ASTContext.cpp revision 187ab37a05b8f7015b9f39cc8cd9129a0c6d0b48
1//===--- ASTContext.cpp - Context to hold long-lived AST nodes ------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements the ASTContext interface.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/AST/ASTContext.h"
15#include "clang/AST/CharUnits.h"
16#include "clang/AST/DeclCXX.h"
17#include "clang/AST/DeclObjC.h"
18#include "clang/AST/DeclTemplate.h"
19#include "clang/AST/TypeLoc.h"
20#include "clang/AST/Expr.h"
21#include "clang/AST/ExternalASTSource.h"
22#include "clang/AST/RecordLayout.h"
23#include "clang/Basic/Builtins.h"
24#include "clang/Basic/SourceManager.h"
25#include "clang/Basic/TargetInfo.h"
26#include "llvm/ADT/SmallString.h"
27#include "llvm/ADT/StringExtras.h"
28#include "llvm/Support/MathExtras.h"
29#include "llvm/Support/raw_ostream.h"
30#include "RecordLayoutBuilder.h"
31
32using namespace clang;
33
34enum FloatingRank {
35  FloatRank, DoubleRank, LongDoubleRank
36};
37
38ASTContext::ASTContext(const LangOptions& LOpts, SourceManager &SM,
39                       const TargetInfo &t,
40                       IdentifierTable &idents, SelectorTable &sels,
41                       Builtin::Context &builtins,
42                       bool FreeMem, unsigned size_reserve) :
43  GlobalNestedNameSpecifier(0), CFConstantStringTypeDecl(0),
44  ObjCFastEnumerationStateTypeDecl(0), FILEDecl(0), jmp_bufDecl(0),
45  sigjmp_bufDecl(0), BlockDescriptorType(0), BlockDescriptorExtendedType(0),
46  SourceMgr(SM), LangOpts(LOpts),
47  LoadedExternalComments(false), FreeMemory(FreeMem), Target(t),
48  Idents(idents), Selectors(sels),
49  BuiltinInfo(builtins), ExternalSource(0), PrintingPolicy(LOpts) {
50  ObjCIdRedefinitionType = QualType();
51  ObjCClassRedefinitionType = QualType();
52  ObjCSelRedefinitionType = QualType();
53  if (size_reserve > 0) Types.reserve(size_reserve);
54  TUDecl = TranslationUnitDecl::Create(*this);
55  InitBuiltinTypes();
56}
57
58ASTContext::~ASTContext() {
59  // Release the DenseMaps associated with DeclContext objects.
60  // FIXME: Is this the ideal solution?
61  ReleaseDeclContextMaps();
62
63  // Release all of the memory associated with overridden C++ methods.
64  for (llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::iterator
65         OM = OverriddenMethods.begin(), OMEnd = OverriddenMethods.end();
66       OM != OMEnd; ++OM)
67    OM->second.Destroy();
68
69  if (FreeMemory) {
70    // Deallocate all the types.
71    while (!Types.empty()) {
72      Types.back()->Destroy(*this);
73      Types.pop_back();
74    }
75
76    for (llvm::FoldingSet<ExtQuals>::iterator
77         I = ExtQualNodes.begin(), E = ExtQualNodes.end(); I != E; ) {
78      // Increment in loop to prevent using deallocated memory.
79      Deallocate(&*I++);
80    }
81
82    for (llvm::DenseMap<const RecordDecl*, const ASTRecordLayout*>::iterator
83         I = ASTRecordLayouts.begin(), E = ASTRecordLayouts.end(); I != E; ) {
84      // Increment in loop to prevent using deallocated memory.
85      if (ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second))
86        R->Destroy(*this);
87    }
88
89    for (llvm::DenseMap<const ObjCContainerDecl*,
90         const ASTRecordLayout*>::iterator
91         I = ObjCLayouts.begin(), E = ObjCLayouts.end(); I != E; ) {
92      // Increment in loop to prevent using deallocated memory.
93      if (ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second))
94        R->Destroy(*this);
95    }
96  }
97
98  // Destroy nested-name-specifiers.
99  for (llvm::FoldingSet<NestedNameSpecifier>::iterator
100         NNS = NestedNameSpecifiers.begin(),
101         NNSEnd = NestedNameSpecifiers.end();
102       NNS != NNSEnd; ) {
103    // Increment in loop to prevent using deallocated memory.
104    (*NNS++).Destroy(*this);
105  }
106
107  if (GlobalNestedNameSpecifier)
108    GlobalNestedNameSpecifier->Destroy(*this);
109
110  TUDecl->Destroy(*this);
111}
112
113void
114ASTContext::setExternalSource(llvm::OwningPtr<ExternalASTSource> &Source) {
115  ExternalSource.reset(Source.take());
116}
117
118void ASTContext::PrintStats() const {
119  fprintf(stderr, "*** AST Context Stats:\n");
120  fprintf(stderr, "  %d types total.\n", (int)Types.size());
121
122  unsigned counts[] = {
123#define TYPE(Name, Parent) 0,
124#define ABSTRACT_TYPE(Name, Parent)
125#include "clang/AST/TypeNodes.def"
126    0 // Extra
127  };
128
129  for (unsigned i = 0, e = Types.size(); i != e; ++i) {
130    Type *T = Types[i];
131    counts[(unsigned)T->getTypeClass()]++;
132  }
133
134  unsigned Idx = 0;
135  unsigned TotalBytes = 0;
136#define TYPE(Name, Parent)                                              \
137  if (counts[Idx])                                                      \
138    fprintf(stderr, "    %d %s types\n", (int)counts[Idx], #Name);      \
139  TotalBytes += counts[Idx] * sizeof(Name##Type);                       \
140  ++Idx;
141#define ABSTRACT_TYPE(Name, Parent)
142#include "clang/AST/TypeNodes.def"
143
144  fprintf(stderr, "Total bytes = %d\n", int(TotalBytes));
145
146  if (ExternalSource.get()) {
147    fprintf(stderr, "\n");
148    ExternalSource->PrintStats();
149  }
150}
151
152
153void ASTContext::InitBuiltinType(CanQualType &R, BuiltinType::Kind K) {
154  BuiltinType *Ty = new (*this, TypeAlignment) BuiltinType(K);
155  R = CanQualType::CreateUnsafe(QualType(Ty, 0));
156  Types.push_back(Ty);
157}
158
159void ASTContext::InitBuiltinTypes() {
160  assert(VoidTy.isNull() && "Context reinitialized?");
161
162  // C99 6.2.5p19.
163  InitBuiltinType(VoidTy,              BuiltinType::Void);
164
165  // C99 6.2.5p2.
166  InitBuiltinType(BoolTy,              BuiltinType::Bool);
167  // C99 6.2.5p3.
168  if (LangOpts.CharIsSigned)
169    InitBuiltinType(CharTy,            BuiltinType::Char_S);
170  else
171    InitBuiltinType(CharTy,            BuiltinType::Char_U);
172  // C99 6.2.5p4.
173  InitBuiltinType(SignedCharTy,        BuiltinType::SChar);
174  InitBuiltinType(ShortTy,             BuiltinType::Short);
175  InitBuiltinType(IntTy,               BuiltinType::Int);
176  InitBuiltinType(LongTy,              BuiltinType::Long);
177  InitBuiltinType(LongLongTy,          BuiltinType::LongLong);
178
179  // C99 6.2.5p6.
180  InitBuiltinType(UnsignedCharTy,      BuiltinType::UChar);
181  InitBuiltinType(UnsignedShortTy,     BuiltinType::UShort);
182  InitBuiltinType(UnsignedIntTy,       BuiltinType::UInt);
183  InitBuiltinType(UnsignedLongTy,      BuiltinType::ULong);
184  InitBuiltinType(UnsignedLongLongTy,  BuiltinType::ULongLong);
185
186  // C99 6.2.5p10.
187  InitBuiltinType(FloatTy,             BuiltinType::Float);
188  InitBuiltinType(DoubleTy,            BuiltinType::Double);
189  InitBuiltinType(LongDoubleTy,        BuiltinType::LongDouble);
190
191  // GNU extension, 128-bit integers.
192  InitBuiltinType(Int128Ty,            BuiltinType::Int128);
193  InitBuiltinType(UnsignedInt128Ty,    BuiltinType::UInt128);
194
195  if (LangOpts.CPlusPlus) // C++ 3.9.1p5
196    InitBuiltinType(WCharTy,           BuiltinType::WChar);
197  else // C99
198    WCharTy = getFromTargetType(Target.getWCharType());
199
200  if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
201    InitBuiltinType(Char16Ty,           BuiltinType::Char16);
202  else // C99
203    Char16Ty = getFromTargetType(Target.getChar16Type());
204
205  if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
206    InitBuiltinType(Char32Ty,           BuiltinType::Char32);
207  else // C99
208    Char32Ty = getFromTargetType(Target.getChar32Type());
209
210  // Placeholder type for functions.
211  InitBuiltinType(OverloadTy,          BuiltinType::Overload);
212
213  // Placeholder type for type-dependent expressions whose type is
214  // completely unknown. No code should ever check a type against
215  // DependentTy and users should never see it; however, it is here to
216  // help diagnose failures to properly check for type-dependent
217  // expressions.
218  InitBuiltinType(DependentTy,         BuiltinType::Dependent);
219
220  // Placeholder type for C++0x auto declarations whose real type has
221  // not yet been deduced.
222  InitBuiltinType(UndeducedAutoTy, BuiltinType::UndeducedAuto);
223
224  // C99 6.2.5p11.
225  FloatComplexTy      = getComplexType(FloatTy);
226  DoubleComplexTy     = getComplexType(DoubleTy);
227  LongDoubleComplexTy = getComplexType(LongDoubleTy);
228
229  BuiltinVaListType = QualType();
230
231  // "Builtin" typedefs set by Sema::ActOnTranslationUnitScope().
232  ObjCIdTypedefType = QualType();
233  ObjCClassTypedefType = QualType();
234  ObjCSelTypedefType = QualType();
235
236  // Builtin types for 'id', 'Class', and 'SEL'.
237  InitBuiltinType(ObjCBuiltinIdTy, BuiltinType::ObjCId);
238  InitBuiltinType(ObjCBuiltinClassTy, BuiltinType::ObjCClass);
239  InitBuiltinType(ObjCBuiltinSelTy, BuiltinType::ObjCSel);
240
241  ObjCConstantStringType = QualType();
242
243  // void * type
244  VoidPtrTy = getPointerType(VoidTy);
245
246  // nullptr type (C++0x 2.14.7)
247  InitBuiltinType(NullPtrTy,           BuiltinType::NullPtr);
248}
249
250MemberSpecializationInfo *
251ASTContext::getInstantiatedFromStaticDataMember(const VarDecl *Var) {
252  assert(Var->isStaticDataMember() && "Not a static data member");
253  llvm::DenseMap<const VarDecl *, MemberSpecializationInfo *>::iterator Pos
254    = InstantiatedFromStaticDataMember.find(Var);
255  if (Pos == InstantiatedFromStaticDataMember.end())
256    return 0;
257
258  return Pos->second;
259}
260
261void
262ASTContext::setInstantiatedFromStaticDataMember(VarDecl *Inst, VarDecl *Tmpl,
263                                                TemplateSpecializationKind TSK) {
264  assert(Inst->isStaticDataMember() && "Not a static data member");
265  assert(Tmpl->isStaticDataMember() && "Not a static data member");
266  assert(!InstantiatedFromStaticDataMember[Inst] &&
267         "Already noted what static data member was instantiated from");
268  InstantiatedFromStaticDataMember[Inst]
269    = new (*this) MemberSpecializationInfo(Tmpl, TSK);
270}
271
272NamedDecl *
273ASTContext::getInstantiatedFromUsingDecl(UsingDecl *UUD) {
274  llvm::DenseMap<UsingDecl *, NamedDecl *>::const_iterator Pos
275    = InstantiatedFromUsingDecl.find(UUD);
276  if (Pos == InstantiatedFromUsingDecl.end())
277    return 0;
278
279  return Pos->second;
280}
281
282void
283ASTContext::setInstantiatedFromUsingDecl(UsingDecl *Inst, NamedDecl *Pattern) {
284  assert((isa<UsingDecl>(Pattern) ||
285          isa<UnresolvedUsingValueDecl>(Pattern) ||
286          isa<UnresolvedUsingTypenameDecl>(Pattern)) &&
287         "pattern decl is not a using decl");
288  assert(!InstantiatedFromUsingDecl[Inst] && "pattern already exists");
289  InstantiatedFromUsingDecl[Inst] = Pattern;
290}
291
292UsingShadowDecl *
293ASTContext::getInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst) {
294  llvm::DenseMap<UsingShadowDecl*, UsingShadowDecl*>::const_iterator Pos
295    = InstantiatedFromUsingShadowDecl.find(Inst);
296  if (Pos == InstantiatedFromUsingShadowDecl.end())
297    return 0;
298
299  return Pos->second;
300}
301
302void
303ASTContext::setInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst,
304                                               UsingShadowDecl *Pattern) {
305  assert(!InstantiatedFromUsingShadowDecl[Inst] && "pattern already exists");
306  InstantiatedFromUsingShadowDecl[Inst] = Pattern;
307}
308
309FieldDecl *ASTContext::getInstantiatedFromUnnamedFieldDecl(FieldDecl *Field) {
310  llvm::DenseMap<FieldDecl *, FieldDecl *>::iterator Pos
311    = InstantiatedFromUnnamedFieldDecl.find(Field);
312  if (Pos == InstantiatedFromUnnamedFieldDecl.end())
313    return 0;
314
315  return Pos->second;
316}
317
318void ASTContext::setInstantiatedFromUnnamedFieldDecl(FieldDecl *Inst,
319                                                     FieldDecl *Tmpl) {
320  assert(!Inst->getDeclName() && "Instantiated field decl is not unnamed");
321  assert(!Tmpl->getDeclName() && "Template field decl is not unnamed");
322  assert(!InstantiatedFromUnnamedFieldDecl[Inst] &&
323         "Already noted what unnamed field was instantiated from");
324
325  InstantiatedFromUnnamedFieldDecl[Inst] = Tmpl;
326}
327
328CXXMethodVector::iterator CXXMethodVector::begin() const {
329  if ((Storage & 0x01) == 0)
330    return reinterpret_cast<iterator>(&Storage);
331
332  vector_type *Vec = reinterpret_cast<vector_type *>(Storage & ~0x01);
333  return &Vec->front();
334}
335
336CXXMethodVector::iterator CXXMethodVector::end() const {
337  if ((Storage & 0x01) == 0) {
338    if (Storage == 0)
339      return reinterpret_cast<iterator>(&Storage);
340
341    return reinterpret_cast<iterator>(&Storage) + 1;
342  }
343
344  vector_type *Vec = reinterpret_cast<vector_type *>(Storage & ~0x01);
345  return &Vec->front() + Vec->size();
346}
347
348void CXXMethodVector::push_back(const CXXMethodDecl *Method) {
349  if (Storage == 0) {
350    // 0 -> 1 element.
351    Storage = reinterpret_cast<uintptr_t>(Method);
352    return;
353  }
354
355  vector_type *Vec;
356  if ((Storage & 0x01) == 0) {
357    // 1 -> 2 elements. Allocate a new vector and push the element into that
358    // vector.
359    Vec = new vector_type;
360    Vec->push_back(reinterpret_cast<const CXXMethodDecl *>(Storage));
361    Storage = reinterpret_cast<uintptr_t>(Vec) | 0x01;
362  } else
363    Vec = reinterpret_cast<vector_type *>(Storage & ~0x01);
364
365  // Add the new method to the vector.
366  Vec->push_back(Method);
367}
368
369void CXXMethodVector::Destroy() {
370  if (Storage & 0x01)
371    delete reinterpret_cast<vector_type *>(Storage & ~0x01);
372
373  Storage = 0;
374}
375
376
377ASTContext::overridden_cxx_method_iterator
378ASTContext::overridden_methods_begin(const CXXMethodDecl *Method) const {
379  llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
380    = OverriddenMethods.find(Method);
381  if (Pos == OverriddenMethods.end())
382    return 0;
383
384  return Pos->second.begin();
385}
386
387ASTContext::overridden_cxx_method_iterator
388ASTContext::overridden_methods_end(const CXXMethodDecl *Method) const {
389  llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
390    = OverriddenMethods.find(Method);
391  if (Pos == OverriddenMethods.end())
392    return 0;
393
394  return Pos->second.end();
395}
396
397void ASTContext::addOverriddenMethod(const CXXMethodDecl *Method,
398                                     const CXXMethodDecl *Overridden) {
399  OverriddenMethods[Method].push_back(Overridden);
400}
401
402namespace {
403  class BeforeInTranslationUnit
404    : std::binary_function<SourceRange, SourceRange, bool> {
405    SourceManager *SourceMgr;
406
407  public:
408    explicit BeforeInTranslationUnit(SourceManager *SM) : SourceMgr(SM) { }
409
410    bool operator()(SourceRange X, SourceRange Y) {
411      return SourceMgr->isBeforeInTranslationUnit(X.getBegin(), Y.getBegin());
412    }
413  };
414}
415
416/// \brief Determine whether the given comment is a Doxygen-style comment.
417///
418/// \param Start the start of the comment text.
419///
420/// \param End the end of the comment text.
421///
422/// \param Member whether we want to check whether this is a member comment
423/// (which requires a < after the Doxygen-comment delimiter). Otherwise,
424/// we only return true when we find a non-member comment.
425static bool
426isDoxygenComment(SourceManager &SourceMgr, SourceRange Comment,
427                 bool Member = false) {
428  const char *BufferStart
429    = SourceMgr.getBufferData(SourceMgr.getFileID(Comment.getBegin())).first;
430  const char *Start = BufferStart + SourceMgr.getFileOffset(Comment.getBegin());
431  const char* End = BufferStart + SourceMgr.getFileOffset(Comment.getEnd());
432
433  if (End - Start < 4)
434    return false;
435
436  assert(Start[0] == '/' && "Not a comment?");
437  if (Start[1] == '*' && !(Start[2] == '!' || Start[2] == '*'))
438    return false;
439  if (Start[1] == '/' && !(Start[2] == '!' || Start[2] == '/'))
440    return false;
441
442  return (Start[3] == '<') == Member;
443}
444
445/// \brief Retrieve the comment associated with the given declaration, if
446/// it has one.
447const char *ASTContext::getCommentForDecl(const Decl *D) {
448  if (!D)
449    return 0;
450
451  // Check whether we have cached a comment string for this declaration
452  // already.
453  llvm::DenseMap<const Decl *, std::string>::iterator Pos
454    = DeclComments.find(D);
455  if (Pos != DeclComments.end())
456    return Pos->second.c_str();
457
458  // If we have an external AST source and have not yet loaded comments from
459  // that source, do so now.
460  if (ExternalSource && !LoadedExternalComments) {
461    std::vector<SourceRange> LoadedComments;
462    ExternalSource->ReadComments(LoadedComments);
463
464    if (!LoadedComments.empty())
465      Comments.insert(Comments.begin(), LoadedComments.begin(),
466                      LoadedComments.end());
467
468    LoadedExternalComments = true;
469  }
470
471  // If there are no comments anywhere, we won't find anything.
472  if (Comments.empty())
473    return 0;
474
475  // If the declaration doesn't map directly to a location in a file, we
476  // can't find the comment.
477  SourceLocation DeclStartLoc = D->getLocStart();
478  if (DeclStartLoc.isInvalid() || !DeclStartLoc.isFileID())
479    return 0;
480
481  // Find the comment that occurs just before this declaration.
482  std::vector<SourceRange>::iterator LastComment
483    = std::lower_bound(Comments.begin(), Comments.end(),
484                       SourceRange(DeclStartLoc),
485                       BeforeInTranslationUnit(&SourceMgr));
486
487  // Decompose the location for the start of the declaration and find the
488  // beginning of the file buffer.
489  std::pair<FileID, unsigned> DeclStartDecomp
490    = SourceMgr.getDecomposedLoc(DeclStartLoc);
491  const char *FileBufferStart
492    = SourceMgr.getBufferData(DeclStartDecomp.first).first;
493
494  // First check whether we have a comment for a member.
495  if (LastComment != Comments.end() &&
496      !isa<TagDecl>(D) && !isa<NamespaceDecl>(D) &&
497      isDoxygenComment(SourceMgr, *LastComment, true)) {
498    std::pair<FileID, unsigned> LastCommentEndDecomp
499      = SourceMgr.getDecomposedLoc(LastComment->getEnd());
500    if (DeclStartDecomp.first == LastCommentEndDecomp.first &&
501        SourceMgr.getLineNumber(DeclStartDecomp.first, DeclStartDecomp.second)
502          == SourceMgr.getLineNumber(LastCommentEndDecomp.first,
503                                     LastCommentEndDecomp.second)) {
504      // The Doxygen member comment comes after the declaration starts and
505      // is on the same line and in the same file as the declaration. This
506      // is the comment we want.
507      std::string &Result = DeclComments[D];
508      Result.append(FileBufferStart +
509                      SourceMgr.getFileOffset(LastComment->getBegin()),
510                    FileBufferStart + LastCommentEndDecomp.second + 1);
511      return Result.c_str();
512    }
513  }
514
515  if (LastComment == Comments.begin())
516    return 0;
517  --LastComment;
518
519  // Decompose the end of the comment.
520  std::pair<FileID, unsigned> LastCommentEndDecomp
521    = SourceMgr.getDecomposedLoc(LastComment->getEnd());
522
523  // If the comment and the declaration aren't in the same file, then they
524  // aren't related.
525  if (DeclStartDecomp.first != LastCommentEndDecomp.first)
526    return 0;
527
528  // Check that we actually have a Doxygen comment.
529  if (!isDoxygenComment(SourceMgr, *LastComment))
530    return 0;
531
532  // Compute the starting line for the declaration and for the end of the
533  // comment (this is expensive).
534  unsigned DeclStartLine
535    = SourceMgr.getLineNumber(DeclStartDecomp.first, DeclStartDecomp.second);
536  unsigned CommentEndLine
537    = SourceMgr.getLineNumber(LastCommentEndDecomp.first,
538                              LastCommentEndDecomp.second);
539
540  // If the comment does not end on the line prior to the declaration, then
541  // the comment is not associated with the declaration at all.
542  if (CommentEndLine + 1 != DeclStartLine)
543    return 0;
544
545  // We have a comment, but there may be more comments on the previous lines.
546  // Keep looking so long as the comments are still Doxygen comments and are
547  // still adjacent.
548  unsigned ExpectedLine
549    = SourceMgr.getSpellingLineNumber(LastComment->getBegin()) - 1;
550  std::vector<SourceRange>::iterator FirstComment = LastComment;
551  while (FirstComment != Comments.begin()) {
552    // Look at the previous comment
553    --FirstComment;
554    std::pair<FileID, unsigned> Decomp
555      = SourceMgr.getDecomposedLoc(FirstComment->getEnd());
556
557    // If this previous comment is in a different file, we're done.
558    if (Decomp.first != DeclStartDecomp.first) {
559      ++FirstComment;
560      break;
561    }
562
563    // If this comment is not a Doxygen comment, we're done.
564    if (!isDoxygenComment(SourceMgr, *FirstComment)) {
565      ++FirstComment;
566      break;
567    }
568
569    // If the line number is not what we expected, we're done.
570    unsigned Line = SourceMgr.getLineNumber(Decomp.first, Decomp.second);
571    if (Line != ExpectedLine) {
572      ++FirstComment;
573      break;
574    }
575
576    // Set the next expected line number.
577    ExpectedLine
578      = SourceMgr.getSpellingLineNumber(FirstComment->getBegin()) - 1;
579  }
580
581  // The iterator range [FirstComment, LastComment] contains all of the
582  // BCPL comments that, together, are associated with this declaration.
583  // Form a single comment block string for this declaration that concatenates
584  // all of these comments.
585  std::string &Result = DeclComments[D];
586  while (FirstComment != LastComment) {
587    std::pair<FileID, unsigned> DecompStart
588      = SourceMgr.getDecomposedLoc(FirstComment->getBegin());
589    std::pair<FileID, unsigned> DecompEnd
590      = SourceMgr.getDecomposedLoc(FirstComment->getEnd());
591    Result.append(FileBufferStart + DecompStart.second,
592                  FileBufferStart + DecompEnd.second + 1);
593    ++FirstComment;
594  }
595
596  // Append the last comment line.
597  Result.append(FileBufferStart +
598                  SourceMgr.getFileOffset(LastComment->getBegin()),
599                FileBufferStart + LastCommentEndDecomp.second + 1);
600  return Result.c_str();
601}
602
603//===----------------------------------------------------------------------===//
604//                         Type Sizing and Analysis
605//===----------------------------------------------------------------------===//
606
607/// getFloatTypeSemantics - Return the APFloat 'semantics' for the specified
608/// scalar floating point type.
609const llvm::fltSemantics &ASTContext::getFloatTypeSemantics(QualType T) const {
610  const BuiltinType *BT = T->getAs<BuiltinType>();
611  assert(BT && "Not a floating point type!");
612  switch (BT->getKind()) {
613  default: assert(0 && "Not a floating point type!");
614  case BuiltinType::Float:      return Target.getFloatFormat();
615  case BuiltinType::Double:     return Target.getDoubleFormat();
616  case BuiltinType::LongDouble: return Target.getLongDoubleFormat();
617  }
618}
619
620/// getDeclAlign - Return a conservative estimate of the alignment of the
621/// specified decl.  Note that bitfields do not have a valid alignment, so
622/// this method will assert on them.
623/// If @p RefAsPointee, references are treated like their underlying type
624/// (for alignof), else they're treated like pointers (for CodeGen).
625CharUnits ASTContext::getDeclAlign(const Decl *D, bool RefAsPointee) {
626  unsigned Align = Target.getCharWidth();
627
628  if (const AlignedAttr* AA = D->getAttr<AlignedAttr>())
629    Align = std::max(Align, AA->getMaxAlignment());
630
631  if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
632    QualType T = VD->getType();
633    if (const ReferenceType* RT = T->getAs<ReferenceType>()) {
634      if (RefAsPointee)
635        T = RT->getPointeeType();
636      else
637        T = getPointerType(RT->getPointeeType());
638    }
639    if (!T->isIncompleteType() && !T->isFunctionType()) {
640      // Incomplete or function types default to 1.
641      while (isa<VariableArrayType>(T) || isa<IncompleteArrayType>(T))
642        T = cast<ArrayType>(T)->getElementType();
643
644      Align = std::max(Align, getPreferredTypeAlign(T.getTypePtr()));
645    }
646    if (const FieldDecl *FD = dyn_cast<FieldDecl>(VD)) {
647      // In the case of a field in a packed struct, we want the minimum
648      // of the alignment of the field and the alignment of the struct.
649      Align = std::min(Align,
650        getPreferredTypeAlign(FD->getParent()->getTypeForDecl()));
651    }
652  }
653
654  return CharUnits::fromQuantity(Align / Target.getCharWidth());
655}
656
657/// getTypeSize - Return the size of the specified type, in bits.  This method
658/// does not work on incomplete types.
659///
660/// FIXME: Pointers into different addr spaces could have different sizes and
661/// alignment requirements: getPointerInfo should take an AddrSpace, this
662/// should take a QualType, &c.
663std::pair<uint64_t, unsigned>
664ASTContext::getTypeInfo(const Type *T) {
665  uint64_t Width=0;
666  unsigned Align=8;
667  switch (T->getTypeClass()) {
668#define TYPE(Class, Base)
669#define ABSTRACT_TYPE(Class, Base)
670#define NON_CANONICAL_TYPE(Class, Base)
671#define DEPENDENT_TYPE(Class, Base) case Type::Class:
672#include "clang/AST/TypeNodes.def"
673    assert(false && "Should not see dependent types");
674    break;
675
676  case Type::FunctionNoProto:
677  case Type::FunctionProto:
678    // GCC extension: alignof(function) = 32 bits
679    Width = 0;
680    Align = 32;
681    break;
682
683  case Type::IncompleteArray:
684  case Type::VariableArray:
685    Width = 0;
686    Align = getTypeAlign(cast<ArrayType>(T)->getElementType());
687    break;
688
689  case Type::ConstantArray: {
690    const ConstantArrayType *CAT = cast<ConstantArrayType>(T);
691
692    std::pair<uint64_t, unsigned> EltInfo = getTypeInfo(CAT->getElementType());
693    Width = EltInfo.first*CAT->getSize().getZExtValue();
694    Align = EltInfo.second;
695    break;
696  }
697  case Type::ExtVector:
698  case Type::Vector: {
699    const VectorType *VT = cast<VectorType>(T);
700    std::pair<uint64_t, unsigned> EltInfo = getTypeInfo(VT->getElementType());
701    Width = EltInfo.first*VT->getNumElements();
702    Align = Width;
703    // If the alignment is not a power of 2, round up to the next power of 2.
704    // This happens for non-power-of-2 length vectors.
705    if (VT->getNumElements() & (VT->getNumElements()-1)) {
706      Align = llvm::NextPowerOf2(Align);
707      Width = llvm::RoundUpToAlignment(Width, Align);
708    }
709    break;
710  }
711
712  case Type::Builtin:
713    switch (cast<BuiltinType>(T)->getKind()) {
714    default: assert(0 && "Unknown builtin type!");
715    case BuiltinType::Void:
716      // GCC extension: alignof(void) = 8 bits.
717      Width = 0;
718      Align = 8;
719      break;
720
721    case BuiltinType::Bool:
722      Width = Target.getBoolWidth();
723      Align = Target.getBoolAlign();
724      break;
725    case BuiltinType::Char_S:
726    case BuiltinType::Char_U:
727    case BuiltinType::UChar:
728    case BuiltinType::SChar:
729      Width = Target.getCharWidth();
730      Align = Target.getCharAlign();
731      break;
732    case BuiltinType::WChar:
733      Width = Target.getWCharWidth();
734      Align = Target.getWCharAlign();
735      break;
736    case BuiltinType::Char16:
737      Width = Target.getChar16Width();
738      Align = Target.getChar16Align();
739      break;
740    case BuiltinType::Char32:
741      Width = Target.getChar32Width();
742      Align = Target.getChar32Align();
743      break;
744    case BuiltinType::UShort:
745    case BuiltinType::Short:
746      Width = Target.getShortWidth();
747      Align = Target.getShortAlign();
748      break;
749    case BuiltinType::UInt:
750    case BuiltinType::Int:
751      Width = Target.getIntWidth();
752      Align = Target.getIntAlign();
753      break;
754    case BuiltinType::ULong:
755    case BuiltinType::Long:
756      Width = Target.getLongWidth();
757      Align = Target.getLongAlign();
758      break;
759    case BuiltinType::ULongLong:
760    case BuiltinType::LongLong:
761      Width = Target.getLongLongWidth();
762      Align = Target.getLongLongAlign();
763      break;
764    case BuiltinType::Int128:
765    case BuiltinType::UInt128:
766      Width = 128;
767      Align = 128; // int128_t is 128-bit aligned on all targets.
768      break;
769    case BuiltinType::Float:
770      Width = Target.getFloatWidth();
771      Align = Target.getFloatAlign();
772      break;
773    case BuiltinType::Double:
774      Width = Target.getDoubleWidth();
775      Align = Target.getDoubleAlign();
776      break;
777    case BuiltinType::LongDouble:
778      Width = Target.getLongDoubleWidth();
779      Align = Target.getLongDoubleAlign();
780      break;
781    case BuiltinType::NullPtr:
782      Width = Target.getPointerWidth(0); // C++ 3.9.1p11: sizeof(nullptr_t)
783      Align = Target.getPointerAlign(0); //   == sizeof(void*)
784      break;
785    }
786    break;
787  case Type::ObjCObjectPointer:
788    Width = Target.getPointerWidth(0);
789    Align = Target.getPointerAlign(0);
790    break;
791  case Type::BlockPointer: {
792    unsigned AS = cast<BlockPointerType>(T)->getPointeeType().getAddressSpace();
793    Width = Target.getPointerWidth(AS);
794    Align = Target.getPointerAlign(AS);
795    break;
796  }
797  case Type::LValueReference:
798  case Type::RValueReference: {
799    // alignof and sizeof should never enter this code path here, so we go
800    // the pointer route.
801    unsigned AS = cast<ReferenceType>(T)->getPointeeType().getAddressSpace();
802    Width = Target.getPointerWidth(AS);
803    Align = Target.getPointerAlign(AS);
804    break;
805  }
806  case Type::Pointer: {
807    unsigned AS = cast<PointerType>(T)->getPointeeType().getAddressSpace();
808    Width = Target.getPointerWidth(AS);
809    Align = Target.getPointerAlign(AS);
810    break;
811  }
812  case Type::MemberPointer: {
813    QualType Pointee = cast<MemberPointerType>(T)->getPointeeType();
814    std::pair<uint64_t, unsigned> PtrDiffInfo =
815      getTypeInfo(getPointerDiffType());
816    Width = PtrDiffInfo.first;
817    if (Pointee->isFunctionType())
818      Width *= 2;
819    Align = PtrDiffInfo.second;
820    break;
821  }
822  case Type::Complex: {
823    // Complex types have the same alignment as their elements, but twice the
824    // size.
825    std::pair<uint64_t, unsigned> EltInfo =
826      getTypeInfo(cast<ComplexType>(T)->getElementType());
827    Width = EltInfo.first*2;
828    Align = EltInfo.second;
829    break;
830  }
831  case Type::ObjCInterface: {
832    const ObjCInterfaceType *ObjCI = cast<ObjCInterfaceType>(T);
833    const ASTRecordLayout &Layout = getASTObjCInterfaceLayout(ObjCI->getDecl());
834    Width = Layout.getSize();
835    Align = Layout.getAlignment();
836    break;
837  }
838  case Type::Record:
839  case Type::Enum: {
840    const TagType *TT = cast<TagType>(T);
841
842    if (TT->getDecl()->isInvalidDecl()) {
843      Width = 1;
844      Align = 1;
845      break;
846    }
847
848    if (const EnumType *ET = dyn_cast<EnumType>(TT))
849      return getTypeInfo(ET->getDecl()->getIntegerType());
850
851    const RecordType *RT = cast<RecordType>(TT);
852    const ASTRecordLayout &Layout = getASTRecordLayout(RT->getDecl());
853    Width = Layout.getSize();
854    Align = Layout.getAlignment();
855    break;
856  }
857
858  case Type::SubstTemplateTypeParm:
859    return getTypeInfo(cast<SubstTemplateTypeParmType>(T)->
860                       getReplacementType().getTypePtr());
861
862  case Type::Elaborated:
863    return getTypeInfo(cast<ElaboratedType>(T)->getUnderlyingType()
864                         .getTypePtr());
865
866  case Type::Typedef: {
867    const TypedefDecl *Typedef = cast<TypedefType>(T)->getDecl();
868    if (const AlignedAttr *Aligned = Typedef->getAttr<AlignedAttr>()) {
869      Align = std::max(Aligned->getMaxAlignment(),
870                       getTypeAlign(Typedef->getUnderlyingType().getTypePtr()));
871      Width = getTypeSize(Typedef->getUnderlyingType().getTypePtr());
872    } else
873      return getTypeInfo(Typedef->getUnderlyingType().getTypePtr());
874    break;
875  }
876
877  case Type::TypeOfExpr:
878    return getTypeInfo(cast<TypeOfExprType>(T)->getUnderlyingExpr()->getType()
879                         .getTypePtr());
880
881  case Type::TypeOf:
882    return getTypeInfo(cast<TypeOfType>(T)->getUnderlyingType().getTypePtr());
883
884  case Type::Decltype:
885    return getTypeInfo(cast<DecltypeType>(T)->getUnderlyingExpr()->getType()
886                        .getTypePtr());
887
888  case Type::QualifiedName:
889    return getTypeInfo(cast<QualifiedNameType>(T)->getNamedType().getTypePtr());
890
891 case Type::InjectedClassName:
892   return getTypeInfo(cast<InjectedClassNameType>(T)
893                        ->getUnderlyingType().getTypePtr());
894
895  case Type::TemplateSpecialization:
896    assert(getCanonicalType(T) != T &&
897           "Cannot request the size of a dependent type");
898    // FIXME: this is likely to be wrong once we support template
899    // aliases, since a template alias could refer to a typedef that
900    // has an __aligned__ attribute on it.
901    return getTypeInfo(getCanonicalType(T));
902  }
903
904  assert(Align && (Align & (Align-1)) == 0 && "Alignment must be power of 2");
905  return std::make_pair(Width, Align);
906}
907
908/// getTypeSizeInChars - Return the size of the specified type, in characters.
909/// This method does not work on incomplete types.
910CharUnits ASTContext::getTypeSizeInChars(QualType T) {
911  return CharUnits::fromQuantity(getTypeSize(T) / getCharWidth());
912}
913CharUnits ASTContext::getTypeSizeInChars(const Type *T) {
914  return CharUnits::fromQuantity(getTypeSize(T) / getCharWidth());
915}
916
917/// getTypeAlignInChars - Return the ABI-specified alignment of a type, in
918/// characters. This method does not work on incomplete types.
919CharUnits ASTContext::getTypeAlignInChars(QualType T) {
920  return CharUnits::fromQuantity(getTypeAlign(T) / getCharWidth());
921}
922CharUnits ASTContext::getTypeAlignInChars(const Type *T) {
923  return CharUnits::fromQuantity(getTypeAlign(T) / getCharWidth());
924}
925
926/// getPreferredTypeAlign - Return the "preferred" alignment of the specified
927/// type for the current target in bits.  This can be different than the ABI
928/// alignment in cases where it is beneficial for performance to overalign
929/// a data type.
930unsigned ASTContext::getPreferredTypeAlign(const Type *T) {
931  unsigned ABIAlign = getTypeAlign(T);
932
933  // Double and long long should be naturally aligned if possible.
934  if (const ComplexType* CT = T->getAs<ComplexType>())
935    T = CT->getElementType().getTypePtr();
936  if (T->isSpecificBuiltinType(BuiltinType::Double) ||
937      T->isSpecificBuiltinType(BuiltinType::LongLong))
938    return std::max(ABIAlign, (unsigned)getTypeSize(T));
939
940  return ABIAlign;
941}
942
943static void CollectLocalObjCIvars(ASTContext *Ctx,
944                                  const ObjCInterfaceDecl *OI,
945                                  llvm::SmallVectorImpl<FieldDecl*> &Fields) {
946  for (ObjCInterfaceDecl::ivar_iterator I = OI->ivar_begin(),
947       E = OI->ivar_end(); I != E; ++I) {
948    ObjCIvarDecl *IVDecl = *I;
949    if (!IVDecl->isInvalidDecl())
950      Fields.push_back(cast<FieldDecl>(IVDecl));
951  }
952}
953
954void ASTContext::CollectObjCIvars(const ObjCInterfaceDecl *OI,
955                             llvm::SmallVectorImpl<FieldDecl*> &Fields) {
956  if (const ObjCInterfaceDecl *SuperClass = OI->getSuperClass())
957    CollectObjCIvars(SuperClass, Fields);
958  CollectLocalObjCIvars(this, OI, Fields);
959}
960
961/// ShallowCollectObjCIvars -
962/// Collect all ivars, including those synthesized, in the current class.
963///
964void ASTContext::ShallowCollectObjCIvars(const ObjCInterfaceDecl *OI,
965                                 llvm::SmallVectorImpl<ObjCIvarDecl*> &Ivars) {
966  for (ObjCInterfaceDecl::ivar_iterator I = OI->ivar_begin(),
967         E = OI->ivar_end(); I != E; ++I) {
968     Ivars.push_back(*I);
969  }
970
971  CollectNonClassIvars(OI, Ivars);
972}
973
974/// CollectNonClassIvars -
975/// This routine collects all other ivars which are not declared in the class.
976/// This includes synthesized ivars (via @synthesize) and those in
977//  class's @implementation.
978///
979void ASTContext::CollectNonClassIvars(const ObjCInterfaceDecl *OI,
980                                llvm::SmallVectorImpl<ObjCIvarDecl*> &Ivars) {
981  // Find ivars declared in class extension.
982  if (const ObjCCategoryDecl *CDecl = OI->getClassExtension()) {
983    for (ObjCCategoryDecl::ivar_iterator I = CDecl->ivar_begin(),
984         E = CDecl->ivar_end(); I != E; ++I) {
985      Ivars.push_back(*I);
986    }
987  }
988
989  // Also add any ivar defined in this class's implementation.  This
990  // includes synthesized ivars.
991  if (ObjCImplementationDecl *ImplDecl = OI->getImplementation()) {
992    for (ObjCImplementationDecl::ivar_iterator I = ImplDecl->ivar_begin(),
993         E = ImplDecl->ivar_end(); I != E; ++I)
994      Ivars.push_back(*I);
995  }
996}
997
998/// CollectInheritedProtocols - Collect all protocols in current class and
999/// those inherited by it.
1000void ASTContext::CollectInheritedProtocols(const Decl *CDecl,
1001                          llvm::SmallPtrSet<ObjCProtocolDecl*, 8> &Protocols) {
1002  if (const ObjCInterfaceDecl *OI = dyn_cast<ObjCInterfaceDecl>(CDecl)) {
1003    for (ObjCInterfaceDecl::protocol_iterator P = OI->protocol_begin(),
1004         PE = OI->protocol_end(); P != PE; ++P) {
1005      ObjCProtocolDecl *Proto = (*P);
1006      Protocols.insert(Proto);
1007      for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
1008           PE = Proto->protocol_end(); P != PE; ++P) {
1009        Protocols.insert(*P);
1010        CollectInheritedProtocols(*P, Protocols);
1011      }
1012    }
1013
1014    // Categories of this Interface.
1015    for (const ObjCCategoryDecl *CDeclChain = OI->getCategoryList();
1016         CDeclChain; CDeclChain = CDeclChain->getNextClassCategory())
1017      CollectInheritedProtocols(CDeclChain, Protocols);
1018    if (ObjCInterfaceDecl *SD = OI->getSuperClass())
1019      while (SD) {
1020        CollectInheritedProtocols(SD, Protocols);
1021        SD = SD->getSuperClass();
1022      }
1023    return;
1024  }
1025  if (const ObjCCategoryDecl *OC = dyn_cast<ObjCCategoryDecl>(CDecl)) {
1026    for (ObjCInterfaceDecl::protocol_iterator P = OC->protocol_begin(),
1027         PE = OC->protocol_end(); P != PE; ++P) {
1028      ObjCProtocolDecl *Proto = (*P);
1029      Protocols.insert(Proto);
1030      for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
1031           PE = Proto->protocol_end(); P != PE; ++P)
1032        CollectInheritedProtocols(*P, Protocols);
1033    }
1034    return;
1035  }
1036  if (const ObjCProtocolDecl *OP = dyn_cast<ObjCProtocolDecl>(CDecl)) {
1037    for (ObjCProtocolDecl::protocol_iterator P = OP->protocol_begin(),
1038         PE = OP->protocol_end(); P != PE; ++P) {
1039      ObjCProtocolDecl *Proto = (*P);
1040      Protocols.insert(Proto);
1041      for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
1042           PE = Proto->protocol_end(); P != PE; ++P)
1043        CollectInheritedProtocols(*P, Protocols);
1044    }
1045    return;
1046  }
1047}
1048
1049unsigned ASTContext::CountProtocolSynthesizedIvars(const ObjCProtocolDecl *PD) {
1050  unsigned count = 0;
1051  for (ObjCContainerDecl::prop_iterator I = PD->prop_begin(),
1052       E = PD->prop_end(); I != E; ++I)
1053    if ((*I)->getPropertyIvarDecl())
1054      ++count;
1055
1056  // Also look into nested protocols.
1057  for (ObjCProtocolDecl::protocol_iterator P = PD->protocol_begin(),
1058       E = PD->protocol_end(); P != E; ++P)
1059    count += CountProtocolSynthesizedIvars(*P);
1060  return count;
1061}
1062
1063unsigned ASTContext::CountSynthesizedIvars(const ObjCInterfaceDecl *OI) {
1064  unsigned count = 0;
1065  for (ObjCInterfaceDecl::prop_iterator I = OI->prop_begin(),
1066       E = OI->prop_end(); I != E; ++I) {
1067    if ((*I)->getPropertyIvarDecl())
1068      ++count;
1069  }
1070  // Also look into interface's protocol list for properties declared
1071  // in the protocol and whose ivars are synthesized.
1072  for (ObjCInterfaceDecl::protocol_iterator P = OI->protocol_begin(),
1073       PE = OI->protocol_end(); P != PE; ++P) {
1074    ObjCProtocolDecl *PD = (*P);
1075    count += CountProtocolSynthesizedIvars(PD);
1076  }
1077  return count;
1078}
1079
1080/// \brief Get the implementation of ObjCInterfaceDecl,or NULL if none exists.
1081ObjCImplementationDecl *ASTContext::getObjCImplementation(ObjCInterfaceDecl *D) {
1082  llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
1083    I = ObjCImpls.find(D);
1084  if (I != ObjCImpls.end())
1085    return cast<ObjCImplementationDecl>(I->second);
1086  return 0;
1087}
1088/// \brief Get the implementation of ObjCCategoryDecl, or NULL if none exists.
1089ObjCCategoryImplDecl *ASTContext::getObjCImplementation(ObjCCategoryDecl *D) {
1090  llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
1091    I = ObjCImpls.find(D);
1092  if (I != ObjCImpls.end())
1093    return cast<ObjCCategoryImplDecl>(I->second);
1094  return 0;
1095}
1096
1097/// \brief Set the implementation of ObjCInterfaceDecl.
1098void ASTContext::setObjCImplementation(ObjCInterfaceDecl *IFaceD,
1099                           ObjCImplementationDecl *ImplD) {
1100  assert(IFaceD && ImplD && "Passed null params");
1101  ObjCImpls[IFaceD] = ImplD;
1102}
1103/// \brief Set the implementation of ObjCCategoryDecl.
1104void ASTContext::setObjCImplementation(ObjCCategoryDecl *CatD,
1105                           ObjCCategoryImplDecl *ImplD) {
1106  assert(CatD && ImplD && "Passed null params");
1107  ObjCImpls[CatD] = ImplD;
1108}
1109
1110/// \brief Allocate an uninitialized TypeSourceInfo.
1111///
1112/// The caller should initialize the memory held by TypeSourceInfo using
1113/// the TypeLoc wrappers.
1114///
1115/// \param T the type that will be the basis for type source info. This type
1116/// should refer to how the declarator was written in source code, not to
1117/// what type semantic analysis resolved the declarator to.
1118TypeSourceInfo *ASTContext::CreateTypeSourceInfo(QualType T,
1119                                                 unsigned DataSize) {
1120  if (!DataSize)
1121    DataSize = TypeLoc::getFullDataSizeForType(T);
1122  else
1123    assert(DataSize == TypeLoc::getFullDataSizeForType(T) &&
1124           "incorrect data size provided to CreateTypeSourceInfo!");
1125
1126  TypeSourceInfo *TInfo =
1127    (TypeSourceInfo*)BumpAlloc.Allocate(sizeof(TypeSourceInfo) + DataSize, 8);
1128  new (TInfo) TypeSourceInfo(T);
1129  return TInfo;
1130}
1131
1132TypeSourceInfo *ASTContext::getTrivialTypeSourceInfo(QualType T,
1133                                                     SourceLocation L) {
1134  TypeSourceInfo *DI = CreateTypeSourceInfo(T);
1135  DI->getTypeLoc().initialize(L);
1136  return DI;
1137}
1138
1139/// getInterfaceLayoutImpl - Get or compute information about the
1140/// layout of the given interface.
1141///
1142/// \param Impl - If given, also include the layout of the interface's
1143/// implementation. This may differ by including synthesized ivars.
1144const ASTRecordLayout &
1145ASTContext::getObjCLayout(const ObjCInterfaceDecl *D,
1146                          const ObjCImplementationDecl *Impl) {
1147  assert(!D->isForwardDecl() && "Invalid interface decl!");
1148
1149  // Look up this layout, if already laid out, return what we have.
1150  ObjCContainerDecl *Key =
1151    Impl ? (ObjCContainerDecl*) Impl : (ObjCContainerDecl*) D;
1152  if (const ASTRecordLayout *Entry = ObjCLayouts[Key])
1153    return *Entry;
1154
1155  // Add in synthesized ivar count if laying out an implementation.
1156  if (Impl) {
1157    unsigned SynthCount = CountSynthesizedIvars(D);
1158    // If there aren't any sythesized ivars then reuse the interface
1159    // entry. Note we can't cache this because we simply free all
1160    // entries later; however we shouldn't look up implementations
1161    // frequently.
1162    if (SynthCount == 0)
1163      return getObjCLayout(D, 0);
1164  }
1165
1166  const ASTRecordLayout *NewEntry =
1167    ASTRecordLayoutBuilder::ComputeLayout(*this, D, Impl);
1168  ObjCLayouts[Key] = NewEntry;
1169
1170  return *NewEntry;
1171}
1172
1173const ASTRecordLayout &
1174ASTContext::getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D) {
1175  return getObjCLayout(D, 0);
1176}
1177
1178const ASTRecordLayout &
1179ASTContext::getASTObjCImplementationLayout(const ObjCImplementationDecl *D) {
1180  return getObjCLayout(D->getClassInterface(), D);
1181}
1182
1183/// getASTRecordLayout - Get or compute information about the layout of the
1184/// specified record (struct/union/class), which indicates its size and field
1185/// position information.
1186const ASTRecordLayout &ASTContext::getASTRecordLayout(const RecordDecl *D) {
1187  D = D->getDefinition();
1188  assert(D && "Cannot get layout of forward declarations!");
1189
1190  // Look up this layout, if already laid out, return what we have.
1191  // Note that we can't save a reference to the entry because this function
1192  // is recursive.
1193  const ASTRecordLayout *Entry = ASTRecordLayouts[D];
1194  if (Entry) return *Entry;
1195
1196  const ASTRecordLayout *NewEntry =
1197    ASTRecordLayoutBuilder::ComputeLayout(*this, D);
1198  ASTRecordLayouts[D] = NewEntry;
1199
1200  return *NewEntry;
1201}
1202
1203const CXXMethodDecl *ASTContext::getKeyFunction(const CXXRecordDecl *RD) {
1204  RD = cast<CXXRecordDecl>(RD->getDefinition());
1205  assert(RD && "Cannot get key function for forward declarations!");
1206
1207  const CXXMethodDecl *&Entry = KeyFunctions[RD];
1208  if (!Entry)
1209    Entry = ASTRecordLayoutBuilder::ComputeKeyFunction(RD);
1210  else
1211    assert(Entry == ASTRecordLayoutBuilder::ComputeKeyFunction(RD) &&
1212           "Key function changed!");
1213
1214  return Entry;
1215}
1216
1217//===----------------------------------------------------------------------===//
1218//                   Type creation/memoization methods
1219//===----------------------------------------------------------------------===//
1220
1221QualType ASTContext::getExtQualType(const Type *TypeNode, Qualifiers Quals) {
1222  unsigned Fast = Quals.getFastQualifiers();
1223  Quals.removeFastQualifiers();
1224
1225  // Check if we've already instantiated this type.
1226  llvm::FoldingSetNodeID ID;
1227  ExtQuals::Profile(ID, TypeNode, Quals);
1228  void *InsertPos = 0;
1229  if (ExtQuals *EQ = ExtQualNodes.FindNodeOrInsertPos(ID, InsertPos)) {
1230    assert(EQ->getQualifiers() == Quals);
1231    QualType T = QualType(EQ, Fast);
1232    return T;
1233  }
1234
1235  ExtQuals *New = new (*this, TypeAlignment) ExtQuals(*this, TypeNode, Quals);
1236  ExtQualNodes.InsertNode(New, InsertPos);
1237  QualType T = QualType(New, Fast);
1238  return T;
1239}
1240
1241QualType ASTContext::getVolatileType(QualType T) {
1242  QualType CanT = getCanonicalType(T);
1243  if (CanT.isVolatileQualified()) return T;
1244
1245  QualifierCollector Quals;
1246  const Type *TypeNode = Quals.strip(T);
1247  Quals.addVolatile();
1248
1249  return getExtQualType(TypeNode, Quals);
1250}
1251
1252QualType ASTContext::getAddrSpaceQualType(QualType T, unsigned AddressSpace) {
1253  QualType CanT = getCanonicalType(T);
1254  if (CanT.getAddressSpace() == AddressSpace)
1255    return T;
1256
1257  // If we are composing extended qualifiers together, merge together
1258  // into one ExtQuals node.
1259  QualifierCollector Quals;
1260  const Type *TypeNode = Quals.strip(T);
1261
1262  // If this type already has an address space specified, it cannot get
1263  // another one.
1264  assert(!Quals.hasAddressSpace() &&
1265         "Type cannot be in multiple addr spaces!");
1266  Quals.addAddressSpace(AddressSpace);
1267
1268  return getExtQualType(TypeNode, Quals);
1269}
1270
1271QualType ASTContext::getObjCGCQualType(QualType T,
1272                                       Qualifiers::GC GCAttr) {
1273  QualType CanT = getCanonicalType(T);
1274  if (CanT.getObjCGCAttr() == GCAttr)
1275    return T;
1276
1277  if (T->isPointerType()) {
1278    QualType Pointee = T->getAs<PointerType>()->getPointeeType();
1279    if (Pointee->isAnyPointerType()) {
1280      QualType ResultType = getObjCGCQualType(Pointee, GCAttr);
1281      return getPointerType(ResultType);
1282    }
1283  }
1284
1285  // If we are composing extended qualifiers together, merge together
1286  // into one ExtQuals node.
1287  QualifierCollector Quals;
1288  const Type *TypeNode = Quals.strip(T);
1289
1290  // If this type already has an ObjCGC specified, it cannot get
1291  // another one.
1292  assert(!Quals.hasObjCGCAttr() &&
1293         "Type cannot have multiple ObjCGCs!");
1294  Quals.addObjCGCAttr(GCAttr);
1295
1296  return getExtQualType(TypeNode, Quals);
1297}
1298
1299static QualType getNoReturnCallConvType(ASTContext& Context, QualType T,
1300                                        bool AddNoReturn,
1301                                        CallingConv CallConv) {
1302  QualType ResultType;
1303  if (const PointerType *Pointer = T->getAs<PointerType>()) {
1304    QualType Pointee = Pointer->getPointeeType();
1305    ResultType = getNoReturnCallConvType(Context, Pointee, AddNoReturn,
1306                                         CallConv);
1307    if (ResultType == Pointee)
1308      return T;
1309
1310    ResultType = Context.getPointerType(ResultType);
1311  } else if (const BlockPointerType *BlockPointer
1312                                              = T->getAs<BlockPointerType>()) {
1313    QualType Pointee = BlockPointer->getPointeeType();
1314    ResultType = getNoReturnCallConvType(Context, Pointee, AddNoReturn,
1315                                         CallConv);
1316    if (ResultType == Pointee)
1317      return T;
1318
1319    ResultType = Context.getBlockPointerType(ResultType);
1320   } else if (const FunctionType *F = T->getAs<FunctionType>()) {
1321    if (F->getNoReturnAttr() == AddNoReturn && F->getCallConv() == CallConv)
1322      return T;
1323
1324    if (const FunctionNoProtoType *FNPT = dyn_cast<FunctionNoProtoType>(F)) {
1325      ResultType = Context.getFunctionNoProtoType(FNPT->getResultType(),
1326                                                  AddNoReturn, CallConv);
1327    } else {
1328      const FunctionProtoType *FPT = cast<FunctionProtoType>(F);
1329      ResultType
1330        = Context.getFunctionType(FPT->getResultType(), FPT->arg_type_begin(),
1331                                  FPT->getNumArgs(), FPT->isVariadic(),
1332                                  FPT->getTypeQuals(),
1333                                  FPT->hasExceptionSpec(),
1334                                  FPT->hasAnyExceptionSpec(),
1335                                  FPT->getNumExceptions(),
1336                                  FPT->exception_begin(),
1337                                  AddNoReturn, CallConv);
1338    }
1339  } else
1340    return T;
1341
1342  return Context.getQualifiedType(ResultType, T.getLocalQualifiers());
1343}
1344
1345QualType ASTContext::getNoReturnType(QualType T, bool AddNoReturn) {
1346  return getNoReturnCallConvType(*this, T, AddNoReturn, T.getCallConv());
1347}
1348
1349QualType ASTContext::getCallConvType(QualType T, CallingConv CallConv) {
1350  return getNoReturnCallConvType(*this, T, T.getNoReturnAttr(), CallConv);
1351}
1352
1353/// getComplexType - Return the uniqued reference to the type for a complex
1354/// number with the specified element type.
1355QualType ASTContext::getComplexType(QualType T) {
1356  // Unique pointers, to guarantee there is only one pointer of a particular
1357  // structure.
1358  llvm::FoldingSetNodeID ID;
1359  ComplexType::Profile(ID, T);
1360
1361  void *InsertPos = 0;
1362  if (ComplexType *CT = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos))
1363    return QualType(CT, 0);
1364
1365  // If the pointee type isn't canonical, this won't be a canonical type either,
1366  // so fill in the canonical type field.
1367  QualType Canonical;
1368  if (!T.isCanonical()) {
1369    Canonical = getComplexType(getCanonicalType(T));
1370
1371    // Get the new insert position for the node we care about.
1372    ComplexType *NewIP = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos);
1373    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1374  }
1375  ComplexType *New = new (*this, TypeAlignment) ComplexType(T, Canonical);
1376  Types.push_back(New);
1377  ComplexTypes.InsertNode(New, InsertPos);
1378  return QualType(New, 0);
1379}
1380
1381/// getPointerType - Return the uniqued reference to the type for a pointer to
1382/// the specified type.
1383QualType ASTContext::getPointerType(QualType T) {
1384  // Unique pointers, to guarantee there is only one pointer of a particular
1385  // structure.
1386  llvm::FoldingSetNodeID ID;
1387  PointerType::Profile(ID, T);
1388
1389  void *InsertPos = 0;
1390  if (PointerType *PT = PointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1391    return QualType(PT, 0);
1392
1393  // If the pointee type isn't canonical, this won't be a canonical type either,
1394  // so fill in the canonical type field.
1395  QualType Canonical;
1396  if (!T.isCanonical()) {
1397    Canonical = getPointerType(getCanonicalType(T));
1398
1399    // Get the new insert position for the node we care about.
1400    PointerType *NewIP = PointerTypes.FindNodeOrInsertPos(ID, InsertPos);
1401    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1402  }
1403  PointerType *New = new (*this, TypeAlignment) PointerType(T, Canonical);
1404  Types.push_back(New);
1405  PointerTypes.InsertNode(New, InsertPos);
1406  return QualType(New, 0);
1407}
1408
1409/// getBlockPointerType - Return the uniqued reference to the type for
1410/// a pointer to the specified block.
1411QualType ASTContext::getBlockPointerType(QualType T) {
1412  assert(T->isFunctionType() && "block of function types only");
1413  // Unique pointers, to guarantee there is only one block of a particular
1414  // structure.
1415  llvm::FoldingSetNodeID ID;
1416  BlockPointerType::Profile(ID, T);
1417
1418  void *InsertPos = 0;
1419  if (BlockPointerType *PT =
1420        BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1421    return QualType(PT, 0);
1422
1423  // If the block pointee type isn't canonical, this won't be a canonical
1424  // type either so fill in the canonical type field.
1425  QualType Canonical;
1426  if (!T.isCanonical()) {
1427    Canonical = getBlockPointerType(getCanonicalType(T));
1428
1429    // Get the new insert position for the node we care about.
1430    BlockPointerType *NewIP =
1431      BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
1432    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1433  }
1434  BlockPointerType *New
1435    = new (*this, TypeAlignment) BlockPointerType(T, Canonical);
1436  Types.push_back(New);
1437  BlockPointerTypes.InsertNode(New, InsertPos);
1438  return QualType(New, 0);
1439}
1440
1441/// getLValueReferenceType - Return the uniqued reference to the type for an
1442/// lvalue reference to the specified type.
1443QualType ASTContext::getLValueReferenceType(QualType T, bool SpelledAsLValue) {
1444  // Unique pointers, to guarantee there is only one pointer of a particular
1445  // structure.
1446  llvm::FoldingSetNodeID ID;
1447  ReferenceType::Profile(ID, T, SpelledAsLValue);
1448
1449  void *InsertPos = 0;
1450  if (LValueReferenceType *RT =
1451        LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
1452    return QualType(RT, 0);
1453
1454  const ReferenceType *InnerRef = T->getAs<ReferenceType>();
1455
1456  // If the referencee type isn't canonical, this won't be a canonical type
1457  // either, so fill in the canonical type field.
1458  QualType Canonical;
1459  if (!SpelledAsLValue || InnerRef || !T.isCanonical()) {
1460    QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
1461    Canonical = getLValueReferenceType(getCanonicalType(PointeeType));
1462
1463    // Get the new insert position for the node we care about.
1464    LValueReferenceType *NewIP =
1465      LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
1466    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1467  }
1468
1469  LValueReferenceType *New
1470    = new (*this, TypeAlignment) LValueReferenceType(T, Canonical,
1471                                                     SpelledAsLValue);
1472  Types.push_back(New);
1473  LValueReferenceTypes.InsertNode(New, InsertPos);
1474
1475  return QualType(New, 0);
1476}
1477
1478/// getRValueReferenceType - Return the uniqued reference to the type for an
1479/// rvalue reference to the specified type.
1480QualType ASTContext::getRValueReferenceType(QualType T) {
1481  // Unique pointers, to guarantee there is only one pointer of a particular
1482  // structure.
1483  llvm::FoldingSetNodeID ID;
1484  ReferenceType::Profile(ID, T, false);
1485
1486  void *InsertPos = 0;
1487  if (RValueReferenceType *RT =
1488        RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
1489    return QualType(RT, 0);
1490
1491  const ReferenceType *InnerRef = T->getAs<ReferenceType>();
1492
1493  // If the referencee type isn't canonical, this won't be a canonical type
1494  // either, so fill in the canonical type field.
1495  QualType Canonical;
1496  if (InnerRef || !T.isCanonical()) {
1497    QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
1498    Canonical = getRValueReferenceType(getCanonicalType(PointeeType));
1499
1500    // Get the new insert position for the node we care about.
1501    RValueReferenceType *NewIP =
1502      RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
1503    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1504  }
1505
1506  RValueReferenceType *New
1507    = new (*this, TypeAlignment) RValueReferenceType(T, Canonical);
1508  Types.push_back(New);
1509  RValueReferenceTypes.InsertNode(New, InsertPos);
1510  return QualType(New, 0);
1511}
1512
1513/// getMemberPointerType - Return the uniqued reference to the type for a
1514/// member pointer to the specified type, in the specified class.
1515QualType ASTContext::getMemberPointerType(QualType T, const Type *Cls) {
1516  // Unique pointers, to guarantee there is only one pointer of a particular
1517  // structure.
1518  llvm::FoldingSetNodeID ID;
1519  MemberPointerType::Profile(ID, T, Cls);
1520
1521  void *InsertPos = 0;
1522  if (MemberPointerType *PT =
1523      MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1524    return QualType(PT, 0);
1525
1526  // If the pointee or class type isn't canonical, this won't be a canonical
1527  // type either, so fill in the canonical type field.
1528  QualType Canonical;
1529  if (!T.isCanonical() || !Cls->isCanonicalUnqualified()) {
1530    Canonical = getMemberPointerType(getCanonicalType(T),getCanonicalType(Cls));
1531
1532    // Get the new insert position for the node we care about.
1533    MemberPointerType *NewIP =
1534      MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
1535    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1536  }
1537  MemberPointerType *New
1538    = new (*this, TypeAlignment) MemberPointerType(T, Cls, Canonical);
1539  Types.push_back(New);
1540  MemberPointerTypes.InsertNode(New, InsertPos);
1541  return QualType(New, 0);
1542}
1543
1544/// getConstantArrayType - Return the unique reference to the type for an
1545/// array of the specified element type.
1546QualType ASTContext::getConstantArrayType(QualType EltTy,
1547                                          const llvm::APInt &ArySizeIn,
1548                                          ArrayType::ArraySizeModifier ASM,
1549                                          unsigned EltTypeQuals) {
1550  assert((EltTy->isDependentType() ||
1551          EltTy->isIncompleteType() || EltTy->isConstantSizeType()) &&
1552         "Constant array of VLAs is illegal!");
1553
1554  // Convert the array size into a canonical width matching the pointer size for
1555  // the target.
1556  llvm::APInt ArySize(ArySizeIn);
1557  ArySize.zextOrTrunc(Target.getPointerWidth(EltTy.getAddressSpace()));
1558
1559  llvm::FoldingSetNodeID ID;
1560  ConstantArrayType::Profile(ID, EltTy, ArySize, ASM, EltTypeQuals);
1561
1562  void *InsertPos = 0;
1563  if (ConstantArrayType *ATP =
1564      ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
1565    return QualType(ATP, 0);
1566
1567  // If the element type isn't canonical, this won't be a canonical type either,
1568  // so fill in the canonical type field.
1569  QualType Canonical;
1570  if (!EltTy.isCanonical()) {
1571    Canonical = getConstantArrayType(getCanonicalType(EltTy), ArySize,
1572                                     ASM, EltTypeQuals);
1573    // Get the new insert position for the node we care about.
1574    ConstantArrayType *NewIP =
1575      ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
1576    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1577  }
1578
1579  ConstantArrayType *New = new(*this,TypeAlignment)
1580    ConstantArrayType(EltTy, Canonical, ArySize, ASM, EltTypeQuals);
1581  ConstantArrayTypes.InsertNode(New, InsertPos);
1582  Types.push_back(New);
1583  return QualType(New, 0);
1584}
1585
1586/// getVariableArrayType - Returns a non-unique reference to the type for a
1587/// variable array of the specified element type.
1588QualType ASTContext::getVariableArrayType(QualType EltTy,
1589                                          Expr *NumElts,
1590                                          ArrayType::ArraySizeModifier ASM,
1591                                          unsigned EltTypeQuals,
1592                                          SourceRange Brackets) {
1593  // Since we don't unique expressions, it isn't possible to unique VLA's
1594  // that have an expression provided for their size.
1595
1596  VariableArrayType *New = new(*this, TypeAlignment)
1597    VariableArrayType(EltTy, QualType(), NumElts, ASM, EltTypeQuals, Brackets);
1598
1599  VariableArrayTypes.push_back(New);
1600  Types.push_back(New);
1601  return QualType(New, 0);
1602}
1603
1604/// getDependentSizedArrayType - Returns a non-unique reference to
1605/// the type for a dependently-sized array of the specified element
1606/// type.
1607QualType ASTContext::getDependentSizedArrayType(QualType EltTy,
1608                                                Expr *NumElts,
1609                                                ArrayType::ArraySizeModifier ASM,
1610                                                unsigned EltTypeQuals,
1611                                                SourceRange Brackets) {
1612  assert((!NumElts || NumElts->isTypeDependent() ||
1613          NumElts->isValueDependent()) &&
1614         "Size must be type- or value-dependent!");
1615
1616  void *InsertPos = 0;
1617  DependentSizedArrayType *Canon = 0;
1618  llvm::FoldingSetNodeID ID;
1619
1620  if (NumElts) {
1621    // Dependently-sized array types that do not have a specified
1622    // number of elements will have their sizes deduced from an
1623    // initializer.
1624    DependentSizedArrayType::Profile(ID, *this, getCanonicalType(EltTy), ASM,
1625                                     EltTypeQuals, NumElts);
1626
1627    Canon = DependentSizedArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
1628  }
1629
1630  DependentSizedArrayType *New;
1631  if (Canon) {
1632    // We already have a canonical version of this array type; use it as
1633    // the canonical type for a newly-built type.
1634    New = new (*this, TypeAlignment)
1635      DependentSizedArrayType(*this, EltTy, QualType(Canon, 0),
1636                              NumElts, ASM, EltTypeQuals, Brackets);
1637  } else {
1638    QualType CanonEltTy = getCanonicalType(EltTy);
1639    if (CanonEltTy == EltTy) {
1640      New = new (*this, TypeAlignment)
1641        DependentSizedArrayType(*this, EltTy, QualType(),
1642                                NumElts, ASM, EltTypeQuals, Brackets);
1643
1644      if (NumElts) {
1645        DependentSizedArrayType *CanonCheck
1646          = DependentSizedArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
1647        assert(!CanonCheck && "Dependent-sized canonical array type broken");
1648        (void)CanonCheck;
1649        DependentSizedArrayTypes.InsertNode(New, InsertPos);
1650      }
1651    } else {
1652      QualType Canon = getDependentSizedArrayType(CanonEltTy, NumElts,
1653                                                  ASM, EltTypeQuals,
1654                                                  SourceRange());
1655      New = new (*this, TypeAlignment)
1656        DependentSizedArrayType(*this, EltTy, Canon,
1657                                NumElts, ASM, EltTypeQuals, Brackets);
1658    }
1659  }
1660
1661  Types.push_back(New);
1662  return QualType(New, 0);
1663}
1664
1665QualType ASTContext::getIncompleteArrayType(QualType EltTy,
1666                                            ArrayType::ArraySizeModifier ASM,
1667                                            unsigned EltTypeQuals) {
1668  llvm::FoldingSetNodeID ID;
1669  IncompleteArrayType::Profile(ID, EltTy, ASM, EltTypeQuals);
1670
1671  void *InsertPos = 0;
1672  if (IncompleteArrayType *ATP =
1673       IncompleteArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
1674    return QualType(ATP, 0);
1675
1676  // If the element type isn't canonical, this won't be a canonical type
1677  // either, so fill in the canonical type field.
1678  QualType Canonical;
1679
1680  if (!EltTy.isCanonical()) {
1681    Canonical = getIncompleteArrayType(getCanonicalType(EltTy),
1682                                       ASM, EltTypeQuals);
1683
1684    // Get the new insert position for the node we care about.
1685    IncompleteArrayType *NewIP =
1686      IncompleteArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
1687    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1688  }
1689
1690  IncompleteArrayType *New = new (*this, TypeAlignment)
1691    IncompleteArrayType(EltTy, Canonical, ASM, EltTypeQuals);
1692
1693  IncompleteArrayTypes.InsertNode(New, InsertPos);
1694  Types.push_back(New);
1695  return QualType(New, 0);
1696}
1697
1698/// getVectorType - Return the unique reference to a vector type of
1699/// the specified element type and size. VectorType must be a built-in type.
1700QualType ASTContext::getVectorType(QualType vecType, unsigned NumElts,
1701                                   bool IsAltiVec, bool IsPixel) {
1702  BuiltinType *baseType;
1703
1704  baseType = dyn_cast<BuiltinType>(getCanonicalType(vecType).getTypePtr());
1705  assert(baseType != 0 && "getVectorType(): Expecting a built-in type");
1706
1707  // Check if we've already instantiated a vector of this type.
1708  llvm::FoldingSetNodeID ID;
1709  VectorType::Profile(ID, vecType, NumElts, Type::Vector,
1710    IsAltiVec, IsPixel);
1711  void *InsertPos = 0;
1712  if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
1713    return QualType(VTP, 0);
1714
1715  // If the element type isn't canonical, this won't be a canonical type either,
1716  // so fill in the canonical type field.
1717  QualType Canonical;
1718  if (!vecType.isCanonical() || IsAltiVec || IsPixel) {
1719    Canonical = getVectorType(getCanonicalType(vecType),
1720      NumElts, false, false);
1721
1722    // Get the new insert position for the node we care about.
1723    VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
1724    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1725  }
1726  VectorType *New = new (*this, TypeAlignment)
1727    VectorType(vecType, NumElts, Canonical, IsAltiVec, IsPixel);
1728  VectorTypes.InsertNode(New, InsertPos);
1729  Types.push_back(New);
1730  return QualType(New, 0);
1731}
1732
1733/// getExtVectorType - Return the unique reference to an extended vector type of
1734/// the specified element type and size. VectorType must be a built-in type.
1735QualType ASTContext::getExtVectorType(QualType vecType, unsigned NumElts) {
1736  BuiltinType *baseType;
1737
1738  baseType = dyn_cast<BuiltinType>(getCanonicalType(vecType).getTypePtr());
1739  assert(baseType != 0 && "getExtVectorType(): Expecting a built-in type");
1740
1741  // Check if we've already instantiated a vector of this type.
1742  llvm::FoldingSetNodeID ID;
1743  VectorType::Profile(ID, vecType, NumElts, Type::ExtVector, false, false);
1744  void *InsertPos = 0;
1745  if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
1746    return QualType(VTP, 0);
1747
1748  // If the element type isn't canonical, this won't be a canonical type either,
1749  // so fill in the canonical type field.
1750  QualType Canonical;
1751  if (!vecType.isCanonical()) {
1752    Canonical = getExtVectorType(getCanonicalType(vecType), NumElts);
1753
1754    // Get the new insert position for the node we care about.
1755    VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
1756    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1757  }
1758  ExtVectorType *New = new (*this, TypeAlignment)
1759    ExtVectorType(vecType, NumElts, Canonical);
1760  VectorTypes.InsertNode(New, InsertPos);
1761  Types.push_back(New);
1762  return QualType(New, 0);
1763}
1764
1765QualType ASTContext::getDependentSizedExtVectorType(QualType vecType,
1766                                                    Expr *SizeExpr,
1767                                                    SourceLocation AttrLoc) {
1768  llvm::FoldingSetNodeID ID;
1769  DependentSizedExtVectorType::Profile(ID, *this, getCanonicalType(vecType),
1770                                       SizeExpr);
1771
1772  void *InsertPos = 0;
1773  DependentSizedExtVectorType *Canon
1774    = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
1775  DependentSizedExtVectorType *New;
1776  if (Canon) {
1777    // We already have a canonical version of this array type; use it as
1778    // the canonical type for a newly-built type.
1779    New = new (*this, TypeAlignment)
1780      DependentSizedExtVectorType(*this, vecType, QualType(Canon, 0),
1781                                  SizeExpr, AttrLoc);
1782  } else {
1783    QualType CanonVecTy = getCanonicalType(vecType);
1784    if (CanonVecTy == vecType) {
1785      New = new (*this, TypeAlignment)
1786        DependentSizedExtVectorType(*this, vecType, QualType(), SizeExpr,
1787                                    AttrLoc);
1788
1789      DependentSizedExtVectorType *CanonCheck
1790        = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
1791      assert(!CanonCheck && "Dependent-sized ext_vector canonical type broken");
1792      (void)CanonCheck;
1793      DependentSizedExtVectorTypes.InsertNode(New, InsertPos);
1794    } else {
1795      QualType Canon = getDependentSizedExtVectorType(CanonVecTy, SizeExpr,
1796                                                      SourceLocation());
1797      New = new (*this, TypeAlignment)
1798        DependentSizedExtVectorType(*this, vecType, Canon, SizeExpr, AttrLoc);
1799    }
1800  }
1801
1802  Types.push_back(New);
1803  return QualType(New, 0);
1804}
1805
1806/// getFunctionNoProtoType - Return a K&R style C function type like 'int()'.
1807///
1808QualType ASTContext::getFunctionNoProtoType(QualType ResultTy, bool NoReturn,
1809                                            CallingConv CallConv) {
1810  // Unique functions, to guarantee there is only one function of a particular
1811  // structure.
1812  llvm::FoldingSetNodeID ID;
1813  FunctionNoProtoType::Profile(ID, ResultTy, NoReturn, CallConv);
1814
1815  void *InsertPos = 0;
1816  if (FunctionNoProtoType *FT =
1817        FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
1818    return QualType(FT, 0);
1819
1820  QualType Canonical;
1821  if (!ResultTy.isCanonical() ||
1822      getCanonicalCallConv(CallConv) != CallConv) {
1823    Canonical = getFunctionNoProtoType(getCanonicalType(ResultTy), NoReturn,
1824                                       getCanonicalCallConv(CallConv));
1825
1826    // Get the new insert position for the node we care about.
1827    FunctionNoProtoType *NewIP =
1828      FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
1829    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1830  }
1831
1832  FunctionNoProtoType *New = new (*this, TypeAlignment)
1833    FunctionNoProtoType(ResultTy, Canonical, NoReturn, CallConv);
1834  Types.push_back(New);
1835  FunctionNoProtoTypes.InsertNode(New, InsertPos);
1836  return QualType(New, 0);
1837}
1838
1839/// getFunctionType - Return a normal function type with a typed argument
1840/// list.  isVariadic indicates whether the argument list includes '...'.
1841QualType ASTContext::getFunctionType(QualType ResultTy,const QualType *ArgArray,
1842                                     unsigned NumArgs, bool isVariadic,
1843                                     unsigned TypeQuals, bool hasExceptionSpec,
1844                                     bool hasAnyExceptionSpec, unsigned NumExs,
1845                                     const QualType *ExArray, bool NoReturn,
1846                                     CallingConv CallConv) {
1847  // Unique functions, to guarantee there is only one function of a particular
1848  // structure.
1849  llvm::FoldingSetNodeID ID;
1850  FunctionProtoType::Profile(ID, ResultTy, ArgArray, NumArgs, isVariadic,
1851                             TypeQuals, hasExceptionSpec, hasAnyExceptionSpec,
1852                             NumExs, ExArray, NoReturn, CallConv);
1853
1854  void *InsertPos = 0;
1855  if (FunctionProtoType *FTP =
1856        FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
1857    return QualType(FTP, 0);
1858
1859  // Determine whether the type being created is already canonical or not.
1860  bool isCanonical = !hasExceptionSpec && ResultTy.isCanonical();
1861  for (unsigned i = 0; i != NumArgs && isCanonical; ++i)
1862    if (!ArgArray[i].isCanonicalAsParam())
1863      isCanonical = false;
1864
1865  // If this type isn't canonical, get the canonical version of it.
1866  // The exception spec is not part of the canonical type.
1867  QualType Canonical;
1868  if (!isCanonical || getCanonicalCallConv(CallConv) != CallConv) {
1869    llvm::SmallVector<QualType, 16> CanonicalArgs;
1870    CanonicalArgs.reserve(NumArgs);
1871    for (unsigned i = 0; i != NumArgs; ++i)
1872      CanonicalArgs.push_back(getCanonicalParamType(ArgArray[i]));
1873
1874    Canonical = getFunctionType(getCanonicalType(ResultTy),
1875                                CanonicalArgs.data(), NumArgs,
1876                                isVariadic, TypeQuals, false,
1877                                false, 0, 0, NoReturn,
1878                                getCanonicalCallConv(CallConv));
1879
1880    // Get the new insert position for the node we care about.
1881    FunctionProtoType *NewIP =
1882      FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
1883    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1884  }
1885
1886  // FunctionProtoType objects are allocated with extra bytes after them
1887  // for two variable size arrays (for parameter and exception types) at the
1888  // end of them.
1889  FunctionProtoType *FTP =
1890    (FunctionProtoType*)Allocate(sizeof(FunctionProtoType) +
1891                                 NumArgs*sizeof(QualType) +
1892                                 NumExs*sizeof(QualType), TypeAlignment);
1893  new (FTP) FunctionProtoType(ResultTy, ArgArray, NumArgs, isVariadic,
1894                              TypeQuals, hasExceptionSpec, hasAnyExceptionSpec,
1895                              ExArray, NumExs, Canonical, NoReturn, CallConv);
1896  Types.push_back(FTP);
1897  FunctionProtoTypes.InsertNode(FTP, InsertPos);
1898  return QualType(FTP, 0);
1899}
1900
1901#ifndef NDEBUG
1902static bool NeedsInjectedClassNameType(const RecordDecl *D) {
1903  if (!isa<CXXRecordDecl>(D)) return false;
1904  const CXXRecordDecl *RD = cast<CXXRecordDecl>(D);
1905  if (isa<ClassTemplatePartialSpecializationDecl>(RD))
1906    return true;
1907  if (RD->getDescribedClassTemplate() &&
1908      !isa<ClassTemplateSpecializationDecl>(RD))
1909    return true;
1910  return false;
1911}
1912#endif
1913
1914/// getInjectedClassNameType - Return the unique reference to the
1915/// injected class name type for the specified templated declaration.
1916QualType ASTContext::getInjectedClassNameType(CXXRecordDecl *Decl,
1917                                              QualType TST) {
1918  assert(NeedsInjectedClassNameType(Decl));
1919  if (Decl->TypeForDecl) {
1920    assert(isa<InjectedClassNameType>(Decl->TypeForDecl));
1921  } else if (CXXRecordDecl *PrevDecl
1922               = cast_or_null<CXXRecordDecl>(Decl->getPreviousDeclaration())) {
1923    assert(PrevDecl->TypeForDecl && "previous declaration has no type");
1924    Decl->TypeForDecl = PrevDecl->TypeForDecl;
1925    assert(isa<InjectedClassNameType>(Decl->TypeForDecl));
1926  } else {
1927    Decl->TypeForDecl = new (*this, TypeAlignment)
1928      InjectedClassNameType(Decl, TST, TST->getCanonicalTypeInternal());
1929    Types.push_back(Decl->TypeForDecl);
1930  }
1931  return QualType(Decl->TypeForDecl, 0);
1932}
1933
1934/// getTypeDeclType - Return the unique reference to the type for the
1935/// specified type declaration.
1936QualType ASTContext::getTypeDeclTypeSlow(const TypeDecl *Decl) {
1937  assert(Decl && "Passed null for Decl param");
1938  assert(!Decl->TypeForDecl && "TypeForDecl present in slow case");
1939
1940  if (const TypedefDecl *Typedef = dyn_cast<TypedefDecl>(Decl))
1941    return getTypedefType(Typedef);
1942
1943  if (const ObjCInterfaceDecl *ObjCInterface
1944               = dyn_cast<ObjCInterfaceDecl>(Decl))
1945    return getObjCInterfaceType(ObjCInterface);
1946
1947  assert(!isa<TemplateTypeParmDecl>(Decl) &&
1948         "Template type parameter types are always available.");
1949
1950  if (const RecordDecl *Record = dyn_cast<RecordDecl>(Decl)) {
1951    assert(!Record->getPreviousDeclaration() &&
1952           "struct/union has previous declaration");
1953    assert(!NeedsInjectedClassNameType(Record));
1954    Decl->TypeForDecl = new (*this, TypeAlignment) RecordType(Record);
1955  } else if (const EnumDecl *Enum = dyn_cast<EnumDecl>(Decl)) {
1956    assert(!Enum->getPreviousDeclaration() &&
1957           "enum has previous declaration");
1958    Decl->TypeForDecl = new (*this, TypeAlignment) EnumType(Enum);
1959  } else if (const UnresolvedUsingTypenameDecl *Using =
1960               dyn_cast<UnresolvedUsingTypenameDecl>(Decl)) {
1961    Decl->TypeForDecl = new (*this, TypeAlignment) UnresolvedUsingType(Using);
1962  } else
1963    llvm_unreachable("TypeDecl without a type?");
1964
1965  Types.push_back(Decl->TypeForDecl);
1966  return QualType(Decl->TypeForDecl, 0);
1967}
1968
1969/// getTypedefType - Return the unique reference to the type for the
1970/// specified typename decl.
1971QualType ASTContext::getTypedefType(const TypedefDecl *Decl) {
1972  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
1973
1974  QualType Canonical = getCanonicalType(Decl->getUnderlyingType());
1975  Decl->TypeForDecl = new(*this, TypeAlignment)
1976    TypedefType(Type::Typedef, Decl, Canonical);
1977  Types.push_back(Decl->TypeForDecl);
1978  return QualType(Decl->TypeForDecl, 0);
1979}
1980
1981/// \brief Retrieve a substitution-result type.
1982QualType
1983ASTContext::getSubstTemplateTypeParmType(const TemplateTypeParmType *Parm,
1984                                         QualType Replacement) {
1985  assert(Replacement.isCanonical()
1986         && "replacement types must always be canonical");
1987
1988  llvm::FoldingSetNodeID ID;
1989  SubstTemplateTypeParmType::Profile(ID, Parm, Replacement);
1990  void *InsertPos = 0;
1991  SubstTemplateTypeParmType *SubstParm
1992    = SubstTemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
1993
1994  if (!SubstParm) {
1995    SubstParm = new (*this, TypeAlignment)
1996      SubstTemplateTypeParmType(Parm, Replacement);
1997    Types.push_back(SubstParm);
1998    SubstTemplateTypeParmTypes.InsertNode(SubstParm, InsertPos);
1999  }
2000
2001  return QualType(SubstParm, 0);
2002}
2003
2004/// \brief Retrieve the template type parameter type for a template
2005/// parameter or parameter pack with the given depth, index, and (optionally)
2006/// name.
2007QualType ASTContext::getTemplateTypeParmType(unsigned Depth, unsigned Index,
2008                                             bool ParameterPack,
2009                                             IdentifierInfo *Name) {
2010  llvm::FoldingSetNodeID ID;
2011  TemplateTypeParmType::Profile(ID, Depth, Index, ParameterPack, Name);
2012  void *InsertPos = 0;
2013  TemplateTypeParmType *TypeParm
2014    = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
2015
2016  if (TypeParm)
2017    return QualType(TypeParm, 0);
2018
2019  if (Name) {
2020    QualType Canon = getTemplateTypeParmType(Depth, Index, ParameterPack);
2021    TypeParm = new (*this, TypeAlignment)
2022      TemplateTypeParmType(Depth, Index, ParameterPack, Name, Canon);
2023
2024    TemplateTypeParmType *TypeCheck
2025      = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
2026    assert(!TypeCheck && "Template type parameter canonical type broken");
2027    (void)TypeCheck;
2028  } else
2029    TypeParm = new (*this, TypeAlignment)
2030      TemplateTypeParmType(Depth, Index, ParameterPack);
2031
2032  Types.push_back(TypeParm);
2033  TemplateTypeParmTypes.InsertNode(TypeParm, InsertPos);
2034
2035  return QualType(TypeParm, 0);
2036}
2037
2038TypeSourceInfo *
2039ASTContext::getTemplateSpecializationTypeInfo(TemplateName Name,
2040                                              SourceLocation NameLoc,
2041                                        const TemplateArgumentListInfo &Args,
2042                                              QualType CanonType) {
2043  QualType TST = getTemplateSpecializationType(Name, Args, CanonType);
2044
2045  TypeSourceInfo *DI = CreateTypeSourceInfo(TST);
2046  TemplateSpecializationTypeLoc TL
2047    = cast<TemplateSpecializationTypeLoc>(DI->getTypeLoc());
2048  TL.setTemplateNameLoc(NameLoc);
2049  TL.setLAngleLoc(Args.getLAngleLoc());
2050  TL.setRAngleLoc(Args.getRAngleLoc());
2051  for (unsigned i = 0, e = TL.getNumArgs(); i != e; ++i)
2052    TL.setArgLocInfo(i, Args[i].getLocInfo());
2053  return DI;
2054}
2055
2056QualType
2057ASTContext::getTemplateSpecializationType(TemplateName Template,
2058                                          const TemplateArgumentListInfo &Args,
2059                                          QualType Canon) {
2060  unsigned NumArgs = Args.size();
2061
2062  llvm::SmallVector<TemplateArgument, 4> ArgVec;
2063  ArgVec.reserve(NumArgs);
2064  for (unsigned i = 0; i != NumArgs; ++i)
2065    ArgVec.push_back(Args[i].getArgument());
2066
2067  return getTemplateSpecializationType(Template, ArgVec.data(), NumArgs, Canon);
2068}
2069
2070QualType
2071ASTContext::getTemplateSpecializationType(TemplateName Template,
2072                                          const TemplateArgument *Args,
2073                                          unsigned NumArgs,
2074                                          QualType Canon) {
2075  if (!Canon.isNull())
2076    Canon = getCanonicalType(Canon);
2077  else {
2078    // Build the canonical template specialization type.
2079    TemplateName CanonTemplate = getCanonicalTemplateName(Template);
2080    llvm::SmallVector<TemplateArgument, 4> CanonArgs;
2081    CanonArgs.reserve(NumArgs);
2082    for (unsigned I = 0; I != NumArgs; ++I)
2083      CanonArgs.push_back(getCanonicalTemplateArgument(Args[I]));
2084
2085    // Determine whether this canonical template specialization type already
2086    // exists.
2087    llvm::FoldingSetNodeID ID;
2088    TemplateSpecializationType::Profile(ID, CanonTemplate,
2089                                        CanonArgs.data(), NumArgs, *this);
2090
2091    void *InsertPos = 0;
2092    TemplateSpecializationType *Spec
2093      = TemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
2094
2095    if (!Spec) {
2096      // Allocate a new canonical template specialization type.
2097      void *Mem = Allocate((sizeof(TemplateSpecializationType) +
2098                            sizeof(TemplateArgument) * NumArgs),
2099                           TypeAlignment);
2100      Spec = new (Mem) TemplateSpecializationType(*this, CanonTemplate,
2101                                                  CanonArgs.data(), NumArgs,
2102                                                  Canon);
2103      Types.push_back(Spec);
2104      TemplateSpecializationTypes.InsertNode(Spec, InsertPos);
2105    }
2106
2107    if (Canon.isNull())
2108      Canon = QualType(Spec, 0);
2109    assert(Canon->isDependentType() &&
2110           "Non-dependent template-id type must have a canonical type");
2111  }
2112
2113  // Allocate the (non-canonical) template specialization type, but don't
2114  // try to unique it: these types typically have location information that
2115  // we don't unique and don't want to lose.
2116  void *Mem = Allocate((sizeof(TemplateSpecializationType) +
2117                        sizeof(TemplateArgument) * NumArgs),
2118                       TypeAlignment);
2119  TemplateSpecializationType *Spec
2120    = new (Mem) TemplateSpecializationType(*this, Template, Args, NumArgs,
2121                                           Canon);
2122
2123  Types.push_back(Spec);
2124  return QualType(Spec, 0);
2125}
2126
2127QualType
2128ASTContext::getQualifiedNameType(NestedNameSpecifier *NNS,
2129                                 QualType NamedType) {
2130  llvm::FoldingSetNodeID ID;
2131  QualifiedNameType::Profile(ID, NNS, NamedType);
2132
2133  void *InsertPos = 0;
2134  QualifiedNameType *T
2135    = QualifiedNameTypes.FindNodeOrInsertPos(ID, InsertPos);
2136  if (T)
2137    return QualType(T, 0);
2138
2139  QualType Canon = NamedType;
2140  if (!Canon.isCanonical()) {
2141    Canon = getCanonicalType(NamedType);
2142    QualifiedNameType *CheckT
2143      = QualifiedNameTypes.FindNodeOrInsertPos(ID, InsertPos);
2144    assert(!CheckT && "Qualified name canonical type broken");
2145    (void)CheckT;
2146  }
2147
2148  T = new (*this) QualifiedNameType(NNS, NamedType, Canon);
2149  Types.push_back(T);
2150  QualifiedNameTypes.InsertNode(T, InsertPos);
2151  return QualType(T, 0);
2152}
2153
2154QualType ASTContext::getTypenameType(NestedNameSpecifier *NNS,
2155                                     const IdentifierInfo *Name,
2156                                     QualType Canon) {
2157  assert(NNS->isDependent() && "nested-name-specifier must be dependent");
2158
2159  if (Canon.isNull()) {
2160    NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
2161    if (CanonNNS != NNS)
2162      Canon = getTypenameType(CanonNNS, Name);
2163  }
2164
2165  llvm::FoldingSetNodeID ID;
2166  TypenameType::Profile(ID, NNS, Name);
2167
2168  void *InsertPos = 0;
2169  TypenameType *T
2170    = TypenameTypes.FindNodeOrInsertPos(ID, InsertPos);
2171  if (T)
2172    return QualType(T, 0);
2173
2174  T = new (*this) TypenameType(NNS, Name, Canon);
2175  Types.push_back(T);
2176  TypenameTypes.InsertNode(T, InsertPos);
2177  return QualType(T, 0);
2178}
2179
2180QualType
2181ASTContext::getTypenameType(NestedNameSpecifier *NNS,
2182                            const TemplateSpecializationType *TemplateId,
2183                            QualType Canon) {
2184  assert(NNS->isDependent() && "nested-name-specifier must be dependent");
2185
2186  llvm::FoldingSetNodeID ID;
2187  TypenameType::Profile(ID, NNS, TemplateId);
2188
2189  void *InsertPos = 0;
2190  TypenameType *T
2191    = TypenameTypes.FindNodeOrInsertPos(ID, InsertPos);
2192  if (T)
2193    return QualType(T, 0);
2194
2195  if (Canon.isNull()) {
2196    NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
2197    QualType CanonType = getCanonicalType(QualType(TemplateId, 0));
2198    if (CanonNNS != NNS || CanonType != QualType(TemplateId, 0)) {
2199      const TemplateSpecializationType *CanonTemplateId
2200        = CanonType->getAs<TemplateSpecializationType>();
2201      assert(CanonTemplateId &&
2202             "Canonical type must also be a template specialization type");
2203      Canon = getTypenameType(CanonNNS, CanonTemplateId);
2204    }
2205
2206    TypenameType *CheckT
2207      = TypenameTypes.FindNodeOrInsertPos(ID, InsertPos);
2208    assert(!CheckT && "Typename canonical type is broken"); (void)CheckT;
2209  }
2210
2211  T = new (*this) TypenameType(NNS, TemplateId, Canon);
2212  Types.push_back(T);
2213  TypenameTypes.InsertNode(T, InsertPos);
2214  return QualType(T, 0);
2215}
2216
2217QualType
2218ASTContext::getElaboratedType(QualType UnderlyingType,
2219                              ElaboratedType::TagKind Tag) {
2220  llvm::FoldingSetNodeID ID;
2221  ElaboratedType::Profile(ID, UnderlyingType, Tag);
2222
2223  void *InsertPos = 0;
2224  ElaboratedType *T = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
2225  if (T)
2226    return QualType(T, 0);
2227
2228  QualType Canon = UnderlyingType;
2229  if (!Canon.isCanonical()) {
2230    Canon = getCanonicalType(Canon);
2231    ElaboratedType *CheckT = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
2232    assert(!CheckT && "Elaborated canonical type is broken"); (void)CheckT;
2233  }
2234
2235  T = new (*this) ElaboratedType(UnderlyingType, Tag, Canon);
2236  Types.push_back(T);
2237  ElaboratedTypes.InsertNode(T, InsertPos);
2238  return QualType(T, 0);
2239}
2240
2241/// CmpProtocolNames - Comparison predicate for sorting protocols
2242/// alphabetically.
2243static bool CmpProtocolNames(const ObjCProtocolDecl *LHS,
2244                            const ObjCProtocolDecl *RHS) {
2245  return LHS->getDeclName() < RHS->getDeclName();
2246}
2247
2248static bool areSortedAndUniqued(ObjCProtocolDecl **Protocols,
2249                                unsigned NumProtocols) {
2250  if (NumProtocols == 0) return true;
2251
2252  for (unsigned i = 1; i != NumProtocols; ++i)
2253    if (!CmpProtocolNames(Protocols[i-1], Protocols[i]))
2254      return false;
2255  return true;
2256}
2257
2258static void SortAndUniqueProtocols(ObjCProtocolDecl **Protocols,
2259                                   unsigned &NumProtocols) {
2260  ObjCProtocolDecl **ProtocolsEnd = Protocols+NumProtocols;
2261
2262  // Sort protocols, keyed by name.
2263  std::sort(Protocols, Protocols+NumProtocols, CmpProtocolNames);
2264
2265  // Remove duplicates.
2266  ProtocolsEnd = std::unique(Protocols, ProtocolsEnd);
2267  NumProtocols = ProtocolsEnd-Protocols;
2268}
2269
2270/// getObjCObjectPointerType - Return a ObjCObjectPointerType type for
2271/// the given interface decl and the conforming protocol list.
2272QualType ASTContext::getObjCObjectPointerType(QualType InterfaceT,
2273                                              ObjCProtocolDecl **Protocols,
2274                                              unsigned NumProtocols,
2275                                              unsigned Quals) {
2276  llvm::FoldingSetNodeID ID;
2277  ObjCObjectPointerType::Profile(ID, InterfaceT, Protocols, NumProtocols);
2278  Qualifiers Qs = Qualifiers::fromCVRMask(Quals);
2279
2280  void *InsertPos = 0;
2281  if (ObjCObjectPointerType *QT =
2282              ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
2283    return getQualifiedType(QualType(QT, 0), Qs);
2284
2285  // Sort the protocol list alphabetically to canonicalize it.
2286  QualType Canonical;
2287  if (!InterfaceT.isCanonical() ||
2288      !areSortedAndUniqued(Protocols, NumProtocols)) {
2289    if (!areSortedAndUniqued(Protocols, NumProtocols)) {
2290      llvm::SmallVector<ObjCProtocolDecl*, 8> Sorted(NumProtocols);
2291      unsigned UniqueCount = NumProtocols;
2292
2293      std::copy(Protocols, Protocols + NumProtocols, Sorted.begin());
2294      SortAndUniqueProtocols(&Sorted[0], UniqueCount);
2295
2296      Canonical = getObjCObjectPointerType(getCanonicalType(InterfaceT),
2297                                           &Sorted[0], UniqueCount);
2298    } else {
2299      Canonical = getObjCObjectPointerType(getCanonicalType(InterfaceT),
2300                                           Protocols, NumProtocols);
2301    }
2302
2303    // Regenerate InsertPos.
2304    ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
2305  }
2306
2307  // No match.
2308  unsigned Size = sizeof(ObjCObjectPointerType)
2309                + NumProtocols * sizeof(ObjCProtocolDecl *);
2310  void *Mem = Allocate(Size, TypeAlignment);
2311  ObjCObjectPointerType *QType = new (Mem) ObjCObjectPointerType(Canonical,
2312                                                                 InterfaceT,
2313                                                                 Protocols,
2314                                                                 NumProtocols);
2315
2316  Types.push_back(QType);
2317  ObjCObjectPointerTypes.InsertNode(QType, InsertPos);
2318  return getQualifiedType(QualType(QType, 0), Qs);
2319}
2320
2321/// getObjCInterfaceType - Return the unique reference to the type for the
2322/// specified ObjC interface decl. The list of protocols is optional.
2323QualType ASTContext::getObjCInterfaceType(const ObjCInterfaceDecl *Decl,
2324                       ObjCProtocolDecl **Protocols, unsigned NumProtocols) {
2325  llvm::FoldingSetNodeID ID;
2326  ObjCInterfaceType::Profile(ID, Decl, Protocols, NumProtocols);
2327
2328  void *InsertPos = 0;
2329  if (ObjCInterfaceType *QT =
2330      ObjCInterfaceTypes.FindNodeOrInsertPos(ID, InsertPos))
2331    return QualType(QT, 0);
2332
2333  // Sort the protocol list alphabetically to canonicalize it.
2334  QualType Canonical;
2335  if (NumProtocols && !areSortedAndUniqued(Protocols, NumProtocols)) {
2336    llvm::SmallVector<ObjCProtocolDecl*, 8> Sorted(NumProtocols);
2337    std::copy(Protocols, Protocols + NumProtocols, Sorted.begin());
2338
2339    unsigned UniqueCount = NumProtocols;
2340    SortAndUniqueProtocols(&Sorted[0], UniqueCount);
2341
2342    Canonical = getObjCInterfaceType(Decl, &Sorted[0], UniqueCount);
2343
2344    ObjCInterfaceTypes.FindNodeOrInsertPos(ID, InsertPos);
2345  }
2346
2347  unsigned Size = sizeof(ObjCInterfaceType)
2348    + NumProtocols * sizeof(ObjCProtocolDecl *);
2349  void *Mem = Allocate(Size, TypeAlignment);
2350  ObjCInterfaceType *QType = new (Mem) ObjCInterfaceType(Canonical,
2351                                        const_cast<ObjCInterfaceDecl*>(Decl),
2352                                                         Protocols,
2353                                                         NumProtocols);
2354
2355  Types.push_back(QType);
2356  ObjCInterfaceTypes.InsertNode(QType, InsertPos);
2357  return QualType(QType, 0);
2358}
2359
2360/// getTypeOfExprType - Unlike many "get<Type>" functions, we can't unique
2361/// TypeOfExprType AST's (since expression's are never shared). For example,
2362/// multiple declarations that refer to "typeof(x)" all contain different
2363/// DeclRefExpr's. This doesn't effect the type checker, since it operates
2364/// on canonical type's (which are always unique).
2365QualType ASTContext::getTypeOfExprType(Expr *tofExpr) {
2366  TypeOfExprType *toe;
2367  if (tofExpr->isTypeDependent()) {
2368    llvm::FoldingSetNodeID ID;
2369    DependentTypeOfExprType::Profile(ID, *this, tofExpr);
2370
2371    void *InsertPos = 0;
2372    DependentTypeOfExprType *Canon
2373      = DependentTypeOfExprTypes.FindNodeOrInsertPos(ID, InsertPos);
2374    if (Canon) {
2375      // We already have a "canonical" version of an identical, dependent
2376      // typeof(expr) type. Use that as our canonical type.
2377      toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr,
2378                                          QualType((TypeOfExprType*)Canon, 0));
2379    }
2380    else {
2381      // Build a new, canonical typeof(expr) type.
2382      Canon
2383        = new (*this, TypeAlignment) DependentTypeOfExprType(*this, tofExpr);
2384      DependentTypeOfExprTypes.InsertNode(Canon, InsertPos);
2385      toe = Canon;
2386    }
2387  } else {
2388    QualType Canonical = getCanonicalType(tofExpr->getType());
2389    toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr, Canonical);
2390  }
2391  Types.push_back(toe);
2392  return QualType(toe, 0);
2393}
2394
2395/// getTypeOfType -  Unlike many "get<Type>" functions, we don't unique
2396/// TypeOfType AST's. The only motivation to unique these nodes would be
2397/// memory savings. Since typeof(t) is fairly uncommon, space shouldn't be
2398/// an issue. This doesn't effect the type checker, since it operates
2399/// on canonical type's (which are always unique).
2400QualType ASTContext::getTypeOfType(QualType tofType) {
2401  QualType Canonical = getCanonicalType(tofType);
2402  TypeOfType *tot = new (*this, TypeAlignment) TypeOfType(tofType, Canonical);
2403  Types.push_back(tot);
2404  return QualType(tot, 0);
2405}
2406
2407/// getDecltypeForExpr - Given an expr, will return the decltype for that
2408/// expression, according to the rules in C++0x [dcl.type.simple]p4
2409static QualType getDecltypeForExpr(const Expr *e, ASTContext &Context) {
2410  if (e->isTypeDependent())
2411    return Context.DependentTy;
2412
2413  // If e is an id expression or a class member access, decltype(e) is defined
2414  // as the type of the entity named by e.
2415  if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(e)) {
2416    if (const ValueDecl *VD = dyn_cast<ValueDecl>(DRE->getDecl()))
2417      return VD->getType();
2418  }
2419  if (const MemberExpr *ME = dyn_cast<MemberExpr>(e)) {
2420    if (const FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl()))
2421      return FD->getType();
2422  }
2423  // If e is a function call or an invocation of an overloaded operator,
2424  // (parentheses around e are ignored), decltype(e) is defined as the
2425  // return type of that function.
2426  if (const CallExpr *CE = dyn_cast<CallExpr>(e->IgnoreParens()))
2427    return CE->getCallReturnType();
2428
2429  QualType T = e->getType();
2430
2431  // Otherwise, where T is the type of e, if e is an lvalue, decltype(e) is
2432  // defined as T&, otherwise decltype(e) is defined as T.
2433  if (e->isLvalue(Context) == Expr::LV_Valid)
2434    T = Context.getLValueReferenceType(T);
2435
2436  return T;
2437}
2438
2439/// getDecltypeType -  Unlike many "get<Type>" functions, we don't unique
2440/// DecltypeType AST's. The only motivation to unique these nodes would be
2441/// memory savings. Since decltype(t) is fairly uncommon, space shouldn't be
2442/// an issue. This doesn't effect the type checker, since it operates
2443/// on canonical type's (which are always unique).
2444QualType ASTContext::getDecltypeType(Expr *e) {
2445  DecltypeType *dt;
2446  if (e->isTypeDependent()) {
2447    llvm::FoldingSetNodeID ID;
2448    DependentDecltypeType::Profile(ID, *this, e);
2449
2450    void *InsertPos = 0;
2451    DependentDecltypeType *Canon
2452      = DependentDecltypeTypes.FindNodeOrInsertPos(ID, InsertPos);
2453    if (Canon) {
2454      // We already have a "canonical" version of an equivalent, dependent
2455      // decltype type. Use that as our canonical type.
2456      dt = new (*this, TypeAlignment) DecltypeType(e, DependentTy,
2457                                       QualType((DecltypeType*)Canon, 0));
2458    }
2459    else {
2460      // Build a new, canonical typeof(expr) type.
2461      Canon = new (*this, TypeAlignment) DependentDecltypeType(*this, e);
2462      DependentDecltypeTypes.InsertNode(Canon, InsertPos);
2463      dt = Canon;
2464    }
2465  } else {
2466    QualType T = getDecltypeForExpr(e, *this);
2467    dt = new (*this, TypeAlignment) DecltypeType(e, T, getCanonicalType(T));
2468  }
2469  Types.push_back(dt);
2470  return QualType(dt, 0);
2471}
2472
2473/// getTagDeclType - Return the unique reference to the type for the
2474/// specified TagDecl (struct/union/class/enum) decl.
2475QualType ASTContext::getTagDeclType(const TagDecl *Decl) {
2476  assert (Decl);
2477  // FIXME: What is the design on getTagDeclType when it requires casting
2478  // away const?  mutable?
2479  return getTypeDeclType(const_cast<TagDecl*>(Decl));
2480}
2481
2482/// getSizeType - Return the unique type for "size_t" (C99 7.17), the result
2483/// of the sizeof operator (C99 6.5.3.4p4). The value is target dependent and
2484/// needs to agree with the definition in <stddef.h>.
2485CanQualType ASTContext::getSizeType() const {
2486  return getFromTargetType(Target.getSizeType());
2487}
2488
2489/// getSignedWCharType - Return the type of "signed wchar_t".
2490/// Used when in C++, as a GCC extension.
2491QualType ASTContext::getSignedWCharType() const {
2492  // FIXME: derive from "Target" ?
2493  return WCharTy;
2494}
2495
2496/// getUnsignedWCharType - Return the type of "unsigned wchar_t".
2497/// Used when in C++, as a GCC extension.
2498QualType ASTContext::getUnsignedWCharType() const {
2499  // FIXME: derive from "Target" ?
2500  return UnsignedIntTy;
2501}
2502
2503/// getPointerDiffType - Return the unique type for "ptrdiff_t" (ref?)
2504/// defined in <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9).
2505QualType ASTContext::getPointerDiffType() const {
2506  return getFromTargetType(Target.getPtrDiffType(0));
2507}
2508
2509//===----------------------------------------------------------------------===//
2510//                              Type Operators
2511//===----------------------------------------------------------------------===//
2512
2513CanQualType ASTContext::getCanonicalParamType(QualType T) {
2514  // Push qualifiers into arrays, and then discard any remaining
2515  // qualifiers.
2516  T = getCanonicalType(T);
2517  const Type *Ty = T.getTypePtr();
2518
2519  QualType Result;
2520  if (isa<ArrayType>(Ty)) {
2521    Result = getArrayDecayedType(QualType(Ty,0));
2522  } else if (isa<FunctionType>(Ty)) {
2523    Result = getPointerType(QualType(Ty, 0));
2524  } else {
2525    Result = QualType(Ty, 0);
2526  }
2527
2528  return CanQualType::CreateUnsafe(Result);
2529}
2530
2531/// getCanonicalType - Return the canonical (structural) type corresponding to
2532/// the specified potentially non-canonical type.  The non-canonical version
2533/// of a type may have many "decorated" versions of types.  Decorators can
2534/// include typedefs, 'typeof' operators, etc. The returned type is guaranteed
2535/// to be free of any of these, allowing two canonical types to be compared
2536/// for exact equality with a simple pointer comparison.
2537CanQualType ASTContext::getCanonicalType(QualType T) {
2538  QualifierCollector Quals;
2539  const Type *Ptr = Quals.strip(T);
2540  QualType CanType = Ptr->getCanonicalTypeInternal();
2541
2542  // The canonical internal type will be the canonical type *except*
2543  // that we push type qualifiers down through array types.
2544
2545  // If there are no new qualifiers to push down, stop here.
2546  if (!Quals.hasQualifiers())
2547    return CanQualType::CreateUnsafe(CanType);
2548
2549  // If the type qualifiers are on an array type, get the canonical
2550  // type of the array with the qualifiers applied to the element
2551  // type.
2552  ArrayType *AT = dyn_cast<ArrayType>(CanType);
2553  if (!AT)
2554    return CanQualType::CreateUnsafe(getQualifiedType(CanType, Quals));
2555
2556  // Get the canonical version of the element with the extra qualifiers on it.
2557  // This can recursively sink qualifiers through multiple levels of arrays.
2558  QualType NewEltTy = getQualifiedType(AT->getElementType(), Quals);
2559  NewEltTy = getCanonicalType(NewEltTy);
2560
2561  if (ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
2562    return CanQualType::CreateUnsafe(
2563             getConstantArrayType(NewEltTy, CAT->getSize(),
2564                                  CAT->getSizeModifier(),
2565                                  CAT->getIndexTypeCVRQualifiers()));
2566  if (IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT))
2567    return CanQualType::CreateUnsafe(
2568             getIncompleteArrayType(NewEltTy, IAT->getSizeModifier(),
2569                                    IAT->getIndexTypeCVRQualifiers()));
2570
2571  if (DependentSizedArrayType *DSAT = dyn_cast<DependentSizedArrayType>(AT))
2572    return CanQualType::CreateUnsafe(
2573             getDependentSizedArrayType(NewEltTy,
2574                                        DSAT->getSizeExpr() ?
2575                                          DSAT->getSizeExpr()->Retain() : 0,
2576                                        DSAT->getSizeModifier(),
2577                                        DSAT->getIndexTypeCVRQualifiers(),
2578                        DSAT->getBracketsRange())->getCanonicalTypeInternal());
2579
2580  VariableArrayType *VAT = cast<VariableArrayType>(AT);
2581  return CanQualType::CreateUnsafe(getVariableArrayType(NewEltTy,
2582                                                        VAT->getSizeExpr() ?
2583                                              VAT->getSizeExpr()->Retain() : 0,
2584                                                        VAT->getSizeModifier(),
2585                                              VAT->getIndexTypeCVRQualifiers(),
2586                                                     VAT->getBracketsRange()));
2587}
2588
2589QualType ASTContext::getUnqualifiedArrayType(QualType T,
2590                                             Qualifiers &Quals) {
2591  Quals = T.getQualifiers();
2592  if (!isa<ArrayType>(T)) {
2593    return T.getUnqualifiedType();
2594  }
2595
2596  const ArrayType *AT = cast<ArrayType>(T);
2597  QualType Elt = AT->getElementType();
2598  QualType UnqualElt = getUnqualifiedArrayType(Elt, Quals);
2599  if (Elt == UnqualElt)
2600    return T;
2601
2602  if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(T)) {
2603    return getConstantArrayType(UnqualElt, CAT->getSize(),
2604                                CAT->getSizeModifier(), 0);
2605  }
2606
2607  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(T)) {
2608    return getIncompleteArrayType(UnqualElt, IAT->getSizeModifier(), 0);
2609  }
2610
2611  const DependentSizedArrayType *DSAT = cast<DependentSizedArrayType>(T);
2612  return getDependentSizedArrayType(UnqualElt, DSAT->getSizeExpr()->Retain(),
2613                                    DSAT->getSizeModifier(), 0,
2614                                    SourceRange());
2615}
2616
2617DeclarationName ASTContext::getNameForTemplate(TemplateName Name) {
2618  if (TemplateDecl *TD = Name.getAsTemplateDecl())
2619    return TD->getDeclName();
2620
2621  if (DependentTemplateName *DTN = Name.getAsDependentTemplateName()) {
2622    if (DTN->isIdentifier()) {
2623      return DeclarationNames.getIdentifier(DTN->getIdentifier());
2624    } else {
2625      return DeclarationNames.getCXXOperatorName(DTN->getOperator());
2626    }
2627  }
2628
2629  OverloadedTemplateStorage *Storage = Name.getAsOverloadedTemplate();
2630  assert(Storage);
2631  return (*Storage->begin())->getDeclName();
2632}
2633
2634TemplateName ASTContext::getCanonicalTemplateName(TemplateName Name) {
2635  // If this template name refers to a template, the canonical
2636  // template name merely stores the template itself.
2637  if (TemplateDecl *Template = Name.getAsTemplateDecl())
2638    return TemplateName(cast<TemplateDecl>(Template->getCanonicalDecl()));
2639
2640  assert(!Name.getAsOverloadedTemplate());
2641
2642  DependentTemplateName *DTN = Name.getAsDependentTemplateName();
2643  assert(DTN && "Non-dependent template names must refer to template decls.");
2644  return DTN->CanonicalTemplateName;
2645}
2646
2647bool ASTContext::hasSameTemplateName(TemplateName X, TemplateName Y) {
2648  X = getCanonicalTemplateName(X);
2649  Y = getCanonicalTemplateName(Y);
2650  return X.getAsVoidPointer() == Y.getAsVoidPointer();
2651}
2652
2653TemplateArgument
2654ASTContext::getCanonicalTemplateArgument(const TemplateArgument &Arg) {
2655  switch (Arg.getKind()) {
2656    case TemplateArgument::Null:
2657      return Arg;
2658
2659    case TemplateArgument::Expression:
2660      return Arg;
2661
2662    case TemplateArgument::Declaration:
2663      return TemplateArgument(Arg.getAsDecl()->getCanonicalDecl());
2664
2665    case TemplateArgument::Template:
2666      return TemplateArgument(getCanonicalTemplateName(Arg.getAsTemplate()));
2667
2668    case TemplateArgument::Integral:
2669      return TemplateArgument(*Arg.getAsIntegral(),
2670                              getCanonicalType(Arg.getIntegralType()));
2671
2672    case TemplateArgument::Type:
2673      return TemplateArgument(getCanonicalType(Arg.getAsType()));
2674
2675    case TemplateArgument::Pack: {
2676      // FIXME: Allocate in ASTContext
2677      TemplateArgument *CanonArgs = new TemplateArgument[Arg.pack_size()];
2678      unsigned Idx = 0;
2679      for (TemplateArgument::pack_iterator A = Arg.pack_begin(),
2680                                        AEnd = Arg.pack_end();
2681           A != AEnd; (void)++A, ++Idx)
2682        CanonArgs[Idx] = getCanonicalTemplateArgument(*A);
2683
2684      TemplateArgument Result;
2685      Result.setArgumentPack(CanonArgs, Arg.pack_size(), false);
2686      return Result;
2687    }
2688  }
2689
2690  // Silence GCC warning
2691  assert(false && "Unhandled template argument kind");
2692  return TemplateArgument();
2693}
2694
2695NestedNameSpecifier *
2696ASTContext::getCanonicalNestedNameSpecifier(NestedNameSpecifier *NNS) {
2697  if (!NNS)
2698    return 0;
2699
2700  switch (NNS->getKind()) {
2701  case NestedNameSpecifier::Identifier:
2702    // Canonicalize the prefix but keep the identifier the same.
2703    return NestedNameSpecifier::Create(*this,
2704                         getCanonicalNestedNameSpecifier(NNS->getPrefix()),
2705                                       NNS->getAsIdentifier());
2706
2707  case NestedNameSpecifier::Namespace:
2708    // A namespace is canonical; build a nested-name-specifier with
2709    // this namespace and no prefix.
2710    return NestedNameSpecifier::Create(*this, 0, NNS->getAsNamespace());
2711
2712  case NestedNameSpecifier::TypeSpec:
2713  case NestedNameSpecifier::TypeSpecWithTemplate: {
2714    QualType T = getCanonicalType(QualType(NNS->getAsType(), 0));
2715    return NestedNameSpecifier::Create(*this, 0,
2716                 NNS->getKind() == NestedNameSpecifier::TypeSpecWithTemplate,
2717                                       T.getTypePtr());
2718  }
2719
2720  case NestedNameSpecifier::Global:
2721    // The global specifier is canonical and unique.
2722    return NNS;
2723  }
2724
2725  // Required to silence a GCC warning
2726  return 0;
2727}
2728
2729
2730const ArrayType *ASTContext::getAsArrayType(QualType T) {
2731  // Handle the non-qualified case efficiently.
2732  if (!T.hasLocalQualifiers()) {
2733    // Handle the common positive case fast.
2734    if (const ArrayType *AT = dyn_cast<ArrayType>(T))
2735      return AT;
2736  }
2737
2738  // Handle the common negative case fast.
2739  QualType CType = T->getCanonicalTypeInternal();
2740  if (!isa<ArrayType>(CType))
2741    return 0;
2742
2743  // Apply any qualifiers from the array type to the element type.  This
2744  // implements C99 6.7.3p8: "If the specification of an array type includes
2745  // any type qualifiers, the element type is so qualified, not the array type."
2746
2747  // If we get here, we either have type qualifiers on the type, or we have
2748  // sugar such as a typedef in the way.  If we have type qualifiers on the type
2749  // we must propagate them down into the element type.
2750
2751  QualifierCollector Qs;
2752  const Type *Ty = Qs.strip(T.getDesugaredType());
2753
2754  // If we have a simple case, just return now.
2755  const ArrayType *ATy = dyn_cast<ArrayType>(Ty);
2756  if (ATy == 0 || Qs.empty())
2757    return ATy;
2758
2759  // Otherwise, we have an array and we have qualifiers on it.  Push the
2760  // qualifiers into the array element type and return a new array type.
2761  // Get the canonical version of the element with the extra qualifiers on it.
2762  // This can recursively sink qualifiers through multiple levels of arrays.
2763  QualType NewEltTy = getQualifiedType(ATy->getElementType(), Qs);
2764
2765  if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(ATy))
2766    return cast<ArrayType>(getConstantArrayType(NewEltTy, CAT->getSize(),
2767                                                CAT->getSizeModifier(),
2768                                           CAT->getIndexTypeCVRQualifiers()));
2769  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(ATy))
2770    return cast<ArrayType>(getIncompleteArrayType(NewEltTy,
2771                                                  IAT->getSizeModifier(),
2772                                           IAT->getIndexTypeCVRQualifiers()));
2773
2774  if (const DependentSizedArrayType *DSAT
2775        = dyn_cast<DependentSizedArrayType>(ATy))
2776    return cast<ArrayType>(
2777                     getDependentSizedArrayType(NewEltTy,
2778                                                DSAT->getSizeExpr() ?
2779                                              DSAT->getSizeExpr()->Retain() : 0,
2780                                                DSAT->getSizeModifier(),
2781                                              DSAT->getIndexTypeCVRQualifiers(),
2782                                                DSAT->getBracketsRange()));
2783
2784  const VariableArrayType *VAT = cast<VariableArrayType>(ATy);
2785  return cast<ArrayType>(getVariableArrayType(NewEltTy,
2786                                              VAT->getSizeExpr() ?
2787                                              VAT->getSizeExpr()->Retain() : 0,
2788                                              VAT->getSizeModifier(),
2789                                              VAT->getIndexTypeCVRQualifiers(),
2790                                              VAT->getBracketsRange()));
2791}
2792
2793
2794/// getArrayDecayedType - Return the properly qualified result of decaying the
2795/// specified array type to a pointer.  This operation is non-trivial when
2796/// handling typedefs etc.  The canonical type of "T" must be an array type,
2797/// this returns a pointer to a properly qualified element of the array.
2798///
2799/// See C99 6.7.5.3p7 and C99 6.3.2.1p3.
2800QualType ASTContext::getArrayDecayedType(QualType Ty) {
2801  // Get the element type with 'getAsArrayType' so that we don't lose any
2802  // typedefs in the element type of the array.  This also handles propagation
2803  // of type qualifiers from the array type into the element type if present
2804  // (C99 6.7.3p8).
2805  const ArrayType *PrettyArrayType = getAsArrayType(Ty);
2806  assert(PrettyArrayType && "Not an array type!");
2807
2808  QualType PtrTy = getPointerType(PrettyArrayType->getElementType());
2809
2810  // int x[restrict 4] ->  int *restrict
2811  return getQualifiedType(PtrTy, PrettyArrayType->getIndexTypeQualifiers());
2812}
2813
2814QualType ASTContext::getBaseElementType(QualType QT) {
2815  QualifierCollector Qs;
2816  while (true) {
2817    const Type *UT = Qs.strip(QT);
2818    if (const ArrayType *AT = getAsArrayType(QualType(UT,0))) {
2819      QT = AT->getElementType();
2820    } else {
2821      return Qs.apply(QT);
2822    }
2823  }
2824}
2825
2826QualType ASTContext::getBaseElementType(const ArrayType *AT) {
2827  QualType ElemTy = AT->getElementType();
2828
2829  if (const ArrayType *AT = getAsArrayType(ElemTy))
2830    return getBaseElementType(AT);
2831
2832  return ElemTy;
2833}
2834
2835/// getConstantArrayElementCount - Returns number of constant array elements.
2836uint64_t
2837ASTContext::getConstantArrayElementCount(const ConstantArrayType *CA)  const {
2838  uint64_t ElementCount = 1;
2839  do {
2840    ElementCount *= CA->getSize().getZExtValue();
2841    CA = dyn_cast<ConstantArrayType>(CA->getElementType());
2842  } while (CA);
2843  return ElementCount;
2844}
2845
2846/// getFloatingRank - Return a relative rank for floating point types.
2847/// This routine will assert if passed a built-in type that isn't a float.
2848static FloatingRank getFloatingRank(QualType T) {
2849  if (const ComplexType *CT = T->getAs<ComplexType>())
2850    return getFloatingRank(CT->getElementType());
2851
2852  assert(T->getAs<BuiltinType>() && "getFloatingRank(): not a floating type");
2853  switch (T->getAs<BuiltinType>()->getKind()) {
2854  default: assert(0 && "getFloatingRank(): not a floating type");
2855  case BuiltinType::Float:      return FloatRank;
2856  case BuiltinType::Double:     return DoubleRank;
2857  case BuiltinType::LongDouble: return LongDoubleRank;
2858  }
2859}
2860
2861/// getFloatingTypeOfSizeWithinDomain - Returns a real floating
2862/// point or a complex type (based on typeDomain/typeSize).
2863/// 'typeDomain' is a real floating point or complex type.
2864/// 'typeSize' is a real floating point or complex type.
2865QualType ASTContext::getFloatingTypeOfSizeWithinDomain(QualType Size,
2866                                                       QualType Domain) const {
2867  FloatingRank EltRank = getFloatingRank(Size);
2868  if (Domain->isComplexType()) {
2869    switch (EltRank) {
2870    default: assert(0 && "getFloatingRank(): illegal value for rank");
2871    case FloatRank:      return FloatComplexTy;
2872    case DoubleRank:     return DoubleComplexTy;
2873    case LongDoubleRank: return LongDoubleComplexTy;
2874    }
2875  }
2876
2877  assert(Domain->isRealFloatingType() && "Unknown domain!");
2878  switch (EltRank) {
2879  default: assert(0 && "getFloatingRank(): illegal value for rank");
2880  case FloatRank:      return FloatTy;
2881  case DoubleRank:     return DoubleTy;
2882  case LongDoubleRank: return LongDoubleTy;
2883  }
2884}
2885
2886/// getFloatingTypeOrder - Compare the rank of the two specified floating
2887/// point types, ignoring the domain of the type (i.e. 'double' ==
2888/// '_Complex double').  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
2889/// LHS < RHS, return -1.
2890int ASTContext::getFloatingTypeOrder(QualType LHS, QualType RHS) {
2891  FloatingRank LHSR = getFloatingRank(LHS);
2892  FloatingRank RHSR = getFloatingRank(RHS);
2893
2894  if (LHSR == RHSR)
2895    return 0;
2896  if (LHSR > RHSR)
2897    return 1;
2898  return -1;
2899}
2900
2901/// getIntegerRank - Return an integer conversion rank (C99 6.3.1.1p1). This
2902/// routine will assert if passed a built-in type that isn't an integer or enum,
2903/// or if it is not canonicalized.
2904unsigned ASTContext::getIntegerRank(Type *T) {
2905  assert(T->isCanonicalUnqualified() && "T should be canonicalized");
2906  if (EnumType* ET = dyn_cast<EnumType>(T))
2907    T = ET->getDecl()->getPromotionType().getTypePtr();
2908
2909  if (T->isSpecificBuiltinType(BuiltinType::WChar))
2910    T = getFromTargetType(Target.getWCharType()).getTypePtr();
2911
2912  if (T->isSpecificBuiltinType(BuiltinType::Char16))
2913    T = getFromTargetType(Target.getChar16Type()).getTypePtr();
2914
2915  if (T->isSpecificBuiltinType(BuiltinType::Char32))
2916    T = getFromTargetType(Target.getChar32Type()).getTypePtr();
2917
2918  switch (cast<BuiltinType>(T)->getKind()) {
2919  default: assert(0 && "getIntegerRank(): not a built-in integer");
2920  case BuiltinType::Bool:
2921    return 1 + (getIntWidth(BoolTy) << 3);
2922  case BuiltinType::Char_S:
2923  case BuiltinType::Char_U:
2924  case BuiltinType::SChar:
2925  case BuiltinType::UChar:
2926    return 2 + (getIntWidth(CharTy) << 3);
2927  case BuiltinType::Short:
2928  case BuiltinType::UShort:
2929    return 3 + (getIntWidth(ShortTy) << 3);
2930  case BuiltinType::Int:
2931  case BuiltinType::UInt:
2932    return 4 + (getIntWidth(IntTy) << 3);
2933  case BuiltinType::Long:
2934  case BuiltinType::ULong:
2935    return 5 + (getIntWidth(LongTy) << 3);
2936  case BuiltinType::LongLong:
2937  case BuiltinType::ULongLong:
2938    return 6 + (getIntWidth(LongLongTy) << 3);
2939  case BuiltinType::Int128:
2940  case BuiltinType::UInt128:
2941    return 7 + (getIntWidth(Int128Ty) << 3);
2942  }
2943}
2944
2945/// \brief Whether this is a promotable bitfield reference according
2946/// to C99 6.3.1.1p2, bullet 2 (and GCC extensions).
2947///
2948/// \returns the type this bit-field will promote to, or NULL if no
2949/// promotion occurs.
2950QualType ASTContext::isPromotableBitField(Expr *E) {
2951  FieldDecl *Field = E->getBitField();
2952  if (!Field)
2953    return QualType();
2954
2955  QualType FT = Field->getType();
2956
2957  llvm::APSInt BitWidthAP = Field->getBitWidth()->EvaluateAsInt(*this);
2958  uint64_t BitWidth = BitWidthAP.getZExtValue();
2959  uint64_t IntSize = getTypeSize(IntTy);
2960  // GCC extension compatibility: if the bit-field size is less than or equal
2961  // to the size of int, it gets promoted no matter what its type is.
2962  // For instance, unsigned long bf : 4 gets promoted to signed int.
2963  if (BitWidth < IntSize)
2964    return IntTy;
2965
2966  if (BitWidth == IntSize)
2967    return FT->isSignedIntegerType() ? IntTy : UnsignedIntTy;
2968
2969  // Types bigger than int are not subject to promotions, and therefore act
2970  // like the base type.
2971  // FIXME: This doesn't quite match what gcc does, but what gcc does here
2972  // is ridiculous.
2973  return QualType();
2974}
2975
2976/// getPromotedIntegerType - Returns the type that Promotable will
2977/// promote to: C99 6.3.1.1p2, assuming that Promotable is a promotable
2978/// integer type.
2979QualType ASTContext::getPromotedIntegerType(QualType Promotable) {
2980  assert(!Promotable.isNull());
2981  assert(Promotable->isPromotableIntegerType());
2982  if (const EnumType *ET = Promotable->getAs<EnumType>())
2983    return ET->getDecl()->getPromotionType();
2984  if (Promotable->isSignedIntegerType())
2985    return IntTy;
2986  uint64_t PromotableSize = getTypeSize(Promotable);
2987  uint64_t IntSize = getTypeSize(IntTy);
2988  assert(Promotable->isUnsignedIntegerType() && PromotableSize <= IntSize);
2989  return (PromotableSize != IntSize) ? IntTy : UnsignedIntTy;
2990}
2991
2992/// getIntegerTypeOrder - Returns the highest ranked integer type:
2993/// C99 6.3.1.8p1.  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
2994/// LHS < RHS, return -1.
2995int ASTContext::getIntegerTypeOrder(QualType LHS, QualType RHS) {
2996  Type *LHSC = getCanonicalType(LHS).getTypePtr();
2997  Type *RHSC = getCanonicalType(RHS).getTypePtr();
2998  if (LHSC == RHSC) return 0;
2999
3000  bool LHSUnsigned = LHSC->isUnsignedIntegerType();
3001  bool RHSUnsigned = RHSC->isUnsignedIntegerType();
3002
3003  unsigned LHSRank = getIntegerRank(LHSC);
3004  unsigned RHSRank = getIntegerRank(RHSC);
3005
3006  if (LHSUnsigned == RHSUnsigned) {  // Both signed or both unsigned.
3007    if (LHSRank == RHSRank) return 0;
3008    return LHSRank > RHSRank ? 1 : -1;
3009  }
3010
3011  // Otherwise, the LHS is signed and the RHS is unsigned or visa versa.
3012  if (LHSUnsigned) {
3013    // If the unsigned [LHS] type is larger, return it.
3014    if (LHSRank >= RHSRank)
3015      return 1;
3016
3017    // If the signed type can represent all values of the unsigned type, it
3018    // wins.  Because we are dealing with 2's complement and types that are
3019    // powers of two larger than each other, this is always safe.
3020    return -1;
3021  }
3022
3023  // If the unsigned [RHS] type is larger, return it.
3024  if (RHSRank >= LHSRank)
3025    return -1;
3026
3027  // If the signed type can represent all values of the unsigned type, it
3028  // wins.  Because we are dealing with 2's complement and types that are
3029  // powers of two larger than each other, this is always safe.
3030  return 1;
3031}
3032
3033static RecordDecl *
3034CreateRecordDecl(ASTContext &Ctx, RecordDecl::TagKind TK, DeclContext *DC,
3035                 SourceLocation L, IdentifierInfo *Id) {
3036  if (Ctx.getLangOptions().CPlusPlus)
3037    return CXXRecordDecl::Create(Ctx, TK, DC, L, Id);
3038  else
3039    return RecordDecl::Create(Ctx, TK, DC, L, Id);
3040}
3041
3042// getCFConstantStringType - Return the type used for constant CFStrings.
3043QualType ASTContext::getCFConstantStringType() {
3044  if (!CFConstantStringTypeDecl) {
3045    CFConstantStringTypeDecl =
3046      CreateRecordDecl(*this, TagDecl::TK_struct, TUDecl, SourceLocation(),
3047                       &Idents.get("NSConstantString"));
3048    CFConstantStringTypeDecl->startDefinition();
3049
3050    QualType FieldTypes[4];
3051
3052    // const int *isa;
3053    FieldTypes[0] = getPointerType(IntTy.withConst());
3054    // int flags;
3055    FieldTypes[1] = IntTy;
3056    // const char *str;
3057    FieldTypes[2] = getPointerType(CharTy.withConst());
3058    // long length;
3059    FieldTypes[3] = LongTy;
3060
3061    // Create fields
3062    for (unsigned i = 0; i < 4; ++i) {
3063      FieldDecl *Field = FieldDecl::Create(*this, CFConstantStringTypeDecl,
3064                                           SourceLocation(), 0,
3065                                           FieldTypes[i], /*TInfo=*/0,
3066                                           /*BitWidth=*/0,
3067                                           /*Mutable=*/false);
3068      CFConstantStringTypeDecl->addDecl(Field);
3069    }
3070
3071    CFConstantStringTypeDecl->completeDefinition();
3072  }
3073
3074  return getTagDeclType(CFConstantStringTypeDecl);
3075}
3076
3077void ASTContext::setCFConstantStringType(QualType T) {
3078  const RecordType *Rec = T->getAs<RecordType>();
3079  assert(Rec && "Invalid CFConstantStringType");
3080  CFConstantStringTypeDecl = Rec->getDecl();
3081}
3082
3083QualType ASTContext::getObjCFastEnumerationStateType() {
3084  if (!ObjCFastEnumerationStateTypeDecl) {
3085    ObjCFastEnumerationStateTypeDecl =
3086      CreateRecordDecl(*this, TagDecl::TK_struct, TUDecl, SourceLocation(),
3087                       &Idents.get("__objcFastEnumerationState"));
3088    ObjCFastEnumerationStateTypeDecl->startDefinition();
3089
3090    QualType FieldTypes[] = {
3091      UnsignedLongTy,
3092      getPointerType(ObjCIdTypedefType),
3093      getPointerType(UnsignedLongTy),
3094      getConstantArrayType(UnsignedLongTy,
3095                           llvm::APInt(32, 5), ArrayType::Normal, 0)
3096    };
3097
3098    for (size_t i = 0; i < 4; ++i) {
3099      FieldDecl *Field = FieldDecl::Create(*this,
3100                                           ObjCFastEnumerationStateTypeDecl,
3101                                           SourceLocation(), 0,
3102                                           FieldTypes[i], /*TInfo=*/0,
3103                                           /*BitWidth=*/0,
3104                                           /*Mutable=*/false);
3105      ObjCFastEnumerationStateTypeDecl->addDecl(Field);
3106    }
3107
3108    ObjCFastEnumerationStateTypeDecl->completeDefinition();
3109  }
3110
3111  return getTagDeclType(ObjCFastEnumerationStateTypeDecl);
3112}
3113
3114QualType ASTContext::getBlockDescriptorType() {
3115  if (BlockDescriptorType)
3116    return getTagDeclType(BlockDescriptorType);
3117
3118  RecordDecl *T;
3119  // FIXME: Needs the FlagAppleBlock bit.
3120  T = CreateRecordDecl(*this, TagDecl::TK_struct, TUDecl, SourceLocation(),
3121                       &Idents.get("__block_descriptor"));
3122  T->startDefinition();
3123
3124  QualType FieldTypes[] = {
3125    UnsignedLongTy,
3126    UnsignedLongTy,
3127  };
3128
3129  const char *FieldNames[] = {
3130    "reserved",
3131    "Size"
3132  };
3133
3134  for (size_t i = 0; i < 2; ++i) {
3135    FieldDecl *Field = FieldDecl::Create(*this,
3136                                         T,
3137                                         SourceLocation(),
3138                                         &Idents.get(FieldNames[i]),
3139                                         FieldTypes[i], /*TInfo=*/0,
3140                                         /*BitWidth=*/0,
3141                                         /*Mutable=*/false);
3142    T->addDecl(Field);
3143  }
3144
3145  T->completeDefinition();
3146
3147  BlockDescriptorType = T;
3148
3149  return getTagDeclType(BlockDescriptorType);
3150}
3151
3152void ASTContext::setBlockDescriptorType(QualType T) {
3153  const RecordType *Rec = T->getAs<RecordType>();
3154  assert(Rec && "Invalid BlockDescriptorType");
3155  BlockDescriptorType = Rec->getDecl();
3156}
3157
3158QualType ASTContext::getBlockDescriptorExtendedType() {
3159  if (BlockDescriptorExtendedType)
3160    return getTagDeclType(BlockDescriptorExtendedType);
3161
3162  RecordDecl *T;
3163  // FIXME: Needs the FlagAppleBlock bit.
3164  T = CreateRecordDecl(*this, TagDecl::TK_struct, TUDecl, SourceLocation(),
3165                       &Idents.get("__block_descriptor_withcopydispose"));
3166  T->startDefinition();
3167
3168  QualType FieldTypes[] = {
3169    UnsignedLongTy,
3170    UnsignedLongTy,
3171    getPointerType(VoidPtrTy),
3172    getPointerType(VoidPtrTy)
3173  };
3174
3175  const char *FieldNames[] = {
3176    "reserved",
3177    "Size",
3178    "CopyFuncPtr",
3179    "DestroyFuncPtr"
3180  };
3181
3182  for (size_t i = 0; i < 4; ++i) {
3183    FieldDecl *Field = FieldDecl::Create(*this,
3184                                         T,
3185                                         SourceLocation(),
3186                                         &Idents.get(FieldNames[i]),
3187                                         FieldTypes[i], /*TInfo=*/0,
3188                                         /*BitWidth=*/0,
3189                                         /*Mutable=*/false);
3190    T->addDecl(Field);
3191  }
3192
3193  T->completeDefinition();
3194
3195  BlockDescriptorExtendedType = T;
3196
3197  return getTagDeclType(BlockDescriptorExtendedType);
3198}
3199
3200void ASTContext::setBlockDescriptorExtendedType(QualType T) {
3201  const RecordType *Rec = T->getAs<RecordType>();
3202  assert(Rec && "Invalid BlockDescriptorType");
3203  BlockDescriptorExtendedType = Rec->getDecl();
3204}
3205
3206bool ASTContext::BlockRequiresCopying(QualType Ty) {
3207  if (Ty->isBlockPointerType())
3208    return true;
3209  if (isObjCNSObjectType(Ty))
3210    return true;
3211  if (Ty->isObjCObjectPointerType())
3212    return true;
3213  return false;
3214}
3215
3216QualType ASTContext::BuildByRefType(const char *DeclName, QualType Ty) {
3217  //  type = struct __Block_byref_1_X {
3218  //    void *__isa;
3219  //    struct __Block_byref_1_X *__forwarding;
3220  //    unsigned int __flags;
3221  //    unsigned int __size;
3222  //    void *__copy_helper;		// as needed
3223  //    void *__destroy_help		// as needed
3224  //    int X;
3225  //  } *
3226
3227  bool HasCopyAndDispose = BlockRequiresCopying(Ty);
3228
3229  // FIXME: Move up
3230  static unsigned int UniqueBlockByRefTypeID = 0;
3231  llvm::SmallString<36> Name;
3232  llvm::raw_svector_ostream(Name) << "__Block_byref_" <<
3233                                  ++UniqueBlockByRefTypeID << '_' << DeclName;
3234  RecordDecl *T;
3235  T = CreateRecordDecl(*this, TagDecl::TK_struct, TUDecl, SourceLocation(),
3236                       &Idents.get(Name.str()));
3237  T->startDefinition();
3238  QualType Int32Ty = IntTy;
3239  assert(getIntWidth(IntTy) == 32 && "non-32bit int not supported");
3240  QualType FieldTypes[] = {
3241    getPointerType(VoidPtrTy),
3242    getPointerType(getTagDeclType(T)),
3243    Int32Ty,
3244    Int32Ty,
3245    getPointerType(VoidPtrTy),
3246    getPointerType(VoidPtrTy),
3247    Ty
3248  };
3249
3250  const char *FieldNames[] = {
3251    "__isa",
3252    "__forwarding",
3253    "__flags",
3254    "__size",
3255    "__copy_helper",
3256    "__destroy_helper",
3257    DeclName,
3258  };
3259
3260  for (size_t i = 0; i < 7; ++i) {
3261    if (!HasCopyAndDispose && i >=4 && i <= 5)
3262      continue;
3263    FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(),
3264                                         &Idents.get(FieldNames[i]),
3265                                         FieldTypes[i], /*TInfo=*/0,
3266                                         /*BitWidth=*/0, /*Mutable=*/false);
3267    T->addDecl(Field);
3268  }
3269
3270  T->completeDefinition();
3271
3272  return getPointerType(getTagDeclType(T));
3273}
3274
3275
3276QualType ASTContext::getBlockParmType(
3277  bool BlockHasCopyDispose,
3278  llvm::SmallVector<const Expr *, 8> &BlockDeclRefDecls) {
3279  // FIXME: Move up
3280  static unsigned int UniqueBlockParmTypeID = 0;
3281  llvm::SmallString<36> Name;
3282  llvm::raw_svector_ostream(Name) << "__block_literal_"
3283                                  << ++UniqueBlockParmTypeID;
3284  RecordDecl *T;
3285  T = CreateRecordDecl(*this, TagDecl::TK_struct, TUDecl, SourceLocation(),
3286                       &Idents.get(Name.str()));
3287  T->startDefinition();
3288  QualType FieldTypes[] = {
3289    getPointerType(VoidPtrTy),
3290    IntTy,
3291    IntTy,
3292    getPointerType(VoidPtrTy),
3293    (BlockHasCopyDispose ?
3294     getPointerType(getBlockDescriptorExtendedType()) :
3295     getPointerType(getBlockDescriptorType()))
3296  };
3297
3298  const char *FieldNames[] = {
3299    "__isa",
3300    "__flags",
3301    "__reserved",
3302    "__FuncPtr",
3303    "__descriptor"
3304  };
3305
3306  for (size_t i = 0; i < 5; ++i) {
3307    FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(),
3308                                         &Idents.get(FieldNames[i]),
3309                                         FieldTypes[i], /*TInfo=*/0,
3310                                         /*BitWidth=*/0, /*Mutable=*/false);
3311    T->addDecl(Field);
3312  }
3313
3314  for (size_t i = 0; i < BlockDeclRefDecls.size(); ++i) {
3315    const Expr *E = BlockDeclRefDecls[i];
3316    const BlockDeclRefExpr *BDRE = dyn_cast<BlockDeclRefExpr>(E);
3317    clang::IdentifierInfo *Name = 0;
3318    if (BDRE) {
3319      const ValueDecl *D = BDRE->getDecl();
3320      Name = &Idents.get(D->getName());
3321    }
3322    QualType FieldType = E->getType();
3323
3324    if (BDRE && BDRE->isByRef())
3325      FieldType = BuildByRefType(BDRE->getDecl()->getNameAsCString(),
3326                                 FieldType);
3327
3328    FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(),
3329                                         Name, FieldType, /*TInfo=*/0,
3330                                         /*BitWidth=*/0, /*Mutable=*/false);
3331    T->addDecl(Field);
3332  }
3333
3334  T->completeDefinition();
3335
3336  return getPointerType(getTagDeclType(T));
3337}
3338
3339void ASTContext::setObjCFastEnumerationStateType(QualType T) {
3340  const RecordType *Rec = T->getAs<RecordType>();
3341  assert(Rec && "Invalid ObjCFAstEnumerationStateType");
3342  ObjCFastEnumerationStateTypeDecl = Rec->getDecl();
3343}
3344
3345// This returns true if a type has been typedefed to BOOL:
3346// typedef <type> BOOL;
3347static bool isTypeTypedefedAsBOOL(QualType T) {
3348  if (const TypedefType *TT = dyn_cast<TypedefType>(T))
3349    if (IdentifierInfo *II = TT->getDecl()->getIdentifier())
3350      return II->isStr("BOOL");
3351
3352  return false;
3353}
3354
3355/// getObjCEncodingTypeSize returns size of type for objective-c encoding
3356/// purpose.
3357CharUnits ASTContext::getObjCEncodingTypeSize(QualType type) {
3358  CharUnits sz = getTypeSizeInChars(type);
3359
3360  // Make all integer and enum types at least as large as an int
3361  if (sz.isPositive() && type->isIntegralType())
3362    sz = std::max(sz, getTypeSizeInChars(IntTy));
3363  // Treat arrays as pointers, since that's how they're passed in.
3364  else if (type->isArrayType())
3365    sz = getTypeSizeInChars(VoidPtrTy);
3366  return sz;
3367}
3368
3369static inline
3370std::string charUnitsToString(const CharUnits &CU) {
3371  return llvm::itostr(CU.getQuantity());
3372}
3373
3374/// getObjCEncodingForBlockDecl - Return the encoded type for this method
3375/// declaration.
3376void ASTContext::getObjCEncodingForBlock(const BlockExpr *Expr,
3377                                             std::string& S) {
3378  const BlockDecl *Decl = Expr->getBlockDecl();
3379  QualType BlockTy =
3380      Expr->getType()->getAs<BlockPointerType>()->getPointeeType();
3381  // Encode result type.
3382  getObjCEncodingForType(cast<FunctionType>(BlockTy)->getResultType(), S);
3383  // Compute size of all parameters.
3384  // Start with computing size of a pointer in number of bytes.
3385  // FIXME: There might(should) be a better way of doing this computation!
3386  SourceLocation Loc;
3387  CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy);
3388  CharUnits ParmOffset = PtrSize;
3389  for (ObjCMethodDecl::param_iterator PI = Decl->param_begin(),
3390       E = Decl->param_end(); PI != E; ++PI) {
3391    QualType PType = (*PI)->getType();
3392    CharUnits sz = getObjCEncodingTypeSize(PType);
3393    assert (sz.isPositive() && "BlockExpr - Incomplete param type");
3394    ParmOffset += sz;
3395  }
3396  // Size of the argument frame
3397  S += charUnitsToString(ParmOffset);
3398  // Block pointer and offset.
3399  S += "@?0";
3400  ParmOffset = PtrSize;
3401
3402  // Argument types.
3403  ParmOffset = PtrSize;
3404  for (BlockDecl::param_const_iterator PI = Decl->param_begin(), E =
3405       Decl->param_end(); PI != E; ++PI) {
3406    ParmVarDecl *PVDecl = *PI;
3407    QualType PType = PVDecl->getOriginalType();
3408    if (const ArrayType *AT =
3409          dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
3410      // Use array's original type only if it has known number of
3411      // elements.
3412      if (!isa<ConstantArrayType>(AT))
3413        PType = PVDecl->getType();
3414    } else if (PType->isFunctionType())
3415      PType = PVDecl->getType();
3416    getObjCEncodingForType(PType, S);
3417    S += charUnitsToString(ParmOffset);
3418    ParmOffset += getObjCEncodingTypeSize(PType);
3419  }
3420}
3421
3422/// getObjCEncodingForMethodDecl - Return the encoded type for this method
3423/// declaration.
3424void ASTContext::getObjCEncodingForMethodDecl(const ObjCMethodDecl *Decl,
3425                                              std::string& S) {
3426  // FIXME: This is not very efficient.
3427  // Encode type qualifer, 'in', 'inout', etc. for the return type.
3428  getObjCEncodingForTypeQualifier(Decl->getObjCDeclQualifier(), S);
3429  // Encode result type.
3430  getObjCEncodingForType(Decl->getResultType(), S);
3431  // Compute size of all parameters.
3432  // Start with computing size of a pointer in number of bytes.
3433  // FIXME: There might(should) be a better way of doing this computation!
3434  SourceLocation Loc;
3435  CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy);
3436  // The first two arguments (self and _cmd) are pointers; account for
3437  // their size.
3438  CharUnits ParmOffset = 2 * PtrSize;
3439  for (ObjCMethodDecl::param_iterator PI = Decl->param_begin(),
3440       E = Decl->param_end(); PI != E; ++PI) {
3441    QualType PType = (*PI)->getType();
3442    CharUnits sz = getObjCEncodingTypeSize(PType);
3443    assert (sz.isPositive() &&
3444        "getObjCEncodingForMethodDecl - Incomplete param type");
3445    ParmOffset += sz;
3446  }
3447  S += charUnitsToString(ParmOffset);
3448  S += "@0:";
3449  S += charUnitsToString(PtrSize);
3450
3451  // Argument types.
3452  ParmOffset = 2 * PtrSize;
3453  for (ObjCMethodDecl::param_iterator PI = Decl->param_begin(),
3454       E = Decl->param_end(); PI != E; ++PI) {
3455    ParmVarDecl *PVDecl = *PI;
3456    QualType PType = PVDecl->getOriginalType();
3457    if (const ArrayType *AT =
3458          dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
3459      // Use array's original type only if it has known number of
3460      // elements.
3461      if (!isa<ConstantArrayType>(AT))
3462        PType = PVDecl->getType();
3463    } else if (PType->isFunctionType())
3464      PType = PVDecl->getType();
3465    // Process argument qualifiers for user supplied arguments; such as,
3466    // 'in', 'inout', etc.
3467    getObjCEncodingForTypeQualifier(PVDecl->getObjCDeclQualifier(), S);
3468    getObjCEncodingForType(PType, S);
3469    S += charUnitsToString(ParmOffset);
3470    ParmOffset += getObjCEncodingTypeSize(PType);
3471  }
3472}
3473
3474/// getObjCEncodingForPropertyDecl - Return the encoded type for this
3475/// property declaration. If non-NULL, Container must be either an
3476/// ObjCCategoryImplDecl or ObjCImplementationDecl; it should only be
3477/// NULL when getting encodings for protocol properties.
3478/// Property attributes are stored as a comma-delimited C string. The simple
3479/// attributes readonly and bycopy are encoded as single characters. The
3480/// parametrized attributes, getter=name, setter=name, and ivar=name, are
3481/// encoded as single characters, followed by an identifier. Property types
3482/// are also encoded as a parametrized attribute. The characters used to encode
3483/// these attributes are defined by the following enumeration:
3484/// @code
3485/// enum PropertyAttributes {
3486/// kPropertyReadOnly = 'R',   // property is read-only.
3487/// kPropertyBycopy = 'C',     // property is a copy of the value last assigned
3488/// kPropertyByref = '&',  // property is a reference to the value last assigned
3489/// kPropertyDynamic = 'D',    // property is dynamic
3490/// kPropertyGetter = 'G',     // followed by getter selector name
3491/// kPropertySetter = 'S',     // followed by setter selector name
3492/// kPropertyInstanceVariable = 'V'  // followed by instance variable  name
3493/// kPropertyType = 't'              // followed by old-style type encoding.
3494/// kPropertyWeak = 'W'              // 'weak' property
3495/// kPropertyStrong = 'P'            // property GC'able
3496/// kPropertyNonAtomic = 'N'         // property non-atomic
3497/// };
3498/// @endcode
3499void ASTContext::getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD,
3500                                                const Decl *Container,
3501                                                std::string& S) {
3502  // Collect information from the property implementation decl(s).
3503  bool Dynamic = false;
3504  ObjCPropertyImplDecl *SynthesizePID = 0;
3505
3506  // FIXME: Duplicated code due to poor abstraction.
3507  if (Container) {
3508    if (const ObjCCategoryImplDecl *CID =
3509        dyn_cast<ObjCCategoryImplDecl>(Container)) {
3510      for (ObjCCategoryImplDecl::propimpl_iterator
3511             i = CID->propimpl_begin(), e = CID->propimpl_end();
3512           i != e; ++i) {
3513        ObjCPropertyImplDecl *PID = *i;
3514        if (PID->getPropertyDecl() == PD) {
3515          if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) {
3516            Dynamic = true;
3517          } else {
3518            SynthesizePID = PID;
3519          }
3520        }
3521      }
3522    } else {
3523      const ObjCImplementationDecl *OID=cast<ObjCImplementationDecl>(Container);
3524      for (ObjCCategoryImplDecl::propimpl_iterator
3525             i = OID->propimpl_begin(), e = OID->propimpl_end();
3526           i != e; ++i) {
3527        ObjCPropertyImplDecl *PID = *i;
3528        if (PID->getPropertyDecl() == PD) {
3529          if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) {
3530            Dynamic = true;
3531          } else {
3532            SynthesizePID = PID;
3533          }
3534        }
3535      }
3536    }
3537  }
3538
3539  // FIXME: This is not very efficient.
3540  S = "T";
3541
3542  // Encode result type.
3543  // GCC has some special rules regarding encoding of properties which
3544  // closely resembles encoding of ivars.
3545  getObjCEncodingForTypeImpl(PD->getType(), S, true, true, 0,
3546                             true /* outermost type */,
3547                             true /* encoding for property */);
3548
3549  if (PD->isReadOnly()) {
3550    S += ",R";
3551  } else {
3552    switch (PD->getSetterKind()) {
3553    case ObjCPropertyDecl::Assign: break;
3554    case ObjCPropertyDecl::Copy:   S += ",C"; break;
3555    case ObjCPropertyDecl::Retain: S += ",&"; break;
3556    }
3557  }
3558
3559  // It really isn't clear at all what this means, since properties
3560  // are "dynamic by default".
3561  if (Dynamic)
3562    S += ",D";
3563
3564  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_nonatomic)
3565    S += ",N";
3566
3567  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_getter) {
3568    S += ",G";
3569    S += PD->getGetterName().getAsString();
3570  }
3571
3572  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_setter) {
3573    S += ",S";
3574    S += PD->getSetterName().getAsString();
3575  }
3576
3577  if (SynthesizePID) {
3578    const ObjCIvarDecl *OID = SynthesizePID->getPropertyIvarDecl();
3579    S += ",V";
3580    S += OID->getNameAsString();
3581  }
3582
3583  // FIXME: OBJCGC: weak & strong
3584}
3585
3586/// getLegacyIntegralTypeEncoding -
3587/// Another legacy compatibility encoding: 32-bit longs are encoded as
3588/// 'l' or 'L' , but not always.  For typedefs, we need to use
3589/// 'i' or 'I' instead if encoding a struct field, or a pointer!
3590///
3591void ASTContext::getLegacyIntegralTypeEncoding (QualType &PointeeTy) const {
3592  if (isa<TypedefType>(PointeeTy.getTypePtr())) {
3593    if (const BuiltinType *BT = PointeeTy->getAs<BuiltinType>()) {
3594      if (BT->getKind() == BuiltinType::ULong &&
3595          ((const_cast<ASTContext *>(this))->getIntWidth(PointeeTy) == 32))
3596        PointeeTy = UnsignedIntTy;
3597      else
3598        if (BT->getKind() == BuiltinType::Long &&
3599            ((const_cast<ASTContext *>(this))->getIntWidth(PointeeTy) == 32))
3600          PointeeTy = IntTy;
3601    }
3602  }
3603}
3604
3605void ASTContext::getObjCEncodingForType(QualType T, std::string& S,
3606                                        const FieldDecl *Field) {
3607  // We follow the behavior of gcc, expanding structures which are
3608  // directly pointed to, and expanding embedded structures. Note that
3609  // these rules are sufficient to prevent recursive encoding of the
3610  // same type.
3611  getObjCEncodingForTypeImpl(T, S, true, true, Field,
3612                             true /* outermost type */);
3613}
3614
3615static void EncodeBitField(const ASTContext *Context, std::string& S,
3616                           const FieldDecl *FD) {
3617  const Expr *E = FD->getBitWidth();
3618  assert(E && "bitfield width not there - getObjCEncodingForTypeImpl");
3619  ASTContext *Ctx = const_cast<ASTContext*>(Context);
3620  unsigned N = E->EvaluateAsInt(*Ctx).getZExtValue();
3621  S += 'b';
3622  S += llvm::utostr(N);
3623}
3624
3625// FIXME: Use SmallString for accumulating string.
3626void ASTContext::getObjCEncodingForTypeImpl(QualType T, std::string& S,
3627                                            bool ExpandPointedToStructures,
3628                                            bool ExpandStructures,
3629                                            const FieldDecl *FD,
3630                                            bool OutermostType,
3631                                            bool EncodingProperty) {
3632  if (const BuiltinType *BT = T->getAs<BuiltinType>()) {
3633    if (FD && FD->isBitField())
3634      return EncodeBitField(this, S, FD);
3635    char encoding;
3636    switch (BT->getKind()) {
3637    default: assert(0 && "Unhandled builtin type kind");
3638    case BuiltinType::Void:       encoding = 'v'; break;
3639    case BuiltinType::Bool:       encoding = 'B'; break;
3640    case BuiltinType::Char_U:
3641    case BuiltinType::UChar:      encoding = 'C'; break;
3642    case BuiltinType::UShort:     encoding = 'S'; break;
3643    case BuiltinType::UInt:       encoding = 'I'; break;
3644    case BuiltinType::ULong:
3645        encoding =
3646          (const_cast<ASTContext *>(this))->getIntWidth(T) == 32 ? 'L' : 'Q';
3647        break;
3648    case BuiltinType::UInt128:    encoding = 'T'; break;
3649    case BuiltinType::ULongLong:  encoding = 'Q'; break;
3650    case BuiltinType::Char_S:
3651    case BuiltinType::SChar:      encoding = 'c'; break;
3652    case BuiltinType::Short:      encoding = 's'; break;
3653    case BuiltinType::Int:        encoding = 'i'; break;
3654    case BuiltinType::Long:
3655      encoding =
3656        (const_cast<ASTContext *>(this))->getIntWidth(T) == 32 ? 'l' : 'q';
3657      break;
3658    case BuiltinType::LongLong:   encoding = 'q'; break;
3659    case BuiltinType::Int128:     encoding = 't'; break;
3660    case BuiltinType::Float:      encoding = 'f'; break;
3661    case BuiltinType::Double:     encoding = 'd'; break;
3662    case BuiltinType::LongDouble: encoding = 'd'; break;
3663    }
3664
3665    S += encoding;
3666    return;
3667  }
3668
3669  if (const ComplexType *CT = T->getAs<ComplexType>()) {
3670    S += 'j';
3671    getObjCEncodingForTypeImpl(CT->getElementType(), S, false, false, 0, false,
3672                               false);
3673    return;
3674  }
3675
3676  if (const PointerType *PT = T->getAs<PointerType>()) {
3677    if (PT->isObjCSelType()) {
3678      S += ':';
3679      return;
3680    }
3681    QualType PointeeTy = PT->getPointeeType();
3682
3683    bool isReadOnly = false;
3684    // For historical/compatibility reasons, the read-only qualifier of the
3685    // pointee gets emitted _before_ the '^'.  The read-only qualifier of
3686    // the pointer itself gets ignored, _unless_ we are looking at a typedef!
3687    // Also, do not emit the 'r' for anything but the outermost type!
3688    if (isa<TypedefType>(T.getTypePtr())) {
3689      if (OutermostType && T.isConstQualified()) {
3690        isReadOnly = true;
3691        S += 'r';
3692      }
3693    } else if (OutermostType) {
3694      QualType P = PointeeTy;
3695      while (P->getAs<PointerType>())
3696        P = P->getAs<PointerType>()->getPointeeType();
3697      if (P.isConstQualified()) {
3698        isReadOnly = true;
3699        S += 'r';
3700      }
3701    }
3702    if (isReadOnly) {
3703      // Another legacy compatibility encoding. Some ObjC qualifier and type
3704      // combinations need to be rearranged.
3705      // Rewrite "in const" from "nr" to "rn"
3706      const char * s = S.c_str();
3707      int len = S.length();
3708      if (len >= 2 && s[len-2] == 'n' && s[len-1] == 'r') {
3709        std::string replace = "rn";
3710        S.replace(S.end()-2, S.end(), replace);
3711      }
3712    }
3713
3714    if (PointeeTy->isCharType()) {
3715      // char pointer types should be encoded as '*' unless it is a
3716      // type that has been typedef'd to 'BOOL'.
3717      if (!isTypeTypedefedAsBOOL(PointeeTy)) {
3718        S += '*';
3719        return;
3720      }
3721    } else if (const RecordType *RTy = PointeeTy->getAs<RecordType>()) {
3722      // GCC binary compat: Need to convert "struct objc_class *" to "#".
3723      if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_class")) {
3724        S += '#';
3725        return;
3726      }
3727      // GCC binary compat: Need to convert "struct objc_object *" to "@".
3728      if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_object")) {
3729        S += '@';
3730        return;
3731      }
3732      // fall through...
3733    }
3734    S += '^';
3735    getLegacyIntegralTypeEncoding(PointeeTy);
3736
3737    getObjCEncodingForTypeImpl(PointeeTy, S, false, ExpandPointedToStructures,
3738                               NULL);
3739    return;
3740  }
3741
3742  if (const ArrayType *AT =
3743      // Ignore type qualifiers etc.
3744        dyn_cast<ArrayType>(T->getCanonicalTypeInternal())) {
3745    if (isa<IncompleteArrayType>(AT)) {
3746      // Incomplete arrays are encoded as a pointer to the array element.
3747      S += '^';
3748
3749      getObjCEncodingForTypeImpl(AT->getElementType(), S,
3750                                 false, ExpandStructures, FD);
3751    } else {
3752      S += '[';
3753
3754      if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
3755        S += llvm::utostr(CAT->getSize().getZExtValue());
3756      else {
3757        //Variable length arrays are encoded as a regular array with 0 elements.
3758        assert(isa<VariableArrayType>(AT) && "Unknown array type!");
3759        S += '0';
3760      }
3761
3762      getObjCEncodingForTypeImpl(AT->getElementType(), S,
3763                                 false, ExpandStructures, FD);
3764      S += ']';
3765    }
3766    return;
3767  }
3768
3769  if (T->getAs<FunctionType>()) {
3770    S += '?';
3771    return;
3772  }
3773
3774  if (const RecordType *RTy = T->getAs<RecordType>()) {
3775    RecordDecl *RDecl = RTy->getDecl();
3776    S += RDecl->isUnion() ? '(' : '{';
3777    // Anonymous structures print as '?'
3778    if (const IdentifierInfo *II = RDecl->getIdentifier()) {
3779      S += II->getName();
3780    } else {
3781      S += '?';
3782    }
3783    if (ExpandStructures) {
3784      S += '=';
3785      for (RecordDecl::field_iterator Field = RDecl->field_begin(),
3786                                   FieldEnd = RDecl->field_end();
3787           Field != FieldEnd; ++Field) {
3788        if (FD) {
3789          S += '"';
3790          S += Field->getNameAsString();
3791          S += '"';
3792        }
3793
3794        // Special case bit-fields.
3795        if (Field->isBitField()) {
3796          getObjCEncodingForTypeImpl(Field->getType(), S, false, true,
3797                                     (*Field));
3798        } else {
3799          QualType qt = Field->getType();
3800          getLegacyIntegralTypeEncoding(qt);
3801          getObjCEncodingForTypeImpl(qt, S, false, true,
3802                                     FD);
3803        }
3804      }
3805    }
3806    S += RDecl->isUnion() ? ')' : '}';
3807    return;
3808  }
3809
3810  if (T->isEnumeralType()) {
3811    if (FD && FD->isBitField())
3812      EncodeBitField(this, S, FD);
3813    else
3814      S += 'i';
3815    return;
3816  }
3817
3818  if (T->isBlockPointerType()) {
3819    S += "@?"; // Unlike a pointer-to-function, which is "^?".
3820    return;
3821  }
3822
3823  if (const ObjCInterfaceType *OIT = T->getAs<ObjCInterfaceType>()) {
3824    // @encode(class_name)
3825    ObjCInterfaceDecl *OI = OIT->getDecl();
3826    S += '{';
3827    const IdentifierInfo *II = OI->getIdentifier();
3828    S += II->getName();
3829    S += '=';
3830    llvm::SmallVector<FieldDecl*, 32> RecFields;
3831    CollectObjCIvars(OI, RecFields);
3832    for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
3833      if (RecFields[i]->isBitField())
3834        getObjCEncodingForTypeImpl(RecFields[i]->getType(), S, false, true,
3835                                   RecFields[i]);
3836      else
3837        getObjCEncodingForTypeImpl(RecFields[i]->getType(), S, false, true,
3838                                   FD);
3839    }
3840    S += '}';
3841    return;
3842  }
3843
3844  if (const ObjCObjectPointerType *OPT = T->getAs<ObjCObjectPointerType>()) {
3845    if (OPT->isObjCIdType()) {
3846      S += '@';
3847      return;
3848    }
3849
3850    if (OPT->isObjCClassType() || OPT->isObjCQualifiedClassType()) {
3851      // FIXME: Consider if we need to output qualifiers for 'Class<p>'.
3852      // Since this is a binary compatibility issue, need to consult with runtime
3853      // folks. Fortunately, this is a *very* obsure construct.
3854      S += '#';
3855      return;
3856    }
3857
3858    if (OPT->isObjCQualifiedIdType()) {
3859      getObjCEncodingForTypeImpl(getObjCIdType(), S,
3860                                 ExpandPointedToStructures,
3861                                 ExpandStructures, FD);
3862      if (FD || EncodingProperty) {
3863        // Note that we do extended encoding of protocol qualifer list
3864        // Only when doing ivar or property encoding.
3865        S += '"';
3866        for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(),
3867             E = OPT->qual_end(); I != E; ++I) {
3868          S += '<';
3869          S += (*I)->getNameAsString();
3870          S += '>';
3871        }
3872        S += '"';
3873      }
3874      return;
3875    }
3876
3877    QualType PointeeTy = OPT->getPointeeType();
3878    if (!EncodingProperty &&
3879        isa<TypedefType>(PointeeTy.getTypePtr())) {
3880      // Another historical/compatibility reason.
3881      // We encode the underlying type which comes out as
3882      // {...};
3883      S += '^';
3884      getObjCEncodingForTypeImpl(PointeeTy, S,
3885                                 false, ExpandPointedToStructures,
3886                                 NULL);
3887      return;
3888    }
3889
3890    S += '@';
3891    if (OPT->getInterfaceDecl() && (FD || EncodingProperty)) {
3892      S += '"';
3893      S += OPT->getInterfaceDecl()->getIdentifier()->getName();
3894      for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(),
3895           E = OPT->qual_end(); I != E; ++I) {
3896        S += '<';
3897        S += (*I)->getNameAsString();
3898        S += '>';
3899      }
3900      S += '"';
3901    }
3902    return;
3903  }
3904
3905  assert(0 && "@encode for type not implemented!");
3906}
3907
3908void ASTContext::getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT,
3909                                                 std::string& S) const {
3910  if (QT & Decl::OBJC_TQ_In)
3911    S += 'n';
3912  if (QT & Decl::OBJC_TQ_Inout)
3913    S += 'N';
3914  if (QT & Decl::OBJC_TQ_Out)
3915    S += 'o';
3916  if (QT & Decl::OBJC_TQ_Bycopy)
3917    S += 'O';
3918  if (QT & Decl::OBJC_TQ_Byref)
3919    S += 'R';
3920  if (QT & Decl::OBJC_TQ_Oneway)
3921    S += 'V';
3922}
3923
3924void ASTContext::setBuiltinVaListType(QualType T) {
3925  assert(BuiltinVaListType.isNull() && "__builtin_va_list type already set!");
3926
3927  BuiltinVaListType = T;
3928}
3929
3930void ASTContext::setObjCIdType(QualType T) {
3931  ObjCIdTypedefType = T;
3932}
3933
3934void ASTContext::setObjCSelType(QualType T) {
3935  ObjCSelTypedefType = T;
3936}
3937
3938void ASTContext::setObjCProtoType(QualType QT) {
3939  ObjCProtoType = QT;
3940}
3941
3942void ASTContext::setObjCClassType(QualType T) {
3943  ObjCClassTypedefType = T;
3944}
3945
3946void ASTContext::setObjCConstantStringInterface(ObjCInterfaceDecl *Decl) {
3947  assert(ObjCConstantStringType.isNull() &&
3948         "'NSConstantString' type already set!");
3949
3950  ObjCConstantStringType = getObjCInterfaceType(Decl);
3951}
3952
3953/// \brief Retrieve the template name that corresponds to a non-empty
3954/// lookup.
3955TemplateName ASTContext::getOverloadedTemplateName(UnresolvedSetIterator Begin,
3956                                                   UnresolvedSetIterator End) {
3957  unsigned size = End - Begin;
3958  assert(size > 1 && "set is not overloaded!");
3959
3960  void *memory = Allocate(sizeof(OverloadedTemplateStorage) +
3961                          size * sizeof(FunctionTemplateDecl*));
3962  OverloadedTemplateStorage *OT = new(memory) OverloadedTemplateStorage(size);
3963
3964  NamedDecl **Storage = OT->getStorage();
3965  for (UnresolvedSetIterator I = Begin; I != End; ++I) {
3966    NamedDecl *D = *I;
3967    assert(isa<FunctionTemplateDecl>(D) ||
3968           (isa<UsingShadowDecl>(D) &&
3969            isa<FunctionTemplateDecl>(D->getUnderlyingDecl())));
3970    *Storage++ = D;
3971  }
3972
3973  return TemplateName(OT);
3974}
3975
3976/// \brief Retrieve the template name that represents a qualified
3977/// template name such as \c std::vector.
3978TemplateName ASTContext::getQualifiedTemplateName(NestedNameSpecifier *NNS,
3979                                                  bool TemplateKeyword,
3980                                                  TemplateDecl *Template) {
3981  // FIXME: Canonicalization?
3982  llvm::FoldingSetNodeID ID;
3983  QualifiedTemplateName::Profile(ID, NNS, TemplateKeyword, Template);
3984
3985  void *InsertPos = 0;
3986  QualifiedTemplateName *QTN =
3987    QualifiedTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
3988  if (!QTN) {
3989    QTN = new (*this,4) QualifiedTemplateName(NNS, TemplateKeyword, Template);
3990    QualifiedTemplateNames.InsertNode(QTN, InsertPos);
3991  }
3992
3993  return TemplateName(QTN);
3994}
3995
3996/// \brief Retrieve the template name that represents a dependent
3997/// template name such as \c MetaFun::template apply.
3998TemplateName ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
3999                                                  const IdentifierInfo *Name) {
4000  assert((!NNS || NNS->isDependent()) &&
4001         "Nested name specifier must be dependent");
4002
4003  llvm::FoldingSetNodeID ID;
4004  DependentTemplateName::Profile(ID, NNS, Name);
4005
4006  void *InsertPos = 0;
4007  DependentTemplateName *QTN =
4008    DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
4009
4010  if (QTN)
4011    return TemplateName(QTN);
4012
4013  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
4014  if (CanonNNS == NNS) {
4015    QTN = new (*this,4) DependentTemplateName(NNS, Name);
4016  } else {
4017    TemplateName Canon = getDependentTemplateName(CanonNNS, Name);
4018    QTN = new (*this,4) DependentTemplateName(NNS, Name, Canon);
4019    DependentTemplateName *CheckQTN =
4020      DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
4021    assert(!CheckQTN && "Dependent type name canonicalization broken");
4022    (void)CheckQTN;
4023  }
4024
4025  DependentTemplateNames.InsertNode(QTN, InsertPos);
4026  return TemplateName(QTN);
4027}
4028
4029/// \brief Retrieve the template name that represents a dependent
4030/// template name such as \c MetaFun::template operator+.
4031TemplateName
4032ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
4033                                     OverloadedOperatorKind Operator) {
4034  assert((!NNS || NNS->isDependent()) &&
4035         "Nested name specifier must be dependent");
4036
4037  llvm::FoldingSetNodeID ID;
4038  DependentTemplateName::Profile(ID, NNS, Operator);
4039
4040  void *InsertPos = 0;
4041  DependentTemplateName *QTN
4042    = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
4043
4044  if (QTN)
4045    return TemplateName(QTN);
4046
4047  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
4048  if (CanonNNS == NNS) {
4049    QTN = new (*this,4) DependentTemplateName(NNS, Operator);
4050  } else {
4051    TemplateName Canon = getDependentTemplateName(CanonNNS, Operator);
4052    QTN = new (*this,4) DependentTemplateName(NNS, Operator, Canon);
4053
4054    DependentTemplateName *CheckQTN
4055      = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
4056    assert(!CheckQTN && "Dependent template name canonicalization broken");
4057    (void)CheckQTN;
4058  }
4059
4060  DependentTemplateNames.InsertNode(QTN, InsertPos);
4061  return TemplateName(QTN);
4062}
4063
4064/// getFromTargetType - Given one of the integer types provided by
4065/// TargetInfo, produce the corresponding type. The unsigned @p Type
4066/// is actually a value of type @c TargetInfo::IntType.
4067CanQualType ASTContext::getFromTargetType(unsigned Type) const {
4068  switch (Type) {
4069  case TargetInfo::NoInt: return CanQualType();
4070  case TargetInfo::SignedShort: return ShortTy;
4071  case TargetInfo::UnsignedShort: return UnsignedShortTy;
4072  case TargetInfo::SignedInt: return IntTy;
4073  case TargetInfo::UnsignedInt: return UnsignedIntTy;
4074  case TargetInfo::SignedLong: return LongTy;
4075  case TargetInfo::UnsignedLong: return UnsignedLongTy;
4076  case TargetInfo::SignedLongLong: return LongLongTy;
4077  case TargetInfo::UnsignedLongLong: return UnsignedLongLongTy;
4078  }
4079
4080  assert(false && "Unhandled TargetInfo::IntType value");
4081  return CanQualType();
4082}
4083
4084//===----------------------------------------------------------------------===//
4085//                        Type Predicates.
4086//===----------------------------------------------------------------------===//
4087
4088/// isObjCNSObjectType - Return true if this is an NSObject object using
4089/// NSObject attribute on a c-style pointer type.
4090/// FIXME - Make it work directly on types.
4091/// FIXME: Move to Type.
4092///
4093bool ASTContext::isObjCNSObjectType(QualType Ty) const {
4094  if (TypedefType *TDT = dyn_cast<TypedefType>(Ty)) {
4095    if (TypedefDecl *TD = TDT->getDecl())
4096      if (TD->getAttr<ObjCNSObjectAttr>())
4097        return true;
4098  }
4099  return false;
4100}
4101
4102/// getObjCGCAttr - Returns one of GCNone, Weak or Strong objc's
4103/// garbage collection attribute.
4104///
4105Qualifiers::GC ASTContext::getObjCGCAttrKind(const QualType &Ty) const {
4106  Qualifiers::GC GCAttrs = Qualifiers::GCNone;
4107  if (getLangOptions().ObjC1 &&
4108      getLangOptions().getGCMode() != LangOptions::NonGC) {
4109    GCAttrs = Ty.getObjCGCAttr();
4110    // Default behavious under objective-c's gc is for objective-c pointers
4111    // (or pointers to them) be treated as though they were declared
4112    // as __strong.
4113    if (GCAttrs == Qualifiers::GCNone) {
4114      if (Ty->isObjCObjectPointerType() || Ty->isBlockPointerType())
4115        GCAttrs = Qualifiers::Strong;
4116      else if (Ty->isPointerType())
4117        return getObjCGCAttrKind(Ty->getAs<PointerType>()->getPointeeType());
4118    }
4119    // Non-pointers have none gc'able attribute regardless of the attribute
4120    // set on them.
4121    else if (!Ty->isAnyPointerType() && !Ty->isBlockPointerType())
4122      return Qualifiers::GCNone;
4123  }
4124  return GCAttrs;
4125}
4126
4127//===----------------------------------------------------------------------===//
4128//                        Type Compatibility Testing
4129//===----------------------------------------------------------------------===//
4130
4131/// areCompatVectorTypes - Return true if the two specified vector types are
4132/// compatible.
4133static bool areCompatVectorTypes(const VectorType *LHS,
4134                                 const VectorType *RHS) {
4135  assert(LHS->isCanonicalUnqualified() && RHS->isCanonicalUnqualified());
4136  return LHS->getElementType() == RHS->getElementType() &&
4137         LHS->getNumElements() == RHS->getNumElements();
4138}
4139
4140//===----------------------------------------------------------------------===//
4141// ObjCQualifiedIdTypesAreCompatible - Compatibility testing for qualified id's.
4142//===----------------------------------------------------------------------===//
4143
4144/// ProtocolCompatibleWithProtocol - return 'true' if 'lProto' is in the
4145/// inheritance hierarchy of 'rProto'.
4146bool ASTContext::ProtocolCompatibleWithProtocol(ObjCProtocolDecl *lProto,
4147                                                ObjCProtocolDecl *rProto) {
4148  if (lProto == rProto)
4149    return true;
4150  for (ObjCProtocolDecl::protocol_iterator PI = rProto->protocol_begin(),
4151       E = rProto->protocol_end(); PI != E; ++PI)
4152    if (ProtocolCompatibleWithProtocol(lProto, *PI))
4153      return true;
4154  return false;
4155}
4156
4157/// QualifiedIdConformsQualifiedId - compare id<p,...> with id<p1,...>
4158/// return true if lhs's protocols conform to rhs's protocol; false
4159/// otherwise.
4160bool ASTContext::QualifiedIdConformsQualifiedId(QualType lhs, QualType rhs) {
4161  if (lhs->isObjCQualifiedIdType() && rhs->isObjCQualifiedIdType())
4162    return ObjCQualifiedIdTypesAreCompatible(lhs, rhs, false);
4163  return false;
4164}
4165
4166/// ObjCQualifiedIdTypesAreCompatible - We know that one of lhs/rhs is an
4167/// ObjCQualifiedIDType.
4168bool ASTContext::ObjCQualifiedIdTypesAreCompatible(QualType lhs, QualType rhs,
4169                                                   bool compare) {
4170  // Allow id<P..> and an 'id' or void* type in all cases.
4171  if (lhs->isVoidPointerType() ||
4172      lhs->isObjCIdType() || lhs->isObjCClassType())
4173    return true;
4174  else if (rhs->isVoidPointerType() ||
4175           rhs->isObjCIdType() || rhs->isObjCClassType())
4176    return true;
4177
4178  if (const ObjCObjectPointerType *lhsQID = lhs->getAsObjCQualifiedIdType()) {
4179    const ObjCObjectPointerType *rhsOPT = rhs->getAs<ObjCObjectPointerType>();
4180
4181    if (!rhsOPT) return false;
4182
4183    if (rhsOPT->qual_empty()) {
4184      // If the RHS is a unqualified interface pointer "NSString*",
4185      // make sure we check the class hierarchy.
4186      if (ObjCInterfaceDecl *rhsID = rhsOPT->getInterfaceDecl()) {
4187        for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
4188             E = lhsQID->qual_end(); I != E; ++I) {
4189          // when comparing an id<P> on lhs with a static type on rhs,
4190          // see if static class implements all of id's protocols, directly or
4191          // through its super class and categories.
4192          if (!rhsID->ClassImplementsProtocol(*I, true))
4193            return false;
4194        }
4195      }
4196      // If there are no qualifiers and no interface, we have an 'id'.
4197      return true;
4198    }
4199    // Both the right and left sides have qualifiers.
4200    for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
4201         E = lhsQID->qual_end(); I != E; ++I) {
4202      ObjCProtocolDecl *lhsProto = *I;
4203      bool match = false;
4204
4205      // when comparing an id<P> on lhs with a static type on rhs,
4206      // see if static class implements all of id's protocols, directly or
4207      // through its super class and categories.
4208      for (ObjCObjectPointerType::qual_iterator J = rhsOPT->qual_begin(),
4209           E = rhsOPT->qual_end(); J != E; ++J) {
4210        ObjCProtocolDecl *rhsProto = *J;
4211        if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
4212            (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
4213          match = true;
4214          break;
4215        }
4216      }
4217      // If the RHS is a qualified interface pointer "NSString<P>*",
4218      // make sure we check the class hierarchy.
4219      if (ObjCInterfaceDecl *rhsID = rhsOPT->getInterfaceDecl()) {
4220        for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
4221             E = lhsQID->qual_end(); I != E; ++I) {
4222          // when comparing an id<P> on lhs with a static type on rhs,
4223          // see if static class implements all of id's protocols, directly or
4224          // through its super class and categories.
4225          if (rhsID->ClassImplementsProtocol(*I, true)) {
4226            match = true;
4227            break;
4228          }
4229        }
4230      }
4231      if (!match)
4232        return false;
4233    }
4234
4235    return true;
4236  }
4237
4238  const ObjCObjectPointerType *rhsQID = rhs->getAsObjCQualifiedIdType();
4239  assert(rhsQID && "One of the LHS/RHS should be id<x>");
4240
4241  if (const ObjCObjectPointerType *lhsOPT =
4242        lhs->getAsObjCInterfacePointerType()) {
4243    if (lhsOPT->qual_empty()) {
4244      bool match = false;
4245      if (ObjCInterfaceDecl *lhsID = lhsOPT->getInterfaceDecl()) {
4246        for (ObjCObjectPointerType::qual_iterator I = rhsQID->qual_begin(),
4247             E = rhsQID->qual_end(); I != E; ++I) {
4248          // when comparing an id<P> on lhs with a static type on rhs,
4249          // see if static class implements all of id's protocols, directly or
4250          // through its super class and categories.
4251          if (lhsID->ClassImplementsProtocol(*I, true)) {
4252            match = true;
4253            break;
4254          }
4255        }
4256        if (!match)
4257          return false;
4258      }
4259      return true;
4260    }
4261    // Both the right and left sides have qualifiers.
4262    for (ObjCObjectPointerType::qual_iterator I = lhsOPT->qual_begin(),
4263         E = lhsOPT->qual_end(); I != E; ++I) {
4264      ObjCProtocolDecl *lhsProto = *I;
4265      bool match = false;
4266
4267      // when comparing an id<P> on lhs with a static type on rhs,
4268      // see if static class implements all of id's protocols, directly or
4269      // through its super class and categories.
4270      for (ObjCObjectPointerType::qual_iterator J = rhsQID->qual_begin(),
4271           E = rhsQID->qual_end(); J != E; ++J) {
4272        ObjCProtocolDecl *rhsProto = *J;
4273        if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
4274            (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
4275          match = true;
4276          break;
4277        }
4278      }
4279      if (!match)
4280        return false;
4281    }
4282    return true;
4283  }
4284  return false;
4285}
4286
4287/// canAssignObjCInterfaces - Return true if the two interface types are
4288/// compatible for assignment from RHS to LHS.  This handles validation of any
4289/// protocol qualifiers on the LHS or RHS.
4290///
4291bool ASTContext::canAssignObjCInterfaces(const ObjCObjectPointerType *LHSOPT,
4292                                         const ObjCObjectPointerType *RHSOPT) {
4293  // If either type represents the built-in 'id' or 'Class' types, return true.
4294  if (LHSOPT->isObjCBuiltinType() || RHSOPT->isObjCBuiltinType())
4295    return true;
4296
4297  if (LHSOPT->isObjCQualifiedIdType() || RHSOPT->isObjCQualifiedIdType())
4298    return ObjCQualifiedIdTypesAreCompatible(QualType(LHSOPT,0),
4299                                             QualType(RHSOPT,0),
4300                                             false);
4301
4302  const ObjCInterfaceType* LHS = LHSOPT->getInterfaceType();
4303  const ObjCInterfaceType* RHS = RHSOPT->getInterfaceType();
4304  if (LHS && RHS) // We have 2 user-defined types.
4305    return canAssignObjCInterfaces(LHS, RHS);
4306
4307  return false;
4308}
4309
4310/// getIntersectionOfProtocols - This routine finds the intersection of set
4311/// of protocols inherited from two distinct objective-c pointer objects.
4312/// It is used to build composite qualifier list of the composite type of
4313/// the conditional expression involving two objective-c pointer objects.
4314static
4315void getIntersectionOfProtocols(ASTContext &Context,
4316                                const ObjCObjectPointerType *LHSOPT,
4317                                const ObjCObjectPointerType *RHSOPT,
4318      llvm::SmallVectorImpl<ObjCProtocolDecl *> &IntersectionOfProtocols) {
4319
4320  const ObjCInterfaceType* LHS = LHSOPT->getInterfaceType();
4321  const ObjCInterfaceType* RHS = RHSOPT->getInterfaceType();
4322
4323  llvm::SmallPtrSet<ObjCProtocolDecl *, 8> InheritedProtocolSet;
4324  unsigned LHSNumProtocols = LHS->getNumProtocols();
4325  if (LHSNumProtocols > 0)
4326    InheritedProtocolSet.insert(LHS->qual_begin(), LHS->qual_end());
4327  else {
4328    llvm::SmallPtrSet<ObjCProtocolDecl *, 8> LHSInheritedProtocols;
4329    Context.CollectInheritedProtocols(LHS->getDecl(), LHSInheritedProtocols);
4330    InheritedProtocolSet.insert(LHSInheritedProtocols.begin(),
4331                                LHSInheritedProtocols.end());
4332  }
4333
4334  unsigned RHSNumProtocols = RHS->getNumProtocols();
4335  if (RHSNumProtocols > 0) {
4336    ObjCProtocolDecl **RHSProtocols = (ObjCProtocolDecl **)RHS->qual_begin();
4337    for (unsigned i = 0; i < RHSNumProtocols; ++i)
4338      if (InheritedProtocolSet.count(RHSProtocols[i]))
4339        IntersectionOfProtocols.push_back(RHSProtocols[i]);
4340  }
4341  else {
4342    llvm::SmallPtrSet<ObjCProtocolDecl *, 8> RHSInheritedProtocols;
4343    Context.CollectInheritedProtocols(RHS->getDecl(), RHSInheritedProtocols);
4344    for (llvm::SmallPtrSet<ObjCProtocolDecl*,8>::iterator I =
4345         RHSInheritedProtocols.begin(),
4346         E = RHSInheritedProtocols.end(); I != E; ++I)
4347      if (InheritedProtocolSet.count((*I)))
4348        IntersectionOfProtocols.push_back((*I));
4349  }
4350}
4351
4352/// areCommonBaseCompatible - Returns common base class of the two classes if
4353/// one found. Note that this is O'2 algorithm. But it will be called as the
4354/// last type comparison in a ?-exp of ObjC pointer types before a
4355/// warning is issued. So, its invokation is extremely rare.
4356QualType ASTContext::areCommonBaseCompatible(
4357                                          const ObjCObjectPointerType *LHSOPT,
4358                                          const ObjCObjectPointerType *RHSOPT) {
4359  const ObjCInterfaceType* LHS = LHSOPT->getInterfaceType();
4360  const ObjCInterfaceType* RHS = RHSOPT->getInterfaceType();
4361  if (!LHS || !RHS)
4362    return QualType();
4363
4364  while (const ObjCInterfaceDecl *LHSIDecl = LHS->getDecl()->getSuperClass()) {
4365    QualType LHSTy = getObjCInterfaceType(LHSIDecl);
4366    LHS = LHSTy->getAs<ObjCInterfaceType>();
4367    if (canAssignObjCInterfaces(LHS, RHS)) {
4368      llvm::SmallVector<ObjCProtocolDecl *, 8> IntersectionOfProtocols;
4369      getIntersectionOfProtocols(*this,
4370                                 LHSOPT, RHSOPT, IntersectionOfProtocols);
4371      if (IntersectionOfProtocols.empty())
4372        LHSTy = getObjCObjectPointerType(LHSTy);
4373      else
4374        LHSTy = getObjCObjectPointerType(LHSTy, &IntersectionOfProtocols[0],
4375                                                IntersectionOfProtocols.size());
4376      return LHSTy;
4377    }
4378  }
4379
4380  return QualType();
4381}
4382
4383bool ASTContext::canAssignObjCInterfaces(const ObjCInterfaceType *LHS,
4384                                         const ObjCInterfaceType *RHS) {
4385  // Verify that the base decls are compatible: the RHS must be a subclass of
4386  // the LHS.
4387  if (!LHS->getDecl()->isSuperClassOf(RHS->getDecl()))
4388    return false;
4389
4390  // RHS must have a superset of the protocols in the LHS.  If the LHS is not
4391  // protocol qualified at all, then we are good.
4392  if (LHS->getNumProtocols() == 0)
4393    return true;
4394
4395  // Okay, we know the LHS has protocol qualifiers.  If the RHS doesn't, then it
4396  // isn't a superset.
4397  if (RHS->getNumProtocols() == 0)
4398    return true;  // FIXME: should return false!
4399
4400  for (ObjCInterfaceType::qual_iterator LHSPI = LHS->qual_begin(),
4401                                        LHSPE = LHS->qual_end();
4402       LHSPI != LHSPE; LHSPI++) {
4403    bool RHSImplementsProtocol = false;
4404
4405    // If the RHS doesn't implement the protocol on the left, the types
4406    // are incompatible.
4407    for (ObjCInterfaceType::qual_iterator RHSPI = RHS->qual_begin(),
4408                                          RHSPE = RHS->qual_end();
4409         RHSPI != RHSPE; RHSPI++) {
4410      if ((*RHSPI)->lookupProtocolNamed((*LHSPI)->getIdentifier())) {
4411        RHSImplementsProtocol = true;
4412        break;
4413      }
4414    }
4415    // FIXME: For better diagnostics, consider passing back the protocol name.
4416    if (!RHSImplementsProtocol)
4417      return false;
4418  }
4419  // The RHS implements all protocols listed on the LHS.
4420  return true;
4421}
4422
4423bool ASTContext::areComparableObjCPointerTypes(QualType LHS, QualType RHS) {
4424  // get the "pointed to" types
4425  const ObjCObjectPointerType *LHSOPT = LHS->getAs<ObjCObjectPointerType>();
4426  const ObjCObjectPointerType *RHSOPT = RHS->getAs<ObjCObjectPointerType>();
4427
4428  if (!LHSOPT || !RHSOPT)
4429    return false;
4430
4431  return canAssignObjCInterfaces(LHSOPT, RHSOPT) ||
4432         canAssignObjCInterfaces(RHSOPT, LHSOPT);
4433}
4434
4435/// typesAreCompatible - C99 6.7.3p9: For two qualified types to be compatible,
4436/// both shall have the identically qualified version of a compatible type.
4437/// C99 6.2.7p1: Two types have compatible types if their types are the
4438/// same. See 6.7.[2,3,5] for additional rules.
4439bool ASTContext::typesAreCompatible(QualType LHS, QualType RHS) {
4440  if (getLangOptions().CPlusPlus)
4441    return hasSameType(LHS, RHS);
4442
4443  return !mergeTypes(LHS, RHS).isNull();
4444}
4445
4446QualType ASTContext::mergeFunctionTypes(QualType lhs, QualType rhs) {
4447  const FunctionType *lbase = lhs->getAs<FunctionType>();
4448  const FunctionType *rbase = rhs->getAs<FunctionType>();
4449  const FunctionProtoType *lproto = dyn_cast<FunctionProtoType>(lbase);
4450  const FunctionProtoType *rproto = dyn_cast<FunctionProtoType>(rbase);
4451  bool allLTypes = true;
4452  bool allRTypes = true;
4453
4454  // Check return type
4455  QualType retType = mergeTypes(lbase->getResultType(), rbase->getResultType());
4456  if (retType.isNull()) return QualType();
4457  if (getCanonicalType(retType) != getCanonicalType(lbase->getResultType()))
4458    allLTypes = false;
4459  if (getCanonicalType(retType) != getCanonicalType(rbase->getResultType()))
4460    allRTypes = false;
4461  // FIXME: double check this
4462  bool NoReturn = lbase->getNoReturnAttr() || rbase->getNoReturnAttr();
4463  if (NoReturn != lbase->getNoReturnAttr())
4464    allLTypes = false;
4465  if (NoReturn != rbase->getNoReturnAttr())
4466    allRTypes = false;
4467  CallingConv lcc = lbase->getCallConv();
4468  CallingConv rcc = rbase->getCallConv();
4469  // Compatible functions must have compatible calling conventions
4470  if (!isSameCallConv(lcc, rcc))
4471    return QualType();
4472
4473  if (lproto && rproto) { // two C99 style function prototypes
4474    assert(!lproto->hasExceptionSpec() && !rproto->hasExceptionSpec() &&
4475           "C++ shouldn't be here");
4476    unsigned lproto_nargs = lproto->getNumArgs();
4477    unsigned rproto_nargs = rproto->getNumArgs();
4478
4479    // Compatible functions must have the same number of arguments
4480    if (lproto_nargs != rproto_nargs)
4481      return QualType();
4482
4483    // Variadic and non-variadic functions aren't compatible
4484    if (lproto->isVariadic() != rproto->isVariadic())
4485      return QualType();
4486
4487    if (lproto->getTypeQuals() != rproto->getTypeQuals())
4488      return QualType();
4489
4490    // Check argument compatibility
4491    llvm::SmallVector<QualType, 10> types;
4492    for (unsigned i = 0; i < lproto_nargs; i++) {
4493      QualType largtype = lproto->getArgType(i).getUnqualifiedType();
4494      QualType rargtype = rproto->getArgType(i).getUnqualifiedType();
4495      QualType argtype = mergeTypes(largtype, rargtype);
4496      if (argtype.isNull()) return QualType();
4497      types.push_back(argtype);
4498      if (getCanonicalType(argtype) != getCanonicalType(largtype))
4499        allLTypes = false;
4500      if (getCanonicalType(argtype) != getCanonicalType(rargtype))
4501        allRTypes = false;
4502    }
4503    if (allLTypes) return lhs;
4504    if (allRTypes) return rhs;
4505    return getFunctionType(retType, types.begin(), types.size(),
4506                           lproto->isVariadic(), lproto->getTypeQuals(),
4507                           false, false, 0, 0, NoReturn, lcc);
4508  }
4509
4510  if (lproto) allRTypes = false;
4511  if (rproto) allLTypes = false;
4512
4513  const FunctionProtoType *proto = lproto ? lproto : rproto;
4514  if (proto) {
4515    assert(!proto->hasExceptionSpec() && "C++ shouldn't be here");
4516    if (proto->isVariadic()) return QualType();
4517    // Check that the types are compatible with the types that
4518    // would result from default argument promotions (C99 6.7.5.3p15).
4519    // The only types actually affected are promotable integer
4520    // types and floats, which would be passed as a different
4521    // type depending on whether the prototype is visible.
4522    unsigned proto_nargs = proto->getNumArgs();
4523    for (unsigned i = 0; i < proto_nargs; ++i) {
4524      QualType argTy = proto->getArgType(i);
4525
4526      // Look at the promotion type of enum types, since that is the type used
4527      // to pass enum values.
4528      if (const EnumType *Enum = argTy->getAs<EnumType>())
4529        argTy = Enum->getDecl()->getPromotionType();
4530
4531      if (argTy->isPromotableIntegerType() ||
4532          getCanonicalType(argTy).getUnqualifiedType() == FloatTy)
4533        return QualType();
4534    }
4535
4536    if (allLTypes) return lhs;
4537    if (allRTypes) return rhs;
4538    return getFunctionType(retType, proto->arg_type_begin(),
4539                           proto->getNumArgs(), proto->isVariadic(),
4540                           proto->getTypeQuals(),
4541                           false, false, 0, 0, NoReturn, lcc);
4542  }
4543
4544  if (allLTypes) return lhs;
4545  if (allRTypes) return rhs;
4546  return getFunctionNoProtoType(retType, NoReturn, lcc);
4547}
4548
4549QualType ASTContext::mergeTypes(QualType LHS, QualType RHS) {
4550  // C++ [expr]: If an expression initially has the type "reference to T", the
4551  // type is adjusted to "T" prior to any further analysis, the expression
4552  // designates the object or function denoted by the reference, and the
4553  // expression is an lvalue unless the reference is an rvalue reference and
4554  // the expression is a function call (possibly inside parentheses).
4555  assert(!LHS->getAs<ReferenceType>() && "LHS is a reference type?");
4556  assert(!RHS->getAs<ReferenceType>() && "RHS is a reference type?");
4557
4558  QualType LHSCan = getCanonicalType(LHS),
4559           RHSCan = getCanonicalType(RHS);
4560
4561  // If two types are identical, they are compatible.
4562  if (LHSCan == RHSCan)
4563    return LHS;
4564
4565  // If the qualifiers are different, the types aren't compatible... mostly.
4566  Qualifiers LQuals = LHSCan.getLocalQualifiers();
4567  Qualifiers RQuals = RHSCan.getLocalQualifiers();
4568  if (LQuals != RQuals) {
4569    // If any of these qualifiers are different, we have a type
4570    // mismatch.
4571    if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() ||
4572        LQuals.getAddressSpace() != RQuals.getAddressSpace())
4573      return QualType();
4574
4575    // Exactly one GC qualifier difference is allowed: __strong is
4576    // okay if the other type has no GC qualifier but is an Objective
4577    // C object pointer (i.e. implicitly strong by default).  We fix
4578    // this by pretending that the unqualified type was actually
4579    // qualified __strong.
4580    Qualifiers::GC GC_L = LQuals.getObjCGCAttr();
4581    Qualifiers::GC GC_R = RQuals.getObjCGCAttr();
4582    assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements");
4583
4584    if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak)
4585      return QualType();
4586
4587    if (GC_L == Qualifiers::Strong && RHSCan->isObjCObjectPointerType()) {
4588      return mergeTypes(LHS, getObjCGCQualType(RHS, Qualifiers::Strong));
4589    }
4590    if (GC_R == Qualifiers::Strong && LHSCan->isObjCObjectPointerType()) {
4591      return mergeTypes(getObjCGCQualType(LHS, Qualifiers::Strong), RHS);
4592    }
4593    return QualType();
4594  }
4595
4596  // Okay, qualifiers are equal.
4597
4598  Type::TypeClass LHSClass = LHSCan->getTypeClass();
4599  Type::TypeClass RHSClass = RHSCan->getTypeClass();
4600
4601  // We want to consider the two function types to be the same for these
4602  // comparisons, just force one to the other.
4603  if (LHSClass == Type::FunctionProto) LHSClass = Type::FunctionNoProto;
4604  if (RHSClass == Type::FunctionProto) RHSClass = Type::FunctionNoProto;
4605
4606  // Same as above for arrays
4607  if (LHSClass == Type::VariableArray || LHSClass == Type::IncompleteArray)
4608    LHSClass = Type::ConstantArray;
4609  if (RHSClass == Type::VariableArray || RHSClass == Type::IncompleteArray)
4610    RHSClass = Type::ConstantArray;
4611
4612  // Canonicalize ExtVector -> Vector.
4613  if (LHSClass == Type::ExtVector) LHSClass = Type::Vector;
4614  if (RHSClass == Type::ExtVector) RHSClass = Type::Vector;
4615
4616  // If the canonical type classes don't match.
4617  if (LHSClass != RHSClass) {
4618    // C99 6.7.2.2p4: Each enumerated type shall be compatible with char,
4619    // a signed integer type, or an unsigned integer type.
4620    // Compatibility is based on the underlying type, not the promotion
4621    // type.
4622    if (const EnumType* ETy = LHS->getAs<EnumType>()) {
4623      if (ETy->getDecl()->getIntegerType() == RHSCan.getUnqualifiedType())
4624        return RHS;
4625    }
4626    if (const EnumType* ETy = RHS->getAs<EnumType>()) {
4627      if (ETy->getDecl()->getIntegerType() == LHSCan.getUnqualifiedType())
4628        return LHS;
4629    }
4630
4631    return QualType();
4632  }
4633
4634  // The canonical type classes match.
4635  switch (LHSClass) {
4636#define TYPE(Class, Base)
4637#define ABSTRACT_TYPE(Class, Base)
4638#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
4639#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
4640#define DEPENDENT_TYPE(Class, Base) case Type::Class:
4641#include "clang/AST/TypeNodes.def"
4642    assert(false && "Non-canonical and dependent types shouldn't get here");
4643    return QualType();
4644
4645  case Type::LValueReference:
4646  case Type::RValueReference:
4647  case Type::MemberPointer:
4648    assert(false && "C++ should never be in mergeTypes");
4649    return QualType();
4650
4651  case Type::IncompleteArray:
4652  case Type::VariableArray:
4653  case Type::FunctionProto:
4654  case Type::ExtVector:
4655    assert(false && "Types are eliminated above");
4656    return QualType();
4657
4658  case Type::Pointer:
4659  {
4660    // Merge two pointer types, while trying to preserve typedef info
4661    QualType LHSPointee = LHS->getAs<PointerType>()->getPointeeType();
4662    QualType RHSPointee = RHS->getAs<PointerType>()->getPointeeType();
4663    QualType ResultType = mergeTypes(LHSPointee, RHSPointee);
4664    if (ResultType.isNull()) return QualType();
4665    if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
4666      return LHS;
4667    if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
4668      return RHS;
4669    return getPointerType(ResultType);
4670  }
4671  case Type::BlockPointer:
4672  {
4673    // Merge two block pointer types, while trying to preserve typedef info
4674    QualType LHSPointee = LHS->getAs<BlockPointerType>()->getPointeeType();
4675    QualType RHSPointee = RHS->getAs<BlockPointerType>()->getPointeeType();
4676    QualType ResultType = mergeTypes(LHSPointee, RHSPointee);
4677    if (ResultType.isNull()) return QualType();
4678    if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
4679      return LHS;
4680    if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
4681      return RHS;
4682    return getBlockPointerType(ResultType);
4683  }
4684  case Type::ConstantArray:
4685  {
4686    const ConstantArrayType* LCAT = getAsConstantArrayType(LHS);
4687    const ConstantArrayType* RCAT = getAsConstantArrayType(RHS);
4688    if (LCAT && RCAT && RCAT->getSize() != LCAT->getSize())
4689      return QualType();
4690
4691    QualType LHSElem = getAsArrayType(LHS)->getElementType();
4692    QualType RHSElem = getAsArrayType(RHS)->getElementType();
4693    QualType ResultType = mergeTypes(LHSElem, RHSElem);
4694    if (ResultType.isNull()) return QualType();
4695    if (LCAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
4696      return LHS;
4697    if (RCAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
4698      return RHS;
4699    if (LCAT) return getConstantArrayType(ResultType, LCAT->getSize(),
4700                                          ArrayType::ArraySizeModifier(), 0);
4701    if (RCAT) return getConstantArrayType(ResultType, RCAT->getSize(),
4702                                          ArrayType::ArraySizeModifier(), 0);
4703    const VariableArrayType* LVAT = getAsVariableArrayType(LHS);
4704    const VariableArrayType* RVAT = getAsVariableArrayType(RHS);
4705    if (LVAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
4706      return LHS;
4707    if (RVAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
4708      return RHS;
4709    if (LVAT) {
4710      // FIXME: This isn't correct! But tricky to implement because
4711      // the array's size has to be the size of LHS, but the type
4712      // has to be different.
4713      return LHS;
4714    }
4715    if (RVAT) {
4716      // FIXME: This isn't correct! But tricky to implement because
4717      // the array's size has to be the size of RHS, but the type
4718      // has to be different.
4719      return RHS;
4720    }
4721    if (getCanonicalType(LHSElem) == getCanonicalType(ResultType)) return LHS;
4722    if (getCanonicalType(RHSElem) == getCanonicalType(ResultType)) return RHS;
4723    return getIncompleteArrayType(ResultType,
4724                                  ArrayType::ArraySizeModifier(), 0);
4725  }
4726  case Type::FunctionNoProto:
4727    return mergeFunctionTypes(LHS, RHS);
4728  case Type::Record:
4729  case Type::Enum:
4730    return QualType();
4731  case Type::Builtin:
4732    // Only exactly equal builtin types are compatible, which is tested above.
4733    return QualType();
4734  case Type::Complex:
4735    // Distinct complex types are incompatible.
4736    return QualType();
4737  case Type::Vector:
4738    // FIXME: The merged type should be an ExtVector!
4739    if (areCompatVectorTypes(LHS->getAs<VectorType>(), RHS->getAs<VectorType>()))
4740      return LHS;
4741    return QualType();
4742  case Type::ObjCInterface: {
4743    // Check if the interfaces are assignment compatible.
4744    // FIXME: This should be type compatibility, e.g. whether
4745    // "LHS x; RHS x;" at global scope is legal.
4746    const ObjCInterfaceType* LHSIface = LHS->getAs<ObjCInterfaceType>();
4747    const ObjCInterfaceType* RHSIface = RHS->getAs<ObjCInterfaceType>();
4748    if (LHSIface && RHSIface &&
4749        canAssignObjCInterfaces(LHSIface, RHSIface))
4750      return LHS;
4751
4752    return QualType();
4753  }
4754  case Type::ObjCObjectPointer: {
4755    if (canAssignObjCInterfaces(LHS->getAs<ObjCObjectPointerType>(),
4756                                RHS->getAs<ObjCObjectPointerType>()))
4757      return LHS;
4758
4759    return QualType();
4760  }
4761  }
4762
4763  return QualType();
4764}
4765
4766//===----------------------------------------------------------------------===//
4767//                         Integer Predicates
4768//===----------------------------------------------------------------------===//
4769
4770unsigned ASTContext::getIntWidth(QualType T) {
4771  if (T->isBooleanType())
4772    return 1;
4773  if (EnumType *ET = dyn_cast<EnumType>(T))
4774    T = ET->getDecl()->getIntegerType();
4775  // For builtin types, just use the standard type sizing method
4776  return (unsigned)getTypeSize(T);
4777}
4778
4779QualType ASTContext::getCorrespondingUnsignedType(QualType T) {
4780  assert(T->isSignedIntegerType() && "Unexpected type");
4781
4782  // Turn <4 x signed int> -> <4 x unsigned int>
4783  if (const VectorType *VTy = T->getAs<VectorType>())
4784    return getVectorType(getCorrespondingUnsignedType(VTy->getElementType()),
4785             VTy->getNumElements(), VTy->isAltiVec(), VTy->isPixel());
4786
4787  // For enums, we return the unsigned version of the base type.
4788  if (const EnumType *ETy = T->getAs<EnumType>())
4789    T = ETy->getDecl()->getIntegerType();
4790
4791  const BuiltinType *BTy = T->getAs<BuiltinType>();
4792  assert(BTy && "Unexpected signed integer type");
4793  switch (BTy->getKind()) {
4794  case BuiltinType::Char_S:
4795  case BuiltinType::SChar:
4796    return UnsignedCharTy;
4797  case BuiltinType::Short:
4798    return UnsignedShortTy;
4799  case BuiltinType::Int:
4800    return UnsignedIntTy;
4801  case BuiltinType::Long:
4802    return UnsignedLongTy;
4803  case BuiltinType::LongLong:
4804    return UnsignedLongLongTy;
4805  case BuiltinType::Int128:
4806    return UnsignedInt128Ty;
4807  default:
4808    assert(0 && "Unexpected signed integer type");
4809    return QualType();
4810  }
4811}
4812
4813ExternalASTSource::~ExternalASTSource() { }
4814
4815void ExternalASTSource::PrintStats() { }
4816
4817
4818//===----------------------------------------------------------------------===//
4819//                          Builtin Type Computation
4820//===----------------------------------------------------------------------===//
4821
4822/// DecodeTypeFromStr - This decodes one type descriptor from Str, advancing the
4823/// pointer over the consumed characters.  This returns the resultant type.
4824static QualType DecodeTypeFromStr(const char *&Str, ASTContext &Context,
4825                                  ASTContext::GetBuiltinTypeError &Error,
4826                                  bool AllowTypeModifiers = true) {
4827  // Modifiers.
4828  int HowLong = 0;
4829  bool Signed = false, Unsigned = false;
4830
4831  // Read the modifiers first.
4832  bool Done = false;
4833  while (!Done) {
4834    switch (*Str++) {
4835    default: Done = true; --Str; break;
4836    case 'S':
4837      assert(!Unsigned && "Can't use both 'S' and 'U' modifiers!");
4838      assert(!Signed && "Can't use 'S' modifier multiple times!");
4839      Signed = true;
4840      break;
4841    case 'U':
4842      assert(!Signed && "Can't use both 'S' and 'U' modifiers!");
4843      assert(!Unsigned && "Can't use 'S' modifier multiple times!");
4844      Unsigned = true;
4845      break;
4846    case 'L':
4847      assert(HowLong <= 2 && "Can't have LLLL modifier");
4848      ++HowLong;
4849      break;
4850    }
4851  }
4852
4853  QualType Type;
4854
4855  // Read the base type.
4856  switch (*Str++) {
4857  default: assert(0 && "Unknown builtin type letter!");
4858  case 'v':
4859    assert(HowLong == 0 && !Signed && !Unsigned &&
4860           "Bad modifiers used with 'v'!");
4861    Type = Context.VoidTy;
4862    break;
4863  case 'f':
4864    assert(HowLong == 0 && !Signed && !Unsigned &&
4865           "Bad modifiers used with 'f'!");
4866    Type = Context.FloatTy;
4867    break;
4868  case 'd':
4869    assert(HowLong < 2 && !Signed && !Unsigned &&
4870           "Bad modifiers used with 'd'!");
4871    if (HowLong)
4872      Type = Context.LongDoubleTy;
4873    else
4874      Type = Context.DoubleTy;
4875    break;
4876  case 's':
4877    assert(HowLong == 0 && "Bad modifiers used with 's'!");
4878    if (Unsigned)
4879      Type = Context.UnsignedShortTy;
4880    else
4881      Type = Context.ShortTy;
4882    break;
4883  case 'i':
4884    if (HowLong == 3)
4885      Type = Unsigned ? Context.UnsignedInt128Ty : Context.Int128Ty;
4886    else if (HowLong == 2)
4887      Type = Unsigned ? Context.UnsignedLongLongTy : Context.LongLongTy;
4888    else if (HowLong == 1)
4889      Type = Unsigned ? Context.UnsignedLongTy : Context.LongTy;
4890    else
4891      Type = Unsigned ? Context.UnsignedIntTy : Context.IntTy;
4892    break;
4893  case 'c':
4894    assert(HowLong == 0 && "Bad modifiers used with 'c'!");
4895    if (Signed)
4896      Type = Context.SignedCharTy;
4897    else if (Unsigned)
4898      Type = Context.UnsignedCharTy;
4899    else
4900      Type = Context.CharTy;
4901    break;
4902  case 'b': // boolean
4903    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'b'!");
4904    Type = Context.BoolTy;
4905    break;
4906  case 'z':  // size_t.
4907    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'z'!");
4908    Type = Context.getSizeType();
4909    break;
4910  case 'F':
4911    Type = Context.getCFConstantStringType();
4912    break;
4913  case 'a':
4914    Type = Context.getBuiltinVaListType();
4915    assert(!Type.isNull() && "builtin va list type not initialized!");
4916    break;
4917  case 'A':
4918    // This is a "reference" to a va_list; however, what exactly
4919    // this means depends on how va_list is defined. There are two
4920    // different kinds of va_list: ones passed by value, and ones
4921    // passed by reference.  An example of a by-value va_list is
4922    // x86, where va_list is a char*. An example of by-ref va_list
4923    // is x86-64, where va_list is a __va_list_tag[1]. For x86,
4924    // we want this argument to be a char*&; for x86-64, we want
4925    // it to be a __va_list_tag*.
4926    Type = Context.getBuiltinVaListType();
4927    assert(!Type.isNull() && "builtin va list type not initialized!");
4928    if (Type->isArrayType()) {
4929      Type = Context.getArrayDecayedType(Type);
4930    } else {
4931      Type = Context.getLValueReferenceType(Type);
4932    }
4933    break;
4934  case 'V': {
4935    char *End;
4936    unsigned NumElements = strtoul(Str, &End, 10);
4937    assert(End != Str && "Missing vector size");
4938
4939    Str = End;
4940
4941    QualType ElementType = DecodeTypeFromStr(Str, Context, Error, false);
4942    // FIXME: Don't know what to do about AltiVec.
4943    Type = Context.getVectorType(ElementType, NumElements, false, false);
4944    break;
4945  }
4946  case 'X': {
4947    QualType ElementType = DecodeTypeFromStr(Str, Context, Error, false);
4948    Type = Context.getComplexType(ElementType);
4949    break;
4950  }
4951  case 'P':
4952    Type = Context.getFILEType();
4953    if (Type.isNull()) {
4954      Error = ASTContext::GE_Missing_stdio;
4955      return QualType();
4956    }
4957    break;
4958  case 'J':
4959    if (Signed)
4960      Type = Context.getsigjmp_bufType();
4961    else
4962      Type = Context.getjmp_bufType();
4963
4964    if (Type.isNull()) {
4965      Error = ASTContext::GE_Missing_setjmp;
4966      return QualType();
4967    }
4968    break;
4969  }
4970
4971  if (!AllowTypeModifiers)
4972    return Type;
4973
4974  Done = false;
4975  while (!Done) {
4976    switch (char c = *Str++) {
4977      default: Done = true; --Str; break;
4978      case '*':
4979      case '&':
4980        {
4981          // Both pointers and references can have their pointee types
4982          // qualified with an address space.
4983          char *End;
4984          unsigned AddrSpace = strtoul(Str, &End, 10);
4985          if (End != Str && AddrSpace != 0) {
4986            Type = Context.getAddrSpaceQualType(Type, AddrSpace);
4987            Str = End;
4988          }
4989        }
4990        if (c == '*')
4991          Type = Context.getPointerType(Type);
4992        else
4993          Type = Context.getLValueReferenceType(Type);
4994        break;
4995      // FIXME: There's no way to have a built-in with an rvalue ref arg.
4996      case 'C':
4997        Type = Type.withConst();
4998        break;
4999      case 'D':
5000        Type = Context.getVolatileType(Type);
5001        break;
5002    }
5003  }
5004
5005  return Type;
5006}
5007
5008/// GetBuiltinType - Return the type for the specified builtin.
5009QualType ASTContext::GetBuiltinType(unsigned id,
5010                                    GetBuiltinTypeError &Error) {
5011  const char *TypeStr = BuiltinInfo.GetTypeString(id);
5012
5013  llvm::SmallVector<QualType, 8> ArgTypes;
5014
5015  Error = GE_None;
5016  QualType ResType = DecodeTypeFromStr(TypeStr, *this, Error);
5017  if (Error != GE_None)
5018    return QualType();
5019  while (TypeStr[0] && TypeStr[0] != '.') {
5020    QualType Ty = DecodeTypeFromStr(TypeStr, *this, Error);
5021    if (Error != GE_None)
5022      return QualType();
5023
5024    // Do array -> pointer decay.  The builtin should use the decayed type.
5025    if (Ty->isArrayType())
5026      Ty = getArrayDecayedType(Ty);
5027
5028    ArgTypes.push_back(Ty);
5029  }
5030
5031  assert((TypeStr[0] != '.' || TypeStr[1] == 0) &&
5032         "'.' should only occur at end of builtin type list!");
5033
5034  // handle untyped/variadic arguments "T c99Style();" or "T cppStyle(...);".
5035  if (ArgTypes.size() == 0 && TypeStr[0] == '.')
5036    return getFunctionNoProtoType(ResType);
5037
5038  // FIXME: Should we create noreturn types?
5039  return getFunctionType(ResType, ArgTypes.data(), ArgTypes.size(),
5040                         TypeStr[0] == '.', 0, false, false, 0, 0,
5041                         false, CC_Default);
5042}
5043
5044QualType
5045ASTContext::UsualArithmeticConversionsType(QualType lhs, QualType rhs) {
5046  // Perform the usual unary conversions. We do this early so that
5047  // integral promotions to "int" can allow us to exit early, in the
5048  // lhs == rhs check. Also, for conversion purposes, we ignore any
5049  // qualifiers.  For example, "const float" and "float" are
5050  // equivalent.
5051  if (lhs->isPromotableIntegerType())
5052    lhs = getPromotedIntegerType(lhs);
5053  else
5054    lhs = lhs.getUnqualifiedType();
5055  if (rhs->isPromotableIntegerType())
5056    rhs = getPromotedIntegerType(rhs);
5057  else
5058    rhs = rhs.getUnqualifiedType();
5059
5060  // If both types are identical, no conversion is needed.
5061  if (lhs == rhs)
5062    return lhs;
5063
5064  // If either side is a non-arithmetic type (e.g. a pointer), we are done.
5065  // The caller can deal with this (e.g. pointer + int).
5066  if (!lhs->isArithmeticType() || !rhs->isArithmeticType())
5067    return lhs;
5068
5069  // At this point, we have two different arithmetic types.
5070
5071  // Handle complex types first (C99 6.3.1.8p1).
5072  if (lhs->isComplexType() || rhs->isComplexType()) {
5073    // if we have an integer operand, the result is the complex type.
5074    if (rhs->isIntegerType() || rhs->isComplexIntegerType()) {
5075      // convert the rhs to the lhs complex type.
5076      return lhs;
5077    }
5078    if (lhs->isIntegerType() || lhs->isComplexIntegerType()) {
5079      // convert the lhs to the rhs complex type.
5080      return rhs;
5081    }
5082    // This handles complex/complex, complex/float, or float/complex.
5083    // When both operands are complex, the shorter operand is converted to the
5084    // type of the longer, and that is the type of the result. This corresponds
5085    // to what is done when combining two real floating-point operands.
5086    // The fun begins when size promotion occur across type domains.
5087    // From H&S 6.3.4: When one operand is complex and the other is a real
5088    // floating-point type, the less precise type is converted, within it's
5089    // real or complex domain, to the precision of the other type. For example,
5090    // when combining a "long double" with a "double _Complex", the
5091    // "double _Complex" is promoted to "long double _Complex".
5092    int result = getFloatingTypeOrder(lhs, rhs);
5093
5094    if (result > 0) { // The left side is bigger, convert rhs.
5095      rhs = getFloatingTypeOfSizeWithinDomain(lhs, rhs);
5096    } else if (result < 0) { // The right side is bigger, convert lhs.
5097      lhs = getFloatingTypeOfSizeWithinDomain(rhs, lhs);
5098    }
5099    // At this point, lhs and rhs have the same rank/size. Now, make sure the
5100    // domains match. This is a requirement for our implementation, C99
5101    // does not require this promotion.
5102    if (lhs != rhs) { // Domains don't match, we have complex/float mix.
5103      if (lhs->isRealFloatingType()) { // handle "double, _Complex double".
5104        return rhs;
5105      } else { // handle "_Complex double, double".
5106        return lhs;
5107      }
5108    }
5109    return lhs; // The domain/size match exactly.
5110  }
5111  // Now handle "real" floating types (i.e. float, double, long double).
5112  if (lhs->isRealFloatingType() || rhs->isRealFloatingType()) {
5113    // if we have an integer operand, the result is the real floating type.
5114    if (rhs->isIntegerType()) {
5115      // convert rhs to the lhs floating point type.
5116      return lhs;
5117    }
5118    if (rhs->isComplexIntegerType()) {
5119      // convert rhs to the complex floating point type.
5120      return getComplexType(lhs);
5121    }
5122    if (lhs->isIntegerType()) {
5123      // convert lhs to the rhs floating point type.
5124      return rhs;
5125    }
5126    if (lhs->isComplexIntegerType()) {
5127      // convert lhs to the complex floating point type.
5128      return getComplexType(rhs);
5129    }
5130    // We have two real floating types, float/complex combos were handled above.
5131    // Convert the smaller operand to the bigger result.
5132    int result = getFloatingTypeOrder(lhs, rhs);
5133    if (result > 0) // convert the rhs
5134      return lhs;
5135    assert(result < 0 && "illegal float comparison");
5136    return rhs;   // convert the lhs
5137  }
5138  if (lhs->isComplexIntegerType() || rhs->isComplexIntegerType()) {
5139    // Handle GCC complex int extension.
5140    const ComplexType *lhsComplexInt = lhs->getAsComplexIntegerType();
5141    const ComplexType *rhsComplexInt = rhs->getAsComplexIntegerType();
5142
5143    if (lhsComplexInt && rhsComplexInt) {
5144      if (getIntegerTypeOrder(lhsComplexInt->getElementType(),
5145                              rhsComplexInt->getElementType()) >= 0)
5146        return lhs; // convert the rhs
5147      return rhs;
5148    } else if (lhsComplexInt && rhs->isIntegerType()) {
5149      // convert the rhs to the lhs complex type.
5150      return lhs;
5151    } else if (rhsComplexInt && lhs->isIntegerType()) {
5152      // convert the lhs to the rhs complex type.
5153      return rhs;
5154    }
5155  }
5156  // Finally, we have two differing integer types.
5157  // The rules for this case are in C99 6.3.1.8
5158  int compare = getIntegerTypeOrder(lhs, rhs);
5159  bool lhsSigned = lhs->isSignedIntegerType(),
5160       rhsSigned = rhs->isSignedIntegerType();
5161  QualType destType;
5162  if (lhsSigned == rhsSigned) {
5163    // Same signedness; use the higher-ranked type
5164    destType = compare >= 0 ? lhs : rhs;
5165  } else if (compare != (lhsSigned ? 1 : -1)) {
5166    // The unsigned type has greater than or equal rank to the
5167    // signed type, so use the unsigned type
5168    destType = lhsSigned ? rhs : lhs;
5169  } else if (getIntWidth(lhs) != getIntWidth(rhs)) {
5170    // The two types are different widths; if we are here, that
5171    // means the signed type is larger than the unsigned type, so
5172    // use the signed type.
5173    destType = lhsSigned ? lhs : rhs;
5174  } else {
5175    // The signed type is higher-ranked than the unsigned type,
5176    // but isn't actually any bigger (like unsigned int and long
5177    // on most 32-bit systems).  Use the unsigned type corresponding
5178    // to the signed type.
5179    destType = getCorrespondingUnsignedType(lhsSigned ? lhs : rhs);
5180  }
5181  return destType;
5182}
5183