ASTContext.cpp revision 3a4d98341a3b016f6bf2559dde5f3d9d8bf5f358
1//===--- ASTContext.cpp - Context to hold long-lived AST nodes ------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements the ASTContext interface.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/AST/ASTContext.h"
15#include "clang/AST/DeclCXX.h"
16#include "clang/AST/DeclObjC.h"
17#include "clang/AST/DeclTemplate.h"
18#include "clang/AST/Expr.h"
19#include "clang/AST/ExternalASTSource.h"
20#include "clang/AST/RecordLayout.h"
21#include "clang/Basic/Builtins.h"
22#include "clang/Basic/SourceManager.h"
23#include "clang/Basic/TargetInfo.h"
24#include "llvm/ADT/StringExtras.h"
25#include "llvm/Support/MathExtras.h"
26#include "llvm/Support/MemoryBuffer.h"
27#include "RecordLayoutBuilder.h"
28
29using namespace clang;
30
31enum FloatingRank {
32  FloatRank, DoubleRank, LongDoubleRank
33};
34
35ASTContext::ASTContext(const LangOptions& LOpts, SourceManager &SM,
36                       TargetInfo &t,
37                       IdentifierTable &idents, SelectorTable &sels,
38                       Builtin::Context &builtins,
39                       bool FreeMem, unsigned size_reserve) :
40  GlobalNestedNameSpecifier(0), CFConstantStringTypeDecl(0),
41  ObjCFastEnumerationStateTypeDecl(0), FILEDecl(0),
42  SourceMgr(SM), LangOpts(LOpts),
43  LoadedExternalComments(false), FreeMemory(FreeMem), Target(t),
44  Idents(idents), Selectors(sels),
45  BuiltinInfo(builtins), ExternalSource(0), PrintingPolicy(LOpts) {
46  if (size_reserve > 0) Types.reserve(size_reserve);
47  TUDecl = TranslationUnitDecl::Create(*this);
48  InitBuiltinTypes();
49}
50
51ASTContext::~ASTContext() {
52  // Deallocate all the types.
53  while (!Types.empty()) {
54    Types.back()->Destroy(*this);
55    Types.pop_back();
56  }
57
58  {
59    llvm::DenseMap<const RecordDecl*, const ASTRecordLayout*>::iterator
60      I = ASTRecordLayouts.begin(), E = ASTRecordLayouts.end();
61    while (I != E) {
62      ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second);
63      delete R;
64    }
65  }
66
67  {
68    llvm::DenseMap<const ObjCContainerDecl*, const ASTRecordLayout*>::iterator
69      I = ObjCLayouts.begin(), E = ObjCLayouts.end();
70    while (I != E) {
71      ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second);
72      delete R;
73    }
74  }
75
76  // Destroy nested-name-specifiers.
77  for (llvm::FoldingSet<NestedNameSpecifier>::iterator
78         NNS = NestedNameSpecifiers.begin(),
79         NNSEnd = NestedNameSpecifiers.end();
80       NNS != NNSEnd;
81       /* Increment in loop */)
82    (*NNS++).Destroy(*this);
83
84  if (GlobalNestedNameSpecifier)
85    GlobalNestedNameSpecifier->Destroy(*this);
86
87  TUDecl->Destroy(*this);
88}
89
90void
91ASTContext::setExternalSource(llvm::OwningPtr<ExternalASTSource> &Source) {
92  ExternalSource.reset(Source.take());
93}
94
95void ASTContext::PrintStats() const {
96  fprintf(stderr, "*** AST Context Stats:\n");
97  fprintf(stderr, "  %d types total.\n", (int)Types.size());
98
99  unsigned counts[] = {
100#define TYPE(Name, Parent) 0,
101#define ABSTRACT_TYPE(Name, Parent)
102#include "clang/AST/TypeNodes.def"
103    0 // Extra
104  };
105
106  for (unsigned i = 0, e = Types.size(); i != e; ++i) {
107    Type *T = Types[i];
108    counts[(unsigned)T->getTypeClass()]++;
109  }
110
111  unsigned Idx = 0;
112  unsigned TotalBytes = 0;
113#define TYPE(Name, Parent)                                              \
114  if (counts[Idx])                                                      \
115    fprintf(stderr, "    %d %s types\n", (int)counts[Idx], #Name);      \
116  TotalBytes += counts[Idx] * sizeof(Name##Type);                       \
117  ++Idx;
118#define ABSTRACT_TYPE(Name, Parent)
119#include "clang/AST/TypeNodes.def"
120
121  fprintf(stderr, "Total bytes = %d\n", int(TotalBytes));
122
123  if (ExternalSource.get()) {
124    fprintf(stderr, "\n");
125    ExternalSource->PrintStats();
126  }
127}
128
129
130void ASTContext::InitBuiltinType(QualType &R, BuiltinType::Kind K) {
131  Types.push_back((R = QualType(new (*this,8) BuiltinType(K),0)).getTypePtr());
132}
133
134void ASTContext::InitBuiltinTypes() {
135  assert(VoidTy.isNull() && "Context reinitialized?");
136
137  // C99 6.2.5p19.
138  InitBuiltinType(VoidTy,              BuiltinType::Void);
139
140  // C99 6.2.5p2.
141  InitBuiltinType(BoolTy,              BuiltinType::Bool);
142  // C99 6.2.5p3.
143  if (LangOpts.CharIsSigned)
144    InitBuiltinType(CharTy,            BuiltinType::Char_S);
145  else
146    InitBuiltinType(CharTy,            BuiltinType::Char_U);
147  // C99 6.2.5p4.
148  InitBuiltinType(SignedCharTy,        BuiltinType::SChar);
149  InitBuiltinType(ShortTy,             BuiltinType::Short);
150  InitBuiltinType(IntTy,               BuiltinType::Int);
151  InitBuiltinType(LongTy,              BuiltinType::Long);
152  InitBuiltinType(LongLongTy,          BuiltinType::LongLong);
153
154  // C99 6.2.5p6.
155  InitBuiltinType(UnsignedCharTy,      BuiltinType::UChar);
156  InitBuiltinType(UnsignedShortTy,     BuiltinType::UShort);
157  InitBuiltinType(UnsignedIntTy,       BuiltinType::UInt);
158  InitBuiltinType(UnsignedLongTy,      BuiltinType::ULong);
159  InitBuiltinType(UnsignedLongLongTy,  BuiltinType::ULongLong);
160
161  // C99 6.2.5p10.
162  InitBuiltinType(FloatTy,             BuiltinType::Float);
163  InitBuiltinType(DoubleTy,            BuiltinType::Double);
164  InitBuiltinType(LongDoubleTy,        BuiltinType::LongDouble);
165
166  // GNU extension, 128-bit integers.
167  InitBuiltinType(Int128Ty,            BuiltinType::Int128);
168  InitBuiltinType(UnsignedInt128Ty,    BuiltinType::UInt128);
169
170  if (LangOpts.CPlusPlus) // C++ 3.9.1p5
171    InitBuiltinType(WCharTy,           BuiltinType::WChar);
172  else // C99
173    WCharTy = getFromTargetType(Target.getWCharType());
174
175  if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
176    InitBuiltinType(Char16Ty,           BuiltinType::Char16);
177  else // C99
178    Char16Ty = getFromTargetType(Target.getChar16Type());
179
180  if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
181    InitBuiltinType(Char32Ty,           BuiltinType::Char32);
182  else // C99
183    Char32Ty = getFromTargetType(Target.getChar32Type());
184
185  // Placeholder type for functions.
186  InitBuiltinType(OverloadTy,          BuiltinType::Overload);
187
188  // Placeholder type for type-dependent expressions whose type is
189  // completely unknown. No code should ever check a type against
190  // DependentTy and users should never see it; however, it is here to
191  // help diagnose failures to properly check for type-dependent
192  // expressions.
193  InitBuiltinType(DependentTy,         BuiltinType::Dependent);
194
195  // Placeholder type for C++0x auto declarations whose real type has
196  // not yet been deduced.
197  InitBuiltinType(UndeducedAutoTy, BuiltinType::UndeducedAuto);
198
199  // C99 6.2.5p11.
200  FloatComplexTy      = getComplexType(FloatTy);
201  DoubleComplexTy     = getComplexType(DoubleTy);
202  LongDoubleComplexTy = getComplexType(LongDoubleTy);
203
204  BuiltinVaListType = QualType();
205
206  // "Builtin" typedefs set by Sema::ActOnTranslationUnitScope().
207  ObjCIdTypedefType = QualType();
208  ObjCClassTypedefType = QualType();
209
210  // Builtin types for 'id' and 'Class'.
211  InitBuiltinType(ObjCBuiltinIdTy, BuiltinType::ObjCId);
212  InitBuiltinType(ObjCBuiltinClassTy, BuiltinType::ObjCClass);
213
214  ObjCConstantStringType = QualType();
215
216  // void * type
217  VoidPtrTy = getPointerType(VoidTy);
218
219  // nullptr type (C++0x 2.14.7)
220  InitBuiltinType(NullPtrTy,           BuiltinType::NullPtr);
221}
222
223namespace {
224  class BeforeInTranslationUnit
225    : std::binary_function<SourceRange, SourceRange, bool> {
226    SourceManager *SourceMgr;
227
228  public:
229    explicit BeforeInTranslationUnit(SourceManager *SM) : SourceMgr(SM) { }
230
231    bool operator()(SourceRange X, SourceRange Y) {
232      return SourceMgr->isBeforeInTranslationUnit(X.getBegin(), Y.getBegin());
233    }
234  };
235}
236
237/// \brief Determine whether the given comment is a Doxygen-style comment.
238///
239/// \param Start the start of the comment text.
240///
241/// \param End the end of the comment text.
242///
243/// \param Member whether we want to check whether this is a member comment
244/// (which requires a < after the Doxygen-comment delimiter). Otherwise,
245/// we only return true when we find a non-member comment.
246static bool
247isDoxygenComment(SourceManager &SourceMgr, SourceRange Comment,
248                 bool Member = false) {
249  const char *BufferStart
250    = SourceMgr.getBufferData(SourceMgr.getFileID(Comment.getBegin())).first;
251  const char *Start = BufferStart + SourceMgr.getFileOffset(Comment.getBegin());
252  const char* End = BufferStart + SourceMgr.getFileOffset(Comment.getEnd());
253
254  if (End - Start < 4)
255    return false;
256
257  assert(Start[0] == '/' && "Not a comment?");
258  if (Start[1] == '*' && !(Start[2] == '!' || Start[2] == '*'))
259    return false;
260  if (Start[1] == '/' && !(Start[2] == '!' || Start[2] == '/'))
261    return false;
262
263  return (Start[3] == '<') == Member;
264}
265
266/// \brief Retrieve the comment associated with the given declaration, if
267/// it has one.
268const char *ASTContext::getCommentForDecl(const Decl *D) {
269  if (!D)
270    return 0;
271
272  // Check whether we have cached a comment string for this declaration
273  // already.
274  llvm::DenseMap<const Decl *, std::string>::iterator Pos
275    = DeclComments.find(D);
276  if (Pos != DeclComments.end())
277    return Pos->second.c_str();
278
279  // If we have an external AST source and have not yet loaded comments from
280  // that source, do so now.
281  if (ExternalSource && !LoadedExternalComments) {
282    std::vector<SourceRange> LoadedComments;
283    ExternalSource->ReadComments(LoadedComments);
284
285    if (!LoadedComments.empty())
286      Comments.insert(Comments.begin(), LoadedComments.begin(),
287                      LoadedComments.end());
288
289    LoadedExternalComments = true;
290  }
291
292  // If there are no comments anywhere, we won't find anything.
293  if (Comments.empty())
294    return 0;
295
296  // If the declaration doesn't map directly to a location in a file, we
297  // can't find the comment.
298  SourceLocation DeclStartLoc = D->getLocStart();
299  if (DeclStartLoc.isInvalid() || !DeclStartLoc.isFileID())
300    return 0;
301
302  // Find the comment that occurs just before this declaration.
303  std::vector<SourceRange>::iterator LastComment
304    = std::lower_bound(Comments.begin(), Comments.end(),
305                       SourceRange(DeclStartLoc),
306                       BeforeInTranslationUnit(&SourceMgr));
307
308  // Decompose the location for the start of the declaration and find the
309  // beginning of the file buffer.
310  std::pair<FileID, unsigned> DeclStartDecomp
311    = SourceMgr.getDecomposedLoc(DeclStartLoc);
312  const char *FileBufferStart
313    = SourceMgr.getBufferData(DeclStartDecomp.first).first;
314
315  // First check whether we have a comment for a member.
316  if (LastComment != Comments.end() &&
317      !isa<TagDecl>(D) && !isa<NamespaceDecl>(D) &&
318      isDoxygenComment(SourceMgr, *LastComment, true)) {
319    std::pair<FileID, unsigned> LastCommentEndDecomp
320      = SourceMgr.getDecomposedLoc(LastComment->getEnd());
321    if (DeclStartDecomp.first == LastCommentEndDecomp.first &&
322        SourceMgr.getLineNumber(DeclStartDecomp.first, DeclStartDecomp.second)
323          == SourceMgr.getLineNumber(LastCommentEndDecomp.first,
324                                     LastCommentEndDecomp.second)) {
325      // The Doxygen member comment comes after the declaration starts and
326      // is on the same line and in the same file as the declaration. This
327      // is the comment we want.
328      std::string &Result = DeclComments[D];
329      Result.append(FileBufferStart +
330                      SourceMgr.getFileOffset(LastComment->getBegin()),
331                    FileBufferStart + LastCommentEndDecomp.second + 1);
332      return Result.c_str();
333    }
334  }
335
336  if (LastComment == Comments.begin())
337    return 0;
338  --LastComment;
339
340  // Decompose the end of the comment.
341  std::pair<FileID, unsigned> LastCommentEndDecomp
342    = SourceMgr.getDecomposedLoc(LastComment->getEnd());
343
344  // If the comment and the declaration aren't in the same file, then they
345  // aren't related.
346  if (DeclStartDecomp.first != LastCommentEndDecomp.first)
347    return 0;
348
349  // Check that we actually have a Doxygen comment.
350  if (!isDoxygenComment(SourceMgr, *LastComment))
351    return 0;
352
353  // Compute the starting line for the declaration and for the end of the
354  // comment (this is expensive).
355  unsigned DeclStartLine
356    = SourceMgr.getLineNumber(DeclStartDecomp.first, DeclStartDecomp.second);
357  unsigned CommentEndLine
358    = SourceMgr.getLineNumber(LastCommentEndDecomp.first,
359                              LastCommentEndDecomp.second);
360
361  // If the comment does not end on the line prior to the declaration, then
362  // the comment is not associated with the declaration at all.
363  if (CommentEndLine + 1 != DeclStartLine)
364    return 0;
365
366  // We have a comment, but there may be more comments on the previous lines.
367  // Keep looking so long as the comments are still Doxygen comments and are
368  // still adjacent.
369  unsigned ExpectedLine
370    = SourceMgr.getSpellingLineNumber(LastComment->getBegin()) - 1;
371  std::vector<SourceRange>::iterator FirstComment = LastComment;
372  while (FirstComment != Comments.begin()) {
373    // Look at the previous comment
374    --FirstComment;
375    std::pair<FileID, unsigned> Decomp
376      = SourceMgr.getDecomposedLoc(FirstComment->getEnd());
377
378    // If this previous comment is in a different file, we're done.
379    if (Decomp.first != DeclStartDecomp.first) {
380      ++FirstComment;
381      break;
382    }
383
384    // If this comment is not a Doxygen comment, we're done.
385    if (!isDoxygenComment(SourceMgr, *FirstComment)) {
386      ++FirstComment;
387      break;
388    }
389
390    // If the line number is not what we expected, we're done.
391    unsigned Line = SourceMgr.getLineNumber(Decomp.first, Decomp.second);
392    if (Line != ExpectedLine) {
393      ++FirstComment;
394      break;
395    }
396
397    // Set the next expected line number.
398    ExpectedLine
399      = SourceMgr.getSpellingLineNumber(FirstComment->getBegin()) - 1;
400  }
401
402  // The iterator range [FirstComment, LastComment] contains all of the
403  // BCPL comments that, together, are associated with this declaration.
404  // Form a single comment block string for this declaration that concatenates
405  // all of these comments.
406  std::string &Result = DeclComments[D];
407  while (FirstComment != LastComment) {
408    std::pair<FileID, unsigned> DecompStart
409      = SourceMgr.getDecomposedLoc(FirstComment->getBegin());
410    std::pair<FileID, unsigned> DecompEnd
411      = SourceMgr.getDecomposedLoc(FirstComment->getEnd());
412    Result.append(FileBufferStart + DecompStart.second,
413                  FileBufferStart + DecompEnd.second + 1);
414    ++FirstComment;
415  }
416
417  // Append the last comment line.
418  Result.append(FileBufferStart +
419                  SourceMgr.getFileOffset(LastComment->getBegin()),
420                FileBufferStart + LastCommentEndDecomp.second + 1);
421  return Result.c_str();
422}
423
424//===----------------------------------------------------------------------===//
425//                         Type Sizing and Analysis
426//===----------------------------------------------------------------------===//
427
428/// getFloatTypeSemantics - Return the APFloat 'semantics' for the specified
429/// scalar floating point type.
430const llvm::fltSemantics &ASTContext::getFloatTypeSemantics(QualType T) const {
431  const BuiltinType *BT = T->getAsBuiltinType();
432  assert(BT && "Not a floating point type!");
433  switch (BT->getKind()) {
434  default: assert(0 && "Not a floating point type!");
435  case BuiltinType::Float:      return Target.getFloatFormat();
436  case BuiltinType::Double:     return Target.getDoubleFormat();
437  case BuiltinType::LongDouble: return Target.getLongDoubleFormat();
438  }
439}
440
441/// getDeclAlign - Return a conservative estimate of the alignment of the
442/// specified decl.  Note that bitfields do not have a valid alignment, so
443/// this method will assert on them.
444unsigned ASTContext::getDeclAlignInBytes(const Decl *D) {
445  unsigned Align = Target.getCharWidth();
446
447  if (const AlignedAttr* AA = D->getAttr<AlignedAttr>())
448    Align = std::max(Align, AA->getAlignment());
449
450  if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
451    QualType T = VD->getType();
452    if (const ReferenceType* RT = T->getAsReferenceType()) {
453      unsigned AS = RT->getPointeeType().getAddressSpace();
454      Align = Target.getPointerAlign(AS);
455    } else if (!T->isIncompleteType() && !T->isFunctionType()) {
456      // Incomplete or function types default to 1.
457      while (isa<VariableArrayType>(T) || isa<IncompleteArrayType>(T))
458        T = cast<ArrayType>(T)->getElementType();
459
460      Align = std::max(Align, getPreferredTypeAlign(T.getTypePtr()));
461    }
462  }
463
464  return Align / Target.getCharWidth();
465}
466
467/// getTypeSize - Return the size of the specified type, in bits.  This method
468/// does not work on incomplete types.
469std::pair<uint64_t, unsigned>
470ASTContext::getTypeInfo(const Type *T) {
471  uint64_t Width=0;
472  unsigned Align=8;
473  switch (T->getTypeClass()) {
474#define TYPE(Class, Base)
475#define ABSTRACT_TYPE(Class, Base)
476#define NON_CANONICAL_TYPE(Class, Base)
477#define DEPENDENT_TYPE(Class, Base) case Type::Class:
478#include "clang/AST/TypeNodes.def"
479    assert(false && "Should not see dependent types");
480    break;
481
482  case Type::FunctionNoProto:
483  case Type::FunctionProto:
484    // GCC extension: alignof(function) = 32 bits
485    Width = 0;
486    Align = 32;
487    break;
488
489  case Type::IncompleteArray:
490  case Type::VariableArray:
491    Width = 0;
492    Align = getTypeAlign(cast<ArrayType>(T)->getElementType());
493    break;
494
495  case Type::ConstantArrayWithExpr:
496  case Type::ConstantArrayWithoutExpr:
497  case Type::ConstantArray: {
498    const ConstantArrayType *CAT = cast<ConstantArrayType>(T);
499
500    std::pair<uint64_t, unsigned> EltInfo = getTypeInfo(CAT->getElementType());
501    Width = EltInfo.first*CAT->getSize().getZExtValue();
502    Align = EltInfo.second;
503    break;
504  }
505  case Type::ExtVector:
506  case Type::Vector: {
507    std::pair<uint64_t, unsigned> EltInfo =
508      getTypeInfo(cast<VectorType>(T)->getElementType());
509    Width = EltInfo.first*cast<VectorType>(T)->getNumElements();
510    Align = Width;
511    // If the alignment is not a power of 2, round up to the next power of 2.
512    // This happens for non-power-of-2 length vectors.
513    // FIXME: this should probably be a target property.
514    Align = 1 << llvm::Log2_32_Ceil(Align);
515    break;
516  }
517
518  case Type::Builtin:
519    switch (cast<BuiltinType>(T)->getKind()) {
520    default: assert(0 && "Unknown builtin type!");
521    case BuiltinType::Void:
522      // GCC extension: alignof(void) = 8 bits.
523      Width = 0;
524      Align = 8;
525      break;
526
527    case BuiltinType::Bool:
528      Width = Target.getBoolWidth();
529      Align = Target.getBoolAlign();
530      break;
531    case BuiltinType::Char_S:
532    case BuiltinType::Char_U:
533    case BuiltinType::UChar:
534    case BuiltinType::SChar:
535      Width = Target.getCharWidth();
536      Align = Target.getCharAlign();
537      break;
538    case BuiltinType::WChar:
539      Width = Target.getWCharWidth();
540      Align = Target.getWCharAlign();
541      break;
542    case BuiltinType::Char16:
543      Width = Target.getChar16Width();
544      Align = Target.getChar16Align();
545      break;
546    case BuiltinType::Char32:
547      Width = Target.getChar32Width();
548      Align = Target.getChar32Align();
549      break;
550    case BuiltinType::UShort:
551    case BuiltinType::Short:
552      Width = Target.getShortWidth();
553      Align = Target.getShortAlign();
554      break;
555    case BuiltinType::UInt:
556    case BuiltinType::Int:
557      Width = Target.getIntWidth();
558      Align = Target.getIntAlign();
559      break;
560    case BuiltinType::ULong:
561    case BuiltinType::Long:
562      Width = Target.getLongWidth();
563      Align = Target.getLongAlign();
564      break;
565    case BuiltinType::ULongLong:
566    case BuiltinType::LongLong:
567      Width = Target.getLongLongWidth();
568      Align = Target.getLongLongAlign();
569      break;
570    case BuiltinType::Int128:
571    case BuiltinType::UInt128:
572      Width = 128;
573      Align = 128; // int128_t is 128-bit aligned on all targets.
574      break;
575    case BuiltinType::Float:
576      Width = Target.getFloatWidth();
577      Align = Target.getFloatAlign();
578      break;
579    case BuiltinType::Double:
580      Width = Target.getDoubleWidth();
581      Align = Target.getDoubleAlign();
582      break;
583    case BuiltinType::LongDouble:
584      Width = Target.getLongDoubleWidth();
585      Align = Target.getLongDoubleAlign();
586      break;
587    case BuiltinType::NullPtr:
588      Width = Target.getPointerWidth(0); // C++ 3.9.1p11: sizeof(nullptr_t)
589      Align = Target.getPointerAlign(0); //   == sizeof(void*)
590      break;
591    }
592    break;
593  case Type::FixedWidthInt:
594    // FIXME: This isn't precisely correct; the width/alignment should depend
595    // on the available types for the target
596    Width = cast<FixedWidthIntType>(T)->getWidth();
597    Width = std::max(llvm::NextPowerOf2(Width - 1), (uint64_t)8);
598    Align = Width;
599    break;
600  case Type::ExtQual:
601    // FIXME: Pointers into different addr spaces could have different sizes and
602    // alignment requirements: getPointerInfo should take an AddrSpace.
603    return getTypeInfo(QualType(cast<ExtQualType>(T)->getBaseType(), 0));
604  case Type::ObjCObjectPointer:
605    Width = Target.getPointerWidth(0);
606    Align = Target.getPointerAlign(0);
607    break;
608  case Type::BlockPointer: {
609    unsigned AS = cast<BlockPointerType>(T)->getPointeeType().getAddressSpace();
610    Width = Target.getPointerWidth(AS);
611    Align = Target.getPointerAlign(AS);
612    break;
613  }
614  case Type::Pointer: {
615    unsigned AS = cast<PointerType>(T)->getPointeeType().getAddressSpace();
616    Width = Target.getPointerWidth(AS);
617    Align = Target.getPointerAlign(AS);
618    break;
619  }
620  case Type::LValueReference:
621  case Type::RValueReference:
622    // "When applied to a reference or a reference type, the result is the size
623    // of the referenced type." C++98 5.3.3p2: expr.sizeof.
624    // FIXME: This is wrong for struct layout: a reference in a struct has
625    // pointer size.
626    return getTypeInfo(cast<ReferenceType>(T)->getPointeeType());
627  case Type::MemberPointer: {
628    // FIXME: This is ABI dependent. We use the Itanium C++ ABI.
629    // http://www.codesourcery.com/public/cxx-abi/abi.html#member-pointers
630    // If we ever want to support other ABIs this needs to be abstracted.
631
632    QualType Pointee = cast<MemberPointerType>(T)->getPointeeType();
633    std::pair<uint64_t, unsigned> PtrDiffInfo =
634      getTypeInfo(getPointerDiffType());
635    Width = PtrDiffInfo.first;
636    if (Pointee->isFunctionType())
637      Width *= 2;
638    Align = PtrDiffInfo.second;
639    break;
640  }
641  case Type::Complex: {
642    // Complex types have the same alignment as their elements, but twice the
643    // size.
644    std::pair<uint64_t, unsigned> EltInfo =
645      getTypeInfo(cast<ComplexType>(T)->getElementType());
646    Width = EltInfo.first*2;
647    Align = EltInfo.second;
648    break;
649  }
650  case Type::ObjCInterface: {
651    const ObjCInterfaceType *ObjCI = cast<ObjCInterfaceType>(T);
652    const ASTRecordLayout &Layout = getASTObjCInterfaceLayout(ObjCI->getDecl());
653    Width = Layout.getSize();
654    Align = Layout.getAlignment();
655    break;
656  }
657  case Type::Record:
658  case Type::Enum: {
659    const TagType *TT = cast<TagType>(T);
660
661    if (TT->getDecl()->isInvalidDecl()) {
662      Width = 1;
663      Align = 1;
664      break;
665    }
666
667    if (const EnumType *ET = dyn_cast<EnumType>(TT))
668      return getTypeInfo(ET->getDecl()->getIntegerType());
669
670    const RecordType *RT = cast<RecordType>(TT);
671    const ASTRecordLayout &Layout = getASTRecordLayout(RT->getDecl());
672    Width = Layout.getSize();
673    Align = Layout.getAlignment();
674    break;
675  }
676
677  case Type::Typedef: {
678    const TypedefDecl *Typedef = cast<TypedefType>(T)->getDecl();
679    if (const AlignedAttr *Aligned = Typedef->getAttr<AlignedAttr>()) {
680      Align = Aligned->getAlignment();
681      Width = getTypeSize(Typedef->getUnderlyingType().getTypePtr());
682    } else
683      return getTypeInfo(Typedef->getUnderlyingType().getTypePtr());
684    break;
685  }
686
687  case Type::TypeOfExpr:
688    return getTypeInfo(cast<TypeOfExprType>(T)->getUnderlyingExpr()->getType()
689                         .getTypePtr());
690
691  case Type::TypeOf:
692    return getTypeInfo(cast<TypeOfType>(T)->getUnderlyingType().getTypePtr());
693
694  case Type::Decltype:
695    return getTypeInfo(cast<DecltypeType>(T)->getUnderlyingExpr()->getType()
696                        .getTypePtr());
697
698  case Type::QualifiedName:
699    return getTypeInfo(cast<QualifiedNameType>(T)->getNamedType().getTypePtr());
700
701  case Type::TemplateSpecialization:
702    assert(getCanonicalType(T) != T &&
703           "Cannot request the size of a dependent type");
704    // FIXME: this is likely to be wrong once we support template
705    // aliases, since a template alias could refer to a typedef that
706    // has an __aligned__ attribute on it.
707    return getTypeInfo(getCanonicalType(T));
708  }
709
710  assert(Align && (Align & (Align-1)) == 0 && "Alignment must be power of 2");
711  return std::make_pair(Width, Align);
712}
713
714/// getPreferredTypeAlign - Return the "preferred" alignment of the specified
715/// type for the current target in bits.  This can be different than the ABI
716/// alignment in cases where it is beneficial for performance to overalign
717/// a data type.
718unsigned ASTContext::getPreferredTypeAlign(const Type *T) {
719  unsigned ABIAlign = getTypeAlign(T);
720
721  // Double and long long should be naturally aligned if possible.
722  if (const ComplexType* CT = T->getAsComplexType())
723    T = CT->getElementType().getTypePtr();
724  if (T->isSpecificBuiltinType(BuiltinType::Double) ||
725      T->isSpecificBuiltinType(BuiltinType::LongLong))
726    return std::max(ABIAlign, (unsigned)getTypeSize(T));
727
728  return ABIAlign;
729}
730
731static void CollectLocalObjCIvars(ASTContext *Ctx,
732                                  const ObjCInterfaceDecl *OI,
733                                  llvm::SmallVectorImpl<FieldDecl*> &Fields) {
734  for (ObjCInterfaceDecl::ivar_iterator I = OI->ivar_begin(),
735       E = OI->ivar_end(); I != E; ++I) {
736    ObjCIvarDecl *IVDecl = *I;
737    if (!IVDecl->isInvalidDecl())
738      Fields.push_back(cast<FieldDecl>(IVDecl));
739  }
740}
741
742void ASTContext::CollectObjCIvars(const ObjCInterfaceDecl *OI,
743                             llvm::SmallVectorImpl<FieldDecl*> &Fields) {
744  if (const ObjCInterfaceDecl *SuperClass = OI->getSuperClass())
745    CollectObjCIvars(SuperClass, Fields);
746  CollectLocalObjCIvars(this, OI, Fields);
747}
748
749/// ShallowCollectObjCIvars -
750/// Collect all ivars, including those synthesized, in the current class.
751///
752void ASTContext::ShallowCollectObjCIvars(const ObjCInterfaceDecl *OI,
753                                 llvm::SmallVectorImpl<ObjCIvarDecl*> &Ivars,
754                                 bool CollectSynthesized) {
755  for (ObjCInterfaceDecl::ivar_iterator I = OI->ivar_begin(),
756         E = OI->ivar_end(); I != E; ++I) {
757     Ivars.push_back(*I);
758  }
759  if (CollectSynthesized)
760    CollectSynthesizedIvars(OI, Ivars);
761}
762
763void ASTContext::CollectProtocolSynthesizedIvars(const ObjCProtocolDecl *PD,
764                                llvm::SmallVectorImpl<ObjCIvarDecl*> &Ivars) {
765  for (ObjCContainerDecl::prop_iterator I = PD->prop_begin(),
766       E = PD->prop_end(); I != E; ++I)
767    if (ObjCIvarDecl *Ivar = (*I)->getPropertyIvarDecl())
768      Ivars.push_back(Ivar);
769
770  // Also look into nested protocols.
771  for (ObjCProtocolDecl::protocol_iterator P = PD->protocol_begin(),
772       E = PD->protocol_end(); P != E; ++P)
773    CollectProtocolSynthesizedIvars(*P, Ivars);
774}
775
776/// CollectSynthesizedIvars -
777/// This routine collect synthesized ivars for the designated class.
778///
779void ASTContext::CollectSynthesizedIvars(const ObjCInterfaceDecl *OI,
780                                llvm::SmallVectorImpl<ObjCIvarDecl*> &Ivars) {
781  for (ObjCInterfaceDecl::prop_iterator I = OI->prop_begin(),
782       E = OI->prop_end(); I != E; ++I) {
783    if (ObjCIvarDecl *Ivar = (*I)->getPropertyIvarDecl())
784      Ivars.push_back(Ivar);
785  }
786  // Also look into interface's protocol list for properties declared
787  // in the protocol and whose ivars are synthesized.
788  for (ObjCInterfaceDecl::protocol_iterator P = OI->protocol_begin(),
789       PE = OI->protocol_end(); P != PE; ++P) {
790    ObjCProtocolDecl *PD = (*P);
791    CollectProtocolSynthesizedIvars(PD, Ivars);
792  }
793}
794
795unsigned ASTContext::CountProtocolSynthesizedIvars(const ObjCProtocolDecl *PD) {
796  unsigned count = 0;
797  for (ObjCContainerDecl::prop_iterator I = PD->prop_begin(),
798       E = PD->prop_end(); I != E; ++I)
799    if ((*I)->getPropertyIvarDecl())
800      ++count;
801
802  // Also look into nested protocols.
803  for (ObjCProtocolDecl::protocol_iterator P = PD->protocol_begin(),
804       E = PD->protocol_end(); P != E; ++P)
805    count += CountProtocolSynthesizedIvars(*P);
806  return count;
807}
808
809unsigned ASTContext::CountSynthesizedIvars(const ObjCInterfaceDecl *OI)
810{
811  unsigned count = 0;
812  for (ObjCInterfaceDecl::prop_iterator I = OI->prop_begin(),
813       E = OI->prop_end(); I != E; ++I) {
814    if ((*I)->getPropertyIvarDecl())
815      ++count;
816  }
817  // Also look into interface's protocol list for properties declared
818  // in the protocol and whose ivars are synthesized.
819  for (ObjCInterfaceDecl::protocol_iterator P = OI->protocol_begin(),
820       PE = OI->protocol_end(); P != PE; ++P) {
821    ObjCProtocolDecl *PD = (*P);
822    count += CountProtocolSynthesizedIvars(PD);
823  }
824  return count;
825}
826
827/// \brief Get the implementation of ObjCInterfaceDecl,or NULL if none exists.
828ObjCImplementationDecl *ASTContext::getObjCImplementation(ObjCInterfaceDecl *D) {
829  llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
830    I = ObjCImpls.find(D);
831  if (I != ObjCImpls.end())
832    return cast<ObjCImplementationDecl>(I->second);
833  return 0;
834}
835/// \brief Get the implementation of ObjCCategoryDecl, or NULL if none exists.
836ObjCCategoryImplDecl *ASTContext::getObjCImplementation(ObjCCategoryDecl *D) {
837  llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
838    I = ObjCImpls.find(D);
839  if (I != ObjCImpls.end())
840    return cast<ObjCCategoryImplDecl>(I->second);
841  return 0;
842}
843
844/// \brief Set the implementation of ObjCInterfaceDecl.
845void ASTContext::setObjCImplementation(ObjCInterfaceDecl *IFaceD,
846                           ObjCImplementationDecl *ImplD) {
847  assert(IFaceD && ImplD && "Passed null params");
848  ObjCImpls[IFaceD] = ImplD;
849}
850/// \brief Set the implementation of ObjCCategoryDecl.
851void ASTContext::setObjCImplementation(ObjCCategoryDecl *CatD,
852                           ObjCCategoryImplDecl *ImplD) {
853  assert(CatD && ImplD && "Passed null params");
854  ObjCImpls[CatD] = ImplD;
855}
856
857/// getInterfaceLayoutImpl - Get or compute information about the
858/// layout of the given interface.
859///
860/// \param Impl - If given, also include the layout of the interface's
861/// implementation. This may differ by including synthesized ivars.
862const ASTRecordLayout &
863ASTContext::getObjCLayout(const ObjCInterfaceDecl *D,
864                          const ObjCImplementationDecl *Impl) {
865  assert(!D->isForwardDecl() && "Invalid interface decl!");
866
867  // Look up this layout, if already laid out, return what we have.
868  ObjCContainerDecl *Key =
869    Impl ? (ObjCContainerDecl*) Impl : (ObjCContainerDecl*) D;
870  if (const ASTRecordLayout *Entry = ObjCLayouts[Key])
871    return *Entry;
872
873  // Add in synthesized ivar count if laying out an implementation.
874  if (Impl) {
875    unsigned FieldCount = D->ivar_size();
876    unsigned SynthCount = CountSynthesizedIvars(D);
877    FieldCount += SynthCount;
878    // If there aren't any sythesized ivars then reuse the interface
879    // entry. Note we can't cache this because we simply free all
880    // entries later; however we shouldn't look up implementations
881    // frequently.
882    if (SynthCount == 0)
883      return getObjCLayout(D, 0);
884  }
885
886  const ASTRecordLayout *NewEntry =
887    ASTRecordLayoutBuilder::ComputeLayout(*this, D, Impl);
888  ObjCLayouts[Key] = NewEntry;
889
890  return *NewEntry;
891}
892
893const ASTRecordLayout &
894ASTContext::getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D) {
895  return getObjCLayout(D, 0);
896}
897
898const ASTRecordLayout &
899ASTContext::getASTObjCImplementationLayout(const ObjCImplementationDecl *D) {
900  return getObjCLayout(D->getClassInterface(), D);
901}
902
903/// getASTRecordLayout - Get or compute information about the layout of the
904/// specified record (struct/union/class), which indicates its size and field
905/// position information.
906const ASTRecordLayout &ASTContext::getASTRecordLayout(const RecordDecl *D) {
907  D = D->getDefinition(*this);
908  assert(D && "Cannot get layout of forward declarations!");
909
910  // Look up this layout, if already laid out, return what we have.
911  const ASTRecordLayout *&Entry = ASTRecordLayouts[D];
912  if (Entry) return *Entry;
913
914  const ASTRecordLayout *NewEntry =
915    ASTRecordLayoutBuilder::ComputeLayout(*this, D);
916  Entry = NewEntry;
917
918  return *NewEntry;
919}
920
921//===----------------------------------------------------------------------===//
922//                   Type creation/memoization methods
923//===----------------------------------------------------------------------===//
924
925QualType ASTContext::getAddrSpaceQualType(QualType T, unsigned AddressSpace) {
926  QualType CanT = getCanonicalType(T);
927  if (CanT.getAddressSpace() == AddressSpace)
928    return T;
929
930  // If we are composing extended qualifiers together, merge together into one
931  // ExtQualType node.
932  unsigned CVRQuals = T.getCVRQualifiers();
933  QualType::GCAttrTypes GCAttr = QualType::GCNone;
934  Type *TypeNode = T.getTypePtr();
935
936  if (ExtQualType *EQT = dyn_cast<ExtQualType>(TypeNode)) {
937    // If this type already has an address space specified, it cannot get
938    // another one.
939    assert(EQT->getAddressSpace() == 0 &&
940           "Type cannot be in multiple addr spaces!");
941    GCAttr = EQT->getObjCGCAttr();
942    TypeNode = EQT->getBaseType();
943  }
944
945  // Check if we've already instantiated this type.
946  llvm::FoldingSetNodeID ID;
947  ExtQualType::Profile(ID, TypeNode, AddressSpace, GCAttr);
948  void *InsertPos = 0;
949  if (ExtQualType *EXTQy = ExtQualTypes.FindNodeOrInsertPos(ID, InsertPos))
950    return QualType(EXTQy, CVRQuals);
951
952  // If the base type isn't canonical, this won't be a canonical type either,
953  // so fill in the canonical type field.
954  QualType Canonical;
955  if (!TypeNode->isCanonical()) {
956    Canonical = getAddrSpaceQualType(CanT, AddressSpace);
957
958    // Update InsertPos, the previous call could have invalidated it.
959    ExtQualType *NewIP = ExtQualTypes.FindNodeOrInsertPos(ID, InsertPos);
960    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
961  }
962  ExtQualType *New =
963    new (*this, 8) ExtQualType(TypeNode, Canonical, AddressSpace, GCAttr);
964  ExtQualTypes.InsertNode(New, InsertPos);
965  Types.push_back(New);
966  return QualType(New, CVRQuals);
967}
968
969QualType ASTContext::getObjCGCQualType(QualType T,
970                                       QualType::GCAttrTypes GCAttr) {
971  QualType CanT = getCanonicalType(T);
972  if (CanT.getObjCGCAttr() == GCAttr)
973    return T;
974
975  if (T->isPointerType()) {
976    QualType Pointee = T->getAsPointerType()->getPointeeType();
977    if (Pointee->isAnyPointerType()) {
978      QualType ResultType = getObjCGCQualType(Pointee, GCAttr);
979      return getPointerType(ResultType);
980    }
981  }
982  // If we are composing extended qualifiers together, merge together into one
983  // ExtQualType node.
984  unsigned CVRQuals = T.getCVRQualifiers();
985  Type *TypeNode = T.getTypePtr();
986  unsigned AddressSpace = 0;
987
988  if (ExtQualType *EQT = dyn_cast<ExtQualType>(TypeNode)) {
989    // If this type already has an address space specified, it cannot get
990    // another one.
991    assert(EQT->getObjCGCAttr() == QualType::GCNone &&
992           "Type cannot be in multiple addr spaces!");
993    AddressSpace = EQT->getAddressSpace();
994    TypeNode = EQT->getBaseType();
995  }
996
997  // Check if we've already instantiated an gc qual'd type of this type.
998  llvm::FoldingSetNodeID ID;
999  ExtQualType::Profile(ID, TypeNode, AddressSpace, GCAttr);
1000  void *InsertPos = 0;
1001  if (ExtQualType *EXTQy = ExtQualTypes.FindNodeOrInsertPos(ID, InsertPos))
1002    return QualType(EXTQy, CVRQuals);
1003
1004  // If the base type isn't canonical, this won't be a canonical type either,
1005  // so fill in the canonical type field.
1006  // FIXME: Isn't this also not canonical if the base type is a array
1007  // or pointer type?  I can't find any documentation for objc_gc, though...
1008  QualType Canonical;
1009  if (!T->isCanonical()) {
1010    Canonical = getObjCGCQualType(CanT, GCAttr);
1011
1012    // Update InsertPos, the previous call could have invalidated it.
1013    ExtQualType *NewIP = ExtQualTypes.FindNodeOrInsertPos(ID, InsertPos);
1014    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1015  }
1016  ExtQualType *New =
1017    new (*this, 8) ExtQualType(TypeNode, Canonical, AddressSpace, GCAttr);
1018  ExtQualTypes.InsertNode(New, InsertPos);
1019  Types.push_back(New);
1020  return QualType(New, CVRQuals);
1021}
1022
1023/// getComplexType - Return the uniqued reference to the type for a complex
1024/// number with the specified element type.
1025QualType ASTContext::getComplexType(QualType T) {
1026  // Unique pointers, to guarantee there is only one pointer of a particular
1027  // structure.
1028  llvm::FoldingSetNodeID ID;
1029  ComplexType::Profile(ID, T);
1030
1031  void *InsertPos = 0;
1032  if (ComplexType *CT = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos))
1033    return QualType(CT, 0);
1034
1035  // If the pointee type isn't canonical, this won't be a canonical type either,
1036  // so fill in the canonical type field.
1037  QualType Canonical;
1038  if (!T->isCanonical()) {
1039    Canonical = getComplexType(getCanonicalType(T));
1040
1041    // Get the new insert position for the node we care about.
1042    ComplexType *NewIP = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos);
1043    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1044  }
1045  ComplexType *New = new (*this,8) ComplexType(T, Canonical);
1046  Types.push_back(New);
1047  ComplexTypes.InsertNode(New, InsertPos);
1048  return QualType(New, 0);
1049}
1050
1051QualType ASTContext::getFixedWidthIntType(unsigned Width, bool Signed) {
1052  llvm::DenseMap<unsigned, FixedWidthIntType*> &Map = Signed ?
1053     SignedFixedWidthIntTypes : UnsignedFixedWidthIntTypes;
1054  FixedWidthIntType *&Entry = Map[Width];
1055  if (!Entry)
1056    Entry = new FixedWidthIntType(Width, Signed);
1057  return QualType(Entry, 0);
1058}
1059
1060/// getPointerType - Return the uniqued reference to the type for a pointer to
1061/// the specified type.
1062QualType ASTContext::getPointerType(QualType T) {
1063  // Unique pointers, to guarantee there is only one pointer of a particular
1064  // structure.
1065  llvm::FoldingSetNodeID ID;
1066  PointerType::Profile(ID, T);
1067
1068  void *InsertPos = 0;
1069  if (PointerType *PT = PointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1070    return QualType(PT, 0);
1071
1072  // If the pointee type isn't canonical, this won't be a canonical type either,
1073  // so fill in the canonical type field.
1074  QualType Canonical;
1075  if (!T->isCanonical()) {
1076    Canonical = getPointerType(getCanonicalType(T));
1077
1078    // Get the new insert position for the node we care about.
1079    PointerType *NewIP = PointerTypes.FindNodeOrInsertPos(ID, InsertPos);
1080    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1081  }
1082  PointerType *New = new (*this,8) PointerType(T, Canonical);
1083  Types.push_back(New);
1084  PointerTypes.InsertNode(New, InsertPos);
1085  return QualType(New, 0);
1086}
1087
1088/// getBlockPointerType - Return the uniqued reference to the type for
1089/// a pointer to the specified block.
1090QualType ASTContext::getBlockPointerType(QualType T) {
1091  assert(T->isFunctionType() && "block of function types only");
1092  // Unique pointers, to guarantee there is only one block of a particular
1093  // structure.
1094  llvm::FoldingSetNodeID ID;
1095  BlockPointerType::Profile(ID, T);
1096
1097  void *InsertPos = 0;
1098  if (BlockPointerType *PT =
1099        BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1100    return QualType(PT, 0);
1101
1102  // If the block pointee type isn't canonical, this won't be a canonical
1103  // type either so fill in the canonical type field.
1104  QualType Canonical;
1105  if (!T->isCanonical()) {
1106    Canonical = getBlockPointerType(getCanonicalType(T));
1107
1108    // Get the new insert position for the node we care about.
1109    BlockPointerType *NewIP =
1110      BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
1111    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1112  }
1113  BlockPointerType *New = new (*this,8) BlockPointerType(T, Canonical);
1114  Types.push_back(New);
1115  BlockPointerTypes.InsertNode(New, InsertPos);
1116  return QualType(New, 0);
1117}
1118
1119/// getLValueReferenceType - Return the uniqued reference to the type for an
1120/// lvalue reference to the specified type.
1121QualType ASTContext::getLValueReferenceType(QualType T) {
1122  // Unique pointers, to guarantee there is only one pointer of a particular
1123  // structure.
1124  llvm::FoldingSetNodeID ID;
1125  ReferenceType::Profile(ID, T);
1126
1127  void *InsertPos = 0;
1128  if (LValueReferenceType *RT =
1129        LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
1130    return QualType(RT, 0);
1131
1132  // If the referencee type isn't canonical, this won't be a canonical type
1133  // either, so fill in the canonical type field.
1134  QualType Canonical;
1135  if (!T->isCanonical()) {
1136    Canonical = getLValueReferenceType(getCanonicalType(T));
1137
1138    // Get the new insert position for the node we care about.
1139    LValueReferenceType *NewIP =
1140      LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
1141    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1142  }
1143
1144  LValueReferenceType *New = new (*this,8) LValueReferenceType(T, Canonical);
1145  Types.push_back(New);
1146  LValueReferenceTypes.InsertNode(New, InsertPos);
1147  return QualType(New, 0);
1148}
1149
1150/// getRValueReferenceType - Return the uniqued reference to the type for an
1151/// rvalue reference to the specified type.
1152QualType ASTContext::getRValueReferenceType(QualType T) {
1153  // Unique pointers, to guarantee there is only one pointer of a particular
1154  // structure.
1155  llvm::FoldingSetNodeID ID;
1156  ReferenceType::Profile(ID, T);
1157
1158  void *InsertPos = 0;
1159  if (RValueReferenceType *RT =
1160        RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
1161    return QualType(RT, 0);
1162
1163  // If the referencee type isn't canonical, this won't be a canonical type
1164  // either, so fill in the canonical type field.
1165  QualType Canonical;
1166  if (!T->isCanonical()) {
1167    Canonical = getRValueReferenceType(getCanonicalType(T));
1168
1169    // Get the new insert position for the node we care about.
1170    RValueReferenceType *NewIP =
1171      RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
1172    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1173  }
1174
1175  RValueReferenceType *New = new (*this,8) RValueReferenceType(T, Canonical);
1176  Types.push_back(New);
1177  RValueReferenceTypes.InsertNode(New, InsertPos);
1178  return QualType(New, 0);
1179}
1180
1181/// getMemberPointerType - Return the uniqued reference to the type for a
1182/// member pointer to the specified type, in the specified class.
1183QualType ASTContext::getMemberPointerType(QualType T, const Type *Cls)
1184{
1185  // Unique pointers, to guarantee there is only one pointer of a particular
1186  // structure.
1187  llvm::FoldingSetNodeID ID;
1188  MemberPointerType::Profile(ID, T, Cls);
1189
1190  void *InsertPos = 0;
1191  if (MemberPointerType *PT =
1192      MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1193    return QualType(PT, 0);
1194
1195  // If the pointee or class type isn't canonical, this won't be a canonical
1196  // type either, so fill in the canonical type field.
1197  QualType Canonical;
1198  if (!T->isCanonical()) {
1199    Canonical = getMemberPointerType(getCanonicalType(T),getCanonicalType(Cls));
1200
1201    // Get the new insert position for the node we care about.
1202    MemberPointerType *NewIP =
1203      MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
1204    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1205  }
1206  MemberPointerType *New = new (*this,8) MemberPointerType(T, Cls, Canonical);
1207  Types.push_back(New);
1208  MemberPointerTypes.InsertNode(New, InsertPos);
1209  return QualType(New, 0);
1210}
1211
1212/// getConstantArrayType - Return the unique reference to the type for an
1213/// array of the specified element type.
1214QualType ASTContext::getConstantArrayType(QualType EltTy,
1215                                          const llvm::APInt &ArySizeIn,
1216                                          ArrayType::ArraySizeModifier ASM,
1217                                          unsigned EltTypeQuals) {
1218  assert((EltTy->isDependentType() || EltTy->isConstantSizeType()) &&
1219         "Constant array of VLAs is illegal!");
1220
1221  // Convert the array size into a canonical width matching the pointer size for
1222  // the target.
1223  llvm::APInt ArySize(ArySizeIn);
1224  ArySize.zextOrTrunc(Target.getPointerWidth(EltTy.getAddressSpace()));
1225
1226  llvm::FoldingSetNodeID ID;
1227  ConstantArrayType::Profile(ID, EltTy, ArySize, ASM, EltTypeQuals);
1228
1229  void *InsertPos = 0;
1230  if (ConstantArrayType *ATP =
1231      ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
1232    return QualType(ATP, 0);
1233
1234  // If the element type isn't canonical, this won't be a canonical type either,
1235  // so fill in the canonical type field.
1236  QualType Canonical;
1237  if (!EltTy->isCanonical()) {
1238    Canonical = getConstantArrayType(getCanonicalType(EltTy), ArySize,
1239                                     ASM, EltTypeQuals);
1240    // Get the new insert position for the node we care about.
1241    ConstantArrayType *NewIP =
1242      ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
1243    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1244  }
1245
1246  ConstantArrayType *New =
1247    new(*this,8)ConstantArrayType(EltTy, Canonical, ArySize, ASM, EltTypeQuals);
1248  ConstantArrayTypes.InsertNode(New, InsertPos);
1249  Types.push_back(New);
1250  return QualType(New, 0);
1251}
1252
1253/// getConstantArrayWithExprType - Return a reference to the type for
1254/// an array of the specified element type.
1255QualType
1256ASTContext::getConstantArrayWithExprType(QualType EltTy,
1257                                         const llvm::APInt &ArySizeIn,
1258                                         Expr *ArySizeExpr,
1259                                         ArrayType::ArraySizeModifier ASM,
1260                                         unsigned EltTypeQuals,
1261                                         SourceRange Brackets) {
1262  // Convert the array size into a canonical width matching the pointer
1263  // size for the target.
1264  llvm::APInt ArySize(ArySizeIn);
1265  ArySize.zextOrTrunc(Target.getPointerWidth(EltTy.getAddressSpace()));
1266
1267  // Compute the canonical ConstantArrayType.
1268  QualType Canonical = getConstantArrayType(getCanonicalType(EltTy),
1269                                            ArySize, ASM, EltTypeQuals);
1270  // Since we don't unique expressions, it isn't possible to unique VLA's
1271  // that have an expression provided for their size.
1272  ConstantArrayWithExprType *New =
1273    new(*this,8)ConstantArrayWithExprType(EltTy, Canonical,
1274                                          ArySize, ArySizeExpr,
1275                                          ASM, EltTypeQuals, Brackets);
1276  Types.push_back(New);
1277  return QualType(New, 0);
1278}
1279
1280/// getConstantArrayWithoutExprType - Return a reference to the type for
1281/// an array of the specified element type.
1282QualType
1283ASTContext::getConstantArrayWithoutExprType(QualType EltTy,
1284                                            const llvm::APInt &ArySizeIn,
1285                                            ArrayType::ArraySizeModifier ASM,
1286                                            unsigned EltTypeQuals) {
1287  // Convert the array size into a canonical width matching the pointer
1288  // size for the target.
1289  llvm::APInt ArySize(ArySizeIn);
1290  ArySize.zextOrTrunc(Target.getPointerWidth(EltTy.getAddressSpace()));
1291
1292  // Compute the canonical ConstantArrayType.
1293  QualType Canonical = getConstantArrayType(getCanonicalType(EltTy),
1294                                            ArySize, ASM, EltTypeQuals);
1295  ConstantArrayWithoutExprType *New =
1296    new(*this,8)ConstantArrayWithoutExprType(EltTy, Canonical,
1297                                             ArySize, ASM, EltTypeQuals);
1298  Types.push_back(New);
1299  return QualType(New, 0);
1300}
1301
1302/// getVariableArrayType - Returns a non-unique reference to the type for a
1303/// variable array of the specified element type.
1304QualType ASTContext::getVariableArrayType(QualType EltTy,
1305                                          Expr *NumElts,
1306                                          ArrayType::ArraySizeModifier ASM,
1307                                          unsigned EltTypeQuals,
1308                                          SourceRange Brackets) {
1309  // Since we don't unique expressions, it isn't possible to unique VLA's
1310  // that have an expression provided for their size.
1311
1312  VariableArrayType *New =
1313    new(*this,8)VariableArrayType(EltTy, QualType(),
1314                                  NumElts, ASM, EltTypeQuals, Brackets);
1315
1316  VariableArrayTypes.push_back(New);
1317  Types.push_back(New);
1318  return QualType(New, 0);
1319}
1320
1321/// getDependentSizedArrayType - Returns a non-unique reference to
1322/// the type for a dependently-sized array of the specified element
1323/// type. FIXME: We will need these to be uniqued, or at least
1324/// comparable, at some point.
1325QualType ASTContext::getDependentSizedArrayType(QualType EltTy,
1326                                                Expr *NumElts,
1327                                                ArrayType::ArraySizeModifier ASM,
1328                                                unsigned EltTypeQuals,
1329                                                SourceRange Brackets) {
1330  assert((NumElts->isTypeDependent() || NumElts->isValueDependent()) &&
1331         "Size must be type- or value-dependent!");
1332
1333  // Since we don't unique expressions, it isn't possible to unique
1334  // dependently-sized array types.
1335
1336  DependentSizedArrayType *New =
1337    new (*this,8) DependentSizedArrayType(EltTy, QualType(),
1338                                          NumElts, ASM, EltTypeQuals,
1339                                          Brackets);
1340
1341  DependentSizedArrayTypes.push_back(New);
1342  Types.push_back(New);
1343  return QualType(New, 0);
1344}
1345
1346QualType ASTContext::getIncompleteArrayType(QualType EltTy,
1347                                            ArrayType::ArraySizeModifier ASM,
1348                                            unsigned EltTypeQuals) {
1349  llvm::FoldingSetNodeID ID;
1350  IncompleteArrayType::Profile(ID, EltTy, ASM, EltTypeQuals);
1351
1352  void *InsertPos = 0;
1353  if (IncompleteArrayType *ATP =
1354       IncompleteArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
1355    return QualType(ATP, 0);
1356
1357  // If the element type isn't canonical, this won't be a canonical type
1358  // either, so fill in the canonical type field.
1359  QualType Canonical;
1360
1361  if (!EltTy->isCanonical()) {
1362    Canonical = getIncompleteArrayType(getCanonicalType(EltTy),
1363                                       ASM, EltTypeQuals);
1364
1365    // Get the new insert position for the node we care about.
1366    IncompleteArrayType *NewIP =
1367      IncompleteArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
1368    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1369  }
1370
1371  IncompleteArrayType *New
1372    = new (*this,8) IncompleteArrayType(EltTy, Canonical,
1373                                        ASM, EltTypeQuals);
1374
1375  IncompleteArrayTypes.InsertNode(New, InsertPos);
1376  Types.push_back(New);
1377  return QualType(New, 0);
1378}
1379
1380/// getVectorType - Return the unique reference to a vector type of
1381/// the specified element type and size. VectorType must be a built-in type.
1382QualType ASTContext::getVectorType(QualType vecType, unsigned NumElts) {
1383  BuiltinType *baseType;
1384
1385  baseType = dyn_cast<BuiltinType>(getCanonicalType(vecType).getTypePtr());
1386  assert(baseType != 0 && "getVectorType(): Expecting a built-in type");
1387
1388  // Check if we've already instantiated a vector of this type.
1389  llvm::FoldingSetNodeID ID;
1390  VectorType::Profile(ID, vecType, NumElts, Type::Vector);
1391  void *InsertPos = 0;
1392  if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
1393    return QualType(VTP, 0);
1394
1395  // If the element type isn't canonical, this won't be a canonical type either,
1396  // so fill in the canonical type field.
1397  QualType Canonical;
1398  if (!vecType->isCanonical()) {
1399    Canonical = getVectorType(getCanonicalType(vecType), NumElts);
1400
1401    // Get the new insert position for the node we care about.
1402    VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
1403    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1404  }
1405  VectorType *New = new (*this,8) VectorType(vecType, NumElts, Canonical);
1406  VectorTypes.InsertNode(New, InsertPos);
1407  Types.push_back(New);
1408  return QualType(New, 0);
1409}
1410
1411/// getExtVectorType - Return the unique reference to an extended vector type of
1412/// the specified element type and size. VectorType must be a built-in type.
1413QualType ASTContext::getExtVectorType(QualType vecType, unsigned NumElts) {
1414  BuiltinType *baseType;
1415
1416  baseType = dyn_cast<BuiltinType>(getCanonicalType(vecType).getTypePtr());
1417  assert(baseType != 0 && "getExtVectorType(): Expecting a built-in type");
1418
1419  // Check if we've already instantiated a vector of this type.
1420  llvm::FoldingSetNodeID ID;
1421  VectorType::Profile(ID, vecType, NumElts, Type::ExtVector);
1422  void *InsertPos = 0;
1423  if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
1424    return QualType(VTP, 0);
1425
1426  // If the element type isn't canonical, this won't be a canonical type either,
1427  // so fill in the canonical type field.
1428  QualType Canonical;
1429  if (!vecType->isCanonical()) {
1430    Canonical = getExtVectorType(getCanonicalType(vecType), NumElts);
1431
1432    // Get the new insert position for the node we care about.
1433    VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
1434    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1435  }
1436  ExtVectorType *New = new (*this,8) ExtVectorType(vecType, NumElts, Canonical);
1437  VectorTypes.InsertNode(New, InsertPos);
1438  Types.push_back(New);
1439  return QualType(New, 0);
1440}
1441
1442QualType ASTContext::getDependentSizedExtVectorType(QualType vecType,
1443                                                    Expr *SizeExpr,
1444                                                    SourceLocation AttrLoc) {
1445  DependentSizedExtVectorType *New =
1446      new (*this,8) DependentSizedExtVectorType(vecType, QualType(),
1447                                                SizeExpr, AttrLoc);
1448
1449  DependentSizedExtVectorTypes.push_back(New);
1450  Types.push_back(New);
1451  return QualType(New, 0);
1452}
1453
1454/// getFunctionNoProtoType - Return a K&R style C function type like 'int()'.
1455///
1456QualType ASTContext::getFunctionNoProtoType(QualType ResultTy) {
1457  // Unique functions, to guarantee there is only one function of a particular
1458  // structure.
1459  llvm::FoldingSetNodeID ID;
1460  FunctionNoProtoType::Profile(ID, ResultTy);
1461
1462  void *InsertPos = 0;
1463  if (FunctionNoProtoType *FT =
1464        FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
1465    return QualType(FT, 0);
1466
1467  QualType Canonical;
1468  if (!ResultTy->isCanonical()) {
1469    Canonical = getFunctionNoProtoType(getCanonicalType(ResultTy));
1470
1471    // Get the new insert position for the node we care about.
1472    FunctionNoProtoType *NewIP =
1473      FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
1474    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1475  }
1476
1477  FunctionNoProtoType *New =new(*this,8)FunctionNoProtoType(ResultTy,Canonical);
1478  Types.push_back(New);
1479  FunctionNoProtoTypes.InsertNode(New, InsertPos);
1480  return QualType(New, 0);
1481}
1482
1483/// getFunctionType - Return a normal function type with a typed argument
1484/// list.  isVariadic indicates whether the argument list includes '...'.
1485QualType ASTContext::getFunctionType(QualType ResultTy,const QualType *ArgArray,
1486                                     unsigned NumArgs, bool isVariadic,
1487                                     unsigned TypeQuals, bool hasExceptionSpec,
1488                                     bool hasAnyExceptionSpec, unsigned NumExs,
1489                                     const QualType *ExArray) {
1490  // Unique functions, to guarantee there is only one function of a particular
1491  // structure.
1492  llvm::FoldingSetNodeID ID;
1493  FunctionProtoType::Profile(ID, ResultTy, ArgArray, NumArgs, isVariadic,
1494                             TypeQuals, hasExceptionSpec, hasAnyExceptionSpec,
1495                             NumExs, ExArray);
1496
1497  void *InsertPos = 0;
1498  if (FunctionProtoType *FTP =
1499        FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
1500    return QualType(FTP, 0);
1501
1502  // Determine whether the type being created is already canonical or not.
1503  bool isCanonical = ResultTy->isCanonical();
1504  if (hasExceptionSpec)
1505    isCanonical = false;
1506  for (unsigned i = 0; i != NumArgs && isCanonical; ++i)
1507    if (!ArgArray[i]->isCanonical())
1508      isCanonical = false;
1509
1510  // If this type isn't canonical, get the canonical version of it.
1511  // The exception spec is not part of the canonical type.
1512  QualType Canonical;
1513  if (!isCanonical) {
1514    llvm::SmallVector<QualType, 16> CanonicalArgs;
1515    CanonicalArgs.reserve(NumArgs);
1516    for (unsigned i = 0; i != NumArgs; ++i)
1517      CanonicalArgs.push_back(getCanonicalType(ArgArray[i]));
1518
1519    Canonical = getFunctionType(getCanonicalType(ResultTy),
1520                                CanonicalArgs.data(), NumArgs,
1521                                isVariadic, TypeQuals);
1522
1523    // Get the new insert position for the node we care about.
1524    FunctionProtoType *NewIP =
1525      FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
1526    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1527  }
1528
1529  // FunctionProtoType objects are allocated with extra bytes after them
1530  // for two variable size arrays (for parameter and exception types) at the
1531  // end of them.
1532  FunctionProtoType *FTP =
1533    (FunctionProtoType*)Allocate(sizeof(FunctionProtoType) +
1534                                 NumArgs*sizeof(QualType) +
1535                                 NumExs*sizeof(QualType), 8);
1536  new (FTP) FunctionProtoType(ResultTy, ArgArray, NumArgs, isVariadic,
1537                              TypeQuals, hasExceptionSpec, hasAnyExceptionSpec,
1538                              ExArray, NumExs, Canonical);
1539  Types.push_back(FTP);
1540  FunctionProtoTypes.InsertNode(FTP, InsertPos);
1541  return QualType(FTP, 0);
1542}
1543
1544/// getTypeDeclType - Return the unique reference to the type for the
1545/// specified type declaration.
1546QualType ASTContext::getTypeDeclType(TypeDecl *Decl, TypeDecl* PrevDecl) {
1547  assert(Decl && "Passed null for Decl param");
1548  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
1549
1550  if (TypedefDecl *Typedef = dyn_cast<TypedefDecl>(Decl))
1551    return getTypedefType(Typedef);
1552  else if (isa<TemplateTypeParmDecl>(Decl)) {
1553    assert(false && "Template type parameter types are always available.");
1554  } else if (ObjCInterfaceDecl *ObjCInterface = dyn_cast<ObjCInterfaceDecl>(Decl))
1555    return getObjCInterfaceType(ObjCInterface);
1556
1557  if (RecordDecl *Record = dyn_cast<RecordDecl>(Decl)) {
1558    if (PrevDecl)
1559      Decl->TypeForDecl = PrevDecl->TypeForDecl;
1560    else
1561      Decl->TypeForDecl = new (*this,8) RecordType(Record);
1562  }
1563  else if (EnumDecl *Enum = dyn_cast<EnumDecl>(Decl)) {
1564    if (PrevDecl)
1565      Decl->TypeForDecl = PrevDecl->TypeForDecl;
1566    else
1567      Decl->TypeForDecl = new (*this,8) EnumType(Enum);
1568  }
1569  else
1570    assert(false && "TypeDecl without a type?");
1571
1572  if (!PrevDecl) Types.push_back(Decl->TypeForDecl);
1573  return QualType(Decl->TypeForDecl, 0);
1574}
1575
1576/// getTypedefType - Return the unique reference to the type for the
1577/// specified typename decl.
1578QualType ASTContext::getTypedefType(TypedefDecl *Decl) {
1579  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
1580
1581  QualType Canonical = getCanonicalType(Decl->getUnderlyingType());
1582  Decl->TypeForDecl = new(*this,8) TypedefType(Type::Typedef, Decl, Canonical);
1583  Types.push_back(Decl->TypeForDecl);
1584  return QualType(Decl->TypeForDecl, 0);
1585}
1586
1587/// \brief Retrieve the template type parameter type for a template
1588/// parameter or parameter pack with the given depth, index, and (optionally)
1589/// name.
1590QualType ASTContext::getTemplateTypeParmType(unsigned Depth, unsigned Index,
1591                                             bool ParameterPack,
1592                                             IdentifierInfo *Name) {
1593  llvm::FoldingSetNodeID ID;
1594  TemplateTypeParmType::Profile(ID, Depth, Index, ParameterPack, Name);
1595  void *InsertPos = 0;
1596  TemplateTypeParmType *TypeParm
1597    = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
1598
1599  if (TypeParm)
1600    return QualType(TypeParm, 0);
1601
1602  if (Name) {
1603    QualType Canon = getTemplateTypeParmType(Depth, Index, ParameterPack);
1604    TypeParm = new (*this, 8) TemplateTypeParmType(Depth, Index, ParameterPack,
1605                                                   Name, Canon);
1606  } else
1607    TypeParm = new (*this, 8) TemplateTypeParmType(Depth, Index, ParameterPack);
1608
1609  Types.push_back(TypeParm);
1610  TemplateTypeParmTypes.InsertNode(TypeParm, InsertPos);
1611
1612  return QualType(TypeParm, 0);
1613}
1614
1615QualType
1616ASTContext::getTemplateSpecializationType(TemplateName Template,
1617                                          const TemplateArgument *Args,
1618                                          unsigned NumArgs,
1619                                          QualType Canon) {
1620  if (!Canon.isNull())
1621    Canon = getCanonicalType(Canon);
1622
1623  llvm::FoldingSetNodeID ID;
1624  TemplateSpecializationType::Profile(ID, Template, Args, NumArgs);
1625
1626  void *InsertPos = 0;
1627  TemplateSpecializationType *Spec
1628    = TemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
1629
1630  if (Spec)
1631    return QualType(Spec, 0);
1632
1633  void *Mem = Allocate((sizeof(TemplateSpecializationType) +
1634                        sizeof(TemplateArgument) * NumArgs),
1635                       8);
1636  Spec = new (Mem) TemplateSpecializationType(Template, Args, NumArgs, Canon);
1637  Types.push_back(Spec);
1638  TemplateSpecializationTypes.InsertNode(Spec, InsertPos);
1639
1640  return QualType(Spec, 0);
1641}
1642
1643QualType
1644ASTContext::getQualifiedNameType(NestedNameSpecifier *NNS,
1645                                 QualType NamedType) {
1646  llvm::FoldingSetNodeID ID;
1647  QualifiedNameType::Profile(ID, NNS, NamedType);
1648
1649  void *InsertPos = 0;
1650  QualifiedNameType *T
1651    = QualifiedNameTypes.FindNodeOrInsertPos(ID, InsertPos);
1652  if (T)
1653    return QualType(T, 0);
1654
1655  T = new (*this) QualifiedNameType(NNS, NamedType,
1656                                    getCanonicalType(NamedType));
1657  Types.push_back(T);
1658  QualifiedNameTypes.InsertNode(T, InsertPos);
1659  return QualType(T, 0);
1660}
1661
1662QualType ASTContext::getTypenameType(NestedNameSpecifier *NNS,
1663                                     const IdentifierInfo *Name,
1664                                     QualType Canon) {
1665  assert(NNS->isDependent() && "nested-name-specifier must be dependent");
1666
1667  if (Canon.isNull()) {
1668    NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
1669    if (CanonNNS != NNS)
1670      Canon = getTypenameType(CanonNNS, Name);
1671  }
1672
1673  llvm::FoldingSetNodeID ID;
1674  TypenameType::Profile(ID, NNS, Name);
1675
1676  void *InsertPos = 0;
1677  TypenameType *T
1678    = TypenameTypes.FindNodeOrInsertPos(ID, InsertPos);
1679  if (T)
1680    return QualType(T, 0);
1681
1682  T = new (*this) TypenameType(NNS, Name, Canon);
1683  Types.push_back(T);
1684  TypenameTypes.InsertNode(T, InsertPos);
1685  return QualType(T, 0);
1686}
1687
1688QualType
1689ASTContext::getTypenameType(NestedNameSpecifier *NNS,
1690                            const TemplateSpecializationType *TemplateId,
1691                            QualType Canon) {
1692  assert(NNS->isDependent() && "nested-name-specifier must be dependent");
1693
1694  if (Canon.isNull()) {
1695    NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
1696    QualType CanonType = getCanonicalType(QualType(TemplateId, 0));
1697    if (CanonNNS != NNS || CanonType != QualType(TemplateId, 0)) {
1698      const TemplateSpecializationType *CanonTemplateId
1699        = CanonType->getAsTemplateSpecializationType();
1700      assert(CanonTemplateId &&
1701             "Canonical type must also be a template specialization type");
1702      Canon = getTypenameType(CanonNNS, CanonTemplateId);
1703    }
1704  }
1705
1706  llvm::FoldingSetNodeID ID;
1707  TypenameType::Profile(ID, NNS, TemplateId);
1708
1709  void *InsertPos = 0;
1710  TypenameType *T
1711    = TypenameTypes.FindNodeOrInsertPos(ID, InsertPos);
1712  if (T)
1713    return QualType(T, 0);
1714
1715  T = new (*this) TypenameType(NNS, TemplateId, Canon);
1716  Types.push_back(T);
1717  TypenameTypes.InsertNode(T, InsertPos);
1718  return QualType(T, 0);
1719}
1720
1721/// CmpProtocolNames - Comparison predicate for sorting protocols
1722/// alphabetically.
1723static bool CmpProtocolNames(const ObjCProtocolDecl *LHS,
1724                            const ObjCProtocolDecl *RHS) {
1725  return LHS->getDeclName() < RHS->getDeclName();
1726}
1727
1728static void SortAndUniqueProtocols(ObjCProtocolDecl **&Protocols,
1729                                   unsigned &NumProtocols) {
1730  ObjCProtocolDecl **ProtocolsEnd = Protocols+NumProtocols;
1731
1732  // Sort protocols, keyed by name.
1733  std::sort(Protocols, Protocols+NumProtocols, CmpProtocolNames);
1734
1735  // Remove duplicates.
1736  ProtocolsEnd = std::unique(Protocols, ProtocolsEnd);
1737  NumProtocols = ProtocolsEnd-Protocols;
1738}
1739
1740/// getObjCObjectPointerType - Return a ObjCObjectPointerType type for
1741/// the given interface decl and the conforming protocol list.
1742QualType ASTContext::getObjCObjectPointerType(QualType InterfaceT,
1743                                              ObjCProtocolDecl **Protocols,
1744                                              unsigned NumProtocols) {
1745  if (InterfaceT.isNull())
1746    InterfaceT = ObjCBuiltinIdTy;
1747
1748  // Sort the protocol list alphabetically to canonicalize it.
1749  if (NumProtocols)
1750    SortAndUniqueProtocols(Protocols, NumProtocols);
1751
1752  llvm::FoldingSetNodeID ID;
1753  ObjCObjectPointerType::Profile(ID, InterfaceT, Protocols, NumProtocols);
1754
1755  void *InsertPos = 0;
1756  if (ObjCObjectPointerType *QT =
1757              ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1758    return QualType(QT, 0);
1759
1760  // No Match;
1761  ObjCObjectPointerType *QType =
1762    new (*this,8) ObjCObjectPointerType(InterfaceT, Protocols, NumProtocols);
1763
1764  Types.push_back(QType);
1765  ObjCObjectPointerTypes.InsertNode(QType, InsertPos);
1766  return QualType(QType, 0);
1767}
1768
1769/// getObjCInterfaceType - Return the unique reference to the type for the
1770/// specified ObjC interface decl. The list of protocols is optional.
1771QualType ASTContext::getObjCInterfaceType(const ObjCInterfaceDecl *Decl,
1772                       ObjCProtocolDecl **Protocols, unsigned NumProtocols) {
1773  if (NumProtocols)
1774    // Sort the protocol list alphabetically to canonicalize it.
1775    SortAndUniqueProtocols(Protocols, NumProtocols);
1776
1777  llvm::FoldingSetNodeID ID;
1778  ObjCInterfaceType::Profile(ID, Decl, Protocols, NumProtocols);
1779
1780  void *InsertPos = 0;
1781  if (ObjCInterfaceType *QT =
1782      ObjCInterfaceTypes.FindNodeOrInsertPos(ID, InsertPos))
1783    return QualType(QT, 0);
1784
1785  // No Match;
1786  ObjCInterfaceType *QType =
1787    new (*this,8) ObjCInterfaceType(const_cast<ObjCInterfaceDecl*>(Decl),
1788                                    Protocols, NumProtocols);
1789  Types.push_back(QType);
1790  ObjCInterfaceTypes.InsertNode(QType, InsertPos);
1791  return QualType(QType, 0);
1792}
1793
1794/// getTypeOfExprType - Unlike many "get<Type>" functions, we can't unique
1795/// TypeOfExprType AST's (since expression's are never shared). For example,
1796/// multiple declarations that refer to "typeof(x)" all contain different
1797/// DeclRefExpr's. This doesn't effect the type checker, since it operates
1798/// on canonical type's (which are always unique).
1799QualType ASTContext::getTypeOfExprType(Expr *tofExpr) {
1800  TypeOfExprType *toe;
1801  if (tofExpr->isTypeDependent())
1802    toe = new (*this, 8) TypeOfExprType(tofExpr);
1803  else {
1804    QualType Canonical = getCanonicalType(tofExpr->getType());
1805    toe = new (*this,8) TypeOfExprType(tofExpr, Canonical);
1806  }
1807  Types.push_back(toe);
1808  return QualType(toe, 0);
1809}
1810
1811/// getTypeOfType -  Unlike many "get<Type>" functions, we don't unique
1812/// TypeOfType AST's. The only motivation to unique these nodes would be
1813/// memory savings. Since typeof(t) is fairly uncommon, space shouldn't be
1814/// an issue. This doesn't effect the type checker, since it operates
1815/// on canonical type's (which are always unique).
1816QualType ASTContext::getTypeOfType(QualType tofType) {
1817  QualType Canonical = getCanonicalType(tofType);
1818  TypeOfType *tot = new (*this,8) TypeOfType(tofType, Canonical);
1819  Types.push_back(tot);
1820  return QualType(tot, 0);
1821}
1822
1823/// getDecltypeForExpr - Given an expr, will return the decltype for that
1824/// expression, according to the rules in C++0x [dcl.type.simple]p4
1825static QualType getDecltypeForExpr(const Expr *e, ASTContext &Context) {
1826  if (e->isTypeDependent())
1827    return Context.DependentTy;
1828
1829  // If e is an id expression or a class member access, decltype(e) is defined
1830  // as the type of the entity named by e.
1831  if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(e)) {
1832    if (const ValueDecl *VD = dyn_cast<ValueDecl>(DRE->getDecl()))
1833      return VD->getType();
1834  }
1835  if (const MemberExpr *ME = dyn_cast<MemberExpr>(e)) {
1836    if (const FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl()))
1837      return FD->getType();
1838  }
1839  // If e is a function call or an invocation of an overloaded operator,
1840  // (parentheses around e are ignored), decltype(e) is defined as the
1841  // return type of that function.
1842  if (const CallExpr *CE = dyn_cast<CallExpr>(e->IgnoreParens()))
1843    return CE->getCallReturnType();
1844
1845  QualType T = e->getType();
1846
1847  // Otherwise, where T is the type of e, if e is an lvalue, decltype(e) is
1848  // defined as T&, otherwise decltype(e) is defined as T.
1849  if (e->isLvalue(Context) == Expr::LV_Valid)
1850    T = Context.getLValueReferenceType(T);
1851
1852  return T;
1853}
1854
1855/// getDecltypeType -  Unlike many "get<Type>" functions, we don't unique
1856/// DecltypeType AST's. The only motivation to unique these nodes would be
1857/// memory savings. Since decltype(t) is fairly uncommon, space shouldn't be
1858/// an issue. This doesn't effect the type checker, since it operates
1859/// on canonical type's (which are always unique).
1860QualType ASTContext::getDecltypeType(Expr *e) {
1861  DecltypeType *dt;
1862  if (e->isTypeDependent()) // FIXME: canonicalize the expression
1863    dt = new (*this, 8) DecltypeType(e, DependentTy);
1864  else {
1865    QualType T = getDecltypeForExpr(e, *this);
1866    dt = new (*this, 8) DecltypeType(e, T, getCanonicalType(T));
1867  }
1868  Types.push_back(dt);
1869  return QualType(dt, 0);
1870}
1871
1872/// getTagDeclType - Return the unique reference to the type for the
1873/// specified TagDecl (struct/union/class/enum) decl.
1874QualType ASTContext::getTagDeclType(TagDecl *Decl) {
1875  assert (Decl);
1876  return getTypeDeclType(Decl);
1877}
1878
1879/// getSizeType - Return the unique type for "size_t" (C99 7.17), the result
1880/// of the sizeof operator (C99 6.5.3.4p4). The value is target dependent and
1881/// needs to agree with the definition in <stddef.h>.
1882QualType ASTContext::getSizeType() const {
1883  return getFromTargetType(Target.getSizeType());
1884}
1885
1886/// getSignedWCharType - Return the type of "signed wchar_t".
1887/// Used when in C++, as a GCC extension.
1888QualType ASTContext::getSignedWCharType() const {
1889  // FIXME: derive from "Target" ?
1890  return WCharTy;
1891}
1892
1893/// getUnsignedWCharType - Return the type of "unsigned wchar_t".
1894/// Used when in C++, as a GCC extension.
1895QualType ASTContext::getUnsignedWCharType() const {
1896  // FIXME: derive from "Target" ?
1897  return UnsignedIntTy;
1898}
1899
1900/// getPointerDiffType - Return the unique type for "ptrdiff_t" (ref?)
1901/// defined in <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9).
1902QualType ASTContext::getPointerDiffType() const {
1903  return getFromTargetType(Target.getPtrDiffType(0));
1904}
1905
1906//===----------------------------------------------------------------------===//
1907//                              Type Operators
1908//===----------------------------------------------------------------------===//
1909
1910/// getCanonicalType - Return the canonical (structural) type corresponding to
1911/// the specified potentially non-canonical type.  The non-canonical version
1912/// of a type may have many "decorated" versions of types.  Decorators can
1913/// include typedefs, 'typeof' operators, etc. The returned type is guaranteed
1914/// to be free of any of these, allowing two canonical types to be compared
1915/// for exact equality with a simple pointer comparison.
1916QualType ASTContext::getCanonicalType(QualType T) {
1917  QualType CanType = T.getTypePtr()->getCanonicalTypeInternal();
1918
1919  // If the result has type qualifiers, make sure to canonicalize them as well.
1920  unsigned TypeQuals = T.getCVRQualifiers() | CanType.getCVRQualifiers();
1921  if (TypeQuals == 0) return CanType;
1922
1923  // If the type qualifiers are on an array type, get the canonical type of the
1924  // array with the qualifiers applied to the element type.
1925  ArrayType *AT = dyn_cast<ArrayType>(CanType);
1926  if (!AT)
1927    return CanType.getQualifiedType(TypeQuals);
1928
1929  // Get the canonical version of the element with the extra qualifiers on it.
1930  // This can recursively sink qualifiers through multiple levels of arrays.
1931  QualType NewEltTy=AT->getElementType().getWithAdditionalQualifiers(TypeQuals);
1932  NewEltTy = getCanonicalType(NewEltTy);
1933
1934  if (ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
1935    return getConstantArrayType(NewEltTy, CAT->getSize(),CAT->getSizeModifier(),
1936                                CAT->getIndexTypeQualifier());
1937  if (IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT))
1938    return getIncompleteArrayType(NewEltTy, IAT->getSizeModifier(),
1939                                  IAT->getIndexTypeQualifier());
1940
1941  if (DependentSizedArrayType *DSAT = dyn_cast<DependentSizedArrayType>(AT))
1942    return getDependentSizedArrayType(NewEltTy,
1943                                      DSAT->getSizeExpr(),
1944                                      DSAT->getSizeModifier(),
1945                                      DSAT->getIndexTypeQualifier(),
1946                                      DSAT->getBracketsRange());
1947
1948  VariableArrayType *VAT = cast<VariableArrayType>(AT);
1949  return getVariableArrayType(NewEltTy,
1950                              VAT->getSizeExpr(),
1951                              VAT->getSizeModifier(),
1952                              VAT->getIndexTypeQualifier(),
1953                              VAT->getBracketsRange());
1954}
1955
1956TemplateName ASTContext::getCanonicalTemplateName(TemplateName Name) {
1957  // If this template name refers to a template, the canonical
1958  // template name merely stores the template itself.
1959  if (TemplateDecl *Template = Name.getAsTemplateDecl())
1960    return TemplateName(cast<TemplateDecl>(Template->getCanonicalDecl()));
1961
1962  DependentTemplateName *DTN = Name.getAsDependentTemplateName();
1963  assert(DTN && "Non-dependent template names must refer to template decls.");
1964  return DTN->CanonicalTemplateName;
1965}
1966
1967NestedNameSpecifier *
1968ASTContext::getCanonicalNestedNameSpecifier(NestedNameSpecifier *NNS) {
1969  if (!NNS)
1970    return 0;
1971
1972  switch (NNS->getKind()) {
1973  case NestedNameSpecifier::Identifier:
1974    // Canonicalize the prefix but keep the identifier the same.
1975    return NestedNameSpecifier::Create(*this,
1976                         getCanonicalNestedNameSpecifier(NNS->getPrefix()),
1977                                       NNS->getAsIdentifier());
1978
1979  case NestedNameSpecifier::Namespace:
1980    // A namespace is canonical; build a nested-name-specifier with
1981    // this namespace and no prefix.
1982    return NestedNameSpecifier::Create(*this, 0, NNS->getAsNamespace());
1983
1984  case NestedNameSpecifier::TypeSpec:
1985  case NestedNameSpecifier::TypeSpecWithTemplate: {
1986    QualType T = getCanonicalType(QualType(NNS->getAsType(), 0));
1987    NestedNameSpecifier *Prefix = 0;
1988
1989    // FIXME: This isn't the right check!
1990    if (T->isDependentType())
1991      Prefix = getCanonicalNestedNameSpecifier(NNS->getPrefix());
1992
1993    return NestedNameSpecifier::Create(*this, Prefix,
1994                 NNS->getKind() == NestedNameSpecifier::TypeSpecWithTemplate,
1995                                       T.getTypePtr());
1996  }
1997
1998  case NestedNameSpecifier::Global:
1999    // The global specifier is canonical and unique.
2000    return NNS;
2001  }
2002
2003  // Required to silence a GCC warning
2004  return 0;
2005}
2006
2007
2008const ArrayType *ASTContext::getAsArrayType(QualType T) {
2009  // Handle the non-qualified case efficiently.
2010  if (T.getCVRQualifiers() == 0) {
2011    // Handle the common positive case fast.
2012    if (const ArrayType *AT = dyn_cast<ArrayType>(T))
2013      return AT;
2014  }
2015
2016  // Handle the common negative case fast, ignoring CVR qualifiers.
2017  QualType CType = T->getCanonicalTypeInternal();
2018
2019  // Make sure to look through type qualifiers (like ExtQuals) for the negative
2020  // test.
2021  if (!isa<ArrayType>(CType) &&
2022      !isa<ArrayType>(CType.getUnqualifiedType()))
2023    return 0;
2024
2025  // Apply any CVR qualifiers from the array type to the element type.  This
2026  // implements C99 6.7.3p8: "If the specification of an array type includes
2027  // any type qualifiers, the element type is so qualified, not the array type."
2028
2029  // If we get here, we either have type qualifiers on the type, or we have
2030  // sugar such as a typedef in the way.  If we have type qualifiers on the type
2031  // we must propagate them down into the elemeng type.
2032  unsigned CVRQuals = T.getCVRQualifiers();
2033  unsigned AddrSpace = 0;
2034  Type *Ty = T.getTypePtr();
2035
2036  // Rip through ExtQualType's and typedefs to get to a concrete type.
2037  while (1) {
2038    if (const ExtQualType *EXTQT = dyn_cast<ExtQualType>(Ty)) {
2039      AddrSpace = EXTQT->getAddressSpace();
2040      Ty = EXTQT->getBaseType();
2041    } else {
2042      T = Ty->getDesugaredType();
2043      if (T.getTypePtr() == Ty && T.getCVRQualifiers() == 0)
2044        break;
2045      CVRQuals |= T.getCVRQualifiers();
2046      Ty = T.getTypePtr();
2047    }
2048  }
2049
2050  // If we have a simple case, just return now.
2051  const ArrayType *ATy = dyn_cast<ArrayType>(Ty);
2052  if (ATy == 0 || (AddrSpace == 0 && CVRQuals == 0))
2053    return ATy;
2054
2055  // Otherwise, we have an array and we have qualifiers on it.  Push the
2056  // qualifiers into the array element type and return a new array type.
2057  // Get the canonical version of the element with the extra qualifiers on it.
2058  // This can recursively sink qualifiers through multiple levels of arrays.
2059  QualType NewEltTy = ATy->getElementType();
2060  if (AddrSpace)
2061    NewEltTy = getAddrSpaceQualType(NewEltTy, AddrSpace);
2062  NewEltTy = NewEltTy.getWithAdditionalQualifiers(CVRQuals);
2063
2064  if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(ATy))
2065    return cast<ArrayType>(getConstantArrayType(NewEltTy, CAT->getSize(),
2066                                                CAT->getSizeModifier(),
2067                                                CAT->getIndexTypeQualifier()));
2068  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(ATy))
2069    return cast<ArrayType>(getIncompleteArrayType(NewEltTy,
2070                                                  IAT->getSizeModifier(),
2071                                                  IAT->getIndexTypeQualifier()));
2072
2073  if (const DependentSizedArrayType *DSAT
2074        = dyn_cast<DependentSizedArrayType>(ATy))
2075    return cast<ArrayType>(
2076                     getDependentSizedArrayType(NewEltTy,
2077                                                DSAT->getSizeExpr(),
2078                                                DSAT->getSizeModifier(),
2079                                                DSAT->getIndexTypeQualifier(),
2080                                                DSAT->getBracketsRange()));
2081
2082  const VariableArrayType *VAT = cast<VariableArrayType>(ATy);
2083  return cast<ArrayType>(getVariableArrayType(NewEltTy,
2084                                              VAT->getSizeExpr(),
2085                                              VAT->getSizeModifier(),
2086                                              VAT->getIndexTypeQualifier(),
2087                                              VAT->getBracketsRange()));
2088}
2089
2090
2091/// getArrayDecayedType - Return the properly qualified result of decaying the
2092/// specified array type to a pointer.  This operation is non-trivial when
2093/// handling typedefs etc.  The canonical type of "T" must be an array type,
2094/// this returns a pointer to a properly qualified element of the array.
2095///
2096/// See C99 6.7.5.3p7 and C99 6.3.2.1p3.
2097QualType ASTContext::getArrayDecayedType(QualType Ty) {
2098  // Get the element type with 'getAsArrayType' so that we don't lose any
2099  // typedefs in the element type of the array.  This also handles propagation
2100  // of type qualifiers from the array type into the element type if present
2101  // (C99 6.7.3p8).
2102  const ArrayType *PrettyArrayType = getAsArrayType(Ty);
2103  assert(PrettyArrayType && "Not an array type!");
2104
2105  QualType PtrTy = getPointerType(PrettyArrayType->getElementType());
2106
2107  // int x[restrict 4] ->  int *restrict
2108  return PtrTy.getQualifiedType(PrettyArrayType->getIndexTypeQualifier());
2109}
2110
2111QualType ASTContext::getBaseElementType(const VariableArrayType *VAT) {
2112  QualType ElemTy = VAT->getElementType();
2113
2114  if (const VariableArrayType *VAT = getAsVariableArrayType(ElemTy))
2115    return getBaseElementType(VAT);
2116
2117  return ElemTy;
2118}
2119
2120/// getFloatingRank - Return a relative rank for floating point types.
2121/// This routine will assert if passed a built-in type that isn't a float.
2122static FloatingRank getFloatingRank(QualType T) {
2123  if (const ComplexType *CT = T->getAsComplexType())
2124    return getFloatingRank(CT->getElementType());
2125
2126  assert(T->getAsBuiltinType() && "getFloatingRank(): not a floating type");
2127  switch (T->getAsBuiltinType()->getKind()) {
2128  default: assert(0 && "getFloatingRank(): not a floating type");
2129  case BuiltinType::Float:      return FloatRank;
2130  case BuiltinType::Double:     return DoubleRank;
2131  case BuiltinType::LongDouble: return LongDoubleRank;
2132  }
2133}
2134
2135/// getFloatingTypeOfSizeWithinDomain - Returns a real floating
2136/// point or a complex type (based on typeDomain/typeSize).
2137/// 'typeDomain' is a real floating point or complex type.
2138/// 'typeSize' is a real floating point or complex type.
2139QualType ASTContext::getFloatingTypeOfSizeWithinDomain(QualType Size,
2140                                                       QualType Domain) const {
2141  FloatingRank EltRank = getFloatingRank(Size);
2142  if (Domain->isComplexType()) {
2143    switch (EltRank) {
2144    default: assert(0 && "getFloatingRank(): illegal value for rank");
2145    case FloatRank:      return FloatComplexTy;
2146    case DoubleRank:     return DoubleComplexTy;
2147    case LongDoubleRank: return LongDoubleComplexTy;
2148    }
2149  }
2150
2151  assert(Domain->isRealFloatingType() && "Unknown domain!");
2152  switch (EltRank) {
2153  default: assert(0 && "getFloatingRank(): illegal value for rank");
2154  case FloatRank:      return FloatTy;
2155  case DoubleRank:     return DoubleTy;
2156  case LongDoubleRank: return LongDoubleTy;
2157  }
2158}
2159
2160/// getFloatingTypeOrder - Compare the rank of the two specified floating
2161/// point types, ignoring the domain of the type (i.e. 'double' ==
2162/// '_Complex double').  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
2163/// LHS < RHS, return -1.
2164int ASTContext::getFloatingTypeOrder(QualType LHS, QualType RHS) {
2165  FloatingRank LHSR = getFloatingRank(LHS);
2166  FloatingRank RHSR = getFloatingRank(RHS);
2167
2168  if (LHSR == RHSR)
2169    return 0;
2170  if (LHSR > RHSR)
2171    return 1;
2172  return -1;
2173}
2174
2175/// getIntegerRank - Return an integer conversion rank (C99 6.3.1.1p1). This
2176/// routine will assert if passed a built-in type that isn't an integer or enum,
2177/// or if it is not canonicalized.
2178unsigned ASTContext::getIntegerRank(Type *T) {
2179  assert(T->isCanonical() && "T should be canonicalized");
2180  if (EnumType* ET = dyn_cast<EnumType>(T))
2181    T = ET->getDecl()->getIntegerType().getTypePtr();
2182
2183  if (T->isSpecificBuiltinType(BuiltinType::WChar))
2184    T = getFromTargetType(Target.getWCharType()).getTypePtr();
2185
2186  if (T->isSpecificBuiltinType(BuiltinType::Char16))
2187    T = getFromTargetType(Target.getChar16Type()).getTypePtr();
2188
2189  if (T->isSpecificBuiltinType(BuiltinType::Char32))
2190    T = getFromTargetType(Target.getChar32Type()).getTypePtr();
2191
2192  // There are two things which impact the integer rank: the width, and
2193  // the ordering of builtins.  The builtin ordering is encoded in the
2194  // bottom three bits; the width is encoded in the bits above that.
2195  if (FixedWidthIntType* FWIT = dyn_cast<FixedWidthIntType>(T))
2196    return FWIT->getWidth() << 3;
2197
2198  switch (cast<BuiltinType>(T)->getKind()) {
2199  default: assert(0 && "getIntegerRank(): not a built-in integer");
2200  case BuiltinType::Bool:
2201    return 1 + (getIntWidth(BoolTy) << 3);
2202  case BuiltinType::Char_S:
2203  case BuiltinType::Char_U:
2204  case BuiltinType::SChar:
2205  case BuiltinType::UChar:
2206    return 2 + (getIntWidth(CharTy) << 3);
2207  case BuiltinType::Short:
2208  case BuiltinType::UShort:
2209    return 3 + (getIntWidth(ShortTy) << 3);
2210  case BuiltinType::Int:
2211  case BuiltinType::UInt:
2212    return 4 + (getIntWidth(IntTy) << 3);
2213  case BuiltinType::Long:
2214  case BuiltinType::ULong:
2215    return 5 + (getIntWidth(LongTy) << 3);
2216  case BuiltinType::LongLong:
2217  case BuiltinType::ULongLong:
2218    return 6 + (getIntWidth(LongLongTy) << 3);
2219  case BuiltinType::Int128:
2220  case BuiltinType::UInt128:
2221    return 7 + (getIntWidth(Int128Ty) << 3);
2222  }
2223}
2224
2225/// getIntegerTypeOrder - Returns the highest ranked integer type:
2226/// C99 6.3.1.8p1.  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
2227/// LHS < RHS, return -1.
2228int ASTContext::getIntegerTypeOrder(QualType LHS, QualType RHS) {
2229  Type *LHSC = getCanonicalType(LHS).getTypePtr();
2230  Type *RHSC = getCanonicalType(RHS).getTypePtr();
2231  if (LHSC == RHSC) return 0;
2232
2233  bool LHSUnsigned = LHSC->isUnsignedIntegerType();
2234  bool RHSUnsigned = RHSC->isUnsignedIntegerType();
2235
2236  unsigned LHSRank = getIntegerRank(LHSC);
2237  unsigned RHSRank = getIntegerRank(RHSC);
2238
2239  if (LHSUnsigned == RHSUnsigned) {  // Both signed or both unsigned.
2240    if (LHSRank == RHSRank) return 0;
2241    return LHSRank > RHSRank ? 1 : -1;
2242  }
2243
2244  // Otherwise, the LHS is signed and the RHS is unsigned or visa versa.
2245  if (LHSUnsigned) {
2246    // If the unsigned [LHS] type is larger, return it.
2247    if (LHSRank >= RHSRank)
2248      return 1;
2249
2250    // If the signed type can represent all values of the unsigned type, it
2251    // wins.  Because we are dealing with 2's complement and types that are
2252    // powers of two larger than each other, this is always safe.
2253    return -1;
2254  }
2255
2256  // If the unsigned [RHS] type is larger, return it.
2257  if (RHSRank >= LHSRank)
2258    return -1;
2259
2260  // If the signed type can represent all values of the unsigned type, it
2261  // wins.  Because we are dealing with 2's complement and types that are
2262  // powers of two larger than each other, this is always safe.
2263  return 1;
2264}
2265
2266// getCFConstantStringType - Return the type used for constant CFStrings.
2267QualType ASTContext::getCFConstantStringType() {
2268  if (!CFConstantStringTypeDecl) {
2269    CFConstantStringTypeDecl =
2270      RecordDecl::Create(*this, TagDecl::TK_struct, TUDecl, SourceLocation(),
2271                         &Idents.get("NSConstantString"));
2272    QualType FieldTypes[4];
2273
2274    // const int *isa;
2275    FieldTypes[0] = getPointerType(IntTy.getQualifiedType(QualType::Const));
2276    // int flags;
2277    FieldTypes[1] = IntTy;
2278    // const char *str;
2279    FieldTypes[2] = getPointerType(CharTy.getQualifiedType(QualType::Const));
2280    // long length;
2281    FieldTypes[3] = LongTy;
2282
2283    // Create fields
2284    for (unsigned i = 0; i < 4; ++i) {
2285      FieldDecl *Field = FieldDecl::Create(*this, CFConstantStringTypeDecl,
2286                                           SourceLocation(), 0,
2287                                           FieldTypes[i], /*BitWidth=*/0,
2288                                           /*Mutable=*/false);
2289      CFConstantStringTypeDecl->addDecl(Field);
2290    }
2291
2292    CFConstantStringTypeDecl->completeDefinition(*this);
2293  }
2294
2295  return getTagDeclType(CFConstantStringTypeDecl);
2296}
2297
2298void ASTContext::setCFConstantStringType(QualType T) {
2299  const RecordType *Rec = T->getAsRecordType();
2300  assert(Rec && "Invalid CFConstantStringType");
2301  CFConstantStringTypeDecl = Rec->getDecl();
2302}
2303
2304QualType ASTContext::getObjCFastEnumerationStateType()
2305{
2306  if (!ObjCFastEnumerationStateTypeDecl) {
2307    ObjCFastEnumerationStateTypeDecl =
2308      RecordDecl::Create(*this, TagDecl::TK_struct, TUDecl, SourceLocation(),
2309                         &Idents.get("__objcFastEnumerationState"));
2310
2311    QualType FieldTypes[] = {
2312      UnsignedLongTy,
2313      getPointerType(ObjCIdTypedefType),
2314      getPointerType(UnsignedLongTy),
2315      getConstantArrayType(UnsignedLongTy,
2316                           llvm::APInt(32, 5), ArrayType::Normal, 0)
2317    };
2318
2319    for (size_t i = 0; i < 4; ++i) {
2320      FieldDecl *Field = FieldDecl::Create(*this,
2321                                           ObjCFastEnumerationStateTypeDecl,
2322                                           SourceLocation(), 0,
2323                                           FieldTypes[i], /*BitWidth=*/0,
2324                                           /*Mutable=*/false);
2325      ObjCFastEnumerationStateTypeDecl->addDecl(Field);
2326    }
2327
2328    ObjCFastEnumerationStateTypeDecl->completeDefinition(*this);
2329  }
2330
2331  return getTagDeclType(ObjCFastEnumerationStateTypeDecl);
2332}
2333
2334void ASTContext::setObjCFastEnumerationStateType(QualType T) {
2335  const RecordType *Rec = T->getAsRecordType();
2336  assert(Rec && "Invalid ObjCFAstEnumerationStateType");
2337  ObjCFastEnumerationStateTypeDecl = Rec->getDecl();
2338}
2339
2340// This returns true if a type has been typedefed to BOOL:
2341// typedef <type> BOOL;
2342static bool isTypeTypedefedAsBOOL(QualType T) {
2343  if (const TypedefType *TT = dyn_cast<TypedefType>(T))
2344    if (IdentifierInfo *II = TT->getDecl()->getIdentifier())
2345      return II->isStr("BOOL");
2346
2347  return false;
2348}
2349
2350/// getObjCEncodingTypeSize returns size of type for objective-c encoding
2351/// purpose.
2352int ASTContext::getObjCEncodingTypeSize(QualType type) {
2353  uint64_t sz = getTypeSize(type);
2354
2355  // Make all integer and enum types at least as large as an int
2356  if (sz > 0 && type->isIntegralType())
2357    sz = std::max(sz, getTypeSize(IntTy));
2358  // Treat arrays as pointers, since that's how they're passed in.
2359  else if (type->isArrayType())
2360    sz = getTypeSize(VoidPtrTy);
2361  return sz / getTypeSize(CharTy);
2362}
2363
2364/// getObjCEncodingForMethodDecl - Return the encoded type for this method
2365/// declaration.
2366void ASTContext::getObjCEncodingForMethodDecl(const ObjCMethodDecl *Decl,
2367                                              std::string& S) {
2368  // FIXME: This is not very efficient.
2369  // Encode type qualifer, 'in', 'inout', etc. for the return type.
2370  getObjCEncodingForTypeQualifier(Decl->getObjCDeclQualifier(), S);
2371  // Encode result type.
2372  getObjCEncodingForType(Decl->getResultType(), S);
2373  // Compute size of all parameters.
2374  // Start with computing size of a pointer in number of bytes.
2375  // FIXME: There might(should) be a better way of doing this computation!
2376  SourceLocation Loc;
2377  int PtrSize = getTypeSize(VoidPtrTy) / getTypeSize(CharTy);
2378  // The first two arguments (self and _cmd) are pointers; account for
2379  // their size.
2380  int ParmOffset = 2 * PtrSize;
2381  for (ObjCMethodDecl::param_iterator PI = Decl->param_begin(),
2382       E = Decl->param_end(); PI != E; ++PI) {
2383    QualType PType = (*PI)->getType();
2384    int sz = getObjCEncodingTypeSize(PType);
2385    assert (sz > 0 && "getObjCEncodingForMethodDecl - Incomplete param type");
2386    ParmOffset += sz;
2387  }
2388  S += llvm::utostr(ParmOffset);
2389  S += "@0:";
2390  S += llvm::utostr(PtrSize);
2391
2392  // Argument types.
2393  ParmOffset = 2 * PtrSize;
2394  for (ObjCMethodDecl::param_iterator PI = Decl->param_begin(),
2395       E = Decl->param_end(); PI != E; ++PI) {
2396    ParmVarDecl *PVDecl = *PI;
2397    QualType PType = PVDecl->getOriginalType();
2398    if (const ArrayType *AT =
2399          dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
2400      // Use array's original type only if it has known number of
2401      // elements.
2402      if (!isa<ConstantArrayType>(AT))
2403        PType = PVDecl->getType();
2404    } else if (PType->isFunctionType())
2405      PType = PVDecl->getType();
2406    // Process argument qualifiers for user supplied arguments; such as,
2407    // 'in', 'inout', etc.
2408    getObjCEncodingForTypeQualifier(PVDecl->getObjCDeclQualifier(), S);
2409    getObjCEncodingForType(PType, S);
2410    S += llvm::utostr(ParmOffset);
2411    ParmOffset += getObjCEncodingTypeSize(PType);
2412  }
2413}
2414
2415/// getObjCEncodingForPropertyDecl - Return the encoded type for this
2416/// property declaration. If non-NULL, Container must be either an
2417/// ObjCCategoryImplDecl or ObjCImplementationDecl; it should only be
2418/// NULL when getting encodings for protocol properties.
2419/// Property attributes are stored as a comma-delimited C string. The simple
2420/// attributes readonly and bycopy are encoded as single characters. The
2421/// parametrized attributes, getter=name, setter=name, and ivar=name, are
2422/// encoded as single characters, followed by an identifier. Property types
2423/// are also encoded as a parametrized attribute. The characters used to encode
2424/// these attributes are defined by the following enumeration:
2425/// @code
2426/// enum PropertyAttributes {
2427/// kPropertyReadOnly = 'R',   // property is read-only.
2428/// kPropertyBycopy = 'C',     // property is a copy of the value last assigned
2429/// kPropertyByref = '&',  // property is a reference to the value last assigned
2430/// kPropertyDynamic = 'D',    // property is dynamic
2431/// kPropertyGetter = 'G',     // followed by getter selector name
2432/// kPropertySetter = 'S',     // followed by setter selector name
2433/// kPropertyInstanceVariable = 'V'  // followed by instance variable  name
2434/// kPropertyType = 't'              // followed by old-style type encoding.
2435/// kPropertyWeak = 'W'              // 'weak' property
2436/// kPropertyStrong = 'P'            // property GC'able
2437/// kPropertyNonAtomic = 'N'         // property non-atomic
2438/// };
2439/// @endcode
2440void ASTContext::getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD,
2441                                                const Decl *Container,
2442                                                std::string& S) {
2443  // Collect information from the property implementation decl(s).
2444  bool Dynamic = false;
2445  ObjCPropertyImplDecl *SynthesizePID = 0;
2446
2447  // FIXME: Duplicated code due to poor abstraction.
2448  if (Container) {
2449    if (const ObjCCategoryImplDecl *CID =
2450        dyn_cast<ObjCCategoryImplDecl>(Container)) {
2451      for (ObjCCategoryImplDecl::propimpl_iterator
2452             i = CID->propimpl_begin(), e = CID->propimpl_end();
2453           i != e; ++i) {
2454        ObjCPropertyImplDecl *PID = *i;
2455        if (PID->getPropertyDecl() == PD) {
2456          if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) {
2457            Dynamic = true;
2458          } else {
2459            SynthesizePID = PID;
2460          }
2461        }
2462      }
2463    } else {
2464      const ObjCImplementationDecl *OID=cast<ObjCImplementationDecl>(Container);
2465      for (ObjCCategoryImplDecl::propimpl_iterator
2466             i = OID->propimpl_begin(), e = OID->propimpl_end();
2467           i != e; ++i) {
2468        ObjCPropertyImplDecl *PID = *i;
2469        if (PID->getPropertyDecl() == PD) {
2470          if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) {
2471            Dynamic = true;
2472          } else {
2473            SynthesizePID = PID;
2474          }
2475        }
2476      }
2477    }
2478  }
2479
2480  // FIXME: This is not very efficient.
2481  S = "T";
2482
2483  // Encode result type.
2484  // GCC has some special rules regarding encoding of properties which
2485  // closely resembles encoding of ivars.
2486  getObjCEncodingForTypeImpl(PD->getType(), S, true, true, 0,
2487                             true /* outermost type */,
2488                             true /* encoding for property */);
2489
2490  if (PD->isReadOnly()) {
2491    S += ",R";
2492  } else {
2493    switch (PD->getSetterKind()) {
2494    case ObjCPropertyDecl::Assign: break;
2495    case ObjCPropertyDecl::Copy:   S += ",C"; break;
2496    case ObjCPropertyDecl::Retain: S += ",&"; break;
2497    }
2498  }
2499
2500  // It really isn't clear at all what this means, since properties
2501  // are "dynamic by default".
2502  if (Dynamic)
2503    S += ",D";
2504
2505  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_nonatomic)
2506    S += ",N";
2507
2508  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_getter) {
2509    S += ",G";
2510    S += PD->getGetterName().getAsString();
2511  }
2512
2513  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_setter) {
2514    S += ",S";
2515    S += PD->getSetterName().getAsString();
2516  }
2517
2518  if (SynthesizePID) {
2519    const ObjCIvarDecl *OID = SynthesizePID->getPropertyIvarDecl();
2520    S += ",V";
2521    S += OID->getNameAsString();
2522  }
2523
2524  // FIXME: OBJCGC: weak & strong
2525}
2526
2527/// getLegacyIntegralTypeEncoding -
2528/// Another legacy compatibility encoding: 32-bit longs are encoded as
2529/// 'l' or 'L' , but not always.  For typedefs, we need to use
2530/// 'i' or 'I' instead if encoding a struct field, or a pointer!
2531///
2532void ASTContext::getLegacyIntegralTypeEncoding (QualType &PointeeTy) const {
2533  if (dyn_cast<TypedefType>(PointeeTy.getTypePtr())) {
2534    if (const BuiltinType *BT = PointeeTy->getAsBuiltinType()) {
2535      if (BT->getKind() == BuiltinType::ULong &&
2536          ((const_cast<ASTContext *>(this))->getIntWidth(PointeeTy) == 32))
2537        PointeeTy = UnsignedIntTy;
2538      else
2539        if (BT->getKind() == BuiltinType::Long &&
2540            ((const_cast<ASTContext *>(this))->getIntWidth(PointeeTy) == 32))
2541          PointeeTy = IntTy;
2542    }
2543  }
2544}
2545
2546void ASTContext::getObjCEncodingForType(QualType T, std::string& S,
2547                                        const FieldDecl *Field) {
2548  // We follow the behavior of gcc, expanding structures which are
2549  // directly pointed to, and expanding embedded structures. Note that
2550  // these rules are sufficient to prevent recursive encoding of the
2551  // same type.
2552  getObjCEncodingForTypeImpl(T, S, true, true, Field,
2553                             true /* outermost type */);
2554}
2555
2556static void EncodeBitField(const ASTContext *Context, std::string& S,
2557                           const FieldDecl *FD) {
2558  const Expr *E = FD->getBitWidth();
2559  assert(E && "bitfield width not there - getObjCEncodingForTypeImpl");
2560  ASTContext *Ctx = const_cast<ASTContext*>(Context);
2561  unsigned N = E->EvaluateAsInt(*Ctx).getZExtValue();
2562  S += 'b';
2563  S += llvm::utostr(N);
2564}
2565
2566void ASTContext::getObjCEncodingForTypeImpl(QualType T, std::string& S,
2567                                            bool ExpandPointedToStructures,
2568                                            bool ExpandStructures,
2569                                            const FieldDecl *FD,
2570                                            bool OutermostType,
2571                                            bool EncodingProperty) {
2572  if (const BuiltinType *BT = T->getAsBuiltinType()) {
2573    if (FD && FD->isBitField())
2574      return EncodeBitField(this, S, FD);
2575    char encoding;
2576    switch (BT->getKind()) {
2577    default: assert(0 && "Unhandled builtin type kind");
2578    case BuiltinType::Void:       encoding = 'v'; break;
2579    case BuiltinType::Bool:       encoding = 'B'; break;
2580    case BuiltinType::Char_U:
2581    case BuiltinType::UChar:      encoding = 'C'; break;
2582    case BuiltinType::UShort:     encoding = 'S'; break;
2583    case BuiltinType::UInt:       encoding = 'I'; break;
2584    case BuiltinType::ULong:
2585        encoding =
2586          (const_cast<ASTContext *>(this))->getIntWidth(T) == 32 ? 'L' : 'Q';
2587        break;
2588    case BuiltinType::UInt128:    encoding = 'T'; break;
2589    case BuiltinType::ULongLong:  encoding = 'Q'; break;
2590    case BuiltinType::Char_S:
2591    case BuiltinType::SChar:      encoding = 'c'; break;
2592    case BuiltinType::Short:      encoding = 's'; break;
2593    case BuiltinType::Int:        encoding = 'i'; break;
2594    case BuiltinType::Long:
2595      encoding =
2596        (const_cast<ASTContext *>(this))->getIntWidth(T) == 32 ? 'l' : 'q';
2597      break;
2598    case BuiltinType::LongLong:   encoding = 'q'; break;
2599    case BuiltinType::Int128:     encoding = 't'; break;
2600    case BuiltinType::Float:      encoding = 'f'; break;
2601    case BuiltinType::Double:     encoding = 'd'; break;
2602    case BuiltinType::LongDouble: encoding = 'd'; break;
2603    }
2604
2605    S += encoding;
2606    return;
2607  }
2608
2609  if (const ComplexType *CT = T->getAsComplexType()) {
2610    S += 'j';
2611    getObjCEncodingForTypeImpl(CT->getElementType(), S, false, false, 0, false,
2612                               false);
2613    return;
2614  }
2615
2616  if (const PointerType *PT = T->getAsPointerType()) {
2617    QualType PointeeTy = PT->getPointeeType();
2618    bool isReadOnly = false;
2619    // For historical/compatibility reasons, the read-only qualifier of the
2620    // pointee gets emitted _before_ the '^'.  The read-only qualifier of
2621    // the pointer itself gets ignored, _unless_ we are looking at a typedef!
2622    // Also, do not emit the 'r' for anything but the outermost type!
2623    if (dyn_cast<TypedefType>(T.getTypePtr())) {
2624      if (OutermostType && T.isConstQualified()) {
2625        isReadOnly = true;
2626        S += 'r';
2627      }
2628    }
2629    else if (OutermostType) {
2630      QualType P = PointeeTy;
2631      while (P->getAsPointerType())
2632        P = P->getAsPointerType()->getPointeeType();
2633      if (P.isConstQualified()) {
2634        isReadOnly = true;
2635        S += 'r';
2636      }
2637    }
2638    if (isReadOnly) {
2639      // Another legacy compatibility encoding. Some ObjC qualifier and type
2640      // combinations need to be rearranged.
2641      // Rewrite "in const" from "nr" to "rn"
2642      const char * s = S.c_str();
2643      int len = S.length();
2644      if (len >= 2 && s[len-2] == 'n' && s[len-1] == 'r') {
2645        std::string replace = "rn";
2646        S.replace(S.end()-2, S.end(), replace);
2647      }
2648    }
2649    if (isObjCSelType(PointeeTy)) {
2650      S += ':';
2651      return;
2652    }
2653
2654    if (PointeeTy->isCharType()) {
2655      // char pointer types should be encoded as '*' unless it is a
2656      // type that has been typedef'd to 'BOOL'.
2657      if (!isTypeTypedefedAsBOOL(PointeeTy)) {
2658        S += '*';
2659        return;
2660      }
2661    }
2662
2663    S += '^';
2664    getLegacyIntegralTypeEncoding(PointeeTy);
2665
2666    getObjCEncodingForTypeImpl(PointeeTy, S, false, ExpandPointedToStructures,
2667                               NULL);
2668    return;
2669  }
2670
2671  if (const ArrayType *AT =
2672      // Ignore type qualifiers etc.
2673        dyn_cast<ArrayType>(T->getCanonicalTypeInternal())) {
2674    if (isa<IncompleteArrayType>(AT)) {
2675      // Incomplete arrays are encoded as a pointer to the array element.
2676      S += '^';
2677
2678      getObjCEncodingForTypeImpl(AT->getElementType(), S,
2679                                 false, ExpandStructures, FD);
2680    } else {
2681      S += '[';
2682
2683      if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
2684        S += llvm::utostr(CAT->getSize().getZExtValue());
2685      else {
2686        //Variable length arrays are encoded as a regular array with 0 elements.
2687        assert(isa<VariableArrayType>(AT) && "Unknown array type!");
2688        S += '0';
2689      }
2690
2691      getObjCEncodingForTypeImpl(AT->getElementType(), S,
2692                                 false, ExpandStructures, FD);
2693      S += ']';
2694    }
2695    return;
2696  }
2697
2698  if (T->getAsFunctionType()) {
2699    S += '?';
2700    return;
2701  }
2702
2703  if (const RecordType *RTy = T->getAsRecordType()) {
2704    RecordDecl *RDecl = RTy->getDecl();
2705    S += RDecl->isUnion() ? '(' : '{';
2706    // Anonymous structures print as '?'
2707    if (const IdentifierInfo *II = RDecl->getIdentifier()) {
2708      S += II->getName();
2709    } else {
2710      S += '?';
2711    }
2712    if (ExpandStructures) {
2713      S += '=';
2714      for (RecordDecl::field_iterator Field = RDecl->field_begin(),
2715                                   FieldEnd = RDecl->field_end();
2716           Field != FieldEnd; ++Field) {
2717        if (FD) {
2718          S += '"';
2719          S += Field->getNameAsString();
2720          S += '"';
2721        }
2722
2723        // Special case bit-fields.
2724        if (Field->isBitField()) {
2725          getObjCEncodingForTypeImpl(Field->getType(), S, false, true,
2726                                     (*Field));
2727        } else {
2728          QualType qt = Field->getType();
2729          getLegacyIntegralTypeEncoding(qt);
2730          getObjCEncodingForTypeImpl(qt, S, false, true,
2731                                     FD);
2732        }
2733      }
2734    }
2735    S += RDecl->isUnion() ? ')' : '}';
2736    return;
2737  }
2738
2739  if (T->isEnumeralType()) {
2740    if (FD && FD->isBitField())
2741      EncodeBitField(this, S, FD);
2742    else
2743      S += 'i';
2744    return;
2745  }
2746
2747  if (T->isBlockPointerType()) {
2748    S += "@?"; // Unlike a pointer-to-function, which is "^?".
2749    return;
2750  }
2751
2752  if (T->isObjCInterfaceType()) {
2753    // @encode(class_name)
2754    ObjCInterfaceDecl *OI = T->getAsObjCInterfaceType()->getDecl();
2755    S += '{';
2756    const IdentifierInfo *II = OI->getIdentifier();
2757    S += II->getName();
2758    S += '=';
2759    llvm::SmallVector<FieldDecl*, 32> RecFields;
2760    CollectObjCIvars(OI, RecFields);
2761    for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
2762      if (RecFields[i]->isBitField())
2763        getObjCEncodingForTypeImpl(RecFields[i]->getType(), S, false, true,
2764                                   RecFields[i]);
2765      else
2766        getObjCEncodingForTypeImpl(RecFields[i]->getType(), S, false, true,
2767                                   FD);
2768    }
2769    S += '}';
2770    return;
2771  }
2772
2773  if (const ObjCObjectPointerType *OPT = T->getAsObjCObjectPointerType()) {
2774    if (OPT->isObjCIdType()) {
2775      S += '@';
2776      return;
2777    }
2778
2779    if (OPT->isObjCClassType()) {
2780      S += '#';
2781      return;
2782    }
2783
2784    if (OPT->isObjCQualifiedIdType()) {
2785      getObjCEncodingForTypeImpl(getObjCIdType(), S,
2786                                 ExpandPointedToStructures,
2787                                 ExpandStructures, FD);
2788      if (FD || EncodingProperty) {
2789        // Note that we do extended encoding of protocol qualifer list
2790        // Only when doing ivar or property encoding.
2791        S += '"';
2792        for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(),
2793             E = OPT->qual_end(); I != E; ++I) {
2794          S += '<';
2795          S += (*I)->getNameAsString();
2796          S += '>';
2797        }
2798        S += '"';
2799      }
2800      return;
2801    }
2802
2803    QualType PointeeTy = OPT->getPointeeType();
2804    if (!EncodingProperty &&
2805        isa<TypedefType>(PointeeTy.getTypePtr())) {
2806      // Another historical/compatibility reason.
2807      // We encode the underlying type which comes out as
2808      // {...};
2809      S += '^';
2810      getObjCEncodingForTypeImpl(PointeeTy, S,
2811                                 false, ExpandPointedToStructures,
2812                                 NULL);
2813      return;
2814    }
2815
2816    S += '@';
2817    if (FD || EncodingProperty) {
2818      S += '"';
2819      S += OPT->getInterfaceDecl()->getNameAsCString();
2820      for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(),
2821           E = OPT->qual_end(); I != E; ++I) {
2822        S += '<';
2823        S += (*I)->getNameAsString();
2824        S += '>';
2825      }
2826      S += '"';
2827    }
2828    return;
2829  }
2830
2831  assert(0 && "@encode for type not implemented!");
2832}
2833
2834void ASTContext::getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT,
2835                                                 std::string& S) const {
2836  if (QT & Decl::OBJC_TQ_In)
2837    S += 'n';
2838  if (QT & Decl::OBJC_TQ_Inout)
2839    S += 'N';
2840  if (QT & Decl::OBJC_TQ_Out)
2841    S += 'o';
2842  if (QT & Decl::OBJC_TQ_Bycopy)
2843    S += 'O';
2844  if (QT & Decl::OBJC_TQ_Byref)
2845    S += 'R';
2846  if (QT & Decl::OBJC_TQ_Oneway)
2847    S += 'V';
2848}
2849
2850void ASTContext::setBuiltinVaListType(QualType T) {
2851  assert(BuiltinVaListType.isNull() && "__builtin_va_list type already set!");
2852
2853  BuiltinVaListType = T;
2854}
2855
2856void ASTContext::setObjCIdType(QualType T) {
2857  ObjCIdTypedefType = T;
2858}
2859
2860void ASTContext::setObjCSelType(QualType T) {
2861  ObjCSelType = T;
2862
2863  const TypedefType *TT = T->getAsTypedefType();
2864  if (!TT)
2865    return;
2866  TypedefDecl *TD = TT->getDecl();
2867
2868  // typedef struct objc_selector *SEL;
2869  const PointerType *ptr = TD->getUnderlyingType()->getAsPointerType();
2870  if (!ptr)
2871    return;
2872  const RecordType *rec = ptr->getPointeeType()->getAsStructureType();
2873  if (!rec)
2874    return;
2875  SelStructType = rec;
2876}
2877
2878void ASTContext::setObjCProtoType(QualType QT) {
2879  ObjCProtoType = QT;
2880}
2881
2882void ASTContext::setObjCClassType(QualType T) {
2883  ObjCClassTypedefType = T;
2884}
2885
2886void ASTContext::setObjCConstantStringInterface(ObjCInterfaceDecl *Decl) {
2887  assert(ObjCConstantStringType.isNull() &&
2888         "'NSConstantString' type already set!");
2889
2890  ObjCConstantStringType = getObjCInterfaceType(Decl);
2891}
2892
2893/// \brief Retrieve the template name that represents a qualified
2894/// template name such as \c std::vector.
2895TemplateName ASTContext::getQualifiedTemplateName(NestedNameSpecifier *NNS,
2896                                                  bool TemplateKeyword,
2897                                                  TemplateDecl *Template) {
2898  llvm::FoldingSetNodeID ID;
2899  QualifiedTemplateName::Profile(ID, NNS, TemplateKeyword, Template);
2900
2901  void *InsertPos = 0;
2902  QualifiedTemplateName *QTN =
2903    QualifiedTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
2904  if (!QTN) {
2905    QTN = new (*this,4) QualifiedTemplateName(NNS, TemplateKeyword, Template);
2906    QualifiedTemplateNames.InsertNode(QTN, InsertPos);
2907  }
2908
2909  return TemplateName(QTN);
2910}
2911
2912/// \brief Retrieve the template name that represents a dependent
2913/// template name such as \c MetaFun::template apply.
2914TemplateName ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
2915                                                  const IdentifierInfo *Name) {
2916  assert(NNS->isDependent() && "Nested name specifier must be dependent");
2917
2918  llvm::FoldingSetNodeID ID;
2919  DependentTemplateName::Profile(ID, NNS, Name);
2920
2921  void *InsertPos = 0;
2922  DependentTemplateName *QTN =
2923    DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
2924
2925  if (QTN)
2926    return TemplateName(QTN);
2927
2928  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
2929  if (CanonNNS == NNS) {
2930    QTN = new (*this,4) DependentTemplateName(NNS, Name);
2931  } else {
2932    TemplateName Canon = getDependentTemplateName(CanonNNS, Name);
2933    QTN = new (*this,4) DependentTemplateName(NNS, Name, Canon);
2934  }
2935
2936  DependentTemplateNames.InsertNode(QTN, InsertPos);
2937  return TemplateName(QTN);
2938}
2939
2940/// getFromTargetType - Given one of the integer types provided by
2941/// TargetInfo, produce the corresponding type. The unsigned @p Type
2942/// is actually a value of type @c TargetInfo::IntType.
2943QualType ASTContext::getFromTargetType(unsigned Type) const {
2944  switch (Type) {
2945  case TargetInfo::NoInt: return QualType();
2946  case TargetInfo::SignedShort: return ShortTy;
2947  case TargetInfo::UnsignedShort: return UnsignedShortTy;
2948  case TargetInfo::SignedInt: return IntTy;
2949  case TargetInfo::UnsignedInt: return UnsignedIntTy;
2950  case TargetInfo::SignedLong: return LongTy;
2951  case TargetInfo::UnsignedLong: return UnsignedLongTy;
2952  case TargetInfo::SignedLongLong: return LongLongTy;
2953  case TargetInfo::UnsignedLongLong: return UnsignedLongLongTy;
2954  }
2955
2956  assert(false && "Unhandled TargetInfo::IntType value");
2957  return QualType();
2958}
2959
2960//===----------------------------------------------------------------------===//
2961//                        Type Predicates.
2962//===----------------------------------------------------------------------===//
2963
2964/// isObjCNSObjectType - Return true if this is an NSObject object using
2965/// NSObject attribute on a c-style pointer type.
2966/// FIXME - Make it work directly on types.
2967/// FIXME: Move to Type.
2968///
2969bool ASTContext::isObjCNSObjectType(QualType Ty) const {
2970  if (TypedefType *TDT = dyn_cast<TypedefType>(Ty)) {
2971    if (TypedefDecl *TD = TDT->getDecl())
2972      if (TD->getAttr<ObjCNSObjectAttr>())
2973        return true;
2974  }
2975  return false;
2976}
2977
2978/// getObjCGCAttr - Returns one of GCNone, Weak or Strong objc's
2979/// garbage collection attribute.
2980///
2981QualType::GCAttrTypes ASTContext::getObjCGCAttrKind(const QualType &Ty) const {
2982  QualType::GCAttrTypes GCAttrs = QualType::GCNone;
2983  if (getLangOptions().ObjC1 &&
2984      getLangOptions().getGCMode() != LangOptions::NonGC) {
2985    GCAttrs = Ty.getObjCGCAttr();
2986    // Default behavious under objective-c's gc is for objective-c pointers
2987    // (or pointers to them) be treated as though they were declared
2988    // as __strong.
2989    if (GCAttrs == QualType::GCNone) {
2990      if (Ty->isObjCObjectPointerType())
2991        GCAttrs = QualType::Strong;
2992      else if (Ty->isPointerType())
2993        return getObjCGCAttrKind(Ty->getAsPointerType()->getPointeeType());
2994    }
2995    // Non-pointers have none gc'able attribute regardless of the attribute
2996    // set on them.
2997    else if (!Ty->isAnyPointerType() && !Ty->isBlockPointerType())
2998      return QualType::GCNone;
2999  }
3000  return GCAttrs;
3001}
3002
3003//===----------------------------------------------------------------------===//
3004//                        Type Compatibility Testing
3005//===----------------------------------------------------------------------===//
3006
3007/// areCompatVectorTypes - Return true if the two specified vector types are
3008/// compatible.
3009static bool areCompatVectorTypes(const VectorType *LHS,
3010                                 const VectorType *RHS) {
3011  assert(LHS->isCanonical() && RHS->isCanonical());
3012  return LHS->getElementType() == RHS->getElementType() &&
3013         LHS->getNumElements() == RHS->getNumElements();
3014}
3015
3016/// canAssignObjCInterfaces - Return true if the two interface types are
3017/// compatible for assignment from RHS to LHS.  This handles validation of any
3018/// protocol qualifiers on the LHS or RHS.
3019///
3020/// FIXME: Move the following to ObjCObjectPointerType/ObjCInterfaceType.
3021bool ASTContext::canAssignObjCInterfaces(const ObjCObjectPointerType *LHSOPT,
3022                                         const ObjCObjectPointerType *RHSOPT) {
3023  // If either type represents the built-in 'id' or 'Class' types, return true.
3024  if (LHSOPT->isObjCBuiltinType() || RHSOPT->isObjCBuiltinType())
3025    return true;
3026
3027  const ObjCInterfaceType* LHS = LHSOPT->getInterfaceType();
3028  const ObjCInterfaceType* RHS = RHSOPT->getInterfaceType();
3029  if (!LHS || !RHS) {
3030    // We have qualified builtin types.
3031    // Both the right and left sides have qualifiers.
3032    for (ObjCObjectPointerType::qual_iterator I = LHSOPT->qual_begin(),
3033         E = LHSOPT->qual_end(); I != E; ++I) {
3034      bool RHSImplementsProtocol = false;
3035
3036      // when comparing an id<P> on lhs with a static type on rhs,
3037      // see if static class implements all of id's protocols, directly or
3038      // through its super class and categories.
3039      for (ObjCObjectPointerType::qual_iterator J = RHSOPT->qual_begin(),
3040           E = RHSOPT->qual_end(); J != E; ++J) {
3041        if ((*J)->lookupProtocolNamed((*I)->getIdentifier())) {
3042          RHSImplementsProtocol = true;
3043          break;
3044        }
3045      }
3046      if (!RHSImplementsProtocol)
3047        return false;
3048    }
3049    // The RHS implements all protocols listed on the LHS.
3050    return true;
3051  }
3052  return canAssignObjCInterfaces(LHS, RHS);
3053}
3054
3055bool ASTContext::canAssignObjCInterfaces(const ObjCInterfaceType *LHS,
3056                                         const ObjCInterfaceType *RHS) {
3057  // Verify that the base decls are compatible: the RHS must be a subclass of
3058  // the LHS.
3059  if (!LHS->getDecl()->isSuperClassOf(RHS->getDecl()))
3060    return false;
3061
3062  // RHS must have a superset of the protocols in the LHS.  If the LHS is not
3063  // protocol qualified at all, then we are good.
3064  if (LHS->getNumProtocols() == 0)
3065    return true;
3066
3067  // Okay, we know the LHS has protocol qualifiers.  If the RHS doesn't, then it
3068  // isn't a superset.
3069  if (RHS->getNumProtocols() == 0)
3070    return true;  // FIXME: should return false!
3071
3072  for (ObjCInterfaceType::qual_iterator LHSPI = LHS->qual_begin(),
3073                                        LHSPE = LHS->qual_end();
3074       LHSPI != LHSPE; LHSPI++) {
3075    bool RHSImplementsProtocol = false;
3076
3077    // If the RHS doesn't implement the protocol on the left, the types
3078    // are incompatible.
3079    for (ObjCInterfaceType::qual_iterator RHSPI = RHS->qual_begin(),
3080                                                  RHSPE = RHS->qual_end();
3081         RHSPI != RHSPE; RHSPI++) {
3082      if ((*RHSPI)->lookupProtocolNamed((*LHSPI)->getIdentifier())) {
3083        RHSImplementsProtocol = true;
3084        break;
3085      }
3086    }
3087    // FIXME: For better diagnostics, consider passing back the protocol name.
3088    if (!RHSImplementsProtocol)
3089      return false;
3090  }
3091  // The RHS implements all protocols listed on the LHS.
3092  return true;
3093}
3094
3095bool ASTContext::areComparableObjCPointerTypes(QualType LHS, QualType RHS) {
3096  // get the "pointed to" types
3097  const ObjCObjectPointerType *LHSOPT = LHS->getAsObjCObjectPointerType();
3098  const ObjCObjectPointerType *RHSOPT = RHS->getAsObjCObjectPointerType();
3099
3100  if (!LHSOPT || !RHSOPT)
3101    return false;
3102
3103  return canAssignObjCInterfaces(LHSOPT, RHSOPT) ||
3104         canAssignObjCInterfaces(RHSOPT, LHSOPT);
3105}
3106
3107/// typesAreCompatible - C99 6.7.3p9: For two qualified types to be compatible,
3108/// both shall have the identically qualified version of a compatible type.
3109/// C99 6.2.7p1: Two types have compatible types if their types are the
3110/// same. See 6.7.[2,3,5] for additional rules.
3111bool ASTContext::typesAreCompatible(QualType LHS, QualType RHS) {
3112  return !mergeTypes(LHS, RHS).isNull();
3113}
3114
3115QualType ASTContext::mergeFunctionTypes(QualType lhs, QualType rhs) {
3116  const FunctionType *lbase = lhs->getAsFunctionType();
3117  const FunctionType *rbase = rhs->getAsFunctionType();
3118  const FunctionProtoType *lproto = dyn_cast<FunctionProtoType>(lbase);
3119  const FunctionProtoType *rproto = dyn_cast<FunctionProtoType>(rbase);
3120  bool allLTypes = true;
3121  bool allRTypes = true;
3122
3123  // Check return type
3124  QualType retType = mergeTypes(lbase->getResultType(), rbase->getResultType());
3125  if (retType.isNull()) return QualType();
3126  if (getCanonicalType(retType) != getCanonicalType(lbase->getResultType()))
3127    allLTypes = false;
3128  if (getCanonicalType(retType) != getCanonicalType(rbase->getResultType()))
3129    allRTypes = false;
3130
3131  if (lproto && rproto) { // two C99 style function prototypes
3132    assert(!lproto->hasExceptionSpec() && !rproto->hasExceptionSpec() &&
3133           "C++ shouldn't be here");
3134    unsigned lproto_nargs = lproto->getNumArgs();
3135    unsigned rproto_nargs = rproto->getNumArgs();
3136
3137    // Compatible functions must have the same number of arguments
3138    if (lproto_nargs != rproto_nargs)
3139      return QualType();
3140
3141    // Variadic and non-variadic functions aren't compatible
3142    if (lproto->isVariadic() != rproto->isVariadic())
3143      return QualType();
3144
3145    if (lproto->getTypeQuals() != rproto->getTypeQuals())
3146      return QualType();
3147
3148    // Check argument compatibility
3149    llvm::SmallVector<QualType, 10> types;
3150    for (unsigned i = 0; i < lproto_nargs; i++) {
3151      QualType largtype = lproto->getArgType(i).getUnqualifiedType();
3152      QualType rargtype = rproto->getArgType(i).getUnqualifiedType();
3153      QualType argtype = mergeTypes(largtype, rargtype);
3154      if (argtype.isNull()) return QualType();
3155      types.push_back(argtype);
3156      if (getCanonicalType(argtype) != getCanonicalType(largtype))
3157        allLTypes = false;
3158      if (getCanonicalType(argtype) != getCanonicalType(rargtype))
3159        allRTypes = false;
3160    }
3161    if (allLTypes) return lhs;
3162    if (allRTypes) return rhs;
3163    return getFunctionType(retType, types.begin(), types.size(),
3164                           lproto->isVariadic(), lproto->getTypeQuals());
3165  }
3166
3167  if (lproto) allRTypes = false;
3168  if (rproto) allLTypes = false;
3169
3170  const FunctionProtoType *proto = lproto ? lproto : rproto;
3171  if (proto) {
3172    assert(!proto->hasExceptionSpec() && "C++ shouldn't be here");
3173    if (proto->isVariadic()) return QualType();
3174    // Check that the types are compatible with the types that
3175    // would result from default argument promotions (C99 6.7.5.3p15).
3176    // The only types actually affected are promotable integer
3177    // types and floats, which would be passed as a different
3178    // type depending on whether the prototype is visible.
3179    unsigned proto_nargs = proto->getNumArgs();
3180    for (unsigned i = 0; i < proto_nargs; ++i) {
3181      QualType argTy = proto->getArgType(i);
3182      if (argTy->isPromotableIntegerType() ||
3183          getCanonicalType(argTy).getUnqualifiedType() == FloatTy)
3184        return QualType();
3185    }
3186
3187    if (allLTypes) return lhs;
3188    if (allRTypes) return rhs;
3189    return getFunctionType(retType, proto->arg_type_begin(),
3190                           proto->getNumArgs(), lproto->isVariadic(),
3191                           lproto->getTypeQuals());
3192  }
3193
3194  if (allLTypes) return lhs;
3195  if (allRTypes) return rhs;
3196  return getFunctionNoProtoType(retType);
3197}
3198
3199QualType ASTContext::mergeTypes(QualType LHS, QualType RHS) {
3200  // C++ [expr]: If an expression initially has the type "reference to T", the
3201  // type is adjusted to "T" prior to any further analysis, the expression
3202  // designates the object or function denoted by the reference, and the
3203  // expression is an lvalue unless the reference is an rvalue reference and
3204  // the expression is a function call (possibly inside parentheses).
3205  // FIXME: C++ shouldn't be going through here!  The rules are different
3206  // enough that they should be handled separately.
3207  // FIXME: Merging of lvalue and rvalue references is incorrect. C++ *really*
3208  // shouldn't be going through here!
3209  if (const ReferenceType *RT = LHS->getAsReferenceType())
3210    LHS = RT->getPointeeType();
3211  if (const ReferenceType *RT = RHS->getAsReferenceType())
3212    RHS = RT->getPointeeType();
3213
3214  QualType LHSCan = getCanonicalType(LHS),
3215           RHSCan = getCanonicalType(RHS);
3216
3217  // If two types are identical, they are compatible.
3218  if (LHSCan == RHSCan)
3219    return LHS;
3220
3221  // If the qualifiers are different, the types aren't compatible
3222  // Note that we handle extended qualifiers later, in the
3223  // case for ExtQualType.
3224  if (LHSCan.getCVRQualifiers() != RHSCan.getCVRQualifiers())
3225    return QualType();
3226
3227  Type::TypeClass LHSClass = LHSCan->getTypeClass();
3228  Type::TypeClass RHSClass = RHSCan->getTypeClass();
3229
3230  // We want to consider the two function types to be the same for these
3231  // comparisons, just force one to the other.
3232  if (LHSClass == Type::FunctionProto) LHSClass = Type::FunctionNoProto;
3233  if (RHSClass == Type::FunctionProto) RHSClass = Type::FunctionNoProto;
3234
3235  // Strip off objc_gc attributes off the top level so they can be merged.
3236  // This is a complete mess, but the attribute itself doesn't make much sense.
3237  if (RHSClass == Type::ExtQual) {
3238    QualType::GCAttrTypes GCAttr = RHSCan.getObjCGCAttr();
3239    if (GCAttr != QualType::GCNone) {
3240      QualType::GCAttrTypes GCLHSAttr = LHSCan.getObjCGCAttr();
3241      // __weak attribute must appear on both declarations.
3242      // __strong attribue is redundant if other decl is an objective-c
3243      // object pointer (or decorated with __strong attribute); otherwise
3244      // issue error.
3245      if ((GCAttr == QualType::Weak && GCLHSAttr != GCAttr) ||
3246          (GCAttr == QualType::Strong && GCLHSAttr != GCAttr &&
3247           !LHSCan->isObjCObjectPointerType()))
3248        return QualType();
3249
3250      RHS = QualType(cast<ExtQualType>(RHS.getDesugaredType())->getBaseType(),
3251                     RHS.getCVRQualifiers());
3252      QualType Result = mergeTypes(LHS, RHS);
3253      if (!Result.isNull()) {
3254        if (Result.getObjCGCAttr() == QualType::GCNone)
3255          Result = getObjCGCQualType(Result, GCAttr);
3256        else if (Result.getObjCGCAttr() != GCAttr)
3257          Result = QualType();
3258      }
3259      return Result;
3260    }
3261  }
3262  if (LHSClass == Type::ExtQual) {
3263    QualType::GCAttrTypes GCAttr = LHSCan.getObjCGCAttr();
3264    if (GCAttr != QualType::GCNone) {
3265      QualType::GCAttrTypes GCRHSAttr = RHSCan.getObjCGCAttr();
3266      // __weak attribute must appear on both declarations. __strong
3267      // __strong attribue is redundant if other decl is an objective-c
3268      // object pointer (or decorated with __strong attribute); otherwise
3269      // issue error.
3270      if ((GCAttr == QualType::Weak && GCRHSAttr != GCAttr) ||
3271          (GCAttr == QualType::Strong && GCRHSAttr != GCAttr &&
3272           !RHSCan->isObjCObjectPointerType()))
3273        return QualType();
3274
3275      LHS = QualType(cast<ExtQualType>(LHS.getDesugaredType())->getBaseType(),
3276                     LHS.getCVRQualifiers());
3277      QualType Result = mergeTypes(LHS, RHS);
3278      if (!Result.isNull()) {
3279        if (Result.getObjCGCAttr() == QualType::GCNone)
3280          Result = getObjCGCQualType(Result, GCAttr);
3281        else if (Result.getObjCGCAttr() != GCAttr)
3282          Result = QualType();
3283      }
3284      return Result;
3285    }
3286  }
3287
3288  // Same as above for arrays
3289  if (LHSClass == Type::VariableArray || LHSClass == Type::IncompleteArray)
3290    LHSClass = Type::ConstantArray;
3291  if (RHSClass == Type::VariableArray || RHSClass == Type::IncompleteArray)
3292    RHSClass = Type::ConstantArray;
3293
3294  // Canonicalize ExtVector -> Vector.
3295  if (LHSClass == Type::ExtVector) LHSClass = Type::Vector;
3296  if (RHSClass == Type::ExtVector) RHSClass = Type::Vector;
3297
3298  // If the canonical type classes don't match.
3299  if (LHSClass != RHSClass) {
3300    // C99 6.7.2.2p4: Each enumerated type shall be compatible with char,
3301    // a signed integer type, or an unsigned integer type.
3302    if (const EnumType* ETy = LHS->getAsEnumType()) {
3303      if (ETy->getDecl()->getIntegerType() == RHSCan.getUnqualifiedType())
3304        return RHS;
3305    }
3306    if (const EnumType* ETy = RHS->getAsEnumType()) {
3307      if (ETy->getDecl()->getIntegerType() == LHSCan.getUnqualifiedType())
3308        return LHS;
3309    }
3310
3311    return QualType();
3312  }
3313
3314  // The canonical type classes match.
3315  switch (LHSClass) {
3316#define TYPE(Class, Base)
3317#define ABSTRACT_TYPE(Class, Base)
3318#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
3319#define DEPENDENT_TYPE(Class, Base) case Type::Class:
3320#include "clang/AST/TypeNodes.def"
3321    assert(false && "Non-canonical and dependent types shouldn't get here");
3322    return QualType();
3323
3324  case Type::LValueReference:
3325  case Type::RValueReference:
3326  case Type::MemberPointer:
3327    assert(false && "C++ should never be in mergeTypes");
3328    return QualType();
3329
3330  case Type::IncompleteArray:
3331  case Type::VariableArray:
3332  case Type::FunctionProto:
3333  case Type::ExtVector:
3334    assert(false && "Types are eliminated above");
3335    return QualType();
3336
3337  case Type::Pointer:
3338  {
3339    // Merge two pointer types, while trying to preserve typedef info
3340    QualType LHSPointee = LHS->getAsPointerType()->getPointeeType();
3341    QualType RHSPointee = RHS->getAsPointerType()->getPointeeType();
3342    QualType ResultType = mergeTypes(LHSPointee, RHSPointee);
3343    if (ResultType.isNull()) return QualType();
3344    if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
3345      return LHS;
3346    if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
3347      return RHS;
3348    return getPointerType(ResultType);
3349  }
3350  case Type::BlockPointer:
3351  {
3352    // Merge two block pointer types, while trying to preserve typedef info
3353    QualType LHSPointee = LHS->getAsBlockPointerType()->getPointeeType();
3354    QualType RHSPointee = RHS->getAsBlockPointerType()->getPointeeType();
3355    QualType ResultType = mergeTypes(LHSPointee, RHSPointee);
3356    if (ResultType.isNull()) return QualType();
3357    if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
3358      return LHS;
3359    if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
3360      return RHS;
3361    return getBlockPointerType(ResultType);
3362  }
3363  case Type::ConstantArray:
3364  {
3365    const ConstantArrayType* LCAT = getAsConstantArrayType(LHS);
3366    const ConstantArrayType* RCAT = getAsConstantArrayType(RHS);
3367    if (LCAT && RCAT && RCAT->getSize() != LCAT->getSize())
3368      return QualType();
3369
3370    QualType LHSElem = getAsArrayType(LHS)->getElementType();
3371    QualType RHSElem = getAsArrayType(RHS)->getElementType();
3372    QualType ResultType = mergeTypes(LHSElem, RHSElem);
3373    if (ResultType.isNull()) return QualType();
3374    if (LCAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
3375      return LHS;
3376    if (RCAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
3377      return RHS;
3378    if (LCAT) return getConstantArrayType(ResultType, LCAT->getSize(),
3379                                          ArrayType::ArraySizeModifier(), 0);
3380    if (RCAT) return getConstantArrayType(ResultType, RCAT->getSize(),
3381                                          ArrayType::ArraySizeModifier(), 0);
3382    const VariableArrayType* LVAT = getAsVariableArrayType(LHS);
3383    const VariableArrayType* RVAT = getAsVariableArrayType(RHS);
3384    if (LVAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
3385      return LHS;
3386    if (RVAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
3387      return RHS;
3388    if (LVAT) {
3389      // FIXME: This isn't correct! But tricky to implement because
3390      // the array's size has to be the size of LHS, but the type
3391      // has to be different.
3392      return LHS;
3393    }
3394    if (RVAT) {
3395      // FIXME: This isn't correct! But tricky to implement because
3396      // the array's size has to be the size of RHS, but the type
3397      // has to be different.
3398      return RHS;
3399    }
3400    if (getCanonicalType(LHSElem) == getCanonicalType(ResultType)) return LHS;
3401    if (getCanonicalType(RHSElem) == getCanonicalType(ResultType)) return RHS;
3402    return getIncompleteArrayType(ResultType,
3403                                  ArrayType::ArraySizeModifier(), 0);
3404  }
3405  case Type::FunctionNoProto:
3406    return mergeFunctionTypes(LHS, RHS);
3407  case Type::Record:
3408  case Type::Enum:
3409    return QualType();
3410  case Type::Builtin:
3411    // Only exactly equal builtin types are compatible, which is tested above.
3412    return QualType();
3413  case Type::Complex:
3414    // Distinct complex types are incompatible.
3415    return QualType();
3416  case Type::Vector:
3417    // FIXME: The merged type should be an ExtVector!
3418    if (areCompatVectorTypes(LHS->getAsVectorType(), RHS->getAsVectorType()))
3419      return LHS;
3420    return QualType();
3421  case Type::ObjCInterface: {
3422    // Check if the interfaces are assignment compatible.
3423    // FIXME: This should be type compatibility, e.g. whether
3424    // "LHS x; RHS x;" at global scope is legal.
3425    const ObjCInterfaceType* LHSIface = LHS->getAsObjCInterfaceType();
3426    const ObjCInterfaceType* RHSIface = RHS->getAsObjCInterfaceType();
3427    if (LHSIface && RHSIface &&
3428        canAssignObjCInterfaces(LHSIface, RHSIface))
3429      return LHS;
3430
3431    return QualType();
3432  }
3433  case Type::ObjCObjectPointer: {
3434    // FIXME: Incorporate tests from Sema::ObjCQualifiedIdTypesAreCompatible().
3435    if (LHS->isObjCQualifiedIdType() && RHS->isObjCQualifiedIdType())
3436      return QualType();
3437
3438    if (canAssignObjCInterfaces(LHS->getAsObjCObjectPointerType(),
3439                                RHS->getAsObjCObjectPointerType()))
3440      return LHS;
3441
3442    return QualType();
3443  }
3444  case Type::FixedWidthInt:
3445    // Distinct fixed-width integers are not compatible.
3446    return QualType();
3447  case Type::ExtQual:
3448    // FIXME: ExtQual types can be compatible even if they're not
3449    // identical!
3450    return QualType();
3451    // First attempt at an implementation, but I'm not really sure it's
3452    // right...
3453#if 0
3454    ExtQualType* LQual = cast<ExtQualType>(LHSCan);
3455    ExtQualType* RQual = cast<ExtQualType>(RHSCan);
3456    if (LQual->getAddressSpace() != RQual->getAddressSpace() ||
3457        LQual->getObjCGCAttr() != RQual->getObjCGCAttr())
3458      return QualType();
3459    QualType LHSBase, RHSBase, ResultType, ResCanUnqual;
3460    LHSBase = QualType(LQual->getBaseType(), 0);
3461    RHSBase = QualType(RQual->getBaseType(), 0);
3462    ResultType = mergeTypes(LHSBase, RHSBase);
3463    if (ResultType.isNull()) return QualType();
3464    ResCanUnqual = getCanonicalType(ResultType).getUnqualifiedType();
3465    if (LHSCan.getUnqualifiedType() == ResCanUnqual)
3466      return LHS;
3467    if (RHSCan.getUnqualifiedType() == ResCanUnqual)
3468      return RHS;
3469    ResultType = getAddrSpaceQualType(ResultType, LQual->getAddressSpace());
3470    ResultType = getObjCGCQualType(ResultType, LQual->getObjCGCAttr());
3471    ResultType.setCVRQualifiers(LHSCan.getCVRQualifiers());
3472    return ResultType;
3473#endif
3474
3475  case Type::TemplateSpecialization:
3476    assert(false && "Dependent types have no size");
3477    break;
3478  }
3479
3480  return QualType();
3481}
3482
3483//===----------------------------------------------------------------------===//
3484//                         Integer Predicates
3485//===----------------------------------------------------------------------===//
3486
3487unsigned ASTContext::getIntWidth(QualType T) {
3488  if (T == BoolTy)
3489    return 1;
3490  if (FixedWidthIntType* FWIT = dyn_cast<FixedWidthIntType>(T)) {
3491    return FWIT->getWidth();
3492  }
3493  // For builtin types, just use the standard type sizing method
3494  return (unsigned)getTypeSize(T);
3495}
3496
3497QualType ASTContext::getCorrespondingUnsignedType(QualType T) {
3498  assert(T->isSignedIntegerType() && "Unexpected type");
3499  if (const EnumType* ETy = T->getAsEnumType())
3500    T = ETy->getDecl()->getIntegerType();
3501  const BuiltinType* BTy = T->getAsBuiltinType();
3502  assert (BTy && "Unexpected signed integer type");
3503  switch (BTy->getKind()) {
3504  case BuiltinType::Char_S:
3505  case BuiltinType::SChar:
3506    return UnsignedCharTy;
3507  case BuiltinType::Short:
3508    return UnsignedShortTy;
3509  case BuiltinType::Int:
3510    return UnsignedIntTy;
3511  case BuiltinType::Long:
3512    return UnsignedLongTy;
3513  case BuiltinType::LongLong:
3514    return UnsignedLongLongTy;
3515  case BuiltinType::Int128:
3516    return UnsignedInt128Ty;
3517  default:
3518    assert(0 && "Unexpected signed integer type");
3519    return QualType();
3520  }
3521}
3522
3523ExternalASTSource::~ExternalASTSource() { }
3524
3525void ExternalASTSource::PrintStats() { }
3526
3527
3528//===----------------------------------------------------------------------===//
3529//                          Builtin Type Computation
3530//===----------------------------------------------------------------------===//
3531
3532/// DecodeTypeFromStr - This decodes one type descriptor from Str, advancing the
3533/// pointer over the consumed characters.  This returns the resultant type.
3534static QualType DecodeTypeFromStr(const char *&Str, ASTContext &Context,
3535                                  ASTContext::GetBuiltinTypeError &Error,
3536                                  bool AllowTypeModifiers = true) {
3537  // Modifiers.
3538  int HowLong = 0;
3539  bool Signed = false, Unsigned = false;
3540
3541  // Read the modifiers first.
3542  bool Done = false;
3543  while (!Done) {
3544    switch (*Str++) {
3545    default: Done = true; --Str; break;
3546    case 'S':
3547      assert(!Unsigned && "Can't use both 'S' and 'U' modifiers!");
3548      assert(!Signed && "Can't use 'S' modifier multiple times!");
3549      Signed = true;
3550      break;
3551    case 'U':
3552      assert(!Signed && "Can't use both 'S' and 'U' modifiers!");
3553      assert(!Unsigned && "Can't use 'S' modifier multiple times!");
3554      Unsigned = true;
3555      break;
3556    case 'L':
3557      assert(HowLong <= 2 && "Can't have LLLL modifier");
3558      ++HowLong;
3559      break;
3560    }
3561  }
3562
3563  QualType Type;
3564
3565  // Read the base type.
3566  switch (*Str++) {
3567  default: assert(0 && "Unknown builtin type letter!");
3568  case 'v':
3569    assert(HowLong == 0 && !Signed && !Unsigned &&
3570           "Bad modifiers used with 'v'!");
3571    Type = Context.VoidTy;
3572    break;
3573  case 'f':
3574    assert(HowLong == 0 && !Signed && !Unsigned &&
3575           "Bad modifiers used with 'f'!");
3576    Type = Context.FloatTy;
3577    break;
3578  case 'd':
3579    assert(HowLong < 2 && !Signed && !Unsigned &&
3580           "Bad modifiers used with 'd'!");
3581    if (HowLong)
3582      Type = Context.LongDoubleTy;
3583    else
3584      Type = Context.DoubleTy;
3585    break;
3586  case 's':
3587    assert(HowLong == 0 && "Bad modifiers used with 's'!");
3588    if (Unsigned)
3589      Type = Context.UnsignedShortTy;
3590    else
3591      Type = Context.ShortTy;
3592    break;
3593  case 'i':
3594    if (HowLong == 3)
3595      Type = Unsigned ? Context.UnsignedInt128Ty : Context.Int128Ty;
3596    else if (HowLong == 2)
3597      Type = Unsigned ? Context.UnsignedLongLongTy : Context.LongLongTy;
3598    else if (HowLong == 1)
3599      Type = Unsigned ? Context.UnsignedLongTy : Context.LongTy;
3600    else
3601      Type = Unsigned ? Context.UnsignedIntTy : Context.IntTy;
3602    break;
3603  case 'c':
3604    assert(HowLong == 0 && "Bad modifiers used with 'c'!");
3605    if (Signed)
3606      Type = Context.SignedCharTy;
3607    else if (Unsigned)
3608      Type = Context.UnsignedCharTy;
3609    else
3610      Type = Context.CharTy;
3611    break;
3612  case 'b': // boolean
3613    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'b'!");
3614    Type = Context.BoolTy;
3615    break;
3616  case 'z':  // size_t.
3617    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'z'!");
3618    Type = Context.getSizeType();
3619    break;
3620  case 'F':
3621    Type = Context.getCFConstantStringType();
3622    break;
3623  case 'a':
3624    Type = Context.getBuiltinVaListType();
3625    assert(!Type.isNull() && "builtin va list type not initialized!");
3626    break;
3627  case 'A':
3628    // This is a "reference" to a va_list; however, what exactly
3629    // this means depends on how va_list is defined. There are two
3630    // different kinds of va_list: ones passed by value, and ones
3631    // passed by reference.  An example of a by-value va_list is
3632    // x86, where va_list is a char*. An example of by-ref va_list
3633    // is x86-64, where va_list is a __va_list_tag[1]. For x86,
3634    // we want this argument to be a char*&; for x86-64, we want
3635    // it to be a __va_list_tag*.
3636    Type = Context.getBuiltinVaListType();
3637    assert(!Type.isNull() && "builtin va list type not initialized!");
3638    if (Type->isArrayType()) {
3639      Type = Context.getArrayDecayedType(Type);
3640    } else {
3641      Type = Context.getLValueReferenceType(Type);
3642    }
3643    break;
3644  case 'V': {
3645    char *End;
3646
3647    unsigned NumElements = strtoul(Str, &End, 10);
3648    assert(End != Str && "Missing vector size");
3649
3650    Str = End;
3651
3652    QualType ElementType = DecodeTypeFromStr(Str, Context, Error, false);
3653    Type = Context.getVectorType(ElementType, NumElements);
3654    break;
3655  }
3656  case 'P': {
3657    Type = Context.getFILEType();
3658    if (Type.isNull()) {
3659      Error = ASTContext::GE_Missing_FILE;
3660      return QualType();
3661    } else {
3662      break;
3663    }
3664  }
3665  }
3666
3667  if (!AllowTypeModifiers)
3668    return Type;
3669
3670  Done = false;
3671  while (!Done) {
3672    switch (*Str++) {
3673      default: Done = true; --Str; break;
3674      case '*':
3675        Type = Context.getPointerType(Type);
3676        break;
3677      case '&':
3678        Type = Context.getLValueReferenceType(Type);
3679        break;
3680      // FIXME: There's no way to have a built-in with an rvalue ref arg.
3681      case 'C':
3682        Type = Type.getQualifiedType(QualType::Const);
3683        break;
3684    }
3685  }
3686
3687  return Type;
3688}
3689
3690/// GetBuiltinType - Return the type for the specified builtin.
3691QualType ASTContext::GetBuiltinType(unsigned id,
3692                                    GetBuiltinTypeError &Error) {
3693  const char *TypeStr = BuiltinInfo.GetTypeString(id);
3694
3695  llvm::SmallVector<QualType, 8> ArgTypes;
3696
3697  Error = GE_None;
3698  QualType ResType = DecodeTypeFromStr(TypeStr, *this, Error);
3699  if (Error != GE_None)
3700    return QualType();
3701  while (TypeStr[0] && TypeStr[0] != '.') {
3702    QualType Ty = DecodeTypeFromStr(TypeStr, *this, Error);
3703    if (Error != GE_None)
3704      return QualType();
3705
3706    // Do array -> pointer decay.  The builtin should use the decayed type.
3707    if (Ty->isArrayType())
3708      Ty = getArrayDecayedType(Ty);
3709
3710    ArgTypes.push_back(Ty);
3711  }
3712
3713  assert((TypeStr[0] != '.' || TypeStr[1] == 0) &&
3714         "'.' should only occur at end of builtin type list!");
3715
3716  // handle untyped/variadic arguments "T c99Style();" or "T cppStyle(...);".
3717  if (ArgTypes.size() == 0 && TypeStr[0] == '.')
3718    return getFunctionNoProtoType(ResType);
3719  return getFunctionType(ResType, ArgTypes.data(), ArgTypes.size(),
3720                         TypeStr[0] == '.', 0);
3721}
3722