ASTContext.cpp revision 2455636163fdd18581d7fdae816433f886d88213
1//===--- ASTContext.cpp - Context to hold long-lived AST nodes ------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements the ASTContext interface.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/AST/ASTContext.h"
15#include "clang/AST/DeclCXX.h"
16#include "clang/AST/DeclObjC.h"
17#include "clang/AST/DeclTemplate.h"
18#include "clang/AST/Expr.h"
19#include "clang/AST/ExternalASTSource.h"
20#include "clang/AST/RecordLayout.h"
21#include "clang/Basic/Builtins.h"
22#include "clang/Basic/SourceManager.h"
23#include "clang/Basic/TargetInfo.h"
24#include "llvm/ADT/StringExtras.h"
25#include "llvm/Support/MathExtras.h"
26#include "llvm/Support/MemoryBuffer.h"
27#include "RecordLayoutBuilder.h"
28
29using namespace clang;
30
31enum FloatingRank {
32  FloatRank, DoubleRank, LongDoubleRank
33};
34
35ASTContext::ASTContext(const LangOptions& LOpts, SourceManager &SM,
36                       TargetInfo &t,
37                       IdentifierTable &idents, SelectorTable &sels,
38                       Builtin::Context &builtins,
39                       bool FreeMem, unsigned size_reserve) :
40  GlobalNestedNameSpecifier(0), CFConstantStringTypeDecl(0),
41  ObjCFastEnumerationStateTypeDecl(0), FILEDecl(0),
42  SourceMgr(SM), LangOpts(LOpts),
43  LoadedExternalComments(false), FreeMemory(FreeMem), Target(t),
44  Idents(idents), Selectors(sels),
45  BuiltinInfo(builtins), ExternalSource(0), PrintingPolicy(LOpts) {
46  if (size_reserve > 0) Types.reserve(size_reserve);
47  TUDecl = TranslationUnitDecl::Create(*this);
48  InitBuiltinTypes();
49}
50
51ASTContext::~ASTContext() {
52  // Deallocate all the types.
53  while (!Types.empty()) {
54    Types.back()->Destroy(*this);
55    Types.pop_back();
56  }
57
58  {
59    llvm::DenseMap<const RecordDecl*, const ASTRecordLayout*>::iterator
60      I = ASTRecordLayouts.begin(), E = ASTRecordLayouts.end();
61    while (I != E) {
62      ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second);
63      delete R;
64    }
65  }
66
67  {
68    llvm::DenseMap<const ObjCContainerDecl*, const ASTRecordLayout*>::iterator
69      I = ObjCLayouts.begin(), E = ObjCLayouts.end();
70    while (I != E) {
71      ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second);
72      delete R;
73    }
74  }
75
76  // Destroy nested-name-specifiers.
77  for (llvm::FoldingSet<NestedNameSpecifier>::iterator
78         NNS = NestedNameSpecifiers.begin(),
79         NNSEnd = NestedNameSpecifiers.end();
80       NNS != NNSEnd;
81       /* Increment in loop */)
82    (*NNS++).Destroy(*this);
83
84  if (GlobalNestedNameSpecifier)
85    GlobalNestedNameSpecifier->Destroy(*this);
86
87  TUDecl->Destroy(*this);
88}
89
90void
91ASTContext::setExternalSource(llvm::OwningPtr<ExternalASTSource> &Source) {
92  ExternalSource.reset(Source.take());
93}
94
95void ASTContext::PrintStats() const {
96  fprintf(stderr, "*** AST Context Stats:\n");
97  fprintf(stderr, "  %d types total.\n", (int)Types.size());
98
99  unsigned counts[] = {
100#define TYPE(Name, Parent) 0,
101#define ABSTRACT_TYPE(Name, Parent)
102#include "clang/AST/TypeNodes.def"
103    0 // Extra
104  };
105
106  for (unsigned i = 0, e = Types.size(); i != e; ++i) {
107    Type *T = Types[i];
108    counts[(unsigned)T->getTypeClass()]++;
109  }
110
111  unsigned Idx = 0;
112  unsigned TotalBytes = 0;
113#define TYPE(Name, Parent)                                              \
114  if (counts[Idx])                                                      \
115    fprintf(stderr, "    %d %s types\n", (int)counts[Idx], #Name);      \
116  TotalBytes += counts[Idx] * sizeof(Name##Type);                       \
117  ++Idx;
118#define ABSTRACT_TYPE(Name, Parent)
119#include "clang/AST/TypeNodes.def"
120
121  fprintf(stderr, "Total bytes = %d\n", int(TotalBytes));
122
123  if (ExternalSource.get()) {
124    fprintf(stderr, "\n");
125    ExternalSource->PrintStats();
126  }
127}
128
129
130void ASTContext::InitBuiltinType(QualType &R, BuiltinType::Kind K) {
131  Types.push_back((R = QualType(new (*this,8) BuiltinType(K),0)).getTypePtr());
132}
133
134void ASTContext::InitBuiltinTypes() {
135  assert(VoidTy.isNull() && "Context reinitialized?");
136
137  // C99 6.2.5p19.
138  InitBuiltinType(VoidTy,              BuiltinType::Void);
139
140  // C99 6.2.5p2.
141  InitBuiltinType(BoolTy,              BuiltinType::Bool);
142  // C99 6.2.5p3.
143  if (LangOpts.CharIsSigned)
144    InitBuiltinType(CharTy,            BuiltinType::Char_S);
145  else
146    InitBuiltinType(CharTy,            BuiltinType::Char_U);
147  // C99 6.2.5p4.
148  InitBuiltinType(SignedCharTy,        BuiltinType::SChar);
149  InitBuiltinType(ShortTy,             BuiltinType::Short);
150  InitBuiltinType(IntTy,               BuiltinType::Int);
151  InitBuiltinType(LongTy,              BuiltinType::Long);
152  InitBuiltinType(LongLongTy,          BuiltinType::LongLong);
153
154  // C99 6.2.5p6.
155  InitBuiltinType(UnsignedCharTy,      BuiltinType::UChar);
156  InitBuiltinType(UnsignedShortTy,     BuiltinType::UShort);
157  InitBuiltinType(UnsignedIntTy,       BuiltinType::UInt);
158  InitBuiltinType(UnsignedLongTy,      BuiltinType::ULong);
159  InitBuiltinType(UnsignedLongLongTy,  BuiltinType::ULongLong);
160
161  // C99 6.2.5p10.
162  InitBuiltinType(FloatTy,             BuiltinType::Float);
163  InitBuiltinType(DoubleTy,            BuiltinType::Double);
164  InitBuiltinType(LongDoubleTy,        BuiltinType::LongDouble);
165
166  // GNU extension, 128-bit integers.
167  InitBuiltinType(Int128Ty,            BuiltinType::Int128);
168  InitBuiltinType(UnsignedInt128Ty,    BuiltinType::UInt128);
169
170  if (LangOpts.CPlusPlus) // C++ 3.9.1p5
171    InitBuiltinType(WCharTy,           BuiltinType::WChar);
172  else // C99
173    WCharTy = getFromTargetType(Target.getWCharType());
174
175  if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
176    InitBuiltinType(Char16Ty,           BuiltinType::Char16);
177  else // C99
178    Char16Ty = getFromTargetType(Target.getChar16Type());
179
180  if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
181    InitBuiltinType(Char32Ty,           BuiltinType::Char32);
182  else // C99
183    Char32Ty = getFromTargetType(Target.getChar32Type());
184
185  // Placeholder type for functions.
186  InitBuiltinType(OverloadTy,          BuiltinType::Overload);
187
188  // Placeholder type for type-dependent expressions whose type is
189  // completely unknown. No code should ever check a type against
190  // DependentTy and users should never see it; however, it is here to
191  // help diagnose failures to properly check for type-dependent
192  // expressions.
193  InitBuiltinType(DependentTy,         BuiltinType::Dependent);
194
195  // Placeholder type for C++0x auto declarations whose real type has
196  // not yet been deduced.
197  InitBuiltinType(UndeducedAutoTy, BuiltinType::UndeducedAuto);
198
199  // C99 6.2.5p11.
200  FloatComplexTy      = getComplexType(FloatTy);
201  DoubleComplexTy     = getComplexType(DoubleTy);
202  LongDoubleComplexTy = getComplexType(LongDoubleTy);
203
204  BuiltinVaListType = QualType();
205
206  // "Builtin" typedefs set by Sema::ActOnTranslationUnitScope().
207  ObjCIdTypedefType = QualType();
208  ObjCClassTypedefType = QualType();
209
210  // Builtin types for 'id' and 'Class'.
211  InitBuiltinType(ObjCBuiltinIdTy, BuiltinType::ObjCId);
212  InitBuiltinType(ObjCBuiltinClassTy, BuiltinType::ObjCClass);
213
214  ObjCConstantStringType = QualType();
215
216  // void * type
217  VoidPtrTy = getPointerType(VoidTy);
218
219  // nullptr type (C++0x 2.14.7)
220  InitBuiltinType(NullPtrTy,           BuiltinType::NullPtr);
221}
222
223VarDecl *ASTContext::getInstantiatedFromStaticDataMember(VarDecl *Var) {
224  assert(Var->isStaticDataMember() && "Not a static data member");
225  llvm::DenseMap<VarDecl *, VarDecl *>::iterator Pos
226    = InstantiatedFromStaticDataMember.find(Var);
227  if (Pos == InstantiatedFromStaticDataMember.end())
228    return 0;
229
230  return Pos->second;
231}
232
233void
234ASTContext::setInstantiatedFromStaticDataMember(VarDecl *Inst, VarDecl *Tmpl) {
235  assert(Inst->isStaticDataMember() && "Not a static data member");
236  assert(Tmpl->isStaticDataMember() && "Not a static data member");
237  assert(!InstantiatedFromStaticDataMember[Inst] &&
238         "Already noted what static data member was instantiated from");
239  InstantiatedFromStaticDataMember[Inst] = Tmpl;
240}
241
242namespace {
243  class BeforeInTranslationUnit
244    : std::binary_function<SourceRange, SourceRange, bool> {
245    SourceManager *SourceMgr;
246
247  public:
248    explicit BeforeInTranslationUnit(SourceManager *SM) : SourceMgr(SM) { }
249
250    bool operator()(SourceRange X, SourceRange Y) {
251      return SourceMgr->isBeforeInTranslationUnit(X.getBegin(), Y.getBegin());
252    }
253  };
254}
255
256/// \brief Determine whether the given comment is a Doxygen-style comment.
257///
258/// \param Start the start of the comment text.
259///
260/// \param End the end of the comment text.
261///
262/// \param Member whether we want to check whether this is a member comment
263/// (which requires a < after the Doxygen-comment delimiter). Otherwise,
264/// we only return true when we find a non-member comment.
265static bool
266isDoxygenComment(SourceManager &SourceMgr, SourceRange Comment,
267                 bool Member = false) {
268  const char *BufferStart
269    = SourceMgr.getBufferData(SourceMgr.getFileID(Comment.getBegin())).first;
270  const char *Start = BufferStart + SourceMgr.getFileOffset(Comment.getBegin());
271  const char* End = BufferStart + SourceMgr.getFileOffset(Comment.getEnd());
272
273  if (End - Start < 4)
274    return false;
275
276  assert(Start[0] == '/' && "Not a comment?");
277  if (Start[1] == '*' && !(Start[2] == '!' || Start[2] == '*'))
278    return false;
279  if (Start[1] == '/' && !(Start[2] == '!' || Start[2] == '/'))
280    return false;
281
282  return (Start[3] == '<') == Member;
283}
284
285/// \brief Retrieve the comment associated with the given declaration, if
286/// it has one.
287const char *ASTContext::getCommentForDecl(const Decl *D) {
288  if (!D)
289    return 0;
290
291  // Check whether we have cached a comment string for this declaration
292  // already.
293  llvm::DenseMap<const Decl *, std::string>::iterator Pos
294    = DeclComments.find(D);
295  if (Pos != DeclComments.end())
296    return Pos->second.c_str();
297
298  // If we have an external AST source and have not yet loaded comments from
299  // that source, do so now.
300  if (ExternalSource && !LoadedExternalComments) {
301    std::vector<SourceRange> LoadedComments;
302    ExternalSource->ReadComments(LoadedComments);
303
304    if (!LoadedComments.empty())
305      Comments.insert(Comments.begin(), LoadedComments.begin(),
306                      LoadedComments.end());
307
308    LoadedExternalComments = true;
309  }
310
311  // If there are no comments anywhere, we won't find anything.
312  if (Comments.empty())
313    return 0;
314
315  // If the declaration doesn't map directly to a location in a file, we
316  // can't find the comment.
317  SourceLocation DeclStartLoc = D->getLocStart();
318  if (DeclStartLoc.isInvalid() || !DeclStartLoc.isFileID())
319    return 0;
320
321  // Find the comment that occurs just before this declaration.
322  std::vector<SourceRange>::iterator LastComment
323    = std::lower_bound(Comments.begin(), Comments.end(),
324                       SourceRange(DeclStartLoc),
325                       BeforeInTranslationUnit(&SourceMgr));
326
327  // Decompose the location for the start of the declaration and find the
328  // beginning of the file buffer.
329  std::pair<FileID, unsigned> DeclStartDecomp
330    = SourceMgr.getDecomposedLoc(DeclStartLoc);
331  const char *FileBufferStart
332    = SourceMgr.getBufferData(DeclStartDecomp.first).first;
333
334  // First check whether we have a comment for a member.
335  if (LastComment != Comments.end() &&
336      !isa<TagDecl>(D) && !isa<NamespaceDecl>(D) &&
337      isDoxygenComment(SourceMgr, *LastComment, true)) {
338    std::pair<FileID, unsigned> LastCommentEndDecomp
339      = SourceMgr.getDecomposedLoc(LastComment->getEnd());
340    if (DeclStartDecomp.first == LastCommentEndDecomp.first &&
341        SourceMgr.getLineNumber(DeclStartDecomp.first, DeclStartDecomp.second)
342          == SourceMgr.getLineNumber(LastCommentEndDecomp.first,
343                                     LastCommentEndDecomp.second)) {
344      // The Doxygen member comment comes after the declaration starts and
345      // is on the same line and in the same file as the declaration. This
346      // is the comment we want.
347      std::string &Result = DeclComments[D];
348      Result.append(FileBufferStart +
349                      SourceMgr.getFileOffset(LastComment->getBegin()),
350                    FileBufferStart + LastCommentEndDecomp.second + 1);
351      return Result.c_str();
352    }
353  }
354
355  if (LastComment == Comments.begin())
356    return 0;
357  --LastComment;
358
359  // Decompose the end of the comment.
360  std::pair<FileID, unsigned> LastCommentEndDecomp
361    = SourceMgr.getDecomposedLoc(LastComment->getEnd());
362
363  // If the comment and the declaration aren't in the same file, then they
364  // aren't related.
365  if (DeclStartDecomp.first != LastCommentEndDecomp.first)
366    return 0;
367
368  // Check that we actually have a Doxygen comment.
369  if (!isDoxygenComment(SourceMgr, *LastComment))
370    return 0;
371
372  // Compute the starting line for the declaration and for the end of the
373  // comment (this is expensive).
374  unsigned DeclStartLine
375    = SourceMgr.getLineNumber(DeclStartDecomp.first, DeclStartDecomp.second);
376  unsigned CommentEndLine
377    = SourceMgr.getLineNumber(LastCommentEndDecomp.first,
378                              LastCommentEndDecomp.second);
379
380  // If the comment does not end on the line prior to the declaration, then
381  // the comment is not associated with the declaration at all.
382  if (CommentEndLine + 1 != DeclStartLine)
383    return 0;
384
385  // We have a comment, but there may be more comments on the previous lines.
386  // Keep looking so long as the comments are still Doxygen comments and are
387  // still adjacent.
388  unsigned ExpectedLine
389    = SourceMgr.getSpellingLineNumber(LastComment->getBegin()) - 1;
390  std::vector<SourceRange>::iterator FirstComment = LastComment;
391  while (FirstComment != Comments.begin()) {
392    // Look at the previous comment
393    --FirstComment;
394    std::pair<FileID, unsigned> Decomp
395      = SourceMgr.getDecomposedLoc(FirstComment->getEnd());
396
397    // If this previous comment is in a different file, we're done.
398    if (Decomp.first != DeclStartDecomp.first) {
399      ++FirstComment;
400      break;
401    }
402
403    // If this comment is not a Doxygen comment, we're done.
404    if (!isDoxygenComment(SourceMgr, *FirstComment)) {
405      ++FirstComment;
406      break;
407    }
408
409    // If the line number is not what we expected, we're done.
410    unsigned Line = SourceMgr.getLineNumber(Decomp.first, Decomp.second);
411    if (Line != ExpectedLine) {
412      ++FirstComment;
413      break;
414    }
415
416    // Set the next expected line number.
417    ExpectedLine
418      = SourceMgr.getSpellingLineNumber(FirstComment->getBegin()) - 1;
419  }
420
421  // The iterator range [FirstComment, LastComment] contains all of the
422  // BCPL comments that, together, are associated with this declaration.
423  // Form a single comment block string for this declaration that concatenates
424  // all of these comments.
425  std::string &Result = DeclComments[D];
426  while (FirstComment != LastComment) {
427    std::pair<FileID, unsigned> DecompStart
428      = SourceMgr.getDecomposedLoc(FirstComment->getBegin());
429    std::pair<FileID, unsigned> DecompEnd
430      = SourceMgr.getDecomposedLoc(FirstComment->getEnd());
431    Result.append(FileBufferStart + DecompStart.second,
432                  FileBufferStart + DecompEnd.second + 1);
433    ++FirstComment;
434  }
435
436  // Append the last comment line.
437  Result.append(FileBufferStart +
438                  SourceMgr.getFileOffset(LastComment->getBegin()),
439                FileBufferStart + LastCommentEndDecomp.second + 1);
440  return Result.c_str();
441}
442
443//===----------------------------------------------------------------------===//
444//                         Type Sizing and Analysis
445//===----------------------------------------------------------------------===//
446
447/// getFloatTypeSemantics - Return the APFloat 'semantics' for the specified
448/// scalar floating point type.
449const llvm::fltSemantics &ASTContext::getFloatTypeSemantics(QualType T) const {
450  const BuiltinType *BT = T->getAsBuiltinType();
451  assert(BT && "Not a floating point type!");
452  switch (BT->getKind()) {
453  default: assert(0 && "Not a floating point type!");
454  case BuiltinType::Float:      return Target.getFloatFormat();
455  case BuiltinType::Double:     return Target.getDoubleFormat();
456  case BuiltinType::LongDouble: return Target.getLongDoubleFormat();
457  }
458}
459
460/// getDeclAlign - Return a conservative estimate of the alignment of the
461/// specified decl.  Note that bitfields do not have a valid alignment, so
462/// this method will assert on them.
463unsigned ASTContext::getDeclAlignInBytes(const Decl *D) {
464  unsigned Align = Target.getCharWidth();
465
466  if (const AlignedAttr* AA = D->getAttr<AlignedAttr>())
467    Align = std::max(Align, AA->getAlignment());
468
469  if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
470    QualType T = VD->getType();
471    if (const ReferenceType* RT = T->getAsReferenceType()) {
472      unsigned AS = RT->getPointeeType().getAddressSpace();
473      Align = Target.getPointerAlign(AS);
474    } else if (!T->isIncompleteType() && !T->isFunctionType()) {
475      // Incomplete or function types default to 1.
476      while (isa<VariableArrayType>(T) || isa<IncompleteArrayType>(T))
477        T = cast<ArrayType>(T)->getElementType();
478
479      Align = std::max(Align, getPreferredTypeAlign(T.getTypePtr()));
480    }
481  }
482
483  return Align / Target.getCharWidth();
484}
485
486/// getTypeSize - Return the size of the specified type, in bits.  This method
487/// does not work on incomplete types.
488std::pair<uint64_t, unsigned>
489ASTContext::getTypeInfo(const Type *T) {
490  uint64_t Width=0;
491  unsigned Align=8;
492  switch (T->getTypeClass()) {
493#define TYPE(Class, Base)
494#define ABSTRACT_TYPE(Class, Base)
495#define NON_CANONICAL_TYPE(Class, Base)
496#define DEPENDENT_TYPE(Class, Base) case Type::Class:
497#include "clang/AST/TypeNodes.def"
498    assert(false && "Should not see dependent types");
499    break;
500
501  case Type::FunctionNoProto:
502  case Type::FunctionProto:
503    // GCC extension: alignof(function) = 32 bits
504    Width = 0;
505    Align = 32;
506    break;
507
508  case Type::IncompleteArray:
509  case Type::VariableArray:
510    Width = 0;
511    Align = getTypeAlign(cast<ArrayType>(T)->getElementType());
512    break;
513
514  case Type::ConstantArrayWithExpr:
515  case Type::ConstantArrayWithoutExpr:
516  case Type::ConstantArray: {
517    const ConstantArrayType *CAT = cast<ConstantArrayType>(T);
518
519    std::pair<uint64_t, unsigned> EltInfo = getTypeInfo(CAT->getElementType());
520    Width = EltInfo.first*CAT->getSize().getZExtValue();
521    Align = EltInfo.second;
522    break;
523  }
524  case Type::ExtVector:
525  case Type::Vector: {
526    std::pair<uint64_t, unsigned> EltInfo =
527      getTypeInfo(cast<VectorType>(T)->getElementType());
528    Width = EltInfo.first*cast<VectorType>(T)->getNumElements();
529    Align = Width;
530    // If the alignment is not a power of 2, round up to the next power of 2.
531    // This happens for non-power-of-2 length vectors.
532    // FIXME: this should probably be a target property.
533    Align = 1 << llvm::Log2_32_Ceil(Align);
534    break;
535  }
536
537  case Type::Builtin:
538    switch (cast<BuiltinType>(T)->getKind()) {
539    default: assert(0 && "Unknown builtin type!");
540    case BuiltinType::Void:
541      // GCC extension: alignof(void) = 8 bits.
542      Width = 0;
543      Align = 8;
544      break;
545
546    case BuiltinType::Bool:
547      Width = Target.getBoolWidth();
548      Align = Target.getBoolAlign();
549      break;
550    case BuiltinType::Char_S:
551    case BuiltinType::Char_U:
552    case BuiltinType::UChar:
553    case BuiltinType::SChar:
554      Width = Target.getCharWidth();
555      Align = Target.getCharAlign();
556      break;
557    case BuiltinType::WChar:
558      Width = Target.getWCharWidth();
559      Align = Target.getWCharAlign();
560      break;
561    case BuiltinType::Char16:
562      Width = Target.getChar16Width();
563      Align = Target.getChar16Align();
564      break;
565    case BuiltinType::Char32:
566      Width = Target.getChar32Width();
567      Align = Target.getChar32Align();
568      break;
569    case BuiltinType::UShort:
570    case BuiltinType::Short:
571      Width = Target.getShortWidth();
572      Align = Target.getShortAlign();
573      break;
574    case BuiltinType::UInt:
575    case BuiltinType::Int:
576      Width = Target.getIntWidth();
577      Align = Target.getIntAlign();
578      break;
579    case BuiltinType::ULong:
580    case BuiltinType::Long:
581      Width = Target.getLongWidth();
582      Align = Target.getLongAlign();
583      break;
584    case BuiltinType::ULongLong:
585    case BuiltinType::LongLong:
586      Width = Target.getLongLongWidth();
587      Align = Target.getLongLongAlign();
588      break;
589    case BuiltinType::Int128:
590    case BuiltinType::UInt128:
591      Width = 128;
592      Align = 128; // int128_t is 128-bit aligned on all targets.
593      break;
594    case BuiltinType::Float:
595      Width = Target.getFloatWidth();
596      Align = Target.getFloatAlign();
597      break;
598    case BuiltinType::Double:
599      Width = Target.getDoubleWidth();
600      Align = Target.getDoubleAlign();
601      break;
602    case BuiltinType::LongDouble:
603      Width = Target.getLongDoubleWidth();
604      Align = Target.getLongDoubleAlign();
605      break;
606    case BuiltinType::NullPtr:
607      Width = Target.getPointerWidth(0); // C++ 3.9.1p11: sizeof(nullptr_t)
608      Align = Target.getPointerAlign(0); //   == sizeof(void*)
609      break;
610    }
611    break;
612  case Type::FixedWidthInt:
613    // FIXME: This isn't precisely correct; the width/alignment should depend
614    // on the available types for the target
615    Width = cast<FixedWidthIntType>(T)->getWidth();
616    Width = std::max(llvm::NextPowerOf2(Width - 1), (uint64_t)8);
617    Align = Width;
618    break;
619  case Type::ExtQual:
620    // FIXME: Pointers into different addr spaces could have different sizes and
621    // alignment requirements: getPointerInfo should take an AddrSpace.
622    return getTypeInfo(QualType(cast<ExtQualType>(T)->getBaseType(), 0));
623  case Type::ObjCObjectPointer:
624    Width = Target.getPointerWidth(0);
625    Align = Target.getPointerAlign(0);
626    break;
627  case Type::BlockPointer: {
628    unsigned AS = cast<BlockPointerType>(T)->getPointeeType().getAddressSpace();
629    Width = Target.getPointerWidth(AS);
630    Align = Target.getPointerAlign(AS);
631    break;
632  }
633  case Type::Pointer: {
634    unsigned AS = cast<PointerType>(T)->getPointeeType().getAddressSpace();
635    Width = Target.getPointerWidth(AS);
636    Align = Target.getPointerAlign(AS);
637    break;
638  }
639  case Type::LValueReference:
640  case Type::RValueReference:
641    // "When applied to a reference or a reference type, the result is the size
642    // of the referenced type." C++98 5.3.3p2: expr.sizeof.
643    // FIXME: This is wrong for struct layout: a reference in a struct has
644    // pointer size.
645    return getTypeInfo(cast<ReferenceType>(T)->getPointeeType());
646  case Type::MemberPointer: {
647    // FIXME: This is ABI dependent. We use the Itanium C++ ABI.
648    // http://www.codesourcery.com/public/cxx-abi/abi.html#member-pointers
649    // If we ever want to support other ABIs this needs to be abstracted.
650
651    QualType Pointee = cast<MemberPointerType>(T)->getPointeeType();
652    std::pair<uint64_t, unsigned> PtrDiffInfo =
653      getTypeInfo(getPointerDiffType());
654    Width = PtrDiffInfo.first;
655    if (Pointee->isFunctionType())
656      Width *= 2;
657    Align = PtrDiffInfo.second;
658    break;
659  }
660  case Type::Complex: {
661    // Complex types have the same alignment as their elements, but twice the
662    // size.
663    std::pair<uint64_t, unsigned> EltInfo =
664      getTypeInfo(cast<ComplexType>(T)->getElementType());
665    Width = EltInfo.first*2;
666    Align = EltInfo.second;
667    break;
668  }
669  case Type::ObjCInterface: {
670    const ObjCInterfaceType *ObjCI = cast<ObjCInterfaceType>(T);
671    const ASTRecordLayout &Layout = getASTObjCInterfaceLayout(ObjCI->getDecl());
672    Width = Layout.getSize();
673    Align = Layout.getAlignment();
674    break;
675  }
676  case Type::Record:
677  case Type::Enum: {
678    const TagType *TT = cast<TagType>(T);
679
680    if (TT->getDecl()->isInvalidDecl()) {
681      Width = 1;
682      Align = 1;
683      break;
684    }
685
686    if (const EnumType *ET = dyn_cast<EnumType>(TT))
687      return getTypeInfo(ET->getDecl()->getIntegerType());
688
689    const RecordType *RT = cast<RecordType>(TT);
690    const ASTRecordLayout &Layout = getASTRecordLayout(RT->getDecl());
691    Width = Layout.getSize();
692    Align = Layout.getAlignment();
693    break;
694  }
695
696  case Type::Typedef: {
697    const TypedefDecl *Typedef = cast<TypedefType>(T)->getDecl();
698    if (const AlignedAttr *Aligned = Typedef->getAttr<AlignedAttr>()) {
699      Align = Aligned->getAlignment();
700      Width = getTypeSize(Typedef->getUnderlyingType().getTypePtr());
701    } else
702      return getTypeInfo(Typedef->getUnderlyingType().getTypePtr());
703    break;
704  }
705
706  case Type::TypeOfExpr:
707    return getTypeInfo(cast<TypeOfExprType>(T)->getUnderlyingExpr()->getType()
708                         .getTypePtr());
709
710  case Type::TypeOf:
711    return getTypeInfo(cast<TypeOfType>(T)->getUnderlyingType().getTypePtr());
712
713  case Type::Decltype:
714    return getTypeInfo(cast<DecltypeType>(T)->getUnderlyingExpr()->getType()
715                        .getTypePtr());
716
717  case Type::QualifiedName:
718    return getTypeInfo(cast<QualifiedNameType>(T)->getNamedType().getTypePtr());
719
720  case Type::TemplateSpecialization:
721    assert(getCanonicalType(T) != T &&
722           "Cannot request the size of a dependent type");
723    // FIXME: this is likely to be wrong once we support template
724    // aliases, since a template alias could refer to a typedef that
725    // has an __aligned__ attribute on it.
726    return getTypeInfo(getCanonicalType(T));
727  }
728
729  assert(Align && (Align & (Align-1)) == 0 && "Alignment must be power of 2");
730  return std::make_pair(Width, Align);
731}
732
733/// getPreferredTypeAlign - Return the "preferred" alignment of the specified
734/// type for the current target in bits.  This can be different than the ABI
735/// alignment in cases where it is beneficial for performance to overalign
736/// a data type.
737unsigned ASTContext::getPreferredTypeAlign(const Type *T) {
738  unsigned ABIAlign = getTypeAlign(T);
739
740  // Double and long long should be naturally aligned if possible.
741  if (const ComplexType* CT = T->getAsComplexType())
742    T = CT->getElementType().getTypePtr();
743  if (T->isSpecificBuiltinType(BuiltinType::Double) ||
744      T->isSpecificBuiltinType(BuiltinType::LongLong))
745    return std::max(ABIAlign, (unsigned)getTypeSize(T));
746
747  return ABIAlign;
748}
749
750static void CollectLocalObjCIvars(ASTContext *Ctx,
751                                  const ObjCInterfaceDecl *OI,
752                                  llvm::SmallVectorImpl<FieldDecl*> &Fields) {
753  for (ObjCInterfaceDecl::ivar_iterator I = OI->ivar_begin(),
754       E = OI->ivar_end(); I != E; ++I) {
755    ObjCIvarDecl *IVDecl = *I;
756    if (!IVDecl->isInvalidDecl())
757      Fields.push_back(cast<FieldDecl>(IVDecl));
758  }
759}
760
761void ASTContext::CollectObjCIvars(const ObjCInterfaceDecl *OI,
762                             llvm::SmallVectorImpl<FieldDecl*> &Fields) {
763  if (const ObjCInterfaceDecl *SuperClass = OI->getSuperClass())
764    CollectObjCIvars(SuperClass, Fields);
765  CollectLocalObjCIvars(this, OI, Fields);
766}
767
768/// ShallowCollectObjCIvars -
769/// Collect all ivars, including those synthesized, in the current class.
770///
771void ASTContext::ShallowCollectObjCIvars(const ObjCInterfaceDecl *OI,
772                                 llvm::SmallVectorImpl<ObjCIvarDecl*> &Ivars,
773                                 bool CollectSynthesized) {
774  for (ObjCInterfaceDecl::ivar_iterator I = OI->ivar_begin(),
775         E = OI->ivar_end(); I != E; ++I) {
776     Ivars.push_back(*I);
777  }
778  if (CollectSynthesized)
779    CollectSynthesizedIvars(OI, Ivars);
780}
781
782void ASTContext::CollectProtocolSynthesizedIvars(const ObjCProtocolDecl *PD,
783                                llvm::SmallVectorImpl<ObjCIvarDecl*> &Ivars) {
784  for (ObjCContainerDecl::prop_iterator I = PD->prop_begin(),
785       E = PD->prop_end(); I != E; ++I)
786    if (ObjCIvarDecl *Ivar = (*I)->getPropertyIvarDecl())
787      Ivars.push_back(Ivar);
788
789  // Also look into nested protocols.
790  for (ObjCProtocolDecl::protocol_iterator P = PD->protocol_begin(),
791       E = PD->protocol_end(); P != E; ++P)
792    CollectProtocolSynthesizedIvars(*P, Ivars);
793}
794
795/// CollectSynthesizedIvars -
796/// This routine collect synthesized ivars for the designated class.
797///
798void ASTContext::CollectSynthesizedIvars(const ObjCInterfaceDecl *OI,
799                                llvm::SmallVectorImpl<ObjCIvarDecl*> &Ivars) {
800  for (ObjCInterfaceDecl::prop_iterator I = OI->prop_begin(),
801       E = OI->prop_end(); I != E; ++I) {
802    if (ObjCIvarDecl *Ivar = (*I)->getPropertyIvarDecl())
803      Ivars.push_back(Ivar);
804  }
805  // Also look into interface's protocol list for properties declared
806  // in the protocol and whose ivars are synthesized.
807  for (ObjCInterfaceDecl::protocol_iterator P = OI->protocol_begin(),
808       PE = OI->protocol_end(); P != PE; ++P) {
809    ObjCProtocolDecl *PD = (*P);
810    CollectProtocolSynthesizedIvars(PD, Ivars);
811  }
812}
813
814unsigned ASTContext::CountProtocolSynthesizedIvars(const ObjCProtocolDecl *PD) {
815  unsigned count = 0;
816  for (ObjCContainerDecl::prop_iterator I = PD->prop_begin(),
817       E = PD->prop_end(); I != E; ++I)
818    if ((*I)->getPropertyIvarDecl())
819      ++count;
820
821  // Also look into nested protocols.
822  for (ObjCProtocolDecl::protocol_iterator P = PD->protocol_begin(),
823       E = PD->protocol_end(); P != E; ++P)
824    count += CountProtocolSynthesizedIvars(*P);
825  return count;
826}
827
828unsigned ASTContext::CountSynthesizedIvars(const ObjCInterfaceDecl *OI)
829{
830  unsigned count = 0;
831  for (ObjCInterfaceDecl::prop_iterator I = OI->prop_begin(),
832       E = OI->prop_end(); I != E; ++I) {
833    if ((*I)->getPropertyIvarDecl())
834      ++count;
835  }
836  // Also look into interface's protocol list for properties declared
837  // in the protocol and whose ivars are synthesized.
838  for (ObjCInterfaceDecl::protocol_iterator P = OI->protocol_begin(),
839       PE = OI->protocol_end(); P != PE; ++P) {
840    ObjCProtocolDecl *PD = (*P);
841    count += CountProtocolSynthesizedIvars(PD);
842  }
843  return count;
844}
845
846/// \brief Get the implementation of ObjCInterfaceDecl,or NULL if none exists.
847ObjCImplementationDecl *ASTContext::getObjCImplementation(ObjCInterfaceDecl *D) {
848  llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
849    I = ObjCImpls.find(D);
850  if (I != ObjCImpls.end())
851    return cast<ObjCImplementationDecl>(I->second);
852  return 0;
853}
854/// \brief Get the implementation of ObjCCategoryDecl, or NULL if none exists.
855ObjCCategoryImplDecl *ASTContext::getObjCImplementation(ObjCCategoryDecl *D) {
856  llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
857    I = ObjCImpls.find(D);
858  if (I != ObjCImpls.end())
859    return cast<ObjCCategoryImplDecl>(I->second);
860  return 0;
861}
862
863/// \brief Set the implementation of ObjCInterfaceDecl.
864void ASTContext::setObjCImplementation(ObjCInterfaceDecl *IFaceD,
865                           ObjCImplementationDecl *ImplD) {
866  assert(IFaceD && ImplD && "Passed null params");
867  ObjCImpls[IFaceD] = ImplD;
868}
869/// \brief Set the implementation of ObjCCategoryDecl.
870void ASTContext::setObjCImplementation(ObjCCategoryDecl *CatD,
871                           ObjCCategoryImplDecl *ImplD) {
872  assert(CatD && ImplD && "Passed null params");
873  ObjCImpls[CatD] = ImplD;
874}
875
876/// getInterfaceLayoutImpl - Get or compute information about the
877/// layout of the given interface.
878///
879/// \param Impl - If given, also include the layout of the interface's
880/// implementation. This may differ by including synthesized ivars.
881const ASTRecordLayout &
882ASTContext::getObjCLayout(const ObjCInterfaceDecl *D,
883                          const ObjCImplementationDecl *Impl) {
884  assert(!D->isForwardDecl() && "Invalid interface decl!");
885
886  // Look up this layout, if already laid out, return what we have.
887  ObjCContainerDecl *Key =
888    Impl ? (ObjCContainerDecl*) Impl : (ObjCContainerDecl*) D;
889  if (const ASTRecordLayout *Entry = ObjCLayouts[Key])
890    return *Entry;
891
892  // Add in synthesized ivar count if laying out an implementation.
893  if (Impl) {
894    unsigned FieldCount = D->ivar_size();
895    unsigned SynthCount = CountSynthesizedIvars(D);
896    FieldCount += SynthCount;
897    // If there aren't any sythesized ivars then reuse the interface
898    // entry. Note we can't cache this because we simply free all
899    // entries later; however we shouldn't look up implementations
900    // frequently.
901    if (SynthCount == 0)
902      return getObjCLayout(D, 0);
903  }
904
905  const ASTRecordLayout *NewEntry =
906    ASTRecordLayoutBuilder::ComputeLayout(*this, D, Impl);
907  ObjCLayouts[Key] = NewEntry;
908
909  return *NewEntry;
910}
911
912const ASTRecordLayout &
913ASTContext::getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D) {
914  return getObjCLayout(D, 0);
915}
916
917const ASTRecordLayout &
918ASTContext::getASTObjCImplementationLayout(const ObjCImplementationDecl *D) {
919  return getObjCLayout(D->getClassInterface(), D);
920}
921
922/// getASTRecordLayout - Get or compute information about the layout of the
923/// specified record (struct/union/class), which indicates its size and field
924/// position information.
925const ASTRecordLayout &ASTContext::getASTRecordLayout(const RecordDecl *D) {
926  D = D->getDefinition(*this);
927  assert(D && "Cannot get layout of forward declarations!");
928
929  // Look up this layout, if already laid out, return what we have.
930  // Note that we can't save a reference to the entry because this function
931  // is recursive.
932  const ASTRecordLayout *Entry = ASTRecordLayouts[D];
933  if (Entry) return *Entry;
934
935  const ASTRecordLayout *NewEntry =
936    ASTRecordLayoutBuilder::ComputeLayout(*this, D);
937  ASTRecordLayouts[D] = NewEntry;
938
939  return *NewEntry;
940}
941
942//===----------------------------------------------------------------------===//
943//                   Type creation/memoization methods
944//===----------------------------------------------------------------------===//
945
946QualType ASTContext::getAddrSpaceQualType(QualType T, unsigned AddressSpace) {
947  QualType CanT = getCanonicalType(T);
948  if (CanT.getAddressSpace() == AddressSpace)
949    return T;
950
951  // If we are composing extended qualifiers together, merge together into one
952  // ExtQualType node.
953  unsigned CVRQuals = T.getCVRQualifiers();
954  QualType::GCAttrTypes GCAttr = QualType::GCNone;
955  Type *TypeNode = T.getTypePtr();
956
957  if (ExtQualType *EQT = dyn_cast<ExtQualType>(TypeNode)) {
958    // If this type already has an address space specified, it cannot get
959    // another one.
960    assert(EQT->getAddressSpace() == 0 &&
961           "Type cannot be in multiple addr spaces!");
962    GCAttr = EQT->getObjCGCAttr();
963    TypeNode = EQT->getBaseType();
964  }
965
966  // Check if we've already instantiated this type.
967  llvm::FoldingSetNodeID ID;
968  ExtQualType::Profile(ID, TypeNode, AddressSpace, GCAttr);
969  void *InsertPos = 0;
970  if (ExtQualType *EXTQy = ExtQualTypes.FindNodeOrInsertPos(ID, InsertPos))
971    return QualType(EXTQy, CVRQuals);
972
973  // If the base type isn't canonical, this won't be a canonical type either,
974  // so fill in the canonical type field.
975  QualType Canonical;
976  if (!TypeNode->isCanonical()) {
977    Canonical = getAddrSpaceQualType(CanT, AddressSpace);
978
979    // Update InsertPos, the previous call could have invalidated it.
980    ExtQualType *NewIP = ExtQualTypes.FindNodeOrInsertPos(ID, InsertPos);
981    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
982  }
983  ExtQualType *New =
984    new (*this, 8) ExtQualType(TypeNode, Canonical, AddressSpace, GCAttr);
985  ExtQualTypes.InsertNode(New, InsertPos);
986  Types.push_back(New);
987  return QualType(New, CVRQuals);
988}
989
990QualType ASTContext::getObjCGCQualType(QualType T,
991                                       QualType::GCAttrTypes GCAttr) {
992  QualType CanT = getCanonicalType(T);
993  if (CanT.getObjCGCAttr() == GCAttr)
994    return T;
995
996  if (T->isPointerType()) {
997    QualType Pointee = T->getAsPointerType()->getPointeeType();
998    if (Pointee->isAnyPointerType()) {
999      QualType ResultType = getObjCGCQualType(Pointee, GCAttr);
1000      return getPointerType(ResultType);
1001    }
1002  }
1003  // If we are composing extended qualifiers together, merge together into one
1004  // ExtQualType node.
1005  unsigned CVRQuals = T.getCVRQualifiers();
1006  Type *TypeNode = T.getTypePtr();
1007  unsigned AddressSpace = 0;
1008
1009  if (ExtQualType *EQT = dyn_cast<ExtQualType>(TypeNode)) {
1010    // If this type already has an ObjCGC specified, it cannot get
1011    // another one.
1012    assert(EQT->getObjCGCAttr() == QualType::GCNone &&
1013           "Type cannot have multiple ObjCGCs!");
1014    AddressSpace = EQT->getAddressSpace();
1015    TypeNode = EQT->getBaseType();
1016  }
1017
1018  // Check if we've already instantiated an gc qual'd type of this type.
1019  llvm::FoldingSetNodeID ID;
1020  ExtQualType::Profile(ID, TypeNode, AddressSpace, GCAttr);
1021  void *InsertPos = 0;
1022  if (ExtQualType *EXTQy = ExtQualTypes.FindNodeOrInsertPos(ID, InsertPos))
1023    return QualType(EXTQy, CVRQuals);
1024
1025  // If the base type isn't canonical, this won't be a canonical type either,
1026  // so fill in the canonical type field.
1027  // FIXME: Isn't this also not canonical if the base type is a array
1028  // or pointer type?  I can't find any documentation for objc_gc, though...
1029  QualType Canonical;
1030  if (!T->isCanonical()) {
1031    Canonical = getObjCGCQualType(CanT, GCAttr);
1032
1033    // Update InsertPos, the previous call could have invalidated it.
1034    ExtQualType *NewIP = ExtQualTypes.FindNodeOrInsertPos(ID, InsertPos);
1035    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1036  }
1037  ExtQualType *New =
1038    new (*this, 8) ExtQualType(TypeNode, Canonical, AddressSpace, GCAttr);
1039  ExtQualTypes.InsertNode(New, InsertPos);
1040  Types.push_back(New);
1041  return QualType(New, CVRQuals);
1042}
1043
1044QualType ASTContext::getNoReturnType(QualType T) {
1045  if (T->isPointerType()) {
1046    QualType Pointee = T->getAsPointerType()->getPointeeType();
1047    QualType ResultType = getNoReturnType(Pointee);
1048    return getPointerType(ResultType);
1049  }
1050  if (T->isBlockPointerType()) {
1051    QualType Pointee = T->getAsBlockPointerType()->getPointeeType();
1052    QualType ResultType = getNoReturnType(Pointee);
1053    return getBlockPointerType(ResultType);
1054  }
1055  if (!T->isFunctionType())
1056    assert(0 && "can't noreturn qualify non-pointer to function or block type");
1057
1058  if (const FunctionNoProtoType *F = dyn_cast<FunctionNoProtoType>(T)) {
1059    return getFunctionNoProtoType(F->getResultType(), true);
1060  }
1061  const FunctionProtoType *F = cast<FunctionProtoType>(T);
1062  return getFunctionType(F->getResultType(), F->arg_type_begin(),
1063                         F->getNumArgs(), F->isVariadic(), F->getTypeQuals(),
1064                         F->hasExceptionSpec(), F->hasAnyExceptionSpec(),
1065                         F->getNumExceptions(), F->exception_begin(), true);
1066}
1067
1068/// getComplexType - Return the uniqued reference to the type for a complex
1069/// number with the specified element type.
1070QualType ASTContext::getComplexType(QualType T) {
1071  // Unique pointers, to guarantee there is only one pointer of a particular
1072  // structure.
1073  llvm::FoldingSetNodeID ID;
1074  ComplexType::Profile(ID, T);
1075
1076  void *InsertPos = 0;
1077  if (ComplexType *CT = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos))
1078    return QualType(CT, 0);
1079
1080  // If the pointee type isn't canonical, this won't be a canonical type either,
1081  // so fill in the canonical type field.
1082  QualType Canonical;
1083  if (!T->isCanonical()) {
1084    Canonical = getComplexType(getCanonicalType(T));
1085
1086    // Get the new insert position for the node we care about.
1087    ComplexType *NewIP = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos);
1088    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1089  }
1090  ComplexType *New = new (*this,8) ComplexType(T, Canonical);
1091  Types.push_back(New);
1092  ComplexTypes.InsertNode(New, InsertPos);
1093  return QualType(New, 0);
1094}
1095
1096QualType ASTContext::getFixedWidthIntType(unsigned Width, bool Signed) {
1097  llvm::DenseMap<unsigned, FixedWidthIntType*> &Map = Signed ?
1098     SignedFixedWidthIntTypes : UnsignedFixedWidthIntTypes;
1099  FixedWidthIntType *&Entry = Map[Width];
1100  if (!Entry)
1101    Entry = new FixedWidthIntType(Width, Signed);
1102  return QualType(Entry, 0);
1103}
1104
1105/// getPointerType - Return the uniqued reference to the type for a pointer to
1106/// the specified type.
1107QualType ASTContext::getPointerType(QualType T) {
1108  // Unique pointers, to guarantee there is only one pointer of a particular
1109  // structure.
1110  llvm::FoldingSetNodeID ID;
1111  PointerType::Profile(ID, T);
1112
1113  void *InsertPos = 0;
1114  if (PointerType *PT = PointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1115    return QualType(PT, 0);
1116
1117  // If the pointee type isn't canonical, this won't be a canonical type either,
1118  // so fill in the canonical type field.
1119  QualType Canonical;
1120  if (!T->isCanonical()) {
1121    Canonical = getPointerType(getCanonicalType(T));
1122
1123    // Get the new insert position for the node we care about.
1124    PointerType *NewIP = PointerTypes.FindNodeOrInsertPos(ID, InsertPos);
1125    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1126  }
1127  PointerType *New = new (*this,8) PointerType(T, Canonical);
1128  Types.push_back(New);
1129  PointerTypes.InsertNode(New, InsertPos);
1130  return QualType(New, 0);
1131}
1132
1133/// getBlockPointerType - Return the uniqued reference to the type for
1134/// a pointer to the specified block.
1135QualType ASTContext::getBlockPointerType(QualType T) {
1136  assert(T->isFunctionType() && "block of function types only");
1137  // Unique pointers, to guarantee there is only one block of a particular
1138  // structure.
1139  llvm::FoldingSetNodeID ID;
1140  BlockPointerType::Profile(ID, T);
1141
1142  void *InsertPos = 0;
1143  if (BlockPointerType *PT =
1144        BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1145    return QualType(PT, 0);
1146
1147  // If the block pointee type isn't canonical, this won't be a canonical
1148  // type either so fill in the canonical type field.
1149  QualType Canonical;
1150  if (!T->isCanonical()) {
1151    Canonical = getBlockPointerType(getCanonicalType(T));
1152
1153    // Get the new insert position for the node we care about.
1154    BlockPointerType *NewIP =
1155      BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
1156    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1157  }
1158  BlockPointerType *New = new (*this,8) BlockPointerType(T, Canonical);
1159  Types.push_back(New);
1160  BlockPointerTypes.InsertNode(New, InsertPos);
1161  return QualType(New, 0);
1162}
1163
1164/// getLValueReferenceType - Return the uniqued reference to the type for an
1165/// lvalue reference to the specified type.
1166QualType ASTContext::getLValueReferenceType(QualType T) {
1167  // Unique pointers, to guarantee there is only one pointer of a particular
1168  // structure.
1169  llvm::FoldingSetNodeID ID;
1170  ReferenceType::Profile(ID, T);
1171
1172  void *InsertPos = 0;
1173  if (LValueReferenceType *RT =
1174        LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
1175    return QualType(RT, 0);
1176
1177  // If the referencee type isn't canonical, this won't be a canonical type
1178  // either, so fill in the canonical type field.
1179  QualType Canonical;
1180  if (!T->isCanonical()) {
1181    Canonical = getLValueReferenceType(getCanonicalType(T));
1182
1183    // Get the new insert position for the node we care about.
1184    LValueReferenceType *NewIP =
1185      LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
1186    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1187  }
1188
1189  LValueReferenceType *New = new (*this,8) LValueReferenceType(T, Canonical);
1190  Types.push_back(New);
1191  LValueReferenceTypes.InsertNode(New, InsertPos);
1192  return QualType(New, 0);
1193}
1194
1195/// getRValueReferenceType - Return the uniqued reference to the type for an
1196/// rvalue reference to the specified type.
1197QualType ASTContext::getRValueReferenceType(QualType T) {
1198  // Unique pointers, to guarantee there is only one pointer of a particular
1199  // structure.
1200  llvm::FoldingSetNodeID ID;
1201  ReferenceType::Profile(ID, T);
1202
1203  void *InsertPos = 0;
1204  if (RValueReferenceType *RT =
1205        RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
1206    return QualType(RT, 0);
1207
1208  // If the referencee type isn't canonical, this won't be a canonical type
1209  // either, so fill in the canonical type field.
1210  QualType Canonical;
1211  if (!T->isCanonical()) {
1212    Canonical = getRValueReferenceType(getCanonicalType(T));
1213
1214    // Get the new insert position for the node we care about.
1215    RValueReferenceType *NewIP =
1216      RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
1217    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1218  }
1219
1220  RValueReferenceType *New = new (*this,8) RValueReferenceType(T, Canonical);
1221  Types.push_back(New);
1222  RValueReferenceTypes.InsertNode(New, InsertPos);
1223  return QualType(New, 0);
1224}
1225
1226/// getMemberPointerType - Return the uniqued reference to the type for a
1227/// member pointer to the specified type, in the specified class.
1228QualType ASTContext::getMemberPointerType(QualType T, const Type *Cls)
1229{
1230  // Unique pointers, to guarantee there is only one pointer of a particular
1231  // structure.
1232  llvm::FoldingSetNodeID ID;
1233  MemberPointerType::Profile(ID, T, Cls);
1234
1235  void *InsertPos = 0;
1236  if (MemberPointerType *PT =
1237      MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1238    return QualType(PT, 0);
1239
1240  // If the pointee or class type isn't canonical, this won't be a canonical
1241  // type either, so fill in the canonical type field.
1242  QualType Canonical;
1243  if (!T->isCanonical()) {
1244    Canonical = getMemberPointerType(getCanonicalType(T),getCanonicalType(Cls));
1245
1246    // Get the new insert position for the node we care about.
1247    MemberPointerType *NewIP =
1248      MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
1249    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1250  }
1251  MemberPointerType *New = new (*this,8) MemberPointerType(T, Cls, Canonical);
1252  Types.push_back(New);
1253  MemberPointerTypes.InsertNode(New, InsertPos);
1254  return QualType(New, 0);
1255}
1256
1257/// getConstantArrayType - Return the unique reference to the type for an
1258/// array of the specified element type.
1259QualType ASTContext::getConstantArrayType(QualType EltTy,
1260                                          const llvm::APInt &ArySizeIn,
1261                                          ArrayType::ArraySizeModifier ASM,
1262                                          unsigned EltTypeQuals) {
1263  assert((EltTy->isDependentType() || EltTy->isConstantSizeType()) &&
1264         "Constant array of VLAs is illegal!");
1265
1266  // Convert the array size into a canonical width matching the pointer size for
1267  // the target.
1268  llvm::APInt ArySize(ArySizeIn);
1269  ArySize.zextOrTrunc(Target.getPointerWidth(EltTy.getAddressSpace()));
1270
1271  llvm::FoldingSetNodeID ID;
1272  ConstantArrayType::Profile(ID, EltTy, ArySize, ASM, EltTypeQuals);
1273
1274  void *InsertPos = 0;
1275  if (ConstantArrayType *ATP =
1276      ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
1277    return QualType(ATP, 0);
1278
1279  // If the element type isn't canonical, this won't be a canonical type either,
1280  // so fill in the canonical type field.
1281  QualType Canonical;
1282  if (!EltTy->isCanonical()) {
1283    Canonical = getConstantArrayType(getCanonicalType(EltTy), ArySize,
1284                                     ASM, EltTypeQuals);
1285    // Get the new insert position for the node we care about.
1286    ConstantArrayType *NewIP =
1287      ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
1288    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1289  }
1290
1291  ConstantArrayType *New =
1292    new(*this,8)ConstantArrayType(EltTy, Canonical, ArySize, ASM, EltTypeQuals);
1293  ConstantArrayTypes.InsertNode(New, InsertPos);
1294  Types.push_back(New);
1295  return QualType(New, 0);
1296}
1297
1298/// getConstantArrayWithExprType - Return a reference to the type for
1299/// an array of the specified element type.
1300QualType
1301ASTContext::getConstantArrayWithExprType(QualType EltTy,
1302                                         const llvm::APInt &ArySizeIn,
1303                                         Expr *ArySizeExpr,
1304                                         ArrayType::ArraySizeModifier ASM,
1305                                         unsigned EltTypeQuals,
1306                                         SourceRange Brackets) {
1307  // Convert the array size into a canonical width matching the pointer
1308  // size for the target.
1309  llvm::APInt ArySize(ArySizeIn);
1310  ArySize.zextOrTrunc(Target.getPointerWidth(EltTy.getAddressSpace()));
1311
1312  // Compute the canonical ConstantArrayType.
1313  QualType Canonical = getConstantArrayType(getCanonicalType(EltTy),
1314                                            ArySize, ASM, EltTypeQuals);
1315  // Since we don't unique expressions, it isn't possible to unique VLA's
1316  // that have an expression provided for their size.
1317  ConstantArrayWithExprType *New =
1318    new(*this,8)ConstantArrayWithExprType(EltTy, Canonical,
1319                                          ArySize, ArySizeExpr,
1320                                          ASM, EltTypeQuals, Brackets);
1321  Types.push_back(New);
1322  return QualType(New, 0);
1323}
1324
1325/// getConstantArrayWithoutExprType - Return a reference to the type for
1326/// an array of the specified element type.
1327QualType
1328ASTContext::getConstantArrayWithoutExprType(QualType EltTy,
1329                                            const llvm::APInt &ArySizeIn,
1330                                            ArrayType::ArraySizeModifier ASM,
1331                                            unsigned EltTypeQuals) {
1332  // Convert the array size into a canonical width matching the pointer
1333  // size for the target.
1334  llvm::APInt ArySize(ArySizeIn);
1335  ArySize.zextOrTrunc(Target.getPointerWidth(EltTy.getAddressSpace()));
1336
1337  // Compute the canonical ConstantArrayType.
1338  QualType Canonical = getConstantArrayType(getCanonicalType(EltTy),
1339                                            ArySize, ASM, EltTypeQuals);
1340  ConstantArrayWithoutExprType *New =
1341    new(*this,8)ConstantArrayWithoutExprType(EltTy, Canonical,
1342                                             ArySize, ASM, EltTypeQuals);
1343  Types.push_back(New);
1344  return QualType(New, 0);
1345}
1346
1347/// getVariableArrayType - Returns a non-unique reference to the type for a
1348/// variable array of the specified element type.
1349QualType ASTContext::getVariableArrayType(QualType EltTy,
1350                                          Expr *NumElts,
1351                                          ArrayType::ArraySizeModifier ASM,
1352                                          unsigned EltTypeQuals,
1353                                          SourceRange Brackets) {
1354  // Since we don't unique expressions, it isn't possible to unique VLA's
1355  // that have an expression provided for their size.
1356
1357  VariableArrayType *New =
1358    new(*this,8)VariableArrayType(EltTy, QualType(),
1359                                  NumElts, ASM, EltTypeQuals, Brackets);
1360
1361  VariableArrayTypes.push_back(New);
1362  Types.push_back(New);
1363  return QualType(New, 0);
1364}
1365
1366/// getDependentSizedArrayType - Returns a non-unique reference to
1367/// the type for a dependently-sized array of the specified element
1368/// type. FIXME: We will need these to be uniqued, or at least
1369/// comparable, at some point.
1370QualType ASTContext::getDependentSizedArrayType(QualType EltTy,
1371                                                Expr *NumElts,
1372                                                ArrayType::ArraySizeModifier ASM,
1373                                                unsigned EltTypeQuals,
1374                                                SourceRange Brackets) {
1375  assert((NumElts->isTypeDependent() || NumElts->isValueDependent()) &&
1376         "Size must be type- or value-dependent!");
1377
1378  // Since we don't unique expressions, it isn't possible to unique
1379  // dependently-sized array types.
1380
1381  DependentSizedArrayType *New =
1382    new (*this,8) DependentSizedArrayType(EltTy, QualType(),
1383                                          NumElts, ASM, EltTypeQuals,
1384                                          Brackets);
1385
1386  DependentSizedArrayTypes.push_back(New);
1387  Types.push_back(New);
1388  return QualType(New, 0);
1389}
1390
1391QualType ASTContext::getIncompleteArrayType(QualType EltTy,
1392                                            ArrayType::ArraySizeModifier ASM,
1393                                            unsigned EltTypeQuals) {
1394  llvm::FoldingSetNodeID ID;
1395  IncompleteArrayType::Profile(ID, EltTy, ASM, EltTypeQuals);
1396
1397  void *InsertPos = 0;
1398  if (IncompleteArrayType *ATP =
1399       IncompleteArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
1400    return QualType(ATP, 0);
1401
1402  // If the element type isn't canonical, this won't be a canonical type
1403  // either, so fill in the canonical type field.
1404  QualType Canonical;
1405
1406  if (!EltTy->isCanonical()) {
1407    Canonical = getIncompleteArrayType(getCanonicalType(EltTy),
1408                                       ASM, EltTypeQuals);
1409
1410    // Get the new insert position for the node we care about.
1411    IncompleteArrayType *NewIP =
1412      IncompleteArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
1413    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1414  }
1415
1416  IncompleteArrayType *New
1417    = new (*this,8) IncompleteArrayType(EltTy, Canonical,
1418                                        ASM, EltTypeQuals);
1419
1420  IncompleteArrayTypes.InsertNode(New, InsertPos);
1421  Types.push_back(New);
1422  return QualType(New, 0);
1423}
1424
1425/// getVectorType - Return the unique reference to a vector type of
1426/// the specified element type and size. VectorType must be a built-in type.
1427QualType ASTContext::getVectorType(QualType vecType, unsigned NumElts) {
1428  BuiltinType *baseType;
1429
1430  baseType = dyn_cast<BuiltinType>(getCanonicalType(vecType).getTypePtr());
1431  assert(baseType != 0 && "getVectorType(): Expecting a built-in type");
1432
1433  // Check if we've already instantiated a vector of this type.
1434  llvm::FoldingSetNodeID ID;
1435  VectorType::Profile(ID, vecType, NumElts, Type::Vector);
1436  void *InsertPos = 0;
1437  if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
1438    return QualType(VTP, 0);
1439
1440  // If the element type isn't canonical, this won't be a canonical type either,
1441  // so fill in the canonical type field.
1442  QualType Canonical;
1443  if (!vecType->isCanonical()) {
1444    Canonical = getVectorType(getCanonicalType(vecType), NumElts);
1445
1446    // Get the new insert position for the node we care about.
1447    VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
1448    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1449  }
1450  VectorType *New = new (*this,8) VectorType(vecType, NumElts, Canonical);
1451  VectorTypes.InsertNode(New, InsertPos);
1452  Types.push_back(New);
1453  return QualType(New, 0);
1454}
1455
1456/// getExtVectorType - Return the unique reference to an extended vector type of
1457/// the specified element type and size. VectorType must be a built-in type.
1458QualType ASTContext::getExtVectorType(QualType vecType, unsigned NumElts) {
1459  BuiltinType *baseType;
1460
1461  baseType = dyn_cast<BuiltinType>(getCanonicalType(vecType).getTypePtr());
1462  assert(baseType != 0 && "getExtVectorType(): Expecting a built-in type");
1463
1464  // Check if we've already instantiated a vector of this type.
1465  llvm::FoldingSetNodeID ID;
1466  VectorType::Profile(ID, vecType, NumElts, Type::ExtVector);
1467  void *InsertPos = 0;
1468  if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
1469    return QualType(VTP, 0);
1470
1471  // If the element type isn't canonical, this won't be a canonical type either,
1472  // so fill in the canonical type field.
1473  QualType Canonical;
1474  if (!vecType->isCanonical()) {
1475    Canonical = getExtVectorType(getCanonicalType(vecType), NumElts);
1476
1477    // Get the new insert position for the node we care about.
1478    VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
1479    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1480  }
1481  ExtVectorType *New = new (*this,8) ExtVectorType(vecType, NumElts, Canonical);
1482  VectorTypes.InsertNode(New, InsertPos);
1483  Types.push_back(New);
1484  return QualType(New, 0);
1485}
1486
1487QualType ASTContext::getDependentSizedExtVectorType(QualType vecType,
1488                                                    Expr *SizeExpr,
1489                                                    SourceLocation AttrLoc) {
1490  DependentSizedExtVectorType *New =
1491      new (*this,8) DependentSizedExtVectorType(vecType, QualType(),
1492                                                SizeExpr, AttrLoc);
1493
1494  DependentSizedExtVectorTypes.push_back(New);
1495  Types.push_back(New);
1496  return QualType(New, 0);
1497}
1498
1499/// getFunctionNoProtoType - Return a K&R style C function type like 'int()'.
1500///
1501QualType ASTContext::getFunctionNoProtoType(QualType ResultTy, bool NoReturn) {
1502  // Unique functions, to guarantee there is only one function of a particular
1503  // structure.
1504  llvm::FoldingSetNodeID ID;
1505  FunctionNoProtoType::Profile(ID, ResultTy, NoReturn);
1506
1507  void *InsertPos = 0;
1508  if (FunctionNoProtoType *FT =
1509        FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
1510    return QualType(FT, 0);
1511
1512  QualType Canonical;
1513  if (!ResultTy->isCanonical()) {
1514    Canonical = getFunctionNoProtoType(getCanonicalType(ResultTy), NoReturn);
1515
1516    // Get the new insert position for the node we care about.
1517    FunctionNoProtoType *NewIP =
1518      FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
1519    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1520  }
1521
1522  FunctionNoProtoType *New
1523    = new (*this,8) FunctionNoProtoType(ResultTy, Canonical, NoReturn);
1524  Types.push_back(New);
1525  FunctionNoProtoTypes.InsertNode(New, InsertPos);
1526  return QualType(New, 0);
1527}
1528
1529/// getFunctionType - Return a normal function type with a typed argument
1530/// list.  isVariadic indicates whether the argument list includes '...'.
1531QualType ASTContext::getFunctionType(QualType ResultTy,const QualType *ArgArray,
1532                                     unsigned NumArgs, bool isVariadic,
1533                                     unsigned TypeQuals, bool hasExceptionSpec,
1534                                     bool hasAnyExceptionSpec, unsigned NumExs,
1535                                     const QualType *ExArray, bool NoReturn) {
1536  // Unique functions, to guarantee there is only one function of a particular
1537  // structure.
1538  llvm::FoldingSetNodeID ID;
1539  FunctionProtoType::Profile(ID, ResultTy, ArgArray, NumArgs, isVariadic,
1540                             TypeQuals, hasExceptionSpec, hasAnyExceptionSpec,
1541                             NumExs, ExArray, NoReturn);
1542
1543  void *InsertPos = 0;
1544  if (FunctionProtoType *FTP =
1545        FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
1546    return QualType(FTP, 0);
1547
1548  // Determine whether the type being created is already canonical or not.
1549  bool isCanonical = ResultTy->isCanonical();
1550  if (hasExceptionSpec)
1551    isCanonical = false;
1552  for (unsigned i = 0; i != NumArgs && isCanonical; ++i)
1553    if (!ArgArray[i]->isCanonical())
1554      isCanonical = false;
1555
1556  // If this type isn't canonical, get the canonical version of it.
1557  // The exception spec is not part of the canonical type.
1558  QualType Canonical;
1559  if (!isCanonical) {
1560    llvm::SmallVector<QualType, 16> CanonicalArgs;
1561    CanonicalArgs.reserve(NumArgs);
1562    for (unsigned i = 0; i != NumArgs; ++i)
1563      CanonicalArgs.push_back(getCanonicalType(ArgArray[i]));
1564
1565    Canonical = getFunctionType(getCanonicalType(ResultTy),
1566                                CanonicalArgs.data(), NumArgs,
1567                                isVariadic, TypeQuals, NoReturn);
1568
1569    // Get the new insert position for the node we care about.
1570    FunctionProtoType *NewIP =
1571      FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
1572    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1573  }
1574
1575  // FunctionProtoType objects are allocated with extra bytes after them
1576  // for two variable size arrays (for parameter and exception types) at the
1577  // end of them.
1578  FunctionProtoType *FTP =
1579    (FunctionProtoType*)Allocate(sizeof(FunctionProtoType) +
1580                                 NumArgs*sizeof(QualType) +
1581                                 NumExs*sizeof(QualType), 8);
1582  new (FTP) FunctionProtoType(ResultTy, ArgArray, NumArgs, isVariadic,
1583                              TypeQuals, hasExceptionSpec, hasAnyExceptionSpec,
1584                              ExArray, NumExs, Canonical, NoReturn);
1585  Types.push_back(FTP);
1586  FunctionProtoTypes.InsertNode(FTP, InsertPos);
1587  return QualType(FTP, 0);
1588}
1589
1590/// getTypeDeclType - Return the unique reference to the type for the
1591/// specified type declaration.
1592QualType ASTContext::getTypeDeclType(TypeDecl *Decl, TypeDecl* PrevDecl) {
1593  assert(Decl && "Passed null for Decl param");
1594  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
1595
1596  if (TypedefDecl *Typedef = dyn_cast<TypedefDecl>(Decl))
1597    return getTypedefType(Typedef);
1598  else if (isa<TemplateTypeParmDecl>(Decl)) {
1599    assert(false && "Template type parameter types are always available.");
1600  } else if (ObjCInterfaceDecl *ObjCInterface = dyn_cast<ObjCInterfaceDecl>(Decl))
1601    return getObjCInterfaceType(ObjCInterface);
1602
1603  if (RecordDecl *Record = dyn_cast<RecordDecl>(Decl)) {
1604    if (PrevDecl)
1605      Decl->TypeForDecl = PrevDecl->TypeForDecl;
1606    else
1607      Decl->TypeForDecl = new (*this,8) RecordType(Record);
1608  }
1609  else if (EnumDecl *Enum = dyn_cast<EnumDecl>(Decl)) {
1610    if (PrevDecl)
1611      Decl->TypeForDecl = PrevDecl->TypeForDecl;
1612    else
1613      Decl->TypeForDecl = new (*this,8) EnumType(Enum);
1614  }
1615  else
1616    assert(false && "TypeDecl without a type?");
1617
1618  if (!PrevDecl) Types.push_back(Decl->TypeForDecl);
1619  return QualType(Decl->TypeForDecl, 0);
1620}
1621
1622/// getTypedefType - Return the unique reference to the type for the
1623/// specified typename decl.
1624QualType ASTContext::getTypedefType(TypedefDecl *Decl) {
1625  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
1626
1627  QualType Canonical = getCanonicalType(Decl->getUnderlyingType());
1628  Decl->TypeForDecl = new(*this,8) TypedefType(Type::Typedef, Decl, Canonical);
1629  Types.push_back(Decl->TypeForDecl);
1630  return QualType(Decl->TypeForDecl, 0);
1631}
1632
1633/// \brief Retrieve the template type parameter type for a template
1634/// parameter or parameter pack with the given depth, index, and (optionally)
1635/// name.
1636QualType ASTContext::getTemplateTypeParmType(unsigned Depth, unsigned Index,
1637                                             bool ParameterPack,
1638                                             IdentifierInfo *Name) {
1639  llvm::FoldingSetNodeID ID;
1640  TemplateTypeParmType::Profile(ID, Depth, Index, ParameterPack, Name);
1641  void *InsertPos = 0;
1642  TemplateTypeParmType *TypeParm
1643    = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
1644
1645  if (TypeParm)
1646    return QualType(TypeParm, 0);
1647
1648  if (Name) {
1649    QualType Canon = getTemplateTypeParmType(Depth, Index, ParameterPack);
1650    TypeParm = new (*this, 8) TemplateTypeParmType(Depth, Index, ParameterPack,
1651                                                   Name, Canon);
1652  } else
1653    TypeParm = new (*this, 8) TemplateTypeParmType(Depth, Index, ParameterPack);
1654
1655  Types.push_back(TypeParm);
1656  TemplateTypeParmTypes.InsertNode(TypeParm, InsertPos);
1657
1658  return QualType(TypeParm, 0);
1659}
1660
1661QualType
1662ASTContext::getTemplateSpecializationType(TemplateName Template,
1663                                          const TemplateArgument *Args,
1664                                          unsigned NumArgs,
1665                                          QualType Canon) {
1666  if (!Canon.isNull())
1667    Canon = getCanonicalType(Canon);
1668
1669  llvm::FoldingSetNodeID ID;
1670  TemplateSpecializationType::Profile(ID, Template, Args, NumArgs);
1671
1672  void *InsertPos = 0;
1673  TemplateSpecializationType *Spec
1674    = TemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
1675
1676  if (Spec)
1677    return QualType(Spec, 0);
1678
1679  void *Mem = Allocate((sizeof(TemplateSpecializationType) +
1680                        sizeof(TemplateArgument) * NumArgs),
1681                       8);
1682  Spec = new (Mem) TemplateSpecializationType(Template, Args, NumArgs, Canon);
1683  Types.push_back(Spec);
1684  TemplateSpecializationTypes.InsertNode(Spec, InsertPos);
1685
1686  return QualType(Spec, 0);
1687}
1688
1689QualType
1690ASTContext::getQualifiedNameType(NestedNameSpecifier *NNS,
1691                                 QualType NamedType) {
1692  llvm::FoldingSetNodeID ID;
1693  QualifiedNameType::Profile(ID, NNS, NamedType);
1694
1695  void *InsertPos = 0;
1696  QualifiedNameType *T
1697    = QualifiedNameTypes.FindNodeOrInsertPos(ID, InsertPos);
1698  if (T)
1699    return QualType(T, 0);
1700
1701  T = new (*this) QualifiedNameType(NNS, NamedType,
1702                                    getCanonicalType(NamedType));
1703  Types.push_back(T);
1704  QualifiedNameTypes.InsertNode(T, InsertPos);
1705  return QualType(T, 0);
1706}
1707
1708QualType ASTContext::getTypenameType(NestedNameSpecifier *NNS,
1709                                     const IdentifierInfo *Name,
1710                                     QualType Canon) {
1711  assert(NNS->isDependent() && "nested-name-specifier must be dependent");
1712
1713  if (Canon.isNull()) {
1714    NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
1715    if (CanonNNS != NNS)
1716      Canon = getTypenameType(CanonNNS, Name);
1717  }
1718
1719  llvm::FoldingSetNodeID ID;
1720  TypenameType::Profile(ID, NNS, Name);
1721
1722  void *InsertPos = 0;
1723  TypenameType *T
1724    = TypenameTypes.FindNodeOrInsertPos(ID, InsertPos);
1725  if (T)
1726    return QualType(T, 0);
1727
1728  T = new (*this) TypenameType(NNS, Name, Canon);
1729  Types.push_back(T);
1730  TypenameTypes.InsertNode(T, InsertPos);
1731  return QualType(T, 0);
1732}
1733
1734QualType
1735ASTContext::getTypenameType(NestedNameSpecifier *NNS,
1736                            const TemplateSpecializationType *TemplateId,
1737                            QualType Canon) {
1738  assert(NNS->isDependent() && "nested-name-specifier must be dependent");
1739
1740  if (Canon.isNull()) {
1741    NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
1742    QualType CanonType = getCanonicalType(QualType(TemplateId, 0));
1743    if (CanonNNS != NNS || CanonType != QualType(TemplateId, 0)) {
1744      const TemplateSpecializationType *CanonTemplateId
1745        = CanonType->getAsTemplateSpecializationType();
1746      assert(CanonTemplateId &&
1747             "Canonical type must also be a template specialization type");
1748      Canon = getTypenameType(CanonNNS, CanonTemplateId);
1749    }
1750  }
1751
1752  llvm::FoldingSetNodeID ID;
1753  TypenameType::Profile(ID, NNS, TemplateId);
1754
1755  void *InsertPos = 0;
1756  TypenameType *T
1757    = TypenameTypes.FindNodeOrInsertPos(ID, InsertPos);
1758  if (T)
1759    return QualType(T, 0);
1760
1761  T = new (*this) TypenameType(NNS, TemplateId, Canon);
1762  Types.push_back(T);
1763  TypenameTypes.InsertNode(T, InsertPos);
1764  return QualType(T, 0);
1765}
1766
1767/// CmpProtocolNames - Comparison predicate for sorting protocols
1768/// alphabetically.
1769static bool CmpProtocolNames(const ObjCProtocolDecl *LHS,
1770                            const ObjCProtocolDecl *RHS) {
1771  return LHS->getDeclName() < RHS->getDeclName();
1772}
1773
1774static void SortAndUniqueProtocols(ObjCProtocolDecl **&Protocols,
1775                                   unsigned &NumProtocols) {
1776  ObjCProtocolDecl **ProtocolsEnd = Protocols+NumProtocols;
1777
1778  // Sort protocols, keyed by name.
1779  std::sort(Protocols, Protocols+NumProtocols, CmpProtocolNames);
1780
1781  // Remove duplicates.
1782  ProtocolsEnd = std::unique(Protocols, ProtocolsEnd);
1783  NumProtocols = ProtocolsEnd-Protocols;
1784}
1785
1786/// getObjCObjectPointerType - Return a ObjCObjectPointerType type for
1787/// the given interface decl and the conforming protocol list.
1788QualType ASTContext::getObjCObjectPointerType(QualType InterfaceT,
1789                                              ObjCProtocolDecl **Protocols,
1790                                              unsigned NumProtocols) {
1791  // Sort the protocol list alphabetically to canonicalize it.
1792  if (NumProtocols)
1793    SortAndUniqueProtocols(Protocols, NumProtocols);
1794
1795  llvm::FoldingSetNodeID ID;
1796  ObjCObjectPointerType::Profile(ID, InterfaceT, Protocols, NumProtocols);
1797
1798  void *InsertPos = 0;
1799  if (ObjCObjectPointerType *QT =
1800              ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1801    return QualType(QT, 0);
1802
1803  // No Match;
1804  ObjCObjectPointerType *QType =
1805    new (*this,8) ObjCObjectPointerType(InterfaceT, Protocols, NumProtocols);
1806
1807  Types.push_back(QType);
1808  ObjCObjectPointerTypes.InsertNode(QType, InsertPos);
1809  return QualType(QType, 0);
1810}
1811
1812/// getObjCInterfaceType - Return the unique reference to the type for the
1813/// specified ObjC interface decl. The list of protocols is optional.
1814QualType ASTContext::getObjCInterfaceType(const ObjCInterfaceDecl *Decl,
1815                       ObjCProtocolDecl **Protocols, unsigned NumProtocols) {
1816  if (NumProtocols)
1817    // Sort the protocol list alphabetically to canonicalize it.
1818    SortAndUniqueProtocols(Protocols, NumProtocols);
1819
1820  llvm::FoldingSetNodeID ID;
1821  ObjCInterfaceType::Profile(ID, Decl, Protocols, NumProtocols);
1822
1823  void *InsertPos = 0;
1824  if (ObjCInterfaceType *QT =
1825      ObjCInterfaceTypes.FindNodeOrInsertPos(ID, InsertPos))
1826    return QualType(QT, 0);
1827
1828  // No Match;
1829  ObjCInterfaceType *QType =
1830    new (*this,8) ObjCInterfaceType(const_cast<ObjCInterfaceDecl*>(Decl),
1831                                    Protocols, NumProtocols);
1832  Types.push_back(QType);
1833  ObjCInterfaceTypes.InsertNode(QType, InsertPos);
1834  return QualType(QType, 0);
1835}
1836
1837/// getTypeOfExprType - Unlike many "get<Type>" functions, we can't unique
1838/// TypeOfExprType AST's (since expression's are never shared). For example,
1839/// multiple declarations that refer to "typeof(x)" all contain different
1840/// DeclRefExpr's. This doesn't effect the type checker, since it operates
1841/// on canonical type's (which are always unique).
1842QualType ASTContext::getTypeOfExprType(Expr *tofExpr) {
1843  TypeOfExprType *toe;
1844  if (tofExpr->isTypeDependent())
1845    toe = new (*this, 8) TypeOfExprType(tofExpr);
1846  else {
1847    QualType Canonical = getCanonicalType(tofExpr->getType());
1848    toe = new (*this,8) TypeOfExprType(tofExpr, Canonical);
1849  }
1850  Types.push_back(toe);
1851  return QualType(toe, 0);
1852}
1853
1854/// getTypeOfType -  Unlike many "get<Type>" functions, we don't unique
1855/// TypeOfType AST's. The only motivation to unique these nodes would be
1856/// memory savings. Since typeof(t) is fairly uncommon, space shouldn't be
1857/// an issue. This doesn't effect the type checker, since it operates
1858/// on canonical type's (which are always unique).
1859QualType ASTContext::getTypeOfType(QualType tofType) {
1860  QualType Canonical = getCanonicalType(tofType);
1861  TypeOfType *tot = new (*this,8) TypeOfType(tofType, Canonical);
1862  Types.push_back(tot);
1863  return QualType(tot, 0);
1864}
1865
1866/// getDecltypeForExpr - Given an expr, will return the decltype for that
1867/// expression, according to the rules in C++0x [dcl.type.simple]p4
1868static QualType getDecltypeForExpr(const Expr *e, ASTContext &Context) {
1869  if (e->isTypeDependent())
1870    return Context.DependentTy;
1871
1872  // If e is an id expression or a class member access, decltype(e) is defined
1873  // as the type of the entity named by e.
1874  if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(e)) {
1875    if (const ValueDecl *VD = dyn_cast<ValueDecl>(DRE->getDecl()))
1876      return VD->getType();
1877  }
1878  if (const MemberExpr *ME = dyn_cast<MemberExpr>(e)) {
1879    if (const FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl()))
1880      return FD->getType();
1881  }
1882  // If e is a function call or an invocation of an overloaded operator,
1883  // (parentheses around e are ignored), decltype(e) is defined as the
1884  // return type of that function.
1885  if (const CallExpr *CE = dyn_cast<CallExpr>(e->IgnoreParens()))
1886    return CE->getCallReturnType();
1887
1888  QualType T = e->getType();
1889
1890  // Otherwise, where T is the type of e, if e is an lvalue, decltype(e) is
1891  // defined as T&, otherwise decltype(e) is defined as T.
1892  if (e->isLvalue(Context) == Expr::LV_Valid)
1893    T = Context.getLValueReferenceType(T);
1894
1895  return T;
1896}
1897
1898/// getDecltypeType -  Unlike many "get<Type>" functions, we don't unique
1899/// DecltypeType AST's. The only motivation to unique these nodes would be
1900/// memory savings. Since decltype(t) is fairly uncommon, space shouldn't be
1901/// an issue. This doesn't effect the type checker, since it operates
1902/// on canonical type's (which are always unique).
1903QualType ASTContext::getDecltypeType(Expr *e) {
1904  DecltypeType *dt;
1905  if (e->isTypeDependent()) // FIXME: canonicalize the expression
1906    dt = new (*this, 8) DecltypeType(e, DependentTy);
1907  else {
1908    QualType T = getDecltypeForExpr(e, *this);
1909    dt = new (*this, 8) DecltypeType(e, T, getCanonicalType(T));
1910  }
1911  Types.push_back(dt);
1912  return QualType(dt, 0);
1913}
1914
1915/// getTagDeclType - Return the unique reference to the type for the
1916/// specified TagDecl (struct/union/class/enum) decl.
1917QualType ASTContext::getTagDeclType(TagDecl *Decl) {
1918  assert (Decl);
1919  return getTypeDeclType(Decl);
1920}
1921
1922/// getSizeType - Return the unique type for "size_t" (C99 7.17), the result
1923/// of the sizeof operator (C99 6.5.3.4p4). The value is target dependent and
1924/// needs to agree with the definition in <stddef.h>.
1925QualType ASTContext::getSizeType() const {
1926  return getFromTargetType(Target.getSizeType());
1927}
1928
1929/// getSignedWCharType - Return the type of "signed wchar_t".
1930/// Used when in C++, as a GCC extension.
1931QualType ASTContext::getSignedWCharType() const {
1932  // FIXME: derive from "Target" ?
1933  return WCharTy;
1934}
1935
1936/// getUnsignedWCharType - Return the type of "unsigned wchar_t".
1937/// Used when in C++, as a GCC extension.
1938QualType ASTContext::getUnsignedWCharType() const {
1939  // FIXME: derive from "Target" ?
1940  return UnsignedIntTy;
1941}
1942
1943/// getPointerDiffType - Return the unique type for "ptrdiff_t" (ref?)
1944/// defined in <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9).
1945QualType ASTContext::getPointerDiffType() const {
1946  return getFromTargetType(Target.getPtrDiffType(0));
1947}
1948
1949//===----------------------------------------------------------------------===//
1950//                              Type Operators
1951//===----------------------------------------------------------------------===//
1952
1953/// getCanonicalType - Return the canonical (structural) type corresponding to
1954/// the specified potentially non-canonical type.  The non-canonical version
1955/// of a type may have many "decorated" versions of types.  Decorators can
1956/// include typedefs, 'typeof' operators, etc. The returned type is guaranteed
1957/// to be free of any of these, allowing two canonical types to be compared
1958/// for exact equality with a simple pointer comparison.
1959QualType ASTContext::getCanonicalType(QualType T) {
1960  QualType CanType = T.getTypePtr()->getCanonicalTypeInternal();
1961
1962  // If the result has type qualifiers, make sure to canonicalize them as well.
1963  unsigned TypeQuals = T.getCVRQualifiers() | CanType.getCVRQualifiers();
1964  if (TypeQuals == 0) return CanType;
1965
1966  // If the type qualifiers are on an array type, get the canonical type of the
1967  // array with the qualifiers applied to the element type.
1968  ArrayType *AT = dyn_cast<ArrayType>(CanType);
1969  if (!AT)
1970    return CanType.getQualifiedType(TypeQuals);
1971
1972  // Get the canonical version of the element with the extra qualifiers on it.
1973  // This can recursively sink qualifiers through multiple levels of arrays.
1974  QualType NewEltTy=AT->getElementType().getWithAdditionalQualifiers(TypeQuals);
1975  NewEltTy = getCanonicalType(NewEltTy);
1976
1977  if (ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
1978    return getConstantArrayType(NewEltTy, CAT->getSize(),CAT->getSizeModifier(),
1979                                CAT->getIndexTypeQualifier());
1980  if (IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT))
1981    return getIncompleteArrayType(NewEltTy, IAT->getSizeModifier(),
1982                                  IAT->getIndexTypeQualifier());
1983
1984  if (DependentSizedArrayType *DSAT = dyn_cast<DependentSizedArrayType>(AT))
1985    return getDependentSizedArrayType(NewEltTy,
1986                                      DSAT->getSizeExpr(),
1987                                      DSAT->getSizeModifier(),
1988                                      DSAT->getIndexTypeQualifier(),
1989                                      DSAT->getBracketsRange());
1990
1991  VariableArrayType *VAT = cast<VariableArrayType>(AT);
1992  return getVariableArrayType(NewEltTy,
1993                              VAT->getSizeExpr(),
1994                              VAT->getSizeModifier(),
1995                              VAT->getIndexTypeQualifier(),
1996                              VAT->getBracketsRange());
1997}
1998
1999TemplateName ASTContext::getCanonicalTemplateName(TemplateName Name) {
2000  // If this template name refers to a template, the canonical
2001  // template name merely stores the template itself.
2002  if (TemplateDecl *Template = Name.getAsTemplateDecl())
2003    return TemplateName(cast<TemplateDecl>(Template->getCanonicalDecl()));
2004
2005  DependentTemplateName *DTN = Name.getAsDependentTemplateName();
2006  assert(DTN && "Non-dependent template names must refer to template decls.");
2007  return DTN->CanonicalTemplateName;
2008}
2009
2010NestedNameSpecifier *
2011ASTContext::getCanonicalNestedNameSpecifier(NestedNameSpecifier *NNS) {
2012  if (!NNS)
2013    return 0;
2014
2015  switch (NNS->getKind()) {
2016  case NestedNameSpecifier::Identifier:
2017    // Canonicalize the prefix but keep the identifier the same.
2018    return NestedNameSpecifier::Create(*this,
2019                         getCanonicalNestedNameSpecifier(NNS->getPrefix()),
2020                                       NNS->getAsIdentifier());
2021
2022  case NestedNameSpecifier::Namespace:
2023    // A namespace is canonical; build a nested-name-specifier with
2024    // this namespace and no prefix.
2025    return NestedNameSpecifier::Create(*this, 0, NNS->getAsNamespace());
2026
2027  case NestedNameSpecifier::TypeSpec:
2028  case NestedNameSpecifier::TypeSpecWithTemplate: {
2029    QualType T = getCanonicalType(QualType(NNS->getAsType(), 0));
2030    NestedNameSpecifier *Prefix = 0;
2031
2032    // FIXME: This isn't the right check!
2033    if (T->isDependentType())
2034      Prefix = getCanonicalNestedNameSpecifier(NNS->getPrefix());
2035
2036    return NestedNameSpecifier::Create(*this, Prefix,
2037                 NNS->getKind() == NestedNameSpecifier::TypeSpecWithTemplate,
2038                                       T.getTypePtr());
2039  }
2040
2041  case NestedNameSpecifier::Global:
2042    // The global specifier is canonical and unique.
2043    return NNS;
2044  }
2045
2046  // Required to silence a GCC warning
2047  return 0;
2048}
2049
2050
2051const ArrayType *ASTContext::getAsArrayType(QualType T) {
2052  // Handle the non-qualified case efficiently.
2053  if (T.getCVRQualifiers() == 0) {
2054    // Handle the common positive case fast.
2055    if (const ArrayType *AT = dyn_cast<ArrayType>(T))
2056      return AT;
2057  }
2058
2059  // Handle the common negative case fast, ignoring CVR qualifiers.
2060  QualType CType = T->getCanonicalTypeInternal();
2061
2062  // Make sure to look through type qualifiers (like ExtQuals) for the negative
2063  // test.
2064  if (!isa<ArrayType>(CType) &&
2065      !isa<ArrayType>(CType.getUnqualifiedType()))
2066    return 0;
2067
2068  // Apply any CVR qualifiers from the array type to the element type.  This
2069  // implements C99 6.7.3p8: "If the specification of an array type includes
2070  // any type qualifiers, the element type is so qualified, not the array type."
2071
2072  // If we get here, we either have type qualifiers on the type, or we have
2073  // sugar such as a typedef in the way.  If we have type qualifiers on the type
2074  // we must propagate them down into the elemeng type.
2075  unsigned CVRQuals = T.getCVRQualifiers();
2076  unsigned AddrSpace = 0;
2077  Type *Ty = T.getTypePtr();
2078
2079  // Rip through ExtQualType's and typedefs to get to a concrete type.
2080  while (1) {
2081    if (const ExtQualType *EXTQT = dyn_cast<ExtQualType>(Ty)) {
2082      AddrSpace = EXTQT->getAddressSpace();
2083      Ty = EXTQT->getBaseType();
2084    } else {
2085      T = Ty->getDesugaredType();
2086      if (T.getTypePtr() == Ty && T.getCVRQualifiers() == 0)
2087        break;
2088      CVRQuals |= T.getCVRQualifiers();
2089      Ty = T.getTypePtr();
2090    }
2091  }
2092
2093  // If we have a simple case, just return now.
2094  const ArrayType *ATy = dyn_cast<ArrayType>(Ty);
2095  if (ATy == 0 || (AddrSpace == 0 && CVRQuals == 0))
2096    return ATy;
2097
2098  // Otherwise, we have an array and we have qualifiers on it.  Push the
2099  // qualifiers into the array element type and return a new array type.
2100  // Get the canonical version of the element with the extra qualifiers on it.
2101  // This can recursively sink qualifiers through multiple levels of arrays.
2102  QualType NewEltTy = ATy->getElementType();
2103  if (AddrSpace)
2104    NewEltTy = getAddrSpaceQualType(NewEltTy, AddrSpace);
2105  NewEltTy = NewEltTy.getWithAdditionalQualifiers(CVRQuals);
2106
2107  if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(ATy))
2108    return cast<ArrayType>(getConstantArrayType(NewEltTy, CAT->getSize(),
2109                                                CAT->getSizeModifier(),
2110                                                CAT->getIndexTypeQualifier()));
2111  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(ATy))
2112    return cast<ArrayType>(getIncompleteArrayType(NewEltTy,
2113                                                  IAT->getSizeModifier(),
2114                                                  IAT->getIndexTypeQualifier()));
2115
2116  if (const DependentSizedArrayType *DSAT
2117        = dyn_cast<DependentSizedArrayType>(ATy))
2118    return cast<ArrayType>(
2119                     getDependentSizedArrayType(NewEltTy,
2120                                                DSAT->getSizeExpr(),
2121                                                DSAT->getSizeModifier(),
2122                                                DSAT->getIndexTypeQualifier(),
2123                                                DSAT->getBracketsRange()));
2124
2125  const VariableArrayType *VAT = cast<VariableArrayType>(ATy);
2126  return cast<ArrayType>(getVariableArrayType(NewEltTy,
2127                                              VAT->getSizeExpr(),
2128                                              VAT->getSizeModifier(),
2129                                              VAT->getIndexTypeQualifier(),
2130                                              VAT->getBracketsRange()));
2131}
2132
2133
2134/// getArrayDecayedType - Return the properly qualified result of decaying the
2135/// specified array type to a pointer.  This operation is non-trivial when
2136/// handling typedefs etc.  The canonical type of "T" must be an array type,
2137/// this returns a pointer to a properly qualified element of the array.
2138///
2139/// See C99 6.7.5.3p7 and C99 6.3.2.1p3.
2140QualType ASTContext::getArrayDecayedType(QualType Ty) {
2141  // Get the element type with 'getAsArrayType' so that we don't lose any
2142  // typedefs in the element type of the array.  This also handles propagation
2143  // of type qualifiers from the array type into the element type if present
2144  // (C99 6.7.3p8).
2145  const ArrayType *PrettyArrayType = getAsArrayType(Ty);
2146  assert(PrettyArrayType && "Not an array type!");
2147
2148  QualType PtrTy = getPointerType(PrettyArrayType->getElementType());
2149
2150  // int x[restrict 4] ->  int *restrict
2151  return PtrTy.getQualifiedType(PrettyArrayType->getIndexTypeQualifier());
2152}
2153
2154QualType ASTContext::getBaseElementType(QualType QT) {
2155  QualifierSet qualifiers;
2156  while (true) {
2157    const Type *UT = qualifiers.strip(QT);
2158    if (const ArrayType *AT = getAsArrayType(QualType(UT,0))) {
2159      QT = AT->getElementType();
2160    }else {
2161      return qualifiers.apply(QT, *this);
2162    }
2163  }
2164}
2165
2166QualType ASTContext::getBaseElementType(const VariableArrayType *VAT) {
2167  QualType ElemTy = VAT->getElementType();
2168
2169  if (const VariableArrayType *VAT = getAsVariableArrayType(ElemTy))
2170    return getBaseElementType(VAT);
2171
2172  return ElemTy;
2173}
2174
2175/// getFloatingRank - Return a relative rank for floating point types.
2176/// This routine will assert if passed a built-in type that isn't a float.
2177static FloatingRank getFloatingRank(QualType T) {
2178  if (const ComplexType *CT = T->getAsComplexType())
2179    return getFloatingRank(CT->getElementType());
2180
2181  assert(T->getAsBuiltinType() && "getFloatingRank(): not a floating type");
2182  switch (T->getAsBuiltinType()->getKind()) {
2183  default: assert(0 && "getFloatingRank(): not a floating type");
2184  case BuiltinType::Float:      return FloatRank;
2185  case BuiltinType::Double:     return DoubleRank;
2186  case BuiltinType::LongDouble: return LongDoubleRank;
2187  }
2188}
2189
2190/// getFloatingTypeOfSizeWithinDomain - Returns a real floating
2191/// point or a complex type (based on typeDomain/typeSize).
2192/// 'typeDomain' is a real floating point or complex type.
2193/// 'typeSize' is a real floating point or complex type.
2194QualType ASTContext::getFloatingTypeOfSizeWithinDomain(QualType Size,
2195                                                       QualType Domain) const {
2196  FloatingRank EltRank = getFloatingRank(Size);
2197  if (Domain->isComplexType()) {
2198    switch (EltRank) {
2199    default: assert(0 && "getFloatingRank(): illegal value for rank");
2200    case FloatRank:      return FloatComplexTy;
2201    case DoubleRank:     return DoubleComplexTy;
2202    case LongDoubleRank: return LongDoubleComplexTy;
2203    }
2204  }
2205
2206  assert(Domain->isRealFloatingType() && "Unknown domain!");
2207  switch (EltRank) {
2208  default: assert(0 && "getFloatingRank(): illegal value for rank");
2209  case FloatRank:      return FloatTy;
2210  case DoubleRank:     return DoubleTy;
2211  case LongDoubleRank: return LongDoubleTy;
2212  }
2213}
2214
2215/// getFloatingTypeOrder - Compare the rank of the two specified floating
2216/// point types, ignoring the domain of the type (i.e. 'double' ==
2217/// '_Complex double').  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
2218/// LHS < RHS, return -1.
2219int ASTContext::getFloatingTypeOrder(QualType LHS, QualType RHS) {
2220  FloatingRank LHSR = getFloatingRank(LHS);
2221  FloatingRank RHSR = getFloatingRank(RHS);
2222
2223  if (LHSR == RHSR)
2224    return 0;
2225  if (LHSR > RHSR)
2226    return 1;
2227  return -1;
2228}
2229
2230/// getIntegerRank - Return an integer conversion rank (C99 6.3.1.1p1). This
2231/// routine will assert if passed a built-in type that isn't an integer or enum,
2232/// or if it is not canonicalized.
2233unsigned ASTContext::getIntegerRank(Type *T) {
2234  assert(T->isCanonical() && "T should be canonicalized");
2235  if (EnumType* ET = dyn_cast<EnumType>(T))
2236    T = ET->getDecl()->getIntegerType().getTypePtr();
2237
2238  if (T->isSpecificBuiltinType(BuiltinType::WChar))
2239    T = getFromTargetType(Target.getWCharType()).getTypePtr();
2240
2241  if (T->isSpecificBuiltinType(BuiltinType::Char16))
2242    T = getFromTargetType(Target.getChar16Type()).getTypePtr();
2243
2244  if (T->isSpecificBuiltinType(BuiltinType::Char32))
2245    T = getFromTargetType(Target.getChar32Type()).getTypePtr();
2246
2247  // There are two things which impact the integer rank: the width, and
2248  // the ordering of builtins.  The builtin ordering is encoded in the
2249  // bottom three bits; the width is encoded in the bits above that.
2250  if (FixedWidthIntType* FWIT = dyn_cast<FixedWidthIntType>(T))
2251    return FWIT->getWidth() << 3;
2252
2253  switch (cast<BuiltinType>(T)->getKind()) {
2254  default: assert(0 && "getIntegerRank(): not a built-in integer");
2255  case BuiltinType::Bool:
2256    return 1 + (getIntWidth(BoolTy) << 3);
2257  case BuiltinType::Char_S:
2258  case BuiltinType::Char_U:
2259  case BuiltinType::SChar:
2260  case BuiltinType::UChar:
2261    return 2 + (getIntWidth(CharTy) << 3);
2262  case BuiltinType::Short:
2263  case BuiltinType::UShort:
2264    return 3 + (getIntWidth(ShortTy) << 3);
2265  case BuiltinType::Int:
2266  case BuiltinType::UInt:
2267    return 4 + (getIntWidth(IntTy) << 3);
2268  case BuiltinType::Long:
2269  case BuiltinType::ULong:
2270    return 5 + (getIntWidth(LongTy) << 3);
2271  case BuiltinType::LongLong:
2272  case BuiltinType::ULongLong:
2273    return 6 + (getIntWidth(LongLongTy) << 3);
2274  case BuiltinType::Int128:
2275  case BuiltinType::UInt128:
2276    return 7 + (getIntWidth(Int128Ty) << 3);
2277  }
2278}
2279
2280/// getIntegerTypeOrder - Returns the highest ranked integer type:
2281/// C99 6.3.1.8p1.  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
2282/// LHS < RHS, return -1.
2283int ASTContext::getIntegerTypeOrder(QualType LHS, QualType RHS) {
2284  Type *LHSC = getCanonicalType(LHS).getTypePtr();
2285  Type *RHSC = getCanonicalType(RHS).getTypePtr();
2286  if (LHSC == RHSC) return 0;
2287
2288  bool LHSUnsigned = LHSC->isUnsignedIntegerType();
2289  bool RHSUnsigned = RHSC->isUnsignedIntegerType();
2290
2291  unsigned LHSRank = getIntegerRank(LHSC);
2292  unsigned RHSRank = getIntegerRank(RHSC);
2293
2294  if (LHSUnsigned == RHSUnsigned) {  // Both signed or both unsigned.
2295    if (LHSRank == RHSRank) return 0;
2296    return LHSRank > RHSRank ? 1 : -1;
2297  }
2298
2299  // Otherwise, the LHS is signed and the RHS is unsigned or visa versa.
2300  if (LHSUnsigned) {
2301    // If the unsigned [LHS] type is larger, return it.
2302    if (LHSRank >= RHSRank)
2303      return 1;
2304
2305    // If the signed type can represent all values of the unsigned type, it
2306    // wins.  Because we are dealing with 2's complement and types that are
2307    // powers of two larger than each other, this is always safe.
2308    return -1;
2309  }
2310
2311  // If the unsigned [RHS] type is larger, return it.
2312  if (RHSRank >= LHSRank)
2313    return -1;
2314
2315  // If the signed type can represent all values of the unsigned type, it
2316  // wins.  Because we are dealing with 2's complement and types that are
2317  // powers of two larger than each other, this is always safe.
2318  return 1;
2319}
2320
2321// getCFConstantStringType - Return the type used for constant CFStrings.
2322QualType ASTContext::getCFConstantStringType() {
2323  if (!CFConstantStringTypeDecl) {
2324    CFConstantStringTypeDecl =
2325      RecordDecl::Create(*this, TagDecl::TK_struct, TUDecl, SourceLocation(),
2326                         &Idents.get("NSConstantString"));
2327    QualType FieldTypes[4];
2328
2329    // const int *isa;
2330    FieldTypes[0] = getPointerType(IntTy.getQualifiedType(QualType::Const));
2331    // int flags;
2332    FieldTypes[1] = IntTy;
2333    // const char *str;
2334    FieldTypes[2] = getPointerType(CharTy.getQualifiedType(QualType::Const));
2335    // long length;
2336    FieldTypes[3] = LongTy;
2337
2338    // Create fields
2339    for (unsigned i = 0; i < 4; ++i) {
2340      FieldDecl *Field = FieldDecl::Create(*this, CFConstantStringTypeDecl,
2341                                           SourceLocation(), 0,
2342                                           FieldTypes[i], /*BitWidth=*/0,
2343                                           /*Mutable=*/false);
2344      CFConstantStringTypeDecl->addDecl(Field);
2345    }
2346
2347    CFConstantStringTypeDecl->completeDefinition(*this);
2348  }
2349
2350  return getTagDeclType(CFConstantStringTypeDecl);
2351}
2352
2353void ASTContext::setCFConstantStringType(QualType T) {
2354  const RecordType *Rec = T->getAsRecordType();
2355  assert(Rec && "Invalid CFConstantStringType");
2356  CFConstantStringTypeDecl = Rec->getDecl();
2357}
2358
2359QualType ASTContext::getObjCFastEnumerationStateType()
2360{
2361  if (!ObjCFastEnumerationStateTypeDecl) {
2362    ObjCFastEnumerationStateTypeDecl =
2363      RecordDecl::Create(*this, TagDecl::TK_struct, TUDecl, SourceLocation(),
2364                         &Idents.get("__objcFastEnumerationState"));
2365
2366    QualType FieldTypes[] = {
2367      UnsignedLongTy,
2368      getPointerType(ObjCIdTypedefType),
2369      getPointerType(UnsignedLongTy),
2370      getConstantArrayType(UnsignedLongTy,
2371                           llvm::APInt(32, 5), ArrayType::Normal, 0)
2372    };
2373
2374    for (size_t i = 0; i < 4; ++i) {
2375      FieldDecl *Field = FieldDecl::Create(*this,
2376                                           ObjCFastEnumerationStateTypeDecl,
2377                                           SourceLocation(), 0,
2378                                           FieldTypes[i], /*BitWidth=*/0,
2379                                           /*Mutable=*/false);
2380      ObjCFastEnumerationStateTypeDecl->addDecl(Field);
2381    }
2382
2383    ObjCFastEnumerationStateTypeDecl->completeDefinition(*this);
2384  }
2385
2386  return getTagDeclType(ObjCFastEnumerationStateTypeDecl);
2387}
2388
2389void ASTContext::setObjCFastEnumerationStateType(QualType T) {
2390  const RecordType *Rec = T->getAsRecordType();
2391  assert(Rec && "Invalid ObjCFAstEnumerationStateType");
2392  ObjCFastEnumerationStateTypeDecl = Rec->getDecl();
2393}
2394
2395// This returns true if a type has been typedefed to BOOL:
2396// typedef <type> BOOL;
2397static bool isTypeTypedefedAsBOOL(QualType T) {
2398  if (const TypedefType *TT = dyn_cast<TypedefType>(T))
2399    if (IdentifierInfo *II = TT->getDecl()->getIdentifier())
2400      return II->isStr("BOOL");
2401
2402  return false;
2403}
2404
2405/// getObjCEncodingTypeSize returns size of type for objective-c encoding
2406/// purpose.
2407int ASTContext::getObjCEncodingTypeSize(QualType type) {
2408  uint64_t sz = getTypeSize(type);
2409
2410  // Make all integer and enum types at least as large as an int
2411  if (sz > 0 && type->isIntegralType())
2412    sz = std::max(sz, getTypeSize(IntTy));
2413  // Treat arrays as pointers, since that's how they're passed in.
2414  else if (type->isArrayType())
2415    sz = getTypeSize(VoidPtrTy);
2416  return sz / getTypeSize(CharTy);
2417}
2418
2419/// getObjCEncodingForMethodDecl - Return the encoded type for this method
2420/// declaration.
2421void ASTContext::getObjCEncodingForMethodDecl(const ObjCMethodDecl *Decl,
2422                                              std::string& S) {
2423  // FIXME: This is not very efficient.
2424  // Encode type qualifer, 'in', 'inout', etc. for the return type.
2425  getObjCEncodingForTypeQualifier(Decl->getObjCDeclQualifier(), S);
2426  // Encode result type.
2427  getObjCEncodingForType(Decl->getResultType(), S);
2428  // Compute size of all parameters.
2429  // Start with computing size of a pointer in number of bytes.
2430  // FIXME: There might(should) be a better way of doing this computation!
2431  SourceLocation Loc;
2432  int PtrSize = getTypeSize(VoidPtrTy) / getTypeSize(CharTy);
2433  // The first two arguments (self and _cmd) are pointers; account for
2434  // their size.
2435  int ParmOffset = 2 * PtrSize;
2436  for (ObjCMethodDecl::param_iterator PI = Decl->param_begin(),
2437       E = Decl->param_end(); PI != E; ++PI) {
2438    QualType PType = (*PI)->getType();
2439    int sz = getObjCEncodingTypeSize(PType);
2440    assert (sz > 0 && "getObjCEncodingForMethodDecl - Incomplete param type");
2441    ParmOffset += sz;
2442  }
2443  S += llvm::utostr(ParmOffset);
2444  S += "@0:";
2445  S += llvm::utostr(PtrSize);
2446
2447  // Argument types.
2448  ParmOffset = 2 * PtrSize;
2449  for (ObjCMethodDecl::param_iterator PI = Decl->param_begin(),
2450       E = Decl->param_end(); PI != E; ++PI) {
2451    ParmVarDecl *PVDecl = *PI;
2452    QualType PType = PVDecl->getOriginalType();
2453    if (const ArrayType *AT =
2454          dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
2455      // Use array's original type only if it has known number of
2456      // elements.
2457      if (!isa<ConstantArrayType>(AT))
2458        PType = PVDecl->getType();
2459    } else if (PType->isFunctionType())
2460      PType = PVDecl->getType();
2461    // Process argument qualifiers for user supplied arguments; such as,
2462    // 'in', 'inout', etc.
2463    getObjCEncodingForTypeQualifier(PVDecl->getObjCDeclQualifier(), S);
2464    getObjCEncodingForType(PType, S);
2465    S += llvm::utostr(ParmOffset);
2466    ParmOffset += getObjCEncodingTypeSize(PType);
2467  }
2468}
2469
2470/// getObjCEncodingForPropertyDecl - Return the encoded type for this
2471/// property declaration. If non-NULL, Container must be either an
2472/// ObjCCategoryImplDecl or ObjCImplementationDecl; it should only be
2473/// NULL when getting encodings for protocol properties.
2474/// Property attributes are stored as a comma-delimited C string. The simple
2475/// attributes readonly and bycopy are encoded as single characters. The
2476/// parametrized attributes, getter=name, setter=name, and ivar=name, are
2477/// encoded as single characters, followed by an identifier. Property types
2478/// are also encoded as a parametrized attribute. The characters used to encode
2479/// these attributes are defined by the following enumeration:
2480/// @code
2481/// enum PropertyAttributes {
2482/// kPropertyReadOnly = 'R',   // property is read-only.
2483/// kPropertyBycopy = 'C',     // property is a copy of the value last assigned
2484/// kPropertyByref = '&',  // property is a reference to the value last assigned
2485/// kPropertyDynamic = 'D',    // property is dynamic
2486/// kPropertyGetter = 'G',     // followed by getter selector name
2487/// kPropertySetter = 'S',     // followed by setter selector name
2488/// kPropertyInstanceVariable = 'V'  // followed by instance variable  name
2489/// kPropertyType = 't'              // followed by old-style type encoding.
2490/// kPropertyWeak = 'W'              // 'weak' property
2491/// kPropertyStrong = 'P'            // property GC'able
2492/// kPropertyNonAtomic = 'N'         // property non-atomic
2493/// };
2494/// @endcode
2495void ASTContext::getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD,
2496                                                const Decl *Container,
2497                                                std::string& S) {
2498  // Collect information from the property implementation decl(s).
2499  bool Dynamic = false;
2500  ObjCPropertyImplDecl *SynthesizePID = 0;
2501
2502  // FIXME: Duplicated code due to poor abstraction.
2503  if (Container) {
2504    if (const ObjCCategoryImplDecl *CID =
2505        dyn_cast<ObjCCategoryImplDecl>(Container)) {
2506      for (ObjCCategoryImplDecl::propimpl_iterator
2507             i = CID->propimpl_begin(), e = CID->propimpl_end();
2508           i != e; ++i) {
2509        ObjCPropertyImplDecl *PID = *i;
2510        if (PID->getPropertyDecl() == PD) {
2511          if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) {
2512            Dynamic = true;
2513          } else {
2514            SynthesizePID = PID;
2515          }
2516        }
2517      }
2518    } else {
2519      const ObjCImplementationDecl *OID=cast<ObjCImplementationDecl>(Container);
2520      for (ObjCCategoryImplDecl::propimpl_iterator
2521             i = OID->propimpl_begin(), e = OID->propimpl_end();
2522           i != e; ++i) {
2523        ObjCPropertyImplDecl *PID = *i;
2524        if (PID->getPropertyDecl() == PD) {
2525          if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) {
2526            Dynamic = true;
2527          } else {
2528            SynthesizePID = PID;
2529          }
2530        }
2531      }
2532    }
2533  }
2534
2535  // FIXME: This is not very efficient.
2536  S = "T";
2537
2538  // Encode result type.
2539  // GCC has some special rules regarding encoding of properties which
2540  // closely resembles encoding of ivars.
2541  getObjCEncodingForTypeImpl(PD->getType(), S, true, true, 0,
2542                             true /* outermost type */,
2543                             true /* encoding for property */);
2544
2545  if (PD->isReadOnly()) {
2546    S += ",R";
2547  } else {
2548    switch (PD->getSetterKind()) {
2549    case ObjCPropertyDecl::Assign: break;
2550    case ObjCPropertyDecl::Copy:   S += ",C"; break;
2551    case ObjCPropertyDecl::Retain: S += ",&"; break;
2552    }
2553  }
2554
2555  // It really isn't clear at all what this means, since properties
2556  // are "dynamic by default".
2557  if (Dynamic)
2558    S += ",D";
2559
2560  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_nonatomic)
2561    S += ",N";
2562
2563  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_getter) {
2564    S += ",G";
2565    S += PD->getGetterName().getAsString();
2566  }
2567
2568  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_setter) {
2569    S += ",S";
2570    S += PD->getSetterName().getAsString();
2571  }
2572
2573  if (SynthesizePID) {
2574    const ObjCIvarDecl *OID = SynthesizePID->getPropertyIvarDecl();
2575    S += ",V";
2576    S += OID->getNameAsString();
2577  }
2578
2579  // FIXME: OBJCGC: weak & strong
2580}
2581
2582/// getLegacyIntegralTypeEncoding -
2583/// Another legacy compatibility encoding: 32-bit longs are encoded as
2584/// 'l' or 'L' , but not always.  For typedefs, we need to use
2585/// 'i' or 'I' instead if encoding a struct field, or a pointer!
2586///
2587void ASTContext::getLegacyIntegralTypeEncoding (QualType &PointeeTy) const {
2588  if (isa<TypedefType>(PointeeTy.getTypePtr())) {
2589    if (const BuiltinType *BT = PointeeTy->getAsBuiltinType()) {
2590      if (BT->getKind() == BuiltinType::ULong &&
2591          ((const_cast<ASTContext *>(this))->getIntWidth(PointeeTy) == 32))
2592        PointeeTy = UnsignedIntTy;
2593      else
2594        if (BT->getKind() == BuiltinType::Long &&
2595            ((const_cast<ASTContext *>(this))->getIntWidth(PointeeTy) == 32))
2596          PointeeTy = IntTy;
2597    }
2598  }
2599}
2600
2601void ASTContext::getObjCEncodingForType(QualType T, std::string& S,
2602                                        const FieldDecl *Field) {
2603  // We follow the behavior of gcc, expanding structures which are
2604  // directly pointed to, and expanding embedded structures. Note that
2605  // these rules are sufficient to prevent recursive encoding of the
2606  // same type.
2607  getObjCEncodingForTypeImpl(T, S, true, true, Field,
2608                             true /* outermost type */);
2609}
2610
2611static void EncodeBitField(const ASTContext *Context, std::string& S,
2612                           const FieldDecl *FD) {
2613  const Expr *E = FD->getBitWidth();
2614  assert(E && "bitfield width not there - getObjCEncodingForTypeImpl");
2615  ASTContext *Ctx = const_cast<ASTContext*>(Context);
2616  unsigned N = E->EvaluateAsInt(*Ctx).getZExtValue();
2617  S += 'b';
2618  S += llvm::utostr(N);
2619}
2620
2621void ASTContext::getObjCEncodingForTypeImpl(QualType T, std::string& S,
2622                                            bool ExpandPointedToStructures,
2623                                            bool ExpandStructures,
2624                                            const FieldDecl *FD,
2625                                            bool OutermostType,
2626                                            bool EncodingProperty) {
2627  if (const BuiltinType *BT = T->getAsBuiltinType()) {
2628    if (FD && FD->isBitField())
2629      return EncodeBitField(this, S, FD);
2630    char encoding;
2631    switch (BT->getKind()) {
2632    default: assert(0 && "Unhandled builtin type kind");
2633    case BuiltinType::Void:       encoding = 'v'; break;
2634    case BuiltinType::Bool:       encoding = 'B'; break;
2635    case BuiltinType::Char_U:
2636    case BuiltinType::UChar:      encoding = 'C'; break;
2637    case BuiltinType::UShort:     encoding = 'S'; break;
2638    case BuiltinType::UInt:       encoding = 'I'; break;
2639    case BuiltinType::ULong:
2640        encoding =
2641          (const_cast<ASTContext *>(this))->getIntWidth(T) == 32 ? 'L' : 'Q';
2642        break;
2643    case BuiltinType::UInt128:    encoding = 'T'; break;
2644    case BuiltinType::ULongLong:  encoding = 'Q'; break;
2645    case BuiltinType::Char_S:
2646    case BuiltinType::SChar:      encoding = 'c'; break;
2647    case BuiltinType::Short:      encoding = 's'; break;
2648    case BuiltinType::Int:        encoding = 'i'; break;
2649    case BuiltinType::Long:
2650      encoding =
2651        (const_cast<ASTContext *>(this))->getIntWidth(T) == 32 ? 'l' : 'q';
2652      break;
2653    case BuiltinType::LongLong:   encoding = 'q'; break;
2654    case BuiltinType::Int128:     encoding = 't'; break;
2655    case BuiltinType::Float:      encoding = 'f'; break;
2656    case BuiltinType::Double:     encoding = 'd'; break;
2657    case BuiltinType::LongDouble: encoding = 'd'; break;
2658    }
2659
2660    S += encoding;
2661    return;
2662  }
2663
2664  if (const ComplexType *CT = T->getAsComplexType()) {
2665    S += 'j';
2666    getObjCEncodingForTypeImpl(CT->getElementType(), S, false, false, 0, false,
2667                               false);
2668    return;
2669  }
2670
2671  if (const PointerType *PT = T->getAsPointerType()) {
2672    QualType PointeeTy = PT->getPointeeType();
2673    bool isReadOnly = false;
2674    // For historical/compatibility reasons, the read-only qualifier of the
2675    // pointee gets emitted _before_ the '^'.  The read-only qualifier of
2676    // the pointer itself gets ignored, _unless_ we are looking at a typedef!
2677    // Also, do not emit the 'r' for anything but the outermost type!
2678    if (isa<TypedefType>(T.getTypePtr())) {
2679      if (OutermostType && T.isConstQualified()) {
2680        isReadOnly = true;
2681        S += 'r';
2682      }
2683    }
2684    else if (OutermostType) {
2685      QualType P = PointeeTy;
2686      while (P->getAsPointerType())
2687        P = P->getAsPointerType()->getPointeeType();
2688      if (P.isConstQualified()) {
2689        isReadOnly = true;
2690        S += 'r';
2691      }
2692    }
2693    if (isReadOnly) {
2694      // Another legacy compatibility encoding. Some ObjC qualifier and type
2695      // combinations need to be rearranged.
2696      // Rewrite "in const" from "nr" to "rn"
2697      const char * s = S.c_str();
2698      int len = S.length();
2699      if (len >= 2 && s[len-2] == 'n' && s[len-1] == 'r') {
2700        std::string replace = "rn";
2701        S.replace(S.end()-2, S.end(), replace);
2702      }
2703    }
2704    if (isObjCSelType(PointeeTy)) {
2705      S += ':';
2706      return;
2707    }
2708
2709    if (PointeeTy->isCharType()) {
2710      // char pointer types should be encoded as '*' unless it is a
2711      // type that has been typedef'd to 'BOOL'.
2712      if (!isTypeTypedefedAsBOOL(PointeeTy)) {
2713        S += '*';
2714        return;
2715      }
2716    } else if (const RecordType *RTy = PointeeTy->getAsRecordType()) {
2717      // GCC binary compat: Need to convert "struct objc_class *" to "#".
2718      if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_class")) {
2719        S += '#';
2720        return;
2721      }
2722      // GCC binary compat: Need to convert "struct objc_object *" to "@".
2723      if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_object")) {
2724        S += '@';
2725        return;
2726      }
2727      // fall through...
2728    }
2729    S += '^';
2730    getLegacyIntegralTypeEncoding(PointeeTy);
2731
2732    getObjCEncodingForTypeImpl(PointeeTy, S, false, ExpandPointedToStructures,
2733                               NULL);
2734    return;
2735  }
2736
2737  if (const ArrayType *AT =
2738      // Ignore type qualifiers etc.
2739        dyn_cast<ArrayType>(T->getCanonicalTypeInternal())) {
2740    if (isa<IncompleteArrayType>(AT)) {
2741      // Incomplete arrays are encoded as a pointer to the array element.
2742      S += '^';
2743
2744      getObjCEncodingForTypeImpl(AT->getElementType(), S,
2745                                 false, ExpandStructures, FD);
2746    } else {
2747      S += '[';
2748
2749      if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
2750        S += llvm::utostr(CAT->getSize().getZExtValue());
2751      else {
2752        //Variable length arrays are encoded as a regular array with 0 elements.
2753        assert(isa<VariableArrayType>(AT) && "Unknown array type!");
2754        S += '0';
2755      }
2756
2757      getObjCEncodingForTypeImpl(AT->getElementType(), S,
2758                                 false, ExpandStructures, FD);
2759      S += ']';
2760    }
2761    return;
2762  }
2763
2764  if (T->getAsFunctionType()) {
2765    S += '?';
2766    return;
2767  }
2768
2769  if (const RecordType *RTy = T->getAsRecordType()) {
2770    RecordDecl *RDecl = RTy->getDecl();
2771    S += RDecl->isUnion() ? '(' : '{';
2772    // Anonymous structures print as '?'
2773    if (const IdentifierInfo *II = RDecl->getIdentifier()) {
2774      S += II->getName();
2775    } else {
2776      S += '?';
2777    }
2778    if (ExpandStructures) {
2779      S += '=';
2780      for (RecordDecl::field_iterator Field = RDecl->field_begin(),
2781                                   FieldEnd = RDecl->field_end();
2782           Field != FieldEnd; ++Field) {
2783        if (FD) {
2784          S += '"';
2785          S += Field->getNameAsString();
2786          S += '"';
2787        }
2788
2789        // Special case bit-fields.
2790        if (Field->isBitField()) {
2791          getObjCEncodingForTypeImpl(Field->getType(), S, false, true,
2792                                     (*Field));
2793        } else {
2794          QualType qt = Field->getType();
2795          getLegacyIntegralTypeEncoding(qt);
2796          getObjCEncodingForTypeImpl(qt, S, false, true,
2797                                     FD);
2798        }
2799      }
2800    }
2801    S += RDecl->isUnion() ? ')' : '}';
2802    return;
2803  }
2804
2805  if (T->isEnumeralType()) {
2806    if (FD && FD->isBitField())
2807      EncodeBitField(this, S, FD);
2808    else
2809      S += 'i';
2810    return;
2811  }
2812
2813  if (T->isBlockPointerType()) {
2814    S += "@?"; // Unlike a pointer-to-function, which is "^?".
2815    return;
2816  }
2817
2818  if (T->isObjCInterfaceType()) {
2819    // @encode(class_name)
2820    ObjCInterfaceDecl *OI = T->getAsObjCInterfaceType()->getDecl();
2821    S += '{';
2822    const IdentifierInfo *II = OI->getIdentifier();
2823    S += II->getName();
2824    S += '=';
2825    llvm::SmallVector<FieldDecl*, 32> RecFields;
2826    CollectObjCIvars(OI, RecFields);
2827    for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
2828      if (RecFields[i]->isBitField())
2829        getObjCEncodingForTypeImpl(RecFields[i]->getType(), S, false, true,
2830                                   RecFields[i]);
2831      else
2832        getObjCEncodingForTypeImpl(RecFields[i]->getType(), S, false, true,
2833                                   FD);
2834    }
2835    S += '}';
2836    return;
2837  }
2838
2839  if (const ObjCObjectPointerType *OPT = T->getAsObjCObjectPointerType()) {
2840    if (OPT->isObjCIdType()) {
2841      S += '@';
2842      return;
2843    }
2844
2845    if (OPT->isObjCClassType()) {
2846      S += '#';
2847      return;
2848    }
2849
2850    if (OPT->isObjCQualifiedIdType()) {
2851      getObjCEncodingForTypeImpl(getObjCIdType(), S,
2852                                 ExpandPointedToStructures,
2853                                 ExpandStructures, FD);
2854      if (FD || EncodingProperty) {
2855        // Note that we do extended encoding of protocol qualifer list
2856        // Only when doing ivar or property encoding.
2857        S += '"';
2858        for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(),
2859             E = OPT->qual_end(); I != E; ++I) {
2860          S += '<';
2861          S += (*I)->getNameAsString();
2862          S += '>';
2863        }
2864        S += '"';
2865      }
2866      return;
2867    }
2868
2869    QualType PointeeTy = OPT->getPointeeType();
2870    if (!EncodingProperty &&
2871        isa<TypedefType>(PointeeTy.getTypePtr())) {
2872      // Another historical/compatibility reason.
2873      // We encode the underlying type which comes out as
2874      // {...};
2875      S += '^';
2876      getObjCEncodingForTypeImpl(PointeeTy, S,
2877                                 false, ExpandPointedToStructures,
2878                                 NULL);
2879      return;
2880    }
2881
2882    S += '@';
2883    if (FD || EncodingProperty) {
2884      S += '"';
2885      S += OPT->getInterfaceDecl()->getNameAsCString();
2886      for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(),
2887           E = OPT->qual_end(); I != E; ++I) {
2888        S += '<';
2889        S += (*I)->getNameAsString();
2890        S += '>';
2891      }
2892      S += '"';
2893    }
2894    return;
2895  }
2896
2897  assert(0 && "@encode for type not implemented!");
2898}
2899
2900void ASTContext::getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT,
2901                                                 std::string& S) const {
2902  if (QT & Decl::OBJC_TQ_In)
2903    S += 'n';
2904  if (QT & Decl::OBJC_TQ_Inout)
2905    S += 'N';
2906  if (QT & Decl::OBJC_TQ_Out)
2907    S += 'o';
2908  if (QT & Decl::OBJC_TQ_Bycopy)
2909    S += 'O';
2910  if (QT & Decl::OBJC_TQ_Byref)
2911    S += 'R';
2912  if (QT & Decl::OBJC_TQ_Oneway)
2913    S += 'V';
2914}
2915
2916void ASTContext::setBuiltinVaListType(QualType T) {
2917  assert(BuiltinVaListType.isNull() && "__builtin_va_list type already set!");
2918
2919  BuiltinVaListType = T;
2920}
2921
2922void ASTContext::setObjCIdType(QualType T) {
2923  ObjCIdTypedefType = T;
2924}
2925
2926void ASTContext::setObjCSelType(QualType T) {
2927  ObjCSelType = T;
2928
2929  const TypedefType *TT = T->getAsTypedefType();
2930  if (!TT)
2931    return;
2932  TypedefDecl *TD = TT->getDecl();
2933
2934  // typedef struct objc_selector *SEL;
2935  const PointerType *ptr = TD->getUnderlyingType()->getAsPointerType();
2936  if (!ptr)
2937    return;
2938  const RecordType *rec = ptr->getPointeeType()->getAsStructureType();
2939  if (!rec)
2940    return;
2941  SelStructType = rec;
2942}
2943
2944void ASTContext::setObjCProtoType(QualType QT) {
2945  ObjCProtoType = QT;
2946}
2947
2948void ASTContext::setObjCClassType(QualType T) {
2949  ObjCClassTypedefType = T;
2950}
2951
2952void ASTContext::setObjCConstantStringInterface(ObjCInterfaceDecl *Decl) {
2953  assert(ObjCConstantStringType.isNull() &&
2954         "'NSConstantString' type already set!");
2955
2956  ObjCConstantStringType = getObjCInterfaceType(Decl);
2957}
2958
2959/// \brief Retrieve the template name that represents a qualified
2960/// template name such as \c std::vector.
2961TemplateName ASTContext::getQualifiedTemplateName(NestedNameSpecifier *NNS,
2962                                                  bool TemplateKeyword,
2963                                                  TemplateDecl *Template) {
2964  llvm::FoldingSetNodeID ID;
2965  QualifiedTemplateName::Profile(ID, NNS, TemplateKeyword, Template);
2966
2967  void *InsertPos = 0;
2968  QualifiedTemplateName *QTN =
2969    QualifiedTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
2970  if (!QTN) {
2971    QTN = new (*this,4) QualifiedTemplateName(NNS, TemplateKeyword, Template);
2972    QualifiedTemplateNames.InsertNode(QTN, InsertPos);
2973  }
2974
2975  return TemplateName(QTN);
2976}
2977
2978/// \brief Retrieve the template name that represents a dependent
2979/// template name such as \c MetaFun::template apply.
2980TemplateName ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
2981                                                  const IdentifierInfo *Name) {
2982  assert(NNS->isDependent() && "Nested name specifier must be dependent");
2983
2984  llvm::FoldingSetNodeID ID;
2985  DependentTemplateName::Profile(ID, NNS, Name);
2986
2987  void *InsertPos = 0;
2988  DependentTemplateName *QTN =
2989    DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
2990
2991  if (QTN)
2992    return TemplateName(QTN);
2993
2994  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
2995  if (CanonNNS == NNS) {
2996    QTN = new (*this,4) DependentTemplateName(NNS, Name);
2997  } else {
2998    TemplateName Canon = getDependentTemplateName(CanonNNS, Name);
2999    QTN = new (*this,4) DependentTemplateName(NNS, Name, Canon);
3000  }
3001
3002  DependentTemplateNames.InsertNode(QTN, InsertPos);
3003  return TemplateName(QTN);
3004}
3005
3006/// getFromTargetType - Given one of the integer types provided by
3007/// TargetInfo, produce the corresponding type. The unsigned @p Type
3008/// is actually a value of type @c TargetInfo::IntType.
3009QualType ASTContext::getFromTargetType(unsigned Type) const {
3010  switch (Type) {
3011  case TargetInfo::NoInt: return QualType();
3012  case TargetInfo::SignedShort: return ShortTy;
3013  case TargetInfo::UnsignedShort: return UnsignedShortTy;
3014  case TargetInfo::SignedInt: return IntTy;
3015  case TargetInfo::UnsignedInt: return UnsignedIntTy;
3016  case TargetInfo::SignedLong: return LongTy;
3017  case TargetInfo::UnsignedLong: return UnsignedLongTy;
3018  case TargetInfo::SignedLongLong: return LongLongTy;
3019  case TargetInfo::UnsignedLongLong: return UnsignedLongLongTy;
3020  }
3021
3022  assert(false && "Unhandled TargetInfo::IntType value");
3023  return QualType();
3024}
3025
3026//===----------------------------------------------------------------------===//
3027//                        Type Predicates.
3028//===----------------------------------------------------------------------===//
3029
3030/// isObjCNSObjectType - Return true if this is an NSObject object using
3031/// NSObject attribute on a c-style pointer type.
3032/// FIXME - Make it work directly on types.
3033/// FIXME: Move to Type.
3034///
3035bool ASTContext::isObjCNSObjectType(QualType Ty) const {
3036  if (TypedefType *TDT = dyn_cast<TypedefType>(Ty)) {
3037    if (TypedefDecl *TD = TDT->getDecl())
3038      if (TD->getAttr<ObjCNSObjectAttr>())
3039        return true;
3040  }
3041  return false;
3042}
3043
3044/// getObjCGCAttr - Returns one of GCNone, Weak or Strong objc's
3045/// garbage collection attribute.
3046///
3047QualType::GCAttrTypes ASTContext::getObjCGCAttrKind(const QualType &Ty) const {
3048  QualType::GCAttrTypes GCAttrs = QualType::GCNone;
3049  if (getLangOptions().ObjC1 &&
3050      getLangOptions().getGCMode() != LangOptions::NonGC) {
3051    GCAttrs = Ty.getObjCGCAttr();
3052    // Default behavious under objective-c's gc is for objective-c pointers
3053    // (or pointers to them) be treated as though they were declared
3054    // as __strong.
3055    if (GCAttrs == QualType::GCNone) {
3056      if (Ty->isObjCObjectPointerType())
3057        GCAttrs = QualType::Strong;
3058      else if (Ty->isPointerType())
3059        return getObjCGCAttrKind(Ty->getAsPointerType()->getPointeeType());
3060    }
3061    // Non-pointers have none gc'able attribute regardless of the attribute
3062    // set on them.
3063    else if (!Ty->isAnyPointerType() && !Ty->isBlockPointerType())
3064      return QualType::GCNone;
3065  }
3066  return GCAttrs;
3067}
3068
3069//===----------------------------------------------------------------------===//
3070//                        Type Compatibility Testing
3071//===----------------------------------------------------------------------===//
3072
3073/// areCompatVectorTypes - Return true if the two specified vector types are
3074/// compatible.
3075static bool areCompatVectorTypes(const VectorType *LHS,
3076                                 const VectorType *RHS) {
3077  assert(LHS->isCanonical() && RHS->isCanonical());
3078  return LHS->getElementType() == RHS->getElementType() &&
3079         LHS->getNumElements() == RHS->getNumElements();
3080}
3081
3082//===----------------------------------------------------------------------===//
3083// ObjCQualifiedIdTypesAreCompatible - Compatibility testing for qualified id's.
3084//===----------------------------------------------------------------------===//
3085
3086/// ProtocolCompatibleWithProtocol - return 'true' if 'lProto' is in the
3087/// inheritance hierarchy of 'rProto'.
3088static bool ProtocolCompatibleWithProtocol(ObjCProtocolDecl *lProto,
3089                                           ObjCProtocolDecl *rProto) {
3090  if (lProto == rProto)
3091    return true;
3092  for (ObjCProtocolDecl::protocol_iterator PI = rProto->protocol_begin(),
3093       E = rProto->protocol_end(); PI != E; ++PI)
3094    if (ProtocolCompatibleWithProtocol(lProto, *PI))
3095      return true;
3096  return false;
3097}
3098
3099/// ClassImplementsProtocol - Checks that 'lProto' protocol
3100/// has been implemented in IDecl class, its super class or categories (if
3101/// lookupCategory is true).
3102static bool ClassImplementsProtocol(ObjCProtocolDecl *lProto,
3103                                    ObjCInterfaceDecl *IDecl,
3104                                    bool lookupCategory,
3105                                    bool RHSIsQualifiedID = false) {
3106
3107  // 1st, look up the class.
3108  const ObjCList<ObjCProtocolDecl> &Protocols =
3109    IDecl->getReferencedProtocols();
3110
3111  for (ObjCList<ObjCProtocolDecl>::iterator PI = Protocols.begin(),
3112       E = Protocols.end(); PI != E; ++PI) {
3113    if (ProtocolCompatibleWithProtocol(lProto, *PI))
3114      return true;
3115    // This is dubious and is added to be compatible with gcc.  In gcc, it is
3116    // also allowed assigning a protocol-qualified 'id' type to a LHS object
3117    // when protocol in qualified LHS is in list of protocols in the rhs 'id'
3118    // object. This IMO, should be a bug.
3119    // FIXME: Treat this as an extension, and flag this as an error when GCC
3120    // extensions are not enabled.
3121    if (RHSIsQualifiedID && ProtocolCompatibleWithProtocol(*PI, lProto))
3122      return true;
3123  }
3124
3125  // 2nd, look up the category.
3126  if (lookupCategory)
3127    for (ObjCCategoryDecl *CDecl = IDecl->getCategoryList(); CDecl;
3128         CDecl = CDecl->getNextClassCategory()) {
3129      for (ObjCCategoryDecl::protocol_iterator PI = CDecl->protocol_begin(),
3130           E = CDecl->protocol_end(); PI != E; ++PI)
3131        if (ProtocolCompatibleWithProtocol(lProto, *PI))
3132          return true;
3133    }
3134
3135  // 3rd, look up the super class(s)
3136  if (IDecl->getSuperClass())
3137    return
3138      ClassImplementsProtocol(lProto, IDecl->getSuperClass(), lookupCategory,
3139                              RHSIsQualifiedID);
3140
3141  return false;
3142}
3143
3144/// QualifiedIdConformsQualifiedId - compare id<p,...> with id<p1,...>
3145/// return true if lhs's protocols conform to rhs's protocol; false
3146/// otherwise.
3147bool ASTContext::QualifiedIdConformsQualifiedId(QualType lhs, QualType rhs) {
3148  if (lhs->isObjCQualifiedIdType() && rhs->isObjCQualifiedIdType())
3149    return ObjCQualifiedIdTypesAreCompatible(lhs, rhs, false);
3150  return false;
3151}
3152
3153/// ObjCQualifiedIdTypesAreCompatible - We know that one of lhs/rhs is an
3154/// ObjCQualifiedIDType.
3155bool ASTContext::ObjCQualifiedIdTypesAreCompatible(QualType lhs, QualType rhs,
3156                                                   bool compare) {
3157  // Allow id<P..> and an 'id' or void* type in all cases.
3158  if (lhs->isVoidPointerType() ||
3159      lhs->isObjCIdType() || lhs->isObjCClassType())
3160    return true;
3161  else if (rhs->isVoidPointerType() ||
3162           rhs->isObjCIdType() || rhs->isObjCClassType())
3163    return true;
3164
3165  if (const ObjCObjectPointerType *lhsQID = lhs->getAsObjCQualifiedIdType()) {
3166    const ObjCObjectPointerType *rhsOPT = rhs->getAsObjCObjectPointerType();
3167
3168    if (!rhsOPT) return false;
3169
3170    if (rhsOPT->qual_empty()) {
3171      // If the RHS is a unqualified interface pointer "NSString*",
3172      // make sure we check the class hierarchy.
3173      if (ObjCInterfaceDecl *rhsID = rhsOPT->getInterfaceDecl()) {
3174        for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
3175             E = lhsQID->qual_end(); I != E; ++I) {
3176          // when comparing an id<P> on lhs with a static type on rhs,
3177          // see if static class implements all of id's protocols, directly or
3178          // through its super class and categories.
3179          if (!ClassImplementsProtocol(*I, rhsID, true))
3180            return false;
3181        }
3182      }
3183      // If there are no qualifiers and no interface, we have an 'id'.
3184      return true;
3185    }
3186    // Both the right and left sides have qualifiers.
3187    for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
3188         E = lhsQID->qual_end(); I != E; ++I) {
3189      ObjCProtocolDecl *lhsProto = *I;
3190      bool match = false;
3191
3192      // when comparing an id<P> on lhs with a static type on rhs,
3193      // see if static class implements all of id's protocols, directly or
3194      // through its super class and categories.
3195      for (ObjCObjectPointerType::qual_iterator J = rhsOPT->qual_begin(),
3196           E = rhsOPT->qual_end(); J != E; ++J) {
3197        ObjCProtocolDecl *rhsProto = *J;
3198        if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
3199            (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
3200          match = true;
3201          break;
3202        }
3203      }
3204      // If the RHS is a qualified interface pointer "NSString<P>*",
3205      // make sure we check the class hierarchy.
3206      if (ObjCInterfaceDecl *rhsID = rhsOPT->getInterfaceDecl()) {
3207        for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
3208             E = lhsQID->qual_end(); I != E; ++I) {
3209          // when comparing an id<P> on lhs with a static type on rhs,
3210          // see if static class implements all of id's protocols, directly or
3211          // through its super class and categories.
3212          if (ClassImplementsProtocol(*I, rhsID, true)) {
3213            match = true;
3214            break;
3215          }
3216        }
3217      }
3218      if (!match)
3219        return false;
3220    }
3221
3222    return true;
3223  }
3224
3225  const ObjCObjectPointerType *rhsQID = rhs->getAsObjCQualifiedIdType();
3226  assert(rhsQID && "One of the LHS/RHS should be id<x>");
3227
3228  if (const ObjCObjectPointerType *lhsOPT =
3229        lhs->getAsObjCInterfacePointerType()) {
3230    if (lhsOPT->qual_empty()) {
3231      bool match = false;
3232      if (ObjCInterfaceDecl *lhsID = lhsOPT->getInterfaceDecl()) {
3233        for (ObjCObjectPointerType::qual_iterator I = rhsQID->qual_begin(),
3234             E = rhsQID->qual_end(); I != E; ++I) {
3235          // when comparing an id<P> on lhs with a static type on rhs,
3236          // see if static class implements all of id's protocols, directly or
3237          // through its super class and categories.
3238          if (ClassImplementsProtocol(*I, lhsID, true)) {
3239            match = true;
3240            break;
3241          }
3242        }
3243        if (!match)
3244          return false;
3245      }
3246      return true;
3247    }
3248    // Both the right and left sides have qualifiers.
3249    for (ObjCObjectPointerType::qual_iterator I = lhsOPT->qual_begin(),
3250         E = lhsOPT->qual_end(); I != E; ++I) {
3251      ObjCProtocolDecl *lhsProto = *I;
3252      bool match = false;
3253
3254      // when comparing an id<P> on lhs with a static type on rhs,
3255      // see if static class implements all of id's protocols, directly or
3256      // through its super class and categories.
3257      for (ObjCObjectPointerType::qual_iterator J = rhsQID->qual_begin(),
3258           E = rhsQID->qual_end(); J != E; ++J) {
3259        ObjCProtocolDecl *rhsProto = *J;
3260        if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
3261            (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
3262          match = true;
3263          break;
3264        }
3265      }
3266      if (!match)
3267        return false;
3268    }
3269    return true;
3270  }
3271  return false;
3272}
3273
3274/// canAssignObjCInterfaces - Return true if the two interface types are
3275/// compatible for assignment from RHS to LHS.  This handles validation of any
3276/// protocol qualifiers on the LHS or RHS.
3277///
3278bool ASTContext::canAssignObjCInterfaces(const ObjCObjectPointerType *LHSOPT,
3279                                         const ObjCObjectPointerType *RHSOPT) {
3280  // If either type represents the built-in 'id' or 'Class' types, return true.
3281  if (LHSOPT->isObjCBuiltinType() || RHSOPT->isObjCBuiltinType())
3282    return true;
3283
3284  if (LHSOPT->isObjCQualifiedIdType() || RHSOPT->isObjCQualifiedIdType())
3285    return ObjCQualifiedIdTypesAreCompatible(QualType(LHSOPT,0),
3286                                             QualType(RHSOPT,0),
3287                                             false);
3288
3289  const ObjCInterfaceType* LHS = LHSOPT->getInterfaceType();
3290  const ObjCInterfaceType* RHS = RHSOPT->getInterfaceType();
3291  if (LHS && RHS) // We have 2 user-defined types.
3292    return canAssignObjCInterfaces(LHS, RHS);
3293
3294  return false;
3295}
3296
3297bool ASTContext::canAssignObjCInterfaces(const ObjCInterfaceType *LHS,
3298                                         const ObjCInterfaceType *RHS) {
3299  // Verify that the base decls are compatible: the RHS must be a subclass of
3300  // the LHS.
3301  if (!LHS->getDecl()->isSuperClassOf(RHS->getDecl()))
3302    return false;
3303
3304  // RHS must have a superset of the protocols in the LHS.  If the LHS is not
3305  // protocol qualified at all, then we are good.
3306  if (LHS->getNumProtocols() == 0)
3307    return true;
3308
3309  // Okay, we know the LHS has protocol qualifiers.  If the RHS doesn't, then it
3310  // isn't a superset.
3311  if (RHS->getNumProtocols() == 0)
3312    return true;  // FIXME: should return false!
3313
3314  for (ObjCInterfaceType::qual_iterator LHSPI = LHS->qual_begin(),
3315                                        LHSPE = LHS->qual_end();
3316       LHSPI != LHSPE; LHSPI++) {
3317    bool RHSImplementsProtocol = false;
3318
3319    // If the RHS doesn't implement the protocol on the left, the types
3320    // are incompatible.
3321    for (ObjCInterfaceType::qual_iterator RHSPI = RHS->qual_begin(),
3322                                          RHSPE = RHS->qual_end();
3323         RHSPI != RHSPE; RHSPI++) {
3324      if ((*RHSPI)->lookupProtocolNamed((*LHSPI)->getIdentifier())) {
3325        RHSImplementsProtocol = true;
3326        break;
3327      }
3328    }
3329    // FIXME: For better diagnostics, consider passing back the protocol name.
3330    if (!RHSImplementsProtocol)
3331      return false;
3332  }
3333  // The RHS implements all protocols listed on the LHS.
3334  return true;
3335}
3336
3337bool ASTContext::areComparableObjCPointerTypes(QualType LHS, QualType RHS) {
3338  // get the "pointed to" types
3339  const ObjCObjectPointerType *LHSOPT = LHS->getAsObjCObjectPointerType();
3340  const ObjCObjectPointerType *RHSOPT = RHS->getAsObjCObjectPointerType();
3341
3342  if (!LHSOPT || !RHSOPT)
3343    return false;
3344
3345  return canAssignObjCInterfaces(LHSOPT, RHSOPT) ||
3346         canAssignObjCInterfaces(RHSOPT, LHSOPT);
3347}
3348
3349/// typesAreCompatible - C99 6.7.3p9: For two qualified types to be compatible,
3350/// both shall have the identically qualified version of a compatible type.
3351/// C99 6.2.7p1: Two types have compatible types if their types are the
3352/// same. See 6.7.[2,3,5] for additional rules.
3353bool ASTContext::typesAreCompatible(QualType LHS, QualType RHS) {
3354  return !mergeTypes(LHS, RHS).isNull();
3355}
3356
3357QualType ASTContext::mergeFunctionTypes(QualType lhs, QualType rhs) {
3358  const FunctionType *lbase = lhs->getAsFunctionType();
3359  const FunctionType *rbase = rhs->getAsFunctionType();
3360  const FunctionProtoType *lproto = dyn_cast<FunctionProtoType>(lbase);
3361  const FunctionProtoType *rproto = dyn_cast<FunctionProtoType>(rbase);
3362  bool allLTypes = true;
3363  bool allRTypes = true;
3364
3365  // Check return type
3366  QualType retType = mergeTypes(lbase->getResultType(), rbase->getResultType());
3367  if (retType.isNull()) return QualType();
3368  if (getCanonicalType(retType) != getCanonicalType(lbase->getResultType()))
3369    allLTypes = false;
3370  if (getCanonicalType(retType) != getCanonicalType(rbase->getResultType()))
3371    allRTypes = false;
3372  bool NoReturn = lbase->getNoReturnAttr() || rbase->getNoReturnAttr();
3373  if (NoReturn != lbase->getNoReturnAttr())
3374    allLTypes = false;
3375  if (NoReturn != rbase->getNoReturnAttr())
3376    allRTypes = false;
3377
3378  if (lproto && rproto) { // two C99 style function prototypes
3379    assert(!lproto->hasExceptionSpec() && !rproto->hasExceptionSpec() &&
3380           "C++ shouldn't be here");
3381    unsigned lproto_nargs = lproto->getNumArgs();
3382    unsigned rproto_nargs = rproto->getNumArgs();
3383
3384    // Compatible functions must have the same number of arguments
3385    if (lproto_nargs != rproto_nargs)
3386      return QualType();
3387
3388    // Variadic and non-variadic functions aren't compatible
3389    if (lproto->isVariadic() != rproto->isVariadic())
3390      return QualType();
3391
3392    if (lproto->getTypeQuals() != rproto->getTypeQuals())
3393      return QualType();
3394
3395    // Check argument compatibility
3396    llvm::SmallVector<QualType, 10> types;
3397    for (unsigned i = 0; i < lproto_nargs; i++) {
3398      QualType largtype = lproto->getArgType(i).getUnqualifiedType();
3399      QualType rargtype = rproto->getArgType(i).getUnqualifiedType();
3400      QualType argtype = mergeTypes(largtype, rargtype);
3401      if (argtype.isNull()) return QualType();
3402      types.push_back(argtype);
3403      if (getCanonicalType(argtype) != getCanonicalType(largtype))
3404        allLTypes = false;
3405      if (getCanonicalType(argtype) != getCanonicalType(rargtype))
3406        allRTypes = false;
3407    }
3408    if (allLTypes) return lhs;
3409    if (allRTypes) return rhs;
3410    return getFunctionType(retType, types.begin(), types.size(),
3411                           lproto->isVariadic(), lproto->getTypeQuals(),
3412                           NoReturn);
3413  }
3414
3415  if (lproto) allRTypes = false;
3416  if (rproto) allLTypes = false;
3417
3418  const FunctionProtoType *proto = lproto ? lproto : rproto;
3419  if (proto) {
3420    assert(!proto->hasExceptionSpec() && "C++ shouldn't be here");
3421    if (proto->isVariadic()) return QualType();
3422    // Check that the types are compatible with the types that
3423    // would result from default argument promotions (C99 6.7.5.3p15).
3424    // The only types actually affected are promotable integer
3425    // types and floats, which would be passed as a different
3426    // type depending on whether the prototype is visible.
3427    unsigned proto_nargs = proto->getNumArgs();
3428    for (unsigned i = 0; i < proto_nargs; ++i) {
3429      QualType argTy = proto->getArgType(i);
3430      if (argTy->isPromotableIntegerType() ||
3431          getCanonicalType(argTy).getUnqualifiedType() == FloatTy)
3432        return QualType();
3433    }
3434
3435    if (allLTypes) return lhs;
3436    if (allRTypes) return rhs;
3437    return getFunctionType(retType, proto->arg_type_begin(),
3438                           proto->getNumArgs(), lproto->isVariadic(),
3439                           lproto->getTypeQuals(), NoReturn);
3440  }
3441
3442  if (allLTypes) return lhs;
3443  if (allRTypes) return rhs;
3444  return getFunctionNoProtoType(retType, NoReturn);
3445}
3446
3447QualType ASTContext::mergeTypes(QualType LHS, QualType RHS) {
3448  // C++ [expr]: If an expression initially has the type "reference to T", the
3449  // type is adjusted to "T" prior to any further analysis, the expression
3450  // designates the object or function denoted by the reference, and the
3451  // expression is an lvalue unless the reference is an rvalue reference and
3452  // the expression is a function call (possibly inside parentheses).
3453  // FIXME: C++ shouldn't be going through here!  The rules are different
3454  // enough that they should be handled separately.
3455  // FIXME: Merging of lvalue and rvalue references is incorrect. C++ *really*
3456  // shouldn't be going through here!
3457  if (const ReferenceType *RT = LHS->getAsReferenceType())
3458    LHS = RT->getPointeeType();
3459  if (const ReferenceType *RT = RHS->getAsReferenceType())
3460    RHS = RT->getPointeeType();
3461
3462  QualType LHSCan = getCanonicalType(LHS),
3463           RHSCan = getCanonicalType(RHS);
3464
3465  // If two types are identical, they are compatible.
3466  if (LHSCan == RHSCan)
3467    return LHS;
3468
3469  // If the qualifiers are different, the types aren't compatible
3470  // Note that we handle extended qualifiers later, in the
3471  // case for ExtQualType.
3472  if (LHSCan.getCVRQualifiers() != RHSCan.getCVRQualifiers())
3473    return QualType();
3474
3475  Type::TypeClass LHSClass = LHSCan->getTypeClass();
3476  Type::TypeClass RHSClass = RHSCan->getTypeClass();
3477
3478  // We want to consider the two function types to be the same for these
3479  // comparisons, just force one to the other.
3480  if (LHSClass == Type::FunctionProto) LHSClass = Type::FunctionNoProto;
3481  if (RHSClass == Type::FunctionProto) RHSClass = Type::FunctionNoProto;
3482
3483  // Strip off objc_gc attributes off the top level so they can be merged.
3484  // This is a complete mess, but the attribute itself doesn't make much sense.
3485  if (RHSClass == Type::ExtQual) {
3486    QualType::GCAttrTypes GCAttr = RHSCan.getObjCGCAttr();
3487    if (GCAttr != QualType::GCNone) {
3488      QualType::GCAttrTypes GCLHSAttr = LHSCan.getObjCGCAttr();
3489      // __weak attribute must appear on both declarations.
3490      // __strong attribue is redundant if other decl is an objective-c
3491      // object pointer (or decorated with __strong attribute); otherwise
3492      // issue error.
3493      if ((GCAttr == QualType::Weak && GCLHSAttr != GCAttr) ||
3494          (GCAttr == QualType::Strong && GCLHSAttr != GCAttr &&
3495           !LHSCan->isObjCObjectPointerType()))
3496        return QualType();
3497
3498      RHS = QualType(cast<ExtQualType>(RHS.getDesugaredType())->getBaseType(),
3499                     RHS.getCVRQualifiers());
3500      QualType Result = mergeTypes(LHS, RHS);
3501      if (!Result.isNull()) {
3502        if (Result.getObjCGCAttr() == QualType::GCNone)
3503          Result = getObjCGCQualType(Result, GCAttr);
3504        else if (Result.getObjCGCAttr() != GCAttr)
3505          Result = QualType();
3506      }
3507      return Result;
3508    }
3509  }
3510  if (LHSClass == Type::ExtQual) {
3511    QualType::GCAttrTypes GCAttr = LHSCan.getObjCGCAttr();
3512    if (GCAttr != QualType::GCNone) {
3513      QualType::GCAttrTypes GCRHSAttr = RHSCan.getObjCGCAttr();
3514      // __weak attribute must appear on both declarations. __strong
3515      // __strong attribue is redundant if other decl is an objective-c
3516      // object pointer (or decorated with __strong attribute); otherwise
3517      // issue error.
3518      if ((GCAttr == QualType::Weak && GCRHSAttr != GCAttr) ||
3519          (GCAttr == QualType::Strong && GCRHSAttr != GCAttr &&
3520           !RHSCan->isObjCObjectPointerType()))
3521        return QualType();
3522
3523      LHS = QualType(cast<ExtQualType>(LHS.getDesugaredType())->getBaseType(),
3524                     LHS.getCVRQualifiers());
3525      QualType Result = mergeTypes(LHS, RHS);
3526      if (!Result.isNull()) {
3527        if (Result.getObjCGCAttr() == QualType::GCNone)
3528          Result = getObjCGCQualType(Result, GCAttr);
3529        else if (Result.getObjCGCAttr() != GCAttr)
3530          Result = QualType();
3531      }
3532      return Result;
3533    }
3534  }
3535
3536  // Same as above for arrays
3537  if (LHSClass == Type::VariableArray || LHSClass == Type::IncompleteArray)
3538    LHSClass = Type::ConstantArray;
3539  if (RHSClass == Type::VariableArray || RHSClass == Type::IncompleteArray)
3540    RHSClass = Type::ConstantArray;
3541
3542  // Canonicalize ExtVector -> Vector.
3543  if (LHSClass == Type::ExtVector) LHSClass = Type::Vector;
3544  if (RHSClass == Type::ExtVector) RHSClass = Type::Vector;
3545
3546  // If the canonical type classes don't match.
3547  if (LHSClass != RHSClass) {
3548    // C99 6.7.2.2p4: Each enumerated type shall be compatible with char,
3549    // a signed integer type, or an unsigned integer type.
3550    if (const EnumType* ETy = LHS->getAsEnumType()) {
3551      if (ETy->getDecl()->getIntegerType() == RHSCan.getUnqualifiedType())
3552        return RHS;
3553    }
3554    if (const EnumType* ETy = RHS->getAsEnumType()) {
3555      if (ETy->getDecl()->getIntegerType() == LHSCan.getUnqualifiedType())
3556        return LHS;
3557    }
3558
3559    return QualType();
3560  }
3561
3562  // The canonical type classes match.
3563  switch (LHSClass) {
3564#define TYPE(Class, Base)
3565#define ABSTRACT_TYPE(Class, Base)
3566#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
3567#define DEPENDENT_TYPE(Class, Base) case Type::Class:
3568#include "clang/AST/TypeNodes.def"
3569    assert(false && "Non-canonical and dependent types shouldn't get here");
3570    return QualType();
3571
3572  case Type::LValueReference:
3573  case Type::RValueReference:
3574  case Type::MemberPointer:
3575    assert(false && "C++ should never be in mergeTypes");
3576    return QualType();
3577
3578  case Type::IncompleteArray:
3579  case Type::VariableArray:
3580  case Type::FunctionProto:
3581  case Type::ExtVector:
3582    assert(false && "Types are eliminated above");
3583    return QualType();
3584
3585  case Type::Pointer:
3586  {
3587    // Merge two pointer types, while trying to preserve typedef info
3588    QualType LHSPointee = LHS->getAsPointerType()->getPointeeType();
3589    QualType RHSPointee = RHS->getAsPointerType()->getPointeeType();
3590    QualType ResultType = mergeTypes(LHSPointee, RHSPointee);
3591    if (ResultType.isNull()) return QualType();
3592    if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
3593      return LHS;
3594    if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
3595      return RHS;
3596    return getPointerType(ResultType);
3597  }
3598  case Type::BlockPointer:
3599  {
3600    // Merge two block pointer types, while trying to preserve typedef info
3601    QualType LHSPointee = LHS->getAsBlockPointerType()->getPointeeType();
3602    QualType RHSPointee = RHS->getAsBlockPointerType()->getPointeeType();
3603    QualType ResultType = mergeTypes(LHSPointee, RHSPointee);
3604    if (ResultType.isNull()) return QualType();
3605    if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
3606      return LHS;
3607    if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
3608      return RHS;
3609    return getBlockPointerType(ResultType);
3610  }
3611  case Type::ConstantArray:
3612  {
3613    const ConstantArrayType* LCAT = getAsConstantArrayType(LHS);
3614    const ConstantArrayType* RCAT = getAsConstantArrayType(RHS);
3615    if (LCAT && RCAT && RCAT->getSize() != LCAT->getSize())
3616      return QualType();
3617
3618    QualType LHSElem = getAsArrayType(LHS)->getElementType();
3619    QualType RHSElem = getAsArrayType(RHS)->getElementType();
3620    QualType ResultType = mergeTypes(LHSElem, RHSElem);
3621    if (ResultType.isNull()) return QualType();
3622    if (LCAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
3623      return LHS;
3624    if (RCAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
3625      return RHS;
3626    if (LCAT) return getConstantArrayType(ResultType, LCAT->getSize(),
3627                                          ArrayType::ArraySizeModifier(), 0);
3628    if (RCAT) return getConstantArrayType(ResultType, RCAT->getSize(),
3629                                          ArrayType::ArraySizeModifier(), 0);
3630    const VariableArrayType* LVAT = getAsVariableArrayType(LHS);
3631    const VariableArrayType* RVAT = getAsVariableArrayType(RHS);
3632    if (LVAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
3633      return LHS;
3634    if (RVAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
3635      return RHS;
3636    if (LVAT) {
3637      // FIXME: This isn't correct! But tricky to implement because
3638      // the array's size has to be the size of LHS, but the type
3639      // has to be different.
3640      return LHS;
3641    }
3642    if (RVAT) {
3643      // FIXME: This isn't correct! But tricky to implement because
3644      // the array's size has to be the size of RHS, but the type
3645      // has to be different.
3646      return RHS;
3647    }
3648    if (getCanonicalType(LHSElem) == getCanonicalType(ResultType)) return LHS;
3649    if (getCanonicalType(RHSElem) == getCanonicalType(ResultType)) return RHS;
3650    return getIncompleteArrayType(ResultType,
3651                                  ArrayType::ArraySizeModifier(), 0);
3652  }
3653  case Type::FunctionNoProto:
3654    return mergeFunctionTypes(LHS, RHS);
3655  case Type::Record:
3656  case Type::Enum:
3657    return QualType();
3658  case Type::Builtin:
3659    // Only exactly equal builtin types are compatible, which is tested above.
3660    return QualType();
3661  case Type::Complex:
3662    // Distinct complex types are incompatible.
3663    return QualType();
3664  case Type::Vector:
3665    // FIXME: The merged type should be an ExtVector!
3666    if (areCompatVectorTypes(LHS->getAsVectorType(), RHS->getAsVectorType()))
3667      return LHS;
3668    return QualType();
3669  case Type::ObjCInterface: {
3670    // Check if the interfaces are assignment compatible.
3671    // FIXME: This should be type compatibility, e.g. whether
3672    // "LHS x; RHS x;" at global scope is legal.
3673    const ObjCInterfaceType* LHSIface = LHS->getAsObjCInterfaceType();
3674    const ObjCInterfaceType* RHSIface = RHS->getAsObjCInterfaceType();
3675    if (LHSIface && RHSIface &&
3676        canAssignObjCInterfaces(LHSIface, RHSIface))
3677      return LHS;
3678
3679    return QualType();
3680  }
3681  case Type::ObjCObjectPointer: {
3682    if (canAssignObjCInterfaces(LHS->getAsObjCObjectPointerType(),
3683                                RHS->getAsObjCObjectPointerType()))
3684      return LHS;
3685
3686    return QualType();
3687  }
3688  case Type::FixedWidthInt:
3689    // Distinct fixed-width integers are not compatible.
3690    return QualType();
3691  case Type::ExtQual:
3692    // FIXME: ExtQual types can be compatible even if they're not
3693    // identical!
3694    return QualType();
3695    // First attempt at an implementation, but I'm not really sure it's
3696    // right...
3697#if 0
3698    ExtQualType* LQual = cast<ExtQualType>(LHSCan);
3699    ExtQualType* RQual = cast<ExtQualType>(RHSCan);
3700    if (LQual->getAddressSpace() != RQual->getAddressSpace() ||
3701        LQual->getObjCGCAttr() != RQual->getObjCGCAttr())
3702      return QualType();
3703    QualType LHSBase, RHSBase, ResultType, ResCanUnqual;
3704    LHSBase = QualType(LQual->getBaseType(), 0);
3705    RHSBase = QualType(RQual->getBaseType(), 0);
3706    ResultType = mergeTypes(LHSBase, RHSBase);
3707    if (ResultType.isNull()) return QualType();
3708    ResCanUnqual = getCanonicalType(ResultType).getUnqualifiedType();
3709    if (LHSCan.getUnqualifiedType() == ResCanUnqual)
3710      return LHS;
3711    if (RHSCan.getUnqualifiedType() == ResCanUnqual)
3712      return RHS;
3713    ResultType = getAddrSpaceQualType(ResultType, LQual->getAddressSpace());
3714    ResultType = getObjCGCQualType(ResultType, LQual->getObjCGCAttr());
3715    ResultType.setCVRQualifiers(LHSCan.getCVRQualifiers());
3716    return ResultType;
3717#endif
3718
3719  case Type::TemplateSpecialization:
3720    assert(false && "Dependent types have no size");
3721    break;
3722  }
3723
3724  return QualType();
3725}
3726
3727//===----------------------------------------------------------------------===//
3728//                         Integer Predicates
3729//===----------------------------------------------------------------------===//
3730
3731unsigned ASTContext::getIntWidth(QualType T) {
3732  if (T == BoolTy)
3733    return 1;
3734  if (FixedWidthIntType* FWIT = dyn_cast<FixedWidthIntType>(T)) {
3735    return FWIT->getWidth();
3736  }
3737  // For builtin types, just use the standard type sizing method
3738  return (unsigned)getTypeSize(T);
3739}
3740
3741QualType ASTContext::getCorrespondingUnsignedType(QualType T) {
3742  assert(T->isSignedIntegerType() && "Unexpected type");
3743  if (const EnumType* ETy = T->getAsEnumType())
3744    T = ETy->getDecl()->getIntegerType();
3745  const BuiltinType* BTy = T->getAsBuiltinType();
3746  assert (BTy && "Unexpected signed integer type");
3747  switch (BTy->getKind()) {
3748  case BuiltinType::Char_S:
3749  case BuiltinType::SChar:
3750    return UnsignedCharTy;
3751  case BuiltinType::Short:
3752    return UnsignedShortTy;
3753  case BuiltinType::Int:
3754    return UnsignedIntTy;
3755  case BuiltinType::Long:
3756    return UnsignedLongTy;
3757  case BuiltinType::LongLong:
3758    return UnsignedLongLongTy;
3759  case BuiltinType::Int128:
3760    return UnsignedInt128Ty;
3761  default:
3762    assert(0 && "Unexpected signed integer type");
3763    return QualType();
3764  }
3765}
3766
3767ExternalASTSource::~ExternalASTSource() { }
3768
3769void ExternalASTSource::PrintStats() { }
3770
3771
3772//===----------------------------------------------------------------------===//
3773//                          Builtin Type Computation
3774//===----------------------------------------------------------------------===//
3775
3776/// DecodeTypeFromStr - This decodes one type descriptor from Str, advancing the
3777/// pointer over the consumed characters.  This returns the resultant type.
3778static QualType DecodeTypeFromStr(const char *&Str, ASTContext &Context,
3779                                  ASTContext::GetBuiltinTypeError &Error,
3780                                  bool AllowTypeModifiers = true) {
3781  // Modifiers.
3782  int HowLong = 0;
3783  bool Signed = false, Unsigned = false;
3784
3785  // Read the modifiers first.
3786  bool Done = false;
3787  while (!Done) {
3788    switch (*Str++) {
3789    default: Done = true; --Str; break;
3790    case 'S':
3791      assert(!Unsigned && "Can't use both 'S' and 'U' modifiers!");
3792      assert(!Signed && "Can't use 'S' modifier multiple times!");
3793      Signed = true;
3794      break;
3795    case 'U':
3796      assert(!Signed && "Can't use both 'S' and 'U' modifiers!");
3797      assert(!Unsigned && "Can't use 'S' modifier multiple times!");
3798      Unsigned = true;
3799      break;
3800    case 'L':
3801      assert(HowLong <= 2 && "Can't have LLLL modifier");
3802      ++HowLong;
3803      break;
3804    }
3805  }
3806
3807  QualType Type;
3808
3809  // Read the base type.
3810  switch (*Str++) {
3811  default: assert(0 && "Unknown builtin type letter!");
3812  case 'v':
3813    assert(HowLong == 0 && !Signed && !Unsigned &&
3814           "Bad modifiers used with 'v'!");
3815    Type = Context.VoidTy;
3816    break;
3817  case 'f':
3818    assert(HowLong == 0 && !Signed && !Unsigned &&
3819           "Bad modifiers used with 'f'!");
3820    Type = Context.FloatTy;
3821    break;
3822  case 'd':
3823    assert(HowLong < 2 && !Signed && !Unsigned &&
3824           "Bad modifiers used with 'd'!");
3825    if (HowLong)
3826      Type = Context.LongDoubleTy;
3827    else
3828      Type = Context.DoubleTy;
3829    break;
3830  case 's':
3831    assert(HowLong == 0 && "Bad modifiers used with 's'!");
3832    if (Unsigned)
3833      Type = Context.UnsignedShortTy;
3834    else
3835      Type = Context.ShortTy;
3836    break;
3837  case 'i':
3838    if (HowLong == 3)
3839      Type = Unsigned ? Context.UnsignedInt128Ty : Context.Int128Ty;
3840    else if (HowLong == 2)
3841      Type = Unsigned ? Context.UnsignedLongLongTy : Context.LongLongTy;
3842    else if (HowLong == 1)
3843      Type = Unsigned ? Context.UnsignedLongTy : Context.LongTy;
3844    else
3845      Type = Unsigned ? Context.UnsignedIntTy : Context.IntTy;
3846    break;
3847  case 'c':
3848    assert(HowLong == 0 && "Bad modifiers used with 'c'!");
3849    if (Signed)
3850      Type = Context.SignedCharTy;
3851    else if (Unsigned)
3852      Type = Context.UnsignedCharTy;
3853    else
3854      Type = Context.CharTy;
3855    break;
3856  case 'b': // boolean
3857    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'b'!");
3858    Type = Context.BoolTy;
3859    break;
3860  case 'z':  // size_t.
3861    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'z'!");
3862    Type = Context.getSizeType();
3863    break;
3864  case 'F':
3865    Type = Context.getCFConstantStringType();
3866    break;
3867  case 'a':
3868    Type = Context.getBuiltinVaListType();
3869    assert(!Type.isNull() && "builtin va list type not initialized!");
3870    break;
3871  case 'A':
3872    // This is a "reference" to a va_list; however, what exactly
3873    // this means depends on how va_list is defined. There are two
3874    // different kinds of va_list: ones passed by value, and ones
3875    // passed by reference.  An example of a by-value va_list is
3876    // x86, where va_list is a char*. An example of by-ref va_list
3877    // is x86-64, where va_list is a __va_list_tag[1]. For x86,
3878    // we want this argument to be a char*&; for x86-64, we want
3879    // it to be a __va_list_tag*.
3880    Type = Context.getBuiltinVaListType();
3881    assert(!Type.isNull() && "builtin va list type not initialized!");
3882    if (Type->isArrayType()) {
3883      Type = Context.getArrayDecayedType(Type);
3884    } else {
3885      Type = Context.getLValueReferenceType(Type);
3886    }
3887    break;
3888  case 'V': {
3889    char *End;
3890
3891    unsigned NumElements = strtoul(Str, &End, 10);
3892    assert(End != Str && "Missing vector size");
3893
3894    Str = End;
3895
3896    QualType ElementType = DecodeTypeFromStr(Str, Context, Error, false);
3897    Type = Context.getVectorType(ElementType, NumElements);
3898    break;
3899  }
3900  case 'P': {
3901    Type = Context.getFILEType();
3902    if (Type.isNull()) {
3903      Error = ASTContext::GE_Missing_FILE;
3904      return QualType();
3905    } else {
3906      break;
3907    }
3908  }
3909  }
3910
3911  if (!AllowTypeModifiers)
3912    return Type;
3913
3914  Done = false;
3915  while (!Done) {
3916    switch (*Str++) {
3917      default: Done = true; --Str; break;
3918      case '*':
3919        Type = Context.getPointerType(Type);
3920        break;
3921      case '&':
3922        Type = Context.getLValueReferenceType(Type);
3923        break;
3924      // FIXME: There's no way to have a built-in with an rvalue ref arg.
3925      case 'C':
3926        Type = Type.getQualifiedType(QualType::Const);
3927        break;
3928    }
3929  }
3930
3931  return Type;
3932}
3933
3934/// GetBuiltinType - Return the type for the specified builtin.
3935QualType ASTContext::GetBuiltinType(unsigned id,
3936                                    GetBuiltinTypeError &Error) {
3937  const char *TypeStr = BuiltinInfo.GetTypeString(id);
3938
3939  llvm::SmallVector<QualType, 8> ArgTypes;
3940
3941  Error = GE_None;
3942  QualType ResType = DecodeTypeFromStr(TypeStr, *this, Error);
3943  if (Error != GE_None)
3944    return QualType();
3945  while (TypeStr[0] && TypeStr[0] != '.') {
3946    QualType Ty = DecodeTypeFromStr(TypeStr, *this, Error);
3947    if (Error != GE_None)
3948      return QualType();
3949
3950    // Do array -> pointer decay.  The builtin should use the decayed type.
3951    if (Ty->isArrayType())
3952      Ty = getArrayDecayedType(Ty);
3953
3954    ArgTypes.push_back(Ty);
3955  }
3956
3957  assert((TypeStr[0] != '.' || TypeStr[1] == 0) &&
3958         "'.' should only occur at end of builtin type list!");
3959
3960  // handle untyped/variadic arguments "T c99Style();" or "T cppStyle(...);".
3961  if (ArgTypes.size() == 0 && TypeStr[0] == '.')
3962    return getFunctionNoProtoType(ResType);
3963  return getFunctionType(ResType, ArgTypes.data(), ArgTypes.size(),
3964                         TypeStr[0] == '.', 0);
3965}
3966