ASTContext.cpp revision 19dbb20ac4371fae3190379a7e7bd467af3c00aa
1//===--- ASTContext.cpp - Context to hold long-lived AST nodes ------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements the ASTContext interface.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/AST/ASTContext.h"
15#include "CXXABI.h"
16#include "clang/AST/ASTMutationListener.h"
17#include "clang/AST/Attr.h"
18#include "clang/AST/CharUnits.h"
19#include "clang/AST/Comment.h"
20#include "clang/AST/CommentCommandTraits.h"
21#include "clang/AST/DeclCXX.h"
22#include "clang/AST/DeclObjC.h"
23#include "clang/AST/DeclTemplate.h"
24#include "clang/AST/Expr.h"
25#include "clang/AST/ExprCXX.h"
26#include "clang/AST/ExternalASTSource.h"
27#include "clang/AST/Mangle.h"
28#include "clang/AST/RecordLayout.h"
29#include "clang/AST/TypeLoc.h"
30#include "clang/Basic/Builtins.h"
31#include "clang/Basic/SourceManager.h"
32#include "clang/Basic/TargetInfo.h"
33#include "llvm/ADT/SmallString.h"
34#include "llvm/ADT/StringExtras.h"
35#include "llvm/Support/Capacity.h"
36#include "llvm/Support/MathExtras.h"
37#include "llvm/Support/raw_ostream.h"
38#include <map>
39
40using namespace clang;
41
42unsigned ASTContext::NumImplicitDefaultConstructors;
43unsigned ASTContext::NumImplicitDefaultConstructorsDeclared;
44unsigned ASTContext::NumImplicitCopyConstructors;
45unsigned ASTContext::NumImplicitCopyConstructorsDeclared;
46unsigned ASTContext::NumImplicitMoveConstructors;
47unsigned ASTContext::NumImplicitMoveConstructorsDeclared;
48unsigned ASTContext::NumImplicitCopyAssignmentOperators;
49unsigned ASTContext::NumImplicitCopyAssignmentOperatorsDeclared;
50unsigned ASTContext::NumImplicitMoveAssignmentOperators;
51unsigned ASTContext::NumImplicitMoveAssignmentOperatorsDeclared;
52unsigned ASTContext::NumImplicitDestructors;
53unsigned ASTContext::NumImplicitDestructorsDeclared;
54
55enum FloatingRank {
56  HalfRank, FloatRank, DoubleRank, LongDoubleRank
57};
58
59RawComment *ASTContext::getRawCommentForDeclNoCache(const Decl *D) const {
60  if (!CommentsLoaded && ExternalSource) {
61    ExternalSource->ReadComments();
62    CommentsLoaded = true;
63  }
64
65  assert(D);
66
67  // User can not attach documentation to implicit declarations.
68  if (D->isImplicit())
69    return NULL;
70
71  // User can not attach documentation to implicit instantiations.
72  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
73    if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
74      return NULL;
75  }
76
77  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
78    if (VD->isStaticDataMember() &&
79        VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
80      return NULL;
81  }
82
83  if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(D)) {
84    if (CRD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
85      return NULL;
86  }
87
88  if (const EnumDecl *ED = dyn_cast<EnumDecl>(D)) {
89    if (ED->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
90      return NULL;
91  }
92
93  // TODO: handle comments for function parameters properly.
94  if (isa<ParmVarDecl>(D))
95    return NULL;
96
97  // TODO: we could look up template parameter documentation in the template
98  // documentation.
99  if (isa<TemplateTypeParmDecl>(D) ||
100      isa<NonTypeTemplateParmDecl>(D) ||
101      isa<TemplateTemplateParmDecl>(D))
102    return NULL;
103
104  ArrayRef<RawComment *> RawComments = Comments.getComments();
105
106  // If there are no comments anywhere, we won't find anything.
107  if (RawComments.empty())
108    return NULL;
109
110  // Find declaration location.
111  // For Objective-C declarations we generally don't expect to have multiple
112  // declarators, thus use declaration starting location as the "declaration
113  // location".
114  // For all other declarations multiple declarators are used quite frequently,
115  // so we use the location of the identifier as the "declaration location".
116  SourceLocation DeclLoc;
117  if (isa<ObjCMethodDecl>(D) || isa<ObjCContainerDecl>(D) ||
118      isa<ObjCPropertyDecl>(D) ||
119      isa<RedeclarableTemplateDecl>(D) ||
120      isa<ClassTemplateSpecializationDecl>(D))
121    DeclLoc = D->getLocStart();
122  else
123    DeclLoc = D->getLocation();
124
125  // If the declaration doesn't map directly to a location in a file, we
126  // can't find the comment.
127  if (DeclLoc.isInvalid() || !DeclLoc.isFileID())
128    return NULL;
129
130  // Find the comment that occurs just after this declaration.
131  ArrayRef<RawComment *>::iterator Comment;
132  {
133    // When searching for comments during parsing, the comment we are looking
134    // for is usually among the last two comments we parsed -- check them
135    // first.
136    RawComment CommentAtDeclLoc(SourceMgr, SourceRange(DeclLoc));
137    BeforeThanCompare<RawComment> Compare(SourceMgr);
138    ArrayRef<RawComment *>::iterator MaybeBeforeDecl = RawComments.end() - 1;
139    bool Found = Compare(*MaybeBeforeDecl, &CommentAtDeclLoc);
140    if (!Found && RawComments.size() >= 2) {
141      MaybeBeforeDecl--;
142      Found = Compare(*MaybeBeforeDecl, &CommentAtDeclLoc);
143    }
144
145    if (Found) {
146      Comment = MaybeBeforeDecl + 1;
147      assert(Comment == std::lower_bound(RawComments.begin(), RawComments.end(),
148                                         &CommentAtDeclLoc, Compare));
149    } else {
150      // Slow path.
151      Comment = std::lower_bound(RawComments.begin(), RawComments.end(),
152                                 &CommentAtDeclLoc, Compare);
153    }
154  }
155
156  // Decompose the location for the declaration and find the beginning of the
157  // file buffer.
158  std::pair<FileID, unsigned> DeclLocDecomp = SourceMgr.getDecomposedLoc(DeclLoc);
159
160  // First check whether we have a trailing comment.
161  if (Comment != RawComments.end() &&
162      (*Comment)->isDocumentation() && (*Comment)->isTrailingComment() &&
163      (isa<FieldDecl>(D) || isa<EnumConstantDecl>(D) || isa<VarDecl>(D))) {
164    std::pair<FileID, unsigned> CommentBeginDecomp
165      = SourceMgr.getDecomposedLoc((*Comment)->getSourceRange().getBegin());
166    // Check that Doxygen trailing comment comes after the declaration, starts
167    // on the same line and in the same file as the declaration.
168    if (DeclLocDecomp.first == CommentBeginDecomp.first &&
169        SourceMgr.getLineNumber(DeclLocDecomp.first, DeclLocDecomp.second)
170          == SourceMgr.getLineNumber(CommentBeginDecomp.first,
171                                     CommentBeginDecomp.second)) {
172      return *Comment;
173    }
174  }
175
176  // The comment just after the declaration was not a trailing comment.
177  // Let's look at the previous comment.
178  if (Comment == RawComments.begin())
179    return NULL;
180  --Comment;
181
182  // Check that we actually have a non-member Doxygen comment.
183  if (!(*Comment)->isDocumentation() || (*Comment)->isTrailingComment())
184    return NULL;
185
186  // Decompose the end of the comment.
187  std::pair<FileID, unsigned> CommentEndDecomp
188    = SourceMgr.getDecomposedLoc((*Comment)->getSourceRange().getEnd());
189
190  // If the comment and the declaration aren't in the same file, then they
191  // aren't related.
192  if (DeclLocDecomp.first != CommentEndDecomp.first)
193    return NULL;
194
195  // Get the corresponding buffer.
196  bool Invalid = false;
197  const char *Buffer = SourceMgr.getBufferData(DeclLocDecomp.first,
198                                               &Invalid).data();
199  if (Invalid)
200    return NULL;
201
202  // Extract text between the comment and declaration.
203  StringRef Text(Buffer + CommentEndDecomp.second,
204                 DeclLocDecomp.second - CommentEndDecomp.second);
205
206  // There should be no other declarations or preprocessor directives between
207  // comment and declaration.
208  if (Text.find_first_of(",;{}#@") != StringRef::npos)
209    return NULL;
210
211  return *Comment;
212}
213
214namespace {
215/// If we have a 'templated' declaration for a template, adjust 'D' to
216/// refer to the actual template.
217/// If we have an implicit instantiation, adjust 'D' to refer to template.
218const Decl *adjustDeclToTemplate(const Decl *D) {
219  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
220    // Is this function declaration part of a function template?
221    if (const FunctionTemplateDecl *FTD = FD->getDescribedFunctionTemplate())
222      return FTD;
223
224    // Nothing to do if function is not an implicit instantiation.
225    if (FD->getTemplateSpecializationKind() != TSK_ImplicitInstantiation)
226      return D;
227
228    // Function is an implicit instantiation of a function template?
229    if (const FunctionTemplateDecl *FTD = FD->getPrimaryTemplate())
230      return FTD;
231
232    // Function is instantiated from a member definition of a class template?
233    if (const FunctionDecl *MemberDecl =
234            FD->getInstantiatedFromMemberFunction())
235      return MemberDecl;
236
237    return D;
238  }
239  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
240    // Static data member is instantiated from a member definition of a class
241    // template?
242    if (VD->isStaticDataMember())
243      if (const VarDecl *MemberDecl = VD->getInstantiatedFromStaticDataMember())
244        return MemberDecl;
245
246    return D;
247  }
248  if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(D)) {
249    // Is this class declaration part of a class template?
250    if (const ClassTemplateDecl *CTD = CRD->getDescribedClassTemplate())
251      return CTD;
252
253    // Class is an implicit instantiation of a class template or partial
254    // specialization?
255    if (const ClassTemplateSpecializationDecl *CTSD =
256            dyn_cast<ClassTemplateSpecializationDecl>(CRD)) {
257      if (CTSD->getSpecializationKind() != TSK_ImplicitInstantiation)
258        return D;
259      llvm::PointerUnion<ClassTemplateDecl *,
260                         ClassTemplatePartialSpecializationDecl *>
261          PU = CTSD->getSpecializedTemplateOrPartial();
262      return PU.is<ClassTemplateDecl*>() ?
263          static_cast<const Decl*>(PU.get<ClassTemplateDecl *>()) :
264          static_cast<const Decl*>(
265              PU.get<ClassTemplatePartialSpecializationDecl *>());
266    }
267
268    // Class is instantiated from a member definition of a class template?
269    if (const MemberSpecializationInfo *Info =
270                   CRD->getMemberSpecializationInfo())
271      return Info->getInstantiatedFrom();
272
273    return D;
274  }
275  if (const EnumDecl *ED = dyn_cast<EnumDecl>(D)) {
276    // Enum is instantiated from a member definition of a class template?
277    if (const EnumDecl *MemberDecl = ED->getInstantiatedFromMemberEnum())
278      return MemberDecl;
279
280    return D;
281  }
282  // FIXME: Adjust alias templates?
283  return D;
284}
285} // unnamed namespace
286
287const RawComment *ASTContext::getRawCommentForAnyRedecl(
288                                                const Decl *D,
289                                                const Decl **OriginalDecl) const {
290  D = adjustDeclToTemplate(D);
291
292  // Check whether we have cached a comment for this declaration already.
293  {
294    llvm::DenseMap<const Decl *, RawCommentAndCacheFlags>::iterator Pos =
295        RedeclComments.find(D);
296    if (Pos != RedeclComments.end()) {
297      const RawCommentAndCacheFlags &Raw = Pos->second;
298      if (Raw.getKind() != RawCommentAndCacheFlags::NoCommentInDecl) {
299        if (OriginalDecl)
300          *OriginalDecl = Raw.getOriginalDecl();
301        return Raw.getRaw();
302      }
303    }
304  }
305
306  // Search for comments attached to declarations in the redeclaration chain.
307  const RawComment *RC = NULL;
308  const Decl *OriginalDeclForRC = NULL;
309  for (Decl::redecl_iterator I = D->redecls_begin(),
310                             E = D->redecls_end();
311       I != E; ++I) {
312    llvm::DenseMap<const Decl *, RawCommentAndCacheFlags>::iterator Pos =
313        RedeclComments.find(*I);
314    if (Pos != RedeclComments.end()) {
315      const RawCommentAndCacheFlags &Raw = Pos->second;
316      if (Raw.getKind() != RawCommentAndCacheFlags::NoCommentInDecl) {
317        RC = Raw.getRaw();
318        OriginalDeclForRC = Raw.getOriginalDecl();
319        break;
320      }
321    } else {
322      RC = getRawCommentForDeclNoCache(*I);
323      OriginalDeclForRC = *I;
324      RawCommentAndCacheFlags Raw;
325      if (RC) {
326        Raw.setRaw(RC);
327        Raw.setKind(RawCommentAndCacheFlags::FromDecl);
328      } else
329        Raw.setKind(RawCommentAndCacheFlags::NoCommentInDecl);
330      Raw.setOriginalDecl(*I);
331      RedeclComments[*I] = Raw;
332      if (RC)
333        break;
334    }
335  }
336
337  // If we found a comment, it should be a documentation comment.
338  assert(!RC || RC->isDocumentation());
339
340  if (OriginalDecl)
341    *OriginalDecl = OriginalDeclForRC;
342
343  // Update cache for every declaration in the redeclaration chain.
344  RawCommentAndCacheFlags Raw;
345  Raw.setRaw(RC);
346  Raw.setKind(RawCommentAndCacheFlags::FromRedecl);
347  Raw.setOriginalDecl(OriginalDeclForRC);
348
349  for (Decl::redecl_iterator I = D->redecls_begin(),
350                             E = D->redecls_end();
351       I != E; ++I) {
352    RawCommentAndCacheFlags &R = RedeclComments[*I];
353    if (R.getKind() == RawCommentAndCacheFlags::NoCommentInDecl)
354      R = Raw;
355  }
356
357  return RC;
358}
359
360static void addRedeclaredMethods(const ObjCMethodDecl *ObjCMethod,
361                   SmallVectorImpl<const NamedDecl *> &Redeclared) {
362  const DeclContext *DC = ObjCMethod->getDeclContext();
363  if (const ObjCImplDecl *IMD = dyn_cast<ObjCImplDecl>(DC)) {
364    const ObjCInterfaceDecl *ID = IMD->getClassInterface();
365    if (!ID)
366      return;
367    // Add redeclared method here.
368    for (ObjCInterfaceDecl::known_extensions_iterator
369           Ext = ID->known_extensions_begin(),
370           ExtEnd = ID->known_extensions_end();
371         Ext != ExtEnd; ++Ext) {
372      if (ObjCMethodDecl *RedeclaredMethod =
373            Ext->getMethod(ObjCMethod->getSelector(),
374                                  ObjCMethod->isInstanceMethod()))
375        Redeclared.push_back(RedeclaredMethod);
376    }
377  }
378}
379
380comments::FullComment *ASTContext::cloneFullComment(comments::FullComment *FC,
381                                                    const Decl *D) const {
382  comments::DeclInfo *ThisDeclInfo = new (*this) comments::DeclInfo;
383  ThisDeclInfo->CommentDecl = D;
384  ThisDeclInfo->IsFilled = false;
385  ThisDeclInfo->fill();
386  ThisDeclInfo->CommentDecl = FC->getDecl();
387  comments::FullComment *CFC =
388    new (*this) comments::FullComment(FC->getBlocks(),
389                                      ThisDeclInfo);
390  return CFC;
391
392}
393
394comments::FullComment *ASTContext::getCommentForDecl(
395                                              const Decl *D,
396                                              const Preprocessor *PP) const {
397  D = adjustDeclToTemplate(D);
398
399  const Decl *Canonical = D->getCanonicalDecl();
400  llvm::DenseMap<const Decl *, comments::FullComment *>::iterator Pos =
401      ParsedComments.find(Canonical);
402
403  if (Pos != ParsedComments.end()) {
404    if (Canonical != D) {
405      comments::FullComment *FC = Pos->second;
406      comments::FullComment *CFC = cloneFullComment(FC, D);
407      return CFC;
408    }
409    return Pos->second;
410  }
411
412  const Decl *OriginalDecl;
413
414  const RawComment *RC = getRawCommentForAnyRedecl(D, &OriginalDecl);
415  if (!RC) {
416    if (isa<ObjCMethodDecl>(D) || isa<FunctionDecl>(D)) {
417      SmallVector<const NamedDecl*, 8> Overridden;
418      const ObjCMethodDecl *OMD = dyn_cast<ObjCMethodDecl>(D);
419      if (OMD && OMD->isPropertyAccessor()) {
420        if (const ObjCPropertyDecl *PDecl = OMD->findPropertyDecl()) {
421          if (comments::FullComment *FC = getCommentForDecl(PDecl, PP)) {
422            comments::FullComment *CFC = cloneFullComment(FC, D);
423            return CFC;
424          }
425        }
426      }
427      if (OMD)
428        addRedeclaredMethods(OMD, Overridden);
429      getOverriddenMethods(dyn_cast<NamedDecl>(D), Overridden);
430      for (unsigned i = 0, e = Overridden.size(); i < e; i++) {
431        if (comments::FullComment *FC = getCommentForDecl(Overridden[i], PP)) {
432          comments::FullComment *CFC = cloneFullComment(FC, D);
433          return CFC;
434        }
435      }
436    }
437    return NULL;
438  }
439
440  // If the RawComment was attached to other redeclaration of this Decl, we
441  // should parse the comment in context of that other Decl.  This is important
442  // because comments can contain references to parameter names which can be
443  // different across redeclarations.
444  if (D != OriginalDecl)
445    return getCommentForDecl(OriginalDecl, PP);
446
447  comments::FullComment *FC = RC->parse(*this, PP, D);
448  ParsedComments[Canonical] = FC;
449  return FC;
450}
451
452void
453ASTContext::CanonicalTemplateTemplateParm::Profile(llvm::FoldingSetNodeID &ID,
454                                               TemplateTemplateParmDecl *Parm) {
455  ID.AddInteger(Parm->getDepth());
456  ID.AddInteger(Parm->getPosition());
457  ID.AddBoolean(Parm->isParameterPack());
458
459  TemplateParameterList *Params = Parm->getTemplateParameters();
460  ID.AddInteger(Params->size());
461  for (TemplateParameterList::const_iterator P = Params->begin(),
462                                          PEnd = Params->end();
463       P != PEnd; ++P) {
464    if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*P)) {
465      ID.AddInteger(0);
466      ID.AddBoolean(TTP->isParameterPack());
467      continue;
468    }
469
470    if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(*P)) {
471      ID.AddInteger(1);
472      ID.AddBoolean(NTTP->isParameterPack());
473      ID.AddPointer(NTTP->getType().getCanonicalType().getAsOpaquePtr());
474      if (NTTP->isExpandedParameterPack()) {
475        ID.AddBoolean(true);
476        ID.AddInteger(NTTP->getNumExpansionTypes());
477        for (unsigned I = 0, N = NTTP->getNumExpansionTypes(); I != N; ++I) {
478          QualType T = NTTP->getExpansionType(I);
479          ID.AddPointer(T.getCanonicalType().getAsOpaquePtr());
480        }
481      } else
482        ID.AddBoolean(false);
483      continue;
484    }
485
486    TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(*P);
487    ID.AddInteger(2);
488    Profile(ID, TTP);
489  }
490}
491
492TemplateTemplateParmDecl *
493ASTContext::getCanonicalTemplateTemplateParmDecl(
494                                          TemplateTemplateParmDecl *TTP) const {
495  // Check if we already have a canonical template template parameter.
496  llvm::FoldingSetNodeID ID;
497  CanonicalTemplateTemplateParm::Profile(ID, TTP);
498  void *InsertPos = 0;
499  CanonicalTemplateTemplateParm *Canonical
500    = CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos);
501  if (Canonical)
502    return Canonical->getParam();
503
504  // Build a canonical template parameter list.
505  TemplateParameterList *Params = TTP->getTemplateParameters();
506  SmallVector<NamedDecl *, 4> CanonParams;
507  CanonParams.reserve(Params->size());
508  for (TemplateParameterList::const_iterator P = Params->begin(),
509                                          PEnd = Params->end();
510       P != PEnd; ++P) {
511    if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*P))
512      CanonParams.push_back(
513                  TemplateTypeParmDecl::Create(*this, getTranslationUnitDecl(),
514                                               SourceLocation(),
515                                               SourceLocation(),
516                                               TTP->getDepth(),
517                                               TTP->getIndex(), 0, false,
518                                               TTP->isParameterPack()));
519    else if (NonTypeTemplateParmDecl *NTTP
520             = dyn_cast<NonTypeTemplateParmDecl>(*P)) {
521      QualType T = getCanonicalType(NTTP->getType());
522      TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(T);
523      NonTypeTemplateParmDecl *Param;
524      if (NTTP->isExpandedParameterPack()) {
525        SmallVector<QualType, 2> ExpandedTypes;
526        SmallVector<TypeSourceInfo *, 2> ExpandedTInfos;
527        for (unsigned I = 0, N = NTTP->getNumExpansionTypes(); I != N; ++I) {
528          ExpandedTypes.push_back(getCanonicalType(NTTP->getExpansionType(I)));
529          ExpandedTInfos.push_back(
530                                getTrivialTypeSourceInfo(ExpandedTypes.back()));
531        }
532
533        Param = NonTypeTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
534                                                SourceLocation(),
535                                                SourceLocation(),
536                                                NTTP->getDepth(),
537                                                NTTP->getPosition(), 0,
538                                                T,
539                                                TInfo,
540                                                ExpandedTypes.data(),
541                                                ExpandedTypes.size(),
542                                                ExpandedTInfos.data());
543      } else {
544        Param = NonTypeTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
545                                                SourceLocation(),
546                                                SourceLocation(),
547                                                NTTP->getDepth(),
548                                                NTTP->getPosition(), 0,
549                                                T,
550                                                NTTP->isParameterPack(),
551                                                TInfo);
552      }
553      CanonParams.push_back(Param);
554
555    } else
556      CanonParams.push_back(getCanonicalTemplateTemplateParmDecl(
557                                           cast<TemplateTemplateParmDecl>(*P)));
558  }
559
560  TemplateTemplateParmDecl *CanonTTP
561    = TemplateTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
562                                       SourceLocation(), TTP->getDepth(),
563                                       TTP->getPosition(),
564                                       TTP->isParameterPack(),
565                                       0,
566                         TemplateParameterList::Create(*this, SourceLocation(),
567                                                       SourceLocation(),
568                                                       CanonParams.data(),
569                                                       CanonParams.size(),
570                                                       SourceLocation()));
571
572  // Get the new insert position for the node we care about.
573  Canonical = CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos);
574  assert(Canonical == 0 && "Shouldn't be in the map!");
575  (void)Canonical;
576
577  // Create the canonical template template parameter entry.
578  Canonical = new (*this) CanonicalTemplateTemplateParm(CanonTTP);
579  CanonTemplateTemplateParms.InsertNode(Canonical, InsertPos);
580  return CanonTTP;
581}
582
583CXXABI *ASTContext::createCXXABI(const TargetInfo &T) {
584  if (!LangOpts.CPlusPlus) return 0;
585
586  switch (T.getCXXABI()) {
587  case CXXABI_ARM:
588    return CreateARMCXXABI(*this);
589  case CXXABI_Itanium:
590    return CreateItaniumCXXABI(*this);
591  case CXXABI_Microsoft:
592    return CreateMicrosoftCXXABI(*this);
593  }
594  llvm_unreachable("Invalid CXXABI type!");
595}
596
597static const LangAS::Map *getAddressSpaceMap(const TargetInfo &T,
598                                             const LangOptions &LOpts) {
599  if (LOpts.FakeAddressSpaceMap) {
600    // The fake address space map must have a distinct entry for each
601    // language-specific address space.
602    static const unsigned FakeAddrSpaceMap[] = {
603      1, // opencl_global
604      2, // opencl_local
605      3, // opencl_constant
606      4, // cuda_device
607      5, // cuda_constant
608      6  // cuda_shared
609    };
610    return &FakeAddrSpaceMap;
611  } else {
612    return &T.getAddressSpaceMap();
613  }
614}
615
616ASTContext::ASTContext(LangOptions& LOpts, SourceManager &SM,
617                       const TargetInfo *t,
618                       IdentifierTable &idents, SelectorTable &sels,
619                       Builtin::Context &builtins,
620                       unsigned size_reserve,
621                       bool DelayInitialization)
622  : FunctionProtoTypes(this_()),
623    TemplateSpecializationTypes(this_()),
624    DependentTemplateSpecializationTypes(this_()),
625    SubstTemplateTemplateParmPacks(this_()),
626    GlobalNestedNameSpecifier(0),
627    Int128Decl(0), UInt128Decl(0),
628    BuiltinVaListDecl(0),
629    ObjCIdDecl(0), ObjCSelDecl(0), ObjCClassDecl(0), ObjCProtocolClassDecl(0),
630    BOOLDecl(0),
631    CFConstantStringTypeDecl(0), ObjCInstanceTypeDecl(0),
632    FILEDecl(0),
633    jmp_bufDecl(0), sigjmp_bufDecl(0), ucontext_tDecl(0),
634    BlockDescriptorType(0), BlockDescriptorExtendedType(0),
635    cudaConfigureCallDecl(0),
636    NullTypeSourceInfo(QualType()),
637    FirstLocalImport(), LastLocalImport(),
638    SourceMgr(SM), LangOpts(LOpts),
639    AddrSpaceMap(0), Target(t), PrintingPolicy(LOpts),
640    Idents(idents), Selectors(sels),
641    BuiltinInfo(builtins),
642    DeclarationNames(*this),
643    ExternalSource(0), Listener(0),
644    Comments(SM), CommentsLoaded(false),
645    CommentCommandTraits(BumpAlloc),
646    LastSDM(0, 0),
647    UniqueBlockByRefTypeID(0)
648{
649  if (size_reserve > 0) Types.reserve(size_reserve);
650  TUDecl = TranslationUnitDecl::Create(*this);
651
652  if (!DelayInitialization) {
653    assert(t && "No target supplied for ASTContext initialization");
654    InitBuiltinTypes(*t);
655  }
656}
657
658ASTContext::~ASTContext() {
659  // Release the DenseMaps associated with DeclContext objects.
660  // FIXME: Is this the ideal solution?
661  ReleaseDeclContextMaps();
662
663  // Call all of the deallocation functions.
664  for (unsigned I = 0, N = Deallocations.size(); I != N; ++I)
665    Deallocations[I].first(Deallocations[I].second);
666
667  // ASTRecordLayout objects in ASTRecordLayouts must always be destroyed
668  // because they can contain DenseMaps.
669  for (llvm::DenseMap<const ObjCContainerDecl*,
670       const ASTRecordLayout*>::iterator
671       I = ObjCLayouts.begin(), E = ObjCLayouts.end(); I != E; )
672    // Increment in loop to prevent using deallocated memory.
673    if (ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second))
674      R->Destroy(*this);
675
676  for (llvm::DenseMap<const RecordDecl*, const ASTRecordLayout*>::iterator
677       I = ASTRecordLayouts.begin(), E = ASTRecordLayouts.end(); I != E; ) {
678    // Increment in loop to prevent using deallocated memory.
679    if (ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second))
680      R->Destroy(*this);
681  }
682
683  for (llvm::DenseMap<const Decl*, AttrVec*>::iterator A = DeclAttrs.begin(),
684                                                    AEnd = DeclAttrs.end();
685       A != AEnd; ++A)
686    A->second->~AttrVec();
687}
688
689void ASTContext::AddDeallocation(void (*Callback)(void*), void *Data) {
690  Deallocations.push_back(std::make_pair(Callback, Data));
691}
692
693void
694ASTContext::setExternalSource(OwningPtr<ExternalASTSource> &Source) {
695  ExternalSource.reset(Source.take());
696}
697
698void ASTContext::PrintStats() const {
699  llvm::errs() << "\n*** AST Context Stats:\n";
700  llvm::errs() << "  " << Types.size() << " types total.\n";
701
702  unsigned counts[] = {
703#define TYPE(Name, Parent) 0,
704#define ABSTRACT_TYPE(Name, Parent)
705#include "clang/AST/TypeNodes.def"
706    0 // Extra
707  };
708
709  for (unsigned i = 0, e = Types.size(); i != e; ++i) {
710    Type *T = Types[i];
711    counts[(unsigned)T->getTypeClass()]++;
712  }
713
714  unsigned Idx = 0;
715  unsigned TotalBytes = 0;
716#define TYPE(Name, Parent)                                              \
717  if (counts[Idx])                                                      \
718    llvm::errs() << "    " << counts[Idx] << " " << #Name               \
719                 << " types\n";                                         \
720  TotalBytes += counts[Idx] * sizeof(Name##Type);                       \
721  ++Idx;
722#define ABSTRACT_TYPE(Name, Parent)
723#include "clang/AST/TypeNodes.def"
724
725  llvm::errs() << "Total bytes = " << TotalBytes << "\n";
726
727  // Implicit special member functions.
728  llvm::errs() << NumImplicitDefaultConstructorsDeclared << "/"
729               << NumImplicitDefaultConstructors
730               << " implicit default constructors created\n";
731  llvm::errs() << NumImplicitCopyConstructorsDeclared << "/"
732               << NumImplicitCopyConstructors
733               << " implicit copy constructors created\n";
734  if (getLangOpts().CPlusPlus)
735    llvm::errs() << NumImplicitMoveConstructorsDeclared << "/"
736                 << NumImplicitMoveConstructors
737                 << " implicit move constructors created\n";
738  llvm::errs() << NumImplicitCopyAssignmentOperatorsDeclared << "/"
739               << NumImplicitCopyAssignmentOperators
740               << " implicit copy assignment operators created\n";
741  if (getLangOpts().CPlusPlus)
742    llvm::errs() << NumImplicitMoveAssignmentOperatorsDeclared << "/"
743                 << NumImplicitMoveAssignmentOperators
744                 << " implicit move assignment operators created\n";
745  llvm::errs() << NumImplicitDestructorsDeclared << "/"
746               << NumImplicitDestructors
747               << " implicit destructors created\n";
748
749  if (ExternalSource.get()) {
750    llvm::errs() << "\n";
751    ExternalSource->PrintStats();
752  }
753
754  BumpAlloc.PrintStats();
755}
756
757TypedefDecl *ASTContext::getInt128Decl() const {
758  if (!Int128Decl) {
759    TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(Int128Ty);
760    Int128Decl = TypedefDecl::Create(const_cast<ASTContext &>(*this),
761                                     getTranslationUnitDecl(),
762                                     SourceLocation(),
763                                     SourceLocation(),
764                                     &Idents.get("__int128_t"),
765                                     TInfo);
766  }
767
768  return Int128Decl;
769}
770
771TypedefDecl *ASTContext::getUInt128Decl() const {
772  if (!UInt128Decl) {
773    TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(UnsignedInt128Ty);
774    UInt128Decl = TypedefDecl::Create(const_cast<ASTContext &>(*this),
775                                     getTranslationUnitDecl(),
776                                     SourceLocation(),
777                                     SourceLocation(),
778                                     &Idents.get("__uint128_t"),
779                                     TInfo);
780  }
781
782  return UInt128Decl;
783}
784
785void ASTContext::InitBuiltinType(CanQualType &R, BuiltinType::Kind K) {
786  BuiltinType *Ty = new (*this, TypeAlignment) BuiltinType(K);
787  R = CanQualType::CreateUnsafe(QualType(Ty, 0));
788  Types.push_back(Ty);
789}
790
791void ASTContext::InitBuiltinTypes(const TargetInfo &Target) {
792  assert((!this->Target || this->Target == &Target) &&
793         "Incorrect target reinitialization");
794  assert(VoidTy.isNull() && "Context reinitialized?");
795
796  this->Target = &Target;
797
798  ABI.reset(createCXXABI(Target));
799  AddrSpaceMap = getAddressSpaceMap(Target, LangOpts);
800
801  // C99 6.2.5p19.
802  InitBuiltinType(VoidTy,              BuiltinType::Void);
803
804  // C99 6.2.5p2.
805  InitBuiltinType(BoolTy,              BuiltinType::Bool);
806  // C99 6.2.5p3.
807  if (LangOpts.CharIsSigned)
808    InitBuiltinType(CharTy,            BuiltinType::Char_S);
809  else
810    InitBuiltinType(CharTy,            BuiltinType::Char_U);
811  // C99 6.2.5p4.
812  InitBuiltinType(SignedCharTy,        BuiltinType::SChar);
813  InitBuiltinType(ShortTy,             BuiltinType::Short);
814  InitBuiltinType(IntTy,               BuiltinType::Int);
815  InitBuiltinType(LongTy,              BuiltinType::Long);
816  InitBuiltinType(LongLongTy,          BuiltinType::LongLong);
817
818  // C99 6.2.5p6.
819  InitBuiltinType(UnsignedCharTy,      BuiltinType::UChar);
820  InitBuiltinType(UnsignedShortTy,     BuiltinType::UShort);
821  InitBuiltinType(UnsignedIntTy,       BuiltinType::UInt);
822  InitBuiltinType(UnsignedLongTy,      BuiltinType::ULong);
823  InitBuiltinType(UnsignedLongLongTy,  BuiltinType::ULongLong);
824
825  // C99 6.2.5p10.
826  InitBuiltinType(FloatTy,             BuiltinType::Float);
827  InitBuiltinType(DoubleTy,            BuiltinType::Double);
828  InitBuiltinType(LongDoubleTy,        BuiltinType::LongDouble);
829
830  // GNU extension, 128-bit integers.
831  InitBuiltinType(Int128Ty,            BuiltinType::Int128);
832  InitBuiltinType(UnsignedInt128Ty,    BuiltinType::UInt128);
833
834  if (LangOpts.CPlusPlus && LangOpts.WChar) { // C++ 3.9.1p5
835    if (TargetInfo::isTypeSigned(Target.getWCharType()))
836      InitBuiltinType(WCharTy,           BuiltinType::WChar_S);
837    else  // -fshort-wchar makes wchar_t be unsigned.
838      InitBuiltinType(WCharTy,           BuiltinType::WChar_U);
839  } else // C99 (or C++ using -fno-wchar)
840    WCharTy = getFromTargetType(Target.getWCharType());
841
842  WIntTy = getFromTargetType(Target.getWIntType());
843
844  if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
845    InitBuiltinType(Char16Ty,           BuiltinType::Char16);
846  else // C99
847    Char16Ty = getFromTargetType(Target.getChar16Type());
848
849  if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
850    InitBuiltinType(Char32Ty,           BuiltinType::Char32);
851  else // C99
852    Char32Ty = getFromTargetType(Target.getChar32Type());
853
854  // Placeholder type for type-dependent expressions whose type is
855  // completely unknown. No code should ever check a type against
856  // DependentTy and users should never see it; however, it is here to
857  // help diagnose failures to properly check for type-dependent
858  // expressions.
859  InitBuiltinType(DependentTy,         BuiltinType::Dependent);
860
861  // Placeholder type for functions.
862  InitBuiltinType(OverloadTy,          BuiltinType::Overload);
863
864  // Placeholder type for bound members.
865  InitBuiltinType(BoundMemberTy,       BuiltinType::BoundMember);
866
867  // Placeholder type for pseudo-objects.
868  InitBuiltinType(PseudoObjectTy,      BuiltinType::PseudoObject);
869
870  // "any" type; useful for debugger-like clients.
871  InitBuiltinType(UnknownAnyTy,        BuiltinType::UnknownAny);
872
873  // Placeholder type for unbridged ARC casts.
874  InitBuiltinType(ARCUnbridgedCastTy,  BuiltinType::ARCUnbridgedCast);
875
876  // Placeholder type for builtin functions.
877  InitBuiltinType(BuiltinFnTy,  BuiltinType::BuiltinFn);
878
879  // C99 6.2.5p11.
880  FloatComplexTy      = getComplexType(FloatTy);
881  DoubleComplexTy     = getComplexType(DoubleTy);
882  LongDoubleComplexTy = getComplexType(LongDoubleTy);
883
884  // Builtin types for 'id', 'Class', and 'SEL'.
885  InitBuiltinType(ObjCBuiltinIdTy, BuiltinType::ObjCId);
886  InitBuiltinType(ObjCBuiltinClassTy, BuiltinType::ObjCClass);
887  InitBuiltinType(ObjCBuiltinSelTy, BuiltinType::ObjCSel);
888
889  if (LangOpts.OpenCL) {
890    InitBuiltinType(OCLImage1dTy, BuiltinType::OCLImage1d);
891    InitBuiltinType(OCLImage1dArrayTy, BuiltinType::OCLImage1dArray);
892    InitBuiltinType(OCLImage1dBufferTy, BuiltinType::OCLImage1dBuffer);
893    InitBuiltinType(OCLImage2dTy, BuiltinType::OCLImage2d);
894    InitBuiltinType(OCLImage2dArrayTy, BuiltinType::OCLImage2dArray);
895    InitBuiltinType(OCLImage3dTy, BuiltinType::OCLImage3d);
896
897    InitBuiltinType(OCLEventTy, BuiltinType::OCLEvent);
898  }
899
900  // Builtin type for __objc_yes and __objc_no
901  ObjCBuiltinBoolTy = (Target.useSignedCharForObjCBool() ?
902                       SignedCharTy : BoolTy);
903
904  ObjCConstantStringType = QualType();
905
906  ObjCSuperType = QualType();
907
908  // void * type
909  VoidPtrTy = getPointerType(VoidTy);
910
911  // nullptr type (C++0x 2.14.7)
912  InitBuiltinType(NullPtrTy,           BuiltinType::NullPtr);
913
914  // half type (OpenCL 6.1.1.1) / ARM NEON __fp16
915  InitBuiltinType(HalfTy, BuiltinType::Half);
916
917  // Builtin type used to help define __builtin_va_list.
918  VaListTagTy = QualType();
919}
920
921DiagnosticsEngine &ASTContext::getDiagnostics() const {
922  return SourceMgr.getDiagnostics();
923}
924
925AttrVec& ASTContext::getDeclAttrs(const Decl *D) {
926  AttrVec *&Result = DeclAttrs[D];
927  if (!Result) {
928    void *Mem = Allocate(sizeof(AttrVec));
929    Result = new (Mem) AttrVec;
930  }
931
932  return *Result;
933}
934
935/// \brief Erase the attributes corresponding to the given declaration.
936void ASTContext::eraseDeclAttrs(const Decl *D) {
937  llvm::DenseMap<const Decl*, AttrVec*>::iterator Pos = DeclAttrs.find(D);
938  if (Pos != DeclAttrs.end()) {
939    Pos->second->~AttrVec();
940    DeclAttrs.erase(Pos);
941  }
942}
943
944MemberSpecializationInfo *
945ASTContext::getInstantiatedFromStaticDataMember(const VarDecl *Var) {
946  assert(Var->isStaticDataMember() && "Not a static data member");
947  llvm::DenseMap<const VarDecl *, MemberSpecializationInfo *>::iterator Pos
948    = InstantiatedFromStaticDataMember.find(Var);
949  if (Pos == InstantiatedFromStaticDataMember.end())
950    return 0;
951
952  return Pos->second;
953}
954
955void
956ASTContext::setInstantiatedFromStaticDataMember(VarDecl *Inst, VarDecl *Tmpl,
957                                                TemplateSpecializationKind TSK,
958                                          SourceLocation PointOfInstantiation) {
959  assert(Inst->isStaticDataMember() && "Not a static data member");
960  assert(Tmpl->isStaticDataMember() && "Not a static data member");
961  assert(!InstantiatedFromStaticDataMember[Inst] &&
962         "Already noted what static data member was instantiated from");
963  InstantiatedFromStaticDataMember[Inst]
964    = new (*this) MemberSpecializationInfo(Tmpl, TSK, PointOfInstantiation);
965}
966
967FunctionDecl *ASTContext::getClassScopeSpecializationPattern(
968                                                     const FunctionDecl *FD){
969  assert(FD && "Specialization is 0");
970  llvm::DenseMap<const FunctionDecl*, FunctionDecl *>::const_iterator Pos
971    = ClassScopeSpecializationPattern.find(FD);
972  if (Pos == ClassScopeSpecializationPattern.end())
973    return 0;
974
975  return Pos->second;
976}
977
978void ASTContext::setClassScopeSpecializationPattern(FunctionDecl *FD,
979                                        FunctionDecl *Pattern) {
980  assert(FD && "Specialization is 0");
981  assert(Pattern && "Class scope specialization pattern is 0");
982  ClassScopeSpecializationPattern[FD] = Pattern;
983}
984
985NamedDecl *
986ASTContext::getInstantiatedFromUsingDecl(UsingDecl *UUD) {
987  llvm::DenseMap<UsingDecl *, NamedDecl *>::const_iterator Pos
988    = InstantiatedFromUsingDecl.find(UUD);
989  if (Pos == InstantiatedFromUsingDecl.end())
990    return 0;
991
992  return Pos->second;
993}
994
995void
996ASTContext::setInstantiatedFromUsingDecl(UsingDecl *Inst, NamedDecl *Pattern) {
997  assert((isa<UsingDecl>(Pattern) ||
998          isa<UnresolvedUsingValueDecl>(Pattern) ||
999          isa<UnresolvedUsingTypenameDecl>(Pattern)) &&
1000         "pattern decl is not a using decl");
1001  assert(!InstantiatedFromUsingDecl[Inst] && "pattern already exists");
1002  InstantiatedFromUsingDecl[Inst] = Pattern;
1003}
1004
1005UsingShadowDecl *
1006ASTContext::getInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst) {
1007  llvm::DenseMap<UsingShadowDecl*, UsingShadowDecl*>::const_iterator Pos
1008    = InstantiatedFromUsingShadowDecl.find(Inst);
1009  if (Pos == InstantiatedFromUsingShadowDecl.end())
1010    return 0;
1011
1012  return Pos->second;
1013}
1014
1015void
1016ASTContext::setInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst,
1017                                               UsingShadowDecl *Pattern) {
1018  assert(!InstantiatedFromUsingShadowDecl[Inst] && "pattern already exists");
1019  InstantiatedFromUsingShadowDecl[Inst] = Pattern;
1020}
1021
1022FieldDecl *ASTContext::getInstantiatedFromUnnamedFieldDecl(FieldDecl *Field) {
1023  llvm::DenseMap<FieldDecl *, FieldDecl *>::iterator Pos
1024    = InstantiatedFromUnnamedFieldDecl.find(Field);
1025  if (Pos == InstantiatedFromUnnamedFieldDecl.end())
1026    return 0;
1027
1028  return Pos->second;
1029}
1030
1031void ASTContext::setInstantiatedFromUnnamedFieldDecl(FieldDecl *Inst,
1032                                                     FieldDecl *Tmpl) {
1033  assert(!Inst->getDeclName() && "Instantiated field decl is not unnamed");
1034  assert(!Tmpl->getDeclName() && "Template field decl is not unnamed");
1035  assert(!InstantiatedFromUnnamedFieldDecl[Inst] &&
1036         "Already noted what unnamed field was instantiated from");
1037
1038  InstantiatedFromUnnamedFieldDecl[Inst] = Tmpl;
1039}
1040
1041bool ASTContext::ZeroBitfieldFollowsNonBitfield(const FieldDecl *FD,
1042                                    const FieldDecl *LastFD) const {
1043  return (FD->isBitField() && LastFD && !LastFD->isBitField() &&
1044          FD->getBitWidthValue(*this) == 0);
1045}
1046
1047bool ASTContext::ZeroBitfieldFollowsBitfield(const FieldDecl *FD,
1048                                             const FieldDecl *LastFD) const {
1049  return (FD->isBitField() && LastFD && LastFD->isBitField() &&
1050          FD->getBitWidthValue(*this) == 0 &&
1051          LastFD->getBitWidthValue(*this) != 0);
1052}
1053
1054bool ASTContext::BitfieldFollowsBitfield(const FieldDecl *FD,
1055                                         const FieldDecl *LastFD) const {
1056  return (FD->isBitField() && LastFD && LastFD->isBitField() &&
1057          FD->getBitWidthValue(*this) &&
1058          LastFD->getBitWidthValue(*this));
1059}
1060
1061bool ASTContext::NonBitfieldFollowsBitfield(const FieldDecl *FD,
1062                                         const FieldDecl *LastFD) const {
1063  return (!FD->isBitField() && LastFD && LastFD->isBitField() &&
1064          LastFD->getBitWidthValue(*this));
1065}
1066
1067bool ASTContext::BitfieldFollowsNonBitfield(const FieldDecl *FD,
1068                                             const FieldDecl *LastFD) const {
1069  return (FD->isBitField() && LastFD && !LastFD->isBitField() &&
1070          FD->getBitWidthValue(*this));
1071}
1072
1073ASTContext::overridden_cxx_method_iterator
1074ASTContext::overridden_methods_begin(const CXXMethodDecl *Method) const {
1075  llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
1076    = OverriddenMethods.find(Method->getCanonicalDecl());
1077  if (Pos == OverriddenMethods.end())
1078    return 0;
1079
1080  return Pos->second.begin();
1081}
1082
1083ASTContext::overridden_cxx_method_iterator
1084ASTContext::overridden_methods_end(const CXXMethodDecl *Method) const {
1085  llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
1086    = OverriddenMethods.find(Method->getCanonicalDecl());
1087  if (Pos == OverriddenMethods.end())
1088    return 0;
1089
1090  return Pos->second.end();
1091}
1092
1093unsigned
1094ASTContext::overridden_methods_size(const CXXMethodDecl *Method) const {
1095  llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
1096    = OverriddenMethods.find(Method->getCanonicalDecl());
1097  if (Pos == OverriddenMethods.end())
1098    return 0;
1099
1100  return Pos->second.size();
1101}
1102
1103void ASTContext::addOverriddenMethod(const CXXMethodDecl *Method,
1104                                     const CXXMethodDecl *Overridden) {
1105  assert(Method->isCanonicalDecl() && Overridden->isCanonicalDecl());
1106  OverriddenMethods[Method].push_back(Overridden);
1107}
1108
1109void ASTContext::getOverriddenMethods(
1110                      const NamedDecl *D,
1111                      SmallVectorImpl<const NamedDecl *> &Overridden) const {
1112  assert(D);
1113
1114  if (const CXXMethodDecl *CXXMethod = dyn_cast<CXXMethodDecl>(D)) {
1115    Overridden.append(CXXMethod->begin_overridden_methods(),
1116                      CXXMethod->end_overridden_methods());
1117    return;
1118  }
1119
1120  const ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(D);
1121  if (!Method)
1122    return;
1123
1124  SmallVector<const ObjCMethodDecl *, 8> OverDecls;
1125  Method->getOverriddenMethods(OverDecls);
1126  Overridden.append(OverDecls.begin(), OverDecls.end());
1127}
1128
1129void ASTContext::addedLocalImportDecl(ImportDecl *Import) {
1130  assert(!Import->NextLocalImport && "Import declaration already in the chain");
1131  assert(!Import->isFromASTFile() && "Non-local import declaration");
1132  if (!FirstLocalImport) {
1133    FirstLocalImport = Import;
1134    LastLocalImport = Import;
1135    return;
1136  }
1137
1138  LastLocalImport->NextLocalImport = Import;
1139  LastLocalImport = Import;
1140}
1141
1142//===----------------------------------------------------------------------===//
1143//                         Type Sizing and Analysis
1144//===----------------------------------------------------------------------===//
1145
1146/// getFloatTypeSemantics - Return the APFloat 'semantics' for the specified
1147/// scalar floating point type.
1148const llvm::fltSemantics &ASTContext::getFloatTypeSemantics(QualType T) const {
1149  const BuiltinType *BT = T->getAs<BuiltinType>();
1150  assert(BT && "Not a floating point type!");
1151  switch (BT->getKind()) {
1152  default: llvm_unreachable("Not a floating point type!");
1153  case BuiltinType::Half:       return Target->getHalfFormat();
1154  case BuiltinType::Float:      return Target->getFloatFormat();
1155  case BuiltinType::Double:     return Target->getDoubleFormat();
1156  case BuiltinType::LongDouble: return Target->getLongDoubleFormat();
1157  }
1158}
1159
1160/// getDeclAlign - Return a conservative estimate of the alignment of the
1161/// specified decl.  Note that bitfields do not have a valid alignment, so
1162/// this method will assert on them.
1163/// If @p RefAsPointee, references are treated like their underlying type
1164/// (for alignof), else they're treated like pointers (for CodeGen).
1165CharUnits ASTContext::getDeclAlign(const Decl *D, bool RefAsPointee) const {
1166  unsigned Align = Target->getCharWidth();
1167
1168  bool UseAlignAttrOnly = false;
1169  if (unsigned AlignFromAttr = D->getMaxAlignment()) {
1170    Align = AlignFromAttr;
1171
1172    // __attribute__((aligned)) can increase or decrease alignment
1173    // *except* on a struct or struct member, where it only increases
1174    // alignment unless 'packed' is also specified.
1175    //
1176    // It is an error for alignas to decrease alignment, so we can
1177    // ignore that possibility;  Sema should diagnose it.
1178    if (isa<FieldDecl>(D)) {
1179      UseAlignAttrOnly = D->hasAttr<PackedAttr>() ||
1180        cast<FieldDecl>(D)->getParent()->hasAttr<PackedAttr>();
1181    } else {
1182      UseAlignAttrOnly = true;
1183    }
1184  }
1185  else if (isa<FieldDecl>(D))
1186      UseAlignAttrOnly =
1187        D->hasAttr<PackedAttr>() ||
1188        cast<FieldDecl>(D)->getParent()->hasAttr<PackedAttr>();
1189
1190  // If we're using the align attribute only, just ignore everything
1191  // else about the declaration and its type.
1192  if (UseAlignAttrOnly) {
1193    // do nothing
1194
1195  } else if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
1196    QualType T = VD->getType();
1197    if (const ReferenceType* RT = T->getAs<ReferenceType>()) {
1198      if (RefAsPointee)
1199        T = RT->getPointeeType();
1200      else
1201        T = getPointerType(RT->getPointeeType());
1202    }
1203    if (!T->isIncompleteType() && !T->isFunctionType()) {
1204      // Adjust alignments of declarations with array type by the
1205      // large-array alignment on the target.
1206      unsigned MinWidth = Target->getLargeArrayMinWidth();
1207      const ArrayType *arrayType;
1208      if (MinWidth && (arrayType = getAsArrayType(T))) {
1209        if (isa<VariableArrayType>(arrayType))
1210          Align = std::max(Align, Target->getLargeArrayAlign());
1211        else if (isa<ConstantArrayType>(arrayType) &&
1212                 MinWidth <= getTypeSize(cast<ConstantArrayType>(arrayType)))
1213          Align = std::max(Align, Target->getLargeArrayAlign());
1214
1215        // Walk through any array types while we're at it.
1216        T = getBaseElementType(arrayType);
1217      }
1218      Align = std::max(Align, getPreferredTypeAlign(T.getTypePtr()));
1219    }
1220
1221    // Fields can be subject to extra alignment constraints, like if
1222    // the field is packed, the struct is packed, or the struct has a
1223    // a max-field-alignment constraint (#pragma pack).  So calculate
1224    // the actual alignment of the field within the struct, and then
1225    // (as we're expected to) constrain that by the alignment of the type.
1226    if (const FieldDecl *field = dyn_cast<FieldDecl>(VD)) {
1227      // So calculate the alignment of the field.
1228      const ASTRecordLayout &layout = getASTRecordLayout(field->getParent());
1229
1230      // Start with the record's overall alignment.
1231      unsigned fieldAlign = toBits(layout.getAlignment());
1232
1233      // Use the GCD of that and the offset within the record.
1234      uint64_t offset = layout.getFieldOffset(field->getFieldIndex());
1235      if (offset > 0) {
1236        // Alignment is always a power of 2, so the GCD will be a power of 2,
1237        // which means we get to do this crazy thing instead of Euclid's.
1238        uint64_t lowBitOfOffset = offset & (~offset + 1);
1239        if (lowBitOfOffset < fieldAlign)
1240          fieldAlign = static_cast<unsigned>(lowBitOfOffset);
1241      }
1242
1243      Align = std::min(Align, fieldAlign);
1244    }
1245  }
1246
1247  return toCharUnitsFromBits(Align);
1248}
1249
1250// getTypeInfoDataSizeInChars - Return the size of a type, in
1251// chars. If the type is a record, its data size is returned.  This is
1252// the size of the memcpy that's performed when assigning this type
1253// using a trivial copy/move assignment operator.
1254std::pair<CharUnits, CharUnits>
1255ASTContext::getTypeInfoDataSizeInChars(QualType T) const {
1256  std::pair<CharUnits, CharUnits> sizeAndAlign = getTypeInfoInChars(T);
1257
1258  // In C++, objects can sometimes be allocated into the tail padding
1259  // of a base-class subobject.  We decide whether that's possible
1260  // during class layout, so here we can just trust the layout results.
1261  if (getLangOpts().CPlusPlus) {
1262    if (const RecordType *RT = T->getAs<RecordType>()) {
1263      const ASTRecordLayout &layout = getASTRecordLayout(RT->getDecl());
1264      sizeAndAlign.first = layout.getDataSize();
1265    }
1266  }
1267
1268  return sizeAndAlign;
1269}
1270
1271std::pair<CharUnits, CharUnits>
1272ASTContext::getTypeInfoInChars(const Type *T) const {
1273  std::pair<uint64_t, unsigned> Info = getTypeInfo(T);
1274  return std::make_pair(toCharUnitsFromBits(Info.first),
1275                        toCharUnitsFromBits(Info.second));
1276}
1277
1278std::pair<CharUnits, CharUnits>
1279ASTContext::getTypeInfoInChars(QualType T) const {
1280  return getTypeInfoInChars(T.getTypePtr());
1281}
1282
1283std::pair<uint64_t, unsigned> ASTContext::getTypeInfo(const Type *T) const {
1284  TypeInfoMap::iterator it = MemoizedTypeInfo.find(T);
1285  if (it != MemoizedTypeInfo.end())
1286    return it->second;
1287
1288  std::pair<uint64_t, unsigned> Info = getTypeInfoImpl(T);
1289  MemoizedTypeInfo.insert(std::make_pair(T, Info));
1290  return Info;
1291}
1292
1293/// getTypeInfoImpl - Return the size of the specified type, in bits.  This
1294/// method does not work on incomplete types.
1295///
1296/// FIXME: Pointers into different addr spaces could have different sizes and
1297/// alignment requirements: getPointerInfo should take an AddrSpace, this
1298/// should take a QualType, &c.
1299std::pair<uint64_t, unsigned>
1300ASTContext::getTypeInfoImpl(const Type *T) const {
1301  uint64_t Width=0;
1302  unsigned Align=8;
1303  switch (T->getTypeClass()) {
1304#define TYPE(Class, Base)
1305#define ABSTRACT_TYPE(Class, Base)
1306#define NON_CANONICAL_TYPE(Class, Base)
1307#define DEPENDENT_TYPE(Class, Base) case Type::Class:
1308#include "clang/AST/TypeNodes.def"
1309    llvm_unreachable("Should not see dependent types");
1310
1311  case Type::FunctionNoProto:
1312  case Type::FunctionProto:
1313    // GCC extension: alignof(function) = 32 bits
1314    Width = 0;
1315    Align = 32;
1316    break;
1317
1318  case Type::IncompleteArray:
1319  case Type::VariableArray:
1320    Width = 0;
1321    Align = getTypeAlign(cast<ArrayType>(T)->getElementType());
1322    break;
1323
1324  case Type::ConstantArray: {
1325    const ConstantArrayType *CAT = cast<ConstantArrayType>(T);
1326
1327    std::pair<uint64_t, unsigned> EltInfo = getTypeInfo(CAT->getElementType());
1328    uint64_t Size = CAT->getSize().getZExtValue();
1329    assert((Size == 0 || EltInfo.first <= (uint64_t)(-1)/Size) &&
1330           "Overflow in array type bit size evaluation");
1331    Width = EltInfo.first*Size;
1332    Align = EltInfo.second;
1333    Width = llvm::RoundUpToAlignment(Width, Align);
1334    break;
1335  }
1336  case Type::ExtVector:
1337  case Type::Vector: {
1338    const VectorType *VT = cast<VectorType>(T);
1339    std::pair<uint64_t, unsigned> EltInfo = getTypeInfo(VT->getElementType());
1340    Width = EltInfo.first*VT->getNumElements();
1341    Align = Width;
1342    // If the alignment is not a power of 2, round up to the next power of 2.
1343    // This happens for non-power-of-2 length vectors.
1344    if (Align & (Align-1)) {
1345      Align = llvm::NextPowerOf2(Align);
1346      Width = llvm::RoundUpToAlignment(Width, Align);
1347    }
1348    // Adjust the alignment based on the target max.
1349    uint64_t TargetVectorAlign = Target->getMaxVectorAlign();
1350    if (TargetVectorAlign && TargetVectorAlign < Align)
1351      Align = TargetVectorAlign;
1352    break;
1353  }
1354
1355  case Type::Builtin:
1356    switch (cast<BuiltinType>(T)->getKind()) {
1357    default: llvm_unreachable("Unknown builtin type!");
1358    case BuiltinType::Void:
1359      // GCC extension: alignof(void) = 8 bits.
1360      Width = 0;
1361      Align = 8;
1362      break;
1363
1364    case BuiltinType::Bool:
1365      Width = Target->getBoolWidth();
1366      Align = Target->getBoolAlign();
1367      break;
1368    case BuiltinType::Char_S:
1369    case BuiltinType::Char_U:
1370    case BuiltinType::UChar:
1371    case BuiltinType::SChar:
1372      Width = Target->getCharWidth();
1373      Align = Target->getCharAlign();
1374      break;
1375    case BuiltinType::WChar_S:
1376    case BuiltinType::WChar_U:
1377      Width = Target->getWCharWidth();
1378      Align = Target->getWCharAlign();
1379      break;
1380    case BuiltinType::Char16:
1381      Width = Target->getChar16Width();
1382      Align = Target->getChar16Align();
1383      break;
1384    case BuiltinType::Char32:
1385      Width = Target->getChar32Width();
1386      Align = Target->getChar32Align();
1387      break;
1388    case BuiltinType::UShort:
1389    case BuiltinType::Short:
1390      Width = Target->getShortWidth();
1391      Align = Target->getShortAlign();
1392      break;
1393    case BuiltinType::UInt:
1394    case BuiltinType::Int:
1395      Width = Target->getIntWidth();
1396      Align = Target->getIntAlign();
1397      break;
1398    case BuiltinType::ULong:
1399    case BuiltinType::Long:
1400      Width = Target->getLongWidth();
1401      Align = Target->getLongAlign();
1402      break;
1403    case BuiltinType::ULongLong:
1404    case BuiltinType::LongLong:
1405      Width = Target->getLongLongWidth();
1406      Align = Target->getLongLongAlign();
1407      break;
1408    case BuiltinType::Int128:
1409    case BuiltinType::UInt128:
1410      Width = 128;
1411      Align = 128; // int128_t is 128-bit aligned on all targets.
1412      break;
1413    case BuiltinType::Half:
1414      Width = Target->getHalfWidth();
1415      Align = Target->getHalfAlign();
1416      break;
1417    case BuiltinType::Float:
1418      Width = Target->getFloatWidth();
1419      Align = Target->getFloatAlign();
1420      break;
1421    case BuiltinType::Double:
1422      Width = Target->getDoubleWidth();
1423      Align = Target->getDoubleAlign();
1424      break;
1425    case BuiltinType::LongDouble:
1426      Width = Target->getLongDoubleWidth();
1427      Align = Target->getLongDoubleAlign();
1428      break;
1429    case BuiltinType::NullPtr:
1430      Width = Target->getPointerWidth(0); // C++ 3.9.1p11: sizeof(nullptr_t)
1431      Align = Target->getPointerAlign(0); //   == sizeof(void*)
1432      break;
1433    case BuiltinType::ObjCId:
1434    case BuiltinType::ObjCClass:
1435    case BuiltinType::ObjCSel:
1436      Width = Target->getPointerWidth(0);
1437      Align = Target->getPointerAlign(0);
1438      break;
1439    case BuiltinType::OCLEvent:
1440    case BuiltinType::OCLImage1d:
1441    case BuiltinType::OCLImage1dArray:
1442    case BuiltinType::OCLImage1dBuffer:
1443    case BuiltinType::OCLImage2d:
1444    case BuiltinType::OCLImage2dArray:
1445    case BuiltinType::OCLImage3d:
1446      // Currently these types are pointers to opaque types.
1447      Width = Target->getPointerWidth(0);
1448      Align = Target->getPointerAlign(0);
1449      break;
1450    }
1451    break;
1452  case Type::ObjCObjectPointer:
1453    Width = Target->getPointerWidth(0);
1454    Align = Target->getPointerAlign(0);
1455    break;
1456  case Type::BlockPointer: {
1457    unsigned AS = getTargetAddressSpace(
1458        cast<BlockPointerType>(T)->getPointeeType());
1459    Width = Target->getPointerWidth(AS);
1460    Align = Target->getPointerAlign(AS);
1461    break;
1462  }
1463  case Type::LValueReference:
1464  case Type::RValueReference: {
1465    // alignof and sizeof should never enter this code path here, so we go
1466    // the pointer route.
1467    unsigned AS = getTargetAddressSpace(
1468        cast<ReferenceType>(T)->getPointeeType());
1469    Width = Target->getPointerWidth(AS);
1470    Align = Target->getPointerAlign(AS);
1471    break;
1472  }
1473  case Type::Pointer: {
1474    unsigned AS = getTargetAddressSpace(cast<PointerType>(T)->getPointeeType());
1475    Width = Target->getPointerWidth(AS);
1476    Align = Target->getPointerAlign(AS);
1477    break;
1478  }
1479  case Type::MemberPointer: {
1480    const MemberPointerType *MPT = cast<MemberPointerType>(T);
1481    std::pair<uint64_t, unsigned> PtrDiffInfo =
1482      getTypeInfo(getPointerDiffType());
1483    Width = PtrDiffInfo.first * ABI->getMemberPointerSize(MPT);
1484    Align = PtrDiffInfo.second;
1485    break;
1486  }
1487  case Type::Complex: {
1488    // Complex types have the same alignment as their elements, but twice the
1489    // size.
1490    std::pair<uint64_t, unsigned> EltInfo =
1491      getTypeInfo(cast<ComplexType>(T)->getElementType());
1492    Width = EltInfo.first*2;
1493    Align = EltInfo.second;
1494    break;
1495  }
1496  case Type::ObjCObject:
1497    return getTypeInfo(cast<ObjCObjectType>(T)->getBaseType().getTypePtr());
1498  case Type::ObjCInterface: {
1499    const ObjCInterfaceType *ObjCI = cast<ObjCInterfaceType>(T);
1500    const ASTRecordLayout &Layout = getASTObjCInterfaceLayout(ObjCI->getDecl());
1501    Width = toBits(Layout.getSize());
1502    Align = toBits(Layout.getAlignment());
1503    break;
1504  }
1505  case Type::Record:
1506  case Type::Enum: {
1507    const TagType *TT = cast<TagType>(T);
1508
1509    if (TT->getDecl()->isInvalidDecl()) {
1510      Width = 8;
1511      Align = 8;
1512      break;
1513    }
1514
1515    if (const EnumType *ET = dyn_cast<EnumType>(TT))
1516      return getTypeInfo(ET->getDecl()->getIntegerType());
1517
1518    const RecordType *RT = cast<RecordType>(TT);
1519    const ASTRecordLayout &Layout = getASTRecordLayout(RT->getDecl());
1520    Width = toBits(Layout.getSize());
1521    Align = toBits(Layout.getAlignment());
1522    break;
1523  }
1524
1525  case Type::SubstTemplateTypeParm:
1526    return getTypeInfo(cast<SubstTemplateTypeParmType>(T)->
1527                       getReplacementType().getTypePtr());
1528
1529  case Type::Auto: {
1530    const AutoType *A = cast<AutoType>(T);
1531    assert(A->isDeduced() && "Cannot request the size of a dependent type");
1532    return getTypeInfo(A->getDeducedType().getTypePtr());
1533  }
1534
1535  case Type::Paren:
1536    return getTypeInfo(cast<ParenType>(T)->getInnerType().getTypePtr());
1537
1538  case Type::Typedef: {
1539    const TypedefNameDecl *Typedef = cast<TypedefType>(T)->getDecl();
1540    std::pair<uint64_t, unsigned> Info
1541      = getTypeInfo(Typedef->getUnderlyingType().getTypePtr());
1542    // If the typedef has an aligned attribute on it, it overrides any computed
1543    // alignment we have.  This violates the GCC documentation (which says that
1544    // attribute(aligned) can only round up) but matches its implementation.
1545    if (unsigned AttrAlign = Typedef->getMaxAlignment())
1546      Align = AttrAlign;
1547    else
1548      Align = Info.second;
1549    Width = Info.first;
1550    break;
1551  }
1552
1553  case Type::TypeOfExpr:
1554    return getTypeInfo(cast<TypeOfExprType>(T)->getUnderlyingExpr()->getType()
1555                         .getTypePtr());
1556
1557  case Type::TypeOf:
1558    return getTypeInfo(cast<TypeOfType>(T)->getUnderlyingType().getTypePtr());
1559
1560  case Type::Decltype:
1561    return getTypeInfo(cast<DecltypeType>(T)->getUnderlyingExpr()->getType()
1562                        .getTypePtr());
1563
1564  case Type::UnaryTransform:
1565    return getTypeInfo(cast<UnaryTransformType>(T)->getUnderlyingType());
1566
1567  case Type::Elaborated:
1568    return getTypeInfo(cast<ElaboratedType>(T)->getNamedType().getTypePtr());
1569
1570  case Type::Attributed:
1571    return getTypeInfo(
1572                  cast<AttributedType>(T)->getEquivalentType().getTypePtr());
1573
1574  case Type::TemplateSpecialization: {
1575    assert(getCanonicalType(T) != T &&
1576           "Cannot request the size of a dependent type");
1577    const TemplateSpecializationType *TST = cast<TemplateSpecializationType>(T);
1578    // A type alias template specialization may refer to a typedef with the
1579    // aligned attribute on it.
1580    if (TST->isTypeAlias())
1581      return getTypeInfo(TST->getAliasedType().getTypePtr());
1582    else
1583      return getTypeInfo(getCanonicalType(T));
1584  }
1585
1586  case Type::Atomic: {
1587    std::pair<uint64_t, unsigned> Info
1588      = getTypeInfo(cast<AtomicType>(T)->getValueType());
1589    Width = Info.first;
1590    Align = Info.second;
1591    if (Width != 0 && Width <= Target->getMaxAtomicPromoteWidth() &&
1592        llvm::isPowerOf2_64(Width)) {
1593      // We can potentially perform lock-free atomic operations for this
1594      // type; promote the alignment appropriately.
1595      // FIXME: We could potentially promote the width here as well...
1596      // is that worthwhile?  (Non-struct atomic types generally have
1597      // power-of-two size anyway, but structs might not.  Requires a bit
1598      // of implementation work to make sure we zero out the extra bits.)
1599      Align = static_cast<unsigned>(Width);
1600    }
1601  }
1602
1603  }
1604
1605  assert(llvm::isPowerOf2_32(Align) && "Alignment must be power of 2");
1606  return std::make_pair(Width, Align);
1607}
1608
1609/// toCharUnitsFromBits - Convert a size in bits to a size in characters.
1610CharUnits ASTContext::toCharUnitsFromBits(int64_t BitSize) const {
1611  return CharUnits::fromQuantity(BitSize / getCharWidth());
1612}
1613
1614/// toBits - Convert a size in characters to a size in characters.
1615int64_t ASTContext::toBits(CharUnits CharSize) const {
1616  return CharSize.getQuantity() * getCharWidth();
1617}
1618
1619/// getTypeSizeInChars - Return the size of the specified type, in characters.
1620/// This method does not work on incomplete types.
1621CharUnits ASTContext::getTypeSizeInChars(QualType T) const {
1622  return toCharUnitsFromBits(getTypeSize(T));
1623}
1624CharUnits ASTContext::getTypeSizeInChars(const Type *T) const {
1625  return toCharUnitsFromBits(getTypeSize(T));
1626}
1627
1628/// getTypeAlignInChars - Return the ABI-specified alignment of a type, in
1629/// characters. This method does not work on incomplete types.
1630CharUnits ASTContext::getTypeAlignInChars(QualType T) const {
1631  return toCharUnitsFromBits(getTypeAlign(T));
1632}
1633CharUnits ASTContext::getTypeAlignInChars(const Type *T) const {
1634  return toCharUnitsFromBits(getTypeAlign(T));
1635}
1636
1637/// getPreferredTypeAlign - Return the "preferred" alignment of the specified
1638/// type for the current target in bits.  This can be different than the ABI
1639/// alignment in cases where it is beneficial for performance to overalign
1640/// a data type.
1641unsigned ASTContext::getPreferredTypeAlign(const Type *T) const {
1642  unsigned ABIAlign = getTypeAlign(T);
1643
1644  // Double and long long should be naturally aligned if possible.
1645  if (const ComplexType* CT = T->getAs<ComplexType>())
1646    T = CT->getElementType().getTypePtr();
1647  if (T->isSpecificBuiltinType(BuiltinType::Double) ||
1648      T->isSpecificBuiltinType(BuiltinType::LongLong) ||
1649      T->isSpecificBuiltinType(BuiltinType::ULongLong))
1650    return std::max(ABIAlign, (unsigned)getTypeSize(T));
1651
1652  return ABIAlign;
1653}
1654
1655/// DeepCollectObjCIvars -
1656/// This routine first collects all declared, but not synthesized, ivars in
1657/// super class and then collects all ivars, including those synthesized for
1658/// current class. This routine is used for implementation of current class
1659/// when all ivars, declared and synthesized are known.
1660///
1661void ASTContext::DeepCollectObjCIvars(const ObjCInterfaceDecl *OI,
1662                                      bool leafClass,
1663                            SmallVectorImpl<const ObjCIvarDecl*> &Ivars) const {
1664  if (const ObjCInterfaceDecl *SuperClass = OI->getSuperClass())
1665    DeepCollectObjCIvars(SuperClass, false, Ivars);
1666  if (!leafClass) {
1667    for (ObjCInterfaceDecl::ivar_iterator I = OI->ivar_begin(),
1668         E = OI->ivar_end(); I != E; ++I)
1669      Ivars.push_back(*I);
1670  } else {
1671    ObjCInterfaceDecl *IDecl = const_cast<ObjCInterfaceDecl *>(OI);
1672    for (const ObjCIvarDecl *Iv = IDecl->all_declared_ivar_begin(); Iv;
1673         Iv= Iv->getNextIvar())
1674      Ivars.push_back(Iv);
1675  }
1676}
1677
1678/// CollectInheritedProtocols - Collect all protocols in current class and
1679/// those inherited by it.
1680void ASTContext::CollectInheritedProtocols(const Decl *CDecl,
1681                          llvm::SmallPtrSet<ObjCProtocolDecl*, 8> &Protocols) {
1682  if (const ObjCInterfaceDecl *OI = dyn_cast<ObjCInterfaceDecl>(CDecl)) {
1683    // We can use protocol_iterator here instead of
1684    // all_referenced_protocol_iterator since we are walking all categories.
1685    for (ObjCInterfaceDecl::all_protocol_iterator P = OI->all_referenced_protocol_begin(),
1686         PE = OI->all_referenced_protocol_end(); P != PE; ++P) {
1687      ObjCProtocolDecl *Proto = (*P);
1688      Protocols.insert(Proto->getCanonicalDecl());
1689      for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
1690           PE = Proto->protocol_end(); P != PE; ++P) {
1691        Protocols.insert((*P)->getCanonicalDecl());
1692        CollectInheritedProtocols(*P, Protocols);
1693      }
1694    }
1695
1696    // Categories of this Interface.
1697    for (ObjCInterfaceDecl::visible_categories_iterator
1698           Cat = OI->visible_categories_begin(),
1699           CatEnd = OI->visible_categories_end();
1700         Cat != CatEnd; ++Cat) {
1701      CollectInheritedProtocols(*Cat, Protocols);
1702    }
1703
1704    if (ObjCInterfaceDecl *SD = OI->getSuperClass())
1705      while (SD) {
1706        CollectInheritedProtocols(SD, Protocols);
1707        SD = SD->getSuperClass();
1708      }
1709  } else if (const ObjCCategoryDecl *OC = dyn_cast<ObjCCategoryDecl>(CDecl)) {
1710    for (ObjCCategoryDecl::protocol_iterator P = OC->protocol_begin(),
1711         PE = OC->protocol_end(); P != PE; ++P) {
1712      ObjCProtocolDecl *Proto = (*P);
1713      Protocols.insert(Proto->getCanonicalDecl());
1714      for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
1715           PE = Proto->protocol_end(); P != PE; ++P)
1716        CollectInheritedProtocols(*P, Protocols);
1717    }
1718  } else if (const ObjCProtocolDecl *OP = dyn_cast<ObjCProtocolDecl>(CDecl)) {
1719    for (ObjCProtocolDecl::protocol_iterator P = OP->protocol_begin(),
1720         PE = OP->protocol_end(); P != PE; ++P) {
1721      ObjCProtocolDecl *Proto = (*P);
1722      Protocols.insert(Proto->getCanonicalDecl());
1723      for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
1724           PE = Proto->protocol_end(); P != PE; ++P)
1725        CollectInheritedProtocols(*P, Protocols);
1726    }
1727  }
1728}
1729
1730unsigned ASTContext::CountNonClassIvars(const ObjCInterfaceDecl *OI) const {
1731  unsigned count = 0;
1732  // Count ivars declared in class extension.
1733  for (ObjCInterfaceDecl::known_extensions_iterator
1734         Ext = OI->known_extensions_begin(),
1735         ExtEnd = OI->known_extensions_end();
1736       Ext != ExtEnd; ++Ext) {
1737    count += Ext->ivar_size();
1738  }
1739
1740  // Count ivar defined in this class's implementation.  This
1741  // includes synthesized ivars.
1742  if (ObjCImplementationDecl *ImplDecl = OI->getImplementation())
1743    count += ImplDecl->ivar_size();
1744
1745  return count;
1746}
1747
1748bool ASTContext::isSentinelNullExpr(const Expr *E) {
1749  if (!E)
1750    return false;
1751
1752  // nullptr_t is always treated as null.
1753  if (E->getType()->isNullPtrType()) return true;
1754
1755  if (E->getType()->isAnyPointerType() &&
1756      E->IgnoreParenCasts()->isNullPointerConstant(*this,
1757                                                Expr::NPC_ValueDependentIsNull))
1758    return true;
1759
1760  // Unfortunately, __null has type 'int'.
1761  if (isa<GNUNullExpr>(E)) return true;
1762
1763  return false;
1764}
1765
1766/// \brief Get the implementation of ObjCInterfaceDecl,or NULL if none exists.
1767ObjCImplementationDecl *ASTContext::getObjCImplementation(ObjCInterfaceDecl *D) {
1768  llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
1769    I = ObjCImpls.find(D);
1770  if (I != ObjCImpls.end())
1771    return cast<ObjCImplementationDecl>(I->second);
1772  return 0;
1773}
1774/// \brief Get the implementation of ObjCCategoryDecl, or NULL if none exists.
1775ObjCCategoryImplDecl *ASTContext::getObjCImplementation(ObjCCategoryDecl *D) {
1776  llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
1777    I = ObjCImpls.find(D);
1778  if (I != ObjCImpls.end())
1779    return cast<ObjCCategoryImplDecl>(I->second);
1780  return 0;
1781}
1782
1783/// \brief Set the implementation of ObjCInterfaceDecl.
1784void ASTContext::setObjCImplementation(ObjCInterfaceDecl *IFaceD,
1785                           ObjCImplementationDecl *ImplD) {
1786  assert(IFaceD && ImplD && "Passed null params");
1787  ObjCImpls[IFaceD] = ImplD;
1788}
1789/// \brief Set the implementation of ObjCCategoryDecl.
1790void ASTContext::setObjCImplementation(ObjCCategoryDecl *CatD,
1791                           ObjCCategoryImplDecl *ImplD) {
1792  assert(CatD && ImplD && "Passed null params");
1793  ObjCImpls[CatD] = ImplD;
1794}
1795
1796ObjCInterfaceDecl *ASTContext::getObjContainingInterface(NamedDecl *ND) const {
1797  if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(ND->getDeclContext()))
1798    return ID;
1799  if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(ND->getDeclContext()))
1800    return CD->getClassInterface();
1801  if (ObjCImplDecl *IMD = dyn_cast<ObjCImplDecl>(ND->getDeclContext()))
1802    return IMD->getClassInterface();
1803
1804  return 0;
1805}
1806
1807/// \brief Get the copy initialization expression of VarDecl,or NULL if
1808/// none exists.
1809Expr *ASTContext::getBlockVarCopyInits(const VarDecl*VD) {
1810  assert(VD && "Passed null params");
1811  assert(VD->hasAttr<BlocksAttr>() &&
1812         "getBlockVarCopyInits - not __block var");
1813  llvm::DenseMap<const VarDecl*, Expr*>::iterator
1814    I = BlockVarCopyInits.find(VD);
1815  return (I != BlockVarCopyInits.end()) ? cast<Expr>(I->second) : 0;
1816}
1817
1818/// \brief Set the copy inialization expression of a block var decl.
1819void ASTContext::setBlockVarCopyInits(VarDecl*VD, Expr* Init) {
1820  assert(VD && Init && "Passed null params");
1821  assert(VD->hasAttr<BlocksAttr>() &&
1822         "setBlockVarCopyInits - not __block var");
1823  BlockVarCopyInits[VD] = Init;
1824}
1825
1826TypeSourceInfo *ASTContext::CreateTypeSourceInfo(QualType T,
1827                                                 unsigned DataSize) const {
1828  if (!DataSize)
1829    DataSize = TypeLoc::getFullDataSizeForType(T);
1830  else
1831    assert(DataSize == TypeLoc::getFullDataSizeForType(T) &&
1832           "incorrect data size provided to CreateTypeSourceInfo!");
1833
1834  TypeSourceInfo *TInfo =
1835    (TypeSourceInfo*)BumpAlloc.Allocate(sizeof(TypeSourceInfo) + DataSize, 8);
1836  new (TInfo) TypeSourceInfo(T);
1837  return TInfo;
1838}
1839
1840TypeSourceInfo *ASTContext::getTrivialTypeSourceInfo(QualType T,
1841                                                     SourceLocation L) const {
1842  TypeSourceInfo *DI = CreateTypeSourceInfo(T);
1843  DI->getTypeLoc().initialize(const_cast<ASTContext &>(*this), L);
1844  return DI;
1845}
1846
1847const ASTRecordLayout &
1848ASTContext::getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D) const {
1849  return getObjCLayout(D, 0);
1850}
1851
1852const ASTRecordLayout &
1853ASTContext::getASTObjCImplementationLayout(
1854                                        const ObjCImplementationDecl *D) const {
1855  return getObjCLayout(D->getClassInterface(), D);
1856}
1857
1858//===----------------------------------------------------------------------===//
1859//                   Type creation/memoization methods
1860//===----------------------------------------------------------------------===//
1861
1862QualType
1863ASTContext::getExtQualType(const Type *baseType, Qualifiers quals) const {
1864  unsigned fastQuals = quals.getFastQualifiers();
1865  quals.removeFastQualifiers();
1866
1867  // Check if we've already instantiated this type.
1868  llvm::FoldingSetNodeID ID;
1869  ExtQuals::Profile(ID, baseType, quals);
1870  void *insertPos = 0;
1871  if (ExtQuals *eq = ExtQualNodes.FindNodeOrInsertPos(ID, insertPos)) {
1872    assert(eq->getQualifiers() == quals);
1873    return QualType(eq, fastQuals);
1874  }
1875
1876  // If the base type is not canonical, make the appropriate canonical type.
1877  QualType canon;
1878  if (!baseType->isCanonicalUnqualified()) {
1879    SplitQualType canonSplit = baseType->getCanonicalTypeInternal().split();
1880    canonSplit.Quals.addConsistentQualifiers(quals);
1881    canon = getExtQualType(canonSplit.Ty, canonSplit.Quals);
1882
1883    // Re-find the insert position.
1884    (void) ExtQualNodes.FindNodeOrInsertPos(ID, insertPos);
1885  }
1886
1887  ExtQuals *eq = new (*this, TypeAlignment) ExtQuals(baseType, canon, quals);
1888  ExtQualNodes.InsertNode(eq, insertPos);
1889  return QualType(eq, fastQuals);
1890}
1891
1892QualType
1893ASTContext::getAddrSpaceQualType(QualType T, unsigned AddressSpace) const {
1894  QualType CanT = getCanonicalType(T);
1895  if (CanT.getAddressSpace() == AddressSpace)
1896    return T;
1897
1898  // If we are composing extended qualifiers together, merge together
1899  // into one ExtQuals node.
1900  QualifierCollector Quals;
1901  const Type *TypeNode = Quals.strip(T);
1902
1903  // If this type already has an address space specified, it cannot get
1904  // another one.
1905  assert(!Quals.hasAddressSpace() &&
1906         "Type cannot be in multiple addr spaces!");
1907  Quals.addAddressSpace(AddressSpace);
1908
1909  return getExtQualType(TypeNode, Quals);
1910}
1911
1912QualType ASTContext::getObjCGCQualType(QualType T,
1913                                       Qualifiers::GC GCAttr) const {
1914  QualType CanT = getCanonicalType(T);
1915  if (CanT.getObjCGCAttr() == GCAttr)
1916    return T;
1917
1918  if (const PointerType *ptr = T->getAs<PointerType>()) {
1919    QualType Pointee = ptr->getPointeeType();
1920    if (Pointee->isAnyPointerType()) {
1921      QualType ResultType = getObjCGCQualType(Pointee, GCAttr);
1922      return getPointerType(ResultType);
1923    }
1924  }
1925
1926  // If we are composing extended qualifiers together, merge together
1927  // into one ExtQuals node.
1928  QualifierCollector Quals;
1929  const Type *TypeNode = Quals.strip(T);
1930
1931  // If this type already has an ObjCGC specified, it cannot get
1932  // another one.
1933  assert(!Quals.hasObjCGCAttr() &&
1934         "Type cannot have multiple ObjCGCs!");
1935  Quals.addObjCGCAttr(GCAttr);
1936
1937  return getExtQualType(TypeNode, Quals);
1938}
1939
1940const FunctionType *ASTContext::adjustFunctionType(const FunctionType *T,
1941                                                   FunctionType::ExtInfo Info) {
1942  if (T->getExtInfo() == Info)
1943    return T;
1944
1945  QualType Result;
1946  if (const FunctionNoProtoType *FNPT = dyn_cast<FunctionNoProtoType>(T)) {
1947    Result = getFunctionNoProtoType(FNPT->getResultType(), Info);
1948  } else {
1949    const FunctionProtoType *FPT = cast<FunctionProtoType>(T);
1950    FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
1951    EPI.ExtInfo = Info;
1952    Result = getFunctionType(FPT->getResultType(), FPT->arg_type_begin(),
1953                             FPT->getNumArgs(), EPI);
1954  }
1955
1956  return cast<FunctionType>(Result.getTypePtr());
1957}
1958
1959/// getComplexType - Return the uniqued reference to the type for a complex
1960/// number with the specified element type.
1961QualType ASTContext::getComplexType(QualType T) const {
1962  // Unique pointers, to guarantee there is only one pointer of a particular
1963  // structure.
1964  llvm::FoldingSetNodeID ID;
1965  ComplexType::Profile(ID, T);
1966
1967  void *InsertPos = 0;
1968  if (ComplexType *CT = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos))
1969    return QualType(CT, 0);
1970
1971  // If the pointee type isn't canonical, this won't be a canonical type either,
1972  // so fill in the canonical type field.
1973  QualType Canonical;
1974  if (!T.isCanonical()) {
1975    Canonical = getComplexType(getCanonicalType(T));
1976
1977    // Get the new insert position for the node we care about.
1978    ComplexType *NewIP = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos);
1979    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1980  }
1981  ComplexType *New = new (*this, TypeAlignment) ComplexType(T, Canonical);
1982  Types.push_back(New);
1983  ComplexTypes.InsertNode(New, InsertPos);
1984  return QualType(New, 0);
1985}
1986
1987/// getPointerType - Return the uniqued reference to the type for a pointer to
1988/// the specified type.
1989QualType ASTContext::getPointerType(QualType T) const {
1990  // Unique pointers, to guarantee there is only one pointer of a particular
1991  // structure.
1992  llvm::FoldingSetNodeID ID;
1993  PointerType::Profile(ID, T);
1994
1995  void *InsertPos = 0;
1996  if (PointerType *PT = PointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1997    return QualType(PT, 0);
1998
1999  // If the pointee type isn't canonical, this won't be a canonical type either,
2000  // so fill in the canonical type field.
2001  QualType Canonical;
2002  if (!T.isCanonical()) {
2003    Canonical = getPointerType(getCanonicalType(T));
2004
2005    // Get the new insert position for the node we care about.
2006    PointerType *NewIP = PointerTypes.FindNodeOrInsertPos(ID, InsertPos);
2007    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2008  }
2009  PointerType *New = new (*this, TypeAlignment) PointerType(T, Canonical);
2010  Types.push_back(New);
2011  PointerTypes.InsertNode(New, InsertPos);
2012  return QualType(New, 0);
2013}
2014
2015/// getBlockPointerType - Return the uniqued reference to the type for
2016/// a pointer to the specified block.
2017QualType ASTContext::getBlockPointerType(QualType T) const {
2018  assert(T->isFunctionType() && "block of function types only");
2019  // Unique pointers, to guarantee there is only one block of a particular
2020  // structure.
2021  llvm::FoldingSetNodeID ID;
2022  BlockPointerType::Profile(ID, T);
2023
2024  void *InsertPos = 0;
2025  if (BlockPointerType *PT =
2026        BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
2027    return QualType(PT, 0);
2028
2029  // If the block pointee type isn't canonical, this won't be a canonical
2030  // type either so fill in the canonical type field.
2031  QualType Canonical;
2032  if (!T.isCanonical()) {
2033    Canonical = getBlockPointerType(getCanonicalType(T));
2034
2035    // Get the new insert position for the node we care about.
2036    BlockPointerType *NewIP =
2037      BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
2038    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2039  }
2040  BlockPointerType *New
2041    = new (*this, TypeAlignment) BlockPointerType(T, Canonical);
2042  Types.push_back(New);
2043  BlockPointerTypes.InsertNode(New, InsertPos);
2044  return QualType(New, 0);
2045}
2046
2047/// getLValueReferenceType - Return the uniqued reference to the type for an
2048/// lvalue reference to the specified type.
2049QualType
2050ASTContext::getLValueReferenceType(QualType T, bool SpelledAsLValue) const {
2051  assert(getCanonicalType(T) != OverloadTy &&
2052         "Unresolved overloaded function type");
2053
2054  // Unique pointers, to guarantee there is only one pointer of a particular
2055  // structure.
2056  llvm::FoldingSetNodeID ID;
2057  ReferenceType::Profile(ID, T, SpelledAsLValue);
2058
2059  void *InsertPos = 0;
2060  if (LValueReferenceType *RT =
2061        LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
2062    return QualType(RT, 0);
2063
2064  const ReferenceType *InnerRef = T->getAs<ReferenceType>();
2065
2066  // If the referencee type isn't canonical, this won't be a canonical type
2067  // either, so fill in the canonical type field.
2068  QualType Canonical;
2069  if (!SpelledAsLValue || InnerRef || !T.isCanonical()) {
2070    QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
2071    Canonical = getLValueReferenceType(getCanonicalType(PointeeType));
2072
2073    // Get the new insert position for the node we care about.
2074    LValueReferenceType *NewIP =
2075      LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
2076    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2077  }
2078
2079  LValueReferenceType *New
2080    = new (*this, TypeAlignment) LValueReferenceType(T, Canonical,
2081                                                     SpelledAsLValue);
2082  Types.push_back(New);
2083  LValueReferenceTypes.InsertNode(New, InsertPos);
2084
2085  return QualType(New, 0);
2086}
2087
2088/// getRValueReferenceType - Return the uniqued reference to the type for an
2089/// rvalue reference to the specified type.
2090QualType ASTContext::getRValueReferenceType(QualType T) const {
2091  // Unique pointers, to guarantee there is only one pointer of a particular
2092  // structure.
2093  llvm::FoldingSetNodeID ID;
2094  ReferenceType::Profile(ID, T, false);
2095
2096  void *InsertPos = 0;
2097  if (RValueReferenceType *RT =
2098        RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
2099    return QualType(RT, 0);
2100
2101  const ReferenceType *InnerRef = T->getAs<ReferenceType>();
2102
2103  // If the referencee type isn't canonical, this won't be a canonical type
2104  // either, so fill in the canonical type field.
2105  QualType Canonical;
2106  if (InnerRef || !T.isCanonical()) {
2107    QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
2108    Canonical = getRValueReferenceType(getCanonicalType(PointeeType));
2109
2110    // Get the new insert position for the node we care about.
2111    RValueReferenceType *NewIP =
2112      RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
2113    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2114  }
2115
2116  RValueReferenceType *New
2117    = new (*this, TypeAlignment) RValueReferenceType(T, Canonical);
2118  Types.push_back(New);
2119  RValueReferenceTypes.InsertNode(New, InsertPos);
2120  return QualType(New, 0);
2121}
2122
2123/// getMemberPointerType - Return the uniqued reference to the type for a
2124/// member pointer to the specified type, in the specified class.
2125QualType ASTContext::getMemberPointerType(QualType T, const Type *Cls) const {
2126  // Unique pointers, to guarantee there is only one pointer of a particular
2127  // structure.
2128  llvm::FoldingSetNodeID ID;
2129  MemberPointerType::Profile(ID, T, Cls);
2130
2131  void *InsertPos = 0;
2132  if (MemberPointerType *PT =
2133      MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
2134    return QualType(PT, 0);
2135
2136  // If the pointee or class type isn't canonical, this won't be a canonical
2137  // type either, so fill in the canonical type field.
2138  QualType Canonical;
2139  if (!T.isCanonical() || !Cls->isCanonicalUnqualified()) {
2140    Canonical = getMemberPointerType(getCanonicalType(T),getCanonicalType(Cls));
2141
2142    // Get the new insert position for the node we care about.
2143    MemberPointerType *NewIP =
2144      MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
2145    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2146  }
2147  MemberPointerType *New
2148    = new (*this, TypeAlignment) MemberPointerType(T, Cls, Canonical);
2149  Types.push_back(New);
2150  MemberPointerTypes.InsertNode(New, InsertPos);
2151  return QualType(New, 0);
2152}
2153
2154/// getConstantArrayType - Return the unique reference to the type for an
2155/// array of the specified element type.
2156QualType ASTContext::getConstantArrayType(QualType EltTy,
2157                                          const llvm::APInt &ArySizeIn,
2158                                          ArrayType::ArraySizeModifier ASM,
2159                                          unsigned IndexTypeQuals) const {
2160  assert((EltTy->isDependentType() ||
2161          EltTy->isIncompleteType() || EltTy->isConstantSizeType()) &&
2162         "Constant array of VLAs is illegal!");
2163
2164  // Convert the array size into a canonical width matching the pointer size for
2165  // the target.
2166  llvm::APInt ArySize(ArySizeIn);
2167  ArySize =
2168    ArySize.zextOrTrunc(Target->getPointerWidth(getTargetAddressSpace(EltTy)));
2169
2170  llvm::FoldingSetNodeID ID;
2171  ConstantArrayType::Profile(ID, EltTy, ArySize, ASM, IndexTypeQuals);
2172
2173  void *InsertPos = 0;
2174  if (ConstantArrayType *ATP =
2175      ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
2176    return QualType(ATP, 0);
2177
2178  // If the element type isn't canonical or has qualifiers, this won't
2179  // be a canonical type either, so fill in the canonical type field.
2180  QualType Canon;
2181  if (!EltTy.isCanonical() || EltTy.hasLocalQualifiers()) {
2182    SplitQualType canonSplit = getCanonicalType(EltTy).split();
2183    Canon = getConstantArrayType(QualType(canonSplit.Ty, 0), ArySize,
2184                                 ASM, IndexTypeQuals);
2185    Canon = getQualifiedType(Canon, canonSplit.Quals);
2186
2187    // Get the new insert position for the node we care about.
2188    ConstantArrayType *NewIP =
2189      ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
2190    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2191  }
2192
2193  ConstantArrayType *New = new(*this,TypeAlignment)
2194    ConstantArrayType(EltTy, Canon, ArySize, ASM, IndexTypeQuals);
2195  ConstantArrayTypes.InsertNode(New, InsertPos);
2196  Types.push_back(New);
2197  return QualType(New, 0);
2198}
2199
2200/// getVariableArrayDecayedType - Turns the given type, which may be
2201/// variably-modified, into the corresponding type with all the known
2202/// sizes replaced with [*].
2203QualType ASTContext::getVariableArrayDecayedType(QualType type) const {
2204  // Vastly most common case.
2205  if (!type->isVariablyModifiedType()) return type;
2206
2207  QualType result;
2208
2209  SplitQualType split = type.getSplitDesugaredType();
2210  const Type *ty = split.Ty;
2211  switch (ty->getTypeClass()) {
2212#define TYPE(Class, Base)
2213#define ABSTRACT_TYPE(Class, Base)
2214#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
2215#include "clang/AST/TypeNodes.def"
2216    llvm_unreachable("didn't desugar past all non-canonical types?");
2217
2218  // These types should never be variably-modified.
2219  case Type::Builtin:
2220  case Type::Complex:
2221  case Type::Vector:
2222  case Type::ExtVector:
2223  case Type::DependentSizedExtVector:
2224  case Type::ObjCObject:
2225  case Type::ObjCInterface:
2226  case Type::ObjCObjectPointer:
2227  case Type::Record:
2228  case Type::Enum:
2229  case Type::UnresolvedUsing:
2230  case Type::TypeOfExpr:
2231  case Type::TypeOf:
2232  case Type::Decltype:
2233  case Type::UnaryTransform:
2234  case Type::DependentName:
2235  case Type::InjectedClassName:
2236  case Type::TemplateSpecialization:
2237  case Type::DependentTemplateSpecialization:
2238  case Type::TemplateTypeParm:
2239  case Type::SubstTemplateTypeParmPack:
2240  case Type::Auto:
2241  case Type::PackExpansion:
2242    llvm_unreachable("type should never be variably-modified");
2243
2244  // These types can be variably-modified but should never need to
2245  // further decay.
2246  case Type::FunctionNoProto:
2247  case Type::FunctionProto:
2248  case Type::BlockPointer:
2249  case Type::MemberPointer:
2250    return type;
2251
2252  // These types can be variably-modified.  All these modifications
2253  // preserve structure except as noted by comments.
2254  // TODO: if we ever care about optimizing VLAs, there are no-op
2255  // optimizations available here.
2256  case Type::Pointer:
2257    result = getPointerType(getVariableArrayDecayedType(
2258                              cast<PointerType>(ty)->getPointeeType()));
2259    break;
2260
2261  case Type::LValueReference: {
2262    const LValueReferenceType *lv = cast<LValueReferenceType>(ty);
2263    result = getLValueReferenceType(
2264                 getVariableArrayDecayedType(lv->getPointeeType()),
2265                                    lv->isSpelledAsLValue());
2266    break;
2267  }
2268
2269  case Type::RValueReference: {
2270    const RValueReferenceType *lv = cast<RValueReferenceType>(ty);
2271    result = getRValueReferenceType(
2272                 getVariableArrayDecayedType(lv->getPointeeType()));
2273    break;
2274  }
2275
2276  case Type::Atomic: {
2277    const AtomicType *at = cast<AtomicType>(ty);
2278    result = getAtomicType(getVariableArrayDecayedType(at->getValueType()));
2279    break;
2280  }
2281
2282  case Type::ConstantArray: {
2283    const ConstantArrayType *cat = cast<ConstantArrayType>(ty);
2284    result = getConstantArrayType(
2285                 getVariableArrayDecayedType(cat->getElementType()),
2286                                  cat->getSize(),
2287                                  cat->getSizeModifier(),
2288                                  cat->getIndexTypeCVRQualifiers());
2289    break;
2290  }
2291
2292  case Type::DependentSizedArray: {
2293    const DependentSizedArrayType *dat = cast<DependentSizedArrayType>(ty);
2294    result = getDependentSizedArrayType(
2295                 getVariableArrayDecayedType(dat->getElementType()),
2296                                        dat->getSizeExpr(),
2297                                        dat->getSizeModifier(),
2298                                        dat->getIndexTypeCVRQualifiers(),
2299                                        dat->getBracketsRange());
2300    break;
2301  }
2302
2303  // Turn incomplete types into [*] types.
2304  case Type::IncompleteArray: {
2305    const IncompleteArrayType *iat = cast<IncompleteArrayType>(ty);
2306    result = getVariableArrayType(
2307                 getVariableArrayDecayedType(iat->getElementType()),
2308                                  /*size*/ 0,
2309                                  ArrayType::Normal,
2310                                  iat->getIndexTypeCVRQualifiers(),
2311                                  SourceRange());
2312    break;
2313  }
2314
2315  // Turn VLA types into [*] types.
2316  case Type::VariableArray: {
2317    const VariableArrayType *vat = cast<VariableArrayType>(ty);
2318    result = getVariableArrayType(
2319                 getVariableArrayDecayedType(vat->getElementType()),
2320                                  /*size*/ 0,
2321                                  ArrayType::Star,
2322                                  vat->getIndexTypeCVRQualifiers(),
2323                                  vat->getBracketsRange());
2324    break;
2325  }
2326  }
2327
2328  // Apply the top-level qualifiers from the original.
2329  return getQualifiedType(result, split.Quals);
2330}
2331
2332/// getVariableArrayType - Returns a non-unique reference to the type for a
2333/// variable array of the specified element type.
2334QualType ASTContext::getVariableArrayType(QualType EltTy,
2335                                          Expr *NumElts,
2336                                          ArrayType::ArraySizeModifier ASM,
2337                                          unsigned IndexTypeQuals,
2338                                          SourceRange Brackets) const {
2339  // Since we don't unique expressions, it isn't possible to unique VLA's
2340  // that have an expression provided for their size.
2341  QualType Canon;
2342
2343  // Be sure to pull qualifiers off the element type.
2344  if (!EltTy.isCanonical() || EltTy.hasLocalQualifiers()) {
2345    SplitQualType canonSplit = getCanonicalType(EltTy).split();
2346    Canon = getVariableArrayType(QualType(canonSplit.Ty, 0), NumElts, ASM,
2347                                 IndexTypeQuals, Brackets);
2348    Canon = getQualifiedType(Canon, canonSplit.Quals);
2349  }
2350
2351  VariableArrayType *New = new(*this, TypeAlignment)
2352    VariableArrayType(EltTy, Canon, NumElts, ASM, IndexTypeQuals, Brackets);
2353
2354  VariableArrayTypes.push_back(New);
2355  Types.push_back(New);
2356  return QualType(New, 0);
2357}
2358
2359/// getDependentSizedArrayType - Returns a non-unique reference to
2360/// the type for a dependently-sized array of the specified element
2361/// type.
2362QualType ASTContext::getDependentSizedArrayType(QualType elementType,
2363                                                Expr *numElements,
2364                                                ArrayType::ArraySizeModifier ASM,
2365                                                unsigned elementTypeQuals,
2366                                                SourceRange brackets) const {
2367  assert((!numElements || numElements->isTypeDependent() ||
2368          numElements->isValueDependent()) &&
2369         "Size must be type- or value-dependent!");
2370
2371  // Dependently-sized array types that do not have a specified number
2372  // of elements will have their sizes deduced from a dependent
2373  // initializer.  We do no canonicalization here at all, which is okay
2374  // because they can't be used in most locations.
2375  if (!numElements) {
2376    DependentSizedArrayType *newType
2377      = new (*this, TypeAlignment)
2378          DependentSizedArrayType(*this, elementType, QualType(),
2379                                  numElements, ASM, elementTypeQuals,
2380                                  brackets);
2381    Types.push_back(newType);
2382    return QualType(newType, 0);
2383  }
2384
2385  // Otherwise, we actually build a new type every time, but we
2386  // also build a canonical type.
2387
2388  SplitQualType canonElementType = getCanonicalType(elementType).split();
2389
2390  void *insertPos = 0;
2391  llvm::FoldingSetNodeID ID;
2392  DependentSizedArrayType::Profile(ID, *this,
2393                                   QualType(canonElementType.Ty, 0),
2394                                   ASM, elementTypeQuals, numElements);
2395
2396  // Look for an existing type with these properties.
2397  DependentSizedArrayType *canonTy =
2398    DependentSizedArrayTypes.FindNodeOrInsertPos(ID, insertPos);
2399
2400  // If we don't have one, build one.
2401  if (!canonTy) {
2402    canonTy = new (*this, TypeAlignment)
2403      DependentSizedArrayType(*this, QualType(canonElementType.Ty, 0),
2404                              QualType(), numElements, ASM, elementTypeQuals,
2405                              brackets);
2406    DependentSizedArrayTypes.InsertNode(canonTy, insertPos);
2407    Types.push_back(canonTy);
2408  }
2409
2410  // Apply qualifiers from the element type to the array.
2411  QualType canon = getQualifiedType(QualType(canonTy,0),
2412                                    canonElementType.Quals);
2413
2414  // If we didn't need extra canonicalization for the element type,
2415  // then just use that as our result.
2416  if (QualType(canonElementType.Ty, 0) == elementType)
2417    return canon;
2418
2419  // Otherwise, we need to build a type which follows the spelling
2420  // of the element type.
2421  DependentSizedArrayType *sugaredType
2422    = new (*this, TypeAlignment)
2423        DependentSizedArrayType(*this, elementType, canon, numElements,
2424                                ASM, elementTypeQuals, brackets);
2425  Types.push_back(sugaredType);
2426  return QualType(sugaredType, 0);
2427}
2428
2429QualType ASTContext::getIncompleteArrayType(QualType elementType,
2430                                            ArrayType::ArraySizeModifier ASM,
2431                                            unsigned elementTypeQuals) const {
2432  llvm::FoldingSetNodeID ID;
2433  IncompleteArrayType::Profile(ID, elementType, ASM, elementTypeQuals);
2434
2435  void *insertPos = 0;
2436  if (IncompleteArrayType *iat =
2437       IncompleteArrayTypes.FindNodeOrInsertPos(ID, insertPos))
2438    return QualType(iat, 0);
2439
2440  // If the element type isn't canonical, this won't be a canonical type
2441  // either, so fill in the canonical type field.  We also have to pull
2442  // qualifiers off the element type.
2443  QualType canon;
2444
2445  if (!elementType.isCanonical() || elementType.hasLocalQualifiers()) {
2446    SplitQualType canonSplit = getCanonicalType(elementType).split();
2447    canon = getIncompleteArrayType(QualType(canonSplit.Ty, 0),
2448                                   ASM, elementTypeQuals);
2449    canon = getQualifiedType(canon, canonSplit.Quals);
2450
2451    // Get the new insert position for the node we care about.
2452    IncompleteArrayType *existing =
2453      IncompleteArrayTypes.FindNodeOrInsertPos(ID, insertPos);
2454    assert(!existing && "Shouldn't be in the map!"); (void) existing;
2455  }
2456
2457  IncompleteArrayType *newType = new (*this, TypeAlignment)
2458    IncompleteArrayType(elementType, canon, ASM, elementTypeQuals);
2459
2460  IncompleteArrayTypes.InsertNode(newType, insertPos);
2461  Types.push_back(newType);
2462  return QualType(newType, 0);
2463}
2464
2465/// getVectorType - Return the unique reference to a vector type of
2466/// the specified element type and size. VectorType must be a built-in type.
2467QualType ASTContext::getVectorType(QualType vecType, unsigned NumElts,
2468                                   VectorType::VectorKind VecKind) const {
2469  assert(vecType->isBuiltinType());
2470
2471  // Check if we've already instantiated a vector of this type.
2472  llvm::FoldingSetNodeID ID;
2473  VectorType::Profile(ID, vecType, NumElts, Type::Vector, VecKind);
2474
2475  void *InsertPos = 0;
2476  if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
2477    return QualType(VTP, 0);
2478
2479  // If the element type isn't canonical, this won't be a canonical type either,
2480  // so fill in the canonical type field.
2481  QualType Canonical;
2482  if (!vecType.isCanonical()) {
2483    Canonical = getVectorType(getCanonicalType(vecType), NumElts, VecKind);
2484
2485    // Get the new insert position for the node we care about.
2486    VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
2487    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2488  }
2489  VectorType *New = new (*this, TypeAlignment)
2490    VectorType(vecType, NumElts, Canonical, VecKind);
2491  VectorTypes.InsertNode(New, InsertPos);
2492  Types.push_back(New);
2493  return QualType(New, 0);
2494}
2495
2496/// getExtVectorType - Return the unique reference to an extended vector type of
2497/// the specified element type and size. VectorType must be a built-in type.
2498QualType
2499ASTContext::getExtVectorType(QualType vecType, unsigned NumElts) const {
2500  assert(vecType->isBuiltinType() || vecType->isDependentType());
2501
2502  // Check if we've already instantiated a vector of this type.
2503  llvm::FoldingSetNodeID ID;
2504  VectorType::Profile(ID, vecType, NumElts, Type::ExtVector,
2505                      VectorType::GenericVector);
2506  void *InsertPos = 0;
2507  if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
2508    return QualType(VTP, 0);
2509
2510  // If the element type isn't canonical, this won't be a canonical type either,
2511  // so fill in the canonical type field.
2512  QualType Canonical;
2513  if (!vecType.isCanonical()) {
2514    Canonical = getExtVectorType(getCanonicalType(vecType), NumElts);
2515
2516    // Get the new insert position for the node we care about.
2517    VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
2518    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2519  }
2520  ExtVectorType *New = new (*this, TypeAlignment)
2521    ExtVectorType(vecType, NumElts, Canonical);
2522  VectorTypes.InsertNode(New, InsertPos);
2523  Types.push_back(New);
2524  return QualType(New, 0);
2525}
2526
2527QualType
2528ASTContext::getDependentSizedExtVectorType(QualType vecType,
2529                                           Expr *SizeExpr,
2530                                           SourceLocation AttrLoc) const {
2531  llvm::FoldingSetNodeID ID;
2532  DependentSizedExtVectorType::Profile(ID, *this, getCanonicalType(vecType),
2533                                       SizeExpr);
2534
2535  void *InsertPos = 0;
2536  DependentSizedExtVectorType *Canon
2537    = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
2538  DependentSizedExtVectorType *New;
2539  if (Canon) {
2540    // We already have a canonical version of this array type; use it as
2541    // the canonical type for a newly-built type.
2542    New = new (*this, TypeAlignment)
2543      DependentSizedExtVectorType(*this, vecType, QualType(Canon, 0),
2544                                  SizeExpr, AttrLoc);
2545  } else {
2546    QualType CanonVecTy = getCanonicalType(vecType);
2547    if (CanonVecTy == vecType) {
2548      New = new (*this, TypeAlignment)
2549        DependentSizedExtVectorType(*this, vecType, QualType(), SizeExpr,
2550                                    AttrLoc);
2551
2552      DependentSizedExtVectorType *CanonCheck
2553        = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
2554      assert(!CanonCheck && "Dependent-sized ext_vector canonical type broken");
2555      (void)CanonCheck;
2556      DependentSizedExtVectorTypes.InsertNode(New, InsertPos);
2557    } else {
2558      QualType Canon = getDependentSizedExtVectorType(CanonVecTy, SizeExpr,
2559                                                      SourceLocation());
2560      New = new (*this, TypeAlignment)
2561        DependentSizedExtVectorType(*this, vecType, Canon, SizeExpr, AttrLoc);
2562    }
2563  }
2564
2565  Types.push_back(New);
2566  return QualType(New, 0);
2567}
2568
2569/// getFunctionNoProtoType - Return a K&R style C function type like 'int()'.
2570///
2571QualType
2572ASTContext::getFunctionNoProtoType(QualType ResultTy,
2573                                   const FunctionType::ExtInfo &Info) const {
2574  const CallingConv DefaultCC = Info.getCC();
2575  const CallingConv CallConv = (LangOpts.MRTD && DefaultCC == CC_Default) ?
2576                               CC_X86StdCall : DefaultCC;
2577  // Unique functions, to guarantee there is only one function of a particular
2578  // structure.
2579  llvm::FoldingSetNodeID ID;
2580  FunctionNoProtoType::Profile(ID, ResultTy, Info);
2581
2582  void *InsertPos = 0;
2583  if (FunctionNoProtoType *FT =
2584        FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
2585    return QualType(FT, 0);
2586
2587  QualType Canonical;
2588  if (!ResultTy.isCanonical() ||
2589      getCanonicalCallConv(CallConv) != CallConv) {
2590    Canonical =
2591      getFunctionNoProtoType(getCanonicalType(ResultTy),
2592                     Info.withCallingConv(getCanonicalCallConv(CallConv)));
2593
2594    // Get the new insert position for the node we care about.
2595    FunctionNoProtoType *NewIP =
2596      FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
2597    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2598  }
2599
2600  FunctionProtoType::ExtInfo newInfo = Info.withCallingConv(CallConv);
2601  FunctionNoProtoType *New = new (*this, TypeAlignment)
2602    FunctionNoProtoType(ResultTy, Canonical, newInfo);
2603  Types.push_back(New);
2604  FunctionNoProtoTypes.InsertNode(New, InsertPos);
2605  return QualType(New, 0);
2606}
2607
2608/// \brief Determine whether \p T is canonical as the result type of a function.
2609static bool isCanonicalResultType(QualType T) {
2610  return T.isCanonical() &&
2611         (T.getObjCLifetime() == Qualifiers::OCL_None ||
2612          T.getObjCLifetime() == Qualifiers::OCL_ExplicitNone);
2613}
2614
2615/// getFunctionType - Return a normal function type with a typed argument
2616/// list.  isVariadic indicates whether the argument list includes '...'.
2617QualType
2618ASTContext::getFunctionType(QualType ResultTy,
2619                            const QualType *ArgArray, unsigned NumArgs,
2620                            const FunctionProtoType::ExtProtoInfo &EPI) const {
2621  // Unique functions, to guarantee there is only one function of a particular
2622  // structure.
2623  llvm::FoldingSetNodeID ID;
2624  FunctionProtoType::Profile(ID, ResultTy, ArgArray, NumArgs, EPI, *this);
2625
2626  void *InsertPos = 0;
2627  if (FunctionProtoType *FTP =
2628        FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
2629    return QualType(FTP, 0);
2630
2631  // Determine whether the type being created is already canonical or not.
2632  bool isCanonical =
2633    EPI.ExceptionSpecType == EST_None && isCanonicalResultType(ResultTy) &&
2634    !EPI.HasTrailingReturn;
2635  for (unsigned i = 0; i != NumArgs && isCanonical; ++i)
2636    if (!ArgArray[i].isCanonicalAsParam())
2637      isCanonical = false;
2638
2639  const CallingConv DefaultCC = EPI.ExtInfo.getCC();
2640  const CallingConv CallConv = (LangOpts.MRTD && DefaultCC == CC_Default) ?
2641                               CC_X86StdCall : DefaultCC;
2642
2643  // If this type isn't canonical, get the canonical version of it.
2644  // The exception spec is not part of the canonical type.
2645  QualType Canonical;
2646  if (!isCanonical || getCanonicalCallConv(CallConv) != CallConv) {
2647    SmallVector<QualType, 16> CanonicalArgs;
2648    CanonicalArgs.reserve(NumArgs);
2649    for (unsigned i = 0; i != NumArgs; ++i)
2650      CanonicalArgs.push_back(getCanonicalParamType(ArgArray[i]));
2651
2652    FunctionProtoType::ExtProtoInfo CanonicalEPI = EPI;
2653    CanonicalEPI.HasTrailingReturn = false;
2654    CanonicalEPI.ExceptionSpecType = EST_None;
2655    CanonicalEPI.NumExceptions = 0;
2656    CanonicalEPI.ExtInfo
2657      = CanonicalEPI.ExtInfo.withCallingConv(getCanonicalCallConv(CallConv));
2658
2659    // Result types do not have ARC lifetime qualifiers.
2660    QualType CanResultTy = getCanonicalType(ResultTy);
2661    if (ResultTy.getQualifiers().hasObjCLifetime()) {
2662      Qualifiers Qs = CanResultTy.getQualifiers();
2663      Qs.removeObjCLifetime();
2664      CanResultTy = getQualifiedType(CanResultTy.getUnqualifiedType(), Qs);
2665    }
2666
2667    Canonical = getFunctionType(CanResultTy,
2668                                CanonicalArgs.data(), NumArgs,
2669                                CanonicalEPI);
2670
2671    // Get the new insert position for the node we care about.
2672    FunctionProtoType *NewIP =
2673      FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
2674    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2675  }
2676
2677  // FunctionProtoType objects are allocated with extra bytes after
2678  // them for three variable size arrays at the end:
2679  //  - parameter types
2680  //  - exception types
2681  //  - consumed-arguments flags
2682  // Instead of the exception types, there could be a noexcept
2683  // expression, or information used to resolve the exception
2684  // specification.
2685  size_t Size = sizeof(FunctionProtoType) +
2686                NumArgs * sizeof(QualType);
2687  if (EPI.ExceptionSpecType == EST_Dynamic) {
2688    Size += EPI.NumExceptions * sizeof(QualType);
2689  } else if (EPI.ExceptionSpecType == EST_ComputedNoexcept) {
2690    Size += sizeof(Expr*);
2691  } else if (EPI.ExceptionSpecType == EST_Uninstantiated) {
2692    Size += 2 * sizeof(FunctionDecl*);
2693  } else if (EPI.ExceptionSpecType == EST_Unevaluated) {
2694    Size += sizeof(FunctionDecl*);
2695  }
2696  if (EPI.ConsumedArguments)
2697    Size += NumArgs * sizeof(bool);
2698
2699  FunctionProtoType *FTP = (FunctionProtoType*) Allocate(Size, TypeAlignment);
2700  FunctionProtoType::ExtProtoInfo newEPI = EPI;
2701  newEPI.ExtInfo = EPI.ExtInfo.withCallingConv(CallConv);
2702  new (FTP) FunctionProtoType(ResultTy, ArgArray, NumArgs, Canonical, newEPI);
2703  Types.push_back(FTP);
2704  FunctionProtoTypes.InsertNode(FTP, InsertPos);
2705  return QualType(FTP, 0);
2706}
2707
2708#ifndef NDEBUG
2709static bool NeedsInjectedClassNameType(const RecordDecl *D) {
2710  if (!isa<CXXRecordDecl>(D)) return false;
2711  const CXXRecordDecl *RD = cast<CXXRecordDecl>(D);
2712  if (isa<ClassTemplatePartialSpecializationDecl>(RD))
2713    return true;
2714  if (RD->getDescribedClassTemplate() &&
2715      !isa<ClassTemplateSpecializationDecl>(RD))
2716    return true;
2717  return false;
2718}
2719#endif
2720
2721/// getInjectedClassNameType - Return the unique reference to the
2722/// injected class name type for the specified templated declaration.
2723QualType ASTContext::getInjectedClassNameType(CXXRecordDecl *Decl,
2724                                              QualType TST) const {
2725  assert(NeedsInjectedClassNameType(Decl));
2726  if (Decl->TypeForDecl) {
2727    assert(isa<InjectedClassNameType>(Decl->TypeForDecl));
2728  } else if (CXXRecordDecl *PrevDecl = Decl->getPreviousDecl()) {
2729    assert(PrevDecl->TypeForDecl && "previous declaration has no type");
2730    Decl->TypeForDecl = PrevDecl->TypeForDecl;
2731    assert(isa<InjectedClassNameType>(Decl->TypeForDecl));
2732  } else {
2733    Type *newType =
2734      new (*this, TypeAlignment) InjectedClassNameType(Decl, TST);
2735    Decl->TypeForDecl = newType;
2736    Types.push_back(newType);
2737  }
2738  return QualType(Decl->TypeForDecl, 0);
2739}
2740
2741/// getTypeDeclType - Return the unique reference to the type for the
2742/// specified type declaration.
2743QualType ASTContext::getTypeDeclTypeSlow(const TypeDecl *Decl) const {
2744  assert(Decl && "Passed null for Decl param");
2745  assert(!Decl->TypeForDecl && "TypeForDecl present in slow case");
2746
2747  if (const TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Decl))
2748    return getTypedefType(Typedef);
2749
2750  assert(!isa<TemplateTypeParmDecl>(Decl) &&
2751         "Template type parameter types are always available.");
2752
2753  if (const RecordDecl *Record = dyn_cast<RecordDecl>(Decl)) {
2754    assert(!Record->getPreviousDecl() &&
2755           "struct/union has previous declaration");
2756    assert(!NeedsInjectedClassNameType(Record));
2757    return getRecordType(Record);
2758  } else if (const EnumDecl *Enum = dyn_cast<EnumDecl>(Decl)) {
2759    assert(!Enum->getPreviousDecl() &&
2760           "enum has previous declaration");
2761    return getEnumType(Enum);
2762  } else if (const UnresolvedUsingTypenameDecl *Using =
2763               dyn_cast<UnresolvedUsingTypenameDecl>(Decl)) {
2764    Type *newType = new (*this, TypeAlignment) UnresolvedUsingType(Using);
2765    Decl->TypeForDecl = newType;
2766    Types.push_back(newType);
2767  } else
2768    llvm_unreachable("TypeDecl without a type?");
2769
2770  return QualType(Decl->TypeForDecl, 0);
2771}
2772
2773/// getTypedefType - Return the unique reference to the type for the
2774/// specified typedef name decl.
2775QualType
2776ASTContext::getTypedefType(const TypedefNameDecl *Decl,
2777                           QualType Canonical) const {
2778  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
2779
2780  if (Canonical.isNull())
2781    Canonical = getCanonicalType(Decl->getUnderlyingType());
2782  TypedefType *newType = new(*this, TypeAlignment)
2783    TypedefType(Type::Typedef, Decl, Canonical);
2784  Decl->TypeForDecl = newType;
2785  Types.push_back(newType);
2786  return QualType(newType, 0);
2787}
2788
2789QualType ASTContext::getRecordType(const RecordDecl *Decl) const {
2790  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
2791
2792  if (const RecordDecl *PrevDecl = Decl->getPreviousDecl())
2793    if (PrevDecl->TypeForDecl)
2794      return QualType(Decl->TypeForDecl = PrevDecl->TypeForDecl, 0);
2795
2796  RecordType *newType = new (*this, TypeAlignment) RecordType(Decl);
2797  Decl->TypeForDecl = newType;
2798  Types.push_back(newType);
2799  return QualType(newType, 0);
2800}
2801
2802QualType ASTContext::getEnumType(const EnumDecl *Decl) const {
2803  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
2804
2805  if (const EnumDecl *PrevDecl = Decl->getPreviousDecl())
2806    if (PrevDecl->TypeForDecl)
2807      return QualType(Decl->TypeForDecl = PrevDecl->TypeForDecl, 0);
2808
2809  EnumType *newType = new (*this, TypeAlignment) EnumType(Decl);
2810  Decl->TypeForDecl = newType;
2811  Types.push_back(newType);
2812  return QualType(newType, 0);
2813}
2814
2815QualType ASTContext::getAttributedType(AttributedType::Kind attrKind,
2816                                       QualType modifiedType,
2817                                       QualType equivalentType) {
2818  llvm::FoldingSetNodeID id;
2819  AttributedType::Profile(id, attrKind, modifiedType, equivalentType);
2820
2821  void *insertPos = 0;
2822  AttributedType *type = AttributedTypes.FindNodeOrInsertPos(id, insertPos);
2823  if (type) return QualType(type, 0);
2824
2825  QualType canon = getCanonicalType(equivalentType);
2826  type = new (*this, TypeAlignment)
2827           AttributedType(canon, attrKind, modifiedType, equivalentType);
2828
2829  Types.push_back(type);
2830  AttributedTypes.InsertNode(type, insertPos);
2831
2832  return QualType(type, 0);
2833}
2834
2835
2836/// \brief Retrieve a substitution-result type.
2837QualType
2838ASTContext::getSubstTemplateTypeParmType(const TemplateTypeParmType *Parm,
2839                                         QualType Replacement) const {
2840  assert(Replacement.isCanonical()
2841         && "replacement types must always be canonical");
2842
2843  llvm::FoldingSetNodeID ID;
2844  SubstTemplateTypeParmType::Profile(ID, Parm, Replacement);
2845  void *InsertPos = 0;
2846  SubstTemplateTypeParmType *SubstParm
2847    = SubstTemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
2848
2849  if (!SubstParm) {
2850    SubstParm = new (*this, TypeAlignment)
2851      SubstTemplateTypeParmType(Parm, Replacement);
2852    Types.push_back(SubstParm);
2853    SubstTemplateTypeParmTypes.InsertNode(SubstParm, InsertPos);
2854  }
2855
2856  return QualType(SubstParm, 0);
2857}
2858
2859/// \brief Retrieve a
2860QualType ASTContext::getSubstTemplateTypeParmPackType(
2861                                          const TemplateTypeParmType *Parm,
2862                                              const TemplateArgument &ArgPack) {
2863#ifndef NDEBUG
2864  for (TemplateArgument::pack_iterator P = ArgPack.pack_begin(),
2865                                    PEnd = ArgPack.pack_end();
2866       P != PEnd; ++P) {
2867    assert(P->getKind() == TemplateArgument::Type &&"Pack contains a non-type");
2868    assert(P->getAsType().isCanonical() && "Pack contains non-canonical type");
2869  }
2870#endif
2871
2872  llvm::FoldingSetNodeID ID;
2873  SubstTemplateTypeParmPackType::Profile(ID, Parm, ArgPack);
2874  void *InsertPos = 0;
2875  if (SubstTemplateTypeParmPackType *SubstParm
2876        = SubstTemplateTypeParmPackTypes.FindNodeOrInsertPos(ID, InsertPos))
2877    return QualType(SubstParm, 0);
2878
2879  QualType Canon;
2880  if (!Parm->isCanonicalUnqualified()) {
2881    Canon = getCanonicalType(QualType(Parm, 0));
2882    Canon = getSubstTemplateTypeParmPackType(cast<TemplateTypeParmType>(Canon),
2883                                             ArgPack);
2884    SubstTemplateTypeParmPackTypes.FindNodeOrInsertPos(ID, InsertPos);
2885  }
2886
2887  SubstTemplateTypeParmPackType *SubstParm
2888    = new (*this, TypeAlignment) SubstTemplateTypeParmPackType(Parm, Canon,
2889                                                               ArgPack);
2890  Types.push_back(SubstParm);
2891  SubstTemplateTypeParmTypes.InsertNode(SubstParm, InsertPos);
2892  return QualType(SubstParm, 0);
2893}
2894
2895/// \brief Retrieve the template type parameter type for a template
2896/// parameter or parameter pack with the given depth, index, and (optionally)
2897/// name.
2898QualType ASTContext::getTemplateTypeParmType(unsigned Depth, unsigned Index,
2899                                             bool ParameterPack,
2900                                             TemplateTypeParmDecl *TTPDecl) const {
2901  llvm::FoldingSetNodeID ID;
2902  TemplateTypeParmType::Profile(ID, Depth, Index, ParameterPack, TTPDecl);
2903  void *InsertPos = 0;
2904  TemplateTypeParmType *TypeParm
2905    = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
2906
2907  if (TypeParm)
2908    return QualType(TypeParm, 0);
2909
2910  if (TTPDecl) {
2911    QualType Canon = getTemplateTypeParmType(Depth, Index, ParameterPack);
2912    TypeParm = new (*this, TypeAlignment) TemplateTypeParmType(TTPDecl, Canon);
2913
2914    TemplateTypeParmType *TypeCheck
2915      = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
2916    assert(!TypeCheck && "Template type parameter canonical type broken");
2917    (void)TypeCheck;
2918  } else
2919    TypeParm = new (*this, TypeAlignment)
2920      TemplateTypeParmType(Depth, Index, ParameterPack);
2921
2922  Types.push_back(TypeParm);
2923  TemplateTypeParmTypes.InsertNode(TypeParm, InsertPos);
2924
2925  return QualType(TypeParm, 0);
2926}
2927
2928TypeSourceInfo *
2929ASTContext::getTemplateSpecializationTypeInfo(TemplateName Name,
2930                                              SourceLocation NameLoc,
2931                                        const TemplateArgumentListInfo &Args,
2932                                              QualType Underlying) const {
2933  assert(!Name.getAsDependentTemplateName() &&
2934         "No dependent template names here!");
2935  QualType TST = getTemplateSpecializationType(Name, Args, Underlying);
2936
2937  TypeSourceInfo *DI = CreateTypeSourceInfo(TST);
2938  TemplateSpecializationTypeLoc TL
2939    = cast<TemplateSpecializationTypeLoc>(DI->getTypeLoc());
2940  TL.setTemplateKeywordLoc(SourceLocation());
2941  TL.setTemplateNameLoc(NameLoc);
2942  TL.setLAngleLoc(Args.getLAngleLoc());
2943  TL.setRAngleLoc(Args.getRAngleLoc());
2944  for (unsigned i = 0, e = TL.getNumArgs(); i != e; ++i)
2945    TL.setArgLocInfo(i, Args[i].getLocInfo());
2946  return DI;
2947}
2948
2949QualType
2950ASTContext::getTemplateSpecializationType(TemplateName Template,
2951                                          const TemplateArgumentListInfo &Args,
2952                                          QualType Underlying) const {
2953  assert(!Template.getAsDependentTemplateName() &&
2954         "No dependent template names here!");
2955
2956  unsigned NumArgs = Args.size();
2957
2958  SmallVector<TemplateArgument, 4> ArgVec;
2959  ArgVec.reserve(NumArgs);
2960  for (unsigned i = 0; i != NumArgs; ++i)
2961    ArgVec.push_back(Args[i].getArgument());
2962
2963  return getTemplateSpecializationType(Template, ArgVec.data(), NumArgs,
2964                                       Underlying);
2965}
2966
2967#ifndef NDEBUG
2968static bool hasAnyPackExpansions(const TemplateArgument *Args,
2969                                 unsigned NumArgs) {
2970  for (unsigned I = 0; I != NumArgs; ++I)
2971    if (Args[I].isPackExpansion())
2972      return true;
2973
2974  return true;
2975}
2976#endif
2977
2978QualType
2979ASTContext::getTemplateSpecializationType(TemplateName Template,
2980                                          const TemplateArgument *Args,
2981                                          unsigned NumArgs,
2982                                          QualType Underlying) const {
2983  assert(!Template.getAsDependentTemplateName() &&
2984         "No dependent template names here!");
2985  // Look through qualified template names.
2986  if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName())
2987    Template = TemplateName(QTN->getTemplateDecl());
2988
2989  bool IsTypeAlias =
2990    Template.getAsTemplateDecl() &&
2991    isa<TypeAliasTemplateDecl>(Template.getAsTemplateDecl());
2992  QualType CanonType;
2993  if (!Underlying.isNull())
2994    CanonType = getCanonicalType(Underlying);
2995  else {
2996    // We can get here with an alias template when the specialization contains
2997    // a pack expansion that does not match up with a parameter pack.
2998    assert((!IsTypeAlias || hasAnyPackExpansions(Args, NumArgs)) &&
2999           "Caller must compute aliased type");
3000    IsTypeAlias = false;
3001    CanonType = getCanonicalTemplateSpecializationType(Template, Args,
3002                                                       NumArgs);
3003  }
3004
3005  // Allocate the (non-canonical) template specialization type, but don't
3006  // try to unique it: these types typically have location information that
3007  // we don't unique and don't want to lose.
3008  void *Mem = Allocate(sizeof(TemplateSpecializationType) +
3009                       sizeof(TemplateArgument) * NumArgs +
3010                       (IsTypeAlias? sizeof(QualType) : 0),
3011                       TypeAlignment);
3012  TemplateSpecializationType *Spec
3013    = new (Mem) TemplateSpecializationType(Template, Args, NumArgs, CanonType,
3014                                         IsTypeAlias ? Underlying : QualType());
3015
3016  Types.push_back(Spec);
3017  return QualType(Spec, 0);
3018}
3019
3020QualType
3021ASTContext::getCanonicalTemplateSpecializationType(TemplateName Template,
3022                                                   const TemplateArgument *Args,
3023                                                   unsigned NumArgs) const {
3024  assert(!Template.getAsDependentTemplateName() &&
3025         "No dependent template names here!");
3026
3027  // Look through qualified template names.
3028  if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName())
3029    Template = TemplateName(QTN->getTemplateDecl());
3030
3031  // Build the canonical template specialization type.
3032  TemplateName CanonTemplate = getCanonicalTemplateName(Template);
3033  SmallVector<TemplateArgument, 4> CanonArgs;
3034  CanonArgs.reserve(NumArgs);
3035  for (unsigned I = 0; I != NumArgs; ++I)
3036    CanonArgs.push_back(getCanonicalTemplateArgument(Args[I]));
3037
3038  // Determine whether this canonical template specialization type already
3039  // exists.
3040  llvm::FoldingSetNodeID ID;
3041  TemplateSpecializationType::Profile(ID, CanonTemplate,
3042                                      CanonArgs.data(), NumArgs, *this);
3043
3044  void *InsertPos = 0;
3045  TemplateSpecializationType *Spec
3046    = TemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
3047
3048  if (!Spec) {
3049    // Allocate a new canonical template specialization type.
3050    void *Mem = Allocate((sizeof(TemplateSpecializationType) +
3051                          sizeof(TemplateArgument) * NumArgs),
3052                         TypeAlignment);
3053    Spec = new (Mem) TemplateSpecializationType(CanonTemplate,
3054                                                CanonArgs.data(), NumArgs,
3055                                                QualType(), QualType());
3056    Types.push_back(Spec);
3057    TemplateSpecializationTypes.InsertNode(Spec, InsertPos);
3058  }
3059
3060  assert(Spec->isDependentType() &&
3061         "Non-dependent template-id type must have a canonical type");
3062  return QualType(Spec, 0);
3063}
3064
3065QualType
3066ASTContext::getElaboratedType(ElaboratedTypeKeyword Keyword,
3067                              NestedNameSpecifier *NNS,
3068                              QualType NamedType) const {
3069  llvm::FoldingSetNodeID ID;
3070  ElaboratedType::Profile(ID, Keyword, NNS, NamedType);
3071
3072  void *InsertPos = 0;
3073  ElaboratedType *T = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
3074  if (T)
3075    return QualType(T, 0);
3076
3077  QualType Canon = NamedType;
3078  if (!Canon.isCanonical()) {
3079    Canon = getCanonicalType(NamedType);
3080    ElaboratedType *CheckT = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
3081    assert(!CheckT && "Elaborated canonical type broken");
3082    (void)CheckT;
3083  }
3084
3085  T = new (*this) ElaboratedType(Keyword, NNS, NamedType, Canon);
3086  Types.push_back(T);
3087  ElaboratedTypes.InsertNode(T, InsertPos);
3088  return QualType(T, 0);
3089}
3090
3091QualType
3092ASTContext::getParenType(QualType InnerType) const {
3093  llvm::FoldingSetNodeID ID;
3094  ParenType::Profile(ID, InnerType);
3095
3096  void *InsertPos = 0;
3097  ParenType *T = ParenTypes.FindNodeOrInsertPos(ID, InsertPos);
3098  if (T)
3099    return QualType(T, 0);
3100
3101  QualType Canon = InnerType;
3102  if (!Canon.isCanonical()) {
3103    Canon = getCanonicalType(InnerType);
3104    ParenType *CheckT = ParenTypes.FindNodeOrInsertPos(ID, InsertPos);
3105    assert(!CheckT && "Paren canonical type broken");
3106    (void)CheckT;
3107  }
3108
3109  T = new (*this) ParenType(InnerType, Canon);
3110  Types.push_back(T);
3111  ParenTypes.InsertNode(T, InsertPos);
3112  return QualType(T, 0);
3113}
3114
3115QualType ASTContext::getDependentNameType(ElaboratedTypeKeyword Keyword,
3116                                          NestedNameSpecifier *NNS,
3117                                          const IdentifierInfo *Name,
3118                                          QualType Canon) const {
3119  assert(NNS->isDependent() && "nested-name-specifier must be dependent");
3120
3121  if (Canon.isNull()) {
3122    NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
3123    ElaboratedTypeKeyword CanonKeyword = Keyword;
3124    if (Keyword == ETK_None)
3125      CanonKeyword = ETK_Typename;
3126
3127    if (CanonNNS != NNS || CanonKeyword != Keyword)
3128      Canon = getDependentNameType(CanonKeyword, CanonNNS, Name);
3129  }
3130
3131  llvm::FoldingSetNodeID ID;
3132  DependentNameType::Profile(ID, Keyword, NNS, Name);
3133
3134  void *InsertPos = 0;
3135  DependentNameType *T
3136    = DependentNameTypes.FindNodeOrInsertPos(ID, InsertPos);
3137  if (T)
3138    return QualType(T, 0);
3139
3140  T = new (*this) DependentNameType(Keyword, NNS, Name, Canon);
3141  Types.push_back(T);
3142  DependentNameTypes.InsertNode(T, InsertPos);
3143  return QualType(T, 0);
3144}
3145
3146QualType
3147ASTContext::getDependentTemplateSpecializationType(
3148                                 ElaboratedTypeKeyword Keyword,
3149                                 NestedNameSpecifier *NNS,
3150                                 const IdentifierInfo *Name,
3151                                 const TemplateArgumentListInfo &Args) const {
3152  // TODO: avoid this copy
3153  SmallVector<TemplateArgument, 16> ArgCopy;
3154  for (unsigned I = 0, E = Args.size(); I != E; ++I)
3155    ArgCopy.push_back(Args[I].getArgument());
3156  return getDependentTemplateSpecializationType(Keyword, NNS, Name,
3157                                                ArgCopy.size(),
3158                                                ArgCopy.data());
3159}
3160
3161QualType
3162ASTContext::getDependentTemplateSpecializationType(
3163                                 ElaboratedTypeKeyword Keyword,
3164                                 NestedNameSpecifier *NNS,
3165                                 const IdentifierInfo *Name,
3166                                 unsigned NumArgs,
3167                                 const TemplateArgument *Args) const {
3168  assert((!NNS || NNS->isDependent()) &&
3169         "nested-name-specifier must be dependent");
3170
3171  llvm::FoldingSetNodeID ID;
3172  DependentTemplateSpecializationType::Profile(ID, *this, Keyword, NNS,
3173                                               Name, NumArgs, Args);
3174
3175  void *InsertPos = 0;
3176  DependentTemplateSpecializationType *T
3177    = DependentTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
3178  if (T)
3179    return QualType(T, 0);
3180
3181  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
3182
3183  ElaboratedTypeKeyword CanonKeyword = Keyword;
3184  if (Keyword == ETK_None) CanonKeyword = ETK_Typename;
3185
3186  bool AnyNonCanonArgs = false;
3187  SmallVector<TemplateArgument, 16> CanonArgs(NumArgs);
3188  for (unsigned I = 0; I != NumArgs; ++I) {
3189    CanonArgs[I] = getCanonicalTemplateArgument(Args[I]);
3190    if (!CanonArgs[I].structurallyEquals(Args[I]))
3191      AnyNonCanonArgs = true;
3192  }
3193
3194  QualType Canon;
3195  if (AnyNonCanonArgs || CanonNNS != NNS || CanonKeyword != Keyword) {
3196    Canon = getDependentTemplateSpecializationType(CanonKeyword, CanonNNS,
3197                                                   Name, NumArgs,
3198                                                   CanonArgs.data());
3199
3200    // Find the insert position again.
3201    DependentTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
3202  }
3203
3204  void *Mem = Allocate((sizeof(DependentTemplateSpecializationType) +
3205                        sizeof(TemplateArgument) * NumArgs),
3206                       TypeAlignment);
3207  T = new (Mem) DependentTemplateSpecializationType(Keyword, NNS,
3208                                                    Name, NumArgs, Args, Canon);
3209  Types.push_back(T);
3210  DependentTemplateSpecializationTypes.InsertNode(T, InsertPos);
3211  return QualType(T, 0);
3212}
3213
3214QualType ASTContext::getPackExpansionType(QualType Pattern,
3215                                      llvm::Optional<unsigned> NumExpansions) {
3216  llvm::FoldingSetNodeID ID;
3217  PackExpansionType::Profile(ID, Pattern, NumExpansions);
3218
3219  assert(Pattern->containsUnexpandedParameterPack() &&
3220         "Pack expansions must expand one or more parameter packs");
3221  void *InsertPos = 0;
3222  PackExpansionType *T
3223    = PackExpansionTypes.FindNodeOrInsertPos(ID, InsertPos);
3224  if (T)
3225    return QualType(T, 0);
3226
3227  QualType Canon;
3228  if (!Pattern.isCanonical()) {
3229    Canon = getCanonicalType(Pattern);
3230    // The canonical type might not contain an unexpanded parameter pack, if it
3231    // contains an alias template specialization which ignores one of its
3232    // parameters.
3233    if (Canon->containsUnexpandedParameterPack()) {
3234      Canon = getPackExpansionType(getCanonicalType(Pattern), NumExpansions);
3235
3236      // Find the insert position again, in case we inserted an element into
3237      // PackExpansionTypes and invalidated our insert position.
3238      PackExpansionTypes.FindNodeOrInsertPos(ID, InsertPos);
3239    }
3240  }
3241
3242  T = new (*this) PackExpansionType(Pattern, Canon, NumExpansions);
3243  Types.push_back(T);
3244  PackExpansionTypes.InsertNode(T, InsertPos);
3245  return QualType(T, 0);
3246}
3247
3248/// CmpProtocolNames - Comparison predicate for sorting protocols
3249/// alphabetically.
3250static bool CmpProtocolNames(const ObjCProtocolDecl *LHS,
3251                            const ObjCProtocolDecl *RHS) {
3252  return LHS->getDeclName() < RHS->getDeclName();
3253}
3254
3255static bool areSortedAndUniqued(ObjCProtocolDecl * const *Protocols,
3256                                unsigned NumProtocols) {
3257  if (NumProtocols == 0) return true;
3258
3259  if (Protocols[0]->getCanonicalDecl() != Protocols[0])
3260    return false;
3261
3262  for (unsigned i = 1; i != NumProtocols; ++i)
3263    if (!CmpProtocolNames(Protocols[i-1], Protocols[i]) ||
3264        Protocols[i]->getCanonicalDecl() != Protocols[i])
3265      return false;
3266  return true;
3267}
3268
3269static void SortAndUniqueProtocols(ObjCProtocolDecl **Protocols,
3270                                   unsigned &NumProtocols) {
3271  ObjCProtocolDecl **ProtocolsEnd = Protocols+NumProtocols;
3272
3273  // Sort protocols, keyed by name.
3274  std::sort(Protocols, Protocols+NumProtocols, CmpProtocolNames);
3275
3276  // Canonicalize.
3277  for (unsigned I = 0, N = NumProtocols; I != N; ++I)
3278    Protocols[I] = Protocols[I]->getCanonicalDecl();
3279
3280  // Remove duplicates.
3281  ProtocolsEnd = std::unique(Protocols, ProtocolsEnd);
3282  NumProtocols = ProtocolsEnd-Protocols;
3283}
3284
3285QualType ASTContext::getObjCObjectType(QualType BaseType,
3286                                       ObjCProtocolDecl * const *Protocols,
3287                                       unsigned NumProtocols) const {
3288  // If the base type is an interface and there aren't any protocols
3289  // to add, then the interface type will do just fine.
3290  if (!NumProtocols && isa<ObjCInterfaceType>(BaseType))
3291    return BaseType;
3292
3293  // Look in the folding set for an existing type.
3294  llvm::FoldingSetNodeID ID;
3295  ObjCObjectTypeImpl::Profile(ID, BaseType, Protocols, NumProtocols);
3296  void *InsertPos = 0;
3297  if (ObjCObjectType *QT = ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos))
3298    return QualType(QT, 0);
3299
3300  // Build the canonical type, which has the canonical base type and
3301  // a sorted-and-uniqued list of protocols.
3302  QualType Canonical;
3303  bool ProtocolsSorted = areSortedAndUniqued(Protocols, NumProtocols);
3304  if (!ProtocolsSorted || !BaseType.isCanonical()) {
3305    if (!ProtocolsSorted) {
3306      SmallVector<ObjCProtocolDecl*, 8> Sorted(Protocols,
3307                                                     Protocols + NumProtocols);
3308      unsigned UniqueCount = NumProtocols;
3309
3310      SortAndUniqueProtocols(&Sorted[0], UniqueCount);
3311      Canonical = getObjCObjectType(getCanonicalType(BaseType),
3312                                    &Sorted[0], UniqueCount);
3313    } else {
3314      Canonical = getObjCObjectType(getCanonicalType(BaseType),
3315                                    Protocols, NumProtocols);
3316    }
3317
3318    // Regenerate InsertPos.
3319    ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos);
3320  }
3321
3322  unsigned Size = sizeof(ObjCObjectTypeImpl);
3323  Size += NumProtocols * sizeof(ObjCProtocolDecl *);
3324  void *Mem = Allocate(Size, TypeAlignment);
3325  ObjCObjectTypeImpl *T =
3326    new (Mem) ObjCObjectTypeImpl(Canonical, BaseType, Protocols, NumProtocols);
3327
3328  Types.push_back(T);
3329  ObjCObjectTypes.InsertNode(T, InsertPos);
3330  return QualType(T, 0);
3331}
3332
3333/// getObjCObjectPointerType - Return a ObjCObjectPointerType type for
3334/// the given object type.
3335QualType ASTContext::getObjCObjectPointerType(QualType ObjectT) const {
3336  llvm::FoldingSetNodeID ID;
3337  ObjCObjectPointerType::Profile(ID, ObjectT);
3338
3339  void *InsertPos = 0;
3340  if (ObjCObjectPointerType *QT =
3341              ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
3342    return QualType(QT, 0);
3343
3344  // Find the canonical object type.
3345  QualType Canonical;
3346  if (!ObjectT.isCanonical()) {
3347    Canonical = getObjCObjectPointerType(getCanonicalType(ObjectT));
3348
3349    // Regenerate InsertPos.
3350    ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
3351  }
3352
3353  // No match.
3354  void *Mem = Allocate(sizeof(ObjCObjectPointerType), TypeAlignment);
3355  ObjCObjectPointerType *QType =
3356    new (Mem) ObjCObjectPointerType(Canonical, ObjectT);
3357
3358  Types.push_back(QType);
3359  ObjCObjectPointerTypes.InsertNode(QType, InsertPos);
3360  return QualType(QType, 0);
3361}
3362
3363/// getObjCInterfaceType - Return the unique reference to the type for the
3364/// specified ObjC interface decl. The list of protocols is optional.
3365QualType ASTContext::getObjCInterfaceType(const ObjCInterfaceDecl *Decl,
3366                                          ObjCInterfaceDecl *PrevDecl) const {
3367  if (Decl->TypeForDecl)
3368    return QualType(Decl->TypeForDecl, 0);
3369
3370  if (PrevDecl) {
3371    assert(PrevDecl->TypeForDecl && "previous decl has no TypeForDecl");
3372    Decl->TypeForDecl = PrevDecl->TypeForDecl;
3373    return QualType(PrevDecl->TypeForDecl, 0);
3374  }
3375
3376  // Prefer the definition, if there is one.
3377  if (const ObjCInterfaceDecl *Def = Decl->getDefinition())
3378    Decl = Def;
3379
3380  void *Mem = Allocate(sizeof(ObjCInterfaceType), TypeAlignment);
3381  ObjCInterfaceType *T = new (Mem) ObjCInterfaceType(Decl);
3382  Decl->TypeForDecl = T;
3383  Types.push_back(T);
3384  return QualType(T, 0);
3385}
3386
3387/// getTypeOfExprType - Unlike many "get<Type>" functions, we can't unique
3388/// TypeOfExprType AST's (since expression's are never shared). For example,
3389/// multiple declarations that refer to "typeof(x)" all contain different
3390/// DeclRefExpr's. This doesn't effect the type checker, since it operates
3391/// on canonical type's (which are always unique).
3392QualType ASTContext::getTypeOfExprType(Expr *tofExpr) const {
3393  TypeOfExprType *toe;
3394  if (tofExpr->isTypeDependent()) {
3395    llvm::FoldingSetNodeID ID;
3396    DependentTypeOfExprType::Profile(ID, *this, tofExpr);
3397
3398    void *InsertPos = 0;
3399    DependentTypeOfExprType *Canon
3400      = DependentTypeOfExprTypes.FindNodeOrInsertPos(ID, InsertPos);
3401    if (Canon) {
3402      // We already have a "canonical" version of an identical, dependent
3403      // typeof(expr) type. Use that as our canonical type.
3404      toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr,
3405                                          QualType((TypeOfExprType*)Canon, 0));
3406    } else {
3407      // Build a new, canonical typeof(expr) type.
3408      Canon
3409        = new (*this, TypeAlignment) DependentTypeOfExprType(*this, tofExpr);
3410      DependentTypeOfExprTypes.InsertNode(Canon, InsertPos);
3411      toe = Canon;
3412    }
3413  } else {
3414    QualType Canonical = getCanonicalType(tofExpr->getType());
3415    toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr, Canonical);
3416  }
3417  Types.push_back(toe);
3418  return QualType(toe, 0);
3419}
3420
3421/// getTypeOfType -  Unlike many "get<Type>" functions, we don't unique
3422/// TypeOfType AST's. The only motivation to unique these nodes would be
3423/// memory savings. Since typeof(t) is fairly uncommon, space shouldn't be
3424/// an issue. This doesn't effect the type checker, since it operates
3425/// on canonical type's (which are always unique).
3426QualType ASTContext::getTypeOfType(QualType tofType) const {
3427  QualType Canonical = getCanonicalType(tofType);
3428  TypeOfType *tot = new (*this, TypeAlignment) TypeOfType(tofType, Canonical);
3429  Types.push_back(tot);
3430  return QualType(tot, 0);
3431}
3432
3433
3434/// getDecltypeType -  Unlike many "get<Type>" functions, we don't unique
3435/// DecltypeType AST's. The only motivation to unique these nodes would be
3436/// memory savings. Since decltype(t) is fairly uncommon, space shouldn't be
3437/// an issue. This doesn't effect the type checker, since it operates
3438/// on canonical types (which are always unique).
3439QualType ASTContext::getDecltypeType(Expr *e, QualType UnderlyingType) const {
3440  DecltypeType *dt;
3441
3442  // C++0x [temp.type]p2:
3443  //   If an expression e involves a template parameter, decltype(e) denotes a
3444  //   unique dependent type. Two such decltype-specifiers refer to the same
3445  //   type only if their expressions are equivalent (14.5.6.1).
3446  if (e->isInstantiationDependent()) {
3447    llvm::FoldingSetNodeID ID;
3448    DependentDecltypeType::Profile(ID, *this, e);
3449
3450    void *InsertPos = 0;
3451    DependentDecltypeType *Canon
3452      = DependentDecltypeTypes.FindNodeOrInsertPos(ID, InsertPos);
3453    if (Canon) {
3454      // We already have a "canonical" version of an equivalent, dependent
3455      // decltype type. Use that as our canonical type.
3456      dt = new (*this, TypeAlignment) DecltypeType(e, UnderlyingType,
3457                                       QualType((DecltypeType*)Canon, 0));
3458    } else {
3459      // Build a new, canonical typeof(expr) type.
3460      Canon = new (*this, TypeAlignment) DependentDecltypeType(*this, e);
3461      DependentDecltypeTypes.InsertNode(Canon, InsertPos);
3462      dt = Canon;
3463    }
3464  } else {
3465    dt = new (*this, TypeAlignment) DecltypeType(e, UnderlyingType,
3466                                      getCanonicalType(UnderlyingType));
3467  }
3468  Types.push_back(dt);
3469  return QualType(dt, 0);
3470}
3471
3472/// getUnaryTransformationType - We don't unique these, since the memory
3473/// savings are minimal and these are rare.
3474QualType ASTContext::getUnaryTransformType(QualType BaseType,
3475                                           QualType UnderlyingType,
3476                                           UnaryTransformType::UTTKind Kind)
3477    const {
3478  UnaryTransformType *Ty =
3479    new (*this, TypeAlignment) UnaryTransformType (BaseType, UnderlyingType,
3480                                                   Kind,
3481                                 UnderlyingType->isDependentType() ?
3482                                 QualType() : getCanonicalType(UnderlyingType));
3483  Types.push_back(Ty);
3484  return QualType(Ty, 0);
3485}
3486
3487/// getAutoType - We only unique auto types after they've been deduced.
3488QualType ASTContext::getAutoType(QualType DeducedType) const {
3489  void *InsertPos = 0;
3490  if (!DeducedType.isNull()) {
3491    // Look in the folding set for an existing type.
3492    llvm::FoldingSetNodeID ID;
3493    AutoType::Profile(ID, DeducedType);
3494    if (AutoType *AT = AutoTypes.FindNodeOrInsertPos(ID, InsertPos))
3495      return QualType(AT, 0);
3496  }
3497
3498  AutoType *AT = new (*this, TypeAlignment) AutoType(DeducedType);
3499  Types.push_back(AT);
3500  if (InsertPos)
3501    AutoTypes.InsertNode(AT, InsertPos);
3502  return QualType(AT, 0);
3503}
3504
3505/// getAtomicType - Return the uniqued reference to the atomic type for
3506/// the given value type.
3507QualType ASTContext::getAtomicType(QualType T) const {
3508  // Unique pointers, to guarantee there is only one pointer of a particular
3509  // structure.
3510  llvm::FoldingSetNodeID ID;
3511  AtomicType::Profile(ID, T);
3512
3513  void *InsertPos = 0;
3514  if (AtomicType *AT = AtomicTypes.FindNodeOrInsertPos(ID, InsertPos))
3515    return QualType(AT, 0);
3516
3517  // If the atomic value type isn't canonical, this won't be a canonical type
3518  // either, so fill in the canonical type field.
3519  QualType Canonical;
3520  if (!T.isCanonical()) {
3521    Canonical = getAtomicType(getCanonicalType(T));
3522
3523    // Get the new insert position for the node we care about.
3524    AtomicType *NewIP = AtomicTypes.FindNodeOrInsertPos(ID, InsertPos);
3525    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
3526  }
3527  AtomicType *New = new (*this, TypeAlignment) AtomicType(T, Canonical);
3528  Types.push_back(New);
3529  AtomicTypes.InsertNode(New, InsertPos);
3530  return QualType(New, 0);
3531}
3532
3533/// getAutoDeductType - Get type pattern for deducing against 'auto'.
3534QualType ASTContext::getAutoDeductType() const {
3535  if (AutoDeductTy.isNull())
3536    AutoDeductTy = getAutoType(QualType());
3537  assert(!AutoDeductTy.isNull() && "can't build 'auto' pattern");
3538  return AutoDeductTy;
3539}
3540
3541/// getAutoRRefDeductType - Get type pattern for deducing against 'auto &&'.
3542QualType ASTContext::getAutoRRefDeductType() const {
3543  if (AutoRRefDeductTy.isNull())
3544    AutoRRefDeductTy = getRValueReferenceType(getAutoDeductType());
3545  assert(!AutoRRefDeductTy.isNull() && "can't build 'auto &&' pattern");
3546  return AutoRRefDeductTy;
3547}
3548
3549/// getTagDeclType - Return the unique reference to the type for the
3550/// specified TagDecl (struct/union/class/enum) decl.
3551QualType ASTContext::getTagDeclType(const TagDecl *Decl) const {
3552  assert (Decl);
3553  // FIXME: What is the design on getTagDeclType when it requires casting
3554  // away const?  mutable?
3555  return getTypeDeclType(const_cast<TagDecl*>(Decl));
3556}
3557
3558/// getSizeType - Return the unique type for "size_t" (C99 7.17), the result
3559/// of the sizeof operator (C99 6.5.3.4p4). The value is target dependent and
3560/// needs to agree with the definition in <stddef.h>.
3561CanQualType ASTContext::getSizeType() const {
3562  return getFromTargetType(Target->getSizeType());
3563}
3564
3565/// getIntMaxType - Return the unique type for "intmax_t" (C99 7.18.1.5).
3566CanQualType ASTContext::getIntMaxType() const {
3567  return getFromTargetType(Target->getIntMaxType());
3568}
3569
3570/// getUIntMaxType - Return the unique type for "uintmax_t" (C99 7.18.1.5).
3571CanQualType ASTContext::getUIntMaxType() const {
3572  return getFromTargetType(Target->getUIntMaxType());
3573}
3574
3575/// getSignedWCharType - Return the type of "signed wchar_t".
3576/// Used when in C++, as a GCC extension.
3577QualType ASTContext::getSignedWCharType() const {
3578  // FIXME: derive from "Target" ?
3579  return WCharTy;
3580}
3581
3582/// getUnsignedWCharType - Return the type of "unsigned wchar_t".
3583/// Used when in C++, as a GCC extension.
3584QualType ASTContext::getUnsignedWCharType() const {
3585  // FIXME: derive from "Target" ?
3586  return UnsignedIntTy;
3587}
3588
3589/// getPointerDiffType - Return the unique type for "ptrdiff_t" (C99 7.17)
3590/// defined in <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9).
3591QualType ASTContext::getPointerDiffType() const {
3592  return getFromTargetType(Target->getPtrDiffType(0));
3593}
3594
3595/// \brief Return the unique type for "pid_t" defined in
3596/// <sys/types.h>. We need this to compute the correct type for vfork().
3597QualType ASTContext::getProcessIDType() const {
3598  return getFromTargetType(Target->getProcessIDType());
3599}
3600
3601//===----------------------------------------------------------------------===//
3602//                              Type Operators
3603//===----------------------------------------------------------------------===//
3604
3605CanQualType ASTContext::getCanonicalParamType(QualType T) const {
3606  // Push qualifiers into arrays, and then discard any remaining
3607  // qualifiers.
3608  T = getCanonicalType(T);
3609  T = getVariableArrayDecayedType(T);
3610  const Type *Ty = T.getTypePtr();
3611  QualType Result;
3612  if (isa<ArrayType>(Ty)) {
3613    Result = getArrayDecayedType(QualType(Ty,0));
3614  } else if (isa<FunctionType>(Ty)) {
3615    Result = getPointerType(QualType(Ty, 0));
3616  } else {
3617    Result = QualType(Ty, 0);
3618  }
3619
3620  return CanQualType::CreateUnsafe(Result);
3621}
3622
3623QualType ASTContext::getUnqualifiedArrayType(QualType type,
3624                                             Qualifiers &quals) {
3625  SplitQualType splitType = type.getSplitUnqualifiedType();
3626
3627  // FIXME: getSplitUnqualifiedType() actually walks all the way to
3628  // the unqualified desugared type and then drops it on the floor.
3629  // We then have to strip that sugar back off with
3630  // getUnqualifiedDesugaredType(), which is silly.
3631  const ArrayType *AT =
3632    dyn_cast<ArrayType>(splitType.Ty->getUnqualifiedDesugaredType());
3633
3634  // If we don't have an array, just use the results in splitType.
3635  if (!AT) {
3636    quals = splitType.Quals;
3637    return QualType(splitType.Ty, 0);
3638  }
3639
3640  // Otherwise, recurse on the array's element type.
3641  QualType elementType = AT->getElementType();
3642  QualType unqualElementType = getUnqualifiedArrayType(elementType, quals);
3643
3644  // If that didn't change the element type, AT has no qualifiers, so we
3645  // can just use the results in splitType.
3646  if (elementType == unqualElementType) {
3647    assert(quals.empty()); // from the recursive call
3648    quals = splitType.Quals;
3649    return QualType(splitType.Ty, 0);
3650  }
3651
3652  // Otherwise, add in the qualifiers from the outermost type, then
3653  // build the type back up.
3654  quals.addConsistentQualifiers(splitType.Quals);
3655
3656  if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) {
3657    return getConstantArrayType(unqualElementType, CAT->getSize(),
3658                                CAT->getSizeModifier(), 0);
3659  }
3660
3661  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) {
3662    return getIncompleteArrayType(unqualElementType, IAT->getSizeModifier(), 0);
3663  }
3664
3665  if (const VariableArrayType *VAT = dyn_cast<VariableArrayType>(AT)) {
3666    return getVariableArrayType(unqualElementType,
3667                                VAT->getSizeExpr(),
3668                                VAT->getSizeModifier(),
3669                                VAT->getIndexTypeCVRQualifiers(),
3670                                VAT->getBracketsRange());
3671  }
3672
3673  const DependentSizedArrayType *DSAT = cast<DependentSizedArrayType>(AT);
3674  return getDependentSizedArrayType(unqualElementType, DSAT->getSizeExpr(),
3675                                    DSAT->getSizeModifier(), 0,
3676                                    SourceRange());
3677}
3678
3679/// UnwrapSimilarPointerTypes - If T1 and T2 are pointer types  that
3680/// may be similar (C++ 4.4), replaces T1 and T2 with the type that
3681/// they point to and return true. If T1 and T2 aren't pointer types
3682/// or pointer-to-member types, or if they are not similar at this
3683/// level, returns false and leaves T1 and T2 unchanged. Top-level
3684/// qualifiers on T1 and T2 are ignored. This function will typically
3685/// be called in a loop that successively "unwraps" pointer and
3686/// pointer-to-member types to compare them at each level.
3687bool ASTContext::UnwrapSimilarPointerTypes(QualType &T1, QualType &T2) {
3688  const PointerType *T1PtrType = T1->getAs<PointerType>(),
3689                    *T2PtrType = T2->getAs<PointerType>();
3690  if (T1PtrType && T2PtrType) {
3691    T1 = T1PtrType->getPointeeType();
3692    T2 = T2PtrType->getPointeeType();
3693    return true;
3694  }
3695
3696  const MemberPointerType *T1MPType = T1->getAs<MemberPointerType>(),
3697                          *T2MPType = T2->getAs<MemberPointerType>();
3698  if (T1MPType && T2MPType &&
3699      hasSameUnqualifiedType(QualType(T1MPType->getClass(), 0),
3700                             QualType(T2MPType->getClass(), 0))) {
3701    T1 = T1MPType->getPointeeType();
3702    T2 = T2MPType->getPointeeType();
3703    return true;
3704  }
3705
3706  if (getLangOpts().ObjC1) {
3707    const ObjCObjectPointerType *T1OPType = T1->getAs<ObjCObjectPointerType>(),
3708                                *T2OPType = T2->getAs<ObjCObjectPointerType>();
3709    if (T1OPType && T2OPType) {
3710      T1 = T1OPType->getPointeeType();
3711      T2 = T2OPType->getPointeeType();
3712      return true;
3713    }
3714  }
3715
3716  // FIXME: Block pointers, too?
3717
3718  return false;
3719}
3720
3721DeclarationNameInfo
3722ASTContext::getNameForTemplate(TemplateName Name,
3723                               SourceLocation NameLoc) const {
3724  switch (Name.getKind()) {
3725  case TemplateName::QualifiedTemplate:
3726  case TemplateName::Template:
3727    // DNInfo work in progress: CHECKME: what about DNLoc?
3728    return DeclarationNameInfo(Name.getAsTemplateDecl()->getDeclName(),
3729                               NameLoc);
3730
3731  case TemplateName::OverloadedTemplate: {
3732    OverloadedTemplateStorage *Storage = Name.getAsOverloadedTemplate();
3733    // DNInfo work in progress: CHECKME: what about DNLoc?
3734    return DeclarationNameInfo((*Storage->begin())->getDeclName(), NameLoc);
3735  }
3736
3737  case TemplateName::DependentTemplate: {
3738    DependentTemplateName *DTN = Name.getAsDependentTemplateName();
3739    DeclarationName DName;
3740    if (DTN->isIdentifier()) {
3741      DName = DeclarationNames.getIdentifier(DTN->getIdentifier());
3742      return DeclarationNameInfo(DName, NameLoc);
3743    } else {
3744      DName = DeclarationNames.getCXXOperatorName(DTN->getOperator());
3745      // DNInfo work in progress: FIXME: source locations?
3746      DeclarationNameLoc DNLoc;
3747      DNLoc.CXXOperatorName.BeginOpNameLoc = SourceLocation().getRawEncoding();
3748      DNLoc.CXXOperatorName.EndOpNameLoc = SourceLocation().getRawEncoding();
3749      return DeclarationNameInfo(DName, NameLoc, DNLoc);
3750    }
3751  }
3752
3753  case TemplateName::SubstTemplateTemplateParm: {
3754    SubstTemplateTemplateParmStorage *subst
3755      = Name.getAsSubstTemplateTemplateParm();
3756    return DeclarationNameInfo(subst->getParameter()->getDeclName(),
3757                               NameLoc);
3758  }
3759
3760  case TemplateName::SubstTemplateTemplateParmPack: {
3761    SubstTemplateTemplateParmPackStorage *subst
3762      = Name.getAsSubstTemplateTemplateParmPack();
3763    return DeclarationNameInfo(subst->getParameterPack()->getDeclName(),
3764                               NameLoc);
3765  }
3766  }
3767
3768  llvm_unreachable("bad template name kind!");
3769}
3770
3771TemplateName ASTContext::getCanonicalTemplateName(TemplateName Name) const {
3772  switch (Name.getKind()) {
3773  case TemplateName::QualifiedTemplate:
3774  case TemplateName::Template: {
3775    TemplateDecl *Template = Name.getAsTemplateDecl();
3776    if (TemplateTemplateParmDecl *TTP
3777          = dyn_cast<TemplateTemplateParmDecl>(Template))
3778      Template = getCanonicalTemplateTemplateParmDecl(TTP);
3779
3780    // The canonical template name is the canonical template declaration.
3781    return TemplateName(cast<TemplateDecl>(Template->getCanonicalDecl()));
3782  }
3783
3784  case TemplateName::OverloadedTemplate:
3785    llvm_unreachable("cannot canonicalize overloaded template");
3786
3787  case TemplateName::DependentTemplate: {
3788    DependentTemplateName *DTN = Name.getAsDependentTemplateName();
3789    assert(DTN && "Non-dependent template names must refer to template decls.");
3790    return DTN->CanonicalTemplateName;
3791  }
3792
3793  case TemplateName::SubstTemplateTemplateParm: {
3794    SubstTemplateTemplateParmStorage *subst
3795      = Name.getAsSubstTemplateTemplateParm();
3796    return getCanonicalTemplateName(subst->getReplacement());
3797  }
3798
3799  case TemplateName::SubstTemplateTemplateParmPack: {
3800    SubstTemplateTemplateParmPackStorage *subst
3801                                  = Name.getAsSubstTemplateTemplateParmPack();
3802    TemplateTemplateParmDecl *canonParameter
3803      = getCanonicalTemplateTemplateParmDecl(subst->getParameterPack());
3804    TemplateArgument canonArgPack
3805      = getCanonicalTemplateArgument(subst->getArgumentPack());
3806    return getSubstTemplateTemplateParmPack(canonParameter, canonArgPack);
3807  }
3808  }
3809
3810  llvm_unreachable("bad template name!");
3811}
3812
3813bool ASTContext::hasSameTemplateName(TemplateName X, TemplateName Y) {
3814  X = getCanonicalTemplateName(X);
3815  Y = getCanonicalTemplateName(Y);
3816  return X.getAsVoidPointer() == Y.getAsVoidPointer();
3817}
3818
3819TemplateArgument
3820ASTContext::getCanonicalTemplateArgument(const TemplateArgument &Arg) const {
3821  switch (Arg.getKind()) {
3822    case TemplateArgument::Null:
3823      return Arg;
3824
3825    case TemplateArgument::Expression:
3826      return Arg;
3827
3828    case TemplateArgument::Declaration: {
3829      ValueDecl *D = cast<ValueDecl>(Arg.getAsDecl()->getCanonicalDecl());
3830      return TemplateArgument(D, Arg.isDeclForReferenceParam());
3831    }
3832
3833    case TemplateArgument::NullPtr:
3834      return TemplateArgument(getCanonicalType(Arg.getNullPtrType()),
3835                              /*isNullPtr*/true);
3836
3837    case TemplateArgument::Template:
3838      return TemplateArgument(getCanonicalTemplateName(Arg.getAsTemplate()));
3839
3840    case TemplateArgument::TemplateExpansion:
3841      return TemplateArgument(getCanonicalTemplateName(
3842                                         Arg.getAsTemplateOrTemplatePattern()),
3843                              Arg.getNumTemplateExpansions());
3844
3845    case TemplateArgument::Integral:
3846      return TemplateArgument(Arg, getCanonicalType(Arg.getIntegralType()));
3847
3848    case TemplateArgument::Type:
3849      return TemplateArgument(getCanonicalType(Arg.getAsType()));
3850
3851    case TemplateArgument::Pack: {
3852      if (Arg.pack_size() == 0)
3853        return Arg;
3854
3855      TemplateArgument *CanonArgs
3856        = new (*this) TemplateArgument[Arg.pack_size()];
3857      unsigned Idx = 0;
3858      for (TemplateArgument::pack_iterator A = Arg.pack_begin(),
3859                                        AEnd = Arg.pack_end();
3860           A != AEnd; (void)++A, ++Idx)
3861        CanonArgs[Idx] = getCanonicalTemplateArgument(*A);
3862
3863      return TemplateArgument(CanonArgs, Arg.pack_size());
3864    }
3865  }
3866
3867  // Silence GCC warning
3868  llvm_unreachable("Unhandled template argument kind");
3869}
3870
3871NestedNameSpecifier *
3872ASTContext::getCanonicalNestedNameSpecifier(NestedNameSpecifier *NNS) const {
3873  if (!NNS)
3874    return 0;
3875
3876  switch (NNS->getKind()) {
3877  case NestedNameSpecifier::Identifier:
3878    // Canonicalize the prefix but keep the identifier the same.
3879    return NestedNameSpecifier::Create(*this,
3880                         getCanonicalNestedNameSpecifier(NNS->getPrefix()),
3881                                       NNS->getAsIdentifier());
3882
3883  case NestedNameSpecifier::Namespace:
3884    // A namespace is canonical; build a nested-name-specifier with
3885    // this namespace and no prefix.
3886    return NestedNameSpecifier::Create(*this, 0,
3887                                 NNS->getAsNamespace()->getOriginalNamespace());
3888
3889  case NestedNameSpecifier::NamespaceAlias:
3890    // A namespace is canonical; build a nested-name-specifier with
3891    // this namespace and no prefix.
3892    return NestedNameSpecifier::Create(*this, 0,
3893                                    NNS->getAsNamespaceAlias()->getNamespace()
3894                                                      ->getOriginalNamespace());
3895
3896  case NestedNameSpecifier::TypeSpec:
3897  case NestedNameSpecifier::TypeSpecWithTemplate: {
3898    QualType T = getCanonicalType(QualType(NNS->getAsType(), 0));
3899
3900    // If we have some kind of dependent-named type (e.g., "typename T::type"),
3901    // break it apart into its prefix and identifier, then reconsititute those
3902    // as the canonical nested-name-specifier. This is required to canonicalize
3903    // a dependent nested-name-specifier involving typedefs of dependent-name
3904    // types, e.g.,
3905    //   typedef typename T::type T1;
3906    //   typedef typename T1::type T2;
3907    if (const DependentNameType *DNT = T->getAs<DependentNameType>())
3908      return NestedNameSpecifier::Create(*this, DNT->getQualifier(),
3909                           const_cast<IdentifierInfo *>(DNT->getIdentifier()));
3910
3911    // Otherwise, just canonicalize the type, and force it to be a TypeSpec.
3912    // FIXME: Why are TypeSpec and TypeSpecWithTemplate distinct in the
3913    // first place?
3914    return NestedNameSpecifier::Create(*this, 0, false,
3915                                       const_cast<Type*>(T.getTypePtr()));
3916  }
3917
3918  case NestedNameSpecifier::Global:
3919    // The global specifier is canonical and unique.
3920    return NNS;
3921  }
3922
3923  llvm_unreachable("Invalid NestedNameSpecifier::Kind!");
3924}
3925
3926
3927const ArrayType *ASTContext::getAsArrayType(QualType T) const {
3928  // Handle the non-qualified case efficiently.
3929  if (!T.hasLocalQualifiers()) {
3930    // Handle the common positive case fast.
3931    if (const ArrayType *AT = dyn_cast<ArrayType>(T))
3932      return AT;
3933  }
3934
3935  // Handle the common negative case fast.
3936  if (!isa<ArrayType>(T.getCanonicalType()))
3937    return 0;
3938
3939  // Apply any qualifiers from the array type to the element type.  This
3940  // implements C99 6.7.3p8: "If the specification of an array type includes
3941  // any type qualifiers, the element type is so qualified, not the array type."
3942
3943  // If we get here, we either have type qualifiers on the type, or we have
3944  // sugar such as a typedef in the way.  If we have type qualifiers on the type
3945  // we must propagate them down into the element type.
3946
3947  SplitQualType split = T.getSplitDesugaredType();
3948  Qualifiers qs = split.Quals;
3949
3950  // If we have a simple case, just return now.
3951  const ArrayType *ATy = dyn_cast<ArrayType>(split.Ty);
3952  if (ATy == 0 || qs.empty())
3953    return ATy;
3954
3955  // Otherwise, we have an array and we have qualifiers on it.  Push the
3956  // qualifiers into the array element type and return a new array type.
3957  QualType NewEltTy = getQualifiedType(ATy->getElementType(), qs);
3958
3959  if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(ATy))
3960    return cast<ArrayType>(getConstantArrayType(NewEltTy, CAT->getSize(),
3961                                                CAT->getSizeModifier(),
3962                                           CAT->getIndexTypeCVRQualifiers()));
3963  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(ATy))
3964    return cast<ArrayType>(getIncompleteArrayType(NewEltTy,
3965                                                  IAT->getSizeModifier(),
3966                                           IAT->getIndexTypeCVRQualifiers()));
3967
3968  if (const DependentSizedArrayType *DSAT
3969        = dyn_cast<DependentSizedArrayType>(ATy))
3970    return cast<ArrayType>(
3971                     getDependentSizedArrayType(NewEltTy,
3972                                                DSAT->getSizeExpr(),
3973                                                DSAT->getSizeModifier(),
3974                                              DSAT->getIndexTypeCVRQualifiers(),
3975                                                DSAT->getBracketsRange()));
3976
3977  const VariableArrayType *VAT = cast<VariableArrayType>(ATy);
3978  return cast<ArrayType>(getVariableArrayType(NewEltTy,
3979                                              VAT->getSizeExpr(),
3980                                              VAT->getSizeModifier(),
3981                                              VAT->getIndexTypeCVRQualifiers(),
3982                                              VAT->getBracketsRange()));
3983}
3984
3985QualType ASTContext::getAdjustedParameterType(QualType T) const {
3986  // C99 6.7.5.3p7:
3987  //   A declaration of a parameter as "array of type" shall be
3988  //   adjusted to "qualified pointer to type", where the type
3989  //   qualifiers (if any) are those specified within the [ and ] of
3990  //   the array type derivation.
3991  if (T->isArrayType())
3992    return getArrayDecayedType(T);
3993
3994  // C99 6.7.5.3p8:
3995  //   A declaration of a parameter as "function returning type"
3996  //   shall be adjusted to "pointer to function returning type", as
3997  //   in 6.3.2.1.
3998  if (T->isFunctionType())
3999    return getPointerType(T);
4000
4001  return T;
4002}
4003
4004QualType ASTContext::getSignatureParameterType(QualType T) const {
4005  T = getVariableArrayDecayedType(T);
4006  T = getAdjustedParameterType(T);
4007  return T.getUnqualifiedType();
4008}
4009
4010/// getArrayDecayedType - Return the properly qualified result of decaying the
4011/// specified array type to a pointer.  This operation is non-trivial when
4012/// handling typedefs etc.  The canonical type of "T" must be an array type,
4013/// this returns a pointer to a properly qualified element of the array.
4014///
4015/// See C99 6.7.5.3p7 and C99 6.3.2.1p3.
4016QualType ASTContext::getArrayDecayedType(QualType Ty) const {
4017  // Get the element type with 'getAsArrayType' so that we don't lose any
4018  // typedefs in the element type of the array.  This also handles propagation
4019  // of type qualifiers from the array type into the element type if present
4020  // (C99 6.7.3p8).
4021  const ArrayType *PrettyArrayType = getAsArrayType(Ty);
4022  assert(PrettyArrayType && "Not an array type!");
4023
4024  QualType PtrTy = getPointerType(PrettyArrayType->getElementType());
4025
4026  // int x[restrict 4] ->  int *restrict
4027  return getQualifiedType(PtrTy, PrettyArrayType->getIndexTypeQualifiers());
4028}
4029
4030QualType ASTContext::getBaseElementType(const ArrayType *array) const {
4031  return getBaseElementType(array->getElementType());
4032}
4033
4034QualType ASTContext::getBaseElementType(QualType type) const {
4035  Qualifiers qs;
4036  while (true) {
4037    SplitQualType split = type.getSplitDesugaredType();
4038    const ArrayType *array = split.Ty->getAsArrayTypeUnsafe();
4039    if (!array) break;
4040
4041    type = array->getElementType();
4042    qs.addConsistentQualifiers(split.Quals);
4043  }
4044
4045  return getQualifiedType(type, qs);
4046}
4047
4048/// getConstantArrayElementCount - Returns number of constant array elements.
4049uint64_t
4050ASTContext::getConstantArrayElementCount(const ConstantArrayType *CA)  const {
4051  uint64_t ElementCount = 1;
4052  do {
4053    ElementCount *= CA->getSize().getZExtValue();
4054    CA = dyn_cast_or_null<ConstantArrayType>(
4055      CA->getElementType()->getAsArrayTypeUnsafe());
4056  } while (CA);
4057  return ElementCount;
4058}
4059
4060/// getFloatingRank - Return a relative rank for floating point types.
4061/// This routine will assert if passed a built-in type that isn't a float.
4062static FloatingRank getFloatingRank(QualType T) {
4063  if (const ComplexType *CT = T->getAs<ComplexType>())
4064    return getFloatingRank(CT->getElementType());
4065
4066  assert(T->getAs<BuiltinType>() && "getFloatingRank(): not a floating type");
4067  switch (T->getAs<BuiltinType>()->getKind()) {
4068  default: llvm_unreachable("getFloatingRank(): not a floating type");
4069  case BuiltinType::Half:       return HalfRank;
4070  case BuiltinType::Float:      return FloatRank;
4071  case BuiltinType::Double:     return DoubleRank;
4072  case BuiltinType::LongDouble: return LongDoubleRank;
4073  }
4074}
4075
4076/// getFloatingTypeOfSizeWithinDomain - Returns a real floating
4077/// point or a complex type (based on typeDomain/typeSize).
4078/// 'typeDomain' is a real floating point or complex type.
4079/// 'typeSize' is a real floating point or complex type.
4080QualType ASTContext::getFloatingTypeOfSizeWithinDomain(QualType Size,
4081                                                       QualType Domain) const {
4082  FloatingRank EltRank = getFloatingRank(Size);
4083  if (Domain->isComplexType()) {
4084    switch (EltRank) {
4085    case HalfRank: llvm_unreachable("Complex half is not supported");
4086    case FloatRank:      return FloatComplexTy;
4087    case DoubleRank:     return DoubleComplexTy;
4088    case LongDoubleRank: return LongDoubleComplexTy;
4089    }
4090  }
4091
4092  assert(Domain->isRealFloatingType() && "Unknown domain!");
4093  switch (EltRank) {
4094  case HalfRank:       return HalfTy;
4095  case FloatRank:      return FloatTy;
4096  case DoubleRank:     return DoubleTy;
4097  case LongDoubleRank: return LongDoubleTy;
4098  }
4099  llvm_unreachable("getFloatingRank(): illegal value for rank");
4100}
4101
4102/// getFloatingTypeOrder - Compare the rank of the two specified floating
4103/// point types, ignoring the domain of the type (i.e. 'double' ==
4104/// '_Complex double').  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
4105/// LHS < RHS, return -1.
4106int ASTContext::getFloatingTypeOrder(QualType LHS, QualType RHS) const {
4107  FloatingRank LHSR = getFloatingRank(LHS);
4108  FloatingRank RHSR = getFloatingRank(RHS);
4109
4110  if (LHSR == RHSR)
4111    return 0;
4112  if (LHSR > RHSR)
4113    return 1;
4114  return -1;
4115}
4116
4117/// getIntegerRank - Return an integer conversion rank (C99 6.3.1.1p1). This
4118/// routine will assert if passed a built-in type that isn't an integer or enum,
4119/// or if it is not canonicalized.
4120unsigned ASTContext::getIntegerRank(const Type *T) const {
4121  assert(T->isCanonicalUnqualified() && "T should be canonicalized");
4122
4123  switch (cast<BuiltinType>(T)->getKind()) {
4124  default: llvm_unreachable("getIntegerRank(): not a built-in integer");
4125  case BuiltinType::Bool:
4126    return 1 + (getIntWidth(BoolTy) << 3);
4127  case BuiltinType::Char_S:
4128  case BuiltinType::Char_U:
4129  case BuiltinType::SChar:
4130  case BuiltinType::UChar:
4131    return 2 + (getIntWidth(CharTy) << 3);
4132  case BuiltinType::Short:
4133  case BuiltinType::UShort:
4134    return 3 + (getIntWidth(ShortTy) << 3);
4135  case BuiltinType::Int:
4136  case BuiltinType::UInt:
4137    return 4 + (getIntWidth(IntTy) << 3);
4138  case BuiltinType::Long:
4139  case BuiltinType::ULong:
4140    return 5 + (getIntWidth(LongTy) << 3);
4141  case BuiltinType::LongLong:
4142  case BuiltinType::ULongLong:
4143    return 6 + (getIntWidth(LongLongTy) << 3);
4144  case BuiltinType::Int128:
4145  case BuiltinType::UInt128:
4146    return 7 + (getIntWidth(Int128Ty) << 3);
4147  }
4148}
4149
4150/// \brief Whether this is a promotable bitfield reference according
4151/// to C99 6.3.1.1p2, bullet 2 (and GCC extensions).
4152///
4153/// \returns the type this bit-field will promote to, or NULL if no
4154/// promotion occurs.
4155QualType ASTContext::isPromotableBitField(Expr *E) const {
4156  if (E->isTypeDependent() || E->isValueDependent())
4157    return QualType();
4158
4159  FieldDecl *Field = E->getBitField();
4160  if (!Field)
4161    return QualType();
4162
4163  QualType FT = Field->getType();
4164
4165  uint64_t BitWidth = Field->getBitWidthValue(*this);
4166  uint64_t IntSize = getTypeSize(IntTy);
4167  // GCC extension compatibility: if the bit-field size is less than or equal
4168  // to the size of int, it gets promoted no matter what its type is.
4169  // For instance, unsigned long bf : 4 gets promoted to signed int.
4170  if (BitWidth < IntSize)
4171    return IntTy;
4172
4173  if (BitWidth == IntSize)
4174    return FT->isSignedIntegerType() ? IntTy : UnsignedIntTy;
4175
4176  // Types bigger than int are not subject to promotions, and therefore act
4177  // like the base type.
4178  // FIXME: This doesn't quite match what gcc does, but what gcc does here
4179  // is ridiculous.
4180  return QualType();
4181}
4182
4183/// getPromotedIntegerType - Returns the type that Promotable will
4184/// promote to: C99 6.3.1.1p2, assuming that Promotable is a promotable
4185/// integer type.
4186QualType ASTContext::getPromotedIntegerType(QualType Promotable) const {
4187  assert(!Promotable.isNull());
4188  assert(Promotable->isPromotableIntegerType());
4189  if (const EnumType *ET = Promotable->getAs<EnumType>())
4190    return ET->getDecl()->getPromotionType();
4191
4192  if (const BuiltinType *BT = Promotable->getAs<BuiltinType>()) {
4193    // C++ [conv.prom]: A prvalue of type char16_t, char32_t, or wchar_t
4194    // (3.9.1) can be converted to a prvalue of the first of the following
4195    // types that can represent all the values of its underlying type:
4196    // int, unsigned int, long int, unsigned long int, long long int, or
4197    // unsigned long long int [...]
4198    // FIXME: Is there some better way to compute this?
4199    if (BT->getKind() == BuiltinType::WChar_S ||
4200        BT->getKind() == BuiltinType::WChar_U ||
4201        BT->getKind() == BuiltinType::Char16 ||
4202        BT->getKind() == BuiltinType::Char32) {
4203      bool FromIsSigned = BT->getKind() == BuiltinType::WChar_S;
4204      uint64_t FromSize = getTypeSize(BT);
4205      QualType PromoteTypes[] = { IntTy, UnsignedIntTy, LongTy, UnsignedLongTy,
4206                                  LongLongTy, UnsignedLongLongTy };
4207      for (size_t Idx = 0; Idx < llvm::array_lengthof(PromoteTypes); ++Idx) {
4208        uint64_t ToSize = getTypeSize(PromoteTypes[Idx]);
4209        if (FromSize < ToSize ||
4210            (FromSize == ToSize &&
4211             FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType()))
4212          return PromoteTypes[Idx];
4213      }
4214      llvm_unreachable("char type should fit into long long");
4215    }
4216  }
4217
4218  // At this point, we should have a signed or unsigned integer type.
4219  if (Promotable->isSignedIntegerType())
4220    return IntTy;
4221  uint64_t PromotableSize = getIntWidth(Promotable);
4222  uint64_t IntSize = getIntWidth(IntTy);
4223  assert(Promotable->isUnsignedIntegerType() && PromotableSize <= IntSize);
4224  return (PromotableSize != IntSize) ? IntTy : UnsignedIntTy;
4225}
4226
4227/// \brief Recurses in pointer/array types until it finds an objc retainable
4228/// type and returns its ownership.
4229Qualifiers::ObjCLifetime ASTContext::getInnerObjCOwnership(QualType T) const {
4230  while (!T.isNull()) {
4231    if (T.getObjCLifetime() != Qualifiers::OCL_None)
4232      return T.getObjCLifetime();
4233    if (T->isArrayType())
4234      T = getBaseElementType(T);
4235    else if (const PointerType *PT = T->getAs<PointerType>())
4236      T = PT->getPointeeType();
4237    else if (const ReferenceType *RT = T->getAs<ReferenceType>())
4238      T = RT->getPointeeType();
4239    else
4240      break;
4241  }
4242
4243  return Qualifiers::OCL_None;
4244}
4245
4246/// getIntegerTypeOrder - Returns the highest ranked integer type:
4247/// C99 6.3.1.8p1.  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
4248/// LHS < RHS, return -1.
4249int ASTContext::getIntegerTypeOrder(QualType LHS, QualType RHS) const {
4250  const Type *LHSC = getCanonicalType(LHS).getTypePtr();
4251  const Type *RHSC = getCanonicalType(RHS).getTypePtr();
4252  if (LHSC == RHSC) return 0;
4253
4254  bool LHSUnsigned = LHSC->isUnsignedIntegerType();
4255  bool RHSUnsigned = RHSC->isUnsignedIntegerType();
4256
4257  unsigned LHSRank = getIntegerRank(LHSC);
4258  unsigned RHSRank = getIntegerRank(RHSC);
4259
4260  if (LHSUnsigned == RHSUnsigned) {  // Both signed or both unsigned.
4261    if (LHSRank == RHSRank) return 0;
4262    return LHSRank > RHSRank ? 1 : -1;
4263  }
4264
4265  // Otherwise, the LHS is signed and the RHS is unsigned or visa versa.
4266  if (LHSUnsigned) {
4267    // If the unsigned [LHS] type is larger, return it.
4268    if (LHSRank >= RHSRank)
4269      return 1;
4270
4271    // If the signed type can represent all values of the unsigned type, it
4272    // wins.  Because we are dealing with 2's complement and types that are
4273    // powers of two larger than each other, this is always safe.
4274    return -1;
4275  }
4276
4277  // If the unsigned [RHS] type is larger, return it.
4278  if (RHSRank >= LHSRank)
4279    return -1;
4280
4281  // If the signed type can represent all values of the unsigned type, it
4282  // wins.  Because we are dealing with 2's complement and types that are
4283  // powers of two larger than each other, this is always safe.
4284  return 1;
4285}
4286
4287static RecordDecl *
4288CreateRecordDecl(const ASTContext &Ctx, RecordDecl::TagKind TK,
4289                 DeclContext *DC, IdentifierInfo *Id) {
4290  SourceLocation Loc;
4291  if (Ctx.getLangOpts().CPlusPlus)
4292    return CXXRecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id);
4293  else
4294    return RecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id);
4295}
4296
4297// getCFConstantStringType - Return the type used for constant CFStrings.
4298QualType ASTContext::getCFConstantStringType() const {
4299  if (!CFConstantStringTypeDecl) {
4300    CFConstantStringTypeDecl =
4301      CreateRecordDecl(*this, TTK_Struct, TUDecl,
4302                       &Idents.get("NSConstantString"));
4303    CFConstantStringTypeDecl->startDefinition();
4304
4305    QualType FieldTypes[4];
4306
4307    // const int *isa;
4308    FieldTypes[0] = getPointerType(IntTy.withConst());
4309    // int flags;
4310    FieldTypes[1] = IntTy;
4311    // const char *str;
4312    FieldTypes[2] = getPointerType(CharTy.withConst());
4313    // long length;
4314    FieldTypes[3] = LongTy;
4315
4316    // Create fields
4317    for (unsigned i = 0; i < 4; ++i) {
4318      FieldDecl *Field = FieldDecl::Create(*this, CFConstantStringTypeDecl,
4319                                           SourceLocation(),
4320                                           SourceLocation(), 0,
4321                                           FieldTypes[i], /*TInfo=*/0,
4322                                           /*BitWidth=*/0,
4323                                           /*Mutable=*/false,
4324                                           ICIS_NoInit);
4325      Field->setAccess(AS_public);
4326      CFConstantStringTypeDecl->addDecl(Field);
4327    }
4328
4329    CFConstantStringTypeDecl->completeDefinition();
4330  }
4331
4332  return getTagDeclType(CFConstantStringTypeDecl);
4333}
4334
4335QualType ASTContext::getObjCSuperType() const {
4336  if (ObjCSuperType.isNull()) {
4337    RecordDecl *ObjCSuperTypeDecl  =
4338      CreateRecordDecl(*this, TTK_Struct, TUDecl, &Idents.get("objc_super"));
4339    TUDecl->addDecl(ObjCSuperTypeDecl);
4340    ObjCSuperType = getTagDeclType(ObjCSuperTypeDecl);
4341  }
4342  return ObjCSuperType;
4343}
4344
4345void ASTContext::setCFConstantStringType(QualType T) {
4346  const RecordType *Rec = T->getAs<RecordType>();
4347  assert(Rec && "Invalid CFConstantStringType");
4348  CFConstantStringTypeDecl = Rec->getDecl();
4349}
4350
4351QualType ASTContext::getBlockDescriptorType() const {
4352  if (BlockDescriptorType)
4353    return getTagDeclType(BlockDescriptorType);
4354
4355  RecordDecl *T;
4356  // FIXME: Needs the FlagAppleBlock bit.
4357  T = CreateRecordDecl(*this, TTK_Struct, TUDecl,
4358                       &Idents.get("__block_descriptor"));
4359  T->startDefinition();
4360
4361  QualType FieldTypes[] = {
4362    UnsignedLongTy,
4363    UnsignedLongTy,
4364  };
4365
4366  const char *FieldNames[] = {
4367    "reserved",
4368    "Size"
4369  };
4370
4371  for (size_t i = 0; i < 2; ++i) {
4372    FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(),
4373                                         SourceLocation(),
4374                                         &Idents.get(FieldNames[i]),
4375                                         FieldTypes[i], /*TInfo=*/0,
4376                                         /*BitWidth=*/0,
4377                                         /*Mutable=*/false,
4378                                         ICIS_NoInit);
4379    Field->setAccess(AS_public);
4380    T->addDecl(Field);
4381  }
4382
4383  T->completeDefinition();
4384
4385  BlockDescriptorType = T;
4386
4387  return getTagDeclType(BlockDescriptorType);
4388}
4389
4390QualType ASTContext::getBlockDescriptorExtendedType() const {
4391  if (BlockDescriptorExtendedType)
4392    return getTagDeclType(BlockDescriptorExtendedType);
4393
4394  RecordDecl *T;
4395  // FIXME: Needs the FlagAppleBlock bit.
4396  T = CreateRecordDecl(*this, TTK_Struct, TUDecl,
4397                       &Idents.get("__block_descriptor_withcopydispose"));
4398  T->startDefinition();
4399
4400  QualType FieldTypes[] = {
4401    UnsignedLongTy,
4402    UnsignedLongTy,
4403    getPointerType(VoidPtrTy),
4404    getPointerType(VoidPtrTy)
4405  };
4406
4407  const char *FieldNames[] = {
4408    "reserved",
4409    "Size",
4410    "CopyFuncPtr",
4411    "DestroyFuncPtr"
4412  };
4413
4414  for (size_t i = 0; i < 4; ++i) {
4415    FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(),
4416                                         SourceLocation(),
4417                                         &Idents.get(FieldNames[i]),
4418                                         FieldTypes[i], /*TInfo=*/0,
4419                                         /*BitWidth=*/0,
4420                                         /*Mutable=*/false,
4421                                         ICIS_NoInit);
4422    Field->setAccess(AS_public);
4423    T->addDecl(Field);
4424  }
4425
4426  T->completeDefinition();
4427
4428  BlockDescriptorExtendedType = T;
4429
4430  return getTagDeclType(BlockDescriptorExtendedType);
4431}
4432
4433/// BlockRequiresCopying - Returns true if byref variable "D" of type "Ty"
4434/// requires copy/dispose. Note that this must match the logic
4435/// in buildByrefHelpers.
4436bool ASTContext::BlockRequiresCopying(QualType Ty,
4437                                      const VarDecl *D) {
4438  if (const CXXRecordDecl *record = Ty->getAsCXXRecordDecl()) {
4439    const Expr *copyExpr = getBlockVarCopyInits(D);
4440    if (!copyExpr && record->hasTrivialDestructor()) return false;
4441
4442    return true;
4443  }
4444
4445  if (!Ty->isObjCRetainableType()) return false;
4446
4447  Qualifiers qs = Ty.getQualifiers();
4448
4449  // If we have lifetime, that dominates.
4450  if (Qualifiers::ObjCLifetime lifetime = qs.getObjCLifetime()) {
4451    assert(getLangOpts().ObjCAutoRefCount);
4452
4453    switch (lifetime) {
4454      case Qualifiers::OCL_None: llvm_unreachable("impossible");
4455
4456      // These are just bits as far as the runtime is concerned.
4457      case Qualifiers::OCL_ExplicitNone:
4458      case Qualifiers::OCL_Autoreleasing:
4459        return false;
4460
4461      // Tell the runtime that this is ARC __weak, called by the
4462      // byref routines.
4463      case Qualifiers::OCL_Weak:
4464      // ARC __strong __block variables need to be retained.
4465      case Qualifiers::OCL_Strong:
4466        return true;
4467    }
4468    llvm_unreachable("fell out of lifetime switch!");
4469  }
4470  return (Ty->isBlockPointerType() || isObjCNSObjectType(Ty) ||
4471          Ty->isObjCObjectPointerType());
4472}
4473
4474bool ASTContext::getByrefLifetime(QualType Ty,
4475                              Qualifiers::ObjCLifetime &LifeTime,
4476                              bool &HasByrefExtendedLayout) const {
4477
4478  if (!getLangOpts().ObjC1 ||
4479      getLangOpts().getGC() != LangOptions::NonGC)
4480    return false;
4481
4482  HasByrefExtendedLayout = false;
4483  if (Ty->isRecordType()) {
4484    HasByrefExtendedLayout = true;
4485    LifeTime = Qualifiers::OCL_None;
4486  }
4487  else if (getLangOpts().ObjCAutoRefCount)
4488    LifeTime = Ty.getObjCLifetime();
4489  // MRR.
4490  else if (Ty->isObjCObjectPointerType() || Ty->isBlockPointerType())
4491    LifeTime = Qualifiers::OCL_ExplicitNone;
4492  else
4493    LifeTime = Qualifiers::OCL_None;
4494  return true;
4495}
4496
4497TypedefDecl *ASTContext::getObjCInstanceTypeDecl() {
4498  if (!ObjCInstanceTypeDecl)
4499    ObjCInstanceTypeDecl = TypedefDecl::Create(*this,
4500                                               getTranslationUnitDecl(),
4501                                               SourceLocation(),
4502                                               SourceLocation(),
4503                                               &Idents.get("instancetype"),
4504                                     getTrivialTypeSourceInfo(getObjCIdType()));
4505  return ObjCInstanceTypeDecl;
4506}
4507
4508// This returns true if a type has been typedefed to BOOL:
4509// typedef <type> BOOL;
4510static bool isTypeTypedefedAsBOOL(QualType T) {
4511  if (const TypedefType *TT = dyn_cast<TypedefType>(T))
4512    if (IdentifierInfo *II = TT->getDecl()->getIdentifier())
4513      return II->isStr("BOOL");
4514
4515  return false;
4516}
4517
4518/// getObjCEncodingTypeSize returns size of type for objective-c encoding
4519/// purpose.
4520CharUnits ASTContext::getObjCEncodingTypeSize(QualType type) const {
4521  if (!type->isIncompleteArrayType() && type->isIncompleteType())
4522    return CharUnits::Zero();
4523
4524  CharUnits sz = getTypeSizeInChars(type);
4525
4526  // Make all integer and enum types at least as large as an int
4527  if (sz.isPositive() && type->isIntegralOrEnumerationType())
4528    sz = std::max(sz, getTypeSizeInChars(IntTy));
4529  // Treat arrays as pointers, since that's how they're passed in.
4530  else if (type->isArrayType())
4531    sz = getTypeSizeInChars(VoidPtrTy);
4532  return sz;
4533}
4534
4535static inline
4536std::string charUnitsToString(const CharUnits &CU) {
4537  return llvm::itostr(CU.getQuantity());
4538}
4539
4540/// getObjCEncodingForBlock - Return the encoded type for this block
4541/// declaration.
4542std::string ASTContext::getObjCEncodingForBlock(const BlockExpr *Expr) const {
4543  std::string S;
4544
4545  const BlockDecl *Decl = Expr->getBlockDecl();
4546  QualType BlockTy =
4547      Expr->getType()->getAs<BlockPointerType>()->getPointeeType();
4548  // Encode result type.
4549  if (getLangOpts().EncodeExtendedBlockSig)
4550    getObjCEncodingForMethodParameter(Decl::OBJC_TQ_None,
4551                            BlockTy->getAs<FunctionType>()->getResultType(),
4552                            S, true /*Extended*/);
4553  else
4554    getObjCEncodingForType(BlockTy->getAs<FunctionType>()->getResultType(),
4555                           S);
4556  // Compute size of all parameters.
4557  // Start with computing size of a pointer in number of bytes.
4558  // FIXME: There might(should) be a better way of doing this computation!
4559  SourceLocation Loc;
4560  CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy);
4561  CharUnits ParmOffset = PtrSize;
4562  for (BlockDecl::param_const_iterator PI = Decl->param_begin(),
4563       E = Decl->param_end(); PI != E; ++PI) {
4564    QualType PType = (*PI)->getType();
4565    CharUnits sz = getObjCEncodingTypeSize(PType);
4566    if (sz.isZero())
4567      continue;
4568    assert (sz.isPositive() && "BlockExpr - Incomplete param type");
4569    ParmOffset += sz;
4570  }
4571  // Size of the argument frame
4572  S += charUnitsToString(ParmOffset);
4573  // Block pointer and offset.
4574  S += "@?0";
4575
4576  // Argument types.
4577  ParmOffset = PtrSize;
4578  for (BlockDecl::param_const_iterator PI = Decl->param_begin(), E =
4579       Decl->param_end(); PI != E; ++PI) {
4580    ParmVarDecl *PVDecl = *PI;
4581    QualType PType = PVDecl->getOriginalType();
4582    if (const ArrayType *AT =
4583          dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
4584      // Use array's original type only if it has known number of
4585      // elements.
4586      if (!isa<ConstantArrayType>(AT))
4587        PType = PVDecl->getType();
4588    } else if (PType->isFunctionType())
4589      PType = PVDecl->getType();
4590    if (getLangOpts().EncodeExtendedBlockSig)
4591      getObjCEncodingForMethodParameter(Decl::OBJC_TQ_None, PType,
4592                                      S, true /*Extended*/);
4593    else
4594      getObjCEncodingForType(PType, S);
4595    S += charUnitsToString(ParmOffset);
4596    ParmOffset += getObjCEncodingTypeSize(PType);
4597  }
4598
4599  return S;
4600}
4601
4602bool ASTContext::getObjCEncodingForFunctionDecl(const FunctionDecl *Decl,
4603                                                std::string& S) {
4604  // Encode result type.
4605  getObjCEncodingForType(Decl->getResultType(), S);
4606  CharUnits ParmOffset;
4607  // Compute size of all parameters.
4608  for (FunctionDecl::param_const_iterator PI = Decl->param_begin(),
4609       E = Decl->param_end(); PI != E; ++PI) {
4610    QualType PType = (*PI)->getType();
4611    CharUnits sz = getObjCEncodingTypeSize(PType);
4612    if (sz.isZero())
4613      continue;
4614
4615    assert (sz.isPositive() &&
4616        "getObjCEncodingForFunctionDecl - Incomplete param type");
4617    ParmOffset += sz;
4618  }
4619  S += charUnitsToString(ParmOffset);
4620  ParmOffset = CharUnits::Zero();
4621
4622  // Argument types.
4623  for (FunctionDecl::param_const_iterator PI = Decl->param_begin(),
4624       E = Decl->param_end(); PI != E; ++PI) {
4625    ParmVarDecl *PVDecl = *PI;
4626    QualType PType = PVDecl->getOriginalType();
4627    if (const ArrayType *AT =
4628          dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
4629      // Use array's original type only if it has known number of
4630      // elements.
4631      if (!isa<ConstantArrayType>(AT))
4632        PType = PVDecl->getType();
4633    } else if (PType->isFunctionType())
4634      PType = PVDecl->getType();
4635    getObjCEncodingForType(PType, S);
4636    S += charUnitsToString(ParmOffset);
4637    ParmOffset += getObjCEncodingTypeSize(PType);
4638  }
4639
4640  return false;
4641}
4642
4643/// getObjCEncodingForMethodParameter - Return the encoded type for a single
4644/// method parameter or return type. If Extended, include class names and
4645/// block object types.
4646void ASTContext::getObjCEncodingForMethodParameter(Decl::ObjCDeclQualifier QT,
4647                                                   QualType T, std::string& S,
4648                                                   bool Extended) const {
4649  // Encode type qualifer, 'in', 'inout', etc. for the parameter.
4650  getObjCEncodingForTypeQualifier(QT, S);
4651  // Encode parameter type.
4652  getObjCEncodingForTypeImpl(T, S, true, true, 0,
4653                             true     /*OutermostType*/,
4654                             false    /*EncodingProperty*/,
4655                             false    /*StructField*/,
4656                             Extended /*EncodeBlockParameters*/,
4657                             Extended /*EncodeClassNames*/);
4658}
4659
4660/// getObjCEncodingForMethodDecl - Return the encoded type for this method
4661/// declaration.
4662bool ASTContext::getObjCEncodingForMethodDecl(const ObjCMethodDecl *Decl,
4663                                              std::string& S,
4664                                              bool Extended) const {
4665  // FIXME: This is not very efficient.
4666  // Encode return type.
4667  getObjCEncodingForMethodParameter(Decl->getObjCDeclQualifier(),
4668                                    Decl->getResultType(), S, Extended);
4669  // Compute size of all parameters.
4670  // Start with computing size of a pointer in number of bytes.
4671  // FIXME: There might(should) be a better way of doing this computation!
4672  SourceLocation Loc;
4673  CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy);
4674  // The first two arguments (self and _cmd) are pointers; account for
4675  // their size.
4676  CharUnits ParmOffset = 2 * PtrSize;
4677  for (ObjCMethodDecl::param_const_iterator PI = Decl->param_begin(),
4678       E = Decl->sel_param_end(); PI != E; ++PI) {
4679    QualType PType = (*PI)->getType();
4680    CharUnits sz = getObjCEncodingTypeSize(PType);
4681    if (sz.isZero())
4682      continue;
4683
4684    assert (sz.isPositive() &&
4685        "getObjCEncodingForMethodDecl - Incomplete param type");
4686    ParmOffset += sz;
4687  }
4688  S += charUnitsToString(ParmOffset);
4689  S += "@0:";
4690  S += charUnitsToString(PtrSize);
4691
4692  // Argument types.
4693  ParmOffset = 2 * PtrSize;
4694  for (ObjCMethodDecl::param_const_iterator PI = Decl->param_begin(),
4695       E = Decl->sel_param_end(); PI != E; ++PI) {
4696    const ParmVarDecl *PVDecl = *PI;
4697    QualType PType = PVDecl->getOriginalType();
4698    if (const ArrayType *AT =
4699          dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
4700      // Use array's original type only if it has known number of
4701      // elements.
4702      if (!isa<ConstantArrayType>(AT))
4703        PType = PVDecl->getType();
4704    } else if (PType->isFunctionType())
4705      PType = PVDecl->getType();
4706    getObjCEncodingForMethodParameter(PVDecl->getObjCDeclQualifier(),
4707                                      PType, S, Extended);
4708    S += charUnitsToString(ParmOffset);
4709    ParmOffset += getObjCEncodingTypeSize(PType);
4710  }
4711
4712  return false;
4713}
4714
4715/// getObjCEncodingForPropertyDecl - Return the encoded type for this
4716/// property declaration. If non-NULL, Container must be either an
4717/// ObjCCategoryImplDecl or ObjCImplementationDecl; it should only be
4718/// NULL when getting encodings for protocol properties.
4719/// Property attributes are stored as a comma-delimited C string. The simple
4720/// attributes readonly and bycopy are encoded as single characters. The
4721/// parametrized attributes, getter=name, setter=name, and ivar=name, are
4722/// encoded as single characters, followed by an identifier. Property types
4723/// are also encoded as a parametrized attribute. The characters used to encode
4724/// these attributes are defined by the following enumeration:
4725/// @code
4726/// enum PropertyAttributes {
4727/// kPropertyReadOnly = 'R',   // property is read-only.
4728/// kPropertyBycopy = 'C',     // property is a copy of the value last assigned
4729/// kPropertyByref = '&',  // property is a reference to the value last assigned
4730/// kPropertyDynamic = 'D',    // property is dynamic
4731/// kPropertyGetter = 'G',     // followed by getter selector name
4732/// kPropertySetter = 'S',     // followed by setter selector name
4733/// kPropertyInstanceVariable = 'V'  // followed by instance variable  name
4734/// kPropertyType = 'T'              // followed by old-style type encoding.
4735/// kPropertyWeak = 'W'              // 'weak' property
4736/// kPropertyStrong = 'P'            // property GC'able
4737/// kPropertyNonAtomic = 'N'         // property non-atomic
4738/// };
4739/// @endcode
4740void ASTContext::getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD,
4741                                                const Decl *Container,
4742                                                std::string& S) const {
4743  // Collect information from the property implementation decl(s).
4744  bool Dynamic = false;
4745  ObjCPropertyImplDecl *SynthesizePID = 0;
4746
4747  // FIXME: Duplicated code due to poor abstraction.
4748  if (Container) {
4749    if (const ObjCCategoryImplDecl *CID =
4750        dyn_cast<ObjCCategoryImplDecl>(Container)) {
4751      for (ObjCCategoryImplDecl::propimpl_iterator
4752             i = CID->propimpl_begin(), e = CID->propimpl_end();
4753           i != e; ++i) {
4754        ObjCPropertyImplDecl *PID = *i;
4755        if (PID->getPropertyDecl() == PD) {
4756          if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) {
4757            Dynamic = true;
4758          } else {
4759            SynthesizePID = PID;
4760          }
4761        }
4762      }
4763    } else {
4764      const ObjCImplementationDecl *OID=cast<ObjCImplementationDecl>(Container);
4765      for (ObjCCategoryImplDecl::propimpl_iterator
4766             i = OID->propimpl_begin(), e = OID->propimpl_end();
4767           i != e; ++i) {
4768        ObjCPropertyImplDecl *PID = *i;
4769        if (PID->getPropertyDecl() == PD) {
4770          if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) {
4771            Dynamic = true;
4772          } else {
4773            SynthesizePID = PID;
4774          }
4775        }
4776      }
4777    }
4778  }
4779
4780  // FIXME: This is not very efficient.
4781  S = "T";
4782
4783  // Encode result type.
4784  // GCC has some special rules regarding encoding of properties which
4785  // closely resembles encoding of ivars.
4786  getObjCEncodingForTypeImpl(PD->getType(), S, true, true, 0,
4787                             true /* outermost type */,
4788                             true /* encoding for property */);
4789
4790  if (PD->isReadOnly()) {
4791    S += ",R";
4792  } else {
4793    switch (PD->getSetterKind()) {
4794    case ObjCPropertyDecl::Assign: break;
4795    case ObjCPropertyDecl::Copy:   S += ",C"; break;
4796    case ObjCPropertyDecl::Retain: S += ",&"; break;
4797    case ObjCPropertyDecl::Weak:   S += ",W"; break;
4798    }
4799  }
4800
4801  // It really isn't clear at all what this means, since properties
4802  // are "dynamic by default".
4803  if (Dynamic)
4804    S += ",D";
4805
4806  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_nonatomic)
4807    S += ",N";
4808
4809  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_getter) {
4810    S += ",G";
4811    S += PD->getGetterName().getAsString();
4812  }
4813
4814  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_setter) {
4815    S += ",S";
4816    S += PD->getSetterName().getAsString();
4817  }
4818
4819  if (SynthesizePID) {
4820    const ObjCIvarDecl *OID = SynthesizePID->getPropertyIvarDecl();
4821    S += ",V";
4822    S += OID->getNameAsString();
4823  }
4824
4825  // FIXME: OBJCGC: weak & strong
4826}
4827
4828/// getLegacyIntegralTypeEncoding -
4829/// Another legacy compatibility encoding: 32-bit longs are encoded as
4830/// 'l' or 'L' , but not always.  For typedefs, we need to use
4831/// 'i' or 'I' instead if encoding a struct field, or a pointer!
4832///
4833void ASTContext::getLegacyIntegralTypeEncoding (QualType &PointeeTy) const {
4834  if (isa<TypedefType>(PointeeTy.getTypePtr())) {
4835    if (const BuiltinType *BT = PointeeTy->getAs<BuiltinType>()) {
4836      if (BT->getKind() == BuiltinType::ULong && getIntWidth(PointeeTy) == 32)
4837        PointeeTy = UnsignedIntTy;
4838      else
4839        if (BT->getKind() == BuiltinType::Long && getIntWidth(PointeeTy) == 32)
4840          PointeeTy = IntTy;
4841    }
4842  }
4843}
4844
4845void ASTContext::getObjCEncodingForType(QualType T, std::string& S,
4846                                        const FieldDecl *Field) const {
4847  // We follow the behavior of gcc, expanding structures which are
4848  // directly pointed to, and expanding embedded structures. Note that
4849  // these rules are sufficient to prevent recursive encoding of the
4850  // same type.
4851  getObjCEncodingForTypeImpl(T, S, true, true, Field,
4852                             true /* outermost type */);
4853}
4854
4855static char getObjCEncodingForPrimitiveKind(const ASTContext *C,
4856                                            BuiltinType::Kind kind) {
4857    switch (kind) {
4858    case BuiltinType::Void:       return 'v';
4859    case BuiltinType::Bool:       return 'B';
4860    case BuiltinType::Char_U:
4861    case BuiltinType::UChar:      return 'C';
4862    case BuiltinType::Char16:
4863    case BuiltinType::UShort:     return 'S';
4864    case BuiltinType::Char32:
4865    case BuiltinType::UInt:       return 'I';
4866    case BuiltinType::ULong:
4867        return C->getTargetInfo().getLongWidth() == 32 ? 'L' : 'Q';
4868    case BuiltinType::UInt128:    return 'T';
4869    case BuiltinType::ULongLong:  return 'Q';
4870    case BuiltinType::Char_S:
4871    case BuiltinType::SChar:      return 'c';
4872    case BuiltinType::Short:      return 's';
4873    case BuiltinType::WChar_S:
4874    case BuiltinType::WChar_U:
4875    case BuiltinType::Int:        return 'i';
4876    case BuiltinType::Long:
4877      return C->getTargetInfo().getLongWidth() == 32 ? 'l' : 'q';
4878    case BuiltinType::LongLong:   return 'q';
4879    case BuiltinType::Int128:     return 't';
4880    case BuiltinType::Float:      return 'f';
4881    case BuiltinType::Double:     return 'd';
4882    case BuiltinType::LongDouble: return 'D';
4883    case BuiltinType::NullPtr:    return '*'; // like char*
4884
4885    case BuiltinType::Half:
4886      // FIXME: potentially need @encodes for these!
4887      return ' ';
4888
4889    case BuiltinType::ObjCId:
4890    case BuiltinType::ObjCClass:
4891    case BuiltinType::ObjCSel:
4892      llvm_unreachable("@encoding ObjC primitive type");
4893
4894    // OpenCL and placeholder types don't need @encodings.
4895    case BuiltinType::OCLImage1d:
4896    case BuiltinType::OCLImage1dArray:
4897    case BuiltinType::OCLImage1dBuffer:
4898    case BuiltinType::OCLImage2d:
4899    case BuiltinType::OCLImage2dArray:
4900    case BuiltinType::OCLImage3d:
4901    case BuiltinType::OCLEvent:
4902    case BuiltinType::Dependent:
4903#define BUILTIN_TYPE(KIND, ID)
4904#define PLACEHOLDER_TYPE(KIND, ID) \
4905    case BuiltinType::KIND:
4906#include "clang/AST/BuiltinTypes.def"
4907      llvm_unreachable("invalid builtin type for @encode");
4908    }
4909    llvm_unreachable("invalid BuiltinType::Kind value");
4910}
4911
4912static char ObjCEncodingForEnumType(const ASTContext *C, const EnumType *ET) {
4913  EnumDecl *Enum = ET->getDecl();
4914
4915  // The encoding of an non-fixed enum type is always 'i', regardless of size.
4916  if (!Enum->isFixed())
4917    return 'i';
4918
4919  // The encoding of a fixed enum type matches its fixed underlying type.
4920  const BuiltinType *BT = Enum->getIntegerType()->castAs<BuiltinType>();
4921  return getObjCEncodingForPrimitiveKind(C, BT->getKind());
4922}
4923
4924static void EncodeBitField(const ASTContext *Ctx, std::string& S,
4925                           QualType T, const FieldDecl *FD) {
4926  assert(FD->isBitField() && "not a bitfield - getObjCEncodingForTypeImpl");
4927  S += 'b';
4928  // The NeXT runtime encodes bit fields as b followed by the number of bits.
4929  // The GNU runtime requires more information; bitfields are encoded as b,
4930  // then the offset (in bits) of the first element, then the type of the
4931  // bitfield, then the size in bits.  For example, in this structure:
4932  //
4933  // struct
4934  // {
4935  //    int integer;
4936  //    int flags:2;
4937  // };
4938  // On a 32-bit system, the encoding for flags would be b2 for the NeXT
4939  // runtime, but b32i2 for the GNU runtime.  The reason for this extra
4940  // information is not especially sensible, but we're stuck with it for
4941  // compatibility with GCC, although providing it breaks anything that
4942  // actually uses runtime introspection and wants to work on both runtimes...
4943  if (Ctx->getLangOpts().ObjCRuntime.isGNUFamily()) {
4944    const RecordDecl *RD = FD->getParent();
4945    const ASTRecordLayout &RL = Ctx->getASTRecordLayout(RD);
4946    S += llvm::utostr(RL.getFieldOffset(FD->getFieldIndex()));
4947    if (const EnumType *ET = T->getAs<EnumType>())
4948      S += ObjCEncodingForEnumType(Ctx, ET);
4949    else {
4950      const BuiltinType *BT = T->castAs<BuiltinType>();
4951      S += getObjCEncodingForPrimitiveKind(Ctx, BT->getKind());
4952    }
4953  }
4954  S += llvm::utostr(FD->getBitWidthValue(*Ctx));
4955}
4956
4957// FIXME: Use SmallString for accumulating string.
4958void ASTContext::getObjCEncodingForTypeImpl(QualType T, std::string& S,
4959                                            bool ExpandPointedToStructures,
4960                                            bool ExpandStructures,
4961                                            const FieldDecl *FD,
4962                                            bool OutermostType,
4963                                            bool EncodingProperty,
4964                                            bool StructField,
4965                                            bool EncodeBlockParameters,
4966                                            bool EncodeClassNames) const {
4967  CanQualType CT = getCanonicalType(T);
4968  switch (CT->getTypeClass()) {
4969  case Type::Builtin:
4970  case Type::Enum:
4971    if (FD && FD->isBitField())
4972      return EncodeBitField(this, S, T, FD);
4973    if (const BuiltinType *BT = dyn_cast<BuiltinType>(CT))
4974      S += getObjCEncodingForPrimitiveKind(this, BT->getKind());
4975    else
4976      S += ObjCEncodingForEnumType(this, cast<EnumType>(CT));
4977    return;
4978
4979  case Type::Complex: {
4980    const ComplexType *CT = T->castAs<ComplexType>();
4981    S += 'j';
4982    getObjCEncodingForTypeImpl(CT->getElementType(), S, false, false, 0, false,
4983                               false);
4984    return;
4985  }
4986
4987  case Type::Atomic: {
4988    const AtomicType *AT = T->castAs<AtomicType>();
4989    S += 'A';
4990    getObjCEncodingForTypeImpl(AT->getValueType(), S, false, false, 0,
4991                               false, false);
4992    return;
4993  }
4994
4995  // encoding for pointer or reference types.
4996  case Type::Pointer:
4997  case Type::LValueReference:
4998  case Type::RValueReference: {
4999    QualType PointeeTy;
5000    if (isa<PointerType>(CT)) {
5001      const PointerType *PT = T->castAs<PointerType>();
5002      if (PT->isObjCSelType()) {
5003        S += ':';
5004        return;
5005      }
5006      PointeeTy = PT->getPointeeType();
5007    } else {
5008      PointeeTy = T->castAs<ReferenceType>()->getPointeeType();
5009    }
5010
5011    bool isReadOnly = false;
5012    // For historical/compatibility reasons, the read-only qualifier of the
5013    // pointee gets emitted _before_ the '^'.  The read-only qualifier of
5014    // the pointer itself gets ignored, _unless_ we are looking at a typedef!
5015    // Also, do not emit the 'r' for anything but the outermost type!
5016    if (isa<TypedefType>(T.getTypePtr())) {
5017      if (OutermostType && T.isConstQualified()) {
5018        isReadOnly = true;
5019        S += 'r';
5020      }
5021    } else if (OutermostType) {
5022      QualType P = PointeeTy;
5023      while (P->getAs<PointerType>())
5024        P = P->getAs<PointerType>()->getPointeeType();
5025      if (P.isConstQualified()) {
5026        isReadOnly = true;
5027        S += 'r';
5028      }
5029    }
5030    if (isReadOnly) {
5031      // Another legacy compatibility encoding. Some ObjC qualifier and type
5032      // combinations need to be rearranged.
5033      // Rewrite "in const" from "nr" to "rn"
5034      if (StringRef(S).endswith("nr"))
5035        S.replace(S.end()-2, S.end(), "rn");
5036    }
5037
5038    if (PointeeTy->isCharType()) {
5039      // char pointer types should be encoded as '*' unless it is a
5040      // type that has been typedef'd to 'BOOL'.
5041      if (!isTypeTypedefedAsBOOL(PointeeTy)) {
5042        S += '*';
5043        return;
5044      }
5045    } else if (const RecordType *RTy = PointeeTy->getAs<RecordType>()) {
5046      // GCC binary compat: Need to convert "struct objc_class *" to "#".
5047      if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_class")) {
5048        S += '#';
5049        return;
5050      }
5051      // GCC binary compat: Need to convert "struct objc_object *" to "@".
5052      if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_object")) {
5053        S += '@';
5054        return;
5055      }
5056      // fall through...
5057    }
5058    S += '^';
5059    getLegacyIntegralTypeEncoding(PointeeTy);
5060
5061    getObjCEncodingForTypeImpl(PointeeTy, S, false, ExpandPointedToStructures,
5062                               NULL);
5063    return;
5064  }
5065
5066  case Type::ConstantArray:
5067  case Type::IncompleteArray:
5068  case Type::VariableArray: {
5069    const ArrayType *AT = cast<ArrayType>(CT);
5070
5071    if (isa<IncompleteArrayType>(AT) && !StructField) {
5072      // Incomplete arrays are encoded as a pointer to the array element.
5073      S += '^';
5074
5075      getObjCEncodingForTypeImpl(AT->getElementType(), S,
5076                                 false, ExpandStructures, FD);
5077    } else {
5078      S += '[';
5079
5080      if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) {
5081        if (getTypeSize(CAT->getElementType()) == 0)
5082          S += '0';
5083        else
5084          S += llvm::utostr(CAT->getSize().getZExtValue());
5085      } else {
5086        //Variable length arrays are encoded as a regular array with 0 elements.
5087        assert((isa<VariableArrayType>(AT) || isa<IncompleteArrayType>(AT)) &&
5088               "Unknown array type!");
5089        S += '0';
5090      }
5091
5092      getObjCEncodingForTypeImpl(AT->getElementType(), S,
5093                                 false, ExpandStructures, FD);
5094      S += ']';
5095    }
5096    return;
5097  }
5098
5099  case Type::FunctionNoProto:
5100  case Type::FunctionProto:
5101    S += '?';
5102    return;
5103
5104  case Type::Record: {
5105    RecordDecl *RDecl = cast<RecordType>(CT)->getDecl();
5106    S += RDecl->isUnion() ? '(' : '{';
5107    // Anonymous structures print as '?'
5108    if (const IdentifierInfo *II = RDecl->getIdentifier()) {
5109      S += II->getName();
5110      if (ClassTemplateSpecializationDecl *Spec
5111          = dyn_cast<ClassTemplateSpecializationDecl>(RDecl)) {
5112        const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
5113        std::string TemplateArgsStr
5114          = TemplateSpecializationType::PrintTemplateArgumentList(
5115                                            TemplateArgs.data(),
5116                                            TemplateArgs.size(),
5117                                            (*this).getPrintingPolicy());
5118
5119        S += TemplateArgsStr;
5120      }
5121    } else {
5122      S += '?';
5123    }
5124    if (ExpandStructures) {
5125      S += '=';
5126      if (!RDecl->isUnion()) {
5127        getObjCEncodingForStructureImpl(RDecl, S, FD);
5128      } else {
5129        for (RecordDecl::field_iterator Field = RDecl->field_begin(),
5130                                     FieldEnd = RDecl->field_end();
5131             Field != FieldEnd; ++Field) {
5132          if (FD) {
5133            S += '"';
5134            S += Field->getNameAsString();
5135            S += '"';
5136          }
5137
5138          // Special case bit-fields.
5139          if (Field->isBitField()) {
5140            getObjCEncodingForTypeImpl(Field->getType(), S, false, true,
5141                                       *Field);
5142          } else {
5143            QualType qt = Field->getType();
5144            getLegacyIntegralTypeEncoding(qt);
5145            getObjCEncodingForTypeImpl(qt, S, false, true,
5146                                       FD, /*OutermostType*/false,
5147                                       /*EncodingProperty*/false,
5148                                       /*StructField*/true);
5149          }
5150        }
5151      }
5152    }
5153    S += RDecl->isUnion() ? ')' : '}';
5154    return;
5155  }
5156
5157  case Type::BlockPointer: {
5158    const BlockPointerType *BT = T->castAs<BlockPointerType>();
5159    S += "@?"; // Unlike a pointer-to-function, which is "^?".
5160    if (EncodeBlockParameters) {
5161      const FunctionType *FT = BT->getPointeeType()->castAs<FunctionType>();
5162
5163      S += '<';
5164      // Block return type
5165      getObjCEncodingForTypeImpl(FT->getResultType(), S,
5166                                 ExpandPointedToStructures, ExpandStructures,
5167                                 FD,
5168                                 false /* OutermostType */,
5169                                 EncodingProperty,
5170                                 false /* StructField */,
5171                                 EncodeBlockParameters,
5172                                 EncodeClassNames);
5173      // Block self
5174      S += "@?";
5175      // Block parameters
5176      if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(FT)) {
5177        for (FunctionProtoType::arg_type_iterator I = FPT->arg_type_begin(),
5178               E = FPT->arg_type_end(); I && (I != E); ++I) {
5179          getObjCEncodingForTypeImpl(*I, S,
5180                                     ExpandPointedToStructures,
5181                                     ExpandStructures,
5182                                     FD,
5183                                     false /* OutermostType */,
5184                                     EncodingProperty,
5185                                     false /* StructField */,
5186                                     EncodeBlockParameters,
5187                                     EncodeClassNames);
5188        }
5189      }
5190      S += '>';
5191    }
5192    return;
5193  }
5194
5195  case Type::ObjCObject:
5196  case Type::ObjCInterface: {
5197    // Ignore protocol qualifiers when mangling at this level.
5198    T = T->castAs<ObjCObjectType>()->getBaseType();
5199
5200    // The assumption seems to be that this assert will succeed
5201    // because nested levels will have filtered out 'id' and 'Class'.
5202    const ObjCInterfaceType *OIT = T->castAs<ObjCInterfaceType>();
5203    // @encode(class_name)
5204    ObjCInterfaceDecl *OI = OIT->getDecl();
5205    S += '{';
5206    const IdentifierInfo *II = OI->getIdentifier();
5207    S += II->getName();
5208    S += '=';
5209    SmallVector<const ObjCIvarDecl*, 32> Ivars;
5210    DeepCollectObjCIvars(OI, true, Ivars);
5211    for (unsigned i = 0, e = Ivars.size(); i != e; ++i) {
5212      const FieldDecl *Field = cast<FieldDecl>(Ivars[i]);
5213      if (Field->isBitField())
5214        getObjCEncodingForTypeImpl(Field->getType(), S, false, true, Field);
5215      else
5216        getObjCEncodingForTypeImpl(Field->getType(), S, false, true, FD);
5217    }
5218    S += '}';
5219    return;
5220  }
5221
5222  case Type::ObjCObjectPointer: {
5223    const ObjCObjectPointerType *OPT = T->castAs<ObjCObjectPointerType>();
5224    if (OPT->isObjCIdType()) {
5225      S += '@';
5226      return;
5227    }
5228
5229    if (OPT->isObjCClassType() || OPT->isObjCQualifiedClassType()) {
5230      // FIXME: Consider if we need to output qualifiers for 'Class<p>'.
5231      // Since this is a binary compatibility issue, need to consult with runtime
5232      // folks. Fortunately, this is a *very* obsure construct.
5233      S += '#';
5234      return;
5235    }
5236
5237    if (OPT->isObjCQualifiedIdType()) {
5238      getObjCEncodingForTypeImpl(getObjCIdType(), S,
5239                                 ExpandPointedToStructures,
5240                                 ExpandStructures, FD);
5241      if (FD || EncodingProperty || EncodeClassNames) {
5242        // Note that we do extended encoding of protocol qualifer list
5243        // Only when doing ivar or property encoding.
5244        S += '"';
5245        for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(),
5246             E = OPT->qual_end(); I != E; ++I) {
5247          S += '<';
5248          S += (*I)->getNameAsString();
5249          S += '>';
5250        }
5251        S += '"';
5252      }
5253      return;
5254    }
5255
5256    QualType PointeeTy = OPT->getPointeeType();
5257    if (!EncodingProperty &&
5258        isa<TypedefType>(PointeeTy.getTypePtr())) {
5259      // Another historical/compatibility reason.
5260      // We encode the underlying type which comes out as
5261      // {...};
5262      S += '^';
5263      getObjCEncodingForTypeImpl(PointeeTy, S,
5264                                 false, ExpandPointedToStructures,
5265                                 NULL);
5266      return;
5267    }
5268
5269    S += '@';
5270    if (OPT->getInterfaceDecl() &&
5271        (FD || EncodingProperty || EncodeClassNames)) {
5272      S += '"';
5273      S += OPT->getInterfaceDecl()->getIdentifier()->getName();
5274      for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(),
5275           E = OPT->qual_end(); I != E; ++I) {
5276        S += '<';
5277        S += (*I)->getNameAsString();
5278        S += '>';
5279      }
5280      S += '"';
5281    }
5282    return;
5283  }
5284
5285  // gcc just blithely ignores member pointers.
5286  // FIXME: we shoul do better than that.  'M' is available.
5287  case Type::MemberPointer:
5288    return;
5289
5290  case Type::Vector:
5291  case Type::ExtVector:
5292    // This matches gcc's encoding, even though technically it is
5293    // insufficient.
5294    // FIXME. We should do a better job than gcc.
5295    return;
5296
5297#define ABSTRACT_TYPE(KIND, BASE)
5298#define TYPE(KIND, BASE)
5299#define DEPENDENT_TYPE(KIND, BASE) \
5300  case Type::KIND:
5301#define NON_CANONICAL_TYPE(KIND, BASE) \
5302  case Type::KIND:
5303#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(KIND, BASE) \
5304  case Type::KIND:
5305#include "clang/AST/TypeNodes.def"
5306    llvm_unreachable("@encode for dependent type!");
5307  }
5308  llvm_unreachable("bad type kind!");
5309}
5310
5311void ASTContext::getObjCEncodingForStructureImpl(RecordDecl *RDecl,
5312                                                 std::string &S,
5313                                                 const FieldDecl *FD,
5314                                                 bool includeVBases) const {
5315  assert(RDecl && "Expected non-null RecordDecl");
5316  assert(!RDecl->isUnion() && "Should not be called for unions");
5317  if (!RDecl->getDefinition())
5318    return;
5319
5320  CXXRecordDecl *CXXRec = dyn_cast<CXXRecordDecl>(RDecl);
5321  std::multimap<uint64_t, NamedDecl *> FieldOrBaseOffsets;
5322  const ASTRecordLayout &layout = getASTRecordLayout(RDecl);
5323
5324  if (CXXRec) {
5325    for (CXXRecordDecl::base_class_iterator
5326           BI = CXXRec->bases_begin(),
5327           BE = CXXRec->bases_end(); BI != BE; ++BI) {
5328      if (!BI->isVirtual()) {
5329        CXXRecordDecl *base = BI->getType()->getAsCXXRecordDecl();
5330        if (base->isEmpty())
5331          continue;
5332        uint64_t offs = toBits(layout.getBaseClassOffset(base));
5333        FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
5334                                  std::make_pair(offs, base));
5335      }
5336    }
5337  }
5338
5339  unsigned i = 0;
5340  for (RecordDecl::field_iterator Field = RDecl->field_begin(),
5341                               FieldEnd = RDecl->field_end();
5342       Field != FieldEnd; ++Field, ++i) {
5343    uint64_t offs = layout.getFieldOffset(i);
5344    FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
5345                              std::make_pair(offs, *Field));
5346  }
5347
5348  if (CXXRec && includeVBases) {
5349    for (CXXRecordDecl::base_class_iterator
5350           BI = CXXRec->vbases_begin(),
5351           BE = CXXRec->vbases_end(); BI != BE; ++BI) {
5352      CXXRecordDecl *base = BI->getType()->getAsCXXRecordDecl();
5353      if (base->isEmpty())
5354        continue;
5355      uint64_t offs = toBits(layout.getVBaseClassOffset(base));
5356      if (FieldOrBaseOffsets.find(offs) == FieldOrBaseOffsets.end())
5357        FieldOrBaseOffsets.insert(FieldOrBaseOffsets.end(),
5358                                  std::make_pair(offs, base));
5359    }
5360  }
5361
5362  CharUnits size;
5363  if (CXXRec) {
5364    size = includeVBases ? layout.getSize() : layout.getNonVirtualSize();
5365  } else {
5366    size = layout.getSize();
5367  }
5368
5369  uint64_t CurOffs = 0;
5370  std::multimap<uint64_t, NamedDecl *>::iterator
5371    CurLayObj = FieldOrBaseOffsets.begin();
5372
5373  if (CXXRec && CXXRec->isDynamicClass() &&
5374      (CurLayObj == FieldOrBaseOffsets.end() || CurLayObj->first != 0)) {
5375    if (FD) {
5376      S += "\"_vptr$";
5377      std::string recname = CXXRec->getNameAsString();
5378      if (recname.empty()) recname = "?";
5379      S += recname;
5380      S += '"';
5381    }
5382    S += "^^?";
5383    CurOffs += getTypeSize(VoidPtrTy);
5384  }
5385
5386  if (!RDecl->hasFlexibleArrayMember()) {
5387    // Mark the end of the structure.
5388    uint64_t offs = toBits(size);
5389    FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
5390                              std::make_pair(offs, (NamedDecl*)0));
5391  }
5392
5393  for (; CurLayObj != FieldOrBaseOffsets.end(); ++CurLayObj) {
5394    assert(CurOffs <= CurLayObj->first);
5395
5396    if (CurOffs < CurLayObj->first) {
5397      uint64_t padding = CurLayObj->first - CurOffs;
5398      // FIXME: There doesn't seem to be a way to indicate in the encoding that
5399      // packing/alignment of members is different that normal, in which case
5400      // the encoding will be out-of-sync with the real layout.
5401      // If the runtime switches to just consider the size of types without
5402      // taking into account alignment, we could make padding explicit in the
5403      // encoding (e.g. using arrays of chars). The encoding strings would be
5404      // longer then though.
5405      CurOffs += padding;
5406    }
5407
5408    NamedDecl *dcl = CurLayObj->second;
5409    if (dcl == 0)
5410      break; // reached end of structure.
5411
5412    if (CXXRecordDecl *base = dyn_cast<CXXRecordDecl>(dcl)) {
5413      // We expand the bases without their virtual bases since those are going
5414      // in the initial structure. Note that this differs from gcc which
5415      // expands virtual bases each time one is encountered in the hierarchy,
5416      // making the encoding type bigger than it really is.
5417      getObjCEncodingForStructureImpl(base, S, FD, /*includeVBases*/false);
5418      assert(!base->isEmpty());
5419      CurOffs += toBits(getASTRecordLayout(base).getNonVirtualSize());
5420    } else {
5421      FieldDecl *field = cast<FieldDecl>(dcl);
5422      if (FD) {
5423        S += '"';
5424        S += field->getNameAsString();
5425        S += '"';
5426      }
5427
5428      if (field->isBitField()) {
5429        EncodeBitField(this, S, field->getType(), field);
5430        CurOffs += field->getBitWidthValue(*this);
5431      } else {
5432        QualType qt = field->getType();
5433        getLegacyIntegralTypeEncoding(qt);
5434        getObjCEncodingForTypeImpl(qt, S, false, true, FD,
5435                                   /*OutermostType*/false,
5436                                   /*EncodingProperty*/false,
5437                                   /*StructField*/true);
5438        CurOffs += getTypeSize(field->getType());
5439      }
5440    }
5441  }
5442}
5443
5444void ASTContext::getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT,
5445                                                 std::string& S) const {
5446  if (QT & Decl::OBJC_TQ_In)
5447    S += 'n';
5448  if (QT & Decl::OBJC_TQ_Inout)
5449    S += 'N';
5450  if (QT & Decl::OBJC_TQ_Out)
5451    S += 'o';
5452  if (QT & Decl::OBJC_TQ_Bycopy)
5453    S += 'O';
5454  if (QT & Decl::OBJC_TQ_Byref)
5455    S += 'R';
5456  if (QT & Decl::OBJC_TQ_Oneway)
5457    S += 'V';
5458}
5459
5460TypedefDecl *ASTContext::getObjCIdDecl() const {
5461  if (!ObjCIdDecl) {
5462    QualType T = getObjCObjectType(ObjCBuiltinIdTy, 0, 0);
5463    T = getObjCObjectPointerType(T);
5464    TypeSourceInfo *IdInfo = getTrivialTypeSourceInfo(T);
5465    ObjCIdDecl = TypedefDecl::Create(const_cast<ASTContext &>(*this),
5466                                     getTranslationUnitDecl(),
5467                                     SourceLocation(), SourceLocation(),
5468                                     &Idents.get("id"), IdInfo);
5469  }
5470
5471  return ObjCIdDecl;
5472}
5473
5474TypedefDecl *ASTContext::getObjCSelDecl() const {
5475  if (!ObjCSelDecl) {
5476    QualType SelT = getPointerType(ObjCBuiltinSelTy);
5477    TypeSourceInfo *SelInfo = getTrivialTypeSourceInfo(SelT);
5478    ObjCSelDecl = TypedefDecl::Create(const_cast<ASTContext &>(*this),
5479                                      getTranslationUnitDecl(),
5480                                      SourceLocation(), SourceLocation(),
5481                                      &Idents.get("SEL"), SelInfo);
5482  }
5483  return ObjCSelDecl;
5484}
5485
5486TypedefDecl *ASTContext::getObjCClassDecl() const {
5487  if (!ObjCClassDecl) {
5488    QualType T = getObjCObjectType(ObjCBuiltinClassTy, 0, 0);
5489    T = getObjCObjectPointerType(T);
5490    TypeSourceInfo *ClassInfo = getTrivialTypeSourceInfo(T);
5491    ObjCClassDecl = TypedefDecl::Create(const_cast<ASTContext &>(*this),
5492                                        getTranslationUnitDecl(),
5493                                        SourceLocation(), SourceLocation(),
5494                                        &Idents.get("Class"), ClassInfo);
5495  }
5496
5497  return ObjCClassDecl;
5498}
5499
5500ObjCInterfaceDecl *ASTContext::getObjCProtocolDecl() const {
5501  if (!ObjCProtocolClassDecl) {
5502    ObjCProtocolClassDecl
5503      = ObjCInterfaceDecl::Create(*this, getTranslationUnitDecl(),
5504                                  SourceLocation(),
5505                                  &Idents.get("Protocol"),
5506                                  /*PrevDecl=*/0,
5507                                  SourceLocation(), true);
5508  }
5509
5510  return ObjCProtocolClassDecl;
5511}
5512
5513//===----------------------------------------------------------------------===//
5514// __builtin_va_list Construction Functions
5515//===----------------------------------------------------------------------===//
5516
5517static TypedefDecl *CreateCharPtrBuiltinVaListDecl(const ASTContext *Context) {
5518  // typedef char* __builtin_va_list;
5519  QualType CharPtrType = Context->getPointerType(Context->CharTy);
5520  TypeSourceInfo *TInfo
5521    = Context->getTrivialTypeSourceInfo(CharPtrType);
5522
5523  TypedefDecl *VaListTypeDecl
5524    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
5525                          Context->getTranslationUnitDecl(),
5526                          SourceLocation(), SourceLocation(),
5527                          &Context->Idents.get("__builtin_va_list"),
5528                          TInfo);
5529  return VaListTypeDecl;
5530}
5531
5532static TypedefDecl *CreateVoidPtrBuiltinVaListDecl(const ASTContext *Context) {
5533  // typedef void* __builtin_va_list;
5534  QualType VoidPtrType = Context->getPointerType(Context->VoidTy);
5535  TypeSourceInfo *TInfo
5536    = Context->getTrivialTypeSourceInfo(VoidPtrType);
5537
5538  TypedefDecl *VaListTypeDecl
5539    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
5540                          Context->getTranslationUnitDecl(),
5541                          SourceLocation(), SourceLocation(),
5542                          &Context->Idents.get("__builtin_va_list"),
5543                          TInfo);
5544  return VaListTypeDecl;
5545}
5546
5547static TypedefDecl *CreatePowerABIBuiltinVaListDecl(const ASTContext *Context) {
5548  // typedef struct __va_list_tag {
5549  RecordDecl *VaListTagDecl;
5550
5551  VaListTagDecl = CreateRecordDecl(*Context, TTK_Struct,
5552                                   Context->getTranslationUnitDecl(),
5553                                   &Context->Idents.get("__va_list_tag"));
5554  VaListTagDecl->startDefinition();
5555
5556  const size_t NumFields = 5;
5557  QualType FieldTypes[NumFields];
5558  const char *FieldNames[NumFields];
5559
5560  //   unsigned char gpr;
5561  FieldTypes[0] = Context->UnsignedCharTy;
5562  FieldNames[0] = "gpr";
5563
5564  //   unsigned char fpr;
5565  FieldTypes[1] = Context->UnsignedCharTy;
5566  FieldNames[1] = "fpr";
5567
5568  //   unsigned short reserved;
5569  FieldTypes[2] = Context->UnsignedShortTy;
5570  FieldNames[2] = "reserved";
5571
5572  //   void* overflow_arg_area;
5573  FieldTypes[3] = Context->getPointerType(Context->VoidTy);
5574  FieldNames[3] = "overflow_arg_area";
5575
5576  //   void* reg_save_area;
5577  FieldTypes[4] = Context->getPointerType(Context->VoidTy);
5578  FieldNames[4] = "reg_save_area";
5579
5580  // Create fields
5581  for (unsigned i = 0; i < NumFields; ++i) {
5582    FieldDecl *Field = FieldDecl::Create(*Context, VaListTagDecl,
5583                                         SourceLocation(),
5584                                         SourceLocation(),
5585                                         &Context->Idents.get(FieldNames[i]),
5586                                         FieldTypes[i], /*TInfo=*/0,
5587                                         /*BitWidth=*/0,
5588                                         /*Mutable=*/false,
5589                                         ICIS_NoInit);
5590    Field->setAccess(AS_public);
5591    VaListTagDecl->addDecl(Field);
5592  }
5593  VaListTagDecl->completeDefinition();
5594  QualType VaListTagType = Context->getRecordType(VaListTagDecl);
5595  Context->VaListTagTy = VaListTagType;
5596
5597  // } __va_list_tag;
5598  TypedefDecl *VaListTagTypedefDecl
5599    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
5600                          Context->getTranslationUnitDecl(),
5601                          SourceLocation(), SourceLocation(),
5602                          &Context->Idents.get("__va_list_tag"),
5603                          Context->getTrivialTypeSourceInfo(VaListTagType));
5604  QualType VaListTagTypedefType =
5605    Context->getTypedefType(VaListTagTypedefDecl);
5606
5607  // typedef __va_list_tag __builtin_va_list[1];
5608  llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 1);
5609  QualType VaListTagArrayType
5610    = Context->getConstantArrayType(VaListTagTypedefType,
5611                                    Size, ArrayType::Normal, 0);
5612  TypeSourceInfo *TInfo
5613    = Context->getTrivialTypeSourceInfo(VaListTagArrayType);
5614  TypedefDecl *VaListTypedefDecl
5615    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
5616                          Context->getTranslationUnitDecl(),
5617                          SourceLocation(), SourceLocation(),
5618                          &Context->Idents.get("__builtin_va_list"),
5619                          TInfo);
5620
5621  return VaListTypedefDecl;
5622}
5623
5624static TypedefDecl *
5625CreateX86_64ABIBuiltinVaListDecl(const ASTContext *Context) {
5626  // typedef struct __va_list_tag {
5627  RecordDecl *VaListTagDecl;
5628  VaListTagDecl = CreateRecordDecl(*Context, TTK_Struct,
5629                                   Context->getTranslationUnitDecl(),
5630                                   &Context->Idents.get("__va_list_tag"));
5631  VaListTagDecl->startDefinition();
5632
5633  const size_t NumFields = 4;
5634  QualType FieldTypes[NumFields];
5635  const char *FieldNames[NumFields];
5636
5637  //   unsigned gp_offset;
5638  FieldTypes[0] = Context->UnsignedIntTy;
5639  FieldNames[0] = "gp_offset";
5640
5641  //   unsigned fp_offset;
5642  FieldTypes[1] = Context->UnsignedIntTy;
5643  FieldNames[1] = "fp_offset";
5644
5645  //   void* overflow_arg_area;
5646  FieldTypes[2] = Context->getPointerType(Context->VoidTy);
5647  FieldNames[2] = "overflow_arg_area";
5648
5649  //   void* reg_save_area;
5650  FieldTypes[3] = Context->getPointerType(Context->VoidTy);
5651  FieldNames[3] = "reg_save_area";
5652
5653  // Create fields
5654  for (unsigned i = 0; i < NumFields; ++i) {
5655    FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context),
5656                                         VaListTagDecl,
5657                                         SourceLocation(),
5658                                         SourceLocation(),
5659                                         &Context->Idents.get(FieldNames[i]),
5660                                         FieldTypes[i], /*TInfo=*/0,
5661                                         /*BitWidth=*/0,
5662                                         /*Mutable=*/false,
5663                                         ICIS_NoInit);
5664    Field->setAccess(AS_public);
5665    VaListTagDecl->addDecl(Field);
5666  }
5667  VaListTagDecl->completeDefinition();
5668  QualType VaListTagType = Context->getRecordType(VaListTagDecl);
5669  Context->VaListTagTy = VaListTagType;
5670
5671  // } __va_list_tag;
5672  TypedefDecl *VaListTagTypedefDecl
5673    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
5674                          Context->getTranslationUnitDecl(),
5675                          SourceLocation(), SourceLocation(),
5676                          &Context->Idents.get("__va_list_tag"),
5677                          Context->getTrivialTypeSourceInfo(VaListTagType));
5678  QualType VaListTagTypedefType =
5679    Context->getTypedefType(VaListTagTypedefDecl);
5680
5681  // typedef __va_list_tag __builtin_va_list[1];
5682  llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 1);
5683  QualType VaListTagArrayType
5684    = Context->getConstantArrayType(VaListTagTypedefType,
5685                                      Size, ArrayType::Normal,0);
5686  TypeSourceInfo *TInfo
5687    = Context->getTrivialTypeSourceInfo(VaListTagArrayType);
5688  TypedefDecl *VaListTypedefDecl
5689    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
5690                          Context->getTranslationUnitDecl(),
5691                          SourceLocation(), SourceLocation(),
5692                          &Context->Idents.get("__builtin_va_list"),
5693                          TInfo);
5694
5695  return VaListTypedefDecl;
5696}
5697
5698static TypedefDecl *CreatePNaClABIBuiltinVaListDecl(const ASTContext *Context) {
5699  // typedef int __builtin_va_list[4];
5700  llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 4);
5701  QualType IntArrayType
5702    = Context->getConstantArrayType(Context->IntTy,
5703				    Size, ArrayType::Normal, 0);
5704  TypedefDecl *VaListTypedefDecl
5705    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
5706                          Context->getTranslationUnitDecl(),
5707                          SourceLocation(), SourceLocation(),
5708                          &Context->Idents.get("__builtin_va_list"),
5709                          Context->getTrivialTypeSourceInfo(IntArrayType));
5710
5711  return VaListTypedefDecl;
5712}
5713
5714static TypedefDecl *
5715CreateAAPCSABIBuiltinVaListDecl(const ASTContext *Context) {
5716  RecordDecl *VaListDecl;
5717  if (Context->getLangOpts().CPlusPlus) {
5718    // namespace std { struct __va_list {
5719    NamespaceDecl *NS;
5720    NS = NamespaceDecl::Create(const_cast<ASTContext &>(*Context),
5721                               Context->getTranslationUnitDecl(),
5722                               /*Inline*/false, SourceLocation(),
5723                               SourceLocation(), &Context->Idents.get("std"),
5724                               /*PrevDecl*/0);
5725
5726    VaListDecl = CXXRecordDecl::Create(*Context, TTK_Struct,
5727                                       Context->getTranslationUnitDecl(),
5728                                       SourceLocation(), SourceLocation(),
5729                                       &Context->Idents.get("__va_list"));
5730
5731    VaListDecl->setDeclContext(NS);
5732
5733  } else {
5734    // struct __va_list {
5735    VaListDecl = CreateRecordDecl(*Context, TTK_Struct,
5736                                  Context->getTranslationUnitDecl(),
5737                                  &Context->Idents.get("__va_list"));
5738  }
5739
5740  VaListDecl->startDefinition();
5741
5742  // void * __ap;
5743  FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context),
5744                                       VaListDecl,
5745                                       SourceLocation(),
5746                                       SourceLocation(),
5747                                       &Context->Idents.get("__ap"),
5748                                       Context->getPointerType(Context->VoidTy),
5749                                       /*TInfo=*/0,
5750                                       /*BitWidth=*/0,
5751                                       /*Mutable=*/false,
5752                                       ICIS_NoInit);
5753  Field->setAccess(AS_public);
5754  VaListDecl->addDecl(Field);
5755
5756  // };
5757  VaListDecl->completeDefinition();
5758
5759  // typedef struct __va_list __builtin_va_list;
5760  TypeSourceInfo *TInfo
5761    = Context->getTrivialTypeSourceInfo(Context->getRecordType(VaListDecl));
5762
5763  TypedefDecl *VaListTypeDecl
5764    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
5765                          Context->getTranslationUnitDecl(),
5766                          SourceLocation(), SourceLocation(),
5767                          &Context->Idents.get("__builtin_va_list"),
5768                          TInfo);
5769
5770  return VaListTypeDecl;
5771}
5772
5773static TypedefDecl *CreateVaListDecl(const ASTContext *Context,
5774                                     TargetInfo::BuiltinVaListKind Kind) {
5775  switch (Kind) {
5776  case TargetInfo::CharPtrBuiltinVaList:
5777    return CreateCharPtrBuiltinVaListDecl(Context);
5778  case TargetInfo::VoidPtrBuiltinVaList:
5779    return CreateVoidPtrBuiltinVaListDecl(Context);
5780  case TargetInfo::PowerABIBuiltinVaList:
5781    return CreatePowerABIBuiltinVaListDecl(Context);
5782  case TargetInfo::X86_64ABIBuiltinVaList:
5783    return CreateX86_64ABIBuiltinVaListDecl(Context);
5784  case TargetInfo::PNaClABIBuiltinVaList:
5785    return CreatePNaClABIBuiltinVaListDecl(Context);
5786  case TargetInfo::AAPCSABIBuiltinVaList:
5787    return CreateAAPCSABIBuiltinVaListDecl(Context);
5788  }
5789
5790  llvm_unreachable("Unhandled __builtin_va_list type kind");
5791}
5792
5793TypedefDecl *ASTContext::getBuiltinVaListDecl() const {
5794  if (!BuiltinVaListDecl)
5795    BuiltinVaListDecl = CreateVaListDecl(this, Target->getBuiltinVaListKind());
5796
5797  return BuiltinVaListDecl;
5798}
5799
5800QualType ASTContext::getVaListTagType() const {
5801  // Force the creation of VaListTagTy by building the __builtin_va_list
5802  // declaration.
5803  if (VaListTagTy.isNull())
5804    (void) getBuiltinVaListDecl();
5805
5806  return VaListTagTy;
5807}
5808
5809void ASTContext::setObjCConstantStringInterface(ObjCInterfaceDecl *Decl) {
5810  assert(ObjCConstantStringType.isNull() &&
5811         "'NSConstantString' type already set!");
5812
5813  ObjCConstantStringType = getObjCInterfaceType(Decl);
5814}
5815
5816/// \brief Retrieve the template name that corresponds to a non-empty
5817/// lookup.
5818TemplateName
5819ASTContext::getOverloadedTemplateName(UnresolvedSetIterator Begin,
5820                                      UnresolvedSetIterator End) const {
5821  unsigned size = End - Begin;
5822  assert(size > 1 && "set is not overloaded!");
5823
5824  void *memory = Allocate(sizeof(OverloadedTemplateStorage) +
5825                          size * sizeof(FunctionTemplateDecl*));
5826  OverloadedTemplateStorage *OT = new(memory) OverloadedTemplateStorage(size);
5827
5828  NamedDecl **Storage = OT->getStorage();
5829  for (UnresolvedSetIterator I = Begin; I != End; ++I) {
5830    NamedDecl *D = *I;
5831    assert(isa<FunctionTemplateDecl>(D) ||
5832           (isa<UsingShadowDecl>(D) &&
5833            isa<FunctionTemplateDecl>(D->getUnderlyingDecl())));
5834    *Storage++ = D;
5835  }
5836
5837  return TemplateName(OT);
5838}
5839
5840/// \brief Retrieve the template name that represents a qualified
5841/// template name such as \c std::vector.
5842TemplateName
5843ASTContext::getQualifiedTemplateName(NestedNameSpecifier *NNS,
5844                                     bool TemplateKeyword,
5845                                     TemplateDecl *Template) const {
5846  assert(NNS && "Missing nested-name-specifier in qualified template name");
5847
5848  // FIXME: Canonicalization?
5849  llvm::FoldingSetNodeID ID;
5850  QualifiedTemplateName::Profile(ID, NNS, TemplateKeyword, Template);
5851
5852  void *InsertPos = 0;
5853  QualifiedTemplateName *QTN =
5854    QualifiedTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
5855  if (!QTN) {
5856    QTN = new (*this, llvm::alignOf<QualifiedTemplateName>())
5857        QualifiedTemplateName(NNS, TemplateKeyword, Template);
5858    QualifiedTemplateNames.InsertNode(QTN, InsertPos);
5859  }
5860
5861  return TemplateName(QTN);
5862}
5863
5864/// \brief Retrieve the template name that represents a dependent
5865/// template name such as \c MetaFun::template apply.
5866TemplateName
5867ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
5868                                     const IdentifierInfo *Name) const {
5869  assert((!NNS || NNS->isDependent()) &&
5870         "Nested name specifier must be dependent");
5871
5872  llvm::FoldingSetNodeID ID;
5873  DependentTemplateName::Profile(ID, NNS, Name);
5874
5875  void *InsertPos = 0;
5876  DependentTemplateName *QTN =
5877    DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
5878
5879  if (QTN)
5880    return TemplateName(QTN);
5881
5882  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
5883  if (CanonNNS == NNS) {
5884    QTN = new (*this, llvm::alignOf<DependentTemplateName>())
5885        DependentTemplateName(NNS, Name);
5886  } else {
5887    TemplateName Canon = getDependentTemplateName(CanonNNS, Name);
5888    QTN = new (*this, llvm::alignOf<DependentTemplateName>())
5889        DependentTemplateName(NNS, Name, Canon);
5890    DependentTemplateName *CheckQTN =
5891      DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
5892    assert(!CheckQTN && "Dependent type name canonicalization broken");
5893    (void)CheckQTN;
5894  }
5895
5896  DependentTemplateNames.InsertNode(QTN, InsertPos);
5897  return TemplateName(QTN);
5898}
5899
5900/// \brief Retrieve the template name that represents a dependent
5901/// template name such as \c MetaFun::template operator+.
5902TemplateName
5903ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
5904                                     OverloadedOperatorKind Operator) const {
5905  assert((!NNS || NNS->isDependent()) &&
5906         "Nested name specifier must be dependent");
5907
5908  llvm::FoldingSetNodeID ID;
5909  DependentTemplateName::Profile(ID, NNS, Operator);
5910
5911  void *InsertPos = 0;
5912  DependentTemplateName *QTN
5913    = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
5914
5915  if (QTN)
5916    return TemplateName(QTN);
5917
5918  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
5919  if (CanonNNS == NNS) {
5920    QTN = new (*this, llvm::alignOf<DependentTemplateName>())
5921        DependentTemplateName(NNS, Operator);
5922  } else {
5923    TemplateName Canon = getDependentTemplateName(CanonNNS, Operator);
5924    QTN = new (*this, llvm::alignOf<DependentTemplateName>())
5925        DependentTemplateName(NNS, Operator, Canon);
5926
5927    DependentTemplateName *CheckQTN
5928      = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
5929    assert(!CheckQTN && "Dependent template name canonicalization broken");
5930    (void)CheckQTN;
5931  }
5932
5933  DependentTemplateNames.InsertNode(QTN, InsertPos);
5934  return TemplateName(QTN);
5935}
5936
5937TemplateName
5938ASTContext::getSubstTemplateTemplateParm(TemplateTemplateParmDecl *param,
5939                                         TemplateName replacement) const {
5940  llvm::FoldingSetNodeID ID;
5941  SubstTemplateTemplateParmStorage::Profile(ID, param, replacement);
5942
5943  void *insertPos = 0;
5944  SubstTemplateTemplateParmStorage *subst
5945    = SubstTemplateTemplateParms.FindNodeOrInsertPos(ID, insertPos);
5946
5947  if (!subst) {
5948    subst = new (*this) SubstTemplateTemplateParmStorage(param, replacement);
5949    SubstTemplateTemplateParms.InsertNode(subst, insertPos);
5950  }
5951
5952  return TemplateName(subst);
5953}
5954
5955TemplateName
5956ASTContext::getSubstTemplateTemplateParmPack(TemplateTemplateParmDecl *Param,
5957                                       const TemplateArgument &ArgPack) const {
5958  ASTContext &Self = const_cast<ASTContext &>(*this);
5959  llvm::FoldingSetNodeID ID;
5960  SubstTemplateTemplateParmPackStorage::Profile(ID, Self, Param, ArgPack);
5961
5962  void *InsertPos = 0;
5963  SubstTemplateTemplateParmPackStorage *Subst
5964    = SubstTemplateTemplateParmPacks.FindNodeOrInsertPos(ID, InsertPos);
5965
5966  if (!Subst) {
5967    Subst = new (*this) SubstTemplateTemplateParmPackStorage(Param,
5968                                                           ArgPack.pack_size(),
5969                                                         ArgPack.pack_begin());
5970    SubstTemplateTemplateParmPacks.InsertNode(Subst, InsertPos);
5971  }
5972
5973  return TemplateName(Subst);
5974}
5975
5976/// getFromTargetType - Given one of the integer types provided by
5977/// TargetInfo, produce the corresponding type. The unsigned @p Type
5978/// is actually a value of type @c TargetInfo::IntType.
5979CanQualType ASTContext::getFromTargetType(unsigned Type) const {
5980  switch (Type) {
5981  case TargetInfo::NoInt: return CanQualType();
5982  case TargetInfo::SignedShort: return ShortTy;
5983  case TargetInfo::UnsignedShort: return UnsignedShortTy;
5984  case TargetInfo::SignedInt: return IntTy;
5985  case TargetInfo::UnsignedInt: return UnsignedIntTy;
5986  case TargetInfo::SignedLong: return LongTy;
5987  case TargetInfo::UnsignedLong: return UnsignedLongTy;
5988  case TargetInfo::SignedLongLong: return LongLongTy;
5989  case TargetInfo::UnsignedLongLong: return UnsignedLongLongTy;
5990  }
5991
5992  llvm_unreachable("Unhandled TargetInfo::IntType value");
5993}
5994
5995//===----------------------------------------------------------------------===//
5996//                        Type Predicates.
5997//===----------------------------------------------------------------------===//
5998
5999/// getObjCGCAttr - Returns one of GCNone, Weak or Strong objc's
6000/// garbage collection attribute.
6001///
6002Qualifiers::GC ASTContext::getObjCGCAttrKind(QualType Ty) const {
6003  if (getLangOpts().getGC() == LangOptions::NonGC)
6004    return Qualifiers::GCNone;
6005
6006  assert(getLangOpts().ObjC1);
6007  Qualifiers::GC GCAttrs = Ty.getObjCGCAttr();
6008
6009  // Default behaviour under objective-C's gc is for ObjC pointers
6010  // (or pointers to them) be treated as though they were declared
6011  // as __strong.
6012  if (GCAttrs == Qualifiers::GCNone) {
6013    if (Ty->isObjCObjectPointerType() || Ty->isBlockPointerType())
6014      return Qualifiers::Strong;
6015    else if (Ty->isPointerType())
6016      return getObjCGCAttrKind(Ty->getAs<PointerType>()->getPointeeType());
6017  } else {
6018    // It's not valid to set GC attributes on anything that isn't a
6019    // pointer.
6020#ifndef NDEBUG
6021    QualType CT = Ty->getCanonicalTypeInternal();
6022    while (const ArrayType *AT = dyn_cast<ArrayType>(CT))
6023      CT = AT->getElementType();
6024    assert(CT->isAnyPointerType() || CT->isBlockPointerType());
6025#endif
6026  }
6027  return GCAttrs;
6028}
6029
6030//===----------------------------------------------------------------------===//
6031//                        Type Compatibility Testing
6032//===----------------------------------------------------------------------===//
6033
6034/// areCompatVectorTypes - Return true if the two specified vector types are
6035/// compatible.
6036static bool areCompatVectorTypes(const VectorType *LHS,
6037                                 const VectorType *RHS) {
6038  assert(LHS->isCanonicalUnqualified() && RHS->isCanonicalUnqualified());
6039  return LHS->getElementType() == RHS->getElementType() &&
6040         LHS->getNumElements() == RHS->getNumElements();
6041}
6042
6043bool ASTContext::areCompatibleVectorTypes(QualType FirstVec,
6044                                          QualType SecondVec) {
6045  assert(FirstVec->isVectorType() && "FirstVec should be a vector type");
6046  assert(SecondVec->isVectorType() && "SecondVec should be a vector type");
6047
6048  if (hasSameUnqualifiedType(FirstVec, SecondVec))
6049    return true;
6050
6051  // Treat Neon vector types and most AltiVec vector types as if they are the
6052  // equivalent GCC vector types.
6053  const VectorType *First = FirstVec->getAs<VectorType>();
6054  const VectorType *Second = SecondVec->getAs<VectorType>();
6055  if (First->getNumElements() == Second->getNumElements() &&
6056      hasSameType(First->getElementType(), Second->getElementType()) &&
6057      First->getVectorKind() != VectorType::AltiVecPixel &&
6058      First->getVectorKind() != VectorType::AltiVecBool &&
6059      Second->getVectorKind() != VectorType::AltiVecPixel &&
6060      Second->getVectorKind() != VectorType::AltiVecBool)
6061    return true;
6062
6063  return false;
6064}
6065
6066//===----------------------------------------------------------------------===//
6067// ObjCQualifiedIdTypesAreCompatible - Compatibility testing for qualified id's.
6068//===----------------------------------------------------------------------===//
6069
6070/// ProtocolCompatibleWithProtocol - return 'true' if 'lProto' is in the
6071/// inheritance hierarchy of 'rProto'.
6072bool
6073ASTContext::ProtocolCompatibleWithProtocol(ObjCProtocolDecl *lProto,
6074                                           ObjCProtocolDecl *rProto) const {
6075  if (declaresSameEntity(lProto, rProto))
6076    return true;
6077  for (ObjCProtocolDecl::protocol_iterator PI = rProto->protocol_begin(),
6078       E = rProto->protocol_end(); PI != E; ++PI)
6079    if (ProtocolCompatibleWithProtocol(lProto, *PI))
6080      return true;
6081  return false;
6082}
6083
6084/// QualifiedIdConformsQualifiedId - compare id<pr,...> with id<pr1,...>
6085/// return true if lhs's protocols conform to rhs's protocol; false
6086/// otherwise.
6087bool ASTContext::QualifiedIdConformsQualifiedId(QualType lhs, QualType rhs) {
6088  if (lhs->isObjCQualifiedIdType() && rhs->isObjCQualifiedIdType())
6089    return ObjCQualifiedIdTypesAreCompatible(lhs, rhs, false);
6090  return false;
6091}
6092
6093/// ObjCQualifiedClassTypesAreCompatible - compare  Class<pr,...> and
6094/// Class<pr1, ...>.
6095bool ASTContext::ObjCQualifiedClassTypesAreCompatible(QualType lhs,
6096                                                      QualType rhs) {
6097  const ObjCObjectPointerType *lhsQID = lhs->getAs<ObjCObjectPointerType>();
6098  const ObjCObjectPointerType *rhsOPT = rhs->getAs<ObjCObjectPointerType>();
6099  assert ((lhsQID && rhsOPT) && "ObjCQualifiedClassTypesAreCompatible");
6100
6101  for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
6102       E = lhsQID->qual_end(); I != E; ++I) {
6103    bool match = false;
6104    ObjCProtocolDecl *lhsProto = *I;
6105    for (ObjCObjectPointerType::qual_iterator J = rhsOPT->qual_begin(),
6106         E = rhsOPT->qual_end(); J != E; ++J) {
6107      ObjCProtocolDecl *rhsProto = *J;
6108      if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto)) {
6109        match = true;
6110        break;
6111      }
6112    }
6113    if (!match)
6114      return false;
6115  }
6116  return true;
6117}
6118
6119/// ObjCQualifiedIdTypesAreCompatible - We know that one of lhs/rhs is an
6120/// ObjCQualifiedIDType.
6121bool ASTContext::ObjCQualifiedIdTypesAreCompatible(QualType lhs, QualType rhs,
6122                                                   bool compare) {
6123  // Allow id<P..> and an 'id' or void* type in all cases.
6124  if (lhs->isVoidPointerType() ||
6125      lhs->isObjCIdType() || lhs->isObjCClassType())
6126    return true;
6127  else if (rhs->isVoidPointerType() ||
6128           rhs->isObjCIdType() || rhs->isObjCClassType())
6129    return true;
6130
6131  if (const ObjCObjectPointerType *lhsQID = lhs->getAsObjCQualifiedIdType()) {
6132    const ObjCObjectPointerType *rhsOPT = rhs->getAs<ObjCObjectPointerType>();
6133
6134    if (!rhsOPT) return false;
6135
6136    if (rhsOPT->qual_empty()) {
6137      // If the RHS is a unqualified interface pointer "NSString*",
6138      // make sure we check the class hierarchy.
6139      if (ObjCInterfaceDecl *rhsID = rhsOPT->getInterfaceDecl()) {
6140        for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
6141             E = lhsQID->qual_end(); I != E; ++I) {
6142          // when comparing an id<P> on lhs with a static type on rhs,
6143          // see if static class implements all of id's protocols, directly or
6144          // through its super class and categories.
6145          if (!rhsID->ClassImplementsProtocol(*I, true))
6146            return false;
6147        }
6148      }
6149      // If there are no qualifiers and no interface, we have an 'id'.
6150      return true;
6151    }
6152    // Both the right and left sides have qualifiers.
6153    for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
6154         E = lhsQID->qual_end(); I != E; ++I) {
6155      ObjCProtocolDecl *lhsProto = *I;
6156      bool match = false;
6157
6158      // when comparing an id<P> on lhs with a static type on rhs,
6159      // see if static class implements all of id's protocols, directly or
6160      // through its super class and categories.
6161      for (ObjCObjectPointerType::qual_iterator J = rhsOPT->qual_begin(),
6162           E = rhsOPT->qual_end(); J != E; ++J) {
6163        ObjCProtocolDecl *rhsProto = *J;
6164        if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
6165            (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
6166          match = true;
6167          break;
6168        }
6169      }
6170      // If the RHS is a qualified interface pointer "NSString<P>*",
6171      // make sure we check the class hierarchy.
6172      if (ObjCInterfaceDecl *rhsID = rhsOPT->getInterfaceDecl()) {
6173        for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
6174             E = lhsQID->qual_end(); I != E; ++I) {
6175          // when comparing an id<P> on lhs with a static type on rhs,
6176          // see if static class implements all of id's protocols, directly or
6177          // through its super class and categories.
6178          if (rhsID->ClassImplementsProtocol(*I, true)) {
6179            match = true;
6180            break;
6181          }
6182        }
6183      }
6184      if (!match)
6185        return false;
6186    }
6187
6188    return true;
6189  }
6190
6191  const ObjCObjectPointerType *rhsQID = rhs->getAsObjCQualifiedIdType();
6192  assert(rhsQID && "One of the LHS/RHS should be id<x>");
6193
6194  if (const ObjCObjectPointerType *lhsOPT =
6195        lhs->getAsObjCInterfacePointerType()) {
6196    // If both the right and left sides have qualifiers.
6197    for (ObjCObjectPointerType::qual_iterator I = lhsOPT->qual_begin(),
6198         E = lhsOPT->qual_end(); I != E; ++I) {
6199      ObjCProtocolDecl *lhsProto = *I;
6200      bool match = false;
6201
6202      // when comparing an id<P> on rhs with a static type on lhs,
6203      // see if static class implements all of id's protocols, directly or
6204      // through its super class and categories.
6205      // First, lhs protocols in the qualifier list must be found, direct
6206      // or indirect in rhs's qualifier list or it is a mismatch.
6207      for (ObjCObjectPointerType::qual_iterator J = rhsQID->qual_begin(),
6208           E = rhsQID->qual_end(); J != E; ++J) {
6209        ObjCProtocolDecl *rhsProto = *J;
6210        if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
6211            (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
6212          match = true;
6213          break;
6214        }
6215      }
6216      if (!match)
6217        return false;
6218    }
6219
6220    // Static class's protocols, or its super class or category protocols
6221    // must be found, direct or indirect in rhs's qualifier list or it is a mismatch.
6222    if (ObjCInterfaceDecl *lhsID = lhsOPT->getInterfaceDecl()) {
6223      llvm::SmallPtrSet<ObjCProtocolDecl *, 8> LHSInheritedProtocols;
6224      CollectInheritedProtocols(lhsID, LHSInheritedProtocols);
6225      // This is rather dubious but matches gcc's behavior. If lhs has
6226      // no type qualifier and its class has no static protocol(s)
6227      // assume that it is mismatch.
6228      if (LHSInheritedProtocols.empty() && lhsOPT->qual_empty())
6229        return false;
6230      for (llvm::SmallPtrSet<ObjCProtocolDecl*,8>::iterator I =
6231           LHSInheritedProtocols.begin(),
6232           E = LHSInheritedProtocols.end(); I != E; ++I) {
6233        bool match = false;
6234        ObjCProtocolDecl *lhsProto = (*I);
6235        for (ObjCObjectPointerType::qual_iterator J = rhsQID->qual_begin(),
6236             E = rhsQID->qual_end(); J != E; ++J) {
6237          ObjCProtocolDecl *rhsProto = *J;
6238          if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
6239              (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
6240            match = true;
6241            break;
6242          }
6243        }
6244        if (!match)
6245          return false;
6246      }
6247    }
6248    return true;
6249  }
6250  return false;
6251}
6252
6253/// canAssignObjCInterfaces - Return true if the two interface types are
6254/// compatible for assignment from RHS to LHS.  This handles validation of any
6255/// protocol qualifiers on the LHS or RHS.
6256///
6257bool ASTContext::canAssignObjCInterfaces(const ObjCObjectPointerType *LHSOPT,
6258                                         const ObjCObjectPointerType *RHSOPT) {
6259  const ObjCObjectType* LHS = LHSOPT->getObjectType();
6260  const ObjCObjectType* RHS = RHSOPT->getObjectType();
6261
6262  // If either type represents the built-in 'id' or 'Class' types, return true.
6263  if (LHS->isObjCUnqualifiedIdOrClass() ||
6264      RHS->isObjCUnqualifiedIdOrClass())
6265    return true;
6266
6267  if (LHS->isObjCQualifiedId() || RHS->isObjCQualifiedId())
6268    return ObjCQualifiedIdTypesAreCompatible(QualType(LHSOPT,0),
6269                                             QualType(RHSOPT,0),
6270                                             false);
6271
6272  if (LHS->isObjCQualifiedClass() && RHS->isObjCQualifiedClass())
6273    return ObjCQualifiedClassTypesAreCompatible(QualType(LHSOPT,0),
6274                                                QualType(RHSOPT,0));
6275
6276  // If we have 2 user-defined types, fall into that path.
6277  if (LHS->getInterface() && RHS->getInterface())
6278    return canAssignObjCInterfaces(LHS, RHS);
6279
6280  return false;
6281}
6282
6283/// canAssignObjCInterfacesInBlockPointer - This routine is specifically written
6284/// for providing type-safety for objective-c pointers used to pass/return
6285/// arguments in block literals. When passed as arguments, passing 'A*' where
6286/// 'id' is expected is not OK. Passing 'Sub *" where 'Super *" is expected is
6287/// not OK. For the return type, the opposite is not OK.
6288bool ASTContext::canAssignObjCInterfacesInBlockPointer(
6289                                         const ObjCObjectPointerType *LHSOPT,
6290                                         const ObjCObjectPointerType *RHSOPT,
6291                                         bool BlockReturnType) {
6292  if (RHSOPT->isObjCBuiltinType() || LHSOPT->isObjCIdType())
6293    return true;
6294
6295  if (LHSOPT->isObjCBuiltinType()) {
6296    return RHSOPT->isObjCBuiltinType() || RHSOPT->isObjCQualifiedIdType();
6297  }
6298
6299  if (LHSOPT->isObjCQualifiedIdType() || RHSOPT->isObjCQualifiedIdType())
6300    return ObjCQualifiedIdTypesAreCompatible(QualType(LHSOPT,0),
6301                                             QualType(RHSOPT,0),
6302                                             false);
6303
6304  const ObjCInterfaceType* LHS = LHSOPT->getInterfaceType();
6305  const ObjCInterfaceType* RHS = RHSOPT->getInterfaceType();
6306  if (LHS && RHS)  { // We have 2 user-defined types.
6307    if (LHS != RHS) {
6308      if (LHS->getDecl()->isSuperClassOf(RHS->getDecl()))
6309        return BlockReturnType;
6310      if (RHS->getDecl()->isSuperClassOf(LHS->getDecl()))
6311        return !BlockReturnType;
6312    }
6313    else
6314      return true;
6315  }
6316  return false;
6317}
6318
6319/// getIntersectionOfProtocols - This routine finds the intersection of set
6320/// of protocols inherited from two distinct objective-c pointer objects.
6321/// It is used to build composite qualifier list of the composite type of
6322/// the conditional expression involving two objective-c pointer objects.
6323static
6324void getIntersectionOfProtocols(ASTContext &Context,
6325                                const ObjCObjectPointerType *LHSOPT,
6326                                const ObjCObjectPointerType *RHSOPT,
6327      SmallVectorImpl<ObjCProtocolDecl *> &IntersectionOfProtocols) {
6328
6329  const ObjCObjectType* LHS = LHSOPT->getObjectType();
6330  const ObjCObjectType* RHS = RHSOPT->getObjectType();
6331  assert(LHS->getInterface() && "LHS must have an interface base");
6332  assert(RHS->getInterface() && "RHS must have an interface base");
6333
6334  llvm::SmallPtrSet<ObjCProtocolDecl *, 8> InheritedProtocolSet;
6335  unsigned LHSNumProtocols = LHS->getNumProtocols();
6336  if (LHSNumProtocols > 0)
6337    InheritedProtocolSet.insert(LHS->qual_begin(), LHS->qual_end());
6338  else {
6339    llvm::SmallPtrSet<ObjCProtocolDecl *, 8> LHSInheritedProtocols;
6340    Context.CollectInheritedProtocols(LHS->getInterface(),
6341                                      LHSInheritedProtocols);
6342    InheritedProtocolSet.insert(LHSInheritedProtocols.begin(),
6343                                LHSInheritedProtocols.end());
6344  }
6345
6346  unsigned RHSNumProtocols = RHS->getNumProtocols();
6347  if (RHSNumProtocols > 0) {
6348    ObjCProtocolDecl **RHSProtocols =
6349      const_cast<ObjCProtocolDecl **>(RHS->qual_begin());
6350    for (unsigned i = 0; i < RHSNumProtocols; ++i)
6351      if (InheritedProtocolSet.count(RHSProtocols[i]))
6352        IntersectionOfProtocols.push_back(RHSProtocols[i]);
6353  } else {
6354    llvm::SmallPtrSet<ObjCProtocolDecl *, 8> RHSInheritedProtocols;
6355    Context.CollectInheritedProtocols(RHS->getInterface(),
6356                                      RHSInheritedProtocols);
6357    for (llvm::SmallPtrSet<ObjCProtocolDecl*,8>::iterator I =
6358         RHSInheritedProtocols.begin(),
6359         E = RHSInheritedProtocols.end(); I != E; ++I)
6360      if (InheritedProtocolSet.count((*I)))
6361        IntersectionOfProtocols.push_back((*I));
6362  }
6363}
6364
6365/// areCommonBaseCompatible - Returns common base class of the two classes if
6366/// one found. Note that this is O'2 algorithm. But it will be called as the
6367/// last type comparison in a ?-exp of ObjC pointer types before a
6368/// warning is issued. So, its invokation is extremely rare.
6369QualType ASTContext::areCommonBaseCompatible(
6370                                          const ObjCObjectPointerType *Lptr,
6371                                          const ObjCObjectPointerType *Rptr) {
6372  const ObjCObjectType *LHS = Lptr->getObjectType();
6373  const ObjCObjectType *RHS = Rptr->getObjectType();
6374  const ObjCInterfaceDecl* LDecl = LHS->getInterface();
6375  const ObjCInterfaceDecl* RDecl = RHS->getInterface();
6376  if (!LDecl || !RDecl || (declaresSameEntity(LDecl, RDecl)))
6377    return QualType();
6378
6379  do {
6380    LHS = cast<ObjCInterfaceType>(getObjCInterfaceType(LDecl));
6381    if (canAssignObjCInterfaces(LHS, RHS)) {
6382      SmallVector<ObjCProtocolDecl *, 8> Protocols;
6383      getIntersectionOfProtocols(*this, Lptr, Rptr, Protocols);
6384
6385      QualType Result = QualType(LHS, 0);
6386      if (!Protocols.empty())
6387        Result = getObjCObjectType(Result, Protocols.data(), Protocols.size());
6388      Result = getObjCObjectPointerType(Result);
6389      return Result;
6390    }
6391  } while ((LDecl = LDecl->getSuperClass()));
6392
6393  return QualType();
6394}
6395
6396bool ASTContext::canAssignObjCInterfaces(const ObjCObjectType *LHS,
6397                                         const ObjCObjectType *RHS) {
6398  assert(LHS->getInterface() && "LHS is not an interface type");
6399  assert(RHS->getInterface() && "RHS is not an interface type");
6400
6401  // Verify that the base decls are compatible: the RHS must be a subclass of
6402  // the LHS.
6403  if (!LHS->getInterface()->isSuperClassOf(RHS->getInterface()))
6404    return false;
6405
6406  // RHS must have a superset of the protocols in the LHS.  If the LHS is not
6407  // protocol qualified at all, then we are good.
6408  if (LHS->getNumProtocols() == 0)
6409    return true;
6410
6411  // Okay, we know the LHS has protocol qualifiers.  If the RHS doesn't,
6412  // more detailed analysis is required.
6413  if (RHS->getNumProtocols() == 0) {
6414    // OK, if LHS is a superclass of RHS *and*
6415    // this superclass is assignment compatible with LHS.
6416    // false otherwise.
6417    bool IsSuperClass =
6418      LHS->getInterface()->isSuperClassOf(RHS->getInterface());
6419    if (IsSuperClass) {
6420      // OK if conversion of LHS to SuperClass results in narrowing of types
6421      // ; i.e., SuperClass may implement at least one of the protocols
6422      // in LHS's protocol list. Example, SuperObj<P1> = lhs<P1,P2> is ok.
6423      // But not SuperObj<P1,P2,P3> = lhs<P1,P2>.
6424      llvm::SmallPtrSet<ObjCProtocolDecl *, 8> SuperClassInheritedProtocols;
6425      CollectInheritedProtocols(RHS->getInterface(), SuperClassInheritedProtocols);
6426      // If super class has no protocols, it is not a match.
6427      if (SuperClassInheritedProtocols.empty())
6428        return false;
6429
6430      for (ObjCObjectType::qual_iterator LHSPI = LHS->qual_begin(),
6431           LHSPE = LHS->qual_end();
6432           LHSPI != LHSPE; LHSPI++) {
6433        bool SuperImplementsProtocol = false;
6434        ObjCProtocolDecl *LHSProto = (*LHSPI);
6435
6436        for (llvm::SmallPtrSet<ObjCProtocolDecl*,8>::iterator I =
6437             SuperClassInheritedProtocols.begin(),
6438             E = SuperClassInheritedProtocols.end(); I != E; ++I) {
6439          ObjCProtocolDecl *SuperClassProto = (*I);
6440          if (SuperClassProto->lookupProtocolNamed(LHSProto->getIdentifier())) {
6441            SuperImplementsProtocol = true;
6442            break;
6443          }
6444        }
6445        if (!SuperImplementsProtocol)
6446          return false;
6447      }
6448      return true;
6449    }
6450    return false;
6451  }
6452
6453  for (ObjCObjectType::qual_iterator LHSPI = LHS->qual_begin(),
6454                                     LHSPE = LHS->qual_end();
6455       LHSPI != LHSPE; LHSPI++) {
6456    bool RHSImplementsProtocol = false;
6457
6458    // If the RHS doesn't implement the protocol on the left, the types
6459    // are incompatible.
6460    for (ObjCObjectType::qual_iterator RHSPI = RHS->qual_begin(),
6461                                       RHSPE = RHS->qual_end();
6462         RHSPI != RHSPE; RHSPI++) {
6463      if ((*RHSPI)->lookupProtocolNamed((*LHSPI)->getIdentifier())) {
6464        RHSImplementsProtocol = true;
6465        break;
6466      }
6467    }
6468    // FIXME: For better diagnostics, consider passing back the protocol name.
6469    if (!RHSImplementsProtocol)
6470      return false;
6471  }
6472  // The RHS implements all protocols listed on the LHS.
6473  return true;
6474}
6475
6476bool ASTContext::areComparableObjCPointerTypes(QualType LHS, QualType RHS) {
6477  // get the "pointed to" types
6478  const ObjCObjectPointerType *LHSOPT = LHS->getAs<ObjCObjectPointerType>();
6479  const ObjCObjectPointerType *RHSOPT = RHS->getAs<ObjCObjectPointerType>();
6480
6481  if (!LHSOPT || !RHSOPT)
6482    return false;
6483
6484  return canAssignObjCInterfaces(LHSOPT, RHSOPT) ||
6485         canAssignObjCInterfaces(RHSOPT, LHSOPT);
6486}
6487
6488bool ASTContext::canBindObjCObjectType(QualType To, QualType From) {
6489  return canAssignObjCInterfaces(
6490                getObjCObjectPointerType(To)->getAs<ObjCObjectPointerType>(),
6491                getObjCObjectPointerType(From)->getAs<ObjCObjectPointerType>());
6492}
6493
6494/// typesAreCompatible - C99 6.7.3p9: For two qualified types to be compatible,
6495/// both shall have the identically qualified version of a compatible type.
6496/// C99 6.2.7p1: Two types have compatible types if their types are the
6497/// same. See 6.7.[2,3,5] for additional rules.
6498bool ASTContext::typesAreCompatible(QualType LHS, QualType RHS,
6499                                    bool CompareUnqualified) {
6500  if (getLangOpts().CPlusPlus)
6501    return hasSameType(LHS, RHS);
6502
6503  return !mergeTypes(LHS, RHS, false, CompareUnqualified).isNull();
6504}
6505
6506bool ASTContext::propertyTypesAreCompatible(QualType LHS, QualType RHS) {
6507  return typesAreCompatible(LHS, RHS);
6508}
6509
6510bool ASTContext::typesAreBlockPointerCompatible(QualType LHS, QualType RHS) {
6511  return !mergeTypes(LHS, RHS, true).isNull();
6512}
6513
6514/// mergeTransparentUnionType - if T is a transparent union type and a member
6515/// of T is compatible with SubType, return the merged type, else return
6516/// QualType()
6517QualType ASTContext::mergeTransparentUnionType(QualType T, QualType SubType,
6518                                               bool OfBlockPointer,
6519                                               bool Unqualified) {
6520  if (const RecordType *UT = T->getAsUnionType()) {
6521    RecordDecl *UD = UT->getDecl();
6522    if (UD->hasAttr<TransparentUnionAttr>()) {
6523      for (RecordDecl::field_iterator it = UD->field_begin(),
6524           itend = UD->field_end(); it != itend; ++it) {
6525        QualType ET = it->getType().getUnqualifiedType();
6526        QualType MT = mergeTypes(ET, SubType, OfBlockPointer, Unqualified);
6527        if (!MT.isNull())
6528          return MT;
6529      }
6530    }
6531  }
6532
6533  return QualType();
6534}
6535
6536/// mergeFunctionArgumentTypes - merge two types which appear as function
6537/// argument types
6538QualType ASTContext::mergeFunctionArgumentTypes(QualType lhs, QualType rhs,
6539                                                bool OfBlockPointer,
6540                                                bool Unqualified) {
6541  // GNU extension: two types are compatible if they appear as a function
6542  // argument, one of the types is a transparent union type and the other
6543  // type is compatible with a union member
6544  QualType lmerge = mergeTransparentUnionType(lhs, rhs, OfBlockPointer,
6545                                              Unqualified);
6546  if (!lmerge.isNull())
6547    return lmerge;
6548
6549  QualType rmerge = mergeTransparentUnionType(rhs, lhs, OfBlockPointer,
6550                                              Unqualified);
6551  if (!rmerge.isNull())
6552    return rmerge;
6553
6554  return mergeTypes(lhs, rhs, OfBlockPointer, Unqualified);
6555}
6556
6557QualType ASTContext::mergeFunctionTypes(QualType lhs, QualType rhs,
6558                                        bool OfBlockPointer,
6559                                        bool Unqualified) {
6560  const FunctionType *lbase = lhs->getAs<FunctionType>();
6561  const FunctionType *rbase = rhs->getAs<FunctionType>();
6562  const FunctionProtoType *lproto = dyn_cast<FunctionProtoType>(lbase);
6563  const FunctionProtoType *rproto = dyn_cast<FunctionProtoType>(rbase);
6564  bool allLTypes = true;
6565  bool allRTypes = true;
6566
6567  // Check return type
6568  QualType retType;
6569  if (OfBlockPointer) {
6570    QualType RHS = rbase->getResultType();
6571    QualType LHS = lbase->getResultType();
6572    bool UnqualifiedResult = Unqualified;
6573    if (!UnqualifiedResult)
6574      UnqualifiedResult = (!RHS.hasQualifiers() && LHS.hasQualifiers());
6575    retType = mergeTypes(LHS, RHS, true, UnqualifiedResult, true);
6576  }
6577  else
6578    retType = mergeTypes(lbase->getResultType(), rbase->getResultType(), false,
6579                         Unqualified);
6580  if (retType.isNull()) return QualType();
6581
6582  if (Unqualified)
6583    retType = retType.getUnqualifiedType();
6584
6585  CanQualType LRetType = getCanonicalType(lbase->getResultType());
6586  CanQualType RRetType = getCanonicalType(rbase->getResultType());
6587  if (Unqualified) {
6588    LRetType = LRetType.getUnqualifiedType();
6589    RRetType = RRetType.getUnqualifiedType();
6590  }
6591
6592  if (getCanonicalType(retType) != LRetType)
6593    allLTypes = false;
6594  if (getCanonicalType(retType) != RRetType)
6595    allRTypes = false;
6596
6597  // FIXME: double check this
6598  // FIXME: should we error if lbase->getRegParmAttr() != 0 &&
6599  //                           rbase->getRegParmAttr() != 0 &&
6600  //                           lbase->getRegParmAttr() != rbase->getRegParmAttr()?
6601  FunctionType::ExtInfo lbaseInfo = lbase->getExtInfo();
6602  FunctionType::ExtInfo rbaseInfo = rbase->getExtInfo();
6603
6604  // Compatible functions must have compatible calling conventions
6605  if (!isSameCallConv(lbaseInfo.getCC(), rbaseInfo.getCC()))
6606    return QualType();
6607
6608  // Regparm is part of the calling convention.
6609  if (lbaseInfo.getHasRegParm() != rbaseInfo.getHasRegParm())
6610    return QualType();
6611  if (lbaseInfo.getRegParm() != rbaseInfo.getRegParm())
6612    return QualType();
6613
6614  if (lbaseInfo.getProducesResult() != rbaseInfo.getProducesResult())
6615    return QualType();
6616
6617  // FIXME: some uses, e.g. conditional exprs, really want this to be 'both'.
6618  bool NoReturn = lbaseInfo.getNoReturn() || rbaseInfo.getNoReturn();
6619
6620  if (lbaseInfo.getNoReturn() != NoReturn)
6621    allLTypes = false;
6622  if (rbaseInfo.getNoReturn() != NoReturn)
6623    allRTypes = false;
6624
6625  FunctionType::ExtInfo einfo = lbaseInfo.withNoReturn(NoReturn);
6626
6627  if (lproto && rproto) { // two C99 style function prototypes
6628    assert(!lproto->hasExceptionSpec() && !rproto->hasExceptionSpec() &&
6629           "C++ shouldn't be here");
6630    unsigned lproto_nargs = lproto->getNumArgs();
6631    unsigned rproto_nargs = rproto->getNumArgs();
6632
6633    // Compatible functions must have the same number of arguments
6634    if (lproto_nargs != rproto_nargs)
6635      return QualType();
6636
6637    // Variadic and non-variadic functions aren't compatible
6638    if (lproto->isVariadic() != rproto->isVariadic())
6639      return QualType();
6640
6641    if (lproto->getTypeQuals() != rproto->getTypeQuals())
6642      return QualType();
6643
6644    if (LangOpts.ObjCAutoRefCount &&
6645        !FunctionTypesMatchOnNSConsumedAttrs(rproto, lproto))
6646      return QualType();
6647
6648    // Check argument compatibility
6649    SmallVector<QualType, 10> types;
6650    for (unsigned i = 0; i < lproto_nargs; i++) {
6651      QualType largtype = lproto->getArgType(i).getUnqualifiedType();
6652      QualType rargtype = rproto->getArgType(i).getUnqualifiedType();
6653      QualType argtype = mergeFunctionArgumentTypes(largtype, rargtype,
6654                                                    OfBlockPointer,
6655                                                    Unqualified);
6656      if (argtype.isNull()) return QualType();
6657
6658      if (Unqualified)
6659        argtype = argtype.getUnqualifiedType();
6660
6661      types.push_back(argtype);
6662      if (Unqualified) {
6663        largtype = largtype.getUnqualifiedType();
6664        rargtype = rargtype.getUnqualifiedType();
6665      }
6666
6667      if (getCanonicalType(argtype) != getCanonicalType(largtype))
6668        allLTypes = false;
6669      if (getCanonicalType(argtype) != getCanonicalType(rargtype))
6670        allRTypes = false;
6671    }
6672
6673    if (allLTypes) return lhs;
6674    if (allRTypes) return rhs;
6675
6676    FunctionProtoType::ExtProtoInfo EPI = lproto->getExtProtoInfo();
6677    EPI.ExtInfo = einfo;
6678    return getFunctionType(retType, types.begin(), types.size(), EPI);
6679  }
6680
6681  if (lproto) allRTypes = false;
6682  if (rproto) allLTypes = false;
6683
6684  const FunctionProtoType *proto = lproto ? lproto : rproto;
6685  if (proto) {
6686    assert(!proto->hasExceptionSpec() && "C++ shouldn't be here");
6687    if (proto->isVariadic()) return QualType();
6688    // Check that the types are compatible with the types that
6689    // would result from default argument promotions (C99 6.7.5.3p15).
6690    // The only types actually affected are promotable integer
6691    // types and floats, which would be passed as a different
6692    // type depending on whether the prototype is visible.
6693    unsigned proto_nargs = proto->getNumArgs();
6694    for (unsigned i = 0; i < proto_nargs; ++i) {
6695      QualType argTy = proto->getArgType(i);
6696
6697      // Look at the converted type of enum types, since that is the type used
6698      // to pass enum values.
6699      if (const EnumType *Enum = argTy->getAs<EnumType>()) {
6700        argTy = Enum->getDecl()->getIntegerType();
6701        if (argTy.isNull())
6702          return QualType();
6703      }
6704
6705      if (argTy->isPromotableIntegerType() ||
6706          getCanonicalType(argTy).getUnqualifiedType() == FloatTy)
6707        return QualType();
6708    }
6709
6710    if (allLTypes) return lhs;
6711    if (allRTypes) return rhs;
6712
6713    FunctionProtoType::ExtProtoInfo EPI = proto->getExtProtoInfo();
6714    EPI.ExtInfo = einfo;
6715    return getFunctionType(retType, proto->arg_type_begin(),
6716                           proto->getNumArgs(), EPI);
6717  }
6718
6719  if (allLTypes) return lhs;
6720  if (allRTypes) return rhs;
6721  return getFunctionNoProtoType(retType, einfo);
6722}
6723
6724QualType ASTContext::mergeTypes(QualType LHS, QualType RHS,
6725                                bool OfBlockPointer,
6726                                bool Unqualified, bool BlockReturnType) {
6727  // C++ [expr]: If an expression initially has the type "reference to T", the
6728  // type is adjusted to "T" prior to any further analysis, the expression
6729  // designates the object or function denoted by the reference, and the
6730  // expression is an lvalue unless the reference is an rvalue reference and
6731  // the expression is a function call (possibly inside parentheses).
6732  assert(!LHS->getAs<ReferenceType>() && "LHS is a reference type?");
6733  assert(!RHS->getAs<ReferenceType>() && "RHS is a reference type?");
6734
6735  if (Unqualified) {
6736    LHS = LHS.getUnqualifiedType();
6737    RHS = RHS.getUnqualifiedType();
6738  }
6739
6740  QualType LHSCan = getCanonicalType(LHS),
6741           RHSCan = getCanonicalType(RHS);
6742
6743  // If two types are identical, they are compatible.
6744  if (LHSCan == RHSCan)
6745    return LHS;
6746
6747  // If the qualifiers are different, the types aren't compatible... mostly.
6748  Qualifiers LQuals = LHSCan.getLocalQualifiers();
6749  Qualifiers RQuals = RHSCan.getLocalQualifiers();
6750  if (LQuals != RQuals) {
6751    // If any of these qualifiers are different, we have a type
6752    // mismatch.
6753    if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() ||
6754        LQuals.getAddressSpace() != RQuals.getAddressSpace() ||
6755        LQuals.getObjCLifetime() != RQuals.getObjCLifetime())
6756      return QualType();
6757
6758    // Exactly one GC qualifier difference is allowed: __strong is
6759    // okay if the other type has no GC qualifier but is an Objective
6760    // C object pointer (i.e. implicitly strong by default).  We fix
6761    // this by pretending that the unqualified type was actually
6762    // qualified __strong.
6763    Qualifiers::GC GC_L = LQuals.getObjCGCAttr();
6764    Qualifiers::GC GC_R = RQuals.getObjCGCAttr();
6765    assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements");
6766
6767    if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak)
6768      return QualType();
6769
6770    if (GC_L == Qualifiers::Strong && RHSCan->isObjCObjectPointerType()) {
6771      return mergeTypes(LHS, getObjCGCQualType(RHS, Qualifiers::Strong));
6772    }
6773    if (GC_R == Qualifiers::Strong && LHSCan->isObjCObjectPointerType()) {
6774      return mergeTypes(getObjCGCQualType(LHS, Qualifiers::Strong), RHS);
6775    }
6776    return QualType();
6777  }
6778
6779  // Okay, qualifiers are equal.
6780
6781  Type::TypeClass LHSClass = LHSCan->getTypeClass();
6782  Type::TypeClass RHSClass = RHSCan->getTypeClass();
6783
6784  // We want to consider the two function types to be the same for these
6785  // comparisons, just force one to the other.
6786  if (LHSClass == Type::FunctionProto) LHSClass = Type::FunctionNoProto;
6787  if (RHSClass == Type::FunctionProto) RHSClass = Type::FunctionNoProto;
6788
6789  // Same as above for arrays
6790  if (LHSClass == Type::VariableArray || LHSClass == Type::IncompleteArray)
6791    LHSClass = Type::ConstantArray;
6792  if (RHSClass == Type::VariableArray || RHSClass == Type::IncompleteArray)
6793    RHSClass = Type::ConstantArray;
6794
6795  // ObjCInterfaces are just specialized ObjCObjects.
6796  if (LHSClass == Type::ObjCInterface) LHSClass = Type::ObjCObject;
6797  if (RHSClass == Type::ObjCInterface) RHSClass = Type::ObjCObject;
6798
6799  // Canonicalize ExtVector -> Vector.
6800  if (LHSClass == Type::ExtVector) LHSClass = Type::Vector;
6801  if (RHSClass == Type::ExtVector) RHSClass = Type::Vector;
6802
6803  // If the canonical type classes don't match.
6804  if (LHSClass != RHSClass) {
6805    // C99 6.7.2.2p4: Each enumerated type shall be compatible with char,
6806    // a signed integer type, or an unsigned integer type.
6807    // Compatibility is based on the underlying type, not the promotion
6808    // type.
6809    if (const EnumType* ETy = LHS->getAs<EnumType>()) {
6810      QualType TINT = ETy->getDecl()->getIntegerType();
6811      if (!TINT.isNull() && hasSameType(TINT, RHSCan.getUnqualifiedType()))
6812        return RHS;
6813    }
6814    if (const EnumType* ETy = RHS->getAs<EnumType>()) {
6815      QualType TINT = ETy->getDecl()->getIntegerType();
6816      if (!TINT.isNull() && hasSameType(TINT, LHSCan.getUnqualifiedType()))
6817        return LHS;
6818    }
6819    // allow block pointer type to match an 'id' type.
6820    if (OfBlockPointer && !BlockReturnType) {
6821       if (LHS->isObjCIdType() && RHS->isBlockPointerType())
6822         return LHS;
6823      if (RHS->isObjCIdType() && LHS->isBlockPointerType())
6824        return RHS;
6825    }
6826
6827    return QualType();
6828  }
6829
6830  // The canonical type classes match.
6831  switch (LHSClass) {
6832#define TYPE(Class, Base)
6833#define ABSTRACT_TYPE(Class, Base)
6834#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
6835#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
6836#define DEPENDENT_TYPE(Class, Base) case Type::Class:
6837#include "clang/AST/TypeNodes.def"
6838    llvm_unreachable("Non-canonical and dependent types shouldn't get here");
6839
6840  case Type::LValueReference:
6841  case Type::RValueReference:
6842  case Type::MemberPointer:
6843    llvm_unreachable("C++ should never be in mergeTypes");
6844
6845  case Type::ObjCInterface:
6846  case Type::IncompleteArray:
6847  case Type::VariableArray:
6848  case Type::FunctionProto:
6849  case Type::ExtVector:
6850    llvm_unreachable("Types are eliminated above");
6851
6852  case Type::Pointer:
6853  {
6854    // Merge two pointer types, while trying to preserve typedef info
6855    QualType LHSPointee = LHS->getAs<PointerType>()->getPointeeType();
6856    QualType RHSPointee = RHS->getAs<PointerType>()->getPointeeType();
6857    if (Unqualified) {
6858      LHSPointee = LHSPointee.getUnqualifiedType();
6859      RHSPointee = RHSPointee.getUnqualifiedType();
6860    }
6861    QualType ResultType = mergeTypes(LHSPointee, RHSPointee, false,
6862                                     Unqualified);
6863    if (ResultType.isNull()) return QualType();
6864    if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
6865      return LHS;
6866    if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
6867      return RHS;
6868    return getPointerType(ResultType);
6869  }
6870  case Type::BlockPointer:
6871  {
6872    // Merge two block pointer types, while trying to preserve typedef info
6873    QualType LHSPointee = LHS->getAs<BlockPointerType>()->getPointeeType();
6874    QualType RHSPointee = RHS->getAs<BlockPointerType>()->getPointeeType();
6875    if (Unqualified) {
6876      LHSPointee = LHSPointee.getUnqualifiedType();
6877      RHSPointee = RHSPointee.getUnqualifiedType();
6878    }
6879    QualType ResultType = mergeTypes(LHSPointee, RHSPointee, OfBlockPointer,
6880                                     Unqualified);
6881    if (ResultType.isNull()) return QualType();
6882    if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
6883      return LHS;
6884    if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
6885      return RHS;
6886    return getBlockPointerType(ResultType);
6887  }
6888  case Type::Atomic:
6889  {
6890    // Merge two pointer types, while trying to preserve typedef info
6891    QualType LHSValue = LHS->getAs<AtomicType>()->getValueType();
6892    QualType RHSValue = RHS->getAs<AtomicType>()->getValueType();
6893    if (Unqualified) {
6894      LHSValue = LHSValue.getUnqualifiedType();
6895      RHSValue = RHSValue.getUnqualifiedType();
6896    }
6897    QualType ResultType = mergeTypes(LHSValue, RHSValue, false,
6898                                     Unqualified);
6899    if (ResultType.isNull()) return QualType();
6900    if (getCanonicalType(LHSValue) == getCanonicalType(ResultType))
6901      return LHS;
6902    if (getCanonicalType(RHSValue) == getCanonicalType(ResultType))
6903      return RHS;
6904    return getAtomicType(ResultType);
6905  }
6906  case Type::ConstantArray:
6907  {
6908    const ConstantArrayType* LCAT = getAsConstantArrayType(LHS);
6909    const ConstantArrayType* RCAT = getAsConstantArrayType(RHS);
6910    if (LCAT && RCAT && RCAT->getSize() != LCAT->getSize())
6911      return QualType();
6912
6913    QualType LHSElem = getAsArrayType(LHS)->getElementType();
6914    QualType RHSElem = getAsArrayType(RHS)->getElementType();
6915    if (Unqualified) {
6916      LHSElem = LHSElem.getUnqualifiedType();
6917      RHSElem = RHSElem.getUnqualifiedType();
6918    }
6919
6920    QualType ResultType = mergeTypes(LHSElem, RHSElem, false, Unqualified);
6921    if (ResultType.isNull()) return QualType();
6922    if (LCAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
6923      return LHS;
6924    if (RCAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
6925      return RHS;
6926    if (LCAT) return getConstantArrayType(ResultType, LCAT->getSize(),
6927                                          ArrayType::ArraySizeModifier(), 0);
6928    if (RCAT) return getConstantArrayType(ResultType, RCAT->getSize(),
6929                                          ArrayType::ArraySizeModifier(), 0);
6930    const VariableArrayType* LVAT = getAsVariableArrayType(LHS);
6931    const VariableArrayType* RVAT = getAsVariableArrayType(RHS);
6932    if (LVAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
6933      return LHS;
6934    if (RVAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
6935      return RHS;
6936    if (LVAT) {
6937      // FIXME: This isn't correct! But tricky to implement because
6938      // the array's size has to be the size of LHS, but the type
6939      // has to be different.
6940      return LHS;
6941    }
6942    if (RVAT) {
6943      // FIXME: This isn't correct! But tricky to implement because
6944      // the array's size has to be the size of RHS, but the type
6945      // has to be different.
6946      return RHS;
6947    }
6948    if (getCanonicalType(LHSElem) == getCanonicalType(ResultType)) return LHS;
6949    if (getCanonicalType(RHSElem) == getCanonicalType(ResultType)) return RHS;
6950    return getIncompleteArrayType(ResultType,
6951                                  ArrayType::ArraySizeModifier(), 0);
6952  }
6953  case Type::FunctionNoProto:
6954    return mergeFunctionTypes(LHS, RHS, OfBlockPointer, Unqualified);
6955  case Type::Record:
6956  case Type::Enum:
6957    return QualType();
6958  case Type::Builtin:
6959    // Only exactly equal builtin types are compatible, which is tested above.
6960    return QualType();
6961  case Type::Complex:
6962    // Distinct complex types are incompatible.
6963    return QualType();
6964  case Type::Vector:
6965    // FIXME: The merged type should be an ExtVector!
6966    if (areCompatVectorTypes(LHSCan->getAs<VectorType>(),
6967                             RHSCan->getAs<VectorType>()))
6968      return LHS;
6969    return QualType();
6970  case Type::ObjCObject: {
6971    // Check if the types are assignment compatible.
6972    // FIXME: This should be type compatibility, e.g. whether
6973    // "LHS x; RHS x;" at global scope is legal.
6974    const ObjCObjectType* LHSIface = LHS->getAs<ObjCObjectType>();
6975    const ObjCObjectType* RHSIface = RHS->getAs<ObjCObjectType>();
6976    if (canAssignObjCInterfaces(LHSIface, RHSIface))
6977      return LHS;
6978
6979    return QualType();
6980  }
6981  case Type::ObjCObjectPointer: {
6982    if (OfBlockPointer) {
6983      if (canAssignObjCInterfacesInBlockPointer(
6984                                          LHS->getAs<ObjCObjectPointerType>(),
6985                                          RHS->getAs<ObjCObjectPointerType>(),
6986                                          BlockReturnType))
6987        return LHS;
6988      return QualType();
6989    }
6990    if (canAssignObjCInterfaces(LHS->getAs<ObjCObjectPointerType>(),
6991                                RHS->getAs<ObjCObjectPointerType>()))
6992      return LHS;
6993
6994    return QualType();
6995  }
6996  }
6997
6998  llvm_unreachable("Invalid Type::Class!");
6999}
7000
7001bool ASTContext::FunctionTypesMatchOnNSConsumedAttrs(
7002                   const FunctionProtoType *FromFunctionType,
7003                   const FunctionProtoType *ToFunctionType) {
7004  if (FromFunctionType->hasAnyConsumedArgs() !=
7005      ToFunctionType->hasAnyConsumedArgs())
7006    return false;
7007  FunctionProtoType::ExtProtoInfo FromEPI =
7008    FromFunctionType->getExtProtoInfo();
7009  FunctionProtoType::ExtProtoInfo ToEPI =
7010    ToFunctionType->getExtProtoInfo();
7011  if (FromEPI.ConsumedArguments && ToEPI.ConsumedArguments)
7012    for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumArgs();
7013         ArgIdx != NumArgs; ++ArgIdx)  {
7014      if (FromEPI.ConsumedArguments[ArgIdx] !=
7015          ToEPI.ConsumedArguments[ArgIdx])
7016        return false;
7017    }
7018  return true;
7019}
7020
7021/// mergeObjCGCQualifiers - This routine merges ObjC's GC attribute of 'LHS' and
7022/// 'RHS' attributes and returns the merged version; including for function
7023/// return types.
7024QualType ASTContext::mergeObjCGCQualifiers(QualType LHS, QualType RHS) {
7025  QualType LHSCan = getCanonicalType(LHS),
7026  RHSCan = getCanonicalType(RHS);
7027  // If two types are identical, they are compatible.
7028  if (LHSCan == RHSCan)
7029    return LHS;
7030  if (RHSCan->isFunctionType()) {
7031    if (!LHSCan->isFunctionType())
7032      return QualType();
7033    QualType OldReturnType =
7034      cast<FunctionType>(RHSCan.getTypePtr())->getResultType();
7035    QualType NewReturnType =
7036      cast<FunctionType>(LHSCan.getTypePtr())->getResultType();
7037    QualType ResReturnType =
7038      mergeObjCGCQualifiers(NewReturnType, OldReturnType);
7039    if (ResReturnType.isNull())
7040      return QualType();
7041    if (ResReturnType == NewReturnType || ResReturnType == OldReturnType) {
7042      // id foo(); ... __strong id foo(); or: __strong id foo(); ... id foo();
7043      // In either case, use OldReturnType to build the new function type.
7044      const FunctionType *F = LHS->getAs<FunctionType>();
7045      if (const FunctionProtoType *FPT = cast<FunctionProtoType>(F)) {
7046        FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
7047        EPI.ExtInfo = getFunctionExtInfo(LHS);
7048        QualType ResultType
7049          = getFunctionType(OldReturnType, FPT->arg_type_begin(),
7050                            FPT->getNumArgs(), EPI);
7051        return ResultType;
7052      }
7053    }
7054    return QualType();
7055  }
7056
7057  // If the qualifiers are different, the types can still be merged.
7058  Qualifiers LQuals = LHSCan.getLocalQualifiers();
7059  Qualifiers RQuals = RHSCan.getLocalQualifiers();
7060  if (LQuals != RQuals) {
7061    // If any of these qualifiers are different, we have a type mismatch.
7062    if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() ||
7063        LQuals.getAddressSpace() != RQuals.getAddressSpace())
7064      return QualType();
7065
7066    // Exactly one GC qualifier difference is allowed: __strong is
7067    // okay if the other type has no GC qualifier but is an Objective
7068    // C object pointer (i.e. implicitly strong by default).  We fix
7069    // this by pretending that the unqualified type was actually
7070    // qualified __strong.
7071    Qualifiers::GC GC_L = LQuals.getObjCGCAttr();
7072    Qualifiers::GC GC_R = RQuals.getObjCGCAttr();
7073    assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements");
7074
7075    if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak)
7076      return QualType();
7077
7078    if (GC_L == Qualifiers::Strong)
7079      return LHS;
7080    if (GC_R == Qualifiers::Strong)
7081      return RHS;
7082    return QualType();
7083  }
7084
7085  if (LHSCan->isObjCObjectPointerType() && RHSCan->isObjCObjectPointerType()) {
7086    QualType LHSBaseQT = LHS->getAs<ObjCObjectPointerType>()->getPointeeType();
7087    QualType RHSBaseQT = RHS->getAs<ObjCObjectPointerType>()->getPointeeType();
7088    QualType ResQT = mergeObjCGCQualifiers(LHSBaseQT, RHSBaseQT);
7089    if (ResQT == LHSBaseQT)
7090      return LHS;
7091    if (ResQT == RHSBaseQT)
7092      return RHS;
7093  }
7094  return QualType();
7095}
7096
7097//===----------------------------------------------------------------------===//
7098//                         Integer Predicates
7099//===----------------------------------------------------------------------===//
7100
7101unsigned ASTContext::getIntWidth(QualType T) const {
7102  if (const EnumType *ET = dyn_cast<EnumType>(T))
7103    T = ET->getDecl()->getIntegerType();
7104  if (T->isBooleanType())
7105    return 1;
7106  // For builtin types, just use the standard type sizing method
7107  return (unsigned)getTypeSize(T);
7108}
7109
7110QualType ASTContext::getCorrespondingUnsignedType(QualType T) const {
7111  assert(T->hasSignedIntegerRepresentation() && "Unexpected type");
7112
7113  // Turn <4 x signed int> -> <4 x unsigned int>
7114  if (const VectorType *VTy = T->getAs<VectorType>())
7115    return getVectorType(getCorrespondingUnsignedType(VTy->getElementType()),
7116                         VTy->getNumElements(), VTy->getVectorKind());
7117
7118  // For enums, we return the unsigned version of the base type.
7119  if (const EnumType *ETy = T->getAs<EnumType>())
7120    T = ETy->getDecl()->getIntegerType();
7121
7122  const BuiltinType *BTy = T->getAs<BuiltinType>();
7123  assert(BTy && "Unexpected signed integer type");
7124  switch (BTy->getKind()) {
7125  case BuiltinType::Char_S:
7126  case BuiltinType::SChar:
7127    return UnsignedCharTy;
7128  case BuiltinType::Short:
7129    return UnsignedShortTy;
7130  case BuiltinType::Int:
7131    return UnsignedIntTy;
7132  case BuiltinType::Long:
7133    return UnsignedLongTy;
7134  case BuiltinType::LongLong:
7135    return UnsignedLongLongTy;
7136  case BuiltinType::Int128:
7137    return UnsignedInt128Ty;
7138  default:
7139    llvm_unreachable("Unexpected signed integer type");
7140  }
7141}
7142
7143ASTMutationListener::~ASTMutationListener() { }
7144
7145
7146//===----------------------------------------------------------------------===//
7147//                          Builtin Type Computation
7148//===----------------------------------------------------------------------===//
7149
7150/// DecodeTypeFromStr - This decodes one type descriptor from Str, advancing the
7151/// pointer over the consumed characters.  This returns the resultant type.  If
7152/// AllowTypeModifiers is false then modifier like * are not parsed, just basic
7153/// types.  This allows "v2i*" to be parsed as a pointer to a v2i instead of
7154/// a vector of "i*".
7155///
7156/// RequiresICE is filled in on return to indicate whether the value is required
7157/// to be an Integer Constant Expression.
7158static QualType DecodeTypeFromStr(const char *&Str, const ASTContext &Context,
7159                                  ASTContext::GetBuiltinTypeError &Error,
7160                                  bool &RequiresICE,
7161                                  bool AllowTypeModifiers) {
7162  // Modifiers.
7163  int HowLong = 0;
7164  bool Signed = false, Unsigned = false;
7165  RequiresICE = false;
7166
7167  // Read the prefixed modifiers first.
7168  bool Done = false;
7169  while (!Done) {
7170    switch (*Str++) {
7171    default: Done = true; --Str; break;
7172    case 'I':
7173      RequiresICE = true;
7174      break;
7175    case 'S':
7176      assert(!Unsigned && "Can't use both 'S' and 'U' modifiers!");
7177      assert(!Signed && "Can't use 'S' modifier multiple times!");
7178      Signed = true;
7179      break;
7180    case 'U':
7181      assert(!Signed && "Can't use both 'S' and 'U' modifiers!");
7182      assert(!Unsigned && "Can't use 'S' modifier multiple times!");
7183      Unsigned = true;
7184      break;
7185    case 'L':
7186      assert(HowLong <= 2 && "Can't have LLLL modifier");
7187      ++HowLong;
7188      break;
7189    }
7190  }
7191
7192  QualType Type;
7193
7194  // Read the base type.
7195  switch (*Str++) {
7196  default: llvm_unreachable("Unknown builtin type letter!");
7197  case 'v':
7198    assert(HowLong == 0 && !Signed && !Unsigned &&
7199           "Bad modifiers used with 'v'!");
7200    Type = Context.VoidTy;
7201    break;
7202  case 'f':
7203    assert(HowLong == 0 && !Signed && !Unsigned &&
7204           "Bad modifiers used with 'f'!");
7205    Type = Context.FloatTy;
7206    break;
7207  case 'd':
7208    assert(HowLong < 2 && !Signed && !Unsigned &&
7209           "Bad modifiers used with 'd'!");
7210    if (HowLong)
7211      Type = Context.LongDoubleTy;
7212    else
7213      Type = Context.DoubleTy;
7214    break;
7215  case 's':
7216    assert(HowLong == 0 && "Bad modifiers used with 's'!");
7217    if (Unsigned)
7218      Type = Context.UnsignedShortTy;
7219    else
7220      Type = Context.ShortTy;
7221    break;
7222  case 'i':
7223    if (HowLong == 3)
7224      Type = Unsigned ? Context.UnsignedInt128Ty : Context.Int128Ty;
7225    else if (HowLong == 2)
7226      Type = Unsigned ? Context.UnsignedLongLongTy : Context.LongLongTy;
7227    else if (HowLong == 1)
7228      Type = Unsigned ? Context.UnsignedLongTy : Context.LongTy;
7229    else
7230      Type = Unsigned ? Context.UnsignedIntTy : Context.IntTy;
7231    break;
7232  case 'c':
7233    assert(HowLong == 0 && "Bad modifiers used with 'c'!");
7234    if (Signed)
7235      Type = Context.SignedCharTy;
7236    else if (Unsigned)
7237      Type = Context.UnsignedCharTy;
7238    else
7239      Type = Context.CharTy;
7240    break;
7241  case 'b': // boolean
7242    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'b'!");
7243    Type = Context.BoolTy;
7244    break;
7245  case 'z':  // size_t.
7246    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'z'!");
7247    Type = Context.getSizeType();
7248    break;
7249  case 'F':
7250    Type = Context.getCFConstantStringType();
7251    break;
7252  case 'G':
7253    Type = Context.getObjCIdType();
7254    break;
7255  case 'H':
7256    Type = Context.getObjCSelType();
7257    break;
7258  case 'M':
7259    Type = Context.getObjCSuperType();
7260    break;
7261  case 'a':
7262    Type = Context.getBuiltinVaListType();
7263    assert(!Type.isNull() && "builtin va list type not initialized!");
7264    break;
7265  case 'A':
7266    // This is a "reference" to a va_list; however, what exactly
7267    // this means depends on how va_list is defined. There are two
7268    // different kinds of va_list: ones passed by value, and ones
7269    // passed by reference.  An example of a by-value va_list is
7270    // x86, where va_list is a char*. An example of by-ref va_list
7271    // is x86-64, where va_list is a __va_list_tag[1]. For x86,
7272    // we want this argument to be a char*&; for x86-64, we want
7273    // it to be a __va_list_tag*.
7274    Type = Context.getBuiltinVaListType();
7275    assert(!Type.isNull() && "builtin va list type not initialized!");
7276    if (Type->isArrayType())
7277      Type = Context.getArrayDecayedType(Type);
7278    else
7279      Type = Context.getLValueReferenceType(Type);
7280    break;
7281  case 'V': {
7282    char *End;
7283    unsigned NumElements = strtoul(Str, &End, 10);
7284    assert(End != Str && "Missing vector size");
7285    Str = End;
7286
7287    QualType ElementType = DecodeTypeFromStr(Str, Context, Error,
7288                                             RequiresICE, false);
7289    assert(!RequiresICE && "Can't require vector ICE");
7290
7291    // TODO: No way to make AltiVec vectors in builtins yet.
7292    Type = Context.getVectorType(ElementType, NumElements,
7293                                 VectorType::GenericVector);
7294    break;
7295  }
7296  case 'E': {
7297    char *End;
7298
7299    unsigned NumElements = strtoul(Str, &End, 10);
7300    assert(End != Str && "Missing vector size");
7301
7302    Str = End;
7303
7304    QualType ElementType = DecodeTypeFromStr(Str, Context, Error, RequiresICE,
7305                                             false);
7306    Type = Context.getExtVectorType(ElementType, NumElements);
7307    break;
7308  }
7309  case 'X': {
7310    QualType ElementType = DecodeTypeFromStr(Str, Context, Error, RequiresICE,
7311                                             false);
7312    assert(!RequiresICE && "Can't require complex ICE");
7313    Type = Context.getComplexType(ElementType);
7314    break;
7315  }
7316  case 'Y' : {
7317    Type = Context.getPointerDiffType();
7318    break;
7319  }
7320  case 'P':
7321    Type = Context.getFILEType();
7322    if (Type.isNull()) {
7323      Error = ASTContext::GE_Missing_stdio;
7324      return QualType();
7325    }
7326    break;
7327  case 'J':
7328    if (Signed)
7329      Type = Context.getsigjmp_bufType();
7330    else
7331      Type = Context.getjmp_bufType();
7332
7333    if (Type.isNull()) {
7334      Error = ASTContext::GE_Missing_setjmp;
7335      return QualType();
7336    }
7337    break;
7338  case 'K':
7339    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'K'!");
7340    Type = Context.getucontext_tType();
7341
7342    if (Type.isNull()) {
7343      Error = ASTContext::GE_Missing_ucontext;
7344      return QualType();
7345    }
7346    break;
7347  case 'p':
7348    Type = Context.getProcessIDType();
7349    break;
7350  }
7351
7352  // If there are modifiers and if we're allowed to parse them, go for it.
7353  Done = !AllowTypeModifiers;
7354  while (!Done) {
7355    switch (char c = *Str++) {
7356    default: Done = true; --Str; break;
7357    case '*':
7358    case '&': {
7359      // Both pointers and references can have their pointee types
7360      // qualified with an address space.
7361      char *End;
7362      unsigned AddrSpace = strtoul(Str, &End, 10);
7363      if (End != Str && AddrSpace != 0) {
7364        Type = Context.getAddrSpaceQualType(Type, AddrSpace);
7365        Str = End;
7366      }
7367      if (c == '*')
7368        Type = Context.getPointerType(Type);
7369      else
7370        Type = Context.getLValueReferenceType(Type);
7371      break;
7372    }
7373    // FIXME: There's no way to have a built-in with an rvalue ref arg.
7374    case 'C':
7375      Type = Type.withConst();
7376      break;
7377    case 'D':
7378      Type = Context.getVolatileType(Type);
7379      break;
7380    case 'R':
7381      Type = Type.withRestrict();
7382      break;
7383    }
7384  }
7385
7386  assert((!RequiresICE || Type->isIntegralOrEnumerationType()) &&
7387         "Integer constant 'I' type must be an integer");
7388
7389  return Type;
7390}
7391
7392/// GetBuiltinType - Return the type for the specified builtin.
7393QualType ASTContext::GetBuiltinType(unsigned Id,
7394                                    GetBuiltinTypeError &Error,
7395                                    unsigned *IntegerConstantArgs) const {
7396  const char *TypeStr = BuiltinInfo.GetTypeString(Id);
7397
7398  SmallVector<QualType, 8> ArgTypes;
7399
7400  bool RequiresICE = false;
7401  Error = GE_None;
7402  QualType ResType = DecodeTypeFromStr(TypeStr, *this, Error,
7403                                       RequiresICE, true);
7404  if (Error != GE_None)
7405    return QualType();
7406
7407  assert(!RequiresICE && "Result of intrinsic cannot be required to be an ICE");
7408
7409  while (TypeStr[0] && TypeStr[0] != '.') {
7410    QualType Ty = DecodeTypeFromStr(TypeStr, *this, Error, RequiresICE, true);
7411    if (Error != GE_None)
7412      return QualType();
7413
7414    // If this argument is required to be an IntegerConstantExpression and the
7415    // caller cares, fill in the bitmask we return.
7416    if (RequiresICE && IntegerConstantArgs)
7417      *IntegerConstantArgs |= 1 << ArgTypes.size();
7418
7419    // Do array -> pointer decay.  The builtin should use the decayed type.
7420    if (Ty->isArrayType())
7421      Ty = getArrayDecayedType(Ty);
7422
7423    ArgTypes.push_back(Ty);
7424  }
7425
7426  assert((TypeStr[0] != '.' || TypeStr[1] == 0) &&
7427         "'.' should only occur at end of builtin type list!");
7428
7429  FunctionType::ExtInfo EI;
7430  if (BuiltinInfo.isNoReturn(Id)) EI = EI.withNoReturn(true);
7431
7432  bool Variadic = (TypeStr[0] == '.');
7433
7434  // We really shouldn't be making a no-proto type here, especially in C++.
7435  if (ArgTypes.empty() && Variadic)
7436    return getFunctionNoProtoType(ResType, EI);
7437
7438  FunctionProtoType::ExtProtoInfo EPI;
7439  EPI.ExtInfo = EI;
7440  EPI.Variadic = Variadic;
7441
7442  return getFunctionType(ResType, ArgTypes.data(), ArgTypes.size(), EPI);
7443}
7444
7445GVALinkage ASTContext::GetGVALinkageForFunction(const FunctionDecl *FD) {
7446  GVALinkage External = GVA_StrongExternal;
7447
7448  Linkage L = FD->getLinkage();
7449  switch (L) {
7450  case NoLinkage:
7451  case InternalLinkage:
7452  case UniqueExternalLinkage:
7453    return GVA_Internal;
7454
7455  case ExternalLinkage:
7456    switch (FD->getTemplateSpecializationKind()) {
7457    case TSK_Undeclared:
7458    case TSK_ExplicitSpecialization:
7459      External = GVA_StrongExternal;
7460      break;
7461
7462    case TSK_ExplicitInstantiationDefinition:
7463      return GVA_ExplicitTemplateInstantiation;
7464
7465    case TSK_ExplicitInstantiationDeclaration:
7466    case TSK_ImplicitInstantiation:
7467      External = GVA_TemplateInstantiation;
7468      break;
7469    }
7470  }
7471
7472  if (!FD->isInlined())
7473    return External;
7474
7475  if (!getLangOpts().CPlusPlus || FD->hasAttr<GNUInlineAttr>()) {
7476    // GNU or C99 inline semantics. Determine whether this symbol should be
7477    // externally visible.
7478    if (FD->isInlineDefinitionExternallyVisible())
7479      return External;
7480
7481    // C99 inline semantics, where the symbol is not externally visible.
7482    return GVA_C99Inline;
7483  }
7484
7485  // C++0x [temp.explicit]p9:
7486  //   [ Note: The intent is that an inline function that is the subject of
7487  //   an explicit instantiation declaration will still be implicitly
7488  //   instantiated when used so that the body can be considered for
7489  //   inlining, but that no out-of-line copy of the inline function would be
7490  //   generated in the translation unit. -- end note ]
7491  if (FD->getTemplateSpecializationKind()
7492                                       == TSK_ExplicitInstantiationDeclaration)
7493    return GVA_C99Inline;
7494
7495  return GVA_CXXInline;
7496}
7497
7498GVALinkage ASTContext::GetGVALinkageForVariable(const VarDecl *VD) {
7499  // If this is a static data member, compute the kind of template
7500  // specialization. Otherwise, this variable is not part of a
7501  // template.
7502  TemplateSpecializationKind TSK = TSK_Undeclared;
7503  if (VD->isStaticDataMember())
7504    TSK = VD->getTemplateSpecializationKind();
7505
7506  Linkage L = VD->getLinkage();
7507  assert (!(L == ExternalLinkage && getLangOpts().CPlusPlus &&
7508            VD->getType()->getLinkage() == UniqueExternalLinkage));
7509
7510  switch (L) {
7511  case NoLinkage:
7512  case InternalLinkage:
7513  case UniqueExternalLinkage:
7514    return GVA_Internal;
7515
7516  case ExternalLinkage:
7517    switch (TSK) {
7518    case TSK_Undeclared:
7519    case TSK_ExplicitSpecialization:
7520      return GVA_StrongExternal;
7521
7522    case TSK_ExplicitInstantiationDeclaration:
7523      llvm_unreachable("Variable should not be instantiated");
7524      // Fall through to treat this like any other instantiation.
7525
7526    case TSK_ExplicitInstantiationDefinition:
7527      return GVA_ExplicitTemplateInstantiation;
7528
7529    case TSK_ImplicitInstantiation:
7530      return GVA_TemplateInstantiation;
7531    }
7532  }
7533
7534  llvm_unreachable("Invalid Linkage!");
7535}
7536
7537bool ASTContext::DeclMustBeEmitted(const Decl *D) {
7538  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
7539    if (!VD->isFileVarDecl())
7540      return false;
7541  } else if (!isa<FunctionDecl>(D))
7542    return false;
7543
7544  // Weak references don't produce any output by themselves.
7545  if (D->hasAttr<WeakRefAttr>())
7546    return false;
7547
7548  // Aliases and used decls are required.
7549  if (D->hasAttr<AliasAttr>() || D->hasAttr<UsedAttr>())
7550    return true;
7551
7552  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
7553    // Forward declarations aren't required.
7554    if (!FD->doesThisDeclarationHaveABody())
7555      return FD->doesDeclarationForceExternallyVisibleDefinition();
7556
7557    // Constructors and destructors are required.
7558    if (FD->hasAttr<ConstructorAttr>() || FD->hasAttr<DestructorAttr>())
7559      return true;
7560
7561    // The key function for a class is required.
7562    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
7563      const CXXRecordDecl *RD = MD->getParent();
7564      if (MD->isOutOfLine() && RD->isDynamicClass()) {
7565        const CXXMethodDecl *KeyFunc = getKeyFunction(RD);
7566        if (KeyFunc && KeyFunc->getCanonicalDecl() == MD->getCanonicalDecl())
7567          return true;
7568      }
7569    }
7570
7571    GVALinkage Linkage = GetGVALinkageForFunction(FD);
7572
7573    // static, static inline, always_inline, and extern inline functions can
7574    // always be deferred.  Normal inline functions can be deferred in C99/C++.
7575    // Implicit template instantiations can also be deferred in C++.
7576    if (Linkage == GVA_Internal  || Linkage == GVA_C99Inline ||
7577        Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation)
7578      return false;
7579    return true;
7580  }
7581
7582  const VarDecl *VD = cast<VarDecl>(D);
7583  assert(VD->isFileVarDecl() && "Expected file scoped var");
7584
7585  if (VD->isThisDeclarationADefinition() == VarDecl::DeclarationOnly)
7586    return false;
7587
7588  // Variables that can be needed in other TUs are required.
7589  GVALinkage L = GetGVALinkageForVariable(VD);
7590  if (L != GVA_Internal && L != GVA_TemplateInstantiation)
7591    return true;
7592
7593  // Variables that have destruction with side-effects are required.
7594  if (VD->getType().isDestructedType())
7595    return true;
7596
7597  // Variables that have initialization with side-effects are required.
7598  if (VD->getInit() && VD->getInit()->HasSideEffects(*this))
7599    return true;
7600
7601  return false;
7602}
7603
7604CallingConv ASTContext::getDefaultCXXMethodCallConv(bool isVariadic) {
7605  // Pass through to the C++ ABI object
7606  return ABI->getDefaultMethodCallConv(isVariadic);
7607}
7608
7609CallingConv ASTContext::getCanonicalCallConv(CallingConv CC) const {
7610  if (CC == CC_C && !LangOpts.MRTD && getTargetInfo().getCXXABI() != CXXABI_Microsoft)
7611    return CC_Default;
7612  return CC;
7613}
7614
7615bool ASTContext::isNearlyEmpty(const CXXRecordDecl *RD) const {
7616  // Pass through to the C++ ABI object
7617  return ABI->isNearlyEmpty(RD);
7618}
7619
7620MangleContext *ASTContext::createMangleContext() {
7621  switch (Target->getCXXABI()) {
7622  case CXXABI_ARM:
7623  case CXXABI_Itanium:
7624    return createItaniumMangleContext(*this, getDiagnostics());
7625  case CXXABI_Microsoft:
7626    return createMicrosoftMangleContext(*this, getDiagnostics());
7627  }
7628  llvm_unreachable("Unsupported ABI");
7629}
7630
7631CXXABI::~CXXABI() {}
7632
7633size_t ASTContext::getSideTableAllocatedMemory() const {
7634  return ASTRecordLayouts.getMemorySize()
7635    + llvm::capacity_in_bytes(ObjCLayouts)
7636    + llvm::capacity_in_bytes(KeyFunctions)
7637    + llvm::capacity_in_bytes(ObjCImpls)
7638    + llvm::capacity_in_bytes(BlockVarCopyInits)
7639    + llvm::capacity_in_bytes(DeclAttrs)
7640    + llvm::capacity_in_bytes(InstantiatedFromStaticDataMember)
7641    + llvm::capacity_in_bytes(InstantiatedFromUsingDecl)
7642    + llvm::capacity_in_bytes(InstantiatedFromUsingShadowDecl)
7643    + llvm::capacity_in_bytes(InstantiatedFromUnnamedFieldDecl)
7644    + llvm::capacity_in_bytes(OverriddenMethods)
7645    + llvm::capacity_in_bytes(Types)
7646    + llvm::capacity_in_bytes(VariableArrayTypes)
7647    + llvm::capacity_in_bytes(ClassScopeSpecializationPattern);
7648}
7649
7650void ASTContext::addUnnamedTag(const TagDecl *Tag) {
7651  // FIXME: This mangling should be applied to function local classes too
7652  if (!Tag->getName().empty() || Tag->getTypedefNameForAnonDecl() ||
7653      !isa<CXXRecordDecl>(Tag->getParent()) || Tag->getLinkage() != ExternalLinkage)
7654    return;
7655
7656  std::pair<llvm::DenseMap<const DeclContext *, unsigned>::iterator, bool> P =
7657    UnnamedMangleContexts.insert(std::make_pair(Tag->getParent(), 0));
7658  UnnamedMangleNumbers.insert(std::make_pair(Tag, P.first->second++));
7659}
7660
7661int ASTContext::getUnnamedTagManglingNumber(const TagDecl *Tag) const {
7662  llvm::DenseMap<const TagDecl *, unsigned>::const_iterator I =
7663    UnnamedMangleNumbers.find(Tag);
7664  return I != UnnamedMangleNumbers.end() ? I->second : -1;
7665}
7666
7667unsigned ASTContext::getLambdaManglingNumber(CXXMethodDecl *CallOperator) {
7668  CXXRecordDecl *Lambda = CallOperator->getParent();
7669  return LambdaMangleContexts[Lambda->getDeclContext()]
7670           .getManglingNumber(CallOperator);
7671}
7672
7673
7674void ASTContext::setParameterIndex(const ParmVarDecl *D, unsigned int index) {
7675  ParamIndices[D] = index;
7676}
7677
7678unsigned ASTContext::getParameterIndex(const ParmVarDecl *D) const {
7679  ParameterIndexTable::const_iterator I = ParamIndices.find(D);
7680  assert(I != ParamIndices.end() &&
7681         "ParmIndices lacks entry set by ParmVarDecl");
7682  return I->second;
7683}
7684