ASTContext.cpp revision 425ef72306d4ff6b3698b744353e5f0e56b4b884
1//===--- ASTContext.cpp - Context to hold long-lived AST nodes ------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements the ASTContext interface.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/AST/ASTContext.h"
15#include "clang/AST/CharUnits.h"
16#include "clang/AST/DeclCXX.h"
17#include "clang/AST/DeclObjC.h"
18#include "clang/AST/DeclTemplate.h"
19#include "clang/AST/TypeLoc.h"
20#include "clang/AST/Expr.h"
21#include "clang/AST/ExternalASTSource.h"
22#include "clang/AST/RecordLayout.h"
23#include "clang/Basic/Builtins.h"
24#include "clang/Basic/SourceManager.h"
25#include "clang/Basic/TargetInfo.h"
26#include "llvm/ADT/SmallString.h"
27#include "llvm/ADT/StringExtras.h"
28#include "llvm/Support/MathExtras.h"
29#include "llvm/Support/raw_ostream.h"
30#include "RecordLayoutBuilder.h"
31
32using namespace clang;
33
34enum FloatingRank {
35  FloatRank, DoubleRank, LongDoubleRank
36};
37
38ASTContext::ASTContext(const LangOptions& LOpts, SourceManager &SM,
39                       const TargetInfo &t,
40                       IdentifierTable &idents, SelectorTable &sels,
41                       Builtin::Context &builtins,
42                       bool FreeMem, unsigned size_reserve) :
43  GlobalNestedNameSpecifier(0), CFConstantStringTypeDecl(0),
44  ObjCFastEnumerationStateTypeDecl(0), FILEDecl(0), jmp_bufDecl(0),
45  sigjmp_bufDecl(0), BlockDescriptorType(0), BlockDescriptorExtendedType(0),
46  SourceMgr(SM), LangOpts(LOpts), FreeMemory(FreeMem), Target(t),
47  Idents(idents), Selectors(sels),
48  BuiltinInfo(builtins), ExternalSource(0), PrintingPolicy(LOpts),
49  LastSDM(0, 0) {
50  ObjCIdRedefinitionType = QualType();
51  ObjCClassRedefinitionType = QualType();
52  ObjCSelRedefinitionType = QualType();
53  if (size_reserve > 0) Types.reserve(size_reserve);
54  TUDecl = TranslationUnitDecl::Create(*this);
55  InitBuiltinTypes();
56}
57
58ASTContext::~ASTContext() {
59  // Release the DenseMaps associated with DeclContext objects.
60  // FIXME: Is this the ideal solution?
61  ReleaseDeclContextMaps();
62
63  // Release all of the memory associated with overridden C++ methods.
64  for (llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::iterator
65         OM = OverriddenMethods.begin(), OMEnd = OverriddenMethods.end();
66       OM != OMEnd; ++OM)
67    OM->second.Destroy();
68
69  if (FreeMemory) {
70    // Deallocate all the types.
71    while (!Types.empty()) {
72      Types.back()->Destroy(*this);
73      Types.pop_back();
74    }
75
76    for (llvm::FoldingSet<ExtQuals>::iterator
77         I = ExtQualNodes.begin(), E = ExtQualNodes.end(); I != E; ) {
78      // Increment in loop to prevent using deallocated memory.
79      Deallocate(&*I++);
80    }
81
82    for (llvm::DenseMap<const RecordDecl*, const ASTRecordLayout*>::iterator
83         I = ASTRecordLayouts.begin(), E = ASTRecordLayouts.end(); I != E; ) {
84      // Increment in loop to prevent using deallocated memory.
85      if (ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second))
86        R->Destroy(*this);
87    }
88
89    for (llvm::DenseMap<const ObjCContainerDecl*,
90         const ASTRecordLayout*>::iterator
91         I = ObjCLayouts.begin(), E = ObjCLayouts.end(); I != E; ) {
92      // Increment in loop to prevent using deallocated memory.
93      if (ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second))
94        R->Destroy(*this);
95    }
96  }
97
98  // Destroy nested-name-specifiers.
99  for (llvm::FoldingSet<NestedNameSpecifier>::iterator
100         NNS = NestedNameSpecifiers.begin(),
101         NNSEnd = NestedNameSpecifiers.end();
102       NNS != NNSEnd; ) {
103    // Increment in loop to prevent using deallocated memory.
104    (*NNS++).Destroy(*this);
105  }
106
107  if (GlobalNestedNameSpecifier)
108    GlobalNestedNameSpecifier->Destroy(*this);
109
110  TUDecl->Destroy(*this);
111}
112
113void
114ASTContext::setExternalSource(llvm::OwningPtr<ExternalASTSource> &Source) {
115  ExternalSource.reset(Source.take());
116}
117
118void ASTContext::PrintStats() const {
119  fprintf(stderr, "*** AST Context Stats:\n");
120  fprintf(stderr, "  %d types total.\n", (int)Types.size());
121
122  unsigned counts[] = {
123#define TYPE(Name, Parent) 0,
124#define ABSTRACT_TYPE(Name, Parent)
125#include "clang/AST/TypeNodes.def"
126    0 // Extra
127  };
128
129  for (unsigned i = 0, e = Types.size(); i != e; ++i) {
130    Type *T = Types[i];
131    counts[(unsigned)T->getTypeClass()]++;
132  }
133
134  unsigned Idx = 0;
135  unsigned TotalBytes = 0;
136#define TYPE(Name, Parent)                                              \
137  if (counts[Idx])                                                      \
138    fprintf(stderr, "    %d %s types\n", (int)counts[Idx], #Name);      \
139  TotalBytes += counts[Idx] * sizeof(Name##Type);                       \
140  ++Idx;
141#define ABSTRACT_TYPE(Name, Parent)
142#include "clang/AST/TypeNodes.def"
143
144  fprintf(stderr, "Total bytes = %d\n", int(TotalBytes));
145
146  if (ExternalSource.get()) {
147    fprintf(stderr, "\n");
148    ExternalSource->PrintStats();
149  }
150}
151
152
153void ASTContext::InitBuiltinType(CanQualType &R, BuiltinType::Kind K) {
154  BuiltinType *Ty = new (*this, TypeAlignment) BuiltinType(K);
155  R = CanQualType::CreateUnsafe(QualType(Ty, 0));
156  Types.push_back(Ty);
157}
158
159void ASTContext::InitBuiltinTypes() {
160  assert(VoidTy.isNull() && "Context reinitialized?");
161
162  // C99 6.2.5p19.
163  InitBuiltinType(VoidTy,              BuiltinType::Void);
164
165  // C99 6.2.5p2.
166  InitBuiltinType(BoolTy,              BuiltinType::Bool);
167  // C99 6.2.5p3.
168  if (LangOpts.CharIsSigned)
169    InitBuiltinType(CharTy,            BuiltinType::Char_S);
170  else
171    InitBuiltinType(CharTy,            BuiltinType::Char_U);
172  // C99 6.2.5p4.
173  InitBuiltinType(SignedCharTy,        BuiltinType::SChar);
174  InitBuiltinType(ShortTy,             BuiltinType::Short);
175  InitBuiltinType(IntTy,               BuiltinType::Int);
176  InitBuiltinType(LongTy,              BuiltinType::Long);
177  InitBuiltinType(LongLongTy,          BuiltinType::LongLong);
178
179  // C99 6.2.5p6.
180  InitBuiltinType(UnsignedCharTy,      BuiltinType::UChar);
181  InitBuiltinType(UnsignedShortTy,     BuiltinType::UShort);
182  InitBuiltinType(UnsignedIntTy,       BuiltinType::UInt);
183  InitBuiltinType(UnsignedLongTy,      BuiltinType::ULong);
184  InitBuiltinType(UnsignedLongLongTy,  BuiltinType::ULongLong);
185
186  // C99 6.2.5p10.
187  InitBuiltinType(FloatTy,             BuiltinType::Float);
188  InitBuiltinType(DoubleTy,            BuiltinType::Double);
189  InitBuiltinType(LongDoubleTy,        BuiltinType::LongDouble);
190
191  // GNU extension, 128-bit integers.
192  InitBuiltinType(Int128Ty,            BuiltinType::Int128);
193  InitBuiltinType(UnsignedInt128Ty,    BuiltinType::UInt128);
194
195  if (LangOpts.CPlusPlus) // C++ 3.9.1p5
196    InitBuiltinType(WCharTy,           BuiltinType::WChar);
197  else // C99
198    WCharTy = getFromTargetType(Target.getWCharType());
199
200  if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
201    InitBuiltinType(Char16Ty,           BuiltinType::Char16);
202  else // C99
203    Char16Ty = getFromTargetType(Target.getChar16Type());
204
205  if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
206    InitBuiltinType(Char32Ty,           BuiltinType::Char32);
207  else // C99
208    Char32Ty = getFromTargetType(Target.getChar32Type());
209
210  // Placeholder type for functions.
211  InitBuiltinType(OverloadTy,          BuiltinType::Overload);
212
213  // Placeholder type for type-dependent expressions whose type is
214  // completely unknown. No code should ever check a type against
215  // DependentTy and users should never see it; however, it is here to
216  // help diagnose failures to properly check for type-dependent
217  // expressions.
218  InitBuiltinType(DependentTy,         BuiltinType::Dependent);
219
220  // Placeholder type for C++0x auto declarations whose real type has
221  // not yet been deduced.
222  InitBuiltinType(UndeducedAutoTy, BuiltinType::UndeducedAuto);
223
224  // C99 6.2.5p11.
225  FloatComplexTy      = getComplexType(FloatTy);
226  DoubleComplexTy     = getComplexType(DoubleTy);
227  LongDoubleComplexTy = getComplexType(LongDoubleTy);
228
229  BuiltinVaListType = QualType();
230
231  // "Builtin" typedefs set by Sema::ActOnTranslationUnitScope().
232  ObjCIdTypedefType = QualType();
233  ObjCClassTypedefType = QualType();
234  ObjCSelTypedefType = QualType();
235
236  // Builtin types for 'id', 'Class', and 'SEL'.
237  InitBuiltinType(ObjCBuiltinIdTy, BuiltinType::ObjCId);
238  InitBuiltinType(ObjCBuiltinClassTy, BuiltinType::ObjCClass);
239  InitBuiltinType(ObjCBuiltinSelTy, BuiltinType::ObjCSel);
240
241  ObjCConstantStringType = QualType();
242
243  // void * type
244  VoidPtrTy = getPointerType(VoidTy);
245
246  // nullptr type (C++0x 2.14.7)
247  InitBuiltinType(NullPtrTy,           BuiltinType::NullPtr);
248}
249
250MemberSpecializationInfo *
251ASTContext::getInstantiatedFromStaticDataMember(const VarDecl *Var) {
252  assert(Var->isStaticDataMember() && "Not a static data member");
253  llvm::DenseMap<const VarDecl *, MemberSpecializationInfo *>::iterator Pos
254    = InstantiatedFromStaticDataMember.find(Var);
255  if (Pos == InstantiatedFromStaticDataMember.end())
256    return 0;
257
258  return Pos->second;
259}
260
261void
262ASTContext::setInstantiatedFromStaticDataMember(VarDecl *Inst, VarDecl *Tmpl,
263                                                TemplateSpecializationKind TSK) {
264  assert(Inst->isStaticDataMember() && "Not a static data member");
265  assert(Tmpl->isStaticDataMember() && "Not a static data member");
266  assert(!InstantiatedFromStaticDataMember[Inst] &&
267         "Already noted what static data member was instantiated from");
268  InstantiatedFromStaticDataMember[Inst]
269    = new (*this) MemberSpecializationInfo(Tmpl, TSK);
270}
271
272NamedDecl *
273ASTContext::getInstantiatedFromUsingDecl(UsingDecl *UUD) {
274  llvm::DenseMap<UsingDecl *, NamedDecl *>::const_iterator Pos
275    = InstantiatedFromUsingDecl.find(UUD);
276  if (Pos == InstantiatedFromUsingDecl.end())
277    return 0;
278
279  return Pos->second;
280}
281
282void
283ASTContext::setInstantiatedFromUsingDecl(UsingDecl *Inst, NamedDecl *Pattern) {
284  assert((isa<UsingDecl>(Pattern) ||
285          isa<UnresolvedUsingValueDecl>(Pattern) ||
286          isa<UnresolvedUsingTypenameDecl>(Pattern)) &&
287         "pattern decl is not a using decl");
288  assert(!InstantiatedFromUsingDecl[Inst] && "pattern already exists");
289  InstantiatedFromUsingDecl[Inst] = Pattern;
290}
291
292UsingShadowDecl *
293ASTContext::getInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst) {
294  llvm::DenseMap<UsingShadowDecl*, UsingShadowDecl*>::const_iterator Pos
295    = InstantiatedFromUsingShadowDecl.find(Inst);
296  if (Pos == InstantiatedFromUsingShadowDecl.end())
297    return 0;
298
299  return Pos->second;
300}
301
302void
303ASTContext::setInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst,
304                                               UsingShadowDecl *Pattern) {
305  assert(!InstantiatedFromUsingShadowDecl[Inst] && "pattern already exists");
306  InstantiatedFromUsingShadowDecl[Inst] = Pattern;
307}
308
309FieldDecl *ASTContext::getInstantiatedFromUnnamedFieldDecl(FieldDecl *Field) {
310  llvm::DenseMap<FieldDecl *, FieldDecl *>::iterator Pos
311    = InstantiatedFromUnnamedFieldDecl.find(Field);
312  if (Pos == InstantiatedFromUnnamedFieldDecl.end())
313    return 0;
314
315  return Pos->second;
316}
317
318void ASTContext::setInstantiatedFromUnnamedFieldDecl(FieldDecl *Inst,
319                                                     FieldDecl *Tmpl) {
320  assert(!Inst->getDeclName() && "Instantiated field decl is not unnamed");
321  assert(!Tmpl->getDeclName() && "Template field decl is not unnamed");
322  assert(!InstantiatedFromUnnamedFieldDecl[Inst] &&
323         "Already noted what unnamed field was instantiated from");
324
325  InstantiatedFromUnnamedFieldDecl[Inst] = Tmpl;
326}
327
328CXXMethodVector::iterator CXXMethodVector::begin() const {
329  if ((Storage & 0x01) == 0)
330    return reinterpret_cast<iterator>(&Storage);
331
332  vector_type *Vec = reinterpret_cast<vector_type *>(Storage & ~0x01);
333  return &Vec->front();
334}
335
336CXXMethodVector::iterator CXXMethodVector::end() const {
337  if ((Storage & 0x01) == 0) {
338    if (Storage == 0)
339      return reinterpret_cast<iterator>(&Storage);
340
341    return reinterpret_cast<iterator>(&Storage) + 1;
342  }
343
344  vector_type *Vec = reinterpret_cast<vector_type *>(Storage & ~0x01);
345  return &Vec->front() + Vec->size();
346}
347
348void CXXMethodVector::push_back(const CXXMethodDecl *Method) {
349  if (Storage == 0) {
350    // 0 -> 1 element.
351    Storage = reinterpret_cast<uintptr_t>(Method);
352    return;
353  }
354
355  vector_type *Vec;
356  if ((Storage & 0x01) == 0) {
357    // 1 -> 2 elements. Allocate a new vector and push the element into that
358    // vector.
359    Vec = new vector_type;
360    Vec->push_back(reinterpret_cast<const CXXMethodDecl *>(Storage));
361    Storage = reinterpret_cast<uintptr_t>(Vec) | 0x01;
362  } else
363    Vec = reinterpret_cast<vector_type *>(Storage & ~0x01);
364
365  // Add the new method to the vector.
366  Vec->push_back(Method);
367}
368
369void CXXMethodVector::Destroy() {
370  if (Storage & 0x01)
371    delete reinterpret_cast<vector_type *>(Storage & ~0x01);
372
373  Storage = 0;
374}
375
376
377ASTContext::overridden_cxx_method_iterator
378ASTContext::overridden_methods_begin(const CXXMethodDecl *Method) const {
379  llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
380    = OverriddenMethods.find(Method);
381  if (Pos == OverriddenMethods.end())
382    return 0;
383
384  return Pos->second.begin();
385}
386
387ASTContext::overridden_cxx_method_iterator
388ASTContext::overridden_methods_end(const CXXMethodDecl *Method) const {
389  llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
390    = OverriddenMethods.find(Method);
391  if (Pos == OverriddenMethods.end())
392    return 0;
393
394  return Pos->second.end();
395}
396
397void ASTContext::addOverriddenMethod(const CXXMethodDecl *Method,
398                                     const CXXMethodDecl *Overridden) {
399  OverriddenMethods[Method].push_back(Overridden);
400}
401
402namespace {
403  class BeforeInTranslationUnit
404    : std::binary_function<SourceRange, SourceRange, bool> {
405    SourceManager *SourceMgr;
406
407  public:
408    explicit BeforeInTranslationUnit(SourceManager *SM) : SourceMgr(SM) { }
409
410    bool operator()(SourceRange X, SourceRange Y) {
411      return SourceMgr->isBeforeInTranslationUnit(X.getBegin(), Y.getBegin());
412    }
413  };
414}
415
416//===----------------------------------------------------------------------===//
417//                         Type Sizing and Analysis
418//===----------------------------------------------------------------------===//
419
420/// getFloatTypeSemantics - Return the APFloat 'semantics' for the specified
421/// scalar floating point type.
422const llvm::fltSemantics &ASTContext::getFloatTypeSemantics(QualType T) const {
423  const BuiltinType *BT = T->getAs<BuiltinType>();
424  assert(BT && "Not a floating point type!");
425  switch (BT->getKind()) {
426  default: assert(0 && "Not a floating point type!");
427  case BuiltinType::Float:      return Target.getFloatFormat();
428  case BuiltinType::Double:     return Target.getDoubleFormat();
429  case BuiltinType::LongDouble: return Target.getLongDoubleFormat();
430  }
431}
432
433/// getDeclAlign - Return a conservative estimate of the alignment of the
434/// specified decl.  Note that bitfields do not have a valid alignment, so
435/// this method will assert on them.
436/// If @p RefAsPointee, references are treated like their underlying type
437/// (for alignof), else they're treated like pointers (for CodeGen).
438CharUnits ASTContext::getDeclAlign(const Decl *D, bool RefAsPointee) {
439  unsigned Align = Target.getCharWidth();
440
441  if (const AlignedAttr* AA = D->getAttr<AlignedAttr>())
442    Align = std::max(Align, AA->getMaxAlignment());
443
444  if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
445    QualType T = VD->getType();
446    if (const ReferenceType* RT = T->getAs<ReferenceType>()) {
447      if (RefAsPointee)
448        T = RT->getPointeeType();
449      else
450        T = getPointerType(RT->getPointeeType());
451    }
452    if (!T->isIncompleteType() && !T->isFunctionType()) {
453      // Incomplete or function types default to 1.
454      while (isa<VariableArrayType>(T) || isa<IncompleteArrayType>(T))
455        T = cast<ArrayType>(T)->getElementType();
456
457      Align = std::max(Align, getPreferredTypeAlign(T.getTypePtr()));
458    }
459    if (const FieldDecl *FD = dyn_cast<FieldDecl>(VD)) {
460      // In the case of a field in a packed struct, we want the minimum
461      // of the alignment of the field and the alignment of the struct.
462      Align = std::min(Align,
463        getPreferredTypeAlign(FD->getParent()->getTypeForDecl()));
464    }
465  }
466
467  return CharUnits::fromQuantity(Align / Target.getCharWidth());
468}
469
470/// getTypeSize - Return the size of the specified type, in bits.  This method
471/// does not work on incomplete types.
472///
473/// FIXME: Pointers into different addr spaces could have different sizes and
474/// alignment requirements: getPointerInfo should take an AddrSpace, this
475/// should take a QualType, &c.
476std::pair<uint64_t, unsigned>
477ASTContext::getTypeInfo(const Type *T) {
478  uint64_t Width=0;
479  unsigned Align=8;
480  switch (T->getTypeClass()) {
481#define TYPE(Class, Base)
482#define ABSTRACT_TYPE(Class, Base)
483#define NON_CANONICAL_TYPE(Class, Base)
484#define DEPENDENT_TYPE(Class, Base) case Type::Class:
485#include "clang/AST/TypeNodes.def"
486    assert(false && "Should not see dependent types");
487    break;
488
489  case Type::FunctionNoProto:
490  case Type::FunctionProto:
491    // GCC extension: alignof(function) = 32 bits
492    Width = 0;
493    Align = 32;
494    break;
495
496  case Type::IncompleteArray:
497  case Type::VariableArray:
498    Width = 0;
499    Align = getTypeAlign(cast<ArrayType>(T)->getElementType());
500    break;
501
502  case Type::ConstantArray: {
503    const ConstantArrayType *CAT = cast<ConstantArrayType>(T);
504
505    std::pair<uint64_t, unsigned> EltInfo = getTypeInfo(CAT->getElementType());
506    Width = EltInfo.first*CAT->getSize().getZExtValue();
507    Align = EltInfo.second;
508    break;
509  }
510  case Type::ExtVector:
511  case Type::Vector: {
512    const VectorType *VT = cast<VectorType>(T);
513    std::pair<uint64_t, unsigned> EltInfo = getTypeInfo(VT->getElementType());
514    Width = EltInfo.first*VT->getNumElements();
515    Align = Width;
516    // If the alignment is not a power of 2, round up to the next power of 2.
517    // This happens for non-power-of-2 length vectors.
518    if (VT->getNumElements() & (VT->getNumElements()-1)) {
519      Align = llvm::NextPowerOf2(Align);
520      Width = llvm::RoundUpToAlignment(Width, Align);
521    }
522    break;
523  }
524
525  case Type::Builtin:
526    switch (cast<BuiltinType>(T)->getKind()) {
527    default: assert(0 && "Unknown builtin type!");
528    case BuiltinType::Void:
529      // GCC extension: alignof(void) = 8 bits.
530      Width = 0;
531      Align = 8;
532      break;
533
534    case BuiltinType::Bool:
535      Width = Target.getBoolWidth();
536      Align = Target.getBoolAlign();
537      break;
538    case BuiltinType::Char_S:
539    case BuiltinType::Char_U:
540    case BuiltinType::UChar:
541    case BuiltinType::SChar:
542      Width = Target.getCharWidth();
543      Align = Target.getCharAlign();
544      break;
545    case BuiltinType::WChar:
546      Width = Target.getWCharWidth();
547      Align = Target.getWCharAlign();
548      break;
549    case BuiltinType::Char16:
550      Width = Target.getChar16Width();
551      Align = Target.getChar16Align();
552      break;
553    case BuiltinType::Char32:
554      Width = Target.getChar32Width();
555      Align = Target.getChar32Align();
556      break;
557    case BuiltinType::UShort:
558    case BuiltinType::Short:
559      Width = Target.getShortWidth();
560      Align = Target.getShortAlign();
561      break;
562    case BuiltinType::UInt:
563    case BuiltinType::Int:
564      Width = Target.getIntWidth();
565      Align = Target.getIntAlign();
566      break;
567    case BuiltinType::ULong:
568    case BuiltinType::Long:
569      Width = Target.getLongWidth();
570      Align = Target.getLongAlign();
571      break;
572    case BuiltinType::ULongLong:
573    case BuiltinType::LongLong:
574      Width = Target.getLongLongWidth();
575      Align = Target.getLongLongAlign();
576      break;
577    case BuiltinType::Int128:
578    case BuiltinType::UInt128:
579      Width = 128;
580      Align = 128; // int128_t is 128-bit aligned on all targets.
581      break;
582    case BuiltinType::Float:
583      Width = Target.getFloatWidth();
584      Align = Target.getFloatAlign();
585      break;
586    case BuiltinType::Double:
587      Width = Target.getDoubleWidth();
588      Align = Target.getDoubleAlign();
589      break;
590    case BuiltinType::LongDouble:
591      Width = Target.getLongDoubleWidth();
592      Align = Target.getLongDoubleAlign();
593      break;
594    case BuiltinType::NullPtr:
595      Width = Target.getPointerWidth(0); // C++ 3.9.1p11: sizeof(nullptr_t)
596      Align = Target.getPointerAlign(0); //   == sizeof(void*)
597      break;
598    }
599    break;
600  case Type::ObjCObjectPointer:
601    Width = Target.getPointerWidth(0);
602    Align = Target.getPointerAlign(0);
603    break;
604  case Type::BlockPointer: {
605    unsigned AS = cast<BlockPointerType>(T)->getPointeeType().getAddressSpace();
606    Width = Target.getPointerWidth(AS);
607    Align = Target.getPointerAlign(AS);
608    break;
609  }
610  case Type::LValueReference:
611  case Type::RValueReference: {
612    // alignof and sizeof should never enter this code path here, so we go
613    // the pointer route.
614    unsigned AS = cast<ReferenceType>(T)->getPointeeType().getAddressSpace();
615    Width = Target.getPointerWidth(AS);
616    Align = Target.getPointerAlign(AS);
617    break;
618  }
619  case Type::Pointer: {
620    unsigned AS = cast<PointerType>(T)->getPointeeType().getAddressSpace();
621    Width = Target.getPointerWidth(AS);
622    Align = Target.getPointerAlign(AS);
623    break;
624  }
625  case Type::MemberPointer: {
626    QualType Pointee = cast<MemberPointerType>(T)->getPointeeType();
627    std::pair<uint64_t, unsigned> PtrDiffInfo =
628      getTypeInfo(getPointerDiffType());
629    Width = PtrDiffInfo.first;
630    if (Pointee->isFunctionType())
631      Width *= 2;
632    Align = PtrDiffInfo.second;
633    break;
634  }
635  case Type::Complex: {
636    // Complex types have the same alignment as their elements, but twice the
637    // size.
638    std::pair<uint64_t, unsigned> EltInfo =
639      getTypeInfo(cast<ComplexType>(T)->getElementType());
640    Width = EltInfo.first*2;
641    Align = EltInfo.second;
642    break;
643  }
644  case Type::ObjCInterface: {
645    const ObjCInterfaceType *ObjCI = cast<ObjCInterfaceType>(T);
646    const ASTRecordLayout &Layout = getASTObjCInterfaceLayout(ObjCI->getDecl());
647    Width = Layout.getSize();
648    Align = Layout.getAlignment();
649    break;
650  }
651  case Type::Record:
652  case Type::Enum: {
653    const TagType *TT = cast<TagType>(T);
654
655    if (TT->getDecl()->isInvalidDecl()) {
656      Width = 1;
657      Align = 1;
658      break;
659    }
660
661    if (const EnumType *ET = dyn_cast<EnumType>(TT))
662      return getTypeInfo(ET->getDecl()->getIntegerType());
663
664    const RecordType *RT = cast<RecordType>(TT);
665    const ASTRecordLayout &Layout = getASTRecordLayout(RT->getDecl());
666    Width = Layout.getSize();
667    Align = Layout.getAlignment();
668    break;
669  }
670
671  case Type::SubstTemplateTypeParm:
672    return getTypeInfo(cast<SubstTemplateTypeParmType>(T)->
673                       getReplacementType().getTypePtr());
674
675  case Type::Elaborated:
676    return getTypeInfo(cast<ElaboratedType>(T)->getUnderlyingType()
677                         .getTypePtr());
678
679  case Type::Typedef: {
680    const TypedefDecl *Typedef = cast<TypedefType>(T)->getDecl();
681    if (const AlignedAttr *Aligned = Typedef->getAttr<AlignedAttr>()) {
682      Align = std::max(Aligned->getMaxAlignment(),
683                       getTypeAlign(Typedef->getUnderlyingType().getTypePtr()));
684      Width = getTypeSize(Typedef->getUnderlyingType().getTypePtr());
685    } else
686      return getTypeInfo(Typedef->getUnderlyingType().getTypePtr());
687    break;
688  }
689
690  case Type::TypeOfExpr:
691    return getTypeInfo(cast<TypeOfExprType>(T)->getUnderlyingExpr()->getType()
692                         .getTypePtr());
693
694  case Type::TypeOf:
695    return getTypeInfo(cast<TypeOfType>(T)->getUnderlyingType().getTypePtr());
696
697  case Type::Decltype:
698    return getTypeInfo(cast<DecltypeType>(T)->getUnderlyingExpr()->getType()
699                        .getTypePtr());
700
701  case Type::QualifiedName:
702    return getTypeInfo(cast<QualifiedNameType>(T)->getNamedType().getTypePtr());
703
704 case Type::InjectedClassName:
705   return getTypeInfo(cast<InjectedClassNameType>(T)
706                        ->getUnderlyingType().getTypePtr());
707
708  case Type::TemplateSpecialization:
709    assert(getCanonicalType(T) != T &&
710           "Cannot request the size of a dependent type");
711    // FIXME: this is likely to be wrong once we support template
712    // aliases, since a template alias could refer to a typedef that
713    // has an __aligned__ attribute on it.
714    return getTypeInfo(getCanonicalType(T));
715  }
716
717  assert(Align && (Align & (Align-1)) == 0 && "Alignment must be power of 2");
718  return std::make_pair(Width, Align);
719}
720
721/// getTypeSizeInChars - Return the size of the specified type, in characters.
722/// This method does not work on incomplete types.
723CharUnits ASTContext::getTypeSizeInChars(QualType T) {
724  return CharUnits::fromQuantity(getTypeSize(T) / getCharWidth());
725}
726CharUnits ASTContext::getTypeSizeInChars(const Type *T) {
727  return CharUnits::fromQuantity(getTypeSize(T) / getCharWidth());
728}
729
730/// getTypeAlignInChars - Return the ABI-specified alignment of a type, in
731/// characters. This method does not work on incomplete types.
732CharUnits ASTContext::getTypeAlignInChars(QualType T) {
733  return CharUnits::fromQuantity(getTypeAlign(T) / getCharWidth());
734}
735CharUnits ASTContext::getTypeAlignInChars(const Type *T) {
736  return CharUnits::fromQuantity(getTypeAlign(T) / getCharWidth());
737}
738
739/// getPreferredTypeAlign - Return the "preferred" alignment of the specified
740/// type for the current target in bits.  This can be different than the ABI
741/// alignment in cases where it is beneficial for performance to overalign
742/// a data type.
743unsigned ASTContext::getPreferredTypeAlign(const Type *T) {
744  unsigned ABIAlign = getTypeAlign(T);
745
746  // Double and long long should be naturally aligned if possible.
747  if (const ComplexType* CT = T->getAs<ComplexType>())
748    T = CT->getElementType().getTypePtr();
749  if (T->isSpecificBuiltinType(BuiltinType::Double) ||
750      T->isSpecificBuiltinType(BuiltinType::LongLong))
751    return std::max(ABIAlign, (unsigned)getTypeSize(T));
752
753  return ABIAlign;
754}
755
756static void CollectLocalObjCIvars(ASTContext *Ctx,
757                                  const ObjCInterfaceDecl *OI,
758                                  llvm::SmallVectorImpl<FieldDecl*> &Fields) {
759  for (ObjCInterfaceDecl::ivar_iterator I = OI->ivar_begin(),
760       E = OI->ivar_end(); I != E; ++I) {
761    ObjCIvarDecl *IVDecl = *I;
762    if (!IVDecl->isInvalidDecl())
763      Fields.push_back(cast<FieldDecl>(IVDecl));
764  }
765}
766
767void ASTContext::CollectObjCIvars(const ObjCInterfaceDecl *OI,
768                             llvm::SmallVectorImpl<FieldDecl*> &Fields) {
769  if (const ObjCInterfaceDecl *SuperClass = OI->getSuperClass())
770    CollectObjCIvars(SuperClass, Fields);
771  CollectLocalObjCIvars(this, OI, Fields);
772}
773
774/// ShallowCollectObjCIvars -
775/// Collect all ivars, including those synthesized, in the current class.
776///
777void ASTContext::ShallowCollectObjCIvars(const ObjCInterfaceDecl *OI,
778                                 llvm::SmallVectorImpl<ObjCIvarDecl*> &Ivars) {
779  for (ObjCInterfaceDecl::ivar_iterator I = OI->ivar_begin(),
780         E = OI->ivar_end(); I != E; ++I) {
781     Ivars.push_back(*I);
782  }
783
784  CollectNonClassIvars(OI, Ivars);
785}
786
787/// CollectNonClassIvars -
788/// This routine collects all other ivars which are not declared in the class.
789/// This includes synthesized ivars (via @synthesize) and those in
790//  class's @implementation.
791///
792void ASTContext::CollectNonClassIvars(const ObjCInterfaceDecl *OI,
793                                llvm::SmallVectorImpl<ObjCIvarDecl*> &Ivars) {
794  // Find ivars declared in class extension.
795  if (const ObjCCategoryDecl *CDecl = OI->getClassExtension()) {
796    for (ObjCCategoryDecl::ivar_iterator I = CDecl->ivar_begin(),
797         E = CDecl->ivar_end(); I != E; ++I) {
798      Ivars.push_back(*I);
799    }
800  }
801
802  // Also add any ivar defined in this class's implementation.  This
803  // includes synthesized ivars.
804  if (ObjCImplementationDecl *ImplDecl = OI->getImplementation()) {
805    for (ObjCImplementationDecl::ivar_iterator I = ImplDecl->ivar_begin(),
806         E = ImplDecl->ivar_end(); I != E; ++I)
807      Ivars.push_back(*I);
808  }
809}
810
811/// CollectInheritedProtocols - Collect all protocols in current class and
812/// those inherited by it.
813void ASTContext::CollectInheritedProtocols(const Decl *CDecl,
814                          llvm::SmallPtrSet<ObjCProtocolDecl*, 8> &Protocols) {
815  if (const ObjCInterfaceDecl *OI = dyn_cast<ObjCInterfaceDecl>(CDecl)) {
816    for (ObjCInterfaceDecl::protocol_iterator P = OI->protocol_begin(),
817         PE = OI->protocol_end(); P != PE; ++P) {
818      ObjCProtocolDecl *Proto = (*P);
819      Protocols.insert(Proto);
820      for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
821           PE = Proto->protocol_end(); P != PE; ++P) {
822        Protocols.insert(*P);
823        CollectInheritedProtocols(*P, Protocols);
824      }
825    }
826
827    // Categories of this Interface.
828    for (const ObjCCategoryDecl *CDeclChain = OI->getCategoryList();
829         CDeclChain; CDeclChain = CDeclChain->getNextClassCategory())
830      CollectInheritedProtocols(CDeclChain, Protocols);
831    if (ObjCInterfaceDecl *SD = OI->getSuperClass())
832      while (SD) {
833        CollectInheritedProtocols(SD, Protocols);
834        SD = SD->getSuperClass();
835      }
836    return;
837  }
838  if (const ObjCCategoryDecl *OC = dyn_cast<ObjCCategoryDecl>(CDecl)) {
839    for (ObjCInterfaceDecl::protocol_iterator P = OC->protocol_begin(),
840         PE = OC->protocol_end(); P != PE; ++P) {
841      ObjCProtocolDecl *Proto = (*P);
842      Protocols.insert(Proto);
843      for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
844           PE = Proto->protocol_end(); P != PE; ++P)
845        CollectInheritedProtocols(*P, Protocols);
846    }
847    return;
848  }
849  if (const ObjCProtocolDecl *OP = dyn_cast<ObjCProtocolDecl>(CDecl)) {
850    for (ObjCProtocolDecl::protocol_iterator P = OP->protocol_begin(),
851         PE = OP->protocol_end(); P != PE; ++P) {
852      ObjCProtocolDecl *Proto = (*P);
853      Protocols.insert(Proto);
854      for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
855           PE = Proto->protocol_end(); P != PE; ++P)
856        CollectInheritedProtocols(*P, Protocols);
857    }
858    return;
859  }
860}
861
862unsigned ASTContext::CountNonClassIvars(const ObjCInterfaceDecl *OI) {
863  unsigned count = 0;
864  // Count ivars declared in class extension.
865  if (const ObjCCategoryDecl *CDecl = OI->getClassExtension()) {
866    for (ObjCCategoryDecl::ivar_iterator I = CDecl->ivar_begin(),
867         E = CDecl->ivar_end(); I != E; ++I) {
868      ++count;
869    }
870  }
871
872  // Count ivar defined in this class's implementation.  This
873  // includes synthesized ivars.
874  if (ObjCImplementationDecl *ImplDecl = OI->getImplementation())
875    for (ObjCImplementationDecl::ivar_iterator I = ImplDecl->ivar_begin(),
876         E = ImplDecl->ivar_end(); I != E; ++I)
877      ++count;
878  return count;
879}
880
881/// \brief Get the implementation of ObjCInterfaceDecl,or NULL if none exists.
882ObjCImplementationDecl *ASTContext::getObjCImplementation(ObjCInterfaceDecl *D) {
883  llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
884    I = ObjCImpls.find(D);
885  if (I != ObjCImpls.end())
886    return cast<ObjCImplementationDecl>(I->second);
887  return 0;
888}
889/// \brief Get the implementation of ObjCCategoryDecl, or NULL if none exists.
890ObjCCategoryImplDecl *ASTContext::getObjCImplementation(ObjCCategoryDecl *D) {
891  llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
892    I = ObjCImpls.find(D);
893  if (I != ObjCImpls.end())
894    return cast<ObjCCategoryImplDecl>(I->second);
895  return 0;
896}
897
898/// \brief Set the implementation of ObjCInterfaceDecl.
899void ASTContext::setObjCImplementation(ObjCInterfaceDecl *IFaceD,
900                           ObjCImplementationDecl *ImplD) {
901  assert(IFaceD && ImplD && "Passed null params");
902  ObjCImpls[IFaceD] = ImplD;
903}
904/// \brief Set the implementation of ObjCCategoryDecl.
905void ASTContext::setObjCImplementation(ObjCCategoryDecl *CatD,
906                           ObjCCategoryImplDecl *ImplD) {
907  assert(CatD && ImplD && "Passed null params");
908  ObjCImpls[CatD] = ImplD;
909}
910
911/// \brief Allocate an uninitialized TypeSourceInfo.
912///
913/// The caller should initialize the memory held by TypeSourceInfo using
914/// the TypeLoc wrappers.
915///
916/// \param T the type that will be the basis for type source info. This type
917/// should refer to how the declarator was written in source code, not to
918/// what type semantic analysis resolved the declarator to.
919TypeSourceInfo *ASTContext::CreateTypeSourceInfo(QualType T,
920                                                 unsigned DataSize) {
921  if (!DataSize)
922    DataSize = TypeLoc::getFullDataSizeForType(T);
923  else
924    assert(DataSize == TypeLoc::getFullDataSizeForType(T) &&
925           "incorrect data size provided to CreateTypeSourceInfo!");
926
927  TypeSourceInfo *TInfo =
928    (TypeSourceInfo*)BumpAlloc.Allocate(sizeof(TypeSourceInfo) + DataSize, 8);
929  new (TInfo) TypeSourceInfo(T);
930  return TInfo;
931}
932
933TypeSourceInfo *ASTContext::getTrivialTypeSourceInfo(QualType T,
934                                                     SourceLocation L) {
935  TypeSourceInfo *DI = CreateTypeSourceInfo(T);
936  DI->getTypeLoc().initialize(L);
937  return DI;
938}
939
940/// getInterfaceLayoutImpl - Get or compute information about the
941/// layout of the given interface.
942///
943/// \param Impl - If given, also include the layout of the interface's
944/// implementation. This may differ by including synthesized ivars.
945const ASTRecordLayout &
946ASTContext::getObjCLayout(const ObjCInterfaceDecl *D,
947                          const ObjCImplementationDecl *Impl) {
948  assert(!D->isForwardDecl() && "Invalid interface decl!");
949
950  // Look up this layout, if already laid out, return what we have.
951  ObjCContainerDecl *Key =
952    Impl ? (ObjCContainerDecl*) Impl : (ObjCContainerDecl*) D;
953  if (const ASTRecordLayout *Entry = ObjCLayouts[Key])
954    return *Entry;
955
956  // Add in synthesized ivar count if laying out an implementation.
957  if (Impl) {
958    unsigned SynthCount = CountNonClassIvars(D);
959    // If there aren't any sythesized ivars then reuse the interface
960    // entry. Note we can't cache this because we simply free all
961    // entries later; however we shouldn't look up implementations
962    // frequently.
963    if (SynthCount == 0)
964      return getObjCLayout(D, 0);
965  }
966
967  const ASTRecordLayout *NewEntry =
968    ASTRecordLayoutBuilder::ComputeLayout(*this, D, Impl);
969  ObjCLayouts[Key] = NewEntry;
970
971  return *NewEntry;
972}
973
974const ASTRecordLayout &
975ASTContext::getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D) {
976  return getObjCLayout(D, 0);
977}
978
979const ASTRecordLayout &
980ASTContext::getASTObjCImplementationLayout(const ObjCImplementationDecl *D) {
981  return getObjCLayout(D->getClassInterface(), D);
982}
983
984/// getASTRecordLayout - Get or compute information about the layout of the
985/// specified record (struct/union/class), which indicates its size and field
986/// position information.
987const ASTRecordLayout &ASTContext::getASTRecordLayout(const RecordDecl *D) {
988  D = D->getDefinition();
989  assert(D && "Cannot get layout of forward declarations!");
990
991  // Look up this layout, if already laid out, return what we have.
992  // Note that we can't save a reference to the entry because this function
993  // is recursive.
994  const ASTRecordLayout *Entry = ASTRecordLayouts[D];
995  if (Entry) return *Entry;
996
997  const ASTRecordLayout *NewEntry =
998    ASTRecordLayoutBuilder::ComputeLayout(*this, D);
999  ASTRecordLayouts[D] = NewEntry;
1000
1001  return *NewEntry;
1002}
1003
1004const CXXMethodDecl *ASTContext::getKeyFunction(const CXXRecordDecl *RD) {
1005  RD = cast<CXXRecordDecl>(RD->getDefinition());
1006  assert(RD && "Cannot get key function for forward declarations!");
1007
1008  const CXXMethodDecl *&Entry = KeyFunctions[RD];
1009  if (!Entry)
1010    Entry = ASTRecordLayoutBuilder::ComputeKeyFunction(RD);
1011  else
1012    assert(Entry == ASTRecordLayoutBuilder::ComputeKeyFunction(RD) &&
1013           "Key function changed!");
1014
1015  return Entry;
1016}
1017
1018//===----------------------------------------------------------------------===//
1019//                   Type creation/memoization methods
1020//===----------------------------------------------------------------------===//
1021
1022QualType ASTContext::getExtQualType(const Type *TypeNode, Qualifiers Quals) {
1023  unsigned Fast = Quals.getFastQualifiers();
1024  Quals.removeFastQualifiers();
1025
1026  // Check if we've already instantiated this type.
1027  llvm::FoldingSetNodeID ID;
1028  ExtQuals::Profile(ID, TypeNode, Quals);
1029  void *InsertPos = 0;
1030  if (ExtQuals *EQ = ExtQualNodes.FindNodeOrInsertPos(ID, InsertPos)) {
1031    assert(EQ->getQualifiers() == Quals);
1032    QualType T = QualType(EQ, Fast);
1033    return T;
1034  }
1035
1036  ExtQuals *New = new (*this, TypeAlignment) ExtQuals(*this, TypeNode, Quals);
1037  ExtQualNodes.InsertNode(New, InsertPos);
1038  QualType T = QualType(New, Fast);
1039  return T;
1040}
1041
1042QualType ASTContext::getVolatileType(QualType T) {
1043  QualType CanT = getCanonicalType(T);
1044  if (CanT.isVolatileQualified()) return T;
1045
1046  QualifierCollector Quals;
1047  const Type *TypeNode = Quals.strip(T);
1048  Quals.addVolatile();
1049
1050  return getExtQualType(TypeNode, Quals);
1051}
1052
1053QualType ASTContext::getAddrSpaceQualType(QualType T, unsigned AddressSpace) {
1054  QualType CanT = getCanonicalType(T);
1055  if (CanT.getAddressSpace() == AddressSpace)
1056    return T;
1057
1058  // If we are composing extended qualifiers together, merge together
1059  // into one ExtQuals node.
1060  QualifierCollector Quals;
1061  const Type *TypeNode = Quals.strip(T);
1062
1063  // If this type already has an address space specified, it cannot get
1064  // another one.
1065  assert(!Quals.hasAddressSpace() &&
1066         "Type cannot be in multiple addr spaces!");
1067  Quals.addAddressSpace(AddressSpace);
1068
1069  return getExtQualType(TypeNode, Quals);
1070}
1071
1072QualType ASTContext::getObjCGCQualType(QualType T,
1073                                       Qualifiers::GC GCAttr) {
1074  QualType CanT = getCanonicalType(T);
1075  if (CanT.getObjCGCAttr() == GCAttr)
1076    return T;
1077
1078  if (T->isPointerType()) {
1079    QualType Pointee = T->getAs<PointerType>()->getPointeeType();
1080    if (Pointee->isAnyPointerType()) {
1081      QualType ResultType = getObjCGCQualType(Pointee, GCAttr);
1082      return getPointerType(ResultType);
1083    }
1084  }
1085
1086  // If we are composing extended qualifiers together, merge together
1087  // into one ExtQuals node.
1088  QualifierCollector Quals;
1089  const Type *TypeNode = Quals.strip(T);
1090
1091  // If this type already has an ObjCGC specified, it cannot get
1092  // another one.
1093  assert(!Quals.hasObjCGCAttr() &&
1094         "Type cannot have multiple ObjCGCs!");
1095  Quals.addObjCGCAttr(GCAttr);
1096
1097  return getExtQualType(TypeNode, Quals);
1098}
1099
1100static QualType getExtFunctionType(ASTContext& Context, QualType T,
1101                                        const FunctionType::ExtInfo &Info) {
1102  QualType ResultType;
1103  if (const PointerType *Pointer = T->getAs<PointerType>()) {
1104    QualType Pointee = Pointer->getPointeeType();
1105    ResultType = getExtFunctionType(Context, Pointee, Info);
1106    if (ResultType == Pointee)
1107      return T;
1108
1109    ResultType = Context.getPointerType(ResultType);
1110  } else if (const BlockPointerType *BlockPointer
1111                                              = T->getAs<BlockPointerType>()) {
1112    QualType Pointee = BlockPointer->getPointeeType();
1113    ResultType = getExtFunctionType(Context, Pointee, Info);
1114    if (ResultType == Pointee)
1115      return T;
1116
1117    ResultType = Context.getBlockPointerType(ResultType);
1118   } else if (const FunctionType *F = T->getAs<FunctionType>()) {
1119    if (F->getExtInfo() == Info)
1120      return T;
1121
1122    if (const FunctionNoProtoType *FNPT = dyn_cast<FunctionNoProtoType>(F)) {
1123      ResultType = Context.getFunctionNoProtoType(FNPT->getResultType(),
1124                                                  Info);
1125    } else {
1126      const FunctionProtoType *FPT = cast<FunctionProtoType>(F);
1127      ResultType
1128        = Context.getFunctionType(FPT->getResultType(), FPT->arg_type_begin(),
1129                                  FPT->getNumArgs(), FPT->isVariadic(),
1130                                  FPT->getTypeQuals(),
1131                                  FPT->hasExceptionSpec(),
1132                                  FPT->hasAnyExceptionSpec(),
1133                                  FPT->getNumExceptions(),
1134                                  FPT->exception_begin(),
1135                                  Info);
1136    }
1137  } else
1138    return T;
1139
1140  return Context.getQualifiedType(ResultType, T.getLocalQualifiers());
1141}
1142
1143QualType ASTContext::getNoReturnType(QualType T, bool AddNoReturn) {
1144  FunctionType::ExtInfo Info = getFunctionExtInfo(T);
1145  return getExtFunctionType(*this, T,
1146                                 Info.withNoReturn(AddNoReturn));
1147}
1148
1149QualType ASTContext::getCallConvType(QualType T, CallingConv CallConv) {
1150  FunctionType::ExtInfo Info = getFunctionExtInfo(T);
1151  return getExtFunctionType(*this, T,
1152                            Info.withCallingConv(CallConv));
1153}
1154
1155QualType ASTContext::getRegParmType(QualType T, unsigned RegParm) {
1156  FunctionType::ExtInfo Info = getFunctionExtInfo(T);
1157  return getExtFunctionType(*this, T,
1158                                 Info.withRegParm(RegParm));
1159}
1160
1161/// getComplexType - Return the uniqued reference to the type for a complex
1162/// number with the specified element type.
1163QualType ASTContext::getComplexType(QualType T) {
1164  // Unique pointers, to guarantee there is only one pointer of a particular
1165  // structure.
1166  llvm::FoldingSetNodeID ID;
1167  ComplexType::Profile(ID, T);
1168
1169  void *InsertPos = 0;
1170  if (ComplexType *CT = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos))
1171    return QualType(CT, 0);
1172
1173  // If the pointee type isn't canonical, this won't be a canonical type either,
1174  // so fill in the canonical type field.
1175  QualType Canonical;
1176  if (!T.isCanonical()) {
1177    Canonical = getComplexType(getCanonicalType(T));
1178
1179    // Get the new insert position for the node we care about.
1180    ComplexType *NewIP = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos);
1181    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1182  }
1183  ComplexType *New = new (*this, TypeAlignment) ComplexType(T, Canonical);
1184  Types.push_back(New);
1185  ComplexTypes.InsertNode(New, InsertPos);
1186  return QualType(New, 0);
1187}
1188
1189/// getPointerType - Return the uniqued reference to the type for a pointer to
1190/// the specified type.
1191QualType ASTContext::getPointerType(QualType T) {
1192  // Unique pointers, to guarantee there is only one pointer of a particular
1193  // structure.
1194  llvm::FoldingSetNodeID ID;
1195  PointerType::Profile(ID, T);
1196
1197  void *InsertPos = 0;
1198  if (PointerType *PT = PointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1199    return QualType(PT, 0);
1200
1201  // If the pointee type isn't canonical, this won't be a canonical type either,
1202  // so fill in the canonical type field.
1203  QualType Canonical;
1204  if (!T.isCanonical()) {
1205    Canonical = getPointerType(getCanonicalType(T));
1206
1207    // Get the new insert position for the node we care about.
1208    PointerType *NewIP = PointerTypes.FindNodeOrInsertPos(ID, InsertPos);
1209    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1210  }
1211  PointerType *New = new (*this, TypeAlignment) PointerType(T, Canonical);
1212  Types.push_back(New);
1213  PointerTypes.InsertNode(New, InsertPos);
1214  return QualType(New, 0);
1215}
1216
1217/// getBlockPointerType - Return the uniqued reference to the type for
1218/// a pointer to the specified block.
1219QualType ASTContext::getBlockPointerType(QualType T) {
1220  assert(T->isFunctionType() && "block of function types only");
1221  // Unique pointers, to guarantee there is only one block of a particular
1222  // structure.
1223  llvm::FoldingSetNodeID ID;
1224  BlockPointerType::Profile(ID, T);
1225
1226  void *InsertPos = 0;
1227  if (BlockPointerType *PT =
1228        BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1229    return QualType(PT, 0);
1230
1231  // If the block pointee type isn't canonical, this won't be a canonical
1232  // type either so fill in the canonical type field.
1233  QualType Canonical;
1234  if (!T.isCanonical()) {
1235    Canonical = getBlockPointerType(getCanonicalType(T));
1236
1237    // Get the new insert position for the node we care about.
1238    BlockPointerType *NewIP =
1239      BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
1240    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1241  }
1242  BlockPointerType *New
1243    = new (*this, TypeAlignment) BlockPointerType(T, Canonical);
1244  Types.push_back(New);
1245  BlockPointerTypes.InsertNode(New, InsertPos);
1246  return QualType(New, 0);
1247}
1248
1249/// getLValueReferenceType - Return the uniqued reference to the type for an
1250/// lvalue reference to the specified type.
1251QualType ASTContext::getLValueReferenceType(QualType T, bool SpelledAsLValue) {
1252  // Unique pointers, to guarantee there is only one pointer of a particular
1253  // structure.
1254  llvm::FoldingSetNodeID ID;
1255  ReferenceType::Profile(ID, T, SpelledAsLValue);
1256
1257  void *InsertPos = 0;
1258  if (LValueReferenceType *RT =
1259        LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
1260    return QualType(RT, 0);
1261
1262  const ReferenceType *InnerRef = T->getAs<ReferenceType>();
1263
1264  // If the referencee type isn't canonical, this won't be a canonical type
1265  // either, so fill in the canonical type field.
1266  QualType Canonical;
1267  if (!SpelledAsLValue || InnerRef || !T.isCanonical()) {
1268    QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
1269    Canonical = getLValueReferenceType(getCanonicalType(PointeeType));
1270
1271    // Get the new insert position for the node we care about.
1272    LValueReferenceType *NewIP =
1273      LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
1274    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1275  }
1276
1277  LValueReferenceType *New
1278    = new (*this, TypeAlignment) LValueReferenceType(T, Canonical,
1279                                                     SpelledAsLValue);
1280  Types.push_back(New);
1281  LValueReferenceTypes.InsertNode(New, InsertPos);
1282
1283  return QualType(New, 0);
1284}
1285
1286/// getRValueReferenceType - Return the uniqued reference to the type for an
1287/// rvalue reference to the specified type.
1288QualType ASTContext::getRValueReferenceType(QualType T) {
1289  // Unique pointers, to guarantee there is only one pointer of a particular
1290  // structure.
1291  llvm::FoldingSetNodeID ID;
1292  ReferenceType::Profile(ID, T, false);
1293
1294  void *InsertPos = 0;
1295  if (RValueReferenceType *RT =
1296        RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
1297    return QualType(RT, 0);
1298
1299  const ReferenceType *InnerRef = T->getAs<ReferenceType>();
1300
1301  // If the referencee type isn't canonical, this won't be a canonical type
1302  // either, so fill in the canonical type field.
1303  QualType Canonical;
1304  if (InnerRef || !T.isCanonical()) {
1305    QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
1306    Canonical = getRValueReferenceType(getCanonicalType(PointeeType));
1307
1308    // Get the new insert position for the node we care about.
1309    RValueReferenceType *NewIP =
1310      RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
1311    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1312  }
1313
1314  RValueReferenceType *New
1315    = new (*this, TypeAlignment) RValueReferenceType(T, Canonical);
1316  Types.push_back(New);
1317  RValueReferenceTypes.InsertNode(New, InsertPos);
1318  return QualType(New, 0);
1319}
1320
1321/// getMemberPointerType - Return the uniqued reference to the type for a
1322/// member pointer to the specified type, in the specified class.
1323QualType ASTContext::getMemberPointerType(QualType T, const Type *Cls) {
1324  // Unique pointers, to guarantee there is only one pointer of a particular
1325  // structure.
1326  llvm::FoldingSetNodeID ID;
1327  MemberPointerType::Profile(ID, T, Cls);
1328
1329  void *InsertPos = 0;
1330  if (MemberPointerType *PT =
1331      MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1332    return QualType(PT, 0);
1333
1334  // If the pointee or class type isn't canonical, this won't be a canonical
1335  // type either, so fill in the canonical type field.
1336  QualType Canonical;
1337  if (!T.isCanonical() || !Cls->isCanonicalUnqualified()) {
1338    Canonical = getMemberPointerType(getCanonicalType(T),getCanonicalType(Cls));
1339
1340    // Get the new insert position for the node we care about.
1341    MemberPointerType *NewIP =
1342      MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
1343    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1344  }
1345  MemberPointerType *New
1346    = new (*this, TypeAlignment) MemberPointerType(T, Cls, Canonical);
1347  Types.push_back(New);
1348  MemberPointerTypes.InsertNode(New, InsertPos);
1349  return QualType(New, 0);
1350}
1351
1352/// getConstantArrayType - Return the unique reference to the type for an
1353/// array of the specified element type.
1354QualType ASTContext::getConstantArrayType(QualType EltTy,
1355                                          const llvm::APInt &ArySizeIn,
1356                                          ArrayType::ArraySizeModifier ASM,
1357                                          unsigned EltTypeQuals) {
1358  assert((EltTy->isDependentType() ||
1359          EltTy->isIncompleteType() || EltTy->isConstantSizeType()) &&
1360         "Constant array of VLAs is illegal!");
1361
1362  // Convert the array size into a canonical width matching the pointer size for
1363  // the target.
1364  llvm::APInt ArySize(ArySizeIn);
1365  ArySize.zextOrTrunc(Target.getPointerWidth(EltTy.getAddressSpace()));
1366
1367  llvm::FoldingSetNodeID ID;
1368  ConstantArrayType::Profile(ID, EltTy, ArySize, ASM, EltTypeQuals);
1369
1370  void *InsertPos = 0;
1371  if (ConstantArrayType *ATP =
1372      ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
1373    return QualType(ATP, 0);
1374
1375  // If the element type isn't canonical, this won't be a canonical type either,
1376  // so fill in the canonical type field.
1377  QualType Canonical;
1378  if (!EltTy.isCanonical()) {
1379    Canonical = getConstantArrayType(getCanonicalType(EltTy), ArySize,
1380                                     ASM, EltTypeQuals);
1381    // Get the new insert position for the node we care about.
1382    ConstantArrayType *NewIP =
1383      ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
1384    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1385  }
1386
1387  ConstantArrayType *New = new(*this,TypeAlignment)
1388    ConstantArrayType(EltTy, Canonical, ArySize, ASM, EltTypeQuals);
1389  ConstantArrayTypes.InsertNode(New, InsertPos);
1390  Types.push_back(New);
1391  return QualType(New, 0);
1392}
1393
1394/// getVariableArrayType - Returns a non-unique reference to the type for a
1395/// variable array of the specified element type.
1396QualType ASTContext::getVariableArrayType(QualType EltTy,
1397                                          Expr *NumElts,
1398                                          ArrayType::ArraySizeModifier ASM,
1399                                          unsigned EltTypeQuals,
1400                                          SourceRange Brackets) {
1401  // Since we don't unique expressions, it isn't possible to unique VLA's
1402  // that have an expression provided for their size.
1403
1404  VariableArrayType *New = new(*this, TypeAlignment)
1405    VariableArrayType(EltTy, QualType(), NumElts, ASM, EltTypeQuals, Brackets);
1406
1407  VariableArrayTypes.push_back(New);
1408  Types.push_back(New);
1409  return QualType(New, 0);
1410}
1411
1412/// getDependentSizedArrayType - Returns a non-unique reference to
1413/// the type for a dependently-sized array of the specified element
1414/// type.
1415QualType ASTContext::getDependentSizedArrayType(QualType EltTy,
1416                                                Expr *NumElts,
1417                                                ArrayType::ArraySizeModifier ASM,
1418                                                unsigned EltTypeQuals,
1419                                                SourceRange Brackets) {
1420  assert((!NumElts || NumElts->isTypeDependent() ||
1421          NumElts->isValueDependent()) &&
1422         "Size must be type- or value-dependent!");
1423
1424  void *InsertPos = 0;
1425  DependentSizedArrayType *Canon = 0;
1426  llvm::FoldingSetNodeID ID;
1427
1428  if (NumElts) {
1429    // Dependently-sized array types that do not have a specified
1430    // number of elements will have their sizes deduced from an
1431    // initializer.
1432    DependentSizedArrayType::Profile(ID, *this, getCanonicalType(EltTy), ASM,
1433                                     EltTypeQuals, NumElts);
1434
1435    Canon = DependentSizedArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
1436  }
1437
1438  DependentSizedArrayType *New;
1439  if (Canon) {
1440    // We already have a canonical version of this array type; use it as
1441    // the canonical type for a newly-built type.
1442    New = new (*this, TypeAlignment)
1443      DependentSizedArrayType(*this, EltTy, QualType(Canon, 0),
1444                              NumElts, ASM, EltTypeQuals, Brackets);
1445  } else {
1446    QualType CanonEltTy = getCanonicalType(EltTy);
1447    if (CanonEltTy == EltTy) {
1448      New = new (*this, TypeAlignment)
1449        DependentSizedArrayType(*this, EltTy, QualType(),
1450                                NumElts, ASM, EltTypeQuals, Brackets);
1451
1452      if (NumElts) {
1453        DependentSizedArrayType *CanonCheck
1454          = DependentSizedArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
1455        assert(!CanonCheck && "Dependent-sized canonical array type broken");
1456        (void)CanonCheck;
1457        DependentSizedArrayTypes.InsertNode(New, InsertPos);
1458      }
1459    } else {
1460      QualType Canon = getDependentSizedArrayType(CanonEltTy, NumElts,
1461                                                  ASM, EltTypeQuals,
1462                                                  SourceRange());
1463      New = new (*this, TypeAlignment)
1464        DependentSizedArrayType(*this, EltTy, Canon,
1465                                NumElts, ASM, EltTypeQuals, Brackets);
1466    }
1467  }
1468
1469  Types.push_back(New);
1470  return QualType(New, 0);
1471}
1472
1473QualType ASTContext::getIncompleteArrayType(QualType EltTy,
1474                                            ArrayType::ArraySizeModifier ASM,
1475                                            unsigned EltTypeQuals) {
1476  llvm::FoldingSetNodeID ID;
1477  IncompleteArrayType::Profile(ID, EltTy, ASM, EltTypeQuals);
1478
1479  void *InsertPos = 0;
1480  if (IncompleteArrayType *ATP =
1481       IncompleteArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
1482    return QualType(ATP, 0);
1483
1484  // If the element type isn't canonical, this won't be a canonical type
1485  // either, so fill in the canonical type field.
1486  QualType Canonical;
1487
1488  if (!EltTy.isCanonical()) {
1489    Canonical = getIncompleteArrayType(getCanonicalType(EltTy),
1490                                       ASM, EltTypeQuals);
1491
1492    // Get the new insert position for the node we care about.
1493    IncompleteArrayType *NewIP =
1494      IncompleteArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
1495    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1496  }
1497
1498  IncompleteArrayType *New = new (*this, TypeAlignment)
1499    IncompleteArrayType(EltTy, Canonical, ASM, EltTypeQuals);
1500
1501  IncompleteArrayTypes.InsertNode(New, InsertPos);
1502  Types.push_back(New);
1503  return QualType(New, 0);
1504}
1505
1506/// getVectorType - Return the unique reference to a vector type of
1507/// the specified element type and size. VectorType must be a built-in type.
1508QualType ASTContext::getVectorType(QualType vecType, unsigned NumElts,
1509                                   bool IsAltiVec, bool IsPixel) {
1510  BuiltinType *baseType;
1511
1512  baseType = dyn_cast<BuiltinType>(getCanonicalType(vecType).getTypePtr());
1513  assert(baseType != 0 && "getVectorType(): Expecting a built-in type");
1514
1515  // Check if we've already instantiated a vector of this type.
1516  llvm::FoldingSetNodeID ID;
1517  VectorType::Profile(ID, vecType, NumElts, Type::Vector,
1518    IsAltiVec, IsPixel);
1519  void *InsertPos = 0;
1520  if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
1521    return QualType(VTP, 0);
1522
1523  // If the element type isn't canonical, this won't be a canonical type either,
1524  // so fill in the canonical type field.
1525  QualType Canonical;
1526  if (!vecType.isCanonical() || IsAltiVec || IsPixel) {
1527    Canonical = getVectorType(getCanonicalType(vecType),
1528      NumElts, false, false);
1529
1530    // Get the new insert position for the node we care about.
1531    VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
1532    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1533  }
1534  VectorType *New = new (*this, TypeAlignment)
1535    VectorType(vecType, NumElts, Canonical, IsAltiVec, IsPixel);
1536  VectorTypes.InsertNode(New, InsertPos);
1537  Types.push_back(New);
1538  return QualType(New, 0);
1539}
1540
1541/// getExtVectorType - Return the unique reference to an extended vector type of
1542/// the specified element type and size. VectorType must be a built-in type.
1543QualType ASTContext::getExtVectorType(QualType vecType, unsigned NumElts) {
1544  BuiltinType *baseType;
1545
1546  baseType = dyn_cast<BuiltinType>(getCanonicalType(vecType).getTypePtr());
1547  assert(baseType != 0 && "getExtVectorType(): Expecting a built-in type");
1548
1549  // Check if we've already instantiated a vector of this type.
1550  llvm::FoldingSetNodeID ID;
1551  VectorType::Profile(ID, vecType, NumElts, Type::ExtVector, false, false);
1552  void *InsertPos = 0;
1553  if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
1554    return QualType(VTP, 0);
1555
1556  // If the element type isn't canonical, this won't be a canonical type either,
1557  // so fill in the canonical type field.
1558  QualType Canonical;
1559  if (!vecType.isCanonical()) {
1560    Canonical = getExtVectorType(getCanonicalType(vecType), NumElts);
1561
1562    // Get the new insert position for the node we care about.
1563    VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
1564    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1565  }
1566  ExtVectorType *New = new (*this, TypeAlignment)
1567    ExtVectorType(vecType, NumElts, Canonical);
1568  VectorTypes.InsertNode(New, InsertPos);
1569  Types.push_back(New);
1570  return QualType(New, 0);
1571}
1572
1573QualType ASTContext::getDependentSizedExtVectorType(QualType vecType,
1574                                                    Expr *SizeExpr,
1575                                                    SourceLocation AttrLoc) {
1576  llvm::FoldingSetNodeID ID;
1577  DependentSizedExtVectorType::Profile(ID, *this, getCanonicalType(vecType),
1578                                       SizeExpr);
1579
1580  void *InsertPos = 0;
1581  DependentSizedExtVectorType *Canon
1582    = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
1583  DependentSizedExtVectorType *New;
1584  if (Canon) {
1585    // We already have a canonical version of this array type; use it as
1586    // the canonical type for a newly-built type.
1587    New = new (*this, TypeAlignment)
1588      DependentSizedExtVectorType(*this, vecType, QualType(Canon, 0),
1589                                  SizeExpr, AttrLoc);
1590  } else {
1591    QualType CanonVecTy = getCanonicalType(vecType);
1592    if (CanonVecTy == vecType) {
1593      New = new (*this, TypeAlignment)
1594        DependentSizedExtVectorType(*this, vecType, QualType(), SizeExpr,
1595                                    AttrLoc);
1596
1597      DependentSizedExtVectorType *CanonCheck
1598        = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
1599      assert(!CanonCheck && "Dependent-sized ext_vector canonical type broken");
1600      (void)CanonCheck;
1601      DependentSizedExtVectorTypes.InsertNode(New, InsertPos);
1602    } else {
1603      QualType Canon = getDependentSizedExtVectorType(CanonVecTy, SizeExpr,
1604                                                      SourceLocation());
1605      New = new (*this, TypeAlignment)
1606        DependentSizedExtVectorType(*this, vecType, Canon, SizeExpr, AttrLoc);
1607    }
1608  }
1609
1610  Types.push_back(New);
1611  return QualType(New, 0);
1612}
1613
1614/// getFunctionNoProtoType - Return a K&R style C function type like 'int()'.
1615///
1616QualType ASTContext::getFunctionNoProtoType(QualType ResultTy,
1617                                            const FunctionType::ExtInfo &Info) {
1618  const CallingConv CallConv = Info.getCC();
1619  // Unique functions, to guarantee there is only one function of a particular
1620  // structure.
1621  llvm::FoldingSetNodeID ID;
1622  FunctionNoProtoType::Profile(ID, ResultTy, Info);
1623
1624  void *InsertPos = 0;
1625  if (FunctionNoProtoType *FT =
1626        FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
1627    return QualType(FT, 0);
1628
1629  QualType Canonical;
1630  if (!ResultTy.isCanonical() ||
1631      getCanonicalCallConv(CallConv) != CallConv) {
1632    Canonical =
1633      getFunctionNoProtoType(getCanonicalType(ResultTy),
1634                     Info.withCallingConv(getCanonicalCallConv(CallConv)));
1635
1636    // Get the new insert position for the node we care about.
1637    FunctionNoProtoType *NewIP =
1638      FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
1639    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1640  }
1641
1642  FunctionNoProtoType *New = new (*this, TypeAlignment)
1643    FunctionNoProtoType(ResultTy, Canonical, Info);
1644  Types.push_back(New);
1645  FunctionNoProtoTypes.InsertNode(New, InsertPos);
1646  return QualType(New, 0);
1647}
1648
1649/// getFunctionType - Return a normal function type with a typed argument
1650/// list.  isVariadic indicates whether the argument list includes '...'.
1651QualType ASTContext::getFunctionType(QualType ResultTy,const QualType *ArgArray,
1652                                     unsigned NumArgs, bool isVariadic,
1653                                     unsigned TypeQuals, bool hasExceptionSpec,
1654                                     bool hasAnyExceptionSpec, unsigned NumExs,
1655                                     const QualType *ExArray,
1656                                     const FunctionType::ExtInfo &Info) {
1657  const CallingConv CallConv= Info.getCC();
1658  // Unique functions, to guarantee there is only one function of a particular
1659  // structure.
1660  llvm::FoldingSetNodeID ID;
1661  FunctionProtoType::Profile(ID, ResultTy, ArgArray, NumArgs, isVariadic,
1662                             TypeQuals, hasExceptionSpec, hasAnyExceptionSpec,
1663                             NumExs, ExArray, Info);
1664
1665  void *InsertPos = 0;
1666  if (FunctionProtoType *FTP =
1667        FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
1668    return QualType(FTP, 0);
1669
1670  // Determine whether the type being created is already canonical or not.
1671  bool isCanonical = !hasExceptionSpec && ResultTy.isCanonical();
1672  for (unsigned i = 0; i != NumArgs && isCanonical; ++i)
1673    if (!ArgArray[i].isCanonicalAsParam())
1674      isCanonical = false;
1675
1676  // If this type isn't canonical, get the canonical version of it.
1677  // The exception spec is not part of the canonical type.
1678  QualType Canonical;
1679  if (!isCanonical || getCanonicalCallConv(CallConv) != CallConv) {
1680    llvm::SmallVector<QualType, 16> CanonicalArgs;
1681    CanonicalArgs.reserve(NumArgs);
1682    for (unsigned i = 0; i != NumArgs; ++i)
1683      CanonicalArgs.push_back(getCanonicalParamType(ArgArray[i]));
1684
1685    Canonical = getFunctionType(getCanonicalType(ResultTy),
1686                                CanonicalArgs.data(), NumArgs,
1687                                isVariadic, TypeQuals, false,
1688                                false, 0, 0,
1689                     Info.withCallingConv(getCanonicalCallConv(CallConv)));
1690
1691    // Get the new insert position for the node we care about.
1692    FunctionProtoType *NewIP =
1693      FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
1694    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1695  }
1696
1697  // FunctionProtoType objects are allocated with extra bytes after them
1698  // for two variable size arrays (for parameter and exception types) at the
1699  // end of them.
1700  FunctionProtoType *FTP =
1701    (FunctionProtoType*)Allocate(sizeof(FunctionProtoType) +
1702                                 NumArgs*sizeof(QualType) +
1703                                 NumExs*sizeof(QualType), TypeAlignment);
1704  new (FTP) FunctionProtoType(ResultTy, ArgArray, NumArgs, isVariadic,
1705                              TypeQuals, hasExceptionSpec, hasAnyExceptionSpec,
1706                              ExArray, NumExs, Canonical, Info);
1707  Types.push_back(FTP);
1708  FunctionProtoTypes.InsertNode(FTP, InsertPos);
1709  return QualType(FTP, 0);
1710}
1711
1712#ifndef NDEBUG
1713static bool NeedsInjectedClassNameType(const RecordDecl *D) {
1714  if (!isa<CXXRecordDecl>(D)) return false;
1715  const CXXRecordDecl *RD = cast<CXXRecordDecl>(D);
1716  if (isa<ClassTemplatePartialSpecializationDecl>(RD))
1717    return true;
1718  if (RD->getDescribedClassTemplate() &&
1719      !isa<ClassTemplateSpecializationDecl>(RD))
1720    return true;
1721  return false;
1722}
1723#endif
1724
1725/// getInjectedClassNameType - Return the unique reference to the
1726/// injected class name type for the specified templated declaration.
1727QualType ASTContext::getInjectedClassNameType(CXXRecordDecl *Decl,
1728                                              QualType TST) {
1729  assert(NeedsInjectedClassNameType(Decl));
1730  if (Decl->TypeForDecl) {
1731    assert(isa<InjectedClassNameType>(Decl->TypeForDecl));
1732  } else if (CXXRecordDecl *PrevDecl
1733               = cast_or_null<CXXRecordDecl>(Decl->getPreviousDeclaration())) {
1734    assert(PrevDecl->TypeForDecl && "previous declaration has no type");
1735    Decl->TypeForDecl = PrevDecl->TypeForDecl;
1736    assert(isa<InjectedClassNameType>(Decl->TypeForDecl));
1737  } else {
1738    Decl->TypeForDecl = new (*this, TypeAlignment)
1739      InjectedClassNameType(Decl, TST, TST->getCanonicalTypeInternal());
1740    Types.push_back(Decl->TypeForDecl);
1741  }
1742  return QualType(Decl->TypeForDecl, 0);
1743}
1744
1745/// getTypeDeclType - Return the unique reference to the type for the
1746/// specified type declaration.
1747QualType ASTContext::getTypeDeclTypeSlow(const TypeDecl *Decl) {
1748  assert(Decl && "Passed null for Decl param");
1749  assert(!Decl->TypeForDecl && "TypeForDecl present in slow case");
1750
1751  if (const TypedefDecl *Typedef = dyn_cast<TypedefDecl>(Decl))
1752    return getTypedefType(Typedef);
1753
1754  if (const ObjCInterfaceDecl *ObjCInterface
1755               = dyn_cast<ObjCInterfaceDecl>(Decl))
1756    return getObjCInterfaceType(ObjCInterface);
1757
1758  assert(!isa<TemplateTypeParmDecl>(Decl) &&
1759         "Template type parameter types are always available.");
1760
1761  if (const RecordDecl *Record = dyn_cast<RecordDecl>(Decl)) {
1762    assert(!Record->getPreviousDeclaration() &&
1763           "struct/union has previous declaration");
1764    assert(!NeedsInjectedClassNameType(Record));
1765    Decl->TypeForDecl = new (*this, TypeAlignment) RecordType(Record);
1766  } else if (const EnumDecl *Enum = dyn_cast<EnumDecl>(Decl)) {
1767    assert(!Enum->getPreviousDeclaration() &&
1768           "enum has previous declaration");
1769    Decl->TypeForDecl = new (*this, TypeAlignment) EnumType(Enum);
1770  } else if (const UnresolvedUsingTypenameDecl *Using =
1771               dyn_cast<UnresolvedUsingTypenameDecl>(Decl)) {
1772    Decl->TypeForDecl = new (*this, TypeAlignment) UnresolvedUsingType(Using);
1773  } else
1774    llvm_unreachable("TypeDecl without a type?");
1775
1776  Types.push_back(Decl->TypeForDecl);
1777  return QualType(Decl->TypeForDecl, 0);
1778}
1779
1780/// getTypedefType - Return the unique reference to the type for the
1781/// specified typename decl.
1782QualType ASTContext::getTypedefType(const TypedefDecl *Decl) {
1783  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
1784
1785  QualType Canonical = getCanonicalType(Decl->getUnderlyingType());
1786  Decl->TypeForDecl = new(*this, TypeAlignment)
1787    TypedefType(Type::Typedef, Decl, Canonical);
1788  Types.push_back(Decl->TypeForDecl);
1789  return QualType(Decl->TypeForDecl, 0);
1790}
1791
1792/// \brief Retrieve a substitution-result type.
1793QualType
1794ASTContext::getSubstTemplateTypeParmType(const TemplateTypeParmType *Parm,
1795                                         QualType Replacement) {
1796  assert(Replacement.isCanonical()
1797         && "replacement types must always be canonical");
1798
1799  llvm::FoldingSetNodeID ID;
1800  SubstTemplateTypeParmType::Profile(ID, Parm, Replacement);
1801  void *InsertPos = 0;
1802  SubstTemplateTypeParmType *SubstParm
1803    = SubstTemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
1804
1805  if (!SubstParm) {
1806    SubstParm = new (*this, TypeAlignment)
1807      SubstTemplateTypeParmType(Parm, Replacement);
1808    Types.push_back(SubstParm);
1809    SubstTemplateTypeParmTypes.InsertNode(SubstParm, InsertPos);
1810  }
1811
1812  return QualType(SubstParm, 0);
1813}
1814
1815/// \brief Retrieve the template type parameter type for a template
1816/// parameter or parameter pack with the given depth, index, and (optionally)
1817/// name.
1818QualType ASTContext::getTemplateTypeParmType(unsigned Depth, unsigned Index,
1819                                             bool ParameterPack,
1820                                             IdentifierInfo *Name) {
1821  llvm::FoldingSetNodeID ID;
1822  TemplateTypeParmType::Profile(ID, Depth, Index, ParameterPack, Name);
1823  void *InsertPos = 0;
1824  TemplateTypeParmType *TypeParm
1825    = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
1826
1827  if (TypeParm)
1828    return QualType(TypeParm, 0);
1829
1830  if (Name) {
1831    QualType Canon = getTemplateTypeParmType(Depth, Index, ParameterPack);
1832    TypeParm = new (*this, TypeAlignment)
1833      TemplateTypeParmType(Depth, Index, ParameterPack, Name, Canon);
1834
1835    TemplateTypeParmType *TypeCheck
1836      = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
1837    assert(!TypeCheck && "Template type parameter canonical type broken");
1838    (void)TypeCheck;
1839  } else
1840    TypeParm = new (*this, TypeAlignment)
1841      TemplateTypeParmType(Depth, Index, ParameterPack);
1842
1843  Types.push_back(TypeParm);
1844  TemplateTypeParmTypes.InsertNode(TypeParm, InsertPos);
1845
1846  return QualType(TypeParm, 0);
1847}
1848
1849TypeSourceInfo *
1850ASTContext::getTemplateSpecializationTypeInfo(TemplateName Name,
1851                                              SourceLocation NameLoc,
1852                                        const TemplateArgumentListInfo &Args,
1853                                              QualType CanonType) {
1854  QualType TST = getTemplateSpecializationType(Name, Args, CanonType);
1855
1856  TypeSourceInfo *DI = CreateTypeSourceInfo(TST);
1857  TemplateSpecializationTypeLoc TL
1858    = cast<TemplateSpecializationTypeLoc>(DI->getTypeLoc());
1859  TL.setTemplateNameLoc(NameLoc);
1860  TL.setLAngleLoc(Args.getLAngleLoc());
1861  TL.setRAngleLoc(Args.getRAngleLoc());
1862  for (unsigned i = 0, e = TL.getNumArgs(); i != e; ++i)
1863    TL.setArgLocInfo(i, Args[i].getLocInfo());
1864  return DI;
1865}
1866
1867QualType
1868ASTContext::getTemplateSpecializationType(TemplateName Template,
1869                                          const TemplateArgumentListInfo &Args,
1870                                          QualType Canon) {
1871  unsigned NumArgs = Args.size();
1872
1873  llvm::SmallVector<TemplateArgument, 4> ArgVec;
1874  ArgVec.reserve(NumArgs);
1875  for (unsigned i = 0; i != NumArgs; ++i)
1876    ArgVec.push_back(Args[i].getArgument());
1877
1878  return getTemplateSpecializationType(Template, ArgVec.data(), NumArgs, Canon);
1879}
1880
1881QualType
1882ASTContext::getTemplateSpecializationType(TemplateName Template,
1883                                          const TemplateArgument *Args,
1884                                          unsigned NumArgs,
1885                                          QualType Canon) {
1886  if (!Canon.isNull())
1887    Canon = getCanonicalType(Canon);
1888  else {
1889    // Build the canonical template specialization type.
1890    TemplateName CanonTemplate = getCanonicalTemplateName(Template);
1891    llvm::SmallVector<TemplateArgument, 4> CanonArgs;
1892    CanonArgs.reserve(NumArgs);
1893    for (unsigned I = 0; I != NumArgs; ++I)
1894      CanonArgs.push_back(getCanonicalTemplateArgument(Args[I]));
1895
1896    // Determine whether this canonical template specialization type already
1897    // exists.
1898    llvm::FoldingSetNodeID ID;
1899    TemplateSpecializationType::Profile(ID, CanonTemplate,
1900                                        CanonArgs.data(), NumArgs, *this);
1901
1902    void *InsertPos = 0;
1903    TemplateSpecializationType *Spec
1904      = TemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
1905
1906    if (!Spec) {
1907      // Allocate a new canonical template specialization type.
1908      void *Mem = Allocate((sizeof(TemplateSpecializationType) +
1909                            sizeof(TemplateArgument) * NumArgs),
1910                           TypeAlignment);
1911      Spec = new (Mem) TemplateSpecializationType(*this, CanonTemplate,
1912                                                  CanonArgs.data(), NumArgs,
1913                                                  Canon);
1914      Types.push_back(Spec);
1915      TemplateSpecializationTypes.InsertNode(Spec, InsertPos);
1916    }
1917
1918    if (Canon.isNull())
1919      Canon = QualType(Spec, 0);
1920    assert(Canon->isDependentType() &&
1921           "Non-dependent template-id type must have a canonical type");
1922  }
1923
1924  // Allocate the (non-canonical) template specialization type, but don't
1925  // try to unique it: these types typically have location information that
1926  // we don't unique and don't want to lose.
1927  void *Mem = Allocate((sizeof(TemplateSpecializationType) +
1928                        sizeof(TemplateArgument) * NumArgs),
1929                       TypeAlignment);
1930  TemplateSpecializationType *Spec
1931    = new (Mem) TemplateSpecializationType(*this, Template, Args, NumArgs,
1932                                           Canon);
1933
1934  Types.push_back(Spec);
1935  return QualType(Spec, 0);
1936}
1937
1938QualType
1939ASTContext::getQualifiedNameType(NestedNameSpecifier *NNS,
1940                                 QualType NamedType) {
1941  llvm::FoldingSetNodeID ID;
1942  QualifiedNameType::Profile(ID, NNS, NamedType);
1943
1944  void *InsertPos = 0;
1945  QualifiedNameType *T
1946    = QualifiedNameTypes.FindNodeOrInsertPos(ID, InsertPos);
1947  if (T)
1948    return QualType(T, 0);
1949
1950  QualType Canon = NamedType;
1951  if (!Canon.isCanonical()) {
1952    Canon = getCanonicalType(NamedType);
1953    QualifiedNameType *CheckT
1954      = QualifiedNameTypes.FindNodeOrInsertPos(ID, InsertPos);
1955    assert(!CheckT && "Qualified name canonical type broken");
1956    (void)CheckT;
1957  }
1958
1959  T = new (*this) QualifiedNameType(NNS, NamedType, Canon);
1960  Types.push_back(T);
1961  QualifiedNameTypes.InsertNode(T, InsertPos);
1962  return QualType(T, 0);
1963}
1964
1965QualType ASTContext::getTypenameType(NestedNameSpecifier *NNS,
1966                                     const IdentifierInfo *Name,
1967                                     QualType Canon) {
1968  assert(NNS->isDependent() && "nested-name-specifier must be dependent");
1969
1970  if (Canon.isNull()) {
1971    NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
1972    if (CanonNNS != NNS)
1973      Canon = getTypenameType(CanonNNS, Name);
1974  }
1975
1976  llvm::FoldingSetNodeID ID;
1977  TypenameType::Profile(ID, NNS, Name);
1978
1979  void *InsertPos = 0;
1980  TypenameType *T
1981    = TypenameTypes.FindNodeOrInsertPos(ID, InsertPos);
1982  if (T)
1983    return QualType(T, 0);
1984
1985  T = new (*this) TypenameType(NNS, Name, Canon);
1986  Types.push_back(T);
1987  TypenameTypes.InsertNode(T, InsertPos);
1988  return QualType(T, 0);
1989}
1990
1991QualType
1992ASTContext::getTypenameType(NestedNameSpecifier *NNS,
1993                            const TemplateSpecializationType *TemplateId,
1994                            QualType Canon) {
1995  assert(NNS->isDependent() && "nested-name-specifier must be dependent");
1996
1997  llvm::FoldingSetNodeID ID;
1998  TypenameType::Profile(ID, NNS, TemplateId);
1999
2000  void *InsertPos = 0;
2001  TypenameType *T
2002    = TypenameTypes.FindNodeOrInsertPos(ID, InsertPos);
2003  if (T)
2004    return QualType(T, 0);
2005
2006  if (Canon.isNull()) {
2007    NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
2008    QualType CanonType = getCanonicalType(QualType(TemplateId, 0));
2009    if (CanonNNS != NNS || CanonType != QualType(TemplateId, 0)) {
2010      const TemplateSpecializationType *CanonTemplateId
2011        = CanonType->getAs<TemplateSpecializationType>();
2012      assert(CanonTemplateId &&
2013             "Canonical type must also be a template specialization type");
2014      Canon = getTypenameType(CanonNNS, CanonTemplateId);
2015    }
2016
2017    TypenameType *CheckT
2018      = TypenameTypes.FindNodeOrInsertPos(ID, InsertPos);
2019    assert(!CheckT && "Typename canonical type is broken"); (void)CheckT;
2020  }
2021
2022  T = new (*this) TypenameType(NNS, TemplateId, Canon);
2023  Types.push_back(T);
2024  TypenameTypes.InsertNode(T, InsertPos);
2025  return QualType(T, 0);
2026}
2027
2028QualType
2029ASTContext::getElaboratedType(QualType UnderlyingType,
2030                              ElaboratedType::TagKind Tag) {
2031  llvm::FoldingSetNodeID ID;
2032  ElaboratedType::Profile(ID, UnderlyingType, Tag);
2033
2034  void *InsertPos = 0;
2035  ElaboratedType *T = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
2036  if (T)
2037    return QualType(T, 0);
2038
2039  QualType Canon = UnderlyingType;
2040  if (!Canon.isCanonical()) {
2041    Canon = getCanonicalType(Canon);
2042    ElaboratedType *CheckT = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
2043    assert(!CheckT && "Elaborated canonical type is broken"); (void)CheckT;
2044  }
2045
2046  T = new (*this) ElaboratedType(UnderlyingType, Tag, Canon);
2047  Types.push_back(T);
2048  ElaboratedTypes.InsertNode(T, InsertPos);
2049  return QualType(T, 0);
2050}
2051
2052/// CmpProtocolNames - Comparison predicate for sorting protocols
2053/// alphabetically.
2054static bool CmpProtocolNames(const ObjCProtocolDecl *LHS,
2055                            const ObjCProtocolDecl *RHS) {
2056  return LHS->getDeclName() < RHS->getDeclName();
2057}
2058
2059static bool areSortedAndUniqued(ObjCProtocolDecl **Protocols,
2060                                unsigned NumProtocols) {
2061  if (NumProtocols == 0) return true;
2062
2063  for (unsigned i = 1; i != NumProtocols; ++i)
2064    if (!CmpProtocolNames(Protocols[i-1], Protocols[i]))
2065      return false;
2066  return true;
2067}
2068
2069static void SortAndUniqueProtocols(ObjCProtocolDecl **Protocols,
2070                                   unsigned &NumProtocols) {
2071  ObjCProtocolDecl **ProtocolsEnd = Protocols+NumProtocols;
2072
2073  // Sort protocols, keyed by name.
2074  std::sort(Protocols, Protocols+NumProtocols, CmpProtocolNames);
2075
2076  // Remove duplicates.
2077  ProtocolsEnd = std::unique(Protocols, ProtocolsEnd);
2078  NumProtocols = ProtocolsEnd-Protocols;
2079}
2080
2081/// getObjCObjectPointerType - Return a ObjCObjectPointerType type for
2082/// the given interface decl and the conforming protocol list.
2083QualType ASTContext::getObjCObjectPointerType(QualType InterfaceT,
2084                                              ObjCProtocolDecl **Protocols,
2085                                              unsigned NumProtocols,
2086                                              unsigned Quals) {
2087  llvm::FoldingSetNodeID ID;
2088  ObjCObjectPointerType::Profile(ID, InterfaceT, Protocols, NumProtocols);
2089  Qualifiers Qs = Qualifiers::fromCVRMask(Quals);
2090
2091  void *InsertPos = 0;
2092  if (ObjCObjectPointerType *QT =
2093              ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
2094    return getQualifiedType(QualType(QT, 0), Qs);
2095
2096  // Sort the protocol list alphabetically to canonicalize it.
2097  QualType Canonical;
2098  if (!InterfaceT.isCanonical() ||
2099      !areSortedAndUniqued(Protocols, NumProtocols)) {
2100    if (!areSortedAndUniqued(Protocols, NumProtocols)) {
2101      llvm::SmallVector<ObjCProtocolDecl*, 8> Sorted(NumProtocols);
2102      unsigned UniqueCount = NumProtocols;
2103
2104      std::copy(Protocols, Protocols + NumProtocols, Sorted.begin());
2105      SortAndUniqueProtocols(&Sorted[0], UniqueCount);
2106
2107      Canonical = getObjCObjectPointerType(getCanonicalType(InterfaceT),
2108                                           &Sorted[0], UniqueCount);
2109    } else {
2110      Canonical = getObjCObjectPointerType(getCanonicalType(InterfaceT),
2111                                           Protocols, NumProtocols);
2112    }
2113
2114    // Regenerate InsertPos.
2115    ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
2116  }
2117
2118  // No match.
2119  unsigned Size = sizeof(ObjCObjectPointerType)
2120                + NumProtocols * sizeof(ObjCProtocolDecl *);
2121  void *Mem = Allocate(Size, TypeAlignment);
2122  ObjCObjectPointerType *QType = new (Mem) ObjCObjectPointerType(Canonical,
2123                                                                 InterfaceT,
2124                                                                 Protocols,
2125                                                                 NumProtocols);
2126
2127  Types.push_back(QType);
2128  ObjCObjectPointerTypes.InsertNode(QType, InsertPos);
2129  return getQualifiedType(QualType(QType, 0), Qs);
2130}
2131
2132/// getObjCInterfaceType - Return the unique reference to the type for the
2133/// specified ObjC interface decl. The list of protocols is optional.
2134QualType ASTContext::getObjCInterfaceType(const ObjCInterfaceDecl *Decl,
2135                       ObjCProtocolDecl **Protocols, unsigned NumProtocols) {
2136  llvm::FoldingSetNodeID ID;
2137  ObjCInterfaceType::Profile(ID, Decl, Protocols, NumProtocols);
2138
2139  void *InsertPos = 0;
2140  if (ObjCInterfaceType *QT =
2141      ObjCInterfaceTypes.FindNodeOrInsertPos(ID, InsertPos))
2142    return QualType(QT, 0);
2143
2144  // Sort the protocol list alphabetically to canonicalize it.
2145  QualType Canonical;
2146  if (NumProtocols && !areSortedAndUniqued(Protocols, NumProtocols)) {
2147    llvm::SmallVector<ObjCProtocolDecl*, 8> Sorted(NumProtocols);
2148    std::copy(Protocols, Protocols + NumProtocols, Sorted.begin());
2149
2150    unsigned UniqueCount = NumProtocols;
2151    SortAndUniqueProtocols(&Sorted[0], UniqueCount);
2152
2153    Canonical = getObjCInterfaceType(Decl, &Sorted[0], UniqueCount);
2154
2155    ObjCInterfaceTypes.FindNodeOrInsertPos(ID, InsertPos);
2156  }
2157
2158  unsigned Size = sizeof(ObjCInterfaceType)
2159    + NumProtocols * sizeof(ObjCProtocolDecl *);
2160  void *Mem = Allocate(Size, TypeAlignment);
2161  ObjCInterfaceType *QType = new (Mem) ObjCInterfaceType(Canonical,
2162                                        const_cast<ObjCInterfaceDecl*>(Decl),
2163                                                         Protocols,
2164                                                         NumProtocols);
2165
2166  Types.push_back(QType);
2167  ObjCInterfaceTypes.InsertNode(QType, InsertPos);
2168  return QualType(QType, 0);
2169}
2170
2171/// getTypeOfExprType - Unlike many "get<Type>" functions, we can't unique
2172/// TypeOfExprType AST's (since expression's are never shared). For example,
2173/// multiple declarations that refer to "typeof(x)" all contain different
2174/// DeclRefExpr's. This doesn't effect the type checker, since it operates
2175/// on canonical type's (which are always unique).
2176QualType ASTContext::getTypeOfExprType(Expr *tofExpr) {
2177  TypeOfExprType *toe;
2178  if (tofExpr->isTypeDependent()) {
2179    llvm::FoldingSetNodeID ID;
2180    DependentTypeOfExprType::Profile(ID, *this, tofExpr);
2181
2182    void *InsertPos = 0;
2183    DependentTypeOfExprType *Canon
2184      = DependentTypeOfExprTypes.FindNodeOrInsertPos(ID, InsertPos);
2185    if (Canon) {
2186      // We already have a "canonical" version of an identical, dependent
2187      // typeof(expr) type. Use that as our canonical type.
2188      toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr,
2189                                          QualType((TypeOfExprType*)Canon, 0));
2190    }
2191    else {
2192      // Build a new, canonical typeof(expr) type.
2193      Canon
2194        = new (*this, TypeAlignment) DependentTypeOfExprType(*this, tofExpr);
2195      DependentTypeOfExprTypes.InsertNode(Canon, InsertPos);
2196      toe = Canon;
2197    }
2198  } else {
2199    QualType Canonical = getCanonicalType(tofExpr->getType());
2200    toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr, Canonical);
2201  }
2202  Types.push_back(toe);
2203  return QualType(toe, 0);
2204}
2205
2206/// getTypeOfType -  Unlike many "get<Type>" functions, we don't unique
2207/// TypeOfType AST's. The only motivation to unique these nodes would be
2208/// memory savings. Since typeof(t) is fairly uncommon, space shouldn't be
2209/// an issue. This doesn't effect the type checker, since it operates
2210/// on canonical type's (which are always unique).
2211QualType ASTContext::getTypeOfType(QualType tofType) {
2212  QualType Canonical = getCanonicalType(tofType);
2213  TypeOfType *tot = new (*this, TypeAlignment) TypeOfType(tofType, Canonical);
2214  Types.push_back(tot);
2215  return QualType(tot, 0);
2216}
2217
2218/// getDecltypeForExpr - Given an expr, will return the decltype for that
2219/// expression, according to the rules in C++0x [dcl.type.simple]p4
2220static QualType getDecltypeForExpr(const Expr *e, ASTContext &Context) {
2221  if (e->isTypeDependent())
2222    return Context.DependentTy;
2223
2224  // If e is an id expression or a class member access, decltype(e) is defined
2225  // as the type of the entity named by e.
2226  if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(e)) {
2227    if (const ValueDecl *VD = dyn_cast<ValueDecl>(DRE->getDecl()))
2228      return VD->getType();
2229  }
2230  if (const MemberExpr *ME = dyn_cast<MemberExpr>(e)) {
2231    if (const FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl()))
2232      return FD->getType();
2233  }
2234  // If e is a function call or an invocation of an overloaded operator,
2235  // (parentheses around e are ignored), decltype(e) is defined as the
2236  // return type of that function.
2237  if (const CallExpr *CE = dyn_cast<CallExpr>(e->IgnoreParens()))
2238    return CE->getCallReturnType();
2239
2240  QualType T = e->getType();
2241
2242  // Otherwise, where T is the type of e, if e is an lvalue, decltype(e) is
2243  // defined as T&, otherwise decltype(e) is defined as T.
2244  if (e->isLvalue(Context) == Expr::LV_Valid)
2245    T = Context.getLValueReferenceType(T);
2246
2247  return T;
2248}
2249
2250/// getDecltypeType -  Unlike many "get<Type>" functions, we don't unique
2251/// DecltypeType AST's. The only motivation to unique these nodes would be
2252/// memory savings. Since decltype(t) is fairly uncommon, space shouldn't be
2253/// an issue. This doesn't effect the type checker, since it operates
2254/// on canonical type's (which are always unique).
2255QualType ASTContext::getDecltypeType(Expr *e) {
2256  DecltypeType *dt;
2257  if (e->isTypeDependent()) {
2258    llvm::FoldingSetNodeID ID;
2259    DependentDecltypeType::Profile(ID, *this, e);
2260
2261    void *InsertPos = 0;
2262    DependentDecltypeType *Canon
2263      = DependentDecltypeTypes.FindNodeOrInsertPos(ID, InsertPos);
2264    if (Canon) {
2265      // We already have a "canonical" version of an equivalent, dependent
2266      // decltype type. Use that as our canonical type.
2267      dt = new (*this, TypeAlignment) DecltypeType(e, DependentTy,
2268                                       QualType((DecltypeType*)Canon, 0));
2269    }
2270    else {
2271      // Build a new, canonical typeof(expr) type.
2272      Canon = new (*this, TypeAlignment) DependentDecltypeType(*this, e);
2273      DependentDecltypeTypes.InsertNode(Canon, InsertPos);
2274      dt = Canon;
2275    }
2276  } else {
2277    QualType T = getDecltypeForExpr(e, *this);
2278    dt = new (*this, TypeAlignment) DecltypeType(e, T, getCanonicalType(T));
2279  }
2280  Types.push_back(dt);
2281  return QualType(dt, 0);
2282}
2283
2284/// getTagDeclType - Return the unique reference to the type for the
2285/// specified TagDecl (struct/union/class/enum) decl.
2286QualType ASTContext::getTagDeclType(const TagDecl *Decl) {
2287  assert (Decl);
2288  // FIXME: What is the design on getTagDeclType when it requires casting
2289  // away const?  mutable?
2290  return getTypeDeclType(const_cast<TagDecl*>(Decl));
2291}
2292
2293/// getSizeType - Return the unique type for "size_t" (C99 7.17), the result
2294/// of the sizeof operator (C99 6.5.3.4p4). The value is target dependent and
2295/// needs to agree with the definition in <stddef.h>.
2296CanQualType ASTContext::getSizeType() const {
2297  return getFromTargetType(Target.getSizeType());
2298}
2299
2300/// getSignedWCharType - Return the type of "signed wchar_t".
2301/// Used when in C++, as a GCC extension.
2302QualType ASTContext::getSignedWCharType() const {
2303  // FIXME: derive from "Target" ?
2304  return WCharTy;
2305}
2306
2307/// getUnsignedWCharType - Return the type of "unsigned wchar_t".
2308/// Used when in C++, as a GCC extension.
2309QualType ASTContext::getUnsignedWCharType() const {
2310  // FIXME: derive from "Target" ?
2311  return UnsignedIntTy;
2312}
2313
2314/// getPointerDiffType - Return the unique type for "ptrdiff_t" (ref?)
2315/// defined in <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9).
2316QualType ASTContext::getPointerDiffType() const {
2317  return getFromTargetType(Target.getPtrDiffType(0));
2318}
2319
2320//===----------------------------------------------------------------------===//
2321//                              Type Operators
2322//===----------------------------------------------------------------------===//
2323
2324CanQualType ASTContext::getCanonicalParamType(QualType T) {
2325  // Push qualifiers into arrays, and then discard any remaining
2326  // qualifiers.
2327  T = getCanonicalType(T);
2328  const Type *Ty = T.getTypePtr();
2329
2330  QualType Result;
2331  if (isa<ArrayType>(Ty)) {
2332    Result = getArrayDecayedType(QualType(Ty,0));
2333  } else if (isa<FunctionType>(Ty)) {
2334    Result = getPointerType(QualType(Ty, 0));
2335  } else {
2336    Result = QualType(Ty, 0);
2337  }
2338
2339  return CanQualType::CreateUnsafe(Result);
2340}
2341
2342/// getCanonicalType - Return the canonical (structural) type corresponding to
2343/// the specified potentially non-canonical type.  The non-canonical version
2344/// of a type may have many "decorated" versions of types.  Decorators can
2345/// include typedefs, 'typeof' operators, etc. The returned type is guaranteed
2346/// to be free of any of these, allowing two canonical types to be compared
2347/// for exact equality with a simple pointer comparison.
2348CanQualType ASTContext::getCanonicalType(QualType T) {
2349  QualifierCollector Quals;
2350  const Type *Ptr = Quals.strip(T);
2351  QualType CanType = Ptr->getCanonicalTypeInternal();
2352
2353  // The canonical internal type will be the canonical type *except*
2354  // that we push type qualifiers down through array types.
2355
2356  // If there are no new qualifiers to push down, stop here.
2357  if (!Quals.hasQualifiers())
2358    return CanQualType::CreateUnsafe(CanType);
2359
2360  // If the type qualifiers are on an array type, get the canonical
2361  // type of the array with the qualifiers applied to the element
2362  // type.
2363  ArrayType *AT = dyn_cast<ArrayType>(CanType);
2364  if (!AT)
2365    return CanQualType::CreateUnsafe(getQualifiedType(CanType, Quals));
2366
2367  // Get the canonical version of the element with the extra qualifiers on it.
2368  // This can recursively sink qualifiers through multiple levels of arrays.
2369  QualType NewEltTy = getQualifiedType(AT->getElementType(), Quals);
2370  NewEltTy = getCanonicalType(NewEltTy);
2371
2372  if (ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
2373    return CanQualType::CreateUnsafe(
2374             getConstantArrayType(NewEltTy, CAT->getSize(),
2375                                  CAT->getSizeModifier(),
2376                                  CAT->getIndexTypeCVRQualifiers()));
2377  if (IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT))
2378    return CanQualType::CreateUnsafe(
2379             getIncompleteArrayType(NewEltTy, IAT->getSizeModifier(),
2380                                    IAT->getIndexTypeCVRQualifiers()));
2381
2382  if (DependentSizedArrayType *DSAT = dyn_cast<DependentSizedArrayType>(AT))
2383    return CanQualType::CreateUnsafe(
2384             getDependentSizedArrayType(NewEltTy,
2385                                        DSAT->getSizeExpr() ?
2386                                          DSAT->getSizeExpr()->Retain() : 0,
2387                                        DSAT->getSizeModifier(),
2388                                        DSAT->getIndexTypeCVRQualifiers(),
2389                        DSAT->getBracketsRange())->getCanonicalTypeInternal());
2390
2391  VariableArrayType *VAT = cast<VariableArrayType>(AT);
2392  return CanQualType::CreateUnsafe(getVariableArrayType(NewEltTy,
2393                                                        VAT->getSizeExpr() ?
2394                                              VAT->getSizeExpr()->Retain() : 0,
2395                                                        VAT->getSizeModifier(),
2396                                              VAT->getIndexTypeCVRQualifiers(),
2397                                                     VAT->getBracketsRange()));
2398}
2399
2400QualType ASTContext::getUnqualifiedArrayType(QualType T,
2401                                             Qualifiers &Quals) {
2402  Quals = T.getQualifiers();
2403  if (!isa<ArrayType>(T)) {
2404    return T.getUnqualifiedType();
2405  }
2406
2407  const ArrayType *AT = cast<ArrayType>(T);
2408  QualType Elt = AT->getElementType();
2409  QualType UnqualElt = getUnqualifiedArrayType(Elt, Quals);
2410  if (Elt == UnqualElt)
2411    return T;
2412
2413  if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(T)) {
2414    return getConstantArrayType(UnqualElt, CAT->getSize(),
2415                                CAT->getSizeModifier(), 0);
2416  }
2417
2418  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(T)) {
2419    return getIncompleteArrayType(UnqualElt, IAT->getSizeModifier(), 0);
2420  }
2421
2422  const DependentSizedArrayType *DSAT = cast<DependentSizedArrayType>(T);
2423  return getDependentSizedArrayType(UnqualElt, DSAT->getSizeExpr()->Retain(),
2424                                    DSAT->getSizeModifier(), 0,
2425                                    SourceRange());
2426}
2427
2428DeclarationName ASTContext::getNameForTemplate(TemplateName Name) {
2429  if (TemplateDecl *TD = Name.getAsTemplateDecl())
2430    return TD->getDeclName();
2431
2432  if (DependentTemplateName *DTN = Name.getAsDependentTemplateName()) {
2433    if (DTN->isIdentifier()) {
2434      return DeclarationNames.getIdentifier(DTN->getIdentifier());
2435    } else {
2436      return DeclarationNames.getCXXOperatorName(DTN->getOperator());
2437    }
2438  }
2439
2440  OverloadedTemplateStorage *Storage = Name.getAsOverloadedTemplate();
2441  assert(Storage);
2442  return (*Storage->begin())->getDeclName();
2443}
2444
2445TemplateName ASTContext::getCanonicalTemplateName(TemplateName Name) {
2446  // If this template name refers to a template, the canonical
2447  // template name merely stores the template itself.
2448  if (TemplateDecl *Template = Name.getAsTemplateDecl())
2449    return TemplateName(cast<TemplateDecl>(Template->getCanonicalDecl()));
2450
2451  assert(!Name.getAsOverloadedTemplate());
2452
2453  DependentTemplateName *DTN = Name.getAsDependentTemplateName();
2454  assert(DTN && "Non-dependent template names must refer to template decls.");
2455  return DTN->CanonicalTemplateName;
2456}
2457
2458bool ASTContext::hasSameTemplateName(TemplateName X, TemplateName Y) {
2459  X = getCanonicalTemplateName(X);
2460  Y = getCanonicalTemplateName(Y);
2461  return X.getAsVoidPointer() == Y.getAsVoidPointer();
2462}
2463
2464TemplateArgument
2465ASTContext::getCanonicalTemplateArgument(const TemplateArgument &Arg) {
2466  switch (Arg.getKind()) {
2467    case TemplateArgument::Null:
2468      return Arg;
2469
2470    case TemplateArgument::Expression:
2471      return Arg;
2472
2473    case TemplateArgument::Declaration:
2474      return TemplateArgument(Arg.getAsDecl()->getCanonicalDecl());
2475
2476    case TemplateArgument::Template:
2477      return TemplateArgument(getCanonicalTemplateName(Arg.getAsTemplate()));
2478
2479    case TemplateArgument::Integral:
2480      return TemplateArgument(*Arg.getAsIntegral(),
2481                              getCanonicalType(Arg.getIntegralType()));
2482
2483    case TemplateArgument::Type:
2484      return TemplateArgument(getCanonicalType(Arg.getAsType()));
2485
2486    case TemplateArgument::Pack: {
2487      // FIXME: Allocate in ASTContext
2488      TemplateArgument *CanonArgs = new TemplateArgument[Arg.pack_size()];
2489      unsigned Idx = 0;
2490      for (TemplateArgument::pack_iterator A = Arg.pack_begin(),
2491                                        AEnd = Arg.pack_end();
2492           A != AEnd; (void)++A, ++Idx)
2493        CanonArgs[Idx] = getCanonicalTemplateArgument(*A);
2494
2495      TemplateArgument Result;
2496      Result.setArgumentPack(CanonArgs, Arg.pack_size(), false);
2497      return Result;
2498    }
2499  }
2500
2501  // Silence GCC warning
2502  assert(false && "Unhandled template argument kind");
2503  return TemplateArgument();
2504}
2505
2506NestedNameSpecifier *
2507ASTContext::getCanonicalNestedNameSpecifier(NestedNameSpecifier *NNS) {
2508  if (!NNS)
2509    return 0;
2510
2511  switch (NNS->getKind()) {
2512  case NestedNameSpecifier::Identifier:
2513    // Canonicalize the prefix but keep the identifier the same.
2514    return NestedNameSpecifier::Create(*this,
2515                         getCanonicalNestedNameSpecifier(NNS->getPrefix()),
2516                                       NNS->getAsIdentifier());
2517
2518  case NestedNameSpecifier::Namespace:
2519    // A namespace is canonical; build a nested-name-specifier with
2520    // this namespace and no prefix.
2521    return NestedNameSpecifier::Create(*this, 0, NNS->getAsNamespace());
2522
2523  case NestedNameSpecifier::TypeSpec:
2524  case NestedNameSpecifier::TypeSpecWithTemplate: {
2525    QualType T = getCanonicalType(QualType(NNS->getAsType(), 0));
2526    return NestedNameSpecifier::Create(*this, 0,
2527                 NNS->getKind() == NestedNameSpecifier::TypeSpecWithTemplate,
2528                                       T.getTypePtr());
2529  }
2530
2531  case NestedNameSpecifier::Global:
2532    // The global specifier is canonical and unique.
2533    return NNS;
2534  }
2535
2536  // Required to silence a GCC warning
2537  return 0;
2538}
2539
2540
2541const ArrayType *ASTContext::getAsArrayType(QualType T) {
2542  // Handle the non-qualified case efficiently.
2543  if (!T.hasLocalQualifiers()) {
2544    // Handle the common positive case fast.
2545    if (const ArrayType *AT = dyn_cast<ArrayType>(T))
2546      return AT;
2547  }
2548
2549  // Handle the common negative case fast.
2550  QualType CType = T->getCanonicalTypeInternal();
2551  if (!isa<ArrayType>(CType))
2552    return 0;
2553
2554  // Apply any qualifiers from the array type to the element type.  This
2555  // implements C99 6.7.3p8: "If the specification of an array type includes
2556  // any type qualifiers, the element type is so qualified, not the array type."
2557
2558  // If we get here, we either have type qualifiers on the type, or we have
2559  // sugar such as a typedef in the way.  If we have type qualifiers on the type
2560  // we must propagate them down into the element type.
2561
2562  QualifierCollector Qs;
2563  const Type *Ty = Qs.strip(T.getDesugaredType());
2564
2565  // If we have a simple case, just return now.
2566  const ArrayType *ATy = dyn_cast<ArrayType>(Ty);
2567  if (ATy == 0 || Qs.empty())
2568    return ATy;
2569
2570  // Otherwise, we have an array and we have qualifiers on it.  Push the
2571  // qualifiers into the array element type and return a new array type.
2572  // Get the canonical version of the element with the extra qualifiers on it.
2573  // This can recursively sink qualifiers through multiple levels of arrays.
2574  QualType NewEltTy = getQualifiedType(ATy->getElementType(), Qs);
2575
2576  if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(ATy))
2577    return cast<ArrayType>(getConstantArrayType(NewEltTy, CAT->getSize(),
2578                                                CAT->getSizeModifier(),
2579                                           CAT->getIndexTypeCVRQualifiers()));
2580  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(ATy))
2581    return cast<ArrayType>(getIncompleteArrayType(NewEltTy,
2582                                                  IAT->getSizeModifier(),
2583                                           IAT->getIndexTypeCVRQualifiers()));
2584
2585  if (const DependentSizedArrayType *DSAT
2586        = dyn_cast<DependentSizedArrayType>(ATy))
2587    return cast<ArrayType>(
2588                     getDependentSizedArrayType(NewEltTy,
2589                                                DSAT->getSizeExpr() ?
2590                                              DSAT->getSizeExpr()->Retain() : 0,
2591                                                DSAT->getSizeModifier(),
2592                                              DSAT->getIndexTypeCVRQualifiers(),
2593                                                DSAT->getBracketsRange()));
2594
2595  const VariableArrayType *VAT = cast<VariableArrayType>(ATy);
2596  return cast<ArrayType>(getVariableArrayType(NewEltTy,
2597                                              VAT->getSizeExpr() ?
2598                                              VAT->getSizeExpr()->Retain() : 0,
2599                                              VAT->getSizeModifier(),
2600                                              VAT->getIndexTypeCVRQualifiers(),
2601                                              VAT->getBracketsRange()));
2602}
2603
2604
2605/// getArrayDecayedType - Return the properly qualified result of decaying the
2606/// specified array type to a pointer.  This operation is non-trivial when
2607/// handling typedefs etc.  The canonical type of "T" must be an array type,
2608/// this returns a pointer to a properly qualified element of the array.
2609///
2610/// See C99 6.7.5.3p7 and C99 6.3.2.1p3.
2611QualType ASTContext::getArrayDecayedType(QualType Ty) {
2612  // Get the element type with 'getAsArrayType' so that we don't lose any
2613  // typedefs in the element type of the array.  This also handles propagation
2614  // of type qualifiers from the array type into the element type if present
2615  // (C99 6.7.3p8).
2616  const ArrayType *PrettyArrayType = getAsArrayType(Ty);
2617  assert(PrettyArrayType && "Not an array type!");
2618
2619  QualType PtrTy = getPointerType(PrettyArrayType->getElementType());
2620
2621  // int x[restrict 4] ->  int *restrict
2622  return getQualifiedType(PtrTy, PrettyArrayType->getIndexTypeQualifiers());
2623}
2624
2625QualType ASTContext::getBaseElementType(QualType QT) {
2626  QualifierCollector Qs;
2627  while (true) {
2628    const Type *UT = Qs.strip(QT);
2629    if (const ArrayType *AT = getAsArrayType(QualType(UT,0))) {
2630      QT = AT->getElementType();
2631    } else {
2632      return Qs.apply(QT);
2633    }
2634  }
2635}
2636
2637QualType ASTContext::getBaseElementType(const ArrayType *AT) {
2638  QualType ElemTy = AT->getElementType();
2639
2640  if (const ArrayType *AT = getAsArrayType(ElemTy))
2641    return getBaseElementType(AT);
2642
2643  return ElemTy;
2644}
2645
2646/// getConstantArrayElementCount - Returns number of constant array elements.
2647uint64_t
2648ASTContext::getConstantArrayElementCount(const ConstantArrayType *CA)  const {
2649  uint64_t ElementCount = 1;
2650  do {
2651    ElementCount *= CA->getSize().getZExtValue();
2652    CA = dyn_cast<ConstantArrayType>(CA->getElementType());
2653  } while (CA);
2654  return ElementCount;
2655}
2656
2657/// getFloatingRank - Return a relative rank for floating point types.
2658/// This routine will assert if passed a built-in type that isn't a float.
2659static FloatingRank getFloatingRank(QualType T) {
2660  if (const ComplexType *CT = T->getAs<ComplexType>())
2661    return getFloatingRank(CT->getElementType());
2662
2663  assert(T->getAs<BuiltinType>() && "getFloatingRank(): not a floating type");
2664  switch (T->getAs<BuiltinType>()->getKind()) {
2665  default: assert(0 && "getFloatingRank(): not a floating type");
2666  case BuiltinType::Float:      return FloatRank;
2667  case BuiltinType::Double:     return DoubleRank;
2668  case BuiltinType::LongDouble: return LongDoubleRank;
2669  }
2670}
2671
2672/// getFloatingTypeOfSizeWithinDomain - Returns a real floating
2673/// point or a complex type (based on typeDomain/typeSize).
2674/// 'typeDomain' is a real floating point or complex type.
2675/// 'typeSize' is a real floating point or complex type.
2676QualType ASTContext::getFloatingTypeOfSizeWithinDomain(QualType Size,
2677                                                       QualType Domain) const {
2678  FloatingRank EltRank = getFloatingRank(Size);
2679  if (Domain->isComplexType()) {
2680    switch (EltRank) {
2681    default: assert(0 && "getFloatingRank(): illegal value for rank");
2682    case FloatRank:      return FloatComplexTy;
2683    case DoubleRank:     return DoubleComplexTy;
2684    case LongDoubleRank: return LongDoubleComplexTy;
2685    }
2686  }
2687
2688  assert(Domain->isRealFloatingType() && "Unknown domain!");
2689  switch (EltRank) {
2690  default: assert(0 && "getFloatingRank(): illegal value for rank");
2691  case FloatRank:      return FloatTy;
2692  case DoubleRank:     return DoubleTy;
2693  case LongDoubleRank: return LongDoubleTy;
2694  }
2695}
2696
2697/// getFloatingTypeOrder - Compare the rank of the two specified floating
2698/// point types, ignoring the domain of the type (i.e. 'double' ==
2699/// '_Complex double').  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
2700/// LHS < RHS, return -1.
2701int ASTContext::getFloatingTypeOrder(QualType LHS, QualType RHS) {
2702  FloatingRank LHSR = getFloatingRank(LHS);
2703  FloatingRank RHSR = getFloatingRank(RHS);
2704
2705  if (LHSR == RHSR)
2706    return 0;
2707  if (LHSR > RHSR)
2708    return 1;
2709  return -1;
2710}
2711
2712/// getIntegerRank - Return an integer conversion rank (C99 6.3.1.1p1). This
2713/// routine will assert if passed a built-in type that isn't an integer or enum,
2714/// or if it is not canonicalized.
2715unsigned ASTContext::getIntegerRank(Type *T) {
2716  assert(T->isCanonicalUnqualified() && "T should be canonicalized");
2717  if (EnumType* ET = dyn_cast<EnumType>(T))
2718    T = ET->getDecl()->getPromotionType().getTypePtr();
2719
2720  if (T->isSpecificBuiltinType(BuiltinType::WChar))
2721    T = getFromTargetType(Target.getWCharType()).getTypePtr();
2722
2723  if (T->isSpecificBuiltinType(BuiltinType::Char16))
2724    T = getFromTargetType(Target.getChar16Type()).getTypePtr();
2725
2726  if (T->isSpecificBuiltinType(BuiltinType::Char32))
2727    T = getFromTargetType(Target.getChar32Type()).getTypePtr();
2728
2729  switch (cast<BuiltinType>(T)->getKind()) {
2730  default: assert(0 && "getIntegerRank(): not a built-in integer");
2731  case BuiltinType::Bool:
2732    return 1 + (getIntWidth(BoolTy) << 3);
2733  case BuiltinType::Char_S:
2734  case BuiltinType::Char_U:
2735  case BuiltinType::SChar:
2736  case BuiltinType::UChar:
2737    return 2 + (getIntWidth(CharTy) << 3);
2738  case BuiltinType::Short:
2739  case BuiltinType::UShort:
2740    return 3 + (getIntWidth(ShortTy) << 3);
2741  case BuiltinType::Int:
2742  case BuiltinType::UInt:
2743    return 4 + (getIntWidth(IntTy) << 3);
2744  case BuiltinType::Long:
2745  case BuiltinType::ULong:
2746    return 5 + (getIntWidth(LongTy) << 3);
2747  case BuiltinType::LongLong:
2748  case BuiltinType::ULongLong:
2749    return 6 + (getIntWidth(LongLongTy) << 3);
2750  case BuiltinType::Int128:
2751  case BuiltinType::UInt128:
2752    return 7 + (getIntWidth(Int128Ty) << 3);
2753  }
2754}
2755
2756/// \brief Whether this is a promotable bitfield reference according
2757/// to C99 6.3.1.1p2, bullet 2 (and GCC extensions).
2758///
2759/// \returns the type this bit-field will promote to, or NULL if no
2760/// promotion occurs.
2761QualType ASTContext::isPromotableBitField(Expr *E) {
2762  FieldDecl *Field = E->getBitField();
2763  if (!Field)
2764    return QualType();
2765
2766  QualType FT = Field->getType();
2767
2768  llvm::APSInt BitWidthAP = Field->getBitWidth()->EvaluateAsInt(*this);
2769  uint64_t BitWidth = BitWidthAP.getZExtValue();
2770  uint64_t IntSize = getTypeSize(IntTy);
2771  // GCC extension compatibility: if the bit-field size is less than or equal
2772  // to the size of int, it gets promoted no matter what its type is.
2773  // For instance, unsigned long bf : 4 gets promoted to signed int.
2774  if (BitWidth < IntSize)
2775    return IntTy;
2776
2777  if (BitWidth == IntSize)
2778    return FT->isSignedIntegerType() ? IntTy : UnsignedIntTy;
2779
2780  // Types bigger than int are not subject to promotions, and therefore act
2781  // like the base type.
2782  // FIXME: This doesn't quite match what gcc does, but what gcc does here
2783  // is ridiculous.
2784  return QualType();
2785}
2786
2787/// getPromotedIntegerType - Returns the type that Promotable will
2788/// promote to: C99 6.3.1.1p2, assuming that Promotable is a promotable
2789/// integer type.
2790QualType ASTContext::getPromotedIntegerType(QualType Promotable) {
2791  assert(!Promotable.isNull());
2792  assert(Promotable->isPromotableIntegerType());
2793  if (const EnumType *ET = Promotable->getAs<EnumType>())
2794    return ET->getDecl()->getPromotionType();
2795  if (Promotable->isSignedIntegerType())
2796    return IntTy;
2797  uint64_t PromotableSize = getTypeSize(Promotable);
2798  uint64_t IntSize = getTypeSize(IntTy);
2799  assert(Promotable->isUnsignedIntegerType() && PromotableSize <= IntSize);
2800  return (PromotableSize != IntSize) ? IntTy : UnsignedIntTy;
2801}
2802
2803/// getIntegerTypeOrder - Returns the highest ranked integer type:
2804/// C99 6.3.1.8p1.  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
2805/// LHS < RHS, return -1.
2806int ASTContext::getIntegerTypeOrder(QualType LHS, QualType RHS) {
2807  Type *LHSC = getCanonicalType(LHS).getTypePtr();
2808  Type *RHSC = getCanonicalType(RHS).getTypePtr();
2809  if (LHSC == RHSC) return 0;
2810
2811  bool LHSUnsigned = LHSC->isUnsignedIntegerType();
2812  bool RHSUnsigned = RHSC->isUnsignedIntegerType();
2813
2814  unsigned LHSRank = getIntegerRank(LHSC);
2815  unsigned RHSRank = getIntegerRank(RHSC);
2816
2817  if (LHSUnsigned == RHSUnsigned) {  // Both signed or both unsigned.
2818    if (LHSRank == RHSRank) return 0;
2819    return LHSRank > RHSRank ? 1 : -1;
2820  }
2821
2822  // Otherwise, the LHS is signed and the RHS is unsigned or visa versa.
2823  if (LHSUnsigned) {
2824    // If the unsigned [LHS] type is larger, return it.
2825    if (LHSRank >= RHSRank)
2826      return 1;
2827
2828    // If the signed type can represent all values of the unsigned type, it
2829    // wins.  Because we are dealing with 2's complement and types that are
2830    // powers of two larger than each other, this is always safe.
2831    return -1;
2832  }
2833
2834  // If the unsigned [RHS] type is larger, return it.
2835  if (RHSRank >= LHSRank)
2836    return -1;
2837
2838  // If the signed type can represent all values of the unsigned type, it
2839  // wins.  Because we are dealing with 2's complement and types that are
2840  // powers of two larger than each other, this is always safe.
2841  return 1;
2842}
2843
2844static RecordDecl *
2845CreateRecordDecl(ASTContext &Ctx, RecordDecl::TagKind TK, DeclContext *DC,
2846                 SourceLocation L, IdentifierInfo *Id) {
2847  if (Ctx.getLangOptions().CPlusPlus)
2848    return CXXRecordDecl::Create(Ctx, TK, DC, L, Id);
2849  else
2850    return RecordDecl::Create(Ctx, TK, DC, L, Id);
2851}
2852
2853// getCFConstantStringType - Return the type used for constant CFStrings.
2854QualType ASTContext::getCFConstantStringType() {
2855  if (!CFConstantStringTypeDecl) {
2856    CFConstantStringTypeDecl =
2857      CreateRecordDecl(*this, TagDecl::TK_struct, TUDecl, SourceLocation(),
2858                       &Idents.get("NSConstantString"));
2859    CFConstantStringTypeDecl->startDefinition();
2860
2861    QualType FieldTypes[4];
2862
2863    // const int *isa;
2864    FieldTypes[0] = getPointerType(IntTy.withConst());
2865    // int flags;
2866    FieldTypes[1] = IntTy;
2867    // const char *str;
2868    FieldTypes[2] = getPointerType(CharTy.withConst());
2869    // long length;
2870    FieldTypes[3] = LongTy;
2871
2872    // Create fields
2873    for (unsigned i = 0; i < 4; ++i) {
2874      FieldDecl *Field = FieldDecl::Create(*this, CFConstantStringTypeDecl,
2875                                           SourceLocation(), 0,
2876                                           FieldTypes[i], /*TInfo=*/0,
2877                                           /*BitWidth=*/0,
2878                                           /*Mutable=*/false);
2879      CFConstantStringTypeDecl->addDecl(Field);
2880    }
2881
2882    CFConstantStringTypeDecl->completeDefinition();
2883  }
2884
2885  return getTagDeclType(CFConstantStringTypeDecl);
2886}
2887
2888void ASTContext::setCFConstantStringType(QualType T) {
2889  const RecordType *Rec = T->getAs<RecordType>();
2890  assert(Rec && "Invalid CFConstantStringType");
2891  CFConstantStringTypeDecl = Rec->getDecl();
2892}
2893
2894QualType ASTContext::getObjCFastEnumerationStateType() {
2895  if (!ObjCFastEnumerationStateTypeDecl) {
2896    ObjCFastEnumerationStateTypeDecl =
2897      CreateRecordDecl(*this, TagDecl::TK_struct, TUDecl, SourceLocation(),
2898                       &Idents.get("__objcFastEnumerationState"));
2899    ObjCFastEnumerationStateTypeDecl->startDefinition();
2900
2901    QualType FieldTypes[] = {
2902      UnsignedLongTy,
2903      getPointerType(ObjCIdTypedefType),
2904      getPointerType(UnsignedLongTy),
2905      getConstantArrayType(UnsignedLongTy,
2906                           llvm::APInt(32, 5), ArrayType::Normal, 0)
2907    };
2908
2909    for (size_t i = 0; i < 4; ++i) {
2910      FieldDecl *Field = FieldDecl::Create(*this,
2911                                           ObjCFastEnumerationStateTypeDecl,
2912                                           SourceLocation(), 0,
2913                                           FieldTypes[i], /*TInfo=*/0,
2914                                           /*BitWidth=*/0,
2915                                           /*Mutable=*/false);
2916      ObjCFastEnumerationStateTypeDecl->addDecl(Field);
2917    }
2918
2919    ObjCFastEnumerationStateTypeDecl->completeDefinition();
2920  }
2921
2922  return getTagDeclType(ObjCFastEnumerationStateTypeDecl);
2923}
2924
2925QualType ASTContext::getBlockDescriptorType() {
2926  if (BlockDescriptorType)
2927    return getTagDeclType(BlockDescriptorType);
2928
2929  RecordDecl *T;
2930  // FIXME: Needs the FlagAppleBlock bit.
2931  T = CreateRecordDecl(*this, TagDecl::TK_struct, TUDecl, SourceLocation(),
2932                       &Idents.get("__block_descriptor"));
2933  T->startDefinition();
2934
2935  QualType FieldTypes[] = {
2936    UnsignedLongTy,
2937    UnsignedLongTy,
2938  };
2939
2940  const char *FieldNames[] = {
2941    "reserved",
2942    "Size"
2943  };
2944
2945  for (size_t i = 0; i < 2; ++i) {
2946    FieldDecl *Field = FieldDecl::Create(*this,
2947                                         T,
2948                                         SourceLocation(),
2949                                         &Idents.get(FieldNames[i]),
2950                                         FieldTypes[i], /*TInfo=*/0,
2951                                         /*BitWidth=*/0,
2952                                         /*Mutable=*/false);
2953    T->addDecl(Field);
2954  }
2955
2956  T->completeDefinition();
2957
2958  BlockDescriptorType = T;
2959
2960  return getTagDeclType(BlockDescriptorType);
2961}
2962
2963void ASTContext::setBlockDescriptorType(QualType T) {
2964  const RecordType *Rec = T->getAs<RecordType>();
2965  assert(Rec && "Invalid BlockDescriptorType");
2966  BlockDescriptorType = Rec->getDecl();
2967}
2968
2969QualType ASTContext::getBlockDescriptorExtendedType() {
2970  if (BlockDescriptorExtendedType)
2971    return getTagDeclType(BlockDescriptorExtendedType);
2972
2973  RecordDecl *T;
2974  // FIXME: Needs the FlagAppleBlock bit.
2975  T = CreateRecordDecl(*this, TagDecl::TK_struct, TUDecl, SourceLocation(),
2976                       &Idents.get("__block_descriptor_withcopydispose"));
2977  T->startDefinition();
2978
2979  QualType FieldTypes[] = {
2980    UnsignedLongTy,
2981    UnsignedLongTy,
2982    getPointerType(VoidPtrTy),
2983    getPointerType(VoidPtrTy)
2984  };
2985
2986  const char *FieldNames[] = {
2987    "reserved",
2988    "Size",
2989    "CopyFuncPtr",
2990    "DestroyFuncPtr"
2991  };
2992
2993  for (size_t i = 0; i < 4; ++i) {
2994    FieldDecl *Field = FieldDecl::Create(*this,
2995                                         T,
2996                                         SourceLocation(),
2997                                         &Idents.get(FieldNames[i]),
2998                                         FieldTypes[i], /*TInfo=*/0,
2999                                         /*BitWidth=*/0,
3000                                         /*Mutable=*/false);
3001    T->addDecl(Field);
3002  }
3003
3004  T->completeDefinition();
3005
3006  BlockDescriptorExtendedType = T;
3007
3008  return getTagDeclType(BlockDescriptorExtendedType);
3009}
3010
3011void ASTContext::setBlockDescriptorExtendedType(QualType T) {
3012  const RecordType *Rec = T->getAs<RecordType>();
3013  assert(Rec && "Invalid BlockDescriptorType");
3014  BlockDescriptorExtendedType = Rec->getDecl();
3015}
3016
3017bool ASTContext::BlockRequiresCopying(QualType Ty) {
3018  if (Ty->isBlockPointerType())
3019    return true;
3020  if (isObjCNSObjectType(Ty))
3021    return true;
3022  if (Ty->isObjCObjectPointerType())
3023    return true;
3024  return false;
3025}
3026
3027QualType ASTContext::BuildByRefType(const char *DeclName, QualType Ty) {
3028  //  type = struct __Block_byref_1_X {
3029  //    void *__isa;
3030  //    struct __Block_byref_1_X *__forwarding;
3031  //    unsigned int __flags;
3032  //    unsigned int __size;
3033  //    void *__copy_helper;		// as needed
3034  //    void *__destroy_help		// as needed
3035  //    int X;
3036  //  } *
3037
3038  bool HasCopyAndDispose = BlockRequiresCopying(Ty);
3039
3040  // FIXME: Move up
3041  static unsigned int UniqueBlockByRefTypeID = 0;
3042  llvm::SmallString<36> Name;
3043  llvm::raw_svector_ostream(Name) << "__Block_byref_" <<
3044                                  ++UniqueBlockByRefTypeID << '_' << DeclName;
3045  RecordDecl *T;
3046  T = CreateRecordDecl(*this, TagDecl::TK_struct, TUDecl, SourceLocation(),
3047                       &Idents.get(Name.str()));
3048  T->startDefinition();
3049  QualType Int32Ty = IntTy;
3050  assert(getIntWidth(IntTy) == 32 && "non-32bit int not supported");
3051  QualType FieldTypes[] = {
3052    getPointerType(VoidPtrTy),
3053    getPointerType(getTagDeclType(T)),
3054    Int32Ty,
3055    Int32Ty,
3056    getPointerType(VoidPtrTy),
3057    getPointerType(VoidPtrTy),
3058    Ty
3059  };
3060
3061  const char *FieldNames[] = {
3062    "__isa",
3063    "__forwarding",
3064    "__flags",
3065    "__size",
3066    "__copy_helper",
3067    "__destroy_helper",
3068    DeclName,
3069  };
3070
3071  for (size_t i = 0; i < 7; ++i) {
3072    if (!HasCopyAndDispose && i >=4 && i <= 5)
3073      continue;
3074    FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(),
3075                                         &Idents.get(FieldNames[i]),
3076                                         FieldTypes[i], /*TInfo=*/0,
3077                                         /*BitWidth=*/0, /*Mutable=*/false);
3078    T->addDecl(Field);
3079  }
3080
3081  T->completeDefinition();
3082
3083  return getPointerType(getTagDeclType(T));
3084}
3085
3086
3087QualType ASTContext::getBlockParmType(
3088  bool BlockHasCopyDispose,
3089  llvm::SmallVector<const Expr *, 8> &BlockDeclRefDecls) {
3090  // FIXME: Move up
3091  static unsigned int UniqueBlockParmTypeID = 0;
3092  llvm::SmallString<36> Name;
3093  llvm::raw_svector_ostream(Name) << "__block_literal_"
3094                                  << ++UniqueBlockParmTypeID;
3095  RecordDecl *T;
3096  T = CreateRecordDecl(*this, TagDecl::TK_struct, TUDecl, SourceLocation(),
3097                       &Idents.get(Name.str()));
3098  T->startDefinition();
3099  QualType FieldTypes[] = {
3100    getPointerType(VoidPtrTy),
3101    IntTy,
3102    IntTy,
3103    getPointerType(VoidPtrTy),
3104    (BlockHasCopyDispose ?
3105     getPointerType(getBlockDescriptorExtendedType()) :
3106     getPointerType(getBlockDescriptorType()))
3107  };
3108
3109  const char *FieldNames[] = {
3110    "__isa",
3111    "__flags",
3112    "__reserved",
3113    "__FuncPtr",
3114    "__descriptor"
3115  };
3116
3117  for (size_t i = 0; i < 5; ++i) {
3118    FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(),
3119                                         &Idents.get(FieldNames[i]),
3120                                         FieldTypes[i], /*TInfo=*/0,
3121                                         /*BitWidth=*/0, /*Mutable=*/false);
3122    T->addDecl(Field);
3123  }
3124
3125  for (size_t i = 0; i < BlockDeclRefDecls.size(); ++i) {
3126    const Expr *E = BlockDeclRefDecls[i];
3127    const BlockDeclRefExpr *BDRE = dyn_cast<BlockDeclRefExpr>(E);
3128    clang::IdentifierInfo *Name = 0;
3129    if (BDRE) {
3130      const ValueDecl *D = BDRE->getDecl();
3131      Name = &Idents.get(D->getName());
3132    }
3133    QualType FieldType = E->getType();
3134
3135    if (BDRE && BDRE->isByRef())
3136      FieldType = BuildByRefType(BDRE->getDecl()->getNameAsCString(),
3137                                 FieldType);
3138
3139    FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(),
3140                                         Name, FieldType, /*TInfo=*/0,
3141                                         /*BitWidth=*/0, /*Mutable=*/false);
3142    T->addDecl(Field);
3143  }
3144
3145  T->completeDefinition();
3146
3147  return getPointerType(getTagDeclType(T));
3148}
3149
3150void ASTContext::setObjCFastEnumerationStateType(QualType T) {
3151  const RecordType *Rec = T->getAs<RecordType>();
3152  assert(Rec && "Invalid ObjCFAstEnumerationStateType");
3153  ObjCFastEnumerationStateTypeDecl = Rec->getDecl();
3154}
3155
3156// This returns true if a type has been typedefed to BOOL:
3157// typedef <type> BOOL;
3158static bool isTypeTypedefedAsBOOL(QualType T) {
3159  if (const TypedefType *TT = dyn_cast<TypedefType>(T))
3160    if (IdentifierInfo *II = TT->getDecl()->getIdentifier())
3161      return II->isStr("BOOL");
3162
3163  return false;
3164}
3165
3166/// getObjCEncodingTypeSize returns size of type for objective-c encoding
3167/// purpose.
3168CharUnits ASTContext::getObjCEncodingTypeSize(QualType type) {
3169  CharUnits sz = getTypeSizeInChars(type);
3170
3171  // Make all integer and enum types at least as large as an int
3172  if (sz.isPositive() && type->isIntegralType())
3173    sz = std::max(sz, getTypeSizeInChars(IntTy));
3174  // Treat arrays as pointers, since that's how they're passed in.
3175  else if (type->isArrayType())
3176    sz = getTypeSizeInChars(VoidPtrTy);
3177  return sz;
3178}
3179
3180static inline
3181std::string charUnitsToString(const CharUnits &CU) {
3182  return llvm::itostr(CU.getQuantity());
3183}
3184
3185/// getObjCEncodingForBlockDecl - Return the encoded type for this method
3186/// declaration.
3187void ASTContext::getObjCEncodingForBlock(const BlockExpr *Expr,
3188                                             std::string& S) {
3189  const BlockDecl *Decl = Expr->getBlockDecl();
3190  QualType BlockTy =
3191      Expr->getType()->getAs<BlockPointerType>()->getPointeeType();
3192  // Encode result type.
3193  getObjCEncodingForType(cast<FunctionType>(BlockTy)->getResultType(), S);
3194  // Compute size of all parameters.
3195  // Start with computing size of a pointer in number of bytes.
3196  // FIXME: There might(should) be a better way of doing this computation!
3197  SourceLocation Loc;
3198  CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy);
3199  CharUnits ParmOffset = PtrSize;
3200  for (ObjCMethodDecl::param_iterator PI = Decl->param_begin(),
3201       E = Decl->param_end(); PI != E; ++PI) {
3202    QualType PType = (*PI)->getType();
3203    CharUnits sz = getObjCEncodingTypeSize(PType);
3204    assert (sz.isPositive() && "BlockExpr - Incomplete param type");
3205    ParmOffset += sz;
3206  }
3207  // Size of the argument frame
3208  S += charUnitsToString(ParmOffset);
3209  // Block pointer and offset.
3210  S += "@?0";
3211  ParmOffset = PtrSize;
3212
3213  // Argument types.
3214  ParmOffset = PtrSize;
3215  for (BlockDecl::param_const_iterator PI = Decl->param_begin(), E =
3216       Decl->param_end(); PI != E; ++PI) {
3217    ParmVarDecl *PVDecl = *PI;
3218    QualType PType = PVDecl->getOriginalType();
3219    if (const ArrayType *AT =
3220          dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
3221      // Use array's original type only if it has known number of
3222      // elements.
3223      if (!isa<ConstantArrayType>(AT))
3224        PType = PVDecl->getType();
3225    } else if (PType->isFunctionType())
3226      PType = PVDecl->getType();
3227    getObjCEncodingForType(PType, S);
3228    S += charUnitsToString(ParmOffset);
3229    ParmOffset += getObjCEncodingTypeSize(PType);
3230  }
3231}
3232
3233/// getObjCEncodingForMethodDecl - Return the encoded type for this method
3234/// declaration.
3235void ASTContext::getObjCEncodingForMethodDecl(const ObjCMethodDecl *Decl,
3236                                              std::string& S) {
3237  // FIXME: This is not very efficient.
3238  // Encode type qualifer, 'in', 'inout', etc. for the return type.
3239  getObjCEncodingForTypeQualifier(Decl->getObjCDeclQualifier(), S);
3240  // Encode result type.
3241  getObjCEncodingForType(Decl->getResultType(), S);
3242  // Compute size of all parameters.
3243  // Start with computing size of a pointer in number of bytes.
3244  // FIXME: There might(should) be a better way of doing this computation!
3245  SourceLocation Loc;
3246  CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy);
3247  // The first two arguments (self and _cmd) are pointers; account for
3248  // their size.
3249  CharUnits ParmOffset = 2 * PtrSize;
3250  for (ObjCMethodDecl::param_iterator PI = Decl->param_begin(),
3251       E = Decl->param_end(); PI != E; ++PI) {
3252    QualType PType = (*PI)->getType();
3253    CharUnits sz = getObjCEncodingTypeSize(PType);
3254    assert (sz.isPositive() &&
3255        "getObjCEncodingForMethodDecl - Incomplete param type");
3256    ParmOffset += sz;
3257  }
3258  S += charUnitsToString(ParmOffset);
3259  S += "@0:";
3260  S += charUnitsToString(PtrSize);
3261
3262  // Argument types.
3263  ParmOffset = 2 * PtrSize;
3264  for (ObjCMethodDecl::param_iterator PI = Decl->param_begin(),
3265       E = Decl->param_end(); PI != E; ++PI) {
3266    ParmVarDecl *PVDecl = *PI;
3267    QualType PType = PVDecl->getOriginalType();
3268    if (const ArrayType *AT =
3269          dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
3270      // Use array's original type only if it has known number of
3271      // elements.
3272      if (!isa<ConstantArrayType>(AT))
3273        PType = PVDecl->getType();
3274    } else if (PType->isFunctionType())
3275      PType = PVDecl->getType();
3276    // Process argument qualifiers for user supplied arguments; such as,
3277    // 'in', 'inout', etc.
3278    getObjCEncodingForTypeQualifier(PVDecl->getObjCDeclQualifier(), S);
3279    getObjCEncodingForType(PType, S);
3280    S += charUnitsToString(ParmOffset);
3281    ParmOffset += getObjCEncodingTypeSize(PType);
3282  }
3283}
3284
3285/// getObjCEncodingForPropertyDecl - Return the encoded type for this
3286/// property declaration. If non-NULL, Container must be either an
3287/// ObjCCategoryImplDecl or ObjCImplementationDecl; it should only be
3288/// NULL when getting encodings for protocol properties.
3289/// Property attributes are stored as a comma-delimited C string. The simple
3290/// attributes readonly and bycopy are encoded as single characters. The
3291/// parametrized attributes, getter=name, setter=name, and ivar=name, are
3292/// encoded as single characters, followed by an identifier. Property types
3293/// are also encoded as a parametrized attribute. The characters used to encode
3294/// these attributes are defined by the following enumeration:
3295/// @code
3296/// enum PropertyAttributes {
3297/// kPropertyReadOnly = 'R',   // property is read-only.
3298/// kPropertyBycopy = 'C',     // property is a copy of the value last assigned
3299/// kPropertyByref = '&',  // property is a reference to the value last assigned
3300/// kPropertyDynamic = 'D',    // property is dynamic
3301/// kPropertyGetter = 'G',     // followed by getter selector name
3302/// kPropertySetter = 'S',     // followed by setter selector name
3303/// kPropertyInstanceVariable = 'V'  // followed by instance variable  name
3304/// kPropertyType = 't'              // followed by old-style type encoding.
3305/// kPropertyWeak = 'W'              // 'weak' property
3306/// kPropertyStrong = 'P'            // property GC'able
3307/// kPropertyNonAtomic = 'N'         // property non-atomic
3308/// };
3309/// @endcode
3310void ASTContext::getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD,
3311                                                const Decl *Container,
3312                                                std::string& S) {
3313  // Collect information from the property implementation decl(s).
3314  bool Dynamic = false;
3315  ObjCPropertyImplDecl *SynthesizePID = 0;
3316
3317  // FIXME: Duplicated code due to poor abstraction.
3318  if (Container) {
3319    if (const ObjCCategoryImplDecl *CID =
3320        dyn_cast<ObjCCategoryImplDecl>(Container)) {
3321      for (ObjCCategoryImplDecl::propimpl_iterator
3322             i = CID->propimpl_begin(), e = CID->propimpl_end();
3323           i != e; ++i) {
3324        ObjCPropertyImplDecl *PID = *i;
3325        if (PID->getPropertyDecl() == PD) {
3326          if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) {
3327            Dynamic = true;
3328          } else {
3329            SynthesizePID = PID;
3330          }
3331        }
3332      }
3333    } else {
3334      const ObjCImplementationDecl *OID=cast<ObjCImplementationDecl>(Container);
3335      for (ObjCCategoryImplDecl::propimpl_iterator
3336             i = OID->propimpl_begin(), e = OID->propimpl_end();
3337           i != e; ++i) {
3338        ObjCPropertyImplDecl *PID = *i;
3339        if (PID->getPropertyDecl() == PD) {
3340          if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) {
3341            Dynamic = true;
3342          } else {
3343            SynthesizePID = PID;
3344          }
3345        }
3346      }
3347    }
3348  }
3349
3350  // FIXME: This is not very efficient.
3351  S = "T";
3352
3353  // Encode result type.
3354  // GCC has some special rules regarding encoding of properties which
3355  // closely resembles encoding of ivars.
3356  getObjCEncodingForTypeImpl(PD->getType(), S, true, true, 0,
3357                             true /* outermost type */,
3358                             true /* encoding for property */);
3359
3360  if (PD->isReadOnly()) {
3361    S += ",R";
3362  } else {
3363    switch (PD->getSetterKind()) {
3364    case ObjCPropertyDecl::Assign: break;
3365    case ObjCPropertyDecl::Copy:   S += ",C"; break;
3366    case ObjCPropertyDecl::Retain: S += ",&"; break;
3367    }
3368  }
3369
3370  // It really isn't clear at all what this means, since properties
3371  // are "dynamic by default".
3372  if (Dynamic)
3373    S += ",D";
3374
3375  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_nonatomic)
3376    S += ",N";
3377
3378  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_getter) {
3379    S += ",G";
3380    S += PD->getGetterName().getAsString();
3381  }
3382
3383  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_setter) {
3384    S += ",S";
3385    S += PD->getSetterName().getAsString();
3386  }
3387
3388  if (SynthesizePID) {
3389    const ObjCIvarDecl *OID = SynthesizePID->getPropertyIvarDecl();
3390    S += ",V";
3391    S += OID->getNameAsString();
3392  }
3393
3394  // FIXME: OBJCGC: weak & strong
3395}
3396
3397/// getLegacyIntegralTypeEncoding -
3398/// Another legacy compatibility encoding: 32-bit longs are encoded as
3399/// 'l' or 'L' , but not always.  For typedefs, we need to use
3400/// 'i' or 'I' instead if encoding a struct field, or a pointer!
3401///
3402void ASTContext::getLegacyIntegralTypeEncoding (QualType &PointeeTy) const {
3403  if (isa<TypedefType>(PointeeTy.getTypePtr())) {
3404    if (const BuiltinType *BT = PointeeTy->getAs<BuiltinType>()) {
3405      if (BT->getKind() == BuiltinType::ULong &&
3406          ((const_cast<ASTContext *>(this))->getIntWidth(PointeeTy) == 32))
3407        PointeeTy = UnsignedIntTy;
3408      else
3409        if (BT->getKind() == BuiltinType::Long &&
3410            ((const_cast<ASTContext *>(this))->getIntWidth(PointeeTy) == 32))
3411          PointeeTy = IntTy;
3412    }
3413  }
3414}
3415
3416void ASTContext::getObjCEncodingForType(QualType T, std::string& S,
3417                                        const FieldDecl *Field) {
3418  // We follow the behavior of gcc, expanding structures which are
3419  // directly pointed to, and expanding embedded structures. Note that
3420  // these rules are sufficient to prevent recursive encoding of the
3421  // same type.
3422  getObjCEncodingForTypeImpl(T, S, true, true, Field,
3423                             true /* outermost type */);
3424}
3425
3426static void EncodeBitField(const ASTContext *Context, std::string& S,
3427                           const FieldDecl *FD) {
3428  const Expr *E = FD->getBitWidth();
3429  assert(E && "bitfield width not there - getObjCEncodingForTypeImpl");
3430  ASTContext *Ctx = const_cast<ASTContext*>(Context);
3431  unsigned N = E->EvaluateAsInt(*Ctx).getZExtValue();
3432  S += 'b';
3433  S += llvm::utostr(N);
3434}
3435
3436// FIXME: Use SmallString for accumulating string.
3437void ASTContext::getObjCEncodingForTypeImpl(QualType T, std::string& S,
3438                                            bool ExpandPointedToStructures,
3439                                            bool ExpandStructures,
3440                                            const FieldDecl *FD,
3441                                            bool OutermostType,
3442                                            bool EncodingProperty) {
3443  if (const BuiltinType *BT = T->getAs<BuiltinType>()) {
3444    if (FD && FD->isBitField())
3445      return EncodeBitField(this, S, FD);
3446    char encoding;
3447    switch (BT->getKind()) {
3448    default: assert(0 && "Unhandled builtin type kind");
3449    case BuiltinType::Void:       encoding = 'v'; break;
3450    case BuiltinType::Bool:       encoding = 'B'; break;
3451    case BuiltinType::Char_U:
3452    case BuiltinType::UChar:      encoding = 'C'; break;
3453    case BuiltinType::UShort:     encoding = 'S'; break;
3454    case BuiltinType::UInt:       encoding = 'I'; break;
3455    case BuiltinType::ULong:
3456        encoding =
3457          (const_cast<ASTContext *>(this))->getIntWidth(T) == 32 ? 'L' : 'Q';
3458        break;
3459    case BuiltinType::UInt128:    encoding = 'T'; break;
3460    case BuiltinType::ULongLong:  encoding = 'Q'; break;
3461    case BuiltinType::Char_S:
3462    case BuiltinType::SChar:      encoding = 'c'; break;
3463    case BuiltinType::Short:      encoding = 's'; break;
3464    case BuiltinType::Int:        encoding = 'i'; break;
3465    case BuiltinType::Long:
3466      encoding =
3467        (const_cast<ASTContext *>(this))->getIntWidth(T) == 32 ? 'l' : 'q';
3468      break;
3469    case BuiltinType::LongLong:   encoding = 'q'; break;
3470    case BuiltinType::Int128:     encoding = 't'; break;
3471    case BuiltinType::Float:      encoding = 'f'; break;
3472    case BuiltinType::Double:     encoding = 'd'; break;
3473    case BuiltinType::LongDouble: encoding = 'd'; break;
3474    }
3475
3476    S += encoding;
3477    return;
3478  }
3479
3480  if (const ComplexType *CT = T->getAs<ComplexType>()) {
3481    S += 'j';
3482    getObjCEncodingForTypeImpl(CT->getElementType(), S, false, false, 0, false,
3483                               false);
3484    return;
3485  }
3486
3487  if (const PointerType *PT = T->getAs<PointerType>()) {
3488    if (PT->isObjCSelType()) {
3489      S += ':';
3490      return;
3491    }
3492    QualType PointeeTy = PT->getPointeeType();
3493
3494    bool isReadOnly = false;
3495    // For historical/compatibility reasons, the read-only qualifier of the
3496    // pointee gets emitted _before_ the '^'.  The read-only qualifier of
3497    // the pointer itself gets ignored, _unless_ we are looking at a typedef!
3498    // Also, do not emit the 'r' for anything but the outermost type!
3499    if (isa<TypedefType>(T.getTypePtr())) {
3500      if (OutermostType && T.isConstQualified()) {
3501        isReadOnly = true;
3502        S += 'r';
3503      }
3504    } else if (OutermostType) {
3505      QualType P = PointeeTy;
3506      while (P->getAs<PointerType>())
3507        P = P->getAs<PointerType>()->getPointeeType();
3508      if (P.isConstQualified()) {
3509        isReadOnly = true;
3510        S += 'r';
3511      }
3512    }
3513    if (isReadOnly) {
3514      // Another legacy compatibility encoding. Some ObjC qualifier and type
3515      // combinations need to be rearranged.
3516      // Rewrite "in const" from "nr" to "rn"
3517      const char * s = S.c_str();
3518      int len = S.length();
3519      if (len >= 2 && s[len-2] == 'n' && s[len-1] == 'r') {
3520        std::string replace = "rn";
3521        S.replace(S.end()-2, S.end(), replace);
3522      }
3523    }
3524
3525    if (PointeeTy->isCharType()) {
3526      // char pointer types should be encoded as '*' unless it is a
3527      // type that has been typedef'd to 'BOOL'.
3528      if (!isTypeTypedefedAsBOOL(PointeeTy)) {
3529        S += '*';
3530        return;
3531      }
3532    } else if (const RecordType *RTy = PointeeTy->getAs<RecordType>()) {
3533      // GCC binary compat: Need to convert "struct objc_class *" to "#".
3534      if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_class")) {
3535        S += '#';
3536        return;
3537      }
3538      // GCC binary compat: Need to convert "struct objc_object *" to "@".
3539      if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_object")) {
3540        S += '@';
3541        return;
3542      }
3543      // fall through...
3544    }
3545    S += '^';
3546    getLegacyIntegralTypeEncoding(PointeeTy);
3547
3548    getObjCEncodingForTypeImpl(PointeeTy, S, false, ExpandPointedToStructures,
3549                               NULL);
3550    return;
3551  }
3552
3553  if (const ArrayType *AT =
3554      // Ignore type qualifiers etc.
3555        dyn_cast<ArrayType>(T->getCanonicalTypeInternal())) {
3556    if (isa<IncompleteArrayType>(AT)) {
3557      // Incomplete arrays are encoded as a pointer to the array element.
3558      S += '^';
3559
3560      getObjCEncodingForTypeImpl(AT->getElementType(), S,
3561                                 false, ExpandStructures, FD);
3562    } else {
3563      S += '[';
3564
3565      if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
3566        S += llvm::utostr(CAT->getSize().getZExtValue());
3567      else {
3568        //Variable length arrays are encoded as a regular array with 0 elements.
3569        assert(isa<VariableArrayType>(AT) && "Unknown array type!");
3570        S += '0';
3571      }
3572
3573      getObjCEncodingForTypeImpl(AT->getElementType(), S,
3574                                 false, ExpandStructures, FD);
3575      S += ']';
3576    }
3577    return;
3578  }
3579
3580  if (T->getAs<FunctionType>()) {
3581    S += '?';
3582    return;
3583  }
3584
3585  if (const RecordType *RTy = T->getAs<RecordType>()) {
3586    RecordDecl *RDecl = RTy->getDecl();
3587    S += RDecl->isUnion() ? '(' : '{';
3588    // Anonymous structures print as '?'
3589    if (const IdentifierInfo *II = RDecl->getIdentifier()) {
3590      S += II->getName();
3591    } else {
3592      S += '?';
3593    }
3594    if (ExpandStructures) {
3595      S += '=';
3596      for (RecordDecl::field_iterator Field = RDecl->field_begin(),
3597                                   FieldEnd = RDecl->field_end();
3598           Field != FieldEnd; ++Field) {
3599        if (FD) {
3600          S += '"';
3601          S += Field->getNameAsString();
3602          S += '"';
3603        }
3604
3605        // Special case bit-fields.
3606        if (Field->isBitField()) {
3607          getObjCEncodingForTypeImpl(Field->getType(), S, false, true,
3608                                     (*Field));
3609        } else {
3610          QualType qt = Field->getType();
3611          getLegacyIntegralTypeEncoding(qt);
3612          getObjCEncodingForTypeImpl(qt, S, false, true,
3613                                     FD);
3614        }
3615      }
3616    }
3617    S += RDecl->isUnion() ? ')' : '}';
3618    return;
3619  }
3620
3621  if (T->isEnumeralType()) {
3622    if (FD && FD->isBitField())
3623      EncodeBitField(this, S, FD);
3624    else
3625      S += 'i';
3626    return;
3627  }
3628
3629  if (T->isBlockPointerType()) {
3630    S += "@?"; // Unlike a pointer-to-function, which is "^?".
3631    return;
3632  }
3633
3634  if (const ObjCInterfaceType *OIT = T->getAs<ObjCInterfaceType>()) {
3635    // @encode(class_name)
3636    ObjCInterfaceDecl *OI = OIT->getDecl();
3637    S += '{';
3638    const IdentifierInfo *II = OI->getIdentifier();
3639    S += II->getName();
3640    S += '=';
3641    llvm::SmallVector<FieldDecl*, 32> RecFields;
3642    CollectObjCIvars(OI, RecFields);
3643    for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
3644      if (RecFields[i]->isBitField())
3645        getObjCEncodingForTypeImpl(RecFields[i]->getType(), S, false, true,
3646                                   RecFields[i]);
3647      else
3648        getObjCEncodingForTypeImpl(RecFields[i]->getType(), S, false, true,
3649                                   FD);
3650    }
3651    S += '}';
3652    return;
3653  }
3654
3655  if (const ObjCObjectPointerType *OPT = T->getAs<ObjCObjectPointerType>()) {
3656    if (OPT->isObjCIdType()) {
3657      S += '@';
3658      return;
3659    }
3660
3661    if (OPT->isObjCClassType() || OPT->isObjCQualifiedClassType()) {
3662      // FIXME: Consider if we need to output qualifiers for 'Class<p>'.
3663      // Since this is a binary compatibility issue, need to consult with runtime
3664      // folks. Fortunately, this is a *very* obsure construct.
3665      S += '#';
3666      return;
3667    }
3668
3669    if (OPT->isObjCQualifiedIdType()) {
3670      getObjCEncodingForTypeImpl(getObjCIdType(), S,
3671                                 ExpandPointedToStructures,
3672                                 ExpandStructures, FD);
3673      if (FD || EncodingProperty) {
3674        // Note that we do extended encoding of protocol qualifer list
3675        // Only when doing ivar or property encoding.
3676        S += '"';
3677        for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(),
3678             E = OPT->qual_end(); I != E; ++I) {
3679          S += '<';
3680          S += (*I)->getNameAsString();
3681          S += '>';
3682        }
3683        S += '"';
3684      }
3685      return;
3686    }
3687
3688    QualType PointeeTy = OPT->getPointeeType();
3689    if (!EncodingProperty &&
3690        isa<TypedefType>(PointeeTy.getTypePtr())) {
3691      // Another historical/compatibility reason.
3692      // We encode the underlying type which comes out as
3693      // {...};
3694      S += '^';
3695      getObjCEncodingForTypeImpl(PointeeTy, S,
3696                                 false, ExpandPointedToStructures,
3697                                 NULL);
3698      return;
3699    }
3700
3701    S += '@';
3702    if (OPT->getInterfaceDecl() && (FD || EncodingProperty)) {
3703      S += '"';
3704      S += OPT->getInterfaceDecl()->getIdentifier()->getName();
3705      for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(),
3706           E = OPT->qual_end(); I != E; ++I) {
3707        S += '<';
3708        S += (*I)->getNameAsString();
3709        S += '>';
3710      }
3711      S += '"';
3712    }
3713    return;
3714  }
3715
3716  assert(0 && "@encode for type not implemented!");
3717}
3718
3719void ASTContext::getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT,
3720                                                 std::string& S) const {
3721  if (QT & Decl::OBJC_TQ_In)
3722    S += 'n';
3723  if (QT & Decl::OBJC_TQ_Inout)
3724    S += 'N';
3725  if (QT & Decl::OBJC_TQ_Out)
3726    S += 'o';
3727  if (QT & Decl::OBJC_TQ_Bycopy)
3728    S += 'O';
3729  if (QT & Decl::OBJC_TQ_Byref)
3730    S += 'R';
3731  if (QT & Decl::OBJC_TQ_Oneway)
3732    S += 'V';
3733}
3734
3735void ASTContext::setBuiltinVaListType(QualType T) {
3736  assert(BuiltinVaListType.isNull() && "__builtin_va_list type already set!");
3737
3738  BuiltinVaListType = T;
3739}
3740
3741void ASTContext::setObjCIdType(QualType T) {
3742  ObjCIdTypedefType = T;
3743}
3744
3745void ASTContext::setObjCSelType(QualType T) {
3746  ObjCSelTypedefType = T;
3747}
3748
3749void ASTContext::setObjCProtoType(QualType QT) {
3750  ObjCProtoType = QT;
3751}
3752
3753void ASTContext::setObjCClassType(QualType T) {
3754  ObjCClassTypedefType = T;
3755}
3756
3757void ASTContext::setObjCConstantStringInterface(ObjCInterfaceDecl *Decl) {
3758  assert(ObjCConstantStringType.isNull() &&
3759         "'NSConstantString' type already set!");
3760
3761  ObjCConstantStringType = getObjCInterfaceType(Decl);
3762}
3763
3764/// \brief Retrieve the template name that corresponds to a non-empty
3765/// lookup.
3766TemplateName ASTContext::getOverloadedTemplateName(UnresolvedSetIterator Begin,
3767                                                   UnresolvedSetIterator End) {
3768  unsigned size = End - Begin;
3769  assert(size > 1 && "set is not overloaded!");
3770
3771  void *memory = Allocate(sizeof(OverloadedTemplateStorage) +
3772                          size * sizeof(FunctionTemplateDecl*));
3773  OverloadedTemplateStorage *OT = new(memory) OverloadedTemplateStorage(size);
3774
3775  NamedDecl **Storage = OT->getStorage();
3776  for (UnresolvedSetIterator I = Begin; I != End; ++I) {
3777    NamedDecl *D = *I;
3778    assert(isa<FunctionTemplateDecl>(D) ||
3779           (isa<UsingShadowDecl>(D) &&
3780            isa<FunctionTemplateDecl>(D->getUnderlyingDecl())));
3781    *Storage++ = D;
3782  }
3783
3784  return TemplateName(OT);
3785}
3786
3787/// \brief Retrieve the template name that represents a qualified
3788/// template name such as \c std::vector.
3789TemplateName ASTContext::getQualifiedTemplateName(NestedNameSpecifier *NNS,
3790                                                  bool TemplateKeyword,
3791                                                  TemplateDecl *Template) {
3792  // FIXME: Canonicalization?
3793  llvm::FoldingSetNodeID ID;
3794  QualifiedTemplateName::Profile(ID, NNS, TemplateKeyword, Template);
3795
3796  void *InsertPos = 0;
3797  QualifiedTemplateName *QTN =
3798    QualifiedTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
3799  if (!QTN) {
3800    QTN = new (*this,4) QualifiedTemplateName(NNS, TemplateKeyword, Template);
3801    QualifiedTemplateNames.InsertNode(QTN, InsertPos);
3802  }
3803
3804  return TemplateName(QTN);
3805}
3806
3807/// \brief Retrieve the template name that represents a dependent
3808/// template name such as \c MetaFun::template apply.
3809TemplateName ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
3810                                                  const IdentifierInfo *Name) {
3811  assert((!NNS || NNS->isDependent()) &&
3812         "Nested name specifier must be dependent");
3813
3814  llvm::FoldingSetNodeID ID;
3815  DependentTemplateName::Profile(ID, NNS, Name);
3816
3817  void *InsertPos = 0;
3818  DependentTemplateName *QTN =
3819    DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
3820
3821  if (QTN)
3822    return TemplateName(QTN);
3823
3824  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
3825  if (CanonNNS == NNS) {
3826    QTN = new (*this,4) DependentTemplateName(NNS, Name);
3827  } else {
3828    TemplateName Canon = getDependentTemplateName(CanonNNS, Name);
3829    QTN = new (*this,4) DependentTemplateName(NNS, Name, Canon);
3830    DependentTemplateName *CheckQTN =
3831      DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
3832    assert(!CheckQTN && "Dependent type name canonicalization broken");
3833    (void)CheckQTN;
3834  }
3835
3836  DependentTemplateNames.InsertNode(QTN, InsertPos);
3837  return TemplateName(QTN);
3838}
3839
3840/// \brief Retrieve the template name that represents a dependent
3841/// template name such as \c MetaFun::template operator+.
3842TemplateName
3843ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
3844                                     OverloadedOperatorKind Operator) {
3845  assert((!NNS || NNS->isDependent()) &&
3846         "Nested name specifier must be dependent");
3847
3848  llvm::FoldingSetNodeID ID;
3849  DependentTemplateName::Profile(ID, NNS, Operator);
3850
3851  void *InsertPos = 0;
3852  DependentTemplateName *QTN
3853    = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
3854
3855  if (QTN)
3856    return TemplateName(QTN);
3857
3858  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
3859  if (CanonNNS == NNS) {
3860    QTN = new (*this,4) DependentTemplateName(NNS, Operator);
3861  } else {
3862    TemplateName Canon = getDependentTemplateName(CanonNNS, Operator);
3863    QTN = new (*this,4) DependentTemplateName(NNS, Operator, Canon);
3864
3865    DependentTemplateName *CheckQTN
3866      = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
3867    assert(!CheckQTN && "Dependent template name canonicalization broken");
3868    (void)CheckQTN;
3869  }
3870
3871  DependentTemplateNames.InsertNode(QTN, InsertPos);
3872  return TemplateName(QTN);
3873}
3874
3875/// getFromTargetType - Given one of the integer types provided by
3876/// TargetInfo, produce the corresponding type. The unsigned @p Type
3877/// is actually a value of type @c TargetInfo::IntType.
3878CanQualType ASTContext::getFromTargetType(unsigned Type) const {
3879  switch (Type) {
3880  case TargetInfo::NoInt: return CanQualType();
3881  case TargetInfo::SignedShort: return ShortTy;
3882  case TargetInfo::UnsignedShort: return UnsignedShortTy;
3883  case TargetInfo::SignedInt: return IntTy;
3884  case TargetInfo::UnsignedInt: return UnsignedIntTy;
3885  case TargetInfo::SignedLong: return LongTy;
3886  case TargetInfo::UnsignedLong: return UnsignedLongTy;
3887  case TargetInfo::SignedLongLong: return LongLongTy;
3888  case TargetInfo::UnsignedLongLong: return UnsignedLongLongTy;
3889  }
3890
3891  assert(false && "Unhandled TargetInfo::IntType value");
3892  return CanQualType();
3893}
3894
3895//===----------------------------------------------------------------------===//
3896//                        Type Predicates.
3897//===----------------------------------------------------------------------===//
3898
3899/// isObjCNSObjectType - Return true if this is an NSObject object using
3900/// NSObject attribute on a c-style pointer type.
3901/// FIXME - Make it work directly on types.
3902/// FIXME: Move to Type.
3903///
3904bool ASTContext::isObjCNSObjectType(QualType Ty) const {
3905  if (TypedefType *TDT = dyn_cast<TypedefType>(Ty)) {
3906    if (TypedefDecl *TD = TDT->getDecl())
3907      if (TD->getAttr<ObjCNSObjectAttr>())
3908        return true;
3909  }
3910  return false;
3911}
3912
3913/// getObjCGCAttr - Returns one of GCNone, Weak or Strong objc's
3914/// garbage collection attribute.
3915///
3916Qualifiers::GC ASTContext::getObjCGCAttrKind(const QualType &Ty) const {
3917  Qualifiers::GC GCAttrs = Qualifiers::GCNone;
3918  if (getLangOptions().ObjC1 &&
3919      getLangOptions().getGCMode() != LangOptions::NonGC) {
3920    GCAttrs = Ty.getObjCGCAttr();
3921    // Default behavious under objective-c's gc is for objective-c pointers
3922    // (or pointers to them) be treated as though they were declared
3923    // as __strong.
3924    if (GCAttrs == Qualifiers::GCNone) {
3925      if (Ty->isObjCObjectPointerType() || Ty->isBlockPointerType())
3926        GCAttrs = Qualifiers::Strong;
3927      else if (Ty->isPointerType())
3928        return getObjCGCAttrKind(Ty->getAs<PointerType>()->getPointeeType());
3929    }
3930    // Non-pointers have none gc'able attribute regardless of the attribute
3931    // set on them.
3932    else if (!Ty->isAnyPointerType() && !Ty->isBlockPointerType())
3933      return Qualifiers::GCNone;
3934  }
3935  return GCAttrs;
3936}
3937
3938//===----------------------------------------------------------------------===//
3939//                        Type Compatibility Testing
3940//===----------------------------------------------------------------------===//
3941
3942/// areCompatVectorTypes - Return true if the two specified vector types are
3943/// compatible.
3944static bool areCompatVectorTypes(const VectorType *LHS,
3945                                 const VectorType *RHS) {
3946  assert(LHS->isCanonicalUnqualified() && RHS->isCanonicalUnqualified());
3947  return LHS->getElementType() == RHS->getElementType() &&
3948         LHS->getNumElements() == RHS->getNumElements();
3949}
3950
3951//===----------------------------------------------------------------------===//
3952// ObjCQualifiedIdTypesAreCompatible - Compatibility testing for qualified id's.
3953//===----------------------------------------------------------------------===//
3954
3955/// ProtocolCompatibleWithProtocol - return 'true' if 'lProto' is in the
3956/// inheritance hierarchy of 'rProto'.
3957bool ASTContext::ProtocolCompatibleWithProtocol(ObjCProtocolDecl *lProto,
3958                                                ObjCProtocolDecl *rProto) {
3959  if (lProto == rProto)
3960    return true;
3961  for (ObjCProtocolDecl::protocol_iterator PI = rProto->protocol_begin(),
3962       E = rProto->protocol_end(); PI != E; ++PI)
3963    if (ProtocolCompatibleWithProtocol(lProto, *PI))
3964      return true;
3965  return false;
3966}
3967
3968/// QualifiedIdConformsQualifiedId - compare id<p,...> with id<p1,...>
3969/// return true if lhs's protocols conform to rhs's protocol; false
3970/// otherwise.
3971bool ASTContext::QualifiedIdConformsQualifiedId(QualType lhs, QualType rhs) {
3972  if (lhs->isObjCQualifiedIdType() && rhs->isObjCQualifiedIdType())
3973    return ObjCQualifiedIdTypesAreCompatible(lhs, rhs, false);
3974  return false;
3975}
3976
3977/// ObjCQualifiedIdTypesAreCompatible - We know that one of lhs/rhs is an
3978/// ObjCQualifiedIDType.
3979bool ASTContext::ObjCQualifiedIdTypesAreCompatible(QualType lhs, QualType rhs,
3980                                                   bool compare) {
3981  // Allow id<P..> and an 'id' or void* type in all cases.
3982  if (lhs->isVoidPointerType() ||
3983      lhs->isObjCIdType() || lhs->isObjCClassType())
3984    return true;
3985  else if (rhs->isVoidPointerType() ||
3986           rhs->isObjCIdType() || rhs->isObjCClassType())
3987    return true;
3988
3989  if (const ObjCObjectPointerType *lhsQID = lhs->getAsObjCQualifiedIdType()) {
3990    const ObjCObjectPointerType *rhsOPT = rhs->getAs<ObjCObjectPointerType>();
3991
3992    if (!rhsOPT) return false;
3993
3994    if (rhsOPT->qual_empty()) {
3995      // If the RHS is a unqualified interface pointer "NSString*",
3996      // make sure we check the class hierarchy.
3997      if (ObjCInterfaceDecl *rhsID = rhsOPT->getInterfaceDecl()) {
3998        for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
3999             E = lhsQID->qual_end(); I != E; ++I) {
4000          // when comparing an id<P> on lhs with a static type on rhs,
4001          // see if static class implements all of id's protocols, directly or
4002          // through its super class and categories.
4003          if (!rhsID->ClassImplementsProtocol(*I, true))
4004            return false;
4005        }
4006      }
4007      // If there are no qualifiers and no interface, we have an 'id'.
4008      return true;
4009    }
4010    // Both the right and left sides have qualifiers.
4011    for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
4012         E = lhsQID->qual_end(); I != E; ++I) {
4013      ObjCProtocolDecl *lhsProto = *I;
4014      bool match = false;
4015
4016      // when comparing an id<P> on lhs with a static type on rhs,
4017      // see if static class implements all of id's protocols, directly or
4018      // through its super class and categories.
4019      for (ObjCObjectPointerType::qual_iterator J = rhsOPT->qual_begin(),
4020           E = rhsOPT->qual_end(); J != E; ++J) {
4021        ObjCProtocolDecl *rhsProto = *J;
4022        if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
4023            (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
4024          match = true;
4025          break;
4026        }
4027      }
4028      // If the RHS is a qualified interface pointer "NSString<P>*",
4029      // make sure we check the class hierarchy.
4030      if (ObjCInterfaceDecl *rhsID = rhsOPT->getInterfaceDecl()) {
4031        for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
4032             E = lhsQID->qual_end(); I != E; ++I) {
4033          // when comparing an id<P> on lhs with a static type on rhs,
4034          // see if static class implements all of id's protocols, directly or
4035          // through its super class and categories.
4036          if (rhsID->ClassImplementsProtocol(*I, true)) {
4037            match = true;
4038            break;
4039          }
4040        }
4041      }
4042      if (!match)
4043        return false;
4044    }
4045
4046    return true;
4047  }
4048
4049  const ObjCObjectPointerType *rhsQID = rhs->getAsObjCQualifiedIdType();
4050  assert(rhsQID && "One of the LHS/RHS should be id<x>");
4051
4052  if (const ObjCObjectPointerType *lhsOPT =
4053        lhs->getAsObjCInterfacePointerType()) {
4054    if (lhsOPT->qual_empty()) {
4055      bool match = false;
4056      if (ObjCInterfaceDecl *lhsID = lhsOPT->getInterfaceDecl()) {
4057        for (ObjCObjectPointerType::qual_iterator I = rhsQID->qual_begin(),
4058             E = rhsQID->qual_end(); I != E; ++I) {
4059          // when comparing an id<P> on lhs with a static type on rhs,
4060          // see if static class implements all of id's protocols, directly or
4061          // through its super class and categories.
4062          if (lhsID->ClassImplementsProtocol(*I, true)) {
4063            match = true;
4064            break;
4065          }
4066        }
4067        if (!match)
4068          return false;
4069      }
4070      return true;
4071    }
4072    // Both the right and left sides have qualifiers.
4073    for (ObjCObjectPointerType::qual_iterator I = lhsOPT->qual_begin(),
4074         E = lhsOPT->qual_end(); I != E; ++I) {
4075      ObjCProtocolDecl *lhsProto = *I;
4076      bool match = false;
4077
4078      // when comparing an id<P> on lhs with a static type on rhs,
4079      // see if static class implements all of id's protocols, directly or
4080      // through its super class and categories.
4081      for (ObjCObjectPointerType::qual_iterator J = rhsQID->qual_begin(),
4082           E = rhsQID->qual_end(); J != E; ++J) {
4083        ObjCProtocolDecl *rhsProto = *J;
4084        if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
4085            (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
4086          match = true;
4087          break;
4088        }
4089      }
4090      if (!match)
4091        return false;
4092    }
4093    return true;
4094  }
4095  return false;
4096}
4097
4098/// canAssignObjCInterfaces - Return true if the two interface types are
4099/// compatible for assignment from RHS to LHS.  This handles validation of any
4100/// protocol qualifiers on the LHS or RHS.
4101///
4102bool ASTContext::canAssignObjCInterfaces(const ObjCObjectPointerType *LHSOPT,
4103                                         const ObjCObjectPointerType *RHSOPT) {
4104  // If either type represents the built-in 'id' or 'Class' types, return true.
4105  if (LHSOPT->isObjCBuiltinType() || RHSOPT->isObjCBuiltinType())
4106    return true;
4107
4108  if (LHSOPT->isObjCQualifiedIdType() || RHSOPT->isObjCQualifiedIdType())
4109    return ObjCQualifiedIdTypesAreCompatible(QualType(LHSOPT,0),
4110                                             QualType(RHSOPT,0),
4111                                             false);
4112
4113  const ObjCInterfaceType* LHS = LHSOPT->getInterfaceType();
4114  const ObjCInterfaceType* RHS = RHSOPT->getInterfaceType();
4115  if (LHS && RHS) // We have 2 user-defined types.
4116    return canAssignObjCInterfaces(LHS, RHS);
4117
4118  return false;
4119}
4120
4121/// canAssignObjCInterfacesInBlockPointer - This routine is specifically written
4122/// for providing type-safty for objective-c pointers used to pass/return
4123/// arguments in block literals. When passed as arguments, passing 'A*' where
4124/// 'id' is expected is not OK. Passing 'Sub *" where 'Super *" is expected is
4125/// not OK. For the return type, the opposite is not OK.
4126bool ASTContext::canAssignObjCInterfacesInBlockPointer(
4127                                         const ObjCObjectPointerType *LHSOPT,
4128                                         const ObjCObjectPointerType *RHSOPT) {
4129  if (RHSOPT->isObjCBuiltinType())
4130    return true;
4131
4132  if (LHSOPT->isObjCBuiltinType()) {
4133    return RHSOPT->isObjCBuiltinType() || RHSOPT->isObjCQualifiedIdType();
4134  }
4135
4136  if (LHSOPT->isObjCQualifiedIdType() || RHSOPT->isObjCQualifiedIdType())
4137    return ObjCQualifiedIdTypesAreCompatible(QualType(LHSOPT,0),
4138                                             QualType(RHSOPT,0),
4139                                             false);
4140
4141  const ObjCInterfaceType* LHS = LHSOPT->getInterfaceType();
4142  const ObjCInterfaceType* RHS = RHSOPT->getInterfaceType();
4143  if (LHS && RHS)  { // We have 2 user-defined types.
4144    if (LHS != RHS) {
4145      if (LHS->getDecl()->isSuperClassOf(RHS->getDecl()))
4146        return false;
4147      if (RHS->getDecl()->isSuperClassOf(LHS->getDecl()))
4148        return true;
4149    }
4150    else
4151      return true;
4152  }
4153  return false;
4154}
4155
4156/// getIntersectionOfProtocols - This routine finds the intersection of set
4157/// of protocols inherited from two distinct objective-c pointer objects.
4158/// It is used to build composite qualifier list of the composite type of
4159/// the conditional expression involving two objective-c pointer objects.
4160static
4161void getIntersectionOfProtocols(ASTContext &Context,
4162                                const ObjCObjectPointerType *LHSOPT,
4163                                const ObjCObjectPointerType *RHSOPT,
4164      llvm::SmallVectorImpl<ObjCProtocolDecl *> &IntersectionOfProtocols) {
4165
4166  const ObjCInterfaceType* LHS = LHSOPT->getInterfaceType();
4167  const ObjCInterfaceType* RHS = RHSOPT->getInterfaceType();
4168
4169  llvm::SmallPtrSet<ObjCProtocolDecl *, 8> InheritedProtocolSet;
4170  unsigned LHSNumProtocols = LHS->getNumProtocols();
4171  if (LHSNumProtocols > 0)
4172    InheritedProtocolSet.insert(LHS->qual_begin(), LHS->qual_end());
4173  else {
4174    llvm::SmallPtrSet<ObjCProtocolDecl *, 8> LHSInheritedProtocols;
4175    Context.CollectInheritedProtocols(LHS->getDecl(), LHSInheritedProtocols);
4176    InheritedProtocolSet.insert(LHSInheritedProtocols.begin(),
4177                                LHSInheritedProtocols.end());
4178  }
4179
4180  unsigned RHSNumProtocols = RHS->getNumProtocols();
4181  if (RHSNumProtocols > 0) {
4182    ObjCProtocolDecl **RHSProtocols = (ObjCProtocolDecl **)RHS->qual_begin();
4183    for (unsigned i = 0; i < RHSNumProtocols; ++i)
4184      if (InheritedProtocolSet.count(RHSProtocols[i]))
4185        IntersectionOfProtocols.push_back(RHSProtocols[i]);
4186  }
4187  else {
4188    llvm::SmallPtrSet<ObjCProtocolDecl *, 8> RHSInheritedProtocols;
4189    Context.CollectInheritedProtocols(RHS->getDecl(), RHSInheritedProtocols);
4190    for (llvm::SmallPtrSet<ObjCProtocolDecl*,8>::iterator I =
4191         RHSInheritedProtocols.begin(),
4192         E = RHSInheritedProtocols.end(); I != E; ++I)
4193      if (InheritedProtocolSet.count((*I)))
4194        IntersectionOfProtocols.push_back((*I));
4195  }
4196}
4197
4198/// areCommonBaseCompatible - Returns common base class of the two classes if
4199/// one found. Note that this is O'2 algorithm. But it will be called as the
4200/// last type comparison in a ?-exp of ObjC pointer types before a
4201/// warning is issued. So, its invokation is extremely rare.
4202QualType ASTContext::areCommonBaseCompatible(
4203                                          const ObjCObjectPointerType *LHSOPT,
4204                                          const ObjCObjectPointerType *RHSOPT) {
4205  const ObjCInterfaceType* LHS = LHSOPT->getInterfaceType();
4206  const ObjCInterfaceType* RHS = RHSOPT->getInterfaceType();
4207  if (!LHS || !RHS)
4208    return QualType();
4209
4210  while (const ObjCInterfaceDecl *LHSIDecl = LHS->getDecl()->getSuperClass()) {
4211    QualType LHSTy = getObjCInterfaceType(LHSIDecl);
4212    LHS = LHSTy->getAs<ObjCInterfaceType>();
4213    if (canAssignObjCInterfaces(LHS, RHS)) {
4214      llvm::SmallVector<ObjCProtocolDecl *, 8> IntersectionOfProtocols;
4215      getIntersectionOfProtocols(*this,
4216                                 LHSOPT, RHSOPT, IntersectionOfProtocols);
4217      if (IntersectionOfProtocols.empty())
4218        LHSTy = getObjCObjectPointerType(LHSTy);
4219      else
4220        LHSTy = getObjCObjectPointerType(LHSTy, &IntersectionOfProtocols[0],
4221                                                IntersectionOfProtocols.size());
4222      return LHSTy;
4223    }
4224  }
4225
4226  return QualType();
4227}
4228
4229bool ASTContext::canAssignObjCInterfaces(const ObjCInterfaceType *LHS,
4230                                         const ObjCInterfaceType *RHS) {
4231  // Verify that the base decls are compatible: the RHS must be a subclass of
4232  // the LHS.
4233  if (!LHS->getDecl()->isSuperClassOf(RHS->getDecl()))
4234    return false;
4235
4236  // RHS must have a superset of the protocols in the LHS.  If the LHS is not
4237  // protocol qualified at all, then we are good.
4238  if (LHS->getNumProtocols() == 0)
4239    return true;
4240
4241  // Okay, we know the LHS has protocol qualifiers.  If the RHS doesn't, then it
4242  // isn't a superset.
4243  if (RHS->getNumProtocols() == 0)
4244    return true;  // FIXME: should return false!
4245
4246  for (ObjCInterfaceType::qual_iterator LHSPI = LHS->qual_begin(),
4247                                        LHSPE = LHS->qual_end();
4248       LHSPI != LHSPE; LHSPI++) {
4249    bool RHSImplementsProtocol = false;
4250
4251    // If the RHS doesn't implement the protocol on the left, the types
4252    // are incompatible.
4253    for (ObjCInterfaceType::qual_iterator RHSPI = RHS->qual_begin(),
4254                                          RHSPE = RHS->qual_end();
4255         RHSPI != RHSPE; RHSPI++) {
4256      if ((*RHSPI)->lookupProtocolNamed((*LHSPI)->getIdentifier())) {
4257        RHSImplementsProtocol = true;
4258        break;
4259      }
4260    }
4261    // FIXME: For better diagnostics, consider passing back the protocol name.
4262    if (!RHSImplementsProtocol)
4263      return false;
4264  }
4265  // The RHS implements all protocols listed on the LHS.
4266  return true;
4267}
4268
4269bool ASTContext::areComparableObjCPointerTypes(QualType LHS, QualType RHS) {
4270  // get the "pointed to" types
4271  const ObjCObjectPointerType *LHSOPT = LHS->getAs<ObjCObjectPointerType>();
4272  const ObjCObjectPointerType *RHSOPT = RHS->getAs<ObjCObjectPointerType>();
4273
4274  if (!LHSOPT || !RHSOPT)
4275    return false;
4276
4277  return canAssignObjCInterfaces(LHSOPT, RHSOPT) ||
4278         canAssignObjCInterfaces(RHSOPT, LHSOPT);
4279}
4280
4281/// typesAreCompatible - C99 6.7.3p9: For two qualified types to be compatible,
4282/// both shall have the identically qualified version of a compatible type.
4283/// C99 6.2.7p1: Two types have compatible types if their types are the
4284/// same. See 6.7.[2,3,5] for additional rules.
4285bool ASTContext::typesAreCompatible(QualType LHS, QualType RHS) {
4286  if (getLangOptions().CPlusPlus)
4287    return hasSameType(LHS, RHS);
4288
4289  return !mergeTypes(LHS, RHS).isNull();
4290}
4291
4292bool ASTContext::typesAreBlockPointerCompatible(QualType LHS, QualType RHS) {
4293  return !mergeTypes(LHS, RHS, true).isNull();
4294}
4295
4296QualType ASTContext::mergeFunctionTypes(QualType lhs, QualType rhs,
4297                                        bool OfBlockPointer) {
4298  const FunctionType *lbase = lhs->getAs<FunctionType>();
4299  const FunctionType *rbase = rhs->getAs<FunctionType>();
4300  const FunctionProtoType *lproto = dyn_cast<FunctionProtoType>(lbase);
4301  const FunctionProtoType *rproto = dyn_cast<FunctionProtoType>(rbase);
4302  bool allLTypes = true;
4303  bool allRTypes = true;
4304
4305  // Check return type
4306  QualType retType;
4307  if (OfBlockPointer)
4308    retType = mergeTypes(rbase->getResultType(), lbase->getResultType(), true);
4309  else
4310   retType = mergeTypes(lbase->getResultType(), rbase->getResultType());
4311  if (retType.isNull()) return QualType();
4312  if (getCanonicalType(retType) != getCanonicalType(lbase->getResultType()))
4313    allLTypes = false;
4314  if (getCanonicalType(retType) != getCanonicalType(rbase->getResultType()))
4315    allRTypes = false;
4316  // FIXME: double check this
4317  // FIXME: should we error if lbase->getRegParmAttr() != 0 &&
4318  //                           rbase->getRegParmAttr() != 0 &&
4319  //                           lbase->getRegParmAttr() != rbase->getRegParmAttr()?
4320  FunctionType::ExtInfo lbaseInfo = lbase->getExtInfo();
4321  FunctionType::ExtInfo rbaseInfo = rbase->getExtInfo();
4322  unsigned RegParm = lbaseInfo.getRegParm() == 0 ? rbaseInfo.getRegParm() :
4323      lbaseInfo.getRegParm();
4324  bool NoReturn = lbaseInfo.getNoReturn() || rbaseInfo.getNoReturn();
4325  if (NoReturn != lbaseInfo.getNoReturn() ||
4326      RegParm != lbaseInfo.getRegParm())
4327    allLTypes = false;
4328  if (NoReturn != rbaseInfo.getNoReturn() ||
4329      RegParm != rbaseInfo.getRegParm())
4330    allRTypes = false;
4331  CallingConv lcc = lbaseInfo.getCC();
4332  CallingConv rcc = rbaseInfo.getCC();
4333  // Compatible functions must have compatible calling conventions
4334  if (!isSameCallConv(lcc, rcc))
4335    return QualType();
4336
4337  if (lproto && rproto) { // two C99 style function prototypes
4338    assert(!lproto->hasExceptionSpec() && !rproto->hasExceptionSpec() &&
4339           "C++ shouldn't be here");
4340    unsigned lproto_nargs = lproto->getNumArgs();
4341    unsigned rproto_nargs = rproto->getNumArgs();
4342
4343    // Compatible functions must have the same number of arguments
4344    if (lproto_nargs != rproto_nargs)
4345      return QualType();
4346
4347    // Variadic and non-variadic functions aren't compatible
4348    if (lproto->isVariadic() != rproto->isVariadic())
4349      return QualType();
4350
4351    if (lproto->getTypeQuals() != rproto->getTypeQuals())
4352      return QualType();
4353
4354    // Check argument compatibility
4355    llvm::SmallVector<QualType, 10> types;
4356    for (unsigned i = 0; i < lproto_nargs; i++) {
4357      QualType largtype = lproto->getArgType(i).getUnqualifiedType();
4358      QualType rargtype = rproto->getArgType(i).getUnqualifiedType();
4359      QualType argtype = mergeTypes(largtype, rargtype, OfBlockPointer);
4360      if (argtype.isNull()) return QualType();
4361      types.push_back(argtype);
4362      if (getCanonicalType(argtype) != getCanonicalType(largtype))
4363        allLTypes = false;
4364      if (getCanonicalType(argtype) != getCanonicalType(rargtype))
4365        allRTypes = false;
4366    }
4367    if (allLTypes) return lhs;
4368    if (allRTypes) return rhs;
4369    return getFunctionType(retType, types.begin(), types.size(),
4370                           lproto->isVariadic(), lproto->getTypeQuals(),
4371                           false, false, 0, 0,
4372                           FunctionType::ExtInfo(NoReturn, RegParm, lcc));
4373  }
4374
4375  if (lproto) allRTypes = false;
4376  if (rproto) allLTypes = false;
4377
4378  const FunctionProtoType *proto = lproto ? lproto : rproto;
4379  if (proto) {
4380    assert(!proto->hasExceptionSpec() && "C++ shouldn't be here");
4381    if (proto->isVariadic()) return QualType();
4382    // Check that the types are compatible with the types that
4383    // would result from default argument promotions (C99 6.7.5.3p15).
4384    // The only types actually affected are promotable integer
4385    // types and floats, which would be passed as a different
4386    // type depending on whether the prototype is visible.
4387    unsigned proto_nargs = proto->getNumArgs();
4388    for (unsigned i = 0; i < proto_nargs; ++i) {
4389      QualType argTy = proto->getArgType(i);
4390
4391      // Look at the promotion type of enum types, since that is the type used
4392      // to pass enum values.
4393      if (const EnumType *Enum = argTy->getAs<EnumType>())
4394        argTy = Enum->getDecl()->getPromotionType();
4395
4396      if (argTy->isPromotableIntegerType() ||
4397          getCanonicalType(argTy).getUnqualifiedType() == FloatTy)
4398        return QualType();
4399    }
4400
4401    if (allLTypes) return lhs;
4402    if (allRTypes) return rhs;
4403    return getFunctionType(retType, proto->arg_type_begin(),
4404                           proto->getNumArgs(), proto->isVariadic(),
4405                           proto->getTypeQuals(),
4406                           false, false, 0, 0,
4407                           FunctionType::ExtInfo(NoReturn, RegParm, lcc));
4408  }
4409
4410  if (allLTypes) return lhs;
4411  if (allRTypes) return rhs;
4412  FunctionType::ExtInfo Info(NoReturn, RegParm, lcc);
4413  return getFunctionNoProtoType(retType, Info);
4414}
4415
4416QualType ASTContext::mergeTypes(QualType LHS, QualType RHS,
4417                                bool OfBlockPointer) {
4418  // C++ [expr]: If an expression initially has the type "reference to T", the
4419  // type is adjusted to "T" prior to any further analysis, the expression
4420  // designates the object or function denoted by the reference, and the
4421  // expression is an lvalue unless the reference is an rvalue reference and
4422  // the expression is a function call (possibly inside parentheses).
4423  assert(!LHS->getAs<ReferenceType>() && "LHS is a reference type?");
4424  assert(!RHS->getAs<ReferenceType>() && "RHS is a reference type?");
4425
4426  QualType LHSCan = getCanonicalType(LHS),
4427           RHSCan = getCanonicalType(RHS);
4428
4429  // If two types are identical, they are compatible.
4430  if (LHSCan == RHSCan)
4431    return LHS;
4432
4433  // If the qualifiers are different, the types aren't compatible... mostly.
4434  Qualifiers LQuals = LHSCan.getLocalQualifiers();
4435  Qualifiers RQuals = RHSCan.getLocalQualifiers();
4436  if (LQuals != RQuals) {
4437    // If any of these qualifiers are different, we have a type
4438    // mismatch.
4439    if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() ||
4440        LQuals.getAddressSpace() != RQuals.getAddressSpace())
4441      return QualType();
4442
4443    // Exactly one GC qualifier difference is allowed: __strong is
4444    // okay if the other type has no GC qualifier but is an Objective
4445    // C object pointer (i.e. implicitly strong by default).  We fix
4446    // this by pretending that the unqualified type was actually
4447    // qualified __strong.
4448    Qualifiers::GC GC_L = LQuals.getObjCGCAttr();
4449    Qualifiers::GC GC_R = RQuals.getObjCGCAttr();
4450    assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements");
4451
4452    if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak)
4453      return QualType();
4454
4455    if (GC_L == Qualifiers::Strong && RHSCan->isObjCObjectPointerType()) {
4456      return mergeTypes(LHS, getObjCGCQualType(RHS, Qualifiers::Strong));
4457    }
4458    if (GC_R == Qualifiers::Strong && LHSCan->isObjCObjectPointerType()) {
4459      return mergeTypes(getObjCGCQualType(LHS, Qualifiers::Strong), RHS);
4460    }
4461    return QualType();
4462  }
4463
4464  // Okay, qualifiers are equal.
4465
4466  Type::TypeClass LHSClass = LHSCan->getTypeClass();
4467  Type::TypeClass RHSClass = RHSCan->getTypeClass();
4468
4469  // We want to consider the two function types to be the same for these
4470  // comparisons, just force one to the other.
4471  if (LHSClass == Type::FunctionProto) LHSClass = Type::FunctionNoProto;
4472  if (RHSClass == Type::FunctionProto) RHSClass = Type::FunctionNoProto;
4473
4474  // Same as above for arrays
4475  if (LHSClass == Type::VariableArray || LHSClass == Type::IncompleteArray)
4476    LHSClass = Type::ConstantArray;
4477  if (RHSClass == Type::VariableArray || RHSClass == Type::IncompleteArray)
4478    RHSClass = Type::ConstantArray;
4479
4480  // Canonicalize ExtVector -> Vector.
4481  if (LHSClass == Type::ExtVector) LHSClass = Type::Vector;
4482  if (RHSClass == Type::ExtVector) RHSClass = Type::Vector;
4483
4484  // If the canonical type classes don't match.
4485  if (LHSClass != RHSClass) {
4486    // C99 6.7.2.2p4: Each enumerated type shall be compatible with char,
4487    // a signed integer type, or an unsigned integer type.
4488    // Compatibility is based on the underlying type, not the promotion
4489    // type.
4490    if (const EnumType* ETy = LHS->getAs<EnumType>()) {
4491      if (ETy->getDecl()->getIntegerType() == RHSCan.getUnqualifiedType())
4492        return RHS;
4493    }
4494    if (const EnumType* ETy = RHS->getAs<EnumType>()) {
4495      if (ETy->getDecl()->getIntegerType() == LHSCan.getUnqualifiedType())
4496        return LHS;
4497    }
4498
4499    return QualType();
4500  }
4501
4502  // The canonical type classes match.
4503  switch (LHSClass) {
4504#define TYPE(Class, Base)
4505#define ABSTRACT_TYPE(Class, Base)
4506#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
4507#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
4508#define DEPENDENT_TYPE(Class, Base) case Type::Class:
4509#include "clang/AST/TypeNodes.def"
4510    assert(false && "Non-canonical and dependent types shouldn't get here");
4511    return QualType();
4512
4513  case Type::LValueReference:
4514  case Type::RValueReference:
4515  case Type::MemberPointer:
4516    assert(false && "C++ should never be in mergeTypes");
4517    return QualType();
4518
4519  case Type::IncompleteArray:
4520  case Type::VariableArray:
4521  case Type::FunctionProto:
4522  case Type::ExtVector:
4523    assert(false && "Types are eliminated above");
4524    return QualType();
4525
4526  case Type::Pointer:
4527  {
4528    // Merge two pointer types, while trying to preserve typedef info
4529    QualType LHSPointee = LHS->getAs<PointerType>()->getPointeeType();
4530    QualType RHSPointee = RHS->getAs<PointerType>()->getPointeeType();
4531    QualType ResultType = mergeTypes(LHSPointee, RHSPointee);
4532    if (ResultType.isNull()) return QualType();
4533    if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
4534      return LHS;
4535    if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
4536      return RHS;
4537    return getPointerType(ResultType);
4538  }
4539  case Type::BlockPointer:
4540  {
4541    // Merge two block pointer types, while trying to preserve typedef info
4542    QualType LHSPointee = LHS->getAs<BlockPointerType>()->getPointeeType();
4543    QualType RHSPointee = RHS->getAs<BlockPointerType>()->getPointeeType();
4544    QualType ResultType = mergeTypes(LHSPointee, RHSPointee, OfBlockPointer);
4545    if (ResultType.isNull()) return QualType();
4546    if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
4547      return LHS;
4548    if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
4549      return RHS;
4550    return getBlockPointerType(ResultType);
4551  }
4552  case Type::ConstantArray:
4553  {
4554    const ConstantArrayType* LCAT = getAsConstantArrayType(LHS);
4555    const ConstantArrayType* RCAT = getAsConstantArrayType(RHS);
4556    if (LCAT && RCAT && RCAT->getSize() != LCAT->getSize())
4557      return QualType();
4558
4559    QualType LHSElem = getAsArrayType(LHS)->getElementType();
4560    QualType RHSElem = getAsArrayType(RHS)->getElementType();
4561    QualType ResultType = mergeTypes(LHSElem, RHSElem);
4562    if (ResultType.isNull()) return QualType();
4563    if (LCAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
4564      return LHS;
4565    if (RCAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
4566      return RHS;
4567    if (LCAT) return getConstantArrayType(ResultType, LCAT->getSize(),
4568                                          ArrayType::ArraySizeModifier(), 0);
4569    if (RCAT) return getConstantArrayType(ResultType, RCAT->getSize(),
4570                                          ArrayType::ArraySizeModifier(), 0);
4571    const VariableArrayType* LVAT = getAsVariableArrayType(LHS);
4572    const VariableArrayType* RVAT = getAsVariableArrayType(RHS);
4573    if (LVAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
4574      return LHS;
4575    if (RVAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
4576      return RHS;
4577    if (LVAT) {
4578      // FIXME: This isn't correct! But tricky to implement because
4579      // the array's size has to be the size of LHS, but the type
4580      // has to be different.
4581      return LHS;
4582    }
4583    if (RVAT) {
4584      // FIXME: This isn't correct! But tricky to implement because
4585      // the array's size has to be the size of RHS, but the type
4586      // has to be different.
4587      return RHS;
4588    }
4589    if (getCanonicalType(LHSElem) == getCanonicalType(ResultType)) return LHS;
4590    if (getCanonicalType(RHSElem) == getCanonicalType(ResultType)) return RHS;
4591    return getIncompleteArrayType(ResultType,
4592                                  ArrayType::ArraySizeModifier(), 0);
4593  }
4594  case Type::FunctionNoProto:
4595    return mergeFunctionTypes(LHS, RHS, OfBlockPointer);
4596  case Type::Record:
4597  case Type::Enum:
4598    return QualType();
4599  case Type::Builtin:
4600    // Only exactly equal builtin types are compatible, which is tested above.
4601    return QualType();
4602  case Type::Complex:
4603    // Distinct complex types are incompatible.
4604    return QualType();
4605  case Type::Vector:
4606    // FIXME: The merged type should be an ExtVector!
4607    if (areCompatVectorTypes(LHSCan->getAs<VectorType>(),
4608                             RHSCan->getAs<VectorType>()))
4609      return LHS;
4610    return QualType();
4611  case Type::ObjCInterface: {
4612    // Check if the interfaces are assignment compatible.
4613    // FIXME: This should be type compatibility, e.g. whether
4614    // "LHS x; RHS x;" at global scope is legal.
4615    const ObjCInterfaceType* LHSIface = LHS->getAs<ObjCInterfaceType>();
4616    const ObjCInterfaceType* RHSIface = RHS->getAs<ObjCInterfaceType>();
4617    if (LHSIface && RHSIface &&
4618        canAssignObjCInterfaces(LHSIface, RHSIface))
4619      return LHS;
4620
4621    return QualType();
4622  }
4623  case Type::ObjCObjectPointer: {
4624    if (OfBlockPointer) {
4625      if (canAssignObjCInterfacesInBlockPointer(
4626                                          LHS->getAs<ObjCObjectPointerType>(),
4627                                          RHS->getAs<ObjCObjectPointerType>()))
4628      return LHS;
4629      return QualType();
4630    }
4631    if (canAssignObjCInterfaces(LHS->getAs<ObjCObjectPointerType>(),
4632                                RHS->getAs<ObjCObjectPointerType>()))
4633      return LHS;
4634
4635    return QualType();
4636    }
4637  }
4638
4639  return QualType();
4640}
4641
4642//===----------------------------------------------------------------------===//
4643//                         Integer Predicates
4644//===----------------------------------------------------------------------===//
4645
4646unsigned ASTContext::getIntWidth(QualType T) {
4647  if (T->isBooleanType())
4648    return 1;
4649  if (EnumType *ET = dyn_cast<EnumType>(T))
4650    T = ET->getDecl()->getIntegerType();
4651  // For builtin types, just use the standard type sizing method
4652  return (unsigned)getTypeSize(T);
4653}
4654
4655QualType ASTContext::getCorrespondingUnsignedType(QualType T) {
4656  assert(T->isSignedIntegerType() && "Unexpected type");
4657
4658  // Turn <4 x signed int> -> <4 x unsigned int>
4659  if (const VectorType *VTy = T->getAs<VectorType>())
4660    return getVectorType(getCorrespondingUnsignedType(VTy->getElementType()),
4661             VTy->getNumElements(), VTy->isAltiVec(), VTy->isPixel());
4662
4663  // For enums, we return the unsigned version of the base type.
4664  if (const EnumType *ETy = T->getAs<EnumType>())
4665    T = ETy->getDecl()->getIntegerType();
4666
4667  const BuiltinType *BTy = T->getAs<BuiltinType>();
4668  assert(BTy && "Unexpected signed integer type");
4669  switch (BTy->getKind()) {
4670  case BuiltinType::Char_S:
4671  case BuiltinType::SChar:
4672    return UnsignedCharTy;
4673  case BuiltinType::Short:
4674    return UnsignedShortTy;
4675  case BuiltinType::Int:
4676    return UnsignedIntTy;
4677  case BuiltinType::Long:
4678    return UnsignedLongTy;
4679  case BuiltinType::LongLong:
4680    return UnsignedLongLongTy;
4681  case BuiltinType::Int128:
4682    return UnsignedInt128Ty;
4683  default:
4684    assert(0 && "Unexpected signed integer type");
4685    return QualType();
4686  }
4687}
4688
4689ExternalASTSource::~ExternalASTSource() { }
4690
4691void ExternalASTSource::PrintStats() { }
4692
4693
4694//===----------------------------------------------------------------------===//
4695//                          Builtin Type Computation
4696//===----------------------------------------------------------------------===//
4697
4698/// DecodeTypeFromStr - This decodes one type descriptor from Str, advancing the
4699/// pointer over the consumed characters.  This returns the resultant type.
4700static QualType DecodeTypeFromStr(const char *&Str, ASTContext &Context,
4701                                  ASTContext::GetBuiltinTypeError &Error,
4702                                  bool AllowTypeModifiers = true) {
4703  // Modifiers.
4704  int HowLong = 0;
4705  bool Signed = false, Unsigned = false;
4706
4707  // Read the modifiers first.
4708  bool Done = false;
4709  while (!Done) {
4710    switch (*Str++) {
4711    default: Done = true; --Str; break;
4712    case 'S':
4713      assert(!Unsigned && "Can't use both 'S' and 'U' modifiers!");
4714      assert(!Signed && "Can't use 'S' modifier multiple times!");
4715      Signed = true;
4716      break;
4717    case 'U':
4718      assert(!Signed && "Can't use both 'S' and 'U' modifiers!");
4719      assert(!Unsigned && "Can't use 'S' modifier multiple times!");
4720      Unsigned = true;
4721      break;
4722    case 'L':
4723      assert(HowLong <= 2 && "Can't have LLLL modifier");
4724      ++HowLong;
4725      break;
4726    }
4727  }
4728
4729  QualType Type;
4730
4731  // Read the base type.
4732  switch (*Str++) {
4733  default: assert(0 && "Unknown builtin type letter!");
4734  case 'v':
4735    assert(HowLong == 0 && !Signed && !Unsigned &&
4736           "Bad modifiers used with 'v'!");
4737    Type = Context.VoidTy;
4738    break;
4739  case 'f':
4740    assert(HowLong == 0 && !Signed && !Unsigned &&
4741           "Bad modifiers used with 'f'!");
4742    Type = Context.FloatTy;
4743    break;
4744  case 'd':
4745    assert(HowLong < 2 && !Signed && !Unsigned &&
4746           "Bad modifiers used with 'd'!");
4747    if (HowLong)
4748      Type = Context.LongDoubleTy;
4749    else
4750      Type = Context.DoubleTy;
4751    break;
4752  case 's':
4753    assert(HowLong == 0 && "Bad modifiers used with 's'!");
4754    if (Unsigned)
4755      Type = Context.UnsignedShortTy;
4756    else
4757      Type = Context.ShortTy;
4758    break;
4759  case 'i':
4760    if (HowLong == 3)
4761      Type = Unsigned ? Context.UnsignedInt128Ty : Context.Int128Ty;
4762    else if (HowLong == 2)
4763      Type = Unsigned ? Context.UnsignedLongLongTy : Context.LongLongTy;
4764    else if (HowLong == 1)
4765      Type = Unsigned ? Context.UnsignedLongTy : Context.LongTy;
4766    else
4767      Type = Unsigned ? Context.UnsignedIntTy : Context.IntTy;
4768    break;
4769  case 'c':
4770    assert(HowLong == 0 && "Bad modifiers used with 'c'!");
4771    if (Signed)
4772      Type = Context.SignedCharTy;
4773    else if (Unsigned)
4774      Type = Context.UnsignedCharTy;
4775    else
4776      Type = Context.CharTy;
4777    break;
4778  case 'b': // boolean
4779    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'b'!");
4780    Type = Context.BoolTy;
4781    break;
4782  case 'z':  // size_t.
4783    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'z'!");
4784    Type = Context.getSizeType();
4785    break;
4786  case 'F':
4787    Type = Context.getCFConstantStringType();
4788    break;
4789  case 'a':
4790    Type = Context.getBuiltinVaListType();
4791    assert(!Type.isNull() && "builtin va list type not initialized!");
4792    break;
4793  case 'A':
4794    // This is a "reference" to a va_list; however, what exactly
4795    // this means depends on how va_list is defined. There are two
4796    // different kinds of va_list: ones passed by value, and ones
4797    // passed by reference.  An example of a by-value va_list is
4798    // x86, where va_list is a char*. An example of by-ref va_list
4799    // is x86-64, where va_list is a __va_list_tag[1]. For x86,
4800    // we want this argument to be a char*&; for x86-64, we want
4801    // it to be a __va_list_tag*.
4802    Type = Context.getBuiltinVaListType();
4803    assert(!Type.isNull() && "builtin va list type not initialized!");
4804    if (Type->isArrayType()) {
4805      Type = Context.getArrayDecayedType(Type);
4806    } else {
4807      Type = Context.getLValueReferenceType(Type);
4808    }
4809    break;
4810  case 'V': {
4811    char *End;
4812    unsigned NumElements = strtoul(Str, &End, 10);
4813    assert(End != Str && "Missing vector size");
4814
4815    Str = End;
4816
4817    QualType ElementType = DecodeTypeFromStr(Str, Context, Error, false);
4818    // FIXME: Don't know what to do about AltiVec.
4819    Type = Context.getVectorType(ElementType, NumElements, false, false);
4820    break;
4821  }
4822  case 'X': {
4823    QualType ElementType = DecodeTypeFromStr(Str, Context, Error, false);
4824    Type = Context.getComplexType(ElementType);
4825    break;
4826  }
4827  case 'P':
4828    Type = Context.getFILEType();
4829    if (Type.isNull()) {
4830      Error = ASTContext::GE_Missing_stdio;
4831      return QualType();
4832    }
4833    break;
4834  case 'J':
4835    if (Signed)
4836      Type = Context.getsigjmp_bufType();
4837    else
4838      Type = Context.getjmp_bufType();
4839
4840    if (Type.isNull()) {
4841      Error = ASTContext::GE_Missing_setjmp;
4842      return QualType();
4843    }
4844    break;
4845  }
4846
4847  if (!AllowTypeModifiers)
4848    return Type;
4849
4850  Done = false;
4851  while (!Done) {
4852    switch (char c = *Str++) {
4853      default: Done = true; --Str; break;
4854      case '*':
4855      case '&':
4856        {
4857          // Both pointers and references can have their pointee types
4858          // qualified with an address space.
4859          char *End;
4860          unsigned AddrSpace = strtoul(Str, &End, 10);
4861          if (End != Str && AddrSpace != 0) {
4862            Type = Context.getAddrSpaceQualType(Type, AddrSpace);
4863            Str = End;
4864          }
4865        }
4866        if (c == '*')
4867          Type = Context.getPointerType(Type);
4868        else
4869          Type = Context.getLValueReferenceType(Type);
4870        break;
4871      // FIXME: There's no way to have a built-in with an rvalue ref arg.
4872      case 'C':
4873        Type = Type.withConst();
4874        break;
4875      case 'D':
4876        Type = Context.getVolatileType(Type);
4877        break;
4878    }
4879  }
4880
4881  return Type;
4882}
4883
4884/// GetBuiltinType - Return the type for the specified builtin.
4885QualType ASTContext::GetBuiltinType(unsigned id,
4886                                    GetBuiltinTypeError &Error) {
4887  const char *TypeStr = BuiltinInfo.GetTypeString(id);
4888
4889  llvm::SmallVector<QualType, 8> ArgTypes;
4890
4891  Error = GE_None;
4892  QualType ResType = DecodeTypeFromStr(TypeStr, *this, Error);
4893  if (Error != GE_None)
4894    return QualType();
4895  while (TypeStr[0] && TypeStr[0] != '.') {
4896    QualType Ty = DecodeTypeFromStr(TypeStr, *this, Error);
4897    if (Error != GE_None)
4898      return QualType();
4899
4900    // Do array -> pointer decay.  The builtin should use the decayed type.
4901    if (Ty->isArrayType())
4902      Ty = getArrayDecayedType(Ty);
4903
4904    ArgTypes.push_back(Ty);
4905  }
4906
4907  assert((TypeStr[0] != '.' || TypeStr[1] == 0) &&
4908         "'.' should only occur at end of builtin type list!");
4909
4910  // handle untyped/variadic arguments "T c99Style();" or "T cppStyle(...);".
4911  if (ArgTypes.size() == 0 && TypeStr[0] == '.')
4912    return getFunctionNoProtoType(ResType);
4913
4914  // FIXME: Should we create noreturn types?
4915  return getFunctionType(ResType, ArgTypes.data(), ArgTypes.size(),
4916                         TypeStr[0] == '.', 0, false, false, 0, 0,
4917                         FunctionType::ExtInfo());
4918}
4919
4920QualType
4921ASTContext::UsualArithmeticConversionsType(QualType lhs, QualType rhs) {
4922  // Perform the usual unary conversions. We do this early so that
4923  // integral promotions to "int" can allow us to exit early, in the
4924  // lhs == rhs check. Also, for conversion purposes, we ignore any
4925  // qualifiers.  For example, "const float" and "float" are
4926  // equivalent.
4927  if (lhs->isPromotableIntegerType())
4928    lhs = getPromotedIntegerType(lhs);
4929  else
4930    lhs = lhs.getUnqualifiedType();
4931  if (rhs->isPromotableIntegerType())
4932    rhs = getPromotedIntegerType(rhs);
4933  else
4934    rhs = rhs.getUnqualifiedType();
4935
4936  // If both types are identical, no conversion is needed.
4937  if (lhs == rhs)
4938    return lhs;
4939
4940  // If either side is a non-arithmetic type (e.g. a pointer), we are done.
4941  // The caller can deal with this (e.g. pointer + int).
4942  if (!lhs->isArithmeticType() || !rhs->isArithmeticType())
4943    return lhs;
4944
4945  // At this point, we have two different arithmetic types.
4946
4947  // Handle complex types first (C99 6.3.1.8p1).
4948  if (lhs->isComplexType() || rhs->isComplexType()) {
4949    // if we have an integer operand, the result is the complex type.
4950    if (rhs->isIntegerType() || rhs->isComplexIntegerType()) {
4951      // convert the rhs to the lhs complex type.
4952      return lhs;
4953    }
4954    if (lhs->isIntegerType() || lhs->isComplexIntegerType()) {
4955      // convert the lhs to the rhs complex type.
4956      return rhs;
4957    }
4958    // This handles complex/complex, complex/float, or float/complex.
4959    // When both operands are complex, the shorter operand is converted to the
4960    // type of the longer, and that is the type of the result. This corresponds
4961    // to what is done when combining two real floating-point operands.
4962    // The fun begins when size promotion occur across type domains.
4963    // From H&S 6.3.4: When one operand is complex and the other is a real
4964    // floating-point type, the less precise type is converted, within it's
4965    // real or complex domain, to the precision of the other type. For example,
4966    // when combining a "long double" with a "double _Complex", the
4967    // "double _Complex" is promoted to "long double _Complex".
4968    int result = getFloatingTypeOrder(lhs, rhs);
4969
4970    if (result > 0) { // The left side is bigger, convert rhs.
4971      rhs = getFloatingTypeOfSizeWithinDomain(lhs, rhs);
4972    } else if (result < 0) { // The right side is bigger, convert lhs.
4973      lhs = getFloatingTypeOfSizeWithinDomain(rhs, lhs);
4974    }
4975    // At this point, lhs and rhs have the same rank/size. Now, make sure the
4976    // domains match. This is a requirement for our implementation, C99
4977    // does not require this promotion.
4978    if (lhs != rhs) { // Domains don't match, we have complex/float mix.
4979      if (lhs->isRealFloatingType()) { // handle "double, _Complex double".
4980        return rhs;
4981      } else { // handle "_Complex double, double".
4982        return lhs;
4983      }
4984    }
4985    return lhs; // The domain/size match exactly.
4986  }
4987  // Now handle "real" floating types (i.e. float, double, long double).
4988  if (lhs->isRealFloatingType() || rhs->isRealFloatingType()) {
4989    // if we have an integer operand, the result is the real floating type.
4990    if (rhs->isIntegerType()) {
4991      // convert rhs to the lhs floating point type.
4992      return lhs;
4993    }
4994    if (rhs->isComplexIntegerType()) {
4995      // convert rhs to the complex floating point type.
4996      return getComplexType(lhs);
4997    }
4998    if (lhs->isIntegerType()) {
4999      // convert lhs to the rhs floating point type.
5000      return rhs;
5001    }
5002    if (lhs->isComplexIntegerType()) {
5003      // convert lhs to the complex floating point type.
5004      return getComplexType(rhs);
5005    }
5006    // We have two real floating types, float/complex combos were handled above.
5007    // Convert the smaller operand to the bigger result.
5008    int result = getFloatingTypeOrder(lhs, rhs);
5009    if (result > 0) // convert the rhs
5010      return lhs;
5011    assert(result < 0 && "illegal float comparison");
5012    return rhs;   // convert the lhs
5013  }
5014  if (lhs->isComplexIntegerType() || rhs->isComplexIntegerType()) {
5015    // Handle GCC complex int extension.
5016    const ComplexType *lhsComplexInt = lhs->getAsComplexIntegerType();
5017    const ComplexType *rhsComplexInt = rhs->getAsComplexIntegerType();
5018
5019    if (lhsComplexInt && rhsComplexInt) {
5020      if (getIntegerTypeOrder(lhsComplexInt->getElementType(),
5021                              rhsComplexInt->getElementType()) >= 0)
5022        return lhs; // convert the rhs
5023      return rhs;
5024    } else if (lhsComplexInt && rhs->isIntegerType()) {
5025      // convert the rhs to the lhs complex type.
5026      return lhs;
5027    } else if (rhsComplexInt && lhs->isIntegerType()) {
5028      // convert the lhs to the rhs complex type.
5029      return rhs;
5030    }
5031  }
5032  // Finally, we have two differing integer types.
5033  // The rules for this case are in C99 6.3.1.8
5034  int compare = getIntegerTypeOrder(lhs, rhs);
5035  bool lhsSigned = lhs->isSignedIntegerType(),
5036       rhsSigned = rhs->isSignedIntegerType();
5037  QualType destType;
5038  if (lhsSigned == rhsSigned) {
5039    // Same signedness; use the higher-ranked type
5040    destType = compare >= 0 ? lhs : rhs;
5041  } else if (compare != (lhsSigned ? 1 : -1)) {
5042    // The unsigned type has greater than or equal rank to the
5043    // signed type, so use the unsigned type
5044    destType = lhsSigned ? rhs : lhs;
5045  } else if (getIntWidth(lhs) != getIntWidth(rhs)) {
5046    // The two types are different widths; if we are here, that
5047    // means the signed type is larger than the unsigned type, so
5048    // use the signed type.
5049    destType = lhsSigned ? lhs : rhs;
5050  } else {
5051    // The signed type is higher-ranked than the unsigned type,
5052    // but isn't actually any bigger (like unsigned int and long
5053    // on most 32-bit systems).  Use the unsigned type corresponding
5054    // to the signed type.
5055    destType = getCorrespondingUnsignedType(lhsSigned ? lhs : rhs);
5056  }
5057  return destType;
5058}
5059