void *insertPos = 0;
2500  llvm::FoldingSetNodeID ID;
2501  DependentSizedArrayType::Profile(ID, *this,
2502                                   QualType(canonElementType.Ty, 0),
2503                                   ASM, elementTypeQuals, numElements);
2504
2505  // Look for an existing type with these properties.
2506  DependentSizedArrayType *canonTy =
2507    DependentSizedArrayTypes.FindNodeOrInsertPos(ID, insertPos);
2508
2509  // If we don't have one, build one.
2510  if (!canonTy) {
2511    canonTy = new (*this, TypeAlignment)
2512      DependentSizedArrayType(*this, QualType(canonElementType.Ty, 0),
2513                              QualType(), numElements, ASM, elementTypeQuals,
2514                              brackets);
2515    DependentSizedArrayTypes.InsertNode(canonTy, insertPos);
2516    Types.push_back(canonTy);
2517  }
2518
2519  // Apply qualifiers from the element type to the array.
2520  QualType canon = getQualifiedType(QualType(canonTy,0),
2521                                    canonElementType.Quals);
2522
2523  // If we didn't need extra canonicalization for the element type,
2524  // then just use that as our result.
2525  if (QualType(canonElementType.Ty, 0) == elementType)
2526    return canon;
2527
2528  // Otherwise, we need to build a type which follows the spelling
2529  // of the element type.
2530  DependentSizedArrayType *sugaredType
2531    = new (*this, TypeAlignment)
2532        DependentSizedArrayType(*this, elementType, canon, numElements,
2533                                ASM, elementTypeQuals, brackets);
2534  Types.push_back(sugaredType);
2535  return QualType(sugaredType, 0);
2536}
2537
2538QualType ASTContext::getIncompleteArrayType(QualType elementType,
2539                                            ArrayType::ArraySizeModifier ASM,
2540                                            unsigned elementTypeQuals) const {
2541  llvm::FoldingSetNodeID ID;
2542  IncompleteArrayType::Profile(ID, elementType, ASM, elementTypeQuals);
2543
2544  void *insertPos = 0;
2545  if (IncompleteArrayType *iat =
2546       IncompleteArrayTypes.FindNodeOrInsertPos(ID, insertPos))
2547    return QualType(iat, 0);
2548
2549  // If the element type isn't canonical, this won't be a canonical type
2550  // either, so fill in the canonical type field.  We also have to pull
2551  // qualifiers off the element type.
2552  QualType canon;
2553
2554  if (!elementType.isCanonical() || elementType.hasLocalQualifiers()) {
2555    SplitQualType canonSplit = getCanonicalType(elementType).split();
2556    canon = getIncompleteArrayType(QualType(canonSplit.Ty, 0),
2557                                   ASM, elementTypeQuals);
2558    canon = getQualifiedType(canon, canonSplit.Quals);
2559
2560    // Get the new insert position for the node we care about.
2561    IncompleteArrayType *existing =
2562      IncompleteArrayTypes.FindNodeOrInsertPos(ID, insertPos);
2563    assert(!existing && "Shouldn't be in the map!"); (void) existing;
2564  }
2565
2566  IncompleteArrayType *newType = new (*this, TypeAlignment)
2567    IncompleteArrayType(elementType, canon, ASM, elementTypeQuals);
2568
2569  IncompleteArrayTypes.InsertNode(newType, insertPos);
2570  Types.push_back(newType);
2571  return QualType(newType, 0);
2572}
2573
2574/// getVectorType - Return the unique reference to a vector type of
2575/// the specified element type and size. VectorType must be a built-in type.
2576QualType ASTContext::getVectorType(QualType vecType, unsigned NumElts,
2577                                   VectorType::VectorKind VecKind) const {
2578  assert(vecType->isBuiltinType());
2579
2580  // Check if we've already instantiated a vector of this type.
2581  llvm::FoldingSetNodeID ID;
2582  VectorType::Profile(ID, vecType, NumElts, Type::Vector, VecKind);
2583
2584  void *InsertPos = 0;
2585  if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
2586    return QualType(VTP, 0);
2587
2588  // If the element type isn't canonical, this won't be a canonical type either,
2589  // so fill in the canonical type field.
2590  QualType Canonical;
2591  if (!vecType.isCanonical()) {
2592    Canonical = getVectorType(getCanonicalType(vecType), NumElts, VecKind);
2593
2594    // Get the new insert position for the node we care about.
2595    VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
2596    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2597  }
2598  VectorType *New = new (*this, TypeAlignment)
2599    VectorType(vecType, NumElts, Canonical, VecKind);
2600  VectorTypes.InsertNode(New, InsertPos);
2601  Types.push_back(New);
2602  return QualType(New, 0);
2603}
2604
2605/// getExtVectorType - Return the unique reference to an extended vector type of
2606/// the specified element type and size. VectorType must be a built-in type.
2607QualType
2608ASTContext::getExtVectorType(QualType vecType, unsigned NumElts) const {
2609  assert(vecType->isBuiltinType() || vecType->isDependentType());
2610
2611  // Check if we've already instantiated a vector of this type.
2612  llvm::FoldingSetNodeID ID;
2613  VectorType::Profile(ID, vecType, NumElts, Type::ExtVector,
2614                      VectorType::GenericVector);
2615  void *InsertPos = 0;
2616  if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
2617    return QualType(VTP, 0);
2618
2619  // If the element type isn't canonical, this won't be a canonical type either,
2620  // so fill in the canonical type field.
2621  QualType Canonical;
2622  if (!vecType.isCanonical()) {
2623    Canonical = getExtVectorType(getCanonicalType(vecType), NumElts);
2624
2625    // Get the new insert position for the node we care about.
2626    VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
2627    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2628  }
2629  ExtVectorType *New = new (*this, TypeAlignment)
2630    ExtVectorType(vecType, NumElts, Canonical);
2631  VectorTypes.InsertNode(New, InsertPos);
2632  Types.push_back(New);
2633  return QualType(New, 0);
2634}
2635
2636QualType
2637ASTContext::getDependentSizedExtVectorType(QualType vecType,
2638                                           Expr *SizeExpr,
2639                                           SourceLocation AttrLoc) const {
2640  llvm::FoldingSetNodeID ID;
2641  DependentSizedExtVectorType::Profile(ID, *this, getCanonicalType(vecType),
2642                                       SizeExpr);
2643
2644  void *InsertPos = 0;
2645  DependentSizedExtVectorType *Canon
2646    = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
2647  DependentSizedExtVectorType *New;
2648  if (Canon) {
2649    // We already have a canonical version of this array type; use it as
2650    // the canonical type for a newly-built type.
2651    New = new (*this, TypeAlignment)
2652      DependentSizedExtVectorType(*this, vecType, QualType(Canon, 0),
2653                                  SizeExpr, AttrLoc);
2654  } else {
2655    QualType CanonVecTy = getCanonicalType(vecType);
2656    if (CanonVecTy == vecType) {
2657      New = new (*this, TypeAlignment)
2658        DependentSizedExtVectorType(*this, vecType, QualType(), SizeExpr,
2659                                    AttrLoc);
2660
2661      DependentSizedExtVectorType *CanonCheck
2662        = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
2663      assert(!CanonCheck && "Dependent-sized ext_vector canonical type broken");
2664      (void)CanonCheck;
2665      DependentSizedExtVectorTypes.InsertNode(New, InsertPos);
2666    } else {
2667      QualType Canon = getDependentSizedExtVectorType(CanonVecTy, SizeExpr,
2668                                                      SourceLocation());
2669      New = new (*this, TypeAlignment)
2670        DependentSizedExtVectorType(*this, vecType, Canon, SizeExpr, AttrLoc);
2671    }
2672  }
2673
2674  Types.push_back(New);
2675  return QualType(New, 0);
2676}
2677
2678/// getFunctionNoProtoType - Return a K&R style C function type like 'int()'.
2679///
2680QualType
2681ASTContext::getFunctionNoProtoType(QualType ResultTy,
2682                                   const FunctionType::ExtInfo &Info) const {
2683  const CallingConv DefaultCC = Info.getCC();
2684  const CallingConv CallConv = (LangOpts.MRTD && DefaultCC == CC_Default) ?
2685                               CC_X86StdCall : DefaultCC;
2686  // Unique functions, to guarantee there is only one function of a particular
2687  // structure.
2688  llvm::FoldingSetNodeID ID;
2689  FunctionNoProtoType::Profile(ID, ResultTy, Info);
2690
2691  void *InsertPos = 0;
2692  if (FunctionNoProtoType *FT =
2693        FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
2694    return QualType(FT, 0);
2695
2696  QualType Canonical;
2697  if (!ResultTy.isCanonical() ||
2698      getCanonicalCallConv(CallConv) != CallConv) {
2699    Canonical =
2700      getFunctionNoProtoType(getCanonicalType(ResultTy),
2701                     Info.withCallingConv(getCanonicalCallConv(CallConv)));
2702
2703    // Get the new insert position for the node we care about.
2704    FunctionNoProtoType *NewIP =
2705      FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
2706    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2707  }
2708
2709  FunctionProtoType::ExtInfo newInfo = Info.withCallingConv(CallConv);
2710  FunctionNoProtoType *New = new (*this, TypeAlignment)
2711    FunctionNoProtoType(ResultTy, Canonical, newInfo);
2712  Types.push_back(New);
2713  FunctionNoProtoTypes.InsertNode(New, InsertPos);
2714  return QualType(New, 0);
2715}
2716
2717/// \brief Determine whether \p T is canonical as the result type of a function.
2718static bool isCanonicalResultType(QualType T) {
2719  return T.isCanonical() &&
2720         (T.getObjCLifetime() == Qualifiers::OCL_None ||
2721          T.getObjCLifetime() == Qualifiers::OCL_ExplicitNone);
2722}
2723
2724/// getFunctionType - Return a normal function type with a typed argument
2725/// list.  isVariadic indicates whether the argument list includes '...'.
2726QualType
2727ASTContext::getFunctionType(QualType ResultTy, ArrayRef<QualType> ArgArray,
2728                            const FunctionProtoType::ExtProtoInfo &EPI) const {
2729  size_t NumArgs = ArgArray.size();
2730
2731  // Unique functions, to guarantee there is only one function of a particular
2732  // structure.
2733  llvm::FoldingSetNodeID ID;
2734  FunctionProtoType::Profile(ID, ResultTy, ArgArray.begin(), NumArgs, EPI,
2735                             *this);
2736
2737  void *InsertPos = 0;
2738  if (FunctionProtoType *FTP =
2739        FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
2740    return QualType(FTP, 0);
2741
2742  // Determine whether the type being created is already canonical or not.
2743  bool isCanonical =
2744    EPI.ExceptionSpecType == EST_None && isCanonicalResultType(ResultTy) &&
2745    !EPI.HasTrailingReturn;
2746  for (unsigned i = 0; i != NumArgs && isCanonical; ++i)
2747    if (!ArgArray[i].isCanonicalAsParam())
2748      isCanonical = false;
2749
2750  const CallingConv DefaultCC = EPI.ExtInfo.getCC();
2751  const CallingConv CallConv = (LangOpts.MRTD && DefaultCC == CC_Default) ?
2752                               CC_X86StdCall : DefaultCC;
2753
2754  // If this type isn't canonical, get the canonical version of it.
2755  // The exception spec is not part of the canonical type.
2756  QualType Canonical;
2757  if (!isCanonical || getCanonicalCallConv(CallConv) != CallConv) {
2758    SmallVector<QualType, 16> CanonicalArgs;
2759    CanonicalArgs.reserve(NumArgs);
2760    for (unsigned i = 0; i != NumArgs; ++i)
2761      CanonicalArgs.push_back(getCanonicalParamType(ArgArray[i]));
2762
2763    FunctionProtoType::ExtProtoInfo CanonicalEPI = EPI;
2764    CanonicalEPI.HasTrailingReturn = false;
2765    CanonicalEPI.ExceptionSpecType = EST_None;
2766    CanonicalEPI.NumExceptions = 0;
2767    CanonicalEPI.ExtInfo
2768      = CanonicalEPI.ExtInfo.withCallingConv(getCanonicalCallConv(CallConv));
2769
2770    // Result types do not have ARC lifetime qualifiers.
2771    QualType CanResultTy = getCanonicalType(ResultTy);
2772    if (ResultTy.getQualifiers().hasObjCLifetime()) {
2773      Qualifiers Qs = CanResultTy.getQualifiers();
2774      Qs.removeObjCLifetime();
2775      CanResultTy = getQualifiedType(CanResultTy.getUnqualifiedType(), Qs);
2776    }
2777
2778    Canonical = getFunctionType(CanResultTy, CanonicalArgs, CanonicalEPI);
2779
2780    // Get the new insert position for the node we care about.
2781    FunctionProtoType *NewIP =
2782      FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
2783    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2784  }
2785
2786  // FunctionProtoType objects are allocated with extra bytes after
2787  // them for three variable size arrays at the end:
2788  //  - parameter types
2789  //  - exception types
2790  //  - consumed-arguments flags
2791  // Instead of the exception types, there could be a noexcept
2792  // expression, or information used to resolve the exception
2793  // specification.
2794  size_t Size = sizeof(FunctionProtoType) +
2795                NumArgs * sizeof(QualType);
2796  if (EPI.ExceptionSpecType == EST_Dynamic) {
2797    Size += EPI.NumExceptions * sizeof(QualType);
2798  } else if (EPI.ExceptionSpecType == EST_ComputedNoexcept) {
2799    Size += sizeof(Expr*);
2800  } else if (EPI.ExceptionSpecType == EST_Uninstantiated) {
2801    Size += 2 * sizeof(FunctionDecl*);
2802  } else if (EPI.ExceptionSpecType == EST_Unevaluated) {
2803    Size += sizeof(FunctionDecl*);
2804  }
2805  if (EPI.ConsumedArguments)
2806    Size += NumArgs * sizeof(bool);
2807
2808  FunctionProtoType *FTP = (FunctionProtoType*) Allocate(Size, TypeAlignment);
2809  FunctionProtoType::ExtProtoInfo newEPI = EPI;
2810  newEPI.ExtInfo = EPI.ExtInfo.withCallingConv(CallConv);
2811  new (FTP) FunctionProtoType(ResultTy, ArgArray, Canonical, newEPI);
2812  Types.push_back(FTP);
2813  FunctionProtoTypes.InsertNode(FTP, InsertPos);
2814  return QualType(FTP, 0);
2815}
2816
2817#ifndef NDEBUG
2818static bool NeedsInjectedClassNameType(const RecordDecl *D) {
2819  if (!isa<CXXRecordDecl>(D)) return false;
2820  const CXXRecordDecl *RD = cast<CXXRecordDecl>(D);
2821  if (isa<ClassTemplatePartialSpecializationDecl>(RD))
2822    return true;
2823  if (RD->getDescribedClassTemplate() &&
2824      !isa<ClassTemplateSpecializationDecl>(RD))
2825    return true;
2826  return false;
2827}
2828#endif
2829
2830/// getInjectedClassNameType - Return the unique reference to the
2831/// injected class name type for the specified templated declaration.
2832QualType ASTContext::getInjectedClassNameType(CXXRecordDecl *Decl,
2833                                              QualType TST) const {
2834  assert(NeedsInjectedClassNameType(Decl));
2835  if (Decl->TypeForDecl) {
2836    assert(isa<InjectedClassNameType>(Decl->TypeForDecl));
2837  } else if (CXXRecordDecl *PrevDecl = Decl->getPreviousDecl()) {
2838    assert(PrevDecl->TypeForDecl && "previous declaration has no type");
2839    Decl->TypeForDecl = PrevDecl->TypeForDecl;
2840    assert(isa<InjectedClassNameType>(Decl->TypeForDecl));
2841  } else {
2842    Type *newType =
2843      new (*this, TypeAlignment) InjectedClassNameType(Decl, TST);
2844    Decl->TypeForDecl = newType;
2845    Types.push_back(newType);
2846  }
2847  return QualType(Decl->TypeForDecl, 0);
2848}
2849
2850/// getTypeDeclType - Return the unique reference to the type for the
2851/// specified type declaration.
2852QualType ASTContext::getTypeDeclTypeSlow(const TypeDecl *Decl) const {
2853  assert(Decl && "Passed null for Decl param");
2854  assert(!Decl->TypeForDecl && "TypeForDecl present in slow case");
2855
2856  if (const TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Decl))
2857    return getTypedefType(Typedef);
2858
2859  assert(!isa<TemplateTypeParmDecl>(Decl) &&
2860         "Template type parameter types are always available.");
2861
2862  if (const RecordDecl *Record = dyn_cast<RecordDecl>(Decl)) {
2863    assert(!Record->getPreviousDecl() &&
2864           "struct/union has previous declaration");
2865    assert(!NeedsInjectedClassNameType(Record));
2866    return getRecordType(Record);
2867  } else if (const EnumDecl *Enum = dyn_cast<EnumDecl>(Decl)) {
2868    assert(!Enum->getPreviousDecl() &&
2869           "enum has previous declaration");
2870    return getEnumType(Enum);
2871  } else if (const UnresolvedUsingTypenameDecl *Using =
2872               dyn_cast<UnresolvedUsingTypenameDecl>(Decl)) {
2873    Type *newType = new (*this, TypeAlignment) UnresolvedUsingType(Using);
2874    Decl->TypeForDecl = newType;
2875    Types.push_back(newType);
2876  } else
2877    llvm_unreachable("TypeDecl without a type?");
2878
2879  return QualType(Decl->TypeForDecl, 0);
2880}
2881
2882/// getTypedefType - Return the unique reference to the type for the
2883/// specified typedef name decl.
2884QualType
2885ASTContext::getTypedefType(const TypedefNameDecl *Decl,
2886                           QualType Canonical) const {
2887  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
2888
2889  if (Canonical.isNull())
2890    Canonical = getCanonicalType(Decl->getUnderlyingType());
2891  TypedefType *newType = new(*this, TypeAlignment)
2892    TypedefType(Type::Typedef, Decl, Canonical);
2893  Decl->TypeForDecl = newType;
2894  Types.push_back(newType);
2895  return QualType(newType, 0);
2896}
2897
2898QualType ASTContext::getRecordType(const RecordDecl *Decl) const {
2899  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
2900
2901  if (const RecordDecl *PrevDecl = Decl->getPreviousDecl())
2902    if (PrevDecl->TypeForDecl)
2903      return QualType(Decl->TypeForDecl = PrevDecl->TypeForDecl, 0);
2904
2905  RecordType *newType = new (*this, TypeAlignment) RecordType(Decl);
2906  Decl->TypeForDecl = newType;
2907  Types.push_back(newType);
2908  return QualType(newType, 0);
2909}
2910
2911QualType ASTContext::getEnumType(const EnumDecl *Decl) const {
2912  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
2913
2914  if (const EnumDecl *PrevDecl = Decl->getPreviousDecl())
2915    if (PrevDecl->TypeForDecl)
2916      return QualType(Decl->TypeForDecl = PrevDecl->TypeForDecl, 0);
2917
2918  EnumType *newType = new (*this, TypeAlignment) EnumType(Decl);
2919  Decl->TypeForDecl = newType;
2920  Types.push_back(newType);
2921  return QualType(newType, 0);
2922}
2923
2924QualType ASTContext::getAttributedType(AttributedType::Kind attrKind,
2925                                       QualType modifiedType,
2926                                       QualType equivalentType) {
2927  llvm::FoldingSetNodeID id;
2928  AttributedType::Profile(id, attrKind, modifiedType, equivalentType);
2929
2930  void *insertPos = 0;
2931  AttributedType *type = AttributedTypes.FindNodeOrInsertPos(id, insertPos);
2932  if (type) return QualType(type, 0);
2933
2934  QualType canon = getCanonicalType(equivalentType);
2935  type = new (*this, TypeAlignment)
2936           AttributedType(canon, attrKind, modifiedType, equivalentType);
2937
2938  Types.push_back(type);
2939  AttributedTypes.InsertNode(type, insertPos);
2940
2941  return QualType(type, 0);
2942}
2943
2944
2945/// \brief Retrieve a substitution-result type.
2946QualType
2947ASTContext::getSubstTemplateTypeParmType(const TemplateTypeParmType *Parm,
2948                                         QualType Replacement) const {
2949  assert(Replacement.isCanonical()
2950         && "replacement types must always be canonical");
2951
2952  llvm::FoldingSetNodeID ID;
2953  SubstTemplateTypeParmType::Profile(ID, Parm, Replacement);
2954  void *InsertPos = 0;
2955  SubstTemplateTypeParmType *SubstParm
2956    = SubstTemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
2957
2958  if (!SubstParm) {
2959    SubstParm = new (*this, TypeAlignment)
2960      SubstTemplateTypeParmType(Parm, Replacement);
2961    Types.push_back(SubstParm);
2962    SubstTemplateTypeParmTypes.InsertNode(SubstParm, InsertPos);
2963  }
2964
2965  return QualType(SubstParm, 0);
2966}
2967
2968/// \brief Retrieve a
2969QualType ASTContext::getSubstTemplateTypeParmPackType(
2970                                          const TemplateTypeParmType *Parm,
2971                                              const TemplateArgument &ArgPack) {
2972#ifndef NDEBUG
2973  for (TemplateArgument::pack_iterator P = ArgPack.pack_begin(),
2974                                    PEnd = ArgPack.pack_end();
2975       P != PEnd; ++P) {
2976    assert(P->getKind() == TemplateArgument::Type &&"Pack contains a non-type");
2977    assert(P->getAsType().isCanonical() && "Pack contains non-canonical type");
2978  }
2979#endif
2980
2981  llvm::FoldingSetNodeID ID;
2982  SubstTemplateTypeParmPackType::Profile(ID, Parm, ArgPack);
2983  void *InsertPos = 0;
2984  if (SubstTemplateTypeParmPackType *SubstParm
2985        = SubstTemplateTypeParmPackTypes.FindNodeOrInsertPos(ID, InsertPos))
2986    return QualType(SubstParm, 0);
2987
2988  QualType Canon;
2989  if (!Parm->isCanonicalUnqualified()) {
2990    Canon = getCanonicalType(QualType(Parm, 0));
2991    Canon = getSubstTemplateTypeParmPackType(cast<TemplateTypeParmType>(Canon),
2992                                             ArgPack);
2993    SubstTemplateTypeParmPackTypes.FindNodeOrInsertPos(ID, InsertPos);
2994  }
2995
2996  SubstTemplateTypeParmPackType *SubstParm
2997    = new (*this, TypeAlignment) SubstTemplateTypeParmPackType(Parm, Canon,
2998                                                               ArgPack);
2999  Types.push_back(SubstParm);
3000  SubstTemplateTypeParmTypes.InsertNode(SubstParm, InsertPos);
3001  return QualType(SubstParm, 0);
3002}
3003
3004/// \brief Retrieve the template type parameter type for a template
3005/// parameter or parameter pack with the given depth, index, and (optionally)
3006/// name.
3007QualType ASTContext::getTemplateTypeParmType(unsigned Depth, unsigned Index,
3008                                             bool ParameterPack,
3009                                             TemplateTypeParmDecl *TTPDecl) const {
3010  llvm::FoldingSetNodeID ID;
3011  TemplateTypeParmType::Profile(ID, Depth, Index, ParameterPack, TTPDecl);
3012  void *InsertPos = 0;
3013  TemplateTypeParmType *TypeParm
3014    = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
3015
3016  if (TypeParm)
3017    return QualType(TypeParm, 0);
3018
3019  if (TTPDecl) {
3020    QualType Canon = getTemplateTypeParmType(Depth, Index, ParameterPack);
3021    TypeParm = new (*this, TypeAlignment) TemplateTypeParmType(TTPDecl, Canon);
3022
3023    TemplateTypeParmType *TypeCheck
3024      = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
3025    assert(!TypeCheck && "Template type parameter canonical type broken");
3026    (void)TypeCheck;
3027  } else
3028    TypeParm = new (*this, TypeAlignment)
3029      TemplateTypeParmType(Depth, Index, ParameterPack);
3030
3031  Types.push_back(TypeParm);
3032  TemplateTypeParmTypes.InsertNode(TypeParm, InsertPos);
3033
3034  return QualType(TypeParm, 0);
3035}
3036
3037TypeSourceInfo *
3038ASTContext::getTemplateSpecializationTypeInfo(TemplateName Name,
3039                                              SourceLocation NameLoc,
3040                                        const TemplateArgumentListInfo &Args,
3041                                              QualType Underlying) const {
3042  assert(!Name.getAsDependentTemplateName() &&
3043         "No dependent template names here!");
3044  QualType TST = getTemplateSpecializationType(Name, Args, Underlying);
3045
3046  TypeSourceInfo *DI = CreateTypeSourceInfo(TST);
3047  TemplateSpecializationTypeLoc TL =
3048      DI->getTypeLoc().castAs<TemplateSpecializationTypeLoc>();
3049  TL.setTemplateKeywordLoc(SourceLocation());
3050  TL.setTemplateNameLoc(NameLoc);
3051  TL.setLAngleLoc(Args.getLAngleLoc());
3052  TL.setRAngleLoc(Args.getRAngleLoc());
3053  for (unsigned i = 0, e = TL.getNumArgs(); i != e; ++i)
3054    TL.setArgLocInfo(i, Args[i].getLocInfo());
3055  return DI;
3056}
3057
3058QualType
3059ASTContext::getTemplateSpecializationType(TemplateName Template,
3060                                          const TemplateArgumentListInfo &Args,
3061                                          QualType Underlying) const {
3062  assert(!Template.getAsDependentTemplateName() &&
3063         "No dependent template names here!");
3064
3065  unsigned NumArgs = Args.size();
3066
3067  SmallVector<TemplateArgument, 4> ArgVec;
3068  ArgVec.reserve(NumArgs);
3069  for (unsigned i = 0; i != NumArgs; ++i)
3070    ArgVec.push_back(Args[i].getArgument());
3071
3072  return getTemplateSpecializationType(Template, ArgVec.data(), NumArgs,
3073                                       Underlying);
3074}
3075
3076#ifndef NDEBUG
3077static bool hasAnyPackExpansions(const TemplateArgument *Args,
3078                                 unsigned NumArgs) {
3079  for (unsigned I = 0; I != NumArgs; ++I)
3080    if (Args[I].isPackExpansion())
3081      return true;
3082
3083  return true;
3084}
3085#endif
3086
3087QualType
3088ASTContext::getTemplateSpecializationType(TemplateName Template,
3089                                          const TemplateArgument *Args,
3090                                          unsigned NumArgs,
3091                                          QualType Underlying) const {
3092  assert(!Template.getAsDependentTemplateName() &&
3093         "No dependent template names here!");
3094  // Look through qualified template names.
3095  if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName())
3096    Template = TemplateName(QTN->getTemplateDecl());
3097
3098  bool IsTypeAlias =
3099    Template.getAsTemplateDecl() &&
3100    isa<TypeAliasTemplateDecl>(Template.getAsTemplateDecl());
3101  QualType CanonType;
3102  if (!Underlying.isNull())
3103    CanonType = getCanonicalType(Underlying);
3104  else {
3105    // We can get here with an alias template when the specialization contains
3106    // a pack expansion that does not match up with a parameter pack.
3107    assert((!IsTypeAlias || hasAnyPackExpansions(Args, NumArgs)) &&
3108           "Caller must compute aliased type");
3109    IsTypeAlias = false;
3110    CanonType = getCanonicalTemplateSpecializationType(Template, Args,
3111                                                       NumArgs);
3112  }
3113
3114  // Allocate the (non-canonical) template specialization type, but don't
3115  // try to unique it: these types typically have location information that
3116  // we don't unique and don't want to lose.
3117  void *Mem = Allocate(sizeof(TemplateSpecializationType) +
3118                       sizeof(TemplateArgument) * NumArgs +
3119                       (IsTypeAlias? sizeof(QualType) : 0),
3120                       TypeAlignment);
3121  TemplateSpecializationType *Spec
3122    = new (Mem) TemplateSpecializationType(Template, Args, NumArgs, CanonType,
3123                                         IsTypeAlias ? Underlying : QualType());
3124
3125  Types.push_back(Spec);
3126  return QualType(Spec, 0);
3127}
3128
3129QualType
3130ASTContext::getCanonicalTemplateSpecializationType(TemplateName Template,
3131                                                   const TemplateArgument *Args,
3132                                                   unsigned NumArgs) const {
3133  assert(!Template.getAsDependentTemplateName() &&
3134         "No dependent template names here!");
3135
3136  // Look through qualified template names.
3137  if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName())
3138    Template = TemplateName(QTN->getTemplateDecl());
3139
3140  // Build the canonical template specialization type.
3141  TemplateName CanonTemplate = getCanonicalTemplateName(Template);
3142  SmallVector<TemplateArgument, 4> CanonArgs;
3143  CanonArgs.reserve(NumArgs);
3144  for (unsigned I = 0; I != NumArgs; ++I)
3145    CanonArgs.push_back(getCanonicalTemplateArgument(Args[I]));
3146
3147  // Determine whether this canonical template specialization type already
3148  // exists.
3149  llvm::FoldingSetNodeID ID;
3150  TemplateSpecializationType::Profile(ID, CanonTemplate,
3151                                      CanonArgs.data(), NumArgs, *this);
3152
3153  void *InsertPos = 0;
3154  TemplateSpecializationType *Spec
3155    = TemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
3156
3157  if (!Spec) {
3158    // Allocate a new canonical template specialization type.
3159    void *Mem = Allocate((sizeof(TemplateSpecializationType) +
3160                          sizeof(TemplateArgument) * NumArgs),
3161                         TypeAlignment);
3162    Spec = new (Mem) TemplateSpecializationType(CanonTemplate,
3163                                                CanonArgs.data(), NumArgs,
3164                                                QualType(), QualType());
3165    Types.push_back(Spec);
3166    TemplateSpecializationTypes.InsertNode(Spec, InsertPos);
3167  }
3168
3169  assert(Spec->isDependentType() &&
3170         "Non-dependent template-id type must have a canonical type");
3171  return QualType(Spec, 0);
3172}
3173
3174QualType
3175ASTContext::getElaboratedType(ElaboratedTypeKeyword Keyword,
3176                              NestedNameSpecifier *NNS,
3177                              QualType NamedType) const {
3178  llvm::FoldingSetNodeID ID;
3179  ElaboratedType::Profile(ID, Keyword, NNS, NamedType);
3180
3181  void *InsertPos = 0;
3182  ElaboratedType *T = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
3183  if (T)
3184    return QualType(T, 0);
3185
3186  QualType Canon = NamedType;
3187  if (!Canon.isCanonical()) {
3188    Canon = getCanonicalType(NamedType);
3189    ElaboratedType *CheckT = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
3190    assert(!CheckT && "Elaborated canonical type broken");
3191    (void)CheckT;
3192  }
3193
3194  T = new (*this) ElaboratedType(Keyword, NNS, NamedType, Canon);
3195  Types.push_back(T);
3196  ElaboratedTypes.InsertNode(T, InsertPos);
3197  return QualType(T, 0);
3198}
3199
3200QualType
3201ASTContext::getParenType(QualType InnerType) const {
3202  llvm::FoldingSetNodeID ID;
3203  ParenType::Profile(ID, InnerType);
3204
3205  void *InsertPos = 0;
3206  ParenType *T = ParenTypes.FindNodeOrInsertPos(ID, InsertPos);
3207  if (T)
3208    return QualType(T, 0);
3209
3210  QualType Canon = InnerType;
3211  if (!Canon.isCanonical()) {
3212    Canon = getCanonicalType(InnerType);
3213    ParenType *CheckT = ParenTypes.FindNodeOrInsertPos(ID, InsertPos);
3214    assert(!CheckT && "Paren canonical type broken");
3215    (void)CheckT;
3216  }
3217
3218  T = new (*this) ParenType(InnerType, Canon);
3219  Types.push_back(T);
3220  ParenTypes.InsertNode(T, InsertPos);
3221  return QualType(T, 0);
3222}
3223
3224QualType ASTContext::getDependentNameType(ElaboratedTypeKeyword Keyword,
3225                                          NestedNameSpecifier *NNS,
3226                                          const IdentifierInfo *Name,
3227                                          QualType Canon) const {
3228  assert(NNS->isDependent() && "nested-name-specifier must be dependent");
3229
3230  if (Canon.isNull()) {
3231    NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
3232    ElaboratedTypeKeyword CanonKeyword = Keyword;
3233    if (Keyword == ETK_None)
3234      CanonKeyword = ETK_Typename;
3235
3236    if (CanonNNS != NNS || CanonKeyword != Keyword)
3237      Canon = getDependentNameType(CanonKeyword, CanonNNS, Name);
3238  }
3239
3240  llvm::FoldingSetNodeID ID;
3241  DependentNameType::Profile(ID, Keyword, NNS, Name);
3242
3243  void *InsertPos = 0;
3244  DependentNameType *T
3245    = DependentNameTypes.FindNodeOrInsertPos(ID, InsertPos);
3246  if (T)
3247    return QualType(T, 0);
3248
3249  T = new (*this) DependentNameType(Keyword, NNS, Name, Canon);
3250  Types.push_back(T);
3251  DependentNameTypes.InsertNode(T, InsertPos);
3252  return QualType(T, 0);
3253}
3254
3255QualType
3256ASTContext::getDependentTemplateSpecializationType(
3257                                 ElaboratedTypeKeyword Keyword,
3258                                 NestedNameSpecifier *NNS,
3259                                 const IdentifierInfo *Name,
3260                                 const TemplateArgumentListInfo &Args) const {
3261  // TODO: avoid this copy
3262  SmallVector<TemplateArgument, 16> ArgCopy;
3263  for (unsigned I = 0, E = Args.size(); I != E; ++I)
3264    ArgCopy.push_back(Args[I].getArgument());
3265  return getDependentTemplateSpecializationType(Keyword, NNS, Name,
3266                                                ArgCopy.size(),
3267                                                ArgCopy.data());
3268}
3269
3270QualType
3271ASTContext::getDependentTemplateSpecializationType(
3272                                 ElaboratedTypeKeyword Keyword,
3273                                 NestedNameSpecifier *NNS,
3274                                 const IdentifierInfo *Name,
3275                                 unsigned NumArgs,
3276                                 const TemplateArgument *Args) const {
3277  assert((!NNS || NNS->isDependent()) &&
3278         "nested-name-specifier must be dependent");
3279
3280  llvm::FoldingSetNodeID ID;
3281  DependentTemplateSpecializationType::Profile(ID, *this, Keyword, NNS,
3282                                               Name, NumArgs, Args);
3283
3284  void *InsertPos = 0;
3285  DependentTemplateSpecializationType *T
3286    = DependentTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
3287  if (T)
3288    return QualType(T, 0);
3289
3290  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
3291
3292  ElaboratedTypeKeyword CanonKeyword = Keyword;
3293  if (Keyword == ETK_None) CanonKeyword = ETK_Typename;
3294
3295  bool AnyNonCanonArgs = false;
3296  SmallVector<TemplateArgument, 16> CanonArgs(NumArgs);
3297  for (unsigned I = 0; I != NumArgs; ++I) {
3298    CanonArgs[I] = getCanonicalTemplateArgument(Args[I]);
3299    if (!CanonArgs[I].structurallyEquals(Args[I]))
3300      AnyNonCanonArgs = true;
3301  }
3302
3303  QualType Canon;
3304  if (AnyNonCanonArgs || CanonNNS != NNS || CanonKeyword != Keyword) {
3305    Canon = getDependentTemplateSpecializationType(CanonKeyword, CanonNNS,
3306                                                   Name, NumArgs,
3307                                                   CanonArgs.data());
3308
3309    // Find the insert position again.
3310    DependentTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
3311  }
3312
3313  void *Mem = Allocate((sizeof(DependentTemplateSpecializationType) +
3314                        sizeof(TemplateArgument) * NumArgs),
3315                       TypeAlignment);
3316  T = new (Mem) DependentTemplateSpecializationType(Keyword, NNS,
3317                                                    Name, NumArgs, Args, Canon);
3318  Types.push_back(T);
3319  DependentTemplateSpecializationTypes.InsertNode(T, InsertPos);
3320  return QualType(T, 0);
3321}
3322
3323QualType ASTContext::getPackExpansionType(QualType Pattern,
3324                                          Optional<unsigned> NumExpansions) {
3325  llvm::FoldingSetNodeID ID;
3326  PackExpansionType::Profile(ID, Pattern, NumExpansions);
3327
3328  assert(Pattern->containsUnexpandedParameterPack() &&
3329         "Pack expansions must expand one or more parameter packs");
3330  void *InsertPos = 0;
3331  PackExpansionType *T
3332    = PackExpansionTypes.FindNodeOrInsertPos(ID, InsertPos);
3333  if (T)
3334    return QualType(T, 0);
3335
3336  QualType Canon;
3337  if (!Pattern.isCanonical()) {
3338    Canon = getCanonicalType(Pattern);
3339    // The canonical type might not contain an unexpanded parameter pack, if it
3340    // contains an alias template specialization which ignores one of its
3341    // parameters.
3342    if (Canon->containsUnexpandedParameterPack()) {
3343      Canon = getPackExpansionType(getCanonicalType(Pattern), NumExpansions);
3344
3345      // Find the insert position again, in case we inserted an element into
3346      // PackExpansionTypes and invalidated our insert position.
3347      PackExpansionTypes.FindNodeOrInsertPos(ID, InsertPos);
3348    }
3349  }
3350
3351  T = new (*this) PackExpansionType(Pattern, Canon, NumExpansions);
3352  Types.push_back(T);
3353  PackExpansionTypes.InsertNode(T, InsertPos);
3354  return QualType(T, 0);
3355}
3356
3357/// CmpProtocolNames - Comparison predicate for sorting protocols
3358/// alphabetically.
3359static bool CmpProtocolNames(const ObjCProtocolDecl *LHS,
3360                            const ObjCProtocolDecl *RHS) {
3361  return LHS->getDeclName() < RHS->getDeclName();
3362}
3363
3364static bool areSortedAndUniqued(ObjCProtocolDecl * const *Protocols,
3365                                unsigned NumProtocols) {
3366  if (NumProtocols == 0) return true;
3367
3368  if (Protocols[0]->getCanonicalDecl() != Protocols[0])
3369    return false;
3370
3371  for (unsigned i = 1; i != NumProtocols; ++i)
3372    if (!CmpProtocolNames(Protocols[i-1], Protocols[i]) ||
3373        Protocols[i]->getCanonicalDecl() != Protocols[i])
3374      return false;
3375  return true;
3376}
3377
3378static void SortAndUniqueProtocols(ObjCProtocolDecl **Protocols,
3379                                   unsigned &NumProtocols) {
3380  ObjCProtocolDecl **ProtocolsEnd = Protocols+NumProtocols;
3381
3382  // Sort protocols, keyed by name.
3383  std::sort(Protocols, Protocols+NumProtocols, CmpProtocolNames);
3384
3385  // Canonicalize.
3386  for (unsigned I = 0, N = NumProtocols; I != N; ++I)
3387    Protocols[I] = Protocols[I]->getCanonicalDecl();
3388
3389  // Remove duplicates.
3390  ProtocolsEnd = std::unique(Protocols, ProtocolsEnd);
3391  NumProtocols = ProtocolsEnd-Protocols;
3392}
3393
3394QualType ASTContext::getObjCObjectType(QualType BaseType,
3395                                       ObjCProtocolDecl * const *Protocols,
3396                                       unsigned NumProtocols) const {
3397  // If the base type is an interface and there aren't any protocols
3398  // to add, then the interface type will do just fine.
3399  if (!NumProtocols && isa<ObjCInterfaceType>(BaseType))
3400    return BaseType;
3401
3402  // Look in the folding set for an existing type.
3403  llvm::FoldingSetNodeID ID;
3404  ObjCObjectTypeImpl::Profile(ID, BaseType, Protocols, NumProtocols);
3405  void *InsertPos = 0;
3406  if (ObjCObjectType *QT = ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos))
3407    return QualType(QT, 0);
3408
3409  // Build the canonical type, which has the canonical base type and
3410  // a sorted-and-uniqued list of protocols.
3411  QualType Canonical;
3412  bool ProtocolsSorted = areSortedAndUniqued(Protocols, NumProtocols);
3413  if (!ProtocolsSorted || !BaseType.isCanonical()) {
3414    if (!ProtocolsSorted) {
3415      SmallVector<ObjCProtocolDecl*, 8> Sorted(Protocols,
3416                                                     Protocols + NumProtocols);
3417      unsigned UniqueCount = NumProtocols;
3418
3419      SortAndUniqueProtocols(&Sorted[0], UniqueCount);
3420      Canonical = getObjCObjectType(getCanonicalType(BaseType),
3421                                    &Sorted[0], UniqueCount);
3422    } else {
3423      Canonical = getObjCObjectType(getCanonicalType(BaseType),
3424                                    Protocols, NumProtocols);
3425    }
3426
3427    // Regenerate InsertPos.
3428    ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos);
3429  }
3430
3431  unsigned Size = sizeof(ObjCObjectTypeImpl);
3432  Size += NumProtocols * sizeof(ObjCProtocolDecl *);
3433  void *Mem = Allocate(Size, TypeAlignment);
3434  ObjCObjectTypeImpl *T =
3435    new (Mem) ObjCObjectTypeImpl(Canonical, BaseType, Protocols, NumProtocols);
3436
3437  Types.push_back(T);
3438  ObjCObjectTypes.InsertNode(T, InsertPos);
3439  return QualType(T, 0);
3440}
3441
3442/// getObjCObjectPointerType - Return a ObjCObjectPointerType type for
3443/// the given object type.
3444QualType ASTContext::getObjCObjectPointerType(QualType ObjectT) const {
3445  llvm::FoldingSetNodeID ID;
3446  ObjCObjectPointerType::Profile(ID, ObjectT);
3447
3448  void *InsertPos = 0;
3449  if (ObjCObjectPointerType *QT =
3450              ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
3451    return QualType(QT, 0);
3452
3453  // Find the canonical object type.
3454  QualType Canonical;
3455  if (!ObjectT.isCanonical()) {
3456    Canonical = getObjCObjectPointerType(getCanonicalType(ObjectT));
3457
3458    // Regenerate InsertPos.
3459    ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
3460  }
3461
3462  // No match.
3463  void *Mem = Allocate(sizeof(ObjCObjectPointerType), TypeAlignment);
3464  ObjCObjectPointerType *QType =
3465    new (Mem) ObjCObjectPointerType(Canonical, ObjectT);
3466
3467  Types.push_back(QType);
3468  ObjCObjectPointerTypes.InsertNode(QType, InsertPos);
3469  return QualType(QType, 0);
3470}
3471
3472/// getObjCInterfaceType - Return the unique reference to the type for the
3473/// specified ObjC interface decl. The list of protocols is optional.
3474QualType ASTContext::getObjCInterfaceType(const ObjCInterfaceDecl *Decl,
3475                                          ObjCInterfaceDecl *PrevDecl) const {
3476  if (Decl->TypeForDecl)
3477    return QualType(Decl->TypeForDecl, 0);
3478
3479  if (PrevDecl) {
3480    assert(PrevDecl->TypeForDecl && "previous decl has no TypeForDecl");
3481    Decl->TypeForDecl = PrevDecl->TypeForDecl;
3482    return QualType(PrevDecl->TypeForDecl, 0);
3483  }
3484
3485  // Prefer the definition, if there is one.
3486  if (const ObjCInterfaceDecl *Def = Decl->getDefinition())
3487    Decl = Def;
3488
3489  void *Mem = Allocate(sizeof(ObjCInterfaceType), TypeAlignment);
3490  ObjCInterfaceType *T = new (Mem) ObjCInterfaceType(Decl);
3491  Decl->TypeForDecl = T;
3492  Types.push_back(T);
3493  return QualType(T, 0);
3494}
3495
3496/// getTypeOfExprType - Unlike many "get<Type>" functions, we can't unique
3497/// TypeOfExprType AST's (since expression's are never shared). For example,
3498/// multiple declarations that refer to "typeof(x)" all contain different
3499/// DeclRefExpr's. This doesn't effect the type checker, since it operates
3500/// on canonical type's (which are always unique).
3501QualType ASTContext::getTypeOfExprType(Expr *tofExpr) const {
3502  TypeOfExprType *toe;
3503  if (tofExpr->isTypeDependent()) {
3504    llvm::FoldingSetNodeID ID;
3505    DependentTypeOfExprType::Profile(ID, *this, tofExpr);
3506
3507    void *InsertPos = 0;
3508    DependentTypeOfExprType *Canon
3509      = DependentTypeOfExprTypes.FindNodeOrInsertPos(ID, InsertPos);
3510    if (Canon) {
3511      // We already have a "canonical" version of an identical, dependent
3512      // typeof(expr) type. Use that as our canonical type.
3513      toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr,
3514                                          QualType((TypeOfExprType*)Canon, 0));
3515    } else {
3516      // Build a new, canonical typeof(expr) type.
3517      Canon
3518        = new (*this, TypeAlignment) DependentTypeOfExprType(*this, tofExpr);
3519      DependentTypeOfExprTypes.InsertNode(Canon, InsertPos);
3520      toe = Canon;
3521    }
3522  } else {
3523    QualType Canonical = getCanonicalType(tofExpr->getType());
3524    toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr, Canonical);
3525  }
3526  Types.push_back(toe);
3527  return QualType(toe, 0);
3528}
3529
3530/// getTypeOfType -  Unlike many "get<Type>" functions, we don't unique
3531/// TypeOfType AST's. The only motivation to unique these nodes would be
3532/// memory savings. Since typeof(t) is fairly uncommon, space shouldn't be
3533/// an issue. This doesn't effect the type checker, since it operates
3534/// on canonical type's (which are always unique).
3535QualType ASTContext::getTypeOfType(QualType tofType) const {
3536  QualType Canonical = getCanonicalType(tofType);
3537  TypeOfType *tot = new (*this, TypeAlignment) TypeOfType(tofType, Canonical);
3538  Types.push_back(tot);
3539  return QualType(tot, 0);
3540}
3541
3542
3543/// getDecltypeType -  Unlike many "get<Type>" functions, we don't unique
3544/// DecltypeType AST's. The only motivation to unique these nodes would be
3545/// memory savings. Since decltype(t) is fairly uncommon, space shouldn't be
3546/// an issue. This doesn't effect the type checker, since it operates
3547/// on canonical types (which are always unique).
3548QualType ASTContext::getDecltypeType(Expr *e, QualType UnderlyingType) const {
3549  DecltypeType *dt;
3550
3551  // C++0x [temp.type]p2:
3552  //   If an expression e involves a template parameter, decltype(e) denotes a
3553  //   unique dependent type. Two such decltype-specifiers refer to the same
3554  //   type only if their expressions are equivalent (14.5.6.1).
3555  if (e->isInstantiationDependent()) {
3556    llvm::FoldingSetNodeID ID;
3557    DependentDecltypeType::Profile(ID, *this, e);
3558
3559    void *InsertPos = 0;
3560    DependentDecltypeType *Canon
3561      = DependentDecltypeTypes.FindNodeOrInsertPos(ID, InsertPos);
3562    if (Canon) {
3563      // We already have a "canonical" version of an equivalent, dependent
3564      // decltype type. Use that as our canonical type.
3565      dt = new (*this, TypeAlignment) DecltypeType(e, UnderlyingType,
3566                                       QualType((DecltypeType*)Canon, 0));
3567    } else {
3568      // Build a new, canonical typeof(expr) type.
3569      Canon = new (*this, TypeAlignment) DependentDecltypeType(*this, e);
3570      DependentDecltypeTypes.InsertNode(Canon, InsertPos);
3571      dt = Canon;
3572    }
3573  } else {
3574    dt = new (*this, TypeAlignment) DecltypeType(e, UnderlyingType,
3575                                      getCanonicalType(UnderlyingType));
3576  }
3577  Types.push_back(dt);
3578  return QualType(dt, 0);
3579}
3580
3581/// getUnaryTransformationType - We don't unique these, since the memory
3582/// savings are minimal and these are rare.
3583QualType ASTContext::getUnaryTransformType(QualType BaseType,
3584                                           QualType UnderlyingType,
3585                                           UnaryTransformType::UTTKind Kind)
3586    const {
3587  UnaryTransformType *Ty =
3588    new (*this, TypeAlignment) UnaryTransformType (BaseType, UnderlyingType,
3589                                                   Kind,
3590                                 UnderlyingType->isDependentType() ?
3591                                 QualType() : getCanonicalType(UnderlyingType));
3592  Types.push_back(Ty);
3593  return QualType(Ty, 0);
3594}
3595
3596/// getAutoType - Return the uniqued reference to the 'auto' type which has been
3597/// deduced to the given type, or to the canonical undeduced 'auto' type, or the
3598/// canonical deduced-but-dependent 'auto' type.
3599QualType ASTContext::getAutoType(QualType DeducedType, bool IsDecltypeAuto,
3600                                 bool IsDependent) const {
3601  if (DeducedType.isNull() && !IsDecltypeAuto && !IsDependent)
3602    return getAutoDeductType();
3603
3604  // Look in the folding set for an existing type.
3605  void *InsertPos = 0;
3606  llvm::FoldingSetNodeID ID;
3607  AutoType::Profile(ID, DeducedType, IsDecltypeAuto, IsDependent);
3608  if (AutoType *AT = AutoTypes.FindNodeOrInsertPos(ID, InsertPos))
3609    return QualType(AT, 0);
3610
3611  AutoType *AT = new (*this, TypeAlignment) AutoType(DeducedType,
3612                                                     IsDecltypeAuto,
3613                                                     IsDependent);
3614  Types.push_back(AT);
3615  if (InsertPos)
3616    AutoTypes.InsertNode(AT, InsertPos);
3617  return QualType(AT, 0);
3618}
3619
3620/// getAtomicType - Return the uniqued reference to the atomic type for
3621/// the given value type.
3622QualType ASTContext::getAtomicType(QualType T) const {
3623  // Unique pointers, to guarantee there is only one pointer of a particular
3624  // structure.
3625  llvm::FoldingSetNodeID ID;
3626  AtomicType::Profile(ID, T);
3627
3628  void *InsertPos = 0;
3629  if (AtomicType *AT = AtomicTypes.FindNodeOrInsertPos(ID, InsertPos))
3630    return QualType(AT, 0);
3631
3632  // If the atomic value type isn't canonical, this won't be a canonical type
3633  // either, so fill in the canonical type field.
3634  QualType Canonical;
3635  if (!T.isCanonical()) {
3636    Canonical = getAtomicType(getCanonicalType(T));
3637
3638    // Get the new insert position for the node we care about.
3639    AtomicType *NewIP = AtomicTypes.FindNodeOrInsertPos(ID, InsertPos);
3640    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
3641  }
3642  AtomicType *New = new (*this, TypeAlignment) AtomicType(T, Canonical);
3643  Types.push_back(New);
3644  AtomicTypes.InsertNode(New, InsertPos);
3645  return QualType(New, 0);
3646}
3647
3648/// getAutoDeductType - Get type pattern for deducing against 'auto'.
3649QualType ASTContext::getAutoDeductType() const {
3650  if (AutoDeductTy.isNull())
3651    AutoDeductTy = QualType(
3652      new (*this, TypeAlignment) AutoType(QualType(), /*decltype(auto)*/false,
3653                                          /*dependent*/false),
3654      0);
3655  return AutoDeductTy;
3656}
3657
3658/// getAutoRRefDeductType - Get type pattern for deducing against 'auto &&'.
3659QualType ASTContext::getAutoRRefDeductType() const {
3660  if (AutoRRefDeductTy.isNull())
3661    AutoRRefDeductTy = getRValueReferenceType(getAutoDeductType());
3662  assert(!AutoRRefDeductTy.isNull() && "can't build 'auto &&' pattern");
3663  return AutoRRefDeductTy;
3664}
3665
3666/// getTagDeclType - Return the unique reference to the type for the
3667/// specified TagDecl (struct/union/class/enum) decl.
3668QualType ASTContext::getTagDeclType(const TagDecl *Decl) const {
3669  assert (Decl);
3670  // FIXME: What is the design on getTagDeclType when it requires casting
3671  // away const?  mutable?
3672  return getTypeDeclType(const_cast<TagDecl*>(Decl));
3673}
3674
3675/// getSizeType - Return the unique type for "size_t" (C99 7.17), the result
3676/// of the sizeof operator (C99 6.5.3.4p4). The value is target dependent and
3677/// needs to agree with the definition in <stddef.h>.
3678CanQualType ASTContext::getSizeType() const {
3679  return getFromTargetType(Target->getSizeType());
3680}
3681
3682/// getIntMaxType - Return the unique type for "intmax_t" (C99 7.18.1.5).
3683CanQualType ASTContext::getIntMaxType() const {
3684  return getFromTargetType(Target->getIntMaxType());
3685}
3686
3687/// getUIntMaxType - Return the unique type for "uintmax_t" (C99 7.18.1.5).
3688CanQualType ASTContext::getUIntMaxType() const {
3689  return getFromTargetType(Target->getUIntMaxType());
3690}
3691
3692/// getSignedWCharType - Return the type of "signed wchar_t".
3693/// Used when in C++, as a GCC extension.
3694QualType ASTContext::getSignedWCharType() const {
3695  // FIXME: derive from "Target" ?
3696  return WCharTy;
3697}
3698
3699/// getUnsignedWCharType - Return the type of "unsigned wchar_t".
3700/// Used when in C++, as a GCC extension.
3701QualType ASTContext::getUnsignedWCharType() const {
3702  // FIXME: derive from "Target" ?
3703  return UnsignedIntTy;
3704}
3705
3706QualType ASTContext::getIntPtrType() const {
3707  return getFromTargetType(Target->getIntPtrType());
3708}
3709
3710QualType ASTContext::getUIntPtrType() const {
3711  return getCorrespondingUnsignedType(getIntPtrType());
3712}
3713
3714/// getPointerDiffType - Return the unique type for "ptrdiff_t" (C99 7.17)
3715/// defined in <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9).
3716QualType ASTContext::getPointerDiffType() const {
3717  return getFromTargetType(Target->getPtrDiffType(0));
3718}
3719
3720/// \brief Return the unique type for "pid_t" defined in
3721/// <sys/types.h>. We need this to compute the correct type for vfork().
3722QualType ASTContext::getProcessIDType() const {
3723  return getFromTargetType(Target->getProcessIDType());
3724}
3725
3726//===----------------------------------------------------------------------===//
3727//                              Type Operators
3728//===----------------------------------------------------------------------===//
3729
3730CanQualType ASTContext::getCanonicalParamType(QualType T) const {
3731  // Push qualifiers into arrays, and then discard any remaining
3732  // qualifiers.
3733  T = getCanonicalType(T);
3734  T = getVariableArrayDecayedType(T);
3735  const Type *Ty = T.getTypePtr();
3736  QualType Result;
3737  if (isa<ArrayType>(Ty)) {
3738    Result = getArrayDecayedType(QualType(Ty,0));
3739  } else if (isa<FunctionType>(Ty)) {
3740    Result = getPointerType(QualType(Ty, 0));
3741  } else {
3742    Result = QualType(Ty, 0);
3743  }
3744
3745  return CanQualType::CreateUnsafe(Result);
3746}
3747
3748QualType ASTContext::getUnqualifiedArrayType(QualType type,
3749                                             Qualifiers &quals) {
3750  SplitQualType splitType = type.getSplitUnqualifiedType();
3751
3752  // FIXME: getSplitUnqualifiedType() actually walks all the way to
3753  // the unqualified desugared type and then drops it on the floor.
3754  // We then have to strip that sugar back off with
3755  // getUnqualifiedDesugaredType(), which is silly.
3756  const ArrayType *AT =
3757    dyn_cast<ArrayType>(splitType.Ty->getUnqualifiedDesugaredType());
3758
3759  // If we don't have an array, just use the results in splitType.
3760  if (!AT) {
3761    quals = splitType.Quals;
3762    return QualType(splitType.Ty, 0);
3763  }
3764
3765  // Otherwise, recurse on the array's element type.
3766  QualType elementType = AT->getElementType();
3767  QualType unqualElementType = getUnqualifiedArrayType(elementType, quals);
3768
3769  // If that didn't change the element type, AT has no qualifiers, so we
3770  // can just use the results in splitType.
3771  if (elementType == unqualElementType) {
3772    assert(quals.empty()); // from the recursive call
3773    quals = splitType.Quals;
3774    return QualType(splitType.Ty, 0);
3775  }
3776
3777  // Otherwise, add in the qualifiers from the outermost type, then
3778  // build the type back up.
3779  quals.addConsistentQualifiers(splitType.Quals);
3780
3781  if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) {
3782    return getConstantArrayType(unqualElementType, CAT->getSize(),
3783                                CAT->getSizeModifier(), 0);
3784  }
3785
3786  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) {
3787    return getIncompleteArrayType(unqualElementType, IAT->getSizeModifier(), 0);
3788  }
3789
3790  if (const VariableArrayType *VAT = dyn_cast<VariableArrayType>(AT)) {
3791    return getVariableArrayType(unqualElementType,
3792                                VAT->getSizeExpr(),
3793                                VAT->getSizeModifier(),
3794                                VAT->getIndexTypeCVRQualifiers(),
3795                                VAT->getBracketsRange());
3796  }
3797
3798  const DependentSizedArrayType *DSAT = cast<DependentSizedArrayType>(AT);
3799  return getDependentSizedArrayType(unqualElementType, DSAT->getSizeExpr(),
3800                                    DSAT->getSizeModifier(), 0,
3801                                    SourceRange());
3802}
3803
3804/// UnwrapSimilarPointerTypes - If T1 and T2 are pointer types  that
3805/// may be similar (C++ 4.4), replaces T1 and T2 with the type that
3806/// they point to and return true. If T1 and T2 aren't pointer types
3807/// or pointer-to-member types, or if they are not similar at this
3808/// level, returns false and leaves T1 and T2 unchanged. Top-level
3809/// qualifiers on T1 and T2 are ignored. This function will typically
3810/// be called in a loop that successively "unwraps" pointer and
3811/// pointer-to-member types to compare them at each level.
3812bool ASTContext::UnwrapSimilarPointerTypes(QualType &T1, QualType &T2) {
3813  const PointerType *T1PtrType = T1->getAs<PointerType>(),
3814                    *T2PtrType = T2->getAs<PointerType>();
3815  if (T1PtrType && T2PtrType) {
3816    T1 = T1PtrType->getPointeeType();
3817    T2 = T2PtrType->getPointeeType();
3818    return true;
3819  }
3820
3821  const MemberPointerType *T1MPType = T1->getAs<MemberPointerType>(),
3822                          *T2MPType = T2->getAs<MemberPointerType>();
3823  if (T1MPType && T2MPType &&
3824      hasSameUnqualifiedType(QualType(T1MPType->getClass(), 0),
3825                             QualType(T2MPType->getClass(), 0))) {
3826    T1 = T1MPType->getPointeeType();
3827    T2 = T2MPType->getPointeeType();
3828    return true;
3829  }
3830
3831  if (getLangOpts().ObjC1) {
3832    const ObjCObjectPointerType *T1OPType = T1->getAs<ObjCObjectPointerType>(),
3833                                *T2OPType = T2->getAs<ObjCObjectPointerType>();
3834    if (T1OPType && T2OPType) {
3835      T1 = T1OPType->getPointeeType();
3836      T2 = T2OPType->getPointeeType();
3837      return true;
3838    }
3839  }
3840
3841  // FIXME: Block pointers, too?
3842
3843  return false;
3844}
3845
3846DeclarationNameInfo
3847ASTContext::getNameForTemplate(TemplateName Name,
3848                               SourceLocation NameLoc) const {
3849  switch (Name.getKind()) {
3850  case TemplateName::QualifiedTemplate:
3851  case TemplateName::Template:
3852    // DNInfo work in progress: CHECKME: what about DNLoc?
3853    return DeclarationNameInfo(Name.getAsTemplateDecl()->getDeclName(),
3854                               NameLoc);
3855
3856  case TemplateName::OverloadedTemplate: {
3857    OverloadedTemplateStorage *Storage = Name.getAsOverloadedTemplate();
3858    // DNInfo work in progress: CHECKME: what about DNLoc?
3859    return DeclarationNameInfo((*Storage->begin())->getDeclName(), NameLoc);
3860  }
3861
3862  case TemplateName::DependentTemplate: {
3863    DependentTemplateName *DTN = Name.getAsDependentTemplateName();
3864    DeclarationName DName;
3865    if (DTN->isIdentifier()) {
3866      DName = DeclarationNames.getIdentifier(DTN->getIdentifier());
3867      return DeclarationNameInfo(DName, NameLoc);
3868    } else {
3869      DName = DeclarationNames.getCXXOperatorName(DTN->getOperator());
3870      // DNInfo work in progress: FIXME: source locations?
3871      DeclarationNameLoc DNLoc;
3872      DNLoc.CXXOperatorName.BeginOpNameLoc = SourceLocation().getRawEncoding();
3873      DNLoc.CXXOperatorName.EndOpNameLoc = SourceLocation().getRawEncoding();
3874      return DeclarationNameInfo(DName, NameLoc, DNLoc);
3875    }
3876  }
3877
3878  case TemplateName::SubstTemplateTemplateParm: {
3879    SubstTemplateTemplateParmStorage *subst
3880      = Name.getAsSubstTemplateTemplateParm();
3881    return DeclarationNameInfo(subst->getParameter()->getDeclName(),
3882                               NameLoc);
3883  }
3884
3885  case TemplateName::SubstTemplateTemplateParmPack: {
3886    SubstTemplateTemplateParmPackStorage *subst
3887      = Name.getAsSubstTemplateTemplateParmPack();
3888    return DeclarationNameInfo(subst->getParameterPack()->getDeclName(),
3889                               NameLoc);
3890  }
3891  }
3892
3893  llvm_unreachable("bad template name kind!");
3894}
3895
3896TemplateName ASTContext::getCanonicalTemplateName(TemplateName Name) const {
3897  switch (Name.getKind()) {
3898  case TemplateName::QualifiedTemplate:
3899  case TemplateName::Template: {
3900    TemplateDecl *Template = Name.getAsTemplateDecl();
3901    if (TemplateTemplateParmDecl *TTP
3902          = dyn_cast<TemplateTemplateParmDecl>(Template))
3903      Template = getCanonicalTemplateTemplateParmDecl(TTP);
3904
3905    // The canonical template name is the canonical template declaration.
3906    return TemplateName(cast<TemplateDecl>(Template->getCanonicalDecl()));
3907  }
3908
3909  case TemplateName::OverloadedTemplate:
3910    llvm_unreachable("cannot canonicalize overloaded template");
3911
3912  case TemplateName::DependentTemplate: {
3913    DependentTemplateName *DTN = Name.getAsDependentTemplateName();
3914    assert(DTN && "Non-dependent template names must refer to template decls.");
3915    return DTN->CanonicalTemplateName;
3916  }
3917
3918  case TemplateName::SubstTemplateTemplateParm: {
3919    SubstTemplateTemplateParmStorage *subst
3920      = Name.getAsSubstTemplateTemplateParm();
3921    return getCanonicalTemplateName(subst->getReplacement());
3922  }
3923
3924  case TemplateName::SubstTemplateTemplateParmPack: {
3925    SubstTemplateTemplateParmPackStorage *subst
3926                                  = Name.getAsSubstTemplateTemplateParmPack();
3927    TemplateTemplateParmDecl *canonParameter
3928      = getCanonicalTemplateTemplateParmDecl(subst->getParameterPack());
3929    TemplateArgument canonArgPack
3930      = getCanonicalTemplateArgument(subst->getArgumentPack());
3931    return getSubstTemplateTemplateParmPack(canonParameter, canonArgPack);
3932  }
3933  }
3934
3935  llvm_unreachable("bad template name!");
3936}
3937
3938bool ASTContext::hasSameTemplateName(TemplateName X, TemplateName Y) {
3939  X = getCanonicalTemplateName(X);
3940  Y = getCanonicalTemplateName(Y);
3941  return X.getAsVoidPointer() == Y.getAsVoidPointer();
3942}
3943
3944TemplateArgument
3945ASTContext::getCanonicalTemplateArgument(const TemplateArgument &Arg) const {
3946  switch (Arg.getKind()) {
3947    case TemplateArgument::Null:
3948      return Arg;
3949
3950    case TemplateArgument::Expression:
3951      return Arg;
3952
3953    case TemplateArgument::Declaration: {
3954      ValueDecl *D = cast<ValueDecl>(Arg.getAsDecl()->getCanonicalDecl());
3955      return TemplateArgument(D, Arg.isDeclForReferenceParam());
3956    }
3957
3958    case TemplateArgument::NullPtr:
3959      return TemplateArgument(getCanonicalType(Arg.getNullPtrType()),
3960                              /*isNullPtr*/true);
3961
3962    case TemplateArgument::Template:
3963      return TemplateArgument(getCanonicalTemplateName(Arg.getAsTemplate()));
3964
3965    case TemplateArgument::TemplateExpansion:
3966      return TemplateArgument(getCanonicalTemplateName(
3967                                         Arg.getAsTemplateOrTemplatePattern()),
3968                              Arg.getNumTemplateExpansions());
3969
3970    case TemplateArgument::Integral:
3971      return TemplateArgument(Arg, getCanonicalType(Arg.getIntegralType()));
3972
3973    case TemplateArgument::Type:
3974      return TemplateArgument(getCanonicalType(Arg.getAsType()));
3975
3976    case TemplateArgument::Pack: {
3977      if (Arg.pack_size() == 0)
3978        return Arg;
3979
3980      TemplateArgument *CanonArgs
3981        = new (*this) TemplateArgument[Arg.pack_size()];
3982      unsigned Idx = 0;
3983      for (TemplateArgument::pack_iterator A = Arg.pack_begin(),
3984                                        AEnd = Arg.pack_end();
3985           A != AEnd; (void)++A, ++Idx)
3986        CanonArgs[Idx] = getCanonicalTemplateArgument(*A);
3987
3988      return TemplateArgument(CanonArgs, Arg.pack_size());
3989    }
3990  }
3991
3992  // Silence GCC warning
3993  llvm_unreachable("Unhandled template argument kind");
3994}
3995
3996NestedNameSpecifier *
3997ASTContext::getCanonicalNestedNameSpecifier(NestedNameSpecifier *NNS) const {
3998  if (!NNS)
3999    return 0;
4000
4001  switch (NNS->getKind()) {
4002  case NestedNameSpecifier::Identifier:
4003    // Canonicalize the prefix but keep the identifier the same.
4004    return NestedNameSpecifier::Create(*this,
4005                         getCanonicalNestedNameSpecifier(NNS->getPrefix()),
4006                                       NNS->getAsIdentifier());
4007
4008  case NestedNameSpecifier::Namespace:
4009    // A namespace is canonical; build a nested-name-specifier with
4010    // this namespace and no prefix.
4011    return NestedNameSpecifier::Create(*this, 0,
4012                                 NNS->getAsNamespace()->getOriginalNamespace());
4013
4014  case NestedNameSpecifier::NamespaceAlias:
4015    // A namespace is canonical; build a nested-name-specifier with
4016    // this namespace and no prefix.
4017    return NestedNameSpecifier::Create(*this, 0,
4018                                    NNS->getAsNamespaceAlias()->getNamespace()
4019                                                      ->getOriginalNamespace());
4020
4021  case NestedNameSpecifier::TypeSpec:
4022  case NestedNameSpecifier::TypeSpecWithTemplate: {
4023    QualType T = getCanonicalType(QualType(NNS->getAsType(), 0));
4024
4025    // If we have some kind of dependent-named type (e.g., "typename T::type"),
4026    // break it apart into its prefix and identifier, then reconsititute those
4027    // as the canonical nested-name-specifier. This is required to canonicalize
4028    // a dependent nested-name-specifier involving typedefs of dependent-name
4029    // types, e.g.,
4030    //   typedef typename T::type T1;
4031    //   typedef typename T1::type T2;
4032    if (const DependentNameType *DNT = T->getAs<DependentNameType>())
4033      return NestedNameSpecifier::Create(*this, DNT->getQualifier(),
4034                           const_cast<IdentifierInfo *>(DNT->getIdentifier()));
4035
4036    // Otherwise, just canonicalize the type, and force it to be a TypeSpec.
4037    // FIXME: Why are TypeSpec and TypeSpecWithTemplate distinct in the
4038    // first place?
4039    return NestedNameSpecifier::Create(*this, 0, false,
4040                                       const_cast<Type*>(T.getTypePtr()));
4041  }
4042
4043  case NestedNameSpecifier::Global:
4044    // The global specifier is canonical and unique.
4045    return NNS;
4046  }
4047
4048  llvm_unreachable("Invalid NestedNameSpecifier::Kind!");
4049}
4050
4051
4052const ArrayType *ASTContext::getAsArrayType(QualType T) const {
4053  // Handle the non-qualified case efficiently.
4054  if (!T.hasLocalQualifiers()) {
4055    // Handle the common positive case fast.
4056    if (const ArrayType *AT = dyn_cast<ArrayType>(T))
4057      return AT;
4058  }
4059
4060  // Handle the common negative case fast.
4061  if (!isa<ArrayType>(T.getCanonicalType()))
4062    return 0;
4063
4064  // Apply any qualifiers from the array type to the element type.  This
4065  // implements C99 6.7.3p8: "If the specification of an array type includes
4066  // any type qualifiers, the element type is so qualified, not the array type."
4067
4068  // If we get here, we either have type qualifiers on the type, or we have
4069  // sugar such as a typedef in the way.  If we have type qualifiers on the type
4070  // we must propagate them down into the element type.
4071
4072  SplitQualType split = T.getSplitDesugaredType();
4073  Qualifiers qs = split.Quals;
4074
4075  // If we have a simple case, just return now.
4076  const ArrayType *ATy = dyn_cast<ArrayType>(split.Ty);
4077  if (ATy == 0 || qs.empty())
4078    return ATy;
4079
4080  // Otherwise, we have an array and we have qualifiers on it.  Push the
4081  // qualifiers into the array element type and return a new array type.
4082  QualType NewEltTy = getQualifiedType(ATy->getElementType(), qs);
4083
4084  if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(ATy))
4085    return cast<ArrayType>(getConstantArrayType(NewEltTy, CAT->getSize(),
4086                                                CAT->getSizeModifier(),
4087                                           CAT->getIndexTypeCVRQualifiers()));
4088  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(ATy))
4089    return cast<ArrayType>(getIncompleteArrayType(NewEltTy,
4090                                                  IAT->getSizeModifier(),
4091                                           IAT->getIndexTypeCVRQualifiers()));
4092
4093  if (const DependentSizedArrayType *DSAT
4094        = dyn_cast<DependentSizedArrayType>(ATy))
4095    return cast<ArrayType>(
4096                     getDependentSizedArrayType(NewEltTy,
4097                                                DSAT->getSizeExpr(),
4098                                                DSAT->getSizeModifier(),
4099                                              DSAT->getIndexTypeCVRQualifiers(),
4100                                                DSAT->getBracketsRange()));
4101
4102  const VariableArrayType *VAT = cast<VariableArrayType>(ATy);
4103  return cast<ArrayType>(getVariableArrayType(NewEltTy,
4104                                              VAT->getSizeExpr(),
4105                                              VAT->getSizeModifier(),
4106                                              VAT->getIndexTypeCVRQualifiers(),
4107                                              VAT->getBracketsRange()));
4108}
4109
4110QualType ASTContext::getAdjustedParameterType(QualType T) const {
4111  // C99 6.7.5.3p7:
4112  //   A declaration of a parameter as "array of type" shall be
4113  //   adjusted to "qualified pointer to type", where the type
4114  //   qualifiers (if any) are those specified within the [ and ] of
4115  //   the array type derivation.
4116  if (T->isArrayType())
4117    return getArrayDecayedType(T);
4118
4119  // C99 6.7.5.3p8:
4120  //   A declaration of a parameter as "function returning type"
4121  //   shall be adjusted to "pointer to function returning type", as
4122  //   in 6.3.2.1.
4123  if (T->isFunctionType())
4124    return getPointerType(T);
4125
4126  return T;
4127}
4128
4129QualType ASTContext::getSignatureParameterType(QualType T) const {
4130  T = getVariableArrayDecayedType(T);
4131  T = getAdjustedParameterType(T);
4132  return T.getUnqualifiedType();
4133}
4134
4135/// getArrayDecayedType - Return the properly qualified result of decaying the
4136/// specified array type to a pointer.  This operation is non-trivial when
4137/// handling typedefs etc.  The canonical type of "T" must be an array type,
4138/// this returns a pointer to a properly qualified element of the array.
4139///
4140/// See C99 6.7.5.3p7 and C99 6.3.2.1p3.
4141QualType ASTContext::getArrayDecayedType(QualType Ty) const {
4142  // Get the element type with 'getAsArrayType' so that we don't lose any
4143  // typedefs in the element type of the array.  This also handles propagation
4144  // of type qualifiers from the array type into the element type if present
4145  // (C99 6.7.3p8).
4146  const ArrayType *PrettyArrayType = getAsArrayType(Ty);
4147  assert(PrettyArrayType && "Not an array type!");
4148
4149  QualType PtrTy = getPointerType(PrettyArrayType->getElementType());
4150
4151  // int x[restrict 4] ->  int *restrict
4152  return getQualifiedType(PtrTy, PrettyArrayType->getIndexTypeQualifiers());
4153}
4154
4155QualType ASTContext::getBaseElementType(const ArrayType *array) const {
4156  return getBaseElementType(array->getElementType());
4157}
4158
4159QualType ASTContext::getBaseElementType(QualType type) const {
4160  Qualifiers qs;
4161  while (true) {
4162    SplitQualType split = type.getSplitDesugaredType();
4163    const ArrayType *array = split.Ty->getAsArrayTypeUnsafe();
4164    if (!array) break;
4165
4166    type = array->getElementType();
4167    qs.addConsistentQualifiers(split.Quals);
4168  }
4169
4170  return getQualifiedType(type, qs);
4171}
4172
4173/// getConstantArrayElementCount - Returns number of constant array elements.
4174uint64_t
4175ASTContext::getConstantArrayElementCount(const ConstantArrayType *CA)  const {
4176  uint64_t ElementCount = 1;
4177  do {
4178    ElementCount *= CA->getSize().getZExtValue();
4179    CA = dyn_cast_or_null<ConstantArrayType>(
4180      CA->getElementType()->getAsArrayTypeUnsafe());
4181  } while (CA);
4182  return ElementCount;
4183}
4184
4185/// getFloatingRank - Return a relative rank for floating point types.
4186/// This routine will assert if passed a built-in type that isn't a float.
4187static FloatingRank getFloatingRank(QualType T) {
4188  if (const ComplexType *CT = T->getAs<ComplexType>())
4189    return getFloatingRank(CT->getElementType());
4190
4191  assert(T->getAs<BuiltinType>() && "getFloatingRank(): not a floating type");
4192  switch (T->getAs<BuiltinType>()->getKind()) {
4193  default: llvm_unreachable("getFloatingRank(): not a floating type");
4194  case BuiltinType::Half:       return HalfRank;
4195  case BuiltinType::Float:      return FloatRank;
4196  case BuiltinType::Double:     return DoubleRank;
4197  case BuiltinType::LongDouble: return LongDoubleRank;
4198  }
4199}
4200
4201/// getFloatingTypeOfSizeWithinDomain - Returns a real floating
4202/// point or a complex type (based on typeDomain/typeSize).
4203/// 'typeDomain' is a real floating point or complex type.
4204/// 'typeSize' is a real floating point or complex type.
4205QualType ASTContext::getFloatingTypeOfSizeWithinDomain(QualType Size,
4206                                                       QualType Domain) const {
4207  FloatingRank EltRank = getFloatingRank(Size);
4208  if (Domain->isComplexType()) {
4209    switch (EltRank) {
4210    case HalfRank: llvm_unreachable("Complex half is not supported");
4211    case FloatRank:      return FloatComplexTy;
4212    case DoubleRank:     return DoubleComplexTy;
4213    case LongDoubleRank: return LongDoubleComplexTy;
4214    }
4215  }
4216
4217  assert(Domain->isRealFloatingType() && "Unknown domain!");
4218  switch (EltRank) {
4219  case HalfRank:       return HalfTy;
4220  case FloatRank:      return FloatTy;
4221  case DoubleRank:     return DoubleTy;
4222  case LongDoubleRank: return LongDoubleTy;
4223  }
4224  llvm_unreachable("getFloatingRank(): illegal value for rank");
4225}
4226
4227/// getFloatingTypeOrder - Compare the rank of the two specified floating
4228/// point types, ignoring the domain of the type (i.e. 'double' ==
4229/// '_Complex double').  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
4230/// LHS < RHS, return -1.
4231int ASTContext::getFloatingTypeOrder(QualType LHS, QualType RHS) const {
4232  FloatingRank LHSR = getFloatingRank(LHS);
4233  FloatingRank RHSR = getFloatingRank(RHS);
4234
4235  if (LHSR == RHSR)
4236    return 0;
4237  if (LHSR > RHSR)
4238    return 1;
4239  return -1;
4240}
4241
4242/// getIntegerRank - Return an integer conversion rank (C99 6.3.1.1p1). This
4243/// routine will assert if passed a built-in type that isn't an integer or enum,
4244/// or if it is not canonicalized.
4245unsigned ASTContext::getIntegerRank(const Type *T) const {
4246  assert(T->isCanonicalUnqualified() && "T should be canonicalized");
4247
4248  switch (cast<BuiltinType>(T)->getKind()) {
4249  default: llvm_unreachable("getIntegerRank(): not a built-in integer");
4250  case BuiltinType::Bool:
4251    return 1 + (getIntWidth(BoolTy) << 3);
4252  case BuiltinType::Char_S:
4253  case BuiltinType::Char_U:
4254  case BuiltinType::SChar:
4255  case BuiltinType::UChar:
4256    return 2 + (getIntWidth(CharTy) << 3);
4257  case BuiltinType::Short:
4258  case BuiltinType::UShort:
4259    return 3 + (getIntWidth(ShortTy) << 3);
4260  case BuiltinType::Int:
4261  case BuiltinType::UInt:
4262    return 4 + (getIntWidth(IntTy) << 3);
4263  case BuiltinType::Long:
4264  case BuiltinType::ULong:
4265    return 5 + (getIntWidth(LongTy) << 3);
4266  case BuiltinType::LongLong:
4267  case BuiltinType::ULongLong:
4268    return 6 + (getIntWidth(LongLongTy) << 3);
4269  case BuiltinType::Int128:
4270  case BuiltinType::UInt128:
4271    return 7 + (getIntWidth(Int128Ty) << 3);
4272  }
4273}
4274
4275/// \brief Whether this is a promotable bitfield reference according
4276/// to C99 6.3.1.1p2, bullet 2 (and GCC extensions).
4277///
4278/// \returns the type this bit-field will promote to, or NULL if no
4279/// promotion occurs.
4280QualType ASTContext::isPromotableBitField(Expr *E) const {
4281  if (E->isTypeDependent() || E->isValueDependent())
4282    return QualType();
4283
4284  FieldDecl *Field = E->getSourceBitField(); // FIXME: conditional bit-fields?
4285  if (!Field)
4286    return QualType();
4287
4288  QualType FT = Field->getType();
4289
4290  uint64_t BitWidth = Field->getBitWidthValue(*this);
4291  uint64_t IntSize = getTypeSize(IntTy);
4292  // GCC extension compatibility: if the bit-field size is less than or equal
4293  // to the size of int, it gets promoted no matter what its type is.
4294  // For instance, unsigned long bf : 4 gets promoted to signed int.
4295  if (BitWidth < IntSize)
4296    return IntTy;
4297
4298  if (BitWidth == IntSize)
4299    return FT->isSignedIntegerType() ? IntTy : UnsignedIntTy;
4300
4301  // Types bigger than int are not subject to promotions, and therefore act
4302  // like the base type.
4303  // FIXME: This doesn't quite match what gcc does, but what gcc does here
4304  // is ridiculous.
4305  return QualType();
4306}
4307
4308/// getPromotedIntegerType - Returns the type that Promotable will
4309/// promote to: C99 6.3.1.1p2, assuming that Promotable is a promotable
4310/// integer type.
4311QualType ASTContext::getPromotedIntegerType(QualType Promotable) const {
4312  assert(!Promotable.isNull());
4313  assert(Promotable->isPromotableIntegerType());
4314  if (const EnumType *ET = Promotable->getAs<EnumType>())
4315    return ET->getDecl()->getPromotionType();
4316
4317  if (const BuiltinType *BT = Promotable->getAs<BuiltinType>()) {
4318    // C++ [conv.prom]: A prvalue of type char16_t, char32_t, or wchar_t
4319    // (3.9.1) can be converted to a prvalue of the first of the following
4320    // types that can represent all the values of its underlying type:
4321    // int, unsigned int, long int, unsigned long int, long long int, or
4322    // unsigned long long int [...]
4323    // FIXME: Is there some better way to compute this?
4324    if (BT->getKind() == BuiltinType::WChar_S ||
4325        BT->getKind() == BuiltinType::WChar_U ||
4326        BT->getKind() == BuiltinType::Char16 ||
4327        BT->getKind() == BuiltinType::Char32) {
4328      bool FromIsSigned = BT->getKind() == BuiltinType::WChar_S;
4329      uint64_t FromSize = getTypeSize(BT);
4330      QualType PromoteTypes[] = { IntTy, UnsignedIntTy, LongTy, UnsignedLongTy,
4331                                  LongLongTy, UnsignedLongLongTy };
4332      for (size_t Idx = 0; Idx < llvm::array_lengthof(PromoteTypes); ++Idx) {
4333        uint64_t ToSize = getTypeSize(PromoteTypes[Idx]);
4334        if (FromSize < ToSize ||
4335            (FromSize == ToSize &&
4336             FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType()))
4337          return PromoteTypes[Idx];
4338      }
4339      llvm_unreachable("char type should fit into long long");
4340    }
4341  }
4342
4343  // At this point, we should have a signed or unsigned integer type.
4344  if (Promotable->isSignedIntegerType())
4345    return IntTy;
4346  uint64_t PromotableSize = getIntWidth(Promotable);
4347  uint64_t IntSize = getIntWidth(IntTy);
4348  assert(Promotable->isUnsignedIntegerType() && PromotableSize <= IntSize);
4349  return (PromotableSize != IntSize) ? IntTy : UnsignedIntTy;
4350}
4351
4352/// \brief Recurses in pointer/array types until it finds an objc retainable
4353/// type and returns its ownership.
4354Qualifiers::ObjCLifetime ASTContext::getInnerObjCOwnership(QualType T) const {
4355  while (!T.isNull()) {
4356    if (T.getObjCLifetime() != Qualifiers::OCL_None)
4357      return T.getObjCLifetime();
4358    if (T->isArrayType())
4359      T = getBaseElementType(T);
4360    else if (const PointerType *PT = T->getAs<PointerType>())
4361      T = PT->getPointeeType();
4362    else if (const ReferenceType *RT = T->getAs<ReferenceType>())
4363      T = RT->getPointeeType();
4364    else
4365      break;
4366  }
4367
4368  return Qualifiers::OCL_None;
4369}
4370
4371/// getIntegerTypeOrder - Returns the highest ranked integer type:
4372/// C99 6.3.1.8p1.  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
4373/// LHS < RHS, return -1.
4374int ASTContext::getIntegerTypeOrder(QualType LHS, QualType RHS) const {
4375  const Type *LHSC = getCanonicalType(LHS).getTypePtr();
4376  const Type *RHSC = getCanonicalType(RHS).getTypePtr();
4377  if (LHSC == RHSC) return 0;
4378
4379  bool LHSUnsigned = LHSC->isUnsignedIntegerType();
4380  bool RHSUnsigned = RHSC->isUnsignedIntegerType();
4381
4382  unsigned LHSRank = getIntegerRank(LHSC);
4383  unsigned RHSRank = getIntegerRank(RHSC);
4384
4385  if (LHSUnsigned == RHSUnsigned) {  // Both signed or both unsigned.
4386    if (LHSRank == RHSRank) return 0;
4387    return LHSRank > RHSRank ? 1 : -1;
4388  }
4389
4390  // Otherwise, the LHS is signed and the RHS is unsigned or visa versa.
4391  if (LHSUnsigned) {
4392    // If the unsigned [LHS] type is larger, return it.
4393    if (LHSRank >= RHSRank)
4394      return 1;
4395
4396    // If the signed type can represent all values of the unsigned type, it
4397    // wins.  Because we are dealing with 2's complement and types that are
4398    // powers of two larger than each other, this is always safe.
4399    return -1;
4400  }
4401
4402  // If the unsigned [RHS] type is larger, return it.
4403  if (RHSRank >= LHSRank)
4404    return -1;
4405
4406  // If the signed type can represent all values of the unsigned type, it
4407  // wins.  Because we are dealing with 2's complement and types that are
4408  // powers of two larger than each other, this is always safe.
4409  return 1;
4410}
4411
4412static RecordDecl *
4413CreateRecordDecl(const ASTContext &Ctx, RecordDecl::TagKind TK,
4414                 DeclContext *DC, IdentifierInfo *Id) {
4415  SourceLocation Loc;
4416  if (Ctx.getLangOpts().CPlusPlus)
4417    return CXXRecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id);
4418  else
4419    return RecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id);
4420}
4421
4422// getCFConstantStringType - Return the type used for constant CFStrings.
4423QualType ASTContext::getCFConstantStringType() const {
4424  if (!CFConstantStringTypeDecl) {
4425    CFConstantStringTypeDecl =
4426      CreateRecordDecl(*this, TTK_Struct, TUDecl,
4427                       &Idents.get("NSConstantString"));
4428    CFConstantStringTypeDecl->startDefinition();
4429
4430    QualType FieldTypes[4];
4431
4432    // const int *isa;
4433    FieldTypes[0] = getPointerType(IntTy.withConst());
4434    // int flags;
4435    FieldTypes[1] = IntTy;
4436    // const char *str;
4437    FieldTypes[2] = getPointerType(CharTy.withConst());
4438    // long length;
4439    FieldTypes[3] = LongTy;
4440
4441    // Create fields
4442    for (unsigned i = 0; i < 4; ++i) {
4443      FieldDecl *Field = FieldDecl::Create(*this, CFConstantStringTypeDecl,
4444                                           SourceLocation(),
4445                                           SourceLocation(), 0,
4446                                           FieldTypes[i], /*TInfo=*/0,
4447                                           /*BitWidth=*/0,
4448                                           /*Mutable=*/false,
4449                                           ICIS_NoInit);
4450      Field->setAccess(AS_public);
4451      CFConstantStringTypeDecl->addDecl(Field);
4452    }
4453
4454    CFConstantStringTypeDecl->completeDefinition();
4455  }
4456
4457  return getTagDeclType(CFConstantStringTypeDecl);
4458}
4459
4460QualType ASTContext::getObjCSuperType() const {
4461  if (ObjCSuperType.isNull()) {
4462    RecordDecl *ObjCSuperTypeDecl  =
4463      CreateRecordDecl(*this, TTK_Struct, TUDecl, &Idents.get("objc_super"));
4464    TUDecl->addDecl(ObjCSuperTypeDecl);
4465    ObjCSuperType = getTagDeclType(ObjCSuperTypeDecl);
4466  }
4467  return ObjCSuperType;
4468}
4469
4470void ASTContext::setCFConstantStringType(QualType T) {
4471  const RecordType *Rec = T->getAs<RecordType>();
4472  assert(Rec && "Invalid CFConstantStringType");
4473  CFConstantStringTypeDecl = Rec->getDecl();
4474}
4475
4476QualType ASTContext::getBlockDescriptorType() const {
4477  if (BlockDescriptorType)
4478    return getTagDeclType(BlockDescriptorType);
4479
4480  RecordDecl *T;
4481  // FIXME: Needs the FlagAppleBlock bit.
4482  T = CreateRecordDecl(*this, TTK_Struct, TUDecl,
4483                       &Idents.get("__block_descriptor"));
4484  T->startDefinition();
4485
4486  QualType FieldTypes[] = {
4487    UnsignedLongTy,
4488    UnsignedLongTy,
4489  };
4490
4491  const char *FieldNames[] = {
4492    "reserved",
4493    "Size"
4494  };
4495
4496  for (size_t i = 0; i < 2; ++i) {
4497    FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(),
4498                                         SourceLocation(),
4499                                         &Idents.get(FieldNames[i]),
4500                                         FieldTypes[i], /*TInfo=*/0,
4501                                         /*BitWidth=*/0,
4502                                         /*Mutable=*/false,
4503                                         ICIS_NoInit);
4504    Field->setAccess(AS_public);
4505    T->addDecl(Field);
4506  }
4507
4508  T->completeDefinition();
4509
4510  BlockDescriptorType = T;
4511
4512  return getTagDeclType(BlockDescriptorType);
4513}
4514
4515QualType ASTContext::getBlockDescriptorExtendedType() const {
4516  if (BlockDescriptorExtendedType)
4517    return getTagDeclType(BlockDescriptorExtendedType);
4518
4519  RecordDecl *T;
4520  // FIXME: Needs the FlagAppleBlock bit.
4521  T = CreateRecordDecl(*this, TTK_Struct, TUDecl,
4522                       &Idents.get("__block_descriptor_withcopydispose"));
4523  T->startDefinition();
4524
4525  QualType FieldTypes[] = {
4526    UnsignedLongTy,
4527    UnsignedLongTy,
4528    getPointerType(VoidPtrTy),
4529    getPointerType(VoidPtrTy)
4530  };
4531
4532  const char *FieldNames[] = {
4533    "reserved",
4534    "Size",
4535    "CopyFuncPtr",
4536    "DestroyFuncPtr"
4537  };
4538
4539  for (size_t i = 0; i < 4; ++i) {
4540    FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(),
4541                                         SourceLocation(),
4542                                         &Idents.get(FieldNames[i]),
4543                                         FieldTypes[i], /*TInfo=*/0,
4544                                         /*BitWidth=*/0,
4545                                         /*Mutable=*/false,
4546                                         ICIS_NoInit);
4547    Field->setAccess(AS_public);
4548    T->addDecl(Field);
4549  }
4550
4551  T->completeDefinition();
4552
4553  BlockDescriptorExtendedType = T;
4554
4555  return getTagDeclType(BlockDescriptorExtendedType);
4556}
4557
4558/// BlockRequiresCopying - Returns true if byref variable "D" of type "Ty"
4559/// requires copy/dispose. Note that this must match the logic
4560/// in buildByrefHelpers.
4561bool ASTContext::BlockRequiresCopying(QualType Ty,
4562                                      const VarDecl *D) {
4563  if (const CXXRecordDecl *record = Ty->getAsCXXRecordDecl()) {
4564    const Expr *copyExpr = getBlockVarCopyInits(D);
4565    if (!copyExpr && record->hasTrivialDestructor()) return false;
4566
4567    return true;
4568  }
4569
4570  if (!Ty->isObjCRetainableType()) return false;
4571
4572  Qualifiers qs = Ty.getQualifiers();
4573
4574  // If we have lifetime, that dominates.
4575  if (Qualifiers::ObjCLifetime lifetime = qs.getObjCLifetime()) {
4576    assert(getLangOpts().ObjCAutoRefCount);
4577
4578    switch (lifetime) {
4579      case Qualifiers::OCL_None: llvm_unreachable("impossible");
4580
4581      // These are just bits as far as the runtime is concerned.
4582      case Qualifiers::OCL_ExplicitNone:
4583      case Qualifiers::OCL_Autoreleasing:
4584        return false;
4585
4586      // Tell the runtime that this is ARC __weak, called by the
4587      // byref routines.
4588      case Qualifiers::OCL_Weak:
4589      // ARC __strong __block variables need to be retained.
4590      case Qualifiers::OCL_Strong:
4591        return true;
4592    }
4593    llvm_unreachable("fell out of lifetime switch!");
4594  }
4595  return (Ty->isBlockPointerType() || isObjCNSObjectType(Ty) ||
4596          Ty->isObjCObjectPointerType());
4597}
4598
4599bool ASTContext::getByrefLifetime(QualType Ty,
4600                              Qualifiers::ObjCLifetime &LifeTime,
4601                              bool &HasByrefExtendedLayout) const {
4602
4603  if (!getLangOpts().ObjC1 ||
4604      getLangOpts().getGC() != LangOptions::NonGC)
4605    return false;
4606
4607  HasByrefExtendedLayout = false;
4608  if (Ty->isRecordType()) {
4609    HasByrefExtendedLayout = true;
4610    LifeTime = Qualifiers::OCL_None;
4611  }
4612  else if (getLangOpts().ObjCAutoRefCount)
4613    LifeTime = Ty.getObjCLifetime();
4614  // MRR.
4615  else if (Ty->isObjCObjectPointerType() || Ty->isBlockPointerType())
4616    LifeTime = Qualifiers::OCL_ExplicitNone;
4617  else
4618    LifeTime = Qualifiers::OCL_None;
4619  return true;
4620}
4621
4622TypedefDecl *ASTContext::getObjCInstanceTypeDecl() {
4623  if (!ObjCInstanceTypeDecl)
4624    ObjCInstanceTypeDecl = TypedefDecl::Create(*this,
4625                                               getTranslationUnitDecl(),
4626                                               SourceLocation(),
4627                                               SourceLocation(),
4628                                               &Idents.get("instancetype"),
4629                                     getTrivialTypeSourceInfo(getObjCIdType()));
4630  return ObjCInstanceTypeDecl;
4631}
4632
4633// This returns true if a type has been typedefed to BOOL:
4634// typedef <type> BOOL;
4635static bool isTypeTypedefedAsBOOL(QualType T) {
4636  if (const TypedefType *TT = dyn_cast<TypedefType>(T))
4637    if (IdentifierInfo *II = TT->getDecl()->getIdentifier())
4638      return II->isStr("BOOL");
4639
4640  return false;
4641}
4642
4643/// getObjCEncodingTypeSize returns size of type for objective-c encoding
4644/// purpose.
4645CharUnits ASTContext::getObjCEncodingTypeSize(QualType type) const {
4646  if (!type->isIncompleteArrayType() && type->isIncompleteType())
4647    return CharUnits::Zero();
4648
4649  CharUnits sz = getTypeSizeInChars(type);
4650
4651  // Make all integer and enum types at least as large as an int
4652  if (sz.isPositive() && type->isIntegralOrEnumerationType())
4653    sz = std::max(sz, getTypeSizeInChars(IntTy));
4654  // Treat arrays as pointers, since that's how they're passed in.
4655  else if (type->isArrayType())
4656    sz = getTypeSizeInChars(VoidPtrTy);
4657  return sz;
4658}
4659
4660static inline
4661std::string charUnitsToString(const CharUnits &CU) {
4662  return llvm::itostr(CU.getQuantity());
4663}
4664
4665/// getObjCEncodingForBlock - Return the encoded type for this block
4666/// declaration.
4667std::string ASTContext::getObjCEncodingForBlock(const BlockExpr *Expr) const {
4668  std::string S;
4669
4670  const BlockDecl *Decl = Expr->getBlockDecl();
4671  QualType BlockTy =
4672      Expr->getType()->getAs<BlockPointerType>()->getPointeeType();
4673  // Encode result type.
4674  if (getLangOpts().EncodeExtendedBlockSig)
4675    getObjCEncodingForMethodParameter(Decl::OBJC_TQ_None,
4676                            BlockTy->getAs<FunctionType>()->getResultType(),
4677                            S, true /*Extended*/);
4678  else
4679    getObjCEncodingForType(BlockTy->getAs<FunctionType>()->getResultType(),
4680                           S);
4681  // Compute size of all parameters.
4682  // Start with computing size of a pointer in number of bytes.
4683  // FIXME: There might(should) be a better way of doing this computation!
4684  SourceLocation Loc;
4685  CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy);
4686  CharUnits ParmOffset = PtrSize;
4687  for (BlockDecl::param_const_iterator PI = Decl->param_begin(),
4688       E = Decl->param_end(); PI != E; ++PI) {
4689    QualType PType = (*PI)->getType();
4690    CharUnits sz = getObjCEncodingTypeSize(PType);
4691    if (sz.isZero())
4692      continue;
4693    assert (sz.isPositive() && "BlockExpr - Incomplete param type");
4694    ParmOffset += sz;
4695  }
4696  // Size of the argument frame
4697  S += charUnitsToString(ParmOffset);
4698  // Block pointer and offset.
4699  S += "@?0";
4700
4701  // Argument types.
4702  ParmOffset = PtrSize;
4703  for (BlockDecl::param_const_iterator PI = Decl->param_begin(), E =
4704       Decl->param_end(); PI != E; ++PI) {
4705    ParmVarDecl *PVDecl = *PI;
4706    QualType PType = PVDecl->getOriginalType();
4707    if (const ArrayType *AT =
4708          dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
4709      // Use array's original type only if it has known number of
4710      // elements.
4711      if (!isa<ConstantArrayType>(AT))
4712        PType = PVDecl->getType();
4713    } else if (PType->isFunctionType())
4714      PType = PVDecl->getType();
4715    if (getLangOpts().EncodeExtendedBlockSig)
4716      getObjCEncodingForMethodParameter(Decl::OBJC_TQ_None, PType,
4717                                      S, true /*Extended*/);
4718    else
4719      getObjCEncodingForType(PType, S);
4720    S += charUnitsToString(ParmOffset);
4721    ParmOffset += getObjCEncodingTypeSize(PType);
4722  }
4723
4724  return S;
4725}
4726
4727bool ASTContext::getObjCEncodingForFunctionDecl(const FunctionDecl *Decl,
4728                                                std::string& S) {
4729  // Encode result type.
4730  getObjCEncodingForType(Decl->getResultType(), S);
4731  CharUnits ParmOffset;
4732  // Compute size of all parameters.
4733  for (FunctionDecl::param_const_iterator PI = Decl->param_begin(),
4734       E = Decl->param_end(); PI != E; ++PI) {
4735    QualType PType = (*PI)->getType();
4736    CharUnits sz = getObjCEncodingTypeSize(PType);
4737    if (sz.isZero())
4738      continue;
4739
4740    assert (sz.isPositive() &&
4741        "getObjCEncodingForFunctionDecl - Incomplete param type");
4742    ParmOffset += sz;
4743  }
4744  S += charUnitsToString(ParmOffset);
4745  ParmOffset = CharUnits::Zero();
4746
4747  // Argument types.
4748  for (FunctionDecl::param_const_iterator PI = Decl->param_begin(),
4749       E = Decl->param_end(); PI != E; ++PI) {
4750    ParmVarDecl *PVDecl = *PI;
4751    QualType PType = PVDecl->getOriginalType();
4752    if (const ArrayType *AT =
4753          dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
4754      // Use array's original type only if it has known number of
4755      // elements.
4756      if (!isa<ConstantArrayType>(AT))
4757        PType = PVDecl->getType();
4758    } else if (PType->isFunctionType())
4759      PType = PVDecl->getType();
4760    getObjCEncodingForType(PType, S);
4761    S += charUnitsToString(ParmOffset);
4762    ParmOffset += getObjCEncodingTypeSize(PType);
4763  }
4764
4765  return false;
4766}
4767
4768/// getObjCEncodingForMethodParameter - Return the encoded type for a single
4769/// method parameter or return type. If Extended, include class names and
4770/// block object types.
4771void ASTContext::getObjCEncodingForMethodParameter(Decl::ObjCDeclQualifier QT,
4772                                                   QualType T, std::string& S,
4773                                                   bool Extended) const {
4774  // Encode type qualifer, 'in', 'inout', etc. for the parameter.
4775  getObjCEncodingForTypeQualifier(QT, S);
4776  // Encode parameter type.
4777  getObjCEncodingForTypeImpl(T, S, true, true, 0,
4778                             true     /*OutermostType*/,
4779                             false    /*EncodingProperty*/,
4780                             false    /*StructField*/,
4781                             Extended /*EncodeBlockParameters*/,
4782                             Extended /*EncodeClassNames*/);
4783}
4784
4785/// getObjCEncodingForMethodDecl - Return the encoded type for this method
4786/// declaration.
4787bool ASTContext::getObjCEncodingForMethodDecl(const ObjCMethodDecl *Decl,
4788                                              std::string& S,
4789                                              bool Extended) const {
4790  // FIXME: This is not very efficient.
4791  // Encode return type.
4792  getObjCEncodingForMethodParameter(Decl->getObjCDeclQualifier(),
4793                                    Decl->getResultType(), S, Extended);
4794  // Compute size of all parameters.
4795  // Start with computing size of a pointer in number of bytes.
4796  // FIXME: There might(should) be a better way of doing this computation!
4797  SourceLocation Loc;
4798  CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy);
4799  // The first two arguments (self and _cmd) are pointers; account for
4800  // their size.
4801  CharUnits ParmOffset = 2 * PtrSize;
4802  for (ObjCMethodDecl::param_const_iterator PI = Decl->param_begin(),
4803       E = Decl->sel_param_end(); PI != E; ++PI) {
4804    QualType PType = (*PI)->getType();
4805    CharUnits sz = getObjCEncodingTypeSize(PType);
4806    if (sz.isZero())
4807      continue;
4808
4809    assert (sz.isPositive() &&
4810        "getObjCEncodingForMethodDecl - Incomplete param type");
4811    ParmOffset += sz;
4812  }
4813  S += charUnitsToString(ParmOffset);
4814  S += "@0:";
4815  S += charUnitsToString(PtrSize);
4816
4817  // Argument types.
4818  ParmOffset = 2 * PtrSize;
4819  for (ObjCMethodDecl::param_const_iterator PI = Decl->param_begin(),
4820       E = Decl->sel_param_end(); PI != E; ++PI) {
4821    const ParmVarDecl *PVDecl = *PI;
4822    QualType PType = PVDecl->getOriginalType();
4823    if (const ArrayType *AT =
4824          dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
4825      // Use array's original type only if it has known number of
4826      // elements.
4827      if (!isa<ConstantArrayType>(AT))
4828        PType = PVDecl->getType();
4829    } else if (PType->isFunctionType())
4830      PType = PVDecl->getType();
4831    getObjCEncodingForMethodParameter(PVDecl->getObjCDeclQualifier(),
4832                                      PType, S, Extended);
4833    S += charUnitsToString(ParmOffset);
4834    ParmOffset += getObjCEncodingTypeSize(PType);
4835  }
4836
4837  return false;
4838}
4839
4840/// getObjCEncodingForPropertyDecl - Return the encoded type for this
4841/// property declaration. If non-NULL, Container must be either an
4842/// ObjCCategoryImplDecl or ObjCImplementationDecl; it should only be
4843/// NULL when getting encodings for protocol properties.
4844/// Property attributes are stored as a comma-delimited C string. The simple
4845/// attributes readonly and bycopy are encoded as single characters. The
4846/// parametrized attributes, getter=name, setter=name, and ivar=name, are
4847/// encoded as single characters, followed by an identifier. Property types
4848/// are also encoded as a parametrized attribute. The characters used to encode
4849/// these attributes are defined by the following enumeration:
4850/// @code
4851/// enum PropertyAttributes {
4852/// kPropertyReadOnly = 'R',   // property is read-only.
4853/// kPropertyBycopy = 'C',     // property is a copy of the value last assigned
4854/// kPropertyByref = '&',  // property is a reference to the value last assigned
4855/// kPropertyDynamic = 'D',    // property is dynamic
4856/// kPropertyGetter = 'G',     // followed by getter selector name
4857/// kPropertySetter = 'S',     // followed by setter selector name
4858/// kPropertyInstanceVariable = 'V'  // followed by instance variable  name
4859/// kPropertyType = 'T'              // followed by old-style type encoding.
4860/// kPropertyWeak = 'W'              // 'weak' property
4861/// kPropertyStrong = 'P'            // property GC'able
4862/// kPropertyNonAtomic = 'N'         // property non-atomic
4863/// };
4864/// @endcode
4865void ASTContext::getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD,
4866                                                const Decl *Container,
4867                                                std::string& S) const {
4868  // Collect information from the property implementation decl(s).
4869  bool Dynamic = false;
4870  ObjCPropertyImplDecl *SynthesizePID = 0;
4871
4872  // FIXME: Duplicated code due to poor abstraction.
4873  if (Container) {
4874    if (const ObjCCategoryImplDecl *CID =
4875        dyn_cast<ObjCCategoryImplDecl>(Container)) {
4876      for (ObjCCategoryImplDecl::propimpl_iterator
4877             i = CID->propimpl_begin(), e = CID->propimpl_end();
4878           i != e; ++i) {
4879        ObjCPropertyImplDecl *PID = *i;
4880        if (PID->getPropertyDecl() == PD) {
4881          if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) {
4882            Dynamic = true;
4883          } else {
4884            SynthesizePID = PID;
4885          }
4886        }
4887      }
4888    } else {
4889      const ObjCImplementationDecl *OID=cast<ObjCImplementationDecl>(Container);
4890      for (ObjCCategoryImplDecl::propimpl_iterator
4891             i = OID->propimpl_begin(), e = OID->propimpl_end();
4892           i != e; ++i) {
4893        ObjCPropertyImplDecl *PID = *i;
4894        if (PID->getPropertyDecl() == PD) {
4895          if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) {
4896            Dynamic = true;
4897          } else {
4898            SynthesizePID = PID;
4899          }
4900        }
4901      }
4902    }
4903  }
4904
4905  // FIXME: This is not very efficient.
4906  S = "T";
4907
4908  // Encode result type.
4909  // GCC has some special rules regarding encoding of properties which
4910  // closely resembles encoding of ivars.
4911  getObjCEncodingForTypeImpl(PD->getType(), S, true, true, 0,
4912                             true /* outermost type */,
4913                             true /* encoding for property */);
4914
4915  if (PD->isReadOnly()) {
4916    S += ",R";
4917    if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_copy)
4918      S += ",C";
4919    if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_retain)
4920      S += ",&";
4921  } else {
4922    switch (PD->getSetterKind()) {
4923    case ObjCPropertyDecl::Assign: break;
4924    case ObjCPropertyDecl::Copy:   S += ",C"; break;
4925    case ObjCPropertyDecl::Retain: S += ",&"; break;
4926    case ObjCPropertyDecl::Weak:   S += ",W"; break;
4927    }
4928  }
4929
4930  // It really isn't clear at all what this means, since properties
4931  // are "dynamic by default".
4932  if (Dynamic)
4933    S += ",D";
4934
4935  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_nonatomic)
4936    S += ",N";
4937
4938  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_getter) {
4939    S += ",G";
4940    S += PD->getGetterName().getAsString();
4941  }
4942
4943  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_setter) {
4944    S += ",S";
4945    S += PD->getSetterName().getAsString();
4946  }
4947
4948  if (SynthesizePID) {
4949    const ObjCIvarDecl *OID = SynthesizePID->getPropertyIvarDecl();
4950    S += ",V";
4951    S += OID->getNameAsString();
4952  }
4953
4954  // FIXME: OBJCGC: weak & strong
4955}
4956
4957/// getLegacyIntegralTypeEncoding -
4958/// Another legacy compatibility encoding: 32-bit longs are encoded as
4959/// 'l' or 'L' , but not always.  For typedefs, we need to use
4960/// 'i' or 'I' instead if encoding a struct field, or a pointer!
4961///
4962void ASTContext::getLegacyIntegralTypeEncoding (QualType &PointeeTy) const {
4963  if (isa<TypedefType>(PointeeTy.getTypePtr())) {
4964    if (const BuiltinType *BT = PointeeTy->getAs<BuiltinType>()) {
4965      if (BT->getKind() == BuiltinType::ULong && getIntWidth(PointeeTy) == 32)
4966        PointeeTy = UnsignedIntTy;
4967      else
4968        if (BT->getKind() == BuiltinType::Long && getIntWidth(PointeeTy) == 32)
4969          PointeeTy = IntTy;
4970    }
4971  }
4972}
4973
4974void ASTContext::getObjCEncodingForType(QualType T, std::string& S,
4975                                        const FieldDecl *Field) const {
4976  // We follow the behavior of gcc, expanding structures which are
4977  // directly pointed to, and expanding embedded structures. Note that
4978  // these rules are sufficient to prevent recursive encoding of the
4979  // same type.
4980  getObjCEncodingForTypeImpl(T, S, true, true, Field,
4981                             true /* outermost type */);
4982}
4983
4984static char getObjCEncodingForPrimitiveKind(const ASTContext *C,
4985                                            BuiltinType::Kind kind) {
4986    switch (kind) {
4987    case BuiltinType::Void:       return 'v';
4988    case BuiltinType::Bool:       return 'B';
4989    case BuiltinType::Char_U:
4990    case BuiltinType::UChar:      return 'C';
4991    case BuiltinType::Char16:
4992    case BuiltinType::UShort:     return 'S';
4993    case BuiltinType::Char32:
4994    case BuiltinType::UInt:       return 'I';
4995    case BuiltinType::ULong:
4996        return C->getTargetInfo().getLongWidth() == 32 ? 'L' : 'Q';
4997    case BuiltinType::UInt128:    return 'T';
4998    case BuiltinType::ULongLong:  return 'Q';
4999    case BuiltinType::Char_S:
5000    case BuiltinType::SChar:      return 'c';
5001    case BuiltinType::Short:      return 's';
5002    case BuiltinType::WChar_S:
5003    case BuiltinType::WChar_U:
5004    case BuiltinType::Int:        return 'i';
5005    case BuiltinType::Long:
5006      return C->getTargetInfo().getLongWidth() == 32 ? 'l' : 'q';
5007    case BuiltinType::LongLong:   return 'q';
5008    case BuiltinType::Int128:     return 't';
5009    case BuiltinType::Float:      return 'f';
5010    case BuiltinType::Double:     return 'd';
5011    case BuiltinType::LongDouble: return 'D';
5012    case BuiltinType::NullPtr:    return '*'; // like char*
5013
5014    case BuiltinType::Half:
5015      // FIXME: potentially need @encodes for these!
5016      return ' ';
5017
5018    case BuiltinType::ObjCId:
5019    case BuiltinType::ObjCClass:
5020    case BuiltinType::ObjCSel:
5021      llvm_unreachable("@encoding ObjC primitive type");
5022
5023    // OpenCL and placeholder types don't need @encodings.
5024    case BuiltinType::OCLImage1d:
5025    case BuiltinType::OCLImage1dArray:
5026    case BuiltinType::OCLImage1dBuffer:
5027    case BuiltinType::OCLImage2d:
5028    case BuiltinType::OCLImage2dArray:
5029    case BuiltinType::OCLImage3d:
5030    case BuiltinType::OCLEvent:
5031    case BuiltinType::OCLSampler:
5032    case BuiltinType::Dependent:
5033#define BUILTIN_TYPE(KIND, ID)
5034#define PLACEHOLDER_TYPE(KIND, ID) \
5035    case BuiltinType::KIND:
5036#include "clang/AST/BuiltinTypes.def"
5037      llvm_unreachable("invalid builtin type for @encode");
5038    }
5039    llvm_unreachable("invalid BuiltinType::Kind value");
5040}
5041
5042static char ObjCEncodingForEnumType(const ASTContext *C, const EnumType *ET) {
5043  EnumDecl *Enum = ET->getDecl();
5044
5045  // The encoding of an non-fixed enum type is always 'i', regardless of size.
5046  if (!Enum->isFixed())
5047    return 'i';
5048
5049  // The encoding of a fixed enum type matches its fixed underlying type.
5050  const BuiltinType *BT = Enum->getIntegerType()->castAs<BuiltinType>();
5051  return getObjCEncodingForPrimitiveKind(C, BT->getKind());
5052}
5053
5054static void EncodeBitField(const ASTContext *Ctx, std::string& S,
5055                           QualType T, const FieldDecl *FD) {
5056  assert(FD->isBitField() && "not a bitfield - getObjCEncodingForTypeImpl");
5057  S += 'b';
5058  // The NeXT runtime encodes bit fields as b followed by the number of bits.
5059  // The GNU runtime requires more information; bitfields are encoded as b,
5060  // then the offset (in bits) of the first element, then the type of the
5061  // bitfield, then the size in bits.  For example, in this structure:
5062  //
5063  // struct
5064  // {
5065  //    int integer;
5066  //    int flags:2;
5067  // };
5068  // On a 32-bit system, the encoding for flags would be b2 for the NeXT
5069  // runtime, but b32i2 for the GNU runtime.  The reason for this extra
5070  // information is not especially sensible, but we're stuck with it for
5071  // compatibility with GCC, although providing it breaks anything that
5072  // actually uses runtime introspection and wants to work on both runtimes...
5073  if (Ctx->getLangOpts().ObjCRuntime.isGNUFamily()) {
5074    const RecordDecl *RD = FD->getParent();
5075    const ASTRecordLayout &RL = Ctx->getASTRecordLayout(RD);
5076    S += llvm::utostr(RL.getFieldOffset(FD->getFieldIndex()));
5077    if (const EnumType *ET = T->getAs<EnumType>())
5078      S += ObjCEncodingForEnumType(Ctx, ET);
5079    else {
5080      const BuiltinType *BT = T->castAs<BuiltinType>();
5081      S += getObjCEncodingForPrimitiveKind(Ctx, BT->getKind());
5082    }
5083  }
5084  S += llvm::utostr(FD->getBitWidthValue(*Ctx));
5085}
5086
5087// FIXME: Use SmallString for accumulating string.
5088void ASTContext::getObjCEncodingForTypeImpl(QualType T, std::string& S,
5089                                            bool ExpandPointedToStructures,
5090                                            bool ExpandStructures,
5091                                            const FieldDecl *FD,
5092                                            bool OutermostType,
5093                                            bool EncodingProperty,
5094                                            bool StructField,
5095                                            bool EncodeBlockParameters,
5096                                            bool EncodeClassNames,
5097                                            bool EncodePointerToObjCTypedef) const {
5098  CanQualType CT = getCanonicalType(T);
5099  switch (CT->getTypeClass()) {
5100  case Type::Builtin:
5101  case Type::Enum:
5102    if (FD && FD->isBitField())
5103      return EncodeBitField(this, S, T, FD);
5104    if (const BuiltinType *BT = dyn_cast<BuiltinType>(CT))
5105      S += getObjCEncodingForPrimitiveKind(this, BT->getKind());
5106    else
5107      S += ObjCEncodingForEnumType(this, cast<EnumType>(CT));
5108    return;
5109
5110  case Type::Complex: {
5111    const ComplexType *CT = T->castAs<ComplexType>();
5112    S += 'j';
5113    getObjCEncodingForTypeImpl(CT->getElementType(), S, false, false, 0, false,
5114                               false);
5115    return;
5116  }
5117
5118  case Type::Atomic: {
5119    const AtomicType *AT = T->castAs<AtomicType>();
5120    S += 'A';
5121    getObjCEncodingForTypeImpl(AT->getValueType(), S, false, false, 0,
5122                               false, false);
5123    return;
5124  }
5125
5126  // encoding for pointer or reference types.
5127  case Type::Pointer:
5128  case Type::LValueReference:
5129  case Type::RValueReference: {
5130    QualType PointeeTy;
5131    if (isa<PointerType>(CT)) {
5132      const PointerType *PT = T->castAs<PointerType>();
5133      if (PT->isObjCSelType()) {
5134        S += ':';
5135        return;
5136      }
5137      PointeeTy = PT->getPointeeType();
5138    } else {
5139      PointeeTy = T->castAs<ReferenceType>()->getPointeeType();
5140    }
5141
5142    bool isReadOnly = false;
5143    // For historical/compatibility reasons, the read-only qualifier of the
5144    // pointee gets emitted _before_ the '^'.  The read-only qualifier of
5145    // the pointer itself gets ignored, _unless_ we are looking at a typedef!
5146    // Also, do not emit the 'r' for anything but the outermost type!
5147    if (isa<TypedefType>(T.getTypePtr())) {
5148      if (OutermostType && T.isConstQualified()) {
5149        isReadOnly = true;
5150        S += 'r';
5151      }
5152    } else if (OutermostType) {
5153      QualType P = PointeeTy;
5154      while (P->getAs<PointerType>())
5155        P = P->getAs<PointerType>()->getPointeeType();
5156      if (P.isConstQualified()) {
5157        isReadOnly = true;
5158        S += 'r';
5159      }
5160    }
5161    if (isReadOnly) {
5162      // Another legacy compatibility encoding. Some ObjC qualifier and type
5163      // combinations need to be rearranged.
5164      // Rewrite "in const" from "nr" to "rn"
5165      if (StringRef(S).endswith("nr"))
5166        S.replace(S.end()-2, S.end(), "rn");
5167    }
5168
5169    if (PointeeTy->isCharType()) {
5170      // char pointer types should be encoded as '*' unless it is a
5171      // type that has been typedef'd to 'BOOL'.
5172      if (!isTypeTypedefedAsBOOL(PointeeTy)) {
5173        S += '*';
5174        return;
5175      }
5176    } else if (const RecordType *RTy = PointeeTy->getAs<RecordType>()) {
5177      // GCC binary compat: Need to convert "struct objc_class *" to "#".
5178      if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_class")) {
5179        S += '#';
5180        return;
5181      }
5182      // GCC binary compat: Need to convert "struct objc_object *" to "@".
5183      if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_object")) {
5184        S += '@';
5185        return;
5186      }
5187      // fall through...
5188    }
5189    S += '^';
5190    getLegacyIntegralTypeEncoding(PointeeTy);
5191
5192    getObjCEncodingForTypeImpl(PointeeTy, S, false, ExpandPointedToStructures,
5193                               NULL);
5194    return;
5195  }
5196
5197  case Type::ConstantArray:
5198  case Type::IncompleteArray:
5199  case Type::VariableArray: {
5200    const ArrayType *AT = cast<ArrayType>(CT);
5201
5202    if (isa<IncompleteArrayType>(AT) && !StructField) {
5203      // Incomplete arrays are encoded as a pointer to the array element.
5204      S += '^';
5205
5206      getObjCEncodingForTypeImpl(AT->getElementType(), S,
5207                                 false, ExpandStructures, FD);
5208    } else {
5209      S += '[';
5210
5211      if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) {
5212        if (getTypeSize(CAT->getElementType()) == 0)
5213          S += '0';
5214        else
5215          S += llvm::utostr(CAT->getSize().getZExtValue());
5216      } else {
5217        //Variable length arrays are encoded as a regular array with 0 elements.
5218        assert((isa<VariableArrayType>(AT) || isa<IncompleteArrayType>(AT)) &&
5219               "Unknown array type!");
5220        S += '0';
5221      }
5222
5223      getObjCEncodingForTypeImpl(AT->getElementType(), S,
5224                                 false, ExpandStructures, FD);
5225      S += ']';
5226    }
5227    return;
5228  }
5229
5230  case Type::FunctionNoProto:
5231  case Type::FunctionProto:
5232    S += '?';
5233    return;
5234
5235  case Type::Record: {
5236    RecordDecl *RDecl = cast<RecordType>(CT)->getDecl();
5237    S += RDecl->isUnion() ? '(' : '{';
5238    // Anonymous structures print as '?'
5239    if (const IdentifierInfo *II = RDecl->getIdentifier()) {
5240      S += II->getName();
5241      if (ClassTemplateSpecializationDecl *Spec
5242          = dyn_cast<ClassTemplateSpecializationDecl>(RDecl)) {
5243        const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
5244        llvm::raw_string_ostream OS(S);
5245        TemplateSpecializationType::PrintTemplateArgumentList(OS,
5246                                            TemplateArgs.data(),
5247                                            TemplateArgs.size(),
5248                                            (*this).getPrintingPolicy());
5249      }
5250    } else {
5251      S += '?';
5252    }
5253    if (ExpandStructures) {
5254      S += '=';
5255      if (!RDecl->isUnion()) {
5256        getObjCEncodingForStructureImpl(RDecl, S, FD);
5257      } else {
5258        for (RecordDecl::field_iterator Field = RDecl->field_begin(),
5259                                     FieldEnd = RDecl->field_end();
5260             Field != FieldEnd; ++Field) {
5261          if (FD) {
5262            S += '"';
5263            S += Field->getNameAsString();
5264            S += '"';
5265          }
5266
5267          // Special case bit-fields.
5268          if (Field->isBitField()) {
5269            getObjCEncodingForTypeImpl(Field->getType(), S, false, true,
5270                                       *Field);
5271          } else {
5272            QualType qt = Field->getType();
5273            getLegacyIntegralTypeEncoding(qt);
5274            getObjCEncodingForTypeImpl(qt, S, false, true,
5275                                       FD, /*OutermostType*/false,
5276                                       /*EncodingProperty*/false,
5277                                       /*StructField*/true);
5278          }
5279        }
5280      }
5281    }
5282    S += RDecl->isUnion() ? ')' : '}';
5283    return;
5284  }
5285
5286  case Type::BlockPointer: {
5287    const BlockPointerType *BT = T->castAs<BlockPointerType>();
5288    S += "@?"; // Unlike a pointer-to-function, which is "^?".
5289    if (EncodeBlockParameters) {
5290      const FunctionType *FT = BT->getPointeeType()->castAs<FunctionType>();
5291
5292      S += '<';
5293      // Block return type
5294      getObjCEncodingForTypeImpl(FT->getResultType(), S,
5295                                 ExpandPointedToStructures, ExpandStructures,
5296                                 FD,
5297                                 false /* OutermostType */,
5298                                 EncodingProperty,
5299                                 false /* StructField */,
5300                                 EncodeBlockParameters,
5301                                 EncodeClassNames);
5302      // Block self
5303      S += "@?";
5304      // Block parameters
5305      if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(FT)) {
5306        for (FunctionProtoType::arg_type_iterator I = FPT->arg_type_begin(),
5307               E = FPT->arg_type_end(); I && (I != E); ++I) {
5308          getObjCEncodingForTypeImpl(*I, S,
5309                                     ExpandPointedToStructures,
5310                                     ExpandStructures,
5311                                     FD,
5312                                     false /* OutermostType */,
5313                                     EncodingProperty,
5314                                     false /* StructField */,
5315                                     EncodeBlockParameters,
5316                                     EncodeClassNames);
5317        }
5318      }
5319      S += '>';
5320    }
5321    return;
5322  }
5323
5324  case Type::ObjCObject:
5325  case Type::ObjCInterface: {
5326    // Ignore protocol qualifiers when mangling at this level.
5327    T = T->castAs<ObjCObjectType>()->getBaseType();
5328
5329    // The assumption seems to be that this assert will succeed
5330    // because nested levels will have filtered out 'id' and 'Class'.
5331    const ObjCInterfaceType *OIT = T->castAs<ObjCInterfaceType>();
5332    // @encode(class_name)
5333    ObjCInterfaceDecl *OI = OIT->getDecl();
5334    S += '{';
5335    const IdentifierInfo *II = OI->getIdentifier();
5336    S += II->getName();
5337    S += '=';
5338    SmallVector<const ObjCIvarDecl*, 32> Ivars;
5339    DeepCollectObjCIvars(OI, true, Ivars);
5340    for (unsigned i = 0, e = Ivars.size(); i != e; ++i) {
5341      const FieldDecl *Field = cast<FieldDecl>(Ivars[i]);
5342      if (Field->isBitField())
5343        getObjCEncodingForTypeImpl(Field->getType(), S, false, true, Field);
5344      else
5345        getObjCEncodingForTypeImpl(Field->getType(), S, false, true, FD,
5346                                   false, false, false, false, false,
5347                                   EncodePointerToObjCTypedef);
5348    }
5349    S += '}';
5350    return;
5351  }
5352
5353  case Type::ObjCObjectPointer: {
5354    const ObjCObjectPointerType *OPT = T->castAs<ObjCObjectPointerType>();
5355    if (OPT->isObjCIdType()) {
5356      S += '@';
5357      return;
5358    }
5359
5360    if (OPT->isObjCClassType() || OPT->isObjCQualifiedClassType()) {
5361      // FIXME: Consider if we need to output qualifiers for 'Class<p>'.
5362      // Since this is a binary compatibility issue, need to consult with runtime
5363      // folks. Fortunately, this is a *very* obsure construct.
5364      S += '#';
5365      return;
5366    }
5367
5368    if (OPT->isObjCQualifiedIdType()) {
5369      getObjCEncodingForTypeImpl(getObjCIdType(), S,
5370                                 ExpandPointedToStructures,
5371                                 ExpandStructures, FD);
5372      if (FD || EncodingProperty || EncodeClassNames) {
5373        // Note that we do extended encoding of protocol qualifer list
5374        // Only when doing ivar or property encoding.
5375        S += '"';
5376        for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(),
5377             E = OPT->qual_end(); I != E; ++I) {
5378          S += '<';
5379          S += (*I)->getNameAsString();
5380          S += '>';
5381        }
5382        S += '"';
5383      }
5384      return;
5385    }
5386
5387    QualType PointeeTy = OPT->getPointeeType();
5388    if (!EncodingProperty &&
5389        isa<TypedefType>(PointeeTy.getTypePtr()) &&
5390        !EncodePointerToObjCTypedef) {
5391      // Another historical/compatibility reason.
5392      // We encode the underlying type which comes out as
5393      // {...};
5394      S += '^';
5395      getObjCEncodingForTypeImpl(PointeeTy, S,
5396                                 false, ExpandPointedToStructures,
5397                                 NULL,
5398                                 false, false, false, false, false,
5399                                 /*EncodePointerToObjCTypedef*/true);
5400      return;
5401    }
5402
5403    S += '@';
5404    if (OPT->getInterfaceDecl() &&
5405        (FD || EncodingProperty || EncodeClassNames)) {
5406      S += '"';
5407      S += OPT->getInterfaceDecl()->getIdentifier()->getName();
5408      for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(),
5409           E = OPT->qual_end(); I != E; ++I) {
5410        S += '<';
5411        S += (*I)->getNameAsString();
5412        S += '>';
5413      }
5414      S += '"';
5415    }
5416    return;
5417  }
5418
5419  // gcc just blithely ignores member pointers.
5420  // FIXME: we shoul do better than that.  'M' is available.
5421  case Type::MemberPointer:
5422    return;
5423
5424  case Type::Vector:
5425  case Type::ExtVector:
5426    // This matches gcc's encoding, even though technically it is
5427    // insufficient.
5428    // FIXME. We should do a better job than gcc.
5429    return;
5430
5431  case Type::Auto:
5432    // We could see an undeduced auto type here during error recovery.
5433    // Just ignore it.
5434    return;
5435
5436#define ABSTRACT_TYPE(KIND, BASE)
5437#define TYPE(KIND, BASE)
5438#define DEPENDENT_TYPE(KIND, BASE) \
5439  case Type::KIND:
5440#define NON_CANONICAL_TYPE(KIND, BASE) \
5441  case Type::KIND:
5442#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(KIND, BASE) \
5443  case Type::KIND:
5444#include "clang/AST/TypeNodes.def"
5445    llvm_unreachable("@encode for dependent type!");
5446  }
5447  llvm_unreachable("bad type kind!");
5448}
5449
5450void ASTContext::getObjCEncodingForStructureImpl(RecordDecl *RDecl,
5451                                                 std::string &S,
5452                                                 const FieldDecl *FD,
5453                                                 bool includeVBases) const {
5454  assert(RDecl && "Expected non-null RecordDecl");
5455  assert(!RDecl->isUnion() && "Should not be called for unions");
5456  if (!RDecl->getDefinition())
5457    return;
5458
5459  CXXRecordDecl *CXXRec = dyn_cast<CXXRecordDecl>(RDecl);
5460  std::multimap<uint64_t, NamedDecl *> FieldOrBaseOffsets;
5461  const ASTRecordLayout &layout = getASTRecordLayout(RDecl);
5462
5463  if (CXXRec) {
5464    for (CXXRecordDecl::base_class_iterator
5465           BI = CXXRec->bases_begin(),
5466           BE = CXXRec->bases_end(); BI != BE; ++BI) {
5467      if (!BI->isVirtual()) {
5468        CXXRecordDecl *base = BI->getType()->getAsCXXRecordDecl();
5469        if (base->isEmpty())
5470          continue;
5471        uint64_t offs = toBits(layout.getBaseClassOffset(base));
5472        FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
5473                                  std::make_pair(offs, base));
5474      }
5475    }
5476  }
5477
5478  unsigned i = 0;
5479  for (RecordDecl::field_iterator Field = RDecl->field_begin(),
5480                               FieldEnd = RDecl->field_end();
5481       Field != FieldEnd; ++Field, ++i) {
5482    uint64_t offs = layout.getFieldOffset(i);
5483    FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
5484                              std::make_pair(offs, *Field));
5485  }
5486
5487  if (CXXRec && includeVBases) {
5488    for (CXXRecordDecl::base_class_iterator
5489           BI = CXXRec->vbases_begin(),
5490           BE = CXXRec->vbases_end(); BI != BE; ++BI) {
5491      CXXRecordDecl *base = BI->getType()->getAsCXXRecordDecl();
5492      if (base->isEmpty())
5493        continue;
5494      uint64_t offs = toBits(layout.getVBaseClassOffset(base));
5495      if (FieldOrBaseOffsets.find(offs) == FieldOrBaseOffsets.end())
5496        FieldOrBaseOffsets.insert(FieldOrBaseOffsets.end(),
5497                                  std::make_pair(offs, base));
5498    }
5499  }
5500
5501  CharUnits size;
5502  if (CXXRec) {
5503    size = includeVBases ? layout.getSize() : layout.getNonVirtualSize();
5504  } else {
5505    size = layout.getSize();
5506  }
5507
5508  uint64_t CurOffs = 0;
5509  std::multimap<uint64_t, NamedDecl *>::iterator
5510    CurLayObj = FieldOrBaseOffsets.begin();
5511
5512  if (CXXRec && CXXRec->isDynamicClass() &&
5513      (CurLayObj == FieldOrBaseOffsets.end() || CurLayObj->first != 0)) {
5514    if (FD) {
5515      S += "\"_vptr$";
5516      std::string recname = CXXRec->getNameAsString();
5517      if (recname.empty()) recname = "?";
5518      S += recname;
5519      S += '"';
5520    }
5521    S += "^^?";
5522    CurOffs += getTypeSize(VoidPtrTy);
5523  }
5524
5525  if (!RDecl->hasFlexibleArrayMember()) {
5526    // Mark the end of the structure.
5527    uint64_t offs = toBits(size);
5528    FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
5529                              std::make_pair(offs, (NamedDecl*)0));
5530  }
5531
5532  for (; CurLayObj != FieldOrBaseOffsets.end(); ++CurLayObj) {
5533    assert(CurOffs <= CurLayObj->first);
5534
5535    if (CurOffs < CurLayObj->first) {
5536      uint64_t padding = CurLayObj->first - CurOffs;
5537      // FIXME: There doesn't seem to be a way to indicate in the encoding that
5538      // packing/alignment of members is different that normal, in which case
5539      // the encoding will be out-of-sync with the real layout.
5540      // If the runtime switches to just consider the size of types without
5541      // taking into account alignment, we could make padding explicit in the
5542      // encoding (e.g. using arrays of chars). The encoding strings would be
5543      // longer then though.
5544      CurOffs += padding;
5545    }
5546
5547    NamedDecl *dcl = CurLayObj->second;
5548    if (dcl == 0)
5549      break; // reached end of structure.
5550
5551    if (CXXRecordDecl *base = dyn_cast<CXXRecordDecl>(dcl)) {
5552      // We expand the bases without their virtual bases since those are going
5553      // in the initial structure. Note that this differs from gcc which
5554      // expands virtual bases each time one is encountered in the hierarchy,
5555      // making the encoding type bigger than it really is.
5556      getObjCEncodingForStructureImpl(base, S, FD, /*includeVBases*/false);
5557      assert(!base->isEmpty());
5558      CurOffs += toBits(getASTRecordLayout(base).getNonVirtualSize());
5559    } else {
5560      FieldDecl *field = cast<FieldDecl>(dcl);
5561      if (FD) {
5562        S += '"';
5563        S += field->getNameAsString();
5564        S += '"';
5565      }
5566
5567      if (field->isBitField()) {
5568        EncodeBitField(this, S, field->getType(), field);
5569        CurOffs += field->getBitWidthValue(*this);
5570      } else {
5571        QualType qt = field->getType();
5572        getLegacyIntegralTypeEncoding(qt);
5573        getObjCEncodingForTypeImpl(qt, S, false, true, FD,
5574                                   /*OutermostType*/false,
5575                                   /*EncodingProperty*/false,
5576                                   /*StructField*/true);
5577        CurOffs += getTypeSize(field->getType());
5578      }
5579    }
5580  }
5581}
5582
5583void ASTContext::getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT,
5584                                                 std::string& S) const {
5585  if (QT & Decl::OBJC_TQ_In)
5586    S += 'n';
5587  if (QT & Decl::OBJC_TQ_Inout)
5588    S += 'N';
5589  if (QT & Decl::OBJC_TQ_Out)
5590    S += 'o';
5591  if (QT & Decl::OBJC_TQ_Bycopy)
5592    S += 'O';
5593  if (QT & Decl::OBJC_TQ_Byref)
5594    S += 'R';
5595  if (QT & Decl::OBJC_TQ_Oneway)
5596    S += 'V';
5597}
5598
5599TypedefDecl *ASTContext::getObjCIdDecl() const {
5600  if (!ObjCIdDecl) {
5601    QualType T = getObjCObjectType(ObjCBuiltinIdTy, 0, 0);
5602    T = getObjCObjectPointerType(T);
5603    TypeSourceInfo *IdInfo = getTrivialTypeSourceInfo(T);
5604    ObjCIdDecl = TypedefDecl::Create(const_cast<ASTContext &>(*this),
5605                                     getTranslationUnitDecl(),
5606                                     SourceLocation(), SourceLocation(),
5607                                     &Idents.get("id"), IdInfo);
5608  }
5609
5610  return ObjCIdDecl;
5611}
5612
5613TypedefDecl *ASTContext::getObjCSelDecl() const {
5614  if (!ObjCSelDecl) {
5615    QualType SelT = getPointerType(ObjCBuiltinSelTy);
5616    TypeSourceInfo *SelInfo = getTrivialTypeSourceInfo(SelT);
5617    ObjCSelDecl = TypedefDecl::Create(const_cast<ASTContext &>(*this),
5618                                      getTranslationUnitDecl(),
5619                                      SourceLocation(), SourceLocation(),
5620                                      &Idents.get("SEL"), SelInfo);
5621  }
5622  return ObjCSelDecl;
5623}
5624
5625TypedefDecl *ASTContext::getObjCClassDecl() const {
5626  if (!ObjCClassDecl) {
5627    QualType T = getObjCObjectType(ObjCBuiltinClassTy, 0, 0);
5628    T = getObjCObjectPointerType(T);
5629    TypeSourceInfo *ClassInfo = getTrivialTypeSourceInfo(T);
5630    ObjCClassDecl = TypedefDecl::Create(const_cast<ASTContext &>(*this),
5631                                        getTranslationUnitDecl(),
5632                                        SourceLocation(), SourceLocation(),
5633                                        &Idents.get("Class"), ClassInfo);
5634  }
5635
5636  return ObjCClassDecl;
5637}
5638
5639ObjCInterfaceDecl *ASTContext::getObjCProtocolDecl() const {
5640  if (!ObjCProtocolClassDecl) {
5641    ObjCProtocolClassDecl
5642      = ObjCInterfaceDecl::Create(*this, getTranslationUnitDecl(),
5643                                  SourceLocation(),
5644                                  &Idents.get("Protocol"),
5645                                  /*PrevDecl=*/0,
5646                                  SourceLocation(), true);
5647  }
5648
5649  return ObjCProtocolClassDecl;
5650}
5651
5652//===----------------------------------------------------------------------===//
5653// __builtin_va_list Construction Functions
5654//===----------------------------------------------------------------------===//
5655
5656static TypedefDecl *CreateCharPtrBuiltinVaListDecl(const ASTContext *Context) {
5657  // typedef char* __builtin_va_list;
5658  QualType CharPtrType = Context->getPointerType(Context->CharTy);
5659  TypeSourceInfo *TInfo
5660    = Context->getTrivialTypeSourceInfo(CharPtrType);
5661
5662  TypedefDecl *VaListTypeDecl
5663    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
5664                          Context->getTranslationUnitDecl(),
5665                          SourceLocation(), SourceLocation(),
5666                          &Context->Idents.get("__builtin_va_list"),
5667                          TInfo);
5668  return VaListTypeDecl;
5669}
5670
5671static TypedefDecl *CreateVoidPtrBuiltinVaListDecl(const ASTContext *Context) {
5672  // typedef void* __builtin_va_list;
5673  QualType VoidPtrType = Context->getPointerType(Context->VoidTy);
5674  TypeSourceInfo *TInfo
5675    = Context->getTrivialTypeSourceInfo(VoidPtrType);
5676
5677  TypedefDecl *VaListTypeDecl
5678    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
5679                          Context->getTranslationUnitDecl(),
5680                          SourceLocation(), SourceLocation(),
5681                          &Context->Idents.get("__builtin_va_list"),
5682                          TInfo);
5683  return VaListTypeDecl;
5684}
5685
5686static TypedefDecl *
5687CreateAArch64ABIBuiltinVaListDecl(const ASTContext *Context) {
5688  RecordDecl *VaListTagDecl;
5689  if (Context->getLangOpts().CPlusPlus) {
5690    // namespace std { struct __va_list {
5691    NamespaceDecl *NS;
5692    NS = NamespaceDecl::Create(const_cast<ASTContext &>(*Context),
5693                               Context->getTranslationUnitDecl(),
5694                               /*Inline*/false, SourceLocation(),
5695                               SourceLocation(), &Context->Idents.get("std"),
5696                               /*PrevDecl*/0);
5697
5698    VaListTagDecl = CXXRecordDecl::Create(*Context, TTK_Struct,
5699                                          Context->getTranslationUnitDecl(),
5700                                          SourceLocation(), SourceLocation(),
5701                                          &Context->Idents.get("__va_list"));
5702    VaListTagDecl->setDeclContext(NS);
5703  } else {
5704    // struct __va_list
5705    VaListTagDecl = CreateRecordDecl(*Context, TTK_Struct,
5706                                   Context->getTranslationUnitDecl(),
5707                                   &Context->Idents.get("__va_list"));
5708  }
5709
5710  VaListTagDecl->startDefinition();
5711
5712  const size_t NumFields = 5;
5713  QualType FieldTypes[NumFields];
5714  const char *FieldNames[NumFields];
5715
5716  // void *__stack;
5717  FieldTypes[0] = Context->getPointerType(Context->VoidTy);
5718  FieldNames[0] = "__stack";
5719
5720  // void *__gr_top;
5721  FieldTypes[1] = Context->getPointerType(Context->VoidTy);
5722  FieldNames[1] = "__gr_top";
5723
5724  // void *__vr_top;
5725  FieldTypes[2] = Context->getPointerType(Context->VoidTy);
5726  FieldNames[2] = "__vr_top";
5727
5728  // int __gr_offs;
5729  FieldTypes[3] = Context->IntTy;
5730  FieldNames[3] = "__gr_offs";
5731
5732  // int __vr_offs;
5733  FieldTypes[4] = Context->IntTy;
5734  FieldNames[4] = "__vr_offs";
5735
5736  // Create fields
5737  for (unsigned i = 0; i < NumFields; ++i) {
5738    FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context),
5739                                         VaListTagDecl,
5740                                         SourceLocation(),
5741                                         SourceLocation(),
5742                                         &Context->Idents.get(FieldNames[i]),
5743                                         FieldTypes[i], /*TInfo=*/0,
5744                                         /*BitWidth=*/0,
5745                                         /*Mutable=*/false,
5746                                         ICIS_NoInit);
5747    Field->setAccess(AS_public);
5748    VaListTagDecl->addDecl(Field);
5749  }
5750  VaListTagDecl->completeDefinition();
5751  QualType VaListTagType = Context->getRecordType(VaListTagDecl);
5752  Context->VaListTagTy = VaListTagType;
5753
5754  // } __builtin_va_list;
5755  TypedefDecl *VaListTypedefDecl
5756    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
5757                          Context->getTranslationUnitDecl(),
5758                          SourceLocation(), SourceLocation(),
5759                          &Context->Idents.get("__builtin_va_list"),
5760                          Context->getTrivialTypeSourceInfo(VaListTagType));
5761
5762  return VaListTypedefDecl;
5763}
5764
5765static TypedefDecl *CreatePowerABIBuiltinVaListDecl(const ASTContext *Context) {
5766  // typedef struct __va_list_tag {
5767  RecordDecl *VaListTagDecl;
5768
5769  VaListTagDecl = CreateRecordDecl(*Context, TTK_Struct,
5770                                   Context->getTranslationUnitDecl(),
5771                                   &Context->Idents.get("__va_list_tag"));
5772  VaListTagDecl->startDefinition();
5773
5774  const size_t NumFields = 5;
5775  QualType FieldTypes[NumFields];
5776  const char *FieldNames[NumFields];
5777
5778  //   unsigned char gpr;
5779  FieldTypes[0] = Context->UnsignedCharTy;
5780  FieldNames[0] = "gpr";
5781
5782  //   unsigned char fpr;
5783  FieldTypes[1] = Context->UnsignedCharTy;
5784  FieldNames[1] = "fpr";
5785
5786  //   unsigned short reserved;
5787  FieldTypes[2] = Context->UnsignedShortTy;
5788  FieldNames[2] = "reserved";
5789
5790  //   void* overflow_arg_area;
5791  FieldTypes[3] = Context->getPointerType(Context->VoidTy);
5792  FieldNames[3] = "overflow_arg_area";
5793
5794  //   void* reg_save_area;
5795  FieldTypes[4] = Context->getPointerType(Context->VoidTy);
5796  FieldNames[4] = "reg_save_area";
5797
5798  // Create fields
5799  for (unsigned i = 0; i < NumFields; ++i) {
5800    FieldDecl *Field = FieldDecl::Create(*Context, VaListTagDecl,
5801                                         SourceLocation(),
5802                                         SourceLocation(),
5803                                         &Context->Idents.get(FieldNames[i]),
5804                                         FieldTypes[i], /*TInfo=*/0,
5805                                         /*BitWidth=*/0,
5806                                         /*Mutable=*/false,
5807                                         ICIS_NoInit);
5808    Field->setAccess(AS_public);
5809    VaListTagDecl->addDecl(Field);
5810  }
5811  VaListTagDecl->completeDefinition();
5812  QualType VaListTagType = Context->getRecordType(VaListTagDecl);
5813  Context->VaListTagTy = VaListTagType;
5814
5815  // } __va_list_tag;
5816  TypedefDecl *VaListTagTypedefDecl
5817    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
5818                          Context->getTranslationUnitDecl(),
5819                          SourceLocation(), SourceLocation(),
5820                          &Context->Idents.get("__va_list_tag"),
5821                          Context->getTrivialTypeSourceInfo(VaListTagType));
5822  QualType VaListTagTypedefType =
5823    Context->getTypedefType(VaListTagTypedefDecl);
5824
5825  // typedef __va_list_tag __builtin_va_list[1];
5826  llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 1);
5827  QualType VaListTagArrayType
5828    = Context->getConstantArrayType(VaListTagTypedefType,
5829                                    Size, ArrayType::Normal, 0);
5830  TypeSourceInfo *TInfo
5831    = Context->getTrivialTypeSourceInfo(VaListTagArrayType);
5832  TypedefDecl *VaListTypedefDecl
5833    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
5834                          Context->getTranslationUnitDecl(),
5835                          SourceLocation(), SourceLocation(),
5836                          &Context->Idents.get("__builtin_va_list"),
5837                          TInfo);
5838
5839  return VaListTypedefDecl;
5840}
5841
5842static TypedefDecl *
5843CreateX86_64ABIBuiltinVaListDecl(const ASTContext *Context) {
5844  // typedef struct __va_list_tag {
5845  RecordDecl *VaListTagDecl;
5846  VaListTagDecl = CreateRecordDecl(*Context, TTK_Struct,
5847                                   Context->getTranslationUnitDecl(),
5848                                   &Context->Idents.get("__va_list_tag"));
5849  VaListTagDecl->startDefinition();
5850
5851  const size_t NumFields = 4;
5852  QualType FieldTypes[NumFields];
5853  const char *FieldNames[NumFields];
5854
5855  //   unsigned gp_offset;
5856  FieldTypes[0] = Context->UnsignedIntTy;
5857  FieldNames[0] = "gp_offset";
5858
5859  //   unsigned fp_offset;
5860  FieldTypes[1] = Context->UnsignedIntTy;
5861  FieldNames[1] = "fp_offset";
5862
5863  //   void* overflow_arg_area;
5864  FieldTypes[2] = Context->getPointerType(Context->VoidTy);
5865  FieldNames[2] = "overflow_arg_area";
5866
5867  //   void* reg_save_area;
5868  FieldTypes[3] = Context->getPointerType(Context->VoidTy);
5869  FieldNames[3] = "reg_save_area";
5870
5871  // Create fields
5872  for (unsigned i = 0; i < NumFields; ++i) {
5873    FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context),
5874                                         VaListTagDecl,
5875                                         SourceLocation(),
5876                                         SourceLocation(),
5877                                         &Context->Idents.get(FieldNames[i]),
5878                                         FieldTypes[i], /*TInfo=*/0,
5879                                         /*BitWidth=*/0,
5880                                         /*Mutable=*/false,
5881                                         ICIS_NoInit);
5882    Field->setAccess(AS_public);
5883    VaListTagDecl->addDecl(Field);
5884  }
5885  VaListTagDecl->completeDefinition();
5886  QualType VaListTagType = Context->getRecordType(VaListTagDecl);
5887  Context->VaListTagTy = VaListTagType;
5888
5889  // } __va_list_tag;
5890  TypedefDecl *VaListTagTypedefDecl
5891    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
5892                          Context->getTranslationUnitDecl(),
5893                          SourceLocation(), SourceLocation(),
5894                          &Context->Idents.get("__va_list_tag"),
5895                          Context->getTrivialTypeSourceInfo(VaListTagType));
5896  QualType VaListTagTypedefType =
5897    Context->getTypedefType(VaListTagTypedefDecl);
5898
5899  // typedef __va_list_tag __builtin_va_list[1];
5900  llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 1);
5901  QualType VaListTagArrayType
5902    = Context->getConstantArrayType(VaListTagTypedefType,
5903                                      Size, ArrayType::Normal,0);
5904  TypeSourceInfo *TInfo
5905    = Context->getTrivialTypeSourceInfo(VaListTagArrayType);
5906  TypedefDecl *VaListTypedefDecl
5907    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
5908                          Context->getTranslationUnitDecl(),
5909                          SourceLocation(), SourceLocation(),
5910                          &Context->Idents.get("__builtin_va_list"),
5911                          TInfo);
5912
5913  return VaListTypedefDecl;
5914}
5915
5916static TypedefDecl *CreatePNaClABIBuiltinVaListDecl(const ASTContext *Context) {
5917  // typedef int __builtin_va_list[4];
5918  llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 4);
5919  QualType IntArrayType
5920    = Context->getConstantArrayType(Context->IntTy,
5921				    Size, ArrayType::Normal, 0);
5922  TypedefDecl *VaListTypedefDecl
5923    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
5924                          Context->getTranslationUnitDecl(),
5925                          SourceLocation(), SourceLocation(),
5926                          &Context->Idents.get("__builtin_va_list"),
5927                          Context->getTrivialTypeSourceInfo(IntArrayType));
5928
5929  return VaListTypedefDecl;
5930}
5931
5932static TypedefDecl *
5933CreateAAPCSABIBuiltinVaListDecl(const ASTContext *Context) {
5934  RecordDecl *VaListDecl;
5935  if (Context->getLangOpts().CPlusPlus) {
5936    // namespace std { struct __va_list {
5937    NamespaceDecl *NS;
5938    NS = NamespaceDecl::Create(const_cast<ASTContext &>(*Context),
5939                               Context->getTranslationUnitDecl(),
5940                               /*Inline*/false, SourceLocation(),
5941                               SourceLocation(), &Context->Idents.get("std"),
5942                               /*PrevDecl*/0);
5943
5944    VaListDecl = CXXRecordDecl::Create(*Context, TTK_Struct,
5945                                       Context->getTranslationUnitDecl(),
5946                                       SourceLocation(), SourceLocation(),
5947                                       &Context->Idents.get("__va_list"));
5948
5949    VaListDecl->setDeclContext(NS);
5950
5951  } else {
5952    // struct __va_list {
5953    VaListDecl = CreateRecordDecl(*Context, TTK_Struct,
5954                                  Context->getTranslationUnitDecl(),
5955                                  &Context->Idents.get("__va_list"));
5956  }
5957
5958  VaListDecl->startDefinition();
5959
5960  // void * __ap;
5961  FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context),
5962                                       VaListDecl,
5963                                       SourceLocation(),
5964                                       SourceLocation(),
5965                                       &Context->Idents.get("__ap"),
5966                                       Context->getPointerType(Context->VoidTy),
5967                                       /*TInfo=*/0,
5968                                       /*BitWidth=*/0,
5969                                       /*Mutable=*/false,
5970                                       ICIS_NoInit);
5971  Field->setAccess(AS_public);
5972  VaListDecl->addDecl(Field);
5973
5974  // };
5975  VaListDecl->completeDefinition();
5976
5977  // typedef struct __va_list __builtin_va_list;
5978  TypeSourceInfo *TInfo
5979    = Context->getTrivialTypeSourceInfo(Context->getRecordType(VaListDecl));
5980
5981  TypedefDecl *VaListTypeDecl
5982    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
5983                          Context->getTranslationUnitDecl(),
5984                          SourceLocation(), SourceLocation(),
5985                          &Context->Idents.get("__builtin_va_list"),
5986                          TInfo);
5987
5988  return VaListTypeDecl;
5989}
5990
5991static TypedefDecl *
5992CreateSystemZBuiltinVaListDecl(const ASTContext *Context) {
5993  // typedef struct __va_list_tag {
5994  RecordDecl *VaListTagDecl;
5995  VaListTagDecl = CreateRecordDecl(*Context, TTK_Struct,
5996                                   Context->getTranslationUnitDecl(),
5997                                   &Context->Idents.get("__va_list_tag"));
5998  VaListTagDecl->startDefinition();
5999
6000  const size_t NumFields = 4;
6001  QualType FieldTypes[NumFields];
6002  const char *FieldNames[NumFields];
6003
6004  //   long __gpr;
6005  FieldTypes[0] = Context->LongTy;
6006  FieldNames[0] = "__gpr";
6007
6008  //   long __fpr;
6009  FieldTypes[1] = Context->LongTy;
6010  FieldNames[1] = "__fpr";
6011
6012  //   void *__overflow_arg_area;
6013  FieldTypes[2] = Context->getPointerType(Context->VoidTy);
6014  FieldNames[2] = "__overflow_arg_area";
6015
6016  //   void *__reg_save_area;
6017  FieldTypes[3] = Context->getPointerType(Context->VoidTy);
6018  FieldNames[3] = "__reg_save_area";
6019
6020  // Create fields
6021  for (unsigned i = 0; i < NumFields; ++i) {
6022    FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context),
6023                                         VaListTagDecl,
6024                                         SourceLocation(),
6025                                         SourceLocation(),
6026                                         &Context->Idents.get(FieldNames[i]),
6027                                         FieldTypes[i], /*TInfo=*/0,
6028                                         /*BitWidth=*/0,
6029                                         /*Mutable=*/false,
6030                                         ICIS_NoInit);
6031    Field->setAccess(AS_public);
6032    VaListTagDecl->addDecl(Field);
6033  }
6034  VaListTagDecl->completeDefinition();
6035  QualType VaListTagType = Context->getRecordType(VaListTagDecl);
6036  Context->VaListTagTy = VaListTagType;
6037
6038  // } __va_list_tag;
6039  TypedefDecl *VaListTagTypedefDecl
6040    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
6041                          Context->getTranslationUnitDecl(),
6042                          SourceLocation(), SourceLocation(),
6043                          &Context->Idents.get("__va_list_tag"),
6044                          Context->getTrivialTypeSourceInfo(VaListTagType));
6045  QualType VaListTagTypedefType =
6046    Context->getTypedefType(VaListTagTypedefDecl);
6047
6048  // typedef __va_list_tag __builtin_va_list[1];
6049  llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 1);
6050  QualType VaListTagArrayType
6051    = Context->getConstantArrayType(VaListTagTypedefType,
6052                                      Size, ArrayType::Normal,0);
6053  TypeSourceInfo *TInfo
6054    = Context->getTrivialTypeSourceInfo(VaListTagArrayType);
6055  TypedefDecl *VaListTypedefDecl
6056    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
6057                          Context->getTranslationUnitDecl(),
6058                          SourceLocation(), SourceLocation(),
6059                          &Context->Idents.get("__builtin_va_list"),
6060                          TInfo);
6061
6062  return VaListTypedefDecl;
6063}
6064
6065static TypedefDecl *CreateVaListDecl(const ASTContext *Context,
6066                                     TargetInfo::BuiltinVaListKind Kind) {
6067  switch (Kind) {
6068  case TargetInfo::CharPtrBuiltinVaList:
6069    return CreateCharPtrBuiltinVaListDecl(Context);
6070  case TargetInfo::VoidPtrBuiltinVaList:
6071    return CreateVoidPtrBuiltinVaListDecl(Context);
6072  case TargetInfo::AArch64ABIBuiltinVaList:
6073    return CreateAArch64ABIBuiltinVaListDecl(Context);
6074  case TargetInfo::PowerABIBuiltinVaList:
6075    return CreatePowerABIBuiltinVaListDecl(Context);
6076  case TargetInfo::X86_64ABIBuiltinVaList:
6077    return CreateX86_64ABIBuiltinVaListDecl(Context);
6078  case TargetInfo::PNaClABIBuiltinVaList:
6079    return CreatePNaClABIBuiltinVaListDecl(Context);
6080  case TargetInfo::AAPCSABIBuiltinVaList:
6081    return CreateAAPCSABIBuiltinVaListDecl(Context);
6082  case TargetInfo::SystemZBuiltinVaList:
6083    return CreateSystemZBuiltinVaListDecl(Context);
6084  }
6085
6086  llvm_unreachable("Unhandled __builtin_va_list type kind");
6087}
6088
6089TypedefDecl *ASTContext::getBuiltinVaListDecl() const {
6090  if (!BuiltinVaListDecl)
6091    BuiltinVaListDecl = CreateVaListDecl(this, Target->getBuiltinVaListKind());
6092
6093  return BuiltinVaListDecl;
6094}
6095
6096QualType ASTContext::getVaListTagType() const {
6097  // Force the creation of VaListTagTy by building the __builtin_va_list
6098  // declaration.
6099  if (VaListTagTy.isNull())
6100    (void) getBuiltinVaListDecl();
6101
6102  return VaListTagTy;
6103}
6104
6105void ASTContext::setObjCConstantStringInterface(ObjCInterfaceDecl *Decl) {
6106  assert(ObjCConstantStringType.isNull() &&
6107         "'NSConstantString' type already set!");
6108
6109  ObjCConstantStringType = getObjCInterfaceType(Decl);
6110}
6111
6112/// \brief Retrieve the template name that corresponds to a non-empty
6113/// lookup.
6114TemplateName
6115ASTContext::getOverloadedTemplateName(UnresolvedSetIterator Begin,
6116                                      UnresolvedSetIterator End) const {
6117  unsigned size = End - Begin;
6118  assert(size > 1 && "set is not overloaded!");
6119
6120  void *memory = Allocate(sizeof(OverloadedTemplateStorage) +
6121                          size * sizeof(FunctionTemplateDecl*));
6122  OverloadedTemplateStorage *OT = new(memory) OverloadedTemplateStorage(size);
6123
6124  NamedDecl **Storage = OT->getStorage();
6125  for (UnresolvedSetIterator I = Begin; I != End; ++I) {
6126    NamedDecl *D = *I;
6127    assert(isa<FunctionTemplateDecl>(D) ||
6128           (isa<UsingShadowDecl>(D) &&
6129            isa<FunctionTemplateDecl>(D->getUnderlyingDecl())));
6130    *Storage++ = D;
6131  }
6132
6133  return TemplateName(OT);
6134}
6135
6136/// \brief Retrieve the template name that represents a qualified
6137/// template name such as \c std::vector.
6138TemplateName
6139ASTContext::getQualifiedTemplateName(NestedNameSpecifier *NNS,
6140                                     bool TemplateKeyword,
6141                                     TemplateDecl *Template) const {
6142  assert(NNS && "Missing nested-name-specifier in qualified template name");
6143
6144  // FIXME: Canonicalization?
6145  llvm::FoldingSetNodeID ID;
6146  QualifiedTemplateName::Profile(ID, NNS, TemplateKeyword, Template);
6147
6148  void *InsertPos = 0;
6149  QualifiedTemplateName *QTN =
6150    QualifiedTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
6151  if (!QTN) {
6152    QTN = new (*this, llvm::alignOf<QualifiedTemplateName>())
6153        QualifiedTemplateName(NNS, TemplateKeyword, Template);
6154    QualifiedTemplateNames.InsertNode(QTN, InsertPos);
6155  }
6156
6157  return TemplateName(QTN);
6158}
6159
6160/// \brief Retrieve the template name that represents a dependent
6161/// template name such as \c MetaFun::template apply.
6162TemplateName
6163ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
6164                                     const IdentifierInfo *Name) const {
6165  assert((!NNS || NNS->isDependent()) &&
6166         "Nested name specifier must be dependent");
6167
6168  llvm::FoldingSetNodeID ID;
6169  DependentTemplateName::Profile(ID, NNS, Name);
6170
6171  void *InsertPos = 0;
6172  DependentTemplateName *QTN =
6173    DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
6174
6175  if (QTN)
6176    return TemplateName(QTN);
6177
6178  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
6179  if (CanonNNS == NNS) {
6180    QTN = new (*this, llvm::alignOf<DependentTemplateName>())
6181        DependentTemplateName(NNS, Name);
6182  } else {
6183    TemplateName Canon = getDependentTemplateName(CanonNNS, Name);
6184    QTN = new (*this, llvm::alignOf<DependentTemplateName>())
6185        DependentTemplateName(NNS, Name, Canon);
6186    DependentTemplateName *CheckQTN =
6187      DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
6188    assert(!CheckQTN && "Dependent type name canonicalization broken");
6189    (void)CheckQTN;
6190  }
6191
6192  DependentTemplateNames.InsertNode(QTN, InsertPos);
6193  return TemplateName(QTN);
6194}
6195
6196/// \brief Retrieve the template name that represents a dependent
6197/// template name such as \c MetaFun::template operator+.
6198TemplateName
6199ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
6200                                     OverloadedOperatorKind Operator) const {
6201  assert((!NNS || NNS->isDependent()) &&
6202         "Nested name specifier must be dependent");
6203
6204  llvm::FoldingSetNodeID ID;
6205  DependentTemplateName::Profile(ID, NNS, Operator);
6206
6207  void *InsertPos = 0;
6208  DependentTemplateName *QTN
6209    = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
6210
6211  if (QTN)
6212    return TemplateName(QTN);
6213
6214  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
6215  if (CanonNNS == NNS) {
6216    QTN = new (*this, llvm::alignOf<DependentTemplateName>())
6217        DependentTemplateName(NNS, Operator);
6218  } else {
6219    TemplateName Canon = getDependentTemplateName(CanonNNS, Operator);
6220    QTN = new (*this, llvm::alignOf<DependentTemplateName>())
6221        DependentTemplateName(NNS, Operator, Canon);
6222
6223    DependentTemplateName *CheckQTN
6224      = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
6225    assert(!CheckQTN && "Dependent template name canonicalization broken");
6226    (void)CheckQTN;
6227  }
6228
6229  DependentTemplateNames.InsertNode(QTN, InsertPos);
6230  return TemplateName(QTN);
6231}
6232
6233TemplateName
6234ASTContext::getSubstTemplateTemplateParm(TemplateTemplateParmDecl *param,
6235                                         TemplateName replacement) const {
6236  llvm::FoldingSetNodeID ID;
6237  SubstTemplateTemplateParmStorage::Profile(ID, param, replacement);
6238
6239  void *insertPos = 0;
6240  SubstTemplateTemplateParmStorage *subst
6241    = SubstTemplateTemplateParms.FindNodeOrInsertPos(ID, insertPos);
6242
6243  if (!subst) {
6244    subst = new (*this) SubstTemplateTemplateParmStorage(param, replacement);
6245    SubstTemplateTemplateParms.InsertNode(subst, insertPos);
6246  }
6247
6248  return TemplateName(subst);
6249}
6250
6251TemplateName
6252ASTContext::getSubstTemplateTemplateParmPack(TemplateTemplateParmDecl *Param,
6253                                       const TemplateArgument &ArgPack) const {
6254  ASTContext &Self = const_cast<ASTContext &>(*this);
6255  llvm::FoldingSetNodeID ID;
6256  SubstTemplateTemplateParmPackStorage::Profile(ID, Self, Param, ArgPack);
6257
6258  void *InsertPos = 0;
6259  SubstTemplateTemplateParmPackStorage *Subst
6260    = SubstTemplateTemplateParmPacks.FindNodeOrInsertPos(ID, InsertPos);
6261
6262  if (!Subst) {
6263    Subst = new (*this) SubstTemplateTemplateParmPackStorage(Param,
6264                                                           ArgPack.pack_size(),
6265                                                         ArgPack.pack_begin());
6266    SubstTemplateTemplateParmPacks.InsertNode(Subst, InsertPos);
6267  }
6268
6269  return TemplateName(Subst);
6270}
6271
6272/// getFromTargetType - Given one of the integer types provided by
6273/// TargetInfo, produce the corresponding type. The unsigned @p Type
6274/// is actually a value of type @c TargetInfo::IntType.
6275CanQualType ASTContext::getFromTargetType(unsigned Type) const {
6276  switch (Type) {
6277  case TargetInfo::NoInt: return CanQualType();
6278  case TargetInfo::SignedShort: return ShortTy;
6279  case TargetInfo::UnsignedShort: return UnsignedShortTy;
6280  case TargetInfo::SignedInt: return IntTy;
6281  case TargetInfo::UnsignedInt: return UnsignedIntTy;
6282  case TargetInfo::SignedLong: return LongTy;
6283  case TargetInfo::UnsignedLong: return UnsignedLongTy;
6284  case TargetInfo::SignedLongLong: return LongLongTy;
6285  case TargetInfo::UnsignedLongLong: return UnsignedLongLongTy;
6286  }
6287
6288  llvm_unreachable("Unhandled TargetInfo::IntType value");
6289}
6290
6291//===----------------------------------------------------------------------===//
6292//                        Type Predicates.
6293//===----------------------------------------------------------------------===//
6294
6295/// getObjCGCAttr - Returns one of GCNone, Weak or Strong objc's
6296/// garbage collection attribute.
6297///
6298Qualifiers::GC ASTContext::getObjCGCAttrKind(QualType Ty) const {
6299  if (getLangOpts().getGC() == LangOptions::NonGC)
6300    return Qualifiers::GCNone;
6301
6302  assert(getLangOpts().ObjC1);
6303  Qualifiers::GC GCAttrs = Ty.getObjCGCAttr();
6304
6305  // Default behaviour under objective-C's gc is for ObjC pointers
6306  // (or pointers to them) be treated as though they were declared
6307  // as __strong.
6308  if (GCAttrs == Qualifiers::GCNone) {
6309    if (Ty->isObjCObjectPointerType() || Ty->isBlockPointerType())
6310      return Qualifiers::Strong;
6311    else if (Ty->isPointerType())
6312      return getObjCGCAttrKind(Ty->getAs<PointerType>()->getPointeeType());
6313  } else {
6314    // It's not valid to set GC attributes on anything that isn't a
6315    // pointer.
6316#ifndef NDEBUG
6317    QualType CT = Ty->getCanonicalTypeInternal();
6318    while (const ArrayType *AT = dyn_cast<ArrayType>(CT))
6319      CT = AT->getElementType();
6320    assert(CT->isAnyPointerType() || CT->isBlockPointerType());
6321#endif
6322  }
6323  return GCAttrs;
6324}
6325
6326//===----------------------------------------------------------------------===//
6327//                        Type Compatibility Testing
6328//===----------------------------------------------------------------------===//
6329
6330/// areCompatVectorTypes - Return true if the two specified vector types are
6331/// compatible.
6332static bool areCompatVectorTypes(const VectorType *LHS,
6333                                 const VectorType *RHS) {
6334  assert(LHS->isCanonicalUnqualified() && RHS->isCanonicalUnqualified());
6335  return LHS->getElementType() == RHS->getElementType() &&
6336         LHS->getNumElements() == RHS->getNumElements();
6337}
6338
6339bool ASTContext::areCompatibleVectorTypes(QualType FirstVec,
6340                                          QualType SecondVec) {
6341  assert(FirstVec->isVectorType() && "FirstVec should be a vector type");
6342  assert(SecondVec->isVectorType() && "SecondVec should be a vector type");
6343
6344  if (hasSameUnqualifiedType(FirstVec, SecondVec))
6345    return true;
6346
6347  // Treat Neon vector types and most AltiVec vector types as if they are the
6348  // equivalent GCC vector types.
6349  const VectorType *First = FirstVec->getAs<VectorType>();
6350  const VectorType *Second = SecondVec->getAs<VectorType>();
6351  if (First->getNumElements() == Second->getNumElements() &&
6352      hasSameType(First->getElementType(), Second->getElementType()) &&
6353      First->getVectorKind() != VectorType::AltiVecPixel &&
6354      First->getVectorKind() != VectorType::AltiVecBool &&
6355      Second->getVectorKind() != VectorType::AltiVecPixel &&
6356      Second->getVectorKind() != VectorType::AltiVecBool)
6357    return true;
6358
6359  return false;
6360}
6361
6362//===----------------------------------------------------------------------===//
6363// ObjCQualifiedIdTypesAreCompatible - Compatibility testing for qualified id's.
6364//===----------------------------------------------------------------------===//
6365
6366/// ProtocolCompatibleWithProtocol - return 'true' if 'lProto' is in the
6367/// inheritance hierarchy of 'rProto'.
6368bool
6369ASTContext::ProtocolCompatibleWithProtocol(ObjCProtocolDecl *lProto,
6370                                           ObjCProtocolDecl *rProto) const {
6371  if (declaresSameEntity(lProto, rProto))
6372    return true;
6373  for (ObjCProtocolDecl::protocol_iterator PI = rProto->protocol_begin(),
6374       E = rProto->protocol_end(); PI != E; ++PI)
6375    if (ProtocolCompatibleWithProtocol(lProto, *PI))
6376      return true;
6377  return false;
6378}
6379
6380/// QualifiedIdConformsQualifiedId - compare id<pr,...> with id<pr1,...>
6381/// return true if lhs's protocols conform to rhs's protocol; false
6382/// otherwise.
6383bool ASTContext::QualifiedIdConformsQualifiedId(QualType lhs, QualType rhs) {
6384  if (lhs->isObjCQualifiedIdType() && rhs->isObjCQualifiedIdType())
6385    return ObjCQualifiedIdTypesAreCompatible(lhs, rhs, false);
6386  return false;
6387}
6388
6389/// ObjCQualifiedClassTypesAreCompatible - compare  Class<pr,...> and
6390/// Class<pr1, ...>.
6391bool ASTContext::ObjCQualifiedClassTypesAreCompatible(QualType lhs,
6392                                                      QualType rhs) {
6393  const ObjCObjectPointerType *lhsQID = lhs->getAs<ObjCObjectPointerType>();
6394  const ObjCObjectPointerType *rhsOPT = rhs->getAs<ObjCObjectPointerType>();
6395  assert ((lhsQID && rhsOPT) && "ObjCQualifiedClassTypesAreCompatible");
6396
6397  for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
6398       E = lhsQID->qual_end(); I != E; ++I) {
6399    bool match = false;
6400    ObjCProtocolDecl *lhsProto = *I;
6401    for (ObjCObjectPointerType::qual_iterator J = rhsOPT->qual_begin(),
6402         E = rhsOPT->qual_end(); J != E; ++J) {
6403      ObjCProtocolDecl *rhsProto = *J;
6404      if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto)) {
6405        match = true;
6406        break;
6407      }
6408    }
6409    if (!match)
6410      return false;
6411  }
6412  return true;
6413}
6414
6415/// ObjCQualifiedIdTypesAreCompatible - We know that one of lhs/rhs is an
6416/// ObjCQualifiedIDType.
6417bool ASTContext::ObjCQualifiedIdTypesAreCompatible(QualType lhs, QualType rhs,
6418                                                   bool compare) {
6419  // Allow id<P..> and an 'id' or void* type in all cases.
6420  if (lhs->isVoidPointerType() ||
6421      lhs->isObjCIdType() || lhs->isObjCClassType())
6422    return true;
6423  else if (rhs->isVoidPointerType() ||
6424           rhs->isObjCIdType() || rhs->isObjCClassType())
6425    return true;
6426
6427  if (const ObjCObjectPointerType *lhsQID = lhs->getAsObjCQualifiedIdType()) {
6428    const ObjCObjectPointerType *rhsOPT = rhs->getAs<ObjCObjectPointerType>();
6429
6430    if (!rhsOPT) return false;
6431
6432    if (rhsOPT->qual_empty()) {
6433      // If the RHS is a unqualified interface pointer "NSString*",
6434      // make sure we check the class hierarchy.
6435      if (ObjCInterfaceDecl *rhsID = rhsOPT->getInterfaceDecl()) {
6436        for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
6437             E = lhsQID->qual_end(); I != E; ++I) {
6438          // when comparing an id<P> on lhs with a static type on rhs,
6439          // see if static class implements all of id's protocols, directly or
6440          // through its super class and categories.
6441          if (!rhsID->ClassImplementsProtocol(*I, true))
6442            return false;
6443        }
6444      }
6445      // If there are no qualifiers and no interface, we have an 'id'.
6446      return true;
6447    }
6448    // Both the right and left sides have qualifiers.
6449    for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
6450         E = lhsQID->qual_end(); I != E; ++I) {
6451      ObjCProtocolDecl *lhsProto = *I;
6452      bool match = false;
6453
6454      // when comparing an id<P> on lhs with a static type on rhs,
6455      // see if static class implements all of id's protocols, directly or
6456      // through its super class and categories.
6457      for (ObjCObjectPointerType::qual_iterator J = rhsOPT->qual_begin(),
6458           E = rhsOPT->qual_end(); J != E; ++J) {
6459        ObjCProtocolDecl *rhsProto = *J;
6460        if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
6461            (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
6462          match = true;
6463          break;
6464        }
6465      }
6466      // If the RHS is a qualified interface pointer "NSString<P>*",
6467      // make sure we check the class hierarchy.
6468      if (ObjCInterfaceDecl *rhsID = rhsOPT->getInterfaceDecl()) {
6469        for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
6470             E = lhsQID->qual_end(); I != E; ++I) {
6471          // when comparing an id<P> on lhs with a static type on rhs,
6472          // see if static class implements all of id's protocols, directly or
6473          // through its super class and categories.
6474          if (rhsID->ClassImplementsProtocol(*I, true)) {
6475            match = true;
6476            break;
6477          }
6478        }
6479      }
6480      if (!match)
6481        return false;
6482    }
6483
6484    return true;
6485  }
6486
6487  const ObjCObjectPointerType *rhsQID = rhs->getAsObjCQualifiedIdType();
6488  assert(rhsQID && "One of the LHS/RHS should be id<x>");
6489
6490  if (const ObjCObjectPointerType *lhsOPT =
6491        lhs->getAsObjCInterfacePointerType()) {
6492    // If both the right and left sides have qualifiers.
6493    for (ObjCObjectPointerType::qual_iterator I = lhsOPT->qual_begin(),
6494         E = lhsOPT->qual_end(); I != E; ++I) {
6495      ObjCProtocolDecl *lhsProto = *I;
6496      bool match = false;
6497
6498      // when comparing an id<P> on rhs with a static type on lhs,
6499      // see if static class implements all of id's protocols, directly or
6500      // through its super class and categories.
6501      // First, lhs protocols in the qualifier list must be found, direct
6502      // or indirect in rhs's qualifier list or it is a mismatch.
6503      for (ObjCObjectPointerType::qual_iterator J = rhsQID->qual_begin(),
6504           E = rhsQID->qual_end(); J != E; ++J) {
6505        ObjCProtocolDecl *rhsProto = *J;
6506        if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
6507            (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
6508          match = true;
6509          break;
6510        }
6511      }
6512      if (!match)
6513        return false;
6514    }
6515
6516    // Static class's protocols, or its super class or category protocols
6517    // must be found, direct or indirect in rhs's qualifier list or it is a mismatch.
6518    if (ObjCInterfaceDecl *lhsID = lhsOPT->getInterfaceDecl()) {
6519      llvm::SmallPtrSet<ObjCProtocolDecl *, 8> LHSInheritedProtocols;
6520      CollectInheritedProtocols(lhsID, LHSInheritedProtocols);
6521      // This is rather dubious but matches gcc's behavior. If lhs has
6522      // no type qualifier and its class has no static protocol(s)
6523      // assume that it is mismatch.
6524      if (LHSInheritedProtocols.empty() && lhsOPT->qual_empty())
6525        return false;
6526      for (llvm::SmallPtrSet<ObjCProtocolDecl*,8>::iterator I =
6527           LHSInheritedProtocols.begin(),
6528           E = LHSInheritedProtocols.end(); I != E; ++I) {
6529        bool match = false;
6530        ObjCProtocolDecl *lhsProto = (*I);
6531        for (ObjCObjectPointerType::qual_iterator J = rhsQID->qual_begin(),
6532             E = rhsQID->qual_end(); J != E; ++J) {
6533          ObjCProtocolDecl *rhsProto = *J;
6534          if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
6535              (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
6536            match = true;
6537            break;
6538          }
6539        }
6540        if (!match)
6541          return false;
6542      }
6543    }
6544    return true;
6545  }
6546  return false;
6547}
6548
6549/// canAssignObjCInterfaces - Return true if the two interface types are
6550/// compatible for assignment from RHS to LHS.  This handles validation of any
6551/// protocol qualifiers on the LHS or RHS.
6552///
6553bool ASTContext::canAssignObjCInterfaces(const ObjCObjectPointerType *LHSOPT,
6554                                         const ObjCObjectPointerType *RHSOPT) {
6555  const ObjCObjectType* LHS = LHSOPT->getObjectType();
6556  const ObjCObjectType* RHS = RHSOPT->getObjectType();
6557
6558  // If either type represents the built-in 'id' or 'Class' types, return true.
6559  if (LHS->isObjCUnqualifiedIdOrClass() ||
6560      RHS->isObjCUnqualifiedIdOrClass())
6561    return true;
6562
6563  if (LHS->isObjCQualifiedId() || RHS->isObjCQualifiedId())
6564    return ObjCQualifiedIdTypesAreCompatible(QualType(LHSOPT,0),
6565                                             QualType(RHSOPT,0),
6566                                             false);
6567
6568  if (LHS->isObjCQualifiedClass() && RHS->isObjCQualifiedClass())
6569    return ObjCQualifiedClassTypesAreCompatible(QualType(LHSOPT,0),
6570                                                QualType(RHSOPT,0));
6571
6572  // If we have 2 user-defined types, fall into that path.
6573  if (LHS->getInterface() && RHS->getInterface())
6574    return canAssignObjCInterfaces(LHS, RHS);
6575
6576  return false;
6577}
6578
6579/// canAssignObjCInterfacesInBlockPointer - This routine is specifically written
6580/// for providing type-safety for objective-c pointers used to pass/return
6581/// arguments in block literals. When passed as arguments, passing 'A*' where
6582/// 'id' is expected is not OK. Passing 'Sub *" where 'Super *" is expected is
6583/// not OK. For the return type, the opposite is not OK.
6584bool ASTContext::canAssignObjCInterfacesInBlockPointer(
6585                                         const ObjCObjectPointerType *LHSOPT,
6586                                         const ObjCObjectPointerType *RHSOPT,
6587                                         bool BlockReturnType) {
6588  if (RHSOPT->isObjCBuiltinType() || LHSOPT->isObjCIdType())
6589    return true;
6590
6591  if (LHSOPT->isObjCBuiltinType()) {
6592    return RHSOPT->isObjCBuiltinType() || RHSOPT->isObjCQualifiedIdType();
6593  }
6594
6595  if (LHSOPT->isObjCQualifiedIdType() || RHSOPT->isObjCQualifiedIdType())
6596    return ObjCQualifiedIdTypesAreCompatible(QualType(LHSOPT,0),
6597                                             QualType(RHSOPT,0),
6598                                             false);
6599
6600  const ObjCInterfaceType* LHS = LHSOPT->getInterfaceType();
6601  const ObjCInterfaceType* RHS = RHSOPT->getInterfaceType();
6602  if (LHS && RHS)  { // We have 2 user-defined types.
6603    if (LHS != RHS) {
6604      if (LHS->getDecl()->isSuperClassOf(RHS->getDecl()))
6605        return BlockReturnType;
6606      if (RHS->getDecl()->isSuperClassOf(LHS->getDecl()))
6607        return !BlockReturnType;
6608    }
6609    else
6610      return true;
6611  }
6612  return false;
6613}
6614
6615/// getIntersectionOfProtocols - This routine finds the intersection of set
6616/// of protocols inherited from two distinct objective-c pointer objects.
6617/// It is used to build composite qualifier list of the composite type of
6618/// the conditional expression involving two objective-c pointer objects.
6619static
6620void getIntersectionOfProtocols(ASTContext &Context,
6621                                const ObjCObjectPointerType *LHSOPT,
6622                                const ObjCObjectPointerType *RHSOPT,
6623      SmallVectorImpl<ObjCProtocolDecl *> &IntersectionOfProtocols) {
6624
6625  const ObjCObjectType* LHS = LHSOPT->getObjectType();
6626  const ObjCObjectType* RHS = RHSOPT->getObjectType();
6627  assert(LHS->getInterface() && "LHS must have an interface base");
6628  assert(RHS->getInterface() && "RHS must have an interface base");
6629
6630  llvm::SmallPtrSet<ObjCProtocolDecl *, 8> InheritedProtocolSet;
6631  unsigned LHSNumProtocols = LHS->getNumProtocols();
6632  if (LHSNumProtocols > 0)
6633    InheritedProtocolSet.insert(LHS->qual_begin(), LHS->qual_end());
6634  else {
6635    llvm::SmallPtrSet<ObjCProtocolDecl *, 8> LHSInheritedProtocols;
6636    Context.CollectInheritedProtocols(LHS->getInterface(),
6637                                      LHSInheritedProtocols);
6638    InheritedProtocolSet.insert(LHSInheritedProtocols.begin(),
6639                                LHSInheritedProtocols.end());
6640  }
6641
6642  unsigned RHSNumProtocols = RHS->getNumProtocols();
6643  if (RHSNumProtocols > 0) {
6644    ObjCProtocolDecl **RHSProtocols =
6645      const_cast<ObjCProtocolDecl **>(RHS->qual_begin());
6646    for (unsigned i = 0; i < RHSNumProtocols; ++i)
6647      if (InheritedProtocolSet.count(RHSProtocols[i]))
6648        IntersectionOfProtocols.push_back(RHSProtocols[i]);
6649  } else {
6650    llvm::SmallPtrSet<ObjCProtocolDecl *, 8> RHSInheritedProtocols;
6651    Context.CollectInheritedProtocols(RHS->getInterface(),
6652                                      RHSInheritedProtocols);
6653    for (llvm::SmallPtrSet<ObjCProtocolDecl*,8>::iterator I =
6654         RHSInheritedProtocols.begin(),
6655         E = RHSInheritedProtocols.end(); I != E; ++I)
6656      if (InheritedProtocolSet.count((*I)))
6657        IntersectionOfProtocols.push_back((*I));
6658  }
6659}
6660
6661/// areCommonBaseCompatible - Returns common base class of the two classes if
6662/// one found. Note that this is O'2 algorithm. But it will be called as the
6663/// last type comparison in a ?-exp of ObjC pointer types before a
6664/// warning is issued. So, its invokation is extremely rare.
6665QualType ASTContext::areCommonBaseCompatible(
6666                                          const ObjCObjectPointerType *Lptr,
6667                                          const ObjCObjectPointerType *Rptr) {
6668  const ObjCObjectType *LHS = Lptr->getObjectType();
6669  const ObjCObjectType *RHS = Rptr->getObjectType();
6670  const ObjCInterfaceDecl* LDecl = LHS->getInterface();
6671  const ObjCInterfaceDecl* RDecl = RHS->getInterface();
6672  if (!LDecl || !RDecl || (declaresSameEntity(LDecl, RDecl)))
6673    return QualType();
6674
6675  do {
6676    LHS = cast<ObjCInterfaceType>(getObjCInterfaceType(LDecl));
6677    if (canAssignObjCInterfaces(LHS, RHS)) {
6678      SmallVector<ObjCProtocolDecl *, 8> Protocols;
6679      getIntersectionOfProtocols(*this, Lptr, Rptr, Protocols);
6680
6681      QualType Result = QualType(LHS, 0);
6682      if (!Protocols.empty())
6683        Result = getObjCObjectType(Result, Protocols.data(), Protocols.size());
6684      Result = getObjCObjectPointerType(Result);
6685      return Result;
6686    }
6687  } while ((LDecl = LDecl->getSuperClass()));
6688
6689  return QualType();
6690}
6691
6692bool ASTContext::canAssignObjCInterfaces(const ObjCObjectType *LHS,
6693                                         const ObjCObjectType *RHS) {
6694  assert(LHS->getInterface() && "LHS is not an interface type");
6695  assert(RHS->getInterface() && "RHS is not an interface type");
6696
6697  // Verify that the base decls are compatible: the RHS must be a subclass of
6698  // the LHS.
6699  if (!LHS->getInterface()->isSuperClassOf(RHS->getInterface()))
6700    return false;
6701
6702  // RHS must have a superset of the protocols in the LHS.  If the LHS is not
6703  // protocol qualified at all, then we are good.
6704  if (LHS->getNumProtocols() == 0)
6705    return true;
6706
6707  // Okay, we know the LHS has protocol qualifiers.  If the RHS doesn't,
6708  // more detailed analysis is required.
6709  if (RHS->getNumProtocols() == 0) {
6710    // OK, if LHS is a superclass of RHS *and*
6711    // this superclass is assignment compatible with LHS.
6712    // false otherwise.
6713    bool IsSuperClass =
6714      LHS->getInterface()->isSuperClassOf(RHS->getInterface());
6715    if (IsSuperClass) {
6716      // OK if conversion of LHS to SuperClass results in narrowing of types
6717      // ; i.e., SuperClass may implement at least one of the protocols
6718      // in LHS's protocol list. Example, SuperObj<P1> = lhs<P1,P2> is ok.
6719      // But not SuperObj<P1,P2,P3> = lhs<P1,P2>.
6720      llvm::SmallPtrSet<ObjCProtocolDecl *, 8> SuperClassInheritedProtocols;
6721      CollectInheritedProtocols(RHS->getInterface(), SuperClassInheritedProtocols);
6722      // If super class has no protocols, it is not a match.
6723      if (SuperClassInheritedProtocols.empty())
6724        return false;
6725
6726      for (ObjCObjectType::qual_iterator LHSPI = LHS->qual_begin(),
6727           LHSPE = LHS->qual_end();
6728           LHSPI != LHSPE; LHSPI++) {
6729        bool SuperImplementsProtocol = false;
6730        ObjCProtocolDecl *LHSProto = (*LHSPI);
6731
6732        for (llvm::SmallPtrSet<ObjCProtocolDecl*,8>::iterator I =
6733             SuperClassInheritedProtocols.begin(),
6734             E = SuperClassInheritedProtocols.end(); I != E; ++I) {
6735          ObjCProtocolDecl *SuperClassProto = (*I);
6736          if (SuperClassProto->lookupProtocolNamed(LHSProto->getIdentifier())) {
6737            SuperImplementsProtocol = true;
6738            break;
6739          }
6740        }
6741        if (!SuperImplementsProtocol)
6742          return false;
6743      }
6744      return true;
6745    }
6746    return false;
6747  }
6748
6749  for (ObjCObjectType::qual_iterator LHSPI = LHS->qual_begin(),
6750                                     LHSPE = LHS->qual_end();
6751       LHSPI != LHSPE; LHSPI++) {
6752    bool RHSImplementsProtocol = false;
6753
6754    // If the RHS doesn't implement the protocol on the left, the types
6755    // are incompatible.
6756    for (ObjCObjectType::qual_iterator RHSPI = RHS->qual_begin(),
6757                                       RHSPE = RHS->qual_end();
6758         RHSPI != RHSPE; RHSPI++) {
6759      if ((*RHSPI)->lookupProtocolNamed((*LHSPI)->getIdentifier())) {
6760        RHSImplementsProtocol = true;
6761        break;
6762      }
6763    }
6764    // FIXME: For better diagnostics, consider passing back the protocol name.
6765    if (!RHSImplementsProtocol)
6766      return false;
6767  }
6768  // The RHS implements all protocols listed on the LHS.
6769  return true;
6770}
6771
6772bool ASTContext::areComparableObjCPointerTypes(QualType LHS, QualType RHS) {
6773  // get the "pointed to" types
6774  const ObjCObjectPointerType *LHSOPT = LHS->getAs<ObjCObjectPointerType>();
6775  const ObjCObjectPointerType *RHSOPT = RHS->getAs<ObjCObjectPointerType>();
6776
6777  if (!LHSOPT || !RHSOPT)
6778    return false;
6779
6780  return canAssignObjCInterfaces(LHSOPT, RHSOPT) ||
6781         canAssignObjCInterfaces(RHSOPT, LHSOPT);
6782}
6783
6784bool ASTContext::canBindObjCObjectType(QualType To, QualType From) {
6785  return canAssignObjCInterfaces(
6786                getObjCObjectPointerType(To)->getAs<ObjCObjectPointerType>(),
6787                getObjCObjectPointerType(From)->getAs<ObjCObjectPointerType>());
6788}
6789
6790/// typesAreCompatible - C99 6.7.3p9: For two qualified types to be compatible,
6791/// both shall have the identically qualified version of a compatible type.
6792/// C99 6.2.7p1: Two types have compatible types if their types are the
6793/// same. See 6.7.[2,3,5] for additional rules.
6794bool ASTContext::typesAreCompatible(QualType LHS, QualType RHS,
6795                                    bool CompareUnqualified) {
6796  if (getLangOpts().CPlusPlus)
6797    return hasSameType(LHS, RHS);
6798
6799  return !mergeTypes(LHS, RHS, false, CompareUnqualified).isNull();
6800}
6801
6802bool ASTContext::propertyTypesAreCompatible(QualType LHS, QualType RHS) {
6803  return typesAreCompatible(LHS, RHS);
6804}
6805
6806bool ASTContext::typesAreBlockPointerCompatible(QualType LHS, QualType RHS) {
6807  return !mergeTypes(LHS, RHS, true).isNull();
6808}
6809
6810/// mergeTransparentUnionType - if T is a transparent union type and a member
6811/// of T is compatible with SubType, return the merged type, else return
6812/// QualType()
6813QualType ASTContext::mergeTransparentUnionType(QualType T, QualType SubType,
6814                                               bool OfBlockPointer,
6815                                               bool Unqualified) {
6816  if (const RecordType *UT = T->getAsUnionType()) {
6817    RecordDecl *UD = UT->getDecl();
6818    if (UD->hasAttr<TransparentUnionAttr>()) {
6819      for (RecordDecl::field_iterator it = UD->field_begin(),
6820           itend = UD->field_end(); it != itend; ++it) {
6821        QualType ET = it->getType().getUnqualifiedType();
6822        QualType MT = mergeTypes(ET, SubType, OfBlockPointer, Unqualified);
6823        if (!MT.isNull())
6824          return MT;
6825      }
6826    }
6827  }
6828
6829  return QualType();
6830}
6831
6832/// mergeFunctionArgumentTypes - merge two types which appear as function
6833/// argument types
6834QualType ASTContext::mergeFunctionArgumentTypes(QualType lhs, QualType rhs,
6835                                                bool OfBlockPointer,
6836                                                bool Unqualified) {
6837  // GNU extension: two types are compatible if they appear as a function
6838  // argument, one of the types is a transparent union type and the other
6839  // type is compatible with a union member
6840  QualType lmerge = mergeTransparentUnionType(lhs, rhs, OfBlockPointer,
6841                                              Unqualified);
6842  if (!lmerge.isNull())
6843    return lmerge;
6844
6845  QualType rmerge = mergeTransparentUnionType(rhs, lhs, OfBlockPointer,
6846                                              Unqualified);
6847  if (!rmerge.isNull())
6848    return rmerge;
6849
6850  return mergeTypes(lhs, rhs, OfBlockPointer, Unqualified);
6851}
6852
6853QualType ASTContext::mergeFunctionTypes(QualType lhs, QualType rhs,
6854                                        bool OfBlockPointer,
6855                                        bool Unqualified) {
6856  const FunctionType *lbase = lhs->getAs<FunctionType>();
6857  const FunctionType *rbase = rhs->getAs<FunctionType>();
6858  const FunctionProtoType *lproto = dyn_cast<FunctionProtoType>(lbase);
6859  const FunctionProtoType *rproto = dyn_cast<FunctionProtoType>(rbase);
6860  bool allLTypes = true;
6861  bool allRTypes = true;
6862
6863  // Check return type
6864  QualType retType;
6865  if (OfBlockPointer) {
6866    QualType RHS = rbase->getResultType();
6867    QualType LHS = lbase->getResultType();
6868    bool UnqualifiedResult = Unqualified;
6869    if (!UnqualifiedResult)
6870      UnqualifiedResult = (!RHS.hasQualifiers() && LHS.hasQualifiers());
6871    retType = mergeTypes(LHS, RHS, true, UnqualifiedResult, true);
6872  }
6873  else
6874    retType = mergeTypes(lbase->getResultType(), rbase->getResultType(), false,
6875                         Unqualified);
6876  if (retType.isNull()) return QualType();
6877
6878  if (Unqualified)
6879    retType = retType.getUnqualifiedType();
6880
6881  CanQualType LRetType = getCanonicalType(lbase->getResultType());
6882  CanQualType RRetType = getCanonicalType(rbase->getResultType());
6883  if (Unqualified) {
6884    LRetType = LRetType.getUnqualifiedType();
6885    RRetType = RRetType.getUnqualifiedType();
6886  }
6887
6888  if (getCanonicalType(retType) != LRetType)
6889    allLTypes = false;
6890  if (getCanonicalType(retType) != RRetType)
6891    allRTypes = false;
6892
6893  // FIXME: double check this
6894  // FIXME: should we error if lbase->getRegParmAttr() != 0 &&
6895  //                           rbase->getRegParmAttr() != 0 &&
6896  //                           lbase->getRegParmAttr() != rbase->getRegParmAttr()?
6897  FunctionType::ExtInfo lbaseInfo = lbase->getExtInfo();
6898  FunctionType::ExtInfo rbaseInfo = rbase->getExtInfo();
6899
6900  // Compatible functions must have compatible calling conventions
6901  if (!isSameCallConv(lbaseInfo.getCC(), rbaseInfo.getCC()))
6902    return QualType();
6903
6904  // Regparm is part of the calling convention.
6905  if (lbaseInfo.getHasRegParm() != rbaseInfo.getHasRegParm())
6906    return QualType();
6907  if (lbaseInfo.getRegParm() != rbaseInfo.getRegParm())
6908    return QualType();
6909
6910  if (lbaseInfo.getProducesResult() != rbaseInfo.getProducesResult())
6911    return QualType();
6912
6913  // FIXME: some uses, e.g. conditional exprs, really want this to be 'both'.
6914  bool NoReturn = lbaseInfo.getNoReturn() || rbaseInfo.getNoReturn();
6915
6916  if (lbaseInfo.getNoReturn() != NoReturn)
6917    allLTypes = false;
6918  if (rbaseInfo.getNoReturn() != NoReturn)
6919    allRTypes = false;
6920
6921  FunctionType::ExtInfo einfo = lbaseInfo.withNoReturn(NoReturn);
6922
6923  if (lproto && rproto) { // two C99 style function prototypes
6924    assert(!lproto->hasExceptionSpec() && !rproto->hasExceptionSpec() &&
6925           "C++ shouldn't be here");
6926    unsigned lproto_nargs = lproto->getNumArgs();
6927    unsigned rproto_nargs = rproto->getNumArgs();
6928
6929    // Compatible functions must have the same number of arguments
6930    if (lproto_nargs != rproto_nargs)
6931      return QualType();
6932
6933    // Variadic and non-variadic functions aren't compatible
6934    if (lproto->isVariadic() != rproto->isVariadic())
6935      return QualType();
6936
6937    if (lproto->getTypeQuals() != rproto->getTypeQuals())
6938      return QualType();
6939
6940    if (LangOpts.ObjCAutoRefCount &&
6941        !FunctionTypesMatchOnNSConsumedAttrs(rproto, lproto))
6942      return QualType();
6943
6944    // Check argument compatibility
6945    SmallVector<QualType, 10> types;
6946    for (unsigned i = 0; i < lproto_nargs; i++) {
6947      QualType largtype = lproto->getArgType(i).getUnqualifiedType();
6948      QualType rargtype = rproto->getArgType(i).getUnqualifiedType();
6949      QualType argtype = mergeFunctionArgumentTypes(largtype, rargtype,
6950                                                    OfBlockPointer,
6951                                                    Unqualified);
6952      if (argtype.isNull()) return QualType();
6953
6954      if (Unqualified)
6955        argtype = argtype.getUnqualifiedType();
6956
6957      types.push_back(argtype);
6958      if (Unqualified) {
6959        largtype = largtype.getUnqualifiedType();
6960        rargtype = rargtype.getUnqualifiedType();
6961      }
6962
6963      if (getCanonicalType(argtype) != getCanonicalType(largtype))
6964        allLTypes = false;
6965      if (getCanonicalType(argtype) != getCanonicalType(rargtype))
6966        allRTypes = false;
6967    }
6968
6969    if (allLTypes) return lhs;
6970    if (allRTypes) return rhs;
6971
6972    FunctionProtoType::ExtProtoInfo EPI = lproto->getExtProtoInfo();
6973    EPI.ExtInfo = einfo;
6974    return getFunctionType(retType, types, EPI);
6975  }
6976
6977  if (lproto) allRTypes = false;
6978  if (rproto) allLTypes = false;
6979
6980  const FunctionProtoType *proto = lproto ? lproto : rproto;
6981  if (proto) {
6982    assert(!proto->hasExceptionSpec() && "C++ shouldn't be here");
6983    if (proto->isVariadic()) return QualType();
6984    // Check that the types are compatible with the types that
6985    // would result from default argument promotions (C99 6.7.5.3p15).
6986    // The only types actually affected are promotable integer
6987    // types and floats, which would be passed as a different
6988    // type depending on whether the prototype is visible.
6989    unsigned proto_nargs = proto->getNumArgs();
6990    for (unsigned i = 0; i < proto_nargs; ++i) {
6991      QualType argTy = proto->getArgType(i);
6992
6993      // Look at the converted type of enum types, since that is the type used
6994      // to pass enum values.
6995      if (const EnumType *Enum = argTy->getAs<EnumType>()) {
6996        argTy = Enum->getDecl()->getIntegerType();
6997        if (argTy.isNull())
6998          return QualType();
6999      }
7000
7001      if (argTy->isPromotableIntegerType() ||
7002          getCanonicalType(argTy).getUnqualifiedType() == FloatTy)
7003        return QualType();
7004    }
7005
7006    if (allLTypes) return lhs;
7007    if (allRTypes) return rhs;
7008
7009    FunctionProtoType::ExtProtoInfo EPI = proto->getExtProtoInfo();
7010    EPI.ExtInfo = einfo;
7011    return getFunctionType(retType,
7012                           ArrayRef<QualType>(proto->arg_type_begin(),
7013                                              proto->getNumArgs()),
7014                           EPI);
7015  }
7016
7017  if (allLTypes) return lhs;
7018  if (allRTypes) return rhs;
7019  return getFunctionNoProtoType(retType, einfo);
7020}
7021
7022/// Given that we have an enum type and a non-enum type, try to merge them.
7023static QualType mergeEnumWithInteger(ASTContext &Context, const EnumType *ET,
7024                                     QualType other, bool isBlockReturnType) {
7025  // C99 6.7.2.2p4: Each enumerated type shall be compatible with char,
7026  // a signed integer type, or an unsigned integer type.
7027  // Compatibility is based on the underlying type, not the promotion
7028  // type.
7029  QualType underlyingType = ET->getDecl()->getIntegerType();
7030  if (underlyingType.isNull()) return QualType();
7031  if (Context.hasSameType(underlyingType, other))
7032    return other;
7033
7034  // In block return types, we're more permissive and accept any
7035  // integral type of the same size.
7036  if (isBlockReturnType && other->isIntegerType() &&
7037      Context.getTypeSize(underlyingType) == Context.getTypeSize(other))
7038    return other;
7039
7040  return QualType();
7041}
7042
7043QualType ASTContext::mergeTypes(QualType LHS, QualType RHS,
7044                                bool OfBlockPointer,
7045                                bool Unqualified, bool BlockReturnType) {
7046  // C++ [expr]: If an expression initially has the type "reference to T", the
7047  // type is adjusted to "T" prior to any further analysis, the expression
7048  // designates the object or function denoted by the reference, and the
7049  // expression is an lvalue unless the reference is an rvalue reference and
7050  // the expression is a function call (possibly inside parentheses).
7051  assert(!LHS->getAs<ReferenceType>() && "LHS is a reference type?");
7052  assert(!RHS->getAs<ReferenceType>() && "RHS is a reference type?");
7053
7054  if (Unqualified) {
7055    LHS = LHS.getUnqualifiedType();
7056    RHS = RHS.getUnqualifiedType();
7057  }
7058
7059  QualType LHSCan = getCanonicalType(LHS),
7060           RHSCan = getCanonicalType(RHS);
7061
7062  // If two types are identical, they are compatible.
7063  if (LHSCan == RHSCan)
7064    return LHS;
7065
7066  // If the qualifiers are different, the types aren't compatible... mostly.
7067  Qualifiers LQuals = LHSCan.getLocalQualifiers();
7068  Qualifiers RQuals = RHSCan.getLocalQualifiers();
7069  if (LQuals != RQuals) {
7070    // If any of these qualifiers are different, we have a type
7071    // mismatch.
7072    if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() ||
7073        LQuals.getAddressSpace() != RQuals.getAddressSpace() ||
7074        LQuals.getObjCLifetime() != RQuals.getObjCLifetime())
7075      return QualType();
7076
7077    // Exactly one GC qualifier difference is allowed: __strong is
7078    // okay if the other type has no GC qualifier but is an Objective
7079    // C object pointer (i.e. implicitly strong by default).  We fix
7080    // this by pretending that the unqualified type was actually
7081    // qualified __strong.
7082    Qualifiers::GC GC_L = LQuals.getObjCGCAttr();
7083    Qualifiers::GC GC_R = RQuals.getObjCGCAttr();
7084    assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements");
7085
7086    if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak)
7087      return QualType();
7088
7089    if (GC_L == Qualifiers::Strong && RHSCan->isObjCObjectPointerType()) {
7090      return mergeTypes(LHS, getObjCGCQualType(RHS, Qualifiers::Strong));
7091    }
7092    if (GC_R == Qualifiers::Strong && LHSCan->isObjCObjectPointerType()) {
7093      return mergeTypes(getObjCGCQualType(LHS, Qualifiers::Strong), RHS);
7094    }
7095    return QualType();
7096  }
7097
7098  // Okay, qualifiers are equal.
7099
7100  Type::TypeClass LHSClass = LHSCan->getTypeClass();
7101  Type::TypeClass RHSClass = RHSCan->getTypeClass();
7102
7103  // We want to consider the two function types to be the same for these
7104  // comparisons, just force one to the other.
7105  if (LHSClass == Type::FunctionProto) LHSClass = Type::FunctionNoProto;
7106  if (RHSClass == Type::FunctionProto) RHSClass = Type::FunctionNoProto;
7107
7108  // Same as above for arrays
7109  if (LHSClass == Type::VariableArray || LHSClass == Type::IncompleteArray)
7110    LHSClass = Type::ConstantArray;
7111  if (RHSClass == Type::VariableArray || RHSClass == Type::IncompleteArray)
7112    RHSClass = Type::ConstantArray;
7113
7114  // ObjCInterfaces are just specialized ObjCObjects.
7115  if (LHSClass == Type::ObjCInterface) LHSClass = Type::ObjCObject;
7116  if (RHSClass == Type::ObjCInterface) RHSClass = Type::ObjCObject;
7117
7118  // Canonicalize ExtVector -> Vector.
7119  if (LHSClass == Type::ExtVector) LHSClass = Type::Vector;
7120  if (RHSClass == Type::ExtVector) RHSClass = Type::Vector;
7121
7122  // If the canonical type classes don't match.
7123  if (LHSClass != RHSClass) {
7124    // Note that we only have special rules for turning block enum
7125    // returns into block int returns, not vice-versa.
7126    if (const EnumType* ETy = LHS->getAs<EnumType>()) {
7127      return mergeEnumWithInteger(*this, ETy, RHS, false);
7128    }
7129    if (const EnumType* ETy = RHS->getAs<EnumType>()) {
7130      return mergeEnumWithInteger(*this, ETy, LHS, BlockReturnType);
7131    }
7132    // allow block pointer type to match an 'id' type.
7133    if (OfBlockPointer && !BlockReturnType) {
7134       if (LHS->isObjCIdType() && RHS->isBlockPointerType())
7135         return LHS;
7136      if (RHS->isObjCIdType() && LHS->isBlockPointerType())
7137        return RHS;
7138    }
7139
7140    return QualType();
7141  }
7142
7143  // The canonical type classes match.
7144  switch (LHSClass) {
7145#define TYPE(Class, Base)
7146#define ABSTRACT_TYPE(Class, Base)
7147#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
7148#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
7149#define DEPENDENT_TYPE(Class, Base) case Type::Class:
7150#include "clang/AST/TypeNodes.def"
7151    llvm_unreachable("Non-canonical and dependent types shouldn't get here");
7152
7153  case Type::Auto:
7154  case Type::LValueReference:
7155  case Type::RValueReference:
7156  case Type::MemberPointer:
7157    llvm_unreachable("C++ should never be in mergeTypes");
7158
7159  case Type::ObjCInterface:
7160  case Type::IncompleteArray:
7161  case Type::VariableArray:
7162  case Type::FunctionProto:
7163  case Type::ExtVector:
7164    llvm_unreachable("Types are eliminated above");
7165
7166  case Type::Pointer:
7167  {
7168    // Merge two pointer types, while trying to preserve typedef info
7169    QualType LHSPointee = LHS->getAs<PointerType>()->getPointeeType();
7170    QualType RHSPointee = RHS->getAs<PointerType>()->getPointeeType();
7171    if (Unqualified) {
7172      LHSPointee = LHSPointee.getUnqualifiedType();
7173      RHSPointee = RHSPointee.getUnqualifiedType();
7174    }
7175    QualType ResultType = mergeTypes(LHSPointee, RHSPointee, false,
7176                                     Unqualified);
7177    if (ResultType.isNull()) return QualType();
7178    if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
7179      return LHS;
7180    if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
7181      return RHS;
7182    return getPointerType(ResultType);
7183  }
7184  case Type::BlockPointer:
7185  {
7186    // Merge two block pointer types, while trying to preserve typedef info
7187    QualType LHSPointee = LHS->getAs<BlockPointerType>()->getPointeeType();
7188    QualType RHSPointee = RHS->getAs<BlockPointerType>()->getPointeeType();
7189    if (Unqualified) {
7190      LHSPointee = LHSPointee.getUnqualifiedType();
7191      RHSPointee = RHSPointee.getUnqualifiedType();
7192    }
7193    QualType ResultType = mergeTypes(LHSPointee, RHSPointee, OfBlockPointer,
7194                                     Unqualified);
7195    if (ResultType.isNull()) return QualType();
7196    if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
7197      return LHS;
7198    if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
7199      return RHS;
7200    return getBlockPointerType(ResultType);
7201  }
7202  case Type::Atomic:
7203  {
7204    // Merge two pointer types, while trying to preserve typedef info
7205    QualType LHSValue = LHS->getAs<AtomicType>()->getValueType();
7206    QualType RHSValue = RHS->getAs<AtomicType>()->getValueType();
7207    if (Unqualified) {
7208      LHSValue = LHSValue.getUnqualifiedType();
7209      RHSValue = RHSValue.getUnqualifiedType();
7210    }
7211    QualType ResultType = mergeTypes(LHSValue, RHSValue, false,
7212                                     Unqualified);
7213    if (ResultType.isNull()) return QualType();
7214    if (getCanonicalType(LHSValue) == getCanonicalType(ResultType))
7215      return LHS;
7216    if (getCanonicalType(RHSValue) == getCanonicalType(ResultType))
7217      return RHS;
7218    return getAtomicType(ResultType);
7219  }
7220  case Type::ConstantArray:
7221  {
7222    const ConstantArrayType* LCAT = getAsConstantArrayType(LHS);
7223    const ConstantArrayType* RCAT = getAsConstantArrayType(RHS);
7224    if (LCAT && RCAT && RCAT->getSize() != LCAT->getSize())
7225      return QualType();
7226
7227    QualType LHSElem = getAsArrayType(LHS)->getElementType();
7228    QualType RHSElem = getAsArrayType(RHS)->getElementType();
7229    if (Unqualified) {
7230      LHSElem = LHSElem.getUnqualifiedType();
7231      RHSElem = RHSElem.getUnqualifiedType();
7232    }
7233
7234    QualType ResultType = mergeTypes(LHSElem, RHSElem, false, Unqualified);
7235    if (ResultType.isNull()) return QualType();
7236    if (LCAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
7237      return LHS;
7238    if (RCAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
7239      return RHS;
7240    if (LCAT) return getConstantArrayType(ResultType, LCAT->getSize(),
7241                                          ArrayType::ArraySizeModifier(), 0);
7242    if (RCAT) return getConstantArrayType(ResultType, RCAT->getSize(),
7243                                          ArrayType::ArraySizeModifier(), 0);
7244    const VariableArrayType* LVAT = getAsVariableArrayType(LHS);
7245    const VariableArrayType* RVAT = getAsVariableArrayType(RHS);
7246    if (LVAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
7247      return LHS;
7248    if (RVAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
7249      return RHS;
7250    if (LVAT) {
7251      // FIXME: This isn't correct! But tricky to implement because
7252      // the array's size has to be the size of LHS, but the type
7253      // has to be different.
7254      return LHS;
7255    }
7256    if (RVAT) {
7257      // FIXME: This isn't correct! But tricky to implement because
7258      // the array's size has to be the size of RHS, but the type
7259      // has to be different.
7260      return RHS;
7261    }
7262    if (getCanonicalType(LHSElem) == getCanonicalType(ResultType)) return LHS;
7263    if (getCanonicalType(RHSElem) == getCanonicalType(ResultType)) return RHS;
7264    return getIncompleteArrayType(ResultType,
7265                                  ArrayType::ArraySizeModifier(), 0);
7266  }
7267  case Type::FunctionNoProto:
7268    return mergeFunctionTypes(LHS, RHS, OfBlockPointer, Unqualified);
7269  case Type::Record:
7270  case Type::Enum:
7271    return QualType();
7272  case Type::Builtin:
7273    // Only exactly equal builtin types are compatible, which is tested above.
7274    return QualType();
7275  case Type::Complex:
7276    // Distinct complex types are incompatible.
7277    return QualType();
7278  case Type::Vector:
7279    // FIXME: The merged type should be an ExtVector!
7280    if (areCompatVectorTypes(LHSCan->getAs<VectorType>(),
7281                             RHSCan->getAs<VectorType>()))
7282      return LHS;
7283    return QualType();
7284  case Type::ObjCObject: {
7285    // Check if the types are assignment compatible.
7286    // FIXME: This should be type compatibility, e.g. whether
7287    // "LHS x; RHS x;" at global scope is legal.
7288    const ObjCObjectType* LHSIface = LHS->getAs<ObjCObjectType>();
7289    const ObjCObjectType* RHSIface = RHS->getAs<ObjCObjectType>();
7290    if (canAssignObjCInterfaces(LHSIface, RHSIface))
7291      return LHS;
7292
7293    return QualType();
7294  }
7295  case Type::ObjCObjectPointer: {
7296    if (OfBlockPointer) {
7297      if (canAssignObjCInterfacesInBlockPointer(
7298                                          LHS->getAs<ObjCObjectPointerType>(),
7299                                          RHS->getAs<ObjCObjectPointerType>(),
7300                                          BlockReturnType))
7301        return LHS;
7302      return QualType();
7303    }
7304    if (canAssignObjCInterfaces(LHS->getAs<ObjCObjectPointerType>(),
7305                                RHS->getAs<ObjCObjectPointerType>()))
7306      return LHS;
7307
7308    return QualType();
7309  }
7310  }
7311
7312  llvm_unreachable("Invalid Type::Class!");
7313}
7314
7315bool ASTContext::FunctionTypesMatchOnNSConsumedAttrs(
7316                   const FunctionProtoType *FromFunctionType,
7317                   const FunctionProtoType *ToFunctionType) {
7318  if (FromFunctionType->hasAnyConsumedArgs() !=
7319      ToFunctionType->hasAnyConsumedArgs())
7320    return false;
7321  FunctionProtoType::ExtProtoInfo FromEPI =
7322    FromFunctionType->getExtProtoInfo();
7323  FunctionProtoType::ExtProtoInfo ToEPI =
7324    ToFunctionType->getExtProtoInfo();
7325  if (FromEPI.ConsumedArguments && ToEPI.ConsumedArguments)
7326    for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumArgs();
7327         ArgIdx != NumArgs; ++ArgIdx)  {
7328      if (FromEPI.ConsumedArguments[ArgIdx] !=
7329          ToEPI.ConsumedArguments[ArgIdx])
7330        return false;
7331    }
7332  return true;
7333}
7334
7335/// mergeObjCGCQualifiers - This routine merges ObjC's GC attribute of 'LHS' and
7336/// 'RHS' attributes and returns the merged version; including for function
7337/// return types.
7338QualType ASTContext::mergeObjCGCQualifiers(QualType LHS, QualType RHS) {
7339  QualType LHSCan = getCanonicalType(LHS),
7340  RHSCan = getCanonicalType(RHS);
7341  // If two types are identical, they are compatible.
7342  if (LHSCan == RHSCan)
7343    return LHS;
7344  if (RHSCan->isFunctionType()) {
7345    if (!LHSCan->isFunctionType())
7346      return QualType();
7347    QualType OldReturnType =
7348      cast<FunctionType>(RHSCan.getTypePtr())->getResultType();
7349    QualType NewReturnType =
7350      cast<FunctionType>(LHSCan.getTypePtr())->getResultType();
7351    QualType ResReturnType =
7352      mergeObjCGCQualifiers(NewReturnType, OldReturnType);
7353    if (ResReturnType.isNull())
7354      return QualType();
7355    if (ResReturnType == NewReturnType || ResReturnType == OldReturnType) {
7356      // id foo(); ... __strong id foo(); or: __strong id foo(); ... id foo();
7357      // In either case, use OldReturnType to build the new function type.
7358      const FunctionType *F = LHS->getAs<FunctionType>();
7359      if (const FunctionProtoType *FPT = cast<FunctionProtoType>(F)) {
7360        FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
7361        EPI.ExtInfo = getFunctionExtInfo(LHS);
7362        QualType ResultType
7363          = getFunctionType(OldReturnType,
7364                            ArrayRef<QualType>(FPT->arg_type_begin(),
7365                                               FPT->getNumArgs()),
7366                            EPI);
7367        return ResultType;
7368      }
7369    }
7370    return QualType();
7371  }
7372
7373  // If the qualifiers are different, the types can still be merged.
7374  Qualifiers LQuals = LHSCan.getLocalQualifiers();
7375  Qualifiers RQuals = RHSCan.getLocalQualifiers();
7376  if (LQuals != RQuals) {
7377    // If any of these qualifiers are different, we have a type mismatch.
7378    if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() ||
7379        LQuals.getAddressSpace() != RQuals.getAddressSpace())
7380      return QualType();
7381
7382    // Exactly one GC qualifier difference is allowed: __strong is
7383    // okay if the other type has no GC qualifier but is an Objective
7384    // C object pointer (i.e. implicitly strong by default).  We fix
7385    // this by pretending that the unqualified type was actually
7386    // qualified __strong.
7387    Qualifiers::GC GC_L = LQuals.getObjCGCAttr();
7388    Qualifiers::GC GC_R = RQuals.getObjCGCAttr();
7389    assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements");
7390
7391    if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak)
7392      return QualType();
7393
7394    if (GC_L == Qualifiers::Strong)
7395      return LHS;
7396    if (GC_R == Qualifiers::Strong)
7397      return RHS;
7398    return QualType();
7399  }
7400
7401  if (LHSCan->isObjCObjectPointerType() && RHSCan->isObjCObjectPointerType()) {
7402    QualType LHSBaseQT = LHS->getAs<ObjCObjectPointerType>()->getPointeeType();
7403    QualType RHSBaseQT = RHS->getAs<ObjCObjectPointerType>()->getPointeeType();
7404    QualType ResQT = mergeObjCGCQualifiers(LHSBaseQT, RHSBaseQT);
7405    if (ResQT == LHSBaseQT)
7406      return LHS;
7407    if (ResQT == RHSBaseQT)
7408      return RHS;
7409  }
7410  return QualType();
7411}
7412
7413//===----------------------------------------------------------------------===//
7414//                         Integer Predicates
7415//===----------------------------------------------------------------------===//
7416
7417unsigned ASTContext::getIntWidth(QualType T) const {
7418  if (const EnumType *ET = dyn_cast<EnumType>(T))
7419    T = ET->getDecl()->getIntegerType();
7420  if (T->isBooleanType())
7421    return 1;
7422  // For builtin types, just use the standard type sizing method
7423  return (unsigned)getTypeSize(T);
7424}
7425
7426QualType ASTContext::getCorrespondingUnsignedType(QualType T) const {
7427  assert(T->hasSignedIntegerRepresentation() && "Unexpected type");
7428
7429  // Turn <4 x signed int> -> <4 x unsigned int>
7430  if (const VectorType *VTy = T->getAs<VectorType>())
7431    return getVectorType(getCorrespondingUnsignedType(VTy->getElementType()),
7432                         VTy->getNumElements(), VTy->getVectorKind());
7433
7434  // For enums, we return the unsigned version of the base type.
7435  if (const EnumType *ETy = T->getAs<EnumType>())
7436    T = ETy->getDecl()->getIntegerType();
7437
7438  const BuiltinType *BTy = T->getAs<BuiltinType>();
7439  assert(BTy && "Unexpected signed integer type");
7440  switch (BTy->getKind()) {
7441  case BuiltinType::Char_S:
7442  case BuiltinType::SChar:
7443    return UnsignedCharTy;
7444  case BuiltinType::Short:
7445    return UnsignedShortTy;
7446  case BuiltinType::Int:
7447    return UnsignedIntTy;
7448  case BuiltinType::Long:
7449    return UnsignedLongTy;
7450  case BuiltinType::LongLong:
7451    return UnsignedLongLongTy;
7452  case BuiltinType::Int128:
7453    return UnsignedInt128Ty;
7454  default:
7455    llvm_unreachable("Unexpected signed integer type");
7456  }
7457}
7458
7459ASTMutationListener::~ASTMutationListener() { }
7460
7461
7462//===----------------------------------------------------------------------===//
7463//                          Builtin Type Computation
7464//===----------------------------------------------------------------------===//
7465
7466/// DecodeTypeFromStr - This decodes one type descriptor from Str, advancing the
7467/// pointer over the consumed characters.  This returns the resultant type.  If
7468/// AllowTypeModifiers is false then modifier like * are not parsed, just basic
7469/// types.  This allows "v2i*" to be parsed as a pointer to a v2i instead of
7470/// a vector of "i*".
7471///
7472/// RequiresICE is filled in on return to indicate whether the value is required
7473/// to be an Integer Constant Expression.
7474static QualType DecodeTypeFromStr(const char *&Str, const ASTContext &Context,
7475                                  ASTContext::GetBuiltinTypeError &Error,
7476                                  bool &RequiresICE,
7477                                  bool AllowTypeModifiers) {
7478  // Modifiers.
7479  int HowLong = 0;
7480  bool Signed = false, Unsigned = false;
7481  RequiresICE = false;
7482
7483  // Read the prefixed modifiers first.
7484  bool Done = false;
7485  while (!Done) {
7486    switch (*Str++) {
7487    default: Done = true; --Str; break;
7488    case 'I':
7489      RequiresICE = true;
7490      break;
7491    case 'S':
7492      assert(!Unsigned && "Can't use both 'S' and 'U' modifiers!");
7493      assert(!Signed && "Can't use 'S' modifier multiple times!");
7494      Signed = true;
7495      break;
7496    case 'U':
7497      assert(!Signed && "Can't use both 'S' and 'U' modifiers!");
7498      assert(!Unsigned && "Can't use 'S' modifier multiple times!");
7499      Unsigned = true;
7500      break;
7501    case 'L':
7502      assert(HowLong <= 2 && "Can't have LLLL modifier");
7503      ++HowLong;
7504      break;
7505    }
7506  }
7507
7508  QualType Type;
7509
7510  // Read the base type.
7511  switch (*Str++) {
7512  default: llvm_unreachable("Unknown builtin type letter!");
7513  case 'v':
7514    assert(HowLong == 0 && !Signed && !Unsigned &&
7515           "Bad modifiers used with 'v'!");
7516    Type = Context.VoidTy;
7517    break;
7518  case 'f':
7519    assert(HowLong == 0 && !Signed && !Unsigned &&
7520           "Bad modifiers used with 'f'!");
7521    Type = Context.FloatTy;
7522    break;
7523  case 'd':
7524    assert(HowLong < 2 && !Signed && !Unsigned &&
7525           "Bad modifiers used with 'd'!");
7526    if (HowLong)
7527      Type = Context.LongDoubleTy;
7528    else
7529      Type = Context.DoubleTy;
7530    break;
7531  case 's':
7532    assert(HowLong == 0 && "Bad modifiers used with 's'!");
7533    if (Unsigned)
7534      Type = Context.UnsignedShortTy;
7535    else
7536      Type = Context.ShortTy;
7537    break;
7538  case 'i':
7539    if (HowLong == 3)
7540      Type = Unsigned ? Context.UnsignedInt128Ty : Context.Int128Ty;
7541    else if (HowLong == 2)
7542      Type = Unsigned ? Context.UnsignedLongLongTy : Context.LongLongTy;
7543    else if (HowLong == 1)
7544      Type = Unsigned ? Context.UnsignedLongTy : Context.LongTy;
7545    else
7546      Type = Unsigned ? Context.UnsignedIntTy : Context.IntTy;
7547    break;
7548  case 'c':
7549    assert(HowLong == 0 && "Bad modifiers used with 'c'!");
7550    if (Signed)
7551      Type = Context.SignedCharTy;
7552    else if (Unsigned)
7553      Type = Context.UnsignedCharTy;
7554    else
7555      Type = Context.CharTy;
7556    break;
7557  case 'b': // boolean
7558    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'b'!");
7559    Type = Context.BoolTy;
7560    break;
7561  case 'z':  // size_t.
7562    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'z'!");
7563    Type = Context.getSizeType();
7564    break;
7565  case 'F':
7566    Type = Context.getCFConstantStringType();
7567    break;
7568  case 'G':
7569    Type = Context.getObjCIdType();
7570    break;
7571  case 'H':
7572    Type = Context.getObjCSelType();
7573    break;
7574  case 'M':
7575    Type = Context.getObjCSuperType();
7576    break;
7577  case 'a':
7578    Type = Context.getBuiltinVaListType();
7579    assert(!Type.isNull() && "builtin va list type not initialized!");
7580    break;
7581  case 'A':
7582    // This is a "reference" to a va_list; however, what exactly
7583    // this means depends on how va_list is defined. There are two
7584    // different kinds of va_list: ones passed by value, and ones
7585    // passed by reference.  An example of a by-value va_list is
7586    // x86, where va_list is a char*. An example of by-ref va_list
7587    // is x86-64, where va_list is a __va_list_tag[1]. For x86,
7588    // we want this argument to be a char*&; for x86-64, we want
7589    // it to be a __va_list_tag*.
7590    Type = Context.getBuiltinVaListType();
7591    assert(!Type.isNull() && "builtin va list type not initialized!");
7592    if (Type->isArrayType())
7593      Type = Context.getArrayDecayedType(Type);
7594    else
7595      Type = Context.getLValueReferenceType(Type);
7596    break;
7597  case 'V': {
7598    char *End;
7599    unsigned NumElements = strtoul(Str, &End, 10);
7600    assert(End != Str && "Missing vector size");
7601    Str = End;
7602
7603    QualType ElementType = DecodeTypeFromStr(Str, Context, Error,
7604                                             RequiresICE, false);
7605    assert(!RequiresICE && "Can't require vector ICE");
7606
7607    // TODO: No way to make AltiVec vectors in builtins yet.
7608    Type = Context.getVectorType(ElementType, NumElements,
7609                                 VectorType::GenericVector);
7610    break;
7611  }
7612  case 'E': {
7613    char *End;
7614
7615    unsigned NumElements = strtoul(Str, &End, 10);
7616    assert(End != Str && "Missing vector size");
7617
7618    Str = End;
7619
7620    QualType ElementType = DecodeTypeFromStr(Str, Context, Error, RequiresICE,
7621                                             false);
7622    Type = Context.getExtVectorType(ElementType, NumElements);
7623    break;
7624  }
7625  case 'X': {
7626    QualType ElementType = DecodeTypeFromStr(Str, Context, Error, RequiresICE,
7627                                             false);
7628    assert(!RequiresICE && "Can't require complex ICE");
7629    Type = Context.getComplexType(ElementType);
7630    break;
7631  }
7632  case 'Y' : {
7633    Type = Context.getPointerDiffType();
7634    break;
7635  }
7636  case 'P':
7637    Type = Context.getFILEType();
7638    if (Type.isNull()) {
7639      Error = ASTContext::GE_Missing_stdio;
7640      return QualType();
7641    }
7642    break;
7643  case 'J':
7644    if (Signed)
7645      Type = Context.getsigjmp_bufType();
7646    else
7647      Type = Context.getjmp_bufType();
7648
7649    if (Type.isNull()) {
7650      Error = ASTContext::GE_Missing_setjmp;
7651      return QualType();
7652    }
7653    break;
7654  case 'K':
7655    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'K'!");
7656    Type = Context.getucontext_tType();
7657
7658    if (Type.isNull()) {
7659      Error = ASTContext::GE_Missing_ucontext;
7660      return QualType();
7661    }
7662    break;
7663  case 'p':
7664    Type = Context.getProcessIDType();
7665    break;
7666  }
7667
7668  // If there are modifiers and if we're allowed to parse them, go for it.
7669  Done = !AllowTypeModifiers;
7670  while (!Done) {
7671    switch (char c = *Str++) {
7672    default: Done = true; --Str; break;
7673    case '*':
7674    case '&': {
7675      // Both pointers and references can have their pointee types
7676      // qualified with an address space.
7677      char *End;
7678      unsigned AddrSpace = strtoul(Str, &End, 10);
7679      if (End != Str && AddrSpace != 0) {
7680        Type = Context.getAddrSpaceQualType(Type, AddrSpace);
7681        Str = End;
7682      }
7683      if (c == '*')
7684        Type = Context.getPointerType(Type);
7685      else
7686        Type = Context.getLValueReferenceType(Type);
7687      break;
7688    }
7689    // FIXME: There's no way to have a built-in with an rvalue ref arg.
7690    case 'C':
7691      Type = Type.withConst();
7692      break;
7693    case 'D':
7694      Type = Context.getVolatileType(Type);
7695      break;
7696    case 'R':
7697      Type = Type.withRestrict();
7698      break;
7699    }
7700  }
7701
7702  assert((!RequiresICE || Type->isIntegralOrEnumerationType()) &&
7703         "Integer constant 'I' type must be an integer");
7704
7705  return Type;
7706}
7707
7708/// GetBuiltinType - Return the type for the specified builtin.
7709QualType ASTContext::GetBuiltinType(unsigned Id,
7710                                    GetBuiltinTypeError &Error,
7711                                    unsigned *IntegerConstantArgs) const {
7712  const char *TypeStr = BuiltinInfo.GetTypeString(Id);
7713
7714  SmallVector<QualType, 8> ArgTypes;
7715
7716  bool RequiresICE = false;
7717  Error = GE_None;
7718  QualType ResType = DecodeTypeFromStr(TypeStr, *this, Error,
7719                                       RequiresICE, true);
7720  if (Error != GE_None)
7721    return QualType();
7722
7723  assert(!RequiresICE && "Result of intrinsic cannot be required to be an ICE");
7724
7725  while (TypeStr[0] && TypeStr[0] != '.') {
7726    QualType Ty = DecodeTypeFromStr(TypeStr, *this, Error, RequiresICE, true);
7727    if (Error != GE_None)
7728      return QualType();
7729
7730    // If this argument is required to be an IntegerConstantExpression and the
7731    // caller cares, fill in the bitmask we return.
7732    if (RequiresICE && IntegerConstantArgs)
7733      *IntegerConstantArgs |= 1 << ArgTypes.size();
7734
7735    // Do array -> pointer decay.  The builtin should use the decayed type.
7736    if (Ty->isArrayType())
7737      Ty = getArrayDecayedType(Ty);
7738
7739    ArgTypes.push_back(Ty);
7740  }
7741
7742  assert((TypeStr[0] != '.' || TypeStr[1] == 0) &&
7743         "'.' should only occur at end of builtin type list!");
7744
7745  FunctionType::ExtInfo EI;
7746  if (BuiltinInfo.isNoReturn(Id)) EI = EI.withNoReturn(true);
7747
7748  bool Variadic = (TypeStr[0] == '.');
7749
7750  // We really shouldn't be making a no-proto type here, especially in C++.
7751  if (ArgTypes.empty() && Variadic)
7752    return getFunctionNoProtoType(ResType, EI);
7753
7754  FunctionProtoType::ExtProtoInfo EPI;
7755  EPI.ExtInfo = EI;
7756  EPI.Variadic = Variadic;
7757
7758  return getFunctionType(ResType, ArgTypes, EPI);
7759}
7760
7761GVALinkage ASTContext::GetGVALinkageForFunction(const FunctionDecl *FD) {
7762  GVALinkage External = GVA_StrongExternal;
7763
7764  Linkage L = FD->getLinkage();
7765  switch (L) {
7766  case NoLinkage:
7767  case InternalLinkage:
7768  case UniqueExternalLinkage:
7769    return GVA_Internal;
7770
7771  case ExternalLinkage:
7772    switch (FD->getTemplateSpecializationKind()) {
7773    case TSK_Undeclared:
7774    case TSK_ExplicitSpecialization:
7775      External = GVA_StrongExternal;
7776      break;
7777
7778    case TSK_ExplicitInstantiationDefinition:
7779      return GVA_ExplicitTemplateInstantiation;
7780
7781    case TSK_ExplicitInstantiationDeclaration:
7782    case TSK_ImplicitInstantiation:
7783      External = GVA_TemplateInstantiation;
7784      break;
7785    }
7786  }
7787
7788  if (!FD->isInlined())
7789    return External;
7790
7791  if (!getLangOpts().CPlusPlus || FD->hasAttr<GNUInlineAttr>()) {
7792    // GNU or C99 inline semantics. Determine whether this symbol should be
7793    // externally visible.
7794    if (FD->isInlineDefinitionExternallyVisible())
7795      return External;
7796
7797    // C99 inline semantics, where the symbol is not externally visible.
7798    return GVA_C99Inline;
7799  }
7800
7801  // C++0x [temp.explicit]p9:
7802  //   [ Note: The intent is that an inline function that is the subject of
7803  //   an explicit instantiation declaration will still be implicitly
7804  //   instantiated when used so that the body can be considered for
7805  //   inlining, but that no out-of-line copy of the inline function would be
7806  //   generated in the translation unit. -- end note ]
7807  if (FD->getTemplateSpecializationKind()
7808                                       == TSK_ExplicitInstantiationDeclaration)
7809    return GVA_C99Inline;
7810
7811  return GVA_CXXInline;
7812}
7813
7814GVALinkage ASTContext::GetGVALinkageForVariable(const VarDecl *VD) {
7815  // If this is a static data member, compute the kind of template
7816  // specialization. Otherwise, this variable is not part of a
7817  // template.
7818  TemplateSpecializationKind TSK = TSK_Undeclared;
7819  if (VD->isStaticDataMember())
7820    TSK = VD->getTemplateSpecializationKind();
7821
7822  Linkage L = VD->getLinkage();
7823
7824  switch (L) {
7825  case NoLinkage:
7826  case InternalLinkage:
7827  case UniqueExternalLinkage:
7828    return GVA_Internal;
7829
7830  case ExternalLinkage:
7831    switch (TSK) {
7832    case TSK_Undeclared:
7833    case TSK_ExplicitSpecialization:
7834      return GVA_StrongExternal;
7835
7836    case TSK_ExplicitInstantiationDeclaration:
7837      llvm_unreachable("Variable should not be instantiated");
7838      // Fall through to treat this like any other instantiation.
7839
7840    case TSK_ExplicitInstantiationDefinition:
7841      return GVA_ExplicitTemplateInstantiation;
7842
7843    case TSK_ImplicitInstantiation:
7844      return GVA_TemplateInstantiation;
7845    }
7846  }
7847
7848  llvm_unreachable("Invalid Linkage!");
7849}
7850
7851bool ASTContext::DeclMustBeEmitted(const Decl *D) {
7852  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
7853    if (!VD->isFileVarDecl())
7854      return false;
7855  } else if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
7856    // We never need to emit an uninstantiated function template.
7857    if (FD->getTemplatedKind() == FunctionDecl::TK_FunctionTemplate)
7858      return false;
7859  } else
7860    return false;
7861
7862  // If this is a member of a class template, we do not need to emit it.
7863  if (D->getDeclContext()->isDependentContext())
7864    return false;
7865
7866  // Weak references don't produce any output by themselves.
7867  if (D->hasAttr<WeakRefAttr>())
7868    return false;
7869
7870  // Aliases and used decls are required.
7871  if (D->hasAttr<AliasAttr>() || D->hasAttr<UsedAttr>())
7872    return true;
7873
7874  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
7875    // Forward declarations aren't required.
7876    if (!FD->doesThisDeclarationHaveABody())
7877      return FD->doesDeclarationForceExternallyVisibleDefinition();
7878
7879    // Constructors and destructors are required.
7880    if (FD->hasAttr<ConstructorAttr>() || FD->hasAttr<DestructorAttr>())
7881      return true;
7882
7883    // The key function for a class is required.  This rule only comes
7884    // into play when inline functions can be key functions, though.
7885    if (getTargetInfo().getCXXABI().canKeyFunctionBeInline()) {
7886      if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
7887        const CXXRecordDecl *RD = MD->getParent();
7888        if (MD->isOutOfLine() && RD->isDynamicClass()) {
7889          const CXXMethodDecl *KeyFunc = getCurrentKeyFunction(RD);
7890          if (KeyFunc && KeyFunc->getCanonicalDecl() == MD->getCanonicalDecl())
7891            return true;
7892        }
7893      }
7894    }
7895
7896    GVALinkage Linkage = GetGVALinkageForFunction(FD);
7897
7898    // static, static inline, always_inline, and extern inline functions can
7899    // always be deferred.  Normal inline functions can be deferred in C99/C++.
7900    // Implicit template instantiations can also be deferred in C++.
7901    if (Linkage == GVA_Internal  || Linkage == GVA_C99Inline ||
7902        Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation)
7903      return false;
7904    return true;
7905  }
7906
7907  const VarDecl *VD = cast<VarDecl>(D);
7908  assert(VD->isFileVarDecl() && "Expected file scoped var");
7909
7910  if (VD->isThisDeclarationADefinition() == VarDecl::DeclarationOnly)
7911    return false;
7912
7913  // Variables that can be needed in other TUs are required.
7914  GVALinkage L = GetGVALinkageForVariable(VD);
7915  if (L != GVA_Internal && L != GVA_TemplateInstantiation)
7916    return true;
7917
7918  // Variables that have destruction with side-effects are required.
7919  if (VD->getType().isDestructedType())
7920    return true;
7921
7922  // Variables that have initialization with side-effects are required.
7923  if (VD->getInit() && VD->getInit()->HasSideEffects(*this))
7924    return true;
7925
7926  return false;
7927}
7928
7929CallingConv ASTContext::getDefaultCXXMethodCallConv(bool isVariadic) {
7930  // Pass through to the C++ ABI object
7931  return ABI->getDefaultMethodCallConv(isVariadic);
7932}
7933
7934CallingConv ASTContext::getCanonicalCallConv(CallingConv CC) const {
7935  if (CC == CC_C && !LangOpts.MRTD &&
7936      getTargetInfo().getCXXABI().isMemberFunctionCCDefault())
7937    return CC_Default;
7938  return CC;
7939}
7940
7941bool ASTContext::isNearlyEmpty(const CXXRecordDecl *RD) const {
7942  // Pass through to the C++ ABI object
7943  return ABI->isNearlyEmpty(RD);
7944}
7945
7946MangleContext *ASTContext::createMangleContext() {
7947  switch (Target->getCXXABI().getKind()) {
7948  case TargetCXXABI::GenericAArch64:
7949  case TargetCXXABI::GenericItanium:
7950  case TargetCXXABI::GenericARM:
7951  case TargetCXXABI::iOS:
7952    return createItaniumMangleContext(*this, getDiagnostics());
7953  case TargetCXXABI::Microsoft:
7954    return createMicrosoftMangleContext(*this, getDiagnostics());
7955  }
7956  llvm_unreachable("Unsupported ABI");
7957}
7958
7959CXXABI::~CXXABI() {}
7960
7961size_t ASTContext::getSideTableAllocatedMemory() const {
7962  return ASTRecordLayouts.getMemorySize()
7963    + llvm::capacity_in_bytes(ObjCLayouts)
7964    + llvm::capacity_in_bytes(KeyFunctions)
7965    + llvm::capacity_in_bytes(ObjCImpls)
7966    + llvm::capacity_in_bytes(BlockVarCopyInits)
7967    + llvm::capacity_in_bytes(DeclAttrs)
7968    + llvm::capacity_in_bytes(InstantiatedFromStaticDataMember)
7969    + llvm::capacity_in_bytes(InstantiatedFromUsingDecl)
7970    + llvm::capacity_in_bytes(InstantiatedFromUsingShadowDecl)
7971    + llvm::capacity_in_bytes(InstantiatedFromUnnamedFieldDecl)
7972    + llvm::capacity_in_bytes(OverriddenMethods)
7973    + llvm::capacity_in_bytes(Types)
7974    + llvm::capacity_in_bytes(VariableArrayTypes)
7975    + llvm::capacity_in_bytes(ClassScopeSpecializationPattern);
7976}
7977
7978void ASTContext::addUnnamedTag(const TagDecl *Tag) {
7979  // FIXME: This mangling should be applied to function local classes too
7980  if (!Tag->getName().empty() || Tag->getTypedefNameForAnonDecl() ||
7981      !isa<CXXRecordDecl>(Tag->getParent()) || Tag->getLinkage() != ExternalLinkage)
7982    return;
7983
7984  std::pair<llvm::DenseMap<const DeclContext *, unsigned>::iterator, bool> P =
7985    UnnamedMangleContexts.insert(std::make_pair(Tag->getParent(), 0));
7986  UnnamedMangleNumbers.insert(std::make_pair(Tag, P.first->second++));
7987}
7988
7989int ASTContext::getUnnamedTagManglingNumber(const TagDecl *Tag) const {
7990  llvm::DenseMap<const TagDecl *, unsigned>::const_iterator I =
7991    UnnamedMangleNumbers.find(Tag);
7992  return I != UnnamedMangleNumbers.end() ? I->second : -1;
7993}
7994
7995unsigned ASTContext::getLambdaManglingNumber(CXXMethodDecl *CallOperator) {
7996  CXXRecordDecl *Lambda = CallOperator->getParent();
7997  return LambdaMangleContexts[Lambda->getDeclContext()]
7998           .getManglingNumber(CallOperator);
7999}
8000
8001
8002void ASTContext::setParameterIndex(const ParmVarDecl *D, unsigned int index) {
8003  ParamIndices[D] = index;
8004}
8005
8006unsigned ASTContext::getParameterIndex(const ParmVarDecl *D) const {
8007  ParameterIndexTable::const_iterator I = ParamIndices.find(D);
8008  assert(I != ParamIndices.end() &&
8009         "ParmIndices lacks entry set by ParmVarDecl");
8010  return I->second;
8011}
8012