ASTContext.cpp revision 444be7366d0a1e172c0290a1ea54c1cb16b5947c
1//===--- ASTContext.cpp - Context to hold long-lived AST nodes ------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements the ASTContext interface.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/AST/ASTContext.h"
15#include "clang/AST/DeclCXX.h"
16#include "clang/AST/DeclObjC.h"
17#include "clang/AST/DeclTemplate.h"
18#include "clang/AST/TypeLoc.h"
19#include "clang/AST/Expr.h"
20#include "clang/AST/ExternalASTSource.h"
21#include "clang/AST/RecordLayout.h"
22#include "clang/Basic/Builtins.h"
23#include "clang/Basic/SourceManager.h"
24#include "clang/Basic/TargetInfo.h"
25#include "llvm/ADT/SmallString.h"
26#include "llvm/ADT/StringExtras.h"
27#include "llvm/Support/MathExtras.h"
28#include "llvm/Support/raw_ostream.h"
29#include "RecordLayoutBuilder.h"
30
31using namespace clang;
32
33enum FloatingRank {
34  FloatRank, DoubleRank, LongDoubleRank
35};
36
37ASTContext::ASTContext(const LangOptions& LOpts, SourceManager &SM,
38                       const TargetInfo &t,
39                       IdentifierTable &idents, SelectorTable &sels,
40                       Builtin::Context &builtins,
41                       bool FreeMem, unsigned size_reserve) :
42  GlobalNestedNameSpecifier(0), CFConstantStringTypeDecl(0),
43  ObjCFastEnumerationStateTypeDecl(0), FILEDecl(0), jmp_bufDecl(0),
44  sigjmp_bufDecl(0), BlockDescriptorType(0), BlockDescriptorExtendedType(0),
45  SourceMgr(SM), LangOpts(LOpts),
46  LoadedExternalComments(false), FreeMemory(FreeMem), Target(t),
47  Idents(idents), Selectors(sels),
48  BuiltinInfo(builtins), ExternalSource(0), PrintingPolicy(LOpts) {
49  ObjCIdRedefinitionType = QualType();
50  ObjCClassRedefinitionType = QualType();
51  if (size_reserve > 0) Types.reserve(size_reserve);
52  TUDecl = TranslationUnitDecl::Create(*this);
53  InitBuiltinTypes();
54}
55
56ASTContext::~ASTContext() {
57  // Deallocate all the types.
58  while (!Types.empty()) {
59    Types.back()->Destroy(*this);
60    Types.pop_back();
61  }
62
63  {
64    llvm::FoldingSet<ExtQuals>::iterator
65      I = ExtQualNodes.begin(), E = ExtQualNodes.end();
66    while (I != E)
67      Deallocate(&*I++);
68  }
69
70  {
71    llvm::DenseMap<const RecordDecl*, const ASTRecordLayout*>::iterator
72      I = ASTRecordLayouts.begin(), E = ASTRecordLayouts.end();
73    while (I != E) {
74      ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second);
75      delete R;
76    }
77  }
78
79  {
80    llvm::DenseMap<const ObjCContainerDecl*, const ASTRecordLayout*>::iterator
81      I = ObjCLayouts.begin(), E = ObjCLayouts.end();
82    while (I != E) {
83      ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second);
84      delete R;
85    }
86  }
87
88  // Destroy nested-name-specifiers.
89  for (llvm::FoldingSet<NestedNameSpecifier>::iterator
90         NNS = NestedNameSpecifiers.begin(),
91         NNSEnd = NestedNameSpecifiers.end();
92       NNS != NNSEnd;
93       /* Increment in loop */)
94    (*NNS++).Destroy(*this);
95
96  if (GlobalNestedNameSpecifier)
97    GlobalNestedNameSpecifier->Destroy(*this);
98
99  TUDecl->Destroy(*this);
100}
101
102void
103ASTContext::setExternalSource(llvm::OwningPtr<ExternalASTSource> &Source) {
104  ExternalSource.reset(Source.take());
105}
106
107void ASTContext::PrintStats() const {
108  fprintf(stderr, "*** AST Context Stats:\n");
109  fprintf(stderr, "  %d types total.\n", (int)Types.size());
110
111  unsigned counts[] = {
112#define TYPE(Name, Parent) 0,
113#define ABSTRACT_TYPE(Name, Parent)
114#include "clang/AST/TypeNodes.def"
115    0 // Extra
116  };
117
118  for (unsigned i = 0, e = Types.size(); i != e; ++i) {
119    Type *T = Types[i];
120    counts[(unsigned)T->getTypeClass()]++;
121  }
122
123  unsigned Idx = 0;
124  unsigned TotalBytes = 0;
125#define TYPE(Name, Parent)                                              \
126  if (counts[Idx])                                                      \
127    fprintf(stderr, "    %d %s types\n", (int)counts[Idx], #Name);      \
128  TotalBytes += counts[Idx] * sizeof(Name##Type);                       \
129  ++Idx;
130#define ABSTRACT_TYPE(Name, Parent)
131#include "clang/AST/TypeNodes.def"
132
133  fprintf(stderr, "Total bytes = %d\n", int(TotalBytes));
134
135  if (ExternalSource.get()) {
136    fprintf(stderr, "\n");
137    ExternalSource->PrintStats();
138  }
139}
140
141
142void ASTContext::InitBuiltinType(CanQualType &R, BuiltinType::Kind K) {
143  BuiltinType *Ty = new (*this, TypeAlignment) BuiltinType(K);
144  R = CanQualType::CreateUnsafe(QualType(Ty, 0));
145  Types.push_back(Ty);
146}
147
148void ASTContext::InitBuiltinTypes() {
149  assert(VoidTy.isNull() && "Context reinitialized?");
150
151  // C99 6.2.5p19.
152  InitBuiltinType(VoidTy,              BuiltinType::Void);
153
154  // C99 6.2.5p2.
155  InitBuiltinType(BoolTy,              BuiltinType::Bool);
156  // C99 6.2.5p3.
157  if (LangOpts.CharIsSigned)
158    InitBuiltinType(CharTy,            BuiltinType::Char_S);
159  else
160    InitBuiltinType(CharTy,            BuiltinType::Char_U);
161  // C99 6.2.5p4.
162  InitBuiltinType(SignedCharTy,        BuiltinType::SChar);
163  InitBuiltinType(ShortTy,             BuiltinType::Short);
164  InitBuiltinType(IntTy,               BuiltinType::Int);
165  InitBuiltinType(LongTy,              BuiltinType::Long);
166  InitBuiltinType(LongLongTy,          BuiltinType::LongLong);
167
168  // C99 6.2.5p6.
169  InitBuiltinType(UnsignedCharTy,      BuiltinType::UChar);
170  InitBuiltinType(UnsignedShortTy,     BuiltinType::UShort);
171  InitBuiltinType(UnsignedIntTy,       BuiltinType::UInt);
172  InitBuiltinType(UnsignedLongTy,      BuiltinType::ULong);
173  InitBuiltinType(UnsignedLongLongTy,  BuiltinType::ULongLong);
174
175  // C99 6.2.5p10.
176  InitBuiltinType(FloatTy,             BuiltinType::Float);
177  InitBuiltinType(DoubleTy,            BuiltinType::Double);
178  InitBuiltinType(LongDoubleTy,        BuiltinType::LongDouble);
179
180  // GNU extension, 128-bit integers.
181  InitBuiltinType(Int128Ty,            BuiltinType::Int128);
182  InitBuiltinType(UnsignedInt128Ty,    BuiltinType::UInt128);
183
184  if (LangOpts.CPlusPlus) // C++ 3.9.1p5
185    InitBuiltinType(WCharTy,           BuiltinType::WChar);
186  else // C99
187    WCharTy = getFromTargetType(Target.getWCharType());
188
189  if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
190    InitBuiltinType(Char16Ty,           BuiltinType::Char16);
191  else // C99
192    Char16Ty = getFromTargetType(Target.getChar16Type());
193
194  if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
195    InitBuiltinType(Char32Ty,           BuiltinType::Char32);
196  else // C99
197    Char32Ty = getFromTargetType(Target.getChar32Type());
198
199  // Placeholder type for functions.
200  InitBuiltinType(OverloadTy,          BuiltinType::Overload);
201
202  // Placeholder type for type-dependent expressions whose type is
203  // completely unknown. No code should ever check a type against
204  // DependentTy and users should never see it; however, it is here to
205  // help diagnose failures to properly check for type-dependent
206  // expressions.
207  InitBuiltinType(DependentTy,         BuiltinType::Dependent);
208
209  // Placeholder type for C++0x auto declarations whose real type has
210  // not yet been deduced.
211  InitBuiltinType(UndeducedAutoTy, BuiltinType::UndeducedAuto);
212
213  // C99 6.2.5p11.
214  FloatComplexTy      = getComplexType(FloatTy);
215  DoubleComplexTy     = getComplexType(DoubleTy);
216  LongDoubleComplexTy = getComplexType(LongDoubleTy);
217
218  BuiltinVaListType = QualType();
219
220  // "Builtin" typedefs set by Sema::ActOnTranslationUnitScope().
221  ObjCIdTypedefType = QualType();
222  ObjCClassTypedefType = QualType();
223
224  // Builtin types for 'id' and 'Class'.
225  InitBuiltinType(ObjCBuiltinIdTy, BuiltinType::ObjCId);
226  InitBuiltinType(ObjCBuiltinClassTy, BuiltinType::ObjCClass);
227
228  ObjCConstantStringType = QualType();
229
230  // void * type
231  VoidPtrTy = getPointerType(VoidTy);
232
233  // nullptr type (C++0x 2.14.7)
234  InitBuiltinType(NullPtrTy,           BuiltinType::NullPtr);
235}
236
237MemberSpecializationInfo *
238ASTContext::getInstantiatedFromStaticDataMember(const VarDecl *Var) {
239  assert(Var->isStaticDataMember() && "Not a static data member");
240  llvm::DenseMap<const VarDecl *, MemberSpecializationInfo *>::iterator Pos
241    = InstantiatedFromStaticDataMember.find(Var);
242  if (Pos == InstantiatedFromStaticDataMember.end())
243    return 0;
244
245  return Pos->second;
246}
247
248void
249ASTContext::setInstantiatedFromStaticDataMember(VarDecl *Inst, VarDecl *Tmpl,
250                                                TemplateSpecializationKind TSK) {
251  assert(Inst->isStaticDataMember() && "Not a static data member");
252  assert(Tmpl->isStaticDataMember() && "Not a static data member");
253  assert(!InstantiatedFromStaticDataMember[Inst] &&
254         "Already noted what static data member was instantiated from");
255  InstantiatedFromStaticDataMember[Inst]
256    = new (*this) MemberSpecializationInfo(Tmpl, TSK);
257}
258
259UnresolvedUsingDecl *
260ASTContext::getInstantiatedFromUnresolvedUsingDecl(UsingDecl *UUD) {
261  llvm::DenseMap<UsingDecl *, UnresolvedUsingDecl *>::const_iterator Pos
262    = InstantiatedFromUnresolvedUsingDecl.find(UUD);
263  if (Pos == InstantiatedFromUnresolvedUsingDecl.end())
264    return 0;
265
266  return Pos->second;
267}
268
269void
270ASTContext::setInstantiatedFromUnresolvedUsingDecl(UsingDecl *UD,
271                                                   UnresolvedUsingDecl *UUD) {
272  assert(!InstantiatedFromUnresolvedUsingDecl[UD] &&
273         "Already noted what using decl what instantiated from");
274  InstantiatedFromUnresolvedUsingDecl[UD] = UUD;
275}
276
277FieldDecl *ASTContext::getInstantiatedFromUnnamedFieldDecl(FieldDecl *Field) {
278  llvm::DenseMap<FieldDecl *, FieldDecl *>::iterator Pos
279    = InstantiatedFromUnnamedFieldDecl.find(Field);
280  if (Pos == InstantiatedFromUnnamedFieldDecl.end())
281    return 0;
282
283  return Pos->second;
284}
285
286void ASTContext::setInstantiatedFromUnnamedFieldDecl(FieldDecl *Inst,
287                                                     FieldDecl *Tmpl) {
288  assert(!Inst->getDeclName() && "Instantiated field decl is not unnamed");
289  assert(!Tmpl->getDeclName() && "Template field decl is not unnamed");
290  assert(!InstantiatedFromUnnamedFieldDecl[Inst] &&
291         "Already noted what unnamed field was instantiated from");
292
293  InstantiatedFromUnnamedFieldDecl[Inst] = Tmpl;
294}
295
296namespace {
297  class BeforeInTranslationUnit
298    : std::binary_function<SourceRange, SourceRange, bool> {
299    SourceManager *SourceMgr;
300
301  public:
302    explicit BeforeInTranslationUnit(SourceManager *SM) : SourceMgr(SM) { }
303
304    bool operator()(SourceRange X, SourceRange Y) {
305      return SourceMgr->isBeforeInTranslationUnit(X.getBegin(), Y.getBegin());
306    }
307  };
308}
309
310/// \brief Determine whether the given comment is a Doxygen-style comment.
311///
312/// \param Start the start of the comment text.
313///
314/// \param End the end of the comment text.
315///
316/// \param Member whether we want to check whether this is a member comment
317/// (which requires a < after the Doxygen-comment delimiter). Otherwise,
318/// we only return true when we find a non-member comment.
319static bool
320isDoxygenComment(SourceManager &SourceMgr, SourceRange Comment,
321                 bool Member = false) {
322  const char *BufferStart
323    = SourceMgr.getBufferData(SourceMgr.getFileID(Comment.getBegin())).first;
324  const char *Start = BufferStart + SourceMgr.getFileOffset(Comment.getBegin());
325  const char* End = BufferStart + SourceMgr.getFileOffset(Comment.getEnd());
326
327  if (End - Start < 4)
328    return false;
329
330  assert(Start[0] == '/' && "Not a comment?");
331  if (Start[1] == '*' && !(Start[2] == '!' || Start[2] == '*'))
332    return false;
333  if (Start[1] == '/' && !(Start[2] == '!' || Start[2] == '/'))
334    return false;
335
336  return (Start[3] == '<') == Member;
337}
338
339/// \brief Retrieve the comment associated with the given declaration, if
340/// it has one.
341const char *ASTContext::getCommentForDecl(const Decl *D) {
342  if (!D)
343    return 0;
344
345  // Check whether we have cached a comment string for this declaration
346  // already.
347  llvm::DenseMap<const Decl *, std::string>::iterator Pos
348    = DeclComments.find(D);
349  if (Pos != DeclComments.end())
350    return Pos->second.c_str();
351
352  // If we have an external AST source and have not yet loaded comments from
353  // that source, do so now.
354  if (ExternalSource && !LoadedExternalComments) {
355    std::vector<SourceRange> LoadedComments;
356    ExternalSource->ReadComments(LoadedComments);
357
358    if (!LoadedComments.empty())
359      Comments.insert(Comments.begin(), LoadedComments.begin(),
360                      LoadedComments.end());
361
362    LoadedExternalComments = true;
363  }
364
365  // If there are no comments anywhere, we won't find anything.
366  if (Comments.empty())
367    return 0;
368
369  // If the declaration doesn't map directly to a location in a file, we
370  // can't find the comment.
371  SourceLocation DeclStartLoc = D->getLocStart();
372  if (DeclStartLoc.isInvalid() || !DeclStartLoc.isFileID())
373    return 0;
374
375  // Find the comment that occurs just before this declaration.
376  std::vector<SourceRange>::iterator LastComment
377    = std::lower_bound(Comments.begin(), Comments.end(),
378                       SourceRange(DeclStartLoc),
379                       BeforeInTranslationUnit(&SourceMgr));
380
381  // Decompose the location for the start of the declaration and find the
382  // beginning of the file buffer.
383  std::pair<FileID, unsigned> DeclStartDecomp
384    = SourceMgr.getDecomposedLoc(DeclStartLoc);
385  const char *FileBufferStart
386    = SourceMgr.getBufferData(DeclStartDecomp.first).first;
387
388  // First check whether we have a comment for a member.
389  if (LastComment != Comments.end() &&
390      !isa<TagDecl>(D) && !isa<NamespaceDecl>(D) &&
391      isDoxygenComment(SourceMgr, *LastComment, true)) {
392    std::pair<FileID, unsigned> LastCommentEndDecomp
393      = SourceMgr.getDecomposedLoc(LastComment->getEnd());
394    if (DeclStartDecomp.first == LastCommentEndDecomp.first &&
395        SourceMgr.getLineNumber(DeclStartDecomp.first, DeclStartDecomp.second)
396          == SourceMgr.getLineNumber(LastCommentEndDecomp.first,
397                                     LastCommentEndDecomp.second)) {
398      // The Doxygen member comment comes after the declaration starts and
399      // is on the same line and in the same file as the declaration. This
400      // is the comment we want.
401      std::string &Result = DeclComments[D];
402      Result.append(FileBufferStart +
403                      SourceMgr.getFileOffset(LastComment->getBegin()),
404                    FileBufferStart + LastCommentEndDecomp.second + 1);
405      return Result.c_str();
406    }
407  }
408
409  if (LastComment == Comments.begin())
410    return 0;
411  --LastComment;
412
413  // Decompose the end of the comment.
414  std::pair<FileID, unsigned> LastCommentEndDecomp
415    = SourceMgr.getDecomposedLoc(LastComment->getEnd());
416
417  // If the comment and the declaration aren't in the same file, then they
418  // aren't related.
419  if (DeclStartDecomp.first != LastCommentEndDecomp.first)
420    return 0;
421
422  // Check that we actually have a Doxygen comment.
423  if (!isDoxygenComment(SourceMgr, *LastComment))
424    return 0;
425
426  // Compute the starting line for the declaration and for the end of the
427  // comment (this is expensive).
428  unsigned DeclStartLine
429    = SourceMgr.getLineNumber(DeclStartDecomp.first, DeclStartDecomp.second);
430  unsigned CommentEndLine
431    = SourceMgr.getLineNumber(LastCommentEndDecomp.first,
432                              LastCommentEndDecomp.second);
433
434  // If the comment does not end on the line prior to the declaration, then
435  // the comment is not associated with the declaration at all.
436  if (CommentEndLine + 1 != DeclStartLine)
437    return 0;
438
439  // We have a comment, but there may be more comments on the previous lines.
440  // Keep looking so long as the comments are still Doxygen comments and are
441  // still adjacent.
442  unsigned ExpectedLine
443    = SourceMgr.getSpellingLineNumber(LastComment->getBegin()) - 1;
444  std::vector<SourceRange>::iterator FirstComment = LastComment;
445  while (FirstComment != Comments.begin()) {
446    // Look at the previous comment
447    --FirstComment;
448    std::pair<FileID, unsigned> Decomp
449      = SourceMgr.getDecomposedLoc(FirstComment->getEnd());
450
451    // If this previous comment is in a different file, we're done.
452    if (Decomp.first != DeclStartDecomp.first) {
453      ++FirstComment;
454      break;
455    }
456
457    // If this comment is not a Doxygen comment, we're done.
458    if (!isDoxygenComment(SourceMgr, *FirstComment)) {
459      ++FirstComment;
460      break;
461    }
462
463    // If the line number is not what we expected, we're done.
464    unsigned Line = SourceMgr.getLineNumber(Decomp.first, Decomp.second);
465    if (Line != ExpectedLine) {
466      ++FirstComment;
467      break;
468    }
469
470    // Set the next expected line number.
471    ExpectedLine
472      = SourceMgr.getSpellingLineNumber(FirstComment->getBegin()) - 1;
473  }
474
475  // The iterator range [FirstComment, LastComment] contains all of the
476  // BCPL comments that, together, are associated with this declaration.
477  // Form a single comment block string for this declaration that concatenates
478  // all of these comments.
479  std::string &Result = DeclComments[D];
480  while (FirstComment != LastComment) {
481    std::pair<FileID, unsigned> DecompStart
482      = SourceMgr.getDecomposedLoc(FirstComment->getBegin());
483    std::pair<FileID, unsigned> DecompEnd
484      = SourceMgr.getDecomposedLoc(FirstComment->getEnd());
485    Result.append(FileBufferStart + DecompStart.second,
486                  FileBufferStart + DecompEnd.second + 1);
487    ++FirstComment;
488  }
489
490  // Append the last comment line.
491  Result.append(FileBufferStart +
492                  SourceMgr.getFileOffset(LastComment->getBegin()),
493                FileBufferStart + LastCommentEndDecomp.second + 1);
494  return Result.c_str();
495}
496
497//===----------------------------------------------------------------------===//
498//                         Type Sizing and Analysis
499//===----------------------------------------------------------------------===//
500
501/// getFloatTypeSemantics - Return the APFloat 'semantics' for the specified
502/// scalar floating point type.
503const llvm::fltSemantics &ASTContext::getFloatTypeSemantics(QualType T) const {
504  const BuiltinType *BT = T->getAs<BuiltinType>();
505  assert(BT && "Not a floating point type!");
506  switch (BT->getKind()) {
507  default: assert(0 && "Not a floating point type!");
508  case BuiltinType::Float:      return Target.getFloatFormat();
509  case BuiltinType::Double:     return Target.getDoubleFormat();
510  case BuiltinType::LongDouble: return Target.getLongDoubleFormat();
511  }
512}
513
514/// getDeclAlignInBytes - Return a conservative estimate of the alignment of the
515/// specified decl.  Note that bitfields do not have a valid alignment, so
516/// this method will assert on them.
517unsigned ASTContext::getDeclAlignInBytes(const Decl *D) {
518  unsigned Align = Target.getCharWidth();
519
520  if (const AlignedAttr* AA = D->getAttr<AlignedAttr>())
521    Align = std::max(Align, AA->getAlignment());
522
523  if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
524    QualType T = VD->getType();
525    if (const ReferenceType* RT = T->getAs<ReferenceType>()) {
526      unsigned AS = RT->getPointeeType().getAddressSpace();
527      Align = Target.getPointerAlign(AS);
528    } else if (!T->isIncompleteType() && !T->isFunctionType()) {
529      // Incomplete or function types default to 1.
530      while (isa<VariableArrayType>(T) || isa<IncompleteArrayType>(T))
531        T = cast<ArrayType>(T)->getElementType();
532
533      Align = std::max(Align, getPreferredTypeAlign(T.getTypePtr()));
534    }
535  }
536
537  return Align / Target.getCharWidth();
538}
539
540/// getTypeSize - Return the size of the specified type, in bits.  This method
541/// does not work on incomplete types.
542///
543/// FIXME: Pointers into different addr spaces could have different sizes and
544/// alignment requirements: getPointerInfo should take an AddrSpace, this
545/// should take a QualType, &c.
546std::pair<uint64_t, unsigned>
547ASTContext::getTypeInfo(const Type *T) {
548  uint64_t Width=0;
549  unsigned Align=8;
550  switch (T->getTypeClass()) {
551#define TYPE(Class, Base)
552#define ABSTRACT_TYPE(Class, Base)
553#define NON_CANONICAL_TYPE(Class, Base)
554#define DEPENDENT_TYPE(Class, Base) case Type::Class:
555#include "clang/AST/TypeNodes.def"
556    assert(false && "Should not see dependent types");
557    break;
558
559  case Type::FunctionNoProto:
560  case Type::FunctionProto:
561    // GCC extension: alignof(function) = 32 bits
562    Width = 0;
563    Align = 32;
564    break;
565
566  case Type::IncompleteArray:
567  case Type::VariableArray:
568    Width = 0;
569    Align = getTypeAlign(cast<ArrayType>(T)->getElementType());
570    break;
571
572  case Type::ConstantArray: {
573    const ConstantArrayType *CAT = cast<ConstantArrayType>(T);
574
575    std::pair<uint64_t, unsigned> EltInfo = getTypeInfo(CAT->getElementType());
576    Width = EltInfo.first*CAT->getSize().getZExtValue();
577    Align = EltInfo.second;
578    break;
579  }
580  case Type::ExtVector:
581  case Type::Vector: {
582    const VectorType *VT = cast<VectorType>(T);
583    std::pair<uint64_t, unsigned> EltInfo = getTypeInfo(VT->getElementType());
584    Width = EltInfo.first*VT->getNumElements();
585    Align = Width;
586    // If the alignment is not a power of 2, round up to the next power of 2.
587    // This happens for non-power-of-2 length vectors.
588    if (VT->getNumElements() & (VT->getNumElements()-1)) {
589      Align = llvm::NextPowerOf2(Align);
590      Width = llvm::RoundUpToAlignment(Width, Align);
591    }
592    break;
593  }
594
595  case Type::Builtin:
596    switch (cast<BuiltinType>(T)->getKind()) {
597    default: assert(0 && "Unknown builtin type!");
598    case BuiltinType::Void:
599      // GCC extension: alignof(void) = 8 bits.
600      Width = 0;
601      Align = 8;
602      break;
603
604    case BuiltinType::Bool:
605      Width = Target.getBoolWidth();
606      Align = Target.getBoolAlign();
607      break;
608    case BuiltinType::Char_S:
609    case BuiltinType::Char_U:
610    case BuiltinType::UChar:
611    case BuiltinType::SChar:
612      Width = Target.getCharWidth();
613      Align = Target.getCharAlign();
614      break;
615    case BuiltinType::WChar:
616      Width = Target.getWCharWidth();
617      Align = Target.getWCharAlign();
618      break;
619    case BuiltinType::Char16:
620      Width = Target.getChar16Width();
621      Align = Target.getChar16Align();
622      break;
623    case BuiltinType::Char32:
624      Width = Target.getChar32Width();
625      Align = Target.getChar32Align();
626      break;
627    case BuiltinType::UShort:
628    case BuiltinType::Short:
629      Width = Target.getShortWidth();
630      Align = Target.getShortAlign();
631      break;
632    case BuiltinType::UInt:
633    case BuiltinType::Int:
634      Width = Target.getIntWidth();
635      Align = Target.getIntAlign();
636      break;
637    case BuiltinType::ULong:
638    case BuiltinType::Long:
639      Width = Target.getLongWidth();
640      Align = Target.getLongAlign();
641      break;
642    case BuiltinType::ULongLong:
643    case BuiltinType::LongLong:
644      Width = Target.getLongLongWidth();
645      Align = Target.getLongLongAlign();
646      break;
647    case BuiltinType::Int128:
648    case BuiltinType::UInt128:
649      Width = 128;
650      Align = 128; // int128_t is 128-bit aligned on all targets.
651      break;
652    case BuiltinType::Float:
653      Width = Target.getFloatWidth();
654      Align = Target.getFloatAlign();
655      break;
656    case BuiltinType::Double:
657      Width = Target.getDoubleWidth();
658      Align = Target.getDoubleAlign();
659      break;
660    case BuiltinType::LongDouble:
661      Width = Target.getLongDoubleWidth();
662      Align = Target.getLongDoubleAlign();
663      break;
664    case BuiltinType::NullPtr:
665      Width = Target.getPointerWidth(0); // C++ 3.9.1p11: sizeof(nullptr_t)
666      Align = Target.getPointerAlign(0); //   == sizeof(void*)
667      break;
668    }
669    break;
670  case Type::FixedWidthInt:
671    // FIXME: This isn't precisely correct; the width/alignment should depend
672    // on the available types for the target
673    Width = cast<FixedWidthIntType>(T)->getWidth();
674    Width = std::max(llvm::NextPowerOf2(Width - 1), (uint64_t)8);
675    Align = Width;
676    break;
677  case Type::ObjCObjectPointer:
678    Width = Target.getPointerWidth(0);
679    Align = Target.getPointerAlign(0);
680    break;
681  case Type::BlockPointer: {
682    unsigned AS = cast<BlockPointerType>(T)->getPointeeType().getAddressSpace();
683    Width = Target.getPointerWidth(AS);
684    Align = Target.getPointerAlign(AS);
685    break;
686  }
687  case Type::Pointer: {
688    unsigned AS = cast<PointerType>(T)->getPointeeType().getAddressSpace();
689    Width = Target.getPointerWidth(AS);
690    Align = Target.getPointerAlign(AS);
691    break;
692  }
693  case Type::LValueReference:
694  case Type::RValueReference:
695    // "When applied to a reference or a reference type, the result is the size
696    // of the referenced type." C++98 5.3.3p2: expr.sizeof.
697    // FIXME: This is wrong for struct layout: a reference in a struct has
698    // pointer size.
699    return getTypeInfo(cast<ReferenceType>(T)->getPointeeType());
700  case Type::MemberPointer: {
701    // FIXME: This is ABI dependent. We use the Itanium C++ ABI.
702    // http://www.codesourcery.com/public/cxx-abi/abi.html#member-pointers
703    // If we ever want to support other ABIs this needs to be abstracted.
704
705    QualType Pointee = cast<MemberPointerType>(T)->getPointeeType();
706    std::pair<uint64_t, unsigned> PtrDiffInfo =
707      getTypeInfo(getPointerDiffType());
708    Width = PtrDiffInfo.first;
709    if (Pointee->isFunctionType())
710      Width *= 2;
711    Align = PtrDiffInfo.second;
712    break;
713  }
714  case Type::Complex: {
715    // Complex types have the same alignment as their elements, but twice the
716    // size.
717    std::pair<uint64_t, unsigned> EltInfo =
718      getTypeInfo(cast<ComplexType>(T)->getElementType());
719    Width = EltInfo.first*2;
720    Align = EltInfo.second;
721    break;
722  }
723  case Type::ObjCInterface: {
724    const ObjCInterfaceType *ObjCI = cast<ObjCInterfaceType>(T);
725    const ASTRecordLayout &Layout = getASTObjCInterfaceLayout(ObjCI->getDecl());
726    Width = Layout.getSize();
727    Align = Layout.getAlignment();
728    break;
729  }
730  case Type::Record:
731  case Type::Enum: {
732    const TagType *TT = cast<TagType>(T);
733
734    if (TT->getDecl()->isInvalidDecl()) {
735      Width = 1;
736      Align = 1;
737      break;
738    }
739
740    if (const EnumType *ET = dyn_cast<EnumType>(TT))
741      return getTypeInfo(ET->getDecl()->getIntegerType());
742
743    const RecordType *RT = cast<RecordType>(TT);
744    const ASTRecordLayout &Layout = getASTRecordLayout(RT->getDecl());
745    Width = Layout.getSize();
746    Align = Layout.getAlignment();
747    break;
748  }
749
750  case Type::SubstTemplateTypeParm:
751    return getTypeInfo(cast<SubstTemplateTypeParmType>(T)->
752                       getReplacementType().getTypePtr());
753
754  case Type::Elaborated:
755    return getTypeInfo(cast<ElaboratedType>(T)->getUnderlyingType()
756                         .getTypePtr());
757
758  case Type::Typedef: {
759    const TypedefDecl *Typedef = cast<TypedefType>(T)->getDecl();
760    if (const AlignedAttr *Aligned = Typedef->getAttr<AlignedAttr>()) {
761      Align = Aligned->getAlignment();
762      Width = getTypeSize(Typedef->getUnderlyingType().getTypePtr());
763    } else
764      return getTypeInfo(Typedef->getUnderlyingType().getTypePtr());
765    break;
766  }
767
768  case Type::TypeOfExpr:
769    return getTypeInfo(cast<TypeOfExprType>(T)->getUnderlyingExpr()->getType()
770                         .getTypePtr());
771
772  case Type::TypeOf:
773    return getTypeInfo(cast<TypeOfType>(T)->getUnderlyingType().getTypePtr());
774
775  case Type::Decltype:
776    return getTypeInfo(cast<DecltypeType>(T)->getUnderlyingExpr()->getType()
777                        .getTypePtr());
778
779  case Type::QualifiedName:
780    return getTypeInfo(cast<QualifiedNameType>(T)->getNamedType().getTypePtr());
781
782  case Type::TemplateSpecialization:
783    assert(getCanonicalType(T) != T &&
784           "Cannot request the size of a dependent type");
785    // FIXME: this is likely to be wrong once we support template
786    // aliases, since a template alias could refer to a typedef that
787    // has an __aligned__ attribute on it.
788    return getTypeInfo(getCanonicalType(T));
789  }
790
791  assert(Align && (Align & (Align-1)) == 0 && "Alignment must be power of 2");
792  return std::make_pair(Width, Align);
793}
794
795/// getPreferredTypeAlign - Return the "preferred" alignment of the specified
796/// type for the current target in bits.  This can be different than the ABI
797/// alignment in cases where it is beneficial for performance to overalign
798/// a data type.
799unsigned ASTContext::getPreferredTypeAlign(const Type *T) {
800  unsigned ABIAlign = getTypeAlign(T);
801
802  // Double and long long should be naturally aligned if possible.
803  if (const ComplexType* CT = T->getAs<ComplexType>())
804    T = CT->getElementType().getTypePtr();
805  if (T->isSpecificBuiltinType(BuiltinType::Double) ||
806      T->isSpecificBuiltinType(BuiltinType::LongLong))
807    return std::max(ABIAlign, (unsigned)getTypeSize(T));
808
809  return ABIAlign;
810}
811
812static void CollectLocalObjCIvars(ASTContext *Ctx,
813                                  const ObjCInterfaceDecl *OI,
814                                  llvm::SmallVectorImpl<FieldDecl*> &Fields) {
815  for (ObjCInterfaceDecl::ivar_iterator I = OI->ivar_begin(),
816       E = OI->ivar_end(); I != E; ++I) {
817    ObjCIvarDecl *IVDecl = *I;
818    if (!IVDecl->isInvalidDecl())
819      Fields.push_back(cast<FieldDecl>(IVDecl));
820  }
821}
822
823void ASTContext::CollectObjCIvars(const ObjCInterfaceDecl *OI,
824                             llvm::SmallVectorImpl<FieldDecl*> &Fields) {
825  if (const ObjCInterfaceDecl *SuperClass = OI->getSuperClass())
826    CollectObjCIvars(SuperClass, Fields);
827  CollectLocalObjCIvars(this, OI, Fields);
828}
829
830/// ShallowCollectObjCIvars -
831/// Collect all ivars, including those synthesized, in the current class.
832///
833void ASTContext::ShallowCollectObjCIvars(const ObjCInterfaceDecl *OI,
834                                 llvm::SmallVectorImpl<ObjCIvarDecl*> &Ivars,
835                                 bool CollectSynthesized) {
836  for (ObjCInterfaceDecl::ivar_iterator I = OI->ivar_begin(),
837         E = OI->ivar_end(); I != E; ++I) {
838     Ivars.push_back(*I);
839  }
840  if (CollectSynthesized)
841    CollectSynthesizedIvars(OI, Ivars);
842}
843
844void ASTContext::CollectProtocolSynthesizedIvars(const ObjCProtocolDecl *PD,
845                                llvm::SmallVectorImpl<ObjCIvarDecl*> &Ivars) {
846  for (ObjCContainerDecl::prop_iterator I = PD->prop_begin(),
847       E = PD->prop_end(); I != E; ++I)
848    if (ObjCIvarDecl *Ivar = (*I)->getPropertyIvarDecl())
849      Ivars.push_back(Ivar);
850
851  // Also look into nested protocols.
852  for (ObjCProtocolDecl::protocol_iterator P = PD->protocol_begin(),
853       E = PD->protocol_end(); P != E; ++P)
854    CollectProtocolSynthesizedIvars(*P, Ivars);
855}
856
857/// CollectSynthesizedIvars -
858/// This routine collect synthesized ivars for the designated class.
859///
860void ASTContext::CollectSynthesizedIvars(const ObjCInterfaceDecl *OI,
861                                llvm::SmallVectorImpl<ObjCIvarDecl*> &Ivars) {
862  for (ObjCInterfaceDecl::prop_iterator I = OI->prop_begin(),
863       E = OI->prop_end(); I != E; ++I) {
864    if (ObjCIvarDecl *Ivar = (*I)->getPropertyIvarDecl())
865      Ivars.push_back(Ivar);
866  }
867  // Also look into interface's protocol list for properties declared
868  // in the protocol and whose ivars are synthesized.
869  for (ObjCInterfaceDecl::protocol_iterator P = OI->protocol_begin(),
870       PE = OI->protocol_end(); P != PE; ++P) {
871    ObjCProtocolDecl *PD = (*P);
872    CollectProtocolSynthesizedIvars(PD, Ivars);
873  }
874}
875
876/// CollectInheritedProtocols - Collect all protocols in current class and
877/// those inherited by it.
878void ASTContext::CollectInheritedProtocols(const Decl *CDecl,
879                          llvm::SmallVectorImpl<ObjCProtocolDecl*> &Protocols) {
880  if (const ObjCInterfaceDecl *OI = dyn_cast<ObjCInterfaceDecl>(CDecl)) {
881    for (ObjCInterfaceDecl::protocol_iterator P = OI->protocol_begin(),
882         PE = OI->protocol_end(); P != PE; ++P) {
883      ObjCProtocolDecl *Proto = (*P);
884      Protocols.push_back(Proto);
885      for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
886           PE = Proto->protocol_end(); P != PE; ++P)
887        CollectInheritedProtocols(*P, Protocols);
888      }
889
890    // Categories of this Interface.
891    for (const ObjCCategoryDecl *CDeclChain = OI->getCategoryList();
892         CDeclChain; CDeclChain = CDeclChain->getNextClassCategory())
893      CollectInheritedProtocols(CDeclChain, Protocols);
894    if (ObjCInterfaceDecl *SD = OI->getSuperClass())
895      while (SD) {
896        CollectInheritedProtocols(SD, Protocols);
897        SD = SD->getSuperClass();
898      }
899    return;
900  }
901  if (const ObjCCategoryDecl *OC = dyn_cast<ObjCCategoryDecl>(CDecl)) {
902    for (ObjCInterfaceDecl::protocol_iterator P = OC->protocol_begin(),
903         PE = OC->protocol_end(); P != PE; ++P) {
904      ObjCProtocolDecl *Proto = (*P);
905      Protocols.push_back(Proto);
906      for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
907           PE = Proto->protocol_end(); P != PE; ++P)
908        CollectInheritedProtocols(*P, Protocols);
909    }
910    return;
911  }
912  if (const ObjCProtocolDecl *OP = dyn_cast<ObjCProtocolDecl>(CDecl)) {
913    for (ObjCProtocolDecl::protocol_iterator P = OP->protocol_begin(),
914         PE = OP->protocol_end(); P != PE; ++P) {
915      ObjCProtocolDecl *Proto = (*P);
916      Protocols.push_back(Proto);
917      for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
918           PE = Proto->protocol_end(); P != PE; ++P)
919        CollectInheritedProtocols(*P, Protocols);
920    }
921    return;
922  }
923}
924
925unsigned ASTContext::CountProtocolSynthesizedIvars(const ObjCProtocolDecl *PD) {
926  unsigned count = 0;
927  for (ObjCContainerDecl::prop_iterator I = PD->prop_begin(),
928       E = PD->prop_end(); I != E; ++I)
929    if ((*I)->getPropertyIvarDecl())
930      ++count;
931
932  // Also look into nested protocols.
933  for (ObjCProtocolDecl::protocol_iterator P = PD->protocol_begin(),
934       E = PD->protocol_end(); P != E; ++P)
935    count += CountProtocolSynthesizedIvars(*P);
936  return count;
937}
938
939unsigned ASTContext::CountSynthesizedIvars(const ObjCInterfaceDecl *OI) {
940  unsigned count = 0;
941  for (ObjCInterfaceDecl::prop_iterator I = OI->prop_begin(),
942       E = OI->prop_end(); I != E; ++I) {
943    if ((*I)->getPropertyIvarDecl())
944      ++count;
945  }
946  // Also look into interface's protocol list for properties declared
947  // in the protocol and whose ivars are synthesized.
948  for (ObjCInterfaceDecl::protocol_iterator P = OI->protocol_begin(),
949       PE = OI->protocol_end(); P != PE; ++P) {
950    ObjCProtocolDecl *PD = (*P);
951    count += CountProtocolSynthesizedIvars(PD);
952  }
953  return count;
954}
955
956/// \brief Get the implementation of ObjCInterfaceDecl,or NULL if none exists.
957ObjCImplementationDecl *ASTContext::getObjCImplementation(ObjCInterfaceDecl *D) {
958  llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
959    I = ObjCImpls.find(D);
960  if (I != ObjCImpls.end())
961    return cast<ObjCImplementationDecl>(I->second);
962  return 0;
963}
964/// \brief Get the implementation of ObjCCategoryDecl, or NULL if none exists.
965ObjCCategoryImplDecl *ASTContext::getObjCImplementation(ObjCCategoryDecl *D) {
966  llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
967    I = ObjCImpls.find(D);
968  if (I != ObjCImpls.end())
969    return cast<ObjCCategoryImplDecl>(I->second);
970  return 0;
971}
972
973/// \brief Set the implementation of ObjCInterfaceDecl.
974void ASTContext::setObjCImplementation(ObjCInterfaceDecl *IFaceD,
975                           ObjCImplementationDecl *ImplD) {
976  assert(IFaceD && ImplD && "Passed null params");
977  ObjCImpls[IFaceD] = ImplD;
978}
979/// \brief Set the implementation of ObjCCategoryDecl.
980void ASTContext::setObjCImplementation(ObjCCategoryDecl *CatD,
981                           ObjCCategoryImplDecl *ImplD) {
982  assert(CatD && ImplD && "Passed null params");
983  ObjCImpls[CatD] = ImplD;
984}
985
986/// \brief Allocate an uninitialized DeclaratorInfo.
987///
988/// The caller should initialize the memory held by DeclaratorInfo using
989/// the TypeLoc wrappers.
990///
991/// \param T the type that will be the basis for type source info. This type
992/// should refer to how the declarator was written in source code, not to
993/// what type semantic analysis resolved the declarator to.
994DeclaratorInfo *ASTContext::CreateDeclaratorInfo(QualType T,
995                                                 unsigned DataSize) {
996  if (!DataSize)
997    DataSize = TypeLoc::getFullDataSizeForType(T);
998  else
999    assert(DataSize == TypeLoc::getFullDataSizeForType(T) &&
1000           "incorrect data size provided to CreateDeclaratorInfo!");
1001
1002  DeclaratorInfo *DInfo =
1003    (DeclaratorInfo*)BumpAlloc.Allocate(sizeof(DeclaratorInfo) + DataSize, 8);
1004  new (DInfo) DeclaratorInfo(T);
1005  return DInfo;
1006}
1007
1008DeclaratorInfo *ASTContext::getTrivialDeclaratorInfo(QualType T,
1009                                                     SourceLocation L) {
1010  DeclaratorInfo *DI = CreateDeclaratorInfo(T);
1011  DI->getTypeLoc().initialize(L);
1012  return DI;
1013}
1014
1015/// getInterfaceLayoutImpl - Get or compute information about the
1016/// layout of the given interface.
1017///
1018/// \param Impl - If given, also include the layout of the interface's
1019/// implementation. This may differ by including synthesized ivars.
1020const ASTRecordLayout &
1021ASTContext::getObjCLayout(const ObjCInterfaceDecl *D,
1022                          const ObjCImplementationDecl *Impl) {
1023  assert(!D->isForwardDecl() && "Invalid interface decl!");
1024
1025  // Look up this layout, if already laid out, return what we have.
1026  ObjCContainerDecl *Key =
1027    Impl ? (ObjCContainerDecl*) Impl : (ObjCContainerDecl*) D;
1028  if (const ASTRecordLayout *Entry = ObjCLayouts[Key])
1029    return *Entry;
1030
1031  // Add in synthesized ivar count if laying out an implementation.
1032  if (Impl) {
1033    unsigned FieldCount = D->ivar_size();
1034    unsigned SynthCount = CountSynthesizedIvars(D);
1035    FieldCount += SynthCount;
1036    // If there aren't any sythesized ivars then reuse the interface
1037    // entry. Note we can't cache this because we simply free all
1038    // entries later; however we shouldn't look up implementations
1039    // frequently.
1040    if (SynthCount == 0)
1041      return getObjCLayout(D, 0);
1042  }
1043
1044  const ASTRecordLayout *NewEntry =
1045    ASTRecordLayoutBuilder::ComputeLayout(*this, D, Impl);
1046  ObjCLayouts[Key] = NewEntry;
1047
1048  return *NewEntry;
1049}
1050
1051const ASTRecordLayout &
1052ASTContext::getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D) {
1053  return getObjCLayout(D, 0);
1054}
1055
1056const ASTRecordLayout &
1057ASTContext::getASTObjCImplementationLayout(const ObjCImplementationDecl *D) {
1058  return getObjCLayout(D->getClassInterface(), D);
1059}
1060
1061/// getASTRecordLayout - Get or compute information about the layout of the
1062/// specified record (struct/union/class), which indicates its size and field
1063/// position information.
1064const ASTRecordLayout &ASTContext::getASTRecordLayout(const RecordDecl *D) {
1065  D = D->getDefinition(*this);
1066  assert(D && "Cannot get layout of forward declarations!");
1067
1068  // Look up this layout, if already laid out, return what we have.
1069  // Note that we can't save a reference to the entry because this function
1070  // is recursive.
1071  const ASTRecordLayout *Entry = ASTRecordLayouts[D];
1072  if (Entry) return *Entry;
1073
1074  const ASTRecordLayout *NewEntry =
1075    ASTRecordLayoutBuilder::ComputeLayout(*this, D);
1076  ASTRecordLayouts[D] = NewEntry;
1077
1078  return *NewEntry;
1079}
1080
1081//===----------------------------------------------------------------------===//
1082//                   Type creation/memoization methods
1083//===----------------------------------------------------------------------===//
1084
1085QualType ASTContext::getExtQualType(const Type *TypeNode, Qualifiers Quals) {
1086  unsigned Fast = Quals.getFastQualifiers();
1087  Quals.removeFastQualifiers();
1088
1089  // Check if we've already instantiated this type.
1090  llvm::FoldingSetNodeID ID;
1091  ExtQuals::Profile(ID, TypeNode, Quals);
1092  void *InsertPos = 0;
1093  if (ExtQuals *EQ = ExtQualNodes.FindNodeOrInsertPos(ID, InsertPos)) {
1094    assert(EQ->getQualifiers() == Quals);
1095    QualType T = QualType(EQ, Fast);
1096    return T;
1097  }
1098
1099  ExtQuals *New = new (*this, TypeAlignment) ExtQuals(*this, TypeNode, Quals);
1100  ExtQualNodes.InsertNode(New, InsertPos);
1101  QualType T = QualType(New, Fast);
1102  return T;
1103}
1104
1105QualType ASTContext::getVolatileType(QualType T) {
1106  QualType CanT = getCanonicalType(T);
1107  if (CanT.isVolatileQualified()) return T;
1108
1109  QualifierCollector Quals;
1110  const Type *TypeNode = Quals.strip(T);
1111  Quals.addVolatile();
1112
1113  return getExtQualType(TypeNode, Quals);
1114}
1115
1116QualType ASTContext::getAddrSpaceQualType(QualType T, unsigned AddressSpace) {
1117  QualType CanT = getCanonicalType(T);
1118  if (CanT.getAddressSpace() == AddressSpace)
1119    return T;
1120
1121  // If we are composing extended qualifiers together, merge together
1122  // into one ExtQuals node.
1123  QualifierCollector Quals;
1124  const Type *TypeNode = Quals.strip(T);
1125
1126  // If this type already has an address space specified, it cannot get
1127  // another one.
1128  assert(!Quals.hasAddressSpace() &&
1129         "Type cannot be in multiple addr spaces!");
1130  Quals.addAddressSpace(AddressSpace);
1131
1132  return getExtQualType(TypeNode, Quals);
1133}
1134
1135QualType ASTContext::getObjCGCQualType(QualType T,
1136                                       Qualifiers::GC GCAttr) {
1137  QualType CanT = getCanonicalType(T);
1138  if (CanT.getObjCGCAttr() == GCAttr)
1139    return T;
1140
1141  if (T->isPointerType()) {
1142    QualType Pointee = T->getAs<PointerType>()->getPointeeType();
1143    if (Pointee->isAnyPointerType()) {
1144      QualType ResultType = getObjCGCQualType(Pointee, GCAttr);
1145      return getPointerType(ResultType);
1146    }
1147  }
1148
1149  // If we are composing extended qualifiers together, merge together
1150  // into one ExtQuals node.
1151  QualifierCollector Quals;
1152  const Type *TypeNode = Quals.strip(T);
1153
1154  // If this type already has an ObjCGC specified, it cannot get
1155  // another one.
1156  assert(!Quals.hasObjCGCAttr() &&
1157         "Type cannot have multiple ObjCGCs!");
1158  Quals.addObjCGCAttr(GCAttr);
1159
1160  return getExtQualType(TypeNode, Quals);
1161}
1162
1163QualType ASTContext::getNoReturnType(QualType T) {
1164  QualType ResultType;
1165  if (T->isPointerType()) {
1166    QualType Pointee = T->getAs<PointerType>()->getPointeeType();
1167    ResultType = getNoReturnType(Pointee);
1168    ResultType = getPointerType(ResultType);
1169  } else if (T->isBlockPointerType()) {
1170    QualType Pointee = T->getAs<BlockPointerType>()->getPointeeType();
1171    ResultType = getNoReturnType(Pointee);
1172    ResultType = getBlockPointerType(ResultType);
1173  } else {
1174    assert (T->isFunctionType()
1175            && "can't noreturn qualify non-pointer to function or block type");
1176
1177    if (const FunctionNoProtoType *FNPT = T->getAs<FunctionNoProtoType>()) {
1178      ResultType = getFunctionNoProtoType(FNPT->getResultType(), true);
1179    } else {
1180      const FunctionProtoType *F = T->getAs<FunctionProtoType>();
1181      ResultType
1182        = getFunctionType(F->getResultType(), F->arg_type_begin(),
1183                          F->getNumArgs(), F->isVariadic(), F->getTypeQuals(),
1184                          F->hasExceptionSpec(), F->hasAnyExceptionSpec(),
1185                          F->getNumExceptions(), F->exception_begin(), true);
1186    }
1187  }
1188
1189  return getQualifiedType(ResultType, T.getQualifiers());
1190}
1191
1192/// getComplexType - Return the uniqued reference to the type for a complex
1193/// number with the specified element type.
1194QualType ASTContext::getComplexType(QualType T) {
1195  // Unique pointers, to guarantee there is only one pointer of a particular
1196  // structure.
1197  llvm::FoldingSetNodeID ID;
1198  ComplexType::Profile(ID, T);
1199
1200  void *InsertPos = 0;
1201  if (ComplexType *CT = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos))
1202    return QualType(CT, 0);
1203
1204  // If the pointee type isn't canonical, this won't be a canonical type either,
1205  // so fill in the canonical type field.
1206  QualType Canonical;
1207  if (!T.isCanonical()) {
1208    Canonical = getComplexType(getCanonicalType(T));
1209
1210    // Get the new insert position for the node we care about.
1211    ComplexType *NewIP = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos);
1212    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1213  }
1214  ComplexType *New = new (*this, TypeAlignment) ComplexType(T, Canonical);
1215  Types.push_back(New);
1216  ComplexTypes.InsertNode(New, InsertPos);
1217  return QualType(New, 0);
1218}
1219
1220QualType ASTContext::getFixedWidthIntType(unsigned Width, bool Signed) {
1221  llvm::DenseMap<unsigned, FixedWidthIntType*> &Map = Signed ?
1222     SignedFixedWidthIntTypes : UnsignedFixedWidthIntTypes;
1223  FixedWidthIntType *&Entry = Map[Width];
1224  if (!Entry)
1225    Entry = new FixedWidthIntType(Width, Signed);
1226  return QualType(Entry, 0);
1227}
1228
1229/// getPointerType - Return the uniqued reference to the type for a pointer to
1230/// the specified type.
1231QualType ASTContext::getPointerType(QualType T) {
1232  // Unique pointers, to guarantee there is only one pointer of a particular
1233  // structure.
1234  llvm::FoldingSetNodeID ID;
1235  PointerType::Profile(ID, T);
1236
1237  void *InsertPos = 0;
1238  if (PointerType *PT = PointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1239    return QualType(PT, 0);
1240
1241  // If the pointee type isn't canonical, this won't be a canonical type either,
1242  // so fill in the canonical type field.
1243  QualType Canonical;
1244  if (!T.isCanonical()) {
1245    Canonical = getPointerType(getCanonicalType(T));
1246
1247    // Get the new insert position for the node we care about.
1248    PointerType *NewIP = PointerTypes.FindNodeOrInsertPos(ID, InsertPos);
1249    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1250  }
1251  PointerType *New = new (*this, TypeAlignment) PointerType(T, Canonical);
1252  Types.push_back(New);
1253  PointerTypes.InsertNode(New, InsertPos);
1254  return QualType(New, 0);
1255}
1256
1257/// getBlockPointerType - Return the uniqued reference to the type for
1258/// a pointer to the specified block.
1259QualType ASTContext::getBlockPointerType(QualType T) {
1260  assert(T->isFunctionType() && "block of function types only");
1261  // Unique pointers, to guarantee there is only one block of a particular
1262  // structure.
1263  llvm::FoldingSetNodeID ID;
1264  BlockPointerType::Profile(ID, T);
1265
1266  void *InsertPos = 0;
1267  if (BlockPointerType *PT =
1268        BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1269    return QualType(PT, 0);
1270
1271  // If the block pointee type isn't canonical, this won't be a canonical
1272  // type either so fill in the canonical type field.
1273  QualType Canonical;
1274  if (!T.isCanonical()) {
1275    Canonical = getBlockPointerType(getCanonicalType(T));
1276
1277    // Get the new insert position for the node we care about.
1278    BlockPointerType *NewIP =
1279      BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
1280    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1281  }
1282  BlockPointerType *New
1283    = new (*this, TypeAlignment) BlockPointerType(T, Canonical);
1284  Types.push_back(New);
1285  BlockPointerTypes.InsertNode(New, InsertPos);
1286  return QualType(New, 0);
1287}
1288
1289/// getLValueReferenceType - Return the uniqued reference to the type for an
1290/// lvalue reference to the specified type.
1291QualType ASTContext::getLValueReferenceType(QualType T, bool SpelledAsLValue) {
1292  // Unique pointers, to guarantee there is only one pointer of a particular
1293  // structure.
1294  llvm::FoldingSetNodeID ID;
1295  ReferenceType::Profile(ID, T, SpelledAsLValue);
1296
1297  void *InsertPos = 0;
1298  if (LValueReferenceType *RT =
1299        LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
1300    return QualType(RT, 0);
1301
1302  const ReferenceType *InnerRef = T->getAs<ReferenceType>();
1303
1304  // If the referencee type isn't canonical, this won't be a canonical type
1305  // either, so fill in the canonical type field.
1306  QualType Canonical;
1307  if (!SpelledAsLValue || InnerRef || !T.isCanonical()) {
1308    QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
1309    Canonical = getLValueReferenceType(getCanonicalType(PointeeType));
1310
1311    // Get the new insert position for the node we care about.
1312    LValueReferenceType *NewIP =
1313      LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
1314    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1315  }
1316
1317  LValueReferenceType *New
1318    = new (*this, TypeAlignment) LValueReferenceType(T, Canonical,
1319                                                     SpelledAsLValue);
1320  Types.push_back(New);
1321  LValueReferenceTypes.InsertNode(New, InsertPos);
1322
1323  return QualType(New, 0);
1324}
1325
1326/// getRValueReferenceType - Return the uniqued reference to the type for an
1327/// rvalue reference to the specified type.
1328QualType ASTContext::getRValueReferenceType(QualType T) {
1329  // Unique pointers, to guarantee there is only one pointer of a particular
1330  // structure.
1331  llvm::FoldingSetNodeID ID;
1332  ReferenceType::Profile(ID, T, false);
1333
1334  void *InsertPos = 0;
1335  if (RValueReferenceType *RT =
1336        RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
1337    return QualType(RT, 0);
1338
1339  const ReferenceType *InnerRef = T->getAs<ReferenceType>();
1340
1341  // If the referencee type isn't canonical, this won't be a canonical type
1342  // either, so fill in the canonical type field.
1343  QualType Canonical;
1344  if (InnerRef || !T.isCanonical()) {
1345    QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
1346    Canonical = getRValueReferenceType(getCanonicalType(PointeeType));
1347
1348    // Get the new insert position for the node we care about.
1349    RValueReferenceType *NewIP =
1350      RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
1351    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1352  }
1353
1354  RValueReferenceType *New
1355    = new (*this, TypeAlignment) RValueReferenceType(T, Canonical);
1356  Types.push_back(New);
1357  RValueReferenceTypes.InsertNode(New, InsertPos);
1358  return QualType(New, 0);
1359}
1360
1361/// getMemberPointerType - Return the uniqued reference to the type for a
1362/// member pointer to the specified type, in the specified class.
1363QualType ASTContext::getMemberPointerType(QualType T, const Type *Cls) {
1364  // Unique pointers, to guarantee there is only one pointer of a particular
1365  // structure.
1366  llvm::FoldingSetNodeID ID;
1367  MemberPointerType::Profile(ID, T, Cls);
1368
1369  void *InsertPos = 0;
1370  if (MemberPointerType *PT =
1371      MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1372    return QualType(PT, 0);
1373
1374  // If the pointee or class type isn't canonical, this won't be a canonical
1375  // type either, so fill in the canonical type field.
1376  QualType Canonical;
1377  if (!T.isCanonical() || !Cls->isCanonicalUnqualified()) {
1378    Canonical = getMemberPointerType(getCanonicalType(T),getCanonicalType(Cls));
1379
1380    // Get the new insert position for the node we care about.
1381    MemberPointerType *NewIP =
1382      MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
1383    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1384  }
1385  MemberPointerType *New
1386    = new (*this, TypeAlignment) MemberPointerType(T, Cls, Canonical);
1387  Types.push_back(New);
1388  MemberPointerTypes.InsertNode(New, InsertPos);
1389  return QualType(New, 0);
1390}
1391
1392/// getConstantArrayType - Return the unique reference to the type for an
1393/// array of the specified element type.
1394QualType ASTContext::getConstantArrayType(QualType EltTy,
1395                                          const llvm::APInt &ArySizeIn,
1396                                          ArrayType::ArraySizeModifier ASM,
1397                                          unsigned EltTypeQuals) {
1398  assert((EltTy->isDependentType() ||
1399          EltTy->isIncompleteType() || EltTy->isConstantSizeType()) &&
1400         "Constant array of VLAs is illegal!");
1401
1402  // Convert the array size into a canonical width matching the pointer size for
1403  // the target.
1404  llvm::APInt ArySize(ArySizeIn);
1405  ArySize.zextOrTrunc(Target.getPointerWidth(EltTy.getAddressSpace()));
1406
1407  llvm::FoldingSetNodeID ID;
1408  ConstantArrayType::Profile(ID, EltTy, ArySize, ASM, EltTypeQuals);
1409
1410  void *InsertPos = 0;
1411  if (ConstantArrayType *ATP =
1412      ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
1413    return QualType(ATP, 0);
1414
1415  // If the element type isn't canonical, this won't be a canonical type either,
1416  // so fill in the canonical type field.
1417  QualType Canonical;
1418  if (!EltTy.isCanonical()) {
1419    Canonical = getConstantArrayType(getCanonicalType(EltTy), ArySize,
1420                                     ASM, EltTypeQuals);
1421    // Get the new insert position for the node we care about.
1422    ConstantArrayType *NewIP =
1423      ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
1424    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1425  }
1426
1427  ConstantArrayType *New = new(*this,TypeAlignment)
1428    ConstantArrayType(EltTy, Canonical, ArySize, ASM, EltTypeQuals);
1429  ConstantArrayTypes.InsertNode(New, InsertPos);
1430  Types.push_back(New);
1431  return QualType(New, 0);
1432}
1433
1434/// getVariableArrayType - Returns a non-unique reference to the type for a
1435/// variable array of the specified element type.
1436QualType ASTContext::getVariableArrayType(QualType EltTy,
1437                                          Expr *NumElts,
1438                                          ArrayType::ArraySizeModifier ASM,
1439                                          unsigned EltTypeQuals,
1440                                          SourceRange Brackets) {
1441  // Since we don't unique expressions, it isn't possible to unique VLA's
1442  // that have an expression provided for their size.
1443
1444  VariableArrayType *New = new(*this, TypeAlignment)
1445    VariableArrayType(EltTy, QualType(), NumElts, ASM, EltTypeQuals, Brackets);
1446
1447  VariableArrayTypes.push_back(New);
1448  Types.push_back(New);
1449  return QualType(New, 0);
1450}
1451
1452/// getDependentSizedArrayType - Returns a non-unique reference to
1453/// the type for a dependently-sized array of the specified element
1454/// type.
1455QualType ASTContext::getDependentSizedArrayType(QualType EltTy,
1456                                                Expr *NumElts,
1457                                                ArrayType::ArraySizeModifier ASM,
1458                                                unsigned EltTypeQuals,
1459                                                SourceRange Brackets) {
1460  assert((NumElts->isTypeDependent() || NumElts->isValueDependent()) &&
1461         "Size must be type- or value-dependent!");
1462
1463  llvm::FoldingSetNodeID ID;
1464  DependentSizedArrayType::Profile(ID, *this, getCanonicalType(EltTy), ASM,
1465                                   EltTypeQuals, NumElts);
1466
1467  void *InsertPos = 0;
1468  DependentSizedArrayType *Canon
1469    = DependentSizedArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
1470  DependentSizedArrayType *New;
1471  if (Canon) {
1472    // We already have a canonical version of this array type; use it as
1473    // the canonical type for a newly-built type.
1474    New = new (*this, TypeAlignment)
1475      DependentSizedArrayType(*this, EltTy, QualType(Canon, 0),
1476                              NumElts, ASM, EltTypeQuals, Brackets);
1477  } else {
1478    QualType CanonEltTy = getCanonicalType(EltTy);
1479    if (CanonEltTy == EltTy) {
1480      New = new (*this, TypeAlignment)
1481        DependentSizedArrayType(*this, EltTy, QualType(),
1482                                NumElts, ASM, EltTypeQuals, Brackets);
1483      DependentSizedArrayTypes.InsertNode(New, InsertPos);
1484    } else {
1485      QualType Canon = getDependentSizedArrayType(CanonEltTy, NumElts,
1486                                                  ASM, EltTypeQuals,
1487                                                  SourceRange());
1488      New = new (*this, TypeAlignment)
1489        DependentSizedArrayType(*this, EltTy, Canon,
1490                                NumElts, ASM, EltTypeQuals, Brackets);
1491    }
1492  }
1493
1494  Types.push_back(New);
1495  return QualType(New, 0);
1496}
1497
1498QualType ASTContext::getIncompleteArrayType(QualType EltTy,
1499                                            ArrayType::ArraySizeModifier ASM,
1500                                            unsigned EltTypeQuals) {
1501  llvm::FoldingSetNodeID ID;
1502  IncompleteArrayType::Profile(ID, EltTy, ASM, EltTypeQuals);
1503
1504  void *InsertPos = 0;
1505  if (IncompleteArrayType *ATP =
1506       IncompleteArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
1507    return QualType(ATP, 0);
1508
1509  // If the element type isn't canonical, this won't be a canonical type
1510  // either, so fill in the canonical type field.
1511  QualType Canonical;
1512
1513  if (!EltTy.isCanonical()) {
1514    Canonical = getIncompleteArrayType(getCanonicalType(EltTy),
1515                                       ASM, EltTypeQuals);
1516
1517    // Get the new insert position for the node we care about.
1518    IncompleteArrayType *NewIP =
1519      IncompleteArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
1520    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1521  }
1522
1523  IncompleteArrayType *New = new (*this, TypeAlignment)
1524    IncompleteArrayType(EltTy, Canonical, ASM, EltTypeQuals);
1525
1526  IncompleteArrayTypes.InsertNode(New, InsertPos);
1527  Types.push_back(New);
1528  return QualType(New, 0);
1529}
1530
1531/// getVectorType - Return the unique reference to a vector type of
1532/// the specified element type and size. VectorType must be a built-in type.
1533QualType ASTContext::getVectorType(QualType vecType, unsigned NumElts) {
1534  BuiltinType *baseType;
1535
1536  baseType = dyn_cast<BuiltinType>(getCanonicalType(vecType).getTypePtr());
1537  assert(baseType != 0 && "getVectorType(): Expecting a built-in type");
1538
1539  // Check if we've already instantiated a vector of this type.
1540  llvm::FoldingSetNodeID ID;
1541  VectorType::Profile(ID, vecType, NumElts, Type::Vector);
1542  void *InsertPos = 0;
1543  if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
1544    return QualType(VTP, 0);
1545
1546  // If the element type isn't canonical, this won't be a canonical type either,
1547  // so fill in the canonical type field.
1548  QualType Canonical;
1549  if (!vecType.isCanonical()) {
1550    Canonical = getVectorType(getCanonicalType(vecType), NumElts);
1551
1552    // Get the new insert position for the node we care about.
1553    VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
1554    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1555  }
1556  VectorType *New = new (*this, TypeAlignment)
1557    VectorType(vecType, NumElts, Canonical);
1558  VectorTypes.InsertNode(New, InsertPos);
1559  Types.push_back(New);
1560  return QualType(New, 0);
1561}
1562
1563/// getExtVectorType - Return the unique reference to an extended vector type of
1564/// the specified element type and size. VectorType must be a built-in type.
1565QualType ASTContext::getExtVectorType(QualType vecType, unsigned NumElts) {
1566  BuiltinType *baseType;
1567
1568  baseType = dyn_cast<BuiltinType>(getCanonicalType(vecType).getTypePtr());
1569  assert(baseType != 0 && "getExtVectorType(): Expecting a built-in type");
1570
1571  // Check if we've already instantiated a vector of this type.
1572  llvm::FoldingSetNodeID ID;
1573  VectorType::Profile(ID, vecType, NumElts, Type::ExtVector);
1574  void *InsertPos = 0;
1575  if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
1576    return QualType(VTP, 0);
1577
1578  // If the element type isn't canonical, this won't be a canonical type either,
1579  // so fill in the canonical type field.
1580  QualType Canonical;
1581  if (!vecType.isCanonical()) {
1582    Canonical = getExtVectorType(getCanonicalType(vecType), NumElts);
1583
1584    // Get the new insert position for the node we care about.
1585    VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
1586    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1587  }
1588  ExtVectorType *New = new (*this, TypeAlignment)
1589    ExtVectorType(vecType, NumElts, Canonical);
1590  VectorTypes.InsertNode(New, InsertPos);
1591  Types.push_back(New);
1592  return QualType(New, 0);
1593}
1594
1595QualType ASTContext::getDependentSizedExtVectorType(QualType vecType,
1596                                                    Expr *SizeExpr,
1597                                                    SourceLocation AttrLoc) {
1598  llvm::FoldingSetNodeID ID;
1599  DependentSizedExtVectorType::Profile(ID, *this, getCanonicalType(vecType),
1600                                       SizeExpr);
1601
1602  void *InsertPos = 0;
1603  DependentSizedExtVectorType *Canon
1604    = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
1605  DependentSizedExtVectorType *New;
1606  if (Canon) {
1607    // We already have a canonical version of this array type; use it as
1608    // the canonical type for a newly-built type.
1609    New = new (*this, TypeAlignment)
1610      DependentSizedExtVectorType(*this, vecType, QualType(Canon, 0),
1611                                  SizeExpr, AttrLoc);
1612  } else {
1613    QualType CanonVecTy = getCanonicalType(vecType);
1614    if (CanonVecTy == vecType) {
1615      New = new (*this, TypeAlignment)
1616        DependentSizedExtVectorType(*this, vecType, QualType(), SizeExpr,
1617                                    AttrLoc);
1618      DependentSizedExtVectorTypes.InsertNode(New, InsertPos);
1619    } else {
1620      QualType Canon = getDependentSizedExtVectorType(CanonVecTy, SizeExpr,
1621                                                      SourceLocation());
1622      New = new (*this, TypeAlignment)
1623        DependentSizedExtVectorType(*this, vecType, Canon, SizeExpr, AttrLoc);
1624    }
1625  }
1626
1627  Types.push_back(New);
1628  return QualType(New, 0);
1629}
1630
1631/// getFunctionNoProtoType - Return a K&R style C function type like 'int()'.
1632///
1633QualType ASTContext::getFunctionNoProtoType(QualType ResultTy, bool NoReturn) {
1634  // Unique functions, to guarantee there is only one function of a particular
1635  // structure.
1636  llvm::FoldingSetNodeID ID;
1637  FunctionNoProtoType::Profile(ID, ResultTy, NoReturn);
1638
1639  void *InsertPos = 0;
1640  if (FunctionNoProtoType *FT =
1641        FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
1642    return QualType(FT, 0);
1643
1644  QualType Canonical;
1645  if (!ResultTy.isCanonical()) {
1646    Canonical = getFunctionNoProtoType(getCanonicalType(ResultTy), NoReturn);
1647
1648    // Get the new insert position for the node we care about.
1649    FunctionNoProtoType *NewIP =
1650      FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
1651    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1652  }
1653
1654  FunctionNoProtoType *New = new (*this, TypeAlignment)
1655    FunctionNoProtoType(ResultTy, Canonical, NoReturn);
1656  Types.push_back(New);
1657  FunctionNoProtoTypes.InsertNode(New, InsertPos);
1658  return QualType(New, 0);
1659}
1660
1661/// getFunctionType - Return a normal function type with a typed argument
1662/// list.  isVariadic indicates whether the argument list includes '...'.
1663QualType ASTContext::getFunctionType(QualType ResultTy,const QualType *ArgArray,
1664                                     unsigned NumArgs, bool isVariadic,
1665                                     unsigned TypeQuals, bool hasExceptionSpec,
1666                                     bool hasAnyExceptionSpec, unsigned NumExs,
1667                                     const QualType *ExArray, bool NoReturn) {
1668  // Unique functions, to guarantee there is only one function of a particular
1669  // structure.
1670  llvm::FoldingSetNodeID ID;
1671  FunctionProtoType::Profile(ID, ResultTy, ArgArray, NumArgs, isVariadic,
1672                             TypeQuals, hasExceptionSpec, hasAnyExceptionSpec,
1673                             NumExs, ExArray, NoReturn);
1674
1675  void *InsertPos = 0;
1676  if (FunctionProtoType *FTP =
1677        FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
1678    return QualType(FTP, 0);
1679
1680  // Determine whether the type being created is already canonical or not.
1681  bool isCanonical = !hasExceptionSpec && ResultTy.isCanonical();
1682  for (unsigned i = 0; i != NumArgs && isCanonical; ++i)
1683    if (!ArgArray[i].isCanonicalAsParam())
1684      isCanonical = false;
1685
1686  // If this type isn't canonical, get the canonical version of it.
1687  // The exception spec is not part of the canonical type.
1688  QualType Canonical;
1689  if (!isCanonical) {
1690    llvm::SmallVector<QualType, 16> CanonicalArgs;
1691    CanonicalArgs.reserve(NumArgs);
1692    for (unsigned i = 0; i != NumArgs; ++i)
1693      CanonicalArgs.push_back(getCanonicalParamType(ArgArray[i]));
1694
1695    Canonical = getFunctionType(getCanonicalType(ResultTy),
1696                                CanonicalArgs.data(), NumArgs,
1697                                isVariadic, TypeQuals, false,
1698                                false, 0, 0, NoReturn);
1699
1700    // Get the new insert position for the node we care about.
1701    FunctionProtoType *NewIP =
1702      FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
1703    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1704  }
1705
1706  // FunctionProtoType objects are allocated with extra bytes after them
1707  // for two variable size arrays (for parameter and exception types) at the
1708  // end of them.
1709  FunctionProtoType *FTP =
1710    (FunctionProtoType*)Allocate(sizeof(FunctionProtoType) +
1711                                 NumArgs*sizeof(QualType) +
1712                                 NumExs*sizeof(QualType), TypeAlignment);
1713  new (FTP) FunctionProtoType(ResultTy, ArgArray, NumArgs, isVariadic,
1714                              TypeQuals, hasExceptionSpec, hasAnyExceptionSpec,
1715                              ExArray, NumExs, Canonical, NoReturn);
1716  Types.push_back(FTP);
1717  FunctionProtoTypes.InsertNode(FTP, InsertPos);
1718  return QualType(FTP, 0);
1719}
1720
1721/// getTypeDeclType - Return the unique reference to the type for the
1722/// specified type declaration.
1723QualType ASTContext::getTypeDeclType(TypeDecl *Decl, TypeDecl* PrevDecl) {
1724  assert(Decl && "Passed null for Decl param");
1725  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
1726
1727  if (TypedefDecl *Typedef = dyn_cast<TypedefDecl>(Decl))
1728    return getTypedefType(Typedef);
1729  else if (isa<TemplateTypeParmDecl>(Decl)) {
1730    assert(false && "Template type parameter types are always available.");
1731  } else if (ObjCInterfaceDecl *ObjCInterface
1732               = dyn_cast<ObjCInterfaceDecl>(Decl))
1733    return getObjCInterfaceType(ObjCInterface);
1734
1735  if (RecordDecl *Record = dyn_cast<RecordDecl>(Decl)) {
1736    if (PrevDecl)
1737      Decl->TypeForDecl = PrevDecl->TypeForDecl;
1738    else
1739      Decl->TypeForDecl = new (*this, TypeAlignment) RecordType(Record);
1740  } else if (EnumDecl *Enum = dyn_cast<EnumDecl>(Decl)) {
1741    if (PrevDecl)
1742      Decl->TypeForDecl = PrevDecl->TypeForDecl;
1743    else
1744      Decl->TypeForDecl = new (*this, TypeAlignment) EnumType(Enum);
1745  } else
1746    assert(false && "TypeDecl without a type?");
1747
1748  if (!PrevDecl) Types.push_back(Decl->TypeForDecl);
1749  return QualType(Decl->TypeForDecl, 0);
1750}
1751
1752/// getTypedefType - Return the unique reference to the type for the
1753/// specified typename decl.
1754QualType ASTContext::getTypedefType(TypedefDecl *Decl) {
1755  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
1756
1757  QualType Canonical = getCanonicalType(Decl->getUnderlyingType());
1758  Decl->TypeForDecl = new(*this, TypeAlignment)
1759    TypedefType(Type::Typedef, Decl, Canonical);
1760  Types.push_back(Decl->TypeForDecl);
1761  return QualType(Decl->TypeForDecl, 0);
1762}
1763
1764/// \brief Retrieve a substitution-result type.
1765QualType
1766ASTContext::getSubstTemplateTypeParmType(const TemplateTypeParmType *Parm,
1767                                         QualType Replacement) {
1768  assert(Replacement.isCanonical()
1769         && "replacement types must always be canonical");
1770
1771  llvm::FoldingSetNodeID ID;
1772  SubstTemplateTypeParmType::Profile(ID, Parm, Replacement);
1773  void *InsertPos = 0;
1774  SubstTemplateTypeParmType *SubstParm
1775    = SubstTemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
1776
1777  if (!SubstParm) {
1778    SubstParm = new (*this, TypeAlignment)
1779      SubstTemplateTypeParmType(Parm, Replacement);
1780    Types.push_back(SubstParm);
1781    SubstTemplateTypeParmTypes.InsertNode(SubstParm, InsertPos);
1782  }
1783
1784  return QualType(SubstParm, 0);
1785}
1786
1787/// \brief Retrieve the template type parameter type for a template
1788/// parameter or parameter pack with the given depth, index, and (optionally)
1789/// name.
1790QualType ASTContext::getTemplateTypeParmType(unsigned Depth, unsigned Index,
1791                                             bool ParameterPack,
1792                                             IdentifierInfo *Name) {
1793  llvm::FoldingSetNodeID ID;
1794  TemplateTypeParmType::Profile(ID, Depth, Index, ParameterPack, Name);
1795  void *InsertPos = 0;
1796  TemplateTypeParmType *TypeParm
1797    = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
1798
1799  if (TypeParm)
1800    return QualType(TypeParm, 0);
1801
1802  if (Name) {
1803    QualType Canon = getTemplateTypeParmType(Depth, Index, ParameterPack);
1804    TypeParm = new (*this, TypeAlignment)
1805      TemplateTypeParmType(Depth, Index, ParameterPack, Name, Canon);
1806  } else
1807    TypeParm = new (*this, TypeAlignment)
1808      TemplateTypeParmType(Depth, Index, ParameterPack);
1809
1810  Types.push_back(TypeParm);
1811  TemplateTypeParmTypes.InsertNode(TypeParm, InsertPos);
1812
1813  return QualType(TypeParm, 0);
1814}
1815
1816QualType
1817ASTContext::getTemplateSpecializationType(TemplateName Template,
1818                                          const TemplateArgumentLoc *Args,
1819                                          unsigned NumArgs,
1820                                          QualType Canon) {
1821  llvm::SmallVector<TemplateArgument, 4> ArgVec;
1822  ArgVec.reserve(NumArgs);
1823  for (unsigned i = 0; i != NumArgs; ++i)
1824    ArgVec.push_back(Args[i].getArgument());
1825
1826  return getTemplateSpecializationType(Template, ArgVec.data(), NumArgs, Canon);
1827}
1828
1829QualType
1830ASTContext::getTemplateSpecializationType(TemplateName Template,
1831                                          const TemplateArgument *Args,
1832                                          unsigned NumArgs,
1833                                          QualType Canon) {
1834  if (!Canon.isNull())
1835    Canon = getCanonicalType(Canon);
1836  else {
1837    // Build the canonical template specialization type.
1838    TemplateName CanonTemplate = getCanonicalTemplateName(Template);
1839    llvm::SmallVector<TemplateArgument, 4> CanonArgs;
1840    CanonArgs.reserve(NumArgs);
1841    for (unsigned I = 0; I != NumArgs; ++I)
1842      CanonArgs.push_back(getCanonicalTemplateArgument(Args[I]));
1843
1844    // Determine whether this canonical template specialization type already
1845    // exists.
1846    llvm::FoldingSetNodeID ID;
1847    TemplateSpecializationType::Profile(ID, CanonTemplate,
1848                                        CanonArgs.data(), NumArgs, *this);
1849
1850    void *InsertPos = 0;
1851    TemplateSpecializationType *Spec
1852      = TemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
1853
1854    if (!Spec) {
1855      // Allocate a new canonical template specialization type.
1856      void *Mem = Allocate((sizeof(TemplateSpecializationType) +
1857                            sizeof(TemplateArgument) * NumArgs),
1858                           TypeAlignment);
1859      Spec = new (Mem) TemplateSpecializationType(*this, CanonTemplate,
1860                                                  CanonArgs.data(), NumArgs,
1861                                                  Canon);
1862      Types.push_back(Spec);
1863      TemplateSpecializationTypes.InsertNode(Spec, InsertPos);
1864    }
1865
1866    if (Canon.isNull())
1867      Canon = QualType(Spec, 0);
1868    assert(Canon->isDependentType() &&
1869           "Non-dependent template-id type must have a canonical type");
1870  }
1871
1872  // Allocate the (non-canonical) template specialization type, but don't
1873  // try to unique it: these types typically have location information that
1874  // we don't unique and don't want to lose.
1875  void *Mem = Allocate((sizeof(TemplateSpecializationType) +
1876                        sizeof(TemplateArgument) * NumArgs),
1877                       TypeAlignment);
1878  TemplateSpecializationType *Spec
1879    = new (Mem) TemplateSpecializationType(*this, Template, Args, NumArgs,
1880                                           Canon);
1881
1882  Types.push_back(Spec);
1883  return QualType(Spec, 0);
1884}
1885
1886QualType
1887ASTContext::getQualifiedNameType(NestedNameSpecifier *NNS,
1888                                 QualType NamedType) {
1889  llvm::FoldingSetNodeID ID;
1890  QualifiedNameType::Profile(ID, NNS, NamedType);
1891
1892  void *InsertPos = 0;
1893  QualifiedNameType *T
1894    = QualifiedNameTypes.FindNodeOrInsertPos(ID, InsertPos);
1895  if (T)
1896    return QualType(T, 0);
1897
1898  T = new (*this) QualifiedNameType(NNS, NamedType,
1899                                    getCanonicalType(NamedType));
1900  Types.push_back(T);
1901  QualifiedNameTypes.InsertNode(T, InsertPos);
1902  return QualType(T, 0);
1903}
1904
1905QualType ASTContext::getTypenameType(NestedNameSpecifier *NNS,
1906                                     const IdentifierInfo *Name,
1907                                     QualType Canon) {
1908  assert(NNS->isDependent() && "nested-name-specifier must be dependent");
1909
1910  if (Canon.isNull()) {
1911    NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
1912    if (CanonNNS != NNS)
1913      Canon = getTypenameType(CanonNNS, Name);
1914  }
1915
1916  llvm::FoldingSetNodeID ID;
1917  TypenameType::Profile(ID, NNS, Name);
1918
1919  void *InsertPos = 0;
1920  TypenameType *T
1921    = TypenameTypes.FindNodeOrInsertPos(ID, InsertPos);
1922  if (T)
1923    return QualType(T, 0);
1924
1925  T = new (*this) TypenameType(NNS, Name, Canon);
1926  Types.push_back(T);
1927  TypenameTypes.InsertNode(T, InsertPos);
1928  return QualType(T, 0);
1929}
1930
1931QualType
1932ASTContext::getTypenameType(NestedNameSpecifier *NNS,
1933                            const TemplateSpecializationType *TemplateId,
1934                            QualType Canon) {
1935  assert(NNS->isDependent() && "nested-name-specifier must be dependent");
1936
1937  if (Canon.isNull()) {
1938    NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
1939    QualType CanonType = getCanonicalType(QualType(TemplateId, 0));
1940    if (CanonNNS != NNS || CanonType != QualType(TemplateId, 0)) {
1941      const TemplateSpecializationType *CanonTemplateId
1942        = CanonType->getAs<TemplateSpecializationType>();
1943      assert(CanonTemplateId &&
1944             "Canonical type must also be a template specialization type");
1945      Canon = getTypenameType(CanonNNS, CanonTemplateId);
1946    }
1947  }
1948
1949  llvm::FoldingSetNodeID ID;
1950  TypenameType::Profile(ID, NNS, TemplateId);
1951
1952  void *InsertPos = 0;
1953  TypenameType *T
1954    = TypenameTypes.FindNodeOrInsertPos(ID, InsertPos);
1955  if (T)
1956    return QualType(T, 0);
1957
1958  T = new (*this) TypenameType(NNS, TemplateId, Canon);
1959  Types.push_back(T);
1960  TypenameTypes.InsertNode(T, InsertPos);
1961  return QualType(T, 0);
1962}
1963
1964QualType
1965ASTContext::getElaboratedType(QualType UnderlyingType,
1966                              ElaboratedType::TagKind Tag) {
1967  llvm::FoldingSetNodeID ID;
1968  ElaboratedType::Profile(ID, UnderlyingType, Tag);
1969
1970  void *InsertPos = 0;
1971  ElaboratedType *T = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
1972  if (T)
1973    return QualType(T, 0);
1974
1975  QualType Canon = getCanonicalType(UnderlyingType);
1976
1977  T = new (*this) ElaboratedType(UnderlyingType, Tag, Canon);
1978  Types.push_back(T);
1979  ElaboratedTypes.InsertNode(T, InsertPos);
1980  return QualType(T, 0);
1981}
1982
1983/// CmpProtocolNames - Comparison predicate for sorting protocols
1984/// alphabetically.
1985static bool CmpProtocolNames(const ObjCProtocolDecl *LHS,
1986                            const ObjCProtocolDecl *RHS) {
1987  return LHS->getDeclName() < RHS->getDeclName();
1988}
1989
1990static bool areSortedAndUniqued(ObjCProtocolDecl **Protocols,
1991                                unsigned NumProtocols) {
1992  if (NumProtocols == 0) return true;
1993
1994  for (unsigned i = 1; i != NumProtocols; ++i)
1995    if (!CmpProtocolNames(Protocols[i-1], Protocols[i]))
1996      return false;
1997  return true;
1998}
1999
2000static void SortAndUniqueProtocols(ObjCProtocolDecl **Protocols,
2001                                   unsigned &NumProtocols) {
2002  ObjCProtocolDecl **ProtocolsEnd = Protocols+NumProtocols;
2003
2004  // Sort protocols, keyed by name.
2005  std::sort(Protocols, Protocols+NumProtocols, CmpProtocolNames);
2006
2007  // Remove duplicates.
2008  ProtocolsEnd = std::unique(Protocols, ProtocolsEnd);
2009  NumProtocols = ProtocolsEnd-Protocols;
2010}
2011
2012/// getObjCObjectPointerType - Return a ObjCObjectPointerType type for
2013/// the given interface decl and the conforming protocol list.
2014QualType ASTContext::getObjCObjectPointerType(QualType InterfaceT,
2015                                              ObjCProtocolDecl **Protocols,
2016                                              unsigned NumProtocols) {
2017  llvm::FoldingSetNodeID ID;
2018  ObjCObjectPointerType::Profile(ID, InterfaceT, Protocols, NumProtocols);
2019
2020  void *InsertPos = 0;
2021  if (ObjCObjectPointerType *QT =
2022              ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
2023    return QualType(QT, 0);
2024
2025  // Sort the protocol list alphabetically to canonicalize it.
2026  QualType Canonical;
2027  if (!InterfaceT.isCanonical() ||
2028      !areSortedAndUniqued(Protocols, NumProtocols)) {
2029    if (!areSortedAndUniqued(Protocols, NumProtocols)) {
2030      llvm::SmallVector<ObjCProtocolDecl*, 8> Sorted(NumProtocols);
2031      unsigned UniqueCount = NumProtocols;
2032
2033      std::copy(Protocols, Protocols + NumProtocols, Sorted.begin());
2034      SortAndUniqueProtocols(&Sorted[0], UniqueCount);
2035
2036      Canonical = getObjCObjectPointerType(getCanonicalType(InterfaceT),
2037                                           &Sorted[0], UniqueCount);
2038    } else {
2039      Canonical = getObjCObjectPointerType(getCanonicalType(InterfaceT),
2040                                           Protocols, NumProtocols);
2041    }
2042
2043    // Regenerate InsertPos.
2044    ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
2045  }
2046
2047  // No Match;
2048  ObjCObjectPointerType *QType = new (*this, TypeAlignment)
2049    ObjCObjectPointerType(Canonical, InterfaceT, Protocols, NumProtocols);
2050
2051  Types.push_back(QType);
2052  ObjCObjectPointerTypes.InsertNode(QType, InsertPos);
2053  return QualType(QType, 0);
2054}
2055
2056/// getObjCInterfaceType - Return the unique reference to the type for the
2057/// specified ObjC interface decl. The list of protocols is optional.
2058QualType ASTContext::getObjCInterfaceType(const ObjCInterfaceDecl *Decl,
2059                       ObjCProtocolDecl **Protocols, unsigned NumProtocols) {
2060  llvm::FoldingSetNodeID ID;
2061  ObjCInterfaceType::Profile(ID, Decl, Protocols, NumProtocols);
2062
2063  void *InsertPos = 0;
2064  if (ObjCInterfaceType *QT =
2065      ObjCInterfaceTypes.FindNodeOrInsertPos(ID, InsertPos))
2066    return QualType(QT, 0);
2067
2068  // Sort the protocol list alphabetically to canonicalize it.
2069  QualType Canonical;
2070  if (NumProtocols && !areSortedAndUniqued(Protocols, NumProtocols)) {
2071    llvm::SmallVector<ObjCProtocolDecl*, 8> Sorted(NumProtocols);
2072    std::copy(Protocols, Protocols + NumProtocols, Sorted.begin());
2073
2074    unsigned UniqueCount = NumProtocols;
2075    SortAndUniqueProtocols(&Sorted[0], UniqueCount);
2076
2077    Canonical = getObjCInterfaceType(Decl, &Sorted[0], UniqueCount);
2078
2079    ObjCInterfaceTypes.FindNodeOrInsertPos(ID, InsertPos);
2080  }
2081
2082  ObjCInterfaceType *QType = new (*this, TypeAlignment)
2083    ObjCInterfaceType(Canonical, const_cast<ObjCInterfaceDecl*>(Decl),
2084                      Protocols, NumProtocols);
2085
2086  Types.push_back(QType);
2087  ObjCInterfaceTypes.InsertNode(QType, InsertPos);
2088  return QualType(QType, 0);
2089}
2090
2091/// getTypeOfExprType - Unlike many "get<Type>" functions, we can't unique
2092/// TypeOfExprType AST's (since expression's are never shared). For example,
2093/// multiple declarations that refer to "typeof(x)" all contain different
2094/// DeclRefExpr's. This doesn't effect the type checker, since it operates
2095/// on canonical type's (which are always unique).
2096QualType ASTContext::getTypeOfExprType(Expr *tofExpr) {
2097  TypeOfExprType *toe;
2098  if (tofExpr->isTypeDependent()) {
2099    llvm::FoldingSetNodeID ID;
2100    DependentTypeOfExprType::Profile(ID, *this, tofExpr);
2101
2102    void *InsertPos = 0;
2103    DependentTypeOfExprType *Canon
2104      = DependentTypeOfExprTypes.FindNodeOrInsertPos(ID, InsertPos);
2105    if (Canon) {
2106      // We already have a "canonical" version of an identical, dependent
2107      // typeof(expr) type. Use that as our canonical type.
2108      toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr,
2109                                          QualType((TypeOfExprType*)Canon, 0));
2110    }
2111    else {
2112      // Build a new, canonical typeof(expr) type.
2113      Canon
2114        = new (*this, TypeAlignment) DependentTypeOfExprType(*this, tofExpr);
2115      DependentTypeOfExprTypes.InsertNode(Canon, InsertPos);
2116      toe = Canon;
2117    }
2118  } else {
2119    QualType Canonical = getCanonicalType(tofExpr->getType());
2120    toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr, Canonical);
2121  }
2122  Types.push_back(toe);
2123  return QualType(toe, 0);
2124}
2125
2126/// getTypeOfType -  Unlike many "get<Type>" functions, we don't unique
2127/// TypeOfType AST's. The only motivation to unique these nodes would be
2128/// memory savings. Since typeof(t) is fairly uncommon, space shouldn't be
2129/// an issue. This doesn't effect the type checker, since it operates
2130/// on canonical type's (which are always unique).
2131QualType ASTContext::getTypeOfType(QualType tofType) {
2132  QualType Canonical = getCanonicalType(tofType);
2133  TypeOfType *tot = new (*this, TypeAlignment) TypeOfType(tofType, Canonical);
2134  Types.push_back(tot);
2135  return QualType(tot, 0);
2136}
2137
2138/// getDecltypeForExpr - Given an expr, will return the decltype for that
2139/// expression, according to the rules in C++0x [dcl.type.simple]p4
2140static QualType getDecltypeForExpr(const Expr *e, ASTContext &Context) {
2141  if (e->isTypeDependent())
2142    return Context.DependentTy;
2143
2144  // If e is an id expression or a class member access, decltype(e) is defined
2145  // as the type of the entity named by e.
2146  if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(e)) {
2147    if (const ValueDecl *VD = dyn_cast<ValueDecl>(DRE->getDecl()))
2148      return VD->getType();
2149  }
2150  if (const MemberExpr *ME = dyn_cast<MemberExpr>(e)) {
2151    if (const FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl()))
2152      return FD->getType();
2153  }
2154  // If e is a function call or an invocation of an overloaded operator,
2155  // (parentheses around e are ignored), decltype(e) is defined as the
2156  // return type of that function.
2157  if (const CallExpr *CE = dyn_cast<CallExpr>(e->IgnoreParens()))
2158    return CE->getCallReturnType();
2159
2160  QualType T = e->getType();
2161
2162  // Otherwise, where T is the type of e, if e is an lvalue, decltype(e) is
2163  // defined as T&, otherwise decltype(e) is defined as T.
2164  if (e->isLvalue(Context) == Expr::LV_Valid)
2165    T = Context.getLValueReferenceType(T);
2166
2167  return T;
2168}
2169
2170/// getDecltypeType -  Unlike many "get<Type>" functions, we don't unique
2171/// DecltypeType AST's. The only motivation to unique these nodes would be
2172/// memory savings. Since decltype(t) is fairly uncommon, space shouldn't be
2173/// an issue. This doesn't effect the type checker, since it operates
2174/// on canonical type's (which are always unique).
2175QualType ASTContext::getDecltypeType(Expr *e) {
2176  DecltypeType *dt;
2177  if (e->isTypeDependent()) {
2178    llvm::FoldingSetNodeID ID;
2179    DependentDecltypeType::Profile(ID, *this, e);
2180
2181    void *InsertPos = 0;
2182    DependentDecltypeType *Canon
2183      = DependentDecltypeTypes.FindNodeOrInsertPos(ID, InsertPos);
2184    if (Canon) {
2185      // We already have a "canonical" version of an equivalent, dependent
2186      // decltype type. Use that as our canonical type.
2187      dt = new (*this, TypeAlignment) DecltypeType(e, DependentTy,
2188                                       QualType((DecltypeType*)Canon, 0));
2189    }
2190    else {
2191      // Build a new, canonical typeof(expr) type.
2192      Canon = new (*this, TypeAlignment) DependentDecltypeType(*this, e);
2193      DependentDecltypeTypes.InsertNode(Canon, InsertPos);
2194      dt = Canon;
2195    }
2196  } else {
2197    QualType T = getDecltypeForExpr(e, *this);
2198    dt = new (*this, TypeAlignment) DecltypeType(e, T, getCanonicalType(T));
2199  }
2200  Types.push_back(dt);
2201  return QualType(dt, 0);
2202}
2203
2204/// getTagDeclType - Return the unique reference to the type for the
2205/// specified TagDecl (struct/union/class/enum) decl.
2206QualType ASTContext::getTagDeclType(const TagDecl *Decl) {
2207  assert (Decl);
2208  // FIXME: What is the design on getTagDeclType when it requires casting
2209  // away const?  mutable?
2210  return getTypeDeclType(const_cast<TagDecl*>(Decl));
2211}
2212
2213/// getSizeType - Return the unique type for "size_t" (C99 7.17), the result
2214/// of the sizeof operator (C99 6.5.3.4p4). The value is target dependent and
2215/// needs to agree with the definition in <stddef.h>.
2216QualType ASTContext::getSizeType() const {
2217  return getFromTargetType(Target.getSizeType());
2218}
2219
2220/// getSignedWCharType - Return the type of "signed wchar_t".
2221/// Used when in C++, as a GCC extension.
2222QualType ASTContext::getSignedWCharType() const {
2223  // FIXME: derive from "Target" ?
2224  return WCharTy;
2225}
2226
2227/// getUnsignedWCharType - Return the type of "unsigned wchar_t".
2228/// Used when in C++, as a GCC extension.
2229QualType ASTContext::getUnsignedWCharType() const {
2230  // FIXME: derive from "Target" ?
2231  return UnsignedIntTy;
2232}
2233
2234/// getPointerDiffType - Return the unique type for "ptrdiff_t" (ref?)
2235/// defined in <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9).
2236QualType ASTContext::getPointerDiffType() const {
2237  return getFromTargetType(Target.getPtrDiffType(0));
2238}
2239
2240//===----------------------------------------------------------------------===//
2241//                              Type Operators
2242//===----------------------------------------------------------------------===//
2243
2244CanQualType ASTContext::getCanonicalParamType(QualType T) {
2245  // Push qualifiers into arrays, and then discard any remaining
2246  // qualifiers.
2247  T = getCanonicalType(T);
2248  const Type *Ty = T.getTypePtr();
2249
2250  QualType Result;
2251  if (isa<ArrayType>(Ty)) {
2252    Result = getArrayDecayedType(QualType(Ty,0));
2253  } else if (isa<FunctionType>(Ty)) {
2254    Result = getPointerType(QualType(Ty, 0));
2255  } else {
2256    Result = QualType(Ty, 0);
2257  }
2258
2259  return CanQualType::CreateUnsafe(Result);
2260}
2261
2262/// getCanonicalType - Return the canonical (structural) type corresponding to
2263/// the specified potentially non-canonical type.  The non-canonical version
2264/// of a type may have many "decorated" versions of types.  Decorators can
2265/// include typedefs, 'typeof' operators, etc. The returned type is guaranteed
2266/// to be free of any of these, allowing two canonical types to be compared
2267/// for exact equality with a simple pointer comparison.
2268CanQualType ASTContext::getCanonicalType(QualType T) {
2269  QualifierCollector Quals;
2270  const Type *Ptr = Quals.strip(T);
2271  QualType CanType = Ptr->getCanonicalTypeInternal();
2272
2273  // The canonical internal type will be the canonical type *except*
2274  // that we push type qualifiers down through array types.
2275
2276  // If there are no new qualifiers to push down, stop here.
2277  if (!Quals.hasQualifiers())
2278    return CanQualType::CreateUnsafe(CanType);
2279
2280  // If the type qualifiers are on an array type, get the canonical
2281  // type of the array with the qualifiers applied to the element
2282  // type.
2283  ArrayType *AT = dyn_cast<ArrayType>(CanType);
2284  if (!AT)
2285    return CanQualType::CreateUnsafe(getQualifiedType(CanType, Quals));
2286
2287  // Get the canonical version of the element with the extra qualifiers on it.
2288  // This can recursively sink qualifiers through multiple levels of arrays.
2289  QualType NewEltTy = getQualifiedType(AT->getElementType(), Quals);
2290  NewEltTy = getCanonicalType(NewEltTy);
2291
2292  if (ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
2293    return CanQualType::CreateUnsafe(
2294             getConstantArrayType(NewEltTy, CAT->getSize(),
2295                                  CAT->getSizeModifier(),
2296                                  CAT->getIndexTypeCVRQualifiers()));
2297  if (IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT))
2298    return CanQualType::CreateUnsafe(
2299             getIncompleteArrayType(NewEltTy, IAT->getSizeModifier(),
2300                                    IAT->getIndexTypeCVRQualifiers()));
2301
2302  if (DependentSizedArrayType *DSAT = dyn_cast<DependentSizedArrayType>(AT))
2303    return CanQualType::CreateUnsafe(
2304             getDependentSizedArrayType(NewEltTy,
2305                                        DSAT->getSizeExpr() ?
2306                                          DSAT->getSizeExpr()->Retain() : 0,
2307                                        DSAT->getSizeModifier(),
2308                                        DSAT->getIndexTypeCVRQualifiers(),
2309                        DSAT->getBracketsRange())->getCanonicalTypeInternal());
2310
2311  VariableArrayType *VAT = cast<VariableArrayType>(AT);
2312  return CanQualType::CreateUnsafe(getVariableArrayType(NewEltTy,
2313                                                        VAT->getSizeExpr() ?
2314                                              VAT->getSizeExpr()->Retain() : 0,
2315                                                        VAT->getSizeModifier(),
2316                                              VAT->getIndexTypeCVRQualifiers(),
2317                                                     VAT->getBracketsRange()));
2318}
2319
2320TemplateName ASTContext::getCanonicalTemplateName(TemplateName Name) {
2321  // If this template name refers to a template, the canonical
2322  // template name merely stores the template itself.
2323  if (TemplateDecl *Template = Name.getAsTemplateDecl())
2324    return TemplateName(cast<TemplateDecl>(Template->getCanonicalDecl()));
2325
2326  // If this template name refers to a set of overloaded function templates,
2327  /// the canonical template name merely stores the set of function templates.
2328  if (OverloadedFunctionDecl *Ovl = Name.getAsOverloadedFunctionDecl()) {
2329    OverloadedFunctionDecl *CanonOvl = 0;
2330    for (OverloadedFunctionDecl::function_iterator F = Ovl->function_begin(),
2331                                                FEnd = Ovl->function_end();
2332         F != FEnd; ++F) {
2333      Decl *Canon = F->get()->getCanonicalDecl();
2334      if (CanonOvl || Canon != F->get()) {
2335        if (!CanonOvl)
2336          CanonOvl = OverloadedFunctionDecl::Create(*this,
2337                                                    Ovl->getDeclContext(),
2338                                                    Ovl->getDeclName());
2339
2340        CanonOvl->addOverload(
2341                    AnyFunctionDecl::getFromNamedDecl(cast<NamedDecl>(Canon)));
2342      }
2343    }
2344
2345    return TemplateName(CanonOvl? CanonOvl : Ovl);
2346  }
2347
2348  DependentTemplateName *DTN = Name.getAsDependentTemplateName();
2349  assert(DTN && "Non-dependent template names must refer to template decls.");
2350  return DTN->CanonicalTemplateName;
2351}
2352
2353bool ASTContext::hasSameTemplateName(TemplateName X, TemplateName Y) {
2354  X = getCanonicalTemplateName(X);
2355  Y = getCanonicalTemplateName(Y);
2356  return X.getAsVoidPointer() == Y.getAsVoidPointer();
2357}
2358
2359TemplateArgument
2360ASTContext::getCanonicalTemplateArgument(const TemplateArgument &Arg) {
2361  switch (Arg.getKind()) {
2362    case TemplateArgument::Null:
2363      return Arg;
2364
2365    case TemplateArgument::Expression:
2366      return Arg;
2367
2368    case TemplateArgument::Declaration:
2369      return TemplateArgument(Arg.getAsDecl()->getCanonicalDecl());
2370
2371    case TemplateArgument::Template:
2372      return TemplateArgument(getCanonicalTemplateName(Arg.getAsTemplate()));
2373
2374    case TemplateArgument::Integral:
2375      return TemplateArgument(*Arg.getAsIntegral(),
2376                              getCanonicalType(Arg.getIntegralType()));
2377
2378    case TemplateArgument::Type:
2379      return TemplateArgument(getCanonicalType(Arg.getAsType()));
2380
2381    case TemplateArgument::Pack: {
2382      // FIXME: Allocate in ASTContext
2383      TemplateArgument *CanonArgs = new TemplateArgument[Arg.pack_size()];
2384      unsigned Idx = 0;
2385      for (TemplateArgument::pack_iterator A = Arg.pack_begin(),
2386                                        AEnd = Arg.pack_end();
2387           A != AEnd; (void)++A, ++Idx)
2388        CanonArgs[Idx] = getCanonicalTemplateArgument(*A);
2389
2390      TemplateArgument Result;
2391      Result.setArgumentPack(CanonArgs, Arg.pack_size(), false);
2392      return Result;
2393    }
2394  }
2395
2396  // Silence GCC warning
2397  assert(false && "Unhandled template argument kind");
2398  return TemplateArgument();
2399}
2400
2401NestedNameSpecifier *
2402ASTContext::getCanonicalNestedNameSpecifier(NestedNameSpecifier *NNS) {
2403  if (!NNS)
2404    return 0;
2405
2406  switch (NNS->getKind()) {
2407  case NestedNameSpecifier::Identifier:
2408    // Canonicalize the prefix but keep the identifier the same.
2409    return NestedNameSpecifier::Create(*this,
2410                         getCanonicalNestedNameSpecifier(NNS->getPrefix()),
2411                                       NNS->getAsIdentifier());
2412
2413  case NestedNameSpecifier::Namespace:
2414    // A namespace is canonical; build a nested-name-specifier with
2415    // this namespace and no prefix.
2416    return NestedNameSpecifier::Create(*this, 0, NNS->getAsNamespace());
2417
2418  case NestedNameSpecifier::TypeSpec:
2419  case NestedNameSpecifier::TypeSpecWithTemplate: {
2420    QualType T = getCanonicalType(QualType(NNS->getAsType(), 0));
2421    return NestedNameSpecifier::Create(*this, 0,
2422                 NNS->getKind() == NestedNameSpecifier::TypeSpecWithTemplate,
2423                                       T.getTypePtr());
2424  }
2425
2426  case NestedNameSpecifier::Global:
2427    // The global specifier is canonical and unique.
2428    return NNS;
2429  }
2430
2431  // Required to silence a GCC warning
2432  return 0;
2433}
2434
2435
2436const ArrayType *ASTContext::getAsArrayType(QualType T) {
2437  // Handle the non-qualified case efficiently.
2438  if (!T.hasQualifiers()) {
2439    // Handle the common positive case fast.
2440    if (const ArrayType *AT = dyn_cast<ArrayType>(T))
2441      return AT;
2442  }
2443
2444  // Handle the common negative case fast.
2445  QualType CType = T->getCanonicalTypeInternal();
2446  if (!isa<ArrayType>(CType))
2447    return 0;
2448
2449  // Apply any qualifiers from the array type to the element type.  This
2450  // implements C99 6.7.3p8: "If the specification of an array type includes
2451  // any type qualifiers, the element type is so qualified, not the array type."
2452
2453  // If we get here, we either have type qualifiers on the type, or we have
2454  // sugar such as a typedef in the way.  If we have type qualifiers on the type
2455  // we must propagate them down into the element type.
2456
2457  QualifierCollector Qs;
2458  const Type *Ty = Qs.strip(T.getDesugaredType());
2459
2460  // If we have a simple case, just return now.
2461  const ArrayType *ATy = dyn_cast<ArrayType>(Ty);
2462  if (ATy == 0 || Qs.empty())
2463    return ATy;
2464
2465  // Otherwise, we have an array and we have qualifiers on it.  Push the
2466  // qualifiers into the array element type and return a new array type.
2467  // Get the canonical version of the element with the extra qualifiers on it.
2468  // This can recursively sink qualifiers through multiple levels of arrays.
2469  QualType NewEltTy = getQualifiedType(ATy->getElementType(), Qs);
2470
2471  if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(ATy))
2472    return cast<ArrayType>(getConstantArrayType(NewEltTy, CAT->getSize(),
2473                                                CAT->getSizeModifier(),
2474                                           CAT->getIndexTypeCVRQualifiers()));
2475  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(ATy))
2476    return cast<ArrayType>(getIncompleteArrayType(NewEltTy,
2477                                                  IAT->getSizeModifier(),
2478                                           IAT->getIndexTypeCVRQualifiers()));
2479
2480  if (const DependentSizedArrayType *DSAT
2481        = dyn_cast<DependentSizedArrayType>(ATy))
2482    return cast<ArrayType>(
2483                     getDependentSizedArrayType(NewEltTy,
2484                                                DSAT->getSizeExpr() ?
2485                                              DSAT->getSizeExpr()->Retain() : 0,
2486                                                DSAT->getSizeModifier(),
2487                                              DSAT->getIndexTypeCVRQualifiers(),
2488                                                DSAT->getBracketsRange()));
2489
2490  const VariableArrayType *VAT = cast<VariableArrayType>(ATy);
2491  return cast<ArrayType>(getVariableArrayType(NewEltTy,
2492                                              VAT->getSizeExpr() ?
2493                                              VAT->getSizeExpr()->Retain() : 0,
2494                                              VAT->getSizeModifier(),
2495                                              VAT->getIndexTypeCVRQualifiers(),
2496                                              VAT->getBracketsRange()));
2497}
2498
2499
2500/// getArrayDecayedType - Return the properly qualified result of decaying the
2501/// specified array type to a pointer.  This operation is non-trivial when
2502/// handling typedefs etc.  The canonical type of "T" must be an array type,
2503/// this returns a pointer to a properly qualified element of the array.
2504///
2505/// See C99 6.7.5.3p7 and C99 6.3.2.1p3.
2506QualType ASTContext::getArrayDecayedType(QualType Ty) {
2507  // Get the element type with 'getAsArrayType' so that we don't lose any
2508  // typedefs in the element type of the array.  This also handles propagation
2509  // of type qualifiers from the array type into the element type if present
2510  // (C99 6.7.3p8).
2511  const ArrayType *PrettyArrayType = getAsArrayType(Ty);
2512  assert(PrettyArrayType && "Not an array type!");
2513
2514  QualType PtrTy = getPointerType(PrettyArrayType->getElementType());
2515
2516  // int x[restrict 4] ->  int *restrict
2517  return getQualifiedType(PtrTy, PrettyArrayType->getIndexTypeQualifiers());
2518}
2519
2520QualType ASTContext::getBaseElementType(QualType QT) {
2521  QualifierCollector Qs;
2522  while (true) {
2523    const Type *UT = Qs.strip(QT);
2524    if (const ArrayType *AT = getAsArrayType(QualType(UT,0))) {
2525      QT = AT->getElementType();
2526    } else {
2527      return Qs.apply(QT);
2528    }
2529  }
2530}
2531
2532QualType ASTContext::getBaseElementType(const ArrayType *AT) {
2533  QualType ElemTy = AT->getElementType();
2534
2535  if (const ArrayType *AT = getAsArrayType(ElemTy))
2536    return getBaseElementType(AT);
2537
2538  return ElemTy;
2539}
2540
2541/// getConstantArrayElementCount - Returns number of constant array elements.
2542uint64_t
2543ASTContext::getConstantArrayElementCount(const ConstantArrayType *CA)  const {
2544  uint64_t ElementCount = 1;
2545  do {
2546    ElementCount *= CA->getSize().getZExtValue();
2547    CA = dyn_cast<ConstantArrayType>(CA->getElementType());
2548  } while (CA);
2549  return ElementCount;
2550}
2551
2552/// getFloatingRank - Return a relative rank for floating point types.
2553/// This routine will assert if passed a built-in type that isn't a float.
2554static FloatingRank getFloatingRank(QualType T) {
2555  if (const ComplexType *CT = T->getAs<ComplexType>())
2556    return getFloatingRank(CT->getElementType());
2557
2558  assert(T->getAs<BuiltinType>() && "getFloatingRank(): not a floating type");
2559  switch (T->getAs<BuiltinType>()->getKind()) {
2560  default: assert(0 && "getFloatingRank(): not a floating type");
2561  case BuiltinType::Float:      return FloatRank;
2562  case BuiltinType::Double:     return DoubleRank;
2563  case BuiltinType::LongDouble: return LongDoubleRank;
2564  }
2565}
2566
2567/// getFloatingTypeOfSizeWithinDomain - Returns a real floating
2568/// point or a complex type (based on typeDomain/typeSize).
2569/// 'typeDomain' is a real floating point or complex type.
2570/// 'typeSize' is a real floating point or complex type.
2571QualType ASTContext::getFloatingTypeOfSizeWithinDomain(QualType Size,
2572                                                       QualType Domain) const {
2573  FloatingRank EltRank = getFloatingRank(Size);
2574  if (Domain->isComplexType()) {
2575    switch (EltRank) {
2576    default: assert(0 && "getFloatingRank(): illegal value for rank");
2577    case FloatRank:      return FloatComplexTy;
2578    case DoubleRank:     return DoubleComplexTy;
2579    case LongDoubleRank: return LongDoubleComplexTy;
2580    }
2581  }
2582
2583  assert(Domain->isRealFloatingType() && "Unknown domain!");
2584  switch (EltRank) {
2585  default: assert(0 && "getFloatingRank(): illegal value for rank");
2586  case FloatRank:      return FloatTy;
2587  case DoubleRank:     return DoubleTy;
2588  case LongDoubleRank: return LongDoubleTy;
2589  }
2590}
2591
2592/// getFloatingTypeOrder - Compare the rank of the two specified floating
2593/// point types, ignoring the domain of the type (i.e. 'double' ==
2594/// '_Complex double').  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
2595/// LHS < RHS, return -1.
2596int ASTContext::getFloatingTypeOrder(QualType LHS, QualType RHS) {
2597  FloatingRank LHSR = getFloatingRank(LHS);
2598  FloatingRank RHSR = getFloatingRank(RHS);
2599
2600  if (LHSR == RHSR)
2601    return 0;
2602  if (LHSR > RHSR)
2603    return 1;
2604  return -1;
2605}
2606
2607/// getIntegerRank - Return an integer conversion rank (C99 6.3.1.1p1). This
2608/// routine will assert if passed a built-in type that isn't an integer or enum,
2609/// or if it is not canonicalized.
2610unsigned ASTContext::getIntegerRank(Type *T) {
2611  assert(T->isCanonicalUnqualified() && "T should be canonicalized");
2612  if (EnumType* ET = dyn_cast<EnumType>(T))
2613    T = ET->getDecl()->getIntegerType().getTypePtr();
2614
2615  if (T->isSpecificBuiltinType(BuiltinType::WChar))
2616    T = getFromTargetType(Target.getWCharType()).getTypePtr();
2617
2618  if (T->isSpecificBuiltinType(BuiltinType::Char16))
2619    T = getFromTargetType(Target.getChar16Type()).getTypePtr();
2620
2621  if (T->isSpecificBuiltinType(BuiltinType::Char32))
2622    T = getFromTargetType(Target.getChar32Type()).getTypePtr();
2623
2624  // There are two things which impact the integer rank: the width, and
2625  // the ordering of builtins.  The builtin ordering is encoded in the
2626  // bottom three bits; the width is encoded in the bits above that.
2627  if (FixedWidthIntType* FWIT = dyn_cast<FixedWidthIntType>(T))
2628    return FWIT->getWidth() << 3;
2629
2630  switch (cast<BuiltinType>(T)->getKind()) {
2631  default: assert(0 && "getIntegerRank(): not a built-in integer");
2632  case BuiltinType::Bool:
2633    return 1 + (getIntWidth(BoolTy) << 3);
2634  case BuiltinType::Char_S:
2635  case BuiltinType::Char_U:
2636  case BuiltinType::SChar:
2637  case BuiltinType::UChar:
2638    return 2 + (getIntWidth(CharTy) << 3);
2639  case BuiltinType::Short:
2640  case BuiltinType::UShort:
2641    return 3 + (getIntWidth(ShortTy) << 3);
2642  case BuiltinType::Int:
2643  case BuiltinType::UInt:
2644    return 4 + (getIntWidth(IntTy) << 3);
2645  case BuiltinType::Long:
2646  case BuiltinType::ULong:
2647    return 5 + (getIntWidth(LongTy) << 3);
2648  case BuiltinType::LongLong:
2649  case BuiltinType::ULongLong:
2650    return 6 + (getIntWidth(LongLongTy) << 3);
2651  case BuiltinType::Int128:
2652  case BuiltinType::UInt128:
2653    return 7 + (getIntWidth(Int128Ty) << 3);
2654  }
2655}
2656
2657/// \brief Whether this is a promotable bitfield reference according
2658/// to C99 6.3.1.1p2, bullet 2 (and GCC extensions).
2659///
2660/// \returns the type this bit-field will promote to, or NULL if no
2661/// promotion occurs.
2662QualType ASTContext::isPromotableBitField(Expr *E) {
2663  FieldDecl *Field = E->getBitField();
2664  if (!Field)
2665    return QualType();
2666
2667  QualType FT = Field->getType();
2668
2669  llvm::APSInt BitWidthAP = Field->getBitWidth()->EvaluateAsInt(*this);
2670  uint64_t BitWidth = BitWidthAP.getZExtValue();
2671  uint64_t IntSize = getTypeSize(IntTy);
2672  // GCC extension compatibility: if the bit-field size is less than or equal
2673  // to the size of int, it gets promoted no matter what its type is.
2674  // For instance, unsigned long bf : 4 gets promoted to signed int.
2675  if (BitWidth < IntSize)
2676    return IntTy;
2677
2678  if (BitWidth == IntSize)
2679    return FT->isSignedIntegerType() ? IntTy : UnsignedIntTy;
2680
2681  // Types bigger than int are not subject to promotions, and therefore act
2682  // like the base type.
2683  // FIXME: This doesn't quite match what gcc does, but what gcc does here
2684  // is ridiculous.
2685  return QualType();
2686}
2687
2688/// getPromotedIntegerType - Returns the type that Promotable will
2689/// promote to: C99 6.3.1.1p2, assuming that Promotable is a promotable
2690/// integer type.
2691QualType ASTContext::getPromotedIntegerType(QualType Promotable) {
2692  assert(!Promotable.isNull());
2693  assert(Promotable->isPromotableIntegerType());
2694  if (Promotable->isSignedIntegerType())
2695    return IntTy;
2696  uint64_t PromotableSize = getTypeSize(Promotable);
2697  uint64_t IntSize = getTypeSize(IntTy);
2698  assert(Promotable->isUnsignedIntegerType() && PromotableSize <= IntSize);
2699  return (PromotableSize != IntSize) ? IntTy : UnsignedIntTy;
2700}
2701
2702/// getIntegerTypeOrder - Returns the highest ranked integer type:
2703/// C99 6.3.1.8p1.  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
2704/// LHS < RHS, return -1.
2705int ASTContext::getIntegerTypeOrder(QualType LHS, QualType RHS) {
2706  Type *LHSC = getCanonicalType(LHS).getTypePtr();
2707  Type *RHSC = getCanonicalType(RHS).getTypePtr();
2708  if (LHSC == RHSC) return 0;
2709
2710  bool LHSUnsigned = LHSC->isUnsignedIntegerType();
2711  bool RHSUnsigned = RHSC->isUnsignedIntegerType();
2712
2713  unsigned LHSRank = getIntegerRank(LHSC);
2714  unsigned RHSRank = getIntegerRank(RHSC);
2715
2716  if (LHSUnsigned == RHSUnsigned) {  // Both signed or both unsigned.
2717    if (LHSRank == RHSRank) return 0;
2718    return LHSRank > RHSRank ? 1 : -1;
2719  }
2720
2721  // Otherwise, the LHS is signed and the RHS is unsigned or visa versa.
2722  if (LHSUnsigned) {
2723    // If the unsigned [LHS] type is larger, return it.
2724    if (LHSRank >= RHSRank)
2725      return 1;
2726
2727    // If the signed type can represent all values of the unsigned type, it
2728    // wins.  Because we are dealing with 2's complement and types that are
2729    // powers of two larger than each other, this is always safe.
2730    return -1;
2731  }
2732
2733  // If the unsigned [RHS] type is larger, return it.
2734  if (RHSRank >= LHSRank)
2735    return -1;
2736
2737  // If the signed type can represent all values of the unsigned type, it
2738  // wins.  Because we are dealing with 2's complement and types that are
2739  // powers of two larger than each other, this is always safe.
2740  return 1;
2741}
2742
2743// getCFConstantStringType - Return the type used for constant CFStrings.
2744QualType ASTContext::getCFConstantStringType() {
2745  if (!CFConstantStringTypeDecl) {
2746    CFConstantStringTypeDecl =
2747      RecordDecl::Create(*this, TagDecl::TK_struct, TUDecl, SourceLocation(),
2748                         &Idents.get("NSConstantString"));
2749    QualType FieldTypes[4];
2750
2751    // const int *isa;
2752    FieldTypes[0] = getPointerType(IntTy.withConst());
2753    // int flags;
2754    FieldTypes[1] = IntTy;
2755    // const char *str;
2756    FieldTypes[2] = getPointerType(CharTy.withConst());
2757    // long length;
2758    FieldTypes[3] = LongTy;
2759
2760    // Create fields
2761    for (unsigned i = 0; i < 4; ++i) {
2762      FieldDecl *Field = FieldDecl::Create(*this, CFConstantStringTypeDecl,
2763                                           SourceLocation(), 0,
2764                                           FieldTypes[i], /*DInfo=*/0,
2765                                           /*BitWidth=*/0,
2766                                           /*Mutable=*/false);
2767      CFConstantStringTypeDecl->addDecl(Field);
2768    }
2769
2770    CFConstantStringTypeDecl->completeDefinition(*this);
2771  }
2772
2773  return getTagDeclType(CFConstantStringTypeDecl);
2774}
2775
2776void ASTContext::setCFConstantStringType(QualType T) {
2777  const RecordType *Rec = T->getAs<RecordType>();
2778  assert(Rec && "Invalid CFConstantStringType");
2779  CFConstantStringTypeDecl = Rec->getDecl();
2780}
2781
2782QualType ASTContext::getObjCFastEnumerationStateType() {
2783  if (!ObjCFastEnumerationStateTypeDecl) {
2784    ObjCFastEnumerationStateTypeDecl =
2785      RecordDecl::Create(*this, TagDecl::TK_struct, TUDecl, SourceLocation(),
2786                         &Idents.get("__objcFastEnumerationState"));
2787
2788    QualType FieldTypes[] = {
2789      UnsignedLongTy,
2790      getPointerType(ObjCIdTypedefType),
2791      getPointerType(UnsignedLongTy),
2792      getConstantArrayType(UnsignedLongTy,
2793                           llvm::APInt(32, 5), ArrayType::Normal, 0)
2794    };
2795
2796    for (size_t i = 0; i < 4; ++i) {
2797      FieldDecl *Field = FieldDecl::Create(*this,
2798                                           ObjCFastEnumerationStateTypeDecl,
2799                                           SourceLocation(), 0,
2800                                           FieldTypes[i], /*DInfo=*/0,
2801                                           /*BitWidth=*/0,
2802                                           /*Mutable=*/false);
2803      ObjCFastEnumerationStateTypeDecl->addDecl(Field);
2804    }
2805
2806    ObjCFastEnumerationStateTypeDecl->completeDefinition(*this);
2807  }
2808
2809  return getTagDeclType(ObjCFastEnumerationStateTypeDecl);
2810}
2811
2812QualType ASTContext::getBlockDescriptorType() {
2813  if (BlockDescriptorType)
2814    return getTagDeclType(BlockDescriptorType);
2815
2816  RecordDecl *T;
2817  // FIXME: Needs the FlagAppleBlock bit.
2818  T = RecordDecl::Create(*this, TagDecl::TK_struct, TUDecl, SourceLocation(),
2819                         &Idents.get("__block_descriptor"));
2820
2821  QualType FieldTypes[] = {
2822    UnsignedLongTy,
2823    UnsignedLongTy,
2824  };
2825
2826  const char *FieldNames[] = {
2827    "reserved",
2828    "Size"
2829  };
2830
2831  for (size_t i = 0; i < 2; ++i) {
2832    FieldDecl *Field = FieldDecl::Create(*this,
2833                                         T,
2834                                         SourceLocation(),
2835                                         &Idents.get(FieldNames[i]),
2836                                         FieldTypes[i], /*DInfo=*/0,
2837                                         /*BitWidth=*/0,
2838                                         /*Mutable=*/false);
2839    T->addDecl(Field);
2840  }
2841
2842  T->completeDefinition(*this);
2843
2844  BlockDescriptorType = T;
2845
2846  return getTagDeclType(BlockDescriptorType);
2847}
2848
2849void ASTContext::setBlockDescriptorType(QualType T) {
2850  const RecordType *Rec = T->getAs<RecordType>();
2851  assert(Rec && "Invalid BlockDescriptorType");
2852  BlockDescriptorType = Rec->getDecl();
2853}
2854
2855QualType ASTContext::getBlockDescriptorExtendedType() {
2856  if (BlockDescriptorExtendedType)
2857    return getTagDeclType(BlockDescriptorExtendedType);
2858
2859  RecordDecl *T;
2860  // FIXME: Needs the FlagAppleBlock bit.
2861  T = RecordDecl::Create(*this, TagDecl::TK_struct, TUDecl, SourceLocation(),
2862                         &Idents.get("__block_descriptor_withcopydispose"));
2863
2864  QualType FieldTypes[] = {
2865    UnsignedLongTy,
2866    UnsignedLongTy,
2867    getPointerType(VoidPtrTy),
2868    getPointerType(VoidPtrTy)
2869  };
2870
2871  const char *FieldNames[] = {
2872    "reserved",
2873    "Size",
2874    "CopyFuncPtr",
2875    "DestroyFuncPtr"
2876  };
2877
2878  for (size_t i = 0; i < 4; ++i) {
2879    FieldDecl *Field = FieldDecl::Create(*this,
2880                                         T,
2881                                         SourceLocation(),
2882                                         &Idents.get(FieldNames[i]),
2883                                         FieldTypes[i], /*DInfo=*/0,
2884                                         /*BitWidth=*/0,
2885                                         /*Mutable=*/false);
2886    T->addDecl(Field);
2887  }
2888
2889  T->completeDefinition(*this);
2890
2891  BlockDescriptorExtendedType = T;
2892
2893  return getTagDeclType(BlockDescriptorExtendedType);
2894}
2895
2896void ASTContext::setBlockDescriptorExtendedType(QualType T) {
2897  const RecordType *Rec = T->getAs<RecordType>();
2898  assert(Rec && "Invalid BlockDescriptorType");
2899  BlockDescriptorExtendedType = Rec->getDecl();
2900}
2901
2902bool ASTContext::BlockRequiresCopying(QualType Ty) {
2903  if (Ty->isBlockPointerType())
2904    return true;
2905  if (isObjCNSObjectType(Ty))
2906    return true;
2907  if (Ty->isObjCObjectPointerType())
2908    return true;
2909  return false;
2910}
2911
2912QualType ASTContext::BuildByRefType(const char *DeclName, QualType Ty) {
2913  //  type = struct __Block_byref_1_X {
2914  //    void *__isa;
2915  //    struct __Block_byref_1_X *__forwarding;
2916  //    unsigned int __flags;
2917  //    unsigned int __size;
2918  //    void *__copy_helper;		// as needed
2919  //    void *__destroy_help		// as needed
2920  //    int X;
2921  //  } *
2922
2923  bool HasCopyAndDispose = BlockRequiresCopying(Ty);
2924
2925  // FIXME: Move up
2926  static unsigned int UniqueBlockByRefTypeID = 0;
2927  llvm::SmallString<36> Name;
2928  llvm::raw_svector_ostream(Name) << "__Block_byref_" <<
2929                                  ++UniqueBlockByRefTypeID << '_' << DeclName;
2930  RecordDecl *T;
2931  T = RecordDecl::Create(*this, TagDecl::TK_struct, TUDecl, SourceLocation(),
2932                         &Idents.get(Name.str()));
2933  T->startDefinition();
2934  QualType Int32Ty = IntTy;
2935  assert(getIntWidth(IntTy) == 32 && "non-32bit int not supported");
2936  QualType FieldTypes[] = {
2937    getPointerType(VoidPtrTy),
2938    getPointerType(getTagDeclType(T)),
2939    Int32Ty,
2940    Int32Ty,
2941    getPointerType(VoidPtrTy),
2942    getPointerType(VoidPtrTy),
2943    Ty
2944  };
2945
2946  const char *FieldNames[] = {
2947    "__isa",
2948    "__forwarding",
2949    "__flags",
2950    "__size",
2951    "__copy_helper",
2952    "__destroy_helper",
2953    DeclName,
2954  };
2955
2956  for (size_t i = 0; i < 7; ++i) {
2957    if (!HasCopyAndDispose && i >=4 && i <= 5)
2958      continue;
2959    FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(),
2960                                         &Idents.get(FieldNames[i]),
2961                                         FieldTypes[i], /*DInfo=*/0,
2962                                         /*BitWidth=*/0, /*Mutable=*/false);
2963    T->addDecl(Field);
2964  }
2965
2966  T->completeDefinition(*this);
2967
2968  return getPointerType(getTagDeclType(T));
2969}
2970
2971
2972QualType ASTContext::getBlockParmType(
2973  bool BlockHasCopyDispose,
2974  llvm::SmallVector<const Expr *, 8> &BlockDeclRefDecls) {
2975  // FIXME: Move up
2976  static unsigned int UniqueBlockParmTypeID = 0;
2977  llvm::SmallString<36> Name;
2978  llvm::raw_svector_ostream(Name) << "__block_literal_"
2979                                  << ++UniqueBlockParmTypeID;
2980  RecordDecl *T;
2981  T = RecordDecl::Create(*this, TagDecl::TK_struct, TUDecl, SourceLocation(),
2982                         &Idents.get(Name.str()));
2983  QualType FieldTypes[] = {
2984    getPointerType(VoidPtrTy),
2985    IntTy,
2986    IntTy,
2987    getPointerType(VoidPtrTy),
2988    (BlockHasCopyDispose ?
2989     getPointerType(getBlockDescriptorExtendedType()) :
2990     getPointerType(getBlockDescriptorType()))
2991  };
2992
2993  const char *FieldNames[] = {
2994    "__isa",
2995    "__flags",
2996    "__reserved",
2997    "__FuncPtr",
2998    "__descriptor"
2999  };
3000
3001  for (size_t i = 0; i < 5; ++i) {
3002    FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(),
3003                                         &Idents.get(FieldNames[i]),
3004                                         FieldTypes[i], /*DInfo=*/0,
3005                                         /*BitWidth=*/0, /*Mutable=*/false);
3006    T->addDecl(Field);
3007  }
3008
3009  for (size_t i = 0; i < BlockDeclRefDecls.size(); ++i) {
3010    const Expr *E = BlockDeclRefDecls[i];
3011    const BlockDeclRefExpr *BDRE = dyn_cast<BlockDeclRefExpr>(E);
3012    clang::IdentifierInfo *Name = 0;
3013    if (BDRE) {
3014      const ValueDecl *D = BDRE->getDecl();
3015      Name = &Idents.get(D->getName());
3016    }
3017    QualType FieldType = E->getType();
3018
3019    if (BDRE && BDRE->isByRef())
3020      FieldType = BuildByRefType(BDRE->getDecl()->getNameAsCString(),
3021                                 FieldType);
3022
3023    FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(),
3024                                         Name, FieldType, /*DInfo=*/0,
3025                                         /*BitWidth=*/0, /*Mutable=*/false);
3026    T->addDecl(Field);
3027  }
3028
3029  T->completeDefinition(*this);
3030
3031  return getPointerType(getTagDeclType(T));
3032}
3033
3034void ASTContext::setObjCFastEnumerationStateType(QualType T) {
3035  const RecordType *Rec = T->getAs<RecordType>();
3036  assert(Rec && "Invalid ObjCFAstEnumerationStateType");
3037  ObjCFastEnumerationStateTypeDecl = Rec->getDecl();
3038}
3039
3040// This returns true if a type has been typedefed to BOOL:
3041// typedef <type> BOOL;
3042static bool isTypeTypedefedAsBOOL(QualType T) {
3043  if (const TypedefType *TT = dyn_cast<TypedefType>(T))
3044    if (IdentifierInfo *II = TT->getDecl()->getIdentifier())
3045      return II->isStr("BOOL");
3046
3047  return false;
3048}
3049
3050/// getObjCEncodingTypeSize returns size of type for objective-c encoding
3051/// purpose.
3052int ASTContext::getObjCEncodingTypeSize(QualType type) {
3053  uint64_t sz = getTypeSize(type);
3054
3055  // Make all integer and enum types at least as large as an int
3056  if (sz > 0 && type->isIntegralType())
3057    sz = std::max(sz, getTypeSize(IntTy));
3058  // Treat arrays as pointers, since that's how they're passed in.
3059  else if (type->isArrayType())
3060    sz = getTypeSize(VoidPtrTy);
3061  return sz / getTypeSize(CharTy);
3062}
3063
3064/// getObjCEncodingForMethodDecl - Return the encoded type for this method
3065/// declaration.
3066void ASTContext::getObjCEncodingForMethodDecl(const ObjCMethodDecl *Decl,
3067                                              std::string& S) {
3068  // FIXME: This is not very efficient.
3069  // Encode type qualifer, 'in', 'inout', etc. for the return type.
3070  getObjCEncodingForTypeQualifier(Decl->getObjCDeclQualifier(), S);
3071  // Encode result type.
3072  getObjCEncodingForType(Decl->getResultType(), S);
3073  // Compute size of all parameters.
3074  // Start with computing size of a pointer in number of bytes.
3075  // FIXME: There might(should) be a better way of doing this computation!
3076  SourceLocation Loc;
3077  int PtrSize = getTypeSize(VoidPtrTy) / getTypeSize(CharTy);
3078  // The first two arguments (self and _cmd) are pointers; account for
3079  // their size.
3080  int ParmOffset = 2 * PtrSize;
3081  for (ObjCMethodDecl::param_iterator PI = Decl->param_begin(),
3082       E = Decl->param_end(); PI != E; ++PI) {
3083    QualType PType = (*PI)->getType();
3084    int sz = getObjCEncodingTypeSize(PType);
3085    assert (sz > 0 && "getObjCEncodingForMethodDecl - Incomplete param type");
3086    ParmOffset += sz;
3087  }
3088  S += llvm::utostr(ParmOffset);
3089  S += "@0:";
3090  S += llvm::utostr(PtrSize);
3091
3092  // Argument types.
3093  ParmOffset = 2 * PtrSize;
3094  for (ObjCMethodDecl::param_iterator PI = Decl->param_begin(),
3095       E = Decl->param_end(); PI != E; ++PI) {
3096    ParmVarDecl *PVDecl = *PI;
3097    QualType PType = PVDecl->getOriginalType();
3098    if (const ArrayType *AT =
3099          dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
3100      // Use array's original type only if it has known number of
3101      // elements.
3102      if (!isa<ConstantArrayType>(AT))
3103        PType = PVDecl->getType();
3104    } else if (PType->isFunctionType())
3105      PType = PVDecl->getType();
3106    // Process argument qualifiers for user supplied arguments; such as,
3107    // 'in', 'inout', etc.
3108    getObjCEncodingForTypeQualifier(PVDecl->getObjCDeclQualifier(), S);
3109    getObjCEncodingForType(PType, S);
3110    S += llvm::utostr(ParmOffset);
3111    ParmOffset += getObjCEncodingTypeSize(PType);
3112  }
3113}
3114
3115/// getObjCEncodingForPropertyDecl - Return the encoded type for this
3116/// property declaration. If non-NULL, Container must be either an
3117/// ObjCCategoryImplDecl or ObjCImplementationDecl; it should only be
3118/// NULL when getting encodings for protocol properties.
3119/// Property attributes are stored as a comma-delimited C string. The simple
3120/// attributes readonly and bycopy are encoded as single characters. The
3121/// parametrized attributes, getter=name, setter=name, and ivar=name, are
3122/// encoded as single characters, followed by an identifier. Property types
3123/// are also encoded as a parametrized attribute. The characters used to encode
3124/// these attributes are defined by the following enumeration:
3125/// @code
3126/// enum PropertyAttributes {
3127/// kPropertyReadOnly = 'R',   // property is read-only.
3128/// kPropertyBycopy = 'C',     // property is a copy of the value last assigned
3129/// kPropertyByref = '&',  // property is a reference to the value last assigned
3130/// kPropertyDynamic = 'D',    // property is dynamic
3131/// kPropertyGetter = 'G',     // followed by getter selector name
3132/// kPropertySetter = 'S',     // followed by setter selector name
3133/// kPropertyInstanceVariable = 'V'  // followed by instance variable  name
3134/// kPropertyType = 't'              // followed by old-style type encoding.
3135/// kPropertyWeak = 'W'              // 'weak' property
3136/// kPropertyStrong = 'P'            // property GC'able
3137/// kPropertyNonAtomic = 'N'         // property non-atomic
3138/// };
3139/// @endcode
3140void ASTContext::getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD,
3141                                                const Decl *Container,
3142                                                std::string& S) {
3143  // Collect information from the property implementation decl(s).
3144  bool Dynamic = false;
3145  ObjCPropertyImplDecl *SynthesizePID = 0;
3146
3147  // FIXME: Duplicated code due to poor abstraction.
3148  if (Container) {
3149    if (const ObjCCategoryImplDecl *CID =
3150        dyn_cast<ObjCCategoryImplDecl>(Container)) {
3151      for (ObjCCategoryImplDecl::propimpl_iterator
3152             i = CID->propimpl_begin(), e = CID->propimpl_end();
3153           i != e; ++i) {
3154        ObjCPropertyImplDecl *PID = *i;
3155        if (PID->getPropertyDecl() == PD) {
3156          if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) {
3157            Dynamic = true;
3158          } else {
3159            SynthesizePID = PID;
3160          }
3161        }
3162      }
3163    } else {
3164      const ObjCImplementationDecl *OID=cast<ObjCImplementationDecl>(Container);
3165      for (ObjCCategoryImplDecl::propimpl_iterator
3166             i = OID->propimpl_begin(), e = OID->propimpl_end();
3167           i != e; ++i) {
3168        ObjCPropertyImplDecl *PID = *i;
3169        if (PID->getPropertyDecl() == PD) {
3170          if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) {
3171            Dynamic = true;
3172          } else {
3173            SynthesizePID = PID;
3174          }
3175        }
3176      }
3177    }
3178  }
3179
3180  // FIXME: This is not very efficient.
3181  S = "T";
3182
3183  // Encode result type.
3184  // GCC has some special rules regarding encoding of properties which
3185  // closely resembles encoding of ivars.
3186  getObjCEncodingForTypeImpl(PD->getType(), S, true, true, 0,
3187                             true /* outermost type */,
3188                             true /* encoding for property */);
3189
3190  if (PD->isReadOnly()) {
3191    S += ",R";
3192  } else {
3193    switch (PD->getSetterKind()) {
3194    case ObjCPropertyDecl::Assign: break;
3195    case ObjCPropertyDecl::Copy:   S += ",C"; break;
3196    case ObjCPropertyDecl::Retain: S += ",&"; break;
3197    }
3198  }
3199
3200  // It really isn't clear at all what this means, since properties
3201  // are "dynamic by default".
3202  if (Dynamic)
3203    S += ",D";
3204
3205  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_nonatomic)
3206    S += ",N";
3207
3208  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_getter) {
3209    S += ",G";
3210    S += PD->getGetterName().getAsString();
3211  }
3212
3213  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_setter) {
3214    S += ",S";
3215    S += PD->getSetterName().getAsString();
3216  }
3217
3218  if (SynthesizePID) {
3219    const ObjCIvarDecl *OID = SynthesizePID->getPropertyIvarDecl();
3220    S += ",V";
3221    S += OID->getNameAsString();
3222  }
3223
3224  // FIXME: OBJCGC: weak & strong
3225}
3226
3227/// getLegacyIntegralTypeEncoding -
3228/// Another legacy compatibility encoding: 32-bit longs are encoded as
3229/// 'l' or 'L' , but not always.  For typedefs, we need to use
3230/// 'i' or 'I' instead if encoding a struct field, or a pointer!
3231///
3232void ASTContext::getLegacyIntegralTypeEncoding (QualType &PointeeTy) const {
3233  if (isa<TypedefType>(PointeeTy.getTypePtr())) {
3234    if (const BuiltinType *BT = PointeeTy->getAs<BuiltinType>()) {
3235      if (BT->getKind() == BuiltinType::ULong &&
3236          ((const_cast<ASTContext *>(this))->getIntWidth(PointeeTy) == 32))
3237        PointeeTy = UnsignedIntTy;
3238      else
3239        if (BT->getKind() == BuiltinType::Long &&
3240            ((const_cast<ASTContext *>(this))->getIntWidth(PointeeTy) == 32))
3241          PointeeTy = IntTy;
3242    }
3243  }
3244}
3245
3246void ASTContext::getObjCEncodingForType(QualType T, std::string& S,
3247                                        const FieldDecl *Field) {
3248  // We follow the behavior of gcc, expanding structures which are
3249  // directly pointed to, and expanding embedded structures. Note that
3250  // these rules are sufficient to prevent recursive encoding of the
3251  // same type.
3252  getObjCEncodingForTypeImpl(T, S, true, true, Field,
3253                             true /* outermost type */);
3254}
3255
3256static void EncodeBitField(const ASTContext *Context, std::string& S,
3257                           const FieldDecl *FD) {
3258  const Expr *E = FD->getBitWidth();
3259  assert(E && "bitfield width not there - getObjCEncodingForTypeImpl");
3260  ASTContext *Ctx = const_cast<ASTContext*>(Context);
3261  unsigned N = E->EvaluateAsInt(*Ctx).getZExtValue();
3262  S += 'b';
3263  S += llvm::utostr(N);
3264}
3265
3266// FIXME: Use SmallString for accumulating string.
3267void ASTContext::getObjCEncodingForTypeImpl(QualType T, std::string& S,
3268                                            bool ExpandPointedToStructures,
3269                                            bool ExpandStructures,
3270                                            const FieldDecl *FD,
3271                                            bool OutermostType,
3272                                            bool EncodingProperty) {
3273  if (const BuiltinType *BT = T->getAs<BuiltinType>()) {
3274    if (FD && FD->isBitField())
3275      return EncodeBitField(this, S, FD);
3276    char encoding;
3277    switch (BT->getKind()) {
3278    default: assert(0 && "Unhandled builtin type kind");
3279    case BuiltinType::Void:       encoding = 'v'; break;
3280    case BuiltinType::Bool:       encoding = 'B'; break;
3281    case BuiltinType::Char_U:
3282    case BuiltinType::UChar:      encoding = 'C'; break;
3283    case BuiltinType::UShort:     encoding = 'S'; break;
3284    case BuiltinType::UInt:       encoding = 'I'; break;
3285    case BuiltinType::ULong:
3286        encoding =
3287          (const_cast<ASTContext *>(this))->getIntWidth(T) == 32 ? 'L' : 'Q';
3288        break;
3289    case BuiltinType::UInt128:    encoding = 'T'; break;
3290    case BuiltinType::ULongLong:  encoding = 'Q'; break;
3291    case BuiltinType::Char_S:
3292    case BuiltinType::SChar:      encoding = 'c'; break;
3293    case BuiltinType::Short:      encoding = 's'; break;
3294    case BuiltinType::Int:        encoding = 'i'; break;
3295    case BuiltinType::Long:
3296      encoding =
3297        (const_cast<ASTContext *>(this))->getIntWidth(T) == 32 ? 'l' : 'q';
3298      break;
3299    case BuiltinType::LongLong:   encoding = 'q'; break;
3300    case BuiltinType::Int128:     encoding = 't'; break;
3301    case BuiltinType::Float:      encoding = 'f'; break;
3302    case BuiltinType::Double:     encoding = 'd'; break;
3303    case BuiltinType::LongDouble: encoding = 'd'; break;
3304    }
3305
3306    S += encoding;
3307    return;
3308  }
3309
3310  if (const ComplexType *CT = T->getAs<ComplexType>()) {
3311    S += 'j';
3312    getObjCEncodingForTypeImpl(CT->getElementType(), S, false, false, 0, false,
3313                               false);
3314    return;
3315  }
3316
3317  if (const PointerType *PT = T->getAs<PointerType>()) {
3318    QualType PointeeTy = PT->getPointeeType();
3319    bool isReadOnly = false;
3320    // For historical/compatibility reasons, the read-only qualifier of the
3321    // pointee gets emitted _before_ the '^'.  The read-only qualifier of
3322    // the pointer itself gets ignored, _unless_ we are looking at a typedef!
3323    // Also, do not emit the 'r' for anything but the outermost type!
3324    if (isa<TypedefType>(T.getTypePtr())) {
3325      if (OutermostType && T.isConstQualified()) {
3326        isReadOnly = true;
3327        S += 'r';
3328      }
3329    } else if (OutermostType) {
3330      QualType P = PointeeTy;
3331      while (P->getAs<PointerType>())
3332        P = P->getAs<PointerType>()->getPointeeType();
3333      if (P.isConstQualified()) {
3334        isReadOnly = true;
3335        S += 'r';
3336      }
3337    }
3338    if (isReadOnly) {
3339      // Another legacy compatibility encoding. Some ObjC qualifier and type
3340      // combinations need to be rearranged.
3341      // Rewrite "in const" from "nr" to "rn"
3342      const char * s = S.c_str();
3343      int len = S.length();
3344      if (len >= 2 && s[len-2] == 'n' && s[len-1] == 'r') {
3345        std::string replace = "rn";
3346        S.replace(S.end()-2, S.end(), replace);
3347      }
3348    }
3349    if (isObjCSelType(PointeeTy)) {
3350      S += ':';
3351      return;
3352    }
3353
3354    if (PointeeTy->isCharType()) {
3355      // char pointer types should be encoded as '*' unless it is a
3356      // type that has been typedef'd to 'BOOL'.
3357      if (!isTypeTypedefedAsBOOL(PointeeTy)) {
3358        S += '*';
3359        return;
3360      }
3361    } else if (const RecordType *RTy = PointeeTy->getAs<RecordType>()) {
3362      // GCC binary compat: Need to convert "struct objc_class *" to "#".
3363      if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_class")) {
3364        S += '#';
3365        return;
3366      }
3367      // GCC binary compat: Need to convert "struct objc_object *" to "@".
3368      if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_object")) {
3369        S += '@';
3370        return;
3371      }
3372      // fall through...
3373    }
3374    S += '^';
3375    getLegacyIntegralTypeEncoding(PointeeTy);
3376
3377    getObjCEncodingForTypeImpl(PointeeTy, S, false, ExpandPointedToStructures,
3378                               NULL);
3379    return;
3380  }
3381
3382  if (const ArrayType *AT =
3383      // Ignore type qualifiers etc.
3384        dyn_cast<ArrayType>(T->getCanonicalTypeInternal())) {
3385    if (isa<IncompleteArrayType>(AT)) {
3386      // Incomplete arrays are encoded as a pointer to the array element.
3387      S += '^';
3388
3389      getObjCEncodingForTypeImpl(AT->getElementType(), S,
3390                                 false, ExpandStructures, FD);
3391    } else {
3392      S += '[';
3393
3394      if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
3395        S += llvm::utostr(CAT->getSize().getZExtValue());
3396      else {
3397        //Variable length arrays are encoded as a regular array with 0 elements.
3398        assert(isa<VariableArrayType>(AT) && "Unknown array type!");
3399        S += '0';
3400      }
3401
3402      getObjCEncodingForTypeImpl(AT->getElementType(), S,
3403                                 false, ExpandStructures, FD);
3404      S += ']';
3405    }
3406    return;
3407  }
3408
3409  if (T->getAs<FunctionType>()) {
3410    S += '?';
3411    return;
3412  }
3413
3414  if (const RecordType *RTy = T->getAs<RecordType>()) {
3415    RecordDecl *RDecl = RTy->getDecl();
3416    S += RDecl->isUnion() ? '(' : '{';
3417    // Anonymous structures print as '?'
3418    if (const IdentifierInfo *II = RDecl->getIdentifier()) {
3419      S += II->getName();
3420    } else {
3421      S += '?';
3422    }
3423    if (ExpandStructures) {
3424      S += '=';
3425      for (RecordDecl::field_iterator Field = RDecl->field_begin(),
3426                                   FieldEnd = RDecl->field_end();
3427           Field != FieldEnd; ++Field) {
3428        if (FD) {
3429          S += '"';
3430          S += Field->getNameAsString();
3431          S += '"';
3432        }
3433
3434        // Special case bit-fields.
3435        if (Field->isBitField()) {
3436          getObjCEncodingForTypeImpl(Field->getType(), S, false, true,
3437                                     (*Field));
3438        } else {
3439          QualType qt = Field->getType();
3440          getLegacyIntegralTypeEncoding(qt);
3441          getObjCEncodingForTypeImpl(qt, S, false, true,
3442                                     FD);
3443        }
3444      }
3445    }
3446    S += RDecl->isUnion() ? ')' : '}';
3447    return;
3448  }
3449
3450  if (T->isEnumeralType()) {
3451    if (FD && FD->isBitField())
3452      EncodeBitField(this, S, FD);
3453    else
3454      S += 'i';
3455    return;
3456  }
3457
3458  if (T->isBlockPointerType()) {
3459    S += "@?"; // Unlike a pointer-to-function, which is "^?".
3460    return;
3461  }
3462
3463  if (const ObjCInterfaceType *OIT = T->getAs<ObjCInterfaceType>()) {
3464    // @encode(class_name)
3465    ObjCInterfaceDecl *OI = OIT->getDecl();
3466    S += '{';
3467    const IdentifierInfo *II = OI->getIdentifier();
3468    S += II->getName();
3469    S += '=';
3470    llvm::SmallVector<FieldDecl*, 32> RecFields;
3471    CollectObjCIvars(OI, RecFields);
3472    for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
3473      if (RecFields[i]->isBitField())
3474        getObjCEncodingForTypeImpl(RecFields[i]->getType(), S, false, true,
3475                                   RecFields[i]);
3476      else
3477        getObjCEncodingForTypeImpl(RecFields[i]->getType(), S, false, true,
3478                                   FD);
3479    }
3480    S += '}';
3481    return;
3482  }
3483
3484  if (const ObjCObjectPointerType *OPT = T->getAs<ObjCObjectPointerType>()) {
3485    if (OPT->isObjCIdType()) {
3486      S += '@';
3487      return;
3488    }
3489
3490    if (OPT->isObjCClassType() || OPT->isObjCQualifiedClassType()) {
3491      // FIXME: Consider if we need to output qualifiers for 'Class<p>'.
3492      // Since this is a binary compatibility issue, need to consult with runtime
3493      // folks. Fortunately, this is a *very* obsure construct.
3494      S += '#';
3495      return;
3496    }
3497
3498    if (OPT->isObjCQualifiedIdType()) {
3499      getObjCEncodingForTypeImpl(getObjCIdType(), S,
3500                                 ExpandPointedToStructures,
3501                                 ExpandStructures, FD);
3502      if (FD || EncodingProperty) {
3503        // Note that we do extended encoding of protocol qualifer list
3504        // Only when doing ivar or property encoding.
3505        S += '"';
3506        for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(),
3507             E = OPT->qual_end(); I != E; ++I) {
3508          S += '<';
3509          S += (*I)->getNameAsString();
3510          S += '>';
3511        }
3512        S += '"';
3513      }
3514      return;
3515    }
3516
3517    QualType PointeeTy = OPT->getPointeeType();
3518    if (!EncodingProperty &&
3519        isa<TypedefType>(PointeeTy.getTypePtr())) {
3520      // Another historical/compatibility reason.
3521      // We encode the underlying type which comes out as
3522      // {...};
3523      S += '^';
3524      getObjCEncodingForTypeImpl(PointeeTy, S,
3525                                 false, ExpandPointedToStructures,
3526                                 NULL);
3527      return;
3528    }
3529
3530    S += '@';
3531    if (OPT->getInterfaceDecl() && (FD || EncodingProperty)) {
3532      S += '"';
3533      S += OPT->getInterfaceDecl()->getIdentifier()->getName();
3534      for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(),
3535           E = OPT->qual_end(); I != E; ++I) {
3536        S += '<';
3537        S += (*I)->getNameAsString();
3538        S += '>';
3539      }
3540      S += '"';
3541    }
3542    return;
3543  }
3544
3545  assert(0 && "@encode for type not implemented!");
3546}
3547
3548void ASTContext::getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT,
3549                                                 std::string& S) const {
3550  if (QT & Decl::OBJC_TQ_In)
3551    S += 'n';
3552  if (QT & Decl::OBJC_TQ_Inout)
3553    S += 'N';
3554  if (QT & Decl::OBJC_TQ_Out)
3555    S += 'o';
3556  if (QT & Decl::OBJC_TQ_Bycopy)
3557    S += 'O';
3558  if (QT & Decl::OBJC_TQ_Byref)
3559    S += 'R';
3560  if (QT & Decl::OBJC_TQ_Oneway)
3561    S += 'V';
3562}
3563
3564void ASTContext::setBuiltinVaListType(QualType T) {
3565  assert(BuiltinVaListType.isNull() && "__builtin_va_list type already set!");
3566
3567  BuiltinVaListType = T;
3568}
3569
3570void ASTContext::setObjCIdType(QualType T) {
3571  ObjCIdTypedefType = T;
3572}
3573
3574void ASTContext::setObjCSelType(QualType T) {
3575  ObjCSelType = T;
3576
3577  const TypedefType *TT = T->getAs<TypedefType>();
3578  if (!TT)
3579    return;
3580  TypedefDecl *TD = TT->getDecl();
3581
3582  // typedef struct objc_selector *SEL;
3583  const PointerType *ptr = TD->getUnderlyingType()->getAs<PointerType>();
3584  if (!ptr)
3585    return;
3586  const RecordType *rec = ptr->getPointeeType()->getAsStructureType();
3587  if (!rec)
3588    return;
3589  SelStructType = rec;
3590}
3591
3592void ASTContext::setObjCProtoType(QualType QT) {
3593  ObjCProtoType = QT;
3594}
3595
3596void ASTContext::setObjCClassType(QualType T) {
3597  ObjCClassTypedefType = T;
3598}
3599
3600void ASTContext::setObjCConstantStringInterface(ObjCInterfaceDecl *Decl) {
3601  assert(ObjCConstantStringType.isNull() &&
3602         "'NSConstantString' type already set!");
3603
3604  ObjCConstantStringType = getObjCInterfaceType(Decl);
3605}
3606
3607/// \brief Retrieve the template name that represents a qualified
3608/// template name such as \c std::vector.
3609TemplateName ASTContext::getQualifiedTemplateName(NestedNameSpecifier *NNS,
3610                                                  bool TemplateKeyword,
3611                                                  TemplateDecl *Template) {
3612  llvm::FoldingSetNodeID ID;
3613  QualifiedTemplateName::Profile(ID, NNS, TemplateKeyword, Template);
3614
3615  void *InsertPos = 0;
3616  QualifiedTemplateName *QTN =
3617    QualifiedTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
3618  if (!QTN) {
3619    QTN = new (*this,4) QualifiedTemplateName(NNS, TemplateKeyword, Template);
3620    QualifiedTemplateNames.InsertNode(QTN, InsertPos);
3621  }
3622
3623  return TemplateName(QTN);
3624}
3625
3626/// \brief Retrieve the template name that represents a qualified
3627/// template name such as \c std::vector.
3628TemplateName ASTContext::getQualifiedTemplateName(NestedNameSpecifier *NNS,
3629                                                  bool TemplateKeyword,
3630                                            OverloadedFunctionDecl *Template) {
3631  llvm::FoldingSetNodeID ID;
3632  QualifiedTemplateName::Profile(ID, NNS, TemplateKeyword, Template);
3633
3634  void *InsertPos = 0;
3635  QualifiedTemplateName *QTN =
3636  QualifiedTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
3637  if (!QTN) {
3638    QTN = new (*this,4) QualifiedTemplateName(NNS, TemplateKeyword, Template);
3639    QualifiedTemplateNames.InsertNode(QTN, InsertPos);
3640  }
3641
3642  return TemplateName(QTN);
3643}
3644
3645/// \brief Retrieve the template name that represents a dependent
3646/// template name such as \c MetaFun::template apply.
3647TemplateName ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
3648                                                  const IdentifierInfo *Name) {
3649  assert((!NNS || NNS->isDependent()) &&
3650         "Nested name specifier must be dependent");
3651
3652  llvm::FoldingSetNodeID ID;
3653  DependentTemplateName::Profile(ID, NNS, Name);
3654
3655  void *InsertPos = 0;
3656  DependentTemplateName *QTN =
3657    DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
3658
3659  if (QTN)
3660    return TemplateName(QTN);
3661
3662  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
3663  if (CanonNNS == NNS) {
3664    QTN = new (*this,4) DependentTemplateName(NNS, Name);
3665  } else {
3666    TemplateName Canon = getDependentTemplateName(CanonNNS, Name);
3667    QTN = new (*this,4) DependentTemplateName(NNS, Name, Canon);
3668  }
3669
3670  DependentTemplateNames.InsertNode(QTN, InsertPos);
3671  return TemplateName(QTN);
3672}
3673
3674/// \brief Retrieve the template name that represents a dependent
3675/// template name such as \c MetaFun::template operator+.
3676TemplateName
3677ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
3678                                     OverloadedOperatorKind Operator) {
3679  assert((!NNS || NNS->isDependent()) &&
3680         "Nested name specifier must be dependent");
3681
3682  llvm::FoldingSetNodeID ID;
3683  DependentTemplateName::Profile(ID, NNS, Operator);
3684
3685  void *InsertPos = 0;
3686  DependentTemplateName *QTN =
3687  DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
3688
3689  if (QTN)
3690    return TemplateName(QTN);
3691
3692  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
3693  if (CanonNNS == NNS) {
3694    QTN = new (*this,4) DependentTemplateName(NNS, Operator);
3695  } else {
3696    TemplateName Canon = getDependentTemplateName(CanonNNS, Operator);
3697    QTN = new (*this,4) DependentTemplateName(NNS, Operator, Canon);
3698  }
3699
3700  DependentTemplateNames.InsertNode(QTN, InsertPos);
3701  return TemplateName(QTN);
3702}
3703
3704/// getFromTargetType - Given one of the integer types provided by
3705/// TargetInfo, produce the corresponding type. The unsigned @p Type
3706/// is actually a value of type @c TargetInfo::IntType.
3707CanQualType ASTContext::getFromTargetType(unsigned Type) const {
3708  switch (Type) {
3709  case TargetInfo::NoInt: return CanQualType();
3710  case TargetInfo::SignedShort: return ShortTy;
3711  case TargetInfo::UnsignedShort: return UnsignedShortTy;
3712  case TargetInfo::SignedInt: return IntTy;
3713  case TargetInfo::UnsignedInt: return UnsignedIntTy;
3714  case TargetInfo::SignedLong: return LongTy;
3715  case TargetInfo::UnsignedLong: return UnsignedLongTy;
3716  case TargetInfo::SignedLongLong: return LongLongTy;
3717  case TargetInfo::UnsignedLongLong: return UnsignedLongLongTy;
3718  }
3719
3720  assert(false && "Unhandled TargetInfo::IntType value");
3721  return CanQualType();
3722}
3723
3724//===----------------------------------------------------------------------===//
3725//                        Type Predicates.
3726//===----------------------------------------------------------------------===//
3727
3728/// isObjCNSObjectType - Return true if this is an NSObject object using
3729/// NSObject attribute on a c-style pointer type.
3730/// FIXME - Make it work directly on types.
3731/// FIXME: Move to Type.
3732///
3733bool ASTContext::isObjCNSObjectType(QualType Ty) const {
3734  if (TypedefType *TDT = dyn_cast<TypedefType>(Ty)) {
3735    if (TypedefDecl *TD = TDT->getDecl())
3736      if (TD->getAttr<ObjCNSObjectAttr>())
3737        return true;
3738  }
3739  return false;
3740}
3741
3742/// getObjCGCAttr - Returns one of GCNone, Weak or Strong objc's
3743/// garbage collection attribute.
3744///
3745Qualifiers::GC ASTContext::getObjCGCAttrKind(const QualType &Ty) const {
3746  Qualifiers::GC GCAttrs = Qualifiers::GCNone;
3747  if (getLangOptions().ObjC1 &&
3748      getLangOptions().getGCMode() != LangOptions::NonGC) {
3749    GCAttrs = Ty.getObjCGCAttr();
3750    // Default behavious under objective-c's gc is for objective-c pointers
3751    // (or pointers to them) be treated as though they were declared
3752    // as __strong.
3753    if (GCAttrs == Qualifiers::GCNone) {
3754      if (Ty->isObjCObjectPointerType() || Ty->isBlockPointerType())
3755        GCAttrs = Qualifiers::Strong;
3756      else if (Ty->isPointerType())
3757        return getObjCGCAttrKind(Ty->getAs<PointerType>()->getPointeeType());
3758    }
3759    // Non-pointers have none gc'able attribute regardless of the attribute
3760    // set on them.
3761    else if (!Ty->isAnyPointerType() && !Ty->isBlockPointerType())
3762      return Qualifiers::GCNone;
3763  }
3764  return GCAttrs;
3765}
3766
3767//===----------------------------------------------------------------------===//
3768//                        Type Compatibility Testing
3769//===----------------------------------------------------------------------===//
3770
3771/// areCompatVectorTypes - Return true if the two specified vector types are
3772/// compatible.
3773static bool areCompatVectorTypes(const VectorType *LHS,
3774                                 const VectorType *RHS) {
3775  assert(LHS->isCanonicalUnqualified() && RHS->isCanonicalUnqualified());
3776  return LHS->getElementType() == RHS->getElementType() &&
3777         LHS->getNumElements() == RHS->getNumElements();
3778}
3779
3780//===----------------------------------------------------------------------===//
3781// ObjCQualifiedIdTypesAreCompatible - Compatibility testing for qualified id's.
3782//===----------------------------------------------------------------------===//
3783
3784/// ProtocolCompatibleWithProtocol - return 'true' if 'lProto' is in the
3785/// inheritance hierarchy of 'rProto'.
3786bool ASTContext::ProtocolCompatibleWithProtocol(ObjCProtocolDecl *lProto,
3787                                                ObjCProtocolDecl *rProto) {
3788  if (lProto == rProto)
3789    return true;
3790  for (ObjCProtocolDecl::protocol_iterator PI = rProto->protocol_begin(),
3791       E = rProto->protocol_end(); PI != E; ++PI)
3792    if (ProtocolCompatibleWithProtocol(lProto, *PI))
3793      return true;
3794  return false;
3795}
3796
3797/// QualifiedIdConformsQualifiedId - compare id<p,...> with id<p1,...>
3798/// return true if lhs's protocols conform to rhs's protocol; false
3799/// otherwise.
3800bool ASTContext::QualifiedIdConformsQualifiedId(QualType lhs, QualType rhs) {
3801  if (lhs->isObjCQualifiedIdType() && rhs->isObjCQualifiedIdType())
3802    return ObjCQualifiedIdTypesAreCompatible(lhs, rhs, false);
3803  return false;
3804}
3805
3806/// ObjCQualifiedIdTypesAreCompatible - We know that one of lhs/rhs is an
3807/// ObjCQualifiedIDType.
3808bool ASTContext::ObjCQualifiedIdTypesAreCompatible(QualType lhs, QualType rhs,
3809                                                   bool compare) {
3810  // Allow id<P..> and an 'id' or void* type in all cases.
3811  if (lhs->isVoidPointerType() ||
3812      lhs->isObjCIdType() || lhs->isObjCClassType())
3813    return true;
3814  else if (rhs->isVoidPointerType() ||
3815           rhs->isObjCIdType() || rhs->isObjCClassType())
3816    return true;
3817
3818  if (const ObjCObjectPointerType *lhsQID = lhs->getAsObjCQualifiedIdType()) {
3819    const ObjCObjectPointerType *rhsOPT = rhs->getAs<ObjCObjectPointerType>();
3820
3821    if (!rhsOPT) return false;
3822
3823    if (rhsOPT->qual_empty()) {
3824      // If the RHS is a unqualified interface pointer "NSString*",
3825      // make sure we check the class hierarchy.
3826      if (ObjCInterfaceDecl *rhsID = rhsOPT->getInterfaceDecl()) {
3827        for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
3828             E = lhsQID->qual_end(); I != E; ++I) {
3829          // when comparing an id<P> on lhs with a static type on rhs,
3830          // see if static class implements all of id's protocols, directly or
3831          // through its super class and categories.
3832          if (!rhsID->ClassImplementsProtocol(*I, true))
3833            return false;
3834        }
3835      }
3836      // If there are no qualifiers and no interface, we have an 'id'.
3837      return true;
3838    }
3839    // Both the right and left sides have qualifiers.
3840    for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
3841         E = lhsQID->qual_end(); I != E; ++I) {
3842      ObjCProtocolDecl *lhsProto = *I;
3843      bool match = false;
3844
3845      // when comparing an id<P> on lhs with a static type on rhs,
3846      // see if static class implements all of id's protocols, directly or
3847      // through its super class and categories.
3848      for (ObjCObjectPointerType::qual_iterator J = rhsOPT->qual_begin(),
3849           E = rhsOPT->qual_end(); J != E; ++J) {
3850        ObjCProtocolDecl *rhsProto = *J;
3851        if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
3852            (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
3853          match = true;
3854          break;
3855        }
3856      }
3857      // If the RHS is a qualified interface pointer "NSString<P>*",
3858      // make sure we check the class hierarchy.
3859      if (ObjCInterfaceDecl *rhsID = rhsOPT->getInterfaceDecl()) {
3860        for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
3861             E = lhsQID->qual_end(); I != E; ++I) {
3862          // when comparing an id<P> on lhs with a static type on rhs,
3863          // see if static class implements all of id's protocols, directly or
3864          // through its super class and categories.
3865          if (rhsID->ClassImplementsProtocol(*I, true)) {
3866            match = true;
3867            break;
3868          }
3869        }
3870      }
3871      if (!match)
3872        return false;
3873    }
3874
3875    return true;
3876  }
3877
3878  const ObjCObjectPointerType *rhsQID = rhs->getAsObjCQualifiedIdType();
3879  assert(rhsQID && "One of the LHS/RHS should be id<x>");
3880
3881  if (const ObjCObjectPointerType *lhsOPT =
3882        lhs->getAsObjCInterfacePointerType()) {
3883    if (lhsOPT->qual_empty()) {
3884      bool match = false;
3885      if (ObjCInterfaceDecl *lhsID = lhsOPT->getInterfaceDecl()) {
3886        for (ObjCObjectPointerType::qual_iterator I = rhsQID->qual_begin(),
3887             E = rhsQID->qual_end(); I != E; ++I) {
3888          // when comparing an id<P> on lhs with a static type on rhs,
3889          // see if static class implements all of id's protocols, directly or
3890          // through its super class and categories.
3891          if (lhsID->ClassImplementsProtocol(*I, true)) {
3892            match = true;
3893            break;
3894          }
3895        }
3896        if (!match)
3897          return false;
3898      }
3899      return true;
3900    }
3901    // Both the right and left sides have qualifiers.
3902    for (ObjCObjectPointerType::qual_iterator I = lhsOPT->qual_begin(),
3903         E = lhsOPT->qual_end(); I != E; ++I) {
3904      ObjCProtocolDecl *lhsProto = *I;
3905      bool match = false;
3906
3907      // when comparing an id<P> on lhs with a static type on rhs,
3908      // see if static class implements all of id's protocols, directly or
3909      // through its super class and categories.
3910      for (ObjCObjectPointerType::qual_iterator J = rhsQID->qual_begin(),
3911           E = rhsQID->qual_end(); J != E; ++J) {
3912        ObjCProtocolDecl *rhsProto = *J;
3913        if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
3914            (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
3915          match = true;
3916          break;
3917        }
3918      }
3919      if (!match)
3920        return false;
3921    }
3922    return true;
3923  }
3924  return false;
3925}
3926
3927/// canAssignObjCInterfaces - Return true if the two interface types are
3928/// compatible for assignment from RHS to LHS.  This handles validation of any
3929/// protocol qualifiers on the LHS or RHS.
3930///
3931bool ASTContext::canAssignObjCInterfaces(const ObjCObjectPointerType *LHSOPT,
3932                                         const ObjCObjectPointerType *RHSOPT) {
3933  // If either type represents the built-in 'id' or 'Class' types, return true.
3934  if (LHSOPT->isObjCBuiltinType() || RHSOPT->isObjCBuiltinType())
3935    return true;
3936
3937  if (LHSOPT->isObjCQualifiedIdType() || RHSOPT->isObjCQualifiedIdType())
3938    return ObjCQualifiedIdTypesAreCompatible(QualType(LHSOPT,0),
3939                                             QualType(RHSOPT,0),
3940                                             false);
3941
3942  const ObjCInterfaceType* LHS = LHSOPT->getInterfaceType();
3943  const ObjCInterfaceType* RHS = RHSOPT->getInterfaceType();
3944  if (LHS && RHS) // We have 2 user-defined types.
3945    return canAssignObjCInterfaces(LHS, RHS);
3946
3947  return false;
3948}
3949
3950/// getIntersectionOfProtocols - This routine finds the intersection of set
3951/// of protocols inherited from two distinct objective-c pointer objects.
3952/// It is used to build composite qualifier list of the composite type of
3953/// the conditional expression involving two objective-c pointer objects.
3954static
3955void getIntersectionOfProtocols(ASTContext &Context,
3956                                const ObjCObjectPointerType *LHSOPT,
3957                                const ObjCObjectPointerType *RHSOPT,
3958      llvm::SmallVectorImpl<ObjCProtocolDecl *> &IntersectionOfProtocols) {
3959
3960  const ObjCInterfaceType* LHS = LHSOPT->getInterfaceType();
3961  const ObjCInterfaceType* RHS = RHSOPT->getInterfaceType();
3962
3963  llvm::SmallPtrSet<ObjCProtocolDecl *, 8> InheritedProtocolSet;
3964  unsigned LHSNumProtocols = LHS->getNumProtocols();
3965  if (LHSNumProtocols > 0)
3966    InheritedProtocolSet.insert(LHS->qual_begin(), LHS->qual_end());
3967  else {
3968    llvm::SmallVector<ObjCProtocolDecl *, 8> LHSInheritedProtocols;
3969     Context.CollectInheritedProtocols(LHS->getDecl(), LHSInheritedProtocols);
3970    InheritedProtocolSet.insert(LHSInheritedProtocols.begin(),
3971                                LHSInheritedProtocols.end());
3972  }
3973
3974  unsigned RHSNumProtocols = RHS->getNumProtocols();
3975  if (RHSNumProtocols > 0) {
3976    ObjCProtocolDecl **RHSProtocols = (ObjCProtocolDecl **)RHS->qual_begin();
3977    for (unsigned i = 0; i < RHSNumProtocols; ++i)
3978      if (InheritedProtocolSet.count(RHSProtocols[i]))
3979        IntersectionOfProtocols.push_back(RHSProtocols[i]);
3980  }
3981  else {
3982    llvm::SmallVector<ObjCProtocolDecl *, 8> RHSInheritedProtocols;
3983    Context.CollectInheritedProtocols(RHS->getDecl(), RHSInheritedProtocols);
3984    // FIXME. This may cause duplication of protocols in the list, but should
3985    // be harmless.
3986    for (unsigned i = 0, len = RHSInheritedProtocols.size(); i < len; ++i)
3987      if (InheritedProtocolSet.count(RHSInheritedProtocols[i]))
3988        IntersectionOfProtocols.push_back(RHSInheritedProtocols[i]);
3989  }
3990}
3991
3992/// areCommonBaseCompatible - Returns common base class of the two classes if
3993/// one found. Note that this is O'2 algorithm. But it will be called as the
3994/// last type comparison in a ?-exp of ObjC pointer types before a
3995/// warning is issued. So, its invokation is extremely rare.
3996QualType ASTContext::areCommonBaseCompatible(
3997                                          const ObjCObjectPointerType *LHSOPT,
3998                                          const ObjCObjectPointerType *RHSOPT) {
3999  const ObjCInterfaceType* LHS = LHSOPT->getInterfaceType();
4000  const ObjCInterfaceType* RHS = RHSOPT->getInterfaceType();
4001  if (!LHS || !RHS)
4002    return QualType();
4003
4004  while (const ObjCInterfaceDecl *LHSIDecl = LHS->getDecl()->getSuperClass()) {
4005    QualType LHSTy = getObjCInterfaceType(LHSIDecl);
4006    LHS = LHSTy->getAs<ObjCInterfaceType>();
4007    if (canAssignObjCInterfaces(LHS, RHS)) {
4008      llvm::SmallVector<ObjCProtocolDecl *, 8> IntersectionOfProtocols;
4009      getIntersectionOfProtocols(*this,
4010                                 LHSOPT, RHSOPT, IntersectionOfProtocols);
4011      if (IntersectionOfProtocols.empty())
4012        LHSTy = getObjCObjectPointerType(LHSTy);
4013      else
4014        LHSTy = getObjCObjectPointerType(LHSTy, &IntersectionOfProtocols[0],
4015                                                IntersectionOfProtocols.size());
4016      return LHSTy;
4017    }
4018  }
4019
4020  return QualType();
4021}
4022
4023bool ASTContext::canAssignObjCInterfaces(const ObjCInterfaceType *LHS,
4024                                         const ObjCInterfaceType *RHS) {
4025  // Verify that the base decls are compatible: the RHS must be a subclass of
4026  // the LHS.
4027  if (!LHS->getDecl()->isSuperClassOf(RHS->getDecl()))
4028    return false;
4029
4030  // RHS must have a superset of the protocols in the LHS.  If the LHS is not
4031  // protocol qualified at all, then we are good.
4032  if (LHS->getNumProtocols() == 0)
4033    return true;
4034
4035  // Okay, we know the LHS has protocol qualifiers.  If the RHS doesn't, then it
4036  // isn't a superset.
4037  if (RHS->getNumProtocols() == 0)
4038    return true;  // FIXME: should return false!
4039
4040  for (ObjCInterfaceType::qual_iterator LHSPI = LHS->qual_begin(),
4041                                        LHSPE = LHS->qual_end();
4042       LHSPI != LHSPE; LHSPI++) {
4043    bool RHSImplementsProtocol = false;
4044
4045    // If the RHS doesn't implement the protocol on the left, the types
4046    // are incompatible.
4047    for (ObjCInterfaceType::qual_iterator RHSPI = RHS->qual_begin(),
4048                                          RHSPE = RHS->qual_end();
4049         RHSPI != RHSPE; RHSPI++) {
4050      if ((*RHSPI)->lookupProtocolNamed((*LHSPI)->getIdentifier())) {
4051        RHSImplementsProtocol = true;
4052        break;
4053      }
4054    }
4055    // FIXME: For better diagnostics, consider passing back the protocol name.
4056    if (!RHSImplementsProtocol)
4057      return false;
4058  }
4059  // The RHS implements all protocols listed on the LHS.
4060  return true;
4061}
4062
4063bool ASTContext::areComparableObjCPointerTypes(QualType LHS, QualType RHS) {
4064  // get the "pointed to" types
4065  const ObjCObjectPointerType *LHSOPT = LHS->getAs<ObjCObjectPointerType>();
4066  const ObjCObjectPointerType *RHSOPT = RHS->getAs<ObjCObjectPointerType>();
4067
4068  if (!LHSOPT || !RHSOPT)
4069    return false;
4070
4071  return canAssignObjCInterfaces(LHSOPT, RHSOPT) ||
4072         canAssignObjCInterfaces(RHSOPT, LHSOPT);
4073}
4074
4075/// typesAreCompatible - C99 6.7.3p9: For two qualified types to be compatible,
4076/// both shall have the identically qualified version of a compatible type.
4077/// C99 6.2.7p1: Two types have compatible types if their types are the
4078/// same. See 6.7.[2,3,5] for additional rules.
4079bool ASTContext::typesAreCompatible(QualType LHS, QualType RHS) {
4080  return !mergeTypes(LHS, RHS).isNull();
4081}
4082
4083QualType ASTContext::mergeFunctionTypes(QualType lhs, QualType rhs) {
4084  const FunctionType *lbase = lhs->getAs<FunctionType>();
4085  const FunctionType *rbase = rhs->getAs<FunctionType>();
4086  const FunctionProtoType *lproto = dyn_cast<FunctionProtoType>(lbase);
4087  const FunctionProtoType *rproto = dyn_cast<FunctionProtoType>(rbase);
4088  bool allLTypes = true;
4089  bool allRTypes = true;
4090
4091  // Check return type
4092  QualType retType = mergeTypes(lbase->getResultType(), rbase->getResultType());
4093  if (retType.isNull()) return QualType();
4094  if (getCanonicalType(retType) != getCanonicalType(lbase->getResultType()))
4095    allLTypes = false;
4096  if (getCanonicalType(retType) != getCanonicalType(rbase->getResultType()))
4097    allRTypes = false;
4098  // FIXME: double check this
4099  bool NoReturn = lbase->getNoReturnAttr() || rbase->getNoReturnAttr();
4100  if (NoReturn != lbase->getNoReturnAttr())
4101    allLTypes = false;
4102  if (NoReturn != rbase->getNoReturnAttr())
4103    allRTypes = false;
4104
4105  if (lproto && rproto) { // two C99 style function prototypes
4106    assert(!lproto->hasExceptionSpec() && !rproto->hasExceptionSpec() &&
4107           "C++ shouldn't be here");
4108    unsigned lproto_nargs = lproto->getNumArgs();
4109    unsigned rproto_nargs = rproto->getNumArgs();
4110
4111    // Compatible functions must have the same number of arguments
4112    if (lproto_nargs != rproto_nargs)
4113      return QualType();
4114
4115    // Variadic and non-variadic functions aren't compatible
4116    if (lproto->isVariadic() != rproto->isVariadic())
4117      return QualType();
4118
4119    if (lproto->getTypeQuals() != rproto->getTypeQuals())
4120      return QualType();
4121
4122    // Check argument compatibility
4123    llvm::SmallVector<QualType, 10> types;
4124    for (unsigned i = 0; i < lproto_nargs; i++) {
4125      QualType largtype = lproto->getArgType(i).getUnqualifiedType();
4126      QualType rargtype = rproto->getArgType(i).getUnqualifiedType();
4127      QualType argtype = mergeTypes(largtype, rargtype);
4128      if (argtype.isNull()) return QualType();
4129      types.push_back(argtype);
4130      if (getCanonicalType(argtype) != getCanonicalType(largtype))
4131        allLTypes = false;
4132      if (getCanonicalType(argtype) != getCanonicalType(rargtype))
4133        allRTypes = false;
4134    }
4135    if (allLTypes) return lhs;
4136    if (allRTypes) return rhs;
4137    return getFunctionType(retType, types.begin(), types.size(),
4138                           lproto->isVariadic(), lproto->getTypeQuals(),
4139                           NoReturn);
4140  }
4141
4142  if (lproto) allRTypes = false;
4143  if (rproto) allLTypes = false;
4144
4145  const FunctionProtoType *proto = lproto ? lproto : rproto;
4146  if (proto) {
4147    assert(!proto->hasExceptionSpec() && "C++ shouldn't be here");
4148    if (proto->isVariadic()) return QualType();
4149    // Check that the types are compatible with the types that
4150    // would result from default argument promotions (C99 6.7.5.3p15).
4151    // The only types actually affected are promotable integer
4152    // types and floats, which would be passed as a different
4153    // type depending on whether the prototype is visible.
4154    unsigned proto_nargs = proto->getNumArgs();
4155    for (unsigned i = 0; i < proto_nargs; ++i) {
4156      QualType argTy = proto->getArgType(i);
4157      if (argTy->isPromotableIntegerType() ||
4158          getCanonicalType(argTy).getUnqualifiedType() == FloatTy)
4159        return QualType();
4160    }
4161
4162    if (allLTypes) return lhs;
4163    if (allRTypes) return rhs;
4164    return getFunctionType(retType, proto->arg_type_begin(),
4165                           proto->getNumArgs(), proto->isVariadic(),
4166                           proto->getTypeQuals(), NoReturn);
4167  }
4168
4169  if (allLTypes) return lhs;
4170  if (allRTypes) return rhs;
4171  return getFunctionNoProtoType(retType, NoReturn);
4172}
4173
4174QualType ASTContext::mergeTypes(QualType LHS, QualType RHS) {
4175  // C++ [expr]: If an expression initially has the type "reference to T", the
4176  // type is adjusted to "T" prior to any further analysis, the expression
4177  // designates the object or function denoted by the reference, and the
4178  // expression is an lvalue unless the reference is an rvalue reference and
4179  // the expression is a function call (possibly inside parentheses).
4180  // FIXME: C++ shouldn't be going through here!  The rules are different
4181  // enough that they should be handled separately.
4182  // FIXME: Merging of lvalue and rvalue references is incorrect. C++ *really*
4183  // shouldn't be going through here!
4184  if (const ReferenceType *RT = LHS->getAs<ReferenceType>())
4185    LHS = RT->getPointeeType();
4186  if (const ReferenceType *RT = RHS->getAs<ReferenceType>())
4187    RHS = RT->getPointeeType();
4188
4189  QualType LHSCan = getCanonicalType(LHS),
4190           RHSCan = getCanonicalType(RHS);
4191
4192  // If two types are identical, they are compatible.
4193  if (LHSCan == RHSCan)
4194    return LHS;
4195
4196  // If the qualifiers are different, the types aren't compatible... mostly.
4197  Qualifiers LQuals = LHSCan.getQualifiers();
4198  Qualifiers RQuals = RHSCan.getQualifiers();
4199  if (LQuals != RQuals) {
4200    // If any of these qualifiers are different, we have a type
4201    // mismatch.
4202    if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() ||
4203        LQuals.getAddressSpace() != RQuals.getAddressSpace())
4204      return QualType();
4205
4206    // Exactly one GC qualifier difference is allowed: __strong is
4207    // okay if the other type has no GC qualifier but is an Objective
4208    // C object pointer (i.e. implicitly strong by default).  We fix
4209    // this by pretending that the unqualified type was actually
4210    // qualified __strong.
4211    Qualifiers::GC GC_L = LQuals.getObjCGCAttr();
4212    Qualifiers::GC GC_R = RQuals.getObjCGCAttr();
4213    assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements");
4214
4215    if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak)
4216      return QualType();
4217
4218    if (GC_L == Qualifiers::Strong && RHSCan->isObjCObjectPointerType()) {
4219      return mergeTypes(LHS, getObjCGCQualType(RHS, Qualifiers::Strong));
4220    }
4221    if (GC_R == Qualifiers::Strong && LHSCan->isObjCObjectPointerType()) {
4222      return mergeTypes(getObjCGCQualType(LHS, Qualifiers::Strong), RHS);
4223    }
4224    return QualType();
4225  }
4226
4227  // Okay, qualifiers are equal.
4228
4229  Type::TypeClass LHSClass = LHSCan->getTypeClass();
4230  Type::TypeClass RHSClass = RHSCan->getTypeClass();
4231
4232  // We want to consider the two function types to be the same for these
4233  // comparisons, just force one to the other.
4234  if (LHSClass == Type::FunctionProto) LHSClass = Type::FunctionNoProto;
4235  if (RHSClass == Type::FunctionProto) RHSClass = Type::FunctionNoProto;
4236
4237  // Same as above for arrays
4238  if (LHSClass == Type::VariableArray || LHSClass == Type::IncompleteArray)
4239    LHSClass = Type::ConstantArray;
4240  if (RHSClass == Type::VariableArray || RHSClass == Type::IncompleteArray)
4241    RHSClass = Type::ConstantArray;
4242
4243  // Canonicalize ExtVector -> Vector.
4244  if (LHSClass == Type::ExtVector) LHSClass = Type::Vector;
4245  if (RHSClass == Type::ExtVector) RHSClass = Type::Vector;
4246
4247  // If the canonical type classes don't match.
4248  if (LHSClass != RHSClass) {
4249    // C99 6.7.2.2p4: Each enumerated type shall be compatible with char,
4250    // a signed integer type, or an unsigned integer type.
4251    if (const EnumType* ETy = LHS->getAs<EnumType>()) {
4252      if (ETy->getDecl()->getIntegerType() == RHSCan.getUnqualifiedType())
4253        return RHS;
4254    }
4255    if (const EnumType* ETy = RHS->getAs<EnumType>()) {
4256      if (ETy->getDecl()->getIntegerType() == LHSCan.getUnqualifiedType())
4257        return LHS;
4258    }
4259
4260    return QualType();
4261  }
4262
4263  // The canonical type classes match.
4264  switch (LHSClass) {
4265#define TYPE(Class, Base)
4266#define ABSTRACT_TYPE(Class, Base)
4267#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
4268#define DEPENDENT_TYPE(Class, Base) case Type::Class:
4269#include "clang/AST/TypeNodes.def"
4270    assert(false && "Non-canonical and dependent types shouldn't get here");
4271    return QualType();
4272
4273  case Type::LValueReference:
4274  case Type::RValueReference:
4275  case Type::MemberPointer:
4276    assert(false && "C++ should never be in mergeTypes");
4277    return QualType();
4278
4279  case Type::IncompleteArray:
4280  case Type::VariableArray:
4281  case Type::FunctionProto:
4282  case Type::ExtVector:
4283    assert(false && "Types are eliminated above");
4284    return QualType();
4285
4286  case Type::Pointer:
4287  {
4288    // Merge two pointer types, while trying to preserve typedef info
4289    QualType LHSPointee = LHS->getAs<PointerType>()->getPointeeType();
4290    QualType RHSPointee = RHS->getAs<PointerType>()->getPointeeType();
4291    QualType ResultType = mergeTypes(LHSPointee, RHSPointee);
4292    if (ResultType.isNull()) return QualType();
4293    if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
4294      return LHS;
4295    if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
4296      return RHS;
4297    return getPointerType(ResultType);
4298  }
4299  case Type::BlockPointer:
4300  {
4301    // Merge two block pointer types, while trying to preserve typedef info
4302    QualType LHSPointee = LHS->getAs<BlockPointerType>()->getPointeeType();
4303    QualType RHSPointee = RHS->getAs<BlockPointerType>()->getPointeeType();
4304    QualType ResultType = mergeTypes(LHSPointee, RHSPointee);
4305    if (ResultType.isNull()) return QualType();
4306    if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
4307      return LHS;
4308    if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
4309      return RHS;
4310    return getBlockPointerType(ResultType);
4311  }
4312  case Type::ConstantArray:
4313  {
4314    const ConstantArrayType* LCAT = getAsConstantArrayType(LHS);
4315    const ConstantArrayType* RCAT = getAsConstantArrayType(RHS);
4316    if (LCAT && RCAT && RCAT->getSize() != LCAT->getSize())
4317      return QualType();
4318
4319    QualType LHSElem = getAsArrayType(LHS)->getElementType();
4320    QualType RHSElem = getAsArrayType(RHS)->getElementType();
4321    QualType ResultType = mergeTypes(LHSElem, RHSElem);
4322    if (ResultType.isNull()) return QualType();
4323    if (LCAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
4324      return LHS;
4325    if (RCAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
4326      return RHS;
4327    if (LCAT) return getConstantArrayType(ResultType, LCAT->getSize(),
4328                                          ArrayType::ArraySizeModifier(), 0);
4329    if (RCAT) return getConstantArrayType(ResultType, RCAT->getSize(),
4330                                          ArrayType::ArraySizeModifier(), 0);
4331    const VariableArrayType* LVAT = getAsVariableArrayType(LHS);
4332    const VariableArrayType* RVAT = getAsVariableArrayType(RHS);
4333    if (LVAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
4334      return LHS;
4335    if (RVAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
4336      return RHS;
4337    if (LVAT) {
4338      // FIXME: This isn't correct! But tricky to implement because
4339      // the array's size has to be the size of LHS, but the type
4340      // has to be different.
4341      return LHS;
4342    }
4343    if (RVAT) {
4344      // FIXME: This isn't correct! But tricky to implement because
4345      // the array's size has to be the size of RHS, but the type
4346      // has to be different.
4347      return RHS;
4348    }
4349    if (getCanonicalType(LHSElem) == getCanonicalType(ResultType)) return LHS;
4350    if (getCanonicalType(RHSElem) == getCanonicalType(ResultType)) return RHS;
4351    return getIncompleteArrayType(ResultType,
4352                                  ArrayType::ArraySizeModifier(), 0);
4353  }
4354  case Type::FunctionNoProto:
4355    return mergeFunctionTypes(LHS, RHS);
4356  case Type::Record:
4357  case Type::Enum:
4358    return QualType();
4359  case Type::Builtin:
4360    // Only exactly equal builtin types are compatible, which is tested above.
4361    return QualType();
4362  case Type::Complex:
4363    // Distinct complex types are incompatible.
4364    return QualType();
4365  case Type::Vector:
4366    // FIXME: The merged type should be an ExtVector!
4367    if (areCompatVectorTypes(LHS->getAs<VectorType>(), RHS->getAs<VectorType>()))
4368      return LHS;
4369    return QualType();
4370  case Type::ObjCInterface: {
4371    // Check if the interfaces are assignment compatible.
4372    // FIXME: This should be type compatibility, e.g. whether
4373    // "LHS x; RHS x;" at global scope is legal.
4374    const ObjCInterfaceType* LHSIface = LHS->getAs<ObjCInterfaceType>();
4375    const ObjCInterfaceType* RHSIface = RHS->getAs<ObjCInterfaceType>();
4376    if (LHSIface && RHSIface &&
4377        canAssignObjCInterfaces(LHSIface, RHSIface))
4378      return LHS;
4379
4380    return QualType();
4381  }
4382  case Type::ObjCObjectPointer: {
4383    if (canAssignObjCInterfaces(LHS->getAs<ObjCObjectPointerType>(),
4384                                RHS->getAs<ObjCObjectPointerType>()))
4385      return LHS;
4386
4387    return QualType();
4388  }
4389  case Type::FixedWidthInt:
4390    // Distinct fixed-width integers are not compatible.
4391    return QualType();
4392  case Type::TemplateSpecialization:
4393    assert(false && "Dependent types have no size");
4394    break;
4395  }
4396
4397  return QualType();
4398}
4399
4400//===----------------------------------------------------------------------===//
4401//                         Integer Predicates
4402//===----------------------------------------------------------------------===//
4403
4404unsigned ASTContext::getIntWidth(QualType T) {
4405  if (T->isBooleanType())
4406    return 1;
4407  if (FixedWidthIntType *FWIT = dyn_cast<FixedWidthIntType>(T)) {
4408    return FWIT->getWidth();
4409  }
4410  // For builtin types, just use the standard type sizing method
4411  return (unsigned)getTypeSize(T);
4412}
4413
4414QualType ASTContext::getCorrespondingUnsignedType(QualType T) {
4415  assert(T->isSignedIntegerType() && "Unexpected type");
4416
4417  // Turn <4 x signed int> -> <4 x unsigned int>
4418  if (const VectorType *VTy = T->getAs<VectorType>())
4419    return getVectorType(getCorrespondingUnsignedType(VTy->getElementType()),
4420                         VTy->getNumElements());
4421
4422  // For enums, we return the unsigned version of the base type.
4423  if (const EnumType *ETy = T->getAs<EnumType>())
4424    T = ETy->getDecl()->getIntegerType();
4425
4426  const BuiltinType *BTy = T->getAs<BuiltinType>();
4427  assert(BTy && "Unexpected signed integer type");
4428  switch (BTy->getKind()) {
4429  case BuiltinType::Char_S:
4430  case BuiltinType::SChar:
4431    return UnsignedCharTy;
4432  case BuiltinType::Short:
4433    return UnsignedShortTy;
4434  case BuiltinType::Int:
4435    return UnsignedIntTy;
4436  case BuiltinType::Long:
4437    return UnsignedLongTy;
4438  case BuiltinType::LongLong:
4439    return UnsignedLongLongTy;
4440  case BuiltinType::Int128:
4441    return UnsignedInt128Ty;
4442  default:
4443    assert(0 && "Unexpected signed integer type");
4444    return QualType();
4445  }
4446}
4447
4448ExternalASTSource::~ExternalASTSource() { }
4449
4450void ExternalASTSource::PrintStats() { }
4451
4452
4453//===----------------------------------------------------------------------===//
4454//                          Builtin Type Computation
4455//===----------------------------------------------------------------------===//
4456
4457/// DecodeTypeFromStr - This decodes one type descriptor from Str, advancing the
4458/// pointer over the consumed characters.  This returns the resultant type.
4459static QualType DecodeTypeFromStr(const char *&Str, ASTContext &Context,
4460                                  ASTContext::GetBuiltinTypeError &Error,
4461                                  bool AllowTypeModifiers = true) {
4462  // Modifiers.
4463  int HowLong = 0;
4464  bool Signed = false, Unsigned = false;
4465
4466  // Read the modifiers first.
4467  bool Done = false;
4468  while (!Done) {
4469    switch (*Str++) {
4470    default: Done = true; --Str; break;
4471    case 'S':
4472      assert(!Unsigned && "Can't use both 'S' and 'U' modifiers!");
4473      assert(!Signed && "Can't use 'S' modifier multiple times!");
4474      Signed = true;
4475      break;
4476    case 'U':
4477      assert(!Signed && "Can't use both 'S' and 'U' modifiers!");
4478      assert(!Unsigned && "Can't use 'S' modifier multiple times!");
4479      Unsigned = true;
4480      break;
4481    case 'L':
4482      assert(HowLong <= 2 && "Can't have LLLL modifier");
4483      ++HowLong;
4484      break;
4485    }
4486  }
4487
4488  QualType Type;
4489
4490  // Read the base type.
4491  switch (*Str++) {
4492  default: assert(0 && "Unknown builtin type letter!");
4493  case 'v':
4494    assert(HowLong == 0 && !Signed && !Unsigned &&
4495           "Bad modifiers used with 'v'!");
4496    Type = Context.VoidTy;
4497    break;
4498  case 'f':
4499    assert(HowLong == 0 && !Signed && !Unsigned &&
4500           "Bad modifiers used with 'f'!");
4501    Type = Context.FloatTy;
4502    break;
4503  case 'd':
4504    assert(HowLong < 2 && !Signed && !Unsigned &&
4505           "Bad modifiers used with 'd'!");
4506    if (HowLong)
4507      Type = Context.LongDoubleTy;
4508    else
4509      Type = Context.DoubleTy;
4510    break;
4511  case 's':
4512    assert(HowLong == 0 && "Bad modifiers used with 's'!");
4513    if (Unsigned)
4514      Type = Context.UnsignedShortTy;
4515    else
4516      Type = Context.ShortTy;
4517    break;
4518  case 'i':
4519    if (HowLong == 3)
4520      Type = Unsigned ? Context.UnsignedInt128Ty : Context.Int128Ty;
4521    else if (HowLong == 2)
4522      Type = Unsigned ? Context.UnsignedLongLongTy : Context.LongLongTy;
4523    else if (HowLong == 1)
4524      Type = Unsigned ? Context.UnsignedLongTy : Context.LongTy;
4525    else
4526      Type = Unsigned ? Context.UnsignedIntTy : Context.IntTy;
4527    break;
4528  case 'c':
4529    assert(HowLong == 0 && "Bad modifiers used with 'c'!");
4530    if (Signed)
4531      Type = Context.SignedCharTy;
4532    else if (Unsigned)
4533      Type = Context.UnsignedCharTy;
4534    else
4535      Type = Context.CharTy;
4536    break;
4537  case 'b': // boolean
4538    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'b'!");
4539    Type = Context.BoolTy;
4540    break;
4541  case 'z':  // size_t.
4542    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'z'!");
4543    Type = Context.getSizeType();
4544    break;
4545  case 'F':
4546    Type = Context.getCFConstantStringType();
4547    break;
4548  case 'a':
4549    Type = Context.getBuiltinVaListType();
4550    assert(!Type.isNull() && "builtin va list type not initialized!");
4551    break;
4552  case 'A':
4553    // This is a "reference" to a va_list; however, what exactly
4554    // this means depends on how va_list is defined. There are two
4555    // different kinds of va_list: ones passed by value, and ones
4556    // passed by reference.  An example of a by-value va_list is
4557    // x86, where va_list is a char*. An example of by-ref va_list
4558    // is x86-64, where va_list is a __va_list_tag[1]. For x86,
4559    // we want this argument to be a char*&; for x86-64, we want
4560    // it to be a __va_list_tag*.
4561    Type = Context.getBuiltinVaListType();
4562    assert(!Type.isNull() && "builtin va list type not initialized!");
4563    if (Type->isArrayType()) {
4564      Type = Context.getArrayDecayedType(Type);
4565    } else {
4566      Type = Context.getLValueReferenceType(Type);
4567    }
4568    break;
4569  case 'V': {
4570    char *End;
4571    unsigned NumElements = strtoul(Str, &End, 10);
4572    assert(End != Str && "Missing vector size");
4573
4574    Str = End;
4575
4576    QualType ElementType = DecodeTypeFromStr(Str, Context, Error, false);
4577    Type = Context.getVectorType(ElementType, NumElements);
4578    break;
4579  }
4580  case 'X': {
4581    QualType ElementType = DecodeTypeFromStr(Str, Context, Error, false);
4582    Type = Context.getComplexType(ElementType);
4583    break;
4584  }
4585  case 'P':
4586    Type = Context.getFILEType();
4587    if (Type.isNull()) {
4588      Error = ASTContext::GE_Missing_stdio;
4589      return QualType();
4590    }
4591    break;
4592  case 'J':
4593    if (Signed)
4594      Type = Context.getsigjmp_bufType();
4595    else
4596      Type = Context.getjmp_bufType();
4597
4598    if (Type.isNull()) {
4599      Error = ASTContext::GE_Missing_setjmp;
4600      return QualType();
4601    }
4602    break;
4603  }
4604
4605  if (!AllowTypeModifiers)
4606    return Type;
4607
4608  Done = false;
4609  while (!Done) {
4610    switch (*Str++) {
4611      default: Done = true; --Str; break;
4612      case '*':
4613        Type = Context.getPointerType(Type);
4614        break;
4615      case '&':
4616        Type = Context.getLValueReferenceType(Type);
4617        break;
4618      // FIXME: There's no way to have a built-in with an rvalue ref arg.
4619      case 'C':
4620        Type = Type.withConst();
4621        break;
4622    }
4623  }
4624
4625  return Type;
4626}
4627
4628/// GetBuiltinType - Return the type for the specified builtin.
4629QualType ASTContext::GetBuiltinType(unsigned id,
4630                                    GetBuiltinTypeError &Error) {
4631  const char *TypeStr = BuiltinInfo.GetTypeString(id);
4632
4633  llvm::SmallVector<QualType, 8> ArgTypes;
4634
4635  Error = GE_None;
4636  QualType ResType = DecodeTypeFromStr(TypeStr, *this, Error);
4637  if (Error != GE_None)
4638    return QualType();
4639  while (TypeStr[0] && TypeStr[0] != '.') {
4640    QualType Ty = DecodeTypeFromStr(TypeStr, *this, Error);
4641    if (Error != GE_None)
4642      return QualType();
4643
4644    // Do array -> pointer decay.  The builtin should use the decayed type.
4645    if (Ty->isArrayType())
4646      Ty = getArrayDecayedType(Ty);
4647
4648    ArgTypes.push_back(Ty);
4649  }
4650
4651  assert((TypeStr[0] != '.' || TypeStr[1] == 0) &&
4652         "'.' should only occur at end of builtin type list!");
4653
4654  // handle untyped/variadic arguments "T c99Style();" or "T cppStyle(...);".
4655  if (ArgTypes.size() == 0 && TypeStr[0] == '.')
4656    return getFunctionNoProtoType(ResType);
4657  return getFunctionType(ResType, ArgTypes.data(), ArgTypes.size(),
4658                         TypeStr[0] == '.', 0);
4659}
4660
4661QualType
4662ASTContext::UsualArithmeticConversionsType(QualType lhs, QualType rhs) {
4663  // Perform the usual unary conversions. We do this early so that
4664  // integral promotions to "int" can allow us to exit early, in the
4665  // lhs == rhs check. Also, for conversion purposes, we ignore any
4666  // qualifiers.  For example, "const float" and "float" are
4667  // equivalent.
4668  if (lhs->isPromotableIntegerType())
4669    lhs = getPromotedIntegerType(lhs);
4670  else
4671    lhs = lhs.getUnqualifiedType();
4672  if (rhs->isPromotableIntegerType())
4673    rhs = getPromotedIntegerType(rhs);
4674  else
4675    rhs = rhs.getUnqualifiedType();
4676
4677  // If both types are identical, no conversion is needed.
4678  if (lhs == rhs)
4679    return lhs;
4680
4681  // If either side is a non-arithmetic type (e.g. a pointer), we are done.
4682  // The caller can deal with this (e.g. pointer + int).
4683  if (!lhs->isArithmeticType() || !rhs->isArithmeticType())
4684    return lhs;
4685
4686  // At this point, we have two different arithmetic types.
4687
4688  // Handle complex types first (C99 6.3.1.8p1).
4689  if (lhs->isComplexType() || rhs->isComplexType()) {
4690    // if we have an integer operand, the result is the complex type.
4691    if (rhs->isIntegerType() || rhs->isComplexIntegerType()) {
4692      // convert the rhs to the lhs complex type.
4693      return lhs;
4694    }
4695    if (lhs->isIntegerType() || lhs->isComplexIntegerType()) {
4696      // convert the lhs to the rhs complex type.
4697      return rhs;
4698    }
4699    // This handles complex/complex, complex/float, or float/complex.
4700    // When both operands are complex, the shorter operand is converted to the
4701    // type of the longer, and that is the type of the result. This corresponds
4702    // to what is done when combining two real floating-point operands.
4703    // The fun begins when size promotion occur across type domains.
4704    // From H&S 6.3.4: When one operand is complex and the other is a real
4705    // floating-point type, the less precise type is converted, within it's
4706    // real or complex domain, to the precision of the other type. For example,
4707    // when combining a "long double" with a "double _Complex", the
4708    // "double _Complex" is promoted to "long double _Complex".
4709    int result = getFloatingTypeOrder(lhs, rhs);
4710
4711    if (result > 0) { // The left side is bigger, convert rhs.
4712      rhs = getFloatingTypeOfSizeWithinDomain(lhs, rhs);
4713    } else if (result < 0) { // The right side is bigger, convert lhs.
4714      lhs = getFloatingTypeOfSizeWithinDomain(rhs, lhs);
4715    }
4716    // At this point, lhs and rhs have the same rank/size. Now, make sure the
4717    // domains match. This is a requirement for our implementation, C99
4718    // does not require this promotion.
4719    if (lhs != rhs) { // Domains don't match, we have complex/float mix.
4720      if (lhs->isRealFloatingType()) { // handle "double, _Complex double".
4721        return rhs;
4722      } else { // handle "_Complex double, double".
4723        return lhs;
4724      }
4725    }
4726    return lhs; // The domain/size match exactly.
4727  }
4728  // Now handle "real" floating types (i.e. float, double, long double).
4729  if (lhs->isRealFloatingType() || rhs->isRealFloatingType()) {
4730    // if we have an integer operand, the result is the real floating type.
4731    if (rhs->isIntegerType()) {
4732      // convert rhs to the lhs floating point type.
4733      return lhs;
4734    }
4735    if (rhs->isComplexIntegerType()) {
4736      // convert rhs to the complex floating point type.
4737      return getComplexType(lhs);
4738    }
4739    if (lhs->isIntegerType()) {
4740      // convert lhs to the rhs floating point type.
4741      return rhs;
4742    }
4743    if (lhs->isComplexIntegerType()) {
4744      // convert lhs to the complex floating point type.
4745      return getComplexType(rhs);
4746    }
4747    // We have two real floating types, float/complex combos were handled above.
4748    // Convert the smaller operand to the bigger result.
4749    int result = getFloatingTypeOrder(lhs, rhs);
4750    if (result > 0) // convert the rhs
4751      return lhs;
4752    assert(result < 0 && "illegal float comparison");
4753    return rhs;   // convert the lhs
4754  }
4755  if (lhs->isComplexIntegerType() || rhs->isComplexIntegerType()) {
4756    // Handle GCC complex int extension.
4757    const ComplexType *lhsComplexInt = lhs->getAsComplexIntegerType();
4758    const ComplexType *rhsComplexInt = rhs->getAsComplexIntegerType();
4759
4760    if (lhsComplexInt && rhsComplexInt) {
4761      if (getIntegerTypeOrder(lhsComplexInt->getElementType(),
4762                              rhsComplexInt->getElementType()) >= 0)
4763        return lhs; // convert the rhs
4764      return rhs;
4765    } else if (lhsComplexInt && rhs->isIntegerType()) {
4766      // convert the rhs to the lhs complex type.
4767      return lhs;
4768    } else if (rhsComplexInt && lhs->isIntegerType()) {
4769      // convert the lhs to the rhs complex type.
4770      return rhs;
4771    }
4772  }
4773  // Finally, we have two differing integer types.
4774  // The rules for this case are in C99 6.3.1.8
4775  int compare = getIntegerTypeOrder(lhs, rhs);
4776  bool lhsSigned = lhs->isSignedIntegerType(),
4777       rhsSigned = rhs->isSignedIntegerType();
4778  QualType destType;
4779  if (lhsSigned == rhsSigned) {
4780    // Same signedness; use the higher-ranked type
4781    destType = compare >= 0 ? lhs : rhs;
4782  } else if (compare != (lhsSigned ? 1 : -1)) {
4783    // The unsigned type has greater than or equal rank to the
4784    // signed type, so use the unsigned type
4785    destType = lhsSigned ? rhs : lhs;
4786  } else if (getIntWidth(lhs) != getIntWidth(rhs)) {
4787    // The two types are different widths; if we are here, that
4788    // means the signed type is larger than the unsigned type, so
4789    // use the signed type.
4790    destType = lhsSigned ? lhs : rhs;
4791  } else {
4792    // The signed type is higher-ranked than the unsigned type,
4793    // but isn't actually any bigger (like unsigned int and long
4794    // on most 32-bit systems).  Use the unsigned type corresponding
4795    // to the signed type.
4796    destType = getCorrespondingUnsignedType(lhsSigned ? lhs : rhs);
4797  }
4798  return destType;
4799}
4800