ASTContext.cpp revision 18932a0f2a94a7813ec461d1118c39ecf8aa936f
1//===--- ASTContext.cpp - Context to hold long-lived AST nodes ------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements the ASTContext interface.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/AST/ASTContext.h"
15#include "clang/AST/CharUnits.h"
16#include "clang/AST/DeclCXX.h"
17#include "clang/AST/DeclObjC.h"
18#include "clang/AST/DeclTemplate.h"
19#include "clang/AST/TypeLoc.h"
20#include "clang/AST/Expr.h"
21#include "clang/AST/ExprCXX.h"
22#include "clang/AST/ExternalASTSource.h"
23#include "clang/AST/ASTMutationListener.h"
24#include "clang/AST/RecordLayout.h"
25#include "clang/AST/Mangle.h"
26#include "clang/Basic/Builtins.h"
27#include "clang/Basic/SourceManager.h"
28#include "clang/Basic/TargetInfo.h"
29#include "llvm/ADT/SmallString.h"
30#include "llvm/ADT/StringExtras.h"
31#include "llvm/Support/MathExtras.h"
32#include "llvm/Support/raw_ostream.h"
33#include "llvm/Support/Capacity.h"
34#include "CXXABI.h"
35#include <map>
36
37using namespace clang;
38
39unsigned ASTContext::NumImplicitDefaultConstructors;
40unsigned ASTContext::NumImplicitDefaultConstructorsDeclared;
41unsigned ASTContext::NumImplicitCopyConstructors;
42unsigned ASTContext::NumImplicitCopyConstructorsDeclared;
43unsigned ASTContext::NumImplicitMoveConstructors;
44unsigned ASTContext::NumImplicitMoveConstructorsDeclared;
45unsigned ASTContext::NumImplicitCopyAssignmentOperators;
46unsigned ASTContext::NumImplicitCopyAssignmentOperatorsDeclared;
47unsigned ASTContext::NumImplicitMoveAssignmentOperators;
48unsigned ASTContext::NumImplicitMoveAssignmentOperatorsDeclared;
49unsigned ASTContext::NumImplicitDestructors;
50unsigned ASTContext::NumImplicitDestructorsDeclared;
51
52enum FloatingRank {
53  HalfRank, FloatRank, DoubleRank, LongDoubleRank
54};
55
56void
57ASTContext::CanonicalTemplateTemplateParm::Profile(llvm::FoldingSetNodeID &ID,
58                                               TemplateTemplateParmDecl *Parm) {
59  ID.AddInteger(Parm->getDepth());
60  ID.AddInteger(Parm->getPosition());
61  ID.AddBoolean(Parm->isParameterPack());
62
63  TemplateParameterList *Params = Parm->getTemplateParameters();
64  ID.AddInteger(Params->size());
65  for (TemplateParameterList::const_iterator P = Params->begin(),
66                                          PEnd = Params->end();
67       P != PEnd; ++P) {
68    if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*P)) {
69      ID.AddInteger(0);
70      ID.AddBoolean(TTP->isParameterPack());
71      continue;
72    }
73
74    if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(*P)) {
75      ID.AddInteger(1);
76      ID.AddBoolean(NTTP->isParameterPack());
77      ID.AddPointer(NTTP->getType().getAsOpaquePtr());
78      if (NTTP->isExpandedParameterPack()) {
79        ID.AddBoolean(true);
80        ID.AddInteger(NTTP->getNumExpansionTypes());
81        for (unsigned I = 0, N = NTTP->getNumExpansionTypes(); I != N; ++I)
82          ID.AddPointer(NTTP->getExpansionType(I).getAsOpaquePtr());
83      } else
84        ID.AddBoolean(false);
85      continue;
86    }
87
88    TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(*P);
89    ID.AddInteger(2);
90    Profile(ID, TTP);
91  }
92}
93
94TemplateTemplateParmDecl *
95ASTContext::getCanonicalTemplateTemplateParmDecl(
96                                          TemplateTemplateParmDecl *TTP) const {
97  // Check if we already have a canonical template template parameter.
98  llvm::FoldingSetNodeID ID;
99  CanonicalTemplateTemplateParm::Profile(ID, TTP);
100  void *InsertPos = 0;
101  CanonicalTemplateTemplateParm *Canonical
102    = CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos);
103  if (Canonical)
104    return Canonical->getParam();
105
106  // Build a canonical template parameter list.
107  TemplateParameterList *Params = TTP->getTemplateParameters();
108  SmallVector<NamedDecl *, 4> CanonParams;
109  CanonParams.reserve(Params->size());
110  for (TemplateParameterList::const_iterator P = Params->begin(),
111                                          PEnd = Params->end();
112       P != PEnd; ++P) {
113    if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*P))
114      CanonParams.push_back(
115                  TemplateTypeParmDecl::Create(*this, getTranslationUnitDecl(),
116                                               SourceLocation(),
117                                               SourceLocation(),
118                                               TTP->getDepth(),
119                                               TTP->getIndex(), 0, false,
120                                               TTP->isParameterPack()));
121    else if (NonTypeTemplateParmDecl *NTTP
122             = dyn_cast<NonTypeTemplateParmDecl>(*P)) {
123      QualType T = getCanonicalType(NTTP->getType());
124      TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(T);
125      NonTypeTemplateParmDecl *Param;
126      if (NTTP->isExpandedParameterPack()) {
127        SmallVector<QualType, 2> ExpandedTypes;
128        SmallVector<TypeSourceInfo *, 2> ExpandedTInfos;
129        for (unsigned I = 0, N = NTTP->getNumExpansionTypes(); I != N; ++I) {
130          ExpandedTypes.push_back(getCanonicalType(NTTP->getExpansionType(I)));
131          ExpandedTInfos.push_back(
132                                getTrivialTypeSourceInfo(ExpandedTypes.back()));
133        }
134
135        Param = NonTypeTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
136                                                SourceLocation(),
137                                                SourceLocation(),
138                                                NTTP->getDepth(),
139                                                NTTP->getPosition(), 0,
140                                                T,
141                                                TInfo,
142                                                ExpandedTypes.data(),
143                                                ExpandedTypes.size(),
144                                                ExpandedTInfos.data());
145      } else {
146        Param = NonTypeTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
147                                                SourceLocation(),
148                                                SourceLocation(),
149                                                NTTP->getDepth(),
150                                                NTTP->getPosition(), 0,
151                                                T,
152                                                NTTP->isParameterPack(),
153                                                TInfo);
154      }
155      CanonParams.push_back(Param);
156
157    } else
158      CanonParams.push_back(getCanonicalTemplateTemplateParmDecl(
159                                           cast<TemplateTemplateParmDecl>(*P)));
160  }
161
162  TemplateTemplateParmDecl *CanonTTP
163    = TemplateTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
164                                       SourceLocation(), TTP->getDepth(),
165                                       TTP->getPosition(),
166                                       TTP->isParameterPack(),
167                                       0,
168                         TemplateParameterList::Create(*this, SourceLocation(),
169                                                       SourceLocation(),
170                                                       CanonParams.data(),
171                                                       CanonParams.size(),
172                                                       SourceLocation()));
173
174  // Get the new insert position for the node we care about.
175  Canonical = CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos);
176  assert(Canonical == 0 && "Shouldn't be in the map!");
177  (void)Canonical;
178
179  // Create the canonical template template parameter entry.
180  Canonical = new (*this) CanonicalTemplateTemplateParm(CanonTTP);
181  CanonTemplateTemplateParms.InsertNode(Canonical, InsertPos);
182  return CanonTTP;
183}
184
185CXXABI *ASTContext::createCXXABI(const TargetInfo &T) {
186  if (!LangOpts.CPlusPlus) return 0;
187
188  switch (T.getCXXABI()) {
189  case CXXABI_ARM:
190    return CreateARMCXXABI(*this);
191  case CXXABI_Itanium:
192    return CreateItaniumCXXABI(*this);
193  case CXXABI_Microsoft:
194    return CreateMicrosoftCXXABI(*this);
195  }
196  llvm_unreachable("Invalid CXXABI type!");
197}
198
199static const LangAS::Map *getAddressSpaceMap(const TargetInfo &T,
200                                             const LangOptions &LOpts) {
201  if (LOpts.FakeAddressSpaceMap) {
202    // The fake address space map must have a distinct entry for each
203    // language-specific address space.
204    static const unsigned FakeAddrSpaceMap[] = {
205      1, // opencl_global
206      2, // opencl_local
207      3  // opencl_constant
208    };
209    return &FakeAddrSpaceMap;
210  } else {
211    return &T.getAddressSpaceMap();
212  }
213}
214
215ASTContext::ASTContext(LangOptions& LOpts, SourceManager &SM,
216                       const TargetInfo *t,
217                       IdentifierTable &idents, SelectorTable &sels,
218                       Builtin::Context &builtins,
219                       unsigned size_reserve,
220                       bool DelayInitialization)
221  : FunctionProtoTypes(this_()),
222    TemplateSpecializationTypes(this_()),
223    DependentTemplateSpecializationTypes(this_()),
224    SubstTemplateTemplateParmPacks(this_()),
225    GlobalNestedNameSpecifier(0),
226    Int128Decl(0), UInt128Decl(0),
227    ObjCIdDecl(0), ObjCSelDecl(0), ObjCClassDecl(0), ObjCProtocolClassDecl(0),
228    CFConstantStringTypeDecl(0), ObjCInstanceTypeDecl(0),
229    FILEDecl(0),
230    jmp_bufDecl(0), sigjmp_bufDecl(0), ucontext_tDecl(0),
231    BlockDescriptorType(0), BlockDescriptorExtendedType(0),
232    cudaConfigureCallDecl(0),
233    NullTypeSourceInfo(QualType()),
234    FirstLocalImport(), LastLocalImport(),
235    SourceMgr(SM), LangOpts(LOpts),
236    AddrSpaceMap(0), Target(t), PrintingPolicy(LOpts),
237    Idents(idents), Selectors(sels),
238    BuiltinInfo(builtins),
239    DeclarationNames(*this),
240    ExternalSource(0), Listener(0),
241    LastSDM(0, 0),
242    UniqueBlockByRefTypeID(0)
243{
244  if (size_reserve > 0) Types.reserve(size_reserve);
245  TUDecl = TranslationUnitDecl::Create(*this);
246
247  if (!DelayInitialization) {
248    assert(t && "No target supplied for ASTContext initialization");
249    InitBuiltinTypes(*t);
250  }
251}
252
253ASTContext::~ASTContext() {
254  // Release the DenseMaps associated with DeclContext objects.
255  // FIXME: Is this the ideal solution?
256  ReleaseDeclContextMaps();
257
258  // Call all of the deallocation functions.
259  for (unsigned I = 0, N = Deallocations.size(); I != N; ++I)
260    Deallocations[I].first(Deallocations[I].second);
261
262  // Release all of the memory associated with overridden C++ methods.
263  for (llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::iterator
264         OM = OverriddenMethods.begin(), OMEnd = OverriddenMethods.end();
265       OM != OMEnd; ++OM)
266    OM->second.Destroy();
267
268  // ASTRecordLayout objects in ASTRecordLayouts must always be destroyed
269  // because they can contain DenseMaps.
270  for (llvm::DenseMap<const ObjCContainerDecl*,
271       const ASTRecordLayout*>::iterator
272       I = ObjCLayouts.begin(), E = ObjCLayouts.end(); I != E; )
273    // Increment in loop to prevent using deallocated memory.
274    if (ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second))
275      R->Destroy(*this);
276
277  for (llvm::DenseMap<const RecordDecl*, const ASTRecordLayout*>::iterator
278       I = ASTRecordLayouts.begin(), E = ASTRecordLayouts.end(); I != E; ) {
279    // Increment in loop to prevent using deallocated memory.
280    if (ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second))
281      R->Destroy(*this);
282  }
283
284  for (llvm::DenseMap<const Decl*, AttrVec*>::iterator A = DeclAttrs.begin(),
285                                                    AEnd = DeclAttrs.end();
286       A != AEnd; ++A)
287    A->second->~AttrVec();
288}
289
290void ASTContext::AddDeallocation(void (*Callback)(void*), void *Data) {
291  Deallocations.push_back(std::make_pair(Callback, Data));
292}
293
294void
295ASTContext::setExternalSource(llvm::OwningPtr<ExternalASTSource> &Source) {
296  ExternalSource.reset(Source.take());
297}
298
299void ASTContext::PrintStats() const {
300  llvm::errs() << "\n*** AST Context Stats:\n";
301  llvm::errs() << "  " << Types.size() << " types total.\n";
302
303  unsigned counts[] = {
304#define TYPE(Name, Parent) 0,
305#define ABSTRACT_TYPE(Name, Parent)
306#include "clang/AST/TypeNodes.def"
307    0 // Extra
308  };
309
310  for (unsigned i = 0, e = Types.size(); i != e; ++i) {
311    Type *T = Types[i];
312    counts[(unsigned)T->getTypeClass()]++;
313  }
314
315  unsigned Idx = 0;
316  unsigned TotalBytes = 0;
317#define TYPE(Name, Parent)                                              \
318  if (counts[Idx])                                                      \
319    llvm::errs() << "    " << counts[Idx] << " " << #Name               \
320                 << " types\n";                                         \
321  TotalBytes += counts[Idx] * sizeof(Name##Type);                       \
322  ++Idx;
323#define ABSTRACT_TYPE(Name, Parent)
324#include "clang/AST/TypeNodes.def"
325
326  llvm::errs() << "Total bytes = " << TotalBytes << "\n";
327
328  // Implicit special member functions.
329  llvm::errs() << NumImplicitDefaultConstructorsDeclared << "/"
330               << NumImplicitDefaultConstructors
331               << " implicit default constructors created\n";
332  llvm::errs() << NumImplicitCopyConstructorsDeclared << "/"
333               << NumImplicitCopyConstructors
334               << " implicit copy constructors created\n";
335  if (getLangOptions().CPlusPlus)
336    llvm::errs() << NumImplicitMoveConstructorsDeclared << "/"
337                 << NumImplicitMoveConstructors
338                 << " implicit move constructors created\n";
339  llvm::errs() << NumImplicitCopyAssignmentOperatorsDeclared << "/"
340               << NumImplicitCopyAssignmentOperators
341               << " implicit copy assignment operators created\n";
342  if (getLangOptions().CPlusPlus)
343    llvm::errs() << NumImplicitMoveAssignmentOperatorsDeclared << "/"
344                 << NumImplicitMoveAssignmentOperators
345                 << " implicit move assignment operators created\n";
346  llvm::errs() << NumImplicitDestructorsDeclared << "/"
347               << NumImplicitDestructors
348               << " implicit destructors created\n";
349
350  if (ExternalSource.get()) {
351    llvm::errs() << "\n";
352    ExternalSource->PrintStats();
353  }
354
355  BumpAlloc.PrintStats();
356}
357
358TypedefDecl *ASTContext::getInt128Decl() const {
359  if (!Int128Decl) {
360    TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(Int128Ty);
361    Int128Decl = TypedefDecl::Create(const_cast<ASTContext &>(*this),
362                                     getTranslationUnitDecl(),
363                                     SourceLocation(),
364                                     SourceLocation(),
365                                     &Idents.get("__int128_t"),
366                                     TInfo);
367  }
368
369  return Int128Decl;
370}
371
372TypedefDecl *ASTContext::getUInt128Decl() const {
373  if (!UInt128Decl) {
374    TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(UnsignedInt128Ty);
375    UInt128Decl = TypedefDecl::Create(const_cast<ASTContext &>(*this),
376                                     getTranslationUnitDecl(),
377                                     SourceLocation(),
378                                     SourceLocation(),
379                                     &Idents.get("__uint128_t"),
380                                     TInfo);
381  }
382
383  return UInt128Decl;
384}
385
386void ASTContext::InitBuiltinType(CanQualType &R, BuiltinType::Kind K) {
387  BuiltinType *Ty = new (*this, TypeAlignment) BuiltinType(K);
388  R = CanQualType::CreateUnsafe(QualType(Ty, 0));
389  Types.push_back(Ty);
390}
391
392void ASTContext::InitBuiltinTypes(const TargetInfo &Target) {
393  assert((!this->Target || this->Target == &Target) &&
394         "Incorrect target reinitialization");
395  assert(VoidTy.isNull() && "Context reinitialized?");
396
397  this->Target = &Target;
398
399  ABI.reset(createCXXABI(Target));
400  AddrSpaceMap = getAddressSpaceMap(Target, LangOpts);
401
402  // C99 6.2.5p19.
403  InitBuiltinType(VoidTy,              BuiltinType::Void);
404
405  // C99 6.2.5p2.
406  InitBuiltinType(BoolTy,              BuiltinType::Bool);
407  // C99 6.2.5p3.
408  if (LangOpts.CharIsSigned)
409    InitBuiltinType(CharTy,            BuiltinType::Char_S);
410  else
411    InitBuiltinType(CharTy,            BuiltinType::Char_U);
412  // C99 6.2.5p4.
413  InitBuiltinType(SignedCharTy,        BuiltinType::SChar);
414  InitBuiltinType(ShortTy,             BuiltinType::Short);
415  InitBuiltinType(IntTy,               BuiltinType::Int);
416  InitBuiltinType(LongTy,              BuiltinType::Long);
417  InitBuiltinType(LongLongTy,          BuiltinType::LongLong);
418
419  // C99 6.2.5p6.
420  InitBuiltinType(UnsignedCharTy,      BuiltinType::UChar);
421  InitBuiltinType(UnsignedShortTy,     BuiltinType::UShort);
422  InitBuiltinType(UnsignedIntTy,       BuiltinType::UInt);
423  InitBuiltinType(UnsignedLongTy,      BuiltinType::ULong);
424  InitBuiltinType(UnsignedLongLongTy,  BuiltinType::ULongLong);
425
426  // C99 6.2.5p10.
427  InitBuiltinType(FloatTy,             BuiltinType::Float);
428  InitBuiltinType(DoubleTy,            BuiltinType::Double);
429  InitBuiltinType(LongDoubleTy,        BuiltinType::LongDouble);
430
431  // GNU extension, 128-bit integers.
432  InitBuiltinType(Int128Ty,            BuiltinType::Int128);
433  InitBuiltinType(UnsignedInt128Ty,    BuiltinType::UInt128);
434
435  if (LangOpts.CPlusPlus) { // C++ 3.9.1p5
436    if (TargetInfo::isTypeSigned(Target.getWCharType()))
437      InitBuiltinType(WCharTy,           BuiltinType::WChar_S);
438    else  // -fshort-wchar makes wchar_t be unsigned.
439      InitBuiltinType(WCharTy,           BuiltinType::WChar_U);
440  } else // C99
441    WCharTy = getFromTargetType(Target.getWCharType());
442
443  if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
444    InitBuiltinType(Char16Ty,           BuiltinType::Char16);
445  else // C99
446    Char16Ty = getFromTargetType(Target.getChar16Type());
447
448  if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
449    InitBuiltinType(Char32Ty,           BuiltinType::Char32);
450  else // C99
451    Char32Ty = getFromTargetType(Target.getChar32Type());
452
453  // Placeholder type for type-dependent expressions whose type is
454  // completely unknown. No code should ever check a type against
455  // DependentTy and users should never see it; however, it is here to
456  // help diagnose failures to properly check for type-dependent
457  // expressions.
458  InitBuiltinType(DependentTy,         BuiltinType::Dependent);
459
460  // Placeholder type for functions.
461  InitBuiltinType(OverloadTy,          BuiltinType::Overload);
462
463  // Placeholder type for bound members.
464  InitBuiltinType(BoundMemberTy,       BuiltinType::BoundMember);
465
466  // Placeholder type for pseudo-objects.
467  InitBuiltinType(PseudoObjectTy,      BuiltinType::PseudoObject);
468
469  // "any" type; useful for debugger-like clients.
470  InitBuiltinType(UnknownAnyTy,        BuiltinType::UnknownAny);
471
472  // Placeholder type for unbridged ARC casts.
473  InitBuiltinType(ARCUnbridgedCastTy,  BuiltinType::ARCUnbridgedCast);
474
475  // C99 6.2.5p11.
476  FloatComplexTy      = getComplexType(FloatTy);
477  DoubleComplexTy     = getComplexType(DoubleTy);
478  LongDoubleComplexTy = getComplexType(LongDoubleTy);
479
480  BuiltinVaListType = QualType();
481
482  // Builtin types for 'id', 'Class', and 'SEL'.
483  InitBuiltinType(ObjCBuiltinIdTy, BuiltinType::ObjCId);
484  InitBuiltinType(ObjCBuiltinClassTy, BuiltinType::ObjCClass);
485  InitBuiltinType(ObjCBuiltinSelTy, BuiltinType::ObjCSel);
486
487  ObjCConstantStringType = QualType();
488
489  // void * type
490  VoidPtrTy = getPointerType(VoidTy);
491
492  // nullptr type (C++0x 2.14.7)
493  InitBuiltinType(NullPtrTy,           BuiltinType::NullPtr);
494
495  // half type (OpenCL 6.1.1.1) / ARM NEON __fp16
496  InitBuiltinType(HalfTy, BuiltinType::Half);
497}
498
499DiagnosticsEngine &ASTContext::getDiagnostics() const {
500  return SourceMgr.getDiagnostics();
501}
502
503AttrVec& ASTContext::getDeclAttrs(const Decl *D) {
504  AttrVec *&Result = DeclAttrs[D];
505  if (!Result) {
506    void *Mem = Allocate(sizeof(AttrVec));
507    Result = new (Mem) AttrVec;
508  }
509
510  return *Result;
511}
512
513/// \brief Erase the attributes corresponding to the given declaration.
514void ASTContext::eraseDeclAttrs(const Decl *D) {
515  llvm::DenseMap<const Decl*, AttrVec*>::iterator Pos = DeclAttrs.find(D);
516  if (Pos != DeclAttrs.end()) {
517    Pos->second->~AttrVec();
518    DeclAttrs.erase(Pos);
519  }
520}
521
522MemberSpecializationInfo *
523ASTContext::getInstantiatedFromStaticDataMember(const VarDecl *Var) {
524  assert(Var->isStaticDataMember() && "Not a static data member");
525  llvm::DenseMap<const VarDecl *, MemberSpecializationInfo *>::iterator Pos
526    = InstantiatedFromStaticDataMember.find(Var);
527  if (Pos == InstantiatedFromStaticDataMember.end())
528    return 0;
529
530  return Pos->second;
531}
532
533void
534ASTContext::setInstantiatedFromStaticDataMember(VarDecl *Inst, VarDecl *Tmpl,
535                                                TemplateSpecializationKind TSK,
536                                          SourceLocation PointOfInstantiation) {
537  assert(Inst->isStaticDataMember() && "Not a static data member");
538  assert(Tmpl->isStaticDataMember() && "Not a static data member");
539  assert(!InstantiatedFromStaticDataMember[Inst] &&
540         "Already noted what static data member was instantiated from");
541  InstantiatedFromStaticDataMember[Inst]
542    = new (*this) MemberSpecializationInfo(Tmpl, TSK, PointOfInstantiation);
543}
544
545FunctionDecl *ASTContext::getClassScopeSpecializationPattern(
546                                                     const FunctionDecl *FD){
547  assert(FD && "Specialization is 0");
548  llvm::DenseMap<const FunctionDecl*, FunctionDecl *>::const_iterator Pos
549    = ClassScopeSpecializationPattern.find(FD);
550  if (Pos == ClassScopeSpecializationPattern.end())
551    return 0;
552
553  return Pos->second;
554}
555
556void ASTContext::setClassScopeSpecializationPattern(FunctionDecl *FD,
557                                        FunctionDecl *Pattern) {
558  assert(FD && "Specialization is 0");
559  assert(Pattern && "Class scope specialization pattern is 0");
560  ClassScopeSpecializationPattern[FD] = Pattern;
561}
562
563NamedDecl *
564ASTContext::getInstantiatedFromUsingDecl(UsingDecl *UUD) {
565  llvm::DenseMap<UsingDecl *, NamedDecl *>::const_iterator Pos
566    = InstantiatedFromUsingDecl.find(UUD);
567  if (Pos == InstantiatedFromUsingDecl.end())
568    return 0;
569
570  return Pos->second;
571}
572
573void
574ASTContext::setInstantiatedFromUsingDecl(UsingDecl *Inst, NamedDecl *Pattern) {
575  assert((isa<UsingDecl>(Pattern) ||
576          isa<UnresolvedUsingValueDecl>(Pattern) ||
577          isa<UnresolvedUsingTypenameDecl>(Pattern)) &&
578         "pattern decl is not a using decl");
579  assert(!InstantiatedFromUsingDecl[Inst] && "pattern already exists");
580  InstantiatedFromUsingDecl[Inst] = Pattern;
581}
582
583UsingShadowDecl *
584ASTContext::getInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst) {
585  llvm::DenseMap<UsingShadowDecl*, UsingShadowDecl*>::const_iterator Pos
586    = InstantiatedFromUsingShadowDecl.find(Inst);
587  if (Pos == InstantiatedFromUsingShadowDecl.end())
588    return 0;
589
590  return Pos->second;
591}
592
593void
594ASTContext::setInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst,
595                                               UsingShadowDecl *Pattern) {
596  assert(!InstantiatedFromUsingShadowDecl[Inst] && "pattern already exists");
597  InstantiatedFromUsingShadowDecl[Inst] = Pattern;
598}
599
600FieldDecl *ASTContext::getInstantiatedFromUnnamedFieldDecl(FieldDecl *Field) {
601  llvm::DenseMap<FieldDecl *, FieldDecl *>::iterator Pos
602    = InstantiatedFromUnnamedFieldDecl.find(Field);
603  if (Pos == InstantiatedFromUnnamedFieldDecl.end())
604    return 0;
605
606  return Pos->second;
607}
608
609void ASTContext::setInstantiatedFromUnnamedFieldDecl(FieldDecl *Inst,
610                                                     FieldDecl *Tmpl) {
611  assert(!Inst->getDeclName() && "Instantiated field decl is not unnamed");
612  assert(!Tmpl->getDeclName() && "Template field decl is not unnamed");
613  assert(!InstantiatedFromUnnamedFieldDecl[Inst] &&
614         "Already noted what unnamed field was instantiated from");
615
616  InstantiatedFromUnnamedFieldDecl[Inst] = Tmpl;
617}
618
619bool ASTContext::ZeroBitfieldFollowsNonBitfield(const FieldDecl *FD,
620                                    const FieldDecl *LastFD) const {
621  return (FD->isBitField() && LastFD && !LastFD->isBitField() &&
622          FD->getBitWidthValue(*this) == 0);
623}
624
625bool ASTContext::ZeroBitfieldFollowsBitfield(const FieldDecl *FD,
626                                             const FieldDecl *LastFD) const {
627  return (FD->isBitField() && LastFD && LastFD->isBitField() &&
628          FD->getBitWidthValue(*this) == 0 &&
629          LastFD->getBitWidthValue(*this) != 0);
630}
631
632bool ASTContext::BitfieldFollowsBitfield(const FieldDecl *FD,
633                                         const FieldDecl *LastFD) const {
634  return (FD->isBitField() && LastFD && LastFD->isBitField() &&
635          FD->getBitWidthValue(*this) &&
636          LastFD->getBitWidthValue(*this));
637}
638
639bool ASTContext::NonBitfieldFollowsBitfield(const FieldDecl *FD,
640                                         const FieldDecl *LastFD) const {
641  return (!FD->isBitField() && LastFD && LastFD->isBitField() &&
642          LastFD->getBitWidthValue(*this));
643}
644
645bool ASTContext::BitfieldFollowsNonBitfield(const FieldDecl *FD,
646                                             const FieldDecl *LastFD) const {
647  return (FD->isBitField() && LastFD && !LastFD->isBitField() &&
648          FD->getBitWidthValue(*this));
649}
650
651ASTContext::overridden_cxx_method_iterator
652ASTContext::overridden_methods_begin(const CXXMethodDecl *Method) const {
653  llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
654    = OverriddenMethods.find(Method);
655  if (Pos == OverriddenMethods.end())
656    return 0;
657
658  return Pos->second.begin();
659}
660
661ASTContext::overridden_cxx_method_iterator
662ASTContext::overridden_methods_end(const CXXMethodDecl *Method) const {
663  llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
664    = OverriddenMethods.find(Method);
665  if (Pos == OverriddenMethods.end())
666    return 0;
667
668  return Pos->second.end();
669}
670
671unsigned
672ASTContext::overridden_methods_size(const CXXMethodDecl *Method) const {
673  llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
674    = OverriddenMethods.find(Method);
675  if (Pos == OverriddenMethods.end())
676    return 0;
677
678  return Pos->second.size();
679}
680
681void ASTContext::addOverriddenMethod(const CXXMethodDecl *Method,
682                                     const CXXMethodDecl *Overridden) {
683  OverriddenMethods[Method].push_back(Overridden);
684}
685
686void ASTContext::addedLocalImportDecl(ImportDecl *Import) {
687  assert(!Import->NextLocalImport && "Import declaration already in the chain");
688  assert(!Import->isFromASTFile() && "Non-local import declaration");
689  if (!FirstLocalImport) {
690    FirstLocalImport = Import;
691    LastLocalImport = Import;
692    return;
693  }
694
695  LastLocalImport->NextLocalImport = Import;
696  LastLocalImport = Import;
697}
698
699//===----------------------------------------------------------------------===//
700//                         Type Sizing and Analysis
701//===----------------------------------------------------------------------===//
702
703/// getFloatTypeSemantics - Return the APFloat 'semantics' for the specified
704/// scalar floating point type.
705const llvm::fltSemantics &ASTContext::getFloatTypeSemantics(QualType T) const {
706  const BuiltinType *BT = T->getAs<BuiltinType>();
707  assert(BT && "Not a floating point type!");
708  switch (BT->getKind()) {
709  default: llvm_unreachable("Not a floating point type!");
710  case BuiltinType::Half:       return Target->getHalfFormat();
711  case BuiltinType::Float:      return Target->getFloatFormat();
712  case BuiltinType::Double:     return Target->getDoubleFormat();
713  case BuiltinType::LongDouble: return Target->getLongDoubleFormat();
714  }
715}
716
717/// getDeclAlign - Return a conservative estimate of the alignment of the
718/// specified decl.  Note that bitfields do not have a valid alignment, so
719/// this method will assert on them.
720/// If @p RefAsPointee, references are treated like their underlying type
721/// (for alignof), else they're treated like pointers (for CodeGen).
722CharUnits ASTContext::getDeclAlign(const Decl *D, bool RefAsPointee) const {
723  unsigned Align = Target->getCharWidth();
724
725  bool UseAlignAttrOnly = false;
726  if (unsigned AlignFromAttr = D->getMaxAlignment()) {
727    Align = AlignFromAttr;
728
729    // __attribute__((aligned)) can increase or decrease alignment
730    // *except* on a struct or struct member, where it only increases
731    // alignment unless 'packed' is also specified.
732    //
733    // It is an error for alignas to decrease alignment, so we can
734    // ignore that possibility;  Sema should diagnose it.
735    if (isa<FieldDecl>(D)) {
736      UseAlignAttrOnly = D->hasAttr<PackedAttr>() ||
737        cast<FieldDecl>(D)->getParent()->hasAttr<PackedAttr>();
738    } else {
739      UseAlignAttrOnly = true;
740    }
741  }
742  else if (isa<FieldDecl>(D))
743      UseAlignAttrOnly =
744        D->hasAttr<PackedAttr>() ||
745        cast<FieldDecl>(D)->getParent()->hasAttr<PackedAttr>();
746
747  // If we're using the align attribute only, just ignore everything
748  // else about the declaration and its type.
749  if (UseAlignAttrOnly) {
750    // do nothing
751
752  } else if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
753    QualType T = VD->getType();
754    if (const ReferenceType* RT = T->getAs<ReferenceType>()) {
755      if (RefAsPointee)
756        T = RT->getPointeeType();
757      else
758        T = getPointerType(RT->getPointeeType());
759    }
760    if (!T->isIncompleteType() && !T->isFunctionType()) {
761      // Adjust alignments of declarations with array type by the
762      // large-array alignment on the target.
763      unsigned MinWidth = Target->getLargeArrayMinWidth();
764      const ArrayType *arrayType;
765      if (MinWidth && (arrayType = getAsArrayType(T))) {
766        if (isa<VariableArrayType>(arrayType))
767          Align = std::max(Align, Target->getLargeArrayAlign());
768        else if (isa<ConstantArrayType>(arrayType) &&
769                 MinWidth <= getTypeSize(cast<ConstantArrayType>(arrayType)))
770          Align = std::max(Align, Target->getLargeArrayAlign());
771
772        // Walk through any array types while we're at it.
773        T = getBaseElementType(arrayType);
774      }
775      Align = std::max(Align, getPreferredTypeAlign(T.getTypePtr()));
776    }
777
778    // Fields can be subject to extra alignment constraints, like if
779    // the field is packed, the struct is packed, or the struct has a
780    // a max-field-alignment constraint (#pragma pack).  So calculate
781    // the actual alignment of the field within the struct, and then
782    // (as we're expected to) constrain that by the alignment of the type.
783    if (const FieldDecl *field = dyn_cast<FieldDecl>(VD)) {
784      // So calculate the alignment of the field.
785      const ASTRecordLayout &layout = getASTRecordLayout(field->getParent());
786
787      // Start with the record's overall alignment.
788      unsigned fieldAlign = toBits(layout.getAlignment());
789
790      // Use the GCD of that and the offset within the record.
791      uint64_t offset = layout.getFieldOffset(field->getFieldIndex());
792      if (offset > 0) {
793        // Alignment is always a power of 2, so the GCD will be a power of 2,
794        // which means we get to do this crazy thing instead of Euclid's.
795        uint64_t lowBitOfOffset = offset & (~offset + 1);
796        if (lowBitOfOffset < fieldAlign)
797          fieldAlign = static_cast<unsigned>(lowBitOfOffset);
798      }
799
800      Align = std::min(Align, fieldAlign);
801    }
802  }
803
804  return toCharUnitsFromBits(Align);
805}
806
807std::pair<CharUnits, CharUnits>
808ASTContext::getTypeInfoInChars(const Type *T) const {
809  std::pair<uint64_t, unsigned> Info = getTypeInfo(T);
810  return std::make_pair(toCharUnitsFromBits(Info.first),
811                        toCharUnitsFromBits(Info.second));
812}
813
814std::pair<CharUnits, CharUnits>
815ASTContext::getTypeInfoInChars(QualType T) const {
816  return getTypeInfoInChars(T.getTypePtr());
817}
818
819/// getTypeSize - Return the size of the specified type, in bits.  This method
820/// does not work on incomplete types.
821///
822/// FIXME: Pointers into different addr spaces could have different sizes and
823/// alignment requirements: getPointerInfo should take an AddrSpace, this
824/// should take a QualType, &c.
825std::pair<uint64_t, unsigned>
826ASTContext::getTypeInfo(const Type *T) const {
827  uint64_t Width=0;
828  unsigned Align=8;
829  switch (T->getTypeClass()) {
830#define TYPE(Class, Base)
831#define ABSTRACT_TYPE(Class, Base)
832#define NON_CANONICAL_TYPE(Class, Base)
833#define DEPENDENT_TYPE(Class, Base) case Type::Class:
834#include "clang/AST/TypeNodes.def"
835    llvm_unreachable("Should not see dependent types");
836
837  case Type::FunctionNoProto:
838  case Type::FunctionProto:
839    // GCC extension: alignof(function) = 32 bits
840    Width = 0;
841    Align = 32;
842    break;
843
844  case Type::IncompleteArray:
845  case Type::VariableArray:
846    Width = 0;
847    Align = getTypeAlign(cast<ArrayType>(T)->getElementType());
848    break;
849
850  case Type::ConstantArray: {
851    const ConstantArrayType *CAT = cast<ConstantArrayType>(T);
852
853    std::pair<uint64_t, unsigned> EltInfo = getTypeInfo(CAT->getElementType());
854    uint64_t Size = CAT->getSize().getZExtValue();
855    assert((Size == 0 || EltInfo.first <= (uint64_t)(-1)/Size) && "Overflow in array type bit size evaluation");
856    Width = EltInfo.first*Size;
857    Align = EltInfo.second;
858    Width = llvm::RoundUpToAlignment(Width, Align);
859    break;
860  }
861  case Type::ExtVector:
862  case Type::Vector: {
863    const VectorType *VT = cast<VectorType>(T);
864    std::pair<uint64_t, unsigned> EltInfo = getTypeInfo(VT->getElementType());
865    Width = EltInfo.first*VT->getNumElements();
866    Align = Width;
867    // If the alignment is not a power of 2, round up to the next power of 2.
868    // This happens for non-power-of-2 length vectors.
869    if (Align & (Align-1)) {
870      Align = llvm::NextPowerOf2(Align);
871      Width = llvm::RoundUpToAlignment(Width, Align);
872    }
873    break;
874  }
875
876  case Type::Builtin:
877    switch (cast<BuiltinType>(T)->getKind()) {
878    default: llvm_unreachable("Unknown builtin type!");
879    case BuiltinType::Void:
880      // GCC extension: alignof(void) = 8 bits.
881      Width = 0;
882      Align = 8;
883      break;
884
885    case BuiltinType::Bool:
886      Width = Target->getBoolWidth();
887      Align = Target->getBoolAlign();
888      break;
889    case BuiltinType::Char_S:
890    case BuiltinType::Char_U:
891    case BuiltinType::UChar:
892    case BuiltinType::SChar:
893      Width = Target->getCharWidth();
894      Align = Target->getCharAlign();
895      break;
896    case BuiltinType::WChar_S:
897    case BuiltinType::WChar_U:
898      Width = Target->getWCharWidth();
899      Align = Target->getWCharAlign();
900      break;
901    case BuiltinType::Char16:
902      Width = Target->getChar16Width();
903      Align = Target->getChar16Align();
904      break;
905    case BuiltinType::Char32:
906      Width = Target->getChar32Width();
907      Align = Target->getChar32Align();
908      break;
909    case BuiltinType::UShort:
910    case BuiltinType::Short:
911      Width = Target->getShortWidth();
912      Align = Target->getShortAlign();
913      break;
914    case BuiltinType::UInt:
915    case BuiltinType::Int:
916      Width = Target->getIntWidth();
917      Align = Target->getIntAlign();
918      break;
919    case BuiltinType::ULong:
920    case BuiltinType::Long:
921      Width = Target->getLongWidth();
922      Align = Target->getLongAlign();
923      break;
924    case BuiltinType::ULongLong:
925    case BuiltinType::LongLong:
926      Width = Target->getLongLongWidth();
927      Align = Target->getLongLongAlign();
928      break;
929    case BuiltinType::Int128:
930    case BuiltinType::UInt128:
931      Width = 128;
932      Align = 128; // int128_t is 128-bit aligned on all targets.
933      break;
934    case BuiltinType::Half:
935      Width = Target->getHalfWidth();
936      Align = Target->getHalfAlign();
937      break;
938    case BuiltinType::Float:
939      Width = Target->getFloatWidth();
940      Align = Target->getFloatAlign();
941      break;
942    case BuiltinType::Double:
943      Width = Target->getDoubleWidth();
944      Align = Target->getDoubleAlign();
945      break;
946    case BuiltinType::LongDouble:
947      Width = Target->getLongDoubleWidth();
948      Align = Target->getLongDoubleAlign();
949      break;
950    case BuiltinType::NullPtr:
951      Width = Target->getPointerWidth(0); // C++ 3.9.1p11: sizeof(nullptr_t)
952      Align = Target->getPointerAlign(0); //   == sizeof(void*)
953      break;
954    case BuiltinType::ObjCId:
955    case BuiltinType::ObjCClass:
956    case BuiltinType::ObjCSel:
957      Width = Target->getPointerWidth(0);
958      Align = Target->getPointerAlign(0);
959      break;
960    }
961    break;
962  case Type::ObjCObjectPointer:
963    Width = Target->getPointerWidth(0);
964    Align = Target->getPointerAlign(0);
965    break;
966  case Type::BlockPointer: {
967    unsigned AS = getTargetAddressSpace(
968        cast<BlockPointerType>(T)->getPointeeType());
969    Width = Target->getPointerWidth(AS);
970    Align = Target->getPointerAlign(AS);
971    break;
972  }
973  case Type::LValueReference:
974  case Type::RValueReference: {
975    // alignof and sizeof should never enter this code path here, so we go
976    // the pointer route.
977    unsigned AS = getTargetAddressSpace(
978        cast<ReferenceType>(T)->getPointeeType());
979    Width = Target->getPointerWidth(AS);
980    Align = Target->getPointerAlign(AS);
981    break;
982  }
983  case Type::Pointer: {
984    unsigned AS = getTargetAddressSpace(cast<PointerType>(T)->getPointeeType());
985    Width = Target->getPointerWidth(AS);
986    Align = Target->getPointerAlign(AS);
987    break;
988  }
989  case Type::MemberPointer: {
990    const MemberPointerType *MPT = cast<MemberPointerType>(T);
991    std::pair<uint64_t, unsigned> PtrDiffInfo =
992      getTypeInfo(getPointerDiffType());
993    Width = PtrDiffInfo.first * ABI->getMemberPointerSize(MPT);
994    Align = PtrDiffInfo.second;
995    break;
996  }
997  case Type::Complex: {
998    // Complex types have the same alignment as their elements, but twice the
999    // size.
1000    std::pair<uint64_t, unsigned> EltInfo =
1001      getTypeInfo(cast<ComplexType>(T)->getElementType());
1002    Width = EltInfo.first*2;
1003    Align = EltInfo.second;
1004    break;
1005  }
1006  case Type::ObjCObject:
1007    return getTypeInfo(cast<ObjCObjectType>(T)->getBaseType().getTypePtr());
1008  case Type::ObjCInterface: {
1009    const ObjCInterfaceType *ObjCI = cast<ObjCInterfaceType>(T);
1010    const ASTRecordLayout &Layout = getASTObjCInterfaceLayout(ObjCI->getDecl());
1011    Width = toBits(Layout.getSize());
1012    Align = toBits(Layout.getAlignment());
1013    break;
1014  }
1015  case Type::Record:
1016  case Type::Enum: {
1017    const TagType *TT = cast<TagType>(T);
1018
1019    if (TT->getDecl()->isInvalidDecl()) {
1020      Width = 8;
1021      Align = 8;
1022      break;
1023    }
1024
1025    if (const EnumType *ET = dyn_cast<EnumType>(TT))
1026      return getTypeInfo(ET->getDecl()->getIntegerType());
1027
1028    const RecordType *RT = cast<RecordType>(TT);
1029    const ASTRecordLayout &Layout = getASTRecordLayout(RT->getDecl());
1030    Width = toBits(Layout.getSize());
1031    Align = toBits(Layout.getAlignment());
1032    break;
1033  }
1034
1035  case Type::SubstTemplateTypeParm:
1036    return getTypeInfo(cast<SubstTemplateTypeParmType>(T)->
1037                       getReplacementType().getTypePtr());
1038
1039  case Type::Auto: {
1040    const AutoType *A = cast<AutoType>(T);
1041    assert(A->isDeduced() && "Cannot request the size of a dependent type");
1042    return getTypeInfo(A->getDeducedType().getTypePtr());
1043  }
1044
1045  case Type::Paren:
1046    return getTypeInfo(cast<ParenType>(T)->getInnerType().getTypePtr());
1047
1048  case Type::Typedef: {
1049    const TypedefNameDecl *Typedef = cast<TypedefType>(T)->getDecl();
1050    std::pair<uint64_t, unsigned> Info
1051      = getTypeInfo(Typedef->getUnderlyingType().getTypePtr());
1052    // If the typedef has an aligned attribute on it, it overrides any computed
1053    // alignment we have.  This violates the GCC documentation (which says that
1054    // attribute(aligned) can only round up) but matches its implementation.
1055    if (unsigned AttrAlign = Typedef->getMaxAlignment())
1056      Align = AttrAlign;
1057    else
1058      Align = Info.second;
1059    Width = Info.first;
1060    break;
1061  }
1062
1063  case Type::TypeOfExpr:
1064    return getTypeInfo(cast<TypeOfExprType>(T)->getUnderlyingExpr()->getType()
1065                         .getTypePtr());
1066
1067  case Type::TypeOf:
1068    return getTypeInfo(cast<TypeOfType>(T)->getUnderlyingType().getTypePtr());
1069
1070  case Type::Decltype:
1071    return getTypeInfo(cast<DecltypeType>(T)->getUnderlyingExpr()->getType()
1072                        .getTypePtr());
1073
1074  case Type::UnaryTransform:
1075    return getTypeInfo(cast<UnaryTransformType>(T)->getUnderlyingType());
1076
1077  case Type::Elaborated:
1078    return getTypeInfo(cast<ElaboratedType>(T)->getNamedType().getTypePtr());
1079
1080  case Type::Attributed:
1081    return getTypeInfo(
1082                  cast<AttributedType>(T)->getEquivalentType().getTypePtr());
1083
1084  case Type::TemplateSpecialization: {
1085    assert(getCanonicalType(T) != T &&
1086           "Cannot request the size of a dependent type");
1087    const TemplateSpecializationType *TST = cast<TemplateSpecializationType>(T);
1088    // A type alias template specialization may refer to a typedef with the
1089    // aligned attribute on it.
1090    if (TST->isTypeAlias())
1091      return getTypeInfo(TST->getAliasedType().getTypePtr());
1092    else
1093      return getTypeInfo(getCanonicalType(T));
1094  }
1095
1096  case Type::Atomic: {
1097    std::pair<uint64_t, unsigned> Info
1098      = getTypeInfo(cast<AtomicType>(T)->getValueType());
1099    Width = Info.first;
1100    Align = Info.second;
1101    if (Width != 0 && Width <= Target->getMaxAtomicPromoteWidth() &&
1102        llvm::isPowerOf2_64(Width)) {
1103      // We can potentially perform lock-free atomic operations for this
1104      // type; promote the alignment appropriately.
1105      // FIXME: We could potentially promote the width here as well...
1106      // is that worthwhile?  (Non-struct atomic types generally have
1107      // power-of-two size anyway, but structs might not.  Requires a bit
1108      // of implementation work to make sure we zero out the extra bits.)
1109      Align = static_cast<unsigned>(Width);
1110    }
1111  }
1112
1113  }
1114
1115  assert(llvm::isPowerOf2_32(Align) && "Alignment must be power of 2");
1116  return std::make_pair(Width, Align);
1117}
1118
1119/// toCharUnitsFromBits - Convert a size in bits to a size in characters.
1120CharUnits ASTContext::toCharUnitsFromBits(int64_t BitSize) const {
1121  return CharUnits::fromQuantity(BitSize / getCharWidth());
1122}
1123
1124/// toBits - Convert a size in characters to a size in characters.
1125int64_t ASTContext::toBits(CharUnits CharSize) const {
1126  return CharSize.getQuantity() * getCharWidth();
1127}
1128
1129/// getTypeSizeInChars - Return the size of the specified type, in characters.
1130/// This method does not work on incomplete types.
1131CharUnits ASTContext::getTypeSizeInChars(QualType T) const {
1132  return toCharUnitsFromBits(getTypeSize(T));
1133}
1134CharUnits ASTContext::getTypeSizeInChars(const Type *T) const {
1135  return toCharUnitsFromBits(getTypeSize(T));
1136}
1137
1138/// getTypeAlignInChars - Return the ABI-specified alignment of a type, in
1139/// characters. This method does not work on incomplete types.
1140CharUnits ASTContext::getTypeAlignInChars(QualType T) const {
1141  return toCharUnitsFromBits(getTypeAlign(T));
1142}
1143CharUnits ASTContext::getTypeAlignInChars(const Type *T) const {
1144  return toCharUnitsFromBits(getTypeAlign(T));
1145}
1146
1147/// getPreferredTypeAlign - Return the "preferred" alignment of the specified
1148/// type for the current target in bits.  This can be different than the ABI
1149/// alignment in cases where it is beneficial for performance to overalign
1150/// a data type.
1151unsigned ASTContext::getPreferredTypeAlign(const Type *T) const {
1152  unsigned ABIAlign = getTypeAlign(T);
1153
1154  // Double and long long should be naturally aligned if possible.
1155  if (const ComplexType* CT = T->getAs<ComplexType>())
1156    T = CT->getElementType().getTypePtr();
1157  if (T->isSpecificBuiltinType(BuiltinType::Double) ||
1158      T->isSpecificBuiltinType(BuiltinType::LongLong))
1159    return std::max(ABIAlign, (unsigned)getTypeSize(T));
1160
1161  return ABIAlign;
1162}
1163
1164/// DeepCollectObjCIvars -
1165/// This routine first collects all declared, but not synthesized, ivars in
1166/// super class and then collects all ivars, including those synthesized for
1167/// current class. This routine is used for implementation of current class
1168/// when all ivars, declared and synthesized are known.
1169///
1170void ASTContext::DeepCollectObjCIvars(const ObjCInterfaceDecl *OI,
1171                                      bool leafClass,
1172                            SmallVectorImpl<const ObjCIvarDecl*> &Ivars) const {
1173  if (const ObjCInterfaceDecl *SuperClass = OI->getSuperClass())
1174    DeepCollectObjCIvars(SuperClass, false, Ivars);
1175  if (!leafClass) {
1176    for (ObjCInterfaceDecl::ivar_iterator I = OI->ivar_begin(),
1177         E = OI->ivar_end(); I != E; ++I)
1178      Ivars.push_back(*I);
1179  } else {
1180    ObjCInterfaceDecl *IDecl = const_cast<ObjCInterfaceDecl *>(OI);
1181    for (const ObjCIvarDecl *Iv = IDecl->all_declared_ivar_begin(); Iv;
1182         Iv= Iv->getNextIvar())
1183      Ivars.push_back(Iv);
1184  }
1185}
1186
1187/// CollectInheritedProtocols - Collect all protocols in current class and
1188/// those inherited by it.
1189void ASTContext::CollectInheritedProtocols(const Decl *CDecl,
1190                          llvm::SmallPtrSet<ObjCProtocolDecl*, 8> &Protocols) {
1191  if (const ObjCInterfaceDecl *OI = dyn_cast<ObjCInterfaceDecl>(CDecl)) {
1192    // We can use protocol_iterator here instead of
1193    // all_referenced_protocol_iterator since we are walking all categories.
1194    for (ObjCInterfaceDecl::all_protocol_iterator P = OI->all_referenced_protocol_begin(),
1195         PE = OI->all_referenced_protocol_end(); P != PE; ++P) {
1196      ObjCProtocolDecl *Proto = (*P);
1197      Protocols.insert(Proto->getCanonicalDecl());
1198      for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
1199           PE = Proto->protocol_end(); P != PE; ++P) {
1200        Protocols.insert((*P)->getCanonicalDecl());
1201        CollectInheritedProtocols(*P, Protocols);
1202      }
1203    }
1204
1205    // Categories of this Interface.
1206    for (const ObjCCategoryDecl *CDeclChain = OI->getCategoryList();
1207         CDeclChain; CDeclChain = CDeclChain->getNextClassCategory())
1208      CollectInheritedProtocols(CDeclChain, Protocols);
1209    if (ObjCInterfaceDecl *SD = OI->getSuperClass())
1210      while (SD) {
1211        CollectInheritedProtocols(SD, Protocols);
1212        SD = SD->getSuperClass();
1213      }
1214  } else if (const ObjCCategoryDecl *OC = dyn_cast<ObjCCategoryDecl>(CDecl)) {
1215    for (ObjCCategoryDecl::protocol_iterator P = OC->protocol_begin(),
1216         PE = OC->protocol_end(); P != PE; ++P) {
1217      ObjCProtocolDecl *Proto = (*P);
1218      Protocols.insert(Proto->getCanonicalDecl());
1219      for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
1220           PE = Proto->protocol_end(); P != PE; ++P)
1221        CollectInheritedProtocols(*P, Protocols);
1222    }
1223  } else if (const ObjCProtocolDecl *OP = dyn_cast<ObjCProtocolDecl>(CDecl)) {
1224    for (ObjCProtocolDecl::protocol_iterator P = OP->protocol_begin(),
1225         PE = OP->protocol_end(); P != PE; ++P) {
1226      ObjCProtocolDecl *Proto = (*P);
1227      Protocols.insert(Proto->getCanonicalDecl());
1228      for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
1229           PE = Proto->protocol_end(); P != PE; ++P)
1230        CollectInheritedProtocols(*P, Protocols);
1231    }
1232  }
1233}
1234
1235unsigned ASTContext::CountNonClassIvars(const ObjCInterfaceDecl *OI) const {
1236  unsigned count = 0;
1237  // Count ivars declared in class extension.
1238  for (const ObjCCategoryDecl *CDecl = OI->getFirstClassExtension(); CDecl;
1239       CDecl = CDecl->getNextClassExtension())
1240    count += CDecl->ivar_size();
1241
1242  // Count ivar defined in this class's implementation.  This
1243  // includes synthesized ivars.
1244  if (ObjCImplementationDecl *ImplDecl = OI->getImplementation())
1245    count += ImplDecl->ivar_size();
1246
1247  return count;
1248}
1249
1250/// \brief Get the implementation of ObjCInterfaceDecl,or NULL if none exists.
1251ObjCImplementationDecl *ASTContext::getObjCImplementation(ObjCInterfaceDecl *D) {
1252  llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
1253    I = ObjCImpls.find(D);
1254  if (I != ObjCImpls.end())
1255    return cast<ObjCImplementationDecl>(I->second);
1256  return 0;
1257}
1258/// \brief Get the implementation of ObjCCategoryDecl, or NULL if none exists.
1259ObjCCategoryImplDecl *ASTContext::getObjCImplementation(ObjCCategoryDecl *D) {
1260  llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
1261    I = ObjCImpls.find(D);
1262  if (I != ObjCImpls.end())
1263    return cast<ObjCCategoryImplDecl>(I->second);
1264  return 0;
1265}
1266
1267/// \brief Set the implementation of ObjCInterfaceDecl.
1268void ASTContext::setObjCImplementation(ObjCInterfaceDecl *IFaceD,
1269                           ObjCImplementationDecl *ImplD) {
1270  assert(IFaceD && ImplD && "Passed null params");
1271  ObjCImpls[IFaceD] = ImplD;
1272}
1273/// \brief Set the implementation of ObjCCategoryDecl.
1274void ASTContext::setObjCImplementation(ObjCCategoryDecl *CatD,
1275                           ObjCCategoryImplDecl *ImplD) {
1276  assert(CatD && ImplD && "Passed null params");
1277  ObjCImpls[CatD] = ImplD;
1278}
1279
1280ObjCInterfaceDecl *ASTContext::getObjContainingInterface(NamedDecl *ND) const {
1281  if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(ND->getDeclContext()))
1282    return ID;
1283  if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(ND->getDeclContext()))
1284    return CD->getClassInterface();
1285  if (ObjCImplDecl *IMD = dyn_cast<ObjCImplDecl>(ND->getDeclContext()))
1286    return IMD->getClassInterface();
1287
1288  return 0;
1289}
1290
1291/// \brief Get the copy initialization expression of VarDecl,or NULL if
1292/// none exists.
1293Expr *ASTContext::getBlockVarCopyInits(const VarDecl*VD) {
1294  assert(VD && "Passed null params");
1295  assert(VD->hasAttr<BlocksAttr>() &&
1296         "getBlockVarCopyInits - not __block var");
1297  llvm::DenseMap<const VarDecl*, Expr*>::iterator
1298    I = BlockVarCopyInits.find(VD);
1299  return (I != BlockVarCopyInits.end()) ? cast<Expr>(I->second) : 0;
1300}
1301
1302/// \brief Set the copy inialization expression of a block var decl.
1303void ASTContext::setBlockVarCopyInits(VarDecl*VD, Expr* Init) {
1304  assert(VD && Init && "Passed null params");
1305  assert(VD->hasAttr<BlocksAttr>() &&
1306         "setBlockVarCopyInits - not __block var");
1307  BlockVarCopyInits[VD] = Init;
1308}
1309
1310/// \brief Allocate an uninitialized TypeSourceInfo.
1311///
1312/// The caller should initialize the memory held by TypeSourceInfo using
1313/// the TypeLoc wrappers.
1314///
1315/// \param T the type that will be the basis for type source info. This type
1316/// should refer to how the declarator was written in source code, not to
1317/// what type semantic analysis resolved the declarator to.
1318TypeSourceInfo *ASTContext::CreateTypeSourceInfo(QualType T,
1319                                                 unsigned DataSize) const {
1320  if (!DataSize)
1321    DataSize = TypeLoc::getFullDataSizeForType(T);
1322  else
1323    assert(DataSize == TypeLoc::getFullDataSizeForType(T) &&
1324           "incorrect data size provided to CreateTypeSourceInfo!");
1325
1326  TypeSourceInfo *TInfo =
1327    (TypeSourceInfo*)BumpAlloc.Allocate(sizeof(TypeSourceInfo) + DataSize, 8);
1328  new (TInfo) TypeSourceInfo(T);
1329  return TInfo;
1330}
1331
1332TypeSourceInfo *ASTContext::getTrivialTypeSourceInfo(QualType T,
1333                                                     SourceLocation L) const {
1334  TypeSourceInfo *DI = CreateTypeSourceInfo(T);
1335  DI->getTypeLoc().initialize(const_cast<ASTContext &>(*this), L);
1336  return DI;
1337}
1338
1339const ASTRecordLayout &
1340ASTContext::getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D) const {
1341  return getObjCLayout(D, 0);
1342}
1343
1344const ASTRecordLayout &
1345ASTContext::getASTObjCImplementationLayout(
1346                                        const ObjCImplementationDecl *D) const {
1347  return getObjCLayout(D->getClassInterface(), D);
1348}
1349
1350//===----------------------------------------------------------------------===//
1351//                   Type creation/memoization methods
1352//===----------------------------------------------------------------------===//
1353
1354QualType
1355ASTContext::getExtQualType(const Type *baseType, Qualifiers quals) const {
1356  unsigned fastQuals = quals.getFastQualifiers();
1357  quals.removeFastQualifiers();
1358
1359  // Check if we've already instantiated this type.
1360  llvm::FoldingSetNodeID ID;
1361  ExtQuals::Profile(ID, baseType, quals);
1362  void *insertPos = 0;
1363  if (ExtQuals *eq = ExtQualNodes.FindNodeOrInsertPos(ID, insertPos)) {
1364    assert(eq->getQualifiers() == quals);
1365    return QualType(eq, fastQuals);
1366  }
1367
1368  // If the base type is not canonical, make the appropriate canonical type.
1369  QualType canon;
1370  if (!baseType->isCanonicalUnqualified()) {
1371    SplitQualType canonSplit = baseType->getCanonicalTypeInternal().split();
1372    canonSplit.second.addConsistentQualifiers(quals);
1373    canon = getExtQualType(canonSplit.first, canonSplit.second);
1374
1375    // Re-find the insert position.
1376    (void) ExtQualNodes.FindNodeOrInsertPos(ID, insertPos);
1377  }
1378
1379  ExtQuals *eq = new (*this, TypeAlignment) ExtQuals(baseType, canon, quals);
1380  ExtQualNodes.InsertNode(eq, insertPos);
1381  return QualType(eq, fastQuals);
1382}
1383
1384QualType
1385ASTContext::getAddrSpaceQualType(QualType T, unsigned AddressSpace) const {
1386  QualType CanT = getCanonicalType(T);
1387  if (CanT.getAddressSpace() == AddressSpace)
1388    return T;
1389
1390  // If we are composing extended qualifiers together, merge together
1391  // into one ExtQuals node.
1392  QualifierCollector Quals;
1393  const Type *TypeNode = Quals.strip(T);
1394
1395  // If this type already has an address space specified, it cannot get
1396  // another one.
1397  assert(!Quals.hasAddressSpace() &&
1398         "Type cannot be in multiple addr spaces!");
1399  Quals.addAddressSpace(AddressSpace);
1400
1401  return getExtQualType(TypeNode, Quals);
1402}
1403
1404QualType ASTContext::getObjCGCQualType(QualType T,
1405                                       Qualifiers::GC GCAttr) const {
1406  QualType CanT = getCanonicalType(T);
1407  if (CanT.getObjCGCAttr() == GCAttr)
1408    return T;
1409
1410  if (const PointerType *ptr = T->getAs<PointerType>()) {
1411    QualType Pointee = ptr->getPointeeType();
1412    if (Pointee->isAnyPointerType()) {
1413      QualType ResultType = getObjCGCQualType(Pointee, GCAttr);
1414      return getPointerType(ResultType);
1415    }
1416  }
1417
1418  // If we are composing extended qualifiers together, merge together
1419  // into one ExtQuals node.
1420  QualifierCollector Quals;
1421  const Type *TypeNode = Quals.strip(T);
1422
1423  // If this type already has an ObjCGC specified, it cannot get
1424  // another one.
1425  assert(!Quals.hasObjCGCAttr() &&
1426         "Type cannot have multiple ObjCGCs!");
1427  Quals.addObjCGCAttr(GCAttr);
1428
1429  return getExtQualType(TypeNode, Quals);
1430}
1431
1432const FunctionType *ASTContext::adjustFunctionType(const FunctionType *T,
1433                                                   FunctionType::ExtInfo Info) {
1434  if (T->getExtInfo() == Info)
1435    return T;
1436
1437  QualType Result;
1438  if (const FunctionNoProtoType *FNPT = dyn_cast<FunctionNoProtoType>(T)) {
1439    Result = getFunctionNoProtoType(FNPT->getResultType(), Info);
1440  } else {
1441    const FunctionProtoType *FPT = cast<FunctionProtoType>(T);
1442    FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
1443    EPI.ExtInfo = Info;
1444    Result = getFunctionType(FPT->getResultType(), FPT->arg_type_begin(),
1445                             FPT->getNumArgs(), EPI);
1446  }
1447
1448  return cast<FunctionType>(Result.getTypePtr());
1449}
1450
1451/// getComplexType - Return the uniqued reference to the type for a complex
1452/// number with the specified element type.
1453QualType ASTContext::getComplexType(QualType T) const {
1454  // Unique pointers, to guarantee there is only one pointer of a particular
1455  // structure.
1456  llvm::FoldingSetNodeID ID;
1457  ComplexType::Profile(ID, T);
1458
1459  void *InsertPos = 0;
1460  if (ComplexType *CT = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos))
1461    return QualType(CT, 0);
1462
1463  // If the pointee type isn't canonical, this won't be a canonical type either,
1464  // so fill in the canonical type field.
1465  QualType Canonical;
1466  if (!T.isCanonical()) {
1467    Canonical = getComplexType(getCanonicalType(T));
1468
1469    // Get the new insert position for the node we care about.
1470    ComplexType *NewIP = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos);
1471    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1472  }
1473  ComplexType *New = new (*this, TypeAlignment) ComplexType(T, Canonical);
1474  Types.push_back(New);
1475  ComplexTypes.InsertNode(New, InsertPos);
1476  return QualType(New, 0);
1477}
1478
1479/// getPointerType - Return the uniqued reference to the type for a pointer to
1480/// the specified type.
1481QualType ASTContext::getPointerType(QualType T) const {
1482  // Unique pointers, to guarantee there is only one pointer of a particular
1483  // structure.
1484  llvm::FoldingSetNodeID ID;
1485  PointerType::Profile(ID, T);
1486
1487  void *InsertPos = 0;
1488  if (PointerType *PT = PointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1489    return QualType(PT, 0);
1490
1491  // If the pointee type isn't canonical, this won't be a canonical type either,
1492  // so fill in the canonical type field.
1493  QualType Canonical;
1494  if (!T.isCanonical()) {
1495    Canonical = getPointerType(getCanonicalType(T));
1496
1497    // Get the new insert position for the node we care about.
1498    PointerType *NewIP = PointerTypes.FindNodeOrInsertPos(ID, InsertPos);
1499    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1500  }
1501  PointerType *New = new (*this, TypeAlignment) PointerType(T, Canonical);
1502  Types.push_back(New);
1503  PointerTypes.InsertNode(New, InsertPos);
1504  return QualType(New, 0);
1505}
1506
1507/// getBlockPointerType - Return the uniqued reference to the type for
1508/// a pointer to the specified block.
1509QualType ASTContext::getBlockPointerType(QualType T) const {
1510  assert(T->isFunctionType() && "block of function types only");
1511  // Unique pointers, to guarantee there is only one block of a particular
1512  // structure.
1513  llvm::FoldingSetNodeID ID;
1514  BlockPointerType::Profile(ID, T);
1515
1516  void *InsertPos = 0;
1517  if (BlockPointerType *PT =
1518        BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1519    return QualType(PT, 0);
1520
1521  // If the block pointee type isn't canonical, this won't be a canonical
1522  // type either so fill in the canonical type field.
1523  QualType Canonical;
1524  if (!T.isCanonical()) {
1525    Canonical = getBlockPointerType(getCanonicalType(T));
1526
1527    // Get the new insert position for the node we care about.
1528    BlockPointerType *NewIP =
1529      BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
1530    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1531  }
1532  BlockPointerType *New
1533    = new (*this, TypeAlignment) BlockPointerType(T, Canonical);
1534  Types.push_back(New);
1535  BlockPointerTypes.InsertNode(New, InsertPos);
1536  return QualType(New, 0);
1537}
1538
1539/// getLValueReferenceType - Return the uniqued reference to the type for an
1540/// lvalue reference to the specified type.
1541QualType
1542ASTContext::getLValueReferenceType(QualType T, bool SpelledAsLValue) const {
1543  assert(getCanonicalType(T) != OverloadTy &&
1544         "Unresolved overloaded function type");
1545
1546  // Unique pointers, to guarantee there is only one pointer of a particular
1547  // structure.
1548  llvm::FoldingSetNodeID ID;
1549  ReferenceType::Profile(ID, T, SpelledAsLValue);
1550
1551  void *InsertPos = 0;
1552  if (LValueReferenceType *RT =
1553        LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
1554    return QualType(RT, 0);
1555
1556  const ReferenceType *InnerRef = T->getAs<ReferenceType>();
1557
1558  // If the referencee type isn't canonical, this won't be a canonical type
1559  // either, so fill in the canonical type field.
1560  QualType Canonical;
1561  if (!SpelledAsLValue || InnerRef || !T.isCanonical()) {
1562    QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
1563    Canonical = getLValueReferenceType(getCanonicalType(PointeeType));
1564
1565    // Get the new insert position for the node we care about.
1566    LValueReferenceType *NewIP =
1567      LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
1568    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1569  }
1570
1571  LValueReferenceType *New
1572    = new (*this, TypeAlignment) LValueReferenceType(T, Canonical,
1573                                                     SpelledAsLValue);
1574  Types.push_back(New);
1575  LValueReferenceTypes.InsertNode(New, InsertPos);
1576
1577  return QualType(New, 0);
1578}
1579
1580/// getRValueReferenceType - Return the uniqued reference to the type for an
1581/// rvalue reference to the specified type.
1582QualType ASTContext::getRValueReferenceType(QualType T) const {
1583  // Unique pointers, to guarantee there is only one pointer of a particular
1584  // structure.
1585  llvm::FoldingSetNodeID ID;
1586  ReferenceType::Profile(ID, T, false);
1587
1588  void *InsertPos = 0;
1589  if (RValueReferenceType *RT =
1590        RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
1591    return QualType(RT, 0);
1592
1593  const ReferenceType *InnerRef = T->getAs<ReferenceType>();
1594
1595  // If the referencee type isn't canonical, this won't be a canonical type
1596  // either, so fill in the canonical type field.
1597  QualType Canonical;
1598  if (InnerRef || !T.isCanonical()) {
1599    QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
1600    Canonical = getRValueReferenceType(getCanonicalType(PointeeType));
1601
1602    // Get the new insert position for the node we care about.
1603    RValueReferenceType *NewIP =
1604      RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
1605    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1606  }
1607
1608  RValueReferenceType *New
1609    = new (*this, TypeAlignment) RValueReferenceType(T, Canonical);
1610  Types.push_back(New);
1611  RValueReferenceTypes.InsertNode(New, InsertPos);
1612  return QualType(New, 0);
1613}
1614
1615/// getMemberPointerType - Return the uniqued reference to the type for a
1616/// member pointer to the specified type, in the specified class.
1617QualType ASTContext::getMemberPointerType(QualType T, const Type *Cls) const {
1618  // Unique pointers, to guarantee there is only one pointer of a particular
1619  // structure.
1620  llvm::FoldingSetNodeID ID;
1621  MemberPointerType::Profile(ID, T, Cls);
1622
1623  void *InsertPos = 0;
1624  if (MemberPointerType *PT =
1625      MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1626    return QualType(PT, 0);
1627
1628  // If the pointee or class type isn't canonical, this won't be a canonical
1629  // type either, so fill in the canonical type field.
1630  QualType Canonical;
1631  if (!T.isCanonical() || !Cls->isCanonicalUnqualified()) {
1632    Canonical = getMemberPointerType(getCanonicalType(T),getCanonicalType(Cls));
1633
1634    // Get the new insert position for the node we care about.
1635    MemberPointerType *NewIP =
1636      MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
1637    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1638  }
1639  MemberPointerType *New
1640    = new (*this, TypeAlignment) MemberPointerType(T, Cls, Canonical);
1641  Types.push_back(New);
1642  MemberPointerTypes.InsertNode(New, InsertPos);
1643  return QualType(New, 0);
1644}
1645
1646/// getConstantArrayType - Return the unique reference to the type for an
1647/// array of the specified element type.
1648QualType ASTContext::getConstantArrayType(QualType EltTy,
1649                                          const llvm::APInt &ArySizeIn,
1650                                          ArrayType::ArraySizeModifier ASM,
1651                                          unsigned IndexTypeQuals) const {
1652  assert((EltTy->isDependentType() ||
1653          EltTy->isIncompleteType() || EltTy->isConstantSizeType()) &&
1654         "Constant array of VLAs is illegal!");
1655
1656  // Convert the array size into a canonical width matching the pointer size for
1657  // the target.
1658  llvm::APInt ArySize(ArySizeIn);
1659  ArySize =
1660    ArySize.zextOrTrunc(Target->getPointerWidth(getTargetAddressSpace(EltTy)));
1661
1662  llvm::FoldingSetNodeID ID;
1663  ConstantArrayType::Profile(ID, EltTy, ArySize, ASM, IndexTypeQuals);
1664
1665  void *InsertPos = 0;
1666  if (ConstantArrayType *ATP =
1667      ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
1668    return QualType(ATP, 0);
1669
1670  // If the element type isn't canonical or has qualifiers, this won't
1671  // be a canonical type either, so fill in the canonical type field.
1672  QualType Canon;
1673  if (!EltTy.isCanonical() || EltTy.hasLocalQualifiers()) {
1674    SplitQualType canonSplit = getCanonicalType(EltTy).split();
1675    Canon = getConstantArrayType(QualType(canonSplit.first, 0), ArySize,
1676                                 ASM, IndexTypeQuals);
1677    Canon = getQualifiedType(Canon, canonSplit.second);
1678
1679    // Get the new insert position for the node we care about.
1680    ConstantArrayType *NewIP =
1681      ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
1682    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1683  }
1684
1685  ConstantArrayType *New = new(*this,TypeAlignment)
1686    ConstantArrayType(EltTy, Canon, ArySize, ASM, IndexTypeQuals);
1687  ConstantArrayTypes.InsertNode(New, InsertPos);
1688  Types.push_back(New);
1689  return QualType(New, 0);
1690}
1691
1692/// getVariableArrayDecayedType - Turns the given type, which may be
1693/// variably-modified, into the corresponding type with all the known
1694/// sizes replaced with [*].
1695QualType ASTContext::getVariableArrayDecayedType(QualType type) const {
1696  // Vastly most common case.
1697  if (!type->isVariablyModifiedType()) return type;
1698
1699  QualType result;
1700
1701  SplitQualType split = type.getSplitDesugaredType();
1702  const Type *ty = split.first;
1703  switch (ty->getTypeClass()) {
1704#define TYPE(Class, Base)
1705#define ABSTRACT_TYPE(Class, Base)
1706#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
1707#include "clang/AST/TypeNodes.def"
1708    llvm_unreachable("didn't desugar past all non-canonical types?");
1709
1710  // These types should never be variably-modified.
1711  case Type::Builtin:
1712  case Type::Complex:
1713  case Type::Vector:
1714  case Type::ExtVector:
1715  case Type::DependentSizedExtVector:
1716  case Type::ObjCObject:
1717  case Type::ObjCInterface:
1718  case Type::ObjCObjectPointer:
1719  case Type::Record:
1720  case Type::Enum:
1721  case Type::UnresolvedUsing:
1722  case Type::TypeOfExpr:
1723  case Type::TypeOf:
1724  case Type::Decltype:
1725  case Type::UnaryTransform:
1726  case Type::DependentName:
1727  case Type::InjectedClassName:
1728  case Type::TemplateSpecialization:
1729  case Type::DependentTemplateSpecialization:
1730  case Type::TemplateTypeParm:
1731  case Type::SubstTemplateTypeParmPack:
1732  case Type::Auto:
1733  case Type::PackExpansion:
1734    llvm_unreachable("type should never be variably-modified");
1735
1736  // These types can be variably-modified but should never need to
1737  // further decay.
1738  case Type::FunctionNoProto:
1739  case Type::FunctionProto:
1740  case Type::BlockPointer:
1741  case Type::MemberPointer:
1742    return type;
1743
1744  // These types can be variably-modified.  All these modifications
1745  // preserve structure except as noted by comments.
1746  // TODO: if we ever care about optimizing VLAs, there are no-op
1747  // optimizations available here.
1748  case Type::Pointer:
1749    result = getPointerType(getVariableArrayDecayedType(
1750                              cast<PointerType>(ty)->getPointeeType()));
1751    break;
1752
1753  case Type::LValueReference: {
1754    const LValueReferenceType *lv = cast<LValueReferenceType>(ty);
1755    result = getLValueReferenceType(
1756                 getVariableArrayDecayedType(lv->getPointeeType()),
1757                                    lv->isSpelledAsLValue());
1758    break;
1759  }
1760
1761  case Type::RValueReference: {
1762    const RValueReferenceType *lv = cast<RValueReferenceType>(ty);
1763    result = getRValueReferenceType(
1764                 getVariableArrayDecayedType(lv->getPointeeType()));
1765    break;
1766  }
1767
1768  case Type::Atomic: {
1769    const AtomicType *at = cast<AtomicType>(ty);
1770    result = getAtomicType(getVariableArrayDecayedType(at->getValueType()));
1771    break;
1772  }
1773
1774  case Type::ConstantArray: {
1775    const ConstantArrayType *cat = cast<ConstantArrayType>(ty);
1776    result = getConstantArrayType(
1777                 getVariableArrayDecayedType(cat->getElementType()),
1778                                  cat->getSize(),
1779                                  cat->getSizeModifier(),
1780                                  cat->getIndexTypeCVRQualifiers());
1781    break;
1782  }
1783
1784  case Type::DependentSizedArray: {
1785    const DependentSizedArrayType *dat = cast<DependentSizedArrayType>(ty);
1786    result = getDependentSizedArrayType(
1787                 getVariableArrayDecayedType(dat->getElementType()),
1788                                        dat->getSizeExpr(),
1789                                        dat->getSizeModifier(),
1790                                        dat->getIndexTypeCVRQualifiers(),
1791                                        dat->getBracketsRange());
1792    break;
1793  }
1794
1795  // Turn incomplete types into [*] types.
1796  case Type::IncompleteArray: {
1797    const IncompleteArrayType *iat = cast<IncompleteArrayType>(ty);
1798    result = getVariableArrayType(
1799                 getVariableArrayDecayedType(iat->getElementType()),
1800                                  /*size*/ 0,
1801                                  ArrayType::Normal,
1802                                  iat->getIndexTypeCVRQualifiers(),
1803                                  SourceRange());
1804    break;
1805  }
1806
1807  // Turn VLA types into [*] types.
1808  case Type::VariableArray: {
1809    const VariableArrayType *vat = cast<VariableArrayType>(ty);
1810    result = getVariableArrayType(
1811                 getVariableArrayDecayedType(vat->getElementType()),
1812                                  /*size*/ 0,
1813                                  ArrayType::Star,
1814                                  vat->getIndexTypeCVRQualifiers(),
1815                                  vat->getBracketsRange());
1816    break;
1817  }
1818  }
1819
1820  // Apply the top-level qualifiers from the original.
1821  return getQualifiedType(result, split.second);
1822}
1823
1824/// getVariableArrayType - Returns a non-unique reference to the type for a
1825/// variable array of the specified element type.
1826QualType ASTContext::getVariableArrayType(QualType EltTy,
1827                                          Expr *NumElts,
1828                                          ArrayType::ArraySizeModifier ASM,
1829                                          unsigned IndexTypeQuals,
1830                                          SourceRange Brackets) const {
1831  // Since we don't unique expressions, it isn't possible to unique VLA's
1832  // that have an expression provided for their size.
1833  QualType Canon;
1834
1835  // Be sure to pull qualifiers off the element type.
1836  if (!EltTy.isCanonical() || EltTy.hasLocalQualifiers()) {
1837    SplitQualType canonSplit = getCanonicalType(EltTy).split();
1838    Canon = getVariableArrayType(QualType(canonSplit.first, 0), NumElts, ASM,
1839                                 IndexTypeQuals, Brackets);
1840    Canon = getQualifiedType(Canon, canonSplit.second);
1841  }
1842
1843  VariableArrayType *New = new(*this, TypeAlignment)
1844    VariableArrayType(EltTy, Canon, NumElts, ASM, IndexTypeQuals, Brackets);
1845
1846  VariableArrayTypes.push_back(New);
1847  Types.push_back(New);
1848  return QualType(New, 0);
1849}
1850
1851/// getDependentSizedArrayType - Returns a non-unique reference to
1852/// the type for a dependently-sized array of the specified element
1853/// type.
1854QualType ASTContext::getDependentSizedArrayType(QualType elementType,
1855                                                Expr *numElements,
1856                                                ArrayType::ArraySizeModifier ASM,
1857                                                unsigned elementTypeQuals,
1858                                                SourceRange brackets) const {
1859  assert((!numElements || numElements->isTypeDependent() ||
1860          numElements->isValueDependent()) &&
1861         "Size must be type- or value-dependent!");
1862
1863  // Dependently-sized array types that do not have a specified number
1864  // of elements will have their sizes deduced from a dependent
1865  // initializer.  We do no canonicalization here at all, which is okay
1866  // because they can't be used in most locations.
1867  if (!numElements) {
1868    DependentSizedArrayType *newType
1869      = new (*this, TypeAlignment)
1870          DependentSizedArrayType(*this, elementType, QualType(),
1871                                  numElements, ASM, elementTypeQuals,
1872                                  brackets);
1873    Types.push_back(newType);
1874    return QualType(newType, 0);
1875  }
1876
1877  // Otherwise, we actually build a new type every time, but we
1878  // also build a canonical type.
1879
1880  SplitQualType canonElementType = getCanonicalType(elementType).split();
1881
1882  void *insertPos = 0;
1883  llvm::FoldingSetNodeID ID;
1884  DependentSizedArrayType::Profile(ID, *this,
1885                                   QualType(canonElementType.first, 0),
1886                                   ASM, elementTypeQuals, numElements);
1887
1888  // Look for an existing type with these properties.
1889  DependentSizedArrayType *canonTy =
1890    DependentSizedArrayTypes.FindNodeOrInsertPos(ID, insertPos);
1891
1892  // If we don't have one, build one.
1893  if (!canonTy) {
1894    canonTy = new (*this, TypeAlignment)
1895      DependentSizedArrayType(*this, QualType(canonElementType.first, 0),
1896                              QualType(), numElements, ASM, elementTypeQuals,
1897                              brackets);
1898    DependentSizedArrayTypes.InsertNode(canonTy, insertPos);
1899    Types.push_back(canonTy);
1900  }
1901
1902  // Apply qualifiers from the element type to the array.
1903  QualType canon = getQualifiedType(QualType(canonTy,0),
1904                                    canonElementType.second);
1905
1906  // If we didn't need extra canonicalization for the element type,
1907  // then just use that as our result.
1908  if (QualType(canonElementType.first, 0) == elementType)
1909    return canon;
1910
1911  // Otherwise, we need to build a type which follows the spelling
1912  // of the element type.
1913  DependentSizedArrayType *sugaredType
1914    = new (*this, TypeAlignment)
1915        DependentSizedArrayType(*this, elementType, canon, numElements,
1916                                ASM, elementTypeQuals, brackets);
1917  Types.push_back(sugaredType);
1918  return QualType(sugaredType, 0);
1919}
1920
1921QualType ASTContext::getIncompleteArrayType(QualType elementType,
1922                                            ArrayType::ArraySizeModifier ASM,
1923                                            unsigned elementTypeQuals) const {
1924  llvm::FoldingSetNodeID ID;
1925  IncompleteArrayType::Profile(ID, elementType, ASM, elementTypeQuals);
1926
1927  void *insertPos = 0;
1928  if (IncompleteArrayType *iat =
1929       IncompleteArrayTypes.FindNodeOrInsertPos(ID, insertPos))
1930    return QualType(iat, 0);
1931
1932  // If the element type isn't canonical, this won't be a canonical type
1933  // either, so fill in the canonical type field.  We also have to pull
1934  // qualifiers off the element type.
1935  QualType canon;
1936
1937  if (!elementType.isCanonical() || elementType.hasLocalQualifiers()) {
1938    SplitQualType canonSplit = getCanonicalType(elementType).split();
1939    canon = getIncompleteArrayType(QualType(canonSplit.first, 0),
1940                                   ASM, elementTypeQuals);
1941    canon = getQualifiedType(canon, canonSplit.second);
1942
1943    // Get the new insert position for the node we care about.
1944    IncompleteArrayType *existing =
1945      IncompleteArrayTypes.FindNodeOrInsertPos(ID, insertPos);
1946    assert(!existing && "Shouldn't be in the map!"); (void) existing;
1947  }
1948
1949  IncompleteArrayType *newType = new (*this, TypeAlignment)
1950    IncompleteArrayType(elementType, canon, ASM, elementTypeQuals);
1951
1952  IncompleteArrayTypes.InsertNode(newType, insertPos);
1953  Types.push_back(newType);
1954  return QualType(newType, 0);
1955}
1956
1957/// getVectorType - Return the unique reference to a vector type of
1958/// the specified element type and size. VectorType must be a built-in type.
1959QualType ASTContext::getVectorType(QualType vecType, unsigned NumElts,
1960                                   VectorType::VectorKind VecKind) const {
1961  assert(vecType->isBuiltinType());
1962
1963  // Check if we've already instantiated a vector of this type.
1964  llvm::FoldingSetNodeID ID;
1965  VectorType::Profile(ID, vecType, NumElts, Type::Vector, VecKind);
1966
1967  void *InsertPos = 0;
1968  if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
1969    return QualType(VTP, 0);
1970
1971  // If the element type isn't canonical, this won't be a canonical type either,
1972  // so fill in the canonical type field.
1973  QualType Canonical;
1974  if (!vecType.isCanonical()) {
1975    Canonical = getVectorType(getCanonicalType(vecType), NumElts, VecKind);
1976
1977    // Get the new insert position for the node we care about.
1978    VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
1979    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1980  }
1981  VectorType *New = new (*this, TypeAlignment)
1982    VectorType(vecType, NumElts, Canonical, VecKind);
1983  VectorTypes.InsertNode(New, InsertPos);
1984  Types.push_back(New);
1985  return QualType(New, 0);
1986}
1987
1988/// getExtVectorType - Return the unique reference to an extended vector type of
1989/// the specified element type and size. VectorType must be a built-in type.
1990QualType
1991ASTContext::getExtVectorType(QualType vecType, unsigned NumElts) const {
1992  assert(vecType->isBuiltinType() || vecType->isDependentType());
1993
1994  // Check if we've already instantiated a vector of this type.
1995  llvm::FoldingSetNodeID ID;
1996  VectorType::Profile(ID, vecType, NumElts, Type::ExtVector,
1997                      VectorType::GenericVector);
1998  void *InsertPos = 0;
1999  if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
2000    return QualType(VTP, 0);
2001
2002  // If the element type isn't canonical, this won't be a canonical type either,
2003  // so fill in the canonical type field.
2004  QualType Canonical;
2005  if (!vecType.isCanonical()) {
2006    Canonical = getExtVectorType(getCanonicalType(vecType), NumElts);
2007
2008    // Get the new insert position for the node we care about.
2009    VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
2010    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2011  }
2012  ExtVectorType *New = new (*this, TypeAlignment)
2013    ExtVectorType(vecType, NumElts, Canonical);
2014  VectorTypes.InsertNode(New, InsertPos);
2015  Types.push_back(New);
2016  return QualType(New, 0);
2017}
2018
2019QualType
2020ASTContext::getDependentSizedExtVectorType(QualType vecType,
2021                                           Expr *SizeExpr,
2022                                           SourceLocation AttrLoc) const {
2023  llvm::FoldingSetNodeID ID;
2024  DependentSizedExtVectorType::Profile(ID, *this, getCanonicalType(vecType),
2025                                       SizeExpr);
2026
2027  void *InsertPos = 0;
2028  DependentSizedExtVectorType *Canon
2029    = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
2030  DependentSizedExtVectorType *New;
2031  if (Canon) {
2032    // We already have a canonical version of this array type; use it as
2033    // the canonical type for a newly-built type.
2034    New = new (*this, TypeAlignment)
2035      DependentSizedExtVectorType(*this, vecType, QualType(Canon, 0),
2036                                  SizeExpr, AttrLoc);
2037  } else {
2038    QualType CanonVecTy = getCanonicalType(vecType);
2039    if (CanonVecTy == vecType) {
2040      New = new (*this, TypeAlignment)
2041        DependentSizedExtVectorType(*this, vecType, QualType(), SizeExpr,
2042                                    AttrLoc);
2043
2044      DependentSizedExtVectorType *CanonCheck
2045        = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
2046      assert(!CanonCheck && "Dependent-sized ext_vector canonical type broken");
2047      (void)CanonCheck;
2048      DependentSizedExtVectorTypes.InsertNode(New, InsertPos);
2049    } else {
2050      QualType Canon = getDependentSizedExtVectorType(CanonVecTy, SizeExpr,
2051                                                      SourceLocation());
2052      New = new (*this, TypeAlignment)
2053        DependentSizedExtVectorType(*this, vecType, Canon, SizeExpr, AttrLoc);
2054    }
2055  }
2056
2057  Types.push_back(New);
2058  return QualType(New, 0);
2059}
2060
2061/// getFunctionNoProtoType - Return a K&R style C function type like 'int()'.
2062///
2063QualType
2064ASTContext::getFunctionNoProtoType(QualType ResultTy,
2065                                   const FunctionType::ExtInfo &Info) const {
2066  const CallingConv DefaultCC = Info.getCC();
2067  const CallingConv CallConv = (LangOpts.MRTD && DefaultCC == CC_Default) ?
2068                               CC_X86StdCall : DefaultCC;
2069  // Unique functions, to guarantee there is only one function of a particular
2070  // structure.
2071  llvm::FoldingSetNodeID ID;
2072  FunctionNoProtoType::Profile(ID, ResultTy, Info);
2073
2074  void *InsertPos = 0;
2075  if (FunctionNoProtoType *FT =
2076        FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
2077    return QualType(FT, 0);
2078
2079  QualType Canonical;
2080  if (!ResultTy.isCanonical() ||
2081      getCanonicalCallConv(CallConv) != CallConv) {
2082    Canonical =
2083      getFunctionNoProtoType(getCanonicalType(ResultTy),
2084                     Info.withCallingConv(getCanonicalCallConv(CallConv)));
2085
2086    // Get the new insert position for the node we care about.
2087    FunctionNoProtoType *NewIP =
2088      FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
2089    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2090  }
2091
2092  FunctionProtoType::ExtInfo newInfo = Info.withCallingConv(CallConv);
2093  FunctionNoProtoType *New = new (*this, TypeAlignment)
2094    FunctionNoProtoType(ResultTy, Canonical, newInfo);
2095  Types.push_back(New);
2096  FunctionNoProtoTypes.InsertNode(New, InsertPos);
2097  return QualType(New, 0);
2098}
2099
2100/// getFunctionType - Return a normal function type with a typed argument
2101/// list.  isVariadic indicates whether the argument list includes '...'.
2102QualType
2103ASTContext::getFunctionType(QualType ResultTy,
2104                            const QualType *ArgArray, unsigned NumArgs,
2105                            const FunctionProtoType::ExtProtoInfo &EPI) const {
2106  // Unique functions, to guarantee there is only one function of a particular
2107  // structure.
2108  llvm::FoldingSetNodeID ID;
2109  FunctionProtoType::Profile(ID, ResultTy, ArgArray, NumArgs, EPI, *this);
2110
2111  void *InsertPos = 0;
2112  if (FunctionProtoType *FTP =
2113        FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
2114    return QualType(FTP, 0);
2115
2116  // Determine whether the type being created is already canonical or not.
2117  bool isCanonical= EPI.ExceptionSpecType == EST_None && ResultTy.isCanonical();
2118  for (unsigned i = 0; i != NumArgs && isCanonical; ++i)
2119    if (!ArgArray[i].isCanonicalAsParam())
2120      isCanonical = false;
2121
2122  const CallingConv DefaultCC = EPI.ExtInfo.getCC();
2123  const CallingConv CallConv = (LangOpts.MRTD && DefaultCC == CC_Default) ?
2124                               CC_X86StdCall : DefaultCC;
2125
2126  // If this type isn't canonical, get the canonical version of it.
2127  // The exception spec is not part of the canonical type.
2128  QualType Canonical;
2129  if (!isCanonical || getCanonicalCallConv(CallConv) != CallConv) {
2130    SmallVector<QualType, 16> CanonicalArgs;
2131    CanonicalArgs.reserve(NumArgs);
2132    for (unsigned i = 0; i != NumArgs; ++i)
2133      CanonicalArgs.push_back(getCanonicalParamType(ArgArray[i]));
2134
2135    FunctionProtoType::ExtProtoInfo CanonicalEPI = EPI;
2136    CanonicalEPI.ExceptionSpecType = EST_None;
2137    CanonicalEPI.NumExceptions = 0;
2138    CanonicalEPI.ExtInfo
2139      = CanonicalEPI.ExtInfo.withCallingConv(getCanonicalCallConv(CallConv));
2140
2141    Canonical = getFunctionType(getCanonicalType(ResultTy),
2142                                CanonicalArgs.data(), NumArgs,
2143                                CanonicalEPI);
2144
2145    // Get the new insert position for the node we care about.
2146    FunctionProtoType *NewIP =
2147      FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
2148    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2149  }
2150
2151  // FunctionProtoType objects are allocated with extra bytes after
2152  // them for three variable size arrays at the end:
2153  //  - parameter types
2154  //  - exception types
2155  //  - consumed-arguments flags
2156  // Instead of the exception types, there could be a noexcept
2157  // expression.
2158  size_t Size = sizeof(FunctionProtoType) +
2159                NumArgs * sizeof(QualType);
2160  if (EPI.ExceptionSpecType == EST_Dynamic)
2161    Size += EPI.NumExceptions * sizeof(QualType);
2162  else if (EPI.ExceptionSpecType == EST_ComputedNoexcept) {
2163    Size += sizeof(Expr*);
2164  }
2165  if (EPI.ConsumedArguments)
2166    Size += NumArgs * sizeof(bool);
2167
2168  FunctionProtoType *FTP = (FunctionProtoType*) Allocate(Size, TypeAlignment);
2169  FunctionProtoType::ExtProtoInfo newEPI = EPI;
2170  newEPI.ExtInfo = EPI.ExtInfo.withCallingConv(CallConv);
2171  new (FTP) FunctionProtoType(ResultTy, ArgArray, NumArgs, Canonical, newEPI);
2172  Types.push_back(FTP);
2173  FunctionProtoTypes.InsertNode(FTP, InsertPos);
2174  return QualType(FTP, 0);
2175}
2176
2177#ifndef NDEBUG
2178static bool NeedsInjectedClassNameType(const RecordDecl *D) {
2179  if (!isa<CXXRecordDecl>(D)) return false;
2180  const CXXRecordDecl *RD = cast<CXXRecordDecl>(D);
2181  if (isa<ClassTemplatePartialSpecializationDecl>(RD))
2182    return true;
2183  if (RD->getDescribedClassTemplate() &&
2184      !isa<ClassTemplateSpecializationDecl>(RD))
2185    return true;
2186  return false;
2187}
2188#endif
2189
2190/// getInjectedClassNameType - Return the unique reference to the
2191/// injected class name type for the specified templated declaration.
2192QualType ASTContext::getInjectedClassNameType(CXXRecordDecl *Decl,
2193                                              QualType TST) const {
2194  assert(NeedsInjectedClassNameType(Decl));
2195  if (Decl->TypeForDecl) {
2196    assert(isa<InjectedClassNameType>(Decl->TypeForDecl));
2197  } else if (CXXRecordDecl *PrevDecl = Decl->getPreviousDecl()) {
2198    assert(PrevDecl->TypeForDecl && "previous declaration has no type");
2199    Decl->TypeForDecl = PrevDecl->TypeForDecl;
2200    assert(isa<InjectedClassNameType>(Decl->TypeForDecl));
2201  } else {
2202    Type *newType =
2203      new (*this, TypeAlignment) InjectedClassNameType(Decl, TST);
2204    Decl->TypeForDecl = newType;
2205    Types.push_back(newType);
2206  }
2207  return QualType(Decl->TypeForDecl, 0);
2208}
2209
2210/// getTypeDeclType - Return the unique reference to the type for the
2211/// specified type declaration.
2212QualType ASTContext::getTypeDeclTypeSlow(const TypeDecl *Decl) const {
2213  assert(Decl && "Passed null for Decl param");
2214  assert(!Decl->TypeForDecl && "TypeForDecl present in slow case");
2215
2216  if (const TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Decl))
2217    return getTypedefType(Typedef);
2218
2219  assert(!isa<TemplateTypeParmDecl>(Decl) &&
2220         "Template type parameter types are always available.");
2221
2222  if (const RecordDecl *Record = dyn_cast<RecordDecl>(Decl)) {
2223    assert(!Record->getPreviousDecl() &&
2224           "struct/union has previous declaration");
2225    assert(!NeedsInjectedClassNameType(Record));
2226    return getRecordType(Record);
2227  } else if (const EnumDecl *Enum = dyn_cast<EnumDecl>(Decl)) {
2228    assert(!Enum->getPreviousDecl() &&
2229           "enum has previous declaration");
2230    return getEnumType(Enum);
2231  } else if (const UnresolvedUsingTypenameDecl *Using =
2232               dyn_cast<UnresolvedUsingTypenameDecl>(Decl)) {
2233    Type *newType = new (*this, TypeAlignment) UnresolvedUsingType(Using);
2234    Decl->TypeForDecl = newType;
2235    Types.push_back(newType);
2236  } else
2237    llvm_unreachable("TypeDecl without a type?");
2238
2239  return QualType(Decl->TypeForDecl, 0);
2240}
2241
2242/// getTypedefType - Return the unique reference to the type for the
2243/// specified typedef name decl.
2244QualType
2245ASTContext::getTypedefType(const TypedefNameDecl *Decl,
2246                           QualType Canonical) const {
2247  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
2248
2249  if (Canonical.isNull())
2250    Canonical = getCanonicalType(Decl->getUnderlyingType());
2251  TypedefType *newType = new(*this, TypeAlignment)
2252    TypedefType(Type::Typedef, Decl, Canonical);
2253  Decl->TypeForDecl = newType;
2254  Types.push_back(newType);
2255  return QualType(newType, 0);
2256}
2257
2258QualType ASTContext::getRecordType(const RecordDecl *Decl) const {
2259  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
2260
2261  if (const RecordDecl *PrevDecl = Decl->getPreviousDecl())
2262    if (PrevDecl->TypeForDecl)
2263      return QualType(Decl->TypeForDecl = PrevDecl->TypeForDecl, 0);
2264
2265  RecordType *newType = new (*this, TypeAlignment) RecordType(Decl);
2266  Decl->TypeForDecl = newType;
2267  Types.push_back(newType);
2268  return QualType(newType, 0);
2269}
2270
2271QualType ASTContext::getEnumType(const EnumDecl *Decl) const {
2272  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
2273
2274  if (const EnumDecl *PrevDecl = Decl->getPreviousDecl())
2275    if (PrevDecl->TypeForDecl)
2276      return QualType(Decl->TypeForDecl = PrevDecl->TypeForDecl, 0);
2277
2278  EnumType *newType = new (*this, TypeAlignment) EnumType(Decl);
2279  Decl->TypeForDecl = newType;
2280  Types.push_back(newType);
2281  return QualType(newType, 0);
2282}
2283
2284QualType ASTContext::getAttributedType(AttributedType::Kind attrKind,
2285                                       QualType modifiedType,
2286                                       QualType equivalentType) {
2287  llvm::FoldingSetNodeID id;
2288  AttributedType::Profile(id, attrKind, modifiedType, equivalentType);
2289
2290  void *insertPos = 0;
2291  AttributedType *type = AttributedTypes.FindNodeOrInsertPos(id, insertPos);
2292  if (type) return QualType(type, 0);
2293
2294  QualType canon = getCanonicalType(equivalentType);
2295  type = new (*this, TypeAlignment)
2296           AttributedType(canon, attrKind, modifiedType, equivalentType);
2297
2298  Types.push_back(type);
2299  AttributedTypes.InsertNode(type, insertPos);
2300
2301  return QualType(type, 0);
2302}
2303
2304
2305/// \brief Retrieve a substitution-result type.
2306QualType
2307ASTContext::getSubstTemplateTypeParmType(const TemplateTypeParmType *Parm,
2308                                         QualType Replacement) const {
2309  assert(Replacement.isCanonical()
2310         && "replacement types must always be canonical");
2311
2312  llvm::FoldingSetNodeID ID;
2313  SubstTemplateTypeParmType::Profile(ID, Parm, Replacement);
2314  void *InsertPos = 0;
2315  SubstTemplateTypeParmType *SubstParm
2316    = SubstTemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
2317
2318  if (!SubstParm) {
2319    SubstParm = new (*this, TypeAlignment)
2320      SubstTemplateTypeParmType(Parm, Replacement);
2321    Types.push_back(SubstParm);
2322    SubstTemplateTypeParmTypes.InsertNode(SubstParm, InsertPos);
2323  }
2324
2325  return QualType(SubstParm, 0);
2326}
2327
2328/// \brief Retrieve a
2329QualType ASTContext::getSubstTemplateTypeParmPackType(
2330                                          const TemplateTypeParmType *Parm,
2331                                              const TemplateArgument &ArgPack) {
2332#ifndef NDEBUG
2333  for (TemplateArgument::pack_iterator P = ArgPack.pack_begin(),
2334                                    PEnd = ArgPack.pack_end();
2335       P != PEnd; ++P) {
2336    assert(P->getKind() == TemplateArgument::Type &&"Pack contains a non-type");
2337    assert(P->getAsType().isCanonical() && "Pack contains non-canonical type");
2338  }
2339#endif
2340
2341  llvm::FoldingSetNodeID ID;
2342  SubstTemplateTypeParmPackType::Profile(ID, Parm, ArgPack);
2343  void *InsertPos = 0;
2344  if (SubstTemplateTypeParmPackType *SubstParm
2345        = SubstTemplateTypeParmPackTypes.FindNodeOrInsertPos(ID, InsertPos))
2346    return QualType(SubstParm, 0);
2347
2348  QualType Canon;
2349  if (!Parm->isCanonicalUnqualified()) {
2350    Canon = getCanonicalType(QualType(Parm, 0));
2351    Canon = getSubstTemplateTypeParmPackType(cast<TemplateTypeParmType>(Canon),
2352                                             ArgPack);
2353    SubstTemplateTypeParmPackTypes.FindNodeOrInsertPos(ID, InsertPos);
2354  }
2355
2356  SubstTemplateTypeParmPackType *SubstParm
2357    = new (*this, TypeAlignment) SubstTemplateTypeParmPackType(Parm, Canon,
2358                                                               ArgPack);
2359  Types.push_back(SubstParm);
2360  SubstTemplateTypeParmTypes.InsertNode(SubstParm, InsertPos);
2361  return QualType(SubstParm, 0);
2362}
2363
2364/// \brief Retrieve the template type parameter type for a template
2365/// parameter or parameter pack with the given depth, index, and (optionally)
2366/// name.
2367QualType ASTContext::getTemplateTypeParmType(unsigned Depth, unsigned Index,
2368                                             bool ParameterPack,
2369                                             TemplateTypeParmDecl *TTPDecl) const {
2370  llvm::FoldingSetNodeID ID;
2371  TemplateTypeParmType::Profile(ID, Depth, Index, ParameterPack, TTPDecl);
2372  void *InsertPos = 0;
2373  TemplateTypeParmType *TypeParm
2374    = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
2375
2376  if (TypeParm)
2377    return QualType(TypeParm, 0);
2378
2379  if (TTPDecl) {
2380    QualType Canon = getTemplateTypeParmType(Depth, Index, ParameterPack);
2381    TypeParm = new (*this, TypeAlignment) TemplateTypeParmType(TTPDecl, Canon);
2382
2383    TemplateTypeParmType *TypeCheck
2384      = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
2385    assert(!TypeCheck && "Template type parameter canonical type broken");
2386    (void)TypeCheck;
2387  } else
2388    TypeParm = new (*this, TypeAlignment)
2389      TemplateTypeParmType(Depth, Index, ParameterPack);
2390
2391  Types.push_back(TypeParm);
2392  TemplateTypeParmTypes.InsertNode(TypeParm, InsertPos);
2393
2394  return QualType(TypeParm, 0);
2395}
2396
2397TypeSourceInfo *
2398ASTContext::getTemplateSpecializationTypeInfo(TemplateName Name,
2399                                              SourceLocation NameLoc,
2400                                        const TemplateArgumentListInfo &Args,
2401                                              QualType Underlying) const {
2402  assert(!Name.getAsDependentTemplateName() &&
2403         "No dependent template names here!");
2404  QualType TST = getTemplateSpecializationType(Name, Args, Underlying);
2405
2406  TypeSourceInfo *DI = CreateTypeSourceInfo(TST);
2407  TemplateSpecializationTypeLoc TL
2408    = cast<TemplateSpecializationTypeLoc>(DI->getTypeLoc());
2409  TL.setTemplateNameLoc(NameLoc);
2410  TL.setLAngleLoc(Args.getLAngleLoc());
2411  TL.setRAngleLoc(Args.getRAngleLoc());
2412  for (unsigned i = 0, e = TL.getNumArgs(); i != e; ++i)
2413    TL.setArgLocInfo(i, Args[i].getLocInfo());
2414  return DI;
2415}
2416
2417QualType
2418ASTContext::getTemplateSpecializationType(TemplateName Template,
2419                                          const TemplateArgumentListInfo &Args,
2420                                          QualType Underlying) const {
2421  assert(!Template.getAsDependentTemplateName() &&
2422         "No dependent template names here!");
2423
2424  unsigned NumArgs = Args.size();
2425
2426  SmallVector<TemplateArgument, 4> ArgVec;
2427  ArgVec.reserve(NumArgs);
2428  for (unsigned i = 0; i != NumArgs; ++i)
2429    ArgVec.push_back(Args[i].getArgument());
2430
2431  return getTemplateSpecializationType(Template, ArgVec.data(), NumArgs,
2432                                       Underlying);
2433}
2434
2435QualType
2436ASTContext::getTemplateSpecializationType(TemplateName Template,
2437                                          const TemplateArgument *Args,
2438                                          unsigned NumArgs,
2439                                          QualType Underlying) const {
2440  assert(!Template.getAsDependentTemplateName() &&
2441         "No dependent template names here!");
2442  // Look through qualified template names.
2443  if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName())
2444    Template = TemplateName(QTN->getTemplateDecl());
2445
2446  bool isTypeAlias =
2447    Template.getAsTemplateDecl() &&
2448    isa<TypeAliasTemplateDecl>(Template.getAsTemplateDecl());
2449
2450  QualType CanonType;
2451  if (!Underlying.isNull())
2452    CanonType = getCanonicalType(Underlying);
2453  else {
2454    assert(!isTypeAlias &&
2455           "Underlying type for template alias must be computed by caller");
2456    CanonType = getCanonicalTemplateSpecializationType(Template, Args,
2457                                                       NumArgs);
2458  }
2459
2460  // Allocate the (non-canonical) template specialization type, but don't
2461  // try to unique it: these types typically have location information that
2462  // we don't unique and don't want to lose.
2463  void *Mem = Allocate(sizeof(TemplateSpecializationType) +
2464                       sizeof(TemplateArgument) * NumArgs +
2465                       (isTypeAlias ? sizeof(QualType) : 0),
2466                       TypeAlignment);
2467  TemplateSpecializationType *Spec
2468    = new (Mem) TemplateSpecializationType(Template,
2469                                           Args, NumArgs,
2470                                           CanonType,
2471                                         isTypeAlias ? Underlying : QualType());
2472
2473  Types.push_back(Spec);
2474  return QualType(Spec, 0);
2475}
2476
2477QualType
2478ASTContext::getCanonicalTemplateSpecializationType(TemplateName Template,
2479                                                   const TemplateArgument *Args,
2480                                                   unsigned NumArgs) const {
2481  assert(!Template.getAsDependentTemplateName() &&
2482         "No dependent template names here!");
2483  assert((!Template.getAsTemplateDecl() ||
2484          !isa<TypeAliasTemplateDecl>(Template.getAsTemplateDecl())) &&
2485         "Underlying type for template alias must be computed by caller");
2486
2487  // Look through qualified template names.
2488  if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName())
2489    Template = TemplateName(QTN->getTemplateDecl());
2490
2491  // Build the canonical template specialization type.
2492  TemplateName CanonTemplate = getCanonicalTemplateName(Template);
2493  SmallVector<TemplateArgument, 4> CanonArgs;
2494  CanonArgs.reserve(NumArgs);
2495  for (unsigned I = 0; I != NumArgs; ++I)
2496    CanonArgs.push_back(getCanonicalTemplateArgument(Args[I]));
2497
2498  // Determine whether this canonical template specialization type already
2499  // exists.
2500  llvm::FoldingSetNodeID ID;
2501  TemplateSpecializationType::Profile(ID, CanonTemplate,
2502                                      CanonArgs.data(), NumArgs, *this);
2503
2504  void *InsertPos = 0;
2505  TemplateSpecializationType *Spec
2506    = TemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
2507
2508  if (!Spec) {
2509    // Allocate a new canonical template specialization type.
2510    void *Mem = Allocate((sizeof(TemplateSpecializationType) +
2511                          sizeof(TemplateArgument) * NumArgs),
2512                         TypeAlignment);
2513    Spec = new (Mem) TemplateSpecializationType(CanonTemplate,
2514                                                CanonArgs.data(), NumArgs,
2515                                                QualType(), QualType());
2516    Types.push_back(Spec);
2517    TemplateSpecializationTypes.InsertNode(Spec, InsertPos);
2518  }
2519
2520  assert(Spec->isDependentType() &&
2521         "Non-dependent template-id type must have a canonical type");
2522  return QualType(Spec, 0);
2523}
2524
2525QualType
2526ASTContext::getElaboratedType(ElaboratedTypeKeyword Keyword,
2527                              NestedNameSpecifier *NNS,
2528                              QualType NamedType) const {
2529  llvm::FoldingSetNodeID ID;
2530  ElaboratedType::Profile(ID, Keyword, NNS, NamedType);
2531
2532  void *InsertPos = 0;
2533  ElaboratedType *T = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
2534  if (T)
2535    return QualType(T, 0);
2536
2537  QualType Canon = NamedType;
2538  if (!Canon.isCanonical()) {
2539    Canon = getCanonicalType(NamedType);
2540    ElaboratedType *CheckT = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
2541    assert(!CheckT && "Elaborated canonical type broken");
2542    (void)CheckT;
2543  }
2544
2545  T = new (*this) ElaboratedType(Keyword, NNS, NamedType, Canon);
2546  Types.push_back(T);
2547  ElaboratedTypes.InsertNode(T, InsertPos);
2548  return QualType(T, 0);
2549}
2550
2551QualType
2552ASTContext::getParenType(QualType InnerType) const {
2553  llvm::FoldingSetNodeID ID;
2554  ParenType::Profile(ID, InnerType);
2555
2556  void *InsertPos = 0;
2557  ParenType *T = ParenTypes.FindNodeOrInsertPos(ID, InsertPos);
2558  if (T)
2559    return QualType(T, 0);
2560
2561  QualType Canon = InnerType;
2562  if (!Canon.isCanonical()) {
2563    Canon = getCanonicalType(InnerType);
2564    ParenType *CheckT = ParenTypes.FindNodeOrInsertPos(ID, InsertPos);
2565    assert(!CheckT && "Paren canonical type broken");
2566    (void)CheckT;
2567  }
2568
2569  T = new (*this) ParenType(InnerType, Canon);
2570  Types.push_back(T);
2571  ParenTypes.InsertNode(T, InsertPos);
2572  return QualType(T, 0);
2573}
2574
2575QualType ASTContext::getDependentNameType(ElaboratedTypeKeyword Keyword,
2576                                          NestedNameSpecifier *NNS,
2577                                          const IdentifierInfo *Name,
2578                                          QualType Canon) const {
2579  assert(NNS->isDependent() && "nested-name-specifier must be dependent");
2580
2581  if (Canon.isNull()) {
2582    NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
2583    ElaboratedTypeKeyword CanonKeyword = Keyword;
2584    if (Keyword == ETK_None)
2585      CanonKeyword = ETK_Typename;
2586
2587    if (CanonNNS != NNS || CanonKeyword != Keyword)
2588      Canon = getDependentNameType(CanonKeyword, CanonNNS, Name);
2589  }
2590
2591  llvm::FoldingSetNodeID ID;
2592  DependentNameType::Profile(ID, Keyword, NNS, Name);
2593
2594  void *InsertPos = 0;
2595  DependentNameType *T
2596    = DependentNameTypes.FindNodeOrInsertPos(ID, InsertPos);
2597  if (T)
2598    return QualType(T, 0);
2599
2600  T = new (*this) DependentNameType(Keyword, NNS, Name, Canon);
2601  Types.push_back(T);
2602  DependentNameTypes.InsertNode(T, InsertPos);
2603  return QualType(T, 0);
2604}
2605
2606QualType
2607ASTContext::getDependentTemplateSpecializationType(
2608                                 ElaboratedTypeKeyword Keyword,
2609                                 NestedNameSpecifier *NNS,
2610                                 const IdentifierInfo *Name,
2611                                 const TemplateArgumentListInfo &Args) const {
2612  // TODO: avoid this copy
2613  SmallVector<TemplateArgument, 16> ArgCopy;
2614  for (unsigned I = 0, E = Args.size(); I != E; ++I)
2615    ArgCopy.push_back(Args[I].getArgument());
2616  return getDependentTemplateSpecializationType(Keyword, NNS, Name,
2617                                                ArgCopy.size(),
2618                                                ArgCopy.data());
2619}
2620
2621QualType
2622ASTContext::getDependentTemplateSpecializationType(
2623                                 ElaboratedTypeKeyword Keyword,
2624                                 NestedNameSpecifier *NNS,
2625                                 const IdentifierInfo *Name,
2626                                 unsigned NumArgs,
2627                                 const TemplateArgument *Args) const {
2628  assert((!NNS || NNS->isDependent()) &&
2629         "nested-name-specifier must be dependent");
2630
2631  llvm::FoldingSetNodeID ID;
2632  DependentTemplateSpecializationType::Profile(ID, *this, Keyword, NNS,
2633                                               Name, NumArgs, Args);
2634
2635  void *InsertPos = 0;
2636  DependentTemplateSpecializationType *T
2637    = DependentTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
2638  if (T)
2639    return QualType(T, 0);
2640
2641  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
2642
2643  ElaboratedTypeKeyword CanonKeyword = Keyword;
2644  if (Keyword == ETK_None) CanonKeyword = ETK_Typename;
2645
2646  bool AnyNonCanonArgs = false;
2647  SmallVector<TemplateArgument, 16> CanonArgs(NumArgs);
2648  for (unsigned I = 0; I != NumArgs; ++I) {
2649    CanonArgs[I] = getCanonicalTemplateArgument(Args[I]);
2650    if (!CanonArgs[I].structurallyEquals(Args[I]))
2651      AnyNonCanonArgs = true;
2652  }
2653
2654  QualType Canon;
2655  if (AnyNonCanonArgs || CanonNNS != NNS || CanonKeyword != Keyword) {
2656    Canon = getDependentTemplateSpecializationType(CanonKeyword, CanonNNS,
2657                                                   Name, NumArgs,
2658                                                   CanonArgs.data());
2659
2660    // Find the insert position again.
2661    DependentTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
2662  }
2663
2664  void *Mem = Allocate((sizeof(DependentTemplateSpecializationType) +
2665                        sizeof(TemplateArgument) * NumArgs),
2666                       TypeAlignment);
2667  T = new (Mem) DependentTemplateSpecializationType(Keyword, NNS,
2668                                                    Name, NumArgs, Args, Canon);
2669  Types.push_back(T);
2670  DependentTemplateSpecializationTypes.InsertNode(T, InsertPos);
2671  return QualType(T, 0);
2672}
2673
2674QualType ASTContext::getPackExpansionType(QualType Pattern,
2675                                      llvm::Optional<unsigned> NumExpansions) {
2676  llvm::FoldingSetNodeID ID;
2677  PackExpansionType::Profile(ID, Pattern, NumExpansions);
2678
2679  assert(Pattern->containsUnexpandedParameterPack() &&
2680         "Pack expansions must expand one or more parameter packs");
2681  void *InsertPos = 0;
2682  PackExpansionType *T
2683    = PackExpansionTypes.FindNodeOrInsertPos(ID, InsertPos);
2684  if (T)
2685    return QualType(T, 0);
2686
2687  QualType Canon;
2688  if (!Pattern.isCanonical()) {
2689    Canon = getPackExpansionType(getCanonicalType(Pattern), NumExpansions);
2690
2691    // Find the insert position again.
2692    PackExpansionTypes.FindNodeOrInsertPos(ID, InsertPos);
2693  }
2694
2695  T = new (*this) PackExpansionType(Pattern, Canon, NumExpansions);
2696  Types.push_back(T);
2697  PackExpansionTypes.InsertNode(T, InsertPos);
2698  return QualType(T, 0);
2699}
2700
2701/// CmpProtocolNames - Comparison predicate for sorting protocols
2702/// alphabetically.
2703static bool CmpProtocolNames(const ObjCProtocolDecl *LHS,
2704                            const ObjCProtocolDecl *RHS) {
2705  return LHS->getDeclName() < RHS->getDeclName();
2706}
2707
2708static bool areSortedAndUniqued(ObjCProtocolDecl * const *Protocols,
2709                                unsigned NumProtocols) {
2710  if (NumProtocols == 0) return true;
2711
2712  if (Protocols[0]->getCanonicalDecl() != Protocols[0])
2713    return false;
2714
2715  for (unsigned i = 1; i != NumProtocols; ++i)
2716    if (!CmpProtocolNames(Protocols[i-1], Protocols[i]) ||
2717        Protocols[i]->getCanonicalDecl() != Protocols[i])
2718      return false;
2719  return true;
2720}
2721
2722static void SortAndUniqueProtocols(ObjCProtocolDecl **Protocols,
2723                                   unsigned &NumProtocols) {
2724  ObjCProtocolDecl **ProtocolsEnd = Protocols+NumProtocols;
2725
2726  // Sort protocols, keyed by name.
2727  std::sort(Protocols, Protocols+NumProtocols, CmpProtocolNames);
2728
2729  // Canonicalize.
2730  for (unsigned I = 0, N = NumProtocols; I != N; ++I)
2731    Protocols[I] = Protocols[I]->getCanonicalDecl();
2732
2733  // Remove duplicates.
2734  ProtocolsEnd = std::unique(Protocols, ProtocolsEnd);
2735  NumProtocols = ProtocolsEnd-Protocols;
2736}
2737
2738QualType ASTContext::getObjCObjectType(QualType BaseType,
2739                                       ObjCProtocolDecl * const *Protocols,
2740                                       unsigned NumProtocols) const {
2741  // If the base type is an interface and there aren't any protocols
2742  // to add, then the interface type will do just fine.
2743  if (!NumProtocols && isa<ObjCInterfaceType>(BaseType))
2744    return BaseType;
2745
2746  // Look in the folding set for an existing type.
2747  llvm::FoldingSetNodeID ID;
2748  ObjCObjectTypeImpl::Profile(ID, BaseType, Protocols, NumProtocols);
2749  void *InsertPos = 0;
2750  if (ObjCObjectType *QT = ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos))
2751    return QualType(QT, 0);
2752
2753  // Build the canonical type, which has the canonical base type and
2754  // a sorted-and-uniqued list of protocols.
2755  QualType Canonical;
2756  bool ProtocolsSorted = areSortedAndUniqued(Protocols, NumProtocols);
2757  if (!ProtocolsSorted || !BaseType.isCanonical()) {
2758    if (!ProtocolsSorted) {
2759      SmallVector<ObjCProtocolDecl*, 8> Sorted(Protocols,
2760                                                     Protocols + NumProtocols);
2761      unsigned UniqueCount = NumProtocols;
2762
2763      SortAndUniqueProtocols(&Sorted[0], UniqueCount);
2764      Canonical = getObjCObjectType(getCanonicalType(BaseType),
2765                                    &Sorted[0], UniqueCount);
2766    } else {
2767      Canonical = getObjCObjectType(getCanonicalType(BaseType),
2768                                    Protocols, NumProtocols);
2769    }
2770
2771    // Regenerate InsertPos.
2772    ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos);
2773  }
2774
2775  unsigned Size = sizeof(ObjCObjectTypeImpl);
2776  Size += NumProtocols * sizeof(ObjCProtocolDecl *);
2777  void *Mem = Allocate(Size, TypeAlignment);
2778  ObjCObjectTypeImpl *T =
2779    new (Mem) ObjCObjectTypeImpl(Canonical, BaseType, Protocols, NumProtocols);
2780
2781  Types.push_back(T);
2782  ObjCObjectTypes.InsertNode(T, InsertPos);
2783  return QualType(T, 0);
2784}
2785
2786/// getObjCObjectPointerType - Return a ObjCObjectPointerType type for
2787/// the given object type.
2788QualType ASTContext::getObjCObjectPointerType(QualType ObjectT) const {
2789  llvm::FoldingSetNodeID ID;
2790  ObjCObjectPointerType::Profile(ID, ObjectT);
2791
2792  void *InsertPos = 0;
2793  if (ObjCObjectPointerType *QT =
2794              ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
2795    return QualType(QT, 0);
2796
2797  // Find the canonical object type.
2798  QualType Canonical;
2799  if (!ObjectT.isCanonical()) {
2800    Canonical = getObjCObjectPointerType(getCanonicalType(ObjectT));
2801
2802    // Regenerate InsertPos.
2803    ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
2804  }
2805
2806  // No match.
2807  void *Mem = Allocate(sizeof(ObjCObjectPointerType), TypeAlignment);
2808  ObjCObjectPointerType *QType =
2809    new (Mem) ObjCObjectPointerType(Canonical, ObjectT);
2810
2811  Types.push_back(QType);
2812  ObjCObjectPointerTypes.InsertNode(QType, InsertPos);
2813  return QualType(QType, 0);
2814}
2815
2816/// getObjCInterfaceType - Return the unique reference to the type for the
2817/// specified ObjC interface decl. The list of protocols is optional.
2818QualType ASTContext::getObjCInterfaceType(const ObjCInterfaceDecl *Decl,
2819                                          ObjCInterfaceDecl *PrevDecl) const {
2820  if (Decl->TypeForDecl)
2821    return QualType(Decl->TypeForDecl, 0);
2822
2823  if (PrevDecl) {
2824    assert(PrevDecl->TypeForDecl && "previous decl has no TypeForDecl");
2825    Decl->TypeForDecl = PrevDecl->TypeForDecl;
2826    return QualType(PrevDecl->TypeForDecl, 0);
2827  }
2828
2829  // Prefer the definition, if there is one.
2830  if (const ObjCInterfaceDecl *Def = Decl->getDefinition())
2831    Decl = Def;
2832
2833  void *Mem = Allocate(sizeof(ObjCInterfaceType), TypeAlignment);
2834  ObjCInterfaceType *T = new (Mem) ObjCInterfaceType(Decl);
2835  Decl->TypeForDecl = T;
2836  Types.push_back(T);
2837  return QualType(T, 0);
2838}
2839
2840/// getTypeOfExprType - Unlike many "get<Type>" functions, we can't unique
2841/// TypeOfExprType AST's (since expression's are never shared). For example,
2842/// multiple declarations that refer to "typeof(x)" all contain different
2843/// DeclRefExpr's. This doesn't effect the type checker, since it operates
2844/// on canonical type's (which are always unique).
2845QualType ASTContext::getTypeOfExprType(Expr *tofExpr) const {
2846  TypeOfExprType *toe;
2847  if (tofExpr->isTypeDependent()) {
2848    llvm::FoldingSetNodeID ID;
2849    DependentTypeOfExprType::Profile(ID, *this, tofExpr);
2850
2851    void *InsertPos = 0;
2852    DependentTypeOfExprType *Canon
2853      = DependentTypeOfExprTypes.FindNodeOrInsertPos(ID, InsertPos);
2854    if (Canon) {
2855      // We already have a "canonical" version of an identical, dependent
2856      // typeof(expr) type. Use that as our canonical type.
2857      toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr,
2858                                          QualType((TypeOfExprType*)Canon, 0));
2859    } else {
2860      // Build a new, canonical typeof(expr) type.
2861      Canon
2862        = new (*this, TypeAlignment) DependentTypeOfExprType(*this, tofExpr);
2863      DependentTypeOfExprTypes.InsertNode(Canon, InsertPos);
2864      toe = Canon;
2865    }
2866  } else {
2867    QualType Canonical = getCanonicalType(tofExpr->getType());
2868    toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr, Canonical);
2869  }
2870  Types.push_back(toe);
2871  return QualType(toe, 0);
2872}
2873
2874/// getTypeOfType -  Unlike many "get<Type>" functions, we don't unique
2875/// TypeOfType AST's. The only motivation to unique these nodes would be
2876/// memory savings. Since typeof(t) is fairly uncommon, space shouldn't be
2877/// an issue. This doesn't effect the type checker, since it operates
2878/// on canonical type's (which are always unique).
2879QualType ASTContext::getTypeOfType(QualType tofType) const {
2880  QualType Canonical = getCanonicalType(tofType);
2881  TypeOfType *tot = new (*this, TypeAlignment) TypeOfType(tofType, Canonical);
2882  Types.push_back(tot);
2883  return QualType(tot, 0);
2884}
2885
2886/// getDecltypeForExpr - Given an expr, will return the decltype for that
2887/// expression, according to the rules in C++0x [dcl.type.simple]p4
2888static QualType getDecltypeForExpr(const Expr *e, const ASTContext &Context) {
2889  if (e->isTypeDependent())
2890    return Context.DependentTy;
2891
2892  // If e is an id expression or a class member access, decltype(e) is defined
2893  // as the type of the entity named by e.
2894  if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(e)) {
2895    if (const ValueDecl *VD = dyn_cast<ValueDecl>(DRE->getDecl()))
2896      return VD->getType();
2897  }
2898  if (const MemberExpr *ME = dyn_cast<MemberExpr>(e)) {
2899    if (const FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl()))
2900      return FD->getType();
2901  }
2902  // If e is a function call or an invocation of an overloaded operator,
2903  // (parentheses around e are ignored), decltype(e) is defined as the
2904  // return type of that function.
2905  if (const CallExpr *CE = dyn_cast<CallExpr>(e->IgnoreParens()))
2906    return CE->getCallReturnType();
2907
2908  QualType T = e->getType();
2909
2910  // Otherwise, where T is the type of e, if e is an lvalue, decltype(e) is
2911  // defined as T&, otherwise decltype(e) is defined as T.
2912  if (e->isLValue())
2913    T = Context.getLValueReferenceType(T);
2914
2915  return T;
2916}
2917
2918/// getDecltypeType -  Unlike many "get<Type>" functions, we don't unique
2919/// DecltypeType AST's. The only motivation to unique these nodes would be
2920/// memory savings. Since decltype(t) is fairly uncommon, space shouldn't be
2921/// an issue. This doesn't effect the type checker, since it operates
2922/// on canonical types (which are always unique).
2923QualType ASTContext::getDecltypeType(Expr *e) const {
2924  DecltypeType *dt;
2925
2926  // C++0x [temp.type]p2:
2927  //   If an expression e involves a template parameter, decltype(e) denotes a
2928  //   unique dependent type. Two such decltype-specifiers refer to the same
2929  //   type only if their expressions are equivalent (14.5.6.1).
2930  if (e->isInstantiationDependent()) {
2931    llvm::FoldingSetNodeID ID;
2932    DependentDecltypeType::Profile(ID, *this, e);
2933
2934    void *InsertPos = 0;
2935    DependentDecltypeType *Canon
2936      = DependentDecltypeTypes.FindNodeOrInsertPos(ID, InsertPos);
2937    if (Canon) {
2938      // We already have a "canonical" version of an equivalent, dependent
2939      // decltype type. Use that as our canonical type.
2940      dt = new (*this, TypeAlignment) DecltypeType(e, DependentTy,
2941                                       QualType((DecltypeType*)Canon, 0));
2942    } else {
2943      // Build a new, canonical typeof(expr) type.
2944      Canon = new (*this, TypeAlignment) DependentDecltypeType(*this, e);
2945      DependentDecltypeTypes.InsertNode(Canon, InsertPos);
2946      dt = Canon;
2947    }
2948  } else {
2949    QualType T = getDecltypeForExpr(e, *this);
2950    dt = new (*this, TypeAlignment) DecltypeType(e, T, getCanonicalType(T));
2951  }
2952  Types.push_back(dt);
2953  return QualType(dt, 0);
2954}
2955
2956/// getUnaryTransformationType - We don't unique these, since the memory
2957/// savings are minimal and these are rare.
2958QualType ASTContext::getUnaryTransformType(QualType BaseType,
2959                                           QualType UnderlyingType,
2960                                           UnaryTransformType::UTTKind Kind)
2961    const {
2962  UnaryTransformType *Ty =
2963    new (*this, TypeAlignment) UnaryTransformType (BaseType, UnderlyingType,
2964                                                   Kind,
2965                                 UnderlyingType->isDependentType() ?
2966                                    QualType() : UnderlyingType);
2967  Types.push_back(Ty);
2968  return QualType(Ty, 0);
2969}
2970
2971/// getAutoType - We only unique auto types after they've been deduced.
2972QualType ASTContext::getAutoType(QualType DeducedType) const {
2973  void *InsertPos = 0;
2974  if (!DeducedType.isNull()) {
2975    // Look in the folding set for an existing type.
2976    llvm::FoldingSetNodeID ID;
2977    AutoType::Profile(ID, DeducedType);
2978    if (AutoType *AT = AutoTypes.FindNodeOrInsertPos(ID, InsertPos))
2979      return QualType(AT, 0);
2980  }
2981
2982  AutoType *AT = new (*this, TypeAlignment) AutoType(DeducedType);
2983  Types.push_back(AT);
2984  if (InsertPos)
2985    AutoTypes.InsertNode(AT, InsertPos);
2986  return QualType(AT, 0);
2987}
2988
2989/// getAtomicType - Return the uniqued reference to the atomic type for
2990/// the given value type.
2991QualType ASTContext::getAtomicType(QualType T) const {
2992  // Unique pointers, to guarantee there is only one pointer of a particular
2993  // structure.
2994  llvm::FoldingSetNodeID ID;
2995  AtomicType::Profile(ID, T);
2996
2997  void *InsertPos = 0;
2998  if (AtomicType *AT = AtomicTypes.FindNodeOrInsertPos(ID, InsertPos))
2999    return QualType(AT, 0);
3000
3001  // If the atomic value type isn't canonical, this won't be a canonical type
3002  // either, so fill in the canonical type field.
3003  QualType Canonical;
3004  if (!T.isCanonical()) {
3005    Canonical = getAtomicType(getCanonicalType(T));
3006
3007    // Get the new insert position for the node we care about.
3008    AtomicType *NewIP = AtomicTypes.FindNodeOrInsertPos(ID, InsertPos);
3009    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
3010  }
3011  AtomicType *New = new (*this, TypeAlignment) AtomicType(T, Canonical);
3012  Types.push_back(New);
3013  AtomicTypes.InsertNode(New, InsertPos);
3014  return QualType(New, 0);
3015}
3016
3017/// getAutoDeductType - Get type pattern for deducing against 'auto'.
3018QualType ASTContext::getAutoDeductType() const {
3019  if (AutoDeductTy.isNull())
3020    AutoDeductTy = getAutoType(QualType());
3021  assert(!AutoDeductTy.isNull() && "can't build 'auto' pattern");
3022  return AutoDeductTy;
3023}
3024
3025/// getAutoRRefDeductType - Get type pattern for deducing against 'auto &&'.
3026QualType ASTContext::getAutoRRefDeductType() const {
3027  if (AutoRRefDeductTy.isNull())
3028    AutoRRefDeductTy = getRValueReferenceType(getAutoDeductType());
3029  assert(!AutoRRefDeductTy.isNull() && "can't build 'auto &&' pattern");
3030  return AutoRRefDeductTy;
3031}
3032
3033/// getTagDeclType - Return the unique reference to the type for the
3034/// specified TagDecl (struct/union/class/enum) decl.
3035QualType ASTContext::getTagDeclType(const TagDecl *Decl) const {
3036  assert (Decl);
3037  // FIXME: What is the design on getTagDeclType when it requires casting
3038  // away const?  mutable?
3039  return getTypeDeclType(const_cast<TagDecl*>(Decl));
3040}
3041
3042/// getSizeType - Return the unique type for "size_t" (C99 7.17), the result
3043/// of the sizeof operator (C99 6.5.3.4p4). The value is target dependent and
3044/// needs to agree with the definition in <stddef.h>.
3045CanQualType ASTContext::getSizeType() const {
3046  return getFromTargetType(Target->getSizeType());
3047}
3048
3049/// getIntMaxType - Return the unique type for "intmax_t" (C99 7.18.1.5).
3050CanQualType ASTContext::getIntMaxType() const {
3051  return getFromTargetType(Target->getIntMaxType());
3052}
3053
3054/// getUIntMaxType - Return the unique type for "uintmax_t" (C99 7.18.1.5).
3055CanQualType ASTContext::getUIntMaxType() const {
3056  return getFromTargetType(Target->getUIntMaxType());
3057}
3058
3059/// getSignedWCharType - Return the type of "signed wchar_t".
3060/// Used when in C++, as a GCC extension.
3061QualType ASTContext::getSignedWCharType() const {
3062  // FIXME: derive from "Target" ?
3063  return WCharTy;
3064}
3065
3066/// getUnsignedWCharType - Return the type of "unsigned wchar_t".
3067/// Used when in C++, as a GCC extension.
3068QualType ASTContext::getUnsignedWCharType() const {
3069  // FIXME: derive from "Target" ?
3070  return UnsignedIntTy;
3071}
3072
3073/// getPointerDiffType - Return the unique type for "ptrdiff_t" (C99 7.17)
3074/// defined in <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9).
3075QualType ASTContext::getPointerDiffType() const {
3076  return getFromTargetType(Target->getPtrDiffType(0));
3077}
3078
3079//===----------------------------------------------------------------------===//
3080//                              Type Operators
3081//===----------------------------------------------------------------------===//
3082
3083CanQualType ASTContext::getCanonicalParamType(QualType T) const {
3084  // Push qualifiers into arrays, and then discard any remaining
3085  // qualifiers.
3086  T = getCanonicalType(T);
3087  T = getVariableArrayDecayedType(T);
3088  const Type *Ty = T.getTypePtr();
3089  QualType Result;
3090  if (isa<ArrayType>(Ty)) {
3091    Result = getArrayDecayedType(QualType(Ty,0));
3092  } else if (isa<FunctionType>(Ty)) {
3093    Result = getPointerType(QualType(Ty, 0));
3094  } else {
3095    Result = QualType(Ty, 0);
3096  }
3097
3098  return CanQualType::CreateUnsafe(Result);
3099}
3100
3101QualType ASTContext::getUnqualifiedArrayType(QualType type,
3102                                             Qualifiers &quals) {
3103  SplitQualType splitType = type.getSplitUnqualifiedType();
3104
3105  // FIXME: getSplitUnqualifiedType() actually walks all the way to
3106  // the unqualified desugared type and then drops it on the floor.
3107  // We then have to strip that sugar back off with
3108  // getUnqualifiedDesugaredType(), which is silly.
3109  const ArrayType *AT =
3110    dyn_cast<ArrayType>(splitType.first->getUnqualifiedDesugaredType());
3111
3112  // If we don't have an array, just use the results in splitType.
3113  if (!AT) {
3114    quals = splitType.second;
3115    return QualType(splitType.first, 0);
3116  }
3117
3118  // Otherwise, recurse on the array's element type.
3119  QualType elementType = AT->getElementType();
3120  QualType unqualElementType = getUnqualifiedArrayType(elementType, quals);
3121
3122  // If that didn't change the element type, AT has no qualifiers, so we
3123  // can just use the results in splitType.
3124  if (elementType == unqualElementType) {
3125    assert(quals.empty()); // from the recursive call
3126    quals = splitType.second;
3127    return QualType(splitType.first, 0);
3128  }
3129
3130  // Otherwise, add in the qualifiers from the outermost type, then
3131  // build the type back up.
3132  quals.addConsistentQualifiers(splitType.second);
3133
3134  if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) {
3135    return getConstantArrayType(unqualElementType, CAT->getSize(),
3136                                CAT->getSizeModifier(), 0);
3137  }
3138
3139  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) {
3140    return getIncompleteArrayType(unqualElementType, IAT->getSizeModifier(), 0);
3141  }
3142
3143  if (const VariableArrayType *VAT = dyn_cast<VariableArrayType>(AT)) {
3144    return getVariableArrayType(unqualElementType,
3145                                VAT->getSizeExpr(),
3146                                VAT->getSizeModifier(),
3147                                VAT->getIndexTypeCVRQualifiers(),
3148                                VAT->getBracketsRange());
3149  }
3150
3151  const DependentSizedArrayType *DSAT = cast<DependentSizedArrayType>(AT);
3152  return getDependentSizedArrayType(unqualElementType, DSAT->getSizeExpr(),
3153                                    DSAT->getSizeModifier(), 0,
3154                                    SourceRange());
3155}
3156
3157/// UnwrapSimilarPointerTypes - If T1 and T2 are pointer types  that
3158/// may be similar (C++ 4.4), replaces T1 and T2 with the type that
3159/// they point to and return true. If T1 and T2 aren't pointer types
3160/// or pointer-to-member types, or if they are not similar at this
3161/// level, returns false and leaves T1 and T2 unchanged. Top-level
3162/// qualifiers on T1 and T2 are ignored. This function will typically
3163/// be called in a loop that successively "unwraps" pointer and
3164/// pointer-to-member types to compare them at each level.
3165bool ASTContext::UnwrapSimilarPointerTypes(QualType &T1, QualType &T2) {
3166  const PointerType *T1PtrType = T1->getAs<PointerType>(),
3167                    *T2PtrType = T2->getAs<PointerType>();
3168  if (T1PtrType && T2PtrType) {
3169    T1 = T1PtrType->getPointeeType();
3170    T2 = T2PtrType->getPointeeType();
3171    return true;
3172  }
3173
3174  const MemberPointerType *T1MPType = T1->getAs<MemberPointerType>(),
3175                          *T2MPType = T2->getAs<MemberPointerType>();
3176  if (T1MPType && T2MPType &&
3177      hasSameUnqualifiedType(QualType(T1MPType->getClass(), 0),
3178                             QualType(T2MPType->getClass(), 0))) {
3179    T1 = T1MPType->getPointeeType();
3180    T2 = T2MPType->getPointeeType();
3181    return true;
3182  }
3183
3184  if (getLangOptions().ObjC1) {
3185    const ObjCObjectPointerType *T1OPType = T1->getAs<ObjCObjectPointerType>(),
3186                                *T2OPType = T2->getAs<ObjCObjectPointerType>();
3187    if (T1OPType && T2OPType) {
3188      T1 = T1OPType->getPointeeType();
3189      T2 = T2OPType->getPointeeType();
3190      return true;
3191    }
3192  }
3193
3194  // FIXME: Block pointers, too?
3195
3196  return false;
3197}
3198
3199DeclarationNameInfo
3200ASTContext::getNameForTemplate(TemplateName Name,
3201                               SourceLocation NameLoc) const {
3202  switch (Name.getKind()) {
3203  case TemplateName::QualifiedTemplate:
3204  case TemplateName::Template:
3205    // DNInfo work in progress: CHECKME: what about DNLoc?
3206    return DeclarationNameInfo(Name.getAsTemplateDecl()->getDeclName(),
3207                               NameLoc);
3208
3209  case TemplateName::OverloadedTemplate: {
3210    OverloadedTemplateStorage *Storage = Name.getAsOverloadedTemplate();
3211    // DNInfo work in progress: CHECKME: what about DNLoc?
3212    return DeclarationNameInfo((*Storage->begin())->getDeclName(), NameLoc);
3213  }
3214
3215  case TemplateName::DependentTemplate: {
3216    DependentTemplateName *DTN = Name.getAsDependentTemplateName();
3217    DeclarationName DName;
3218    if (DTN->isIdentifier()) {
3219      DName = DeclarationNames.getIdentifier(DTN->getIdentifier());
3220      return DeclarationNameInfo(DName, NameLoc);
3221    } else {
3222      DName = DeclarationNames.getCXXOperatorName(DTN->getOperator());
3223      // DNInfo work in progress: FIXME: source locations?
3224      DeclarationNameLoc DNLoc;
3225      DNLoc.CXXOperatorName.BeginOpNameLoc = SourceLocation().getRawEncoding();
3226      DNLoc.CXXOperatorName.EndOpNameLoc = SourceLocation().getRawEncoding();
3227      return DeclarationNameInfo(DName, NameLoc, DNLoc);
3228    }
3229  }
3230
3231  case TemplateName::SubstTemplateTemplateParm: {
3232    SubstTemplateTemplateParmStorage *subst
3233      = Name.getAsSubstTemplateTemplateParm();
3234    return DeclarationNameInfo(subst->getParameter()->getDeclName(),
3235                               NameLoc);
3236  }
3237
3238  case TemplateName::SubstTemplateTemplateParmPack: {
3239    SubstTemplateTemplateParmPackStorage *subst
3240      = Name.getAsSubstTemplateTemplateParmPack();
3241    return DeclarationNameInfo(subst->getParameterPack()->getDeclName(),
3242                               NameLoc);
3243  }
3244  }
3245
3246  llvm_unreachable("bad template name kind!");
3247}
3248
3249TemplateName ASTContext::getCanonicalTemplateName(TemplateName Name) const {
3250  switch (Name.getKind()) {
3251  case TemplateName::QualifiedTemplate:
3252  case TemplateName::Template: {
3253    TemplateDecl *Template = Name.getAsTemplateDecl();
3254    if (TemplateTemplateParmDecl *TTP
3255          = dyn_cast<TemplateTemplateParmDecl>(Template))
3256      Template = getCanonicalTemplateTemplateParmDecl(TTP);
3257
3258    // The canonical template name is the canonical template declaration.
3259    return TemplateName(cast<TemplateDecl>(Template->getCanonicalDecl()));
3260  }
3261
3262  case TemplateName::OverloadedTemplate:
3263    llvm_unreachable("cannot canonicalize overloaded template");
3264
3265  case TemplateName::DependentTemplate: {
3266    DependentTemplateName *DTN = Name.getAsDependentTemplateName();
3267    assert(DTN && "Non-dependent template names must refer to template decls.");
3268    return DTN->CanonicalTemplateName;
3269  }
3270
3271  case TemplateName::SubstTemplateTemplateParm: {
3272    SubstTemplateTemplateParmStorage *subst
3273      = Name.getAsSubstTemplateTemplateParm();
3274    return getCanonicalTemplateName(subst->getReplacement());
3275  }
3276
3277  case TemplateName::SubstTemplateTemplateParmPack: {
3278    SubstTemplateTemplateParmPackStorage *subst
3279                                  = Name.getAsSubstTemplateTemplateParmPack();
3280    TemplateTemplateParmDecl *canonParameter
3281      = getCanonicalTemplateTemplateParmDecl(subst->getParameterPack());
3282    TemplateArgument canonArgPack
3283      = getCanonicalTemplateArgument(subst->getArgumentPack());
3284    return getSubstTemplateTemplateParmPack(canonParameter, canonArgPack);
3285  }
3286  }
3287
3288  llvm_unreachable("bad template name!");
3289}
3290
3291bool ASTContext::hasSameTemplateName(TemplateName X, TemplateName Y) {
3292  X = getCanonicalTemplateName(X);
3293  Y = getCanonicalTemplateName(Y);
3294  return X.getAsVoidPointer() == Y.getAsVoidPointer();
3295}
3296
3297TemplateArgument
3298ASTContext::getCanonicalTemplateArgument(const TemplateArgument &Arg) const {
3299  switch (Arg.getKind()) {
3300    case TemplateArgument::Null:
3301      return Arg;
3302
3303    case TemplateArgument::Expression:
3304      return Arg;
3305
3306    case TemplateArgument::Declaration:
3307      return TemplateArgument(Arg.getAsDecl()->getCanonicalDecl());
3308
3309    case TemplateArgument::Template:
3310      return TemplateArgument(getCanonicalTemplateName(Arg.getAsTemplate()));
3311
3312    case TemplateArgument::TemplateExpansion:
3313      return TemplateArgument(getCanonicalTemplateName(
3314                                         Arg.getAsTemplateOrTemplatePattern()),
3315                              Arg.getNumTemplateExpansions());
3316
3317    case TemplateArgument::Integral:
3318      return TemplateArgument(*Arg.getAsIntegral(),
3319                              getCanonicalType(Arg.getIntegralType()));
3320
3321    case TemplateArgument::Type:
3322      return TemplateArgument(getCanonicalType(Arg.getAsType()));
3323
3324    case TemplateArgument::Pack: {
3325      if (Arg.pack_size() == 0)
3326        return Arg;
3327
3328      TemplateArgument *CanonArgs
3329        = new (*this) TemplateArgument[Arg.pack_size()];
3330      unsigned Idx = 0;
3331      for (TemplateArgument::pack_iterator A = Arg.pack_begin(),
3332                                        AEnd = Arg.pack_end();
3333           A != AEnd; (void)++A, ++Idx)
3334        CanonArgs[Idx] = getCanonicalTemplateArgument(*A);
3335
3336      return TemplateArgument(CanonArgs, Arg.pack_size());
3337    }
3338  }
3339
3340  // Silence GCC warning
3341  llvm_unreachable("Unhandled template argument kind");
3342}
3343
3344NestedNameSpecifier *
3345ASTContext::getCanonicalNestedNameSpecifier(NestedNameSpecifier *NNS) const {
3346  if (!NNS)
3347    return 0;
3348
3349  switch (NNS->getKind()) {
3350  case NestedNameSpecifier::Identifier:
3351    // Canonicalize the prefix but keep the identifier the same.
3352    return NestedNameSpecifier::Create(*this,
3353                         getCanonicalNestedNameSpecifier(NNS->getPrefix()),
3354                                       NNS->getAsIdentifier());
3355
3356  case NestedNameSpecifier::Namespace:
3357    // A namespace is canonical; build a nested-name-specifier with
3358    // this namespace and no prefix.
3359    return NestedNameSpecifier::Create(*this, 0,
3360                                 NNS->getAsNamespace()->getOriginalNamespace());
3361
3362  case NestedNameSpecifier::NamespaceAlias:
3363    // A namespace is canonical; build a nested-name-specifier with
3364    // this namespace and no prefix.
3365    return NestedNameSpecifier::Create(*this, 0,
3366                                    NNS->getAsNamespaceAlias()->getNamespace()
3367                                                      ->getOriginalNamespace());
3368
3369  case NestedNameSpecifier::TypeSpec:
3370  case NestedNameSpecifier::TypeSpecWithTemplate: {
3371    QualType T = getCanonicalType(QualType(NNS->getAsType(), 0));
3372
3373    // If we have some kind of dependent-named type (e.g., "typename T::type"),
3374    // break it apart into its prefix and identifier, then reconsititute those
3375    // as the canonical nested-name-specifier. This is required to canonicalize
3376    // a dependent nested-name-specifier involving typedefs of dependent-name
3377    // types, e.g.,
3378    //   typedef typename T::type T1;
3379    //   typedef typename T1::type T2;
3380    if (const DependentNameType *DNT = T->getAs<DependentNameType>()) {
3381      NestedNameSpecifier *Prefix
3382        = getCanonicalNestedNameSpecifier(DNT->getQualifier());
3383      return NestedNameSpecifier::Create(*this, Prefix,
3384                           const_cast<IdentifierInfo *>(DNT->getIdentifier()));
3385    }
3386
3387    // Do the same thing as above, but with dependent-named specializations.
3388    if (const DependentTemplateSpecializationType *DTST
3389          = T->getAs<DependentTemplateSpecializationType>()) {
3390      NestedNameSpecifier *Prefix
3391        = getCanonicalNestedNameSpecifier(DTST->getQualifier());
3392
3393      T = getDependentTemplateSpecializationType(DTST->getKeyword(),
3394                                                 Prefix, DTST->getIdentifier(),
3395                                                 DTST->getNumArgs(),
3396                                                 DTST->getArgs());
3397      T = getCanonicalType(T);
3398    }
3399
3400    return NestedNameSpecifier::Create(*this, 0, false,
3401                                       const_cast<Type*>(T.getTypePtr()));
3402  }
3403
3404  case NestedNameSpecifier::Global:
3405    // The global specifier is canonical and unique.
3406    return NNS;
3407  }
3408
3409  llvm_unreachable("Invalid NestedNameSpecifier::Kind!");
3410}
3411
3412
3413const ArrayType *ASTContext::getAsArrayType(QualType T) const {
3414  // Handle the non-qualified case efficiently.
3415  if (!T.hasLocalQualifiers()) {
3416    // Handle the common positive case fast.
3417    if (const ArrayType *AT = dyn_cast<ArrayType>(T))
3418      return AT;
3419  }
3420
3421  // Handle the common negative case fast.
3422  if (!isa<ArrayType>(T.getCanonicalType()))
3423    return 0;
3424
3425  // Apply any qualifiers from the array type to the element type.  This
3426  // implements C99 6.7.3p8: "If the specification of an array type includes
3427  // any type qualifiers, the element type is so qualified, not the array type."
3428
3429  // If we get here, we either have type qualifiers on the type, or we have
3430  // sugar such as a typedef in the way.  If we have type qualifiers on the type
3431  // we must propagate them down into the element type.
3432
3433  SplitQualType split = T.getSplitDesugaredType();
3434  Qualifiers qs = split.second;
3435
3436  // If we have a simple case, just return now.
3437  const ArrayType *ATy = dyn_cast<ArrayType>(split.first);
3438  if (ATy == 0 || qs.empty())
3439    return ATy;
3440
3441  // Otherwise, we have an array and we have qualifiers on it.  Push the
3442  // qualifiers into the array element type and return a new array type.
3443  QualType NewEltTy = getQualifiedType(ATy->getElementType(), qs);
3444
3445  if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(ATy))
3446    return cast<ArrayType>(getConstantArrayType(NewEltTy, CAT->getSize(),
3447                                                CAT->getSizeModifier(),
3448                                           CAT->getIndexTypeCVRQualifiers()));
3449  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(ATy))
3450    return cast<ArrayType>(getIncompleteArrayType(NewEltTy,
3451                                                  IAT->getSizeModifier(),
3452                                           IAT->getIndexTypeCVRQualifiers()));
3453
3454  if (const DependentSizedArrayType *DSAT
3455        = dyn_cast<DependentSizedArrayType>(ATy))
3456    return cast<ArrayType>(
3457                     getDependentSizedArrayType(NewEltTy,
3458                                                DSAT->getSizeExpr(),
3459                                                DSAT->getSizeModifier(),
3460                                              DSAT->getIndexTypeCVRQualifiers(),
3461                                                DSAT->getBracketsRange()));
3462
3463  const VariableArrayType *VAT = cast<VariableArrayType>(ATy);
3464  return cast<ArrayType>(getVariableArrayType(NewEltTy,
3465                                              VAT->getSizeExpr(),
3466                                              VAT->getSizeModifier(),
3467                                              VAT->getIndexTypeCVRQualifiers(),
3468                                              VAT->getBracketsRange()));
3469}
3470
3471QualType ASTContext::getAdjustedParameterType(QualType T) {
3472  // C99 6.7.5.3p7:
3473  //   A declaration of a parameter as "array of type" shall be
3474  //   adjusted to "qualified pointer to type", where the type
3475  //   qualifiers (if any) are those specified within the [ and ] of
3476  //   the array type derivation.
3477  if (T->isArrayType())
3478    return getArrayDecayedType(T);
3479
3480  // C99 6.7.5.3p8:
3481  //   A declaration of a parameter as "function returning type"
3482  //   shall be adjusted to "pointer to function returning type", as
3483  //   in 6.3.2.1.
3484  if (T->isFunctionType())
3485    return getPointerType(T);
3486
3487  return T;
3488}
3489
3490QualType ASTContext::getSignatureParameterType(QualType T) {
3491  T = getVariableArrayDecayedType(T);
3492  T = getAdjustedParameterType(T);
3493  return T.getUnqualifiedType();
3494}
3495
3496/// getArrayDecayedType - Return the properly qualified result of decaying the
3497/// specified array type to a pointer.  This operation is non-trivial when
3498/// handling typedefs etc.  The canonical type of "T" must be an array type,
3499/// this returns a pointer to a properly qualified element of the array.
3500///
3501/// See C99 6.7.5.3p7 and C99 6.3.2.1p3.
3502QualType ASTContext::getArrayDecayedType(QualType Ty) const {
3503  // Get the element type with 'getAsArrayType' so that we don't lose any
3504  // typedefs in the element type of the array.  This also handles propagation
3505  // of type qualifiers from the array type into the element type if present
3506  // (C99 6.7.3p8).
3507  const ArrayType *PrettyArrayType = getAsArrayType(Ty);
3508  assert(PrettyArrayType && "Not an array type!");
3509
3510  QualType PtrTy = getPointerType(PrettyArrayType->getElementType());
3511
3512  // int x[restrict 4] ->  int *restrict
3513  return getQualifiedType(PtrTy, PrettyArrayType->getIndexTypeQualifiers());
3514}
3515
3516QualType ASTContext::getBaseElementType(const ArrayType *array) const {
3517  return getBaseElementType(array->getElementType());
3518}
3519
3520QualType ASTContext::getBaseElementType(QualType type) const {
3521  Qualifiers qs;
3522  while (true) {
3523    SplitQualType split = type.getSplitDesugaredType();
3524    const ArrayType *array = split.first->getAsArrayTypeUnsafe();
3525    if (!array) break;
3526
3527    type = array->getElementType();
3528    qs.addConsistentQualifiers(split.second);
3529  }
3530
3531  return getQualifiedType(type, qs);
3532}
3533
3534/// getConstantArrayElementCount - Returns number of constant array elements.
3535uint64_t
3536ASTContext::getConstantArrayElementCount(const ConstantArrayType *CA)  const {
3537  uint64_t ElementCount = 1;
3538  do {
3539    ElementCount *= CA->getSize().getZExtValue();
3540    CA = dyn_cast<ConstantArrayType>(CA->getElementType());
3541  } while (CA);
3542  return ElementCount;
3543}
3544
3545/// getFloatingRank - Return a relative rank for floating point types.
3546/// This routine will assert if passed a built-in type that isn't a float.
3547static FloatingRank getFloatingRank(QualType T) {
3548  if (const ComplexType *CT = T->getAs<ComplexType>())
3549    return getFloatingRank(CT->getElementType());
3550
3551  assert(T->getAs<BuiltinType>() && "getFloatingRank(): not a floating type");
3552  switch (T->getAs<BuiltinType>()->getKind()) {
3553  default: llvm_unreachable("getFloatingRank(): not a floating type");
3554  case BuiltinType::Half:       return HalfRank;
3555  case BuiltinType::Float:      return FloatRank;
3556  case BuiltinType::Double:     return DoubleRank;
3557  case BuiltinType::LongDouble: return LongDoubleRank;
3558  }
3559}
3560
3561/// getFloatingTypeOfSizeWithinDomain - Returns a real floating
3562/// point or a complex type (based on typeDomain/typeSize).
3563/// 'typeDomain' is a real floating point or complex type.
3564/// 'typeSize' is a real floating point or complex type.
3565QualType ASTContext::getFloatingTypeOfSizeWithinDomain(QualType Size,
3566                                                       QualType Domain) const {
3567  FloatingRank EltRank = getFloatingRank(Size);
3568  if (Domain->isComplexType()) {
3569    switch (EltRank) {
3570    case HalfRank: llvm_unreachable("Complex half is not supported");
3571    case FloatRank:      return FloatComplexTy;
3572    case DoubleRank:     return DoubleComplexTy;
3573    case LongDoubleRank: return LongDoubleComplexTy;
3574    }
3575  }
3576
3577  assert(Domain->isRealFloatingType() && "Unknown domain!");
3578  switch (EltRank) {
3579  case HalfRank: llvm_unreachable("Half ranks are not valid here");
3580  case FloatRank:      return FloatTy;
3581  case DoubleRank:     return DoubleTy;
3582  case LongDoubleRank: return LongDoubleTy;
3583  }
3584  llvm_unreachable("getFloatingRank(): illegal value for rank");
3585}
3586
3587/// getFloatingTypeOrder - Compare the rank of the two specified floating
3588/// point types, ignoring the domain of the type (i.e. 'double' ==
3589/// '_Complex double').  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
3590/// LHS < RHS, return -1.
3591int ASTContext::getFloatingTypeOrder(QualType LHS, QualType RHS) const {
3592  FloatingRank LHSR = getFloatingRank(LHS);
3593  FloatingRank RHSR = getFloatingRank(RHS);
3594
3595  if (LHSR == RHSR)
3596    return 0;
3597  if (LHSR > RHSR)
3598    return 1;
3599  return -1;
3600}
3601
3602/// getIntegerRank - Return an integer conversion rank (C99 6.3.1.1p1). This
3603/// routine will assert if passed a built-in type that isn't an integer or enum,
3604/// or if it is not canonicalized.
3605unsigned ASTContext::getIntegerRank(const Type *T) const {
3606  assert(T->isCanonicalUnqualified() && "T should be canonicalized");
3607
3608  switch (cast<BuiltinType>(T)->getKind()) {
3609  default: llvm_unreachable("getIntegerRank(): not a built-in integer");
3610  case BuiltinType::Bool:
3611    return 1 + (getIntWidth(BoolTy) << 3);
3612  case BuiltinType::Char_S:
3613  case BuiltinType::Char_U:
3614  case BuiltinType::SChar:
3615  case BuiltinType::UChar:
3616    return 2 + (getIntWidth(CharTy) << 3);
3617  case BuiltinType::Short:
3618  case BuiltinType::UShort:
3619    return 3 + (getIntWidth(ShortTy) << 3);
3620  case BuiltinType::Int:
3621  case BuiltinType::UInt:
3622    return 4 + (getIntWidth(IntTy) << 3);
3623  case BuiltinType::Long:
3624  case BuiltinType::ULong:
3625    return 5 + (getIntWidth(LongTy) << 3);
3626  case BuiltinType::LongLong:
3627  case BuiltinType::ULongLong:
3628    return 6 + (getIntWidth(LongLongTy) << 3);
3629  case BuiltinType::Int128:
3630  case BuiltinType::UInt128:
3631    return 7 + (getIntWidth(Int128Ty) << 3);
3632  }
3633}
3634
3635/// \brief Whether this is a promotable bitfield reference according
3636/// to C99 6.3.1.1p2, bullet 2 (and GCC extensions).
3637///
3638/// \returns the type this bit-field will promote to, or NULL if no
3639/// promotion occurs.
3640QualType ASTContext::isPromotableBitField(Expr *E) const {
3641  if (E->isTypeDependent() || E->isValueDependent())
3642    return QualType();
3643
3644  FieldDecl *Field = E->getBitField();
3645  if (!Field)
3646    return QualType();
3647
3648  QualType FT = Field->getType();
3649
3650  uint64_t BitWidth = Field->getBitWidthValue(*this);
3651  uint64_t IntSize = getTypeSize(IntTy);
3652  // GCC extension compatibility: if the bit-field size is less than or equal
3653  // to the size of int, it gets promoted no matter what its type is.
3654  // For instance, unsigned long bf : 4 gets promoted to signed int.
3655  if (BitWidth < IntSize)
3656    return IntTy;
3657
3658  if (BitWidth == IntSize)
3659    return FT->isSignedIntegerType() ? IntTy : UnsignedIntTy;
3660
3661  // Types bigger than int are not subject to promotions, and therefore act
3662  // like the base type.
3663  // FIXME: This doesn't quite match what gcc does, but what gcc does here
3664  // is ridiculous.
3665  return QualType();
3666}
3667
3668/// getPromotedIntegerType - Returns the type that Promotable will
3669/// promote to: C99 6.3.1.1p2, assuming that Promotable is a promotable
3670/// integer type.
3671QualType ASTContext::getPromotedIntegerType(QualType Promotable) const {
3672  assert(!Promotable.isNull());
3673  assert(Promotable->isPromotableIntegerType());
3674  if (const EnumType *ET = Promotable->getAs<EnumType>())
3675    return ET->getDecl()->getPromotionType();
3676
3677  if (const BuiltinType *BT = Promotable->getAs<BuiltinType>()) {
3678    // C++ [conv.prom]: A prvalue of type char16_t, char32_t, or wchar_t
3679    // (3.9.1) can be converted to a prvalue of the first of the following
3680    // types that can represent all the values of its underlying type:
3681    // int, unsigned int, long int, unsigned long int, long long int, or
3682    // unsigned long long int [...]
3683    // FIXME: Is there some better way to compute this?
3684    if (BT->getKind() == BuiltinType::WChar_S ||
3685        BT->getKind() == BuiltinType::WChar_U ||
3686        BT->getKind() == BuiltinType::Char16 ||
3687        BT->getKind() == BuiltinType::Char32) {
3688      bool FromIsSigned = BT->getKind() == BuiltinType::WChar_S;
3689      uint64_t FromSize = getTypeSize(BT);
3690      QualType PromoteTypes[] = { IntTy, UnsignedIntTy, LongTy, UnsignedLongTy,
3691                                  LongLongTy, UnsignedLongLongTy };
3692      for (size_t Idx = 0; Idx < llvm::array_lengthof(PromoteTypes); ++Idx) {
3693        uint64_t ToSize = getTypeSize(PromoteTypes[Idx]);
3694        if (FromSize < ToSize ||
3695            (FromSize == ToSize &&
3696             FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType()))
3697          return PromoteTypes[Idx];
3698      }
3699      llvm_unreachable("char type should fit into long long");
3700    }
3701  }
3702
3703  // At this point, we should have a signed or unsigned integer type.
3704  if (Promotable->isSignedIntegerType())
3705    return IntTy;
3706  uint64_t PromotableSize = getTypeSize(Promotable);
3707  uint64_t IntSize = getTypeSize(IntTy);
3708  assert(Promotable->isUnsignedIntegerType() && PromotableSize <= IntSize);
3709  return (PromotableSize != IntSize) ? IntTy : UnsignedIntTy;
3710}
3711
3712/// \brief Recurses in pointer/array types until it finds an objc retainable
3713/// type and returns its ownership.
3714Qualifiers::ObjCLifetime ASTContext::getInnerObjCOwnership(QualType T) const {
3715  while (!T.isNull()) {
3716    if (T.getObjCLifetime() != Qualifiers::OCL_None)
3717      return T.getObjCLifetime();
3718    if (T->isArrayType())
3719      T = getBaseElementType(T);
3720    else if (const PointerType *PT = T->getAs<PointerType>())
3721      T = PT->getPointeeType();
3722    else if (const ReferenceType *RT = T->getAs<ReferenceType>())
3723      T = RT->getPointeeType();
3724    else
3725      break;
3726  }
3727
3728  return Qualifiers::OCL_None;
3729}
3730
3731/// getIntegerTypeOrder - Returns the highest ranked integer type:
3732/// C99 6.3.1.8p1.  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
3733/// LHS < RHS, return -1.
3734int ASTContext::getIntegerTypeOrder(QualType LHS, QualType RHS) const {
3735  const Type *LHSC = getCanonicalType(LHS).getTypePtr();
3736  const Type *RHSC = getCanonicalType(RHS).getTypePtr();
3737  if (LHSC == RHSC) return 0;
3738
3739  bool LHSUnsigned = LHSC->isUnsignedIntegerType();
3740  bool RHSUnsigned = RHSC->isUnsignedIntegerType();
3741
3742  unsigned LHSRank = getIntegerRank(LHSC);
3743  unsigned RHSRank = getIntegerRank(RHSC);
3744
3745  if (LHSUnsigned == RHSUnsigned) {  // Both signed or both unsigned.
3746    if (LHSRank == RHSRank) return 0;
3747    return LHSRank > RHSRank ? 1 : -1;
3748  }
3749
3750  // Otherwise, the LHS is signed and the RHS is unsigned or visa versa.
3751  if (LHSUnsigned) {
3752    // If the unsigned [LHS] type is larger, return it.
3753    if (LHSRank >= RHSRank)
3754      return 1;
3755
3756    // If the signed type can represent all values of the unsigned type, it
3757    // wins.  Because we are dealing with 2's complement and types that are
3758    // powers of two larger than each other, this is always safe.
3759    return -1;
3760  }
3761
3762  // If the unsigned [RHS] type is larger, return it.
3763  if (RHSRank >= LHSRank)
3764    return -1;
3765
3766  // If the signed type can represent all values of the unsigned type, it
3767  // wins.  Because we are dealing with 2's complement and types that are
3768  // powers of two larger than each other, this is always safe.
3769  return 1;
3770}
3771
3772static RecordDecl *
3773CreateRecordDecl(const ASTContext &Ctx, RecordDecl::TagKind TK,
3774                 DeclContext *DC, IdentifierInfo *Id) {
3775  SourceLocation Loc;
3776  if (Ctx.getLangOptions().CPlusPlus)
3777    return CXXRecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id);
3778  else
3779    return RecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id);
3780}
3781
3782// getCFConstantStringType - Return the type used for constant CFStrings.
3783QualType ASTContext::getCFConstantStringType() const {
3784  if (!CFConstantStringTypeDecl) {
3785    CFConstantStringTypeDecl =
3786      CreateRecordDecl(*this, TTK_Struct, TUDecl,
3787                       &Idents.get("NSConstantString"));
3788    CFConstantStringTypeDecl->startDefinition();
3789
3790    QualType FieldTypes[4];
3791
3792    // const int *isa;
3793    FieldTypes[0] = getPointerType(IntTy.withConst());
3794    // int flags;
3795    FieldTypes[1] = IntTy;
3796    // const char *str;
3797    FieldTypes[2] = getPointerType(CharTy.withConst());
3798    // long length;
3799    FieldTypes[3] = LongTy;
3800
3801    // Create fields
3802    for (unsigned i = 0; i < 4; ++i) {
3803      FieldDecl *Field = FieldDecl::Create(*this, CFConstantStringTypeDecl,
3804                                           SourceLocation(),
3805                                           SourceLocation(), 0,
3806                                           FieldTypes[i], /*TInfo=*/0,
3807                                           /*BitWidth=*/0,
3808                                           /*Mutable=*/false,
3809                                           /*HasInit=*/false);
3810      Field->setAccess(AS_public);
3811      CFConstantStringTypeDecl->addDecl(Field);
3812    }
3813
3814    CFConstantStringTypeDecl->completeDefinition();
3815  }
3816
3817  return getTagDeclType(CFConstantStringTypeDecl);
3818}
3819
3820void ASTContext::setCFConstantStringType(QualType T) {
3821  const RecordType *Rec = T->getAs<RecordType>();
3822  assert(Rec && "Invalid CFConstantStringType");
3823  CFConstantStringTypeDecl = Rec->getDecl();
3824}
3825
3826QualType ASTContext::getBlockDescriptorType() const {
3827  if (BlockDescriptorType)
3828    return getTagDeclType(BlockDescriptorType);
3829
3830  RecordDecl *T;
3831  // FIXME: Needs the FlagAppleBlock bit.
3832  T = CreateRecordDecl(*this, TTK_Struct, TUDecl,
3833                       &Idents.get("__block_descriptor"));
3834  T->startDefinition();
3835
3836  QualType FieldTypes[] = {
3837    UnsignedLongTy,
3838    UnsignedLongTy,
3839  };
3840
3841  const char *FieldNames[] = {
3842    "reserved",
3843    "Size"
3844  };
3845
3846  for (size_t i = 0; i < 2; ++i) {
3847    FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(),
3848                                         SourceLocation(),
3849                                         &Idents.get(FieldNames[i]),
3850                                         FieldTypes[i], /*TInfo=*/0,
3851                                         /*BitWidth=*/0,
3852                                         /*Mutable=*/false,
3853                                         /*HasInit=*/false);
3854    Field->setAccess(AS_public);
3855    T->addDecl(Field);
3856  }
3857
3858  T->completeDefinition();
3859
3860  BlockDescriptorType = T;
3861
3862  return getTagDeclType(BlockDescriptorType);
3863}
3864
3865QualType ASTContext::getBlockDescriptorExtendedType() const {
3866  if (BlockDescriptorExtendedType)
3867    return getTagDeclType(BlockDescriptorExtendedType);
3868
3869  RecordDecl *T;
3870  // FIXME: Needs the FlagAppleBlock bit.
3871  T = CreateRecordDecl(*this, TTK_Struct, TUDecl,
3872                       &Idents.get("__block_descriptor_withcopydispose"));
3873  T->startDefinition();
3874
3875  QualType FieldTypes[] = {
3876    UnsignedLongTy,
3877    UnsignedLongTy,
3878    getPointerType(VoidPtrTy),
3879    getPointerType(VoidPtrTy)
3880  };
3881
3882  const char *FieldNames[] = {
3883    "reserved",
3884    "Size",
3885    "CopyFuncPtr",
3886    "DestroyFuncPtr"
3887  };
3888
3889  for (size_t i = 0; i < 4; ++i) {
3890    FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(),
3891                                         SourceLocation(),
3892                                         &Idents.get(FieldNames[i]),
3893                                         FieldTypes[i], /*TInfo=*/0,
3894                                         /*BitWidth=*/0,
3895                                         /*Mutable=*/false,
3896                                         /*HasInit=*/false);
3897    Field->setAccess(AS_public);
3898    T->addDecl(Field);
3899  }
3900
3901  T->completeDefinition();
3902
3903  BlockDescriptorExtendedType = T;
3904
3905  return getTagDeclType(BlockDescriptorExtendedType);
3906}
3907
3908bool ASTContext::BlockRequiresCopying(QualType Ty) const {
3909  if (Ty->isObjCRetainableType())
3910    return true;
3911  if (getLangOptions().CPlusPlus) {
3912    if (const RecordType *RT = Ty->getAs<RecordType>()) {
3913      CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
3914      return RD->hasConstCopyConstructor();
3915
3916    }
3917  }
3918  return false;
3919}
3920
3921QualType
3922ASTContext::BuildByRefType(StringRef DeclName, QualType Ty) const {
3923  //  type = struct __Block_byref_1_X {
3924  //    void *__isa;
3925  //    struct __Block_byref_1_X *__forwarding;
3926  //    unsigned int __flags;
3927  //    unsigned int __size;
3928  //    void *__copy_helper;            // as needed
3929  //    void *__destroy_help            // as needed
3930  //    int X;
3931  //  } *
3932
3933  bool HasCopyAndDispose = BlockRequiresCopying(Ty);
3934
3935  // FIXME: Move up
3936  llvm::SmallString<36> Name;
3937  llvm::raw_svector_ostream(Name) << "__Block_byref_" <<
3938                                  ++UniqueBlockByRefTypeID << '_' << DeclName;
3939  RecordDecl *T;
3940  T = CreateRecordDecl(*this, TTK_Struct, TUDecl, &Idents.get(Name.str()));
3941  T->startDefinition();
3942  QualType Int32Ty = IntTy;
3943  assert(getIntWidth(IntTy) == 32 && "non-32bit int not supported");
3944  QualType FieldTypes[] = {
3945    getPointerType(VoidPtrTy),
3946    getPointerType(getTagDeclType(T)),
3947    Int32Ty,
3948    Int32Ty,
3949    getPointerType(VoidPtrTy),
3950    getPointerType(VoidPtrTy),
3951    Ty
3952  };
3953
3954  StringRef FieldNames[] = {
3955    "__isa",
3956    "__forwarding",
3957    "__flags",
3958    "__size",
3959    "__copy_helper",
3960    "__destroy_helper",
3961    DeclName,
3962  };
3963
3964  for (size_t i = 0; i < 7; ++i) {
3965    if (!HasCopyAndDispose && i >=4 && i <= 5)
3966      continue;
3967    FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(),
3968                                         SourceLocation(),
3969                                         &Idents.get(FieldNames[i]),
3970                                         FieldTypes[i], /*TInfo=*/0,
3971                                         /*BitWidth=*/0, /*Mutable=*/false,
3972                                         /*HasInit=*/false);
3973    Field->setAccess(AS_public);
3974    T->addDecl(Field);
3975  }
3976
3977  T->completeDefinition();
3978
3979  return getPointerType(getTagDeclType(T));
3980}
3981
3982TypedefDecl *ASTContext::getObjCInstanceTypeDecl() {
3983  if (!ObjCInstanceTypeDecl)
3984    ObjCInstanceTypeDecl = TypedefDecl::Create(*this,
3985                                               getTranslationUnitDecl(),
3986                                               SourceLocation(),
3987                                               SourceLocation(),
3988                                               &Idents.get("instancetype"),
3989                                     getTrivialTypeSourceInfo(getObjCIdType()));
3990  return ObjCInstanceTypeDecl;
3991}
3992
3993// This returns true if a type has been typedefed to BOOL:
3994// typedef <type> BOOL;
3995static bool isTypeTypedefedAsBOOL(QualType T) {
3996  if (const TypedefType *TT = dyn_cast<TypedefType>(T))
3997    if (IdentifierInfo *II = TT->getDecl()->getIdentifier())
3998      return II->isStr("BOOL");
3999
4000  return false;
4001}
4002
4003/// getObjCEncodingTypeSize returns size of type for objective-c encoding
4004/// purpose.
4005CharUnits ASTContext::getObjCEncodingTypeSize(QualType type) const {
4006  if (!type->isIncompleteArrayType() && type->isIncompleteType())
4007    return CharUnits::Zero();
4008
4009  CharUnits sz = getTypeSizeInChars(type);
4010
4011  // Make all integer and enum types at least as large as an int
4012  if (sz.isPositive() && type->isIntegralOrEnumerationType())
4013    sz = std::max(sz, getTypeSizeInChars(IntTy));
4014  // Treat arrays as pointers, since that's how they're passed in.
4015  else if (type->isArrayType())
4016    sz = getTypeSizeInChars(VoidPtrTy);
4017  return sz;
4018}
4019
4020static inline
4021std::string charUnitsToString(const CharUnits &CU) {
4022  return llvm::itostr(CU.getQuantity());
4023}
4024
4025/// getObjCEncodingForBlock - Return the encoded type for this block
4026/// declaration.
4027std::string ASTContext::getObjCEncodingForBlock(const BlockExpr *Expr) const {
4028  std::string S;
4029
4030  const BlockDecl *Decl = Expr->getBlockDecl();
4031  QualType BlockTy =
4032      Expr->getType()->getAs<BlockPointerType>()->getPointeeType();
4033  // Encode result type.
4034  getObjCEncodingForType(BlockTy->getAs<FunctionType>()->getResultType(), S);
4035  // Compute size of all parameters.
4036  // Start with computing size of a pointer in number of bytes.
4037  // FIXME: There might(should) be a better way of doing this computation!
4038  SourceLocation Loc;
4039  CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy);
4040  CharUnits ParmOffset = PtrSize;
4041  for (BlockDecl::param_const_iterator PI = Decl->param_begin(),
4042       E = Decl->param_end(); PI != E; ++PI) {
4043    QualType PType = (*PI)->getType();
4044    CharUnits sz = getObjCEncodingTypeSize(PType);
4045    assert (sz.isPositive() && "BlockExpr - Incomplete param type");
4046    ParmOffset += sz;
4047  }
4048  // Size of the argument frame
4049  S += charUnitsToString(ParmOffset);
4050  // Block pointer and offset.
4051  S += "@?0";
4052
4053  // Argument types.
4054  ParmOffset = PtrSize;
4055  for (BlockDecl::param_const_iterator PI = Decl->param_begin(), E =
4056       Decl->param_end(); PI != E; ++PI) {
4057    ParmVarDecl *PVDecl = *PI;
4058    QualType PType = PVDecl->getOriginalType();
4059    if (const ArrayType *AT =
4060          dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
4061      // Use array's original type only if it has known number of
4062      // elements.
4063      if (!isa<ConstantArrayType>(AT))
4064        PType = PVDecl->getType();
4065    } else if (PType->isFunctionType())
4066      PType = PVDecl->getType();
4067    getObjCEncodingForType(PType, S);
4068    S += charUnitsToString(ParmOffset);
4069    ParmOffset += getObjCEncodingTypeSize(PType);
4070  }
4071
4072  return S;
4073}
4074
4075bool ASTContext::getObjCEncodingForFunctionDecl(const FunctionDecl *Decl,
4076                                                std::string& S) {
4077  // Encode result type.
4078  getObjCEncodingForType(Decl->getResultType(), S);
4079  CharUnits ParmOffset;
4080  // Compute size of all parameters.
4081  for (FunctionDecl::param_const_iterator PI = Decl->param_begin(),
4082       E = Decl->param_end(); PI != E; ++PI) {
4083    QualType PType = (*PI)->getType();
4084    CharUnits sz = getObjCEncodingTypeSize(PType);
4085    if (sz.isZero())
4086      return true;
4087
4088    assert (sz.isPositive() &&
4089        "getObjCEncodingForFunctionDecl - Incomplete param type");
4090    ParmOffset += sz;
4091  }
4092  S += charUnitsToString(ParmOffset);
4093  ParmOffset = CharUnits::Zero();
4094
4095  // Argument types.
4096  for (FunctionDecl::param_const_iterator PI = Decl->param_begin(),
4097       E = Decl->param_end(); PI != E; ++PI) {
4098    ParmVarDecl *PVDecl = *PI;
4099    QualType PType = PVDecl->getOriginalType();
4100    if (const ArrayType *AT =
4101          dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
4102      // Use array's original type only if it has known number of
4103      // elements.
4104      if (!isa<ConstantArrayType>(AT))
4105        PType = PVDecl->getType();
4106    } else if (PType->isFunctionType())
4107      PType = PVDecl->getType();
4108    getObjCEncodingForType(PType, S);
4109    S += charUnitsToString(ParmOffset);
4110    ParmOffset += getObjCEncodingTypeSize(PType);
4111  }
4112
4113  return false;
4114}
4115
4116/// getObjCEncodingForMethodParameter - Return the encoded type for a single
4117/// method parameter or return type. If Extended, include class names and
4118/// block object types.
4119void ASTContext::getObjCEncodingForMethodParameter(Decl::ObjCDeclQualifier QT,
4120                                                   QualType T, std::string& S,
4121                                                   bool Extended) const {
4122  // Encode type qualifer, 'in', 'inout', etc. for the parameter.
4123  getObjCEncodingForTypeQualifier(QT, S);
4124  // Encode parameter type.
4125  getObjCEncodingForTypeImpl(T, S, true, true, 0,
4126                             true     /*OutermostType*/,
4127                             false    /*EncodingProperty*/,
4128                             false    /*StructField*/,
4129                             Extended /*EncodeBlockParameters*/,
4130                             Extended /*EncodeClassNames*/);
4131}
4132
4133/// getObjCEncodingForMethodDecl - Return the encoded type for this method
4134/// declaration.
4135bool ASTContext::getObjCEncodingForMethodDecl(const ObjCMethodDecl *Decl,
4136                                              std::string& S,
4137                                              bool Extended) const {
4138  // FIXME: This is not very efficient.
4139  // Encode return type.
4140  getObjCEncodingForMethodParameter(Decl->getObjCDeclQualifier(),
4141                                    Decl->getResultType(), S, Extended);
4142  // Compute size of all parameters.
4143  // Start with computing size of a pointer in number of bytes.
4144  // FIXME: There might(should) be a better way of doing this computation!
4145  SourceLocation Loc;
4146  CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy);
4147  // The first two arguments (self and _cmd) are pointers; account for
4148  // their size.
4149  CharUnits ParmOffset = 2 * PtrSize;
4150  for (ObjCMethodDecl::param_const_iterator PI = Decl->param_begin(),
4151       E = Decl->sel_param_end(); PI != E; ++PI) {
4152    QualType PType = (*PI)->getType();
4153    CharUnits sz = getObjCEncodingTypeSize(PType);
4154    if (sz.isZero())
4155      return true;
4156
4157    assert (sz.isPositive() &&
4158        "getObjCEncodingForMethodDecl - Incomplete param type");
4159    ParmOffset += sz;
4160  }
4161  S += charUnitsToString(ParmOffset);
4162  S += "@0:";
4163  S += charUnitsToString(PtrSize);
4164
4165  // Argument types.
4166  ParmOffset = 2 * PtrSize;
4167  for (ObjCMethodDecl::param_const_iterator PI = Decl->param_begin(),
4168       E = Decl->sel_param_end(); PI != E; ++PI) {
4169    const ParmVarDecl *PVDecl = *PI;
4170    QualType PType = PVDecl->getOriginalType();
4171    if (const ArrayType *AT =
4172          dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
4173      // Use array's original type only if it has known number of
4174      // elements.
4175      if (!isa<ConstantArrayType>(AT))
4176        PType = PVDecl->getType();
4177    } else if (PType->isFunctionType())
4178      PType = PVDecl->getType();
4179    getObjCEncodingForMethodParameter(PVDecl->getObjCDeclQualifier(),
4180                                      PType, S, Extended);
4181    S += charUnitsToString(ParmOffset);
4182    ParmOffset += getObjCEncodingTypeSize(PType);
4183  }
4184
4185  return false;
4186}
4187
4188/// getObjCEncodingForPropertyDecl - Return the encoded type for this
4189/// property declaration. If non-NULL, Container must be either an
4190/// ObjCCategoryImplDecl or ObjCImplementationDecl; it should only be
4191/// NULL when getting encodings for protocol properties.
4192/// Property attributes are stored as a comma-delimited C string. The simple
4193/// attributes readonly and bycopy are encoded as single characters. The
4194/// parametrized attributes, getter=name, setter=name, and ivar=name, are
4195/// encoded as single characters, followed by an identifier. Property types
4196/// are also encoded as a parametrized attribute. The characters used to encode
4197/// these attributes are defined by the following enumeration:
4198/// @code
4199/// enum PropertyAttributes {
4200/// kPropertyReadOnly = 'R',   // property is read-only.
4201/// kPropertyBycopy = 'C',     // property is a copy of the value last assigned
4202/// kPropertyByref = '&',  // property is a reference to the value last assigned
4203/// kPropertyDynamic = 'D',    // property is dynamic
4204/// kPropertyGetter = 'G',     // followed by getter selector name
4205/// kPropertySetter = 'S',     // followed by setter selector name
4206/// kPropertyInstanceVariable = 'V'  // followed by instance variable  name
4207/// kPropertyType = 't'              // followed by old-style type encoding.
4208/// kPropertyWeak = 'W'              // 'weak' property
4209/// kPropertyStrong = 'P'            // property GC'able
4210/// kPropertyNonAtomic = 'N'         // property non-atomic
4211/// };
4212/// @endcode
4213void ASTContext::getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD,
4214                                                const Decl *Container,
4215                                                std::string& S) const {
4216  // Collect information from the property implementation decl(s).
4217  bool Dynamic = false;
4218  ObjCPropertyImplDecl *SynthesizePID = 0;
4219
4220  // FIXME: Duplicated code due to poor abstraction.
4221  if (Container) {
4222    if (const ObjCCategoryImplDecl *CID =
4223        dyn_cast<ObjCCategoryImplDecl>(Container)) {
4224      for (ObjCCategoryImplDecl::propimpl_iterator
4225             i = CID->propimpl_begin(), e = CID->propimpl_end();
4226           i != e; ++i) {
4227        ObjCPropertyImplDecl *PID = *i;
4228        if (PID->getPropertyDecl() == PD) {
4229          if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) {
4230            Dynamic = true;
4231          } else {
4232            SynthesizePID = PID;
4233          }
4234        }
4235      }
4236    } else {
4237      const ObjCImplementationDecl *OID=cast<ObjCImplementationDecl>(Container);
4238      for (ObjCCategoryImplDecl::propimpl_iterator
4239             i = OID->propimpl_begin(), e = OID->propimpl_end();
4240           i != e; ++i) {
4241        ObjCPropertyImplDecl *PID = *i;
4242        if (PID->getPropertyDecl() == PD) {
4243          if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) {
4244            Dynamic = true;
4245          } else {
4246            SynthesizePID = PID;
4247          }
4248        }
4249      }
4250    }
4251  }
4252
4253  // FIXME: This is not very efficient.
4254  S = "T";
4255
4256  // Encode result type.
4257  // GCC has some special rules regarding encoding of properties which
4258  // closely resembles encoding of ivars.
4259  getObjCEncodingForTypeImpl(PD->getType(), S, true, true, 0,
4260                             true /* outermost type */,
4261                             true /* encoding for property */);
4262
4263  if (PD->isReadOnly()) {
4264    S += ",R";
4265  } else {
4266    switch (PD->getSetterKind()) {
4267    case ObjCPropertyDecl::Assign: break;
4268    case ObjCPropertyDecl::Copy:   S += ",C"; break;
4269    case ObjCPropertyDecl::Retain: S += ",&"; break;
4270    case ObjCPropertyDecl::Weak:   S += ",W"; break;
4271    }
4272  }
4273
4274  // It really isn't clear at all what this means, since properties
4275  // are "dynamic by default".
4276  if (Dynamic)
4277    S += ",D";
4278
4279  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_nonatomic)
4280    S += ",N";
4281
4282  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_getter) {
4283    S += ",G";
4284    S += PD->getGetterName().getAsString();
4285  }
4286
4287  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_setter) {
4288    S += ",S";
4289    S += PD->getSetterName().getAsString();
4290  }
4291
4292  if (SynthesizePID) {
4293    const ObjCIvarDecl *OID = SynthesizePID->getPropertyIvarDecl();
4294    S += ",V";
4295    S += OID->getNameAsString();
4296  }
4297
4298  // FIXME: OBJCGC: weak & strong
4299}
4300
4301/// getLegacyIntegralTypeEncoding -
4302/// Another legacy compatibility encoding: 32-bit longs are encoded as
4303/// 'l' or 'L' , but not always.  For typedefs, we need to use
4304/// 'i' or 'I' instead if encoding a struct field, or a pointer!
4305///
4306void ASTContext::getLegacyIntegralTypeEncoding (QualType &PointeeTy) const {
4307  if (isa<TypedefType>(PointeeTy.getTypePtr())) {
4308    if (const BuiltinType *BT = PointeeTy->getAs<BuiltinType>()) {
4309      if (BT->getKind() == BuiltinType::ULong && getIntWidth(PointeeTy) == 32)
4310        PointeeTy = UnsignedIntTy;
4311      else
4312        if (BT->getKind() == BuiltinType::Long && getIntWidth(PointeeTy) == 32)
4313          PointeeTy = IntTy;
4314    }
4315  }
4316}
4317
4318void ASTContext::getObjCEncodingForType(QualType T, std::string& S,
4319                                        const FieldDecl *Field) const {
4320  // We follow the behavior of gcc, expanding structures which are
4321  // directly pointed to, and expanding embedded structures. Note that
4322  // these rules are sufficient to prevent recursive encoding of the
4323  // same type.
4324  getObjCEncodingForTypeImpl(T, S, true, true, Field,
4325                             true /* outermost type */);
4326}
4327
4328static char ObjCEncodingForPrimitiveKind(const ASTContext *C, QualType T) {
4329    switch (T->getAs<BuiltinType>()->getKind()) {
4330    default: llvm_unreachable("Unhandled builtin type kind");
4331    case BuiltinType::Void:       return 'v';
4332    case BuiltinType::Bool:       return 'B';
4333    case BuiltinType::Char_U:
4334    case BuiltinType::UChar:      return 'C';
4335    case BuiltinType::UShort:     return 'S';
4336    case BuiltinType::UInt:       return 'I';
4337    case BuiltinType::ULong:
4338        return C->getIntWidth(T) == 32 ? 'L' : 'Q';
4339    case BuiltinType::UInt128:    return 'T';
4340    case BuiltinType::ULongLong:  return 'Q';
4341    case BuiltinType::Char_S:
4342    case BuiltinType::SChar:      return 'c';
4343    case BuiltinType::Short:      return 's';
4344    case BuiltinType::WChar_S:
4345    case BuiltinType::WChar_U:
4346    case BuiltinType::Int:        return 'i';
4347    case BuiltinType::Long:
4348      return C->getIntWidth(T) == 32 ? 'l' : 'q';
4349    case BuiltinType::LongLong:   return 'q';
4350    case BuiltinType::Int128:     return 't';
4351    case BuiltinType::Float:      return 'f';
4352    case BuiltinType::Double:     return 'd';
4353    case BuiltinType::LongDouble: return 'D';
4354    }
4355}
4356
4357static char ObjCEncodingForEnumType(const ASTContext *C, const EnumType *ET) {
4358  EnumDecl *Enum = ET->getDecl();
4359
4360  // The encoding of an non-fixed enum type is always 'i', regardless of size.
4361  if (!Enum->isFixed())
4362    return 'i';
4363
4364  // The encoding of a fixed enum type matches its fixed underlying type.
4365  return ObjCEncodingForPrimitiveKind(C, Enum->getIntegerType());
4366}
4367
4368static void EncodeBitField(const ASTContext *Ctx, std::string& S,
4369                           QualType T, const FieldDecl *FD) {
4370  assert(FD->isBitField() && "not a bitfield - getObjCEncodingForTypeImpl");
4371  S += 'b';
4372  // The NeXT runtime encodes bit fields as b followed by the number of bits.
4373  // The GNU runtime requires more information; bitfields are encoded as b,
4374  // then the offset (in bits) of the first element, then the type of the
4375  // bitfield, then the size in bits.  For example, in this structure:
4376  //
4377  // struct
4378  // {
4379  //    int integer;
4380  //    int flags:2;
4381  // };
4382  // On a 32-bit system, the encoding for flags would be b2 for the NeXT
4383  // runtime, but b32i2 for the GNU runtime.  The reason for this extra
4384  // information is not especially sensible, but we're stuck with it for
4385  // compatibility with GCC, although providing it breaks anything that
4386  // actually uses runtime introspection and wants to work on both runtimes...
4387  if (!Ctx->getLangOptions().NeXTRuntime) {
4388    const RecordDecl *RD = FD->getParent();
4389    const ASTRecordLayout &RL = Ctx->getASTRecordLayout(RD);
4390    S += llvm::utostr(RL.getFieldOffset(FD->getFieldIndex()));
4391    if (const EnumType *ET = T->getAs<EnumType>())
4392      S += ObjCEncodingForEnumType(Ctx, ET);
4393    else
4394      S += ObjCEncodingForPrimitiveKind(Ctx, T);
4395  }
4396  S += llvm::utostr(FD->getBitWidthValue(*Ctx));
4397}
4398
4399// FIXME: Use SmallString for accumulating string.
4400void ASTContext::getObjCEncodingForTypeImpl(QualType T, std::string& S,
4401                                            bool ExpandPointedToStructures,
4402                                            bool ExpandStructures,
4403                                            const FieldDecl *FD,
4404                                            bool OutermostType,
4405                                            bool EncodingProperty,
4406                                            bool StructField,
4407                                            bool EncodeBlockParameters,
4408                                            bool EncodeClassNames) const {
4409  if (T->getAs<BuiltinType>()) {
4410    if (FD && FD->isBitField())
4411      return EncodeBitField(this, S, T, FD);
4412    S += ObjCEncodingForPrimitiveKind(this, T);
4413    return;
4414  }
4415
4416  if (const ComplexType *CT = T->getAs<ComplexType>()) {
4417    S += 'j';
4418    getObjCEncodingForTypeImpl(CT->getElementType(), S, false, false, 0, false,
4419                               false);
4420    return;
4421  }
4422
4423  // encoding for pointer or r3eference types.
4424  QualType PointeeTy;
4425  if (const PointerType *PT = T->getAs<PointerType>()) {
4426    if (PT->isObjCSelType()) {
4427      S += ':';
4428      return;
4429    }
4430    PointeeTy = PT->getPointeeType();
4431  }
4432  else if (const ReferenceType *RT = T->getAs<ReferenceType>())
4433    PointeeTy = RT->getPointeeType();
4434  if (!PointeeTy.isNull()) {
4435    bool isReadOnly = false;
4436    // For historical/compatibility reasons, the read-only qualifier of the
4437    // pointee gets emitted _before_ the '^'.  The read-only qualifier of
4438    // the pointer itself gets ignored, _unless_ we are looking at a typedef!
4439    // Also, do not emit the 'r' for anything but the outermost type!
4440    if (isa<TypedefType>(T.getTypePtr())) {
4441      if (OutermostType && T.isConstQualified()) {
4442        isReadOnly = true;
4443        S += 'r';
4444      }
4445    } else if (OutermostType) {
4446      QualType P = PointeeTy;
4447      while (P->getAs<PointerType>())
4448        P = P->getAs<PointerType>()->getPointeeType();
4449      if (P.isConstQualified()) {
4450        isReadOnly = true;
4451        S += 'r';
4452      }
4453    }
4454    if (isReadOnly) {
4455      // Another legacy compatibility encoding. Some ObjC qualifier and type
4456      // combinations need to be rearranged.
4457      // Rewrite "in const" from "nr" to "rn"
4458      if (StringRef(S).endswith("nr"))
4459        S.replace(S.end()-2, S.end(), "rn");
4460    }
4461
4462    if (PointeeTy->isCharType()) {
4463      // char pointer types should be encoded as '*' unless it is a
4464      // type that has been typedef'd to 'BOOL'.
4465      if (!isTypeTypedefedAsBOOL(PointeeTy)) {
4466        S += '*';
4467        return;
4468      }
4469    } else if (const RecordType *RTy = PointeeTy->getAs<RecordType>()) {
4470      // GCC binary compat: Need to convert "struct objc_class *" to "#".
4471      if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_class")) {
4472        S += '#';
4473        return;
4474      }
4475      // GCC binary compat: Need to convert "struct objc_object *" to "@".
4476      if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_object")) {
4477        S += '@';
4478        return;
4479      }
4480      // fall through...
4481    }
4482    S += '^';
4483    getLegacyIntegralTypeEncoding(PointeeTy);
4484
4485    getObjCEncodingForTypeImpl(PointeeTy, S, false, ExpandPointedToStructures,
4486                               NULL);
4487    return;
4488  }
4489
4490  if (const ArrayType *AT =
4491      // Ignore type qualifiers etc.
4492        dyn_cast<ArrayType>(T->getCanonicalTypeInternal())) {
4493    if (isa<IncompleteArrayType>(AT) && !StructField) {
4494      // Incomplete arrays are encoded as a pointer to the array element.
4495      S += '^';
4496
4497      getObjCEncodingForTypeImpl(AT->getElementType(), S,
4498                                 false, ExpandStructures, FD);
4499    } else {
4500      S += '[';
4501
4502      if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) {
4503        if (getTypeSize(CAT->getElementType()) == 0)
4504          S += '0';
4505        else
4506          S += llvm::utostr(CAT->getSize().getZExtValue());
4507      } else {
4508        //Variable length arrays are encoded as a regular array with 0 elements.
4509        assert((isa<VariableArrayType>(AT) || isa<IncompleteArrayType>(AT)) &&
4510               "Unknown array type!");
4511        S += '0';
4512      }
4513
4514      getObjCEncodingForTypeImpl(AT->getElementType(), S,
4515                                 false, ExpandStructures, FD);
4516      S += ']';
4517    }
4518    return;
4519  }
4520
4521  if (T->getAs<FunctionType>()) {
4522    S += '?';
4523    return;
4524  }
4525
4526  if (const RecordType *RTy = T->getAs<RecordType>()) {
4527    RecordDecl *RDecl = RTy->getDecl();
4528    S += RDecl->isUnion() ? '(' : '{';
4529    // Anonymous structures print as '?'
4530    if (const IdentifierInfo *II = RDecl->getIdentifier()) {
4531      S += II->getName();
4532      if (ClassTemplateSpecializationDecl *Spec
4533          = dyn_cast<ClassTemplateSpecializationDecl>(RDecl)) {
4534        const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
4535        std::string TemplateArgsStr
4536          = TemplateSpecializationType::PrintTemplateArgumentList(
4537                                            TemplateArgs.data(),
4538                                            TemplateArgs.size(),
4539                                            (*this).getPrintingPolicy());
4540
4541        S += TemplateArgsStr;
4542      }
4543    } else {
4544      S += '?';
4545    }
4546    if (ExpandStructures) {
4547      S += '=';
4548      if (!RDecl->isUnion()) {
4549        getObjCEncodingForStructureImpl(RDecl, S, FD);
4550      } else {
4551        for (RecordDecl::field_iterator Field = RDecl->field_begin(),
4552                                     FieldEnd = RDecl->field_end();
4553             Field != FieldEnd; ++Field) {
4554          if (FD) {
4555            S += '"';
4556            S += Field->getNameAsString();
4557            S += '"';
4558          }
4559
4560          // Special case bit-fields.
4561          if (Field->isBitField()) {
4562            getObjCEncodingForTypeImpl(Field->getType(), S, false, true,
4563                                       (*Field));
4564          } else {
4565            QualType qt = Field->getType();
4566            getLegacyIntegralTypeEncoding(qt);
4567            getObjCEncodingForTypeImpl(qt, S, false, true,
4568                                       FD, /*OutermostType*/false,
4569                                       /*EncodingProperty*/false,
4570                                       /*StructField*/true);
4571          }
4572        }
4573      }
4574    }
4575    S += RDecl->isUnion() ? ')' : '}';
4576    return;
4577  }
4578
4579  if (const EnumType *ET = T->getAs<EnumType>()) {
4580    if (FD && FD->isBitField())
4581      EncodeBitField(this, S, T, FD);
4582    else
4583      S += ObjCEncodingForEnumType(this, ET);
4584    return;
4585  }
4586
4587  if (const BlockPointerType *BT = T->getAs<BlockPointerType>()) {
4588    S += "@?"; // Unlike a pointer-to-function, which is "^?".
4589    if (EncodeBlockParameters) {
4590      const FunctionType *FT = BT->getPointeeType()->getAs<FunctionType>();
4591
4592      S += '<';
4593      // Block return type
4594      getObjCEncodingForTypeImpl(FT->getResultType(), S,
4595                                 ExpandPointedToStructures, ExpandStructures,
4596                                 FD,
4597                                 false /* OutermostType */,
4598                                 EncodingProperty,
4599                                 false /* StructField */,
4600                                 EncodeBlockParameters,
4601                                 EncodeClassNames);
4602      // Block self
4603      S += "@?";
4604      // Block parameters
4605      if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(FT)) {
4606        for (FunctionProtoType::arg_type_iterator I = FPT->arg_type_begin(),
4607               E = FPT->arg_type_end(); I && (I != E); ++I) {
4608          getObjCEncodingForTypeImpl(*I, S,
4609                                     ExpandPointedToStructures,
4610                                     ExpandStructures,
4611                                     FD,
4612                                     false /* OutermostType */,
4613                                     EncodingProperty,
4614                                     false /* StructField */,
4615                                     EncodeBlockParameters,
4616                                     EncodeClassNames);
4617        }
4618      }
4619      S += '>';
4620    }
4621    return;
4622  }
4623
4624  // Ignore protocol qualifiers when mangling at this level.
4625  if (const ObjCObjectType *OT = T->getAs<ObjCObjectType>())
4626    T = OT->getBaseType();
4627
4628  if (const ObjCInterfaceType *OIT = T->getAs<ObjCInterfaceType>()) {
4629    // @encode(class_name)
4630    ObjCInterfaceDecl *OI = OIT->getDecl();
4631    S += '{';
4632    const IdentifierInfo *II = OI->getIdentifier();
4633    S += II->getName();
4634    S += '=';
4635    SmallVector<const ObjCIvarDecl*, 32> Ivars;
4636    DeepCollectObjCIvars(OI, true, Ivars);
4637    for (unsigned i = 0, e = Ivars.size(); i != e; ++i) {
4638      const FieldDecl *Field = cast<FieldDecl>(Ivars[i]);
4639      if (Field->isBitField())
4640        getObjCEncodingForTypeImpl(Field->getType(), S, false, true, Field);
4641      else
4642        getObjCEncodingForTypeImpl(Field->getType(), S, false, true, FD);
4643    }
4644    S += '}';
4645    return;
4646  }
4647
4648  if (const ObjCObjectPointerType *OPT = T->getAs<ObjCObjectPointerType>()) {
4649    if (OPT->isObjCIdType()) {
4650      S += '@';
4651      return;
4652    }
4653
4654    if (OPT->isObjCClassType() || OPT->isObjCQualifiedClassType()) {
4655      // FIXME: Consider if we need to output qualifiers for 'Class<p>'.
4656      // Since this is a binary compatibility issue, need to consult with runtime
4657      // folks. Fortunately, this is a *very* obsure construct.
4658      S += '#';
4659      return;
4660    }
4661
4662    if (OPT->isObjCQualifiedIdType()) {
4663      getObjCEncodingForTypeImpl(getObjCIdType(), S,
4664                                 ExpandPointedToStructures,
4665                                 ExpandStructures, FD);
4666      if (FD || EncodingProperty || EncodeClassNames) {
4667        // Note that we do extended encoding of protocol qualifer list
4668        // Only when doing ivar or property encoding.
4669        S += '"';
4670        for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(),
4671             E = OPT->qual_end(); I != E; ++I) {
4672          S += '<';
4673          S += (*I)->getNameAsString();
4674          S += '>';
4675        }
4676        S += '"';
4677      }
4678      return;
4679    }
4680
4681    QualType PointeeTy = OPT->getPointeeType();
4682    if (!EncodingProperty &&
4683        isa<TypedefType>(PointeeTy.getTypePtr())) {
4684      // Another historical/compatibility reason.
4685      // We encode the underlying type which comes out as
4686      // {...};
4687      S += '^';
4688      getObjCEncodingForTypeImpl(PointeeTy, S,
4689                                 false, ExpandPointedToStructures,
4690                                 NULL);
4691      return;
4692    }
4693
4694    S += '@';
4695    if (OPT->getInterfaceDecl() &&
4696        (FD || EncodingProperty || EncodeClassNames)) {
4697      S += '"';
4698      S += OPT->getInterfaceDecl()->getIdentifier()->getName();
4699      for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(),
4700           E = OPT->qual_end(); I != E; ++I) {
4701        S += '<';
4702        S += (*I)->getNameAsString();
4703        S += '>';
4704      }
4705      S += '"';
4706    }
4707    return;
4708  }
4709
4710  // gcc just blithely ignores member pointers.
4711  // TODO: maybe there should be a mangling for these
4712  if (T->getAs<MemberPointerType>())
4713    return;
4714
4715  if (T->isVectorType()) {
4716    // This matches gcc's encoding, even though technically it is
4717    // insufficient.
4718    // FIXME. We should do a better job than gcc.
4719    return;
4720  }
4721
4722  llvm_unreachable("@encode for type not implemented!");
4723}
4724
4725void ASTContext::getObjCEncodingForStructureImpl(RecordDecl *RDecl,
4726                                                 std::string &S,
4727                                                 const FieldDecl *FD,
4728                                                 bool includeVBases) const {
4729  assert(RDecl && "Expected non-null RecordDecl");
4730  assert(!RDecl->isUnion() && "Should not be called for unions");
4731  if (!RDecl->getDefinition())
4732    return;
4733
4734  CXXRecordDecl *CXXRec = dyn_cast<CXXRecordDecl>(RDecl);
4735  std::multimap<uint64_t, NamedDecl *> FieldOrBaseOffsets;
4736  const ASTRecordLayout &layout = getASTRecordLayout(RDecl);
4737
4738  if (CXXRec) {
4739    for (CXXRecordDecl::base_class_iterator
4740           BI = CXXRec->bases_begin(),
4741           BE = CXXRec->bases_end(); BI != BE; ++BI) {
4742      if (!BI->isVirtual()) {
4743        CXXRecordDecl *base = BI->getType()->getAsCXXRecordDecl();
4744        if (base->isEmpty())
4745          continue;
4746        uint64_t offs = layout.getBaseClassOffsetInBits(base);
4747        FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
4748                                  std::make_pair(offs, base));
4749      }
4750    }
4751  }
4752
4753  unsigned i = 0;
4754  for (RecordDecl::field_iterator Field = RDecl->field_begin(),
4755                               FieldEnd = RDecl->field_end();
4756       Field != FieldEnd; ++Field, ++i) {
4757    uint64_t offs = layout.getFieldOffset(i);
4758    FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
4759                              std::make_pair(offs, *Field));
4760  }
4761
4762  if (CXXRec && includeVBases) {
4763    for (CXXRecordDecl::base_class_iterator
4764           BI = CXXRec->vbases_begin(),
4765           BE = CXXRec->vbases_end(); BI != BE; ++BI) {
4766      CXXRecordDecl *base = BI->getType()->getAsCXXRecordDecl();
4767      if (base->isEmpty())
4768        continue;
4769      uint64_t offs = layout.getVBaseClassOffsetInBits(base);
4770      if (FieldOrBaseOffsets.find(offs) == FieldOrBaseOffsets.end())
4771        FieldOrBaseOffsets.insert(FieldOrBaseOffsets.end(),
4772                                  std::make_pair(offs, base));
4773    }
4774  }
4775
4776  CharUnits size;
4777  if (CXXRec) {
4778    size = includeVBases ? layout.getSize() : layout.getNonVirtualSize();
4779  } else {
4780    size = layout.getSize();
4781  }
4782
4783  uint64_t CurOffs = 0;
4784  std::multimap<uint64_t, NamedDecl *>::iterator
4785    CurLayObj = FieldOrBaseOffsets.begin();
4786
4787  if ((CurLayObj != FieldOrBaseOffsets.end() && CurLayObj->first != 0) ||
4788      (CurLayObj == FieldOrBaseOffsets.end() &&
4789         CXXRec && CXXRec->isDynamicClass())) {
4790    assert(CXXRec && CXXRec->isDynamicClass() &&
4791           "Offset 0 was empty but no VTable ?");
4792    if (FD) {
4793      S += "\"_vptr$";
4794      std::string recname = CXXRec->getNameAsString();
4795      if (recname.empty()) recname = "?";
4796      S += recname;
4797      S += '"';
4798    }
4799    S += "^^?";
4800    CurOffs += getTypeSize(VoidPtrTy);
4801  }
4802
4803  if (!RDecl->hasFlexibleArrayMember()) {
4804    // Mark the end of the structure.
4805    uint64_t offs = toBits(size);
4806    FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
4807                              std::make_pair(offs, (NamedDecl*)0));
4808  }
4809
4810  for (; CurLayObj != FieldOrBaseOffsets.end(); ++CurLayObj) {
4811    assert(CurOffs <= CurLayObj->first);
4812
4813    if (CurOffs < CurLayObj->first) {
4814      uint64_t padding = CurLayObj->first - CurOffs;
4815      // FIXME: There doesn't seem to be a way to indicate in the encoding that
4816      // packing/alignment of members is different that normal, in which case
4817      // the encoding will be out-of-sync with the real layout.
4818      // If the runtime switches to just consider the size of types without
4819      // taking into account alignment, we could make padding explicit in the
4820      // encoding (e.g. using arrays of chars). The encoding strings would be
4821      // longer then though.
4822      CurOffs += padding;
4823    }
4824
4825    NamedDecl *dcl = CurLayObj->second;
4826    if (dcl == 0)
4827      break; // reached end of structure.
4828
4829    if (CXXRecordDecl *base = dyn_cast<CXXRecordDecl>(dcl)) {
4830      // We expand the bases without their virtual bases since those are going
4831      // in the initial structure. Note that this differs from gcc which
4832      // expands virtual bases each time one is encountered in the hierarchy,
4833      // making the encoding type bigger than it really is.
4834      getObjCEncodingForStructureImpl(base, S, FD, /*includeVBases*/false);
4835      assert(!base->isEmpty());
4836      CurOffs += toBits(getASTRecordLayout(base).getNonVirtualSize());
4837    } else {
4838      FieldDecl *field = cast<FieldDecl>(dcl);
4839      if (FD) {
4840        S += '"';
4841        S += field->getNameAsString();
4842        S += '"';
4843      }
4844
4845      if (field->isBitField()) {
4846        EncodeBitField(this, S, field->getType(), field);
4847        CurOffs += field->getBitWidthValue(*this);
4848      } else {
4849        QualType qt = field->getType();
4850        getLegacyIntegralTypeEncoding(qt);
4851        getObjCEncodingForTypeImpl(qt, S, false, true, FD,
4852                                   /*OutermostType*/false,
4853                                   /*EncodingProperty*/false,
4854                                   /*StructField*/true);
4855        CurOffs += getTypeSize(field->getType());
4856      }
4857    }
4858  }
4859}
4860
4861void ASTContext::getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT,
4862                                                 std::string& S) const {
4863  if (QT & Decl::OBJC_TQ_In)
4864    S += 'n';
4865  if (QT & Decl::OBJC_TQ_Inout)
4866    S += 'N';
4867  if (QT & Decl::OBJC_TQ_Out)
4868    S += 'o';
4869  if (QT & Decl::OBJC_TQ_Bycopy)
4870    S += 'O';
4871  if (QT & Decl::OBJC_TQ_Byref)
4872    S += 'R';
4873  if (QT & Decl::OBJC_TQ_Oneway)
4874    S += 'V';
4875}
4876
4877void ASTContext::setBuiltinVaListType(QualType T) {
4878  assert(BuiltinVaListType.isNull() && "__builtin_va_list type already set!");
4879
4880  BuiltinVaListType = T;
4881}
4882
4883TypedefDecl *ASTContext::getObjCIdDecl() const {
4884  if (!ObjCIdDecl) {
4885    QualType T = getObjCObjectType(ObjCBuiltinIdTy, 0, 0);
4886    T = getObjCObjectPointerType(T);
4887    TypeSourceInfo *IdInfo = getTrivialTypeSourceInfo(T);
4888    ObjCIdDecl = TypedefDecl::Create(const_cast<ASTContext &>(*this),
4889                                     getTranslationUnitDecl(),
4890                                     SourceLocation(), SourceLocation(),
4891                                     &Idents.get("id"), IdInfo);
4892  }
4893
4894  return ObjCIdDecl;
4895}
4896
4897TypedefDecl *ASTContext::getObjCSelDecl() const {
4898  if (!ObjCSelDecl) {
4899    QualType SelT = getPointerType(ObjCBuiltinSelTy);
4900    TypeSourceInfo *SelInfo = getTrivialTypeSourceInfo(SelT);
4901    ObjCSelDecl = TypedefDecl::Create(const_cast<ASTContext &>(*this),
4902                                      getTranslationUnitDecl(),
4903                                      SourceLocation(), SourceLocation(),
4904                                      &Idents.get("SEL"), SelInfo);
4905  }
4906  return ObjCSelDecl;
4907}
4908
4909TypedefDecl *ASTContext::getObjCClassDecl() const {
4910  if (!ObjCClassDecl) {
4911    QualType T = getObjCObjectType(ObjCBuiltinClassTy, 0, 0);
4912    T = getObjCObjectPointerType(T);
4913    TypeSourceInfo *ClassInfo = getTrivialTypeSourceInfo(T);
4914    ObjCClassDecl = TypedefDecl::Create(const_cast<ASTContext &>(*this),
4915                                        getTranslationUnitDecl(),
4916                                        SourceLocation(), SourceLocation(),
4917                                        &Idents.get("Class"), ClassInfo);
4918  }
4919
4920  return ObjCClassDecl;
4921}
4922
4923ObjCInterfaceDecl *ASTContext::getObjCProtocolDecl() const {
4924  if (!ObjCProtocolClassDecl) {
4925    ObjCProtocolClassDecl
4926      = ObjCInterfaceDecl::Create(*this, getTranslationUnitDecl(),
4927                                  SourceLocation(),
4928                                  &Idents.get("Protocol"),
4929                                  /*PrevDecl=*/0,
4930                                  SourceLocation(), true);
4931  }
4932
4933  return ObjCProtocolClassDecl;
4934}
4935
4936void ASTContext::setObjCConstantStringInterface(ObjCInterfaceDecl *Decl) {
4937  assert(ObjCConstantStringType.isNull() &&
4938         "'NSConstantString' type already set!");
4939
4940  ObjCConstantStringType = getObjCInterfaceType(Decl);
4941}
4942
4943/// \brief Retrieve the template name that corresponds to a non-empty
4944/// lookup.
4945TemplateName
4946ASTContext::getOverloadedTemplateName(UnresolvedSetIterator Begin,
4947                                      UnresolvedSetIterator End) const {
4948  unsigned size = End - Begin;
4949  assert(size > 1 && "set is not overloaded!");
4950
4951  void *memory = Allocate(sizeof(OverloadedTemplateStorage) +
4952                          size * sizeof(FunctionTemplateDecl*));
4953  OverloadedTemplateStorage *OT = new(memory) OverloadedTemplateStorage(size);
4954
4955  NamedDecl **Storage = OT->getStorage();
4956  for (UnresolvedSetIterator I = Begin; I != End; ++I) {
4957    NamedDecl *D = *I;
4958    assert(isa<FunctionTemplateDecl>(D) ||
4959           (isa<UsingShadowDecl>(D) &&
4960            isa<FunctionTemplateDecl>(D->getUnderlyingDecl())));
4961    *Storage++ = D;
4962  }
4963
4964  return TemplateName(OT);
4965}
4966
4967/// \brief Retrieve the template name that represents a qualified
4968/// template name such as \c std::vector.
4969TemplateName
4970ASTContext::getQualifiedTemplateName(NestedNameSpecifier *NNS,
4971                                     bool TemplateKeyword,
4972                                     TemplateDecl *Template) const {
4973  assert(NNS && "Missing nested-name-specifier in qualified template name");
4974
4975  // FIXME: Canonicalization?
4976  llvm::FoldingSetNodeID ID;
4977  QualifiedTemplateName::Profile(ID, NNS, TemplateKeyword, Template);
4978
4979  void *InsertPos = 0;
4980  QualifiedTemplateName *QTN =
4981    QualifiedTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
4982  if (!QTN) {
4983    QTN = new (*this,4) QualifiedTemplateName(NNS, TemplateKeyword, Template);
4984    QualifiedTemplateNames.InsertNode(QTN, InsertPos);
4985  }
4986
4987  return TemplateName(QTN);
4988}
4989
4990/// \brief Retrieve the template name that represents a dependent
4991/// template name such as \c MetaFun::template apply.
4992TemplateName
4993ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
4994                                     const IdentifierInfo *Name) const {
4995  assert((!NNS || NNS->isDependent()) &&
4996         "Nested name specifier must be dependent");
4997
4998  llvm::FoldingSetNodeID ID;
4999  DependentTemplateName::Profile(ID, NNS, Name);
5000
5001  void *InsertPos = 0;
5002  DependentTemplateName *QTN =
5003    DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
5004
5005  if (QTN)
5006    return TemplateName(QTN);
5007
5008  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
5009  if (CanonNNS == NNS) {
5010    QTN = new (*this,4) DependentTemplateName(NNS, Name);
5011  } else {
5012    TemplateName Canon = getDependentTemplateName(CanonNNS, Name);
5013    QTN = new (*this,4) DependentTemplateName(NNS, Name, Canon);
5014    DependentTemplateName *CheckQTN =
5015      DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
5016    assert(!CheckQTN && "Dependent type name canonicalization broken");
5017    (void)CheckQTN;
5018  }
5019
5020  DependentTemplateNames.InsertNode(QTN, InsertPos);
5021  return TemplateName(QTN);
5022}
5023
5024/// \brief Retrieve the template name that represents a dependent
5025/// template name such as \c MetaFun::template operator+.
5026TemplateName
5027ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
5028                                     OverloadedOperatorKind Operator) const {
5029  assert((!NNS || NNS->isDependent()) &&
5030         "Nested name specifier must be dependent");
5031
5032  llvm::FoldingSetNodeID ID;
5033  DependentTemplateName::Profile(ID, NNS, Operator);
5034
5035  void *InsertPos = 0;
5036  DependentTemplateName *QTN
5037    = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
5038
5039  if (QTN)
5040    return TemplateName(QTN);
5041
5042  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
5043  if (CanonNNS == NNS) {
5044    QTN = new (*this,4) DependentTemplateName(NNS, Operator);
5045  } else {
5046    TemplateName Canon = getDependentTemplateName(CanonNNS, Operator);
5047    QTN = new (*this,4) DependentTemplateName(NNS, Operator, Canon);
5048
5049    DependentTemplateName *CheckQTN
5050      = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
5051    assert(!CheckQTN && "Dependent template name canonicalization broken");
5052    (void)CheckQTN;
5053  }
5054
5055  DependentTemplateNames.InsertNode(QTN, InsertPos);
5056  return TemplateName(QTN);
5057}
5058
5059TemplateName
5060ASTContext::getSubstTemplateTemplateParm(TemplateTemplateParmDecl *param,
5061                                         TemplateName replacement) const {
5062  llvm::FoldingSetNodeID ID;
5063  SubstTemplateTemplateParmStorage::Profile(ID, param, replacement);
5064
5065  void *insertPos = 0;
5066  SubstTemplateTemplateParmStorage *subst
5067    = SubstTemplateTemplateParms.FindNodeOrInsertPos(ID, insertPos);
5068
5069  if (!subst) {
5070    subst = new (*this) SubstTemplateTemplateParmStorage(param, replacement);
5071    SubstTemplateTemplateParms.InsertNode(subst, insertPos);
5072  }
5073
5074  return TemplateName(subst);
5075}
5076
5077TemplateName
5078ASTContext::getSubstTemplateTemplateParmPack(TemplateTemplateParmDecl *Param,
5079                                       const TemplateArgument &ArgPack) const {
5080  ASTContext &Self = const_cast<ASTContext &>(*this);
5081  llvm::FoldingSetNodeID ID;
5082  SubstTemplateTemplateParmPackStorage::Profile(ID, Self, Param, ArgPack);
5083
5084  void *InsertPos = 0;
5085  SubstTemplateTemplateParmPackStorage *Subst
5086    = SubstTemplateTemplateParmPacks.FindNodeOrInsertPos(ID, InsertPos);
5087
5088  if (!Subst) {
5089    Subst = new (*this) SubstTemplateTemplateParmPackStorage(Param,
5090                                                           ArgPack.pack_size(),
5091                                                         ArgPack.pack_begin());
5092    SubstTemplateTemplateParmPacks.InsertNode(Subst, InsertPos);
5093  }
5094
5095  return TemplateName(Subst);
5096}
5097
5098/// getFromTargetType - Given one of the integer types provided by
5099/// TargetInfo, produce the corresponding type. The unsigned @p Type
5100/// is actually a value of type @c TargetInfo::IntType.
5101CanQualType ASTContext::getFromTargetType(unsigned Type) const {
5102  switch (Type) {
5103  case TargetInfo::NoInt: return CanQualType();
5104  case TargetInfo::SignedShort: return ShortTy;
5105  case TargetInfo::UnsignedShort: return UnsignedShortTy;
5106  case TargetInfo::SignedInt: return IntTy;
5107  case TargetInfo::UnsignedInt: return UnsignedIntTy;
5108  case TargetInfo::SignedLong: return LongTy;
5109  case TargetInfo::UnsignedLong: return UnsignedLongTy;
5110  case TargetInfo::SignedLongLong: return LongLongTy;
5111  case TargetInfo::UnsignedLongLong: return UnsignedLongLongTy;
5112  }
5113
5114  llvm_unreachable("Unhandled TargetInfo::IntType value");
5115}
5116
5117//===----------------------------------------------------------------------===//
5118//                        Type Predicates.
5119//===----------------------------------------------------------------------===//
5120
5121/// getObjCGCAttr - Returns one of GCNone, Weak or Strong objc's
5122/// garbage collection attribute.
5123///
5124Qualifiers::GC ASTContext::getObjCGCAttrKind(QualType Ty) const {
5125  if (getLangOptions().getGC() == LangOptions::NonGC)
5126    return Qualifiers::GCNone;
5127
5128  assert(getLangOptions().ObjC1);
5129  Qualifiers::GC GCAttrs = Ty.getObjCGCAttr();
5130
5131  // Default behaviour under objective-C's gc is for ObjC pointers
5132  // (or pointers to them) be treated as though they were declared
5133  // as __strong.
5134  if (GCAttrs == Qualifiers::GCNone) {
5135    if (Ty->isObjCObjectPointerType() || Ty->isBlockPointerType())
5136      return Qualifiers::Strong;
5137    else if (Ty->isPointerType())
5138      return getObjCGCAttrKind(Ty->getAs<PointerType>()->getPointeeType());
5139  } else {
5140    // It's not valid to set GC attributes on anything that isn't a
5141    // pointer.
5142#ifndef NDEBUG
5143    QualType CT = Ty->getCanonicalTypeInternal();
5144    while (const ArrayType *AT = dyn_cast<ArrayType>(CT))
5145      CT = AT->getElementType();
5146    assert(CT->isAnyPointerType() || CT->isBlockPointerType());
5147#endif
5148  }
5149  return GCAttrs;
5150}
5151
5152//===----------------------------------------------------------------------===//
5153//                        Type Compatibility Testing
5154//===----------------------------------------------------------------------===//
5155
5156/// areCompatVectorTypes - Return true if the two specified vector types are
5157/// compatible.
5158static bool areCompatVectorTypes(const VectorType *LHS,
5159                                 const VectorType *RHS) {
5160  assert(LHS->isCanonicalUnqualified() && RHS->isCanonicalUnqualified());
5161  return LHS->getElementType() == RHS->getElementType() &&
5162         LHS->getNumElements() == RHS->getNumElements();
5163}
5164
5165bool ASTContext::areCompatibleVectorTypes(QualType FirstVec,
5166                                          QualType SecondVec) {
5167  assert(FirstVec->isVectorType() && "FirstVec should be a vector type");
5168  assert(SecondVec->isVectorType() && "SecondVec should be a vector type");
5169
5170  if (hasSameUnqualifiedType(FirstVec, SecondVec))
5171    return true;
5172
5173  // Treat Neon vector types and most AltiVec vector types as if they are the
5174  // equivalent GCC vector types.
5175  const VectorType *First = FirstVec->getAs<VectorType>();
5176  const VectorType *Second = SecondVec->getAs<VectorType>();
5177  if (First->getNumElements() == Second->getNumElements() &&
5178      hasSameType(First->getElementType(), Second->getElementType()) &&
5179      First->getVectorKind() != VectorType::AltiVecPixel &&
5180      First->getVectorKind() != VectorType::AltiVecBool &&
5181      Second->getVectorKind() != VectorType::AltiVecPixel &&
5182      Second->getVectorKind() != VectorType::AltiVecBool)
5183    return true;
5184
5185  return false;
5186}
5187
5188//===----------------------------------------------------------------------===//
5189// ObjCQualifiedIdTypesAreCompatible - Compatibility testing for qualified id's.
5190//===----------------------------------------------------------------------===//
5191
5192/// ProtocolCompatibleWithProtocol - return 'true' if 'lProto' is in the
5193/// inheritance hierarchy of 'rProto'.
5194bool
5195ASTContext::ProtocolCompatibleWithProtocol(ObjCProtocolDecl *lProto,
5196                                           ObjCProtocolDecl *rProto) const {
5197  if (declaresSameEntity(lProto, rProto))
5198    return true;
5199  for (ObjCProtocolDecl::protocol_iterator PI = rProto->protocol_begin(),
5200       E = rProto->protocol_end(); PI != E; ++PI)
5201    if (ProtocolCompatibleWithProtocol(lProto, *PI))
5202      return true;
5203  return false;
5204}
5205
5206/// QualifiedIdConformsQualifiedId - compare id<p,...> with id<p1,...>
5207/// return true if lhs's protocols conform to rhs's protocol; false
5208/// otherwise.
5209bool ASTContext::QualifiedIdConformsQualifiedId(QualType lhs, QualType rhs) {
5210  if (lhs->isObjCQualifiedIdType() && rhs->isObjCQualifiedIdType())
5211    return ObjCQualifiedIdTypesAreCompatible(lhs, rhs, false);
5212  return false;
5213}
5214
5215/// ObjCQualifiedClassTypesAreCompatible - compare  Class<p,...> and
5216/// Class<p1, ...>.
5217bool ASTContext::ObjCQualifiedClassTypesAreCompatible(QualType lhs,
5218                                                      QualType rhs) {
5219  const ObjCObjectPointerType *lhsQID = lhs->getAs<ObjCObjectPointerType>();
5220  const ObjCObjectPointerType *rhsOPT = rhs->getAs<ObjCObjectPointerType>();
5221  assert ((lhsQID && rhsOPT) && "ObjCQualifiedClassTypesAreCompatible");
5222
5223  for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
5224       E = lhsQID->qual_end(); I != E; ++I) {
5225    bool match = false;
5226    ObjCProtocolDecl *lhsProto = *I;
5227    for (ObjCObjectPointerType::qual_iterator J = rhsOPT->qual_begin(),
5228         E = rhsOPT->qual_end(); J != E; ++J) {
5229      ObjCProtocolDecl *rhsProto = *J;
5230      if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto)) {
5231        match = true;
5232        break;
5233      }
5234    }
5235    if (!match)
5236      return false;
5237  }
5238  return true;
5239}
5240
5241/// ObjCQualifiedIdTypesAreCompatible - We know that one of lhs/rhs is an
5242/// ObjCQualifiedIDType.
5243bool ASTContext::ObjCQualifiedIdTypesAreCompatible(QualType lhs, QualType rhs,
5244                                                   bool compare) {
5245  // Allow id<P..> and an 'id' or void* type in all cases.
5246  if (lhs->isVoidPointerType() ||
5247      lhs->isObjCIdType() || lhs->isObjCClassType())
5248    return true;
5249  else if (rhs->isVoidPointerType() ||
5250           rhs->isObjCIdType() || rhs->isObjCClassType())
5251    return true;
5252
5253  if (const ObjCObjectPointerType *lhsQID = lhs->getAsObjCQualifiedIdType()) {
5254    const ObjCObjectPointerType *rhsOPT = rhs->getAs<ObjCObjectPointerType>();
5255
5256    if (!rhsOPT) return false;
5257
5258    if (rhsOPT->qual_empty()) {
5259      // If the RHS is a unqualified interface pointer "NSString*",
5260      // make sure we check the class hierarchy.
5261      if (ObjCInterfaceDecl *rhsID = rhsOPT->getInterfaceDecl()) {
5262        for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
5263             E = lhsQID->qual_end(); I != E; ++I) {
5264          // when comparing an id<P> on lhs with a static type on rhs,
5265          // see if static class implements all of id's protocols, directly or
5266          // through its super class and categories.
5267          if (!rhsID->ClassImplementsProtocol(*I, true))
5268            return false;
5269        }
5270      }
5271      // If there are no qualifiers and no interface, we have an 'id'.
5272      return true;
5273    }
5274    // Both the right and left sides have qualifiers.
5275    for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
5276         E = lhsQID->qual_end(); I != E; ++I) {
5277      ObjCProtocolDecl *lhsProto = *I;
5278      bool match = false;
5279
5280      // when comparing an id<P> on lhs with a static type on rhs,
5281      // see if static class implements all of id's protocols, directly or
5282      // through its super class and categories.
5283      for (ObjCObjectPointerType::qual_iterator J = rhsOPT->qual_begin(),
5284           E = rhsOPT->qual_end(); J != E; ++J) {
5285        ObjCProtocolDecl *rhsProto = *J;
5286        if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
5287            (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
5288          match = true;
5289          break;
5290        }
5291      }
5292      // If the RHS is a qualified interface pointer "NSString<P>*",
5293      // make sure we check the class hierarchy.
5294      if (ObjCInterfaceDecl *rhsID = rhsOPT->getInterfaceDecl()) {
5295        for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
5296             E = lhsQID->qual_end(); I != E; ++I) {
5297          // when comparing an id<P> on lhs with a static type on rhs,
5298          // see if static class implements all of id's protocols, directly or
5299          // through its super class and categories.
5300          if (rhsID->ClassImplementsProtocol(*I, true)) {
5301            match = true;
5302            break;
5303          }
5304        }
5305      }
5306      if (!match)
5307        return false;
5308    }
5309
5310    return true;
5311  }
5312
5313  const ObjCObjectPointerType *rhsQID = rhs->getAsObjCQualifiedIdType();
5314  assert(rhsQID && "One of the LHS/RHS should be id<x>");
5315
5316  if (const ObjCObjectPointerType *lhsOPT =
5317        lhs->getAsObjCInterfacePointerType()) {
5318    // If both the right and left sides have qualifiers.
5319    for (ObjCObjectPointerType::qual_iterator I = lhsOPT->qual_begin(),
5320         E = lhsOPT->qual_end(); I != E; ++I) {
5321      ObjCProtocolDecl *lhsProto = *I;
5322      bool match = false;
5323
5324      // when comparing an id<P> on rhs with a static type on lhs,
5325      // see if static class implements all of id's protocols, directly or
5326      // through its super class and categories.
5327      // First, lhs protocols in the qualifier list must be found, direct
5328      // or indirect in rhs's qualifier list or it is a mismatch.
5329      for (ObjCObjectPointerType::qual_iterator J = rhsQID->qual_begin(),
5330           E = rhsQID->qual_end(); J != E; ++J) {
5331        ObjCProtocolDecl *rhsProto = *J;
5332        if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
5333            (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
5334          match = true;
5335          break;
5336        }
5337      }
5338      if (!match)
5339        return false;
5340    }
5341
5342    // Static class's protocols, or its super class or category protocols
5343    // must be found, direct or indirect in rhs's qualifier list or it is a mismatch.
5344    if (ObjCInterfaceDecl *lhsID = lhsOPT->getInterfaceDecl()) {
5345      llvm::SmallPtrSet<ObjCProtocolDecl *, 8> LHSInheritedProtocols;
5346      CollectInheritedProtocols(lhsID, LHSInheritedProtocols);
5347      // This is rather dubious but matches gcc's behavior. If lhs has
5348      // no type qualifier and its class has no static protocol(s)
5349      // assume that it is mismatch.
5350      if (LHSInheritedProtocols.empty() && lhsOPT->qual_empty())
5351        return false;
5352      for (llvm::SmallPtrSet<ObjCProtocolDecl*,8>::iterator I =
5353           LHSInheritedProtocols.begin(),
5354           E = LHSInheritedProtocols.end(); I != E; ++I) {
5355        bool match = false;
5356        ObjCProtocolDecl *lhsProto = (*I);
5357        for (ObjCObjectPointerType::qual_iterator J = rhsQID->qual_begin(),
5358             E = rhsQID->qual_end(); J != E; ++J) {
5359          ObjCProtocolDecl *rhsProto = *J;
5360          if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
5361              (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
5362            match = true;
5363            break;
5364          }
5365        }
5366        if (!match)
5367          return false;
5368      }
5369    }
5370    return true;
5371  }
5372  return false;
5373}
5374
5375/// canAssignObjCInterfaces - Return true if the two interface types are
5376/// compatible for assignment from RHS to LHS.  This handles validation of any
5377/// protocol qualifiers on the LHS or RHS.
5378///
5379bool ASTContext::canAssignObjCInterfaces(const ObjCObjectPointerType *LHSOPT,
5380                                         const ObjCObjectPointerType *RHSOPT) {
5381  const ObjCObjectType* LHS = LHSOPT->getObjectType();
5382  const ObjCObjectType* RHS = RHSOPT->getObjectType();
5383
5384  // If either type represents the built-in 'id' or 'Class' types, return true.
5385  if (LHS->isObjCUnqualifiedIdOrClass() ||
5386      RHS->isObjCUnqualifiedIdOrClass())
5387    return true;
5388
5389  if (LHS->isObjCQualifiedId() || RHS->isObjCQualifiedId())
5390    return ObjCQualifiedIdTypesAreCompatible(QualType(LHSOPT,0),
5391                                             QualType(RHSOPT,0),
5392                                             false);
5393
5394  if (LHS->isObjCQualifiedClass() && RHS->isObjCQualifiedClass())
5395    return ObjCQualifiedClassTypesAreCompatible(QualType(LHSOPT,0),
5396                                                QualType(RHSOPT,0));
5397
5398  // If we have 2 user-defined types, fall into that path.
5399  if (LHS->getInterface() && RHS->getInterface())
5400    return canAssignObjCInterfaces(LHS, RHS);
5401
5402  return false;
5403}
5404
5405/// canAssignObjCInterfacesInBlockPointer - This routine is specifically written
5406/// for providing type-safety for objective-c pointers used to pass/return
5407/// arguments in block literals. When passed as arguments, passing 'A*' where
5408/// 'id' is expected is not OK. Passing 'Sub *" where 'Super *" is expected is
5409/// not OK. For the return type, the opposite is not OK.
5410bool ASTContext::canAssignObjCInterfacesInBlockPointer(
5411                                         const ObjCObjectPointerType *LHSOPT,
5412                                         const ObjCObjectPointerType *RHSOPT,
5413                                         bool BlockReturnType) {
5414  if (RHSOPT->isObjCBuiltinType() || LHSOPT->isObjCIdType())
5415    return true;
5416
5417  if (LHSOPT->isObjCBuiltinType()) {
5418    return RHSOPT->isObjCBuiltinType() || RHSOPT->isObjCQualifiedIdType();
5419  }
5420
5421  if (LHSOPT->isObjCQualifiedIdType() || RHSOPT->isObjCQualifiedIdType())
5422    return ObjCQualifiedIdTypesAreCompatible(QualType(LHSOPT,0),
5423                                             QualType(RHSOPT,0),
5424                                             false);
5425
5426  const ObjCInterfaceType* LHS = LHSOPT->getInterfaceType();
5427  const ObjCInterfaceType* RHS = RHSOPT->getInterfaceType();
5428  if (LHS && RHS)  { // We have 2 user-defined types.
5429    if (LHS != RHS) {
5430      if (LHS->getDecl()->isSuperClassOf(RHS->getDecl()))
5431        return BlockReturnType;
5432      if (RHS->getDecl()->isSuperClassOf(LHS->getDecl()))
5433        return !BlockReturnType;
5434    }
5435    else
5436      return true;
5437  }
5438  return false;
5439}
5440
5441/// getIntersectionOfProtocols - This routine finds the intersection of set
5442/// of protocols inherited from two distinct objective-c pointer objects.
5443/// It is used to build composite qualifier list of the composite type of
5444/// the conditional expression involving two objective-c pointer objects.
5445static
5446void getIntersectionOfProtocols(ASTContext &Context,
5447                                const ObjCObjectPointerType *LHSOPT,
5448                                const ObjCObjectPointerType *RHSOPT,
5449      SmallVectorImpl<ObjCProtocolDecl *> &IntersectionOfProtocols) {
5450
5451  const ObjCObjectType* LHS = LHSOPT->getObjectType();
5452  const ObjCObjectType* RHS = RHSOPT->getObjectType();
5453  assert(LHS->getInterface() && "LHS must have an interface base");
5454  assert(RHS->getInterface() && "RHS must have an interface base");
5455
5456  llvm::SmallPtrSet<ObjCProtocolDecl *, 8> InheritedProtocolSet;
5457  unsigned LHSNumProtocols = LHS->getNumProtocols();
5458  if (LHSNumProtocols > 0)
5459    InheritedProtocolSet.insert(LHS->qual_begin(), LHS->qual_end());
5460  else {
5461    llvm::SmallPtrSet<ObjCProtocolDecl *, 8> LHSInheritedProtocols;
5462    Context.CollectInheritedProtocols(LHS->getInterface(),
5463                                      LHSInheritedProtocols);
5464    InheritedProtocolSet.insert(LHSInheritedProtocols.begin(),
5465                                LHSInheritedProtocols.end());
5466  }
5467
5468  unsigned RHSNumProtocols = RHS->getNumProtocols();
5469  if (RHSNumProtocols > 0) {
5470    ObjCProtocolDecl **RHSProtocols =
5471      const_cast<ObjCProtocolDecl **>(RHS->qual_begin());
5472    for (unsigned i = 0; i < RHSNumProtocols; ++i)
5473      if (InheritedProtocolSet.count(RHSProtocols[i]))
5474        IntersectionOfProtocols.push_back(RHSProtocols[i]);
5475  } else {
5476    llvm::SmallPtrSet<ObjCProtocolDecl *, 8> RHSInheritedProtocols;
5477    Context.CollectInheritedProtocols(RHS->getInterface(),
5478                                      RHSInheritedProtocols);
5479    for (llvm::SmallPtrSet<ObjCProtocolDecl*,8>::iterator I =
5480         RHSInheritedProtocols.begin(),
5481         E = RHSInheritedProtocols.end(); I != E; ++I)
5482      if (InheritedProtocolSet.count((*I)))
5483        IntersectionOfProtocols.push_back((*I));
5484  }
5485}
5486
5487/// areCommonBaseCompatible - Returns common base class of the two classes if
5488/// one found. Note that this is O'2 algorithm. But it will be called as the
5489/// last type comparison in a ?-exp of ObjC pointer types before a
5490/// warning is issued. So, its invokation is extremely rare.
5491QualType ASTContext::areCommonBaseCompatible(
5492                                          const ObjCObjectPointerType *Lptr,
5493                                          const ObjCObjectPointerType *Rptr) {
5494  const ObjCObjectType *LHS = Lptr->getObjectType();
5495  const ObjCObjectType *RHS = Rptr->getObjectType();
5496  const ObjCInterfaceDecl* LDecl = LHS->getInterface();
5497  const ObjCInterfaceDecl* RDecl = RHS->getInterface();
5498  if (!LDecl || !RDecl || (declaresSameEntity(LDecl, RDecl)))
5499    return QualType();
5500
5501  do {
5502    LHS = cast<ObjCInterfaceType>(getObjCInterfaceType(LDecl));
5503    if (canAssignObjCInterfaces(LHS, RHS)) {
5504      SmallVector<ObjCProtocolDecl *, 8> Protocols;
5505      getIntersectionOfProtocols(*this, Lptr, Rptr, Protocols);
5506
5507      QualType Result = QualType(LHS, 0);
5508      if (!Protocols.empty())
5509        Result = getObjCObjectType(Result, Protocols.data(), Protocols.size());
5510      Result = getObjCObjectPointerType(Result);
5511      return Result;
5512    }
5513  } while ((LDecl = LDecl->getSuperClass()));
5514
5515  return QualType();
5516}
5517
5518bool ASTContext::canAssignObjCInterfaces(const ObjCObjectType *LHS,
5519                                         const ObjCObjectType *RHS) {
5520  assert(LHS->getInterface() && "LHS is not an interface type");
5521  assert(RHS->getInterface() && "RHS is not an interface type");
5522
5523  // Verify that the base decls are compatible: the RHS must be a subclass of
5524  // the LHS.
5525  if (!LHS->getInterface()->isSuperClassOf(RHS->getInterface()))
5526    return false;
5527
5528  // RHS must have a superset of the protocols in the LHS.  If the LHS is not
5529  // protocol qualified at all, then we are good.
5530  if (LHS->getNumProtocols() == 0)
5531    return true;
5532
5533  // Okay, we know the LHS has protocol qualifiers.  If the RHS doesn't,
5534  // more detailed analysis is required.
5535  if (RHS->getNumProtocols() == 0) {
5536    // OK, if LHS is a superclass of RHS *and*
5537    // this superclass is assignment compatible with LHS.
5538    // false otherwise.
5539    bool IsSuperClass =
5540      LHS->getInterface()->isSuperClassOf(RHS->getInterface());
5541    if (IsSuperClass) {
5542      // OK if conversion of LHS to SuperClass results in narrowing of types
5543      // ; i.e., SuperClass may implement at least one of the protocols
5544      // in LHS's protocol list. Example, SuperObj<P1> = lhs<P1,P2> is ok.
5545      // But not SuperObj<P1,P2,P3> = lhs<P1,P2>.
5546      llvm::SmallPtrSet<ObjCProtocolDecl *, 8> SuperClassInheritedProtocols;
5547      CollectInheritedProtocols(RHS->getInterface(), SuperClassInheritedProtocols);
5548      // If super class has no protocols, it is not a match.
5549      if (SuperClassInheritedProtocols.empty())
5550        return false;
5551
5552      for (ObjCObjectType::qual_iterator LHSPI = LHS->qual_begin(),
5553           LHSPE = LHS->qual_end();
5554           LHSPI != LHSPE; LHSPI++) {
5555        bool SuperImplementsProtocol = false;
5556        ObjCProtocolDecl *LHSProto = (*LHSPI);
5557
5558        for (llvm::SmallPtrSet<ObjCProtocolDecl*,8>::iterator I =
5559             SuperClassInheritedProtocols.begin(),
5560             E = SuperClassInheritedProtocols.end(); I != E; ++I) {
5561          ObjCProtocolDecl *SuperClassProto = (*I);
5562          if (SuperClassProto->lookupProtocolNamed(LHSProto->getIdentifier())) {
5563            SuperImplementsProtocol = true;
5564            break;
5565          }
5566        }
5567        if (!SuperImplementsProtocol)
5568          return false;
5569      }
5570      return true;
5571    }
5572    return false;
5573  }
5574
5575  for (ObjCObjectType::qual_iterator LHSPI = LHS->qual_begin(),
5576                                     LHSPE = LHS->qual_end();
5577       LHSPI != LHSPE; LHSPI++) {
5578    bool RHSImplementsProtocol = false;
5579
5580    // If the RHS doesn't implement the protocol on the left, the types
5581    // are incompatible.
5582    for (ObjCObjectType::qual_iterator RHSPI = RHS->qual_begin(),
5583                                       RHSPE = RHS->qual_end();
5584         RHSPI != RHSPE; RHSPI++) {
5585      if ((*RHSPI)->lookupProtocolNamed((*LHSPI)->getIdentifier())) {
5586        RHSImplementsProtocol = true;
5587        break;
5588      }
5589    }
5590    // FIXME: For better diagnostics, consider passing back the protocol name.
5591    if (!RHSImplementsProtocol)
5592      return false;
5593  }
5594  // The RHS implements all protocols listed on the LHS.
5595  return true;
5596}
5597
5598bool ASTContext::areComparableObjCPointerTypes(QualType LHS, QualType RHS) {
5599  // get the "pointed to" types
5600  const ObjCObjectPointerType *LHSOPT = LHS->getAs<ObjCObjectPointerType>();
5601  const ObjCObjectPointerType *RHSOPT = RHS->getAs<ObjCObjectPointerType>();
5602
5603  if (!LHSOPT || !RHSOPT)
5604    return false;
5605
5606  return canAssignObjCInterfaces(LHSOPT, RHSOPT) ||
5607         canAssignObjCInterfaces(RHSOPT, LHSOPT);
5608}
5609
5610bool ASTContext::canBindObjCObjectType(QualType To, QualType From) {
5611  return canAssignObjCInterfaces(
5612                getObjCObjectPointerType(To)->getAs<ObjCObjectPointerType>(),
5613                getObjCObjectPointerType(From)->getAs<ObjCObjectPointerType>());
5614}
5615
5616/// typesAreCompatible - C99 6.7.3p9: For two qualified types to be compatible,
5617/// both shall have the identically qualified version of a compatible type.
5618/// C99 6.2.7p1: Two types have compatible types if their types are the
5619/// same. See 6.7.[2,3,5] for additional rules.
5620bool ASTContext::typesAreCompatible(QualType LHS, QualType RHS,
5621                                    bool CompareUnqualified) {
5622  if (getLangOptions().CPlusPlus)
5623    return hasSameType(LHS, RHS);
5624
5625  return !mergeTypes(LHS, RHS, false, CompareUnqualified).isNull();
5626}
5627
5628bool ASTContext::propertyTypesAreCompatible(QualType LHS, QualType RHS) {
5629  return typesAreCompatible(LHS, RHS);
5630}
5631
5632bool ASTContext::typesAreBlockPointerCompatible(QualType LHS, QualType RHS) {
5633  return !mergeTypes(LHS, RHS, true).isNull();
5634}
5635
5636/// mergeTransparentUnionType - if T is a transparent union type and a member
5637/// of T is compatible with SubType, return the merged type, else return
5638/// QualType()
5639QualType ASTContext::mergeTransparentUnionType(QualType T, QualType SubType,
5640                                               bool OfBlockPointer,
5641                                               bool Unqualified) {
5642  if (const RecordType *UT = T->getAsUnionType()) {
5643    RecordDecl *UD = UT->getDecl();
5644    if (UD->hasAttr<TransparentUnionAttr>()) {
5645      for (RecordDecl::field_iterator it = UD->field_begin(),
5646           itend = UD->field_end(); it != itend; ++it) {
5647        QualType ET = it->getType().getUnqualifiedType();
5648        QualType MT = mergeTypes(ET, SubType, OfBlockPointer, Unqualified);
5649        if (!MT.isNull())
5650          return MT;
5651      }
5652    }
5653  }
5654
5655  return QualType();
5656}
5657
5658/// mergeFunctionArgumentTypes - merge two types which appear as function
5659/// argument types
5660QualType ASTContext::mergeFunctionArgumentTypes(QualType lhs, QualType rhs,
5661                                                bool OfBlockPointer,
5662                                                bool Unqualified) {
5663  // GNU extension: two types are compatible if they appear as a function
5664  // argument, one of the types is a transparent union type and the other
5665  // type is compatible with a union member
5666  QualType lmerge = mergeTransparentUnionType(lhs, rhs, OfBlockPointer,
5667                                              Unqualified);
5668  if (!lmerge.isNull())
5669    return lmerge;
5670
5671  QualType rmerge = mergeTransparentUnionType(rhs, lhs, OfBlockPointer,
5672                                              Unqualified);
5673  if (!rmerge.isNull())
5674    return rmerge;
5675
5676  return mergeTypes(lhs, rhs, OfBlockPointer, Unqualified);
5677}
5678
5679QualType ASTContext::mergeFunctionTypes(QualType lhs, QualType rhs,
5680                                        bool OfBlockPointer,
5681                                        bool Unqualified) {
5682  const FunctionType *lbase = lhs->getAs<FunctionType>();
5683  const FunctionType *rbase = rhs->getAs<FunctionType>();
5684  const FunctionProtoType *lproto = dyn_cast<FunctionProtoType>(lbase);
5685  const FunctionProtoType *rproto = dyn_cast<FunctionProtoType>(rbase);
5686  bool allLTypes = true;
5687  bool allRTypes = true;
5688
5689  // Check return type
5690  QualType retType;
5691  if (OfBlockPointer) {
5692    QualType RHS = rbase->getResultType();
5693    QualType LHS = lbase->getResultType();
5694    bool UnqualifiedResult = Unqualified;
5695    if (!UnqualifiedResult)
5696      UnqualifiedResult = (!RHS.hasQualifiers() && LHS.hasQualifiers());
5697    retType = mergeTypes(LHS, RHS, true, UnqualifiedResult, true);
5698  }
5699  else
5700    retType = mergeTypes(lbase->getResultType(), rbase->getResultType(), false,
5701                         Unqualified);
5702  if (retType.isNull()) return QualType();
5703
5704  if (Unqualified)
5705    retType = retType.getUnqualifiedType();
5706
5707  CanQualType LRetType = getCanonicalType(lbase->getResultType());
5708  CanQualType RRetType = getCanonicalType(rbase->getResultType());
5709  if (Unqualified) {
5710    LRetType = LRetType.getUnqualifiedType();
5711    RRetType = RRetType.getUnqualifiedType();
5712  }
5713
5714  if (getCanonicalType(retType) != LRetType)
5715    allLTypes = false;
5716  if (getCanonicalType(retType) != RRetType)
5717    allRTypes = false;
5718
5719  // FIXME: double check this
5720  // FIXME: should we error if lbase->getRegParmAttr() != 0 &&
5721  //                           rbase->getRegParmAttr() != 0 &&
5722  //                           lbase->getRegParmAttr() != rbase->getRegParmAttr()?
5723  FunctionType::ExtInfo lbaseInfo = lbase->getExtInfo();
5724  FunctionType::ExtInfo rbaseInfo = rbase->getExtInfo();
5725
5726  // Compatible functions must have compatible calling conventions
5727  if (!isSameCallConv(lbaseInfo.getCC(), rbaseInfo.getCC()))
5728    return QualType();
5729
5730  // Regparm is part of the calling convention.
5731  if (lbaseInfo.getHasRegParm() != rbaseInfo.getHasRegParm())
5732    return QualType();
5733  if (lbaseInfo.getRegParm() != rbaseInfo.getRegParm())
5734    return QualType();
5735
5736  if (lbaseInfo.getProducesResult() != rbaseInfo.getProducesResult())
5737    return QualType();
5738
5739  // functypes which return are preferred over those that do not.
5740  if (lbaseInfo.getNoReturn() && !rbaseInfo.getNoReturn())
5741    allLTypes = false;
5742  else if (!lbaseInfo.getNoReturn() && rbaseInfo.getNoReturn())
5743    allRTypes = false;
5744  // FIXME: some uses, e.g. conditional exprs, really want this to be 'both'.
5745  bool NoReturn = lbaseInfo.getNoReturn() || rbaseInfo.getNoReturn();
5746
5747  FunctionType::ExtInfo einfo = lbaseInfo.withNoReturn(NoReturn);
5748
5749  if (lproto && rproto) { // two C99 style function prototypes
5750    assert(!lproto->hasExceptionSpec() && !rproto->hasExceptionSpec() &&
5751           "C++ shouldn't be here");
5752    unsigned lproto_nargs = lproto->getNumArgs();
5753    unsigned rproto_nargs = rproto->getNumArgs();
5754
5755    // Compatible functions must have the same number of arguments
5756    if (lproto_nargs != rproto_nargs)
5757      return QualType();
5758
5759    // Variadic and non-variadic functions aren't compatible
5760    if (lproto->isVariadic() != rproto->isVariadic())
5761      return QualType();
5762
5763    if (lproto->getTypeQuals() != rproto->getTypeQuals())
5764      return QualType();
5765
5766    if (LangOpts.ObjCAutoRefCount &&
5767        !FunctionTypesMatchOnNSConsumedAttrs(rproto, lproto))
5768      return QualType();
5769
5770    // Check argument compatibility
5771    SmallVector<QualType, 10> types;
5772    for (unsigned i = 0; i < lproto_nargs; i++) {
5773      QualType largtype = lproto->getArgType(i).getUnqualifiedType();
5774      QualType rargtype = rproto->getArgType(i).getUnqualifiedType();
5775      QualType argtype = mergeFunctionArgumentTypes(largtype, rargtype,
5776                                                    OfBlockPointer,
5777                                                    Unqualified);
5778      if (argtype.isNull()) return QualType();
5779
5780      if (Unqualified)
5781        argtype = argtype.getUnqualifiedType();
5782
5783      types.push_back(argtype);
5784      if (Unqualified) {
5785        largtype = largtype.getUnqualifiedType();
5786        rargtype = rargtype.getUnqualifiedType();
5787      }
5788
5789      if (getCanonicalType(argtype) != getCanonicalType(largtype))
5790        allLTypes = false;
5791      if (getCanonicalType(argtype) != getCanonicalType(rargtype))
5792        allRTypes = false;
5793    }
5794
5795    if (allLTypes) return lhs;
5796    if (allRTypes) return rhs;
5797
5798    FunctionProtoType::ExtProtoInfo EPI = lproto->getExtProtoInfo();
5799    EPI.ExtInfo = einfo;
5800    return getFunctionType(retType, types.begin(), types.size(), EPI);
5801  }
5802
5803  if (lproto) allRTypes = false;
5804  if (rproto) allLTypes = false;
5805
5806  const FunctionProtoType *proto = lproto ? lproto : rproto;
5807  if (proto) {
5808    assert(!proto->hasExceptionSpec() && "C++ shouldn't be here");
5809    if (proto->isVariadic()) return QualType();
5810    // Check that the types are compatible with the types that
5811    // would result from default argument promotions (C99 6.7.5.3p15).
5812    // The only types actually affected are promotable integer
5813    // types and floats, which would be passed as a different
5814    // type depending on whether the prototype is visible.
5815    unsigned proto_nargs = proto->getNumArgs();
5816    for (unsigned i = 0; i < proto_nargs; ++i) {
5817      QualType argTy = proto->getArgType(i);
5818
5819      // Look at the promotion type of enum types, since that is the type used
5820      // to pass enum values.
5821      if (const EnumType *Enum = argTy->getAs<EnumType>())
5822        argTy = Enum->getDecl()->getPromotionType();
5823
5824      if (argTy->isPromotableIntegerType() ||
5825          getCanonicalType(argTy).getUnqualifiedType() == FloatTy)
5826        return QualType();
5827    }
5828
5829    if (allLTypes) return lhs;
5830    if (allRTypes) return rhs;
5831
5832    FunctionProtoType::ExtProtoInfo EPI = proto->getExtProtoInfo();
5833    EPI.ExtInfo = einfo;
5834    return getFunctionType(retType, proto->arg_type_begin(),
5835                           proto->getNumArgs(), EPI);
5836  }
5837
5838  if (allLTypes) return lhs;
5839  if (allRTypes) return rhs;
5840  return getFunctionNoProtoType(retType, einfo);
5841}
5842
5843QualType ASTContext::mergeTypes(QualType LHS, QualType RHS,
5844                                bool OfBlockPointer,
5845                                bool Unqualified, bool BlockReturnType) {
5846  // C++ [expr]: If an expression initially has the type "reference to T", the
5847  // type is adjusted to "T" prior to any further analysis, the expression
5848  // designates the object or function denoted by the reference, and the
5849  // expression is an lvalue unless the reference is an rvalue reference and
5850  // the expression is a function call (possibly inside parentheses).
5851  assert(!LHS->getAs<ReferenceType>() && "LHS is a reference type?");
5852  assert(!RHS->getAs<ReferenceType>() && "RHS is a reference type?");
5853
5854  if (Unqualified) {
5855    LHS = LHS.getUnqualifiedType();
5856    RHS = RHS.getUnqualifiedType();
5857  }
5858
5859  QualType LHSCan = getCanonicalType(LHS),
5860           RHSCan = getCanonicalType(RHS);
5861
5862  // If two types are identical, they are compatible.
5863  if (LHSCan == RHSCan)
5864    return LHS;
5865
5866  // If the qualifiers are different, the types aren't compatible... mostly.
5867  Qualifiers LQuals = LHSCan.getLocalQualifiers();
5868  Qualifiers RQuals = RHSCan.getLocalQualifiers();
5869  if (LQuals != RQuals) {
5870    // If any of these qualifiers are different, we have a type
5871    // mismatch.
5872    if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() ||
5873        LQuals.getAddressSpace() != RQuals.getAddressSpace() ||
5874        LQuals.getObjCLifetime() != RQuals.getObjCLifetime())
5875      return QualType();
5876
5877    // Exactly one GC qualifier difference is allowed: __strong is
5878    // okay if the other type has no GC qualifier but is an Objective
5879    // C object pointer (i.e. implicitly strong by default).  We fix
5880    // this by pretending that the unqualified type was actually
5881    // qualified __strong.
5882    Qualifiers::GC GC_L = LQuals.getObjCGCAttr();
5883    Qualifiers::GC GC_R = RQuals.getObjCGCAttr();
5884    assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements");
5885
5886    if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak)
5887      return QualType();
5888
5889    if (GC_L == Qualifiers::Strong && RHSCan->isObjCObjectPointerType()) {
5890      return mergeTypes(LHS, getObjCGCQualType(RHS, Qualifiers::Strong));
5891    }
5892    if (GC_R == Qualifiers::Strong && LHSCan->isObjCObjectPointerType()) {
5893      return mergeTypes(getObjCGCQualType(LHS, Qualifiers::Strong), RHS);
5894    }
5895    return QualType();
5896  }
5897
5898  // Okay, qualifiers are equal.
5899
5900  Type::TypeClass LHSClass = LHSCan->getTypeClass();
5901  Type::TypeClass RHSClass = RHSCan->getTypeClass();
5902
5903  // We want to consider the two function types to be the same for these
5904  // comparisons, just force one to the other.
5905  if (LHSClass == Type::FunctionProto) LHSClass = Type::FunctionNoProto;
5906  if (RHSClass == Type::FunctionProto) RHSClass = Type::FunctionNoProto;
5907
5908  // Same as above for arrays
5909  if (LHSClass == Type::VariableArray || LHSClass == Type::IncompleteArray)
5910    LHSClass = Type::ConstantArray;
5911  if (RHSClass == Type::VariableArray || RHSClass == Type::IncompleteArray)
5912    RHSClass = Type::ConstantArray;
5913
5914  // ObjCInterfaces are just specialized ObjCObjects.
5915  if (LHSClass == Type::ObjCInterface) LHSClass = Type::ObjCObject;
5916  if (RHSClass == Type::ObjCInterface) RHSClass = Type::ObjCObject;
5917
5918  // Canonicalize ExtVector -> Vector.
5919  if (LHSClass == Type::ExtVector) LHSClass = Type::Vector;
5920  if (RHSClass == Type::ExtVector) RHSClass = Type::Vector;
5921
5922  // If the canonical type classes don't match.
5923  if (LHSClass != RHSClass) {
5924    // C99 6.7.2.2p4: Each enumerated type shall be compatible with char,
5925    // a signed integer type, or an unsigned integer type.
5926    // Compatibility is based on the underlying type, not the promotion
5927    // type.
5928    if (const EnumType* ETy = LHS->getAs<EnumType>()) {
5929      if (ETy->getDecl()->getIntegerType() == RHSCan.getUnqualifiedType())
5930        return RHS;
5931    }
5932    if (const EnumType* ETy = RHS->getAs<EnumType>()) {
5933      if (ETy->getDecl()->getIntegerType() == LHSCan.getUnqualifiedType())
5934        return LHS;
5935    }
5936
5937    return QualType();
5938  }
5939
5940  // The canonical type classes match.
5941  switch (LHSClass) {
5942#define TYPE(Class, Base)
5943#define ABSTRACT_TYPE(Class, Base)
5944#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
5945#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
5946#define DEPENDENT_TYPE(Class, Base) case Type::Class:
5947#include "clang/AST/TypeNodes.def"
5948    llvm_unreachable("Non-canonical and dependent types shouldn't get here");
5949
5950  case Type::LValueReference:
5951  case Type::RValueReference:
5952  case Type::MemberPointer:
5953    llvm_unreachable("C++ should never be in mergeTypes");
5954
5955  case Type::ObjCInterface:
5956  case Type::IncompleteArray:
5957  case Type::VariableArray:
5958  case Type::FunctionProto:
5959  case Type::ExtVector:
5960    llvm_unreachable("Types are eliminated above");
5961
5962  case Type::Pointer:
5963  {
5964    // Merge two pointer types, while trying to preserve typedef info
5965    QualType LHSPointee = LHS->getAs<PointerType>()->getPointeeType();
5966    QualType RHSPointee = RHS->getAs<PointerType>()->getPointeeType();
5967    if (Unqualified) {
5968      LHSPointee = LHSPointee.getUnqualifiedType();
5969      RHSPointee = RHSPointee.getUnqualifiedType();
5970    }
5971    QualType ResultType = mergeTypes(LHSPointee, RHSPointee, false,
5972                                     Unqualified);
5973    if (ResultType.isNull()) return QualType();
5974    if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
5975      return LHS;
5976    if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
5977      return RHS;
5978    return getPointerType(ResultType);
5979  }
5980  case Type::BlockPointer:
5981  {
5982    // Merge two block pointer types, while trying to preserve typedef info
5983    QualType LHSPointee = LHS->getAs<BlockPointerType>()->getPointeeType();
5984    QualType RHSPointee = RHS->getAs<BlockPointerType>()->getPointeeType();
5985    if (Unqualified) {
5986      LHSPointee = LHSPointee.getUnqualifiedType();
5987      RHSPointee = RHSPointee.getUnqualifiedType();
5988    }
5989    QualType ResultType = mergeTypes(LHSPointee, RHSPointee, OfBlockPointer,
5990                                     Unqualified);
5991    if (ResultType.isNull()) return QualType();
5992    if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
5993      return LHS;
5994    if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
5995      return RHS;
5996    return getBlockPointerType(ResultType);
5997  }
5998  case Type::Atomic:
5999  {
6000    // Merge two pointer types, while trying to preserve typedef info
6001    QualType LHSValue = LHS->getAs<AtomicType>()->getValueType();
6002    QualType RHSValue = RHS->getAs<AtomicType>()->getValueType();
6003    if (Unqualified) {
6004      LHSValue = LHSValue.getUnqualifiedType();
6005      RHSValue = RHSValue.getUnqualifiedType();
6006    }
6007    QualType ResultType = mergeTypes(LHSValue, RHSValue, false,
6008                                     Unqualified);
6009    if (ResultType.isNull()) return QualType();
6010    if (getCanonicalType(LHSValue) == getCanonicalType(ResultType))
6011      return LHS;
6012    if (getCanonicalType(RHSValue) == getCanonicalType(ResultType))
6013      return RHS;
6014    return getAtomicType(ResultType);
6015  }
6016  case Type::ConstantArray:
6017  {
6018    const ConstantArrayType* LCAT = getAsConstantArrayType(LHS);
6019    const ConstantArrayType* RCAT = getAsConstantArrayType(RHS);
6020    if (LCAT && RCAT && RCAT->getSize() != LCAT->getSize())
6021      return QualType();
6022
6023    QualType LHSElem = getAsArrayType(LHS)->getElementType();
6024    QualType RHSElem = getAsArrayType(RHS)->getElementType();
6025    if (Unqualified) {
6026      LHSElem = LHSElem.getUnqualifiedType();
6027      RHSElem = RHSElem.getUnqualifiedType();
6028    }
6029
6030    QualType ResultType = mergeTypes(LHSElem, RHSElem, false, Unqualified);
6031    if (ResultType.isNull()) return QualType();
6032    if (LCAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
6033      return LHS;
6034    if (RCAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
6035      return RHS;
6036    if (LCAT) return getConstantArrayType(ResultType, LCAT->getSize(),
6037                                          ArrayType::ArraySizeModifier(), 0);
6038    if (RCAT) return getConstantArrayType(ResultType, RCAT->getSize(),
6039                                          ArrayType::ArraySizeModifier(), 0);
6040    const VariableArrayType* LVAT = getAsVariableArrayType(LHS);
6041    const VariableArrayType* RVAT = getAsVariableArrayType(RHS);
6042    if (LVAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
6043      return LHS;
6044    if (RVAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
6045      return RHS;
6046    if (LVAT) {
6047      // FIXME: This isn't correct! But tricky to implement because
6048      // the array's size has to be the size of LHS, but the type
6049      // has to be different.
6050      return LHS;
6051    }
6052    if (RVAT) {
6053      // FIXME: This isn't correct! But tricky to implement because
6054      // the array's size has to be the size of RHS, but the type
6055      // has to be different.
6056      return RHS;
6057    }
6058    if (getCanonicalType(LHSElem) == getCanonicalType(ResultType)) return LHS;
6059    if (getCanonicalType(RHSElem) == getCanonicalType(ResultType)) return RHS;
6060    return getIncompleteArrayType(ResultType,
6061                                  ArrayType::ArraySizeModifier(), 0);
6062  }
6063  case Type::FunctionNoProto:
6064    return mergeFunctionTypes(LHS, RHS, OfBlockPointer, Unqualified);
6065  case Type::Record:
6066  case Type::Enum:
6067    return QualType();
6068  case Type::Builtin:
6069    // Only exactly equal builtin types are compatible, which is tested above.
6070    return QualType();
6071  case Type::Complex:
6072    // Distinct complex types are incompatible.
6073    return QualType();
6074  case Type::Vector:
6075    // FIXME: The merged type should be an ExtVector!
6076    if (areCompatVectorTypes(LHSCan->getAs<VectorType>(),
6077                             RHSCan->getAs<VectorType>()))
6078      return LHS;
6079    return QualType();
6080  case Type::ObjCObject: {
6081    // Check if the types are assignment compatible.
6082    // FIXME: This should be type compatibility, e.g. whether
6083    // "LHS x; RHS x;" at global scope is legal.
6084    const ObjCObjectType* LHSIface = LHS->getAs<ObjCObjectType>();
6085    const ObjCObjectType* RHSIface = RHS->getAs<ObjCObjectType>();
6086    if (canAssignObjCInterfaces(LHSIface, RHSIface))
6087      return LHS;
6088
6089    return QualType();
6090  }
6091  case Type::ObjCObjectPointer: {
6092    if (OfBlockPointer) {
6093      if (canAssignObjCInterfacesInBlockPointer(
6094                                          LHS->getAs<ObjCObjectPointerType>(),
6095                                          RHS->getAs<ObjCObjectPointerType>(),
6096                                          BlockReturnType))
6097        return LHS;
6098      return QualType();
6099    }
6100    if (canAssignObjCInterfaces(LHS->getAs<ObjCObjectPointerType>(),
6101                                RHS->getAs<ObjCObjectPointerType>()))
6102      return LHS;
6103
6104    return QualType();
6105  }
6106  }
6107
6108  llvm_unreachable("Invalid Type::Class!");
6109}
6110
6111bool ASTContext::FunctionTypesMatchOnNSConsumedAttrs(
6112                   const FunctionProtoType *FromFunctionType,
6113                   const FunctionProtoType *ToFunctionType) {
6114  if (FromFunctionType->hasAnyConsumedArgs() !=
6115      ToFunctionType->hasAnyConsumedArgs())
6116    return false;
6117  FunctionProtoType::ExtProtoInfo FromEPI =
6118    FromFunctionType->getExtProtoInfo();
6119  FunctionProtoType::ExtProtoInfo ToEPI =
6120    ToFunctionType->getExtProtoInfo();
6121  if (FromEPI.ConsumedArguments && ToEPI.ConsumedArguments)
6122    for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumArgs();
6123         ArgIdx != NumArgs; ++ArgIdx)  {
6124      if (FromEPI.ConsumedArguments[ArgIdx] !=
6125          ToEPI.ConsumedArguments[ArgIdx])
6126        return false;
6127    }
6128  return true;
6129}
6130
6131/// mergeObjCGCQualifiers - This routine merges ObjC's GC attribute of 'LHS' and
6132/// 'RHS' attributes and returns the merged version; including for function
6133/// return types.
6134QualType ASTContext::mergeObjCGCQualifiers(QualType LHS, QualType RHS) {
6135  QualType LHSCan = getCanonicalType(LHS),
6136  RHSCan = getCanonicalType(RHS);
6137  // If two types are identical, they are compatible.
6138  if (LHSCan == RHSCan)
6139    return LHS;
6140  if (RHSCan->isFunctionType()) {
6141    if (!LHSCan->isFunctionType())
6142      return QualType();
6143    QualType OldReturnType =
6144      cast<FunctionType>(RHSCan.getTypePtr())->getResultType();
6145    QualType NewReturnType =
6146      cast<FunctionType>(LHSCan.getTypePtr())->getResultType();
6147    QualType ResReturnType =
6148      mergeObjCGCQualifiers(NewReturnType, OldReturnType);
6149    if (ResReturnType.isNull())
6150      return QualType();
6151    if (ResReturnType == NewReturnType || ResReturnType == OldReturnType) {
6152      // id foo(); ... __strong id foo(); or: __strong id foo(); ... id foo();
6153      // In either case, use OldReturnType to build the new function type.
6154      const FunctionType *F = LHS->getAs<FunctionType>();
6155      if (const FunctionProtoType *FPT = cast<FunctionProtoType>(F)) {
6156        FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
6157        EPI.ExtInfo = getFunctionExtInfo(LHS);
6158        QualType ResultType
6159          = getFunctionType(OldReturnType, FPT->arg_type_begin(),
6160                            FPT->getNumArgs(), EPI);
6161        return ResultType;
6162      }
6163    }
6164    return QualType();
6165  }
6166
6167  // If the qualifiers are different, the types can still be merged.
6168  Qualifiers LQuals = LHSCan.getLocalQualifiers();
6169  Qualifiers RQuals = RHSCan.getLocalQualifiers();
6170  if (LQuals != RQuals) {
6171    // If any of these qualifiers are different, we have a type mismatch.
6172    if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() ||
6173        LQuals.getAddressSpace() != RQuals.getAddressSpace())
6174      return QualType();
6175
6176    // Exactly one GC qualifier difference is allowed: __strong is
6177    // okay if the other type has no GC qualifier but is an Objective
6178    // C object pointer (i.e. implicitly strong by default).  We fix
6179    // this by pretending that the unqualified type was actually
6180    // qualified __strong.
6181    Qualifiers::GC GC_L = LQuals.getObjCGCAttr();
6182    Qualifiers::GC GC_R = RQuals.getObjCGCAttr();
6183    assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements");
6184
6185    if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak)
6186      return QualType();
6187
6188    if (GC_L == Qualifiers::Strong)
6189      return LHS;
6190    if (GC_R == Qualifiers::Strong)
6191      return RHS;
6192    return QualType();
6193  }
6194
6195  if (LHSCan->isObjCObjectPointerType() && RHSCan->isObjCObjectPointerType()) {
6196    QualType LHSBaseQT = LHS->getAs<ObjCObjectPointerType>()->getPointeeType();
6197    QualType RHSBaseQT = RHS->getAs<ObjCObjectPointerType>()->getPointeeType();
6198    QualType ResQT = mergeObjCGCQualifiers(LHSBaseQT, RHSBaseQT);
6199    if (ResQT == LHSBaseQT)
6200      return LHS;
6201    if (ResQT == RHSBaseQT)
6202      return RHS;
6203  }
6204  return QualType();
6205}
6206
6207//===----------------------------------------------------------------------===//
6208//                         Integer Predicates
6209//===----------------------------------------------------------------------===//
6210
6211unsigned ASTContext::getIntWidth(QualType T) const {
6212  if (const EnumType *ET = dyn_cast<EnumType>(T))
6213    T = ET->getDecl()->getIntegerType();
6214  if (T->isBooleanType())
6215    return 1;
6216  // For builtin types, just use the standard type sizing method
6217  return (unsigned)getTypeSize(T);
6218}
6219
6220QualType ASTContext::getCorrespondingUnsignedType(QualType T) {
6221  assert(T->hasSignedIntegerRepresentation() && "Unexpected type");
6222
6223  // Turn <4 x signed int> -> <4 x unsigned int>
6224  if (const VectorType *VTy = T->getAs<VectorType>())
6225    return getVectorType(getCorrespondingUnsignedType(VTy->getElementType()),
6226                         VTy->getNumElements(), VTy->getVectorKind());
6227
6228  // For enums, we return the unsigned version of the base type.
6229  if (const EnumType *ETy = T->getAs<EnumType>())
6230    T = ETy->getDecl()->getIntegerType();
6231
6232  const BuiltinType *BTy = T->getAs<BuiltinType>();
6233  assert(BTy && "Unexpected signed integer type");
6234  switch (BTy->getKind()) {
6235  case BuiltinType::Char_S:
6236  case BuiltinType::SChar:
6237    return UnsignedCharTy;
6238  case BuiltinType::Short:
6239    return UnsignedShortTy;
6240  case BuiltinType::Int:
6241    return UnsignedIntTy;
6242  case BuiltinType::Long:
6243    return UnsignedLongTy;
6244  case BuiltinType::LongLong:
6245    return UnsignedLongLongTy;
6246  case BuiltinType::Int128:
6247    return UnsignedInt128Ty;
6248  default:
6249    llvm_unreachable("Unexpected signed integer type");
6250  }
6251}
6252
6253ASTMutationListener::~ASTMutationListener() { }
6254
6255
6256//===----------------------------------------------------------------------===//
6257//                          Builtin Type Computation
6258//===----------------------------------------------------------------------===//
6259
6260/// DecodeTypeFromStr - This decodes one type descriptor from Str, advancing the
6261/// pointer over the consumed characters.  This returns the resultant type.  If
6262/// AllowTypeModifiers is false then modifier like * are not parsed, just basic
6263/// types.  This allows "v2i*" to be parsed as a pointer to a v2i instead of
6264/// a vector of "i*".
6265///
6266/// RequiresICE is filled in on return to indicate whether the value is required
6267/// to be an Integer Constant Expression.
6268static QualType DecodeTypeFromStr(const char *&Str, const ASTContext &Context,
6269                                  ASTContext::GetBuiltinTypeError &Error,
6270                                  bool &RequiresICE,
6271                                  bool AllowTypeModifiers) {
6272  // Modifiers.
6273  int HowLong = 0;
6274  bool Signed = false, Unsigned = false;
6275  RequiresICE = false;
6276
6277  // Read the prefixed modifiers first.
6278  bool Done = false;
6279  while (!Done) {
6280    switch (*Str++) {
6281    default: Done = true; --Str; break;
6282    case 'I':
6283      RequiresICE = true;
6284      break;
6285    case 'S':
6286      assert(!Unsigned && "Can't use both 'S' and 'U' modifiers!");
6287      assert(!Signed && "Can't use 'S' modifier multiple times!");
6288      Signed = true;
6289      break;
6290    case 'U':
6291      assert(!Signed && "Can't use both 'S' and 'U' modifiers!");
6292      assert(!Unsigned && "Can't use 'S' modifier multiple times!");
6293      Unsigned = true;
6294      break;
6295    case 'L':
6296      assert(HowLong <= 2 && "Can't have LLLL modifier");
6297      ++HowLong;
6298      break;
6299    }
6300  }
6301
6302  QualType Type;
6303
6304  // Read the base type.
6305  switch (*Str++) {
6306  default: llvm_unreachable("Unknown builtin type letter!");
6307  case 'v':
6308    assert(HowLong == 0 && !Signed && !Unsigned &&
6309           "Bad modifiers used with 'v'!");
6310    Type = Context.VoidTy;
6311    break;
6312  case 'f':
6313    assert(HowLong == 0 && !Signed && !Unsigned &&
6314           "Bad modifiers used with 'f'!");
6315    Type = Context.FloatTy;
6316    break;
6317  case 'd':
6318    assert(HowLong < 2 && !Signed && !Unsigned &&
6319           "Bad modifiers used with 'd'!");
6320    if (HowLong)
6321      Type = Context.LongDoubleTy;
6322    else
6323      Type = Context.DoubleTy;
6324    break;
6325  case 's':
6326    assert(HowLong == 0 && "Bad modifiers used with 's'!");
6327    if (Unsigned)
6328      Type = Context.UnsignedShortTy;
6329    else
6330      Type = Context.ShortTy;
6331    break;
6332  case 'i':
6333    if (HowLong == 3)
6334      Type = Unsigned ? Context.UnsignedInt128Ty : Context.Int128Ty;
6335    else if (HowLong == 2)
6336      Type = Unsigned ? Context.UnsignedLongLongTy : Context.LongLongTy;
6337    else if (HowLong == 1)
6338      Type = Unsigned ? Context.UnsignedLongTy : Context.LongTy;
6339    else
6340      Type = Unsigned ? Context.UnsignedIntTy : Context.IntTy;
6341    break;
6342  case 'c':
6343    assert(HowLong == 0 && "Bad modifiers used with 'c'!");
6344    if (Signed)
6345      Type = Context.SignedCharTy;
6346    else if (Unsigned)
6347      Type = Context.UnsignedCharTy;
6348    else
6349      Type = Context.CharTy;
6350    break;
6351  case 'b': // boolean
6352    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'b'!");
6353    Type = Context.BoolTy;
6354    break;
6355  case 'z':  // size_t.
6356    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'z'!");
6357    Type = Context.getSizeType();
6358    break;
6359  case 'F':
6360    Type = Context.getCFConstantStringType();
6361    break;
6362  case 'G':
6363    Type = Context.getObjCIdType();
6364    break;
6365  case 'H':
6366    Type = Context.getObjCSelType();
6367    break;
6368  case 'a':
6369    Type = Context.getBuiltinVaListType();
6370    assert(!Type.isNull() && "builtin va list type not initialized!");
6371    break;
6372  case 'A':
6373    // This is a "reference" to a va_list; however, what exactly
6374    // this means depends on how va_list is defined. There are two
6375    // different kinds of va_list: ones passed by value, and ones
6376    // passed by reference.  An example of a by-value va_list is
6377    // x86, where va_list is a char*. An example of by-ref va_list
6378    // is x86-64, where va_list is a __va_list_tag[1]. For x86,
6379    // we want this argument to be a char*&; for x86-64, we want
6380    // it to be a __va_list_tag*.
6381    Type = Context.getBuiltinVaListType();
6382    assert(!Type.isNull() && "builtin va list type not initialized!");
6383    if (Type->isArrayType())
6384      Type = Context.getArrayDecayedType(Type);
6385    else
6386      Type = Context.getLValueReferenceType(Type);
6387    break;
6388  case 'V': {
6389    char *End;
6390    unsigned NumElements = strtoul(Str, &End, 10);
6391    assert(End != Str && "Missing vector size");
6392    Str = End;
6393
6394    QualType ElementType = DecodeTypeFromStr(Str, Context, Error,
6395                                             RequiresICE, false);
6396    assert(!RequiresICE && "Can't require vector ICE");
6397
6398    // TODO: No way to make AltiVec vectors in builtins yet.
6399    Type = Context.getVectorType(ElementType, NumElements,
6400                                 VectorType::GenericVector);
6401    break;
6402  }
6403  case 'X': {
6404    QualType ElementType = DecodeTypeFromStr(Str, Context, Error, RequiresICE,
6405                                             false);
6406    assert(!RequiresICE && "Can't require complex ICE");
6407    Type = Context.getComplexType(ElementType);
6408    break;
6409  }
6410  case 'Y' : {
6411    Type = Context.getPointerDiffType();
6412    break;
6413  }
6414  case 'P':
6415    Type = Context.getFILEType();
6416    if (Type.isNull()) {
6417      Error = ASTContext::GE_Missing_stdio;
6418      return QualType();
6419    }
6420    break;
6421  case 'J':
6422    if (Signed)
6423      Type = Context.getsigjmp_bufType();
6424    else
6425      Type = Context.getjmp_bufType();
6426
6427    if (Type.isNull()) {
6428      Error = ASTContext::GE_Missing_setjmp;
6429      return QualType();
6430    }
6431    break;
6432  case 'K':
6433    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'K'!");
6434    Type = Context.getucontext_tType();
6435
6436    if (Type.isNull()) {
6437      Error = ASTContext::GE_Missing_ucontext;
6438      return QualType();
6439    }
6440    break;
6441  }
6442
6443  // If there are modifiers and if we're allowed to parse them, go for it.
6444  Done = !AllowTypeModifiers;
6445  while (!Done) {
6446    switch (char c = *Str++) {
6447    default: Done = true; --Str; break;
6448    case '*':
6449    case '&': {
6450      // Both pointers and references can have their pointee types
6451      // qualified with an address space.
6452      char *End;
6453      unsigned AddrSpace = strtoul(Str, &End, 10);
6454      if (End != Str && AddrSpace != 0) {
6455        Type = Context.getAddrSpaceQualType(Type, AddrSpace);
6456        Str = End;
6457      }
6458      if (c == '*')
6459        Type = Context.getPointerType(Type);
6460      else
6461        Type = Context.getLValueReferenceType(Type);
6462      break;
6463    }
6464    // FIXME: There's no way to have a built-in with an rvalue ref arg.
6465    case 'C':
6466      Type = Type.withConst();
6467      break;
6468    case 'D':
6469      Type = Context.getVolatileType(Type);
6470      break;
6471    case 'R':
6472      Type = Type.withRestrict();
6473      break;
6474    }
6475  }
6476
6477  assert((!RequiresICE || Type->isIntegralOrEnumerationType()) &&
6478         "Integer constant 'I' type must be an integer");
6479
6480  return Type;
6481}
6482
6483/// GetBuiltinType - Return the type for the specified builtin.
6484QualType ASTContext::GetBuiltinType(unsigned Id,
6485                                    GetBuiltinTypeError &Error,
6486                                    unsigned *IntegerConstantArgs) const {
6487  const char *TypeStr = BuiltinInfo.GetTypeString(Id);
6488
6489  SmallVector<QualType, 8> ArgTypes;
6490
6491  bool RequiresICE = false;
6492  Error = GE_None;
6493  QualType ResType = DecodeTypeFromStr(TypeStr, *this, Error,
6494                                       RequiresICE, true);
6495  if (Error != GE_None)
6496    return QualType();
6497
6498  assert(!RequiresICE && "Result of intrinsic cannot be required to be an ICE");
6499
6500  while (TypeStr[0] && TypeStr[0] != '.') {
6501    QualType Ty = DecodeTypeFromStr(TypeStr, *this, Error, RequiresICE, true);
6502    if (Error != GE_None)
6503      return QualType();
6504
6505    // If this argument is required to be an IntegerConstantExpression and the
6506    // caller cares, fill in the bitmask we return.
6507    if (RequiresICE && IntegerConstantArgs)
6508      *IntegerConstantArgs |= 1 << ArgTypes.size();
6509
6510    // Do array -> pointer decay.  The builtin should use the decayed type.
6511    if (Ty->isArrayType())
6512      Ty = getArrayDecayedType(Ty);
6513
6514    ArgTypes.push_back(Ty);
6515  }
6516
6517  assert((TypeStr[0] != '.' || TypeStr[1] == 0) &&
6518         "'.' should only occur at end of builtin type list!");
6519
6520  FunctionType::ExtInfo EI;
6521  if (BuiltinInfo.isNoReturn(Id)) EI = EI.withNoReturn(true);
6522
6523  bool Variadic = (TypeStr[0] == '.');
6524
6525  // We really shouldn't be making a no-proto type here, especially in C++.
6526  if (ArgTypes.empty() && Variadic)
6527    return getFunctionNoProtoType(ResType, EI);
6528
6529  FunctionProtoType::ExtProtoInfo EPI;
6530  EPI.ExtInfo = EI;
6531  EPI.Variadic = Variadic;
6532
6533  return getFunctionType(ResType, ArgTypes.data(), ArgTypes.size(), EPI);
6534}
6535
6536GVALinkage ASTContext::GetGVALinkageForFunction(const FunctionDecl *FD) {
6537  GVALinkage External = GVA_StrongExternal;
6538
6539  Linkage L = FD->getLinkage();
6540  switch (L) {
6541  case NoLinkage:
6542  case InternalLinkage:
6543  case UniqueExternalLinkage:
6544    return GVA_Internal;
6545
6546  case ExternalLinkage:
6547    switch (FD->getTemplateSpecializationKind()) {
6548    case TSK_Undeclared:
6549    case TSK_ExplicitSpecialization:
6550      External = GVA_StrongExternal;
6551      break;
6552
6553    case TSK_ExplicitInstantiationDefinition:
6554      return GVA_ExplicitTemplateInstantiation;
6555
6556    case TSK_ExplicitInstantiationDeclaration:
6557    case TSK_ImplicitInstantiation:
6558      External = GVA_TemplateInstantiation;
6559      break;
6560    }
6561  }
6562
6563  if (!FD->isInlined())
6564    return External;
6565
6566  if (!getLangOptions().CPlusPlus || FD->hasAttr<GNUInlineAttr>()) {
6567    // GNU or C99 inline semantics. Determine whether this symbol should be
6568    // externally visible.
6569    if (FD->isInlineDefinitionExternallyVisible())
6570      return External;
6571
6572    // C99 inline semantics, where the symbol is not externally visible.
6573    return GVA_C99Inline;
6574  }
6575
6576  // C++0x [temp.explicit]p9:
6577  //   [ Note: The intent is that an inline function that is the subject of
6578  //   an explicit instantiation declaration will still be implicitly
6579  //   instantiated when used so that the body can be considered for
6580  //   inlining, but that no out-of-line copy of the inline function would be
6581  //   generated in the translation unit. -- end note ]
6582  if (FD->getTemplateSpecializationKind()
6583                                       == TSK_ExplicitInstantiationDeclaration)
6584    return GVA_C99Inline;
6585
6586  return GVA_CXXInline;
6587}
6588
6589GVALinkage ASTContext::GetGVALinkageForVariable(const VarDecl *VD) {
6590  // If this is a static data member, compute the kind of template
6591  // specialization. Otherwise, this variable is not part of a
6592  // template.
6593  TemplateSpecializationKind TSK = TSK_Undeclared;
6594  if (VD->isStaticDataMember())
6595    TSK = VD->getTemplateSpecializationKind();
6596
6597  Linkage L = VD->getLinkage();
6598  if (L == ExternalLinkage && getLangOptions().CPlusPlus &&
6599      VD->getType()->getLinkage() == UniqueExternalLinkage)
6600    L = UniqueExternalLinkage;
6601
6602  switch (L) {
6603  case NoLinkage:
6604  case InternalLinkage:
6605  case UniqueExternalLinkage:
6606    return GVA_Internal;
6607
6608  case ExternalLinkage:
6609    switch (TSK) {
6610    case TSK_Undeclared:
6611    case TSK_ExplicitSpecialization:
6612      return GVA_StrongExternal;
6613
6614    case TSK_ExplicitInstantiationDeclaration:
6615      llvm_unreachable("Variable should not be instantiated");
6616      // Fall through to treat this like any other instantiation.
6617
6618    case TSK_ExplicitInstantiationDefinition:
6619      return GVA_ExplicitTemplateInstantiation;
6620
6621    case TSK_ImplicitInstantiation:
6622      return GVA_TemplateInstantiation;
6623    }
6624  }
6625
6626  llvm_unreachable("Invalid Linkage!");
6627}
6628
6629bool ASTContext::DeclMustBeEmitted(const Decl *D) {
6630  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
6631    if (!VD->isFileVarDecl())
6632      return false;
6633  } else if (!isa<FunctionDecl>(D))
6634    return false;
6635
6636  // Weak references don't produce any output by themselves.
6637  if (D->hasAttr<WeakRefAttr>())
6638    return false;
6639
6640  // Aliases and used decls are required.
6641  if (D->hasAttr<AliasAttr>() || D->hasAttr<UsedAttr>())
6642    return true;
6643
6644  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
6645    // Forward declarations aren't required.
6646    if (!FD->doesThisDeclarationHaveABody())
6647      return FD->doesDeclarationForceExternallyVisibleDefinition();
6648
6649    // Constructors and destructors are required.
6650    if (FD->hasAttr<ConstructorAttr>() || FD->hasAttr<DestructorAttr>())
6651      return true;
6652
6653    // The key function for a class is required.
6654    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
6655      const CXXRecordDecl *RD = MD->getParent();
6656      if (MD->isOutOfLine() && RD->isDynamicClass()) {
6657        const CXXMethodDecl *KeyFunc = getKeyFunction(RD);
6658        if (KeyFunc && KeyFunc->getCanonicalDecl() == MD->getCanonicalDecl())
6659          return true;
6660      }
6661    }
6662
6663    GVALinkage Linkage = GetGVALinkageForFunction(FD);
6664
6665    // static, static inline, always_inline, and extern inline functions can
6666    // always be deferred.  Normal inline functions can be deferred in C99/C++.
6667    // Implicit template instantiations can also be deferred in C++.
6668    if (Linkage == GVA_Internal  || Linkage == GVA_C99Inline ||
6669        Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation)
6670      return false;
6671    return true;
6672  }
6673
6674  const VarDecl *VD = cast<VarDecl>(D);
6675  assert(VD->isFileVarDecl() && "Expected file scoped var");
6676
6677  if (VD->isThisDeclarationADefinition() == VarDecl::DeclarationOnly)
6678    return false;
6679
6680  // Structs that have non-trivial constructors or destructors are required.
6681
6682  // FIXME: Handle references.
6683  // FIXME: Be more selective about which constructors we care about.
6684  if (const RecordType *RT = VD->getType()->getAs<RecordType>()) {
6685    if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
6686      if (RD->hasDefinition() && !(RD->hasTrivialDefaultConstructor() &&
6687                                   RD->hasTrivialCopyConstructor() &&
6688                                   RD->hasTrivialMoveConstructor() &&
6689                                   RD->hasTrivialDestructor()))
6690        return true;
6691    }
6692  }
6693
6694  GVALinkage L = GetGVALinkageForVariable(VD);
6695  if (L == GVA_Internal || L == GVA_TemplateInstantiation) {
6696    if (!(VD->getInit() && VD->getInit()->HasSideEffects(*this)))
6697      return false;
6698  }
6699
6700  return true;
6701}
6702
6703CallingConv ASTContext::getDefaultMethodCallConv() {
6704  // Pass through to the C++ ABI object
6705  return ABI->getDefaultMethodCallConv();
6706}
6707
6708bool ASTContext::isNearlyEmpty(const CXXRecordDecl *RD) const {
6709  // Pass through to the C++ ABI object
6710  return ABI->isNearlyEmpty(RD);
6711}
6712
6713MangleContext *ASTContext::createMangleContext() {
6714  switch (Target->getCXXABI()) {
6715  case CXXABI_ARM:
6716  case CXXABI_Itanium:
6717    return createItaniumMangleContext(*this, getDiagnostics());
6718  case CXXABI_Microsoft:
6719    return createMicrosoftMangleContext(*this, getDiagnostics());
6720  }
6721  llvm_unreachable("Unsupported ABI");
6722}
6723
6724CXXABI::~CXXABI() {}
6725
6726size_t ASTContext::getSideTableAllocatedMemory() const {
6727  return ASTRecordLayouts.getMemorySize()
6728    + llvm::capacity_in_bytes(ObjCLayouts)
6729    + llvm::capacity_in_bytes(KeyFunctions)
6730    + llvm::capacity_in_bytes(ObjCImpls)
6731    + llvm::capacity_in_bytes(BlockVarCopyInits)
6732    + llvm::capacity_in_bytes(DeclAttrs)
6733    + llvm::capacity_in_bytes(InstantiatedFromStaticDataMember)
6734    + llvm::capacity_in_bytes(InstantiatedFromUsingDecl)
6735    + llvm::capacity_in_bytes(InstantiatedFromUsingShadowDecl)
6736    + llvm::capacity_in_bytes(InstantiatedFromUnnamedFieldDecl)
6737    + llvm::capacity_in_bytes(OverriddenMethods)
6738    + llvm::capacity_in_bytes(Types)
6739    + llvm::capacity_in_bytes(VariableArrayTypes)
6740    + llvm::capacity_in_bytes(ClassScopeSpecializationPattern);
6741}
6742
6743void ASTContext::setParameterIndex(const ParmVarDecl *D, unsigned int index) {
6744  ParamIndices[D] = index;
6745}
6746
6747unsigned ASTContext::getParameterIndex(const ParmVarDecl *D) const {
6748  ParameterIndexTable::const_iterator I = ParamIndices.find(D);
6749  assert(I != ParamIndices.end() &&
6750         "ParmIndices lacks entry set by ParmVarDecl");
6751  return I->second;
6752}
6753