ASTContext.cpp revision 4e4d08403ca5cfd4d558fa2936215d3a4e5a528d
1//===--- ASTContext.cpp - Context to hold long-lived AST nodes ------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements the ASTContext interface.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/AST/ASTContext.h"
15#include "clang/AST/CharUnits.h"
16#include "clang/AST/DeclCXX.h"
17#include "clang/AST/DeclObjC.h"
18#include "clang/AST/DeclTemplate.h"
19#include "clang/AST/TypeLoc.h"
20#include "clang/AST/Expr.h"
21#include "clang/AST/ExprCXX.h"
22#include "clang/AST/ExternalASTSource.h"
23#include "clang/AST/ASTMutationListener.h"
24#include "clang/AST/RecordLayout.h"
25#include "clang/AST/Mangle.h"
26#include "clang/Basic/Builtins.h"
27#include "clang/Basic/SourceManager.h"
28#include "clang/Basic/TargetInfo.h"
29#include "llvm/ADT/SmallString.h"
30#include "llvm/ADT/StringExtras.h"
31#include "llvm/Support/MathExtras.h"
32#include "llvm/Support/raw_ostream.h"
33#include "llvm/Support/Capacity.h"
34#include "CXXABI.h"
35#include <map>
36
37using namespace clang;
38
39unsigned ASTContext::NumImplicitDefaultConstructors;
40unsigned ASTContext::NumImplicitDefaultConstructorsDeclared;
41unsigned ASTContext::NumImplicitCopyConstructors;
42unsigned ASTContext::NumImplicitCopyConstructorsDeclared;
43unsigned ASTContext::NumImplicitMoveConstructors;
44unsigned ASTContext::NumImplicitMoveConstructorsDeclared;
45unsigned ASTContext::NumImplicitCopyAssignmentOperators;
46unsigned ASTContext::NumImplicitCopyAssignmentOperatorsDeclared;
47unsigned ASTContext::NumImplicitMoveAssignmentOperators;
48unsigned ASTContext::NumImplicitMoveAssignmentOperatorsDeclared;
49unsigned ASTContext::NumImplicitDestructors;
50unsigned ASTContext::NumImplicitDestructorsDeclared;
51
52enum FloatingRank {
53  HalfRank, FloatRank, DoubleRank, LongDoubleRank
54};
55
56void
57ASTContext::CanonicalTemplateTemplateParm::Profile(llvm::FoldingSetNodeID &ID,
58                                               TemplateTemplateParmDecl *Parm) {
59  ID.AddInteger(Parm->getDepth());
60  ID.AddInteger(Parm->getPosition());
61  ID.AddBoolean(Parm->isParameterPack());
62
63  TemplateParameterList *Params = Parm->getTemplateParameters();
64  ID.AddInteger(Params->size());
65  for (TemplateParameterList::const_iterator P = Params->begin(),
66                                          PEnd = Params->end();
67       P != PEnd; ++P) {
68    if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*P)) {
69      ID.AddInteger(0);
70      ID.AddBoolean(TTP->isParameterPack());
71      continue;
72    }
73
74    if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(*P)) {
75      ID.AddInteger(1);
76      ID.AddBoolean(NTTP->isParameterPack());
77      ID.AddPointer(NTTP->getType().getCanonicalType().getAsOpaquePtr());
78      if (NTTP->isExpandedParameterPack()) {
79        ID.AddBoolean(true);
80        ID.AddInteger(NTTP->getNumExpansionTypes());
81        for (unsigned I = 0, N = NTTP->getNumExpansionTypes(); I != N; ++I) {
82          QualType T = NTTP->getExpansionType(I);
83          ID.AddPointer(T.getCanonicalType().getAsOpaquePtr());
84        }
85      } else
86        ID.AddBoolean(false);
87      continue;
88    }
89
90    TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(*P);
91    ID.AddInteger(2);
92    Profile(ID, TTP);
93  }
94}
95
96TemplateTemplateParmDecl *
97ASTContext::getCanonicalTemplateTemplateParmDecl(
98                                          TemplateTemplateParmDecl *TTP) const {
99  // Check if we already have a canonical template template parameter.
100  llvm::FoldingSetNodeID ID;
101  CanonicalTemplateTemplateParm::Profile(ID, TTP);
102  void *InsertPos = 0;
103  CanonicalTemplateTemplateParm *Canonical
104    = CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos);
105  if (Canonical)
106    return Canonical->getParam();
107
108  // Build a canonical template parameter list.
109  TemplateParameterList *Params = TTP->getTemplateParameters();
110  SmallVector<NamedDecl *, 4> CanonParams;
111  CanonParams.reserve(Params->size());
112  for (TemplateParameterList::const_iterator P = Params->begin(),
113                                          PEnd = Params->end();
114       P != PEnd; ++P) {
115    if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*P))
116      CanonParams.push_back(
117                  TemplateTypeParmDecl::Create(*this, getTranslationUnitDecl(),
118                                               SourceLocation(),
119                                               SourceLocation(),
120                                               TTP->getDepth(),
121                                               TTP->getIndex(), 0, false,
122                                               TTP->isParameterPack()));
123    else if (NonTypeTemplateParmDecl *NTTP
124             = dyn_cast<NonTypeTemplateParmDecl>(*P)) {
125      QualType T = getCanonicalType(NTTP->getType());
126      TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(T);
127      NonTypeTemplateParmDecl *Param;
128      if (NTTP->isExpandedParameterPack()) {
129        SmallVector<QualType, 2> ExpandedTypes;
130        SmallVector<TypeSourceInfo *, 2> ExpandedTInfos;
131        for (unsigned I = 0, N = NTTP->getNumExpansionTypes(); I != N; ++I) {
132          ExpandedTypes.push_back(getCanonicalType(NTTP->getExpansionType(I)));
133          ExpandedTInfos.push_back(
134                                getTrivialTypeSourceInfo(ExpandedTypes.back()));
135        }
136
137        Param = NonTypeTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
138                                                SourceLocation(),
139                                                SourceLocation(),
140                                                NTTP->getDepth(),
141                                                NTTP->getPosition(), 0,
142                                                T,
143                                                TInfo,
144                                                ExpandedTypes.data(),
145                                                ExpandedTypes.size(),
146                                                ExpandedTInfos.data());
147      } else {
148        Param = NonTypeTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
149                                                SourceLocation(),
150                                                SourceLocation(),
151                                                NTTP->getDepth(),
152                                                NTTP->getPosition(), 0,
153                                                T,
154                                                NTTP->isParameterPack(),
155                                                TInfo);
156      }
157      CanonParams.push_back(Param);
158
159    } else
160      CanonParams.push_back(getCanonicalTemplateTemplateParmDecl(
161                                           cast<TemplateTemplateParmDecl>(*P)));
162  }
163
164  TemplateTemplateParmDecl *CanonTTP
165    = TemplateTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
166                                       SourceLocation(), TTP->getDepth(),
167                                       TTP->getPosition(),
168                                       TTP->isParameterPack(),
169                                       0,
170                         TemplateParameterList::Create(*this, SourceLocation(),
171                                                       SourceLocation(),
172                                                       CanonParams.data(),
173                                                       CanonParams.size(),
174                                                       SourceLocation()));
175
176  // Get the new insert position for the node we care about.
177  Canonical = CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos);
178  assert(Canonical == 0 && "Shouldn't be in the map!");
179  (void)Canonical;
180
181  // Create the canonical template template parameter entry.
182  Canonical = new (*this) CanonicalTemplateTemplateParm(CanonTTP);
183  CanonTemplateTemplateParms.InsertNode(Canonical, InsertPos);
184  return CanonTTP;
185}
186
187CXXABI *ASTContext::createCXXABI(const TargetInfo &T) {
188  if (!LangOpts.CPlusPlus) return 0;
189
190  switch (T.getCXXABI()) {
191  case CXXABI_ARM:
192    return CreateARMCXXABI(*this);
193  case CXXABI_Itanium:
194    return CreateItaniumCXXABI(*this);
195  case CXXABI_Microsoft:
196    return CreateMicrosoftCXXABI(*this);
197  }
198  llvm_unreachable("Invalid CXXABI type!");
199}
200
201static const LangAS::Map *getAddressSpaceMap(const TargetInfo &T,
202                                             const LangOptions &LOpts) {
203  if (LOpts.FakeAddressSpaceMap) {
204    // The fake address space map must have a distinct entry for each
205    // language-specific address space.
206    static const unsigned FakeAddrSpaceMap[] = {
207      1, // opencl_global
208      2, // opencl_local
209      3  // opencl_constant
210    };
211    return &FakeAddrSpaceMap;
212  } else {
213    return &T.getAddressSpaceMap();
214  }
215}
216
217ASTContext::ASTContext(LangOptions& LOpts, SourceManager &SM,
218                       const TargetInfo *t,
219                       IdentifierTable &idents, SelectorTable &sels,
220                       Builtin::Context &builtins,
221                       unsigned size_reserve,
222                       bool DelayInitialization)
223  : FunctionProtoTypes(this_()),
224    TemplateSpecializationTypes(this_()),
225    DependentTemplateSpecializationTypes(this_()),
226    SubstTemplateTemplateParmPacks(this_()),
227    GlobalNestedNameSpecifier(0),
228    Int128Decl(0), UInt128Decl(0),
229    ObjCIdDecl(0), ObjCSelDecl(0), ObjCClassDecl(0), ObjCProtocolClassDecl(0),
230    CFConstantStringTypeDecl(0), ObjCInstanceTypeDecl(0),
231    FILEDecl(0),
232    jmp_bufDecl(0), sigjmp_bufDecl(0), ucontext_tDecl(0),
233    BlockDescriptorType(0), BlockDescriptorExtendedType(0),
234    cudaConfigureCallDecl(0),
235    NullTypeSourceInfo(QualType()),
236    FirstLocalImport(), LastLocalImport(),
237    SourceMgr(SM), LangOpts(LOpts),
238    AddrSpaceMap(0), Target(t), PrintingPolicy(LOpts),
239    Idents(idents), Selectors(sels),
240    BuiltinInfo(builtins),
241    DeclarationNames(*this),
242    ExternalSource(0), Listener(0),
243    LastSDM(0, 0),
244    UniqueBlockByRefTypeID(0)
245{
246  if (size_reserve > 0) Types.reserve(size_reserve);
247  TUDecl = TranslationUnitDecl::Create(*this);
248
249  if (!DelayInitialization) {
250    assert(t && "No target supplied for ASTContext initialization");
251    InitBuiltinTypes(*t);
252  }
253}
254
255ASTContext::~ASTContext() {
256  // Release the DenseMaps associated with DeclContext objects.
257  // FIXME: Is this the ideal solution?
258  ReleaseDeclContextMaps();
259
260  // Call all of the deallocation functions.
261  for (unsigned I = 0, N = Deallocations.size(); I != N; ++I)
262    Deallocations[I].first(Deallocations[I].second);
263
264  // ASTRecordLayout objects in ASTRecordLayouts must always be destroyed
265  // because they can contain DenseMaps.
266  for (llvm::DenseMap<const ObjCContainerDecl*,
267       const ASTRecordLayout*>::iterator
268       I = ObjCLayouts.begin(), E = ObjCLayouts.end(); I != E; )
269    // Increment in loop to prevent using deallocated memory.
270    if (ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second))
271      R->Destroy(*this);
272
273  for (llvm::DenseMap<const RecordDecl*, const ASTRecordLayout*>::iterator
274       I = ASTRecordLayouts.begin(), E = ASTRecordLayouts.end(); I != E; ) {
275    // Increment in loop to prevent using deallocated memory.
276    if (ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second))
277      R->Destroy(*this);
278  }
279
280  for (llvm::DenseMap<const Decl*, AttrVec*>::iterator A = DeclAttrs.begin(),
281                                                    AEnd = DeclAttrs.end();
282       A != AEnd; ++A)
283    A->second->~AttrVec();
284}
285
286void ASTContext::AddDeallocation(void (*Callback)(void*), void *Data) {
287  Deallocations.push_back(std::make_pair(Callback, Data));
288}
289
290void
291ASTContext::setExternalSource(OwningPtr<ExternalASTSource> &Source) {
292  ExternalSource.reset(Source.take());
293}
294
295void ASTContext::PrintStats() const {
296  llvm::errs() << "\n*** AST Context Stats:\n";
297  llvm::errs() << "  " << Types.size() << " types total.\n";
298
299  unsigned counts[] = {
300#define TYPE(Name, Parent) 0,
301#define ABSTRACT_TYPE(Name, Parent)
302#include "clang/AST/TypeNodes.def"
303    0 // Extra
304  };
305
306  for (unsigned i = 0, e = Types.size(); i != e; ++i) {
307    Type *T = Types[i];
308    counts[(unsigned)T->getTypeClass()]++;
309  }
310
311  unsigned Idx = 0;
312  unsigned TotalBytes = 0;
313#define TYPE(Name, Parent)                                              \
314  if (counts[Idx])                                                      \
315    llvm::errs() << "    " << counts[Idx] << " " << #Name               \
316                 << " types\n";                                         \
317  TotalBytes += counts[Idx] * sizeof(Name##Type);                       \
318  ++Idx;
319#define ABSTRACT_TYPE(Name, Parent)
320#include "clang/AST/TypeNodes.def"
321
322  llvm::errs() << "Total bytes = " << TotalBytes << "\n";
323
324  // Implicit special member functions.
325  llvm::errs() << NumImplicitDefaultConstructorsDeclared << "/"
326               << NumImplicitDefaultConstructors
327               << " implicit default constructors created\n";
328  llvm::errs() << NumImplicitCopyConstructorsDeclared << "/"
329               << NumImplicitCopyConstructors
330               << " implicit copy constructors created\n";
331  if (getLangOpts().CPlusPlus)
332    llvm::errs() << NumImplicitMoveConstructorsDeclared << "/"
333                 << NumImplicitMoveConstructors
334                 << " implicit move constructors created\n";
335  llvm::errs() << NumImplicitCopyAssignmentOperatorsDeclared << "/"
336               << NumImplicitCopyAssignmentOperators
337               << " implicit copy assignment operators created\n";
338  if (getLangOpts().CPlusPlus)
339    llvm::errs() << NumImplicitMoveAssignmentOperatorsDeclared << "/"
340                 << NumImplicitMoveAssignmentOperators
341                 << " implicit move assignment operators created\n";
342  llvm::errs() << NumImplicitDestructorsDeclared << "/"
343               << NumImplicitDestructors
344               << " implicit destructors created\n";
345
346  if (ExternalSource.get()) {
347    llvm::errs() << "\n";
348    ExternalSource->PrintStats();
349  }
350
351  BumpAlloc.PrintStats();
352}
353
354TypedefDecl *ASTContext::getInt128Decl() const {
355  if (!Int128Decl) {
356    TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(Int128Ty);
357    Int128Decl = TypedefDecl::Create(const_cast<ASTContext &>(*this),
358                                     getTranslationUnitDecl(),
359                                     SourceLocation(),
360                                     SourceLocation(),
361                                     &Idents.get("__int128_t"),
362                                     TInfo);
363  }
364
365  return Int128Decl;
366}
367
368TypedefDecl *ASTContext::getUInt128Decl() const {
369  if (!UInt128Decl) {
370    TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(UnsignedInt128Ty);
371    UInt128Decl = TypedefDecl::Create(const_cast<ASTContext &>(*this),
372                                     getTranslationUnitDecl(),
373                                     SourceLocation(),
374                                     SourceLocation(),
375                                     &Idents.get("__uint128_t"),
376                                     TInfo);
377  }
378
379  return UInt128Decl;
380}
381
382void ASTContext::InitBuiltinType(CanQualType &R, BuiltinType::Kind K) {
383  BuiltinType *Ty = new (*this, TypeAlignment) BuiltinType(K);
384  R = CanQualType::CreateUnsafe(QualType(Ty, 0));
385  Types.push_back(Ty);
386}
387
388void ASTContext::InitBuiltinTypes(const TargetInfo &Target) {
389  assert((!this->Target || this->Target == &Target) &&
390         "Incorrect target reinitialization");
391  assert(VoidTy.isNull() && "Context reinitialized?");
392
393  this->Target = &Target;
394
395  ABI.reset(createCXXABI(Target));
396  AddrSpaceMap = getAddressSpaceMap(Target, LangOpts);
397
398  // C99 6.2.5p19.
399  InitBuiltinType(VoidTy,              BuiltinType::Void);
400
401  // C99 6.2.5p2.
402  InitBuiltinType(BoolTy,              BuiltinType::Bool);
403  // C99 6.2.5p3.
404  if (LangOpts.CharIsSigned)
405    InitBuiltinType(CharTy,            BuiltinType::Char_S);
406  else
407    InitBuiltinType(CharTy,            BuiltinType::Char_U);
408  // C99 6.2.5p4.
409  InitBuiltinType(SignedCharTy,        BuiltinType::SChar);
410  InitBuiltinType(ShortTy,             BuiltinType::Short);
411  InitBuiltinType(IntTy,               BuiltinType::Int);
412  InitBuiltinType(LongTy,              BuiltinType::Long);
413  InitBuiltinType(LongLongTy,          BuiltinType::LongLong);
414
415  // C99 6.2.5p6.
416  InitBuiltinType(UnsignedCharTy,      BuiltinType::UChar);
417  InitBuiltinType(UnsignedShortTy,     BuiltinType::UShort);
418  InitBuiltinType(UnsignedIntTy,       BuiltinType::UInt);
419  InitBuiltinType(UnsignedLongTy,      BuiltinType::ULong);
420  InitBuiltinType(UnsignedLongLongTy,  BuiltinType::ULongLong);
421
422  // C99 6.2.5p10.
423  InitBuiltinType(FloatTy,             BuiltinType::Float);
424  InitBuiltinType(DoubleTy,            BuiltinType::Double);
425  InitBuiltinType(LongDoubleTy,        BuiltinType::LongDouble);
426
427  // GNU extension, 128-bit integers.
428  InitBuiltinType(Int128Ty,            BuiltinType::Int128);
429  InitBuiltinType(UnsignedInt128Ty,    BuiltinType::UInt128);
430
431  if (LangOpts.CPlusPlus) { // C++ 3.9.1p5
432    if (TargetInfo::isTypeSigned(Target.getWCharType()))
433      InitBuiltinType(WCharTy,           BuiltinType::WChar_S);
434    else  // -fshort-wchar makes wchar_t be unsigned.
435      InitBuiltinType(WCharTy,           BuiltinType::WChar_U);
436  } else // C99
437    WCharTy = getFromTargetType(Target.getWCharType());
438
439  if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
440    InitBuiltinType(Char16Ty,           BuiltinType::Char16);
441  else // C99
442    Char16Ty = getFromTargetType(Target.getChar16Type());
443
444  if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
445    InitBuiltinType(Char32Ty,           BuiltinType::Char32);
446  else // C99
447    Char32Ty = getFromTargetType(Target.getChar32Type());
448
449  // Placeholder type for type-dependent expressions whose type is
450  // completely unknown. No code should ever check a type against
451  // DependentTy and users should never see it; however, it is here to
452  // help diagnose failures to properly check for type-dependent
453  // expressions.
454  InitBuiltinType(DependentTy,         BuiltinType::Dependent);
455
456  // Placeholder type for functions.
457  InitBuiltinType(OverloadTy,          BuiltinType::Overload);
458
459  // Placeholder type for bound members.
460  InitBuiltinType(BoundMemberTy,       BuiltinType::BoundMember);
461
462  // Placeholder type for pseudo-objects.
463  InitBuiltinType(PseudoObjectTy,      BuiltinType::PseudoObject);
464
465  // "any" type; useful for debugger-like clients.
466  InitBuiltinType(UnknownAnyTy,        BuiltinType::UnknownAny);
467
468  // Placeholder type for unbridged ARC casts.
469  InitBuiltinType(ARCUnbridgedCastTy,  BuiltinType::ARCUnbridgedCast);
470
471  // C99 6.2.5p11.
472  FloatComplexTy      = getComplexType(FloatTy);
473  DoubleComplexTy     = getComplexType(DoubleTy);
474  LongDoubleComplexTy = getComplexType(LongDoubleTy);
475
476  BuiltinVaListType = QualType();
477
478  // Builtin types for 'id', 'Class', and 'SEL'.
479  InitBuiltinType(ObjCBuiltinIdTy, BuiltinType::ObjCId);
480  InitBuiltinType(ObjCBuiltinClassTy, BuiltinType::ObjCClass);
481  InitBuiltinType(ObjCBuiltinSelTy, BuiltinType::ObjCSel);
482
483  // Builtin type for __objc_yes and __objc_no
484  ObjCBuiltinBoolTy = SignedCharTy;
485
486  ObjCConstantStringType = QualType();
487
488  // void * type
489  VoidPtrTy = getPointerType(VoidTy);
490
491  // nullptr type (C++0x 2.14.7)
492  InitBuiltinType(NullPtrTy,           BuiltinType::NullPtr);
493
494  // half type (OpenCL 6.1.1.1) / ARM NEON __fp16
495  InitBuiltinType(HalfTy, BuiltinType::Half);
496}
497
498DiagnosticsEngine &ASTContext::getDiagnostics() const {
499  return SourceMgr.getDiagnostics();
500}
501
502AttrVec& ASTContext::getDeclAttrs(const Decl *D) {
503  AttrVec *&Result = DeclAttrs[D];
504  if (!Result) {
505    void *Mem = Allocate(sizeof(AttrVec));
506    Result = new (Mem) AttrVec;
507  }
508
509  return *Result;
510}
511
512/// \brief Erase the attributes corresponding to the given declaration.
513void ASTContext::eraseDeclAttrs(const Decl *D) {
514  llvm::DenseMap<const Decl*, AttrVec*>::iterator Pos = DeclAttrs.find(D);
515  if (Pos != DeclAttrs.end()) {
516    Pos->second->~AttrVec();
517    DeclAttrs.erase(Pos);
518  }
519}
520
521MemberSpecializationInfo *
522ASTContext::getInstantiatedFromStaticDataMember(const VarDecl *Var) {
523  assert(Var->isStaticDataMember() && "Not a static data member");
524  llvm::DenseMap<const VarDecl *, MemberSpecializationInfo *>::iterator Pos
525    = InstantiatedFromStaticDataMember.find(Var);
526  if (Pos == InstantiatedFromStaticDataMember.end())
527    return 0;
528
529  return Pos->second;
530}
531
532void
533ASTContext::setInstantiatedFromStaticDataMember(VarDecl *Inst, VarDecl *Tmpl,
534                                                TemplateSpecializationKind TSK,
535                                          SourceLocation PointOfInstantiation) {
536  assert(Inst->isStaticDataMember() && "Not a static data member");
537  assert(Tmpl->isStaticDataMember() && "Not a static data member");
538  assert(!InstantiatedFromStaticDataMember[Inst] &&
539         "Already noted what static data member was instantiated from");
540  InstantiatedFromStaticDataMember[Inst]
541    = new (*this) MemberSpecializationInfo(Tmpl, TSK, PointOfInstantiation);
542}
543
544FunctionDecl *ASTContext::getClassScopeSpecializationPattern(
545                                                     const FunctionDecl *FD){
546  assert(FD && "Specialization is 0");
547  llvm::DenseMap<const FunctionDecl*, FunctionDecl *>::const_iterator Pos
548    = ClassScopeSpecializationPattern.find(FD);
549  if (Pos == ClassScopeSpecializationPattern.end())
550    return 0;
551
552  return Pos->second;
553}
554
555void ASTContext::setClassScopeSpecializationPattern(FunctionDecl *FD,
556                                        FunctionDecl *Pattern) {
557  assert(FD && "Specialization is 0");
558  assert(Pattern && "Class scope specialization pattern is 0");
559  ClassScopeSpecializationPattern[FD] = Pattern;
560}
561
562NamedDecl *
563ASTContext::getInstantiatedFromUsingDecl(UsingDecl *UUD) {
564  llvm::DenseMap<UsingDecl *, NamedDecl *>::const_iterator Pos
565    = InstantiatedFromUsingDecl.find(UUD);
566  if (Pos == InstantiatedFromUsingDecl.end())
567    return 0;
568
569  return Pos->second;
570}
571
572void
573ASTContext::setInstantiatedFromUsingDecl(UsingDecl *Inst, NamedDecl *Pattern) {
574  assert((isa<UsingDecl>(Pattern) ||
575          isa<UnresolvedUsingValueDecl>(Pattern) ||
576          isa<UnresolvedUsingTypenameDecl>(Pattern)) &&
577         "pattern decl is not a using decl");
578  assert(!InstantiatedFromUsingDecl[Inst] && "pattern already exists");
579  InstantiatedFromUsingDecl[Inst] = Pattern;
580}
581
582UsingShadowDecl *
583ASTContext::getInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst) {
584  llvm::DenseMap<UsingShadowDecl*, UsingShadowDecl*>::const_iterator Pos
585    = InstantiatedFromUsingShadowDecl.find(Inst);
586  if (Pos == InstantiatedFromUsingShadowDecl.end())
587    return 0;
588
589  return Pos->second;
590}
591
592void
593ASTContext::setInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst,
594                                               UsingShadowDecl *Pattern) {
595  assert(!InstantiatedFromUsingShadowDecl[Inst] && "pattern already exists");
596  InstantiatedFromUsingShadowDecl[Inst] = Pattern;
597}
598
599FieldDecl *ASTContext::getInstantiatedFromUnnamedFieldDecl(FieldDecl *Field) {
600  llvm::DenseMap<FieldDecl *, FieldDecl *>::iterator Pos
601    = InstantiatedFromUnnamedFieldDecl.find(Field);
602  if (Pos == InstantiatedFromUnnamedFieldDecl.end())
603    return 0;
604
605  return Pos->second;
606}
607
608void ASTContext::setInstantiatedFromUnnamedFieldDecl(FieldDecl *Inst,
609                                                     FieldDecl *Tmpl) {
610  assert(!Inst->getDeclName() && "Instantiated field decl is not unnamed");
611  assert(!Tmpl->getDeclName() && "Template field decl is not unnamed");
612  assert(!InstantiatedFromUnnamedFieldDecl[Inst] &&
613         "Already noted what unnamed field was instantiated from");
614
615  InstantiatedFromUnnamedFieldDecl[Inst] = Tmpl;
616}
617
618bool ASTContext::ZeroBitfieldFollowsNonBitfield(const FieldDecl *FD,
619                                    const FieldDecl *LastFD) const {
620  return (FD->isBitField() && LastFD && !LastFD->isBitField() &&
621          FD->getBitWidthValue(*this) == 0);
622}
623
624bool ASTContext::ZeroBitfieldFollowsBitfield(const FieldDecl *FD,
625                                             const FieldDecl *LastFD) const {
626  return (FD->isBitField() && LastFD && LastFD->isBitField() &&
627          FD->getBitWidthValue(*this) == 0 &&
628          LastFD->getBitWidthValue(*this) != 0);
629}
630
631bool ASTContext::BitfieldFollowsBitfield(const FieldDecl *FD,
632                                         const FieldDecl *LastFD) const {
633  return (FD->isBitField() && LastFD && LastFD->isBitField() &&
634          FD->getBitWidthValue(*this) &&
635          LastFD->getBitWidthValue(*this));
636}
637
638bool ASTContext::NonBitfieldFollowsBitfield(const FieldDecl *FD,
639                                         const FieldDecl *LastFD) const {
640  return (!FD->isBitField() && LastFD && LastFD->isBitField() &&
641          LastFD->getBitWidthValue(*this));
642}
643
644bool ASTContext::BitfieldFollowsNonBitfield(const FieldDecl *FD,
645                                             const FieldDecl *LastFD) const {
646  return (FD->isBitField() && LastFD && !LastFD->isBitField() &&
647          FD->getBitWidthValue(*this));
648}
649
650ASTContext::overridden_cxx_method_iterator
651ASTContext::overridden_methods_begin(const CXXMethodDecl *Method) const {
652  llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
653    = OverriddenMethods.find(Method);
654  if (Pos == OverriddenMethods.end())
655    return 0;
656
657  return Pos->second.begin();
658}
659
660ASTContext::overridden_cxx_method_iterator
661ASTContext::overridden_methods_end(const CXXMethodDecl *Method) const {
662  llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
663    = OverriddenMethods.find(Method);
664  if (Pos == OverriddenMethods.end())
665    return 0;
666
667  return Pos->second.end();
668}
669
670unsigned
671ASTContext::overridden_methods_size(const CXXMethodDecl *Method) const {
672  llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
673    = OverriddenMethods.find(Method);
674  if (Pos == OverriddenMethods.end())
675    return 0;
676
677  return Pos->second.size();
678}
679
680void ASTContext::addOverriddenMethod(const CXXMethodDecl *Method,
681                                     const CXXMethodDecl *Overridden) {
682  OverriddenMethods[Method].push_back(Overridden);
683}
684
685void ASTContext::addedLocalImportDecl(ImportDecl *Import) {
686  assert(!Import->NextLocalImport && "Import declaration already in the chain");
687  assert(!Import->isFromASTFile() && "Non-local import declaration");
688  if (!FirstLocalImport) {
689    FirstLocalImport = Import;
690    LastLocalImport = Import;
691    return;
692  }
693
694  LastLocalImport->NextLocalImport = Import;
695  LastLocalImport = Import;
696}
697
698//===----------------------------------------------------------------------===//
699//                         Type Sizing and Analysis
700//===----------------------------------------------------------------------===//
701
702/// getFloatTypeSemantics - Return the APFloat 'semantics' for the specified
703/// scalar floating point type.
704const llvm::fltSemantics &ASTContext::getFloatTypeSemantics(QualType T) const {
705  const BuiltinType *BT = T->getAs<BuiltinType>();
706  assert(BT && "Not a floating point type!");
707  switch (BT->getKind()) {
708  default: llvm_unreachable("Not a floating point type!");
709  case BuiltinType::Half:       return Target->getHalfFormat();
710  case BuiltinType::Float:      return Target->getFloatFormat();
711  case BuiltinType::Double:     return Target->getDoubleFormat();
712  case BuiltinType::LongDouble: return Target->getLongDoubleFormat();
713  }
714}
715
716/// getDeclAlign - Return a conservative estimate of the alignment of the
717/// specified decl.  Note that bitfields do not have a valid alignment, so
718/// this method will assert on them.
719/// If @p RefAsPointee, references are treated like their underlying type
720/// (for alignof), else they're treated like pointers (for CodeGen).
721CharUnits ASTContext::getDeclAlign(const Decl *D, bool RefAsPointee) const {
722  unsigned Align = Target->getCharWidth();
723
724  bool UseAlignAttrOnly = false;
725  if (unsigned AlignFromAttr = D->getMaxAlignment()) {
726    Align = AlignFromAttr;
727
728    // __attribute__((aligned)) can increase or decrease alignment
729    // *except* on a struct or struct member, where it only increases
730    // alignment unless 'packed' is also specified.
731    //
732    // It is an error for alignas to decrease alignment, so we can
733    // ignore that possibility;  Sema should diagnose it.
734    if (isa<FieldDecl>(D)) {
735      UseAlignAttrOnly = D->hasAttr<PackedAttr>() ||
736        cast<FieldDecl>(D)->getParent()->hasAttr<PackedAttr>();
737    } else {
738      UseAlignAttrOnly = true;
739    }
740  }
741  else if (isa<FieldDecl>(D))
742      UseAlignAttrOnly =
743        D->hasAttr<PackedAttr>() ||
744        cast<FieldDecl>(D)->getParent()->hasAttr<PackedAttr>();
745
746  // If we're using the align attribute only, just ignore everything
747  // else about the declaration and its type.
748  if (UseAlignAttrOnly) {
749    // do nothing
750
751  } else if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
752    QualType T = VD->getType();
753    if (const ReferenceType* RT = T->getAs<ReferenceType>()) {
754      if (RefAsPointee)
755        T = RT->getPointeeType();
756      else
757        T = getPointerType(RT->getPointeeType());
758    }
759    if (!T->isIncompleteType() && !T->isFunctionType()) {
760      // Adjust alignments of declarations with array type by the
761      // large-array alignment on the target.
762      unsigned MinWidth = Target->getLargeArrayMinWidth();
763      const ArrayType *arrayType;
764      if (MinWidth && (arrayType = getAsArrayType(T))) {
765        if (isa<VariableArrayType>(arrayType))
766          Align = std::max(Align, Target->getLargeArrayAlign());
767        else if (isa<ConstantArrayType>(arrayType) &&
768                 MinWidth <= getTypeSize(cast<ConstantArrayType>(arrayType)))
769          Align = std::max(Align, Target->getLargeArrayAlign());
770
771        // Walk through any array types while we're at it.
772        T = getBaseElementType(arrayType);
773      }
774      Align = std::max(Align, getPreferredTypeAlign(T.getTypePtr()));
775    }
776
777    // Fields can be subject to extra alignment constraints, like if
778    // the field is packed, the struct is packed, or the struct has a
779    // a max-field-alignment constraint (#pragma pack).  So calculate
780    // the actual alignment of the field within the struct, and then
781    // (as we're expected to) constrain that by the alignment of the type.
782    if (const FieldDecl *field = dyn_cast<FieldDecl>(VD)) {
783      // So calculate the alignment of the field.
784      const ASTRecordLayout &layout = getASTRecordLayout(field->getParent());
785
786      // Start with the record's overall alignment.
787      unsigned fieldAlign = toBits(layout.getAlignment());
788
789      // Use the GCD of that and the offset within the record.
790      uint64_t offset = layout.getFieldOffset(field->getFieldIndex());
791      if (offset > 0) {
792        // Alignment is always a power of 2, so the GCD will be a power of 2,
793        // which means we get to do this crazy thing instead of Euclid's.
794        uint64_t lowBitOfOffset = offset & (~offset + 1);
795        if (lowBitOfOffset < fieldAlign)
796          fieldAlign = static_cast<unsigned>(lowBitOfOffset);
797      }
798
799      Align = std::min(Align, fieldAlign);
800    }
801  }
802
803  return toCharUnitsFromBits(Align);
804}
805
806std::pair<CharUnits, CharUnits>
807ASTContext::getTypeInfoInChars(const Type *T) const {
808  std::pair<uint64_t, unsigned> Info = getTypeInfo(T);
809  return std::make_pair(toCharUnitsFromBits(Info.first),
810                        toCharUnitsFromBits(Info.second));
811}
812
813std::pair<CharUnits, CharUnits>
814ASTContext::getTypeInfoInChars(QualType T) const {
815  return getTypeInfoInChars(T.getTypePtr());
816}
817
818std::pair<uint64_t, unsigned> ASTContext::getTypeInfo(const Type *T) const {
819  TypeInfoMap::iterator it = MemoizedTypeInfo.find(T);
820  if (it != MemoizedTypeInfo.end())
821    return it->second;
822
823  std::pair<uint64_t, unsigned> Info = getTypeInfoImpl(T);
824  MemoizedTypeInfo.insert(std::make_pair(T, Info));
825  return Info;
826}
827
828/// getTypeInfoImpl - Return the size of the specified type, in bits.  This
829/// method does not work on incomplete types.
830///
831/// FIXME: Pointers into different addr spaces could have different sizes and
832/// alignment requirements: getPointerInfo should take an AddrSpace, this
833/// should take a QualType, &c.
834std::pair<uint64_t, unsigned>
835ASTContext::getTypeInfoImpl(const Type *T) const {
836  uint64_t Width=0;
837  unsigned Align=8;
838  switch (T->getTypeClass()) {
839#define TYPE(Class, Base)
840#define ABSTRACT_TYPE(Class, Base)
841#define NON_CANONICAL_TYPE(Class, Base)
842#define DEPENDENT_TYPE(Class, Base) case Type::Class:
843#include "clang/AST/TypeNodes.def"
844    llvm_unreachable("Should not see dependent types");
845
846  case Type::FunctionNoProto:
847  case Type::FunctionProto:
848    // GCC extension: alignof(function) = 32 bits
849    Width = 0;
850    Align = 32;
851    break;
852
853  case Type::IncompleteArray:
854  case Type::VariableArray:
855    Width = 0;
856    Align = getTypeAlign(cast<ArrayType>(T)->getElementType());
857    break;
858
859  case Type::ConstantArray: {
860    const ConstantArrayType *CAT = cast<ConstantArrayType>(T);
861
862    std::pair<uint64_t, unsigned> EltInfo = getTypeInfo(CAT->getElementType());
863    uint64_t Size = CAT->getSize().getZExtValue();
864    assert((Size == 0 || EltInfo.first <= (uint64_t)(-1)/Size) &&
865           "Overflow in array type bit size evaluation");
866    Width = EltInfo.first*Size;
867    Align = EltInfo.second;
868    Width = llvm::RoundUpToAlignment(Width, Align);
869    break;
870  }
871  case Type::ExtVector:
872  case Type::Vector: {
873    const VectorType *VT = cast<VectorType>(T);
874    std::pair<uint64_t, unsigned> EltInfo = getTypeInfo(VT->getElementType());
875    Width = EltInfo.first*VT->getNumElements();
876    Align = Width;
877    // If the alignment is not a power of 2, round up to the next power of 2.
878    // This happens for non-power-of-2 length vectors.
879    if (Align & (Align-1)) {
880      Align = llvm::NextPowerOf2(Align);
881      Width = llvm::RoundUpToAlignment(Width, Align);
882    }
883    break;
884  }
885
886  case Type::Builtin:
887    switch (cast<BuiltinType>(T)->getKind()) {
888    default: llvm_unreachable("Unknown builtin type!");
889    case BuiltinType::Void:
890      // GCC extension: alignof(void) = 8 bits.
891      Width = 0;
892      Align = 8;
893      break;
894
895    case BuiltinType::Bool:
896      Width = Target->getBoolWidth();
897      Align = Target->getBoolAlign();
898      break;
899    case BuiltinType::Char_S:
900    case BuiltinType::Char_U:
901    case BuiltinType::UChar:
902    case BuiltinType::SChar:
903      Width = Target->getCharWidth();
904      Align = Target->getCharAlign();
905      break;
906    case BuiltinType::WChar_S:
907    case BuiltinType::WChar_U:
908      Width = Target->getWCharWidth();
909      Align = Target->getWCharAlign();
910      break;
911    case BuiltinType::Char16:
912      Width = Target->getChar16Width();
913      Align = Target->getChar16Align();
914      break;
915    case BuiltinType::Char32:
916      Width = Target->getChar32Width();
917      Align = Target->getChar32Align();
918      break;
919    case BuiltinType::UShort:
920    case BuiltinType::Short:
921      Width = Target->getShortWidth();
922      Align = Target->getShortAlign();
923      break;
924    case BuiltinType::UInt:
925    case BuiltinType::Int:
926      Width = Target->getIntWidth();
927      Align = Target->getIntAlign();
928      break;
929    case BuiltinType::ULong:
930    case BuiltinType::Long:
931      Width = Target->getLongWidth();
932      Align = Target->getLongAlign();
933      break;
934    case BuiltinType::ULongLong:
935    case BuiltinType::LongLong:
936      Width = Target->getLongLongWidth();
937      Align = Target->getLongLongAlign();
938      break;
939    case BuiltinType::Int128:
940    case BuiltinType::UInt128:
941      Width = 128;
942      Align = 128; // int128_t is 128-bit aligned on all targets.
943      break;
944    case BuiltinType::Half:
945      Width = Target->getHalfWidth();
946      Align = Target->getHalfAlign();
947      break;
948    case BuiltinType::Float:
949      Width = Target->getFloatWidth();
950      Align = Target->getFloatAlign();
951      break;
952    case BuiltinType::Double:
953      Width = Target->getDoubleWidth();
954      Align = Target->getDoubleAlign();
955      break;
956    case BuiltinType::LongDouble:
957      Width = Target->getLongDoubleWidth();
958      Align = Target->getLongDoubleAlign();
959      break;
960    case BuiltinType::NullPtr:
961      Width = Target->getPointerWidth(0); // C++ 3.9.1p11: sizeof(nullptr_t)
962      Align = Target->getPointerAlign(0); //   == sizeof(void*)
963      break;
964    case BuiltinType::ObjCId:
965    case BuiltinType::ObjCClass:
966    case BuiltinType::ObjCSel:
967      Width = Target->getPointerWidth(0);
968      Align = Target->getPointerAlign(0);
969      break;
970    }
971    break;
972  case Type::ObjCObjectPointer:
973    Width = Target->getPointerWidth(0);
974    Align = Target->getPointerAlign(0);
975    break;
976  case Type::BlockPointer: {
977    unsigned AS = getTargetAddressSpace(
978        cast<BlockPointerType>(T)->getPointeeType());
979    Width = Target->getPointerWidth(AS);
980    Align = Target->getPointerAlign(AS);
981    break;
982  }
983  case Type::LValueReference:
984  case Type::RValueReference: {
985    // alignof and sizeof should never enter this code path here, so we go
986    // the pointer route.
987    unsigned AS = getTargetAddressSpace(
988        cast<ReferenceType>(T)->getPointeeType());
989    Width = Target->getPointerWidth(AS);
990    Align = Target->getPointerAlign(AS);
991    break;
992  }
993  case Type::Pointer: {
994    unsigned AS = getTargetAddressSpace(cast<PointerType>(T)->getPointeeType());
995    Width = Target->getPointerWidth(AS);
996    Align = Target->getPointerAlign(AS);
997    break;
998  }
999  case Type::MemberPointer: {
1000    const MemberPointerType *MPT = cast<MemberPointerType>(T);
1001    std::pair<uint64_t, unsigned> PtrDiffInfo =
1002      getTypeInfo(getPointerDiffType());
1003    Width = PtrDiffInfo.first * ABI->getMemberPointerSize(MPT);
1004    Align = PtrDiffInfo.second;
1005    break;
1006  }
1007  case Type::Complex: {
1008    // Complex types have the same alignment as their elements, but twice the
1009    // size.
1010    std::pair<uint64_t, unsigned> EltInfo =
1011      getTypeInfo(cast<ComplexType>(T)->getElementType());
1012    Width = EltInfo.first*2;
1013    Align = EltInfo.second;
1014    break;
1015  }
1016  case Type::ObjCObject:
1017    return getTypeInfo(cast<ObjCObjectType>(T)->getBaseType().getTypePtr());
1018  case Type::ObjCInterface: {
1019    const ObjCInterfaceType *ObjCI = cast<ObjCInterfaceType>(T);
1020    const ASTRecordLayout &Layout = getASTObjCInterfaceLayout(ObjCI->getDecl());
1021    Width = toBits(Layout.getSize());
1022    Align = toBits(Layout.getAlignment());
1023    break;
1024  }
1025  case Type::Record:
1026  case Type::Enum: {
1027    const TagType *TT = cast<TagType>(T);
1028
1029    if (TT->getDecl()->isInvalidDecl()) {
1030      Width = 8;
1031      Align = 8;
1032      break;
1033    }
1034
1035    if (const EnumType *ET = dyn_cast<EnumType>(TT))
1036      return getTypeInfo(ET->getDecl()->getIntegerType());
1037
1038    const RecordType *RT = cast<RecordType>(TT);
1039    const ASTRecordLayout &Layout = getASTRecordLayout(RT->getDecl());
1040    Width = toBits(Layout.getSize());
1041    Align = toBits(Layout.getAlignment());
1042    break;
1043  }
1044
1045  case Type::SubstTemplateTypeParm:
1046    return getTypeInfo(cast<SubstTemplateTypeParmType>(T)->
1047                       getReplacementType().getTypePtr());
1048
1049  case Type::Auto: {
1050    const AutoType *A = cast<AutoType>(T);
1051    assert(A->isDeduced() && "Cannot request the size of a dependent type");
1052    return getTypeInfo(A->getDeducedType().getTypePtr());
1053  }
1054
1055  case Type::Paren:
1056    return getTypeInfo(cast<ParenType>(T)->getInnerType().getTypePtr());
1057
1058  case Type::Typedef: {
1059    const TypedefNameDecl *Typedef = cast<TypedefType>(T)->getDecl();
1060    std::pair<uint64_t, unsigned> Info
1061      = getTypeInfo(Typedef->getUnderlyingType().getTypePtr());
1062    // If the typedef has an aligned attribute on it, it overrides any computed
1063    // alignment we have.  This violates the GCC documentation (which says that
1064    // attribute(aligned) can only round up) but matches its implementation.
1065    if (unsigned AttrAlign = Typedef->getMaxAlignment())
1066      Align = AttrAlign;
1067    else
1068      Align = Info.second;
1069    Width = Info.first;
1070    break;
1071  }
1072
1073  case Type::TypeOfExpr:
1074    return getTypeInfo(cast<TypeOfExprType>(T)->getUnderlyingExpr()->getType()
1075                         .getTypePtr());
1076
1077  case Type::TypeOf:
1078    return getTypeInfo(cast<TypeOfType>(T)->getUnderlyingType().getTypePtr());
1079
1080  case Type::Decltype:
1081    return getTypeInfo(cast<DecltypeType>(T)->getUnderlyingExpr()->getType()
1082                        .getTypePtr());
1083
1084  case Type::UnaryTransform:
1085    return getTypeInfo(cast<UnaryTransformType>(T)->getUnderlyingType());
1086
1087  case Type::Elaborated:
1088    return getTypeInfo(cast<ElaboratedType>(T)->getNamedType().getTypePtr());
1089
1090  case Type::Attributed:
1091    return getTypeInfo(
1092                  cast<AttributedType>(T)->getEquivalentType().getTypePtr());
1093
1094  case Type::TemplateSpecialization: {
1095    assert(getCanonicalType(T) != T &&
1096           "Cannot request the size of a dependent type");
1097    const TemplateSpecializationType *TST = cast<TemplateSpecializationType>(T);
1098    // A type alias template specialization may refer to a typedef with the
1099    // aligned attribute on it.
1100    if (TST->isTypeAlias())
1101      return getTypeInfo(TST->getAliasedType().getTypePtr());
1102    else
1103      return getTypeInfo(getCanonicalType(T));
1104  }
1105
1106  case Type::Atomic: {
1107    std::pair<uint64_t, unsigned> Info
1108      = getTypeInfo(cast<AtomicType>(T)->getValueType());
1109    Width = Info.first;
1110    Align = Info.second;
1111    if (Width != 0 && Width <= Target->getMaxAtomicPromoteWidth() &&
1112        llvm::isPowerOf2_64(Width)) {
1113      // We can potentially perform lock-free atomic operations for this
1114      // type; promote the alignment appropriately.
1115      // FIXME: We could potentially promote the width here as well...
1116      // is that worthwhile?  (Non-struct atomic types generally have
1117      // power-of-two size anyway, but structs might not.  Requires a bit
1118      // of implementation work to make sure we zero out the extra bits.)
1119      Align = static_cast<unsigned>(Width);
1120    }
1121  }
1122
1123  }
1124
1125  assert(llvm::isPowerOf2_32(Align) && "Alignment must be power of 2");
1126  return std::make_pair(Width, Align);
1127}
1128
1129/// toCharUnitsFromBits - Convert a size in bits to a size in characters.
1130CharUnits ASTContext::toCharUnitsFromBits(int64_t BitSize) const {
1131  return CharUnits::fromQuantity(BitSize / getCharWidth());
1132}
1133
1134/// toBits - Convert a size in characters to a size in characters.
1135int64_t ASTContext::toBits(CharUnits CharSize) const {
1136  return CharSize.getQuantity() * getCharWidth();
1137}
1138
1139/// getTypeSizeInChars - Return the size of the specified type, in characters.
1140/// This method does not work on incomplete types.
1141CharUnits ASTContext::getTypeSizeInChars(QualType T) const {
1142  return toCharUnitsFromBits(getTypeSize(T));
1143}
1144CharUnits ASTContext::getTypeSizeInChars(const Type *T) const {
1145  return toCharUnitsFromBits(getTypeSize(T));
1146}
1147
1148/// getTypeAlignInChars - Return the ABI-specified alignment of a type, in
1149/// characters. This method does not work on incomplete types.
1150CharUnits ASTContext::getTypeAlignInChars(QualType T) const {
1151  return toCharUnitsFromBits(getTypeAlign(T));
1152}
1153CharUnits ASTContext::getTypeAlignInChars(const Type *T) const {
1154  return toCharUnitsFromBits(getTypeAlign(T));
1155}
1156
1157/// getPreferredTypeAlign - Return the "preferred" alignment of the specified
1158/// type for the current target in bits.  This can be different than the ABI
1159/// alignment in cases where it is beneficial for performance to overalign
1160/// a data type.
1161unsigned ASTContext::getPreferredTypeAlign(const Type *T) const {
1162  unsigned ABIAlign = getTypeAlign(T);
1163
1164  // Double and long long should be naturally aligned if possible.
1165  if (const ComplexType* CT = T->getAs<ComplexType>())
1166    T = CT->getElementType().getTypePtr();
1167  if (T->isSpecificBuiltinType(BuiltinType::Double) ||
1168      T->isSpecificBuiltinType(BuiltinType::LongLong))
1169    return std::max(ABIAlign, (unsigned)getTypeSize(T));
1170
1171  return ABIAlign;
1172}
1173
1174/// DeepCollectObjCIvars -
1175/// This routine first collects all declared, but not synthesized, ivars in
1176/// super class and then collects all ivars, including those synthesized for
1177/// current class. This routine is used for implementation of current class
1178/// when all ivars, declared and synthesized are known.
1179///
1180void ASTContext::DeepCollectObjCIvars(const ObjCInterfaceDecl *OI,
1181                                      bool leafClass,
1182                            SmallVectorImpl<const ObjCIvarDecl*> &Ivars) const {
1183  if (const ObjCInterfaceDecl *SuperClass = OI->getSuperClass())
1184    DeepCollectObjCIvars(SuperClass, false, Ivars);
1185  if (!leafClass) {
1186    for (ObjCInterfaceDecl::ivar_iterator I = OI->ivar_begin(),
1187         E = OI->ivar_end(); I != E; ++I)
1188      Ivars.push_back(*I);
1189  } else {
1190    ObjCInterfaceDecl *IDecl = const_cast<ObjCInterfaceDecl *>(OI);
1191    for (const ObjCIvarDecl *Iv = IDecl->all_declared_ivar_begin(); Iv;
1192         Iv= Iv->getNextIvar())
1193      Ivars.push_back(Iv);
1194  }
1195}
1196
1197/// CollectInheritedProtocols - Collect all protocols in current class and
1198/// those inherited by it.
1199void ASTContext::CollectInheritedProtocols(const Decl *CDecl,
1200                          llvm::SmallPtrSet<ObjCProtocolDecl*, 8> &Protocols) {
1201  if (const ObjCInterfaceDecl *OI = dyn_cast<ObjCInterfaceDecl>(CDecl)) {
1202    // We can use protocol_iterator here instead of
1203    // all_referenced_protocol_iterator since we are walking all categories.
1204    for (ObjCInterfaceDecl::all_protocol_iterator P = OI->all_referenced_protocol_begin(),
1205         PE = OI->all_referenced_protocol_end(); P != PE; ++P) {
1206      ObjCProtocolDecl *Proto = (*P);
1207      Protocols.insert(Proto->getCanonicalDecl());
1208      for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
1209           PE = Proto->protocol_end(); P != PE; ++P) {
1210        Protocols.insert((*P)->getCanonicalDecl());
1211        CollectInheritedProtocols(*P, Protocols);
1212      }
1213    }
1214
1215    // Categories of this Interface.
1216    for (const ObjCCategoryDecl *CDeclChain = OI->getCategoryList();
1217         CDeclChain; CDeclChain = CDeclChain->getNextClassCategory())
1218      CollectInheritedProtocols(CDeclChain, Protocols);
1219    if (ObjCInterfaceDecl *SD = OI->getSuperClass())
1220      while (SD) {
1221        CollectInheritedProtocols(SD, Protocols);
1222        SD = SD->getSuperClass();
1223      }
1224  } else if (const ObjCCategoryDecl *OC = dyn_cast<ObjCCategoryDecl>(CDecl)) {
1225    for (ObjCCategoryDecl::protocol_iterator P = OC->protocol_begin(),
1226         PE = OC->protocol_end(); P != PE; ++P) {
1227      ObjCProtocolDecl *Proto = (*P);
1228      Protocols.insert(Proto->getCanonicalDecl());
1229      for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
1230           PE = Proto->protocol_end(); P != PE; ++P)
1231        CollectInheritedProtocols(*P, Protocols);
1232    }
1233  } else if (const ObjCProtocolDecl *OP = dyn_cast<ObjCProtocolDecl>(CDecl)) {
1234    for (ObjCProtocolDecl::protocol_iterator P = OP->protocol_begin(),
1235         PE = OP->protocol_end(); P != PE; ++P) {
1236      ObjCProtocolDecl *Proto = (*P);
1237      Protocols.insert(Proto->getCanonicalDecl());
1238      for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
1239           PE = Proto->protocol_end(); P != PE; ++P)
1240        CollectInheritedProtocols(*P, Protocols);
1241    }
1242  }
1243}
1244
1245unsigned ASTContext::CountNonClassIvars(const ObjCInterfaceDecl *OI) const {
1246  unsigned count = 0;
1247  // Count ivars declared in class extension.
1248  for (const ObjCCategoryDecl *CDecl = OI->getFirstClassExtension(); CDecl;
1249       CDecl = CDecl->getNextClassExtension())
1250    count += CDecl->ivar_size();
1251
1252  // Count ivar defined in this class's implementation.  This
1253  // includes synthesized ivars.
1254  if (ObjCImplementationDecl *ImplDecl = OI->getImplementation())
1255    count += ImplDecl->ivar_size();
1256
1257  return count;
1258}
1259
1260bool ASTContext::isSentinelNullExpr(const Expr *E) {
1261  if (!E)
1262    return false;
1263
1264  // nullptr_t is always treated as null.
1265  if (E->getType()->isNullPtrType()) return true;
1266
1267  if (E->getType()->isAnyPointerType() &&
1268      E->IgnoreParenCasts()->isNullPointerConstant(*this,
1269                                                Expr::NPC_ValueDependentIsNull))
1270    return true;
1271
1272  // Unfortunately, __null has type 'int'.
1273  if (isa<GNUNullExpr>(E)) return true;
1274
1275  return false;
1276}
1277
1278/// \brief Get the implementation of ObjCInterfaceDecl,or NULL if none exists.
1279ObjCImplementationDecl *ASTContext::getObjCImplementation(ObjCInterfaceDecl *D) {
1280  llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
1281    I = ObjCImpls.find(D);
1282  if (I != ObjCImpls.end())
1283    return cast<ObjCImplementationDecl>(I->second);
1284  return 0;
1285}
1286/// \brief Get the implementation of ObjCCategoryDecl, or NULL if none exists.
1287ObjCCategoryImplDecl *ASTContext::getObjCImplementation(ObjCCategoryDecl *D) {
1288  llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
1289    I = ObjCImpls.find(D);
1290  if (I != ObjCImpls.end())
1291    return cast<ObjCCategoryImplDecl>(I->second);
1292  return 0;
1293}
1294
1295/// \brief Set the implementation of ObjCInterfaceDecl.
1296void ASTContext::setObjCImplementation(ObjCInterfaceDecl *IFaceD,
1297                           ObjCImplementationDecl *ImplD) {
1298  assert(IFaceD && ImplD && "Passed null params");
1299  ObjCImpls[IFaceD] = ImplD;
1300}
1301/// \brief Set the implementation of ObjCCategoryDecl.
1302void ASTContext::setObjCImplementation(ObjCCategoryDecl *CatD,
1303                           ObjCCategoryImplDecl *ImplD) {
1304  assert(CatD && ImplD && "Passed null params");
1305  ObjCImpls[CatD] = ImplD;
1306}
1307
1308ObjCInterfaceDecl *ASTContext::getObjContainingInterface(NamedDecl *ND) const {
1309  if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(ND->getDeclContext()))
1310    return ID;
1311  if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(ND->getDeclContext()))
1312    return CD->getClassInterface();
1313  if (ObjCImplDecl *IMD = dyn_cast<ObjCImplDecl>(ND->getDeclContext()))
1314    return IMD->getClassInterface();
1315
1316  return 0;
1317}
1318
1319/// \brief Get the copy initialization expression of VarDecl,or NULL if
1320/// none exists.
1321Expr *ASTContext::getBlockVarCopyInits(const VarDecl*VD) {
1322  assert(VD && "Passed null params");
1323  assert(VD->hasAttr<BlocksAttr>() &&
1324         "getBlockVarCopyInits - not __block var");
1325  llvm::DenseMap<const VarDecl*, Expr*>::iterator
1326    I = BlockVarCopyInits.find(VD);
1327  return (I != BlockVarCopyInits.end()) ? cast<Expr>(I->second) : 0;
1328}
1329
1330/// \brief Set the copy inialization expression of a block var decl.
1331void ASTContext::setBlockVarCopyInits(VarDecl*VD, Expr* Init) {
1332  assert(VD && Init && "Passed null params");
1333  assert(VD->hasAttr<BlocksAttr>() &&
1334         "setBlockVarCopyInits - not __block var");
1335  BlockVarCopyInits[VD] = Init;
1336}
1337
1338/// \brief Allocate an uninitialized TypeSourceInfo.
1339///
1340/// The caller should initialize the memory held by TypeSourceInfo using
1341/// the TypeLoc wrappers.
1342///
1343/// \param T the type that will be the basis for type source info. This type
1344/// should refer to how the declarator was written in source code, not to
1345/// what type semantic analysis resolved the declarator to.
1346TypeSourceInfo *ASTContext::CreateTypeSourceInfo(QualType T,
1347                                                 unsigned DataSize) const {
1348  if (!DataSize)
1349    DataSize = TypeLoc::getFullDataSizeForType(T);
1350  else
1351    assert(DataSize == TypeLoc::getFullDataSizeForType(T) &&
1352           "incorrect data size provided to CreateTypeSourceInfo!");
1353
1354  TypeSourceInfo *TInfo =
1355    (TypeSourceInfo*)BumpAlloc.Allocate(sizeof(TypeSourceInfo) + DataSize, 8);
1356  new (TInfo) TypeSourceInfo(T);
1357  return TInfo;
1358}
1359
1360TypeSourceInfo *ASTContext::getTrivialTypeSourceInfo(QualType T,
1361                                                     SourceLocation L) const {
1362  TypeSourceInfo *DI = CreateTypeSourceInfo(T);
1363  DI->getTypeLoc().initialize(const_cast<ASTContext &>(*this), L);
1364  return DI;
1365}
1366
1367const ASTRecordLayout &
1368ASTContext::getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D) const {
1369  return getObjCLayout(D, 0);
1370}
1371
1372const ASTRecordLayout &
1373ASTContext::getASTObjCImplementationLayout(
1374                                        const ObjCImplementationDecl *D) const {
1375  return getObjCLayout(D->getClassInterface(), D);
1376}
1377
1378//===----------------------------------------------------------------------===//
1379//                   Type creation/memoization methods
1380//===----------------------------------------------------------------------===//
1381
1382QualType
1383ASTContext::getExtQualType(const Type *baseType, Qualifiers quals) const {
1384  unsigned fastQuals = quals.getFastQualifiers();
1385  quals.removeFastQualifiers();
1386
1387  // Check if we've already instantiated this type.
1388  llvm::FoldingSetNodeID ID;
1389  ExtQuals::Profile(ID, baseType, quals);
1390  void *insertPos = 0;
1391  if (ExtQuals *eq = ExtQualNodes.FindNodeOrInsertPos(ID, insertPos)) {
1392    assert(eq->getQualifiers() == quals);
1393    return QualType(eq, fastQuals);
1394  }
1395
1396  // If the base type is not canonical, make the appropriate canonical type.
1397  QualType canon;
1398  if (!baseType->isCanonicalUnqualified()) {
1399    SplitQualType canonSplit = baseType->getCanonicalTypeInternal().split();
1400    canonSplit.Quals.addConsistentQualifiers(quals);
1401    canon = getExtQualType(canonSplit.Ty, canonSplit.Quals);
1402
1403    // Re-find the insert position.
1404    (void) ExtQualNodes.FindNodeOrInsertPos(ID, insertPos);
1405  }
1406
1407  ExtQuals *eq = new (*this, TypeAlignment) ExtQuals(baseType, canon, quals);
1408  ExtQualNodes.InsertNode(eq, insertPos);
1409  return QualType(eq, fastQuals);
1410}
1411
1412QualType
1413ASTContext::getAddrSpaceQualType(QualType T, unsigned AddressSpace) const {
1414  QualType CanT = getCanonicalType(T);
1415  if (CanT.getAddressSpace() == AddressSpace)
1416    return T;
1417
1418  // If we are composing extended qualifiers together, merge together
1419  // into one ExtQuals node.
1420  QualifierCollector Quals;
1421  const Type *TypeNode = Quals.strip(T);
1422
1423  // If this type already has an address space specified, it cannot get
1424  // another one.
1425  assert(!Quals.hasAddressSpace() &&
1426         "Type cannot be in multiple addr spaces!");
1427  Quals.addAddressSpace(AddressSpace);
1428
1429  return getExtQualType(TypeNode, Quals);
1430}
1431
1432QualType ASTContext::getObjCGCQualType(QualType T,
1433                                       Qualifiers::GC GCAttr) const {
1434  QualType CanT = getCanonicalType(T);
1435  if (CanT.getObjCGCAttr() == GCAttr)
1436    return T;
1437
1438  if (const PointerType *ptr = T->getAs<PointerType>()) {
1439    QualType Pointee = ptr->getPointeeType();
1440    if (Pointee->isAnyPointerType()) {
1441      QualType ResultType = getObjCGCQualType(Pointee, GCAttr);
1442      return getPointerType(ResultType);
1443    }
1444  }
1445
1446  // If we are composing extended qualifiers together, merge together
1447  // into one ExtQuals node.
1448  QualifierCollector Quals;
1449  const Type *TypeNode = Quals.strip(T);
1450
1451  // If this type already has an ObjCGC specified, it cannot get
1452  // another one.
1453  assert(!Quals.hasObjCGCAttr() &&
1454         "Type cannot have multiple ObjCGCs!");
1455  Quals.addObjCGCAttr(GCAttr);
1456
1457  return getExtQualType(TypeNode, Quals);
1458}
1459
1460const FunctionType *ASTContext::adjustFunctionType(const FunctionType *T,
1461                                                   FunctionType::ExtInfo Info) {
1462  if (T->getExtInfo() == Info)
1463    return T;
1464
1465  QualType Result;
1466  if (const FunctionNoProtoType *FNPT = dyn_cast<FunctionNoProtoType>(T)) {
1467    Result = getFunctionNoProtoType(FNPT->getResultType(), Info);
1468  } else {
1469    const FunctionProtoType *FPT = cast<FunctionProtoType>(T);
1470    FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
1471    EPI.ExtInfo = Info;
1472    Result = getFunctionType(FPT->getResultType(), FPT->arg_type_begin(),
1473                             FPT->getNumArgs(), EPI);
1474  }
1475
1476  return cast<FunctionType>(Result.getTypePtr());
1477}
1478
1479/// getComplexType - Return the uniqued reference to the type for a complex
1480/// number with the specified element type.
1481QualType ASTContext::getComplexType(QualType T) const {
1482  // Unique pointers, to guarantee there is only one pointer of a particular
1483  // structure.
1484  llvm::FoldingSetNodeID ID;
1485  ComplexType::Profile(ID, T);
1486
1487  void *InsertPos = 0;
1488  if (ComplexType *CT = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos))
1489    return QualType(CT, 0);
1490
1491  // If the pointee type isn't canonical, this won't be a canonical type either,
1492  // so fill in the canonical type field.
1493  QualType Canonical;
1494  if (!T.isCanonical()) {
1495    Canonical = getComplexType(getCanonicalType(T));
1496
1497    // Get the new insert position for the node we care about.
1498    ComplexType *NewIP = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos);
1499    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1500  }
1501  ComplexType *New = new (*this, TypeAlignment) ComplexType(T, Canonical);
1502  Types.push_back(New);
1503  ComplexTypes.InsertNode(New, InsertPos);
1504  return QualType(New, 0);
1505}
1506
1507/// getPointerType - Return the uniqued reference to the type for a pointer to
1508/// the specified type.
1509QualType ASTContext::getPointerType(QualType T) const {
1510  // Unique pointers, to guarantee there is only one pointer of a particular
1511  // structure.
1512  llvm::FoldingSetNodeID ID;
1513  PointerType::Profile(ID, T);
1514
1515  void *InsertPos = 0;
1516  if (PointerType *PT = PointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1517    return QualType(PT, 0);
1518
1519  // If the pointee type isn't canonical, this won't be a canonical type either,
1520  // so fill in the canonical type field.
1521  QualType Canonical;
1522  if (!T.isCanonical()) {
1523    Canonical = getPointerType(getCanonicalType(T));
1524
1525    // Get the new insert position for the node we care about.
1526    PointerType *NewIP = PointerTypes.FindNodeOrInsertPos(ID, InsertPos);
1527    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1528  }
1529  PointerType *New = new (*this, TypeAlignment) PointerType(T, Canonical);
1530  Types.push_back(New);
1531  PointerTypes.InsertNode(New, InsertPos);
1532  return QualType(New, 0);
1533}
1534
1535/// getBlockPointerType - Return the uniqued reference to the type for
1536/// a pointer to the specified block.
1537QualType ASTContext::getBlockPointerType(QualType T) const {
1538  assert(T->isFunctionType() && "block of function types only");
1539  // Unique pointers, to guarantee there is only one block of a particular
1540  // structure.
1541  llvm::FoldingSetNodeID ID;
1542  BlockPointerType::Profile(ID, T);
1543
1544  void *InsertPos = 0;
1545  if (BlockPointerType *PT =
1546        BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1547    return QualType(PT, 0);
1548
1549  // If the block pointee type isn't canonical, this won't be a canonical
1550  // type either so fill in the canonical type field.
1551  QualType Canonical;
1552  if (!T.isCanonical()) {
1553    Canonical = getBlockPointerType(getCanonicalType(T));
1554
1555    // Get the new insert position for the node we care about.
1556    BlockPointerType *NewIP =
1557      BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
1558    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1559  }
1560  BlockPointerType *New
1561    = new (*this, TypeAlignment) BlockPointerType(T, Canonical);
1562  Types.push_back(New);
1563  BlockPointerTypes.InsertNode(New, InsertPos);
1564  return QualType(New, 0);
1565}
1566
1567/// getLValueReferenceType - Return the uniqued reference to the type for an
1568/// lvalue reference to the specified type.
1569QualType
1570ASTContext::getLValueReferenceType(QualType T, bool SpelledAsLValue) const {
1571  assert(getCanonicalType(T) != OverloadTy &&
1572         "Unresolved overloaded function type");
1573
1574  // Unique pointers, to guarantee there is only one pointer of a particular
1575  // structure.
1576  llvm::FoldingSetNodeID ID;
1577  ReferenceType::Profile(ID, T, SpelledAsLValue);
1578
1579  void *InsertPos = 0;
1580  if (LValueReferenceType *RT =
1581        LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
1582    return QualType(RT, 0);
1583
1584  const ReferenceType *InnerRef = T->getAs<ReferenceType>();
1585
1586  // If the referencee type isn't canonical, this won't be a canonical type
1587  // either, so fill in the canonical type field.
1588  QualType Canonical;
1589  if (!SpelledAsLValue || InnerRef || !T.isCanonical()) {
1590    QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
1591    Canonical = getLValueReferenceType(getCanonicalType(PointeeType));
1592
1593    // Get the new insert position for the node we care about.
1594    LValueReferenceType *NewIP =
1595      LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
1596    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1597  }
1598
1599  LValueReferenceType *New
1600    = new (*this, TypeAlignment) LValueReferenceType(T, Canonical,
1601                                                     SpelledAsLValue);
1602  Types.push_back(New);
1603  LValueReferenceTypes.InsertNode(New, InsertPos);
1604
1605  return QualType(New, 0);
1606}
1607
1608/// getRValueReferenceType - Return the uniqued reference to the type for an
1609/// rvalue reference to the specified type.
1610QualType ASTContext::getRValueReferenceType(QualType T) const {
1611  // Unique pointers, to guarantee there is only one pointer of a particular
1612  // structure.
1613  llvm::FoldingSetNodeID ID;
1614  ReferenceType::Profile(ID, T, false);
1615
1616  void *InsertPos = 0;
1617  if (RValueReferenceType *RT =
1618        RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
1619    return QualType(RT, 0);
1620
1621  const ReferenceType *InnerRef = T->getAs<ReferenceType>();
1622
1623  // If the referencee type isn't canonical, this won't be a canonical type
1624  // either, so fill in the canonical type field.
1625  QualType Canonical;
1626  if (InnerRef || !T.isCanonical()) {
1627    QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
1628    Canonical = getRValueReferenceType(getCanonicalType(PointeeType));
1629
1630    // Get the new insert position for the node we care about.
1631    RValueReferenceType *NewIP =
1632      RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
1633    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1634  }
1635
1636  RValueReferenceType *New
1637    = new (*this, TypeAlignment) RValueReferenceType(T, Canonical);
1638  Types.push_back(New);
1639  RValueReferenceTypes.InsertNode(New, InsertPos);
1640  return QualType(New, 0);
1641}
1642
1643/// getMemberPointerType - Return the uniqued reference to the type for a
1644/// member pointer to the specified type, in the specified class.
1645QualType ASTContext::getMemberPointerType(QualType T, const Type *Cls) const {
1646  // Unique pointers, to guarantee there is only one pointer of a particular
1647  // structure.
1648  llvm::FoldingSetNodeID ID;
1649  MemberPointerType::Profile(ID, T, Cls);
1650
1651  void *InsertPos = 0;
1652  if (MemberPointerType *PT =
1653      MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1654    return QualType(PT, 0);
1655
1656  // If the pointee or class type isn't canonical, this won't be a canonical
1657  // type either, so fill in the canonical type field.
1658  QualType Canonical;
1659  if (!T.isCanonical() || !Cls->isCanonicalUnqualified()) {
1660    Canonical = getMemberPointerType(getCanonicalType(T),getCanonicalType(Cls));
1661
1662    // Get the new insert position for the node we care about.
1663    MemberPointerType *NewIP =
1664      MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
1665    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1666  }
1667  MemberPointerType *New
1668    = new (*this, TypeAlignment) MemberPointerType(T, Cls, Canonical);
1669  Types.push_back(New);
1670  MemberPointerTypes.InsertNode(New, InsertPos);
1671  return QualType(New, 0);
1672}
1673
1674/// getConstantArrayType - Return the unique reference to the type for an
1675/// array of the specified element type.
1676QualType ASTContext::getConstantArrayType(QualType EltTy,
1677                                          const llvm::APInt &ArySizeIn,
1678                                          ArrayType::ArraySizeModifier ASM,
1679                                          unsigned IndexTypeQuals) const {
1680  assert((EltTy->isDependentType() ||
1681          EltTy->isIncompleteType() || EltTy->isConstantSizeType()) &&
1682         "Constant array of VLAs is illegal!");
1683
1684  // Convert the array size into a canonical width matching the pointer size for
1685  // the target.
1686  llvm::APInt ArySize(ArySizeIn);
1687  ArySize =
1688    ArySize.zextOrTrunc(Target->getPointerWidth(getTargetAddressSpace(EltTy)));
1689
1690  llvm::FoldingSetNodeID ID;
1691  ConstantArrayType::Profile(ID, EltTy, ArySize, ASM, IndexTypeQuals);
1692
1693  void *InsertPos = 0;
1694  if (ConstantArrayType *ATP =
1695      ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
1696    return QualType(ATP, 0);
1697
1698  // If the element type isn't canonical or has qualifiers, this won't
1699  // be a canonical type either, so fill in the canonical type field.
1700  QualType Canon;
1701  if (!EltTy.isCanonical() || EltTy.hasLocalQualifiers()) {
1702    SplitQualType canonSplit = getCanonicalType(EltTy).split();
1703    Canon = getConstantArrayType(QualType(canonSplit.Ty, 0), ArySize,
1704                                 ASM, IndexTypeQuals);
1705    Canon = getQualifiedType(Canon, canonSplit.Quals);
1706
1707    // Get the new insert position for the node we care about.
1708    ConstantArrayType *NewIP =
1709      ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
1710    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1711  }
1712
1713  ConstantArrayType *New = new(*this,TypeAlignment)
1714    ConstantArrayType(EltTy, Canon, ArySize, ASM, IndexTypeQuals);
1715  ConstantArrayTypes.InsertNode(New, InsertPos);
1716  Types.push_back(New);
1717  return QualType(New, 0);
1718}
1719
1720/// getVariableArrayDecayedType - Turns the given type, which may be
1721/// variably-modified, into the corresponding type with all the known
1722/// sizes replaced with [*].
1723QualType ASTContext::getVariableArrayDecayedType(QualType type) const {
1724  // Vastly most common case.
1725  if (!type->isVariablyModifiedType()) return type;
1726
1727  QualType result;
1728
1729  SplitQualType split = type.getSplitDesugaredType();
1730  const Type *ty = split.Ty;
1731  switch (ty->getTypeClass()) {
1732#define TYPE(Class, Base)
1733#define ABSTRACT_TYPE(Class, Base)
1734#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
1735#include "clang/AST/TypeNodes.def"
1736    llvm_unreachable("didn't desugar past all non-canonical types?");
1737
1738  // These types should never be variably-modified.
1739  case Type::Builtin:
1740  case Type::Complex:
1741  case Type::Vector:
1742  case Type::ExtVector:
1743  case Type::DependentSizedExtVector:
1744  case Type::ObjCObject:
1745  case Type::ObjCInterface:
1746  case Type::ObjCObjectPointer:
1747  case Type::Record:
1748  case Type::Enum:
1749  case Type::UnresolvedUsing:
1750  case Type::TypeOfExpr:
1751  case Type::TypeOf:
1752  case Type::Decltype:
1753  case Type::UnaryTransform:
1754  case Type::DependentName:
1755  case Type::InjectedClassName:
1756  case Type::TemplateSpecialization:
1757  case Type::DependentTemplateSpecialization:
1758  case Type::TemplateTypeParm:
1759  case Type::SubstTemplateTypeParmPack:
1760  case Type::Auto:
1761  case Type::PackExpansion:
1762    llvm_unreachable("type should never be variably-modified");
1763
1764  // These types can be variably-modified but should never need to
1765  // further decay.
1766  case Type::FunctionNoProto:
1767  case Type::FunctionProto:
1768  case Type::BlockPointer:
1769  case Type::MemberPointer:
1770    return type;
1771
1772  // These types can be variably-modified.  All these modifications
1773  // preserve structure except as noted by comments.
1774  // TODO: if we ever care about optimizing VLAs, there are no-op
1775  // optimizations available here.
1776  case Type::Pointer:
1777    result = getPointerType(getVariableArrayDecayedType(
1778                              cast<PointerType>(ty)->getPointeeType()));
1779    break;
1780
1781  case Type::LValueReference: {
1782    const LValueReferenceType *lv = cast<LValueReferenceType>(ty);
1783    result = getLValueReferenceType(
1784                 getVariableArrayDecayedType(lv->getPointeeType()),
1785                                    lv->isSpelledAsLValue());
1786    break;
1787  }
1788
1789  case Type::RValueReference: {
1790    const RValueReferenceType *lv = cast<RValueReferenceType>(ty);
1791    result = getRValueReferenceType(
1792                 getVariableArrayDecayedType(lv->getPointeeType()));
1793    break;
1794  }
1795
1796  case Type::Atomic: {
1797    const AtomicType *at = cast<AtomicType>(ty);
1798    result = getAtomicType(getVariableArrayDecayedType(at->getValueType()));
1799    break;
1800  }
1801
1802  case Type::ConstantArray: {
1803    const ConstantArrayType *cat = cast<ConstantArrayType>(ty);
1804    result = getConstantArrayType(
1805                 getVariableArrayDecayedType(cat->getElementType()),
1806                                  cat->getSize(),
1807                                  cat->getSizeModifier(),
1808                                  cat->getIndexTypeCVRQualifiers());
1809    break;
1810  }
1811
1812  case Type::DependentSizedArray: {
1813    const DependentSizedArrayType *dat = cast<DependentSizedArrayType>(ty);
1814    result = getDependentSizedArrayType(
1815                 getVariableArrayDecayedType(dat->getElementType()),
1816                                        dat->getSizeExpr(),
1817                                        dat->getSizeModifier(),
1818                                        dat->getIndexTypeCVRQualifiers(),
1819                                        dat->getBracketsRange());
1820    break;
1821  }
1822
1823  // Turn incomplete types into [*] types.
1824  case Type::IncompleteArray: {
1825    const IncompleteArrayType *iat = cast<IncompleteArrayType>(ty);
1826    result = getVariableArrayType(
1827                 getVariableArrayDecayedType(iat->getElementType()),
1828                                  /*size*/ 0,
1829                                  ArrayType::Normal,
1830                                  iat->getIndexTypeCVRQualifiers(),
1831                                  SourceRange());
1832    break;
1833  }
1834
1835  // Turn VLA types into [*] types.
1836  case Type::VariableArray: {
1837    const VariableArrayType *vat = cast<VariableArrayType>(ty);
1838    result = getVariableArrayType(
1839                 getVariableArrayDecayedType(vat->getElementType()),
1840                                  /*size*/ 0,
1841                                  ArrayType::Star,
1842                                  vat->getIndexTypeCVRQualifiers(),
1843                                  vat->getBracketsRange());
1844    break;
1845  }
1846  }
1847
1848  // Apply the top-level qualifiers from the original.
1849  return getQualifiedType(result, split.Quals);
1850}
1851
1852/// getVariableArrayType - Returns a non-unique reference to the type for a
1853/// variable array of the specified element type.
1854QualType ASTContext::getVariableArrayType(QualType EltTy,
1855                                          Expr *NumElts,
1856                                          ArrayType::ArraySizeModifier ASM,
1857                                          unsigned IndexTypeQuals,
1858                                          SourceRange Brackets) const {
1859  // Since we don't unique expressions, it isn't possible to unique VLA's
1860  // that have an expression provided for their size.
1861  QualType Canon;
1862
1863  // Be sure to pull qualifiers off the element type.
1864  if (!EltTy.isCanonical() || EltTy.hasLocalQualifiers()) {
1865    SplitQualType canonSplit = getCanonicalType(EltTy).split();
1866    Canon = getVariableArrayType(QualType(canonSplit.Ty, 0), NumElts, ASM,
1867                                 IndexTypeQuals, Brackets);
1868    Canon = getQualifiedType(Canon, canonSplit.Quals);
1869  }
1870
1871  VariableArrayType *New = new(*this, TypeAlignment)
1872    VariableArrayType(EltTy, Canon, NumElts, ASM, IndexTypeQuals, Brackets);
1873
1874  VariableArrayTypes.push_back(New);
1875  Types.push_back(New);
1876  return QualType(New, 0);
1877}
1878
1879/// getDependentSizedArrayType - Returns a non-unique reference to
1880/// the type for a dependently-sized array of the specified element
1881/// type.
1882QualType ASTContext::getDependentSizedArrayType(QualType elementType,
1883                                                Expr *numElements,
1884                                                ArrayType::ArraySizeModifier ASM,
1885                                                unsigned elementTypeQuals,
1886                                                SourceRange brackets) const {
1887  assert((!numElements || numElements->isTypeDependent() ||
1888          numElements->isValueDependent()) &&
1889         "Size must be type- or value-dependent!");
1890
1891  // Dependently-sized array types that do not have a specified number
1892  // of elements will have their sizes deduced from a dependent
1893  // initializer.  We do no canonicalization here at all, which is okay
1894  // because they can't be used in most locations.
1895  if (!numElements) {
1896    DependentSizedArrayType *newType
1897      = new (*this, TypeAlignment)
1898          DependentSizedArrayType(*this, elementType, QualType(),
1899                                  numElements, ASM, elementTypeQuals,
1900                                  brackets);
1901    Types.push_back(newType);
1902    return QualType(newType, 0);
1903  }
1904
1905  // Otherwise, we actually build a new type every time, but we
1906  // also build a canonical type.
1907
1908  SplitQualType canonElementType = getCanonicalType(elementType).split();
1909
1910  void *insertPos = 0;
1911  llvm::FoldingSetNodeID ID;
1912  DependentSizedArrayType::Profile(ID, *this,
1913                                   QualType(canonElementType.Ty, 0),
1914                                   ASM, elementTypeQuals, numElements);
1915
1916  // Look for an existing type with these properties.
1917  DependentSizedArrayType *canonTy =
1918    DependentSizedArrayTypes.FindNodeOrInsertPos(ID, insertPos);
1919
1920  // If we don't have one, build one.
1921  if (!canonTy) {
1922    canonTy = new (*this, TypeAlignment)
1923      DependentSizedArrayType(*this, QualType(canonElementType.Ty, 0),
1924                              QualType(), numElements, ASM, elementTypeQuals,
1925                              brackets);
1926    DependentSizedArrayTypes.InsertNode(canonTy, insertPos);
1927    Types.push_back(canonTy);
1928  }
1929
1930  // Apply qualifiers from the element type to the array.
1931  QualType canon = getQualifiedType(QualType(canonTy,0),
1932                                    canonElementType.Quals);
1933
1934  // If we didn't need extra canonicalization for the element type,
1935  // then just use that as our result.
1936  if (QualType(canonElementType.Ty, 0) == elementType)
1937    return canon;
1938
1939  // Otherwise, we need to build a type which follows the spelling
1940  // of the element type.
1941  DependentSizedArrayType *sugaredType
1942    = new (*this, TypeAlignment)
1943        DependentSizedArrayType(*this, elementType, canon, numElements,
1944                                ASM, elementTypeQuals, brackets);
1945  Types.push_back(sugaredType);
1946  return QualType(sugaredType, 0);
1947}
1948
1949QualType ASTContext::getIncompleteArrayType(QualType elementType,
1950                                            ArrayType::ArraySizeModifier ASM,
1951                                            unsigned elementTypeQuals) const {
1952  llvm::FoldingSetNodeID ID;
1953  IncompleteArrayType::Profile(ID, elementType, ASM, elementTypeQuals);
1954
1955  void *insertPos = 0;
1956  if (IncompleteArrayType *iat =
1957       IncompleteArrayTypes.FindNodeOrInsertPos(ID, insertPos))
1958    return QualType(iat, 0);
1959
1960  // If the element type isn't canonical, this won't be a canonical type
1961  // either, so fill in the canonical type field.  We also have to pull
1962  // qualifiers off the element type.
1963  QualType canon;
1964
1965  if (!elementType.isCanonical() || elementType.hasLocalQualifiers()) {
1966    SplitQualType canonSplit = getCanonicalType(elementType).split();
1967    canon = getIncompleteArrayType(QualType(canonSplit.Ty, 0),
1968                                   ASM, elementTypeQuals);
1969    canon = getQualifiedType(canon, canonSplit.Quals);
1970
1971    // Get the new insert position for the node we care about.
1972    IncompleteArrayType *existing =
1973      IncompleteArrayTypes.FindNodeOrInsertPos(ID, insertPos);
1974    assert(!existing && "Shouldn't be in the map!"); (void) existing;
1975  }
1976
1977  IncompleteArrayType *newType = new (*this, TypeAlignment)
1978    IncompleteArrayType(elementType, canon, ASM, elementTypeQuals);
1979
1980  IncompleteArrayTypes.InsertNode(newType, insertPos);
1981  Types.push_back(newType);
1982  return QualType(newType, 0);
1983}
1984
1985/// getVectorType - Return the unique reference to a vector type of
1986/// the specified element type and size. VectorType must be a built-in type.
1987QualType ASTContext::getVectorType(QualType vecType, unsigned NumElts,
1988                                   VectorType::VectorKind VecKind) const {
1989  assert(vecType->isBuiltinType());
1990
1991  // Check if we've already instantiated a vector of this type.
1992  llvm::FoldingSetNodeID ID;
1993  VectorType::Profile(ID, vecType, NumElts, Type::Vector, VecKind);
1994
1995  void *InsertPos = 0;
1996  if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
1997    return QualType(VTP, 0);
1998
1999  // If the element type isn't canonical, this won't be a canonical type either,
2000  // so fill in the canonical type field.
2001  QualType Canonical;
2002  if (!vecType.isCanonical()) {
2003    Canonical = getVectorType(getCanonicalType(vecType), NumElts, VecKind);
2004
2005    // Get the new insert position for the node we care about.
2006    VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
2007    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2008  }
2009  VectorType *New = new (*this, TypeAlignment)
2010    VectorType(vecType, NumElts, Canonical, VecKind);
2011  VectorTypes.InsertNode(New, InsertPos);
2012  Types.push_back(New);
2013  return QualType(New, 0);
2014}
2015
2016/// getExtVectorType - Return the unique reference to an extended vector type of
2017/// the specified element type and size. VectorType must be a built-in type.
2018QualType
2019ASTContext::getExtVectorType(QualType vecType, unsigned NumElts) const {
2020  assert(vecType->isBuiltinType() || vecType->isDependentType());
2021
2022  // Check if we've already instantiated a vector of this type.
2023  llvm::FoldingSetNodeID ID;
2024  VectorType::Profile(ID, vecType, NumElts, Type::ExtVector,
2025                      VectorType::GenericVector);
2026  void *InsertPos = 0;
2027  if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
2028    return QualType(VTP, 0);
2029
2030  // If the element type isn't canonical, this won't be a canonical type either,
2031  // so fill in the canonical type field.
2032  QualType Canonical;
2033  if (!vecType.isCanonical()) {
2034    Canonical = getExtVectorType(getCanonicalType(vecType), NumElts);
2035
2036    // Get the new insert position for the node we care about.
2037    VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
2038    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2039  }
2040  ExtVectorType *New = new (*this, TypeAlignment)
2041    ExtVectorType(vecType, NumElts, Canonical);
2042  VectorTypes.InsertNode(New, InsertPos);
2043  Types.push_back(New);
2044  return QualType(New, 0);
2045}
2046
2047QualType
2048ASTContext::getDependentSizedExtVectorType(QualType vecType,
2049                                           Expr *SizeExpr,
2050                                           SourceLocation AttrLoc) const {
2051  llvm::FoldingSetNodeID ID;
2052  DependentSizedExtVectorType::Profile(ID, *this, getCanonicalType(vecType),
2053                                       SizeExpr);
2054
2055  void *InsertPos = 0;
2056  DependentSizedExtVectorType *Canon
2057    = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
2058  DependentSizedExtVectorType *New;
2059  if (Canon) {
2060    // We already have a canonical version of this array type; use it as
2061    // the canonical type for a newly-built type.
2062    New = new (*this, TypeAlignment)
2063      DependentSizedExtVectorType(*this, vecType, QualType(Canon, 0),
2064                                  SizeExpr, AttrLoc);
2065  } else {
2066    QualType CanonVecTy = getCanonicalType(vecType);
2067    if (CanonVecTy == vecType) {
2068      New = new (*this, TypeAlignment)
2069        DependentSizedExtVectorType(*this, vecType, QualType(), SizeExpr,
2070                                    AttrLoc);
2071
2072      DependentSizedExtVectorType *CanonCheck
2073        = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
2074      assert(!CanonCheck && "Dependent-sized ext_vector canonical type broken");
2075      (void)CanonCheck;
2076      DependentSizedExtVectorTypes.InsertNode(New, InsertPos);
2077    } else {
2078      QualType Canon = getDependentSizedExtVectorType(CanonVecTy, SizeExpr,
2079                                                      SourceLocation());
2080      New = new (*this, TypeAlignment)
2081        DependentSizedExtVectorType(*this, vecType, Canon, SizeExpr, AttrLoc);
2082    }
2083  }
2084
2085  Types.push_back(New);
2086  return QualType(New, 0);
2087}
2088
2089/// getFunctionNoProtoType - Return a K&R style C function type like 'int()'.
2090///
2091QualType
2092ASTContext::getFunctionNoProtoType(QualType ResultTy,
2093                                   const FunctionType::ExtInfo &Info) const {
2094  const CallingConv DefaultCC = Info.getCC();
2095  const CallingConv CallConv = (LangOpts.MRTD && DefaultCC == CC_Default) ?
2096                               CC_X86StdCall : DefaultCC;
2097  // Unique functions, to guarantee there is only one function of a particular
2098  // structure.
2099  llvm::FoldingSetNodeID ID;
2100  FunctionNoProtoType::Profile(ID, ResultTy, Info);
2101
2102  void *InsertPos = 0;
2103  if (FunctionNoProtoType *FT =
2104        FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
2105    return QualType(FT, 0);
2106
2107  QualType Canonical;
2108  if (!ResultTy.isCanonical() ||
2109      getCanonicalCallConv(CallConv) != CallConv) {
2110    Canonical =
2111      getFunctionNoProtoType(getCanonicalType(ResultTy),
2112                     Info.withCallingConv(getCanonicalCallConv(CallConv)));
2113
2114    // Get the new insert position for the node we care about.
2115    FunctionNoProtoType *NewIP =
2116      FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
2117    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2118  }
2119
2120  FunctionProtoType::ExtInfo newInfo = Info.withCallingConv(CallConv);
2121  FunctionNoProtoType *New = new (*this, TypeAlignment)
2122    FunctionNoProtoType(ResultTy, Canonical, newInfo);
2123  Types.push_back(New);
2124  FunctionNoProtoTypes.InsertNode(New, InsertPos);
2125  return QualType(New, 0);
2126}
2127
2128/// getFunctionType - Return a normal function type with a typed argument
2129/// list.  isVariadic indicates whether the argument list includes '...'.
2130QualType
2131ASTContext::getFunctionType(QualType ResultTy,
2132                            const QualType *ArgArray, unsigned NumArgs,
2133                            const FunctionProtoType::ExtProtoInfo &EPI) const {
2134  // Unique functions, to guarantee there is only one function of a particular
2135  // structure.
2136  llvm::FoldingSetNodeID ID;
2137  FunctionProtoType::Profile(ID, ResultTy, ArgArray, NumArgs, EPI, *this);
2138
2139  void *InsertPos = 0;
2140  if (FunctionProtoType *FTP =
2141        FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
2142    return QualType(FTP, 0);
2143
2144  // Determine whether the type being created is already canonical or not.
2145  bool isCanonical =
2146    EPI.ExceptionSpecType == EST_None && ResultTy.isCanonical() &&
2147    !EPI.HasTrailingReturn;
2148  for (unsigned i = 0; i != NumArgs && isCanonical; ++i)
2149    if (!ArgArray[i].isCanonicalAsParam())
2150      isCanonical = false;
2151
2152  const CallingConv DefaultCC = EPI.ExtInfo.getCC();
2153  const CallingConv CallConv = (LangOpts.MRTD && DefaultCC == CC_Default) ?
2154                               CC_X86StdCall : DefaultCC;
2155
2156  // If this type isn't canonical, get the canonical version of it.
2157  // The exception spec is not part of the canonical type.
2158  QualType Canonical;
2159  if (!isCanonical || getCanonicalCallConv(CallConv) != CallConv) {
2160    SmallVector<QualType, 16> CanonicalArgs;
2161    CanonicalArgs.reserve(NumArgs);
2162    for (unsigned i = 0; i != NumArgs; ++i)
2163      CanonicalArgs.push_back(getCanonicalParamType(ArgArray[i]));
2164
2165    FunctionProtoType::ExtProtoInfo CanonicalEPI = EPI;
2166    CanonicalEPI.HasTrailingReturn = false;
2167    CanonicalEPI.ExceptionSpecType = EST_None;
2168    CanonicalEPI.NumExceptions = 0;
2169    CanonicalEPI.ExtInfo
2170      = CanonicalEPI.ExtInfo.withCallingConv(getCanonicalCallConv(CallConv));
2171
2172    Canonical = getFunctionType(getCanonicalType(ResultTy),
2173                                CanonicalArgs.data(), NumArgs,
2174                                CanonicalEPI);
2175
2176    // Get the new insert position for the node we care about.
2177    FunctionProtoType *NewIP =
2178      FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
2179    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2180  }
2181
2182  // FunctionProtoType objects are allocated with extra bytes after
2183  // them for three variable size arrays at the end:
2184  //  - parameter types
2185  //  - exception types
2186  //  - consumed-arguments flags
2187  // Instead of the exception types, there could be a noexcept
2188  // expression.
2189  size_t Size = sizeof(FunctionProtoType) +
2190                NumArgs * sizeof(QualType);
2191  if (EPI.ExceptionSpecType == EST_Dynamic)
2192    Size += EPI.NumExceptions * sizeof(QualType);
2193  else if (EPI.ExceptionSpecType == EST_ComputedNoexcept) {
2194    Size += sizeof(Expr*);
2195  }
2196  if (EPI.ConsumedArguments)
2197    Size += NumArgs * sizeof(bool);
2198
2199  FunctionProtoType *FTP = (FunctionProtoType*) Allocate(Size, TypeAlignment);
2200  FunctionProtoType::ExtProtoInfo newEPI = EPI;
2201  newEPI.ExtInfo = EPI.ExtInfo.withCallingConv(CallConv);
2202  new (FTP) FunctionProtoType(ResultTy, ArgArray, NumArgs, Canonical, newEPI);
2203  Types.push_back(FTP);
2204  FunctionProtoTypes.InsertNode(FTP, InsertPos);
2205  return QualType(FTP, 0);
2206}
2207
2208#ifndef NDEBUG
2209static bool NeedsInjectedClassNameType(const RecordDecl *D) {
2210  if (!isa<CXXRecordDecl>(D)) return false;
2211  const CXXRecordDecl *RD = cast<CXXRecordDecl>(D);
2212  if (isa<ClassTemplatePartialSpecializationDecl>(RD))
2213    return true;
2214  if (RD->getDescribedClassTemplate() &&
2215      !isa<ClassTemplateSpecializationDecl>(RD))
2216    return true;
2217  return false;
2218}
2219#endif
2220
2221/// getInjectedClassNameType - Return the unique reference to the
2222/// injected class name type for the specified templated declaration.
2223QualType ASTContext::getInjectedClassNameType(CXXRecordDecl *Decl,
2224                                              QualType TST) const {
2225  assert(NeedsInjectedClassNameType(Decl));
2226  if (Decl->TypeForDecl) {
2227    assert(isa<InjectedClassNameType>(Decl->TypeForDecl));
2228  } else if (CXXRecordDecl *PrevDecl = Decl->getPreviousDecl()) {
2229    assert(PrevDecl->TypeForDecl && "previous declaration has no type");
2230    Decl->TypeForDecl = PrevDecl->TypeForDecl;
2231    assert(isa<InjectedClassNameType>(Decl->TypeForDecl));
2232  } else {
2233    Type *newType =
2234      new (*this, TypeAlignment) InjectedClassNameType(Decl, TST);
2235    Decl->TypeForDecl = newType;
2236    Types.push_back(newType);
2237  }
2238  return QualType(Decl->TypeForDecl, 0);
2239}
2240
2241/// getTypeDeclType - Return the unique reference to the type for the
2242/// specified type declaration.
2243QualType ASTContext::getTypeDeclTypeSlow(const TypeDecl *Decl) const {
2244  assert(Decl && "Passed null for Decl param");
2245  assert(!Decl->TypeForDecl && "TypeForDecl present in slow case");
2246
2247  if (const TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Decl))
2248    return getTypedefType(Typedef);
2249
2250  assert(!isa<TemplateTypeParmDecl>(Decl) &&
2251         "Template type parameter types are always available.");
2252
2253  if (const RecordDecl *Record = dyn_cast<RecordDecl>(Decl)) {
2254    assert(!Record->getPreviousDecl() &&
2255           "struct/union has previous declaration");
2256    assert(!NeedsInjectedClassNameType(Record));
2257    return getRecordType(Record);
2258  } else if (const EnumDecl *Enum = dyn_cast<EnumDecl>(Decl)) {
2259    assert(!Enum->getPreviousDecl() &&
2260           "enum has previous declaration");
2261    return getEnumType(Enum);
2262  } else if (const UnresolvedUsingTypenameDecl *Using =
2263               dyn_cast<UnresolvedUsingTypenameDecl>(Decl)) {
2264    Type *newType = new (*this, TypeAlignment) UnresolvedUsingType(Using);
2265    Decl->TypeForDecl = newType;
2266    Types.push_back(newType);
2267  } else
2268    llvm_unreachable("TypeDecl without a type?");
2269
2270  return QualType(Decl->TypeForDecl, 0);
2271}
2272
2273/// getTypedefType - Return the unique reference to the type for the
2274/// specified typedef name decl.
2275QualType
2276ASTContext::getTypedefType(const TypedefNameDecl *Decl,
2277                           QualType Canonical) const {
2278  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
2279
2280  if (Canonical.isNull())
2281    Canonical = getCanonicalType(Decl->getUnderlyingType());
2282  TypedefType *newType = new(*this, TypeAlignment)
2283    TypedefType(Type::Typedef, Decl, Canonical);
2284  Decl->TypeForDecl = newType;
2285  Types.push_back(newType);
2286  return QualType(newType, 0);
2287}
2288
2289QualType ASTContext::getRecordType(const RecordDecl *Decl) const {
2290  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
2291
2292  if (const RecordDecl *PrevDecl = Decl->getPreviousDecl())
2293    if (PrevDecl->TypeForDecl)
2294      return QualType(Decl->TypeForDecl = PrevDecl->TypeForDecl, 0);
2295
2296  RecordType *newType = new (*this, TypeAlignment) RecordType(Decl);
2297  Decl->TypeForDecl = newType;
2298  Types.push_back(newType);
2299  return QualType(newType, 0);
2300}
2301
2302QualType ASTContext::getEnumType(const EnumDecl *Decl) const {
2303  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
2304
2305  if (const EnumDecl *PrevDecl = Decl->getPreviousDecl())
2306    if (PrevDecl->TypeForDecl)
2307      return QualType(Decl->TypeForDecl = PrevDecl->TypeForDecl, 0);
2308
2309  EnumType *newType = new (*this, TypeAlignment) EnumType(Decl);
2310  Decl->TypeForDecl = newType;
2311  Types.push_back(newType);
2312  return QualType(newType, 0);
2313}
2314
2315QualType ASTContext::getAttributedType(AttributedType::Kind attrKind,
2316                                       QualType modifiedType,
2317                                       QualType equivalentType) {
2318  llvm::FoldingSetNodeID id;
2319  AttributedType::Profile(id, attrKind, modifiedType, equivalentType);
2320
2321  void *insertPos = 0;
2322  AttributedType *type = AttributedTypes.FindNodeOrInsertPos(id, insertPos);
2323  if (type) return QualType(type, 0);
2324
2325  QualType canon = getCanonicalType(equivalentType);
2326  type = new (*this, TypeAlignment)
2327           AttributedType(canon, attrKind, modifiedType, equivalentType);
2328
2329  Types.push_back(type);
2330  AttributedTypes.InsertNode(type, insertPos);
2331
2332  return QualType(type, 0);
2333}
2334
2335
2336/// \brief Retrieve a substitution-result type.
2337QualType
2338ASTContext::getSubstTemplateTypeParmType(const TemplateTypeParmType *Parm,
2339                                         QualType Replacement) const {
2340  assert(Replacement.isCanonical()
2341         && "replacement types must always be canonical");
2342
2343  llvm::FoldingSetNodeID ID;
2344  SubstTemplateTypeParmType::Profile(ID, Parm, Replacement);
2345  void *InsertPos = 0;
2346  SubstTemplateTypeParmType *SubstParm
2347    = SubstTemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
2348
2349  if (!SubstParm) {
2350    SubstParm = new (*this, TypeAlignment)
2351      SubstTemplateTypeParmType(Parm, Replacement);
2352    Types.push_back(SubstParm);
2353    SubstTemplateTypeParmTypes.InsertNode(SubstParm, InsertPos);
2354  }
2355
2356  return QualType(SubstParm, 0);
2357}
2358
2359/// \brief Retrieve a
2360QualType ASTContext::getSubstTemplateTypeParmPackType(
2361                                          const TemplateTypeParmType *Parm,
2362                                              const TemplateArgument &ArgPack) {
2363#ifndef NDEBUG
2364  for (TemplateArgument::pack_iterator P = ArgPack.pack_begin(),
2365                                    PEnd = ArgPack.pack_end();
2366       P != PEnd; ++P) {
2367    assert(P->getKind() == TemplateArgument::Type &&"Pack contains a non-type");
2368    assert(P->getAsType().isCanonical() && "Pack contains non-canonical type");
2369  }
2370#endif
2371
2372  llvm::FoldingSetNodeID ID;
2373  SubstTemplateTypeParmPackType::Profile(ID, Parm, ArgPack);
2374  void *InsertPos = 0;
2375  if (SubstTemplateTypeParmPackType *SubstParm
2376        = SubstTemplateTypeParmPackTypes.FindNodeOrInsertPos(ID, InsertPos))
2377    return QualType(SubstParm, 0);
2378
2379  QualType Canon;
2380  if (!Parm->isCanonicalUnqualified()) {
2381    Canon = getCanonicalType(QualType(Parm, 0));
2382    Canon = getSubstTemplateTypeParmPackType(cast<TemplateTypeParmType>(Canon),
2383                                             ArgPack);
2384    SubstTemplateTypeParmPackTypes.FindNodeOrInsertPos(ID, InsertPos);
2385  }
2386
2387  SubstTemplateTypeParmPackType *SubstParm
2388    = new (*this, TypeAlignment) SubstTemplateTypeParmPackType(Parm, Canon,
2389                                                               ArgPack);
2390  Types.push_back(SubstParm);
2391  SubstTemplateTypeParmTypes.InsertNode(SubstParm, InsertPos);
2392  return QualType(SubstParm, 0);
2393}
2394
2395/// \brief Retrieve the template type parameter type for a template
2396/// parameter or parameter pack with the given depth, index, and (optionally)
2397/// name.
2398QualType ASTContext::getTemplateTypeParmType(unsigned Depth, unsigned Index,
2399                                             bool ParameterPack,
2400                                             TemplateTypeParmDecl *TTPDecl) const {
2401  llvm::FoldingSetNodeID ID;
2402  TemplateTypeParmType::Profile(ID, Depth, Index, ParameterPack, TTPDecl);
2403  void *InsertPos = 0;
2404  TemplateTypeParmType *TypeParm
2405    = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
2406
2407  if (TypeParm)
2408    return QualType(TypeParm, 0);
2409
2410  if (TTPDecl) {
2411    QualType Canon = getTemplateTypeParmType(Depth, Index, ParameterPack);
2412    TypeParm = new (*this, TypeAlignment) TemplateTypeParmType(TTPDecl, Canon);
2413
2414    TemplateTypeParmType *TypeCheck
2415      = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
2416    assert(!TypeCheck && "Template type parameter canonical type broken");
2417    (void)TypeCheck;
2418  } else
2419    TypeParm = new (*this, TypeAlignment)
2420      TemplateTypeParmType(Depth, Index, ParameterPack);
2421
2422  Types.push_back(TypeParm);
2423  TemplateTypeParmTypes.InsertNode(TypeParm, InsertPos);
2424
2425  return QualType(TypeParm, 0);
2426}
2427
2428TypeSourceInfo *
2429ASTContext::getTemplateSpecializationTypeInfo(TemplateName Name,
2430                                              SourceLocation NameLoc,
2431                                        const TemplateArgumentListInfo &Args,
2432                                              QualType Underlying) const {
2433  assert(!Name.getAsDependentTemplateName() &&
2434         "No dependent template names here!");
2435  QualType TST = getTemplateSpecializationType(Name, Args, Underlying);
2436
2437  TypeSourceInfo *DI = CreateTypeSourceInfo(TST);
2438  TemplateSpecializationTypeLoc TL
2439    = cast<TemplateSpecializationTypeLoc>(DI->getTypeLoc());
2440  TL.setTemplateKeywordLoc(SourceLocation());
2441  TL.setTemplateNameLoc(NameLoc);
2442  TL.setLAngleLoc(Args.getLAngleLoc());
2443  TL.setRAngleLoc(Args.getRAngleLoc());
2444  for (unsigned i = 0, e = TL.getNumArgs(); i != e; ++i)
2445    TL.setArgLocInfo(i, Args[i].getLocInfo());
2446  return DI;
2447}
2448
2449QualType
2450ASTContext::getTemplateSpecializationType(TemplateName Template,
2451                                          const TemplateArgumentListInfo &Args,
2452                                          QualType Underlying) const {
2453  assert(!Template.getAsDependentTemplateName() &&
2454         "No dependent template names here!");
2455
2456  unsigned NumArgs = Args.size();
2457
2458  SmallVector<TemplateArgument, 4> ArgVec;
2459  ArgVec.reserve(NumArgs);
2460  for (unsigned i = 0; i != NumArgs; ++i)
2461    ArgVec.push_back(Args[i].getArgument());
2462
2463  return getTemplateSpecializationType(Template, ArgVec.data(), NumArgs,
2464                                       Underlying);
2465}
2466
2467#ifndef NDEBUG
2468static bool hasAnyPackExpansions(const TemplateArgument *Args,
2469                                 unsigned NumArgs) {
2470  for (unsigned I = 0; I != NumArgs; ++I)
2471    if (Args[I].isPackExpansion())
2472      return true;
2473
2474  return true;
2475}
2476#endif
2477
2478QualType
2479ASTContext::getTemplateSpecializationType(TemplateName Template,
2480                                          const TemplateArgument *Args,
2481                                          unsigned NumArgs,
2482                                          QualType Underlying) const {
2483  assert(!Template.getAsDependentTemplateName() &&
2484         "No dependent template names here!");
2485  // Look through qualified template names.
2486  if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName())
2487    Template = TemplateName(QTN->getTemplateDecl());
2488
2489  bool IsTypeAlias =
2490    Template.getAsTemplateDecl() &&
2491    isa<TypeAliasTemplateDecl>(Template.getAsTemplateDecl());
2492  QualType CanonType;
2493  if (!Underlying.isNull())
2494    CanonType = getCanonicalType(Underlying);
2495  else {
2496    // We can get here with an alias template when the specialization contains
2497    // a pack expansion that does not match up with a parameter pack.
2498    assert((!IsTypeAlias || hasAnyPackExpansions(Args, NumArgs)) &&
2499           "Caller must compute aliased type");
2500    IsTypeAlias = false;
2501    CanonType = getCanonicalTemplateSpecializationType(Template, Args,
2502                                                       NumArgs);
2503  }
2504
2505  // Allocate the (non-canonical) template specialization type, but don't
2506  // try to unique it: these types typically have location information that
2507  // we don't unique and don't want to lose.
2508  void *Mem = Allocate(sizeof(TemplateSpecializationType) +
2509                       sizeof(TemplateArgument) * NumArgs +
2510                       (IsTypeAlias? sizeof(QualType) : 0),
2511                       TypeAlignment);
2512  TemplateSpecializationType *Spec
2513    = new (Mem) TemplateSpecializationType(Template, Args, NumArgs, CanonType,
2514                                         IsTypeAlias ? Underlying : QualType());
2515
2516  Types.push_back(Spec);
2517  return QualType(Spec, 0);
2518}
2519
2520QualType
2521ASTContext::getCanonicalTemplateSpecializationType(TemplateName Template,
2522                                                   const TemplateArgument *Args,
2523                                                   unsigned NumArgs) const {
2524  assert(!Template.getAsDependentTemplateName() &&
2525         "No dependent template names here!");
2526
2527  // Look through qualified template names.
2528  if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName())
2529    Template = TemplateName(QTN->getTemplateDecl());
2530
2531  // Build the canonical template specialization type.
2532  TemplateName CanonTemplate = getCanonicalTemplateName(Template);
2533  SmallVector<TemplateArgument, 4> CanonArgs;
2534  CanonArgs.reserve(NumArgs);
2535  for (unsigned I = 0; I != NumArgs; ++I)
2536    CanonArgs.push_back(getCanonicalTemplateArgument(Args[I]));
2537
2538  // Determine whether this canonical template specialization type already
2539  // exists.
2540  llvm::FoldingSetNodeID ID;
2541  TemplateSpecializationType::Profile(ID, CanonTemplate,
2542                                      CanonArgs.data(), NumArgs, *this);
2543
2544  void *InsertPos = 0;
2545  TemplateSpecializationType *Spec
2546    = TemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
2547
2548  if (!Spec) {
2549    // Allocate a new canonical template specialization type.
2550    void *Mem = Allocate((sizeof(TemplateSpecializationType) +
2551                          sizeof(TemplateArgument) * NumArgs),
2552                         TypeAlignment);
2553    Spec = new (Mem) TemplateSpecializationType(CanonTemplate,
2554                                                CanonArgs.data(), NumArgs,
2555                                                QualType(), QualType());
2556    Types.push_back(Spec);
2557    TemplateSpecializationTypes.InsertNode(Spec, InsertPos);
2558  }
2559
2560  assert(Spec->isDependentType() &&
2561         "Non-dependent template-id type must have a canonical type");
2562  return QualType(Spec, 0);
2563}
2564
2565QualType
2566ASTContext::getElaboratedType(ElaboratedTypeKeyword Keyword,
2567                              NestedNameSpecifier *NNS,
2568                              QualType NamedType) const {
2569  llvm::FoldingSetNodeID ID;
2570  ElaboratedType::Profile(ID, Keyword, NNS, NamedType);
2571
2572  void *InsertPos = 0;
2573  ElaboratedType *T = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
2574  if (T)
2575    return QualType(T, 0);
2576
2577  QualType Canon = NamedType;
2578  if (!Canon.isCanonical()) {
2579    Canon = getCanonicalType(NamedType);
2580    ElaboratedType *CheckT = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
2581    assert(!CheckT && "Elaborated canonical type broken");
2582    (void)CheckT;
2583  }
2584
2585  T = new (*this) ElaboratedType(Keyword, NNS, NamedType, Canon);
2586  Types.push_back(T);
2587  ElaboratedTypes.InsertNode(T, InsertPos);
2588  return QualType(T, 0);
2589}
2590
2591QualType
2592ASTContext::getParenType(QualType InnerType) const {
2593  llvm::FoldingSetNodeID ID;
2594  ParenType::Profile(ID, InnerType);
2595
2596  void *InsertPos = 0;
2597  ParenType *T = ParenTypes.FindNodeOrInsertPos(ID, InsertPos);
2598  if (T)
2599    return QualType(T, 0);
2600
2601  QualType Canon = InnerType;
2602  if (!Canon.isCanonical()) {
2603    Canon = getCanonicalType(InnerType);
2604    ParenType *CheckT = ParenTypes.FindNodeOrInsertPos(ID, InsertPos);
2605    assert(!CheckT && "Paren canonical type broken");
2606    (void)CheckT;
2607  }
2608
2609  T = new (*this) ParenType(InnerType, Canon);
2610  Types.push_back(T);
2611  ParenTypes.InsertNode(T, InsertPos);
2612  return QualType(T, 0);
2613}
2614
2615QualType ASTContext::getDependentNameType(ElaboratedTypeKeyword Keyword,
2616                                          NestedNameSpecifier *NNS,
2617                                          const IdentifierInfo *Name,
2618                                          QualType Canon) const {
2619  assert(NNS->isDependent() && "nested-name-specifier must be dependent");
2620
2621  if (Canon.isNull()) {
2622    NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
2623    ElaboratedTypeKeyword CanonKeyword = Keyword;
2624    if (Keyword == ETK_None)
2625      CanonKeyword = ETK_Typename;
2626
2627    if (CanonNNS != NNS || CanonKeyword != Keyword)
2628      Canon = getDependentNameType(CanonKeyword, CanonNNS, Name);
2629  }
2630
2631  llvm::FoldingSetNodeID ID;
2632  DependentNameType::Profile(ID, Keyword, NNS, Name);
2633
2634  void *InsertPos = 0;
2635  DependentNameType *T
2636    = DependentNameTypes.FindNodeOrInsertPos(ID, InsertPos);
2637  if (T)
2638    return QualType(T, 0);
2639
2640  T = new (*this) DependentNameType(Keyword, NNS, Name, Canon);
2641  Types.push_back(T);
2642  DependentNameTypes.InsertNode(T, InsertPos);
2643  return QualType(T, 0);
2644}
2645
2646QualType
2647ASTContext::getDependentTemplateSpecializationType(
2648                                 ElaboratedTypeKeyword Keyword,
2649                                 NestedNameSpecifier *NNS,
2650                                 const IdentifierInfo *Name,
2651                                 const TemplateArgumentListInfo &Args) const {
2652  // TODO: avoid this copy
2653  SmallVector<TemplateArgument, 16> ArgCopy;
2654  for (unsigned I = 0, E = Args.size(); I != E; ++I)
2655    ArgCopy.push_back(Args[I].getArgument());
2656  return getDependentTemplateSpecializationType(Keyword, NNS, Name,
2657                                                ArgCopy.size(),
2658                                                ArgCopy.data());
2659}
2660
2661QualType
2662ASTContext::getDependentTemplateSpecializationType(
2663                                 ElaboratedTypeKeyword Keyword,
2664                                 NestedNameSpecifier *NNS,
2665                                 const IdentifierInfo *Name,
2666                                 unsigned NumArgs,
2667                                 const TemplateArgument *Args) const {
2668  assert((!NNS || NNS->isDependent()) &&
2669         "nested-name-specifier must be dependent");
2670
2671  llvm::FoldingSetNodeID ID;
2672  DependentTemplateSpecializationType::Profile(ID, *this, Keyword, NNS,
2673                                               Name, NumArgs, Args);
2674
2675  void *InsertPos = 0;
2676  DependentTemplateSpecializationType *T
2677    = DependentTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
2678  if (T)
2679    return QualType(T, 0);
2680
2681  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
2682
2683  ElaboratedTypeKeyword CanonKeyword = Keyword;
2684  if (Keyword == ETK_None) CanonKeyword = ETK_Typename;
2685
2686  bool AnyNonCanonArgs = false;
2687  SmallVector<TemplateArgument, 16> CanonArgs(NumArgs);
2688  for (unsigned I = 0; I != NumArgs; ++I) {
2689    CanonArgs[I] = getCanonicalTemplateArgument(Args[I]);
2690    if (!CanonArgs[I].structurallyEquals(Args[I]))
2691      AnyNonCanonArgs = true;
2692  }
2693
2694  QualType Canon;
2695  if (AnyNonCanonArgs || CanonNNS != NNS || CanonKeyword != Keyword) {
2696    Canon = getDependentTemplateSpecializationType(CanonKeyword, CanonNNS,
2697                                                   Name, NumArgs,
2698                                                   CanonArgs.data());
2699
2700    // Find the insert position again.
2701    DependentTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
2702  }
2703
2704  void *Mem = Allocate((sizeof(DependentTemplateSpecializationType) +
2705                        sizeof(TemplateArgument) * NumArgs),
2706                       TypeAlignment);
2707  T = new (Mem) DependentTemplateSpecializationType(Keyword, NNS,
2708                                                    Name, NumArgs, Args, Canon);
2709  Types.push_back(T);
2710  DependentTemplateSpecializationTypes.InsertNode(T, InsertPos);
2711  return QualType(T, 0);
2712}
2713
2714QualType ASTContext::getPackExpansionType(QualType Pattern,
2715                                      llvm::Optional<unsigned> NumExpansions) {
2716  llvm::FoldingSetNodeID ID;
2717  PackExpansionType::Profile(ID, Pattern, NumExpansions);
2718
2719  assert(Pattern->containsUnexpandedParameterPack() &&
2720         "Pack expansions must expand one or more parameter packs");
2721  void *InsertPos = 0;
2722  PackExpansionType *T
2723    = PackExpansionTypes.FindNodeOrInsertPos(ID, InsertPos);
2724  if (T)
2725    return QualType(T, 0);
2726
2727  QualType Canon;
2728  if (!Pattern.isCanonical()) {
2729    Canon = getPackExpansionType(getCanonicalType(Pattern), NumExpansions);
2730
2731    // Find the insert position again.
2732    PackExpansionTypes.FindNodeOrInsertPos(ID, InsertPos);
2733  }
2734
2735  T = new (*this) PackExpansionType(Pattern, Canon, NumExpansions);
2736  Types.push_back(T);
2737  PackExpansionTypes.InsertNode(T, InsertPos);
2738  return QualType(T, 0);
2739}
2740
2741/// CmpProtocolNames - Comparison predicate for sorting protocols
2742/// alphabetically.
2743static bool CmpProtocolNames(const ObjCProtocolDecl *LHS,
2744                            const ObjCProtocolDecl *RHS) {
2745  return LHS->getDeclName() < RHS->getDeclName();
2746}
2747
2748static bool areSortedAndUniqued(ObjCProtocolDecl * const *Protocols,
2749                                unsigned NumProtocols) {
2750  if (NumProtocols == 0) return true;
2751
2752  if (Protocols[0]->getCanonicalDecl() != Protocols[0])
2753    return false;
2754
2755  for (unsigned i = 1; i != NumProtocols; ++i)
2756    if (!CmpProtocolNames(Protocols[i-1], Protocols[i]) ||
2757        Protocols[i]->getCanonicalDecl() != Protocols[i])
2758      return false;
2759  return true;
2760}
2761
2762static void SortAndUniqueProtocols(ObjCProtocolDecl **Protocols,
2763                                   unsigned &NumProtocols) {
2764  ObjCProtocolDecl **ProtocolsEnd = Protocols+NumProtocols;
2765
2766  // Sort protocols, keyed by name.
2767  std::sort(Protocols, Protocols+NumProtocols, CmpProtocolNames);
2768
2769  // Canonicalize.
2770  for (unsigned I = 0, N = NumProtocols; I != N; ++I)
2771    Protocols[I] = Protocols[I]->getCanonicalDecl();
2772
2773  // Remove duplicates.
2774  ProtocolsEnd = std::unique(Protocols, ProtocolsEnd);
2775  NumProtocols = ProtocolsEnd-Protocols;
2776}
2777
2778QualType ASTContext::getObjCObjectType(QualType BaseType,
2779                                       ObjCProtocolDecl * const *Protocols,
2780                                       unsigned NumProtocols) const {
2781  // If the base type is an interface and there aren't any protocols
2782  // to add, then the interface type will do just fine.
2783  if (!NumProtocols && isa<ObjCInterfaceType>(BaseType))
2784    return BaseType;
2785
2786  // Look in the folding set for an existing type.
2787  llvm::FoldingSetNodeID ID;
2788  ObjCObjectTypeImpl::Profile(ID, BaseType, Protocols, NumProtocols);
2789  void *InsertPos = 0;
2790  if (ObjCObjectType *QT = ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos))
2791    return QualType(QT, 0);
2792
2793  // Build the canonical type, which has the canonical base type and
2794  // a sorted-and-uniqued list of protocols.
2795  QualType Canonical;
2796  bool ProtocolsSorted = areSortedAndUniqued(Protocols, NumProtocols);
2797  if (!ProtocolsSorted || !BaseType.isCanonical()) {
2798    if (!ProtocolsSorted) {
2799      SmallVector<ObjCProtocolDecl*, 8> Sorted(Protocols,
2800                                                     Protocols + NumProtocols);
2801      unsigned UniqueCount = NumProtocols;
2802
2803      SortAndUniqueProtocols(&Sorted[0], UniqueCount);
2804      Canonical = getObjCObjectType(getCanonicalType(BaseType),
2805                                    &Sorted[0], UniqueCount);
2806    } else {
2807      Canonical = getObjCObjectType(getCanonicalType(BaseType),
2808                                    Protocols, NumProtocols);
2809    }
2810
2811    // Regenerate InsertPos.
2812    ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos);
2813  }
2814
2815  unsigned Size = sizeof(ObjCObjectTypeImpl);
2816  Size += NumProtocols * sizeof(ObjCProtocolDecl *);
2817  void *Mem = Allocate(Size, TypeAlignment);
2818  ObjCObjectTypeImpl *T =
2819    new (Mem) ObjCObjectTypeImpl(Canonical, BaseType, Protocols, NumProtocols);
2820
2821  Types.push_back(T);
2822  ObjCObjectTypes.InsertNode(T, InsertPos);
2823  return QualType(T, 0);
2824}
2825
2826/// getObjCObjectPointerType - Return a ObjCObjectPointerType type for
2827/// the given object type.
2828QualType ASTContext::getObjCObjectPointerType(QualType ObjectT) const {
2829  llvm::FoldingSetNodeID ID;
2830  ObjCObjectPointerType::Profile(ID, ObjectT);
2831
2832  void *InsertPos = 0;
2833  if (ObjCObjectPointerType *QT =
2834              ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
2835    return QualType(QT, 0);
2836
2837  // Find the canonical object type.
2838  QualType Canonical;
2839  if (!ObjectT.isCanonical()) {
2840    Canonical = getObjCObjectPointerType(getCanonicalType(ObjectT));
2841
2842    // Regenerate InsertPos.
2843    ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
2844  }
2845
2846  // No match.
2847  void *Mem = Allocate(sizeof(ObjCObjectPointerType), TypeAlignment);
2848  ObjCObjectPointerType *QType =
2849    new (Mem) ObjCObjectPointerType(Canonical, ObjectT);
2850
2851  Types.push_back(QType);
2852  ObjCObjectPointerTypes.InsertNode(QType, InsertPos);
2853  return QualType(QType, 0);
2854}
2855
2856/// getObjCInterfaceType - Return the unique reference to the type for the
2857/// specified ObjC interface decl. The list of protocols is optional.
2858QualType ASTContext::getObjCInterfaceType(const ObjCInterfaceDecl *Decl,
2859                                          ObjCInterfaceDecl *PrevDecl) const {
2860  if (Decl->TypeForDecl)
2861    return QualType(Decl->TypeForDecl, 0);
2862
2863  if (PrevDecl) {
2864    assert(PrevDecl->TypeForDecl && "previous decl has no TypeForDecl");
2865    Decl->TypeForDecl = PrevDecl->TypeForDecl;
2866    return QualType(PrevDecl->TypeForDecl, 0);
2867  }
2868
2869  // Prefer the definition, if there is one.
2870  if (const ObjCInterfaceDecl *Def = Decl->getDefinition())
2871    Decl = Def;
2872
2873  void *Mem = Allocate(sizeof(ObjCInterfaceType), TypeAlignment);
2874  ObjCInterfaceType *T = new (Mem) ObjCInterfaceType(Decl);
2875  Decl->TypeForDecl = T;
2876  Types.push_back(T);
2877  return QualType(T, 0);
2878}
2879
2880/// getTypeOfExprType - Unlike many "get<Type>" functions, we can't unique
2881/// TypeOfExprType AST's (since expression's are never shared). For example,
2882/// multiple declarations that refer to "typeof(x)" all contain different
2883/// DeclRefExpr's. This doesn't effect the type checker, since it operates
2884/// on canonical type's (which are always unique).
2885QualType ASTContext::getTypeOfExprType(Expr *tofExpr) const {
2886  TypeOfExprType *toe;
2887  if (tofExpr->isTypeDependent()) {
2888    llvm::FoldingSetNodeID ID;
2889    DependentTypeOfExprType::Profile(ID, *this, tofExpr);
2890
2891    void *InsertPos = 0;
2892    DependentTypeOfExprType *Canon
2893      = DependentTypeOfExprTypes.FindNodeOrInsertPos(ID, InsertPos);
2894    if (Canon) {
2895      // We already have a "canonical" version of an identical, dependent
2896      // typeof(expr) type. Use that as our canonical type.
2897      toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr,
2898                                          QualType((TypeOfExprType*)Canon, 0));
2899    } else {
2900      // Build a new, canonical typeof(expr) type.
2901      Canon
2902        = new (*this, TypeAlignment) DependentTypeOfExprType(*this, tofExpr);
2903      DependentTypeOfExprTypes.InsertNode(Canon, InsertPos);
2904      toe = Canon;
2905    }
2906  } else {
2907    QualType Canonical = getCanonicalType(tofExpr->getType());
2908    toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr, Canonical);
2909  }
2910  Types.push_back(toe);
2911  return QualType(toe, 0);
2912}
2913
2914/// getTypeOfType -  Unlike many "get<Type>" functions, we don't unique
2915/// TypeOfType AST's. The only motivation to unique these nodes would be
2916/// memory savings. Since typeof(t) is fairly uncommon, space shouldn't be
2917/// an issue. This doesn't effect the type checker, since it operates
2918/// on canonical type's (which are always unique).
2919QualType ASTContext::getTypeOfType(QualType tofType) const {
2920  QualType Canonical = getCanonicalType(tofType);
2921  TypeOfType *tot = new (*this, TypeAlignment) TypeOfType(tofType, Canonical);
2922  Types.push_back(tot);
2923  return QualType(tot, 0);
2924}
2925
2926
2927/// getDecltypeType -  Unlike many "get<Type>" functions, we don't unique
2928/// DecltypeType AST's. The only motivation to unique these nodes would be
2929/// memory savings. Since decltype(t) is fairly uncommon, space shouldn't be
2930/// an issue. This doesn't effect the type checker, since it operates
2931/// on canonical types (which are always unique).
2932QualType ASTContext::getDecltypeType(Expr *e, QualType UnderlyingType) const {
2933  DecltypeType *dt;
2934
2935  // C++0x [temp.type]p2:
2936  //   If an expression e involves a template parameter, decltype(e) denotes a
2937  //   unique dependent type. Two such decltype-specifiers refer to the same
2938  //   type only if their expressions are equivalent (14.5.6.1).
2939  if (e->isInstantiationDependent()) {
2940    llvm::FoldingSetNodeID ID;
2941    DependentDecltypeType::Profile(ID, *this, e);
2942
2943    void *InsertPos = 0;
2944    DependentDecltypeType *Canon
2945      = DependentDecltypeTypes.FindNodeOrInsertPos(ID, InsertPos);
2946    if (Canon) {
2947      // We already have a "canonical" version of an equivalent, dependent
2948      // decltype type. Use that as our canonical type.
2949      dt = new (*this, TypeAlignment) DecltypeType(e, DependentTy,
2950                                       QualType((DecltypeType*)Canon, 0));
2951    } else {
2952      // Build a new, canonical typeof(expr) type.
2953      Canon = new (*this, TypeAlignment) DependentDecltypeType(*this, e);
2954      DependentDecltypeTypes.InsertNode(Canon, InsertPos);
2955      dt = Canon;
2956    }
2957  } else {
2958    dt = new (*this, TypeAlignment) DecltypeType(e, UnderlyingType,
2959                                      getCanonicalType(UnderlyingType));
2960  }
2961  Types.push_back(dt);
2962  return QualType(dt, 0);
2963}
2964
2965/// getUnaryTransformationType - We don't unique these, since the memory
2966/// savings are minimal and these are rare.
2967QualType ASTContext::getUnaryTransformType(QualType BaseType,
2968                                           QualType UnderlyingType,
2969                                           UnaryTransformType::UTTKind Kind)
2970    const {
2971  UnaryTransformType *Ty =
2972    new (*this, TypeAlignment) UnaryTransformType (BaseType, UnderlyingType,
2973                                                   Kind,
2974                                 UnderlyingType->isDependentType() ?
2975                                 QualType() : getCanonicalType(UnderlyingType));
2976  Types.push_back(Ty);
2977  return QualType(Ty, 0);
2978}
2979
2980/// getAutoType - We only unique auto types after they've been deduced.
2981QualType ASTContext::getAutoType(QualType DeducedType) const {
2982  void *InsertPos = 0;
2983  if (!DeducedType.isNull()) {
2984    // Look in the folding set for an existing type.
2985    llvm::FoldingSetNodeID ID;
2986    AutoType::Profile(ID, DeducedType);
2987    if (AutoType *AT = AutoTypes.FindNodeOrInsertPos(ID, InsertPos))
2988      return QualType(AT, 0);
2989  }
2990
2991  AutoType *AT = new (*this, TypeAlignment) AutoType(DeducedType);
2992  Types.push_back(AT);
2993  if (InsertPos)
2994    AutoTypes.InsertNode(AT, InsertPos);
2995  return QualType(AT, 0);
2996}
2997
2998/// getAtomicType - Return the uniqued reference to the atomic type for
2999/// the given value type.
3000QualType ASTContext::getAtomicType(QualType T) const {
3001  // Unique pointers, to guarantee there is only one pointer of a particular
3002  // structure.
3003  llvm::FoldingSetNodeID ID;
3004  AtomicType::Profile(ID, T);
3005
3006  void *InsertPos = 0;
3007  if (AtomicType *AT = AtomicTypes.FindNodeOrInsertPos(ID, InsertPos))
3008    return QualType(AT, 0);
3009
3010  // If the atomic value type isn't canonical, this won't be a canonical type
3011  // either, so fill in the canonical type field.
3012  QualType Canonical;
3013  if (!T.isCanonical()) {
3014    Canonical = getAtomicType(getCanonicalType(T));
3015
3016    // Get the new insert position for the node we care about.
3017    AtomicType *NewIP = AtomicTypes.FindNodeOrInsertPos(ID, InsertPos);
3018    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
3019  }
3020  AtomicType *New = new (*this, TypeAlignment) AtomicType(T, Canonical);
3021  Types.push_back(New);
3022  AtomicTypes.InsertNode(New, InsertPos);
3023  return QualType(New, 0);
3024}
3025
3026/// getAutoDeductType - Get type pattern for deducing against 'auto'.
3027QualType ASTContext::getAutoDeductType() const {
3028  if (AutoDeductTy.isNull())
3029    AutoDeductTy = getAutoType(QualType());
3030  assert(!AutoDeductTy.isNull() && "can't build 'auto' pattern");
3031  return AutoDeductTy;
3032}
3033
3034/// getAutoRRefDeductType - Get type pattern for deducing against 'auto &&'.
3035QualType ASTContext::getAutoRRefDeductType() const {
3036  if (AutoRRefDeductTy.isNull())
3037    AutoRRefDeductTy = getRValueReferenceType(getAutoDeductType());
3038  assert(!AutoRRefDeductTy.isNull() && "can't build 'auto &&' pattern");
3039  return AutoRRefDeductTy;
3040}
3041
3042/// getTagDeclType - Return the unique reference to the type for the
3043/// specified TagDecl (struct/union/class/enum) decl.
3044QualType ASTContext::getTagDeclType(const TagDecl *Decl) const {
3045  assert (Decl);
3046  // FIXME: What is the design on getTagDeclType when it requires casting
3047  // away const?  mutable?
3048  return getTypeDeclType(const_cast<TagDecl*>(Decl));
3049}
3050
3051/// getSizeType - Return the unique type for "size_t" (C99 7.17), the result
3052/// of the sizeof operator (C99 6.5.3.4p4). The value is target dependent and
3053/// needs to agree with the definition in <stddef.h>.
3054CanQualType ASTContext::getSizeType() const {
3055  return getFromTargetType(Target->getSizeType());
3056}
3057
3058/// getIntMaxType - Return the unique type for "intmax_t" (C99 7.18.1.5).
3059CanQualType ASTContext::getIntMaxType() const {
3060  return getFromTargetType(Target->getIntMaxType());
3061}
3062
3063/// getUIntMaxType - Return the unique type for "uintmax_t" (C99 7.18.1.5).
3064CanQualType ASTContext::getUIntMaxType() const {
3065  return getFromTargetType(Target->getUIntMaxType());
3066}
3067
3068/// getSignedWCharType - Return the type of "signed wchar_t".
3069/// Used when in C++, as a GCC extension.
3070QualType ASTContext::getSignedWCharType() const {
3071  // FIXME: derive from "Target" ?
3072  return WCharTy;
3073}
3074
3075/// getUnsignedWCharType - Return the type of "unsigned wchar_t".
3076/// Used when in C++, as a GCC extension.
3077QualType ASTContext::getUnsignedWCharType() const {
3078  // FIXME: derive from "Target" ?
3079  return UnsignedIntTy;
3080}
3081
3082/// getPointerDiffType - Return the unique type for "ptrdiff_t" (C99 7.17)
3083/// defined in <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9).
3084QualType ASTContext::getPointerDiffType() const {
3085  return getFromTargetType(Target->getPtrDiffType(0));
3086}
3087
3088//===----------------------------------------------------------------------===//
3089//                              Type Operators
3090//===----------------------------------------------------------------------===//
3091
3092CanQualType ASTContext::getCanonicalParamType(QualType T) const {
3093  // Push qualifiers into arrays, and then discard any remaining
3094  // qualifiers.
3095  T = getCanonicalType(T);
3096  T = getVariableArrayDecayedType(T);
3097  const Type *Ty = T.getTypePtr();
3098  QualType Result;
3099  if (isa<ArrayType>(Ty)) {
3100    Result = getArrayDecayedType(QualType(Ty,0));
3101  } else if (isa<FunctionType>(Ty)) {
3102    Result = getPointerType(QualType(Ty, 0));
3103  } else {
3104    Result = QualType(Ty, 0);
3105  }
3106
3107  return CanQualType::CreateUnsafe(Result);
3108}
3109
3110QualType ASTContext::getUnqualifiedArrayType(QualType type,
3111                                             Qualifiers &quals) {
3112  SplitQualType splitType = type.getSplitUnqualifiedType();
3113
3114  // FIXME: getSplitUnqualifiedType() actually walks all the way to
3115  // the unqualified desugared type and then drops it on the floor.
3116  // We then have to strip that sugar back off with
3117  // getUnqualifiedDesugaredType(), which is silly.
3118  const ArrayType *AT =
3119    dyn_cast<ArrayType>(splitType.Ty->getUnqualifiedDesugaredType());
3120
3121  // If we don't have an array, just use the results in splitType.
3122  if (!AT) {
3123    quals = splitType.Quals;
3124    return QualType(splitType.Ty, 0);
3125  }
3126
3127  // Otherwise, recurse on the array's element type.
3128  QualType elementType = AT->getElementType();
3129  QualType unqualElementType = getUnqualifiedArrayType(elementType, quals);
3130
3131  // If that didn't change the element type, AT has no qualifiers, so we
3132  // can just use the results in splitType.
3133  if (elementType == unqualElementType) {
3134    assert(quals.empty()); // from the recursive call
3135    quals = splitType.Quals;
3136    return QualType(splitType.Ty, 0);
3137  }
3138
3139  // Otherwise, add in the qualifiers from the outermost type, then
3140  // build the type back up.
3141  quals.addConsistentQualifiers(splitType.Quals);
3142
3143  if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) {
3144    return getConstantArrayType(unqualElementType, CAT->getSize(),
3145                                CAT->getSizeModifier(), 0);
3146  }
3147
3148  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) {
3149    return getIncompleteArrayType(unqualElementType, IAT->getSizeModifier(), 0);
3150  }
3151
3152  if (const VariableArrayType *VAT = dyn_cast<VariableArrayType>(AT)) {
3153    return getVariableArrayType(unqualElementType,
3154                                VAT->getSizeExpr(),
3155                                VAT->getSizeModifier(),
3156                                VAT->getIndexTypeCVRQualifiers(),
3157                                VAT->getBracketsRange());
3158  }
3159
3160  const DependentSizedArrayType *DSAT = cast<DependentSizedArrayType>(AT);
3161  return getDependentSizedArrayType(unqualElementType, DSAT->getSizeExpr(),
3162                                    DSAT->getSizeModifier(), 0,
3163                                    SourceRange());
3164}
3165
3166/// UnwrapSimilarPointerTypes - If T1 and T2 are pointer types  that
3167/// may be similar (C++ 4.4), replaces T1 and T2 with the type that
3168/// they point to and return true. If T1 and T2 aren't pointer types
3169/// or pointer-to-member types, or if they are not similar at this
3170/// level, returns false and leaves T1 and T2 unchanged. Top-level
3171/// qualifiers on T1 and T2 are ignored. This function will typically
3172/// be called in a loop that successively "unwraps" pointer and
3173/// pointer-to-member types to compare them at each level.
3174bool ASTContext::UnwrapSimilarPointerTypes(QualType &T1, QualType &T2) {
3175  const PointerType *T1PtrType = T1->getAs<PointerType>(),
3176                    *T2PtrType = T2->getAs<PointerType>();
3177  if (T1PtrType && T2PtrType) {
3178    T1 = T1PtrType->getPointeeType();
3179    T2 = T2PtrType->getPointeeType();
3180    return true;
3181  }
3182
3183  const MemberPointerType *T1MPType = T1->getAs<MemberPointerType>(),
3184                          *T2MPType = T2->getAs<MemberPointerType>();
3185  if (T1MPType && T2MPType &&
3186      hasSameUnqualifiedType(QualType(T1MPType->getClass(), 0),
3187                             QualType(T2MPType->getClass(), 0))) {
3188    T1 = T1MPType->getPointeeType();
3189    T2 = T2MPType->getPointeeType();
3190    return true;
3191  }
3192
3193  if (getLangOpts().ObjC1) {
3194    const ObjCObjectPointerType *T1OPType = T1->getAs<ObjCObjectPointerType>(),
3195                                *T2OPType = T2->getAs<ObjCObjectPointerType>();
3196    if (T1OPType && T2OPType) {
3197      T1 = T1OPType->getPointeeType();
3198      T2 = T2OPType->getPointeeType();
3199      return true;
3200    }
3201  }
3202
3203  // FIXME: Block pointers, too?
3204
3205  return false;
3206}
3207
3208DeclarationNameInfo
3209ASTContext::getNameForTemplate(TemplateName Name,
3210                               SourceLocation NameLoc) const {
3211  switch (Name.getKind()) {
3212  case TemplateName::QualifiedTemplate:
3213  case TemplateName::Template:
3214    // DNInfo work in progress: CHECKME: what about DNLoc?
3215    return DeclarationNameInfo(Name.getAsTemplateDecl()->getDeclName(),
3216                               NameLoc);
3217
3218  case TemplateName::OverloadedTemplate: {
3219    OverloadedTemplateStorage *Storage = Name.getAsOverloadedTemplate();
3220    // DNInfo work in progress: CHECKME: what about DNLoc?
3221    return DeclarationNameInfo((*Storage->begin())->getDeclName(), NameLoc);
3222  }
3223
3224  case TemplateName::DependentTemplate: {
3225    DependentTemplateName *DTN = Name.getAsDependentTemplateName();
3226    DeclarationName DName;
3227    if (DTN->isIdentifier()) {
3228      DName = DeclarationNames.getIdentifier(DTN->getIdentifier());
3229      return DeclarationNameInfo(DName, NameLoc);
3230    } else {
3231      DName = DeclarationNames.getCXXOperatorName(DTN->getOperator());
3232      // DNInfo work in progress: FIXME: source locations?
3233      DeclarationNameLoc DNLoc;
3234      DNLoc.CXXOperatorName.BeginOpNameLoc = SourceLocation().getRawEncoding();
3235      DNLoc.CXXOperatorName.EndOpNameLoc = SourceLocation().getRawEncoding();
3236      return DeclarationNameInfo(DName, NameLoc, DNLoc);
3237    }
3238  }
3239
3240  case TemplateName::SubstTemplateTemplateParm: {
3241    SubstTemplateTemplateParmStorage *subst
3242      = Name.getAsSubstTemplateTemplateParm();
3243    return DeclarationNameInfo(subst->getParameter()->getDeclName(),
3244                               NameLoc);
3245  }
3246
3247  case TemplateName::SubstTemplateTemplateParmPack: {
3248    SubstTemplateTemplateParmPackStorage *subst
3249      = Name.getAsSubstTemplateTemplateParmPack();
3250    return DeclarationNameInfo(subst->getParameterPack()->getDeclName(),
3251                               NameLoc);
3252  }
3253  }
3254
3255  llvm_unreachable("bad template name kind!");
3256}
3257
3258TemplateName ASTContext::getCanonicalTemplateName(TemplateName Name) const {
3259  switch (Name.getKind()) {
3260  case TemplateName::QualifiedTemplate:
3261  case TemplateName::Template: {
3262    TemplateDecl *Template = Name.getAsTemplateDecl();
3263    if (TemplateTemplateParmDecl *TTP
3264          = dyn_cast<TemplateTemplateParmDecl>(Template))
3265      Template = getCanonicalTemplateTemplateParmDecl(TTP);
3266
3267    // The canonical template name is the canonical template declaration.
3268    return TemplateName(cast<TemplateDecl>(Template->getCanonicalDecl()));
3269  }
3270
3271  case TemplateName::OverloadedTemplate:
3272    llvm_unreachable("cannot canonicalize overloaded template");
3273
3274  case TemplateName::DependentTemplate: {
3275    DependentTemplateName *DTN = Name.getAsDependentTemplateName();
3276    assert(DTN && "Non-dependent template names must refer to template decls.");
3277    return DTN->CanonicalTemplateName;
3278  }
3279
3280  case TemplateName::SubstTemplateTemplateParm: {
3281    SubstTemplateTemplateParmStorage *subst
3282      = Name.getAsSubstTemplateTemplateParm();
3283    return getCanonicalTemplateName(subst->getReplacement());
3284  }
3285
3286  case TemplateName::SubstTemplateTemplateParmPack: {
3287    SubstTemplateTemplateParmPackStorage *subst
3288                                  = Name.getAsSubstTemplateTemplateParmPack();
3289    TemplateTemplateParmDecl *canonParameter
3290      = getCanonicalTemplateTemplateParmDecl(subst->getParameterPack());
3291    TemplateArgument canonArgPack
3292      = getCanonicalTemplateArgument(subst->getArgumentPack());
3293    return getSubstTemplateTemplateParmPack(canonParameter, canonArgPack);
3294  }
3295  }
3296
3297  llvm_unreachable("bad template name!");
3298}
3299
3300bool ASTContext::hasSameTemplateName(TemplateName X, TemplateName Y) {
3301  X = getCanonicalTemplateName(X);
3302  Y = getCanonicalTemplateName(Y);
3303  return X.getAsVoidPointer() == Y.getAsVoidPointer();
3304}
3305
3306TemplateArgument
3307ASTContext::getCanonicalTemplateArgument(const TemplateArgument &Arg) const {
3308  switch (Arg.getKind()) {
3309    case TemplateArgument::Null:
3310      return Arg;
3311
3312    case TemplateArgument::Expression:
3313      return Arg;
3314
3315    case TemplateArgument::Declaration:
3316      return TemplateArgument(Arg.getAsDecl()->getCanonicalDecl());
3317
3318    case TemplateArgument::Template:
3319      return TemplateArgument(getCanonicalTemplateName(Arg.getAsTemplate()));
3320
3321    case TemplateArgument::TemplateExpansion:
3322      return TemplateArgument(getCanonicalTemplateName(
3323                                         Arg.getAsTemplateOrTemplatePattern()),
3324                              Arg.getNumTemplateExpansions());
3325
3326    case TemplateArgument::Integral:
3327      return TemplateArgument(*Arg.getAsIntegral(),
3328                              getCanonicalType(Arg.getIntegralType()));
3329
3330    case TemplateArgument::Type:
3331      return TemplateArgument(getCanonicalType(Arg.getAsType()));
3332
3333    case TemplateArgument::Pack: {
3334      if (Arg.pack_size() == 0)
3335        return Arg;
3336
3337      TemplateArgument *CanonArgs
3338        = new (*this) TemplateArgument[Arg.pack_size()];
3339      unsigned Idx = 0;
3340      for (TemplateArgument::pack_iterator A = Arg.pack_begin(),
3341                                        AEnd = Arg.pack_end();
3342           A != AEnd; (void)++A, ++Idx)
3343        CanonArgs[Idx] = getCanonicalTemplateArgument(*A);
3344
3345      return TemplateArgument(CanonArgs, Arg.pack_size());
3346    }
3347  }
3348
3349  // Silence GCC warning
3350  llvm_unreachable("Unhandled template argument kind");
3351}
3352
3353NestedNameSpecifier *
3354ASTContext::getCanonicalNestedNameSpecifier(NestedNameSpecifier *NNS) const {
3355  if (!NNS)
3356    return 0;
3357
3358  switch (NNS->getKind()) {
3359  case NestedNameSpecifier::Identifier:
3360    // Canonicalize the prefix but keep the identifier the same.
3361    return NestedNameSpecifier::Create(*this,
3362                         getCanonicalNestedNameSpecifier(NNS->getPrefix()),
3363                                       NNS->getAsIdentifier());
3364
3365  case NestedNameSpecifier::Namespace:
3366    // A namespace is canonical; build a nested-name-specifier with
3367    // this namespace and no prefix.
3368    return NestedNameSpecifier::Create(*this, 0,
3369                                 NNS->getAsNamespace()->getOriginalNamespace());
3370
3371  case NestedNameSpecifier::NamespaceAlias:
3372    // A namespace is canonical; build a nested-name-specifier with
3373    // this namespace and no prefix.
3374    return NestedNameSpecifier::Create(*this, 0,
3375                                    NNS->getAsNamespaceAlias()->getNamespace()
3376                                                      ->getOriginalNamespace());
3377
3378  case NestedNameSpecifier::TypeSpec:
3379  case NestedNameSpecifier::TypeSpecWithTemplate: {
3380    QualType T = getCanonicalType(QualType(NNS->getAsType(), 0));
3381
3382    // If we have some kind of dependent-named type (e.g., "typename T::type"),
3383    // break it apart into its prefix and identifier, then reconsititute those
3384    // as the canonical nested-name-specifier. This is required to canonicalize
3385    // a dependent nested-name-specifier involving typedefs of dependent-name
3386    // types, e.g.,
3387    //   typedef typename T::type T1;
3388    //   typedef typename T1::type T2;
3389    if (const DependentNameType *DNT = T->getAs<DependentNameType>())
3390      return NestedNameSpecifier::Create(*this, DNT->getQualifier(),
3391                           const_cast<IdentifierInfo *>(DNT->getIdentifier()));
3392
3393    // Otherwise, just canonicalize the type, and force it to be a TypeSpec.
3394    // FIXME: Why are TypeSpec and TypeSpecWithTemplate distinct in the
3395    // first place?
3396    return NestedNameSpecifier::Create(*this, 0, false,
3397                                       const_cast<Type*>(T.getTypePtr()));
3398  }
3399
3400  case NestedNameSpecifier::Global:
3401    // The global specifier is canonical and unique.
3402    return NNS;
3403  }
3404
3405  llvm_unreachable("Invalid NestedNameSpecifier::Kind!");
3406}
3407
3408
3409const ArrayType *ASTContext::getAsArrayType(QualType T) const {
3410  // Handle the non-qualified case efficiently.
3411  if (!T.hasLocalQualifiers()) {
3412    // Handle the common positive case fast.
3413    if (const ArrayType *AT = dyn_cast<ArrayType>(T))
3414      return AT;
3415  }
3416
3417  // Handle the common negative case fast.
3418  if (!isa<ArrayType>(T.getCanonicalType()))
3419    return 0;
3420
3421  // Apply any qualifiers from the array type to the element type.  This
3422  // implements C99 6.7.3p8: "If the specification of an array type includes
3423  // any type qualifiers, the element type is so qualified, not the array type."
3424
3425  // If we get here, we either have type qualifiers on the type, or we have
3426  // sugar such as a typedef in the way.  If we have type qualifiers on the type
3427  // we must propagate them down into the element type.
3428
3429  SplitQualType split = T.getSplitDesugaredType();
3430  Qualifiers qs = split.Quals;
3431
3432  // If we have a simple case, just return now.
3433  const ArrayType *ATy = dyn_cast<ArrayType>(split.Ty);
3434  if (ATy == 0 || qs.empty())
3435    return ATy;
3436
3437  // Otherwise, we have an array and we have qualifiers on it.  Push the
3438  // qualifiers into the array element type and return a new array type.
3439  QualType NewEltTy = getQualifiedType(ATy->getElementType(), qs);
3440
3441  if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(ATy))
3442    return cast<ArrayType>(getConstantArrayType(NewEltTy, CAT->getSize(),
3443                                                CAT->getSizeModifier(),
3444                                           CAT->getIndexTypeCVRQualifiers()));
3445  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(ATy))
3446    return cast<ArrayType>(getIncompleteArrayType(NewEltTy,
3447                                                  IAT->getSizeModifier(),
3448                                           IAT->getIndexTypeCVRQualifiers()));
3449
3450  if (const DependentSizedArrayType *DSAT
3451        = dyn_cast<DependentSizedArrayType>(ATy))
3452    return cast<ArrayType>(
3453                     getDependentSizedArrayType(NewEltTy,
3454                                                DSAT->getSizeExpr(),
3455                                                DSAT->getSizeModifier(),
3456                                              DSAT->getIndexTypeCVRQualifiers(),
3457                                                DSAT->getBracketsRange()));
3458
3459  const VariableArrayType *VAT = cast<VariableArrayType>(ATy);
3460  return cast<ArrayType>(getVariableArrayType(NewEltTy,
3461                                              VAT->getSizeExpr(),
3462                                              VAT->getSizeModifier(),
3463                                              VAT->getIndexTypeCVRQualifiers(),
3464                                              VAT->getBracketsRange()));
3465}
3466
3467QualType ASTContext::getAdjustedParameterType(QualType T) {
3468  // C99 6.7.5.3p7:
3469  //   A declaration of a parameter as "array of type" shall be
3470  //   adjusted to "qualified pointer to type", where the type
3471  //   qualifiers (if any) are those specified within the [ and ] of
3472  //   the array type derivation.
3473  if (T->isArrayType())
3474    return getArrayDecayedType(T);
3475
3476  // C99 6.7.5.3p8:
3477  //   A declaration of a parameter as "function returning type"
3478  //   shall be adjusted to "pointer to function returning type", as
3479  //   in 6.3.2.1.
3480  if (T->isFunctionType())
3481    return getPointerType(T);
3482
3483  return T;
3484}
3485
3486QualType ASTContext::getSignatureParameterType(QualType T) {
3487  T = getVariableArrayDecayedType(T);
3488  T = getAdjustedParameterType(T);
3489  return T.getUnqualifiedType();
3490}
3491
3492/// getArrayDecayedType - Return the properly qualified result of decaying the
3493/// specified array type to a pointer.  This operation is non-trivial when
3494/// handling typedefs etc.  The canonical type of "T" must be an array type,
3495/// this returns a pointer to a properly qualified element of the array.
3496///
3497/// See C99 6.7.5.3p7 and C99 6.3.2.1p3.
3498QualType ASTContext::getArrayDecayedType(QualType Ty) const {
3499  // Get the element type with 'getAsArrayType' so that we don't lose any
3500  // typedefs in the element type of the array.  This also handles propagation
3501  // of type qualifiers from the array type into the element type if present
3502  // (C99 6.7.3p8).
3503  const ArrayType *PrettyArrayType = getAsArrayType(Ty);
3504  assert(PrettyArrayType && "Not an array type!");
3505
3506  QualType PtrTy = getPointerType(PrettyArrayType->getElementType());
3507
3508  // int x[restrict 4] ->  int *restrict
3509  return getQualifiedType(PtrTy, PrettyArrayType->getIndexTypeQualifiers());
3510}
3511
3512QualType ASTContext::getBaseElementType(const ArrayType *array) const {
3513  return getBaseElementType(array->getElementType());
3514}
3515
3516QualType ASTContext::getBaseElementType(QualType type) const {
3517  Qualifiers qs;
3518  while (true) {
3519    SplitQualType split = type.getSplitDesugaredType();
3520    const ArrayType *array = split.Ty->getAsArrayTypeUnsafe();
3521    if (!array) break;
3522
3523    type = array->getElementType();
3524    qs.addConsistentQualifiers(split.Quals);
3525  }
3526
3527  return getQualifiedType(type, qs);
3528}
3529
3530/// getConstantArrayElementCount - Returns number of constant array elements.
3531uint64_t
3532ASTContext::getConstantArrayElementCount(const ConstantArrayType *CA)  const {
3533  uint64_t ElementCount = 1;
3534  do {
3535    ElementCount *= CA->getSize().getZExtValue();
3536    CA = dyn_cast<ConstantArrayType>(CA->getElementType());
3537  } while (CA);
3538  return ElementCount;
3539}
3540
3541/// getFloatingRank - Return a relative rank for floating point types.
3542/// This routine will assert if passed a built-in type that isn't a float.
3543static FloatingRank getFloatingRank(QualType T) {
3544  if (const ComplexType *CT = T->getAs<ComplexType>())
3545    return getFloatingRank(CT->getElementType());
3546
3547  assert(T->getAs<BuiltinType>() && "getFloatingRank(): not a floating type");
3548  switch (T->getAs<BuiltinType>()->getKind()) {
3549  default: llvm_unreachable("getFloatingRank(): not a floating type");
3550  case BuiltinType::Half:       return HalfRank;
3551  case BuiltinType::Float:      return FloatRank;
3552  case BuiltinType::Double:     return DoubleRank;
3553  case BuiltinType::LongDouble: return LongDoubleRank;
3554  }
3555}
3556
3557/// getFloatingTypeOfSizeWithinDomain - Returns a real floating
3558/// point or a complex type (based on typeDomain/typeSize).
3559/// 'typeDomain' is a real floating point or complex type.
3560/// 'typeSize' is a real floating point or complex type.
3561QualType ASTContext::getFloatingTypeOfSizeWithinDomain(QualType Size,
3562                                                       QualType Domain) const {
3563  FloatingRank EltRank = getFloatingRank(Size);
3564  if (Domain->isComplexType()) {
3565    switch (EltRank) {
3566    case HalfRank: llvm_unreachable("Complex half is not supported");
3567    case FloatRank:      return FloatComplexTy;
3568    case DoubleRank:     return DoubleComplexTy;
3569    case LongDoubleRank: return LongDoubleComplexTy;
3570    }
3571  }
3572
3573  assert(Domain->isRealFloatingType() && "Unknown domain!");
3574  switch (EltRank) {
3575  case HalfRank: llvm_unreachable("Half ranks are not valid here");
3576  case FloatRank:      return FloatTy;
3577  case DoubleRank:     return DoubleTy;
3578  case LongDoubleRank: return LongDoubleTy;
3579  }
3580  llvm_unreachable("getFloatingRank(): illegal value for rank");
3581}
3582
3583/// getFloatingTypeOrder - Compare the rank of the two specified floating
3584/// point types, ignoring the domain of the type (i.e. 'double' ==
3585/// '_Complex double').  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
3586/// LHS < RHS, return -1.
3587int ASTContext::getFloatingTypeOrder(QualType LHS, QualType RHS) const {
3588  FloatingRank LHSR = getFloatingRank(LHS);
3589  FloatingRank RHSR = getFloatingRank(RHS);
3590
3591  if (LHSR == RHSR)
3592    return 0;
3593  if (LHSR > RHSR)
3594    return 1;
3595  return -1;
3596}
3597
3598/// getIntegerRank - Return an integer conversion rank (C99 6.3.1.1p1). This
3599/// routine will assert if passed a built-in type that isn't an integer or enum,
3600/// or if it is not canonicalized.
3601unsigned ASTContext::getIntegerRank(const Type *T) const {
3602  assert(T->isCanonicalUnqualified() && "T should be canonicalized");
3603
3604  switch (cast<BuiltinType>(T)->getKind()) {
3605  default: llvm_unreachable("getIntegerRank(): not a built-in integer");
3606  case BuiltinType::Bool:
3607    return 1 + (getIntWidth(BoolTy) << 3);
3608  case BuiltinType::Char_S:
3609  case BuiltinType::Char_U:
3610  case BuiltinType::SChar:
3611  case BuiltinType::UChar:
3612    return 2 + (getIntWidth(CharTy) << 3);
3613  case BuiltinType::Short:
3614  case BuiltinType::UShort:
3615    return 3 + (getIntWidth(ShortTy) << 3);
3616  case BuiltinType::Int:
3617  case BuiltinType::UInt:
3618    return 4 + (getIntWidth(IntTy) << 3);
3619  case BuiltinType::Long:
3620  case BuiltinType::ULong:
3621    return 5 + (getIntWidth(LongTy) << 3);
3622  case BuiltinType::LongLong:
3623  case BuiltinType::ULongLong:
3624    return 6 + (getIntWidth(LongLongTy) << 3);
3625  case BuiltinType::Int128:
3626  case BuiltinType::UInt128:
3627    return 7 + (getIntWidth(Int128Ty) << 3);
3628  }
3629}
3630
3631/// \brief Whether this is a promotable bitfield reference according
3632/// to C99 6.3.1.1p2, bullet 2 (and GCC extensions).
3633///
3634/// \returns the type this bit-field will promote to, or NULL if no
3635/// promotion occurs.
3636QualType ASTContext::isPromotableBitField(Expr *E) const {
3637  if (E->isTypeDependent() || E->isValueDependent())
3638    return QualType();
3639
3640  FieldDecl *Field = E->getBitField();
3641  if (!Field)
3642    return QualType();
3643
3644  QualType FT = Field->getType();
3645
3646  uint64_t BitWidth = Field->getBitWidthValue(*this);
3647  uint64_t IntSize = getTypeSize(IntTy);
3648  // GCC extension compatibility: if the bit-field size is less than or equal
3649  // to the size of int, it gets promoted no matter what its type is.
3650  // For instance, unsigned long bf : 4 gets promoted to signed int.
3651  if (BitWidth < IntSize)
3652    return IntTy;
3653
3654  if (BitWidth == IntSize)
3655    return FT->isSignedIntegerType() ? IntTy : UnsignedIntTy;
3656
3657  // Types bigger than int are not subject to promotions, and therefore act
3658  // like the base type.
3659  // FIXME: This doesn't quite match what gcc does, but what gcc does here
3660  // is ridiculous.
3661  return QualType();
3662}
3663
3664/// getPromotedIntegerType - Returns the type that Promotable will
3665/// promote to: C99 6.3.1.1p2, assuming that Promotable is a promotable
3666/// integer type.
3667QualType ASTContext::getPromotedIntegerType(QualType Promotable) const {
3668  assert(!Promotable.isNull());
3669  assert(Promotable->isPromotableIntegerType());
3670  if (const EnumType *ET = Promotable->getAs<EnumType>())
3671    return ET->getDecl()->getPromotionType();
3672
3673  if (const BuiltinType *BT = Promotable->getAs<BuiltinType>()) {
3674    // C++ [conv.prom]: A prvalue of type char16_t, char32_t, or wchar_t
3675    // (3.9.1) can be converted to a prvalue of the first of the following
3676    // types that can represent all the values of its underlying type:
3677    // int, unsigned int, long int, unsigned long int, long long int, or
3678    // unsigned long long int [...]
3679    // FIXME: Is there some better way to compute this?
3680    if (BT->getKind() == BuiltinType::WChar_S ||
3681        BT->getKind() == BuiltinType::WChar_U ||
3682        BT->getKind() == BuiltinType::Char16 ||
3683        BT->getKind() == BuiltinType::Char32) {
3684      bool FromIsSigned = BT->getKind() == BuiltinType::WChar_S;
3685      uint64_t FromSize = getTypeSize(BT);
3686      QualType PromoteTypes[] = { IntTy, UnsignedIntTy, LongTy, UnsignedLongTy,
3687                                  LongLongTy, UnsignedLongLongTy };
3688      for (size_t Idx = 0; Idx < llvm::array_lengthof(PromoteTypes); ++Idx) {
3689        uint64_t ToSize = getTypeSize(PromoteTypes[Idx]);
3690        if (FromSize < ToSize ||
3691            (FromSize == ToSize &&
3692             FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType()))
3693          return PromoteTypes[Idx];
3694      }
3695      llvm_unreachable("char type should fit into long long");
3696    }
3697  }
3698
3699  // At this point, we should have a signed or unsigned integer type.
3700  if (Promotable->isSignedIntegerType())
3701    return IntTy;
3702  uint64_t PromotableSize = getTypeSize(Promotable);
3703  uint64_t IntSize = getTypeSize(IntTy);
3704  assert(Promotable->isUnsignedIntegerType() && PromotableSize <= IntSize);
3705  return (PromotableSize != IntSize) ? IntTy : UnsignedIntTy;
3706}
3707
3708/// \brief Recurses in pointer/array types until it finds an objc retainable
3709/// type and returns its ownership.
3710Qualifiers::ObjCLifetime ASTContext::getInnerObjCOwnership(QualType T) const {
3711  while (!T.isNull()) {
3712    if (T.getObjCLifetime() != Qualifiers::OCL_None)
3713      return T.getObjCLifetime();
3714    if (T->isArrayType())
3715      T = getBaseElementType(T);
3716    else if (const PointerType *PT = T->getAs<PointerType>())
3717      T = PT->getPointeeType();
3718    else if (const ReferenceType *RT = T->getAs<ReferenceType>())
3719      T = RT->getPointeeType();
3720    else
3721      break;
3722  }
3723
3724  return Qualifiers::OCL_None;
3725}
3726
3727/// getIntegerTypeOrder - Returns the highest ranked integer type:
3728/// C99 6.3.1.8p1.  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
3729/// LHS < RHS, return -1.
3730int ASTContext::getIntegerTypeOrder(QualType LHS, QualType RHS) const {
3731  const Type *LHSC = getCanonicalType(LHS).getTypePtr();
3732  const Type *RHSC = getCanonicalType(RHS).getTypePtr();
3733  if (LHSC == RHSC) return 0;
3734
3735  bool LHSUnsigned = LHSC->isUnsignedIntegerType();
3736  bool RHSUnsigned = RHSC->isUnsignedIntegerType();
3737
3738  unsigned LHSRank = getIntegerRank(LHSC);
3739  unsigned RHSRank = getIntegerRank(RHSC);
3740
3741  if (LHSUnsigned == RHSUnsigned) {  // Both signed or both unsigned.
3742    if (LHSRank == RHSRank) return 0;
3743    return LHSRank > RHSRank ? 1 : -1;
3744  }
3745
3746  // Otherwise, the LHS is signed and the RHS is unsigned or visa versa.
3747  if (LHSUnsigned) {
3748    // If the unsigned [LHS] type is larger, return it.
3749    if (LHSRank >= RHSRank)
3750      return 1;
3751
3752    // If the signed type can represent all values of the unsigned type, it
3753    // wins.  Because we are dealing with 2's complement and types that are
3754    // powers of two larger than each other, this is always safe.
3755    return -1;
3756  }
3757
3758  // If the unsigned [RHS] type is larger, return it.
3759  if (RHSRank >= LHSRank)
3760    return -1;
3761
3762  // If the signed type can represent all values of the unsigned type, it
3763  // wins.  Because we are dealing with 2's complement and types that are
3764  // powers of two larger than each other, this is always safe.
3765  return 1;
3766}
3767
3768static RecordDecl *
3769CreateRecordDecl(const ASTContext &Ctx, RecordDecl::TagKind TK,
3770                 DeclContext *DC, IdentifierInfo *Id) {
3771  SourceLocation Loc;
3772  if (Ctx.getLangOpts().CPlusPlus)
3773    return CXXRecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id);
3774  else
3775    return RecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id);
3776}
3777
3778// getCFConstantStringType - Return the type used for constant CFStrings.
3779QualType ASTContext::getCFConstantStringType() const {
3780  if (!CFConstantStringTypeDecl) {
3781    CFConstantStringTypeDecl =
3782      CreateRecordDecl(*this, TTK_Struct, TUDecl,
3783                       &Idents.get("NSConstantString"));
3784    CFConstantStringTypeDecl->startDefinition();
3785
3786    QualType FieldTypes[4];
3787
3788    // const int *isa;
3789    FieldTypes[0] = getPointerType(IntTy.withConst());
3790    // int flags;
3791    FieldTypes[1] = IntTy;
3792    // const char *str;
3793    FieldTypes[2] = getPointerType(CharTy.withConst());
3794    // long length;
3795    FieldTypes[3] = LongTy;
3796
3797    // Create fields
3798    for (unsigned i = 0; i < 4; ++i) {
3799      FieldDecl *Field = FieldDecl::Create(*this, CFConstantStringTypeDecl,
3800                                           SourceLocation(),
3801                                           SourceLocation(), 0,
3802                                           FieldTypes[i], /*TInfo=*/0,
3803                                           /*BitWidth=*/0,
3804                                           /*Mutable=*/false,
3805                                           /*HasInit=*/false);
3806      Field->setAccess(AS_public);
3807      CFConstantStringTypeDecl->addDecl(Field);
3808    }
3809
3810    CFConstantStringTypeDecl->completeDefinition();
3811  }
3812
3813  return getTagDeclType(CFConstantStringTypeDecl);
3814}
3815
3816void ASTContext::setCFConstantStringType(QualType T) {
3817  const RecordType *Rec = T->getAs<RecordType>();
3818  assert(Rec && "Invalid CFConstantStringType");
3819  CFConstantStringTypeDecl = Rec->getDecl();
3820}
3821
3822QualType ASTContext::getBlockDescriptorType() const {
3823  if (BlockDescriptorType)
3824    return getTagDeclType(BlockDescriptorType);
3825
3826  RecordDecl *T;
3827  // FIXME: Needs the FlagAppleBlock bit.
3828  T = CreateRecordDecl(*this, TTK_Struct, TUDecl,
3829                       &Idents.get("__block_descriptor"));
3830  T->startDefinition();
3831
3832  QualType FieldTypes[] = {
3833    UnsignedLongTy,
3834    UnsignedLongTy,
3835  };
3836
3837  const char *FieldNames[] = {
3838    "reserved",
3839    "Size"
3840  };
3841
3842  for (size_t i = 0; i < 2; ++i) {
3843    FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(),
3844                                         SourceLocation(),
3845                                         &Idents.get(FieldNames[i]),
3846                                         FieldTypes[i], /*TInfo=*/0,
3847                                         /*BitWidth=*/0,
3848                                         /*Mutable=*/false,
3849                                         /*HasInit=*/false);
3850    Field->setAccess(AS_public);
3851    T->addDecl(Field);
3852  }
3853
3854  T->completeDefinition();
3855
3856  BlockDescriptorType = T;
3857
3858  return getTagDeclType(BlockDescriptorType);
3859}
3860
3861QualType ASTContext::getBlockDescriptorExtendedType() const {
3862  if (BlockDescriptorExtendedType)
3863    return getTagDeclType(BlockDescriptorExtendedType);
3864
3865  RecordDecl *T;
3866  // FIXME: Needs the FlagAppleBlock bit.
3867  T = CreateRecordDecl(*this, TTK_Struct, TUDecl,
3868                       &Idents.get("__block_descriptor_withcopydispose"));
3869  T->startDefinition();
3870
3871  QualType FieldTypes[] = {
3872    UnsignedLongTy,
3873    UnsignedLongTy,
3874    getPointerType(VoidPtrTy),
3875    getPointerType(VoidPtrTy)
3876  };
3877
3878  const char *FieldNames[] = {
3879    "reserved",
3880    "Size",
3881    "CopyFuncPtr",
3882    "DestroyFuncPtr"
3883  };
3884
3885  for (size_t i = 0; i < 4; ++i) {
3886    FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(),
3887                                         SourceLocation(),
3888                                         &Idents.get(FieldNames[i]),
3889                                         FieldTypes[i], /*TInfo=*/0,
3890                                         /*BitWidth=*/0,
3891                                         /*Mutable=*/false,
3892                                         /*HasInit=*/false);
3893    Field->setAccess(AS_public);
3894    T->addDecl(Field);
3895  }
3896
3897  T->completeDefinition();
3898
3899  BlockDescriptorExtendedType = T;
3900
3901  return getTagDeclType(BlockDescriptorExtendedType);
3902}
3903
3904bool ASTContext::BlockRequiresCopying(QualType Ty) const {
3905  if (Ty->isObjCRetainableType())
3906    return true;
3907  if (getLangOpts().CPlusPlus) {
3908    if (const RecordType *RT = Ty->getAs<RecordType>()) {
3909      CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
3910      return RD->hasConstCopyConstructor();
3911
3912    }
3913  }
3914  return false;
3915}
3916
3917QualType
3918ASTContext::BuildByRefType(StringRef DeclName, QualType Ty) const {
3919  //  type = struct __Block_byref_1_X {
3920  //    void *__isa;
3921  //    struct __Block_byref_1_X *__forwarding;
3922  //    unsigned int __flags;
3923  //    unsigned int __size;
3924  //    void *__copy_helper;            // as needed
3925  //    void *__destroy_help            // as needed
3926  //    int X;
3927  //  } *
3928
3929  bool HasCopyAndDispose = BlockRequiresCopying(Ty);
3930
3931  // FIXME: Move up
3932  SmallString<36> Name;
3933  llvm::raw_svector_ostream(Name) << "__Block_byref_" <<
3934                                  ++UniqueBlockByRefTypeID << '_' << DeclName;
3935  RecordDecl *T;
3936  T = CreateRecordDecl(*this, TTK_Struct, TUDecl, &Idents.get(Name.str()));
3937  T->startDefinition();
3938  QualType Int32Ty = IntTy;
3939  assert(getIntWidth(IntTy) == 32 && "non-32bit int not supported");
3940  QualType FieldTypes[] = {
3941    getPointerType(VoidPtrTy),
3942    getPointerType(getTagDeclType(T)),
3943    Int32Ty,
3944    Int32Ty,
3945    getPointerType(VoidPtrTy),
3946    getPointerType(VoidPtrTy),
3947    Ty
3948  };
3949
3950  StringRef FieldNames[] = {
3951    "__isa",
3952    "__forwarding",
3953    "__flags",
3954    "__size",
3955    "__copy_helper",
3956    "__destroy_helper",
3957    DeclName,
3958  };
3959
3960  for (size_t i = 0; i < 7; ++i) {
3961    if (!HasCopyAndDispose && i >=4 && i <= 5)
3962      continue;
3963    FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(),
3964                                         SourceLocation(),
3965                                         &Idents.get(FieldNames[i]),
3966                                         FieldTypes[i], /*TInfo=*/0,
3967                                         /*BitWidth=*/0, /*Mutable=*/false,
3968                                         /*HasInit=*/false);
3969    Field->setAccess(AS_public);
3970    T->addDecl(Field);
3971  }
3972
3973  T->completeDefinition();
3974
3975  return getPointerType(getTagDeclType(T));
3976}
3977
3978TypedefDecl *ASTContext::getObjCInstanceTypeDecl() {
3979  if (!ObjCInstanceTypeDecl)
3980    ObjCInstanceTypeDecl = TypedefDecl::Create(*this,
3981                                               getTranslationUnitDecl(),
3982                                               SourceLocation(),
3983                                               SourceLocation(),
3984                                               &Idents.get("instancetype"),
3985                                     getTrivialTypeSourceInfo(getObjCIdType()));
3986  return ObjCInstanceTypeDecl;
3987}
3988
3989// This returns true if a type has been typedefed to BOOL:
3990// typedef <type> BOOL;
3991static bool isTypeTypedefedAsBOOL(QualType T) {
3992  if (const TypedefType *TT = dyn_cast<TypedefType>(T))
3993    if (IdentifierInfo *II = TT->getDecl()->getIdentifier())
3994      return II->isStr("BOOL");
3995
3996  return false;
3997}
3998
3999/// getObjCEncodingTypeSize returns size of type for objective-c encoding
4000/// purpose.
4001CharUnits ASTContext::getObjCEncodingTypeSize(QualType type) const {
4002  if (!type->isIncompleteArrayType() && type->isIncompleteType())
4003    return CharUnits::Zero();
4004
4005  CharUnits sz = getTypeSizeInChars(type);
4006
4007  // Make all integer and enum types at least as large as an int
4008  if (sz.isPositive() && type->isIntegralOrEnumerationType())
4009    sz = std::max(sz, getTypeSizeInChars(IntTy));
4010  // Treat arrays as pointers, since that's how they're passed in.
4011  else if (type->isArrayType())
4012    sz = getTypeSizeInChars(VoidPtrTy);
4013  return sz;
4014}
4015
4016static inline
4017std::string charUnitsToString(const CharUnits &CU) {
4018  return llvm::itostr(CU.getQuantity());
4019}
4020
4021/// getObjCEncodingForBlock - Return the encoded type for this block
4022/// declaration.
4023std::string ASTContext::getObjCEncodingForBlock(const BlockExpr *Expr) const {
4024  std::string S;
4025
4026  const BlockDecl *Decl = Expr->getBlockDecl();
4027  QualType BlockTy =
4028      Expr->getType()->getAs<BlockPointerType>()->getPointeeType();
4029  // Encode result type.
4030  getObjCEncodingForType(BlockTy->getAs<FunctionType>()->getResultType(), S);
4031  // Compute size of all parameters.
4032  // Start with computing size of a pointer in number of bytes.
4033  // FIXME: There might(should) be a better way of doing this computation!
4034  SourceLocation Loc;
4035  CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy);
4036  CharUnits ParmOffset = PtrSize;
4037  for (BlockDecl::param_const_iterator PI = Decl->param_begin(),
4038       E = Decl->param_end(); PI != E; ++PI) {
4039    QualType PType = (*PI)->getType();
4040    CharUnits sz = getObjCEncodingTypeSize(PType);
4041    assert (sz.isPositive() && "BlockExpr - Incomplete param type");
4042    ParmOffset += sz;
4043  }
4044  // Size of the argument frame
4045  S += charUnitsToString(ParmOffset);
4046  // Block pointer and offset.
4047  S += "@?0";
4048
4049  // Argument types.
4050  ParmOffset = PtrSize;
4051  for (BlockDecl::param_const_iterator PI = Decl->param_begin(), E =
4052       Decl->param_end(); PI != E; ++PI) {
4053    ParmVarDecl *PVDecl = *PI;
4054    QualType PType = PVDecl->getOriginalType();
4055    if (const ArrayType *AT =
4056          dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
4057      // Use array's original type only if it has known number of
4058      // elements.
4059      if (!isa<ConstantArrayType>(AT))
4060        PType = PVDecl->getType();
4061    } else if (PType->isFunctionType())
4062      PType = PVDecl->getType();
4063    getObjCEncodingForType(PType, S);
4064    S += charUnitsToString(ParmOffset);
4065    ParmOffset += getObjCEncodingTypeSize(PType);
4066  }
4067
4068  return S;
4069}
4070
4071bool ASTContext::getObjCEncodingForFunctionDecl(const FunctionDecl *Decl,
4072                                                std::string& S) {
4073  // Encode result type.
4074  getObjCEncodingForType(Decl->getResultType(), S);
4075  CharUnits ParmOffset;
4076  // Compute size of all parameters.
4077  for (FunctionDecl::param_const_iterator PI = Decl->param_begin(),
4078       E = Decl->param_end(); PI != E; ++PI) {
4079    QualType PType = (*PI)->getType();
4080    CharUnits sz = getObjCEncodingTypeSize(PType);
4081    if (sz.isZero())
4082      return true;
4083
4084    assert (sz.isPositive() &&
4085        "getObjCEncodingForFunctionDecl - Incomplete param type");
4086    ParmOffset += sz;
4087  }
4088  S += charUnitsToString(ParmOffset);
4089  ParmOffset = CharUnits::Zero();
4090
4091  // Argument types.
4092  for (FunctionDecl::param_const_iterator PI = Decl->param_begin(),
4093       E = Decl->param_end(); PI != E; ++PI) {
4094    ParmVarDecl *PVDecl = *PI;
4095    QualType PType = PVDecl->getOriginalType();
4096    if (const ArrayType *AT =
4097          dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
4098      // Use array's original type only if it has known number of
4099      // elements.
4100      if (!isa<ConstantArrayType>(AT))
4101        PType = PVDecl->getType();
4102    } else if (PType->isFunctionType())
4103      PType = PVDecl->getType();
4104    getObjCEncodingForType(PType, S);
4105    S += charUnitsToString(ParmOffset);
4106    ParmOffset += getObjCEncodingTypeSize(PType);
4107  }
4108
4109  return false;
4110}
4111
4112/// getObjCEncodingForMethodParameter - Return the encoded type for a single
4113/// method parameter or return type. If Extended, include class names and
4114/// block object types.
4115void ASTContext::getObjCEncodingForMethodParameter(Decl::ObjCDeclQualifier QT,
4116                                                   QualType T, std::string& S,
4117                                                   bool Extended) const {
4118  // Encode type qualifer, 'in', 'inout', etc. for the parameter.
4119  getObjCEncodingForTypeQualifier(QT, S);
4120  // Encode parameter type.
4121  getObjCEncodingForTypeImpl(T, S, true, true, 0,
4122                             true     /*OutermostType*/,
4123                             false    /*EncodingProperty*/,
4124                             false    /*StructField*/,
4125                             Extended /*EncodeBlockParameters*/,
4126                             Extended /*EncodeClassNames*/);
4127}
4128
4129/// getObjCEncodingForMethodDecl - Return the encoded type for this method
4130/// declaration.
4131bool ASTContext::getObjCEncodingForMethodDecl(const ObjCMethodDecl *Decl,
4132                                              std::string& S,
4133                                              bool Extended) const {
4134  // FIXME: This is not very efficient.
4135  // Encode return type.
4136  getObjCEncodingForMethodParameter(Decl->getObjCDeclQualifier(),
4137                                    Decl->getResultType(), S, Extended);
4138  // Compute size of all parameters.
4139  // Start with computing size of a pointer in number of bytes.
4140  // FIXME: There might(should) be a better way of doing this computation!
4141  SourceLocation Loc;
4142  CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy);
4143  // The first two arguments (self and _cmd) are pointers; account for
4144  // their size.
4145  CharUnits ParmOffset = 2 * PtrSize;
4146  for (ObjCMethodDecl::param_const_iterator PI = Decl->param_begin(),
4147       E = Decl->sel_param_end(); PI != E; ++PI) {
4148    QualType PType = (*PI)->getType();
4149    CharUnits sz = getObjCEncodingTypeSize(PType);
4150    if (sz.isZero())
4151      return true;
4152
4153    assert (sz.isPositive() &&
4154        "getObjCEncodingForMethodDecl - Incomplete param type");
4155    ParmOffset += sz;
4156  }
4157  S += charUnitsToString(ParmOffset);
4158  S += "@0:";
4159  S += charUnitsToString(PtrSize);
4160
4161  // Argument types.
4162  ParmOffset = 2 * PtrSize;
4163  for (ObjCMethodDecl::param_const_iterator PI = Decl->param_begin(),
4164       E = Decl->sel_param_end(); PI != E; ++PI) {
4165    const ParmVarDecl *PVDecl = *PI;
4166    QualType PType = PVDecl->getOriginalType();
4167    if (const ArrayType *AT =
4168          dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
4169      // Use array's original type only if it has known number of
4170      // elements.
4171      if (!isa<ConstantArrayType>(AT))
4172        PType = PVDecl->getType();
4173    } else if (PType->isFunctionType())
4174      PType = PVDecl->getType();
4175    getObjCEncodingForMethodParameter(PVDecl->getObjCDeclQualifier(),
4176                                      PType, S, Extended);
4177    S += charUnitsToString(ParmOffset);
4178    ParmOffset += getObjCEncodingTypeSize(PType);
4179  }
4180
4181  return false;
4182}
4183
4184/// getObjCEncodingForPropertyDecl - Return the encoded type for this
4185/// property declaration. If non-NULL, Container must be either an
4186/// ObjCCategoryImplDecl or ObjCImplementationDecl; it should only be
4187/// NULL when getting encodings for protocol properties.
4188/// Property attributes are stored as a comma-delimited C string. The simple
4189/// attributes readonly and bycopy are encoded as single characters. The
4190/// parametrized attributes, getter=name, setter=name, and ivar=name, are
4191/// encoded as single characters, followed by an identifier. Property types
4192/// are also encoded as a parametrized attribute. The characters used to encode
4193/// these attributes are defined by the following enumeration:
4194/// @code
4195/// enum PropertyAttributes {
4196/// kPropertyReadOnly = 'R',   // property is read-only.
4197/// kPropertyBycopy = 'C',     // property is a copy of the value last assigned
4198/// kPropertyByref = '&',  // property is a reference to the value last assigned
4199/// kPropertyDynamic = 'D',    // property is dynamic
4200/// kPropertyGetter = 'G',     // followed by getter selector name
4201/// kPropertySetter = 'S',     // followed by setter selector name
4202/// kPropertyInstanceVariable = 'V'  // followed by instance variable  name
4203/// kPropertyType = 't'              // followed by old-style type encoding.
4204/// kPropertyWeak = 'W'              // 'weak' property
4205/// kPropertyStrong = 'P'            // property GC'able
4206/// kPropertyNonAtomic = 'N'         // property non-atomic
4207/// };
4208/// @endcode
4209void ASTContext::getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD,
4210                                                const Decl *Container,
4211                                                std::string& S) const {
4212  // Collect information from the property implementation decl(s).
4213  bool Dynamic = false;
4214  ObjCPropertyImplDecl *SynthesizePID = 0;
4215
4216  // FIXME: Duplicated code due to poor abstraction.
4217  if (Container) {
4218    if (const ObjCCategoryImplDecl *CID =
4219        dyn_cast<ObjCCategoryImplDecl>(Container)) {
4220      for (ObjCCategoryImplDecl::propimpl_iterator
4221             i = CID->propimpl_begin(), e = CID->propimpl_end();
4222           i != e; ++i) {
4223        ObjCPropertyImplDecl *PID = *i;
4224        if (PID->getPropertyDecl() == PD) {
4225          if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) {
4226            Dynamic = true;
4227          } else {
4228            SynthesizePID = PID;
4229          }
4230        }
4231      }
4232    } else {
4233      const ObjCImplementationDecl *OID=cast<ObjCImplementationDecl>(Container);
4234      for (ObjCCategoryImplDecl::propimpl_iterator
4235             i = OID->propimpl_begin(), e = OID->propimpl_end();
4236           i != e; ++i) {
4237        ObjCPropertyImplDecl *PID = *i;
4238        if (PID->getPropertyDecl() == PD) {
4239          if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) {
4240            Dynamic = true;
4241          } else {
4242            SynthesizePID = PID;
4243          }
4244        }
4245      }
4246    }
4247  }
4248
4249  // FIXME: This is not very efficient.
4250  S = "T";
4251
4252  // Encode result type.
4253  // GCC has some special rules regarding encoding of properties which
4254  // closely resembles encoding of ivars.
4255  getObjCEncodingForTypeImpl(PD->getType(), S, true, true, 0,
4256                             true /* outermost type */,
4257                             true /* encoding for property */);
4258
4259  if (PD->isReadOnly()) {
4260    S += ",R";
4261  } else {
4262    switch (PD->getSetterKind()) {
4263    case ObjCPropertyDecl::Assign: break;
4264    case ObjCPropertyDecl::Copy:   S += ",C"; break;
4265    case ObjCPropertyDecl::Retain: S += ",&"; break;
4266    case ObjCPropertyDecl::Weak:   S += ",W"; break;
4267    }
4268  }
4269
4270  // It really isn't clear at all what this means, since properties
4271  // are "dynamic by default".
4272  if (Dynamic)
4273    S += ",D";
4274
4275  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_nonatomic)
4276    S += ",N";
4277
4278  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_getter) {
4279    S += ",G";
4280    S += PD->getGetterName().getAsString();
4281  }
4282
4283  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_setter) {
4284    S += ",S";
4285    S += PD->getSetterName().getAsString();
4286  }
4287
4288  if (SynthesizePID) {
4289    const ObjCIvarDecl *OID = SynthesizePID->getPropertyIvarDecl();
4290    S += ",V";
4291    S += OID->getNameAsString();
4292  }
4293
4294  // FIXME: OBJCGC: weak & strong
4295}
4296
4297/// getLegacyIntegralTypeEncoding -
4298/// Another legacy compatibility encoding: 32-bit longs are encoded as
4299/// 'l' or 'L' , but not always.  For typedefs, we need to use
4300/// 'i' or 'I' instead if encoding a struct field, or a pointer!
4301///
4302void ASTContext::getLegacyIntegralTypeEncoding (QualType &PointeeTy) const {
4303  if (isa<TypedefType>(PointeeTy.getTypePtr())) {
4304    if (const BuiltinType *BT = PointeeTy->getAs<BuiltinType>()) {
4305      if (BT->getKind() == BuiltinType::ULong && getIntWidth(PointeeTy) == 32)
4306        PointeeTy = UnsignedIntTy;
4307      else
4308        if (BT->getKind() == BuiltinType::Long && getIntWidth(PointeeTy) == 32)
4309          PointeeTy = IntTy;
4310    }
4311  }
4312}
4313
4314void ASTContext::getObjCEncodingForType(QualType T, std::string& S,
4315                                        const FieldDecl *Field) const {
4316  // We follow the behavior of gcc, expanding structures which are
4317  // directly pointed to, and expanding embedded structures. Note that
4318  // these rules are sufficient to prevent recursive encoding of the
4319  // same type.
4320  getObjCEncodingForTypeImpl(T, S, true, true, Field,
4321                             true /* outermost type */);
4322}
4323
4324static char ObjCEncodingForPrimitiveKind(const ASTContext *C, QualType T) {
4325    switch (T->getAs<BuiltinType>()->getKind()) {
4326    default: llvm_unreachable("Unhandled builtin type kind");
4327    case BuiltinType::Void:       return 'v';
4328    case BuiltinType::Bool:       return 'B';
4329    case BuiltinType::Char_U:
4330    case BuiltinType::UChar:      return 'C';
4331    case BuiltinType::UShort:     return 'S';
4332    case BuiltinType::UInt:       return 'I';
4333    case BuiltinType::ULong:
4334        return C->getIntWidth(T) == 32 ? 'L' : 'Q';
4335    case BuiltinType::UInt128:    return 'T';
4336    case BuiltinType::ULongLong:  return 'Q';
4337    case BuiltinType::Char_S:
4338    case BuiltinType::SChar:      return 'c';
4339    case BuiltinType::Short:      return 's';
4340    case BuiltinType::WChar_S:
4341    case BuiltinType::WChar_U:
4342    case BuiltinType::Int:        return 'i';
4343    case BuiltinType::Long:
4344      return C->getIntWidth(T) == 32 ? 'l' : 'q';
4345    case BuiltinType::LongLong:   return 'q';
4346    case BuiltinType::Int128:     return 't';
4347    case BuiltinType::Float:      return 'f';
4348    case BuiltinType::Double:     return 'd';
4349    case BuiltinType::LongDouble: return 'D';
4350    }
4351}
4352
4353static char ObjCEncodingForEnumType(const ASTContext *C, const EnumType *ET) {
4354  EnumDecl *Enum = ET->getDecl();
4355
4356  // The encoding of an non-fixed enum type is always 'i', regardless of size.
4357  if (!Enum->isFixed())
4358    return 'i';
4359
4360  // The encoding of a fixed enum type matches its fixed underlying type.
4361  return ObjCEncodingForPrimitiveKind(C, Enum->getIntegerType());
4362}
4363
4364static void EncodeBitField(const ASTContext *Ctx, std::string& S,
4365                           QualType T, const FieldDecl *FD) {
4366  assert(FD->isBitField() && "not a bitfield - getObjCEncodingForTypeImpl");
4367  S += 'b';
4368  // The NeXT runtime encodes bit fields as b followed by the number of bits.
4369  // The GNU runtime requires more information; bitfields are encoded as b,
4370  // then the offset (in bits) of the first element, then the type of the
4371  // bitfield, then the size in bits.  For example, in this structure:
4372  //
4373  // struct
4374  // {
4375  //    int integer;
4376  //    int flags:2;
4377  // };
4378  // On a 32-bit system, the encoding for flags would be b2 for the NeXT
4379  // runtime, but b32i2 for the GNU runtime.  The reason for this extra
4380  // information is not especially sensible, but we're stuck with it for
4381  // compatibility with GCC, although providing it breaks anything that
4382  // actually uses runtime introspection and wants to work on both runtimes...
4383  if (!Ctx->getLangOpts().NeXTRuntime) {
4384    const RecordDecl *RD = FD->getParent();
4385    const ASTRecordLayout &RL = Ctx->getASTRecordLayout(RD);
4386    S += llvm::utostr(RL.getFieldOffset(FD->getFieldIndex()));
4387    if (const EnumType *ET = T->getAs<EnumType>())
4388      S += ObjCEncodingForEnumType(Ctx, ET);
4389    else
4390      S += ObjCEncodingForPrimitiveKind(Ctx, T);
4391  }
4392  S += llvm::utostr(FD->getBitWidthValue(*Ctx));
4393}
4394
4395// FIXME: Use SmallString for accumulating string.
4396void ASTContext::getObjCEncodingForTypeImpl(QualType T, std::string& S,
4397                                            bool ExpandPointedToStructures,
4398                                            bool ExpandStructures,
4399                                            const FieldDecl *FD,
4400                                            bool OutermostType,
4401                                            bool EncodingProperty,
4402                                            bool StructField,
4403                                            bool EncodeBlockParameters,
4404                                            bool EncodeClassNames) const {
4405  if (T->getAs<BuiltinType>()) {
4406    if (FD && FD->isBitField())
4407      return EncodeBitField(this, S, T, FD);
4408    S += ObjCEncodingForPrimitiveKind(this, T);
4409    return;
4410  }
4411
4412  if (const ComplexType *CT = T->getAs<ComplexType>()) {
4413    S += 'j';
4414    getObjCEncodingForTypeImpl(CT->getElementType(), S, false, false, 0, false,
4415                               false);
4416    return;
4417  }
4418
4419  // encoding for pointer or r3eference types.
4420  QualType PointeeTy;
4421  if (const PointerType *PT = T->getAs<PointerType>()) {
4422    if (PT->isObjCSelType()) {
4423      S += ':';
4424      return;
4425    }
4426    PointeeTy = PT->getPointeeType();
4427  }
4428  else if (const ReferenceType *RT = T->getAs<ReferenceType>())
4429    PointeeTy = RT->getPointeeType();
4430  if (!PointeeTy.isNull()) {
4431    bool isReadOnly = false;
4432    // For historical/compatibility reasons, the read-only qualifier of the
4433    // pointee gets emitted _before_ the '^'.  The read-only qualifier of
4434    // the pointer itself gets ignored, _unless_ we are looking at a typedef!
4435    // Also, do not emit the 'r' for anything but the outermost type!
4436    if (isa<TypedefType>(T.getTypePtr())) {
4437      if (OutermostType && T.isConstQualified()) {
4438        isReadOnly = true;
4439        S += 'r';
4440      }
4441    } else if (OutermostType) {
4442      QualType P = PointeeTy;
4443      while (P->getAs<PointerType>())
4444        P = P->getAs<PointerType>()->getPointeeType();
4445      if (P.isConstQualified()) {
4446        isReadOnly = true;
4447        S += 'r';
4448      }
4449    }
4450    if (isReadOnly) {
4451      // Another legacy compatibility encoding. Some ObjC qualifier and type
4452      // combinations need to be rearranged.
4453      // Rewrite "in const" from "nr" to "rn"
4454      if (StringRef(S).endswith("nr"))
4455        S.replace(S.end()-2, S.end(), "rn");
4456    }
4457
4458    if (PointeeTy->isCharType()) {
4459      // char pointer types should be encoded as '*' unless it is a
4460      // type that has been typedef'd to 'BOOL'.
4461      if (!isTypeTypedefedAsBOOL(PointeeTy)) {
4462        S += '*';
4463        return;
4464      }
4465    } else if (const RecordType *RTy = PointeeTy->getAs<RecordType>()) {
4466      // GCC binary compat: Need to convert "struct objc_class *" to "#".
4467      if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_class")) {
4468        S += '#';
4469        return;
4470      }
4471      // GCC binary compat: Need to convert "struct objc_object *" to "@".
4472      if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_object")) {
4473        S += '@';
4474        return;
4475      }
4476      // fall through...
4477    }
4478    S += '^';
4479    getLegacyIntegralTypeEncoding(PointeeTy);
4480
4481    getObjCEncodingForTypeImpl(PointeeTy, S, false, ExpandPointedToStructures,
4482                               NULL);
4483    return;
4484  }
4485
4486  if (const ArrayType *AT =
4487      // Ignore type qualifiers etc.
4488        dyn_cast<ArrayType>(T->getCanonicalTypeInternal())) {
4489    if (isa<IncompleteArrayType>(AT) && !StructField) {
4490      // Incomplete arrays are encoded as a pointer to the array element.
4491      S += '^';
4492
4493      getObjCEncodingForTypeImpl(AT->getElementType(), S,
4494                                 false, ExpandStructures, FD);
4495    } else {
4496      S += '[';
4497
4498      if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) {
4499        if (getTypeSize(CAT->getElementType()) == 0)
4500          S += '0';
4501        else
4502          S += llvm::utostr(CAT->getSize().getZExtValue());
4503      } else {
4504        //Variable length arrays are encoded as a regular array with 0 elements.
4505        assert((isa<VariableArrayType>(AT) || isa<IncompleteArrayType>(AT)) &&
4506               "Unknown array type!");
4507        S += '0';
4508      }
4509
4510      getObjCEncodingForTypeImpl(AT->getElementType(), S,
4511                                 false, ExpandStructures, FD);
4512      S += ']';
4513    }
4514    return;
4515  }
4516
4517  if (T->getAs<FunctionType>()) {
4518    S += '?';
4519    return;
4520  }
4521
4522  if (const RecordType *RTy = T->getAs<RecordType>()) {
4523    RecordDecl *RDecl = RTy->getDecl();
4524    S += RDecl->isUnion() ? '(' : '{';
4525    // Anonymous structures print as '?'
4526    if (const IdentifierInfo *II = RDecl->getIdentifier()) {
4527      S += II->getName();
4528      if (ClassTemplateSpecializationDecl *Spec
4529          = dyn_cast<ClassTemplateSpecializationDecl>(RDecl)) {
4530        const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
4531        std::string TemplateArgsStr
4532          = TemplateSpecializationType::PrintTemplateArgumentList(
4533                                            TemplateArgs.data(),
4534                                            TemplateArgs.size(),
4535                                            (*this).getPrintingPolicy());
4536
4537        S += TemplateArgsStr;
4538      }
4539    } else {
4540      S += '?';
4541    }
4542    if (ExpandStructures) {
4543      S += '=';
4544      if (!RDecl->isUnion()) {
4545        getObjCEncodingForStructureImpl(RDecl, S, FD);
4546      } else {
4547        for (RecordDecl::field_iterator Field = RDecl->field_begin(),
4548                                     FieldEnd = RDecl->field_end();
4549             Field != FieldEnd; ++Field) {
4550          if (FD) {
4551            S += '"';
4552            S += Field->getNameAsString();
4553            S += '"';
4554          }
4555
4556          // Special case bit-fields.
4557          if (Field->isBitField()) {
4558            getObjCEncodingForTypeImpl(Field->getType(), S, false, true,
4559                                       (*Field));
4560          } else {
4561            QualType qt = Field->getType();
4562            getLegacyIntegralTypeEncoding(qt);
4563            getObjCEncodingForTypeImpl(qt, S, false, true,
4564                                       FD, /*OutermostType*/false,
4565                                       /*EncodingProperty*/false,
4566                                       /*StructField*/true);
4567          }
4568        }
4569      }
4570    }
4571    S += RDecl->isUnion() ? ')' : '}';
4572    return;
4573  }
4574
4575  if (const EnumType *ET = T->getAs<EnumType>()) {
4576    if (FD && FD->isBitField())
4577      EncodeBitField(this, S, T, FD);
4578    else
4579      S += ObjCEncodingForEnumType(this, ET);
4580    return;
4581  }
4582
4583  if (const BlockPointerType *BT = T->getAs<BlockPointerType>()) {
4584    S += "@?"; // Unlike a pointer-to-function, which is "^?".
4585    if (EncodeBlockParameters) {
4586      const FunctionType *FT = BT->getPointeeType()->getAs<FunctionType>();
4587
4588      S += '<';
4589      // Block return type
4590      getObjCEncodingForTypeImpl(FT->getResultType(), S,
4591                                 ExpandPointedToStructures, ExpandStructures,
4592                                 FD,
4593                                 false /* OutermostType */,
4594                                 EncodingProperty,
4595                                 false /* StructField */,
4596                                 EncodeBlockParameters,
4597                                 EncodeClassNames);
4598      // Block self
4599      S += "@?";
4600      // Block parameters
4601      if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(FT)) {
4602        for (FunctionProtoType::arg_type_iterator I = FPT->arg_type_begin(),
4603               E = FPT->arg_type_end(); I && (I != E); ++I) {
4604          getObjCEncodingForTypeImpl(*I, S,
4605                                     ExpandPointedToStructures,
4606                                     ExpandStructures,
4607                                     FD,
4608                                     false /* OutermostType */,
4609                                     EncodingProperty,
4610                                     false /* StructField */,
4611                                     EncodeBlockParameters,
4612                                     EncodeClassNames);
4613        }
4614      }
4615      S += '>';
4616    }
4617    return;
4618  }
4619
4620  // Ignore protocol qualifiers when mangling at this level.
4621  if (const ObjCObjectType *OT = T->getAs<ObjCObjectType>())
4622    T = OT->getBaseType();
4623
4624  if (const ObjCInterfaceType *OIT = T->getAs<ObjCInterfaceType>()) {
4625    // @encode(class_name)
4626    ObjCInterfaceDecl *OI = OIT->getDecl();
4627    S += '{';
4628    const IdentifierInfo *II = OI->getIdentifier();
4629    S += II->getName();
4630    S += '=';
4631    SmallVector<const ObjCIvarDecl*, 32> Ivars;
4632    DeepCollectObjCIvars(OI, true, Ivars);
4633    for (unsigned i = 0, e = Ivars.size(); i != e; ++i) {
4634      const FieldDecl *Field = cast<FieldDecl>(Ivars[i]);
4635      if (Field->isBitField())
4636        getObjCEncodingForTypeImpl(Field->getType(), S, false, true, Field);
4637      else
4638        getObjCEncodingForTypeImpl(Field->getType(), S, false, true, FD);
4639    }
4640    S += '}';
4641    return;
4642  }
4643
4644  if (const ObjCObjectPointerType *OPT = T->getAs<ObjCObjectPointerType>()) {
4645    if (OPT->isObjCIdType()) {
4646      S += '@';
4647      return;
4648    }
4649
4650    if (OPT->isObjCClassType() || OPT->isObjCQualifiedClassType()) {
4651      // FIXME: Consider if we need to output qualifiers for 'Class<p>'.
4652      // Since this is a binary compatibility issue, need to consult with runtime
4653      // folks. Fortunately, this is a *very* obsure construct.
4654      S += '#';
4655      return;
4656    }
4657
4658    if (OPT->isObjCQualifiedIdType()) {
4659      getObjCEncodingForTypeImpl(getObjCIdType(), S,
4660                                 ExpandPointedToStructures,
4661                                 ExpandStructures, FD);
4662      if (FD || EncodingProperty || EncodeClassNames) {
4663        // Note that we do extended encoding of protocol qualifer list
4664        // Only when doing ivar or property encoding.
4665        S += '"';
4666        for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(),
4667             E = OPT->qual_end(); I != E; ++I) {
4668          S += '<';
4669          S += (*I)->getNameAsString();
4670          S += '>';
4671        }
4672        S += '"';
4673      }
4674      return;
4675    }
4676
4677    QualType PointeeTy = OPT->getPointeeType();
4678    if (!EncodingProperty &&
4679        isa<TypedefType>(PointeeTy.getTypePtr())) {
4680      // Another historical/compatibility reason.
4681      // We encode the underlying type which comes out as
4682      // {...};
4683      S += '^';
4684      getObjCEncodingForTypeImpl(PointeeTy, S,
4685                                 false, ExpandPointedToStructures,
4686                                 NULL);
4687      return;
4688    }
4689
4690    S += '@';
4691    if (OPT->getInterfaceDecl() &&
4692        (FD || EncodingProperty || EncodeClassNames)) {
4693      S += '"';
4694      S += OPT->getInterfaceDecl()->getIdentifier()->getName();
4695      for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(),
4696           E = OPT->qual_end(); I != E; ++I) {
4697        S += '<';
4698        S += (*I)->getNameAsString();
4699        S += '>';
4700      }
4701      S += '"';
4702    }
4703    return;
4704  }
4705
4706  // gcc just blithely ignores member pointers.
4707  // TODO: maybe there should be a mangling for these
4708  if (T->getAs<MemberPointerType>())
4709    return;
4710
4711  if (T->isVectorType()) {
4712    // This matches gcc's encoding, even though technically it is
4713    // insufficient.
4714    // FIXME. We should do a better job than gcc.
4715    return;
4716  }
4717
4718  llvm_unreachable("@encode for type not implemented!");
4719}
4720
4721void ASTContext::getObjCEncodingForStructureImpl(RecordDecl *RDecl,
4722                                                 std::string &S,
4723                                                 const FieldDecl *FD,
4724                                                 bool includeVBases) const {
4725  assert(RDecl && "Expected non-null RecordDecl");
4726  assert(!RDecl->isUnion() && "Should not be called for unions");
4727  if (!RDecl->getDefinition())
4728    return;
4729
4730  CXXRecordDecl *CXXRec = dyn_cast<CXXRecordDecl>(RDecl);
4731  std::multimap<uint64_t, NamedDecl *> FieldOrBaseOffsets;
4732  const ASTRecordLayout &layout = getASTRecordLayout(RDecl);
4733
4734  if (CXXRec) {
4735    for (CXXRecordDecl::base_class_iterator
4736           BI = CXXRec->bases_begin(),
4737           BE = CXXRec->bases_end(); BI != BE; ++BI) {
4738      if (!BI->isVirtual()) {
4739        CXXRecordDecl *base = BI->getType()->getAsCXXRecordDecl();
4740        if (base->isEmpty())
4741          continue;
4742        uint64_t offs = layout.getBaseClassOffsetInBits(base);
4743        FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
4744                                  std::make_pair(offs, base));
4745      }
4746    }
4747  }
4748
4749  unsigned i = 0;
4750  for (RecordDecl::field_iterator Field = RDecl->field_begin(),
4751                               FieldEnd = RDecl->field_end();
4752       Field != FieldEnd; ++Field, ++i) {
4753    uint64_t offs = layout.getFieldOffset(i);
4754    FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
4755                              std::make_pair(offs, *Field));
4756  }
4757
4758  if (CXXRec && includeVBases) {
4759    for (CXXRecordDecl::base_class_iterator
4760           BI = CXXRec->vbases_begin(),
4761           BE = CXXRec->vbases_end(); BI != BE; ++BI) {
4762      CXXRecordDecl *base = BI->getType()->getAsCXXRecordDecl();
4763      if (base->isEmpty())
4764        continue;
4765      uint64_t offs = layout.getVBaseClassOffsetInBits(base);
4766      if (FieldOrBaseOffsets.find(offs) == FieldOrBaseOffsets.end())
4767        FieldOrBaseOffsets.insert(FieldOrBaseOffsets.end(),
4768                                  std::make_pair(offs, base));
4769    }
4770  }
4771
4772  CharUnits size;
4773  if (CXXRec) {
4774    size = includeVBases ? layout.getSize() : layout.getNonVirtualSize();
4775  } else {
4776    size = layout.getSize();
4777  }
4778
4779  uint64_t CurOffs = 0;
4780  std::multimap<uint64_t, NamedDecl *>::iterator
4781    CurLayObj = FieldOrBaseOffsets.begin();
4782
4783  if ((CurLayObj != FieldOrBaseOffsets.end() && CurLayObj->first != 0) ||
4784      (CurLayObj == FieldOrBaseOffsets.end() &&
4785         CXXRec && CXXRec->isDynamicClass())) {
4786    assert(CXXRec && CXXRec->isDynamicClass() &&
4787           "Offset 0 was empty but no VTable ?");
4788    if (FD) {
4789      S += "\"_vptr$";
4790      std::string recname = CXXRec->getNameAsString();
4791      if (recname.empty()) recname = "?";
4792      S += recname;
4793      S += '"';
4794    }
4795    S += "^^?";
4796    CurOffs += getTypeSize(VoidPtrTy);
4797  }
4798
4799  if (!RDecl->hasFlexibleArrayMember()) {
4800    // Mark the end of the structure.
4801    uint64_t offs = toBits(size);
4802    FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
4803                              std::make_pair(offs, (NamedDecl*)0));
4804  }
4805
4806  for (; CurLayObj != FieldOrBaseOffsets.end(); ++CurLayObj) {
4807    assert(CurOffs <= CurLayObj->first);
4808
4809    if (CurOffs < CurLayObj->first) {
4810      uint64_t padding = CurLayObj->first - CurOffs;
4811      // FIXME: There doesn't seem to be a way to indicate in the encoding that
4812      // packing/alignment of members is different that normal, in which case
4813      // the encoding will be out-of-sync with the real layout.
4814      // If the runtime switches to just consider the size of types without
4815      // taking into account alignment, we could make padding explicit in the
4816      // encoding (e.g. using arrays of chars). The encoding strings would be
4817      // longer then though.
4818      CurOffs += padding;
4819    }
4820
4821    NamedDecl *dcl = CurLayObj->second;
4822    if (dcl == 0)
4823      break; // reached end of structure.
4824
4825    if (CXXRecordDecl *base = dyn_cast<CXXRecordDecl>(dcl)) {
4826      // We expand the bases without their virtual bases since those are going
4827      // in the initial structure. Note that this differs from gcc which
4828      // expands virtual bases each time one is encountered in the hierarchy,
4829      // making the encoding type bigger than it really is.
4830      getObjCEncodingForStructureImpl(base, S, FD, /*includeVBases*/false);
4831      assert(!base->isEmpty());
4832      CurOffs += toBits(getASTRecordLayout(base).getNonVirtualSize());
4833    } else {
4834      FieldDecl *field = cast<FieldDecl>(dcl);
4835      if (FD) {
4836        S += '"';
4837        S += field->getNameAsString();
4838        S += '"';
4839      }
4840
4841      if (field->isBitField()) {
4842        EncodeBitField(this, S, field->getType(), field);
4843        CurOffs += field->getBitWidthValue(*this);
4844      } else {
4845        QualType qt = field->getType();
4846        getLegacyIntegralTypeEncoding(qt);
4847        getObjCEncodingForTypeImpl(qt, S, false, true, FD,
4848                                   /*OutermostType*/false,
4849                                   /*EncodingProperty*/false,
4850                                   /*StructField*/true);
4851        CurOffs += getTypeSize(field->getType());
4852      }
4853    }
4854  }
4855}
4856
4857void ASTContext::getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT,
4858                                                 std::string& S) const {
4859  if (QT & Decl::OBJC_TQ_In)
4860    S += 'n';
4861  if (QT & Decl::OBJC_TQ_Inout)
4862    S += 'N';
4863  if (QT & Decl::OBJC_TQ_Out)
4864    S += 'o';
4865  if (QT & Decl::OBJC_TQ_Bycopy)
4866    S += 'O';
4867  if (QT & Decl::OBJC_TQ_Byref)
4868    S += 'R';
4869  if (QT & Decl::OBJC_TQ_Oneway)
4870    S += 'V';
4871}
4872
4873void ASTContext::setBuiltinVaListType(QualType T) {
4874  assert(BuiltinVaListType.isNull() && "__builtin_va_list type already set!");
4875
4876  BuiltinVaListType = T;
4877}
4878
4879TypedefDecl *ASTContext::getObjCIdDecl() const {
4880  if (!ObjCIdDecl) {
4881    QualType T = getObjCObjectType(ObjCBuiltinIdTy, 0, 0);
4882    T = getObjCObjectPointerType(T);
4883    TypeSourceInfo *IdInfo = getTrivialTypeSourceInfo(T);
4884    ObjCIdDecl = TypedefDecl::Create(const_cast<ASTContext &>(*this),
4885                                     getTranslationUnitDecl(),
4886                                     SourceLocation(), SourceLocation(),
4887                                     &Idents.get("id"), IdInfo);
4888  }
4889
4890  return ObjCIdDecl;
4891}
4892
4893TypedefDecl *ASTContext::getObjCSelDecl() const {
4894  if (!ObjCSelDecl) {
4895    QualType SelT = getPointerType(ObjCBuiltinSelTy);
4896    TypeSourceInfo *SelInfo = getTrivialTypeSourceInfo(SelT);
4897    ObjCSelDecl = TypedefDecl::Create(const_cast<ASTContext &>(*this),
4898                                      getTranslationUnitDecl(),
4899                                      SourceLocation(), SourceLocation(),
4900                                      &Idents.get("SEL"), SelInfo);
4901  }
4902  return ObjCSelDecl;
4903}
4904
4905TypedefDecl *ASTContext::getObjCClassDecl() const {
4906  if (!ObjCClassDecl) {
4907    QualType T = getObjCObjectType(ObjCBuiltinClassTy, 0, 0);
4908    T = getObjCObjectPointerType(T);
4909    TypeSourceInfo *ClassInfo = getTrivialTypeSourceInfo(T);
4910    ObjCClassDecl = TypedefDecl::Create(const_cast<ASTContext &>(*this),
4911                                        getTranslationUnitDecl(),
4912                                        SourceLocation(), SourceLocation(),
4913                                        &Idents.get("Class"), ClassInfo);
4914  }
4915
4916  return ObjCClassDecl;
4917}
4918
4919ObjCInterfaceDecl *ASTContext::getObjCProtocolDecl() const {
4920  if (!ObjCProtocolClassDecl) {
4921    ObjCProtocolClassDecl
4922      = ObjCInterfaceDecl::Create(*this, getTranslationUnitDecl(),
4923                                  SourceLocation(),
4924                                  &Idents.get("Protocol"),
4925                                  /*PrevDecl=*/0,
4926                                  SourceLocation(), true);
4927  }
4928
4929  return ObjCProtocolClassDecl;
4930}
4931
4932void ASTContext::setObjCConstantStringInterface(ObjCInterfaceDecl *Decl) {
4933  assert(ObjCConstantStringType.isNull() &&
4934         "'NSConstantString' type already set!");
4935
4936  ObjCConstantStringType = getObjCInterfaceType(Decl);
4937}
4938
4939/// \brief Retrieve the template name that corresponds to a non-empty
4940/// lookup.
4941TemplateName
4942ASTContext::getOverloadedTemplateName(UnresolvedSetIterator Begin,
4943                                      UnresolvedSetIterator End) const {
4944  unsigned size = End - Begin;
4945  assert(size > 1 && "set is not overloaded!");
4946
4947  void *memory = Allocate(sizeof(OverloadedTemplateStorage) +
4948                          size * sizeof(FunctionTemplateDecl*));
4949  OverloadedTemplateStorage *OT = new(memory) OverloadedTemplateStorage(size);
4950
4951  NamedDecl **Storage = OT->getStorage();
4952  for (UnresolvedSetIterator I = Begin; I != End; ++I) {
4953    NamedDecl *D = *I;
4954    assert(isa<FunctionTemplateDecl>(D) ||
4955           (isa<UsingShadowDecl>(D) &&
4956            isa<FunctionTemplateDecl>(D->getUnderlyingDecl())));
4957    *Storage++ = D;
4958  }
4959
4960  return TemplateName(OT);
4961}
4962
4963/// \brief Retrieve the template name that represents a qualified
4964/// template name such as \c std::vector.
4965TemplateName
4966ASTContext::getQualifiedTemplateName(NestedNameSpecifier *NNS,
4967                                     bool TemplateKeyword,
4968                                     TemplateDecl *Template) const {
4969  assert(NNS && "Missing nested-name-specifier in qualified template name");
4970
4971  // FIXME: Canonicalization?
4972  llvm::FoldingSetNodeID ID;
4973  QualifiedTemplateName::Profile(ID, NNS, TemplateKeyword, Template);
4974
4975  void *InsertPos = 0;
4976  QualifiedTemplateName *QTN =
4977    QualifiedTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
4978  if (!QTN) {
4979    QTN = new (*this,4) QualifiedTemplateName(NNS, TemplateKeyword, Template);
4980    QualifiedTemplateNames.InsertNode(QTN, InsertPos);
4981  }
4982
4983  return TemplateName(QTN);
4984}
4985
4986/// \brief Retrieve the template name that represents a dependent
4987/// template name such as \c MetaFun::template apply.
4988TemplateName
4989ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
4990                                     const IdentifierInfo *Name) const {
4991  assert((!NNS || NNS->isDependent()) &&
4992         "Nested name specifier must be dependent");
4993
4994  llvm::FoldingSetNodeID ID;
4995  DependentTemplateName::Profile(ID, NNS, Name);
4996
4997  void *InsertPos = 0;
4998  DependentTemplateName *QTN =
4999    DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
5000
5001  if (QTN)
5002    return TemplateName(QTN);
5003
5004  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
5005  if (CanonNNS == NNS) {
5006    QTN = new (*this,4) DependentTemplateName(NNS, Name);
5007  } else {
5008    TemplateName Canon = getDependentTemplateName(CanonNNS, Name);
5009    QTN = new (*this,4) DependentTemplateName(NNS, Name, Canon);
5010    DependentTemplateName *CheckQTN =
5011      DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
5012    assert(!CheckQTN && "Dependent type name canonicalization broken");
5013    (void)CheckQTN;
5014  }
5015
5016  DependentTemplateNames.InsertNode(QTN, InsertPos);
5017  return TemplateName(QTN);
5018}
5019
5020/// \brief Retrieve the template name that represents a dependent
5021/// template name such as \c MetaFun::template operator+.
5022TemplateName
5023ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
5024                                     OverloadedOperatorKind Operator) const {
5025  assert((!NNS || NNS->isDependent()) &&
5026         "Nested name specifier must be dependent");
5027
5028  llvm::FoldingSetNodeID ID;
5029  DependentTemplateName::Profile(ID, NNS, Operator);
5030
5031  void *InsertPos = 0;
5032  DependentTemplateName *QTN
5033    = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
5034
5035  if (QTN)
5036    return TemplateName(QTN);
5037
5038  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
5039  if (CanonNNS == NNS) {
5040    QTN = new (*this,4) DependentTemplateName(NNS, Operator);
5041  } else {
5042    TemplateName Canon = getDependentTemplateName(CanonNNS, Operator);
5043    QTN = new (*this,4) DependentTemplateName(NNS, Operator, Canon);
5044
5045    DependentTemplateName *CheckQTN
5046      = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
5047    assert(!CheckQTN && "Dependent template name canonicalization broken");
5048    (void)CheckQTN;
5049  }
5050
5051  DependentTemplateNames.InsertNode(QTN, InsertPos);
5052  return TemplateName(QTN);
5053}
5054
5055TemplateName
5056ASTContext::getSubstTemplateTemplateParm(TemplateTemplateParmDecl *param,
5057                                         TemplateName replacement) const {
5058  llvm::FoldingSetNodeID ID;
5059  SubstTemplateTemplateParmStorage::Profile(ID, param, replacement);
5060
5061  void *insertPos = 0;
5062  SubstTemplateTemplateParmStorage *subst
5063    = SubstTemplateTemplateParms.FindNodeOrInsertPos(ID, insertPos);
5064
5065  if (!subst) {
5066    subst = new (*this) SubstTemplateTemplateParmStorage(param, replacement);
5067    SubstTemplateTemplateParms.InsertNode(subst, insertPos);
5068  }
5069
5070  return TemplateName(subst);
5071}
5072
5073TemplateName
5074ASTContext::getSubstTemplateTemplateParmPack(TemplateTemplateParmDecl *Param,
5075                                       const TemplateArgument &ArgPack) const {
5076  ASTContext &Self = const_cast<ASTContext &>(*this);
5077  llvm::FoldingSetNodeID ID;
5078  SubstTemplateTemplateParmPackStorage::Profile(ID, Self, Param, ArgPack);
5079
5080  void *InsertPos = 0;
5081  SubstTemplateTemplateParmPackStorage *Subst
5082    = SubstTemplateTemplateParmPacks.FindNodeOrInsertPos(ID, InsertPos);
5083
5084  if (!Subst) {
5085    Subst = new (*this) SubstTemplateTemplateParmPackStorage(Param,
5086                                                           ArgPack.pack_size(),
5087                                                         ArgPack.pack_begin());
5088    SubstTemplateTemplateParmPacks.InsertNode(Subst, InsertPos);
5089  }
5090
5091  return TemplateName(Subst);
5092}
5093
5094/// getFromTargetType - Given one of the integer types provided by
5095/// TargetInfo, produce the corresponding type. The unsigned @p Type
5096/// is actually a value of type @c TargetInfo::IntType.
5097CanQualType ASTContext::getFromTargetType(unsigned Type) const {
5098  switch (Type) {
5099  case TargetInfo::NoInt: return CanQualType();
5100  case TargetInfo::SignedShort: return ShortTy;
5101  case TargetInfo::UnsignedShort: return UnsignedShortTy;
5102  case TargetInfo::SignedInt: return IntTy;
5103  case TargetInfo::UnsignedInt: return UnsignedIntTy;
5104  case TargetInfo::SignedLong: return LongTy;
5105  case TargetInfo::UnsignedLong: return UnsignedLongTy;
5106  case TargetInfo::SignedLongLong: return LongLongTy;
5107  case TargetInfo::UnsignedLongLong: return UnsignedLongLongTy;
5108  }
5109
5110  llvm_unreachable("Unhandled TargetInfo::IntType value");
5111}
5112
5113//===----------------------------------------------------------------------===//
5114//                        Type Predicates.
5115//===----------------------------------------------------------------------===//
5116
5117/// getObjCGCAttr - Returns one of GCNone, Weak or Strong objc's
5118/// garbage collection attribute.
5119///
5120Qualifiers::GC ASTContext::getObjCGCAttrKind(QualType Ty) const {
5121  if (getLangOpts().getGC() == LangOptions::NonGC)
5122    return Qualifiers::GCNone;
5123
5124  assert(getLangOpts().ObjC1);
5125  Qualifiers::GC GCAttrs = Ty.getObjCGCAttr();
5126
5127  // Default behaviour under objective-C's gc is for ObjC pointers
5128  // (or pointers to them) be treated as though they were declared
5129  // as __strong.
5130  if (GCAttrs == Qualifiers::GCNone) {
5131    if (Ty->isObjCObjectPointerType() || Ty->isBlockPointerType())
5132      return Qualifiers::Strong;
5133    else if (Ty->isPointerType())
5134      return getObjCGCAttrKind(Ty->getAs<PointerType>()->getPointeeType());
5135  } else {
5136    // It's not valid to set GC attributes on anything that isn't a
5137    // pointer.
5138#ifndef NDEBUG
5139    QualType CT = Ty->getCanonicalTypeInternal();
5140    while (const ArrayType *AT = dyn_cast<ArrayType>(CT))
5141      CT = AT->getElementType();
5142    assert(CT->isAnyPointerType() || CT->isBlockPointerType());
5143#endif
5144  }
5145  return GCAttrs;
5146}
5147
5148//===----------------------------------------------------------------------===//
5149//                        Type Compatibility Testing
5150//===----------------------------------------------------------------------===//
5151
5152/// areCompatVectorTypes - Return true if the two specified vector types are
5153/// compatible.
5154static bool areCompatVectorTypes(const VectorType *LHS,
5155                                 const VectorType *RHS) {
5156  assert(LHS->isCanonicalUnqualified() && RHS->isCanonicalUnqualified());
5157  return LHS->getElementType() == RHS->getElementType() &&
5158         LHS->getNumElements() == RHS->getNumElements();
5159}
5160
5161bool ASTContext::areCompatibleVectorTypes(QualType FirstVec,
5162                                          QualType SecondVec) {
5163  assert(FirstVec->isVectorType() && "FirstVec should be a vector type");
5164  assert(SecondVec->isVectorType() && "SecondVec should be a vector type");
5165
5166  if (hasSameUnqualifiedType(FirstVec, SecondVec))
5167    return true;
5168
5169  // Treat Neon vector types and most AltiVec vector types as if they are the
5170  // equivalent GCC vector types.
5171  const VectorType *First = FirstVec->getAs<VectorType>();
5172  const VectorType *Second = SecondVec->getAs<VectorType>();
5173  if (First->getNumElements() == Second->getNumElements() &&
5174      hasSameType(First->getElementType(), Second->getElementType()) &&
5175      First->getVectorKind() != VectorType::AltiVecPixel &&
5176      First->getVectorKind() != VectorType::AltiVecBool &&
5177      Second->getVectorKind() != VectorType::AltiVecPixel &&
5178      Second->getVectorKind() != VectorType::AltiVecBool)
5179    return true;
5180
5181  return false;
5182}
5183
5184//===----------------------------------------------------------------------===//
5185// ObjCQualifiedIdTypesAreCompatible - Compatibility testing for qualified id's.
5186//===----------------------------------------------------------------------===//
5187
5188/// ProtocolCompatibleWithProtocol - return 'true' if 'lProto' is in the
5189/// inheritance hierarchy of 'rProto'.
5190bool
5191ASTContext::ProtocolCompatibleWithProtocol(ObjCProtocolDecl *lProto,
5192                                           ObjCProtocolDecl *rProto) const {
5193  if (declaresSameEntity(lProto, rProto))
5194    return true;
5195  for (ObjCProtocolDecl::protocol_iterator PI = rProto->protocol_begin(),
5196       E = rProto->protocol_end(); PI != E; ++PI)
5197    if (ProtocolCompatibleWithProtocol(lProto, *PI))
5198      return true;
5199  return false;
5200}
5201
5202/// QualifiedIdConformsQualifiedId - compare id<p,...> with id<p1,...>
5203/// return true if lhs's protocols conform to rhs's protocol; false
5204/// otherwise.
5205bool ASTContext::QualifiedIdConformsQualifiedId(QualType lhs, QualType rhs) {
5206  if (lhs->isObjCQualifiedIdType() && rhs->isObjCQualifiedIdType())
5207    return ObjCQualifiedIdTypesAreCompatible(lhs, rhs, false);
5208  return false;
5209}
5210
5211/// ObjCQualifiedClassTypesAreCompatible - compare  Class<p,...> and
5212/// Class<p1, ...>.
5213bool ASTContext::ObjCQualifiedClassTypesAreCompatible(QualType lhs,
5214                                                      QualType rhs) {
5215  const ObjCObjectPointerType *lhsQID = lhs->getAs<ObjCObjectPointerType>();
5216  const ObjCObjectPointerType *rhsOPT = rhs->getAs<ObjCObjectPointerType>();
5217  assert ((lhsQID && rhsOPT) && "ObjCQualifiedClassTypesAreCompatible");
5218
5219  for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
5220       E = lhsQID->qual_end(); I != E; ++I) {
5221    bool match = false;
5222    ObjCProtocolDecl *lhsProto = *I;
5223    for (ObjCObjectPointerType::qual_iterator J = rhsOPT->qual_begin(),
5224         E = rhsOPT->qual_end(); J != E; ++J) {
5225      ObjCProtocolDecl *rhsProto = *J;
5226      if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto)) {
5227        match = true;
5228        break;
5229      }
5230    }
5231    if (!match)
5232      return false;
5233  }
5234  return true;
5235}
5236
5237/// ObjCQualifiedIdTypesAreCompatible - We know that one of lhs/rhs is an
5238/// ObjCQualifiedIDType.
5239bool ASTContext::ObjCQualifiedIdTypesAreCompatible(QualType lhs, QualType rhs,
5240                                                   bool compare) {
5241  // Allow id<P..> and an 'id' or void* type in all cases.
5242  if (lhs->isVoidPointerType() ||
5243      lhs->isObjCIdType() || lhs->isObjCClassType())
5244    return true;
5245  else if (rhs->isVoidPointerType() ||
5246           rhs->isObjCIdType() || rhs->isObjCClassType())
5247    return true;
5248
5249  if (const ObjCObjectPointerType *lhsQID = lhs->getAsObjCQualifiedIdType()) {
5250    const ObjCObjectPointerType *rhsOPT = rhs->getAs<ObjCObjectPointerType>();
5251
5252    if (!rhsOPT) return false;
5253
5254    if (rhsOPT->qual_empty()) {
5255      // If the RHS is a unqualified interface pointer "NSString*",
5256      // make sure we check the class hierarchy.
5257      if (ObjCInterfaceDecl *rhsID = rhsOPT->getInterfaceDecl()) {
5258        for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
5259             E = lhsQID->qual_end(); I != E; ++I) {
5260          // when comparing an id<P> on lhs with a static type on rhs,
5261          // see if static class implements all of id's protocols, directly or
5262          // through its super class and categories.
5263          if (!rhsID->ClassImplementsProtocol(*I, true))
5264            return false;
5265        }
5266      }
5267      // If there are no qualifiers and no interface, we have an 'id'.
5268      return true;
5269    }
5270    // Both the right and left sides have qualifiers.
5271    for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
5272         E = lhsQID->qual_end(); I != E; ++I) {
5273      ObjCProtocolDecl *lhsProto = *I;
5274      bool match = false;
5275
5276      // when comparing an id<P> on lhs with a static type on rhs,
5277      // see if static class implements all of id's protocols, directly or
5278      // through its super class and categories.
5279      for (ObjCObjectPointerType::qual_iterator J = rhsOPT->qual_begin(),
5280           E = rhsOPT->qual_end(); J != E; ++J) {
5281        ObjCProtocolDecl *rhsProto = *J;
5282        if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
5283            (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
5284          match = true;
5285          break;
5286        }
5287      }
5288      // If the RHS is a qualified interface pointer "NSString<P>*",
5289      // make sure we check the class hierarchy.
5290      if (ObjCInterfaceDecl *rhsID = rhsOPT->getInterfaceDecl()) {
5291        for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
5292             E = lhsQID->qual_end(); I != E; ++I) {
5293          // when comparing an id<P> on lhs with a static type on rhs,
5294          // see if static class implements all of id's protocols, directly or
5295          // through its super class and categories.
5296          if (rhsID->ClassImplementsProtocol(*I, true)) {
5297            match = true;
5298            break;
5299          }
5300        }
5301      }
5302      if (!match)
5303        return false;
5304    }
5305
5306    return true;
5307  }
5308
5309  const ObjCObjectPointerType *rhsQID = rhs->getAsObjCQualifiedIdType();
5310  assert(rhsQID && "One of the LHS/RHS should be id<x>");
5311
5312  if (const ObjCObjectPointerType *lhsOPT =
5313        lhs->getAsObjCInterfacePointerType()) {
5314    // If both the right and left sides have qualifiers.
5315    for (ObjCObjectPointerType::qual_iterator I = lhsOPT->qual_begin(),
5316         E = lhsOPT->qual_end(); I != E; ++I) {
5317      ObjCProtocolDecl *lhsProto = *I;
5318      bool match = false;
5319
5320      // when comparing an id<P> on rhs with a static type on lhs,
5321      // see if static class implements all of id's protocols, directly or
5322      // through its super class and categories.
5323      // First, lhs protocols in the qualifier list must be found, direct
5324      // or indirect in rhs's qualifier list or it is a mismatch.
5325      for (ObjCObjectPointerType::qual_iterator J = rhsQID->qual_begin(),
5326           E = rhsQID->qual_end(); J != E; ++J) {
5327        ObjCProtocolDecl *rhsProto = *J;
5328        if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
5329            (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
5330          match = true;
5331          break;
5332        }
5333      }
5334      if (!match)
5335        return false;
5336    }
5337
5338    // Static class's protocols, or its super class or category protocols
5339    // must be found, direct or indirect in rhs's qualifier list or it is a mismatch.
5340    if (ObjCInterfaceDecl *lhsID = lhsOPT->getInterfaceDecl()) {
5341      llvm::SmallPtrSet<ObjCProtocolDecl *, 8> LHSInheritedProtocols;
5342      CollectInheritedProtocols(lhsID, LHSInheritedProtocols);
5343      // This is rather dubious but matches gcc's behavior. If lhs has
5344      // no type qualifier and its class has no static protocol(s)
5345      // assume that it is mismatch.
5346      if (LHSInheritedProtocols.empty() && lhsOPT->qual_empty())
5347        return false;
5348      for (llvm::SmallPtrSet<ObjCProtocolDecl*,8>::iterator I =
5349           LHSInheritedProtocols.begin(),
5350           E = LHSInheritedProtocols.end(); I != E; ++I) {
5351        bool match = false;
5352        ObjCProtocolDecl *lhsProto = (*I);
5353        for (ObjCObjectPointerType::qual_iterator J = rhsQID->qual_begin(),
5354             E = rhsQID->qual_end(); J != E; ++J) {
5355          ObjCProtocolDecl *rhsProto = *J;
5356          if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
5357              (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
5358            match = true;
5359            break;
5360          }
5361        }
5362        if (!match)
5363          return false;
5364      }
5365    }
5366    return true;
5367  }
5368  return false;
5369}
5370
5371/// canAssignObjCInterfaces - Return true if the two interface types are
5372/// compatible for assignment from RHS to LHS.  This handles validation of any
5373/// protocol qualifiers on the LHS or RHS.
5374///
5375bool ASTContext::canAssignObjCInterfaces(const ObjCObjectPointerType *LHSOPT,
5376                                         const ObjCObjectPointerType *RHSOPT) {
5377  const ObjCObjectType* LHS = LHSOPT->getObjectType();
5378  const ObjCObjectType* RHS = RHSOPT->getObjectType();
5379
5380  // If either type represents the built-in 'id' or 'Class' types, return true.
5381  if (LHS->isObjCUnqualifiedIdOrClass() ||
5382      RHS->isObjCUnqualifiedIdOrClass())
5383    return true;
5384
5385  if (LHS->isObjCQualifiedId() || RHS->isObjCQualifiedId())
5386    return ObjCQualifiedIdTypesAreCompatible(QualType(LHSOPT,0),
5387                                             QualType(RHSOPT,0),
5388                                             false);
5389
5390  if (LHS->isObjCQualifiedClass() && RHS->isObjCQualifiedClass())
5391    return ObjCQualifiedClassTypesAreCompatible(QualType(LHSOPT,0),
5392                                                QualType(RHSOPT,0));
5393
5394  // If we have 2 user-defined types, fall into that path.
5395  if (LHS->getInterface() && RHS->getInterface())
5396    return canAssignObjCInterfaces(LHS, RHS);
5397
5398  return false;
5399}
5400
5401/// canAssignObjCInterfacesInBlockPointer - This routine is specifically written
5402/// for providing type-safety for objective-c pointers used to pass/return
5403/// arguments in block literals. When passed as arguments, passing 'A*' where
5404/// 'id' is expected is not OK. Passing 'Sub *" where 'Super *" is expected is
5405/// not OK. For the return type, the opposite is not OK.
5406bool ASTContext::canAssignObjCInterfacesInBlockPointer(
5407                                         const ObjCObjectPointerType *LHSOPT,
5408                                         const ObjCObjectPointerType *RHSOPT,
5409                                         bool BlockReturnType) {
5410  if (RHSOPT->isObjCBuiltinType() || LHSOPT->isObjCIdType())
5411    return true;
5412
5413  if (LHSOPT->isObjCBuiltinType()) {
5414    return RHSOPT->isObjCBuiltinType() || RHSOPT->isObjCQualifiedIdType();
5415  }
5416
5417  if (LHSOPT->isObjCQualifiedIdType() || RHSOPT->isObjCQualifiedIdType())
5418    return ObjCQualifiedIdTypesAreCompatible(QualType(LHSOPT,0),
5419                                             QualType(RHSOPT,0),
5420                                             false);
5421
5422  const ObjCInterfaceType* LHS = LHSOPT->getInterfaceType();
5423  const ObjCInterfaceType* RHS = RHSOPT->getInterfaceType();
5424  if (LHS && RHS)  { // We have 2 user-defined types.
5425    if (LHS != RHS) {
5426      if (LHS->getDecl()->isSuperClassOf(RHS->getDecl()))
5427        return BlockReturnType;
5428      if (RHS->getDecl()->isSuperClassOf(LHS->getDecl()))
5429        return !BlockReturnType;
5430    }
5431    else
5432      return true;
5433  }
5434  return false;
5435}
5436
5437/// getIntersectionOfProtocols - This routine finds the intersection of set
5438/// of protocols inherited from two distinct objective-c pointer objects.
5439/// It is used to build composite qualifier list of the composite type of
5440/// the conditional expression involving two objective-c pointer objects.
5441static
5442void getIntersectionOfProtocols(ASTContext &Context,
5443                                const ObjCObjectPointerType *LHSOPT,
5444                                const ObjCObjectPointerType *RHSOPT,
5445      SmallVectorImpl<ObjCProtocolDecl *> &IntersectionOfProtocols) {
5446
5447  const ObjCObjectType* LHS = LHSOPT->getObjectType();
5448  const ObjCObjectType* RHS = RHSOPT->getObjectType();
5449  assert(LHS->getInterface() && "LHS must have an interface base");
5450  assert(RHS->getInterface() && "RHS must have an interface base");
5451
5452  llvm::SmallPtrSet<ObjCProtocolDecl *, 8> InheritedProtocolSet;
5453  unsigned LHSNumProtocols = LHS->getNumProtocols();
5454  if (LHSNumProtocols > 0)
5455    InheritedProtocolSet.insert(LHS->qual_begin(), LHS->qual_end());
5456  else {
5457    llvm::SmallPtrSet<ObjCProtocolDecl *, 8> LHSInheritedProtocols;
5458    Context.CollectInheritedProtocols(LHS->getInterface(),
5459                                      LHSInheritedProtocols);
5460    InheritedProtocolSet.insert(LHSInheritedProtocols.begin(),
5461                                LHSInheritedProtocols.end());
5462  }
5463
5464  unsigned RHSNumProtocols = RHS->getNumProtocols();
5465  if (RHSNumProtocols > 0) {
5466    ObjCProtocolDecl **RHSProtocols =
5467      const_cast<ObjCProtocolDecl **>(RHS->qual_begin());
5468    for (unsigned i = 0; i < RHSNumProtocols; ++i)
5469      if (InheritedProtocolSet.count(RHSProtocols[i]))
5470        IntersectionOfProtocols.push_back(RHSProtocols[i]);
5471  } else {
5472    llvm::SmallPtrSet<ObjCProtocolDecl *, 8> RHSInheritedProtocols;
5473    Context.CollectInheritedProtocols(RHS->getInterface(),
5474                                      RHSInheritedProtocols);
5475    for (llvm::SmallPtrSet<ObjCProtocolDecl*,8>::iterator I =
5476         RHSInheritedProtocols.begin(),
5477         E = RHSInheritedProtocols.end(); I != E; ++I)
5478      if (InheritedProtocolSet.count((*I)))
5479        IntersectionOfProtocols.push_back((*I));
5480  }
5481}
5482
5483/// areCommonBaseCompatible - Returns common base class of the two classes if
5484/// one found. Note that this is O'2 algorithm. But it will be called as the
5485/// last type comparison in a ?-exp of ObjC pointer types before a
5486/// warning is issued. So, its invokation is extremely rare.
5487QualType ASTContext::areCommonBaseCompatible(
5488                                          const ObjCObjectPointerType *Lptr,
5489                                          const ObjCObjectPointerType *Rptr) {
5490  const ObjCObjectType *LHS = Lptr->getObjectType();
5491  const ObjCObjectType *RHS = Rptr->getObjectType();
5492  const ObjCInterfaceDecl* LDecl = LHS->getInterface();
5493  const ObjCInterfaceDecl* RDecl = RHS->getInterface();
5494  if (!LDecl || !RDecl || (declaresSameEntity(LDecl, RDecl)))
5495    return QualType();
5496
5497  do {
5498    LHS = cast<ObjCInterfaceType>(getObjCInterfaceType(LDecl));
5499    if (canAssignObjCInterfaces(LHS, RHS)) {
5500      SmallVector<ObjCProtocolDecl *, 8> Protocols;
5501      getIntersectionOfProtocols(*this, Lptr, Rptr, Protocols);
5502
5503      QualType Result = QualType(LHS, 0);
5504      if (!Protocols.empty())
5505        Result = getObjCObjectType(Result, Protocols.data(), Protocols.size());
5506      Result = getObjCObjectPointerType(Result);
5507      return Result;
5508    }
5509  } while ((LDecl = LDecl->getSuperClass()));
5510
5511  return QualType();
5512}
5513
5514bool ASTContext::canAssignObjCInterfaces(const ObjCObjectType *LHS,
5515                                         const ObjCObjectType *RHS) {
5516  assert(LHS->getInterface() && "LHS is not an interface type");
5517  assert(RHS->getInterface() && "RHS is not an interface type");
5518
5519  // Verify that the base decls are compatible: the RHS must be a subclass of
5520  // the LHS.
5521  if (!LHS->getInterface()->isSuperClassOf(RHS->getInterface()))
5522    return false;
5523
5524  // RHS must have a superset of the protocols in the LHS.  If the LHS is not
5525  // protocol qualified at all, then we are good.
5526  if (LHS->getNumProtocols() == 0)
5527    return true;
5528
5529  // Okay, we know the LHS has protocol qualifiers.  If the RHS doesn't,
5530  // more detailed analysis is required.
5531  if (RHS->getNumProtocols() == 0) {
5532    // OK, if LHS is a superclass of RHS *and*
5533    // this superclass is assignment compatible with LHS.
5534    // false otherwise.
5535    bool IsSuperClass =
5536      LHS->getInterface()->isSuperClassOf(RHS->getInterface());
5537    if (IsSuperClass) {
5538      // OK if conversion of LHS to SuperClass results in narrowing of types
5539      // ; i.e., SuperClass may implement at least one of the protocols
5540      // in LHS's protocol list. Example, SuperObj<P1> = lhs<P1,P2> is ok.
5541      // But not SuperObj<P1,P2,P3> = lhs<P1,P2>.
5542      llvm::SmallPtrSet<ObjCProtocolDecl *, 8> SuperClassInheritedProtocols;
5543      CollectInheritedProtocols(RHS->getInterface(), SuperClassInheritedProtocols);
5544      // If super class has no protocols, it is not a match.
5545      if (SuperClassInheritedProtocols.empty())
5546        return false;
5547
5548      for (ObjCObjectType::qual_iterator LHSPI = LHS->qual_begin(),
5549           LHSPE = LHS->qual_end();
5550           LHSPI != LHSPE; LHSPI++) {
5551        bool SuperImplementsProtocol = false;
5552        ObjCProtocolDecl *LHSProto = (*LHSPI);
5553
5554        for (llvm::SmallPtrSet<ObjCProtocolDecl*,8>::iterator I =
5555             SuperClassInheritedProtocols.begin(),
5556             E = SuperClassInheritedProtocols.end(); I != E; ++I) {
5557          ObjCProtocolDecl *SuperClassProto = (*I);
5558          if (SuperClassProto->lookupProtocolNamed(LHSProto->getIdentifier())) {
5559            SuperImplementsProtocol = true;
5560            break;
5561          }
5562        }
5563        if (!SuperImplementsProtocol)
5564          return false;
5565      }
5566      return true;
5567    }
5568    return false;
5569  }
5570
5571  for (ObjCObjectType::qual_iterator LHSPI = LHS->qual_begin(),
5572                                     LHSPE = LHS->qual_end();
5573       LHSPI != LHSPE; LHSPI++) {
5574    bool RHSImplementsProtocol = false;
5575
5576    // If the RHS doesn't implement the protocol on the left, the types
5577    // are incompatible.
5578    for (ObjCObjectType::qual_iterator RHSPI = RHS->qual_begin(),
5579                                       RHSPE = RHS->qual_end();
5580         RHSPI != RHSPE; RHSPI++) {
5581      if ((*RHSPI)->lookupProtocolNamed((*LHSPI)->getIdentifier())) {
5582        RHSImplementsProtocol = true;
5583        break;
5584      }
5585    }
5586    // FIXME: For better diagnostics, consider passing back the protocol name.
5587    if (!RHSImplementsProtocol)
5588      return false;
5589  }
5590  // The RHS implements all protocols listed on the LHS.
5591  return true;
5592}
5593
5594bool ASTContext::areComparableObjCPointerTypes(QualType LHS, QualType RHS) {
5595  // get the "pointed to" types
5596  const ObjCObjectPointerType *LHSOPT = LHS->getAs<ObjCObjectPointerType>();
5597  const ObjCObjectPointerType *RHSOPT = RHS->getAs<ObjCObjectPointerType>();
5598
5599  if (!LHSOPT || !RHSOPT)
5600    return false;
5601
5602  return canAssignObjCInterfaces(LHSOPT, RHSOPT) ||
5603         canAssignObjCInterfaces(RHSOPT, LHSOPT);
5604}
5605
5606bool ASTContext::canBindObjCObjectType(QualType To, QualType From) {
5607  return canAssignObjCInterfaces(
5608                getObjCObjectPointerType(To)->getAs<ObjCObjectPointerType>(),
5609                getObjCObjectPointerType(From)->getAs<ObjCObjectPointerType>());
5610}
5611
5612/// typesAreCompatible - C99 6.7.3p9: For two qualified types to be compatible,
5613/// both shall have the identically qualified version of a compatible type.
5614/// C99 6.2.7p1: Two types have compatible types if their types are the
5615/// same. See 6.7.[2,3,5] for additional rules.
5616bool ASTContext::typesAreCompatible(QualType LHS, QualType RHS,
5617                                    bool CompareUnqualified) {
5618  if (getLangOpts().CPlusPlus)
5619    return hasSameType(LHS, RHS);
5620
5621  return !mergeTypes(LHS, RHS, false, CompareUnqualified).isNull();
5622}
5623
5624bool ASTContext::propertyTypesAreCompatible(QualType LHS, QualType RHS) {
5625  return typesAreCompatible(LHS, RHS);
5626}
5627
5628bool ASTContext::typesAreBlockPointerCompatible(QualType LHS, QualType RHS) {
5629  return !mergeTypes(LHS, RHS, true).isNull();
5630}
5631
5632/// mergeTransparentUnionType - if T is a transparent union type and a member
5633/// of T is compatible with SubType, return the merged type, else return
5634/// QualType()
5635QualType ASTContext::mergeTransparentUnionType(QualType T, QualType SubType,
5636                                               bool OfBlockPointer,
5637                                               bool Unqualified) {
5638  if (const RecordType *UT = T->getAsUnionType()) {
5639    RecordDecl *UD = UT->getDecl();
5640    if (UD->hasAttr<TransparentUnionAttr>()) {
5641      for (RecordDecl::field_iterator it = UD->field_begin(),
5642           itend = UD->field_end(); it != itend; ++it) {
5643        QualType ET = it->getType().getUnqualifiedType();
5644        QualType MT = mergeTypes(ET, SubType, OfBlockPointer, Unqualified);
5645        if (!MT.isNull())
5646          return MT;
5647      }
5648    }
5649  }
5650
5651  return QualType();
5652}
5653
5654/// mergeFunctionArgumentTypes - merge two types which appear as function
5655/// argument types
5656QualType ASTContext::mergeFunctionArgumentTypes(QualType lhs, QualType rhs,
5657                                                bool OfBlockPointer,
5658                                                bool Unqualified) {
5659  // GNU extension: two types are compatible if they appear as a function
5660  // argument, one of the types is a transparent union type and the other
5661  // type is compatible with a union member
5662  QualType lmerge = mergeTransparentUnionType(lhs, rhs, OfBlockPointer,
5663                                              Unqualified);
5664  if (!lmerge.isNull())
5665    return lmerge;
5666
5667  QualType rmerge = mergeTransparentUnionType(rhs, lhs, OfBlockPointer,
5668                                              Unqualified);
5669  if (!rmerge.isNull())
5670    return rmerge;
5671
5672  return mergeTypes(lhs, rhs, OfBlockPointer, Unqualified);
5673}
5674
5675QualType ASTContext::mergeFunctionTypes(QualType lhs, QualType rhs,
5676                                        bool OfBlockPointer,
5677                                        bool Unqualified) {
5678  const FunctionType *lbase = lhs->getAs<FunctionType>();
5679  const FunctionType *rbase = rhs->getAs<FunctionType>();
5680  const FunctionProtoType *lproto = dyn_cast<FunctionProtoType>(lbase);
5681  const FunctionProtoType *rproto = dyn_cast<FunctionProtoType>(rbase);
5682  bool allLTypes = true;
5683  bool allRTypes = true;
5684
5685  // Check return type
5686  QualType retType;
5687  if (OfBlockPointer) {
5688    QualType RHS = rbase->getResultType();
5689    QualType LHS = lbase->getResultType();
5690    bool UnqualifiedResult = Unqualified;
5691    if (!UnqualifiedResult)
5692      UnqualifiedResult = (!RHS.hasQualifiers() && LHS.hasQualifiers());
5693    retType = mergeTypes(LHS, RHS, true, UnqualifiedResult, true);
5694  }
5695  else
5696    retType = mergeTypes(lbase->getResultType(), rbase->getResultType(), false,
5697                         Unqualified);
5698  if (retType.isNull()) return QualType();
5699
5700  if (Unqualified)
5701    retType = retType.getUnqualifiedType();
5702
5703  CanQualType LRetType = getCanonicalType(lbase->getResultType());
5704  CanQualType RRetType = getCanonicalType(rbase->getResultType());
5705  if (Unqualified) {
5706    LRetType = LRetType.getUnqualifiedType();
5707    RRetType = RRetType.getUnqualifiedType();
5708  }
5709
5710  if (getCanonicalType(retType) != LRetType)
5711    allLTypes = false;
5712  if (getCanonicalType(retType) != RRetType)
5713    allRTypes = false;
5714
5715  // FIXME: double check this
5716  // FIXME: should we error if lbase->getRegParmAttr() != 0 &&
5717  //                           rbase->getRegParmAttr() != 0 &&
5718  //                           lbase->getRegParmAttr() != rbase->getRegParmAttr()?
5719  FunctionType::ExtInfo lbaseInfo = lbase->getExtInfo();
5720  FunctionType::ExtInfo rbaseInfo = rbase->getExtInfo();
5721
5722  // Compatible functions must have compatible calling conventions
5723  if (!isSameCallConv(lbaseInfo.getCC(), rbaseInfo.getCC()))
5724    return QualType();
5725
5726  // Regparm is part of the calling convention.
5727  if (lbaseInfo.getHasRegParm() != rbaseInfo.getHasRegParm())
5728    return QualType();
5729  if (lbaseInfo.getRegParm() != rbaseInfo.getRegParm())
5730    return QualType();
5731
5732  if (lbaseInfo.getProducesResult() != rbaseInfo.getProducesResult())
5733    return QualType();
5734
5735  // functypes which return are preferred over those that do not.
5736  if (lbaseInfo.getNoReturn() && !rbaseInfo.getNoReturn())
5737    allLTypes = false;
5738  else if (!lbaseInfo.getNoReturn() && rbaseInfo.getNoReturn())
5739    allRTypes = false;
5740  // FIXME: some uses, e.g. conditional exprs, really want this to be 'both'.
5741  bool NoReturn = lbaseInfo.getNoReturn() || rbaseInfo.getNoReturn();
5742
5743  FunctionType::ExtInfo einfo = lbaseInfo.withNoReturn(NoReturn);
5744
5745  if (lproto && rproto) { // two C99 style function prototypes
5746    assert(!lproto->hasExceptionSpec() && !rproto->hasExceptionSpec() &&
5747           "C++ shouldn't be here");
5748    unsigned lproto_nargs = lproto->getNumArgs();
5749    unsigned rproto_nargs = rproto->getNumArgs();
5750
5751    // Compatible functions must have the same number of arguments
5752    if (lproto_nargs != rproto_nargs)
5753      return QualType();
5754
5755    // Variadic and non-variadic functions aren't compatible
5756    if (lproto->isVariadic() != rproto->isVariadic())
5757      return QualType();
5758
5759    if (lproto->getTypeQuals() != rproto->getTypeQuals())
5760      return QualType();
5761
5762    if (LangOpts.ObjCAutoRefCount &&
5763        !FunctionTypesMatchOnNSConsumedAttrs(rproto, lproto))
5764      return QualType();
5765
5766    // Check argument compatibility
5767    SmallVector<QualType, 10> types;
5768    for (unsigned i = 0; i < lproto_nargs; i++) {
5769      QualType largtype = lproto->getArgType(i).getUnqualifiedType();
5770      QualType rargtype = rproto->getArgType(i).getUnqualifiedType();
5771      QualType argtype = mergeFunctionArgumentTypes(largtype, rargtype,
5772                                                    OfBlockPointer,
5773                                                    Unqualified);
5774      if (argtype.isNull()) return QualType();
5775
5776      if (Unqualified)
5777        argtype = argtype.getUnqualifiedType();
5778
5779      types.push_back(argtype);
5780      if (Unqualified) {
5781        largtype = largtype.getUnqualifiedType();
5782        rargtype = rargtype.getUnqualifiedType();
5783      }
5784
5785      if (getCanonicalType(argtype) != getCanonicalType(largtype))
5786        allLTypes = false;
5787      if (getCanonicalType(argtype) != getCanonicalType(rargtype))
5788        allRTypes = false;
5789    }
5790
5791    if (allLTypes) return lhs;
5792    if (allRTypes) return rhs;
5793
5794    FunctionProtoType::ExtProtoInfo EPI = lproto->getExtProtoInfo();
5795    EPI.ExtInfo = einfo;
5796    return getFunctionType(retType, types.begin(), types.size(), EPI);
5797  }
5798
5799  if (lproto) allRTypes = false;
5800  if (rproto) allLTypes = false;
5801
5802  const FunctionProtoType *proto = lproto ? lproto : rproto;
5803  if (proto) {
5804    assert(!proto->hasExceptionSpec() && "C++ shouldn't be here");
5805    if (proto->isVariadic()) return QualType();
5806    // Check that the types are compatible with the types that
5807    // would result from default argument promotions (C99 6.7.5.3p15).
5808    // The only types actually affected are promotable integer
5809    // types and floats, which would be passed as a different
5810    // type depending on whether the prototype is visible.
5811    unsigned proto_nargs = proto->getNumArgs();
5812    for (unsigned i = 0; i < proto_nargs; ++i) {
5813      QualType argTy = proto->getArgType(i);
5814
5815      // Look at the promotion type of enum types, since that is the type used
5816      // to pass enum values.
5817      if (const EnumType *Enum = argTy->getAs<EnumType>())
5818        argTy = Enum->getDecl()->getPromotionType();
5819
5820      if (argTy->isPromotableIntegerType() ||
5821          getCanonicalType(argTy).getUnqualifiedType() == FloatTy)
5822        return QualType();
5823    }
5824
5825    if (allLTypes) return lhs;
5826    if (allRTypes) return rhs;
5827
5828    FunctionProtoType::ExtProtoInfo EPI = proto->getExtProtoInfo();
5829    EPI.ExtInfo = einfo;
5830    return getFunctionType(retType, proto->arg_type_begin(),
5831                           proto->getNumArgs(), EPI);
5832  }
5833
5834  if (allLTypes) return lhs;
5835  if (allRTypes) return rhs;
5836  return getFunctionNoProtoType(retType, einfo);
5837}
5838
5839QualType ASTContext::mergeTypes(QualType LHS, QualType RHS,
5840                                bool OfBlockPointer,
5841                                bool Unqualified, bool BlockReturnType) {
5842  // C++ [expr]: If an expression initially has the type "reference to T", the
5843  // type is adjusted to "T" prior to any further analysis, the expression
5844  // designates the object or function denoted by the reference, and the
5845  // expression is an lvalue unless the reference is an rvalue reference and
5846  // the expression is a function call (possibly inside parentheses).
5847  assert(!LHS->getAs<ReferenceType>() && "LHS is a reference type?");
5848  assert(!RHS->getAs<ReferenceType>() && "RHS is a reference type?");
5849
5850  if (Unqualified) {
5851    LHS = LHS.getUnqualifiedType();
5852    RHS = RHS.getUnqualifiedType();
5853  }
5854
5855  QualType LHSCan = getCanonicalType(LHS),
5856           RHSCan = getCanonicalType(RHS);
5857
5858  // If two types are identical, they are compatible.
5859  if (LHSCan == RHSCan)
5860    return LHS;
5861
5862  // If the qualifiers are different, the types aren't compatible... mostly.
5863  Qualifiers LQuals = LHSCan.getLocalQualifiers();
5864  Qualifiers RQuals = RHSCan.getLocalQualifiers();
5865  if (LQuals != RQuals) {
5866    // If any of these qualifiers are different, we have a type
5867    // mismatch.
5868    if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() ||
5869        LQuals.getAddressSpace() != RQuals.getAddressSpace() ||
5870        LQuals.getObjCLifetime() != RQuals.getObjCLifetime())
5871      return QualType();
5872
5873    // Exactly one GC qualifier difference is allowed: __strong is
5874    // okay if the other type has no GC qualifier but is an Objective
5875    // C object pointer (i.e. implicitly strong by default).  We fix
5876    // this by pretending that the unqualified type was actually
5877    // qualified __strong.
5878    Qualifiers::GC GC_L = LQuals.getObjCGCAttr();
5879    Qualifiers::GC GC_R = RQuals.getObjCGCAttr();
5880    assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements");
5881
5882    if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak)
5883      return QualType();
5884
5885    if (GC_L == Qualifiers::Strong && RHSCan->isObjCObjectPointerType()) {
5886      return mergeTypes(LHS, getObjCGCQualType(RHS, Qualifiers::Strong));
5887    }
5888    if (GC_R == Qualifiers::Strong && LHSCan->isObjCObjectPointerType()) {
5889      return mergeTypes(getObjCGCQualType(LHS, Qualifiers::Strong), RHS);
5890    }
5891    return QualType();
5892  }
5893
5894  // Okay, qualifiers are equal.
5895
5896  Type::TypeClass LHSClass = LHSCan->getTypeClass();
5897  Type::TypeClass RHSClass = RHSCan->getTypeClass();
5898
5899  // We want to consider the two function types to be the same for these
5900  // comparisons, just force one to the other.
5901  if (LHSClass == Type::FunctionProto) LHSClass = Type::FunctionNoProto;
5902  if (RHSClass == Type::FunctionProto) RHSClass = Type::FunctionNoProto;
5903
5904  // Same as above for arrays
5905  if (LHSClass == Type::VariableArray || LHSClass == Type::IncompleteArray)
5906    LHSClass = Type::ConstantArray;
5907  if (RHSClass == Type::VariableArray || RHSClass == Type::IncompleteArray)
5908    RHSClass = Type::ConstantArray;
5909
5910  // ObjCInterfaces are just specialized ObjCObjects.
5911  if (LHSClass == Type::ObjCInterface) LHSClass = Type::ObjCObject;
5912  if (RHSClass == Type::ObjCInterface) RHSClass = Type::ObjCObject;
5913
5914  // Canonicalize ExtVector -> Vector.
5915  if (LHSClass == Type::ExtVector) LHSClass = Type::Vector;
5916  if (RHSClass == Type::ExtVector) RHSClass = Type::Vector;
5917
5918  // If the canonical type classes don't match.
5919  if (LHSClass != RHSClass) {
5920    // C99 6.7.2.2p4: Each enumerated type shall be compatible with char,
5921    // a signed integer type, or an unsigned integer type.
5922    // Compatibility is based on the underlying type, not the promotion
5923    // type.
5924    if (const EnumType* ETy = LHS->getAs<EnumType>()) {
5925      QualType TINT = ETy->getDecl()->getIntegerType();
5926      if (!TINT.isNull() && hasSameType(TINT, RHSCan.getUnqualifiedType()))
5927        return RHS;
5928    }
5929    if (const EnumType* ETy = RHS->getAs<EnumType>()) {
5930      QualType TINT = ETy->getDecl()->getIntegerType();
5931      if (!TINT.isNull() && hasSameType(TINT, LHSCan.getUnqualifiedType()))
5932        return LHS;
5933    }
5934    // allow block pointer type to match an 'id' type.
5935    if (OfBlockPointer && !BlockReturnType) {
5936       if (LHS->isObjCIdType() && RHS->isBlockPointerType())
5937         return LHS;
5938      if (RHS->isObjCIdType() && LHS->isBlockPointerType())
5939        return RHS;
5940    }
5941
5942    return QualType();
5943  }
5944
5945  // The canonical type classes match.
5946  switch (LHSClass) {
5947#define TYPE(Class, Base)
5948#define ABSTRACT_TYPE(Class, Base)
5949#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
5950#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
5951#define DEPENDENT_TYPE(Class, Base) case Type::Class:
5952#include "clang/AST/TypeNodes.def"
5953    llvm_unreachable("Non-canonical and dependent types shouldn't get here");
5954
5955  case Type::LValueReference:
5956  case Type::RValueReference:
5957  case Type::MemberPointer:
5958    llvm_unreachable("C++ should never be in mergeTypes");
5959
5960  case Type::ObjCInterface:
5961  case Type::IncompleteArray:
5962  case Type::VariableArray:
5963  case Type::FunctionProto:
5964  case Type::ExtVector:
5965    llvm_unreachable("Types are eliminated above");
5966
5967  case Type::Pointer:
5968  {
5969    // Merge two pointer types, while trying to preserve typedef info
5970    QualType LHSPointee = LHS->getAs<PointerType>()->getPointeeType();
5971    QualType RHSPointee = RHS->getAs<PointerType>()->getPointeeType();
5972    if (Unqualified) {
5973      LHSPointee = LHSPointee.getUnqualifiedType();
5974      RHSPointee = RHSPointee.getUnqualifiedType();
5975    }
5976    QualType ResultType = mergeTypes(LHSPointee, RHSPointee, false,
5977                                     Unqualified);
5978    if (ResultType.isNull()) return QualType();
5979    if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
5980      return LHS;
5981    if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
5982      return RHS;
5983    return getPointerType(ResultType);
5984  }
5985  case Type::BlockPointer:
5986  {
5987    // Merge two block pointer types, while trying to preserve typedef info
5988    QualType LHSPointee = LHS->getAs<BlockPointerType>()->getPointeeType();
5989    QualType RHSPointee = RHS->getAs<BlockPointerType>()->getPointeeType();
5990    if (Unqualified) {
5991      LHSPointee = LHSPointee.getUnqualifiedType();
5992      RHSPointee = RHSPointee.getUnqualifiedType();
5993    }
5994    QualType ResultType = mergeTypes(LHSPointee, RHSPointee, OfBlockPointer,
5995                                     Unqualified);
5996    if (ResultType.isNull()) return QualType();
5997    if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
5998      return LHS;
5999    if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
6000      return RHS;
6001    return getBlockPointerType(ResultType);
6002  }
6003  case Type::Atomic:
6004  {
6005    // Merge two pointer types, while trying to preserve typedef info
6006    QualType LHSValue = LHS->getAs<AtomicType>()->getValueType();
6007    QualType RHSValue = RHS->getAs<AtomicType>()->getValueType();
6008    if (Unqualified) {
6009      LHSValue = LHSValue.getUnqualifiedType();
6010      RHSValue = RHSValue.getUnqualifiedType();
6011    }
6012    QualType ResultType = mergeTypes(LHSValue, RHSValue, false,
6013                                     Unqualified);
6014    if (ResultType.isNull()) return QualType();
6015    if (getCanonicalType(LHSValue) == getCanonicalType(ResultType))
6016      return LHS;
6017    if (getCanonicalType(RHSValue) == getCanonicalType(ResultType))
6018      return RHS;
6019    return getAtomicType(ResultType);
6020  }
6021  case Type::ConstantArray:
6022  {
6023    const ConstantArrayType* LCAT = getAsConstantArrayType(LHS);
6024    const ConstantArrayType* RCAT = getAsConstantArrayType(RHS);
6025    if (LCAT && RCAT && RCAT->getSize() != LCAT->getSize())
6026      return QualType();
6027
6028    QualType LHSElem = getAsArrayType(LHS)->getElementType();
6029    QualType RHSElem = getAsArrayType(RHS)->getElementType();
6030    if (Unqualified) {
6031      LHSElem = LHSElem.getUnqualifiedType();
6032      RHSElem = RHSElem.getUnqualifiedType();
6033    }
6034
6035    QualType ResultType = mergeTypes(LHSElem, RHSElem, false, Unqualified);
6036    if (ResultType.isNull()) return QualType();
6037    if (LCAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
6038      return LHS;
6039    if (RCAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
6040      return RHS;
6041    if (LCAT) return getConstantArrayType(ResultType, LCAT->getSize(),
6042                                          ArrayType::ArraySizeModifier(), 0);
6043    if (RCAT) return getConstantArrayType(ResultType, RCAT->getSize(),
6044                                          ArrayType::ArraySizeModifier(), 0);
6045    const VariableArrayType* LVAT = getAsVariableArrayType(LHS);
6046    const VariableArrayType* RVAT = getAsVariableArrayType(RHS);
6047    if (LVAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
6048      return LHS;
6049    if (RVAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
6050      return RHS;
6051    if (LVAT) {
6052      // FIXME: This isn't correct! But tricky to implement because
6053      // the array's size has to be the size of LHS, but the type
6054      // has to be different.
6055      return LHS;
6056    }
6057    if (RVAT) {
6058      // FIXME: This isn't correct! But tricky to implement because
6059      // the array's size has to be the size of RHS, but the type
6060      // has to be different.
6061      return RHS;
6062    }
6063    if (getCanonicalType(LHSElem) == getCanonicalType(ResultType)) return LHS;
6064    if (getCanonicalType(RHSElem) == getCanonicalType(ResultType)) return RHS;
6065    return getIncompleteArrayType(ResultType,
6066                                  ArrayType::ArraySizeModifier(), 0);
6067  }
6068  case Type::FunctionNoProto:
6069    return mergeFunctionTypes(LHS, RHS, OfBlockPointer, Unqualified);
6070  case Type::Record:
6071  case Type::Enum:
6072    return QualType();
6073  case Type::Builtin:
6074    // Only exactly equal builtin types are compatible, which is tested above.
6075    return QualType();
6076  case Type::Complex:
6077    // Distinct complex types are incompatible.
6078    return QualType();
6079  case Type::Vector:
6080    // FIXME: The merged type should be an ExtVector!
6081    if (areCompatVectorTypes(LHSCan->getAs<VectorType>(),
6082                             RHSCan->getAs<VectorType>()))
6083      return LHS;
6084    return QualType();
6085  case Type::ObjCObject: {
6086    // Check if the types are assignment compatible.
6087    // FIXME: This should be type compatibility, e.g. whether
6088    // "LHS x; RHS x;" at global scope is legal.
6089    const ObjCObjectType* LHSIface = LHS->getAs<ObjCObjectType>();
6090    const ObjCObjectType* RHSIface = RHS->getAs<ObjCObjectType>();
6091    if (canAssignObjCInterfaces(LHSIface, RHSIface))
6092      return LHS;
6093
6094    return QualType();
6095  }
6096  case Type::ObjCObjectPointer: {
6097    if (OfBlockPointer) {
6098      if (canAssignObjCInterfacesInBlockPointer(
6099                                          LHS->getAs<ObjCObjectPointerType>(),
6100                                          RHS->getAs<ObjCObjectPointerType>(),
6101                                          BlockReturnType))
6102        return LHS;
6103      return QualType();
6104    }
6105    if (canAssignObjCInterfaces(LHS->getAs<ObjCObjectPointerType>(),
6106                                RHS->getAs<ObjCObjectPointerType>()))
6107      return LHS;
6108
6109    return QualType();
6110  }
6111  }
6112
6113  llvm_unreachable("Invalid Type::Class!");
6114}
6115
6116bool ASTContext::FunctionTypesMatchOnNSConsumedAttrs(
6117                   const FunctionProtoType *FromFunctionType,
6118                   const FunctionProtoType *ToFunctionType) {
6119  if (FromFunctionType->hasAnyConsumedArgs() !=
6120      ToFunctionType->hasAnyConsumedArgs())
6121    return false;
6122  FunctionProtoType::ExtProtoInfo FromEPI =
6123    FromFunctionType->getExtProtoInfo();
6124  FunctionProtoType::ExtProtoInfo ToEPI =
6125    ToFunctionType->getExtProtoInfo();
6126  if (FromEPI.ConsumedArguments && ToEPI.ConsumedArguments)
6127    for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumArgs();
6128         ArgIdx != NumArgs; ++ArgIdx)  {
6129      if (FromEPI.ConsumedArguments[ArgIdx] !=
6130          ToEPI.ConsumedArguments[ArgIdx])
6131        return false;
6132    }
6133  return true;
6134}
6135
6136/// mergeObjCGCQualifiers - This routine merges ObjC's GC attribute of 'LHS' and
6137/// 'RHS' attributes and returns the merged version; including for function
6138/// return types.
6139QualType ASTContext::mergeObjCGCQualifiers(QualType LHS, QualType RHS) {
6140  QualType LHSCan = getCanonicalType(LHS),
6141  RHSCan = getCanonicalType(RHS);
6142  // If two types are identical, they are compatible.
6143  if (LHSCan == RHSCan)
6144    return LHS;
6145  if (RHSCan->isFunctionType()) {
6146    if (!LHSCan->isFunctionType())
6147      return QualType();
6148    QualType OldReturnType =
6149      cast<FunctionType>(RHSCan.getTypePtr())->getResultType();
6150    QualType NewReturnType =
6151      cast<FunctionType>(LHSCan.getTypePtr())->getResultType();
6152    QualType ResReturnType =
6153      mergeObjCGCQualifiers(NewReturnType, OldReturnType);
6154    if (ResReturnType.isNull())
6155      return QualType();
6156    if (ResReturnType == NewReturnType || ResReturnType == OldReturnType) {
6157      // id foo(); ... __strong id foo(); or: __strong id foo(); ... id foo();
6158      // In either case, use OldReturnType to build the new function type.
6159      const FunctionType *F = LHS->getAs<FunctionType>();
6160      if (const FunctionProtoType *FPT = cast<FunctionProtoType>(F)) {
6161        FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
6162        EPI.ExtInfo = getFunctionExtInfo(LHS);
6163        QualType ResultType
6164          = getFunctionType(OldReturnType, FPT->arg_type_begin(),
6165                            FPT->getNumArgs(), EPI);
6166        return ResultType;
6167      }
6168    }
6169    return QualType();
6170  }
6171
6172  // If the qualifiers are different, the types can still be merged.
6173  Qualifiers LQuals = LHSCan.getLocalQualifiers();
6174  Qualifiers RQuals = RHSCan.getLocalQualifiers();
6175  if (LQuals != RQuals) {
6176    // If any of these qualifiers are different, we have a type mismatch.
6177    if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() ||
6178        LQuals.getAddressSpace() != RQuals.getAddressSpace())
6179      return QualType();
6180
6181    // Exactly one GC qualifier difference is allowed: __strong is
6182    // okay if the other type has no GC qualifier but is an Objective
6183    // C object pointer (i.e. implicitly strong by default).  We fix
6184    // this by pretending that the unqualified type was actually
6185    // qualified __strong.
6186    Qualifiers::GC GC_L = LQuals.getObjCGCAttr();
6187    Qualifiers::GC GC_R = RQuals.getObjCGCAttr();
6188    assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements");
6189
6190    if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak)
6191      return QualType();
6192
6193    if (GC_L == Qualifiers::Strong)
6194      return LHS;
6195    if (GC_R == Qualifiers::Strong)
6196      return RHS;
6197    return QualType();
6198  }
6199
6200  if (LHSCan->isObjCObjectPointerType() && RHSCan->isObjCObjectPointerType()) {
6201    QualType LHSBaseQT = LHS->getAs<ObjCObjectPointerType>()->getPointeeType();
6202    QualType RHSBaseQT = RHS->getAs<ObjCObjectPointerType>()->getPointeeType();
6203    QualType ResQT = mergeObjCGCQualifiers(LHSBaseQT, RHSBaseQT);
6204    if (ResQT == LHSBaseQT)
6205      return LHS;
6206    if (ResQT == RHSBaseQT)
6207      return RHS;
6208  }
6209  return QualType();
6210}
6211
6212//===----------------------------------------------------------------------===//
6213//                         Integer Predicates
6214//===----------------------------------------------------------------------===//
6215
6216unsigned ASTContext::getIntWidth(QualType T) const {
6217  if (const EnumType *ET = dyn_cast<EnumType>(T))
6218    T = ET->getDecl()->getIntegerType();
6219  if (T->isBooleanType())
6220    return 1;
6221  // For builtin types, just use the standard type sizing method
6222  return (unsigned)getTypeSize(T);
6223}
6224
6225QualType ASTContext::getCorrespondingUnsignedType(QualType T) {
6226  assert(T->hasSignedIntegerRepresentation() && "Unexpected type");
6227
6228  // Turn <4 x signed int> -> <4 x unsigned int>
6229  if (const VectorType *VTy = T->getAs<VectorType>())
6230    return getVectorType(getCorrespondingUnsignedType(VTy->getElementType()),
6231                         VTy->getNumElements(), VTy->getVectorKind());
6232
6233  // For enums, we return the unsigned version of the base type.
6234  if (const EnumType *ETy = T->getAs<EnumType>())
6235    T = ETy->getDecl()->getIntegerType();
6236
6237  const BuiltinType *BTy = T->getAs<BuiltinType>();
6238  assert(BTy && "Unexpected signed integer type");
6239  switch (BTy->getKind()) {
6240  case BuiltinType::Char_S:
6241  case BuiltinType::SChar:
6242    return UnsignedCharTy;
6243  case BuiltinType::Short:
6244    return UnsignedShortTy;
6245  case BuiltinType::Int:
6246    return UnsignedIntTy;
6247  case BuiltinType::Long:
6248    return UnsignedLongTy;
6249  case BuiltinType::LongLong:
6250    return UnsignedLongLongTy;
6251  case BuiltinType::Int128:
6252    return UnsignedInt128Ty;
6253  default:
6254    llvm_unreachable("Unexpected signed integer type");
6255  }
6256}
6257
6258ASTMutationListener::~ASTMutationListener() { }
6259
6260
6261//===----------------------------------------------------------------------===//
6262//                          Builtin Type Computation
6263//===----------------------------------------------------------------------===//
6264
6265/// DecodeTypeFromStr - This decodes one type descriptor from Str, advancing the
6266/// pointer over the consumed characters.  This returns the resultant type.  If
6267/// AllowTypeModifiers is false then modifier like * are not parsed, just basic
6268/// types.  This allows "v2i*" to be parsed as a pointer to a v2i instead of
6269/// a vector of "i*".
6270///
6271/// RequiresICE is filled in on return to indicate whether the value is required
6272/// to be an Integer Constant Expression.
6273static QualType DecodeTypeFromStr(const char *&Str, const ASTContext &Context,
6274                                  ASTContext::GetBuiltinTypeError &Error,
6275                                  bool &RequiresICE,
6276                                  bool AllowTypeModifiers) {
6277  // Modifiers.
6278  int HowLong = 0;
6279  bool Signed = false, Unsigned = false;
6280  RequiresICE = false;
6281
6282  // Read the prefixed modifiers first.
6283  bool Done = false;
6284  while (!Done) {
6285    switch (*Str++) {
6286    default: Done = true; --Str; break;
6287    case 'I':
6288      RequiresICE = true;
6289      break;
6290    case 'S':
6291      assert(!Unsigned && "Can't use both 'S' and 'U' modifiers!");
6292      assert(!Signed && "Can't use 'S' modifier multiple times!");
6293      Signed = true;
6294      break;
6295    case 'U':
6296      assert(!Signed && "Can't use both 'S' and 'U' modifiers!");
6297      assert(!Unsigned && "Can't use 'S' modifier multiple times!");
6298      Unsigned = true;
6299      break;
6300    case 'L':
6301      assert(HowLong <= 2 && "Can't have LLLL modifier");
6302      ++HowLong;
6303      break;
6304    }
6305  }
6306
6307  QualType Type;
6308
6309  // Read the base type.
6310  switch (*Str++) {
6311  default: llvm_unreachable("Unknown builtin type letter!");
6312  case 'v':
6313    assert(HowLong == 0 && !Signed && !Unsigned &&
6314           "Bad modifiers used with 'v'!");
6315    Type = Context.VoidTy;
6316    break;
6317  case 'f':
6318    assert(HowLong == 0 && !Signed && !Unsigned &&
6319           "Bad modifiers used with 'f'!");
6320    Type = Context.FloatTy;
6321    break;
6322  case 'd':
6323    assert(HowLong < 2 && !Signed && !Unsigned &&
6324           "Bad modifiers used with 'd'!");
6325    if (HowLong)
6326      Type = Context.LongDoubleTy;
6327    else
6328      Type = Context.DoubleTy;
6329    break;
6330  case 's':
6331    assert(HowLong == 0 && "Bad modifiers used with 's'!");
6332    if (Unsigned)
6333      Type = Context.UnsignedShortTy;
6334    else
6335      Type = Context.ShortTy;
6336    break;
6337  case 'i':
6338    if (HowLong == 3)
6339      Type = Unsigned ? Context.UnsignedInt128Ty : Context.Int128Ty;
6340    else if (HowLong == 2)
6341      Type = Unsigned ? Context.UnsignedLongLongTy : Context.LongLongTy;
6342    else if (HowLong == 1)
6343      Type = Unsigned ? Context.UnsignedLongTy : Context.LongTy;
6344    else
6345      Type = Unsigned ? Context.UnsignedIntTy : Context.IntTy;
6346    break;
6347  case 'c':
6348    assert(HowLong == 0 && "Bad modifiers used with 'c'!");
6349    if (Signed)
6350      Type = Context.SignedCharTy;
6351    else if (Unsigned)
6352      Type = Context.UnsignedCharTy;
6353    else
6354      Type = Context.CharTy;
6355    break;
6356  case 'b': // boolean
6357    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'b'!");
6358    Type = Context.BoolTy;
6359    break;
6360  case 'z':  // size_t.
6361    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'z'!");
6362    Type = Context.getSizeType();
6363    break;
6364  case 'F':
6365    Type = Context.getCFConstantStringType();
6366    break;
6367  case 'G':
6368    Type = Context.getObjCIdType();
6369    break;
6370  case 'H':
6371    Type = Context.getObjCSelType();
6372    break;
6373  case 'a':
6374    Type = Context.getBuiltinVaListType();
6375    assert(!Type.isNull() && "builtin va list type not initialized!");
6376    break;
6377  case 'A':
6378    // This is a "reference" to a va_list; however, what exactly
6379    // this means depends on how va_list is defined. There are two
6380    // different kinds of va_list: ones passed by value, and ones
6381    // passed by reference.  An example of a by-value va_list is
6382    // x86, where va_list is a char*. An example of by-ref va_list
6383    // is x86-64, where va_list is a __va_list_tag[1]. For x86,
6384    // we want this argument to be a char*&; for x86-64, we want
6385    // it to be a __va_list_tag*.
6386    Type = Context.getBuiltinVaListType();
6387    assert(!Type.isNull() && "builtin va list type not initialized!");
6388    if (Type->isArrayType())
6389      Type = Context.getArrayDecayedType(Type);
6390    else
6391      Type = Context.getLValueReferenceType(Type);
6392    break;
6393  case 'V': {
6394    char *End;
6395    unsigned NumElements = strtoul(Str, &End, 10);
6396    assert(End != Str && "Missing vector size");
6397    Str = End;
6398
6399    QualType ElementType = DecodeTypeFromStr(Str, Context, Error,
6400                                             RequiresICE, false);
6401    assert(!RequiresICE && "Can't require vector ICE");
6402
6403    // TODO: No way to make AltiVec vectors in builtins yet.
6404    Type = Context.getVectorType(ElementType, NumElements,
6405                                 VectorType::GenericVector);
6406    break;
6407  }
6408  case 'X': {
6409    QualType ElementType = DecodeTypeFromStr(Str, Context, Error, RequiresICE,
6410                                             false);
6411    assert(!RequiresICE && "Can't require complex ICE");
6412    Type = Context.getComplexType(ElementType);
6413    break;
6414  }
6415  case 'Y' : {
6416    Type = Context.getPointerDiffType();
6417    break;
6418  }
6419  case 'P':
6420    Type = Context.getFILEType();
6421    if (Type.isNull()) {
6422      Error = ASTContext::GE_Missing_stdio;
6423      return QualType();
6424    }
6425    break;
6426  case 'J':
6427    if (Signed)
6428      Type = Context.getsigjmp_bufType();
6429    else
6430      Type = Context.getjmp_bufType();
6431
6432    if (Type.isNull()) {
6433      Error = ASTContext::GE_Missing_setjmp;
6434      return QualType();
6435    }
6436    break;
6437  case 'K':
6438    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'K'!");
6439    Type = Context.getucontext_tType();
6440
6441    if (Type.isNull()) {
6442      Error = ASTContext::GE_Missing_ucontext;
6443      return QualType();
6444    }
6445    break;
6446  }
6447
6448  // If there are modifiers and if we're allowed to parse them, go for it.
6449  Done = !AllowTypeModifiers;
6450  while (!Done) {
6451    switch (char c = *Str++) {
6452    default: Done = true; --Str; break;
6453    case '*':
6454    case '&': {
6455      // Both pointers and references can have their pointee types
6456      // qualified with an address space.
6457      char *End;
6458      unsigned AddrSpace = strtoul(Str, &End, 10);
6459      if (End != Str && AddrSpace != 0) {
6460        Type = Context.getAddrSpaceQualType(Type, AddrSpace);
6461        Str = End;
6462      }
6463      if (c == '*')
6464        Type = Context.getPointerType(Type);
6465      else
6466        Type = Context.getLValueReferenceType(Type);
6467      break;
6468    }
6469    // FIXME: There's no way to have a built-in with an rvalue ref arg.
6470    case 'C':
6471      Type = Type.withConst();
6472      break;
6473    case 'D':
6474      Type = Context.getVolatileType(Type);
6475      break;
6476    case 'R':
6477      Type = Type.withRestrict();
6478      break;
6479    }
6480  }
6481
6482  assert((!RequiresICE || Type->isIntegralOrEnumerationType()) &&
6483         "Integer constant 'I' type must be an integer");
6484
6485  return Type;
6486}
6487
6488/// GetBuiltinType - Return the type for the specified builtin.
6489QualType ASTContext::GetBuiltinType(unsigned Id,
6490                                    GetBuiltinTypeError &Error,
6491                                    unsigned *IntegerConstantArgs) const {
6492  const char *TypeStr = BuiltinInfo.GetTypeString(Id);
6493
6494  SmallVector<QualType, 8> ArgTypes;
6495
6496  bool RequiresICE = false;
6497  Error = GE_None;
6498  QualType ResType = DecodeTypeFromStr(TypeStr, *this, Error,
6499                                       RequiresICE, true);
6500  if (Error != GE_None)
6501    return QualType();
6502
6503  assert(!RequiresICE && "Result of intrinsic cannot be required to be an ICE");
6504
6505  while (TypeStr[0] && TypeStr[0] != '.') {
6506    QualType Ty = DecodeTypeFromStr(TypeStr, *this, Error, RequiresICE, true);
6507    if (Error != GE_None)
6508      return QualType();
6509
6510    // If this argument is required to be an IntegerConstantExpression and the
6511    // caller cares, fill in the bitmask we return.
6512    if (RequiresICE && IntegerConstantArgs)
6513      *IntegerConstantArgs |= 1 << ArgTypes.size();
6514
6515    // Do array -> pointer decay.  The builtin should use the decayed type.
6516    if (Ty->isArrayType())
6517      Ty = getArrayDecayedType(Ty);
6518
6519    ArgTypes.push_back(Ty);
6520  }
6521
6522  assert((TypeStr[0] != '.' || TypeStr[1] == 0) &&
6523         "'.' should only occur at end of builtin type list!");
6524
6525  FunctionType::ExtInfo EI;
6526  if (BuiltinInfo.isNoReturn(Id)) EI = EI.withNoReturn(true);
6527
6528  bool Variadic = (TypeStr[0] == '.');
6529
6530  // We really shouldn't be making a no-proto type here, especially in C++.
6531  if (ArgTypes.empty() && Variadic)
6532    return getFunctionNoProtoType(ResType, EI);
6533
6534  FunctionProtoType::ExtProtoInfo EPI;
6535  EPI.ExtInfo = EI;
6536  EPI.Variadic = Variadic;
6537
6538  return getFunctionType(ResType, ArgTypes.data(), ArgTypes.size(), EPI);
6539}
6540
6541GVALinkage ASTContext::GetGVALinkageForFunction(const FunctionDecl *FD) {
6542  GVALinkage External = GVA_StrongExternal;
6543
6544  Linkage L = FD->getLinkage();
6545  switch (L) {
6546  case NoLinkage:
6547  case InternalLinkage:
6548  case UniqueExternalLinkage:
6549    return GVA_Internal;
6550
6551  case ExternalLinkage:
6552    switch (FD->getTemplateSpecializationKind()) {
6553    case TSK_Undeclared:
6554    case TSK_ExplicitSpecialization:
6555      External = GVA_StrongExternal;
6556      break;
6557
6558    case TSK_ExplicitInstantiationDefinition:
6559      return GVA_ExplicitTemplateInstantiation;
6560
6561    case TSK_ExplicitInstantiationDeclaration:
6562    case TSK_ImplicitInstantiation:
6563      External = GVA_TemplateInstantiation;
6564      break;
6565    }
6566  }
6567
6568  if (!FD->isInlined())
6569    return External;
6570
6571  if (!getLangOpts().CPlusPlus || FD->hasAttr<GNUInlineAttr>()) {
6572    // GNU or C99 inline semantics. Determine whether this symbol should be
6573    // externally visible.
6574    if (FD->isInlineDefinitionExternallyVisible())
6575      return External;
6576
6577    // C99 inline semantics, where the symbol is not externally visible.
6578    return GVA_C99Inline;
6579  }
6580
6581  // C++0x [temp.explicit]p9:
6582  //   [ Note: The intent is that an inline function that is the subject of
6583  //   an explicit instantiation declaration will still be implicitly
6584  //   instantiated when used so that the body can be considered for
6585  //   inlining, but that no out-of-line copy of the inline function would be
6586  //   generated in the translation unit. -- end note ]
6587  if (FD->getTemplateSpecializationKind()
6588                                       == TSK_ExplicitInstantiationDeclaration)
6589    return GVA_C99Inline;
6590
6591  return GVA_CXXInline;
6592}
6593
6594GVALinkage ASTContext::GetGVALinkageForVariable(const VarDecl *VD) {
6595  // If this is a static data member, compute the kind of template
6596  // specialization. Otherwise, this variable is not part of a
6597  // template.
6598  TemplateSpecializationKind TSK = TSK_Undeclared;
6599  if (VD->isStaticDataMember())
6600    TSK = VD->getTemplateSpecializationKind();
6601
6602  Linkage L = VD->getLinkage();
6603  if (L == ExternalLinkage && getLangOpts().CPlusPlus &&
6604      VD->getType()->getLinkage() == UniqueExternalLinkage)
6605    L = UniqueExternalLinkage;
6606
6607  switch (L) {
6608  case NoLinkage:
6609  case InternalLinkage:
6610  case UniqueExternalLinkage:
6611    return GVA_Internal;
6612
6613  case ExternalLinkage:
6614    switch (TSK) {
6615    case TSK_Undeclared:
6616    case TSK_ExplicitSpecialization:
6617      return GVA_StrongExternal;
6618
6619    case TSK_ExplicitInstantiationDeclaration:
6620      llvm_unreachable("Variable should not be instantiated");
6621      // Fall through to treat this like any other instantiation.
6622
6623    case TSK_ExplicitInstantiationDefinition:
6624      return GVA_ExplicitTemplateInstantiation;
6625
6626    case TSK_ImplicitInstantiation:
6627      return GVA_TemplateInstantiation;
6628    }
6629  }
6630
6631  llvm_unreachable("Invalid Linkage!");
6632}
6633
6634bool ASTContext::DeclMustBeEmitted(const Decl *D) {
6635  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
6636    if (!VD->isFileVarDecl())
6637      return false;
6638  } else if (!isa<FunctionDecl>(D))
6639    return false;
6640
6641  // Weak references don't produce any output by themselves.
6642  if (D->hasAttr<WeakRefAttr>())
6643    return false;
6644
6645  // Aliases and used decls are required.
6646  if (D->hasAttr<AliasAttr>() || D->hasAttr<UsedAttr>())
6647    return true;
6648
6649  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
6650    // Forward declarations aren't required.
6651    if (!FD->doesThisDeclarationHaveABody())
6652      return FD->doesDeclarationForceExternallyVisibleDefinition();
6653
6654    // Constructors and destructors are required.
6655    if (FD->hasAttr<ConstructorAttr>() || FD->hasAttr<DestructorAttr>())
6656      return true;
6657
6658    // The key function for a class is required.
6659    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
6660      const CXXRecordDecl *RD = MD->getParent();
6661      if (MD->isOutOfLine() && RD->isDynamicClass()) {
6662        const CXXMethodDecl *KeyFunc = getKeyFunction(RD);
6663        if (KeyFunc && KeyFunc->getCanonicalDecl() == MD->getCanonicalDecl())
6664          return true;
6665      }
6666    }
6667
6668    GVALinkage Linkage = GetGVALinkageForFunction(FD);
6669
6670    // static, static inline, always_inline, and extern inline functions can
6671    // always be deferred.  Normal inline functions can be deferred in C99/C++.
6672    // Implicit template instantiations can also be deferred in C++.
6673    if (Linkage == GVA_Internal  || Linkage == GVA_C99Inline ||
6674        Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation)
6675      return false;
6676    return true;
6677  }
6678
6679  const VarDecl *VD = cast<VarDecl>(D);
6680  assert(VD->isFileVarDecl() && "Expected file scoped var");
6681
6682  if (VD->isThisDeclarationADefinition() == VarDecl::DeclarationOnly)
6683    return false;
6684
6685  // Structs that have non-trivial constructors or destructors are required.
6686
6687  // FIXME: Handle references.
6688  // FIXME: Be more selective about which constructors we care about.
6689  if (const RecordType *RT = VD->getType()->getAs<RecordType>()) {
6690    if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
6691      if (RD->hasDefinition() && !(RD->hasTrivialDefaultConstructor() &&
6692                                   RD->hasTrivialCopyConstructor() &&
6693                                   RD->hasTrivialMoveConstructor() &&
6694                                   RD->hasTrivialDestructor()))
6695        return true;
6696    }
6697  }
6698
6699  GVALinkage L = GetGVALinkageForVariable(VD);
6700  if (L == GVA_Internal || L == GVA_TemplateInstantiation) {
6701    if (!(VD->getInit() && VD->getInit()->HasSideEffects(*this)))
6702      return false;
6703  }
6704
6705  return true;
6706}
6707
6708CallingConv ASTContext::getDefaultMethodCallConv() {
6709  // Pass through to the C++ ABI object
6710  return ABI->getDefaultMethodCallConv();
6711}
6712
6713bool ASTContext::isNearlyEmpty(const CXXRecordDecl *RD) const {
6714  // Pass through to the C++ ABI object
6715  return ABI->isNearlyEmpty(RD);
6716}
6717
6718MangleContext *ASTContext::createMangleContext() {
6719  switch (Target->getCXXABI()) {
6720  case CXXABI_ARM:
6721  case CXXABI_Itanium:
6722    return createItaniumMangleContext(*this, getDiagnostics());
6723  case CXXABI_Microsoft:
6724    return createMicrosoftMangleContext(*this, getDiagnostics());
6725  }
6726  llvm_unreachable("Unsupported ABI");
6727}
6728
6729CXXABI::~CXXABI() {}
6730
6731size_t ASTContext::getSideTableAllocatedMemory() const {
6732  return ASTRecordLayouts.getMemorySize()
6733    + llvm::capacity_in_bytes(ObjCLayouts)
6734    + llvm::capacity_in_bytes(KeyFunctions)
6735    + llvm::capacity_in_bytes(ObjCImpls)
6736    + llvm::capacity_in_bytes(BlockVarCopyInits)
6737    + llvm::capacity_in_bytes(DeclAttrs)
6738    + llvm::capacity_in_bytes(InstantiatedFromStaticDataMember)
6739    + llvm::capacity_in_bytes(InstantiatedFromUsingDecl)
6740    + llvm::capacity_in_bytes(InstantiatedFromUsingShadowDecl)
6741    + llvm::capacity_in_bytes(InstantiatedFromUnnamedFieldDecl)
6742    + llvm::capacity_in_bytes(OverriddenMethods)
6743    + llvm::capacity_in_bytes(Types)
6744    + llvm::capacity_in_bytes(VariableArrayTypes)
6745    + llvm::capacity_in_bytes(ClassScopeSpecializationPattern);
6746}
6747
6748unsigned ASTContext::getLambdaManglingNumber(CXXMethodDecl *CallOperator) {
6749  CXXRecordDecl *Lambda = CallOperator->getParent();
6750  return LambdaMangleContexts[Lambda->getDeclContext()]
6751           .getManglingNumber(CallOperator);
6752}
6753
6754
6755void ASTContext::setParameterIndex(const ParmVarDecl *D, unsigned int index) {
6756  ParamIndices[D] = index;
6757}
6758
6759unsigned ASTContext::getParameterIndex(const ParmVarDecl *D) const {
6760  ParameterIndexTable::const_iterator I = ParamIndices.find(D);
6761  assert(I != ParamIndices.end() &&
6762         "ParmIndices lacks entry set by ParmVarDecl");
6763  return I->second;
6764}
6765