ASTContext.cpp revision 1eed60297ef4701b899c6a3b9680bf08f3403422
1//===--- ASTContext.cpp - Context to hold long-lived AST nodes ------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements the ASTContext interface.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/AST/ASTContext.h"
15#include "clang/AST/DeclCXX.h"
16#include "clang/AST/DeclObjC.h"
17#include "clang/AST/DeclTemplate.h"
18#include "clang/AST/Expr.h"
19#include "clang/AST/ExternalASTSource.h"
20#include "clang/AST/RecordLayout.h"
21#include "clang/Basic/SourceManager.h"
22#include "clang/Basic/TargetInfo.h"
23#include "llvm/ADT/StringExtras.h"
24#include "llvm/Support/MathExtras.h"
25#include "llvm/Support/MemoryBuffer.h"
26using namespace clang;
27
28enum FloatingRank {
29  FloatRank, DoubleRank, LongDoubleRank
30};
31
32ASTContext::ASTContext(const LangOptions& LOpts, SourceManager &SM,
33                       TargetInfo &t,
34                       IdentifierTable &idents, SelectorTable &sels,
35                       bool FreeMem, unsigned size_reserve,
36                       bool InitializeBuiltins) :
37  GlobalNestedNameSpecifier(0), CFConstantStringTypeDecl(0),
38  ObjCFastEnumerationStateTypeDecl(0), SourceMgr(SM), LangOpts(LOpts),
39  FreeMemory(FreeMem), Target(t), Idents(idents), Selectors(sels),
40  ExternalSource(0) {
41  if (size_reserve > 0) Types.reserve(size_reserve);
42  InitBuiltinTypes();
43  TUDecl = TranslationUnitDecl::Create(*this);
44  BuiltinInfo.InitializeTargetBuiltins(Target);
45  if (InitializeBuiltins)
46    this->InitializeBuiltins(idents);
47}
48
49ASTContext::~ASTContext() {
50  // Deallocate all the types.
51  while (!Types.empty()) {
52    Types.back()->Destroy(*this);
53    Types.pop_back();
54  }
55
56  {
57    llvm::DenseMap<const RecordDecl*, const ASTRecordLayout*>::iterator
58      I = ASTRecordLayouts.begin(), E = ASTRecordLayouts.end();
59    while (I != E) {
60      ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second);
61      delete R;
62    }
63  }
64
65  {
66    llvm::DenseMap<const ObjCContainerDecl*, const ASTRecordLayout*>::iterator
67      I = ObjCLayouts.begin(), E = ObjCLayouts.end();
68    while (I != E) {
69      ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second);
70      delete R;
71    }
72  }
73
74  // Destroy nested-name-specifiers.
75  for (llvm::FoldingSet<NestedNameSpecifier>::iterator
76         NNS = NestedNameSpecifiers.begin(),
77         NNSEnd = NestedNameSpecifiers.end();
78       NNS != NNSEnd;
79       /* Increment in loop */)
80    (*NNS++).Destroy(*this);
81
82  if (GlobalNestedNameSpecifier)
83    GlobalNestedNameSpecifier->Destroy(*this);
84
85  TUDecl->Destroy(*this);
86}
87
88void ASTContext::InitializeBuiltins(IdentifierTable &idents) {
89  BuiltinInfo.InitializeBuiltins(idents, LangOpts.NoBuiltin);
90}
91
92void
93ASTContext::setExternalSource(llvm::OwningPtr<ExternalASTSource> &Source) {
94  ExternalSource.reset(Source.take());
95}
96
97void ASTContext::PrintStats() const {
98  fprintf(stderr, "*** AST Context Stats:\n");
99  fprintf(stderr, "  %d types total.\n", (int)Types.size());
100  unsigned NumBuiltin = 0, NumPointer = 0, NumArray = 0, NumFunctionP = 0;
101  unsigned NumVector = 0, NumComplex = 0, NumBlockPointer = 0;
102  unsigned NumFunctionNP = 0, NumTypeName = 0, NumTagged = 0;
103  unsigned NumLValueReference = 0, NumRValueReference = 0, NumMemberPointer = 0;
104
105  unsigned NumTagStruct = 0, NumTagUnion = 0, NumTagEnum = 0, NumTagClass = 0;
106  unsigned NumObjCInterfaces = 0, NumObjCQualifiedInterfaces = 0;
107  unsigned NumObjCQualifiedIds = 0;
108  unsigned NumTypeOfTypes = 0, NumTypeOfExprTypes = 0;
109  unsigned NumExtQual = 0;
110
111  for (unsigned i = 0, e = Types.size(); i != e; ++i) {
112    Type *T = Types[i];
113    if (isa<BuiltinType>(T))
114      ++NumBuiltin;
115    else if (isa<PointerType>(T))
116      ++NumPointer;
117    else if (isa<BlockPointerType>(T))
118      ++NumBlockPointer;
119    else if (isa<LValueReferenceType>(T))
120      ++NumLValueReference;
121    else if (isa<RValueReferenceType>(T))
122      ++NumRValueReference;
123    else if (isa<MemberPointerType>(T))
124      ++NumMemberPointer;
125    else if (isa<ComplexType>(T))
126      ++NumComplex;
127    else if (isa<ArrayType>(T))
128      ++NumArray;
129    else if (isa<VectorType>(T))
130      ++NumVector;
131    else if (isa<FunctionNoProtoType>(T))
132      ++NumFunctionNP;
133    else if (isa<FunctionProtoType>(T))
134      ++NumFunctionP;
135    else if (isa<TypedefType>(T))
136      ++NumTypeName;
137    else if (TagType *TT = dyn_cast<TagType>(T)) {
138      ++NumTagged;
139      switch (TT->getDecl()->getTagKind()) {
140      default: assert(0 && "Unknown tagged type!");
141      case TagDecl::TK_struct: ++NumTagStruct; break;
142      case TagDecl::TK_union:  ++NumTagUnion; break;
143      case TagDecl::TK_class:  ++NumTagClass; break;
144      case TagDecl::TK_enum:   ++NumTagEnum; break;
145      }
146    } else if (isa<ObjCInterfaceType>(T))
147      ++NumObjCInterfaces;
148    else if (isa<ObjCQualifiedInterfaceType>(T))
149      ++NumObjCQualifiedInterfaces;
150    else if (isa<ObjCQualifiedIdType>(T))
151      ++NumObjCQualifiedIds;
152    else if (isa<TypeOfType>(T))
153      ++NumTypeOfTypes;
154    else if (isa<TypeOfExprType>(T))
155      ++NumTypeOfExprTypes;
156    else if (isa<ExtQualType>(T))
157      ++NumExtQual;
158    else {
159      QualType(T, 0).dump();
160      assert(0 && "Unknown type!");
161    }
162  }
163
164  fprintf(stderr, "    %d builtin types\n", NumBuiltin);
165  fprintf(stderr, "    %d pointer types\n", NumPointer);
166  fprintf(stderr, "    %d block pointer types\n", NumBlockPointer);
167  fprintf(stderr, "    %d lvalue reference types\n", NumLValueReference);
168  fprintf(stderr, "    %d rvalue reference types\n", NumRValueReference);
169  fprintf(stderr, "    %d member pointer types\n", NumMemberPointer);
170  fprintf(stderr, "    %d complex types\n", NumComplex);
171  fprintf(stderr, "    %d array types\n", NumArray);
172  fprintf(stderr, "    %d vector types\n", NumVector);
173  fprintf(stderr, "    %d function types with proto\n", NumFunctionP);
174  fprintf(stderr, "    %d function types with no proto\n", NumFunctionNP);
175  fprintf(stderr, "    %d typename (typedef) types\n", NumTypeName);
176  fprintf(stderr, "    %d tagged types\n", NumTagged);
177  fprintf(stderr, "      %d struct types\n", NumTagStruct);
178  fprintf(stderr, "      %d union types\n", NumTagUnion);
179  fprintf(stderr, "      %d class types\n", NumTagClass);
180  fprintf(stderr, "      %d enum types\n", NumTagEnum);
181  fprintf(stderr, "    %d interface types\n", NumObjCInterfaces);
182  fprintf(stderr, "    %d protocol qualified interface types\n",
183          NumObjCQualifiedInterfaces);
184  fprintf(stderr, "    %d protocol qualified id types\n",
185          NumObjCQualifiedIds);
186  fprintf(stderr, "    %d typeof types\n", NumTypeOfTypes);
187  fprintf(stderr, "    %d typeof exprs\n", NumTypeOfExprTypes);
188  fprintf(stderr, "    %d attribute-qualified types\n", NumExtQual);
189
190  fprintf(stderr, "Total bytes = %d\n", int(NumBuiltin*sizeof(BuiltinType)+
191    NumPointer*sizeof(PointerType)+NumArray*sizeof(ArrayType)+
192    NumComplex*sizeof(ComplexType)+NumVector*sizeof(VectorType)+
193    NumLValueReference*sizeof(LValueReferenceType)+
194    NumRValueReference*sizeof(RValueReferenceType)+
195    NumMemberPointer*sizeof(MemberPointerType)+
196    NumFunctionP*sizeof(FunctionProtoType)+
197    NumFunctionNP*sizeof(FunctionNoProtoType)+
198    NumTypeName*sizeof(TypedefType)+NumTagged*sizeof(TagType)+
199    NumTypeOfTypes*sizeof(TypeOfType)+NumTypeOfExprTypes*sizeof(TypeOfExprType)+
200    NumExtQual*sizeof(ExtQualType)));
201
202  if (ExternalSource.get()) {
203    fprintf(stderr, "\n");
204    ExternalSource->PrintStats();
205  }
206}
207
208
209void ASTContext::InitBuiltinType(QualType &R, BuiltinType::Kind K) {
210  Types.push_back((R = QualType(new (*this,8) BuiltinType(K),0)).getTypePtr());
211}
212
213void ASTContext::InitBuiltinTypes() {
214  assert(VoidTy.isNull() && "Context reinitialized?");
215
216  // C99 6.2.5p19.
217  InitBuiltinType(VoidTy,              BuiltinType::Void);
218
219  // C99 6.2.5p2.
220  InitBuiltinType(BoolTy,              BuiltinType::Bool);
221  // C99 6.2.5p3.
222  if (Target.isCharSigned())
223    InitBuiltinType(CharTy,            BuiltinType::Char_S);
224  else
225    InitBuiltinType(CharTy,            BuiltinType::Char_U);
226  // C99 6.2.5p4.
227  InitBuiltinType(SignedCharTy,        BuiltinType::SChar);
228  InitBuiltinType(ShortTy,             BuiltinType::Short);
229  InitBuiltinType(IntTy,               BuiltinType::Int);
230  InitBuiltinType(LongTy,              BuiltinType::Long);
231  InitBuiltinType(LongLongTy,          BuiltinType::LongLong);
232
233  // C99 6.2.5p6.
234  InitBuiltinType(UnsignedCharTy,      BuiltinType::UChar);
235  InitBuiltinType(UnsignedShortTy,     BuiltinType::UShort);
236  InitBuiltinType(UnsignedIntTy,       BuiltinType::UInt);
237  InitBuiltinType(UnsignedLongTy,      BuiltinType::ULong);
238  InitBuiltinType(UnsignedLongLongTy,  BuiltinType::ULongLong);
239
240  // C99 6.2.5p10.
241  InitBuiltinType(FloatTy,             BuiltinType::Float);
242  InitBuiltinType(DoubleTy,            BuiltinType::Double);
243  InitBuiltinType(LongDoubleTy,        BuiltinType::LongDouble);
244
245  // GNU extension, 128-bit integers.
246  InitBuiltinType(Int128Ty,            BuiltinType::Int128);
247  InitBuiltinType(UnsignedInt128Ty,    BuiltinType::UInt128);
248
249  if (LangOpts.CPlusPlus) // C++ 3.9.1p5
250    InitBuiltinType(WCharTy,           BuiltinType::WChar);
251  else // C99
252    WCharTy = getFromTargetType(Target.getWCharType());
253
254  // Placeholder type for functions.
255  InitBuiltinType(OverloadTy,          BuiltinType::Overload);
256
257  // Placeholder type for type-dependent expressions whose type is
258  // completely unknown. No code should ever check a type against
259  // DependentTy and users should never see it; however, it is here to
260  // help diagnose failures to properly check for type-dependent
261  // expressions.
262  InitBuiltinType(DependentTy,         BuiltinType::Dependent);
263
264  // C99 6.2.5p11.
265  FloatComplexTy      = getComplexType(FloatTy);
266  DoubleComplexTy     = getComplexType(DoubleTy);
267  LongDoubleComplexTy = getComplexType(LongDoubleTy);
268
269  BuiltinVaListType = QualType();
270  ObjCIdType = QualType();
271  IdStructType = 0;
272  ObjCClassType = QualType();
273  ClassStructType = 0;
274
275  ObjCConstantStringType = QualType();
276
277  // void * type
278  VoidPtrTy = getPointerType(VoidTy);
279
280  // nullptr type (C++0x 2.14.7)
281  InitBuiltinType(NullPtrTy,           BuiltinType::NullPtr);
282}
283
284//===----------------------------------------------------------------------===//
285//                         Type Sizing and Analysis
286//===----------------------------------------------------------------------===//
287
288/// getFloatTypeSemantics - Return the APFloat 'semantics' for the specified
289/// scalar floating point type.
290const llvm::fltSemantics &ASTContext::getFloatTypeSemantics(QualType T) const {
291  const BuiltinType *BT = T->getAsBuiltinType();
292  assert(BT && "Not a floating point type!");
293  switch (BT->getKind()) {
294  default: assert(0 && "Not a floating point type!");
295  case BuiltinType::Float:      return Target.getFloatFormat();
296  case BuiltinType::Double:     return Target.getDoubleFormat();
297  case BuiltinType::LongDouble: return Target.getLongDoubleFormat();
298  }
299}
300
301/// getDeclAlign - Return a conservative estimate of the alignment of the
302/// specified decl.  Note that bitfields do not have a valid alignment, so
303/// this method will assert on them.
304unsigned ASTContext::getDeclAlignInBytes(const Decl *D) {
305  unsigned Align = Target.getCharWidth();
306
307  if (const AlignedAttr* AA = D->getAttr<AlignedAttr>())
308    Align = std::max(Align, AA->getAlignment());
309
310  if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
311    QualType T = VD->getType();
312    if (const ReferenceType* RT = T->getAsReferenceType()) {
313      unsigned AS = RT->getPointeeType().getAddressSpace();
314      Align = Target.getPointerAlign(AS);
315    } else if (!T->isIncompleteType() && !T->isFunctionType()) {
316      // Incomplete or function types default to 1.
317      while (isa<VariableArrayType>(T) || isa<IncompleteArrayType>(T))
318        T = cast<ArrayType>(T)->getElementType();
319
320      Align = std::max(Align, getPreferredTypeAlign(T.getTypePtr()));
321    }
322  }
323
324  return Align / Target.getCharWidth();
325}
326
327/// getTypeSize - Return the size of the specified type, in bits.  This method
328/// does not work on incomplete types.
329std::pair<uint64_t, unsigned>
330ASTContext::getTypeInfo(const Type *T) {
331  uint64_t Width=0;
332  unsigned Align=8;
333  switch (T->getTypeClass()) {
334#define TYPE(Class, Base)
335#define ABSTRACT_TYPE(Class, Base)
336#define NON_CANONICAL_TYPE(Class, Base)
337#define DEPENDENT_TYPE(Class, Base) case Type::Class:
338#include "clang/AST/TypeNodes.def"
339    assert(false && "Should not see dependent types");
340    break;
341
342  case Type::FunctionNoProto:
343  case Type::FunctionProto:
344    // GCC extension: alignof(function) = 32 bits
345    Width = 0;
346    Align = 32;
347    break;
348
349  case Type::IncompleteArray:
350  case Type::VariableArray:
351    Width = 0;
352    Align = getTypeAlign(cast<ArrayType>(T)->getElementType());
353    break;
354
355  case Type::ConstantArray: {
356    const ConstantArrayType *CAT = cast<ConstantArrayType>(T);
357
358    std::pair<uint64_t, unsigned> EltInfo = getTypeInfo(CAT->getElementType());
359    Width = EltInfo.first*CAT->getSize().getZExtValue();
360    Align = EltInfo.second;
361    break;
362  }
363  case Type::ExtVector:
364  case Type::Vector: {
365    std::pair<uint64_t, unsigned> EltInfo =
366      getTypeInfo(cast<VectorType>(T)->getElementType());
367    Width = EltInfo.first*cast<VectorType>(T)->getNumElements();
368    Align = Width;
369    // If the alignment is not a power of 2, round up to the next power of 2.
370    // This happens for non-power-of-2 length vectors.
371    // FIXME: this should probably be a target property.
372    Align = 1 << llvm::Log2_32_Ceil(Align);
373    break;
374  }
375
376  case Type::Builtin:
377    switch (cast<BuiltinType>(T)->getKind()) {
378    default: assert(0 && "Unknown builtin type!");
379    case BuiltinType::Void:
380      // GCC extension: alignof(void) = 8 bits.
381      Width = 0;
382      Align = 8;
383      break;
384
385    case BuiltinType::Bool:
386      Width = Target.getBoolWidth();
387      Align = Target.getBoolAlign();
388      break;
389    case BuiltinType::Char_S:
390    case BuiltinType::Char_U:
391    case BuiltinType::UChar:
392    case BuiltinType::SChar:
393      Width = Target.getCharWidth();
394      Align = Target.getCharAlign();
395      break;
396    case BuiltinType::WChar:
397      Width = Target.getWCharWidth();
398      Align = Target.getWCharAlign();
399      break;
400    case BuiltinType::UShort:
401    case BuiltinType::Short:
402      Width = Target.getShortWidth();
403      Align = Target.getShortAlign();
404      break;
405    case BuiltinType::UInt:
406    case BuiltinType::Int:
407      Width = Target.getIntWidth();
408      Align = Target.getIntAlign();
409      break;
410    case BuiltinType::ULong:
411    case BuiltinType::Long:
412      Width = Target.getLongWidth();
413      Align = Target.getLongAlign();
414      break;
415    case BuiltinType::ULongLong:
416    case BuiltinType::LongLong:
417      Width = Target.getLongLongWidth();
418      Align = Target.getLongLongAlign();
419      break;
420    case BuiltinType::Int128:
421    case BuiltinType::UInt128:
422      Width = 128;
423      Align = 128; // int128_t is 128-bit aligned on all targets.
424      break;
425    case BuiltinType::Float:
426      Width = Target.getFloatWidth();
427      Align = Target.getFloatAlign();
428      break;
429    case BuiltinType::Double:
430      Width = Target.getDoubleWidth();
431      Align = Target.getDoubleAlign();
432      break;
433    case BuiltinType::LongDouble:
434      Width = Target.getLongDoubleWidth();
435      Align = Target.getLongDoubleAlign();
436      break;
437    case BuiltinType::NullPtr:
438      Width = Target.getPointerWidth(0); // C++ 3.9.1p11: sizeof(nullptr_t)
439      Align = Target.getPointerAlign(0); //   == sizeof(void*)
440    }
441    break;
442  case Type::FixedWidthInt:
443    // FIXME: This isn't precisely correct; the width/alignment should depend
444    // on the available types for the target
445    Width = cast<FixedWidthIntType>(T)->getWidth();
446    Width = std::max(llvm::NextPowerOf2(Width - 1), (uint64_t)8);
447    Align = Width;
448    break;
449  case Type::ExtQual:
450    // FIXME: Pointers into different addr spaces could have different sizes and
451    // alignment requirements: getPointerInfo should take an AddrSpace.
452    return getTypeInfo(QualType(cast<ExtQualType>(T)->getBaseType(), 0));
453  case Type::ObjCQualifiedId:
454  case Type::ObjCQualifiedInterface:
455    Width = Target.getPointerWidth(0);
456    Align = Target.getPointerAlign(0);
457    break;
458  case Type::BlockPointer: {
459    unsigned AS = cast<BlockPointerType>(T)->getPointeeType().getAddressSpace();
460    Width = Target.getPointerWidth(AS);
461    Align = Target.getPointerAlign(AS);
462    break;
463  }
464  case Type::Pointer: {
465    unsigned AS = cast<PointerType>(T)->getPointeeType().getAddressSpace();
466    Width = Target.getPointerWidth(AS);
467    Align = Target.getPointerAlign(AS);
468    break;
469  }
470  case Type::LValueReference:
471  case Type::RValueReference:
472    // "When applied to a reference or a reference type, the result is the size
473    // of the referenced type." C++98 5.3.3p2: expr.sizeof.
474    // FIXME: This is wrong for struct layout: a reference in a struct has
475    // pointer size.
476    return getTypeInfo(cast<ReferenceType>(T)->getPointeeType());
477  case Type::MemberPointer: {
478    // FIXME: This is ABI dependent. We use the Itanium C++ ABI.
479    // http://www.codesourcery.com/public/cxx-abi/abi.html#member-pointers
480    // If we ever want to support other ABIs this needs to be abstracted.
481
482    QualType Pointee = cast<MemberPointerType>(T)->getPointeeType();
483    std::pair<uint64_t, unsigned> PtrDiffInfo =
484      getTypeInfo(getPointerDiffType());
485    Width = PtrDiffInfo.first;
486    if (Pointee->isFunctionType())
487      Width *= 2;
488    Align = PtrDiffInfo.second;
489    break;
490  }
491  case Type::Complex: {
492    // Complex types have the same alignment as their elements, but twice the
493    // size.
494    std::pair<uint64_t, unsigned> EltInfo =
495      getTypeInfo(cast<ComplexType>(T)->getElementType());
496    Width = EltInfo.first*2;
497    Align = EltInfo.second;
498    break;
499  }
500  case Type::ObjCInterface: {
501    const ObjCInterfaceType *ObjCI = cast<ObjCInterfaceType>(T);
502    const ASTRecordLayout &Layout = getASTObjCInterfaceLayout(ObjCI->getDecl());
503    Width = Layout.getSize();
504    Align = Layout.getAlignment();
505    break;
506  }
507  case Type::Record:
508  case Type::Enum: {
509    const TagType *TT = cast<TagType>(T);
510
511    if (TT->getDecl()->isInvalidDecl()) {
512      Width = 1;
513      Align = 1;
514      break;
515    }
516
517    if (const EnumType *ET = dyn_cast<EnumType>(TT))
518      return getTypeInfo(ET->getDecl()->getIntegerType());
519
520    const RecordType *RT = cast<RecordType>(TT);
521    const ASTRecordLayout &Layout = getASTRecordLayout(RT->getDecl());
522    Width = Layout.getSize();
523    Align = Layout.getAlignment();
524    break;
525  }
526
527  case Type::Typedef: {
528    const TypedefDecl *Typedef = cast<TypedefType>(T)->getDecl();
529    if (const AlignedAttr *Aligned = Typedef->getAttr<AlignedAttr>()) {
530      Align = Aligned->getAlignment();
531      Width = getTypeSize(Typedef->getUnderlyingType().getTypePtr());
532    } else
533      return getTypeInfo(Typedef->getUnderlyingType().getTypePtr());
534    break;
535  }
536
537  case Type::TypeOfExpr:
538    return getTypeInfo(cast<TypeOfExprType>(T)->getUnderlyingExpr()->getType()
539                         .getTypePtr());
540
541  case Type::TypeOf:
542    return getTypeInfo(cast<TypeOfType>(T)->getUnderlyingType().getTypePtr());
543
544  case Type::QualifiedName:
545    return getTypeInfo(cast<QualifiedNameType>(T)->getNamedType().getTypePtr());
546
547  case Type::TemplateSpecialization:
548    assert(getCanonicalType(T) != T &&
549           "Cannot request the size of a dependent type");
550    // FIXME: this is likely to be wrong once we support template
551    // aliases, since a template alias could refer to a typedef that
552    // has an __aligned__ attribute on it.
553    return getTypeInfo(getCanonicalType(T));
554  }
555
556  assert(Align && (Align & (Align-1)) == 0 && "Alignment must be power of 2");
557  return std::make_pair(Width, Align);
558}
559
560/// getPreferredTypeAlign - Return the "preferred" alignment of the specified
561/// type for the current target in bits.  This can be different than the ABI
562/// alignment in cases where it is beneficial for performance to overalign
563/// a data type.
564unsigned ASTContext::getPreferredTypeAlign(const Type *T) {
565  unsigned ABIAlign = getTypeAlign(T);
566
567  // Double and long long should be naturally aligned if possible.
568  if (const ComplexType* CT = T->getAsComplexType())
569    T = CT->getElementType().getTypePtr();
570  if (T->isSpecificBuiltinType(BuiltinType::Double) ||
571      T->isSpecificBuiltinType(BuiltinType::LongLong))
572    return std::max(ABIAlign, (unsigned)getTypeSize(T));
573
574  return ABIAlign;
575}
576
577
578/// LayoutField - Field layout.
579void ASTRecordLayout::LayoutField(const FieldDecl *FD, unsigned FieldNo,
580                                  bool IsUnion, unsigned StructPacking,
581                                  ASTContext &Context) {
582  unsigned FieldPacking = StructPacking;
583  uint64_t FieldOffset = IsUnion ? 0 : Size;
584  uint64_t FieldSize;
585  unsigned FieldAlign;
586
587  // FIXME: Should this override struct packing? Probably we want to
588  // take the minimum?
589  if (const PackedAttr *PA = FD->getAttr<PackedAttr>())
590    FieldPacking = PA->getAlignment();
591
592  if (const Expr *BitWidthExpr = FD->getBitWidth()) {
593    // TODO: Need to check this algorithm on other targets!
594    //       (tested on Linux-X86)
595    FieldSize = BitWidthExpr->EvaluateAsInt(Context).getZExtValue();
596
597    std::pair<uint64_t, unsigned> FieldInfo =
598      Context.getTypeInfo(FD->getType());
599    uint64_t TypeSize = FieldInfo.first;
600
601    // Determine the alignment of this bitfield. The packing
602    // attributes define a maximum and the alignment attribute defines
603    // a minimum.
604    // FIXME: What is the right behavior when the specified alignment
605    // is smaller than the specified packing?
606    FieldAlign = FieldInfo.second;
607    if (FieldPacking)
608      FieldAlign = std::min(FieldAlign, FieldPacking);
609    if (const AlignedAttr *AA = FD->getAttr<AlignedAttr>())
610      FieldAlign = std::max(FieldAlign, AA->getAlignment());
611
612    // Check if we need to add padding to give the field the correct
613    // alignment.
614    if (FieldSize == 0 || (FieldOffset & (FieldAlign-1)) + FieldSize > TypeSize)
615      FieldOffset = (FieldOffset + (FieldAlign-1)) & ~(FieldAlign-1);
616
617    // Padding members don't affect overall alignment
618    if (!FD->getIdentifier())
619      FieldAlign = 1;
620  } else {
621    if (FD->getType()->isIncompleteArrayType()) {
622      // This is a flexible array member; we can't directly
623      // query getTypeInfo about these, so we figure it out here.
624      // Flexible array members don't have any size, but they
625      // have to be aligned appropriately for their element type.
626      FieldSize = 0;
627      const ArrayType* ATy = Context.getAsArrayType(FD->getType());
628      FieldAlign = Context.getTypeAlign(ATy->getElementType());
629    } else if (const ReferenceType *RT = FD->getType()->getAsReferenceType()) {
630      unsigned AS = RT->getPointeeType().getAddressSpace();
631      FieldSize = Context.Target.getPointerWidth(AS);
632      FieldAlign = Context.Target.getPointerAlign(AS);
633    } else {
634      std::pair<uint64_t, unsigned> FieldInfo =
635        Context.getTypeInfo(FD->getType());
636      FieldSize = FieldInfo.first;
637      FieldAlign = FieldInfo.second;
638    }
639
640    // Determine the alignment of this bitfield. The packing
641    // attributes define a maximum and the alignment attribute defines
642    // a minimum. Additionally, the packing alignment must be at least
643    // a byte for non-bitfields.
644    //
645    // FIXME: What is the right behavior when the specified alignment
646    // is smaller than the specified packing?
647    if (FieldPacking)
648      FieldAlign = std::min(FieldAlign, std::max(8U, FieldPacking));
649    if (const AlignedAttr *AA = FD->getAttr<AlignedAttr>())
650      FieldAlign = std::max(FieldAlign, AA->getAlignment());
651
652    // Round up the current record size to the field's alignment boundary.
653    FieldOffset = (FieldOffset + (FieldAlign-1)) & ~(FieldAlign-1);
654  }
655
656  // Place this field at the current location.
657  FieldOffsets[FieldNo] = FieldOffset;
658
659  // Reserve space for this field.
660  if (IsUnion) {
661    Size = std::max(Size, FieldSize);
662  } else {
663    Size = FieldOffset + FieldSize;
664  }
665
666  // Remember the next available offset.
667  NextOffset = Size;
668
669  // Remember max struct/class alignment.
670  Alignment = std::max(Alignment, FieldAlign);
671}
672
673static void CollectLocalObjCIvars(ASTContext *Ctx,
674                                  const ObjCInterfaceDecl *OI,
675                                  llvm::SmallVectorImpl<FieldDecl*> &Fields) {
676  for (ObjCInterfaceDecl::ivar_iterator I = OI->ivar_begin(),
677       E = OI->ivar_end(); I != E; ++I) {
678    ObjCIvarDecl *IVDecl = *I;
679    if (!IVDecl->isInvalidDecl())
680      Fields.push_back(cast<FieldDecl>(IVDecl));
681  }
682}
683
684void ASTContext::CollectObjCIvars(const ObjCInterfaceDecl *OI,
685                             llvm::SmallVectorImpl<FieldDecl*> &Fields) {
686  if (const ObjCInterfaceDecl *SuperClass = OI->getSuperClass())
687    CollectObjCIvars(SuperClass, Fields);
688  CollectLocalObjCIvars(this, OI, Fields);
689}
690
691void ASTContext::CollectProtocolSynthesizedIvars(const ObjCProtocolDecl *PD,
692                                llvm::SmallVectorImpl<ObjCIvarDecl*> &Ivars) {
693  for (ObjCContainerDecl::prop_iterator I = PD->prop_begin(*this),
694       E = PD->prop_end(*this); I != E; ++I)
695    if (ObjCIvarDecl *Ivar = (*I)->getPropertyIvarDecl())
696      Ivars.push_back(Ivar);
697
698  // Also look into nested protocols.
699  for (ObjCProtocolDecl::protocol_iterator P = PD->protocol_begin(),
700       E = PD->protocol_end(); P != E; ++P)
701    CollectProtocolSynthesizedIvars(*P, Ivars);
702}
703
704/// CollectSynthesizedIvars -
705/// This routine collect synthesized ivars for the designated class.
706///
707void ASTContext::CollectSynthesizedIvars(const ObjCInterfaceDecl *OI,
708                                llvm::SmallVectorImpl<ObjCIvarDecl*> &Ivars) {
709  for (ObjCInterfaceDecl::prop_iterator I = OI->prop_begin(*this),
710       E = OI->prop_end(*this); I != E; ++I) {
711    if (ObjCIvarDecl *Ivar = (*I)->getPropertyIvarDecl())
712      Ivars.push_back(Ivar);
713  }
714  // Also look into interface's protocol list for properties declared
715  // in the protocol and whose ivars are synthesized.
716  for (ObjCInterfaceDecl::protocol_iterator P = OI->protocol_begin(),
717       PE = OI->protocol_end(); P != PE; ++P) {
718    ObjCProtocolDecl *PD = (*P);
719    CollectProtocolSynthesizedIvars(PD, Ivars);
720  }
721}
722
723/// getInterfaceLayoutImpl - Get or compute information about the
724/// layout of the given interface.
725///
726/// \param Impl - If given, also include the layout of the interface's
727/// implementation. This may differ by including synthesized ivars.
728const ASTRecordLayout &
729ASTContext::getObjCLayout(const ObjCInterfaceDecl *D,
730                          const ObjCImplementationDecl *Impl) {
731  assert(!D->isForwardDecl() && "Invalid interface decl!");
732
733  // Look up this layout, if already laid out, return what we have.
734  ObjCContainerDecl *Key =
735    Impl ? (ObjCContainerDecl*) Impl : (ObjCContainerDecl*) D;
736  if (const ASTRecordLayout *Entry = ObjCLayouts[Key])
737    return *Entry;
738
739  unsigned FieldCount = D->ivar_size();
740  // Add in synthesized ivar count if laying out an implementation.
741  if (Impl) {
742    llvm::SmallVector<ObjCIvarDecl*, 16> Ivars;
743    CollectSynthesizedIvars(D, Ivars);
744    FieldCount += Ivars.size();
745    // If there aren't any sythesized ivars then reuse the interface
746    // entry. Note we can't cache this because we simply free all
747    // entries later; however we shouldn't look up implementations
748    // frequently.
749    if (FieldCount == D->ivar_size())
750      return getObjCLayout(D, 0);
751  }
752
753  ASTRecordLayout *NewEntry = NULL;
754  if (ObjCInterfaceDecl *SD = D->getSuperClass()) {
755    const ASTRecordLayout &SL = getASTObjCInterfaceLayout(SD);
756    unsigned Alignment = SL.getAlignment();
757
758    // We start laying out ivars not at the end of the superclass
759    // structure, but at the next byte following the last field.
760    uint64_t Size = llvm::RoundUpToAlignment(SL.NextOffset, 8);
761
762    ObjCLayouts[Key] = NewEntry = new ASTRecordLayout(Size, Alignment);
763    NewEntry->InitializeLayout(FieldCount);
764  } else {
765    ObjCLayouts[Key] = NewEntry = new ASTRecordLayout();
766    NewEntry->InitializeLayout(FieldCount);
767  }
768
769  unsigned StructPacking = 0;
770  if (const PackedAttr *PA = D->getAttr<PackedAttr>())
771    StructPacking = PA->getAlignment();
772
773  if (const AlignedAttr *AA = D->getAttr<AlignedAttr>())
774    NewEntry->SetAlignment(std::max(NewEntry->getAlignment(),
775                                    AA->getAlignment()));
776
777  // Layout each ivar sequentially.
778  unsigned i = 0;
779  for (ObjCInterfaceDecl::ivar_iterator IVI = D->ivar_begin(),
780       IVE = D->ivar_end(); IVI != IVE; ++IVI) {
781    const ObjCIvarDecl* Ivar = (*IVI);
782    NewEntry->LayoutField(Ivar, i++, false, StructPacking, *this);
783  }
784  // And synthesized ivars, if this is an implementation.
785  if (Impl) {
786    // FIXME. Do we need to colltect twice?
787    llvm::SmallVector<ObjCIvarDecl*, 16> Ivars;
788    CollectSynthesizedIvars(D, Ivars);
789    for (unsigned k = 0, e = Ivars.size(); k != e; ++k)
790      NewEntry->LayoutField(Ivars[k], i++, false, StructPacking, *this);
791  }
792
793  // Finally, round the size of the total struct up to the alignment of the
794  // struct itself.
795  NewEntry->FinalizeLayout();
796  return *NewEntry;
797}
798
799const ASTRecordLayout &
800ASTContext::getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D) {
801  return getObjCLayout(D, 0);
802}
803
804const ASTRecordLayout &
805ASTContext::getASTObjCImplementationLayout(const ObjCImplementationDecl *D) {
806  return getObjCLayout(D->getClassInterface(), D);
807}
808
809/// getASTRecordLayout - Get or compute information about the layout of the
810/// specified record (struct/union/class), which indicates its size and field
811/// position information.
812const ASTRecordLayout &ASTContext::getASTRecordLayout(const RecordDecl *D) {
813  D = D->getDefinition(*this);
814  assert(D && "Cannot get layout of forward declarations!");
815
816  // Look up this layout, if already laid out, return what we have.
817  const ASTRecordLayout *&Entry = ASTRecordLayouts[D];
818  if (Entry) return *Entry;
819
820  // Allocate and assign into ASTRecordLayouts here.  The "Entry" reference can
821  // be invalidated (dangle) if the ASTRecordLayouts hashtable is inserted into.
822  ASTRecordLayout *NewEntry = new ASTRecordLayout();
823  Entry = NewEntry;
824
825  // FIXME: Avoid linear walk through the fields, if possible.
826  NewEntry->InitializeLayout(std::distance(D->field_begin(*this),
827                                           D->field_end(*this)));
828  bool IsUnion = D->isUnion();
829
830  unsigned StructPacking = 0;
831  if (const PackedAttr *PA = D->getAttr<PackedAttr>())
832    StructPacking = PA->getAlignment();
833
834  if (const AlignedAttr *AA = D->getAttr<AlignedAttr>())
835    NewEntry->SetAlignment(std::max(NewEntry->getAlignment(),
836                                    AA->getAlignment()));
837
838  // Layout each field, for now, just sequentially, respecting alignment.  In
839  // the future, this will need to be tweakable by targets.
840  unsigned FieldIdx = 0;
841  for (RecordDecl::field_iterator Field = D->field_begin(*this),
842                               FieldEnd = D->field_end(*this);
843       Field != FieldEnd; (void)++Field, ++FieldIdx)
844    NewEntry->LayoutField(*Field, FieldIdx, IsUnion, StructPacking, *this);
845
846  // Finally, round the size of the total struct up to the alignment of the
847  // struct itself.
848  NewEntry->FinalizeLayout();
849  return *NewEntry;
850}
851
852//===----------------------------------------------------------------------===//
853//                   Type creation/memoization methods
854//===----------------------------------------------------------------------===//
855
856QualType ASTContext::getAddrSpaceQualType(QualType T, unsigned AddressSpace) {
857  QualType CanT = getCanonicalType(T);
858  if (CanT.getAddressSpace() == AddressSpace)
859    return T;
860
861  // If we are composing extended qualifiers together, merge together into one
862  // ExtQualType node.
863  unsigned CVRQuals = T.getCVRQualifiers();
864  QualType::GCAttrTypes GCAttr = QualType::GCNone;
865  Type *TypeNode = T.getTypePtr();
866
867  if (ExtQualType *EQT = dyn_cast<ExtQualType>(TypeNode)) {
868    // If this type already has an address space specified, it cannot get
869    // another one.
870    assert(EQT->getAddressSpace() == 0 &&
871           "Type cannot be in multiple addr spaces!");
872    GCAttr = EQT->getObjCGCAttr();
873    TypeNode = EQT->getBaseType();
874  }
875
876  // Check if we've already instantiated this type.
877  llvm::FoldingSetNodeID ID;
878  ExtQualType::Profile(ID, TypeNode, AddressSpace, GCAttr);
879  void *InsertPos = 0;
880  if (ExtQualType *EXTQy = ExtQualTypes.FindNodeOrInsertPos(ID, InsertPos))
881    return QualType(EXTQy, CVRQuals);
882
883  // If the base type isn't canonical, this won't be a canonical type either,
884  // so fill in the canonical type field.
885  QualType Canonical;
886  if (!TypeNode->isCanonical()) {
887    Canonical = getAddrSpaceQualType(CanT, AddressSpace);
888
889    // Update InsertPos, the previous call could have invalidated it.
890    ExtQualType *NewIP = ExtQualTypes.FindNodeOrInsertPos(ID, InsertPos);
891    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
892  }
893  ExtQualType *New =
894    new (*this, 8) ExtQualType(TypeNode, Canonical, AddressSpace, GCAttr);
895  ExtQualTypes.InsertNode(New, InsertPos);
896  Types.push_back(New);
897  return QualType(New, CVRQuals);
898}
899
900QualType ASTContext::getObjCGCQualType(QualType T,
901                                       QualType::GCAttrTypes GCAttr) {
902  QualType CanT = getCanonicalType(T);
903  if (CanT.getObjCGCAttr() == GCAttr)
904    return T;
905
906  // If we are composing extended qualifiers together, merge together into one
907  // ExtQualType node.
908  unsigned CVRQuals = T.getCVRQualifiers();
909  Type *TypeNode = T.getTypePtr();
910  unsigned AddressSpace = 0;
911
912  if (ExtQualType *EQT = dyn_cast<ExtQualType>(TypeNode)) {
913    // If this type already has an address space specified, it cannot get
914    // another one.
915    assert(EQT->getObjCGCAttr() == QualType::GCNone &&
916           "Type cannot be in multiple addr spaces!");
917    AddressSpace = EQT->getAddressSpace();
918    TypeNode = EQT->getBaseType();
919  }
920
921  // Check if we've already instantiated an gc qual'd type of this type.
922  llvm::FoldingSetNodeID ID;
923  ExtQualType::Profile(ID, TypeNode, AddressSpace, GCAttr);
924  void *InsertPos = 0;
925  if (ExtQualType *EXTQy = ExtQualTypes.FindNodeOrInsertPos(ID, InsertPos))
926    return QualType(EXTQy, CVRQuals);
927
928  // If the base type isn't canonical, this won't be a canonical type either,
929  // so fill in the canonical type field.
930  // FIXME: Isn't this also not canonical if the base type is a array
931  // or pointer type?  I can't find any documentation for objc_gc, though...
932  QualType Canonical;
933  if (!T->isCanonical()) {
934    Canonical = getObjCGCQualType(CanT, GCAttr);
935
936    // Update InsertPos, the previous call could have invalidated it.
937    ExtQualType *NewIP = ExtQualTypes.FindNodeOrInsertPos(ID, InsertPos);
938    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
939  }
940  ExtQualType *New =
941    new (*this, 8) ExtQualType(TypeNode, Canonical, AddressSpace, GCAttr);
942  ExtQualTypes.InsertNode(New, InsertPos);
943  Types.push_back(New);
944  return QualType(New, CVRQuals);
945}
946
947/// getComplexType - Return the uniqued reference to the type for a complex
948/// number with the specified element type.
949QualType ASTContext::getComplexType(QualType T) {
950  // Unique pointers, to guarantee there is only one pointer of a particular
951  // structure.
952  llvm::FoldingSetNodeID ID;
953  ComplexType::Profile(ID, T);
954
955  void *InsertPos = 0;
956  if (ComplexType *CT = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos))
957    return QualType(CT, 0);
958
959  // If the pointee type isn't canonical, this won't be a canonical type either,
960  // so fill in the canonical type field.
961  QualType Canonical;
962  if (!T->isCanonical()) {
963    Canonical = getComplexType(getCanonicalType(T));
964
965    // Get the new insert position for the node we care about.
966    ComplexType *NewIP = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos);
967    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
968  }
969  ComplexType *New = new (*this,8) ComplexType(T, Canonical);
970  Types.push_back(New);
971  ComplexTypes.InsertNode(New, InsertPos);
972  return QualType(New, 0);
973}
974
975QualType ASTContext::getFixedWidthIntType(unsigned Width, bool Signed) {
976  llvm::DenseMap<unsigned, FixedWidthIntType*> &Map = Signed ?
977     SignedFixedWidthIntTypes : UnsignedFixedWidthIntTypes;
978  FixedWidthIntType *&Entry = Map[Width];
979  if (!Entry)
980    Entry = new FixedWidthIntType(Width, Signed);
981  return QualType(Entry, 0);
982}
983
984/// getPointerType - Return the uniqued reference to the type for a pointer to
985/// the specified type.
986QualType ASTContext::getPointerType(QualType T) {
987  // Unique pointers, to guarantee there is only one pointer of a particular
988  // structure.
989  llvm::FoldingSetNodeID ID;
990  PointerType::Profile(ID, T);
991
992  void *InsertPos = 0;
993  if (PointerType *PT = PointerTypes.FindNodeOrInsertPos(ID, InsertPos))
994    return QualType(PT, 0);
995
996  // If the pointee type isn't canonical, this won't be a canonical type either,
997  // so fill in the canonical type field.
998  QualType Canonical;
999  if (!T->isCanonical()) {
1000    Canonical = getPointerType(getCanonicalType(T));
1001
1002    // Get the new insert position for the node we care about.
1003    PointerType *NewIP = PointerTypes.FindNodeOrInsertPos(ID, InsertPos);
1004    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1005  }
1006  PointerType *New = new (*this,8) PointerType(T, Canonical);
1007  Types.push_back(New);
1008  PointerTypes.InsertNode(New, InsertPos);
1009  return QualType(New, 0);
1010}
1011
1012/// getBlockPointerType - Return the uniqued reference to the type for
1013/// a pointer to the specified block.
1014QualType ASTContext::getBlockPointerType(QualType T) {
1015  assert(T->isFunctionType() && "block of function types only");
1016  // Unique pointers, to guarantee there is only one block of a particular
1017  // structure.
1018  llvm::FoldingSetNodeID ID;
1019  BlockPointerType::Profile(ID, T);
1020
1021  void *InsertPos = 0;
1022  if (BlockPointerType *PT =
1023        BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1024    return QualType(PT, 0);
1025
1026  // If the block pointee type isn't canonical, this won't be a canonical
1027  // type either so fill in the canonical type field.
1028  QualType Canonical;
1029  if (!T->isCanonical()) {
1030    Canonical = getBlockPointerType(getCanonicalType(T));
1031
1032    // Get the new insert position for the node we care about.
1033    BlockPointerType *NewIP =
1034      BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
1035    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1036  }
1037  BlockPointerType *New = new (*this,8) BlockPointerType(T, Canonical);
1038  Types.push_back(New);
1039  BlockPointerTypes.InsertNode(New, InsertPos);
1040  return QualType(New, 0);
1041}
1042
1043/// getLValueReferenceType - Return the uniqued reference to the type for an
1044/// lvalue reference to the specified type.
1045QualType ASTContext::getLValueReferenceType(QualType T) {
1046  // Unique pointers, to guarantee there is only one pointer of a particular
1047  // structure.
1048  llvm::FoldingSetNodeID ID;
1049  ReferenceType::Profile(ID, T);
1050
1051  void *InsertPos = 0;
1052  if (LValueReferenceType *RT =
1053        LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
1054    return QualType(RT, 0);
1055
1056  // If the referencee type isn't canonical, this won't be a canonical type
1057  // either, so fill in the canonical type field.
1058  QualType Canonical;
1059  if (!T->isCanonical()) {
1060    Canonical = getLValueReferenceType(getCanonicalType(T));
1061
1062    // Get the new insert position for the node we care about.
1063    LValueReferenceType *NewIP =
1064      LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
1065    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1066  }
1067
1068  LValueReferenceType *New = new (*this,8) LValueReferenceType(T, Canonical);
1069  Types.push_back(New);
1070  LValueReferenceTypes.InsertNode(New, InsertPos);
1071  return QualType(New, 0);
1072}
1073
1074/// getRValueReferenceType - Return the uniqued reference to the type for an
1075/// rvalue reference to the specified type.
1076QualType ASTContext::getRValueReferenceType(QualType T) {
1077  // Unique pointers, to guarantee there is only one pointer of a particular
1078  // structure.
1079  llvm::FoldingSetNodeID ID;
1080  ReferenceType::Profile(ID, T);
1081
1082  void *InsertPos = 0;
1083  if (RValueReferenceType *RT =
1084        RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
1085    return QualType(RT, 0);
1086
1087  // If the referencee type isn't canonical, this won't be a canonical type
1088  // either, so fill in the canonical type field.
1089  QualType Canonical;
1090  if (!T->isCanonical()) {
1091    Canonical = getRValueReferenceType(getCanonicalType(T));
1092
1093    // Get the new insert position for the node we care about.
1094    RValueReferenceType *NewIP =
1095      RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
1096    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1097  }
1098
1099  RValueReferenceType *New = new (*this,8) RValueReferenceType(T, Canonical);
1100  Types.push_back(New);
1101  RValueReferenceTypes.InsertNode(New, InsertPos);
1102  return QualType(New, 0);
1103}
1104
1105/// getMemberPointerType - Return the uniqued reference to the type for a
1106/// member pointer to the specified type, in the specified class.
1107QualType ASTContext::getMemberPointerType(QualType T, const Type *Cls)
1108{
1109  // Unique pointers, to guarantee there is only one pointer of a particular
1110  // structure.
1111  llvm::FoldingSetNodeID ID;
1112  MemberPointerType::Profile(ID, T, Cls);
1113
1114  void *InsertPos = 0;
1115  if (MemberPointerType *PT =
1116      MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1117    return QualType(PT, 0);
1118
1119  // If the pointee or class type isn't canonical, this won't be a canonical
1120  // type either, so fill in the canonical type field.
1121  QualType Canonical;
1122  if (!T->isCanonical()) {
1123    Canonical = getMemberPointerType(getCanonicalType(T),getCanonicalType(Cls));
1124
1125    // Get the new insert position for the node we care about.
1126    MemberPointerType *NewIP =
1127      MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
1128    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1129  }
1130  MemberPointerType *New = new (*this,8) MemberPointerType(T, Cls, Canonical);
1131  Types.push_back(New);
1132  MemberPointerTypes.InsertNode(New, InsertPos);
1133  return QualType(New, 0);
1134}
1135
1136/// getConstantArrayType - Return the unique reference to the type for an
1137/// array of the specified element type.
1138QualType ASTContext::getConstantArrayType(QualType EltTy,
1139                                          const llvm::APInt &ArySizeIn,
1140                                          ArrayType::ArraySizeModifier ASM,
1141                                          unsigned EltTypeQuals) {
1142  // Convert the array size into a canonical width matching the pointer size for
1143  // the target.
1144  llvm::APInt ArySize(ArySizeIn);
1145  ArySize.zextOrTrunc(Target.getPointerWidth(EltTy.getAddressSpace()));
1146
1147  llvm::FoldingSetNodeID ID;
1148  ConstantArrayType::Profile(ID, EltTy, ArySize, ASM, EltTypeQuals);
1149
1150  void *InsertPos = 0;
1151  if (ConstantArrayType *ATP =
1152      ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
1153    return QualType(ATP, 0);
1154
1155  // If the element type isn't canonical, this won't be a canonical type either,
1156  // so fill in the canonical type field.
1157  QualType Canonical;
1158  if (!EltTy->isCanonical()) {
1159    Canonical = getConstantArrayType(getCanonicalType(EltTy), ArySize,
1160                                     ASM, EltTypeQuals);
1161    // Get the new insert position for the node we care about.
1162    ConstantArrayType *NewIP =
1163      ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
1164    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1165  }
1166
1167  ConstantArrayType *New =
1168    new(*this,8)ConstantArrayType(EltTy, Canonical, ArySize, ASM, EltTypeQuals);
1169  ConstantArrayTypes.InsertNode(New, InsertPos);
1170  Types.push_back(New);
1171  return QualType(New, 0);
1172}
1173
1174/// getVariableArrayType - Returns a non-unique reference to the type for a
1175/// variable array of the specified element type.
1176QualType ASTContext::getVariableArrayType(QualType EltTy, Expr *NumElts,
1177                                          ArrayType::ArraySizeModifier ASM,
1178                                          unsigned EltTypeQuals) {
1179  // Since we don't unique expressions, it isn't possible to unique VLA's
1180  // that have an expression provided for their size.
1181
1182  VariableArrayType *New =
1183    new(*this,8)VariableArrayType(EltTy,QualType(), NumElts, ASM, EltTypeQuals);
1184
1185  VariableArrayTypes.push_back(New);
1186  Types.push_back(New);
1187  return QualType(New, 0);
1188}
1189
1190/// getDependentSizedArrayType - Returns a non-unique reference to
1191/// the type for a dependently-sized array of the specified element
1192/// type. FIXME: We will need these to be uniqued, or at least
1193/// comparable, at some point.
1194QualType ASTContext::getDependentSizedArrayType(QualType EltTy, Expr *NumElts,
1195                                                ArrayType::ArraySizeModifier ASM,
1196                                                unsigned EltTypeQuals) {
1197  assert((NumElts->isTypeDependent() || NumElts->isValueDependent()) &&
1198         "Size must be type- or value-dependent!");
1199
1200  // Since we don't unique expressions, it isn't possible to unique
1201  // dependently-sized array types.
1202
1203  DependentSizedArrayType *New =
1204      new (*this,8) DependentSizedArrayType(EltTy, QualType(), NumElts,
1205                                            ASM, EltTypeQuals);
1206
1207  DependentSizedArrayTypes.push_back(New);
1208  Types.push_back(New);
1209  return QualType(New, 0);
1210}
1211
1212QualType ASTContext::getIncompleteArrayType(QualType EltTy,
1213                                            ArrayType::ArraySizeModifier ASM,
1214                                            unsigned EltTypeQuals) {
1215  llvm::FoldingSetNodeID ID;
1216  IncompleteArrayType::Profile(ID, EltTy, ASM, EltTypeQuals);
1217
1218  void *InsertPos = 0;
1219  if (IncompleteArrayType *ATP =
1220       IncompleteArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
1221    return QualType(ATP, 0);
1222
1223  // If the element type isn't canonical, this won't be a canonical type
1224  // either, so fill in the canonical type field.
1225  QualType Canonical;
1226
1227  if (!EltTy->isCanonical()) {
1228    Canonical = getIncompleteArrayType(getCanonicalType(EltTy),
1229                                       ASM, EltTypeQuals);
1230
1231    // Get the new insert position for the node we care about.
1232    IncompleteArrayType *NewIP =
1233      IncompleteArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
1234    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1235  }
1236
1237  IncompleteArrayType *New = new (*this,8) IncompleteArrayType(EltTy, Canonical,
1238                                                           ASM, EltTypeQuals);
1239
1240  IncompleteArrayTypes.InsertNode(New, InsertPos);
1241  Types.push_back(New);
1242  return QualType(New, 0);
1243}
1244
1245/// getVectorType - Return the unique reference to a vector type of
1246/// the specified element type and size. VectorType must be a built-in type.
1247QualType ASTContext::getVectorType(QualType vecType, unsigned NumElts) {
1248  BuiltinType *baseType;
1249
1250  baseType = dyn_cast<BuiltinType>(getCanonicalType(vecType).getTypePtr());
1251  assert(baseType != 0 && "getVectorType(): Expecting a built-in type");
1252
1253  // Check if we've already instantiated a vector of this type.
1254  llvm::FoldingSetNodeID ID;
1255  VectorType::Profile(ID, vecType, NumElts, Type::Vector);
1256  void *InsertPos = 0;
1257  if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
1258    return QualType(VTP, 0);
1259
1260  // If the element type isn't canonical, this won't be a canonical type either,
1261  // so fill in the canonical type field.
1262  QualType Canonical;
1263  if (!vecType->isCanonical()) {
1264    Canonical = getVectorType(getCanonicalType(vecType), NumElts);
1265
1266    // Get the new insert position for the node we care about.
1267    VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
1268    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1269  }
1270  VectorType *New = new (*this,8) VectorType(vecType, NumElts, Canonical);
1271  VectorTypes.InsertNode(New, InsertPos);
1272  Types.push_back(New);
1273  return QualType(New, 0);
1274}
1275
1276/// getExtVectorType - Return the unique reference to an extended vector type of
1277/// the specified element type and size. VectorType must be a built-in type.
1278QualType ASTContext::getExtVectorType(QualType vecType, unsigned NumElts) {
1279  BuiltinType *baseType;
1280
1281  baseType = dyn_cast<BuiltinType>(getCanonicalType(vecType).getTypePtr());
1282  assert(baseType != 0 && "getExtVectorType(): Expecting a built-in type");
1283
1284  // Check if we've already instantiated a vector of this type.
1285  llvm::FoldingSetNodeID ID;
1286  VectorType::Profile(ID, vecType, NumElts, Type::ExtVector);
1287  void *InsertPos = 0;
1288  if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
1289    return QualType(VTP, 0);
1290
1291  // If the element type isn't canonical, this won't be a canonical type either,
1292  // so fill in the canonical type field.
1293  QualType Canonical;
1294  if (!vecType->isCanonical()) {
1295    Canonical = getExtVectorType(getCanonicalType(vecType), NumElts);
1296
1297    // Get the new insert position for the node we care about.
1298    VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
1299    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1300  }
1301  ExtVectorType *New = new (*this,8) ExtVectorType(vecType, NumElts, Canonical);
1302  VectorTypes.InsertNode(New, InsertPos);
1303  Types.push_back(New);
1304  return QualType(New, 0);
1305}
1306
1307/// getFunctionNoProtoType - Return a K&R style C function type like 'int()'.
1308///
1309QualType ASTContext::getFunctionNoProtoType(QualType ResultTy) {
1310  // Unique functions, to guarantee there is only one function of a particular
1311  // structure.
1312  llvm::FoldingSetNodeID ID;
1313  FunctionNoProtoType::Profile(ID, ResultTy);
1314
1315  void *InsertPos = 0;
1316  if (FunctionNoProtoType *FT =
1317        FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
1318    return QualType(FT, 0);
1319
1320  QualType Canonical;
1321  if (!ResultTy->isCanonical()) {
1322    Canonical = getFunctionNoProtoType(getCanonicalType(ResultTy));
1323
1324    // Get the new insert position for the node we care about.
1325    FunctionNoProtoType *NewIP =
1326      FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
1327    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1328  }
1329
1330  FunctionNoProtoType *New =new(*this,8)FunctionNoProtoType(ResultTy,Canonical);
1331  Types.push_back(New);
1332  FunctionNoProtoTypes.InsertNode(New, InsertPos);
1333  return QualType(New, 0);
1334}
1335
1336/// getFunctionType - Return a normal function type with a typed argument
1337/// list.  isVariadic indicates whether the argument list includes '...'.
1338QualType ASTContext::getFunctionType(QualType ResultTy,const QualType *ArgArray,
1339                                     unsigned NumArgs, bool isVariadic,
1340                                     unsigned TypeQuals) {
1341  // Unique functions, to guarantee there is only one function of a particular
1342  // structure.
1343  llvm::FoldingSetNodeID ID;
1344  FunctionProtoType::Profile(ID, ResultTy, ArgArray, NumArgs, isVariadic,
1345                             TypeQuals);
1346
1347  void *InsertPos = 0;
1348  if (FunctionProtoType *FTP =
1349        FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
1350    return QualType(FTP, 0);
1351
1352  // Determine whether the type being created is already canonical or not.
1353  bool isCanonical = ResultTy->isCanonical();
1354  for (unsigned i = 0; i != NumArgs && isCanonical; ++i)
1355    if (!ArgArray[i]->isCanonical())
1356      isCanonical = false;
1357
1358  // If this type isn't canonical, get the canonical version of it.
1359  QualType Canonical;
1360  if (!isCanonical) {
1361    llvm::SmallVector<QualType, 16> CanonicalArgs;
1362    CanonicalArgs.reserve(NumArgs);
1363    for (unsigned i = 0; i != NumArgs; ++i)
1364      CanonicalArgs.push_back(getCanonicalType(ArgArray[i]));
1365
1366    Canonical = getFunctionType(getCanonicalType(ResultTy),
1367                                CanonicalArgs.data(), NumArgs,
1368                                isVariadic, TypeQuals);
1369
1370    // Get the new insert position for the node we care about.
1371    FunctionProtoType *NewIP =
1372      FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
1373    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1374  }
1375
1376  // FunctionProtoType objects are allocated with extra bytes after them
1377  // for a variable size array (for parameter types) at the end of them.
1378  FunctionProtoType *FTP =
1379    (FunctionProtoType*)Allocate(sizeof(FunctionProtoType) +
1380                                 NumArgs*sizeof(QualType), 8);
1381  new (FTP) FunctionProtoType(ResultTy, ArgArray, NumArgs, isVariadic,
1382                              TypeQuals, Canonical);
1383  Types.push_back(FTP);
1384  FunctionProtoTypes.InsertNode(FTP, InsertPos);
1385  return QualType(FTP, 0);
1386}
1387
1388/// getTypeDeclType - Return the unique reference to the type for the
1389/// specified type declaration.
1390QualType ASTContext::getTypeDeclType(TypeDecl *Decl, TypeDecl* PrevDecl) {
1391  assert(Decl && "Passed null for Decl param");
1392  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
1393
1394  if (TypedefDecl *Typedef = dyn_cast<TypedefDecl>(Decl))
1395    return getTypedefType(Typedef);
1396  else if (isa<TemplateTypeParmDecl>(Decl)) {
1397    assert(false && "Template type parameter types are always available.");
1398  } else if (ObjCInterfaceDecl *ObjCInterface = dyn_cast<ObjCInterfaceDecl>(Decl))
1399    return getObjCInterfaceType(ObjCInterface);
1400
1401  if (RecordDecl *Record = dyn_cast<RecordDecl>(Decl)) {
1402    if (PrevDecl)
1403      Decl->TypeForDecl = PrevDecl->TypeForDecl;
1404    else
1405      Decl->TypeForDecl = new (*this,8) RecordType(Record);
1406  }
1407  else if (EnumDecl *Enum = dyn_cast<EnumDecl>(Decl)) {
1408    if (PrevDecl)
1409      Decl->TypeForDecl = PrevDecl->TypeForDecl;
1410    else
1411      Decl->TypeForDecl = new (*this,8) EnumType(Enum);
1412  }
1413  else
1414    assert(false && "TypeDecl without a type?");
1415
1416  if (!PrevDecl) Types.push_back(Decl->TypeForDecl);
1417  return QualType(Decl->TypeForDecl, 0);
1418}
1419
1420/// getTypedefType - Return the unique reference to the type for the
1421/// specified typename decl.
1422QualType ASTContext::getTypedefType(TypedefDecl *Decl) {
1423  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
1424
1425  QualType Canonical = getCanonicalType(Decl->getUnderlyingType());
1426  Decl->TypeForDecl = new(*this,8) TypedefType(Type::Typedef, Decl, Canonical);
1427  Types.push_back(Decl->TypeForDecl);
1428  return QualType(Decl->TypeForDecl, 0);
1429}
1430
1431/// getObjCInterfaceType - Return the unique reference to the type for the
1432/// specified ObjC interface decl.
1433QualType ASTContext::getObjCInterfaceType(const ObjCInterfaceDecl *Decl) {
1434  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
1435
1436  ObjCInterfaceDecl *OID = const_cast<ObjCInterfaceDecl*>(Decl);
1437  Decl->TypeForDecl = new(*this,8) ObjCInterfaceType(Type::ObjCInterface, OID);
1438  Types.push_back(Decl->TypeForDecl);
1439  return QualType(Decl->TypeForDecl, 0);
1440}
1441
1442/// \brief Retrieve the template type parameter type for a template
1443/// parameter with the given depth, index, and (optionally) name.
1444QualType ASTContext::getTemplateTypeParmType(unsigned Depth, unsigned Index,
1445                                             IdentifierInfo *Name) {
1446  llvm::FoldingSetNodeID ID;
1447  TemplateTypeParmType::Profile(ID, Depth, Index, Name);
1448  void *InsertPos = 0;
1449  TemplateTypeParmType *TypeParm
1450    = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
1451
1452  if (TypeParm)
1453    return QualType(TypeParm, 0);
1454
1455  if (Name)
1456    TypeParm = new (*this, 8) TemplateTypeParmType(Depth, Index, Name,
1457                                         getTemplateTypeParmType(Depth, Index));
1458  else
1459    TypeParm = new (*this, 8) TemplateTypeParmType(Depth, Index);
1460
1461  Types.push_back(TypeParm);
1462  TemplateTypeParmTypes.InsertNode(TypeParm, InsertPos);
1463
1464  return QualType(TypeParm, 0);
1465}
1466
1467QualType
1468ASTContext::getTemplateSpecializationType(TemplateName Template,
1469                                          const TemplateArgument *Args,
1470                                          unsigned NumArgs,
1471                                          QualType Canon) {
1472  if (!Canon.isNull())
1473    Canon = getCanonicalType(Canon);
1474
1475  llvm::FoldingSetNodeID ID;
1476  TemplateSpecializationType::Profile(ID, Template, Args, NumArgs);
1477
1478  void *InsertPos = 0;
1479  TemplateSpecializationType *Spec
1480    = TemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
1481
1482  if (Spec)
1483    return QualType(Spec, 0);
1484
1485  void *Mem = Allocate((sizeof(TemplateSpecializationType) +
1486                        sizeof(TemplateArgument) * NumArgs),
1487                       8);
1488  Spec = new (Mem) TemplateSpecializationType(Template, Args, NumArgs, Canon);
1489  Types.push_back(Spec);
1490  TemplateSpecializationTypes.InsertNode(Spec, InsertPos);
1491
1492  return QualType(Spec, 0);
1493}
1494
1495QualType
1496ASTContext::getQualifiedNameType(NestedNameSpecifier *NNS,
1497                                 QualType NamedType) {
1498  llvm::FoldingSetNodeID ID;
1499  QualifiedNameType::Profile(ID, NNS, NamedType);
1500
1501  void *InsertPos = 0;
1502  QualifiedNameType *T
1503    = QualifiedNameTypes.FindNodeOrInsertPos(ID, InsertPos);
1504  if (T)
1505    return QualType(T, 0);
1506
1507  T = new (*this) QualifiedNameType(NNS, NamedType,
1508                                    getCanonicalType(NamedType));
1509  Types.push_back(T);
1510  QualifiedNameTypes.InsertNode(T, InsertPos);
1511  return QualType(T, 0);
1512}
1513
1514QualType ASTContext::getTypenameType(NestedNameSpecifier *NNS,
1515                                     const IdentifierInfo *Name,
1516                                     QualType Canon) {
1517  assert(NNS->isDependent() && "nested-name-specifier must be dependent");
1518
1519  if (Canon.isNull()) {
1520    NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
1521    if (CanonNNS != NNS)
1522      Canon = getTypenameType(CanonNNS, Name);
1523  }
1524
1525  llvm::FoldingSetNodeID ID;
1526  TypenameType::Profile(ID, NNS, Name);
1527
1528  void *InsertPos = 0;
1529  TypenameType *T
1530    = TypenameTypes.FindNodeOrInsertPos(ID, InsertPos);
1531  if (T)
1532    return QualType(T, 0);
1533
1534  T = new (*this) TypenameType(NNS, Name, Canon);
1535  Types.push_back(T);
1536  TypenameTypes.InsertNode(T, InsertPos);
1537  return QualType(T, 0);
1538}
1539
1540QualType
1541ASTContext::getTypenameType(NestedNameSpecifier *NNS,
1542                            const TemplateSpecializationType *TemplateId,
1543                            QualType Canon) {
1544  assert(NNS->isDependent() && "nested-name-specifier must be dependent");
1545
1546  if (Canon.isNull()) {
1547    NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
1548    QualType CanonType = getCanonicalType(QualType(TemplateId, 0));
1549    if (CanonNNS != NNS || CanonType != QualType(TemplateId, 0)) {
1550      const TemplateSpecializationType *CanonTemplateId
1551        = CanonType->getAsTemplateSpecializationType();
1552      assert(CanonTemplateId &&
1553             "Canonical type must also be a template specialization type");
1554      Canon = getTypenameType(CanonNNS, CanonTemplateId);
1555    }
1556  }
1557
1558  llvm::FoldingSetNodeID ID;
1559  TypenameType::Profile(ID, NNS, TemplateId);
1560
1561  void *InsertPos = 0;
1562  TypenameType *T
1563    = TypenameTypes.FindNodeOrInsertPos(ID, InsertPos);
1564  if (T)
1565    return QualType(T, 0);
1566
1567  T = new (*this) TypenameType(NNS, TemplateId, Canon);
1568  Types.push_back(T);
1569  TypenameTypes.InsertNode(T, InsertPos);
1570  return QualType(T, 0);
1571}
1572
1573/// CmpProtocolNames - Comparison predicate for sorting protocols
1574/// alphabetically.
1575static bool CmpProtocolNames(const ObjCProtocolDecl *LHS,
1576                            const ObjCProtocolDecl *RHS) {
1577  return LHS->getDeclName() < RHS->getDeclName();
1578}
1579
1580static void SortAndUniqueProtocols(ObjCProtocolDecl **&Protocols,
1581                                   unsigned &NumProtocols) {
1582  ObjCProtocolDecl **ProtocolsEnd = Protocols+NumProtocols;
1583
1584  // Sort protocols, keyed by name.
1585  std::sort(Protocols, Protocols+NumProtocols, CmpProtocolNames);
1586
1587  // Remove duplicates.
1588  ProtocolsEnd = std::unique(Protocols, ProtocolsEnd);
1589  NumProtocols = ProtocolsEnd-Protocols;
1590}
1591
1592
1593/// getObjCQualifiedInterfaceType - Return a ObjCQualifiedInterfaceType type for
1594/// the given interface decl and the conforming protocol list.
1595QualType ASTContext::getObjCQualifiedInterfaceType(ObjCInterfaceDecl *Decl,
1596                       ObjCProtocolDecl **Protocols, unsigned NumProtocols) {
1597  // Sort the protocol list alphabetically to canonicalize it.
1598  SortAndUniqueProtocols(Protocols, NumProtocols);
1599
1600  llvm::FoldingSetNodeID ID;
1601  ObjCQualifiedInterfaceType::Profile(ID, Decl, Protocols, NumProtocols);
1602
1603  void *InsertPos = 0;
1604  if (ObjCQualifiedInterfaceType *QT =
1605      ObjCQualifiedInterfaceTypes.FindNodeOrInsertPos(ID, InsertPos))
1606    return QualType(QT, 0);
1607
1608  // No Match;
1609  ObjCQualifiedInterfaceType *QType =
1610    new (*this,8) ObjCQualifiedInterfaceType(Decl, Protocols, NumProtocols);
1611
1612  Types.push_back(QType);
1613  ObjCQualifiedInterfaceTypes.InsertNode(QType, InsertPos);
1614  return QualType(QType, 0);
1615}
1616
1617/// getObjCQualifiedIdType - Return an ObjCQualifiedIdType for the 'id' decl
1618/// and the conforming protocol list.
1619QualType ASTContext::getObjCQualifiedIdType(ObjCProtocolDecl **Protocols,
1620                                            unsigned NumProtocols) {
1621  // Sort the protocol list alphabetically to canonicalize it.
1622  SortAndUniqueProtocols(Protocols, NumProtocols);
1623
1624  llvm::FoldingSetNodeID ID;
1625  ObjCQualifiedIdType::Profile(ID, Protocols, NumProtocols);
1626
1627  void *InsertPos = 0;
1628  if (ObjCQualifiedIdType *QT =
1629        ObjCQualifiedIdTypes.FindNodeOrInsertPos(ID, InsertPos))
1630    return QualType(QT, 0);
1631
1632  // No Match;
1633  ObjCQualifiedIdType *QType =
1634    new (*this,8) ObjCQualifiedIdType(Protocols, NumProtocols);
1635  Types.push_back(QType);
1636  ObjCQualifiedIdTypes.InsertNode(QType, InsertPos);
1637  return QualType(QType, 0);
1638}
1639
1640/// getTypeOfExprType - Unlike many "get<Type>" functions, we can't unique
1641/// TypeOfExprType AST's (since expression's are never shared). For example,
1642/// multiple declarations that refer to "typeof(x)" all contain different
1643/// DeclRefExpr's. This doesn't effect the type checker, since it operates
1644/// on canonical type's (which are always unique).
1645QualType ASTContext::getTypeOfExprType(Expr *tofExpr) {
1646  QualType Canonical = getCanonicalType(tofExpr->getType());
1647  TypeOfExprType *toe = new (*this,8) TypeOfExprType(tofExpr, Canonical);
1648  Types.push_back(toe);
1649  return QualType(toe, 0);
1650}
1651
1652/// getTypeOfType -  Unlike many "get<Type>" functions, we don't unique
1653/// TypeOfType AST's. The only motivation to unique these nodes would be
1654/// memory savings. Since typeof(t) is fairly uncommon, space shouldn't be
1655/// an issue. This doesn't effect the type checker, since it operates
1656/// on canonical type's (which are always unique).
1657QualType ASTContext::getTypeOfType(QualType tofType) {
1658  QualType Canonical = getCanonicalType(tofType);
1659  TypeOfType *tot = new (*this,8) TypeOfType(tofType, Canonical);
1660  Types.push_back(tot);
1661  return QualType(tot, 0);
1662}
1663
1664/// getTagDeclType - Return the unique reference to the type for the
1665/// specified TagDecl (struct/union/class/enum) decl.
1666QualType ASTContext::getTagDeclType(TagDecl *Decl) {
1667  assert (Decl);
1668  return getTypeDeclType(Decl);
1669}
1670
1671/// getSizeType - Return the unique type for "size_t" (C99 7.17), the result
1672/// of the sizeof operator (C99 6.5.3.4p4). The value is target dependent and
1673/// needs to agree with the definition in <stddef.h>.
1674QualType ASTContext::getSizeType() const {
1675  return getFromTargetType(Target.getSizeType());
1676}
1677
1678/// getSignedWCharType - Return the type of "signed wchar_t".
1679/// Used when in C++, as a GCC extension.
1680QualType ASTContext::getSignedWCharType() const {
1681  // FIXME: derive from "Target" ?
1682  return WCharTy;
1683}
1684
1685/// getUnsignedWCharType - Return the type of "unsigned wchar_t".
1686/// Used when in C++, as a GCC extension.
1687QualType ASTContext::getUnsignedWCharType() const {
1688  // FIXME: derive from "Target" ?
1689  return UnsignedIntTy;
1690}
1691
1692/// getPointerDiffType - Return the unique type for "ptrdiff_t" (ref?)
1693/// defined in <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9).
1694QualType ASTContext::getPointerDiffType() const {
1695  return getFromTargetType(Target.getPtrDiffType(0));
1696}
1697
1698//===----------------------------------------------------------------------===//
1699//                              Type Operators
1700//===----------------------------------------------------------------------===//
1701
1702/// getCanonicalType - Return the canonical (structural) type corresponding to
1703/// the specified potentially non-canonical type.  The non-canonical version
1704/// of a type may have many "decorated" versions of types.  Decorators can
1705/// include typedefs, 'typeof' operators, etc. The returned type is guaranteed
1706/// to be free of any of these, allowing two canonical types to be compared
1707/// for exact equality with a simple pointer comparison.
1708QualType ASTContext::getCanonicalType(QualType T) {
1709  QualType CanType = T.getTypePtr()->getCanonicalTypeInternal();
1710
1711  // If the result has type qualifiers, make sure to canonicalize them as well.
1712  unsigned TypeQuals = T.getCVRQualifiers() | CanType.getCVRQualifiers();
1713  if (TypeQuals == 0) return CanType;
1714
1715  // If the type qualifiers are on an array type, get the canonical type of the
1716  // array with the qualifiers applied to the element type.
1717  ArrayType *AT = dyn_cast<ArrayType>(CanType);
1718  if (!AT)
1719    return CanType.getQualifiedType(TypeQuals);
1720
1721  // Get the canonical version of the element with the extra qualifiers on it.
1722  // This can recursively sink qualifiers through multiple levels of arrays.
1723  QualType NewEltTy=AT->getElementType().getWithAdditionalQualifiers(TypeQuals);
1724  NewEltTy = getCanonicalType(NewEltTy);
1725
1726  if (ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
1727    return getConstantArrayType(NewEltTy, CAT->getSize(),CAT->getSizeModifier(),
1728                                CAT->getIndexTypeQualifier());
1729  if (IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT))
1730    return getIncompleteArrayType(NewEltTy, IAT->getSizeModifier(),
1731                                  IAT->getIndexTypeQualifier());
1732
1733  if (DependentSizedArrayType *DSAT = dyn_cast<DependentSizedArrayType>(AT))
1734    return getDependentSizedArrayType(NewEltTy, DSAT->getSizeExpr(),
1735                                      DSAT->getSizeModifier(),
1736                                      DSAT->getIndexTypeQualifier());
1737
1738  VariableArrayType *VAT = cast<VariableArrayType>(AT);
1739  return getVariableArrayType(NewEltTy, VAT->getSizeExpr(),
1740                              VAT->getSizeModifier(),
1741                              VAT->getIndexTypeQualifier());
1742}
1743
1744Decl *ASTContext::getCanonicalDecl(Decl *D) {
1745  if (!D)
1746    return 0;
1747
1748  if (TagDecl *Tag = dyn_cast<TagDecl>(D)) {
1749    QualType T = getTagDeclType(Tag);
1750    return cast<TagDecl>(cast<TagType>(T.getTypePtr()->CanonicalType)
1751                         ->getDecl());
1752  }
1753
1754  if (ClassTemplateDecl *Template = dyn_cast<ClassTemplateDecl>(D)) {
1755    while (Template->getPreviousDeclaration())
1756      Template = Template->getPreviousDeclaration();
1757    return Template;
1758  }
1759
1760  if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) {
1761    while (Function->getPreviousDeclaration())
1762      Function = Function->getPreviousDeclaration();
1763    return const_cast<FunctionDecl *>(Function);
1764  }
1765
1766  if (const VarDecl *Var = dyn_cast<VarDecl>(D)) {
1767    while (Var->getPreviousDeclaration())
1768      Var = Var->getPreviousDeclaration();
1769    return const_cast<VarDecl *>(Var);
1770  }
1771
1772  return D;
1773}
1774
1775TemplateName ASTContext::getCanonicalTemplateName(TemplateName Name) {
1776  // If this template name refers to a template, the canonical
1777  // template name merely stores the template itself.
1778  if (TemplateDecl *Template = Name.getAsTemplateDecl())
1779    return TemplateName(cast<TemplateDecl>(getCanonicalDecl(Template)));
1780
1781  DependentTemplateName *DTN = Name.getAsDependentTemplateName();
1782  assert(DTN && "Non-dependent template names must refer to template decls.");
1783  return DTN->CanonicalTemplateName;
1784}
1785
1786NestedNameSpecifier *
1787ASTContext::getCanonicalNestedNameSpecifier(NestedNameSpecifier *NNS) {
1788  if (!NNS)
1789    return 0;
1790
1791  switch (NNS->getKind()) {
1792  case NestedNameSpecifier::Identifier:
1793    // Canonicalize the prefix but keep the identifier the same.
1794    return NestedNameSpecifier::Create(*this,
1795                         getCanonicalNestedNameSpecifier(NNS->getPrefix()),
1796                                       NNS->getAsIdentifier());
1797
1798  case NestedNameSpecifier::Namespace:
1799    // A namespace is canonical; build a nested-name-specifier with
1800    // this namespace and no prefix.
1801    return NestedNameSpecifier::Create(*this, 0, NNS->getAsNamespace());
1802
1803  case NestedNameSpecifier::TypeSpec:
1804  case NestedNameSpecifier::TypeSpecWithTemplate: {
1805    QualType T = getCanonicalType(QualType(NNS->getAsType(), 0));
1806    NestedNameSpecifier *Prefix = 0;
1807
1808    // FIXME: This isn't the right check!
1809    if (T->isDependentType())
1810      Prefix = getCanonicalNestedNameSpecifier(NNS->getPrefix());
1811
1812    return NestedNameSpecifier::Create(*this, Prefix,
1813                 NNS->getKind() == NestedNameSpecifier::TypeSpecWithTemplate,
1814                                       T.getTypePtr());
1815  }
1816
1817  case NestedNameSpecifier::Global:
1818    // The global specifier is canonical and unique.
1819    return NNS;
1820  }
1821
1822  // Required to silence a GCC warning
1823  return 0;
1824}
1825
1826
1827const ArrayType *ASTContext::getAsArrayType(QualType T) {
1828  // Handle the non-qualified case efficiently.
1829  if (T.getCVRQualifiers() == 0) {
1830    // Handle the common positive case fast.
1831    if (const ArrayType *AT = dyn_cast<ArrayType>(T))
1832      return AT;
1833  }
1834
1835  // Handle the common negative case fast, ignoring CVR qualifiers.
1836  QualType CType = T->getCanonicalTypeInternal();
1837
1838  // Make sure to look through type qualifiers (like ExtQuals) for the negative
1839  // test.
1840  if (!isa<ArrayType>(CType) &&
1841      !isa<ArrayType>(CType.getUnqualifiedType()))
1842    return 0;
1843
1844  // Apply any CVR qualifiers from the array type to the element type.  This
1845  // implements C99 6.7.3p8: "If the specification of an array type includes
1846  // any type qualifiers, the element type is so qualified, not the array type."
1847
1848  // If we get here, we either have type qualifiers on the type, or we have
1849  // sugar such as a typedef in the way.  If we have type qualifiers on the type
1850  // we must propagate them down into the elemeng type.
1851  unsigned CVRQuals = T.getCVRQualifiers();
1852  unsigned AddrSpace = 0;
1853  Type *Ty = T.getTypePtr();
1854
1855  // Rip through ExtQualType's and typedefs to get to a concrete type.
1856  while (1) {
1857    if (const ExtQualType *EXTQT = dyn_cast<ExtQualType>(Ty)) {
1858      AddrSpace = EXTQT->getAddressSpace();
1859      Ty = EXTQT->getBaseType();
1860    } else {
1861      T = Ty->getDesugaredType();
1862      if (T.getTypePtr() == Ty && T.getCVRQualifiers() == 0)
1863        break;
1864      CVRQuals |= T.getCVRQualifiers();
1865      Ty = T.getTypePtr();
1866    }
1867  }
1868
1869  // If we have a simple case, just return now.
1870  const ArrayType *ATy = dyn_cast<ArrayType>(Ty);
1871  if (ATy == 0 || (AddrSpace == 0 && CVRQuals == 0))
1872    return ATy;
1873
1874  // Otherwise, we have an array and we have qualifiers on it.  Push the
1875  // qualifiers into the array element type and return a new array type.
1876  // Get the canonical version of the element with the extra qualifiers on it.
1877  // This can recursively sink qualifiers through multiple levels of arrays.
1878  QualType NewEltTy = ATy->getElementType();
1879  if (AddrSpace)
1880    NewEltTy = getAddrSpaceQualType(NewEltTy, AddrSpace);
1881  NewEltTy = NewEltTy.getWithAdditionalQualifiers(CVRQuals);
1882
1883  if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(ATy))
1884    return cast<ArrayType>(getConstantArrayType(NewEltTy, CAT->getSize(),
1885                                                CAT->getSizeModifier(),
1886                                                CAT->getIndexTypeQualifier()));
1887  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(ATy))
1888    return cast<ArrayType>(getIncompleteArrayType(NewEltTy,
1889                                                  IAT->getSizeModifier(),
1890                                                 IAT->getIndexTypeQualifier()));
1891
1892  if (const DependentSizedArrayType *DSAT
1893        = dyn_cast<DependentSizedArrayType>(ATy))
1894    return cast<ArrayType>(
1895                     getDependentSizedArrayType(NewEltTy,
1896                                                DSAT->getSizeExpr(),
1897                                                DSAT->getSizeModifier(),
1898                                                DSAT->getIndexTypeQualifier()));
1899
1900  const VariableArrayType *VAT = cast<VariableArrayType>(ATy);
1901  return cast<ArrayType>(getVariableArrayType(NewEltTy, VAT->getSizeExpr(),
1902                                              VAT->getSizeModifier(),
1903                                              VAT->getIndexTypeQualifier()));
1904}
1905
1906
1907/// getArrayDecayedType - Return the properly qualified result of decaying the
1908/// specified array type to a pointer.  This operation is non-trivial when
1909/// handling typedefs etc.  The canonical type of "T" must be an array type,
1910/// this returns a pointer to a properly qualified element of the array.
1911///
1912/// See C99 6.7.5.3p7 and C99 6.3.2.1p3.
1913QualType ASTContext::getArrayDecayedType(QualType Ty) {
1914  // Get the element type with 'getAsArrayType' so that we don't lose any
1915  // typedefs in the element type of the array.  This also handles propagation
1916  // of type qualifiers from the array type into the element type if present
1917  // (C99 6.7.3p8).
1918  const ArrayType *PrettyArrayType = getAsArrayType(Ty);
1919  assert(PrettyArrayType && "Not an array type!");
1920
1921  QualType PtrTy = getPointerType(PrettyArrayType->getElementType());
1922
1923  // int x[restrict 4] ->  int *restrict
1924  return PtrTy.getQualifiedType(PrettyArrayType->getIndexTypeQualifier());
1925}
1926
1927QualType ASTContext::getBaseElementType(const VariableArrayType *VAT) {
1928  QualType ElemTy = VAT->getElementType();
1929
1930  if (const VariableArrayType *VAT = getAsVariableArrayType(ElemTy))
1931    return getBaseElementType(VAT);
1932
1933  return ElemTy;
1934}
1935
1936/// getFloatingRank - Return a relative rank for floating point types.
1937/// This routine will assert if passed a built-in type that isn't a float.
1938static FloatingRank getFloatingRank(QualType T) {
1939  if (const ComplexType *CT = T->getAsComplexType())
1940    return getFloatingRank(CT->getElementType());
1941
1942  assert(T->getAsBuiltinType() && "getFloatingRank(): not a floating type");
1943  switch (T->getAsBuiltinType()->getKind()) {
1944  default: assert(0 && "getFloatingRank(): not a floating type");
1945  case BuiltinType::Float:      return FloatRank;
1946  case BuiltinType::Double:     return DoubleRank;
1947  case BuiltinType::LongDouble: return LongDoubleRank;
1948  }
1949}
1950
1951/// getFloatingTypeOfSizeWithinDomain - Returns a real floating
1952/// point or a complex type (based on typeDomain/typeSize).
1953/// 'typeDomain' is a real floating point or complex type.
1954/// 'typeSize' is a real floating point or complex type.
1955QualType ASTContext::getFloatingTypeOfSizeWithinDomain(QualType Size,
1956                                                       QualType Domain) const {
1957  FloatingRank EltRank = getFloatingRank(Size);
1958  if (Domain->isComplexType()) {
1959    switch (EltRank) {
1960    default: assert(0 && "getFloatingRank(): illegal value for rank");
1961    case FloatRank:      return FloatComplexTy;
1962    case DoubleRank:     return DoubleComplexTy;
1963    case LongDoubleRank: return LongDoubleComplexTy;
1964    }
1965  }
1966
1967  assert(Domain->isRealFloatingType() && "Unknown domain!");
1968  switch (EltRank) {
1969  default: assert(0 && "getFloatingRank(): illegal value for rank");
1970  case FloatRank:      return FloatTy;
1971  case DoubleRank:     return DoubleTy;
1972  case LongDoubleRank: return LongDoubleTy;
1973  }
1974}
1975
1976/// getFloatingTypeOrder - Compare the rank of the two specified floating
1977/// point types, ignoring the domain of the type (i.e. 'double' ==
1978/// '_Complex double').  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
1979/// LHS < RHS, return -1.
1980int ASTContext::getFloatingTypeOrder(QualType LHS, QualType RHS) {
1981  FloatingRank LHSR = getFloatingRank(LHS);
1982  FloatingRank RHSR = getFloatingRank(RHS);
1983
1984  if (LHSR == RHSR)
1985    return 0;
1986  if (LHSR > RHSR)
1987    return 1;
1988  return -1;
1989}
1990
1991/// getIntegerRank - Return an integer conversion rank (C99 6.3.1.1p1). This
1992/// routine will assert if passed a built-in type that isn't an integer or enum,
1993/// or if it is not canonicalized.
1994unsigned ASTContext::getIntegerRank(Type *T) {
1995  assert(T->isCanonical() && "T should be canonicalized");
1996  if (EnumType* ET = dyn_cast<EnumType>(T))
1997    T = ET->getDecl()->getIntegerType().getTypePtr();
1998
1999  // There are two things which impact the integer rank: the width, and
2000  // the ordering of builtins.  The builtin ordering is encoded in the
2001  // bottom three bits; the width is encoded in the bits above that.
2002  if (FixedWidthIntType* FWIT = dyn_cast<FixedWidthIntType>(T)) {
2003    return FWIT->getWidth() << 3;
2004  }
2005
2006  switch (cast<BuiltinType>(T)->getKind()) {
2007  default: assert(0 && "getIntegerRank(): not a built-in integer");
2008  case BuiltinType::Bool:
2009    return 1 + (getIntWidth(BoolTy) << 3);
2010  case BuiltinType::Char_S:
2011  case BuiltinType::Char_U:
2012  case BuiltinType::SChar:
2013  case BuiltinType::UChar:
2014    return 2 + (getIntWidth(CharTy) << 3);
2015  case BuiltinType::Short:
2016  case BuiltinType::UShort:
2017    return 3 + (getIntWidth(ShortTy) << 3);
2018  case BuiltinType::Int:
2019  case BuiltinType::UInt:
2020    return 4 + (getIntWidth(IntTy) << 3);
2021  case BuiltinType::Long:
2022  case BuiltinType::ULong:
2023    return 5 + (getIntWidth(LongTy) << 3);
2024  case BuiltinType::LongLong:
2025  case BuiltinType::ULongLong:
2026    return 6 + (getIntWidth(LongLongTy) << 3);
2027  case BuiltinType::Int128:
2028  case BuiltinType::UInt128:
2029    return 7 + (getIntWidth(Int128Ty) << 3);
2030  }
2031}
2032
2033/// getIntegerTypeOrder - Returns the highest ranked integer type:
2034/// C99 6.3.1.8p1.  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
2035/// LHS < RHS, return -1.
2036int ASTContext::getIntegerTypeOrder(QualType LHS, QualType RHS) {
2037  Type *LHSC = getCanonicalType(LHS).getTypePtr();
2038  Type *RHSC = getCanonicalType(RHS).getTypePtr();
2039  if (LHSC == RHSC) return 0;
2040
2041  bool LHSUnsigned = LHSC->isUnsignedIntegerType();
2042  bool RHSUnsigned = RHSC->isUnsignedIntegerType();
2043
2044  unsigned LHSRank = getIntegerRank(LHSC);
2045  unsigned RHSRank = getIntegerRank(RHSC);
2046
2047  if (LHSUnsigned == RHSUnsigned) {  // Both signed or both unsigned.
2048    if (LHSRank == RHSRank) return 0;
2049    return LHSRank > RHSRank ? 1 : -1;
2050  }
2051
2052  // Otherwise, the LHS is signed and the RHS is unsigned or visa versa.
2053  if (LHSUnsigned) {
2054    // If the unsigned [LHS] type is larger, return it.
2055    if (LHSRank >= RHSRank)
2056      return 1;
2057
2058    // If the signed type can represent all values of the unsigned type, it
2059    // wins.  Because we are dealing with 2's complement and types that are
2060    // powers of two larger than each other, this is always safe.
2061    return -1;
2062  }
2063
2064  // If the unsigned [RHS] type is larger, return it.
2065  if (RHSRank >= LHSRank)
2066    return -1;
2067
2068  // If the signed type can represent all values of the unsigned type, it
2069  // wins.  Because we are dealing with 2's complement and types that are
2070  // powers of two larger than each other, this is always safe.
2071  return 1;
2072}
2073
2074// getCFConstantStringType - Return the type used for constant CFStrings.
2075QualType ASTContext::getCFConstantStringType() {
2076  if (!CFConstantStringTypeDecl) {
2077    CFConstantStringTypeDecl =
2078      RecordDecl::Create(*this, TagDecl::TK_struct, TUDecl, SourceLocation(),
2079                         &Idents.get("NSConstantString"));
2080    QualType FieldTypes[4];
2081
2082    // const int *isa;
2083    FieldTypes[0] = getPointerType(IntTy.getQualifiedType(QualType::Const));
2084    // int flags;
2085    FieldTypes[1] = IntTy;
2086    // const char *str;
2087    FieldTypes[2] = getPointerType(CharTy.getQualifiedType(QualType::Const));
2088    // long length;
2089    FieldTypes[3] = LongTy;
2090
2091    // Create fields
2092    for (unsigned i = 0; i < 4; ++i) {
2093      FieldDecl *Field = FieldDecl::Create(*this, CFConstantStringTypeDecl,
2094                                           SourceLocation(), 0,
2095                                           FieldTypes[i], /*BitWidth=*/0,
2096                                           /*Mutable=*/false);
2097      CFConstantStringTypeDecl->addDecl(*this, Field);
2098    }
2099
2100    CFConstantStringTypeDecl->completeDefinition(*this);
2101  }
2102
2103  return getTagDeclType(CFConstantStringTypeDecl);
2104}
2105
2106void ASTContext::setCFConstantStringType(QualType T) {
2107  const RecordType *Rec = T->getAsRecordType();
2108  assert(Rec && "Invalid CFConstantStringType");
2109  CFConstantStringTypeDecl = Rec->getDecl();
2110}
2111
2112QualType ASTContext::getObjCFastEnumerationStateType()
2113{
2114  if (!ObjCFastEnumerationStateTypeDecl) {
2115    ObjCFastEnumerationStateTypeDecl =
2116      RecordDecl::Create(*this, TagDecl::TK_struct, TUDecl, SourceLocation(),
2117                         &Idents.get("__objcFastEnumerationState"));
2118
2119    QualType FieldTypes[] = {
2120      UnsignedLongTy,
2121      getPointerType(ObjCIdType),
2122      getPointerType(UnsignedLongTy),
2123      getConstantArrayType(UnsignedLongTy,
2124                           llvm::APInt(32, 5), ArrayType::Normal, 0)
2125    };
2126
2127    for (size_t i = 0; i < 4; ++i) {
2128      FieldDecl *Field = FieldDecl::Create(*this,
2129                                           ObjCFastEnumerationStateTypeDecl,
2130                                           SourceLocation(), 0,
2131                                           FieldTypes[i], /*BitWidth=*/0,
2132                                           /*Mutable=*/false);
2133      ObjCFastEnumerationStateTypeDecl->addDecl(*this, Field);
2134    }
2135
2136    ObjCFastEnumerationStateTypeDecl->completeDefinition(*this);
2137  }
2138
2139  return getTagDeclType(ObjCFastEnumerationStateTypeDecl);
2140}
2141
2142void ASTContext::setObjCFastEnumerationStateType(QualType T) {
2143  const RecordType *Rec = T->getAsRecordType();
2144  assert(Rec && "Invalid ObjCFAstEnumerationStateType");
2145  ObjCFastEnumerationStateTypeDecl = Rec->getDecl();
2146}
2147
2148// This returns true if a type has been typedefed to BOOL:
2149// typedef <type> BOOL;
2150static bool isTypeTypedefedAsBOOL(QualType T) {
2151  if (const TypedefType *TT = dyn_cast<TypedefType>(T))
2152    if (IdentifierInfo *II = TT->getDecl()->getIdentifier())
2153      return II->isStr("BOOL");
2154
2155  return false;
2156}
2157
2158/// getObjCEncodingTypeSize returns size of type for objective-c encoding
2159/// purpose.
2160int ASTContext::getObjCEncodingTypeSize(QualType type) {
2161  uint64_t sz = getTypeSize(type);
2162
2163  // Make all integer and enum types at least as large as an int
2164  if (sz > 0 && type->isIntegralType())
2165    sz = std::max(sz, getTypeSize(IntTy));
2166  // Treat arrays as pointers, since that's how they're passed in.
2167  else if (type->isArrayType())
2168    sz = getTypeSize(VoidPtrTy);
2169  return sz / getTypeSize(CharTy);
2170}
2171
2172/// getObjCEncodingForMethodDecl - Return the encoded type for this method
2173/// declaration.
2174void ASTContext::getObjCEncodingForMethodDecl(const ObjCMethodDecl *Decl,
2175                                              std::string& S) {
2176  // FIXME: This is not very efficient.
2177  // Encode type qualifer, 'in', 'inout', etc. for the return type.
2178  getObjCEncodingForTypeQualifier(Decl->getObjCDeclQualifier(), S);
2179  // Encode result type.
2180  getObjCEncodingForType(Decl->getResultType(), S);
2181  // Compute size of all parameters.
2182  // Start with computing size of a pointer in number of bytes.
2183  // FIXME: There might(should) be a better way of doing this computation!
2184  SourceLocation Loc;
2185  int PtrSize = getTypeSize(VoidPtrTy) / getTypeSize(CharTy);
2186  // The first two arguments (self and _cmd) are pointers; account for
2187  // their size.
2188  int ParmOffset = 2 * PtrSize;
2189  for (ObjCMethodDecl::param_iterator PI = Decl->param_begin(),
2190       E = Decl->param_end(); PI != E; ++PI) {
2191    QualType PType = (*PI)->getType();
2192    int sz = getObjCEncodingTypeSize(PType);
2193    assert (sz > 0 && "getObjCEncodingForMethodDecl - Incomplete param type");
2194    ParmOffset += sz;
2195  }
2196  S += llvm::utostr(ParmOffset);
2197  S += "@0:";
2198  S += llvm::utostr(PtrSize);
2199
2200  // Argument types.
2201  ParmOffset = 2 * PtrSize;
2202  for (ObjCMethodDecl::param_iterator PI = Decl->param_begin(),
2203       E = Decl->param_end(); PI != E; ++PI) {
2204    ParmVarDecl *PVDecl = *PI;
2205    QualType PType = PVDecl->getOriginalType();
2206    if (const ArrayType *AT =
2207          dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
2208      // Use array's original type only if it has known number of
2209      // elements.
2210      if (!isa<ConstantArrayType>(AT))
2211        PType = PVDecl->getType();
2212    } else if (PType->isFunctionType())
2213      PType = PVDecl->getType();
2214    // Process argument qualifiers for user supplied arguments; such as,
2215    // 'in', 'inout', etc.
2216    getObjCEncodingForTypeQualifier(PVDecl->getObjCDeclQualifier(), S);
2217    getObjCEncodingForType(PType, S);
2218    S += llvm::utostr(ParmOffset);
2219    ParmOffset += getObjCEncodingTypeSize(PType);
2220  }
2221}
2222
2223/// getObjCEncodingForPropertyDecl - Return the encoded type for this
2224/// property declaration. If non-NULL, Container must be either an
2225/// ObjCCategoryImplDecl or ObjCImplementationDecl; it should only be
2226/// NULL when getting encodings for protocol properties.
2227/// Property attributes are stored as a comma-delimited C string. The simple
2228/// attributes readonly and bycopy are encoded as single characters. The
2229/// parametrized attributes, getter=name, setter=name, and ivar=name, are
2230/// encoded as single characters, followed by an identifier. Property types
2231/// are also encoded as a parametrized attribute. The characters used to encode
2232/// these attributes are defined by the following enumeration:
2233/// @code
2234/// enum PropertyAttributes {
2235/// kPropertyReadOnly = 'R',   // property is read-only.
2236/// kPropertyBycopy = 'C',     // property is a copy of the value last assigned
2237/// kPropertyByref = '&',  // property is a reference to the value last assigned
2238/// kPropertyDynamic = 'D',    // property is dynamic
2239/// kPropertyGetter = 'G',     // followed by getter selector name
2240/// kPropertySetter = 'S',     // followed by setter selector name
2241/// kPropertyInstanceVariable = 'V'  // followed by instance variable  name
2242/// kPropertyType = 't'              // followed by old-style type encoding.
2243/// kPropertyWeak = 'W'              // 'weak' property
2244/// kPropertyStrong = 'P'            // property GC'able
2245/// kPropertyNonAtomic = 'N'         // property non-atomic
2246/// };
2247/// @endcode
2248void ASTContext::getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD,
2249                                                const Decl *Container,
2250                                                std::string& S) {
2251  // Collect information from the property implementation decl(s).
2252  bool Dynamic = false;
2253  ObjCPropertyImplDecl *SynthesizePID = 0;
2254
2255  // FIXME: Duplicated code due to poor abstraction.
2256  if (Container) {
2257    if (const ObjCCategoryImplDecl *CID =
2258        dyn_cast<ObjCCategoryImplDecl>(Container)) {
2259      for (ObjCCategoryImplDecl::propimpl_iterator
2260             i = CID->propimpl_begin(*this), e = CID->propimpl_end(*this);
2261           i != e; ++i) {
2262        ObjCPropertyImplDecl *PID = *i;
2263        if (PID->getPropertyDecl() == PD) {
2264          if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) {
2265            Dynamic = true;
2266          } else {
2267            SynthesizePID = PID;
2268          }
2269        }
2270      }
2271    } else {
2272      const ObjCImplementationDecl *OID=cast<ObjCImplementationDecl>(Container);
2273      for (ObjCCategoryImplDecl::propimpl_iterator
2274             i = OID->propimpl_begin(*this), e = OID->propimpl_end(*this);
2275           i != e; ++i) {
2276        ObjCPropertyImplDecl *PID = *i;
2277        if (PID->getPropertyDecl() == PD) {
2278          if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) {
2279            Dynamic = true;
2280          } else {
2281            SynthesizePID = PID;
2282          }
2283        }
2284      }
2285    }
2286  }
2287
2288  // FIXME: This is not very efficient.
2289  S = "T";
2290
2291  // Encode result type.
2292  // GCC has some special rules regarding encoding of properties which
2293  // closely resembles encoding of ivars.
2294  getObjCEncodingForTypeImpl(PD->getType(), S, true, true, 0,
2295                             true /* outermost type */,
2296                             true /* encoding for property */);
2297
2298  if (PD->isReadOnly()) {
2299    S += ",R";
2300  } else {
2301    switch (PD->getSetterKind()) {
2302    case ObjCPropertyDecl::Assign: break;
2303    case ObjCPropertyDecl::Copy:   S += ",C"; break;
2304    case ObjCPropertyDecl::Retain: S += ",&"; break;
2305    }
2306  }
2307
2308  // It really isn't clear at all what this means, since properties
2309  // are "dynamic by default".
2310  if (Dynamic)
2311    S += ",D";
2312
2313  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_nonatomic)
2314    S += ",N";
2315
2316  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_getter) {
2317    S += ",G";
2318    S += PD->getGetterName().getAsString();
2319  }
2320
2321  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_setter) {
2322    S += ",S";
2323    S += PD->getSetterName().getAsString();
2324  }
2325
2326  if (SynthesizePID) {
2327    const ObjCIvarDecl *OID = SynthesizePID->getPropertyIvarDecl();
2328    S += ",V";
2329    S += OID->getNameAsString();
2330  }
2331
2332  // FIXME: OBJCGC: weak & strong
2333}
2334
2335/// getLegacyIntegralTypeEncoding -
2336/// Another legacy compatibility encoding: 32-bit longs are encoded as
2337/// 'l' or 'L' , but not always.  For typedefs, we need to use
2338/// 'i' or 'I' instead if encoding a struct field, or a pointer!
2339///
2340void ASTContext::getLegacyIntegralTypeEncoding (QualType &PointeeTy) const {
2341  if (dyn_cast<TypedefType>(PointeeTy.getTypePtr())) {
2342    if (const BuiltinType *BT = PointeeTy->getAsBuiltinType()) {
2343      if (BT->getKind() == BuiltinType::ULong &&
2344          ((const_cast<ASTContext *>(this))->getIntWidth(PointeeTy) == 32))
2345        PointeeTy = UnsignedIntTy;
2346      else
2347        if (BT->getKind() == BuiltinType::Long &&
2348            ((const_cast<ASTContext *>(this))->getIntWidth(PointeeTy) == 32))
2349          PointeeTy = IntTy;
2350    }
2351  }
2352}
2353
2354void ASTContext::getObjCEncodingForType(QualType T, std::string& S,
2355                                        const FieldDecl *Field) {
2356  // We follow the behavior of gcc, expanding structures which are
2357  // directly pointed to, and expanding embedded structures. Note that
2358  // these rules are sufficient to prevent recursive encoding of the
2359  // same type.
2360  getObjCEncodingForTypeImpl(T, S, true, true, Field,
2361                             true /* outermost type */);
2362}
2363
2364static void EncodeBitField(const ASTContext *Context, std::string& S,
2365                           const FieldDecl *FD) {
2366  const Expr *E = FD->getBitWidth();
2367  assert(E && "bitfield width not there - getObjCEncodingForTypeImpl");
2368  ASTContext *Ctx = const_cast<ASTContext*>(Context);
2369  unsigned N = E->EvaluateAsInt(*Ctx).getZExtValue();
2370  S += 'b';
2371  S += llvm::utostr(N);
2372}
2373
2374void ASTContext::getObjCEncodingForTypeImpl(QualType T, std::string& S,
2375                                            bool ExpandPointedToStructures,
2376                                            bool ExpandStructures,
2377                                            const FieldDecl *FD,
2378                                            bool OutermostType,
2379                                            bool EncodingProperty) {
2380  if (const BuiltinType *BT = T->getAsBuiltinType()) {
2381    if (FD && FD->isBitField()) {
2382      EncodeBitField(this, S, FD);
2383    }
2384    else {
2385      char encoding;
2386      switch (BT->getKind()) {
2387      default: assert(0 && "Unhandled builtin type kind");
2388      case BuiltinType::Void:       encoding = 'v'; break;
2389      case BuiltinType::Bool:       encoding = 'B'; break;
2390      case BuiltinType::Char_U:
2391      case BuiltinType::UChar:      encoding = 'C'; break;
2392      case BuiltinType::UShort:     encoding = 'S'; break;
2393      case BuiltinType::UInt:       encoding = 'I'; break;
2394      case BuiltinType::ULong:
2395          encoding =
2396            (const_cast<ASTContext *>(this))->getIntWidth(T) == 32 ? 'L' : 'Q';
2397          break;
2398      case BuiltinType::UInt128:    encoding = 'T'; break;
2399      case BuiltinType::ULongLong:  encoding = 'Q'; break;
2400      case BuiltinType::Char_S:
2401      case BuiltinType::SChar:      encoding = 'c'; break;
2402      case BuiltinType::Short:      encoding = 's'; break;
2403      case BuiltinType::Int:        encoding = 'i'; break;
2404      case BuiltinType::Long:
2405        encoding =
2406          (const_cast<ASTContext *>(this))->getIntWidth(T) == 32 ? 'l' : 'q';
2407        break;
2408      case BuiltinType::LongLong:   encoding = 'q'; break;
2409      case BuiltinType::Int128:     encoding = 't'; break;
2410      case BuiltinType::Float:      encoding = 'f'; break;
2411      case BuiltinType::Double:     encoding = 'd'; break;
2412      case BuiltinType::LongDouble: encoding = 'd'; break;
2413      }
2414
2415      S += encoding;
2416    }
2417  } else if (const ComplexType *CT = T->getAsComplexType()) {
2418    S += 'j';
2419    getObjCEncodingForTypeImpl(CT->getElementType(), S, false, false, 0, false,
2420                               false);
2421  } else if (T->isObjCQualifiedIdType()) {
2422    getObjCEncodingForTypeImpl(getObjCIdType(), S,
2423                               ExpandPointedToStructures,
2424                               ExpandStructures, FD);
2425    if (FD || EncodingProperty) {
2426      // Note that we do extended encoding of protocol qualifer list
2427      // Only when doing ivar or property encoding.
2428      const ObjCQualifiedIdType *QIDT = T->getAsObjCQualifiedIdType();
2429      S += '"';
2430      for (unsigned i =0; i < QIDT->getNumProtocols(); i++) {
2431        ObjCProtocolDecl *Proto = QIDT->getProtocols(i);
2432        S += '<';
2433        S += Proto->getNameAsString();
2434        S += '>';
2435      }
2436      S += '"';
2437    }
2438    return;
2439  }
2440  else if (const PointerType *PT = T->getAsPointerType()) {
2441    QualType PointeeTy = PT->getPointeeType();
2442    bool isReadOnly = false;
2443    // For historical/compatibility reasons, the read-only qualifier of the
2444    // pointee gets emitted _before_ the '^'.  The read-only qualifier of
2445    // the pointer itself gets ignored, _unless_ we are looking at a typedef!
2446    // Also, do not emit the 'r' for anything but the outermost type!
2447    if (dyn_cast<TypedefType>(T.getTypePtr())) {
2448      if (OutermostType && T.isConstQualified()) {
2449        isReadOnly = true;
2450        S += 'r';
2451      }
2452    }
2453    else if (OutermostType) {
2454      QualType P = PointeeTy;
2455      while (P->getAsPointerType())
2456        P = P->getAsPointerType()->getPointeeType();
2457      if (P.isConstQualified()) {
2458        isReadOnly = true;
2459        S += 'r';
2460      }
2461    }
2462    if (isReadOnly) {
2463      // Another legacy compatibility encoding. Some ObjC qualifier and type
2464      // combinations need to be rearranged.
2465      // Rewrite "in const" from "nr" to "rn"
2466      const char * s = S.c_str();
2467      int len = S.length();
2468      if (len >= 2 && s[len-2] == 'n' && s[len-1] == 'r') {
2469        std::string replace = "rn";
2470        S.replace(S.end()-2, S.end(), replace);
2471      }
2472    }
2473    if (isObjCIdStructType(PointeeTy)) {
2474      S += '@';
2475      return;
2476    }
2477    else if (PointeeTy->isObjCInterfaceType()) {
2478      if (!EncodingProperty &&
2479          isa<TypedefType>(PointeeTy.getTypePtr())) {
2480        // Another historical/compatibility reason.
2481        // We encode the underlying type which comes out as
2482        // {...};
2483        S += '^';
2484        getObjCEncodingForTypeImpl(PointeeTy, S,
2485                                   false, ExpandPointedToStructures,
2486                                   NULL);
2487        return;
2488      }
2489      S += '@';
2490      if (FD || EncodingProperty) {
2491        const ObjCInterfaceType *OIT =
2492                PointeeTy.getUnqualifiedType()->getAsObjCInterfaceType();
2493        ObjCInterfaceDecl *OI = OIT->getDecl();
2494        S += '"';
2495        S += OI->getNameAsCString();
2496        for (unsigned i =0; i < OIT->getNumProtocols(); i++) {
2497          ObjCProtocolDecl *Proto = OIT->getProtocol(i);
2498          S += '<';
2499          S += Proto->getNameAsString();
2500          S += '>';
2501        }
2502        S += '"';
2503      }
2504      return;
2505    } else if (isObjCClassStructType(PointeeTy)) {
2506      S += '#';
2507      return;
2508    } else if (isObjCSelType(PointeeTy)) {
2509      S += ':';
2510      return;
2511    }
2512
2513    if (PointeeTy->isCharType()) {
2514      // char pointer types should be encoded as '*' unless it is a
2515      // type that has been typedef'd to 'BOOL'.
2516      if (!isTypeTypedefedAsBOOL(PointeeTy)) {
2517        S += '*';
2518        return;
2519      }
2520    }
2521
2522    S += '^';
2523    getLegacyIntegralTypeEncoding(PointeeTy);
2524
2525    getObjCEncodingForTypeImpl(PointeeTy, S,
2526                               false, ExpandPointedToStructures,
2527                               NULL);
2528  } else if (const ArrayType *AT =
2529               // Ignore type qualifiers etc.
2530               dyn_cast<ArrayType>(T->getCanonicalTypeInternal())) {
2531    if (isa<IncompleteArrayType>(AT)) {
2532      // Incomplete arrays are encoded as a pointer to the array element.
2533      S += '^';
2534
2535      getObjCEncodingForTypeImpl(AT->getElementType(), S,
2536                                 false, ExpandStructures, FD);
2537    } else {
2538      S += '[';
2539
2540      if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
2541        S += llvm::utostr(CAT->getSize().getZExtValue());
2542      else {
2543        //Variable length arrays are encoded as a regular array with 0 elements.
2544        assert(isa<VariableArrayType>(AT) && "Unknown array type!");
2545        S += '0';
2546      }
2547
2548      getObjCEncodingForTypeImpl(AT->getElementType(), S,
2549                                 false, ExpandStructures, FD);
2550      S += ']';
2551    }
2552  } else if (T->getAsFunctionType()) {
2553    S += '?';
2554  } else if (const RecordType *RTy = T->getAsRecordType()) {
2555    RecordDecl *RDecl = RTy->getDecl();
2556    S += RDecl->isUnion() ? '(' : '{';
2557    // Anonymous structures print as '?'
2558    if (const IdentifierInfo *II = RDecl->getIdentifier()) {
2559      S += II->getName();
2560    } else {
2561      S += '?';
2562    }
2563    if (ExpandStructures) {
2564      S += '=';
2565      for (RecordDecl::field_iterator Field = RDecl->field_begin(*this),
2566                                   FieldEnd = RDecl->field_end(*this);
2567           Field != FieldEnd; ++Field) {
2568        if (FD) {
2569          S += '"';
2570          S += Field->getNameAsString();
2571          S += '"';
2572        }
2573
2574        // Special case bit-fields.
2575        if (Field->isBitField()) {
2576          getObjCEncodingForTypeImpl(Field->getType(), S, false, true,
2577                                     (*Field));
2578        } else {
2579          QualType qt = Field->getType();
2580          getLegacyIntegralTypeEncoding(qt);
2581          getObjCEncodingForTypeImpl(qt, S, false, true,
2582                                     FD);
2583        }
2584      }
2585    }
2586    S += RDecl->isUnion() ? ')' : '}';
2587  } else if (T->isEnumeralType()) {
2588    if (FD && FD->isBitField())
2589      EncodeBitField(this, S, FD);
2590    else
2591      S += 'i';
2592  } else if (T->isBlockPointerType()) {
2593    S += "@?"; // Unlike a pointer-to-function, which is "^?".
2594  } else if (T->isObjCInterfaceType()) {
2595    // @encode(class_name)
2596    ObjCInterfaceDecl *OI = T->getAsObjCInterfaceType()->getDecl();
2597    S += '{';
2598    const IdentifierInfo *II = OI->getIdentifier();
2599    S += II->getName();
2600    S += '=';
2601    llvm::SmallVector<FieldDecl*, 32> RecFields;
2602    CollectObjCIvars(OI, RecFields);
2603    for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
2604      if (RecFields[i]->isBitField())
2605        getObjCEncodingForTypeImpl(RecFields[i]->getType(), S, false, true,
2606                                   RecFields[i]);
2607      else
2608        getObjCEncodingForTypeImpl(RecFields[i]->getType(), S, false, true,
2609                                   FD);
2610    }
2611    S += '}';
2612  }
2613  else
2614    assert(0 && "@encode for type not implemented!");
2615}
2616
2617void ASTContext::getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT,
2618                                                 std::string& S) const {
2619  if (QT & Decl::OBJC_TQ_In)
2620    S += 'n';
2621  if (QT & Decl::OBJC_TQ_Inout)
2622    S += 'N';
2623  if (QT & Decl::OBJC_TQ_Out)
2624    S += 'o';
2625  if (QT & Decl::OBJC_TQ_Bycopy)
2626    S += 'O';
2627  if (QT & Decl::OBJC_TQ_Byref)
2628    S += 'R';
2629  if (QT & Decl::OBJC_TQ_Oneway)
2630    S += 'V';
2631}
2632
2633void ASTContext::setBuiltinVaListType(QualType T)
2634{
2635  assert(BuiltinVaListType.isNull() && "__builtin_va_list type already set!");
2636
2637  BuiltinVaListType = T;
2638}
2639
2640void ASTContext::setObjCIdType(QualType T)
2641{
2642  ObjCIdType = T;
2643
2644  const TypedefType *TT = T->getAsTypedefType();
2645  if (!TT)
2646    return;
2647
2648  TypedefDecl *TD = TT->getDecl();
2649
2650  // typedef struct objc_object *id;
2651  const PointerType *ptr = TD->getUnderlyingType()->getAsPointerType();
2652  // User error - caller will issue diagnostics.
2653  if (!ptr)
2654    return;
2655  const RecordType *rec = ptr->getPointeeType()->getAsStructureType();
2656  // User error - caller will issue diagnostics.
2657  if (!rec)
2658    return;
2659  IdStructType = rec;
2660}
2661
2662void ASTContext::setObjCSelType(QualType T)
2663{
2664  ObjCSelType = T;
2665
2666  const TypedefType *TT = T->getAsTypedefType();
2667  if (!TT)
2668    return;
2669  TypedefDecl *TD = TT->getDecl();
2670
2671  // typedef struct objc_selector *SEL;
2672  const PointerType *ptr = TD->getUnderlyingType()->getAsPointerType();
2673  if (!ptr)
2674    return;
2675  const RecordType *rec = ptr->getPointeeType()->getAsStructureType();
2676  if (!rec)
2677    return;
2678  SelStructType = rec;
2679}
2680
2681void ASTContext::setObjCProtoType(QualType QT)
2682{
2683  ObjCProtoType = QT;
2684}
2685
2686void ASTContext::setObjCClassType(QualType T)
2687{
2688  ObjCClassType = T;
2689
2690  const TypedefType *TT = T->getAsTypedefType();
2691  if (!TT)
2692    return;
2693  TypedefDecl *TD = TT->getDecl();
2694
2695  // typedef struct objc_class *Class;
2696  const PointerType *ptr = TD->getUnderlyingType()->getAsPointerType();
2697  assert(ptr && "'Class' incorrectly typed");
2698  const RecordType *rec = ptr->getPointeeType()->getAsStructureType();
2699  assert(rec && "'Class' incorrectly typed");
2700  ClassStructType = rec;
2701}
2702
2703void ASTContext::setObjCConstantStringInterface(ObjCInterfaceDecl *Decl) {
2704  assert(ObjCConstantStringType.isNull() &&
2705         "'NSConstantString' type already set!");
2706
2707  ObjCConstantStringType = getObjCInterfaceType(Decl);
2708}
2709
2710/// \brief Retrieve the template name that represents a qualified
2711/// template name such as \c std::vector.
2712TemplateName ASTContext::getQualifiedTemplateName(NestedNameSpecifier *NNS,
2713                                                  bool TemplateKeyword,
2714                                                  TemplateDecl *Template) {
2715  llvm::FoldingSetNodeID ID;
2716  QualifiedTemplateName::Profile(ID, NNS, TemplateKeyword, Template);
2717
2718  void *InsertPos = 0;
2719  QualifiedTemplateName *QTN =
2720    QualifiedTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
2721  if (!QTN) {
2722    QTN = new (*this,4) QualifiedTemplateName(NNS, TemplateKeyword, Template);
2723    QualifiedTemplateNames.InsertNode(QTN, InsertPos);
2724  }
2725
2726  return TemplateName(QTN);
2727}
2728
2729/// \brief Retrieve the template name that represents a dependent
2730/// template name such as \c MetaFun::template apply.
2731TemplateName ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
2732                                                  const IdentifierInfo *Name) {
2733  assert(NNS->isDependent() && "Nested name specifier must be dependent");
2734
2735  llvm::FoldingSetNodeID ID;
2736  DependentTemplateName::Profile(ID, NNS, Name);
2737
2738  void *InsertPos = 0;
2739  DependentTemplateName *QTN =
2740    DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
2741
2742  if (QTN)
2743    return TemplateName(QTN);
2744
2745  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
2746  if (CanonNNS == NNS) {
2747    QTN = new (*this,4) DependentTemplateName(NNS, Name);
2748  } else {
2749    TemplateName Canon = getDependentTemplateName(CanonNNS, Name);
2750    QTN = new (*this,4) DependentTemplateName(NNS, Name, Canon);
2751  }
2752
2753  DependentTemplateNames.InsertNode(QTN, InsertPos);
2754  return TemplateName(QTN);
2755}
2756
2757/// getFromTargetType - Given one of the integer types provided by
2758/// TargetInfo, produce the corresponding type. The unsigned @p Type
2759/// is actually a value of type @c TargetInfo::IntType.
2760QualType ASTContext::getFromTargetType(unsigned Type) const {
2761  switch (Type) {
2762  case TargetInfo::NoInt: return QualType();
2763  case TargetInfo::SignedShort: return ShortTy;
2764  case TargetInfo::UnsignedShort: return UnsignedShortTy;
2765  case TargetInfo::SignedInt: return IntTy;
2766  case TargetInfo::UnsignedInt: return UnsignedIntTy;
2767  case TargetInfo::SignedLong: return LongTy;
2768  case TargetInfo::UnsignedLong: return UnsignedLongTy;
2769  case TargetInfo::SignedLongLong: return LongLongTy;
2770  case TargetInfo::UnsignedLongLong: return UnsignedLongLongTy;
2771  }
2772
2773  assert(false && "Unhandled TargetInfo::IntType value");
2774  return QualType();
2775}
2776
2777//===----------------------------------------------------------------------===//
2778//                        Type Predicates.
2779//===----------------------------------------------------------------------===//
2780
2781/// isObjCNSObjectType - Return true if this is an NSObject object using
2782/// NSObject attribute on a c-style pointer type.
2783/// FIXME - Make it work directly on types.
2784///
2785bool ASTContext::isObjCNSObjectType(QualType Ty) const {
2786  if (TypedefType *TDT = dyn_cast<TypedefType>(Ty)) {
2787    if (TypedefDecl *TD = TDT->getDecl())
2788      if (TD->getAttr<ObjCNSObjectAttr>())
2789        return true;
2790  }
2791  return false;
2792}
2793
2794/// isObjCObjectPointerType - Returns true if type is an Objective-C pointer
2795/// to an object type.  This includes "id" and "Class" (two 'special' pointers
2796/// to struct), Interface* (pointer to ObjCInterfaceType) and id<P> (qualified
2797/// ID type).
2798bool ASTContext::isObjCObjectPointerType(QualType Ty) const {
2799  if (Ty->isObjCQualifiedIdType())
2800    return true;
2801
2802  // Blocks are objects.
2803  if (Ty->isBlockPointerType())
2804    return true;
2805
2806  // All other object types are pointers.
2807  const PointerType *PT = Ty->getAsPointerType();
2808  if (PT == 0)
2809    return false;
2810
2811  // If this a pointer to an interface (e.g. NSString*), it is ok.
2812  if (PT->getPointeeType()->isObjCInterfaceType() ||
2813      // If is has NSObject attribute, OK as well.
2814      isObjCNSObjectType(Ty))
2815    return true;
2816
2817  // Check to see if this is 'id' or 'Class', both of which are typedefs for
2818  // pointer types.  This looks for the typedef specifically, not for the
2819  // underlying type.  Iteratively strip off typedefs so that we can handle
2820  // typedefs of typedefs.
2821  while (TypedefType *TDT = dyn_cast<TypedefType>(Ty)) {
2822    if (Ty.getUnqualifiedType() == getObjCIdType() ||
2823        Ty.getUnqualifiedType() == getObjCClassType())
2824      return true;
2825
2826    Ty = TDT->getDecl()->getUnderlyingType();
2827  }
2828
2829  return false;
2830}
2831
2832/// getObjCGCAttr - Returns one of GCNone, Weak or Strong objc's
2833/// garbage collection attribute.
2834///
2835QualType::GCAttrTypes ASTContext::getObjCGCAttrKind(const QualType &Ty) const {
2836  QualType::GCAttrTypes GCAttrs = QualType::GCNone;
2837  if (getLangOptions().ObjC1 &&
2838      getLangOptions().getGCMode() != LangOptions::NonGC) {
2839    GCAttrs = Ty.getObjCGCAttr();
2840    // Default behavious under objective-c's gc is for objective-c pointers
2841    // (or pointers to them) be treated as though they were declared
2842    // as __strong.
2843    if (GCAttrs == QualType::GCNone) {
2844      if (isObjCObjectPointerType(Ty))
2845        GCAttrs = QualType::Strong;
2846      else if (Ty->isPointerType())
2847        return getObjCGCAttrKind(Ty->getAsPointerType()->getPointeeType());
2848    }
2849    // Non-pointers have none gc'able attribute regardless of the attribute
2850    // set on them.
2851    else if (!isObjCObjectPointerType(Ty) && !Ty->isPointerType())
2852      return QualType::GCNone;
2853  }
2854  return GCAttrs;
2855}
2856
2857//===----------------------------------------------------------------------===//
2858//                        Type Compatibility Testing
2859//===----------------------------------------------------------------------===//
2860
2861/// typesAreBlockCompatible - This routine is called when comparing two
2862/// block types. Types must be strictly compatible here. For example,
2863/// C unfortunately doesn't produce an error for the following:
2864///
2865///   int (*emptyArgFunc)();
2866///   int (*intArgList)(int) = emptyArgFunc;
2867///
2868/// For blocks, we will produce an error for the following (similar to C++):
2869///
2870///   int (^emptyArgBlock)();
2871///   int (^intArgBlock)(int) = emptyArgBlock;
2872///
2873/// FIXME: When the dust settles on this integration, fold this into mergeTypes.
2874///
2875bool ASTContext::typesAreBlockCompatible(QualType lhs, QualType rhs) {
2876  const FunctionType *lbase = lhs->getAsFunctionType();
2877  const FunctionType *rbase = rhs->getAsFunctionType();
2878  const FunctionProtoType *lproto = dyn_cast<FunctionProtoType>(lbase);
2879  const FunctionProtoType *rproto = dyn_cast<FunctionProtoType>(rbase);
2880  if (lproto && rproto == 0)
2881    return false;
2882  return !mergeTypes(lhs, rhs).isNull();
2883}
2884
2885/// areCompatVectorTypes - Return true if the two specified vector types are
2886/// compatible.
2887static bool areCompatVectorTypes(const VectorType *LHS,
2888                                 const VectorType *RHS) {
2889  assert(LHS->isCanonical() && RHS->isCanonical());
2890  return LHS->getElementType() == RHS->getElementType() &&
2891         LHS->getNumElements() == RHS->getNumElements();
2892}
2893
2894/// canAssignObjCInterfaces - Return true if the two interface types are
2895/// compatible for assignment from RHS to LHS.  This handles validation of any
2896/// protocol qualifiers on the LHS or RHS.
2897///
2898bool ASTContext::canAssignObjCInterfaces(const ObjCInterfaceType *LHS,
2899                                         const ObjCInterfaceType *RHS) {
2900  // Verify that the base decls are compatible: the RHS must be a subclass of
2901  // the LHS.
2902  if (!LHS->getDecl()->isSuperClassOf(RHS->getDecl()))
2903    return false;
2904
2905  // RHS must have a superset of the protocols in the LHS.  If the LHS is not
2906  // protocol qualified at all, then we are good.
2907  if (!isa<ObjCQualifiedInterfaceType>(LHS))
2908    return true;
2909
2910  // Okay, we know the LHS has protocol qualifiers.  If the RHS doesn't, then it
2911  // isn't a superset.
2912  if (!isa<ObjCQualifiedInterfaceType>(RHS))
2913    return true;  // FIXME: should return false!
2914
2915  // Finally, we must have two protocol-qualified interfaces.
2916  const ObjCQualifiedInterfaceType *LHSP =cast<ObjCQualifiedInterfaceType>(LHS);
2917  const ObjCQualifiedInterfaceType *RHSP =cast<ObjCQualifiedInterfaceType>(RHS);
2918
2919  // All LHS protocols must have a presence on the RHS.
2920  assert(LHSP->qual_begin() != LHSP->qual_end() && "Empty LHS protocol list?");
2921
2922  for (ObjCQualifiedInterfaceType::qual_iterator LHSPI = LHSP->qual_begin(),
2923                                                 LHSPE = LHSP->qual_end();
2924       LHSPI != LHSPE; LHSPI++) {
2925    bool RHSImplementsProtocol = false;
2926
2927    // If the RHS doesn't implement the protocol on the left, the types
2928    // are incompatible.
2929    for (ObjCQualifiedInterfaceType::qual_iterator RHSPI = RHSP->qual_begin(),
2930                                                   RHSPE = RHSP->qual_end();
2931         !RHSImplementsProtocol && (RHSPI != RHSPE); RHSPI++) {
2932      if ((*RHSPI)->lookupProtocolNamed((*LHSPI)->getIdentifier()))
2933        RHSImplementsProtocol = true;
2934    }
2935    // FIXME: For better diagnostics, consider passing back the protocol name.
2936    if (!RHSImplementsProtocol)
2937      return false;
2938  }
2939  // The RHS implements all protocols listed on the LHS.
2940  return true;
2941}
2942
2943bool ASTContext::areComparableObjCPointerTypes(QualType LHS, QualType RHS) {
2944  // get the "pointed to" types
2945  const PointerType *LHSPT = LHS->getAsPointerType();
2946  const PointerType *RHSPT = RHS->getAsPointerType();
2947
2948  if (!LHSPT || !RHSPT)
2949    return false;
2950
2951  QualType lhptee = LHSPT->getPointeeType();
2952  QualType rhptee = RHSPT->getPointeeType();
2953  const ObjCInterfaceType* LHSIface = lhptee->getAsObjCInterfaceType();
2954  const ObjCInterfaceType* RHSIface = rhptee->getAsObjCInterfaceType();
2955  // ID acts sort of like void* for ObjC interfaces
2956  if (LHSIface && isObjCIdStructType(rhptee))
2957    return true;
2958  if (RHSIface && isObjCIdStructType(lhptee))
2959    return true;
2960  if (!LHSIface || !RHSIface)
2961    return false;
2962  return canAssignObjCInterfaces(LHSIface, RHSIface) ||
2963         canAssignObjCInterfaces(RHSIface, LHSIface);
2964}
2965
2966/// typesAreCompatible - C99 6.7.3p9: For two qualified types to be compatible,
2967/// both shall have the identically qualified version of a compatible type.
2968/// C99 6.2.7p1: Two types have compatible types if their types are the
2969/// same. See 6.7.[2,3,5] for additional rules.
2970bool ASTContext::typesAreCompatible(QualType LHS, QualType RHS) {
2971  return !mergeTypes(LHS, RHS).isNull();
2972}
2973
2974QualType ASTContext::mergeFunctionTypes(QualType lhs, QualType rhs) {
2975  const FunctionType *lbase = lhs->getAsFunctionType();
2976  const FunctionType *rbase = rhs->getAsFunctionType();
2977  const FunctionProtoType *lproto = dyn_cast<FunctionProtoType>(lbase);
2978  const FunctionProtoType *rproto = dyn_cast<FunctionProtoType>(rbase);
2979  bool allLTypes = true;
2980  bool allRTypes = true;
2981
2982  // Check return type
2983  QualType retType = mergeTypes(lbase->getResultType(), rbase->getResultType());
2984  if (retType.isNull()) return QualType();
2985  if (getCanonicalType(retType) != getCanonicalType(lbase->getResultType()))
2986    allLTypes = false;
2987  if (getCanonicalType(retType) != getCanonicalType(rbase->getResultType()))
2988    allRTypes = false;
2989
2990  if (lproto && rproto) { // two C99 style function prototypes
2991    unsigned lproto_nargs = lproto->getNumArgs();
2992    unsigned rproto_nargs = rproto->getNumArgs();
2993
2994    // Compatible functions must have the same number of arguments
2995    if (lproto_nargs != rproto_nargs)
2996      return QualType();
2997
2998    // Variadic and non-variadic functions aren't compatible
2999    if (lproto->isVariadic() != rproto->isVariadic())
3000      return QualType();
3001
3002    if (lproto->getTypeQuals() != rproto->getTypeQuals())
3003      return QualType();
3004
3005    // Check argument compatibility
3006    llvm::SmallVector<QualType, 10> types;
3007    for (unsigned i = 0; i < lproto_nargs; i++) {
3008      QualType largtype = lproto->getArgType(i).getUnqualifiedType();
3009      QualType rargtype = rproto->getArgType(i).getUnqualifiedType();
3010      QualType argtype = mergeTypes(largtype, rargtype);
3011      if (argtype.isNull()) return QualType();
3012      types.push_back(argtype);
3013      if (getCanonicalType(argtype) != getCanonicalType(largtype))
3014        allLTypes = false;
3015      if (getCanonicalType(argtype) != getCanonicalType(rargtype))
3016        allRTypes = false;
3017    }
3018    if (allLTypes) return lhs;
3019    if (allRTypes) return rhs;
3020    return getFunctionType(retType, types.begin(), types.size(),
3021                           lproto->isVariadic(), lproto->getTypeQuals());
3022  }
3023
3024  if (lproto) allRTypes = false;
3025  if (rproto) allLTypes = false;
3026
3027  const FunctionProtoType *proto = lproto ? lproto : rproto;
3028  if (proto) {
3029    if (proto->isVariadic()) return QualType();
3030    // Check that the types are compatible with the types that
3031    // would result from default argument promotions (C99 6.7.5.3p15).
3032    // The only types actually affected are promotable integer
3033    // types and floats, which would be passed as a different
3034    // type depending on whether the prototype is visible.
3035    unsigned proto_nargs = proto->getNumArgs();
3036    for (unsigned i = 0; i < proto_nargs; ++i) {
3037      QualType argTy = proto->getArgType(i);
3038      if (argTy->isPromotableIntegerType() ||
3039          getCanonicalType(argTy).getUnqualifiedType() == FloatTy)
3040        return QualType();
3041    }
3042
3043    if (allLTypes) return lhs;
3044    if (allRTypes) return rhs;
3045    return getFunctionType(retType, proto->arg_type_begin(),
3046                           proto->getNumArgs(), lproto->isVariadic(),
3047                           lproto->getTypeQuals());
3048  }
3049
3050  if (allLTypes) return lhs;
3051  if (allRTypes) return rhs;
3052  return getFunctionNoProtoType(retType);
3053}
3054
3055QualType ASTContext::mergeTypes(QualType LHS, QualType RHS) {
3056  // C++ [expr]: If an expression initially has the type "reference to T", the
3057  // type is adjusted to "T" prior to any further analysis, the expression
3058  // designates the object or function denoted by the reference, and the
3059  // expression is an lvalue unless the reference is an rvalue reference and
3060  // the expression is a function call (possibly inside parentheses).
3061  // FIXME: C++ shouldn't be going through here!  The rules are different
3062  // enough that they should be handled separately.
3063  // FIXME: Merging of lvalue and rvalue references is incorrect. C++ *really*
3064  // shouldn't be going through here!
3065  if (const ReferenceType *RT = LHS->getAsReferenceType())
3066    LHS = RT->getPointeeType();
3067  if (const ReferenceType *RT = RHS->getAsReferenceType())
3068    RHS = RT->getPointeeType();
3069
3070  QualType LHSCan = getCanonicalType(LHS),
3071           RHSCan = getCanonicalType(RHS);
3072
3073  // If two types are identical, they are compatible.
3074  if (LHSCan == RHSCan)
3075    return LHS;
3076
3077  // If the qualifiers are different, the types aren't compatible
3078  // Note that we handle extended qualifiers later, in the
3079  // case for ExtQualType.
3080  if (LHSCan.getCVRQualifiers() != RHSCan.getCVRQualifiers())
3081    return QualType();
3082
3083  Type::TypeClass LHSClass = LHSCan.getUnqualifiedType()->getTypeClass();
3084  Type::TypeClass RHSClass = RHSCan.getUnqualifiedType()->getTypeClass();
3085
3086  // We want to consider the two function types to be the same for these
3087  // comparisons, just force one to the other.
3088  if (LHSClass == Type::FunctionProto) LHSClass = Type::FunctionNoProto;
3089  if (RHSClass == Type::FunctionProto) RHSClass = Type::FunctionNoProto;
3090
3091  // Same as above for arrays
3092  if (LHSClass == Type::VariableArray || LHSClass == Type::IncompleteArray)
3093    LHSClass = Type::ConstantArray;
3094  if (RHSClass == Type::VariableArray || RHSClass == Type::IncompleteArray)
3095    RHSClass = Type::ConstantArray;
3096
3097  // Canonicalize ExtVector -> Vector.
3098  if (LHSClass == Type::ExtVector) LHSClass = Type::Vector;
3099  if (RHSClass == Type::ExtVector) RHSClass = Type::Vector;
3100
3101  // Consider qualified interfaces and interfaces the same.
3102  if (LHSClass == Type::ObjCQualifiedInterface) LHSClass = Type::ObjCInterface;
3103  if (RHSClass == Type::ObjCQualifiedInterface) RHSClass = Type::ObjCInterface;
3104
3105  // If the canonical type classes don't match.
3106  if (LHSClass != RHSClass) {
3107    const ObjCInterfaceType* LHSIface = LHS->getAsObjCInterfaceType();
3108    const ObjCInterfaceType* RHSIface = RHS->getAsObjCInterfaceType();
3109
3110    // 'id' and 'Class' act sort of like void* for ObjC interfaces
3111    if (LHSIface && (isObjCIdStructType(RHS) || isObjCClassStructType(RHS)))
3112      return LHS;
3113    if (RHSIface && (isObjCIdStructType(LHS) || isObjCClassStructType(LHS)))
3114      return RHS;
3115
3116    // ID is compatible with all qualified id types.
3117    if (LHS->isObjCQualifiedIdType()) {
3118      if (const PointerType *PT = RHS->getAsPointerType()) {
3119        QualType pType = PT->getPointeeType();
3120        if (isObjCIdStructType(pType) || isObjCClassStructType(pType))
3121          return LHS;
3122        // FIXME: need to use ObjCQualifiedIdTypesAreCompatible(LHS, RHS, true).
3123        // Unfortunately, this API is part of Sema (which we don't have access
3124        // to. Need to refactor. The following check is insufficient, since we
3125        // need to make sure the class implements the protocol.
3126        if (pType->isObjCInterfaceType())
3127          return LHS;
3128      }
3129    }
3130    if (RHS->isObjCQualifiedIdType()) {
3131      if (const PointerType *PT = LHS->getAsPointerType()) {
3132        QualType pType = PT->getPointeeType();
3133        if (isObjCIdStructType(pType) || isObjCClassStructType(pType))
3134          return RHS;
3135        // FIXME: need to use ObjCQualifiedIdTypesAreCompatible(LHS, RHS, true).
3136        // Unfortunately, this API is part of Sema (which we don't have access
3137        // to. Need to refactor. The following check is insufficient, since we
3138        // need to make sure the class implements the protocol.
3139        if (pType->isObjCInterfaceType())
3140          return RHS;
3141      }
3142    }
3143    // C99 6.7.2.2p4: Each enumerated type shall be compatible with char,
3144    // a signed integer type, or an unsigned integer type.
3145    if (const EnumType* ETy = LHS->getAsEnumType()) {
3146      if (ETy->getDecl()->getIntegerType() == RHSCan.getUnqualifiedType())
3147        return RHS;
3148    }
3149    if (const EnumType* ETy = RHS->getAsEnumType()) {
3150      if (ETy->getDecl()->getIntegerType() == LHSCan.getUnqualifiedType())
3151        return LHS;
3152    }
3153
3154    return QualType();
3155  }
3156
3157  // The canonical type classes match.
3158  switch (LHSClass) {
3159#define TYPE(Class, Base)
3160#define ABSTRACT_TYPE(Class, Base)
3161#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
3162#define DEPENDENT_TYPE(Class, Base) case Type::Class:
3163#include "clang/AST/TypeNodes.def"
3164    assert(false && "Non-canonical and dependent types shouldn't get here");
3165    return QualType();
3166
3167  case Type::LValueReference:
3168  case Type::RValueReference:
3169  case Type::MemberPointer:
3170    assert(false && "C++ should never be in mergeTypes");
3171    return QualType();
3172
3173  case Type::IncompleteArray:
3174  case Type::VariableArray:
3175  case Type::FunctionProto:
3176  case Type::ExtVector:
3177  case Type::ObjCQualifiedInterface:
3178    assert(false && "Types are eliminated above");
3179    return QualType();
3180
3181  case Type::Pointer:
3182  {
3183    // Merge two pointer types, while trying to preserve typedef info
3184    QualType LHSPointee = LHS->getAsPointerType()->getPointeeType();
3185    QualType RHSPointee = RHS->getAsPointerType()->getPointeeType();
3186    QualType ResultType = mergeTypes(LHSPointee, RHSPointee);
3187    if (ResultType.isNull()) return QualType();
3188    if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
3189      return LHS;
3190    if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
3191      return RHS;
3192    return getPointerType(ResultType);
3193  }
3194  case Type::BlockPointer:
3195  {
3196    // Merge two block pointer types, while trying to preserve typedef info
3197    QualType LHSPointee = LHS->getAsBlockPointerType()->getPointeeType();
3198    QualType RHSPointee = RHS->getAsBlockPointerType()->getPointeeType();
3199    QualType ResultType = mergeTypes(LHSPointee, RHSPointee);
3200    if (ResultType.isNull()) return QualType();
3201    if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
3202      return LHS;
3203    if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
3204      return RHS;
3205    return getBlockPointerType(ResultType);
3206  }
3207  case Type::ConstantArray:
3208  {
3209    const ConstantArrayType* LCAT = getAsConstantArrayType(LHS);
3210    const ConstantArrayType* RCAT = getAsConstantArrayType(RHS);
3211    if (LCAT && RCAT && RCAT->getSize() != LCAT->getSize())
3212      return QualType();
3213
3214    QualType LHSElem = getAsArrayType(LHS)->getElementType();
3215    QualType RHSElem = getAsArrayType(RHS)->getElementType();
3216    QualType ResultType = mergeTypes(LHSElem, RHSElem);
3217    if (ResultType.isNull()) return QualType();
3218    if (LCAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
3219      return LHS;
3220    if (RCAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
3221      return RHS;
3222    if (LCAT) return getConstantArrayType(ResultType, LCAT->getSize(),
3223                                          ArrayType::ArraySizeModifier(), 0);
3224    if (RCAT) return getConstantArrayType(ResultType, RCAT->getSize(),
3225                                          ArrayType::ArraySizeModifier(), 0);
3226    const VariableArrayType* LVAT = getAsVariableArrayType(LHS);
3227    const VariableArrayType* RVAT = getAsVariableArrayType(RHS);
3228    if (LVAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
3229      return LHS;
3230    if (RVAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
3231      return RHS;
3232    if (LVAT) {
3233      // FIXME: This isn't correct! But tricky to implement because
3234      // the array's size has to be the size of LHS, but the type
3235      // has to be different.
3236      return LHS;
3237    }
3238    if (RVAT) {
3239      // FIXME: This isn't correct! But tricky to implement because
3240      // the array's size has to be the size of RHS, but the type
3241      // has to be different.
3242      return RHS;
3243    }
3244    if (getCanonicalType(LHSElem) == getCanonicalType(ResultType)) return LHS;
3245    if (getCanonicalType(RHSElem) == getCanonicalType(ResultType)) return RHS;
3246    return getIncompleteArrayType(ResultType, ArrayType::ArraySizeModifier(),0);
3247  }
3248  case Type::FunctionNoProto:
3249    return mergeFunctionTypes(LHS, RHS);
3250  case Type::Record:
3251  case Type::Enum:
3252    // FIXME: Why are these compatible?
3253    if (isObjCIdStructType(LHS) && isObjCClassStructType(RHS)) return LHS;
3254    if (isObjCClassStructType(LHS) && isObjCIdStructType(RHS)) return LHS;
3255    return QualType();
3256  case Type::Builtin:
3257    // Only exactly equal builtin types are compatible, which is tested above.
3258    return QualType();
3259  case Type::Complex:
3260    // Distinct complex types are incompatible.
3261    return QualType();
3262  case Type::Vector:
3263    // FIXME: The merged type should be an ExtVector!
3264    if (areCompatVectorTypes(LHS->getAsVectorType(), RHS->getAsVectorType()))
3265      return LHS;
3266    return QualType();
3267  case Type::ObjCInterface: {
3268    // Check if the interfaces are assignment compatible.
3269    // FIXME: This should be type compatibility, e.g. whether
3270    // "LHS x; RHS x;" at global scope is legal.
3271    const ObjCInterfaceType* LHSIface = LHS->getAsObjCInterfaceType();
3272    const ObjCInterfaceType* RHSIface = RHS->getAsObjCInterfaceType();
3273    if (LHSIface && RHSIface &&
3274        canAssignObjCInterfaces(LHSIface, RHSIface))
3275      return LHS;
3276
3277    return QualType();
3278  }
3279  case Type::ObjCQualifiedId:
3280    // Distinct qualified id's are not compatible.
3281    return QualType();
3282  case Type::FixedWidthInt:
3283    // Distinct fixed-width integers are not compatible.
3284    return QualType();
3285  case Type::ExtQual:
3286    // FIXME: ExtQual types can be compatible even if they're not
3287    // identical!
3288    return QualType();
3289    // First attempt at an implementation, but I'm not really sure it's
3290    // right...
3291#if 0
3292    ExtQualType* LQual = cast<ExtQualType>(LHSCan);
3293    ExtQualType* RQual = cast<ExtQualType>(RHSCan);
3294    if (LQual->getAddressSpace() != RQual->getAddressSpace() ||
3295        LQual->getObjCGCAttr() != RQual->getObjCGCAttr())
3296      return QualType();
3297    QualType LHSBase, RHSBase, ResultType, ResCanUnqual;
3298    LHSBase = QualType(LQual->getBaseType(), 0);
3299    RHSBase = QualType(RQual->getBaseType(), 0);
3300    ResultType = mergeTypes(LHSBase, RHSBase);
3301    if (ResultType.isNull()) return QualType();
3302    ResCanUnqual = getCanonicalType(ResultType).getUnqualifiedType();
3303    if (LHSCan.getUnqualifiedType() == ResCanUnqual)
3304      return LHS;
3305    if (RHSCan.getUnqualifiedType() == ResCanUnqual)
3306      return RHS;
3307    ResultType = getAddrSpaceQualType(ResultType, LQual->getAddressSpace());
3308    ResultType = getObjCGCQualType(ResultType, LQual->getObjCGCAttr());
3309    ResultType.setCVRQualifiers(LHSCan.getCVRQualifiers());
3310    return ResultType;
3311#endif
3312
3313  case Type::TemplateSpecialization:
3314    assert(false && "Dependent types have no size");
3315    break;
3316  }
3317
3318  return QualType();
3319}
3320
3321//===----------------------------------------------------------------------===//
3322//                         Integer Predicates
3323//===----------------------------------------------------------------------===//
3324
3325unsigned ASTContext::getIntWidth(QualType T) {
3326  if (T == BoolTy)
3327    return 1;
3328  if (FixedWidthIntType* FWIT = dyn_cast<FixedWidthIntType>(T)) {
3329    return FWIT->getWidth();
3330  }
3331  // For builtin types, just use the standard type sizing method
3332  return (unsigned)getTypeSize(T);
3333}
3334
3335QualType ASTContext::getCorrespondingUnsignedType(QualType T) {
3336  assert(T->isSignedIntegerType() && "Unexpected type");
3337  if (const EnumType* ETy = T->getAsEnumType())
3338    T = ETy->getDecl()->getIntegerType();
3339  const BuiltinType* BTy = T->getAsBuiltinType();
3340  assert (BTy && "Unexpected signed integer type");
3341  switch (BTy->getKind()) {
3342  case BuiltinType::Char_S:
3343  case BuiltinType::SChar:
3344    return UnsignedCharTy;
3345  case BuiltinType::Short:
3346    return UnsignedShortTy;
3347  case BuiltinType::Int:
3348    return UnsignedIntTy;
3349  case BuiltinType::Long:
3350    return UnsignedLongTy;
3351  case BuiltinType::LongLong:
3352    return UnsignedLongLongTy;
3353  case BuiltinType::Int128:
3354    return UnsignedInt128Ty;
3355  default:
3356    assert(0 && "Unexpected signed integer type");
3357    return QualType();
3358  }
3359}
3360
3361ExternalASTSource::~ExternalASTSource() { }
3362
3363void ExternalASTSource::PrintStats() { }
3364