ASTContext.cpp revision 1d78a86869f68fbadfa1528ce4a964aff9d77e06
1//===--- ASTContext.cpp - Context to hold long-lived AST nodes ------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements the ASTContext interface.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/AST/ASTContext.h"
15#include "clang/AST/Decl.h"
16#include "clang/AST/DeclObjC.h"
17#include "clang/Basic/TargetInfo.h"
18#include "llvm/ADT/SmallVector.h"
19#include "llvm/ADT/StringExtras.h"
20#include "llvm/Bitcode/Serialize.h"
21#include "llvm/Bitcode/Deserialize.h"
22
23using namespace clang;
24
25enum FloatingRank {
26  FloatRank, DoubleRank, LongDoubleRank
27};
28
29ASTContext::~ASTContext() {
30  // Deallocate all the types.
31  while (!Types.empty()) {
32    if (FunctionTypeProto *FT = dyn_cast<FunctionTypeProto>(Types.back())) {
33      // Destroy the object, but don't call delete.  These are malloc'd.
34      FT->~FunctionTypeProto();
35      free(FT);
36    } else {
37      delete Types.back();
38    }
39    Types.pop_back();
40  }
41}
42
43void ASTContext::PrintStats() const {
44  fprintf(stderr, "*** AST Context Stats:\n");
45  fprintf(stderr, "  %d types total.\n", (int)Types.size());
46  unsigned NumBuiltin = 0, NumPointer = 0, NumArray = 0, NumFunctionP = 0;
47  unsigned NumVector = 0, NumComplex = 0;
48  unsigned NumFunctionNP = 0, NumTypeName = 0, NumTagged = 0, NumReference = 0;
49
50  unsigned NumTagStruct = 0, NumTagUnion = 0, NumTagEnum = 0, NumTagClass = 0;
51  unsigned NumObjCInterfaces = 0, NumObjCQualifiedInterfaces = 0;
52  unsigned NumObjCQualifiedIds = 0;
53
54  for (unsigned i = 0, e = Types.size(); i != e; ++i) {
55    Type *T = Types[i];
56    if (isa<BuiltinType>(T))
57      ++NumBuiltin;
58    else if (isa<PointerType>(T))
59      ++NumPointer;
60    else if (isa<ReferenceType>(T))
61      ++NumReference;
62    else if (isa<ComplexType>(T))
63      ++NumComplex;
64    else if (isa<ArrayType>(T))
65      ++NumArray;
66    else if (isa<VectorType>(T))
67      ++NumVector;
68    else if (isa<FunctionTypeNoProto>(T))
69      ++NumFunctionNP;
70    else if (isa<FunctionTypeProto>(T))
71      ++NumFunctionP;
72    else if (isa<TypedefType>(T))
73      ++NumTypeName;
74    else if (TagType *TT = dyn_cast<TagType>(T)) {
75      ++NumTagged;
76      switch (TT->getDecl()->getKind()) {
77      default: assert(0 && "Unknown tagged type!");
78      case Decl::Struct: ++NumTagStruct; break;
79      case Decl::Union:  ++NumTagUnion; break;
80      case Decl::Class:  ++NumTagClass; break;
81      case Decl::Enum:   ++NumTagEnum; break;
82      }
83    } else if (isa<ObjCInterfaceType>(T))
84      ++NumObjCInterfaces;
85    else if (isa<ObjCQualifiedInterfaceType>(T))
86      ++NumObjCQualifiedInterfaces;
87    else if (isa<ObjCQualifiedIdType>(T))
88      ++NumObjCQualifiedIds;
89    else {
90      QualType(T, 0).dump();
91      assert(0 && "Unknown type!");
92    }
93  }
94
95  fprintf(stderr, "    %d builtin types\n", NumBuiltin);
96  fprintf(stderr, "    %d pointer types\n", NumPointer);
97  fprintf(stderr, "    %d reference types\n", NumReference);
98  fprintf(stderr, "    %d complex types\n", NumComplex);
99  fprintf(stderr, "    %d array types\n", NumArray);
100  fprintf(stderr, "    %d vector types\n", NumVector);
101  fprintf(stderr, "    %d function types with proto\n", NumFunctionP);
102  fprintf(stderr, "    %d function types with no proto\n", NumFunctionNP);
103  fprintf(stderr, "    %d typename (typedef) types\n", NumTypeName);
104  fprintf(stderr, "    %d tagged types\n", NumTagged);
105  fprintf(stderr, "      %d struct types\n", NumTagStruct);
106  fprintf(stderr, "      %d union types\n", NumTagUnion);
107  fprintf(stderr, "      %d class types\n", NumTagClass);
108  fprintf(stderr, "      %d enum types\n", NumTagEnum);
109  fprintf(stderr, "    %d interface types\n", NumObjCInterfaces);
110  fprintf(stderr, "    %d protocol qualified interface types\n",
111          NumObjCQualifiedInterfaces);
112  fprintf(stderr, "    %d protocol qualified id types\n",
113          NumObjCQualifiedIds);
114  fprintf(stderr, "Total bytes = %d\n", int(NumBuiltin*sizeof(BuiltinType)+
115    NumPointer*sizeof(PointerType)+NumArray*sizeof(ArrayType)+
116    NumComplex*sizeof(ComplexType)+NumVector*sizeof(VectorType)+
117    NumFunctionP*sizeof(FunctionTypeProto)+
118    NumFunctionNP*sizeof(FunctionTypeNoProto)+
119    NumTypeName*sizeof(TypedefType)+NumTagged*sizeof(TagType)));
120}
121
122
123void ASTContext::InitBuiltinType(QualType &R, BuiltinType::Kind K) {
124  Types.push_back((R = QualType(new BuiltinType(K),0)).getTypePtr());
125}
126
127void ASTContext::InitBuiltinTypes() {
128  assert(VoidTy.isNull() && "Context reinitialized?");
129
130  // C99 6.2.5p19.
131  InitBuiltinType(VoidTy,              BuiltinType::Void);
132
133  // C99 6.2.5p2.
134  InitBuiltinType(BoolTy,              BuiltinType::Bool);
135  // C99 6.2.5p3.
136  if (Target.isCharSigned())
137    InitBuiltinType(CharTy,            BuiltinType::Char_S);
138  else
139    InitBuiltinType(CharTy,            BuiltinType::Char_U);
140  // C99 6.2.5p4.
141  InitBuiltinType(SignedCharTy,        BuiltinType::SChar);
142  InitBuiltinType(ShortTy,             BuiltinType::Short);
143  InitBuiltinType(IntTy,               BuiltinType::Int);
144  InitBuiltinType(LongTy,              BuiltinType::Long);
145  InitBuiltinType(LongLongTy,          BuiltinType::LongLong);
146
147  // C99 6.2.5p6.
148  InitBuiltinType(UnsignedCharTy,      BuiltinType::UChar);
149  InitBuiltinType(UnsignedShortTy,     BuiltinType::UShort);
150  InitBuiltinType(UnsignedIntTy,       BuiltinType::UInt);
151  InitBuiltinType(UnsignedLongTy,      BuiltinType::ULong);
152  InitBuiltinType(UnsignedLongLongTy,  BuiltinType::ULongLong);
153
154  // C99 6.2.5p10.
155  InitBuiltinType(FloatTy,             BuiltinType::Float);
156  InitBuiltinType(DoubleTy,            BuiltinType::Double);
157  InitBuiltinType(LongDoubleTy,        BuiltinType::LongDouble);
158
159  // C99 6.2.5p11.
160  FloatComplexTy      = getComplexType(FloatTy);
161  DoubleComplexTy     = getComplexType(DoubleTy);
162  LongDoubleComplexTy = getComplexType(LongDoubleTy);
163
164  BuiltinVaListType = QualType();
165  ObjCIdType = QualType();
166  IdStructType = 0;
167  ObjCClassType = QualType();
168  ClassStructType = 0;
169
170  ObjCConstantStringType = QualType();
171
172  // void * type
173  VoidPtrTy = getPointerType(VoidTy);
174}
175
176//===----------------------------------------------------------------------===//
177//                         Type Sizing and Analysis
178//===----------------------------------------------------------------------===//
179
180/// getTypeSize - Return the size of the specified type, in bits.  This method
181/// does not work on incomplete types.
182std::pair<uint64_t, unsigned>
183ASTContext::getTypeInfo(QualType T) {
184  T = getCanonicalType(T);
185  uint64_t Width;
186  unsigned Align;
187  switch (T->getTypeClass()) {
188  case Type::TypeName: assert(0 && "Not a canonical type!");
189  case Type::FunctionNoProto:
190  case Type::FunctionProto:
191  default:
192    assert(0 && "Incomplete types have no size!");
193  case Type::VariableArray:
194    assert(0 && "VLAs not implemented yet!");
195  case Type::ConstantArray: {
196    ConstantArrayType *CAT = cast<ConstantArrayType>(T);
197
198    std::pair<uint64_t, unsigned> EltInfo = getTypeInfo(CAT->getElementType());
199    Width = EltInfo.first*CAT->getSize().getZExtValue();
200    Align = EltInfo.second;
201    break;
202  }
203  case Type::OCUVector:
204  case Type::Vector: {
205    std::pair<uint64_t, unsigned> EltInfo =
206      getTypeInfo(cast<VectorType>(T)->getElementType());
207    Width = EltInfo.first*cast<VectorType>(T)->getNumElements();
208    // FIXME: Vector alignment is not the alignment of its elements.
209    Align = EltInfo.second;
210    break;
211  }
212
213  case Type::Builtin:
214    switch (cast<BuiltinType>(T)->getKind()) {
215    default: assert(0 && "Unknown builtin type!");
216    case BuiltinType::Void:
217      assert(0 && "Incomplete types have no size!");
218    case BuiltinType::Bool:
219      Width = Target.getBoolWidth();
220      Align = Target.getBoolAlign();
221      break;
222    case BuiltinType::Char_S:
223    case BuiltinType::Char_U:
224    case BuiltinType::UChar:
225    case BuiltinType::SChar:
226      Width = Target.getCharWidth();
227      Align = Target.getCharAlign();
228      break;
229    case BuiltinType::UShort:
230    case BuiltinType::Short:
231      Width = Target.getShortWidth();
232      Align = Target.getShortAlign();
233      break;
234    case BuiltinType::UInt:
235    case BuiltinType::Int:
236      Width = Target.getIntWidth();
237      Align = Target.getIntAlign();
238      break;
239    case BuiltinType::ULong:
240    case BuiltinType::Long:
241      Width = Target.getLongWidth();
242      Align = Target.getLongAlign();
243      break;
244    case BuiltinType::ULongLong:
245    case BuiltinType::LongLong:
246      Width = Target.getLongLongWidth();
247      Align = Target.getLongLongAlign();
248      break;
249    case BuiltinType::Float:
250      Width = Target.getFloatWidth();
251      Align = Target.getFloatAlign();
252      break;
253    case BuiltinType::Double:
254      Width = Target.getDoubleWidth();
255      Align = Target.getDoubleAlign();
256      break;
257    case BuiltinType::LongDouble:
258      Width = Target.getLongDoubleWidth();
259      Align = Target.getLongDoubleAlign();
260      break;
261    }
262    break;
263  case Type::ASQual:
264    // FIXME: Pointers into different addr spaces could have different sizes and
265    // alignment requirements: getPointerInfo should take an AddrSpace.
266    return getTypeInfo(QualType(cast<ASQualType>(T)->getBaseType(), 0));
267  case Type::ObjCQualifiedId:
268    Width = Target.getPointerWidth(0);
269    Align = Target.getPointerAlign(0);
270    break;
271  case Type::Pointer: {
272    unsigned AS = cast<PointerType>(T)->getPointeeType().getAddressSpace();
273    Width = Target.getPointerWidth(AS);
274    Align = Target.getPointerAlign(AS);
275    break;
276  }
277  case Type::Reference:
278    // "When applied to a reference or a reference type, the result is the size
279    // of the referenced type." C++98 5.3.3p2: expr.sizeof.
280    // FIXME: This is wrong for struct layout: a reference in a struct has
281    // pointer size.
282    return getTypeInfo(cast<ReferenceType>(T)->getPointeeType());
283
284  case Type::Complex: {
285    // Complex types have the same alignment as their elements, but twice the
286    // size.
287    std::pair<uint64_t, unsigned> EltInfo =
288      getTypeInfo(cast<ComplexType>(T)->getElementType());
289    Width = EltInfo.first*2;
290    Align = EltInfo.second;
291    break;
292  }
293  case Type::Tagged: {
294    if (EnumType *ET = dyn_cast<EnumType>(cast<TagType>(T)))
295      return getTypeInfo(ET->getDecl()->getIntegerType());
296
297    RecordType *RT = cast<RecordType>(T);
298    const ASTRecordLayout &Layout = getASTRecordLayout(RT->getDecl());
299    Width = Layout.getSize();
300    Align = Layout.getAlignment();
301    break;
302  }
303  }
304
305  assert(Align && (Align & (Align-1)) == 0 && "Alignment must be power of 2");
306  return std::make_pair(Width, Align);
307}
308
309/// getASTRecordLayout - Get or compute information about the layout of the
310/// specified record (struct/union/class), which indicates its size and field
311/// position information.
312const ASTRecordLayout &ASTContext::getASTRecordLayout(const RecordDecl *D) {
313  assert(D->isDefinition() && "Cannot get layout of forward declarations!");
314
315  // Look up this layout, if already laid out, return what we have.
316  const ASTRecordLayout *&Entry = ASTRecordLayouts[D];
317  if (Entry) return *Entry;
318
319  // Allocate and assign into ASTRecordLayouts here.  The "Entry" reference can
320  // be invalidated (dangle) if the ASTRecordLayouts hashtable is inserted into.
321  ASTRecordLayout *NewEntry = new ASTRecordLayout();
322  Entry = NewEntry;
323
324  uint64_t *FieldOffsets = new uint64_t[D->getNumMembers()];
325  uint64_t RecordSize = 0;
326  unsigned RecordAlign = 8;  // Default alignment = 1 byte = 8 bits.
327
328  if (D->getKind() != Decl::Union) {
329    if (const AlignedAttr *AA = D->getAttr<AlignedAttr>())
330      RecordAlign = std::max(RecordAlign, AA->getAlignment());
331
332    bool StructIsPacked = D->getAttr<PackedAttr>();
333
334    // Layout each field, for now, just sequentially, respecting alignment.  In
335    // the future, this will need to be tweakable by targets.
336    for (unsigned i = 0, e = D->getNumMembers(); i != e; ++i) {
337      const FieldDecl *FD = D->getMember(i);
338      bool FieldIsPacked = StructIsPacked || FD->getAttr<PackedAttr>();
339      uint64_t FieldSize;
340      unsigned FieldAlign;
341
342      if (const Expr *BitWidthExpr = FD->getBitWidth()) {
343        llvm::APSInt I(32);
344        bool BitWidthIsICE =
345          BitWidthExpr->isIntegerConstantExpr(I, *this);
346        assert (BitWidthIsICE  && "Invalid BitField size expression");
347        FieldSize = I.getZExtValue();
348
349        std::pair<uint64_t, unsigned> TypeInfo = getTypeInfo(FD->getType());
350        uint64_t TypeSize = TypeInfo.first;
351
352        if (const AlignedAttr *AA = FD->getAttr<AlignedAttr>())
353          FieldAlign = AA->getAlignment();
354        else if (FieldIsPacked)
355          FieldAlign = 8;
356        else {
357          // FIXME: This is X86 specific, use 32-bit alignment for long long.
358          if (FD->getType()->isIntegerType() && TypeInfo.second > 32)
359            FieldAlign = 32;
360          else
361            FieldAlign = TypeInfo.second;
362        }
363
364        // Check if we need to add padding to give the field the correct
365        // alignment.
366        if (RecordSize % FieldAlign + FieldSize > TypeSize)
367          RecordSize = (RecordSize+FieldAlign-1) & ~(FieldAlign-1);
368
369      } else {
370        if (FD->getType()->isIncompleteType()) {
371          // This must be a flexible array member; we can't directly
372          // query getTypeInfo about these, so we figure it out here.
373          // Flexible array members don't have any size, but they
374          // have to be aligned appropriately for their element type.
375
376          if (const AlignedAttr *AA = FD->getAttr<AlignedAttr>())
377            FieldAlign = AA->getAlignment();
378          else if (FieldIsPacked)
379            FieldAlign = 8;
380          else {
381            const ArrayType* ATy = FD->getType()->getAsArrayType();
382            FieldAlign = getTypeAlign(ATy->getElementType());
383          }
384          FieldSize = 0;
385        } else {
386          std::pair<uint64_t, unsigned> FieldInfo = getTypeInfo(FD->getType());
387          FieldSize = FieldInfo.first;
388
389          if (const AlignedAttr *AA = FD->getAttr<AlignedAttr>())
390            FieldAlign = AA->getAlignment();
391          else if (FieldIsPacked)
392            FieldAlign = 8;
393          else
394            FieldAlign = FieldInfo.second;
395        }
396
397        // Round up the current record size to the field's alignment boundary.
398        RecordSize = (RecordSize+FieldAlign-1) & ~(FieldAlign-1);
399      }
400
401      // Place this field at the current location.
402      FieldOffsets[i] = RecordSize;
403
404      // Reserve space for this field.
405      RecordSize += FieldSize;
406
407      // Remember max struct/class alignment.
408      RecordAlign = std::max(RecordAlign, FieldAlign);
409    }
410
411    // Finally, round the size of the total struct up to the alignment of the
412    // struct itself.
413    RecordSize = (RecordSize+RecordAlign-1) & ~(RecordAlign-1);
414  } else {
415    // Union layout just puts each member at the start of the record.
416    for (unsigned i = 0, e = D->getNumMembers(); i != e; ++i) {
417      const FieldDecl *FD = D->getMember(i);
418      std::pair<uint64_t, unsigned> FieldInfo = getTypeInfo(FD->getType());
419      uint64_t FieldSize = FieldInfo.first;
420      unsigned FieldAlign = FieldInfo.second;
421
422      // FIXME: This is X86 specific, use 32-bit alignment for long long.
423      if (FD->getType()->isIntegerType() && FieldAlign > 32)
424        FieldAlign = 32;
425
426      // Round up the current record size to the field's alignment boundary.
427      RecordSize = std::max(RecordSize, FieldSize);
428
429      // Place this field at the start of the record.
430      FieldOffsets[i] = 0;
431
432      // Remember max struct/class alignment.
433      RecordAlign = std::max(RecordAlign, FieldAlign);
434    }
435  }
436
437  NewEntry->SetLayout(RecordSize, RecordAlign, FieldOffsets);
438  return *NewEntry;
439}
440
441//===----------------------------------------------------------------------===//
442//                   Type creation/memoization methods
443//===----------------------------------------------------------------------===//
444
445QualType ASTContext::getASQualType(QualType T, unsigned AddressSpace) {
446  QualType CanT = getCanonicalType(T);
447  if (CanT.getAddressSpace() == AddressSpace)
448    return T;
449
450  // Type's cannot have multiple ASQuals, therefore we know we only have to deal
451  // with CVR qualifiers from here on out.
452  assert(CanT.getAddressSpace() == 0 &&
453         "Type is already address space qualified");
454
455  // Check if we've already instantiated an address space qual'd type of this
456  // type.
457  llvm::FoldingSetNodeID ID;
458  ASQualType::Profile(ID, T.getTypePtr(), AddressSpace);
459  void *InsertPos = 0;
460  if (ASQualType *ASQy = ASQualTypes.FindNodeOrInsertPos(ID, InsertPos))
461    return QualType(ASQy, 0);
462
463  // If the base type isn't canonical, this won't be a canonical type either,
464  // so fill in the canonical type field.
465  QualType Canonical;
466  if (!T->isCanonical()) {
467    Canonical = getASQualType(CanT, AddressSpace);
468
469    // Get the new insert position for the node we care about.
470    ASQualType *NewIP = ASQualTypes.FindNodeOrInsertPos(ID, InsertPos);
471    assert(NewIP == 0 && "Shouldn't be in the map!");
472  }
473  ASQualType *New = new ASQualType(T.getTypePtr(), Canonical, AddressSpace);
474  ASQualTypes.InsertNode(New, InsertPos);
475  Types.push_back(New);
476  return QualType(New, T.getCVRQualifiers());
477}
478
479
480/// getComplexType - Return the uniqued reference to the type for a complex
481/// number with the specified element type.
482QualType ASTContext::getComplexType(QualType T) {
483  // Unique pointers, to guarantee there is only one pointer of a particular
484  // structure.
485  llvm::FoldingSetNodeID ID;
486  ComplexType::Profile(ID, T);
487
488  void *InsertPos = 0;
489  if (ComplexType *CT = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos))
490    return QualType(CT, 0);
491
492  // If the pointee type isn't canonical, this won't be a canonical type either,
493  // so fill in the canonical type field.
494  QualType Canonical;
495  if (!T->isCanonical()) {
496    Canonical = getComplexType(getCanonicalType(T));
497
498    // Get the new insert position for the node we care about.
499    ComplexType *NewIP = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos);
500    assert(NewIP == 0 && "Shouldn't be in the map!");
501  }
502  ComplexType *New = new ComplexType(T, Canonical);
503  Types.push_back(New);
504  ComplexTypes.InsertNode(New, InsertPos);
505  return QualType(New, 0);
506}
507
508
509/// getPointerType - Return the uniqued reference to the type for a pointer to
510/// the specified type.
511QualType ASTContext::getPointerType(QualType T) {
512  // Unique pointers, to guarantee there is only one pointer of a particular
513  // structure.
514  llvm::FoldingSetNodeID ID;
515  PointerType::Profile(ID, T);
516
517  void *InsertPos = 0;
518  if (PointerType *PT = PointerTypes.FindNodeOrInsertPos(ID, InsertPos))
519    return QualType(PT, 0);
520
521  // If the pointee type isn't canonical, this won't be a canonical type either,
522  // so fill in the canonical type field.
523  QualType Canonical;
524  if (!T->isCanonical()) {
525    Canonical = getPointerType(getCanonicalType(T));
526
527    // Get the new insert position for the node we care about.
528    PointerType *NewIP = PointerTypes.FindNodeOrInsertPos(ID, InsertPos);
529    assert(NewIP == 0 && "Shouldn't be in the map!");
530  }
531  PointerType *New = new PointerType(T, Canonical);
532  Types.push_back(New);
533  PointerTypes.InsertNode(New, InsertPos);
534  return QualType(New, 0);
535}
536
537/// getReferenceType - Return the uniqued reference to the type for a reference
538/// to the specified type.
539QualType ASTContext::getReferenceType(QualType T) {
540  // Unique pointers, to guarantee there is only one pointer of a particular
541  // structure.
542  llvm::FoldingSetNodeID ID;
543  ReferenceType::Profile(ID, T);
544
545  void *InsertPos = 0;
546  if (ReferenceType *RT = ReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
547    return QualType(RT, 0);
548
549  // If the referencee type isn't canonical, this won't be a canonical type
550  // either, so fill in the canonical type field.
551  QualType Canonical;
552  if (!T->isCanonical()) {
553    Canonical = getReferenceType(getCanonicalType(T));
554
555    // Get the new insert position for the node we care about.
556    ReferenceType *NewIP = ReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
557    assert(NewIP == 0 && "Shouldn't be in the map!");
558  }
559
560  ReferenceType *New = new ReferenceType(T, Canonical);
561  Types.push_back(New);
562  ReferenceTypes.InsertNode(New, InsertPos);
563  return QualType(New, 0);
564}
565
566/// getConstantArrayType - Return the unique reference to the type for an
567/// array of the specified element type.
568QualType ASTContext::getConstantArrayType(QualType EltTy,
569                                          const llvm::APInt &ArySize,
570                                          ArrayType::ArraySizeModifier ASM,
571                                          unsigned EltTypeQuals) {
572  llvm::FoldingSetNodeID ID;
573  ConstantArrayType::Profile(ID, EltTy, ArySize);
574
575  void *InsertPos = 0;
576  if (ConstantArrayType *ATP =
577      ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
578    return QualType(ATP, 0);
579
580  // If the element type isn't canonical, this won't be a canonical type either,
581  // so fill in the canonical type field.
582  QualType Canonical;
583  if (!EltTy->isCanonical()) {
584    Canonical = getConstantArrayType(getCanonicalType(EltTy), ArySize,
585                                     ASM, EltTypeQuals);
586    // Get the new insert position for the node we care about.
587    ConstantArrayType *NewIP =
588      ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
589
590    assert(NewIP == 0 && "Shouldn't be in the map!");
591  }
592
593  ConstantArrayType *New = new ConstantArrayType(EltTy, Canonical, ArySize,
594                                                 ASM, EltTypeQuals);
595  ConstantArrayTypes.InsertNode(New, InsertPos);
596  Types.push_back(New);
597  return QualType(New, 0);
598}
599
600/// getVariableArrayType - Returns a non-unique reference to the type for a
601/// variable array of the specified element type.
602QualType ASTContext::getVariableArrayType(QualType EltTy, Expr *NumElts,
603                                          ArrayType::ArraySizeModifier ASM,
604                                          unsigned EltTypeQuals) {
605  // Since we don't unique expressions, it isn't possible to unique VLA's
606  // that have an expression provided for their size.
607
608  VariableArrayType *New = new VariableArrayType(EltTy, QualType(), NumElts,
609                                                 ASM, EltTypeQuals);
610
611  VariableArrayTypes.push_back(New);
612  Types.push_back(New);
613  return QualType(New, 0);
614}
615
616QualType ASTContext::getIncompleteArrayType(QualType EltTy,
617                                            ArrayType::ArraySizeModifier ASM,
618                                            unsigned EltTypeQuals) {
619  llvm::FoldingSetNodeID ID;
620  IncompleteArrayType::Profile(ID, EltTy);
621
622  void *InsertPos = 0;
623  if (IncompleteArrayType *ATP =
624       IncompleteArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
625    return QualType(ATP, 0);
626
627  // If the element type isn't canonical, this won't be a canonical type
628  // either, so fill in the canonical type field.
629  QualType Canonical;
630
631  if (!EltTy->isCanonical()) {
632    Canonical = getIncompleteArrayType(getCanonicalType(EltTy),
633                                       ASM, EltTypeQuals);
634
635    // Get the new insert position for the node we care about.
636    IncompleteArrayType *NewIP =
637      IncompleteArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
638
639    assert(NewIP == 0 && "Shouldn't be in the map!");
640  }
641
642  IncompleteArrayType *New = new IncompleteArrayType(EltTy, Canonical,
643                                                     ASM, EltTypeQuals);
644
645  IncompleteArrayTypes.InsertNode(New, InsertPos);
646  Types.push_back(New);
647  return QualType(New, 0);
648}
649
650/// getVectorType - Return the unique reference to a vector type of
651/// the specified element type and size. VectorType must be a built-in type.
652QualType ASTContext::getVectorType(QualType vecType, unsigned NumElts) {
653  BuiltinType *baseType;
654
655  baseType = dyn_cast<BuiltinType>(getCanonicalType(vecType).getTypePtr());
656  assert(baseType != 0 && "getVectorType(): Expecting a built-in type");
657
658  // Check if we've already instantiated a vector of this type.
659  llvm::FoldingSetNodeID ID;
660  VectorType::Profile(ID, vecType, NumElts, Type::Vector);
661  void *InsertPos = 0;
662  if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
663    return QualType(VTP, 0);
664
665  // If the element type isn't canonical, this won't be a canonical type either,
666  // so fill in the canonical type field.
667  QualType Canonical;
668  if (!vecType->isCanonical()) {
669    Canonical = getVectorType(getCanonicalType(vecType), NumElts);
670
671    // Get the new insert position for the node we care about.
672    VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
673    assert(NewIP == 0 && "Shouldn't be in the map!");
674  }
675  VectorType *New = new VectorType(vecType, NumElts, Canonical);
676  VectorTypes.InsertNode(New, InsertPos);
677  Types.push_back(New);
678  return QualType(New, 0);
679}
680
681/// getOCUVectorType - Return the unique reference to an OCU vector type of
682/// the specified element type and size. VectorType must be a built-in type.
683QualType ASTContext::getOCUVectorType(QualType vecType, unsigned NumElts) {
684  BuiltinType *baseType;
685
686  baseType = dyn_cast<BuiltinType>(getCanonicalType(vecType).getTypePtr());
687  assert(baseType != 0 && "getOCUVectorType(): Expecting a built-in type");
688
689  // Check if we've already instantiated a vector of this type.
690  llvm::FoldingSetNodeID ID;
691  VectorType::Profile(ID, vecType, NumElts, Type::OCUVector);
692  void *InsertPos = 0;
693  if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
694    return QualType(VTP, 0);
695
696  // If the element type isn't canonical, this won't be a canonical type either,
697  // so fill in the canonical type field.
698  QualType Canonical;
699  if (!vecType->isCanonical()) {
700    Canonical = getOCUVectorType(getCanonicalType(vecType), NumElts);
701
702    // Get the new insert position for the node we care about.
703    VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
704    assert(NewIP == 0 && "Shouldn't be in the map!");
705  }
706  OCUVectorType *New = new OCUVectorType(vecType, NumElts, Canonical);
707  VectorTypes.InsertNode(New, InsertPos);
708  Types.push_back(New);
709  return QualType(New, 0);
710}
711
712/// getFunctionTypeNoProto - Return a K&R style C function type like 'int()'.
713///
714QualType ASTContext::getFunctionTypeNoProto(QualType ResultTy) {
715  // Unique functions, to guarantee there is only one function of a particular
716  // structure.
717  llvm::FoldingSetNodeID ID;
718  FunctionTypeNoProto::Profile(ID, ResultTy);
719
720  void *InsertPos = 0;
721  if (FunctionTypeNoProto *FT =
722        FunctionTypeNoProtos.FindNodeOrInsertPos(ID, InsertPos))
723    return QualType(FT, 0);
724
725  QualType Canonical;
726  if (!ResultTy->isCanonical()) {
727    Canonical = getFunctionTypeNoProto(getCanonicalType(ResultTy));
728
729    // Get the new insert position for the node we care about.
730    FunctionTypeNoProto *NewIP =
731      FunctionTypeNoProtos.FindNodeOrInsertPos(ID, InsertPos);
732    assert(NewIP == 0 && "Shouldn't be in the map!");
733  }
734
735  FunctionTypeNoProto *New = new FunctionTypeNoProto(ResultTy, Canonical);
736  Types.push_back(New);
737  FunctionTypeNoProtos.InsertNode(New, InsertPos);
738  return QualType(New, 0);
739}
740
741/// getFunctionType - Return a normal function type with a typed argument
742/// list.  isVariadic indicates whether the argument list includes '...'.
743QualType ASTContext::getFunctionType(QualType ResultTy, QualType *ArgArray,
744                                     unsigned NumArgs, bool isVariadic) {
745  // Unique functions, to guarantee there is only one function of a particular
746  // structure.
747  llvm::FoldingSetNodeID ID;
748  FunctionTypeProto::Profile(ID, ResultTy, ArgArray, NumArgs, isVariadic);
749
750  void *InsertPos = 0;
751  if (FunctionTypeProto *FTP =
752        FunctionTypeProtos.FindNodeOrInsertPos(ID, InsertPos))
753    return QualType(FTP, 0);
754
755  // Determine whether the type being created is already canonical or not.
756  bool isCanonical = ResultTy->isCanonical();
757  for (unsigned i = 0; i != NumArgs && isCanonical; ++i)
758    if (!ArgArray[i]->isCanonical())
759      isCanonical = false;
760
761  // If this type isn't canonical, get the canonical version of it.
762  QualType Canonical;
763  if (!isCanonical) {
764    llvm::SmallVector<QualType, 16> CanonicalArgs;
765    CanonicalArgs.reserve(NumArgs);
766    for (unsigned i = 0; i != NumArgs; ++i)
767      CanonicalArgs.push_back(getCanonicalType(ArgArray[i]));
768
769    Canonical = getFunctionType(getCanonicalType(ResultTy),
770                                &CanonicalArgs[0], NumArgs,
771                                isVariadic);
772
773    // Get the new insert position for the node we care about.
774    FunctionTypeProto *NewIP =
775      FunctionTypeProtos.FindNodeOrInsertPos(ID, InsertPos);
776    assert(NewIP == 0 && "Shouldn't be in the map!");
777  }
778
779  // FunctionTypeProto objects are not allocated with new because they have a
780  // variable size array (for parameter types) at the end of them.
781  FunctionTypeProto *FTP =
782    (FunctionTypeProto*)malloc(sizeof(FunctionTypeProto) +
783                               NumArgs*sizeof(QualType));
784  new (FTP) FunctionTypeProto(ResultTy, ArgArray, NumArgs, isVariadic,
785                              Canonical);
786  Types.push_back(FTP);
787  FunctionTypeProtos.InsertNode(FTP, InsertPos);
788  return QualType(FTP, 0);
789}
790
791/// getTypedefType - Return the unique reference to the type for the
792/// specified typename decl.
793QualType ASTContext::getTypedefType(TypedefDecl *Decl) {
794  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
795
796  QualType Canonical = getCanonicalType(Decl->getUnderlyingType());
797  Decl->TypeForDecl = new TypedefType(Type::TypeName, Decl, Canonical);
798  Types.push_back(Decl->TypeForDecl);
799  return QualType(Decl->TypeForDecl, 0);
800}
801
802/// getObjCInterfaceType - Return the unique reference to the type for the
803/// specified ObjC interface decl.
804QualType ASTContext::getObjCInterfaceType(ObjCInterfaceDecl *Decl) {
805  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
806
807  Decl->TypeForDecl = new ObjCInterfaceType(Type::ObjCInterface, Decl);
808  Types.push_back(Decl->TypeForDecl);
809  return QualType(Decl->TypeForDecl, 0);
810}
811
812/// CmpProtocolNames - Comparison predicate for sorting protocols
813/// alphabetically.
814static bool CmpProtocolNames(const ObjCProtocolDecl *LHS,
815                            const ObjCProtocolDecl *RHS) {
816  return strcmp(LHS->getName(), RHS->getName()) < 0;
817}
818
819static void SortAndUniqueProtocols(ObjCProtocolDecl **&Protocols,
820                                   unsigned &NumProtocols) {
821  ObjCProtocolDecl **ProtocolsEnd = Protocols+NumProtocols;
822
823  // Sort protocols, keyed by name.
824  std::sort(Protocols, Protocols+NumProtocols, CmpProtocolNames);
825
826  // Remove duplicates.
827  ProtocolsEnd = std::unique(Protocols, ProtocolsEnd);
828  NumProtocols = ProtocolsEnd-Protocols;
829}
830
831
832/// getObjCQualifiedInterfaceType - Return a ObjCQualifiedInterfaceType type for
833/// the given interface decl and the conforming protocol list.
834QualType ASTContext::getObjCQualifiedInterfaceType(ObjCInterfaceDecl *Decl,
835                       ObjCProtocolDecl **Protocols, unsigned NumProtocols) {
836  // Sort the protocol list alphabetically to canonicalize it.
837  SortAndUniqueProtocols(Protocols, NumProtocols);
838
839  llvm::FoldingSetNodeID ID;
840  ObjCQualifiedInterfaceType::Profile(ID, Decl, Protocols, NumProtocols);
841
842  void *InsertPos = 0;
843  if (ObjCQualifiedInterfaceType *QT =
844      ObjCQualifiedInterfaceTypes.FindNodeOrInsertPos(ID, InsertPos))
845    return QualType(QT, 0);
846
847  // No Match;
848  ObjCQualifiedInterfaceType *QType =
849    new ObjCQualifiedInterfaceType(Decl, Protocols, NumProtocols);
850  Types.push_back(QType);
851  ObjCQualifiedInterfaceTypes.InsertNode(QType, InsertPos);
852  return QualType(QType, 0);
853}
854
855/// getObjCQualifiedIdType - Return an ObjCQualifiedIdType for the 'id' decl
856/// and the conforming protocol list.
857QualType ASTContext::getObjCQualifiedIdType(QualType idType,
858                                            ObjCProtocolDecl **Protocols,
859                                            unsigned NumProtocols) {
860  // Sort the protocol list alphabetically to canonicalize it.
861  SortAndUniqueProtocols(Protocols, NumProtocols);
862
863  llvm::FoldingSetNodeID ID;
864  ObjCQualifiedIdType::Profile(ID, Protocols, NumProtocols);
865
866  void *InsertPos = 0;
867  if (ObjCQualifiedIdType *QT =
868      ObjCQualifiedIdTypes.FindNodeOrInsertPos(ID, InsertPos))
869    return QualType(QT, 0);
870
871  // No Match;
872  QualType Canonical;
873  if (!idType->isCanonical()) {
874    Canonical = getObjCQualifiedIdType(getCanonicalType(idType),
875                                       Protocols, NumProtocols);
876    ObjCQualifiedIdType *NewQT =
877      ObjCQualifiedIdTypes.FindNodeOrInsertPos(ID, InsertPos);
878    assert(NewQT == 0 && "Shouldn't be in the map!");
879  }
880
881  ObjCQualifiedIdType *QType =
882    new ObjCQualifiedIdType(Canonical, Protocols, NumProtocols);
883  Types.push_back(QType);
884  ObjCQualifiedIdTypes.InsertNode(QType, InsertPos);
885  return QualType(QType, 0);
886}
887
888/// getTypeOfExpr - Unlike many "get<Type>" functions, we can't unique
889/// TypeOfExpr AST's (since expression's are never shared). For example,
890/// multiple declarations that refer to "typeof(x)" all contain different
891/// DeclRefExpr's. This doesn't effect the type checker, since it operates
892/// on canonical type's (which are always unique).
893QualType ASTContext::getTypeOfExpr(Expr *tofExpr) {
894  QualType Canonical = getCanonicalType(tofExpr->getType());
895  TypeOfExpr *toe = new TypeOfExpr(tofExpr, Canonical);
896  Types.push_back(toe);
897  return QualType(toe, 0);
898}
899
900/// getTypeOfType -  Unlike many "get<Type>" functions, we don't unique
901/// TypeOfType AST's. The only motivation to unique these nodes would be
902/// memory savings. Since typeof(t) is fairly uncommon, space shouldn't be
903/// an issue. This doesn't effect the type checker, since it operates
904/// on canonical type's (which are always unique).
905QualType ASTContext::getTypeOfType(QualType tofType) {
906  QualType Canonical = getCanonicalType(tofType);
907  TypeOfType *tot = new TypeOfType(tofType, Canonical);
908  Types.push_back(tot);
909  return QualType(tot, 0);
910}
911
912/// getTagDeclType - Return the unique reference to the type for the
913/// specified TagDecl (struct/union/class/enum) decl.
914QualType ASTContext::getTagDeclType(TagDecl *Decl) {
915  assert (Decl);
916
917  // The decl stores the type cache.
918  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
919
920  TagType* T = new TagType(Decl, QualType());
921  Types.push_back(T);
922  Decl->TypeForDecl = T;
923
924  return QualType(T, 0);
925}
926
927/// getSizeType - Return the unique type for "size_t" (C99 7.17), the result
928/// of the sizeof operator (C99 6.5.3.4p4). The value is target dependent and
929/// needs to agree with the definition in <stddef.h>.
930QualType ASTContext::getSizeType() const {
931  // On Darwin, size_t is defined as a "long unsigned int".
932  // FIXME: should derive from "Target".
933  return UnsignedLongTy;
934}
935
936/// getWcharType - Return the unique type for "wchar_t" (C99 7.17), the
937/// width of characters in wide strings, The value is target dependent and
938/// needs to agree with the definition in <stddef.h>.
939QualType ASTContext::getWcharType() const {
940  // On Darwin, wchar_t is defined as a "int".
941  // FIXME: should derive from "Target".
942  return IntTy;
943}
944
945/// getPointerDiffType - Return the unique type for "ptrdiff_t" (ref?)
946/// defined in <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9).
947QualType ASTContext::getPointerDiffType() const {
948  // On Darwin, ptrdiff_t is defined as a "int". This seems like a bug...
949  // FIXME: should derive from "Target".
950  return IntTy;
951}
952
953//===----------------------------------------------------------------------===//
954//                              Type Operators
955//===----------------------------------------------------------------------===//
956
957/// getCanonicalType - Return the canonical (structural) type corresponding to
958/// the specified potentially non-canonical type.  The non-canonical version
959/// of a type may have many "decorated" versions of types.  Decorators can
960/// include typedefs, 'typeof' operators, etc. The returned type is guaranteed
961/// to be free of any of these, allowing two canonical types to be compared
962/// for exact equality with a simple pointer comparison.
963QualType ASTContext::getCanonicalType(QualType T) {
964  QualType CanType = T.getTypePtr()->getCanonicalTypeInternal();
965  return QualType(CanType.getTypePtr(),
966                  T.getCVRQualifiers() | CanType.getCVRQualifiers());
967}
968
969
970/// getArrayDecayedType - Return the properly qualified result of decaying the
971/// specified array type to a pointer.  This operation is non-trivial when
972/// handling typedefs etc.  The canonical type of "T" must be an array type,
973/// this returns a pointer to a properly qualified element of the array.
974///
975/// See C99 6.7.5.3p7 and C99 6.3.2.1p3.
976QualType ASTContext::getArrayDecayedType(QualType Ty) {
977  // Handle the common case where typedefs are not involved directly.
978  QualType EltTy;
979  unsigned ArrayQuals = 0;
980  unsigned PointerQuals = 0;
981  if (ArrayType *AT = dyn_cast<ArrayType>(Ty)) {
982    // Since T "isa" an array type, it could not have had an address space
983    // qualifier, just CVR qualifiers.  The properly qualified element pointer
984    // gets the union of the CVR qualifiers from the element and the array, and
985    // keeps any address space qualifier on the element type if present.
986    EltTy = AT->getElementType();
987    ArrayQuals = Ty.getCVRQualifiers();
988    PointerQuals = AT->getIndexTypeQualifier();
989  } else {
990    // Otherwise, we have an ASQualType or a typedef, etc.  Make sure we don't
991    // lose qualifiers when dealing with typedefs. Example:
992    //   typedef int arr[10];
993    //   void test2() {
994    //     const arr b;
995    //     b[4] = 1;
996    //   }
997    //
998    // The decayed type of b is "const int*" even though the element type of the
999    // array is "int".
1000    QualType CanTy = getCanonicalType(Ty);
1001    const ArrayType *PrettyArrayType = Ty->getAsArrayType();
1002    assert(PrettyArrayType && "Not an array type!");
1003
1004    // Get the element type with 'getAsArrayType' so that we don't lose any
1005    // typedefs in the element type of the array.
1006    EltTy = PrettyArrayType->getElementType();
1007
1008    // If the array was address-space qualifier, make sure to ASQual the element
1009    // type.  We can just grab the address space from the canonical type.
1010    if (unsigned AS = CanTy.getAddressSpace())
1011      EltTy = getASQualType(EltTy, AS);
1012
1013    // To properly handle [multiple levels of] typedefs, typeof's etc, we take
1014    // the CVR qualifiers directly from the canonical type, which is guaranteed
1015    // to have the full set unioned together.
1016    ArrayQuals = CanTy.getCVRQualifiers();
1017    PointerQuals = PrettyArrayType->getIndexTypeQualifier();
1018  }
1019
1020  // Apply any CVR qualifiers from the array type to the element type.  This
1021  // implements C99 6.7.3p8: "If the specification of an array type includes
1022  // any type qualifiers, the element type is so qualified, not the array type."
1023  EltTy = EltTy.getQualifiedType(ArrayQuals | EltTy.getCVRQualifiers());
1024
1025  QualType PtrTy = getPointerType(EltTy);
1026
1027  // int x[restrict 4] ->  int *restrict
1028  PtrTy = PtrTy.getQualifiedType(PointerQuals);
1029
1030  return PtrTy;
1031}
1032
1033/// getFloatingRank - Return a relative rank for floating point types.
1034/// This routine will assert if passed a built-in type that isn't a float.
1035static FloatingRank getFloatingRank(QualType T) {
1036  if (const ComplexType *CT = T->getAsComplexType())
1037    return getFloatingRank(CT->getElementType());
1038
1039  switch (T->getAsBuiltinType()->getKind()) {
1040  default: assert(0 && "getFloatingRank(): not a floating type");
1041  case BuiltinType::Float:      return FloatRank;
1042  case BuiltinType::Double:     return DoubleRank;
1043  case BuiltinType::LongDouble: return LongDoubleRank;
1044  }
1045}
1046
1047/// getFloatingTypeOfSizeWithinDomain - Returns a real floating
1048/// point or a complex type (based on typeDomain/typeSize).
1049/// 'typeDomain' is a real floating point or complex type.
1050/// 'typeSize' is a real floating point or complex type.
1051QualType ASTContext::getFloatingTypeOfSizeWithinDomain(QualType Size,
1052                                                       QualType Domain) const {
1053  FloatingRank EltRank = getFloatingRank(Size);
1054  if (Domain->isComplexType()) {
1055    switch (EltRank) {
1056    default: assert(0 && "getFloatingRank(): illegal value for rank");
1057    case FloatRank:      return FloatComplexTy;
1058    case DoubleRank:     return DoubleComplexTy;
1059    case LongDoubleRank: return LongDoubleComplexTy;
1060    }
1061  }
1062
1063  assert(Domain->isRealFloatingType() && "Unknown domain!");
1064  switch (EltRank) {
1065  default: assert(0 && "getFloatingRank(): illegal value for rank");
1066  case FloatRank:      return FloatTy;
1067  case DoubleRank:     return DoubleTy;
1068  case LongDoubleRank: return LongDoubleTy;
1069  }
1070}
1071
1072/// getFloatingTypeOrder - Compare the rank of the two specified floating
1073/// point types, ignoring the domain of the type (i.e. 'double' ==
1074/// '_Complex double').  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
1075/// LHS < RHS, return -1.
1076int ASTContext::getFloatingTypeOrder(QualType LHS, QualType RHS) {
1077  FloatingRank LHSR = getFloatingRank(LHS);
1078  FloatingRank RHSR = getFloatingRank(RHS);
1079
1080  if (LHSR == RHSR)
1081    return 0;
1082  if (LHSR > RHSR)
1083    return 1;
1084  return -1;
1085}
1086
1087/// getIntegerRank - Return an integer conversion rank (C99 6.3.1.1p1). This
1088/// routine will assert if passed a built-in type that isn't an integer or enum,
1089/// or if it is not canonicalized.
1090static unsigned getIntegerRank(Type *T) {
1091  assert(T->isCanonical() && "T should be canonicalized");
1092  if (isa<EnumType>(T))
1093    return 4;
1094
1095  switch (cast<BuiltinType>(T)->getKind()) {
1096  default: assert(0 && "getIntegerRank(): not a built-in integer");
1097  case BuiltinType::Bool:
1098    return 1;
1099  case BuiltinType::Char_S:
1100  case BuiltinType::Char_U:
1101  case BuiltinType::SChar:
1102  case BuiltinType::UChar:
1103    return 2;
1104  case BuiltinType::Short:
1105  case BuiltinType::UShort:
1106    return 3;
1107  case BuiltinType::Int:
1108  case BuiltinType::UInt:
1109    return 4;
1110  case BuiltinType::Long:
1111  case BuiltinType::ULong:
1112    return 5;
1113  case BuiltinType::LongLong:
1114  case BuiltinType::ULongLong:
1115    return 6;
1116  }
1117}
1118
1119/// getIntegerTypeOrder - Returns the highest ranked integer type:
1120/// C99 6.3.1.8p1.  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
1121/// LHS < RHS, return -1.
1122int ASTContext::getIntegerTypeOrder(QualType LHS, QualType RHS) {
1123  Type *LHSC = getCanonicalType(LHS).getTypePtr();
1124  Type *RHSC = getCanonicalType(RHS).getTypePtr();
1125  if (LHSC == RHSC) return 0;
1126
1127  bool LHSUnsigned = LHSC->isUnsignedIntegerType();
1128  bool RHSUnsigned = RHSC->isUnsignedIntegerType();
1129
1130  unsigned LHSRank = getIntegerRank(LHSC);
1131  unsigned RHSRank = getIntegerRank(RHSC);
1132
1133  if (LHSUnsigned == RHSUnsigned) {  // Both signed or both unsigned.
1134    if (LHSRank == RHSRank) return 0;
1135    return LHSRank > RHSRank ? 1 : -1;
1136  }
1137
1138  // Otherwise, the LHS is signed and the RHS is unsigned or visa versa.
1139  if (LHSUnsigned) {
1140    // If the unsigned [LHS] type is larger, return it.
1141    if (LHSRank >= RHSRank)
1142      return 1;
1143
1144    // If the signed type can represent all values of the unsigned type, it
1145    // wins.  Because we are dealing with 2's complement and types that are
1146    // powers of two larger than each other, this is always safe.
1147    return -1;
1148  }
1149
1150  // If the unsigned [RHS] type is larger, return it.
1151  if (RHSRank >= LHSRank)
1152    return -1;
1153
1154  // If the signed type can represent all values of the unsigned type, it
1155  // wins.  Because we are dealing with 2's complement and types that are
1156  // powers of two larger than each other, this is always safe.
1157  return 1;
1158}
1159
1160// getCFConstantStringType - Return the type used for constant CFStrings.
1161QualType ASTContext::getCFConstantStringType() {
1162  if (!CFConstantStringTypeDecl) {
1163    CFConstantStringTypeDecl =
1164      RecordDecl::Create(*this, Decl::Struct, NULL, SourceLocation(),
1165                         &Idents.get("NSConstantString"), 0);
1166    QualType FieldTypes[4];
1167
1168    // const int *isa;
1169    FieldTypes[0] = getPointerType(IntTy.getQualifiedType(QualType::Const));
1170    // int flags;
1171    FieldTypes[1] = IntTy;
1172    // const char *str;
1173    FieldTypes[2] = getPointerType(CharTy.getQualifiedType(QualType::Const));
1174    // long length;
1175    FieldTypes[3] = LongTy;
1176    // Create fields
1177    FieldDecl *FieldDecls[4];
1178
1179    for (unsigned i = 0; i < 4; ++i)
1180      FieldDecls[i] = FieldDecl::Create(*this, SourceLocation(), 0,
1181                                        FieldTypes[i]);
1182
1183    CFConstantStringTypeDecl->defineBody(FieldDecls, 4);
1184  }
1185
1186  return getTagDeclType(CFConstantStringTypeDecl);
1187}
1188
1189// This returns true if a type has been typedefed to BOOL:
1190// typedef <type> BOOL;
1191static bool isTypeTypedefedAsBOOL(QualType T) {
1192  if (const TypedefType *TT = dyn_cast<TypedefType>(T))
1193    return !strcmp(TT->getDecl()->getName(), "BOOL");
1194
1195  return false;
1196}
1197
1198/// getObjCEncodingTypeSize returns size of type for objective-c encoding
1199/// purpose.
1200int ASTContext::getObjCEncodingTypeSize(QualType type) {
1201  uint64_t sz = getTypeSize(type);
1202
1203  // Make all integer and enum types at least as large as an int
1204  if (sz > 0 && type->isIntegralType())
1205    sz = std::max(sz, getTypeSize(IntTy));
1206  // Treat arrays as pointers, since that's how they're passed in.
1207  else if (type->isArrayType())
1208    sz = getTypeSize(VoidPtrTy);
1209  return sz / getTypeSize(CharTy);
1210}
1211
1212/// getObjCEncodingForMethodDecl - Return the encoded type for this method
1213/// declaration.
1214void ASTContext::getObjCEncodingForMethodDecl(ObjCMethodDecl *Decl,
1215                                              std::string& S)
1216{
1217  // Encode type qualifer, 'in', 'inout', etc. for the return type.
1218  getObjCEncodingForTypeQualifier(Decl->getObjCDeclQualifier(), S);
1219  // Encode result type.
1220  getObjCEncodingForType(Decl->getResultType(), S, EncodingRecordTypes);
1221  // Compute size of all parameters.
1222  // Start with computing size of a pointer in number of bytes.
1223  // FIXME: There might(should) be a better way of doing this computation!
1224  SourceLocation Loc;
1225  int PtrSize = getTypeSize(VoidPtrTy) / getTypeSize(CharTy);
1226  // The first two arguments (self and _cmd) are pointers; account for
1227  // their size.
1228  int ParmOffset = 2 * PtrSize;
1229  int NumOfParams = Decl->getNumParams();
1230  for (int i = 0; i < NumOfParams; i++) {
1231    QualType PType = Decl->getParamDecl(i)->getType();
1232    int sz = getObjCEncodingTypeSize (PType);
1233    assert (sz > 0 && "getObjCEncodingForMethodDecl - Incomplete param type");
1234    ParmOffset += sz;
1235  }
1236  S += llvm::utostr(ParmOffset);
1237  S += "@0:";
1238  S += llvm::utostr(PtrSize);
1239
1240  // Argument types.
1241  ParmOffset = 2 * PtrSize;
1242  for (int i = 0; i < NumOfParams; i++) {
1243    QualType PType = Decl->getParamDecl(i)->getType();
1244    // Process argument qualifiers for user supplied arguments; such as,
1245    // 'in', 'inout', etc.
1246    getObjCEncodingForTypeQualifier(
1247      Decl->getParamDecl(i)->getObjCDeclQualifier(), S);
1248    getObjCEncodingForType(PType, S, EncodingRecordTypes);
1249    S += llvm::utostr(ParmOffset);
1250    ParmOffset += getObjCEncodingTypeSize(PType);
1251  }
1252}
1253
1254void ASTContext::getObjCEncodingForType(QualType T, std::string& S,
1255       llvm::SmallVector<const RecordType *, 8> &ERType) const
1256{
1257  // FIXME: This currently doesn't encode:
1258  // @ An object (whether statically typed or typed id)
1259  // # A class object (Class)
1260  // : A method selector (SEL)
1261  // {name=type...} A structure
1262  // (name=type...) A union
1263  // bnum A bit field of num bits
1264
1265  if (const BuiltinType *BT = T->getAsBuiltinType()) {
1266    char encoding;
1267    switch (BT->getKind()) {
1268    default: assert(0 && "Unhandled builtin type kind");
1269    case BuiltinType::Void:       encoding = 'v'; break;
1270    case BuiltinType::Bool:       encoding = 'B'; break;
1271    case BuiltinType::Char_U:
1272    case BuiltinType::UChar:      encoding = 'C'; break;
1273    case BuiltinType::UShort:     encoding = 'S'; break;
1274    case BuiltinType::UInt:       encoding = 'I'; break;
1275    case BuiltinType::ULong:      encoding = 'L'; break;
1276    case BuiltinType::ULongLong:  encoding = 'Q'; break;
1277    case BuiltinType::Char_S:
1278    case BuiltinType::SChar:      encoding = 'c'; break;
1279    case BuiltinType::Short:      encoding = 's'; break;
1280    case BuiltinType::Int:        encoding = 'i'; break;
1281    case BuiltinType::Long:       encoding = 'l'; break;
1282    case BuiltinType::LongLong:   encoding = 'q'; break;
1283    case BuiltinType::Float:      encoding = 'f'; break;
1284    case BuiltinType::Double:     encoding = 'd'; break;
1285    case BuiltinType::LongDouble: encoding = 'd'; break;
1286    }
1287
1288    S += encoding;
1289  }
1290  else if (T->isObjCQualifiedIdType()) {
1291    // Treat id<P...> same as 'id' for encoding purposes.
1292    return getObjCEncodingForType(getObjCIdType(), S, ERType);
1293
1294  }
1295  else if (const PointerType *PT = T->getAsPointerType()) {
1296    QualType PointeeTy = PT->getPointeeType();
1297    if (isObjCIdType(PointeeTy) || PointeeTy->isObjCInterfaceType()) {
1298      S += '@';
1299      return;
1300    } else if (isObjCClassType(PointeeTy)) {
1301      S += '#';
1302      return;
1303    } else if (isObjCSelType(PointeeTy)) {
1304      S += ':';
1305      return;
1306    }
1307
1308    if (PointeeTy->isCharType()) {
1309      // char pointer types should be encoded as '*' unless it is a
1310      // type that has been typedef'd to 'BOOL'.
1311      if (!isTypeTypedefedAsBOOL(PointeeTy)) {
1312        S += '*';
1313        return;
1314      }
1315    }
1316
1317    S += '^';
1318    getObjCEncodingForType(PT->getPointeeType(), S, ERType);
1319  } else if (const ArrayType *AT = T->getAsArrayType()) {
1320    S += '[';
1321
1322    if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
1323      S += llvm::utostr(CAT->getSize().getZExtValue());
1324    else
1325      assert(0 && "Unhandled array type!");
1326
1327    getObjCEncodingForType(AT->getElementType(), S, ERType);
1328    S += ']';
1329  } else if (T->getAsFunctionType()) {
1330    S += '?';
1331  } else if (const RecordType *RTy = T->getAsRecordType()) {
1332    RecordDecl *RDecl= RTy->getDecl();
1333    S += '{';
1334    S += RDecl->getName();
1335    bool found = false;
1336    for (unsigned i = 0, e = ERType.size(); i != e; ++i)
1337      if (ERType[i] == RTy) {
1338        found = true;
1339        break;
1340      }
1341    if (!found) {
1342      ERType.push_back(RTy);
1343      S += '=';
1344      for (int i = 0; i < RDecl->getNumMembers(); i++) {
1345        FieldDecl *field = RDecl->getMember(i);
1346        getObjCEncodingForType(field->getType(), S, ERType);
1347      }
1348      assert(ERType.back() == RTy && "Record Type stack mismatch.");
1349      ERType.pop_back();
1350    }
1351    S += '}';
1352  } else if (T->isEnumeralType()) {
1353    S += 'i';
1354  } else
1355    assert(0 && "@encode for type not implemented!");
1356}
1357
1358void ASTContext::getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT,
1359                                                 std::string& S) const {
1360  if (QT & Decl::OBJC_TQ_In)
1361    S += 'n';
1362  if (QT & Decl::OBJC_TQ_Inout)
1363    S += 'N';
1364  if (QT & Decl::OBJC_TQ_Out)
1365    S += 'o';
1366  if (QT & Decl::OBJC_TQ_Bycopy)
1367    S += 'O';
1368  if (QT & Decl::OBJC_TQ_Byref)
1369    S += 'R';
1370  if (QT & Decl::OBJC_TQ_Oneway)
1371    S += 'V';
1372}
1373
1374void ASTContext::setBuiltinVaListType(QualType T)
1375{
1376  assert(BuiltinVaListType.isNull() && "__builtin_va_list type already set!");
1377
1378  BuiltinVaListType = T;
1379}
1380
1381void ASTContext::setObjCIdType(TypedefDecl *TD)
1382{
1383  assert(ObjCIdType.isNull() && "'id' type already set!");
1384
1385  ObjCIdType = getTypedefType(TD);
1386
1387  // typedef struct objc_object *id;
1388  const PointerType *ptr = TD->getUnderlyingType()->getAsPointerType();
1389  assert(ptr && "'id' incorrectly typed");
1390  const RecordType *rec = ptr->getPointeeType()->getAsStructureType();
1391  assert(rec && "'id' incorrectly typed");
1392  IdStructType = rec;
1393}
1394
1395void ASTContext::setObjCSelType(TypedefDecl *TD)
1396{
1397  assert(ObjCSelType.isNull() && "'SEL' type already set!");
1398
1399  ObjCSelType = getTypedefType(TD);
1400
1401  // typedef struct objc_selector *SEL;
1402  const PointerType *ptr = TD->getUnderlyingType()->getAsPointerType();
1403  assert(ptr && "'SEL' incorrectly typed");
1404  const RecordType *rec = ptr->getPointeeType()->getAsStructureType();
1405  assert(rec && "'SEL' incorrectly typed");
1406  SelStructType = rec;
1407}
1408
1409void ASTContext::setObjCProtoType(QualType QT)
1410{
1411  assert(ObjCProtoType.isNull() && "'Protocol' type already set!");
1412  ObjCProtoType = QT;
1413}
1414
1415void ASTContext::setObjCClassType(TypedefDecl *TD)
1416{
1417  assert(ObjCClassType.isNull() && "'Class' type already set!");
1418
1419  ObjCClassType = getTypedefType(TD);
1420
1421  // typedef struct objc_class *Class;
1422  const PointerType *ptr = TD->getUnderlyingType()->getAsPointerType();
1423  assert(ptr && "'Class' incorrectly typed");
1424  const RecordType *rec = ptr->getPointeeType()->getAsStructureType();
1425  assert(rec && "'Class' incorrectly typed");
1426  ClassStructType = rec;
1427}
1428
1429void ASTContext::setObjCConstantStringInterface(ObjCInterfaceDecl *Decl) {
1430  assert(ObjCConstantStringType.isNull() &&
1431         "'NSConstantString' type already set!");
1432
1433  ObjCConstantStringType = getObjCInterfaceType(Decl);
1434}
1435
1436//===----------------------------------------------------------------------===//
1437//                        Type Compatibility Testing
1438//===----------------------------------------------------------------------===//
1439
1440/// C99 6.2.7p1: If both are complete types, then the following additional
1441/// requirements apply.
1442/// FIXME (handle compatibility across source files).
1443static bool areCompatTagTypes(TagType *LHS, TagType *RHS,
1444                              const ASTContext &C) {
1445  // "Class" and "id" are compatible built-in structure types.
1446  if (C.isObjCIdType(QualType(LHS, 0)) && C.isObjCClassType(QualType(RHS, 0)) ||
1447      C.isObjCClassType(QualType(LHS, 0)) && C.isObjCIdType(QualType(RHS, 0)))
1448    return true;
1449
1450  // Within a translation unit a tag type is only compatible with itself.  Self
1451  // equality is already handled by the time we get here.
1452  assert(LHS != RHS && "Self equality not handled!");
1453  return false;
1454}
1455
1456bool ASTContext::pointerTypesAreCompatible(QualType lhs, QualType rhs) {
1457  // C99 6.7.5.1p2: For two pointer types to be compatible, both shall be
1458  // identically qualified and both shall be pointers to compatible types.
1459  if (lhs.getCVRQualifiers() != rhs.getCVRQualifiers() ||
1460      lhs.getAddressSpace() != rhs.getAddressSpace())
1461    return false;
1462
1463  QualType ltype = cast<PointerType>(lhs.getCanonicalType())->getPointeeType();
1464  QualType rtype = cast<PointerType>(rhs.getCanonicalType())->getPointeeType();
1465
1466  return typesAreCompatible(ltype, rtype);
1467}
1468
1469bool ASTContext::functionTypesAreCompatible(QualType lhs, QualType rhs) {
1470  const FunctionType *lbase = cast<FunctionType>(lhs.getCanonicalType());
1471  const FunctionType *rbase = cast<FunctionType>(rhs.getCanonicalType());
1472  const FunctionTypeProto *lproto = dyn_cast<FunctionTypeProto>(lbase);
1473  const FunctionTypeProto *rproto = dyn_cast<FunctionTypeProto>(rbase);
1474
1475  // first check the return types (common between C99 and K&R).
1476  if (!typesAreCompatible(lbase->getResultType(), rbase->getResultType()))
1477    return false;
1478
1479  if (lproto && rproto) { // two C99 style function prototypes
1480    unsigned lproto_nargs = lproto->getNumArgs();
1481    unsigned rproto_nargs = rproto->getNumArgs();
1482
1483    if (lproto_nargs != rproto_nargs)
1484      return false;
1485
1486    // both prototypes have the same number of arguments.
1487    if ((lproto->isVariadic() && !rproto->isVariadic()) ||
1488        (rproto->isVariadic() && !lproto->isVariadic()))
1489      return false;
1490
1491    // The use of ellipsis agree...now check the argument types.
1492    for (unsigned i = 0; i < lproto_nargs; i++)
1493      // C99 6.7.5.3p15: ...and each parameter declared with qualified type
1494      // is taken as having the unqualified version of it's declared type.
1495      if (!typesAreCompatible(lproto->getArgType(i).getUnqualifiedType(),
1496                              rproto->getArgType(i).getUnqualifiedType()))
1497        return false;
1498    return true;
1499  }
1500
1501  if (!lproto && !rproto) // two K&R style function decls, nothing to do.
1502    return true;
1503
1504  // we have a mixture of K&R style with C99 prototypes
1505  const FunctionTypeProto *proto = lproto ? lproto : rproto;
1506  if (proto->isVariadic())
1507    return false;
1508
1509  // FIXME: Each parameter type T in the prototype must be compatible with the
1510  // type resulting from applying the usual argument conversions to T.
1511  return true;
1512}
1513
1514// C99 6.7.5.2p6
1515static bool areCompatArrayTypes(ArrayType *LHS, ArrayType *RHS, ASTContext &C) {
1516  // Constant arrays must be the same size to be compatible.
1517  if (const ConstantArrayType* LCAT = dyn_cast<ConstantArrayType>(LHS))
1518    if (const ConstantArrayType* RCAT = dyn_cast<ConstantArrayType>(RHS))
1519      if (RCAT->getSize() != LCAT->getSize())
1520        return false;
1521
1522  // Compatible arrays must have compatible element types
1523  return C.typesAreCompatible(LHS->getElementType(), RHS->getElementType());
1524}
1525
1526/// areCompatVectorTypes - Return true if the two specified vector types are
1527/// compatible.
1528static bool areCompatVectorTypes(const VectorType *LHS,
1529                                 const VectorType *RHS) {
1530  assert(LHS->isCanonical() && RHS->isCanonical());
1531  return LHS->getElementType() == RHS->getElementType() &&
1532  LHS->getNumElements() == RHS->getNumElements();
1533}
1534
1535/// areCompatObjCInterfaces - Return true if the two interface types are
1536/// compatible for assignment from RHS to LHS.  This handles validation of any
1537/// protocol qualifiers on the LHS or RHS.
1538///
1539static bool areCompatObjCInterfaces(const ObjCInterfaceType *LHS,
1540                                    const ObjCInterfaceType *RHS) {
1541  // Verify that the base decls are compatible: the RHS must be a subclass of
1542  // the LHS.
1543  if (!LHS->getDecl()->isSuperClassOf(RHS->getDecl()))
1544    return false;
1545
1546  // RHS must have a superset of the protocols in the LHS.  If the LHS is not
1547  // protocol qualified at all, then we are good.
1548  if (!isa<ObjCQualifiedInterfaceType>(LHS))
1549    return true;
1550
1551  // Okay, we know the LHS has protocol qualifiers.  If the RHS doesn't, then it
1552  // isn't a superset.
1553  if (!isa<ObjCQualifiedInterfaceType>(RHS))
1554    return true;  // FIXME: should return false!
1555
1556  // Finally, we must have two protocol-qualified interfaces.
1557  const ObjCQualifiedInterfaceType *LHSP =cast<ObjCQualifiedInterfaceType>(LHS);
1558  const ObjCQualifiedInterfaceType *RHSP =cast<ObjCQualifiedInterfaceType>(RHS);
1559  ObjCQualifiedInterfaceType::qual_iterator LHSPI = LHSP->qual_begin();
1560  ObjCQualifiedInterfaceType::qual_iterator LHSPE = LHSP->qual_end();
1561  ObjCQualifiedInterfaceType::qual_iterator RHSPI = RHSP->qual_begin();
1562  ObjCQualifiedInterfaceType::qual_iterator RHSPE = RHSP->qual_end();
1563
1564  // All protocols in LHS must have a presence in RHS.  Since the protocol lists
1565  // are both sorted alphabetically and have no duplicates, we can scan RHS and
1566  // LHS in a single parallel scan until we run out of elements in LHS.
1567  assert(LHSPI != LHSPE && "Empty LHS protocol list?");
1568  ObjCProtocolDecl *LHSProto = *LHSPI;
1569
1570  while (RHSPI != RHSPE) {
1571    ObjCProtocolDecl *RHSProto = *RHSPI++;
1572    // If the RHS has a protocol that the LHS doesn't, ignore it.
1573    if (RHSProto != LHSProto)
1574      continue;
1575
1576    // Otherwise, the RHS does have this element.
1577    ++LHSPI;
1578    if (LHSPI == LHSPE)
1579      return true;  // All protocols in LHS exist in RHS.
1580
1581    LHSProto = *LHSPI;
1582  }
1583
1584  // If we got here, we didn't find one of the LHS's protocols in the RHS list.
1585  return false;
1586}
1587
1588
1589/// typesAreCompatible - C99 6.7.3p9: For two qualified types to be compatible,
1590/// both shall have the identically qualified version of a compatible type.
1591/// C99 6.2.7p1: Two types have compatible types if their types are the
1592/// same. See 6.7.[2,3,5] for additional rules.
1593bool ASTContext::typesAreCompatible(QualType LHS_NC, QualType RHS_NC) {
1594  QualType LHS = LHS_NC.getCanonicalType();
1595  QualType RHS = RHS_NC.getCanonicalType();
1596
1597  // C++ [expr]: If an expression initially has the type "reference to T", the
1598  // type is adjusted to "T" prior to any further analysis, the expression
1599  // designates the object or function denoted by the reference, and the
1600  // expression is an lvalue.
1601  if (ReferenceType *RT = dyn_cast<ReferenceType>(LHS))
1602    LHS = RT->getPointeeType();
1603  if (ReferenceType *RT = dyn_cast<ReferenceType>(RHS))
1604    RHS = RT->getPointeeType();
1605
1606  // If two types are identical, they are compatible.
1607  if (LHS == RHS)
1608    return true;
1609
1610  // If qualifiers differ, the types are different.
1611  unsigned LHSAS = LHS.getAddressSpace(), RHSAS = RHS.getAddressSpace();
1612  if (LHS.getCVRQualifiers() != RHS.getCVRQualifiers() || LHSAS != RHSAS)
1613    return false;
1614
1615  // Strip off ASQual's if present.
1616  if (LHSAS) {
1617    LHS = LHS.getUnqualifiedType();
1618    RHS = RHS.getUnqualifiedType();
1619  }
1620
1621  Type::TypeClass LHSClass = LHS->getTypeClass();
1622  Type::TypeClass RHSClass = RHS->getTypeClass();
1623
1624  // We want to consider the two function types to be the same for these
1625  // comparisons, just force one to the other.
1626  if (LHSClass == Type::FunctionProto) LHSClass = Type::FunctionNoProto;
1627  if (RHSClass == Type::FunctionProto) RHSClass = Type::FunctionNoProto;
1628
1629  // Same as above for arrays
1630  if (LHSClass == Type::VariableArray || LHSClass == Type::IncompleteArray)
1631    LHSClass = Type::ConstantArray;
1632  if (RHSClass == Type::VariableArray || RHSClass == Type::IncompleteArray)
1633    RHSClass = Type::ConstantArray;
1634
1635  // Canonicalize OCUVector -> Vector.
1636  if (LHSClass == Type::OCUVector) LHSClass = Type::Vector;
1637  if (RHSClass == Type::OCUVector) RHSClass = Type::Vector;
1638
1639  // Consider qualified interfaces and interfaces the same.
1640  if (LHSClass == Type::ObjCQualifiedInterface) LHSClass = Type::ObjCInterface;
1641  if (RHSClass == Type::ObjCQualifiedInterface) RHSClass = Type::ObjCInterface;
1642
1643  // If the canonical type classes don't match.
1644  if (LHSClass != RHSClass) {
1645    // ID is compatible with all interface types.
1646    if (isa<ObjCInterfaceType>(LHS))
1647      return isObjCIdType(RHS);
1648    if (isa<ObjCInterfaceType>(RHS))
1649      return isObjCIdType(LHS);
1650
1651    // C99 6.7.2.2p4: Each enumerated type shall be compatible with char,
1652    // a signed integer type, or an unsigned integer type.
1653    if (LHS->isEnumeralType() && RHS->isIntegralType()) {
1654      EnumDecl* EDecl = cast<EnumType>(LHS)->getDecl();
1655      return EDecl->getIntegerType() == RHS;
1656    }
1657    if (RHS->isEnumeralType() && LHS->isIntegralType()) {
1658      EnumDecl* EDecl = cast<EnumType>(RHS)->getDecl();
1659      return EDecl->getIntegerType() == LHS;
1660    }
1661
1662    return false;
1663  }
1664
1665  // The canonical type classes match.
1666  switch (LHSClass) {
1667  case Type::ASQual:
1668  case Type::FunctionProto:
1669  case Type::VariableArray:
1670  case Type::IncompleteArray:
1671  case Type::Reference:
1672  case Type::ObjCQualifiedInterface:
1673    assert(0 && "Canonicalized away above");
1674  case Type::Pointer:
1675    return pointerTypesAreCompatible(LHS, RHS);
1676  case Type::ConstantArray:
1677    return areCompatArrayTypes(cast<ArrayType>(LHS), cast<ArrayType>(RHS),
1678                               *this);
1679  case Type::FunctionNoProto:
1680    return functionTypesAreCompatible(LHS, RHS);
1681  case Type::Tagged: // handle structures, unions
1682    return areCompatTagTypes(cast<TagType>(LHS), cast<TagType>(RHS), *this);
1683  case Type::Builtin:
1684    // Only exactly equal builtin types are compatible, which is tested above.
1685    return false;
1686  case Type::Vector:
1687    return areCompatVectorTypes(cast<VectorType>(LHS), cast<VectorType>(RHS));
1688  case Type::ObjCInterface:
1689    return areCompatObjCInterfaces(cast<ObjCInterfaceType>(LHS),
1690                                   cast<ObjCInterfaceType>(RHS));
1691  default:
1692    assert(0 && "unexpected type");
1693  }
1694  return true; // should never get here...
1695}
1696
1697//===----------------------------------------------------------------------===//
1698//                         Serialization Support
1699//===----------------------------------------------------------------------===//
1700
1701/// Emit - Serialize an ASTContext object to Bitcode.
1702void ASTContext::Emit(llvm::Serializer& S) const {
1703  S.EmitRef(SourceMgr);
1704  S.EmitRef(Target);
1705  S.EmitRef(Idents);
1706  S.EmitRef(Selectors);
1707
1708  // Emit the size of the type vector so that we can reserve that size
1709  // when we reconstitute the ASTContext object.
1710  S.EmitInt(Types.size());
1711
1712  for (std::vector<Type*>::const_iterator I=Types.begin(), E=Types.end();
1713                                          I!=E;++I)
1714    (*I)->Emit(S);
1715
1716  // FIXME: S.EmitOwnedPtr(CFConstantStringTypeDecl);
1717}
1718
1719ASTContext* ASTContext::Create(llvm::Deserializer& D) {
1720  SourceManager &SM = D.ReadRef<SourceManager>();
1721  TargetInfo &t = D.ReadRef<TargetInfo>();
1722  IdentifierTable &idents = D.ReadRef<IdentifierTable>();
1723  SelectorTable &sels = D.ReadRef<SelectorTable>();
1724
1725  unsigned size_reserve = D.ReadInt();
1726
1727  ASTContext* A = new ASTContext(SM,t,idents,sels,size_reserve);
1728
1729  for (unsigned i = 0; i < size_reserve; ++i)
1730    Type::Create(*A,i,D);
1731
1732  // FIXME: A->CFConstantStringTypeDecl = D.ReadOwnedPtr<RecordDecl>();
1733
1734  return A;
1735}
1736