ASTContext.cpp revision 5cfa011e61e14e6f2e1659047d809706c0e4c6a3
1//===--- ASTContext.cpp - Context to hold long-lived AST nodes ------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements the ASTContext interface.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/AST/ASTContext.h"
15#include "clang/AST/CharUnits.h"
16#include "clang/AST/DeclCXX.h"
17#include "clang/AST/DeclObjC.h"
18#include "clang/AST/DeclTemplate.h"
19#include "clang/AST/TypeLoc.h"
20#include "clang/AST/Expr.h"
21#include "clang/AST/ExternalASTSource.h"
22#include "clang/AST/RecordLayout.h"
23#include "clang/Basic/Builtins.h"
24#include "clang/Basic/SourceManager.h"
25#include "clang/Basic/TargetInfo.h"
26#include "llvm/ADT/SmallString.h"
27#include "llvm/ADT/StringExtras.h"
28#include "llvm/Support/MathExtras.h"
29#include "llvm/Support/raw_ostream.h"
30#include "RecordLayoutBuilder.h"
31
32using namespace clang;
33
34enum FloatingRank {
35  FloatRank, DoubleRank, LongDoubleRank
36};
37
38ASTContext::ASTContext(const LangOptions& LOpts, SourceManager &SM,
39                       const TargetInfo &t,
40                       IdentifierTable &idents, SelectorTable &sels,
41                       Builtin::Context &builtins,
42                       bool FreeMem, unsigned size_reserve) :
43  GlobalNestedNameSpecifier(0), CFConstantStringTypeDecl(0),
44  ObjCFastEnumerationStateTypeDecl(0), FILEDecl(0), jmp_bufDecl(0),
45  sigjmp_bufDecl(0), BlockDescriptorType(0), BlockDescriptorExtendedType(0),
46  SourceMgr(SM), LangOpts(LOpts),
47  LoadedExternalComments(false), FreeMemory(FreeMem), Target(t),
48  Idents(idents), Selectors(sels),
49  BuiltinInfo(builtins), ExternalSource(0), PrintingPolicy(LOpts) {
50  ObjCIdRedefinitionType = QualType();
51  ObjCClassRedefinitionType = QualType();
52  ObjCSelRedefinitionType = QualType();
53  if (size_reserve > 0) Types.reserve(size_reserve);
54  TUDecl = TranslationUnitDecl::Create(*this);
55  InitBuiltinTypes();
56}
57
58ASTContext::~ASTContext() {
59  if (FreeMemory) {
60    // Deallocate all the types.
61    while (!Types.empty()) {
62      Types.back()->Destroy(*this);
63      Types.pop_back();
64    }
65
66    for (llvm::FoldingSet<ExtQuals>::iterator
67         I = ExtQualNodes.begin(), E = ExtQualNodes.end(); I != E; ) {
68      // Increment in loop to prevent using deallocated memory.
69      Deallocate(&*I++);
70    }
71  }
72
73  for (llvm::DenseMap<const RecordDecl*, const ASTRecordLayout*>::iterator
74       I = ASTRecordLayouts.begin(), E = ASTRecordLayouts.end(); I != E; ) {
75    // Increment in loop to prevent using deallocated memory.
76    ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second);
77    delete R;
78  }
79
80  for (llvm::DenseMap<const ObjCContainerDecl*,
81                      const ASTRecordLayout*>::iterator
82       I = ObjCLayouts.begin(), E = ObjCLayouts.end(); I != E; ) {
83    // Increment in loop to prevent using deallocated memory.
84    ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second);
85    delete R;
86  }
87
88  // Destroy nested-name-specifiers.
89  for (llvm::FoldingSet<NestedNameSpecifier>::iterator
90         NNS = NestedNameSpecifiers.begin(),
91         NNSEnd = NestedNameSpecifiers.end();
92       NNS != NNSEnd; ) {
93    // Increment in loop to prevent using deallocated memory.
94    (*NNS++).Destroy(*this);
95  }
96
97  if (GlobalNestedNameSpecifier)
98    GlobalNestedNameSpecifier->Destroy(*this);
99
100  TUDecl->Destroy(*this);
101}
102
103void
104ASTContext::setExternalSource(llvm::OwningPtr<ExternalASTSource> &Source) {
105  ExternalSource.reset(Source.take());
106}
107
108void ASTContext::PrintStats() const {
109  fprintf(stderr, "*** AST Context Stats:\n");
110  fprintf(stderr, "  %d types total.\n", (int)Types.size());
111
112  unsigned counts[] = {
113#define TYPE(Name, Parent) 0,
114#define ABSTRACT_TYPE(Name, Parent)
115#include "clang/AST/TypeNodes.def"
116    0 // Extra
117  };
118
119  for (unsigned i = 0, e = Types.size(); i != e; ++i) {
120    Type *T = Types[i];
121    counts[(unsigned)T->getTypeClass()]++;
122  }
123
124  unsigned Idx = 0;
125  unsigned TotalBytes = 0;
126#define TYPE(Name, Parent)                                              \
127  if (counts[Idx])                                                      \
128    fprintf(stderr, "    %d %s types\n", (int)counts[Idx], #Name);      \
129  TotalBytes += counts[Idx] * sizeof(Name##Type);                       \
130  ++Idx;
131#define ABSTRACT_TYPE(Name, Parent)
132#include "clang/AST/TypeNodes.def"
133
134  fprintf(stderr, "Total bytes = %d\n", int(TotalBytes));
135
136  if (ExternalSource.get()) {
137    fprintf(stderr, "\n");
138    ExternalSource->PrintStats();
139  }
140}
141
142
143void ASTContext::InitBuiltinType(CanQualType &R, BuiltinType::Kind K) {
144  BuiltinType *Ty = new (*this, TypeAlignment) BuiltinType(K);
145  R = CanQualType::CreateUnsafe(QualType(Ty, 0));
146  Types.push_back(Ty);
147}
148
149void ASTContext::InitBuiltinTypes() {
150  assert(VoidTy.isNull() && "Context reinitialized?");
151
152  // C99 6.2.5p19.
153  InitBuiltinType(VoidTy,              BuiltinType::Void);
154
155  // C99 6.2.5p2.
156  InitBuiltinType(BoolTy,              BuiltinType::Bool);
157  // C99 6.2.5p3.
158  if (LangOpts.CharIsSigned)
159    InitBuiltinType(CharTy,            BuiltinType::Char_S);
160  else
161    InitBuiltinType(CharTy,            BuiltinType::Char_U);
162  // C99 6.2.5p4.
163  InitBuiltinType(SignedCharTy,        BuiltinType::SChar);
164  InitBuiltinType(ShortTy,             BuiltinType::Short);
165  InitBuiltinType(IntTy,               BuiltinType::Int);
166  InitBuiltinType(LongTy,              BuiltinType::Long);
167  InitBuiltinType(LongLongTy,          BuiltinType::LongLong);
168
169  // C99 6.2.5p6.
170  InitBuiltinType(UnsignedCharTy,      BuiltinType::UChar);
171  InitBuiltinType(UnsignedShortTy,     BuiltinType::UShort);
172  InitBuiltinType(UnsignedIntTy,       BuiltinType::UInt);
173  InitBuiltinType(UnsignedLongTy,      BuiltinType::ULong);
174  InitBuiltinType(UnsignedLongLongTy,  BuiltinType::ULongLong);
175
176  // C99 6.2.5p10.
177  InitBuiltinType(FloatTy,             BuiltinType::Float);
178  InitBuiltinType(DoubleTy,            BuiltinType::Double);
179  InitBuiltinType(LongDoubleTy,        BuiltinType::LongDouble);
180
181  // GNU extension, 128-bit integers.
182  InitBuiltinType(Int128Ty,            BuiltinType::Int128);
183  InitBuiltinType(UnsignedInt128Ty,    BuiltinType::UInt128);
184
185  if (LangOpts.CPlusPlus) // C++ 3.9.1p5
186    InitBuiltinType(WCharTy,           BuiltinType::WChar);
187  else // C99
188    WCharTy = getFromTargetType(Target.getWCharType());
189
190  if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
191    InitBuiltinType(Char16Ty,           BuiltinType::Char16);
192  else // C99
193    Char16Ty = getFromTargetType(Target.getChar16Type());
194
195  if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
196    InitBuiltinType(Char32Ty,           BuiltinType::Char32);
197  else // C99
198    Char32Ty = getFromTargetType(Target.getChar32Type());
199
200  // Placeholder type for functions.
201  InitBuiltinType(OverloadTy,          BuiltinType::Overload);
202
203  // Placeholder type for type-dependent expressions whose type is
204  // completely unknown. No code should ever check a type against
205  // DependentTy and users should never see it; however, it is here to
206  // help diagnose failures to properly check for type-dependent
207  // expressions.
208  InitBuiltinType(DependentTy,         BuiltinType::Dependent);
209
210  // Placeholder type for C++0x auto declarations whose real type has
211  // not yet been deduced.
212  InitBuiltinType(UndeducedAutoTy, BuiltinType::UndeducedAuto);
213
214  // C99 6.2.5p11.
215  FloatComplexTy      = getComplexType(FloatTy);
216  DoubleComplexTy     = getComplexType(DoubleTy);
217  LongDoubleComplexTy = getComplexType(LongDoubleTy);
218
219  BuiltinVaListType = QualType();
220
221  // "Builtin" typedefs set by Sema::ActOnTranslationUnitScope().
222  ObjCIdTypedefType = QualType();
223  ObjCClassTypedefType = QualType();
224  ObjCSelTypedefType = QualType();
225
226  // Builtin types for 'id', 'Class', and 'SEL'.
227  InitBuiltinType(ObjCBuiltinIdTy, BuiltinType::ObjCId);
228  InitBuiltinType(ObjCBuiltinClassTy, BuiltinType::ObjCClass);
229  InitBuiltinType(ObjCBuiltinSelTy, BuiltinType::ObjCSel);
230
231  ObjCConstantStringType = QualType();
232
233  // void * type
234  VoidPtrTy = getPointerType(VoidTy);
235
236  // nullptr type (C++0x 2.14.7)
237  InitBuiltinType(NullPtrTy,           BuiltinType::NullPtr);
238}
239
240MemberSpecializationInfo *
241ASTContext::getInstantiatedFromStaticDataMember(const VarDecl *Var) {
242  assert(Var->isStaticDataMember() && "Not a static data member");
243  llvm::DenseMap<const VarDecl *, MemberSpecializationInfo *>::iterator Pos
244    = InstantiatedFromStaticDataMember.find(Var);
245  if (Pos == InstantiatedFromStaticDataMember.end())
246    return 0;
247
248  return Pos->second;
249}
250
251void
252ASTContext::setInstantiatedFromStaticDataMember(VarDecl *Inst, VarDecl *Tmpl,
253                                                TemplateSpecializationKind TSK) {
254  assert(Inst->isStaticDataMember() && "Not a static data member");
255  assert(Tmpl->isStaticDataMember() && "Not a static data member");
256  assert(!InstantiatedFromStaticDataMember[Inst] &&
257         "Already noted what static data member was instantiated from");
258  InstantiatedFromStaticDataMember[Inst]
259    = new (*this) MemberSpecializationInfo(Tmpl, TSK);
260}
261
262NamedDecl *
263ASTContext::getInstantiatedFromUsingDecl(UsingDecl *UUD) {
264  llvm::DenseMap<UsingDecl *, NamedDecl *>::const_iterator Pos
265    = InstantiatedFromUsingDecl.find(UUD);
266  if (Pos == InstantiatedFromUsingDecl.end())
267    return 0;
268
269  return Pos->second;
270}
271
272void
273ASTContext::setInstantiatedFromUsingDecl(UsingDecl *Inst, NamedDecl *Pattern) {
274  assert((isa<UsingDecl>(Pattern) ||
275          isa<UnresolvedUsingValueDecl>(Pattern) ||
276          isa<UnresolvedUsingTypenameDecl>(Pattern)) &&
277         "pattern decl is not a using decl");
278  assert(!InstantiatedFromUsingDecl[Inst] && "pattern already exists");
279  InstantiatedFromUsingDecl[Inst] = Pattern;
280}
281
282UsingShadowDecl *
283ASTContext::getInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst) {
284  llvm::DenseMap<UsingShadowDecl*, UsingShadowDecl*>::const_iterator Pos
285    = InstantiatedFromUsingShadowDecl.find(Inst);
286  if (Pos == InstantiatedFromUsingShadowDecl.end())
287    return 0;
288
289  return Pos->second;
290}
291
292void
293ASTContext::setInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst,
294                                               UsingShadowDecl *Pattern) {
295  assert(!InstantiatedFromUsingShadowDecl[Inst] && "pattern already exists");
296  InstantiatedFromUsingShadowDecl[Inst] = Pattern;
297}
298
299FieldDecl *ASTContext::getInstantiatedFromUnnamedFieldDecl(FieldDecl *Field) {
300  llvm::DenseMap<FieldDecl *, FieldDecl *>::iterator Pos
301    = InstantiatedFromUnnamedFieldDecl.find(Field);
302  if (Pos == InstantiatedFromUnnamedFieldDecl.end())
303    return 0;
304
305  return Pos->second;
306}
307
308void ASTContext::setInstantiatedFromUnnamedFieldDecl(FieldDecl *Inst,
309                                                     FieldDecl *Tmpl) {
310  assert(!Inst->getDeclName() && "Instantiated field decl is not unnamed");
311  assert(!Tmpl->getDeclName() && "Template field decl is not unnamed");
312  assert(!InstantiatedFromUnnamedFieldDecl[Inst] &&
313         "Already noted what unnamed field was instantiated from");
314
315  InstantiatedFromUnnamedFieldDecl[Inst] = Tmpl;
316}
317
318namespace {
319  class BeforeInTranslationUnit
320    : std::binary_function<SourceRange, SourceRange, bool> {
321    SourceManager *SourceMgr;
322
323  public:
324    explicit BeforeInTranslationUnit(SourceManager *SM) : SourceMgr(SM) { }
325
326    bool operator()(SourceRange X, SourceRange Y) {
327      return SourceMgr->isBeforeInTranslationUnit(X.getBegin(), Y.getBegin());
328    }
329  };
330}
331
332/// \brief Determine whether the given comment is a Doxygen-style comment.
333///
334/// \param Start the start of the comment text.
335///
336/// \param End the end of the comment text.
337///
338/// \param Member whether we want to check whether this is a member comment
339/// (which requires a < after the Doxygen-comment delimiter). Otherwise,
340/// we only return true when we find a non-member comment.
341static bool
342isDoxygenComment(SourceManager &SourceMgr, SourceRange Comment,
343                 bool Member = false) {
344  const char *BufferStart
345    = SourceMgr.getBufferData(SourceMgr.getFileID(Comment.getBegin())).first;
346  const char *Start = BufferStart + SourceMgr.getFileOffset(Comment.getBegin());
347  const char* End = BufferStart + SourceMgr.getFileOffset(Comment.getEnd());
348
349  if (End - Start < 4)
350    return false;
351
352  assert(Start[0] == '/' && "Not a comment?");
353  if (Start[1] == '*' && !(Start[2] == '!' || Start[2] == '*'))
354    return false;
355  if (Start[1] == '/' && !(Start[2] == '!' || Start[2] == '/'))
356    return false;
357
358  return (Start[3] == '<') == Member;
359}
360
361/// \brief Retrieve the comment associated with the given declaration, if
362/// it has one.
363const char *ASTContext::getCommentForDecl(const Decl *D) {
364  if (!D)
365    return 0;
366
367  // Check whether we have cached a comment string for this declaration
368  // already.
369  llvm::DenseMap<const Decl *, std::string>::iterator Pos
370    = DeclComments.find(D);
371  if (Pos != DeclComments.end())
372    return Pos->second.c_str();
373
374  // If we have an external AST source and have not yet loaded comments from
375  // that source, do so now.
376  if (ExternalSource && !LoadedExternalComments) {
377    std::vector<SourceRange> LoadedComments;
378    ExternalSource->ReadComments(LoadedComments);
379
380    if (!LoadedComments.empty())
381      Comments.insert(Comments.begin(), LoadedComments.begin(),
382                      LoadedComments.end());
383
384    LoadedExternalComments = true;
385  }
386
387  // If there are no comments anywhere, we won't find anything.
388  if (Comments.empty())
389    return 0;
390
391  // If the declaration doesn't map directly to a location in a file, we
392  // can't find the comment.
393  SourceLocation DeclStartLoc = D->getLocStart();
394  if (DeclStartLoc.isInvalid() || !DeclStartLoc.isFileID())
395    return 0;
396
397  // Find the comment that occurs just before this declaration.
398  std::vector<SourceRange>::iterator LastComment
399    = std::lower_bound(Comments.begin(), Comments.end(),
400                       SourceRange(DeclStartLoc),
401                       BeforeInTranslationUnit(&SourceMgr));
402
403  // Decompose the location for the start of the declaration and find the
404  // beginning of the file buffer.
405  std::pair<FileID, unsigned> DeclStartDecomp
406    = SourceMgr.getDecomposedLoc(DeclStartLoc);
407  const char *FileBufferStart
408    = SourceMgr.getBufferData(DeclStartDecomp.first).first;
409
410  // First check whether we have a comment for a member.
411  if (LastComment != Comments.end() &&
412      !isa<TagDecl>(D) && !isa<NamespaceDecl>(D) &&
413      isDoxygenComment(SourceMgr, *LastComment, true)) {
414    std::pair<FileID, unsigned> LastCommentEndDecomp
415      = SourceMgr.getDecomposedLoc(LastComment->getEnd());
416    if (DeclStartDecomp.first == LastCommentEndDecomp.first &&
417        SourceMgr.getLineNumber(DeclStartDecomp.first, DeclStartDecomp.second)
418          == SourceMgr.getLineNumber(LastCommentEndDecomp.first,
419                                     LastCommentEndDecomp.second)) {
420      // The Doxygen member comment comes after the declaration starts and
421      // is on the same line and in the same file as the declaration. This
422      // is the comment we want.
423      std::string &Result = DeclComments[D];
424      Result.append(FileBufferStart +
425                      SourceMgr.getFileOffset(LastComment->getBegin()),
426                    FileBufferStart + LastCommentEndDecomp.second + 1);
427      return Result.c_str();
428    }
429  }
430
431  if (LastComment == Comments.begin())
432    return 0;
433  --LastComment;
434
435  // Decompose the end of the comment.
436  std::pair<FileID, unsigned> LastCommentEndDecomp
437    = SourceMgr.getDecomposedLoc(LastComment->getEnd());
438
439  // If the comment and the declaration aren't in the same file, then they
440  // aren't related.
441  if (DeclStartDecomp.first != LastCommentEndDecomp.first)
442    return 0;
443
444  // Check that we actually have a Doxygen comment.
445  if (!isDoxygenComment(SourceMgr, *LastComment))
446    return 0;
447
448  // Compute the starting line for the declaration and for the end of the
449  // comment (this is expensive).
450  unsigned DeclStartLine
451    = SourceMgr.getLineNumber(DeclStartDecomp.first, DeclStartDecomp.second);
452  unsigned CommentEndLine
453    = SourceMgr.getLineNumber(LastCommentEndDecomp.first,
454                              LastCommentEndDecomp.second);
455
456  // If the comment does not end on the line prior to the declaration, then
457  // the comment is not associated with the declaration at all.
458  if (CommentEndLine + 1 != DeclStartLine)
459    return 0;
460
461  // We have a comment, but there may be more comments on the previous lines.
462  // Keep looking so long as the comments are still Doxygen comments and are
463  // still adjacent.
464  unsigned ExpectedLine
465    = SourceMgr.getSpellingLineNumber(LastComment->getBegin()) - 1;
466  std::vector<SourceRange>::iterator FirstComment = LastComment;
467  while (FirstComment != Comments.begin()) {
468    // Look at the previous comment
469    --FirstComment;
470    std::pair<FileID, unsigned> Decomp
471      = SourceMgr.getDecomposedLoc(FirstComment->getEnd());
472
473    // If this previous comment is in a different file, we're done.
474    if (Decomp.first != DeclStartDecomp.first) {
475      ++FirstComment;
476      break;
477    }
478
479    // If this comment is not a Doxygen comment, we're done.
480    if (!isDoxygenComment(SourceMgr, *FirstComment)) {
481      ++FirstComment;
482      break;
483    }
484
485    // If the line number is not what we expected, we're done.
486    unsigned Line = SourceMgr.getLineNumber(Decomp.first, Decomp.second);
487    if (Line != ExpectedLine) {
488      ++FirstComment;
489      break;
490    }
491
492    // Set the next expected line number.
493    ExpectedLine
494      = SourceMgr.getSpellingLineNumber(FirstComment->getBegin()) - 1;
495  }
496
497  // The iterator range [FirstComment, LastComment] contains all of the
498  // BCPL comments that, together, are associated with this declaration.
499  // Form a single comment block string for this declaration that concatenates
500  // all of these comments.
501  std::string &Result = DeclComments[D];
502  while (FirstComment != LastComment) {
503    std::pair<FileID, unsigned> DecompStart
504      = SourceMgr.getDecomposedLoc(FirstComment->getBegin());
505    std::pair<FileID, unsigned> DecompEnd
506      = SourceMgr.getDecomposedLoc(FirstComment->getEnd());
507    Result.append(FileBufferStart + DecompStart.second,
508                  FileBufferStart + DecompEnd.second + 1);
509    ++FirstComment;
510  }
511
512  // Append the last comment line.
513  Result.append(FileBufferStart +
514                  SourceMgr.getFileOffset(LastComment->getBegin()),
515                FileBufferStart + LastCommentEndDecomp.second + 1);
516  return Result.c_str();
517}
518
519//===----------------------------------------------------------------------===//
520//                         Type Sizing and Analysis
521//===----------------------------------------------------------------------===//
522
523/// getFloatTypeSemantics - Return the APFloat 'semantics' for the specified
524/// scalar floating point type.
525const llvm::fltSemantics &ASTContext::getFloatTypeSemantics(QualType T) const {
526  const BuiltinType *BT = T->getAs<BuiltinType>();
527  assert(BT && "Not a floating point type!");
528  switch (BT->getKind()) {
529  default: assert(0 && "Not a floating point type!");
530  case BuiltinType::Float:      return Target.getFloatFormat();
531  case BuiltinType::Double:     return Target.getDoubleFormat();
532  case BuiltinType::LongDouble: return Target.getLongDoubleFormat();
533  }
534}
535
536/// getDeclAlign - Return a conservative estimate of the alignment of the
537/// specified decl.  Note that bitfields do not have a valid alignment, so
538/// this method will assert on them.
539/// If @p RefAsPointee, references are treated like their underlying type
540/// (for alignof), else they're treated like pointers (for CodeGen).
541CharUnits ASTContext::getDeclAlign(const Decl *D, bool RefAsPointee) {
542  unsigned Align = Target.getCharWidth();
543
544  if (const AlignedAttr* AA = D->getAttr<AlignedAttr>())
545    Align = std::max(Align, AA->getMaxAlignment());
546
547  if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
548    QualType T = VD->getType();
549    if (const ReferenceType* RT = T->getAs<ReferenceType>()) {
550      if (RefAsPointee)
551        T = RT->getPointeeType();
552      else
553        T = getPointerType(RT->getPointeeType());
554    }
555    if (!T->isIncompleteType() && !T->isFunctionType()) {
556      // Incomplete or function types default to 1.
557      while (isa<VariableArrayType>(T) || isa<IncompleteArrayType>(T))
558        T = cast<ArrayType>(T)->getElementType();
559
560      Align = std::max(Align, getPreferredTypeAlign(T.getTypePtr()));
561    }
562  }
563
564  return CharUnits::fromQuantity(Align / Target.getCharWidth());
565}
566
567/// getTypeSize - Return the size of the specified type, in bits.  This method
568/// does not work on incomplete types.
569///
570/// FIXME: Pointers into different addr spaces could have different sizes and
571/// alignment requirements: getPointerInfo should take an AddrSpace, this
572/// should take a QualType, &c.
573std::pair<uint64_t, unsigned>
574ASTContext::getTypeInfo(const Type *T) {
575  uint64_t Width=0;
576  unsigned Align=8;
577  switch (T->getTypeClass()) {
578#define TYPE(Class, Base)
579#define ABSTRACT_TYPE(Class, Base)
580#define NON_CANONICAL_TYPE(Class, Base)
581#define DEPENDENT_TYPE(Class, Base) case Type::Class:
582#include "clang/AST/TypeNodes.def"
583    assert(false && "Should not see dependent types");
584    break;
585
586  case Type::FunctionNoProto:
587  case Type::FunctionProto:
588    // GCC extension: alignof(function) = 32 bits
589    Width = 0;
590    Align = 32;
591    break;
592
593  case Type::IncompleteArray:
594  case Type::VariableArray:
595    Width = 0;
596    Align = getTypeAlign(cast<ArrayType>(T)->getElementType());
597    break;
598
599  case Type::ConstantArray: {
600    const ConstantArrayType *CAT = cast<ConstantArrayType>(T);
601
602    std::pair<uint64_t, unsigned> EltInfo = getTypeInfo(CAT->getElementType());
603    Width = EltInfo.first*CAT->getSize().getZExtValue();
604    Align = EltInfo.second;
605    break;
606  }
607  case Type::ExtVector:
608  case Type::Vector: {
609    const VectorType *VT = cast<VectorType>(T);
610    std::pair<uint64_t, unsigned> EltInfo = getTypeInfo(VT->getElementType());
611    Width = EltInfo.first*VT->getNumElements();
612    Align = Width;
613    // If the alignment is not a power of 2, round up to the next power of 2.
614    // This happens for non-power-of-2 length vectors.
615    if (VT->getNumElements() & (VT->getNumElements()-1)) {
616      Align = llvm::NextPowerOf2(Align);
617      Width = llvm::RoundUpToAlignment(Width, Align);
618    }
619    break;
620  }
621
622  case Type::Builtin:
623    switch (cast<BuiltinType>(T)->getKind()) {
624    default: assert(0 && "Unknown builtin type!");
625    case BuiltinType::Void:
626      // GCC extension: alignof(void) = 8 bits.
627      Width = 0;
628      Align = 8;
629      break;
630
631    case BuiltinType::Bool:
632      Width = Target.getBoolWidth();
633      Align = Target.getBoolAlign();
634      break;
635    case BuiltinType::Char_S:
636    case BuiltinType::Char_U:
637    case BuiltinType::UChar:
638    case BuiltinType::SChar:
639      Width = Target.getCharWidth();
640      Align = Target.getCharAlign();
641      break;
642    case BuiltinType::WChar:
643      Width = Target.getWCharWidth();
644      Align = Target.getWCharAlign();
645      break;
646    case BuiltinType::Char16:
647      Width = Target.getChar16Width();
648      Align = Target.getChar16Align();
649      break;
650    case BuiltinType::Char32:
651      Width = Target.getChar32Width();
652      Align = Target.getChar32Align();
653      break;
654    case BuiltinType::UShort:
655    case BuiltinType::Short:
656      Width = Target.getShortWidth();
657      Align = Target.getShortAlign();
658      break;
659    case BuiltinType::UInt:
660    case BuiltinType::Int:
661      Width = Target.getIntWidth();
662      Align = Target.getIntAlign();
663      break;
664    case BuiltinType::ULong:
665    case BuiltinType::Long:
666      Width = Target.getLongWidth();
667      Align = Target.getLongAlign();
668      break;
669    case BuiltinType::ULongLong:
670    case BuiltinType::LongLong:
671      Width = Target.getLongLongWidth();
672      Align = Target.getLongLongAlign();
673      break;
674    case BuiltinType::Int128:
675    case BuiltinType::UInt128:
676      Width = 128;
677      Align = 128; // int128_t is 128-bit aligned on all targets.
678      break;
679    case BuiltinType::Float:
680      Width = Target.getFloatWidth();
681      Align = Target.getFloatAlign();
682      break;
683    case BuiltinType::Double:
684      Width = Target.getDoubleWidth();
685      Align = Target.getDoubleAlign();
686      break;
687    case BuiltinType::LongDouble:
688      Width = Target.getLongDoubleWidth();
689      Align = Target.getLongDoubleAlign();
690      break;
691    case BuiltinType::NullPtr:
692      Width = Target.getPointerWidth(0); // C++ 3.9.1p11: sizeof(nullptr_t)
693      Align = Target.getPointerAlign(0); //   == sizeof(void*)
694      break;
695    }
696    break;
697  case Type::ObjCObjectPointer:
698    Width = Target.getPointerWidth(0);
699    Align = Target.getPointerAlign(0);
700    break;
701  case Type::BlockPointer: {
702    unsigned AS = cast<BlockPointerType>(T)->getPointeeType().getAddressSpace();
703    Width = Target.getPointerWidth(AS);
704    Align = Target.getPointerAlign(AS);
705    break;
706  }
707  case Type::LValueReference:
708  case Type::RValueReference: {
709    // alignof and sizeof should never enter this code path here, so we go
710    // the pointer route.
711    unsigned AS = cast<ReferenceType>(T)->getPointeeType().getAddressSpace();
712    Width = Target.getPointerWidth(AS);
713    Align = Target.getPointerAlign(AS);
714    break;
715  }
716  case Type::Pointer: {
717    unsigned AS = cast<PointerType>(T)->getPointeeType().getAddressSpace();
718    Width = Target.getPointerWidth(AS);
719    Align = Target.getPointerAlign(AS);
720    break;
721  }
722  case Type::MemberPointer: {
723    QualType Pointee = cast<MemberPointerType>(T)->getPointeeType();
724    std::pair<uint64_t, unsigned> PtrDiffInfo =
725      getTypeInfo(getPointerDiffType());
726    Width = PtrDiffInfo.first;
727    if (Pointee->isFunctionType())
728      Width *= 2;
729    Align = PtrDiffInfo.second;
730    break;
731  }
732  case Type::Complex: {
733    // Complex types have the same alignment as their elements, but twice the
734    // size.
735    std::pair<uint64_t, unsigned> EltInfo =
736      getTypeInfo(cast<ComplexType>(T)->getElementType());
737    Width = EltInfo.first*2;
738    Align = EltInfo.second;
739    break;
740  }
741  case Type::ObjCInterface: {
742    const ObjCInterfaceType *ObjCI = cast<ObjCInterfaceType>(T);
743    const ASTRecordLayout &Layout = getASTObjCInterfaceLayout(ObjCI->getDecl());
744    Width = Layout.getSize();
745    Align = Layout.getAlignment();
746    break;
747  }
748  case Type::Record:
749  case Type::Enum: {
750    const TagType *TT = cast<TagType>(T);
751
752    if (TT->getDecl()->isInvalidDecl()) {
753      Width = 1;
754      Align = 1;
755      break;
756    }
757
758    if (const EnumType *ET = dyn_cast<EnumType>(TT))
759      return getTypeInfo(ET->getDecl()->getIntegerType());
760
761    const RecordType *RT = cast<RecordType>(TT);
762    const ASTRecordLayout &Layout = getASTRecordLayout(RT->getDecl());
763    Width = Layout.getSize();
764    Align = Layout.getAlignment();
765    break;
766  }
767
768  case Type::SubstTemplateTypeParm:
769    return getTypeInfo(cast<SubstTemplateTypeParmType>(T)->
770                       getReplacementType().getTypePtr());
771
772  case Type::Elaborated:
773    return getTypeInfo(cast<ElaboratedType>(T)->getUnderlyingType()
774                         .getTypePtr());
775
776  case Type::Typedef: {
777    const TypedefDecl *Typedef = cast<TypedefType>(T)->getDecl();
778    if (const AlignedAttr *Aligned = Typedef->getAttr<AlignedAttr>()) {
779      Align = std::max(Aligned->getMaxAlignment(),
780                       getTypeAlign(Typedef->getUnderlyingType().getTypePtr()));
781      Width = getTypeSize(Typedef->getUnderlyingType().getTypePtr());
782    } else
783      return getTypeInfo(Typedef->getUnderlyingType().getTypePtr());
784    break;
785  }
786
787  case Type::TypeOfExpr:
788    return getTypeInfo(cast<TypeOfExprType>(T)->getUnderlyingExpr()->getType()
789                         .getTypePtr());
790
791  case Type::TypeOf:
792    return getTypeInfo(cast<TypeOfType>(T)->getUnderlyingType().getTypePtr());
793
794  case Type::Decltype:
795    return getTypeInfo(cast<DecltypeType>(T)->getUnderlyingExpr()->getType()
796                        .getTypePtr());
797
798  case Type::QualifiedName:
799    return getTypeInfo(cast<QualifiedNameType>(T)->getNamedType().getTypePtr());
800
801  case Type::TemplateSpecialization:
802    assert(getCanonicalType(T) != T &&
803           "Cannot request the size of a dependent type");
804    // FIXME: this is likely to be wrong once we support template
805    // aliases, since a template alias could refer to a typedef that
806    // has an __aligned__ attribute on it.
807    return getTypeInfo(getCanonicalType(T));
808  }
809
810  assert(Align && (Align & (Align-1)) == 0 && "Alignment must be power of 2");
811  return std::make_pair(Width, Align);
812}
813
814/// getTypeSizeInChars - Return the size of the specified type, in characters.
815/// This method does not work on incomplete types.
816CharUnits ASTContext::getTypeSizeInChars(QualType T) {
817  return CharUnits::fromQuantity(getTypeSize(T) / getCharWidth());
818}
819CharUnits ASTContext::getTypeSizeInChars(const Type *T) {
820  return CharUnits::fromQuantity(getTypeSize(T) / getCharWidth());
821}
822
823/// getTypeAlignInChars - Return the ABI-specified alignment of a type, in
824/// characters. This method does not work on incomplete types.
825CharUnits ASTContext::getTypeAlignInChars(QualType T) {
826  return CharUnits::fromQuantity(getTypeAlign(T) / getCharWidth());
827}
828CharUnits ASTContext::getTypeAlignInChars(const Type *T) {
829  return CharUnits::fromQuantity(getTypeAlign(T) / getCharWidth());
830}
831
832/// getPreferredTypeAlign - Return the "preferred" alignment of the specified
833/// type for the current target in bits.  This can be different than the ABI
834/// alignment in cases where it is beneficial for performance to overalign
835/// a data type.
836unsigned ASTContext::getPreferredTypeAlign(const Type *T) {
837  unsigned ABIAlign = getTypeAlign(T);
838
839  // Double and long long should be naturally aligned if possible.
840  if (const ComplexType* CT = T->getAs<ComplexType>())
841    T = CT->getElementType().getTypePtr();
842  if (T->isSpecificBuiltinType(BuiltinType::Double) ||
843      T->isSpecificBuiltinType(BuiltinType::LongLong))
844    return std::max(ABIAlign, (unsigned)getTypeSize(T));
845
846  return ABIAlign;
847}
848
849static void CollectLocalObjCIvars(ASTContext *Ctx,
850                                  const ObjCInterfaceDecl *OI,
851                                  llvm::SmallVectorImpl<FieldDecl*> &Fields) {
852  for (ObjCInterfaceDecl::ivar_iterator I = OI->ivar_begin(),
853       E = OI->ivar_end(); I != E; ++I) {
854    ObjCIvarDecl *IVDecl = *I;
855    if (!IVDecl->isInvalidDecl())
856      Fields.push_back(cast<FieldDecl>(IVDecl));
857  }
858}
859
860void ASTContext::CollectObjCIvars(const ObjCInterfaceDecl *OI,
861                             llvm::SmallVectorImpl<FieldDecl*> &Fields) {
862  if (const ObjCInterfaceDecl *SuperClass = OI->getSuperClass())
863    CollectObjCIvars(SuperClass, Fields);
864  CollectLocalObjCIvars(this, OI, Fields);
865}
866
867/// ShallowCollectObjCIvars -
868/// Collect all ivars, including those synthesized, in the current class.
869///
870void ASTContext::ShallowCollectObjCIvars(const ObjCInterfaceDecl *OI,
871                                 llvm::SmallVectorImpl<ObjCIvarDecl*> &Ivars,
872                                 bool CollectSynthesized) {
873  for (ObjCInterfaceDecl::ivar_iterator I = OI->ivar_begin(),
874         E = OI->ivar_end(); I != E; ++I) {
875     Ivars.push_back(*I);
876  }
877  if (CollectSynthesized)
878    CollectSynthesizedIvars(OI, Ivars);
879}
880
881void ASTContext::CollectProtocolSynthesizedIvars(const ObjCProtocolDecl *PD,
882                                llvm::SmallVectorImpl<ObjCIvarDecl*> &Ivars) {
883  for (ObjCContainerDecl::prop_iterator I = PD->prop_begin(),
884       E = PD->prop_end(); I != E; ++I)
885    if (ObjCIvarDecl *Ivar = (*I)->getPropertyIvarDecl())
886      Ivars.push_back(Ivar);
887
888  // Also look into nested protocols.
889  for (ObjCProtocolDecl::protocol_iterator P = PD->protocol_begin(),
890       E = PD->protocol_end(); P != E; ++P)
891    CollectProtocolSynthesizedIvars(*P, Ivars);
892}
893
894/// CollectSynthesizedIvars -
895/// This routine collect synthesized ivars for the designated class.
896///
897void ASTContext::CollectSynthesizedIvars(const ObjCInterfaceDecl *OI,
898                                llvm::SmallVectorImpl<ObjCIvarDecl*> &Ivars) {
899  for (ObjCInterfaceDecl::prop_iterator I = OI->prop_begin(),
900       E = OI->prop_end(); I != E; ++I) {
901    if (ObjCIvarDecl *Ivar = (*I)->getPropertyIvarDecl())
902      Ivars.push_back(Ivar);
903  }
904  // Also look into interface's protocol list for properties declared
905  // in the protocol and whose ivars are synthesized.
906  for (ObjCInterfaceDecl::protocol_iterator P = OI->protocol_begin(),
907       PE = OI->protocol_end(); P != PE; ++P) {
908    ObjCProtocolDecl *PD = (*P);
909    CollectProtocolSynthesizedIvars(PD, Ivars);
910  }
911}
912
913/// CollectInheritedProtocols - Collect all protocols in current class and
914/// those inherited by it.
915void ASTContext::CollectInheritedProtocols(const Decl *CDecl,
916                          llvm::SmallVectorImpl<ObjCProtocolDecl*> &Protocols) {
917  if (const ObjCInterfaceDecl *OI = dyn_cast<ObjCInterfaceDecl>(CDecl)) {
918    for (ObjCInterfaceDecl::protocol_iterator P = OI->protocol_begin(),
919         PE = OI->protocol_end(); P != PE; ++P) {
920      ObjCProtocolDecl *Proto = (*P);
921      Protocols.push_back(Proto);
922      for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
923           PE = Proto->protocol_end(); P != PE; ++P)
924        CollectInheritedProtocols(*P, Protocols);
925      }
926
927    // Categories of this Interface.
928    for (const ObjCCategoryDecl *CDeclChain = OI->getCategoryList();
929         CDeclChain; CDeclChain = CDeclChain->getNextClassCategory())
930      CollectInheritedProtocols(CDeclChain, Protocols);
931    if (ObjCInterfaceDecl *SD = OI->getSuperClass())
932      while (SD) {
933        CollectInheritedProtocols(SD, Protocols);
934        SD = SD->getSuperClass();
935      }
936    return;
937  }
938  if (const ObjCCategoryDecl *OC = dyn_cast<ObjCCategoryDecl>(CDecl)) {
939    for (ObjCInterfaceDecl::protocol_iterator P = OC->protocol_begin(),
940         PE = OC->protocol_end(); P != PE; ++P) {
941      ObjCProtocolDecl *Proto = (*P);
942      Protocols.push_back(Proto);
943      for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
944           PE = Proto->protocol_end(); P != PE; ++P)
945        CollectInheritedProtocols(*P, Protocols);
946    }
947    return;
948  }
949  if (const ObjCProtocolDecl *OP = dyn_cast<ObjCProtocolDecl>(CDecl)) {
950    for (ObjCProtocolDecl::protocol_iterator P = OP->protocol_begin(),
951         PE = OP->protocol_end(); P != PE; ++P) {
952      ObjCProtocolDecl *Proto = (*P);
953      Protocols.push_back(Proto);
954      for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
955           PE = Proto->protocol_end(); P != PE; ++P)
956        CollectInheritedProtocols(*P, Protocols);
957    }
958    return;
959  }
960}
961
962unsigned ASTContext::CountProtocolSynthesizedIvars(const ObjCProtocolDecl *PD) {
963  unsigned count = 0;
964  for (ObjCContainerDecl::prop_iterator I = PD->prop_begin(),
965       E = PD->prop_end(); I != E; ++I)
966    if ((*I)->getPropertyIvarDecl())
967      ++count;
968
969  // Also look into nested protocols.
970  for (ObjCProtocolDecl::protocol_iterator P = PD->protocol_begin(),
971       E = PD->protocol_end(); P != E; ++P)
972    count += CountProtocolSynthesizedIvars(*P);
973  return count;
974}
975
976unsigned ASTContext::CountSynthesizedIvars(const ObjCInterfaceDecl *OI) {
977  unsigned count = 0;
978  for (ObjCInterfaceDecl::prop_iterator I = OI->prop_begin(),
979       E = OI->prop_end(); I != E; ++I) {
980    if ((*I)->getPropertyIvarDecl())
981      ++count;
982  }
983  // Also look into interface's protocol list for properties declared
984  // in the protocol and whose ivars are synthesized.
985  for (ObjCInterfaceDecl::protocol_iterator P = OI->protocol_begin(),
986       PE = OI->protocol_end(); P != PE; ++P) {
987    ObjCProtocolDecl *PD = (*P);
988    count += CountProtocolSynthesizedIvars(PD);
989  }
990  return count;
991}
992
993/// \brief Get the implementation of ObjCInterfaceDecl,or NULL if none exists.
994ObjCImplementationDecl *ASTContext::getObjCImplementation(ObjCInterfaceDecl *D) {
995  llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
996    I = ObjCImpls.find(D);
997  if (I != ObjCImpls.end())
998    return cast<ObjCImplementationDecl>(I->second);
999  return 0;
1000}
1001/// \brief Get the implementation of ObjCCategoryDecl, or NULL if none exists.
1002ObjCCategoryImplDecl *ASTContext::getObjCImplementation(ObjCCategoryDecl *D) {
1003  llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
1004    I = ObjCImpls.find(D);
1005  if (I != ObjCImpls.end())
1006    return cast<ObjCCategoryImplDecl>(I->second);
1007  return 0;
1008}
1009
1010/// \brief Set the implementation of ObjCInterfaceDecl.
1011void ASTContext::setObjCImplementation(ObjCInterfaceDecl *IFaceD,
1012                           ObjCImplementationDecl *ImplD) {
1013  assert(IFaceD && ImplD && "Passed null params");
1014  ObjCImpls[IFaceD] = ImplD;
1015}
1016/// \brief Set the implementation of ObjCCategoryDecl.
1017void ASTContext::setObjCImplementation(ObjCCategoryDecl *CatD,
1018                           ObjCCategoryImplDecl *ImplD) {
1019  assert(CatD && ImplD && "Passed null params");
1020  ObjCImpls[CatD] = ImplD;
1021}
1022
1023/// \brief Allocate an uninitialized TypeSourceInfo.
1024///
1025/// The caller should initialize the memory held by TypeSourceInfo using
1026/// the TypeLoc wrappers.
1027///
1028/// \param T the type that will be the basis for type source info. This type
1029/// should refer to how the declarator was written in source code, not to
1030/// what type semantic analysis resolved the declarator to.
1031TypeSourceInfo *ASTContext::CreateTypeSourceInfo(QualType T,
1032                                                 unsigned DataSize) {
1033  if (!DataSize)
1034    DataSize = TypeLoc::getFullDataSizeForType(T);
1035  else
1036    assert(DataSize == TypeLoc::getFullDataSizeForType(T) &&
1037           "incorrect data size provided to CreateTypeSourceInfo!");
1038
1039  TypeSourceInfo *TInfo =
1040    (TypeSourceInfo*)BumpAlloc.Allocate(sizeof(TypeSourceInfo) + DataSize, 8);
1041  new (TInfo) TypeSourceInfo(T);
1042  return TInfo;
1043}
1044
1045TypeSourceInfo *ASTContext::getTrivialTypeSourceInfo(QualType T,
1046                                                     SourceLocation L) {
1047  TypeSourceInfo *DI = CreateTypeSourceInfo(T);
1048  DI->getTypeLoc().initialize(L);
1049  return DI;
1050}
1051
1052/// getInterfaceLayoutImpl - Get or compute information about the
1053/// layout of the given interface.
1054///
1055/// \param Impl - If given, also include the layout of the interface's
1056/// implementation. This may differ by including synthesized ivars.
1057const ASTRecordLayout &
1058ASTContext::getObjCLayout(const ObjCInterfaceDecl *D,
1059                          const ObjCImplementationDecl *Impl) {
1060  assert(!D->isForwardDecl() && "Invalid interface decl!");
1061
1062  // Look up this layout, if already laid out, return what we have.
1063  ObjCContainerDecl *Key =
1064    Impl ? (ObjCContainerDecl*) Impl : (ObjCContainerDecl*) D;
1065  if (const ASTRecordLayout *Entry = ObjCLayouts[Key])
1066    return *Entry;
1067
1068  // Add in synthesized ivar count if laying out an implementation.
1069  if (Impl) {
1070    unsigned SynthCount = CountSynthesizedIvars(D);
1071    // If there aren't any sythesized ivars then reuse the interface
1072    // entry. Note we can't cache this because we simply free all
1073    // entries later; however we shouldn't look up implementations
1074    // frequently.
1075    if (SynthCount == 0)
1076      return getObjCLayout(D, 0);
1077  }
1078
1079  const ASTRecordLayout *NewEntry =
1080    ASTRecordLayoutBuilder::ComputeLayout(*this, D, Impl);
1081  ObjCLayouts[Key] = NewEntry;
1082
1083  return *NewEntry;
1084}
1085
1086const ASTRecordLayout &
1087ASTContext::getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D) {
1088  return getObjCLayout(D, 0);
1089}
1090
1091const ASTRecordLayout &
1092ASTContext::getASTObjCImplementationLayout(const ObjCImplementationDecl *D) {
1093  return getObjCLayout(D->getClassInterface(), D);
1094}
1095
1096/// getASTRecordLayout - Get or compute information about the layout of the
1097/// specified record (struct/union/class), which indicates its size and field
1098/// position information.
1099const ASTRecordLayout &ASTContext::getASTRecordLayout(const RecordDecl *D) {
1100  D = D->getDefinition(*this);
1101  assert(D && "Cannot get layout of forward declarations!");
1102
1103  // Look up this layout, if already laid out, return what we have.
1104  // Note that we can't save a reference to the entry because this function
1105  // is recursive.
1106  const ASTRecordLayout *Entry = ASTRecordLayouts[D];
1107  if (Entry) return *Entry;
1108
1109  const ASTRecordLayout *NewEntry =
1110    ASTRecordLayoutBuilder::ComputeLayout(*this, D);
1111  ASTRecordLayouts[D] = NewEntry;
1112
1113  return *NewEntry;
1114}
1115
1116const CXXMethodDecl *ASTContext::getKeyFunction(const CXXRecordDecl *RD) {
1117  RD = cast<CXXRecordDecl>(RD->getDefinition(*this));
1118  assert(RD && "Cannot get key function for forward declarations!");
1119
1120  const CXXMethodDecl *&Entry = KeyFunctions[RD];
1121  if (!Entry)
1122    Entry = ASTRecordLayoutBuilder::ComputeKeyFunction(RD);
1123  else
1124    assert(Entry == ASTRecordLayoutBuilder::ComputeKeyFunction(RD) &&
1125           "Key function changed!");
1126
1127  return Entry;
1128}
1129
1130//===----------------------------------------------------------------------===//
1131//                   Type creation/memoization methods
1132//===----------------------------------------------------------------------===//
1133
1134QualType ASTContext::getExtQualType(const Type *TypeNode, Qualifiers Quals) {
1135  unsigned Fast = Quals.getFastQualifiers();
1136  Quals.removeFastQualifiers();
1137
1138  // Check if we've already instantiated this type.
1139  llvm::FoldingSetNodeID ID;
1140  ExtQuals::Profile(ID, TypeNode, Quals);
1141  void *InsertPos = 0;
1142  if (ExtQuals *EQ = ExtQualNodes.FindNodeOrInsertPos(ID, InsertPos)) {
1143    assert(EQ->getQualifiers() == Quals);
1144    QualType T = QualType(EQ, Fast);
1145    return T;
1146  }
1147
1148  ExtQuals *New = new (*this, TypeAlignment) ExtQuals(*this, TypeNode, Quals);
1149  ExtQualNodes.InsertNode(New, InsertPos);
1150  QualType T = QualType(New, Fast);
1151  return T;
1152}
1153
1154QualType ASTContext::getVolatileType(QualType T) {
1155  QualType CanT = getCanonicalType(T);
1156  if (CanT.isVolatileQualified()) return T;
1157
1158  QualifierCollector Quals;
1159  const Type *TypeNode = Quals.strip(T);
1160  Quals.addVolatile();
1161
1162  return getExtQualType(TypeNode, Quals);
1163}
1164
1165QualType ASTContext::getAddrSpaceQualType(QualType T, unsigned AddressSpace) {
1166  QualType CanT = getCanonicalType(T);
1167  if (CanT.getAddressSpace() == AddressSpace)
1168    return T;
1169
1170  // If we are composing extended qualifiers together, merge together
1171  // into one ExtQuals node.
1172  QualifierCollector Quals;
1173  const Type *TypeNode = Quals.strip(T);
1174
1175  // If this type already has an address space specified, it cannot get
1176  // another one.
1177  assert(!Quals.hasAddressSpace() &&
1178         "Type cannot be in multiple addr spaces!");
1179  Quals.addAddressSpace(AddressSpace);
1180
1181  return getExtQualType(TypeNode, Quals);
1182}
1183
1184QualType ASTContext::getObjCGCQualType(QualType T,
1185                                       Qualifiers::GC GCAttr) {
1186  QualType CanT = getCanonicalType(T);
1187  if (CanT.getObjCGCAttr() == GCAttr)
1188    return T;
1189
1190  if (T->isPointerType()) {
1191    QualType Pointee = T->getAs<PointerType>()->getPointeeType();
1192    if (Pointee->isAnyPointerType()) {
1193      QualType ResultType = getObjCGCQualType(Pointee, GCAttr);
1194      return getPointerType(ResultType);
1195    }
1196  }
1197
1198  // If we are composing extended qualifiers together, merge together
1199  // into one ExtQuals node.
1200  QualifierCollector Quals;
1201  const Type *TypeNode = Quals.strip(T);
1202
1203  // If this type already has an ObjCGC specified, it cannot get
1204  // another one.
1205  assert(!Quals.hasObjCGCAttr() &&
1206         "Type cannot have multiple ObjCGCs!");
1207  Quals.addObjCGCAttr(GCAttr);
1208
1209  return getExtQualType(TypeNode, Quals);
1210}
1211
1212static QualType getNoReturnCallConvType(ASTContext& Context, QualType T,
1213                                        bool AddNoReturn,
1214                                        CallingConv CallConv) {
1215  QualType ResultType;
1216  if (const PointerType *Pointer = T->getAs<PointerType>()) {
1217    QualType Pointee = Pointer->getPointeeType();
1218    ResultType = getNoReturnCallConvType(Context, Pointee, AddNoReturn,
1219                                         CallConv);
1220    if (ResultType == Pointee)
1221      return T;
1222
1223    ResultType = Context.getPointerType(ResultType);
1224  } else if (const BlockPointerType *BlockPointer
1225                                              = T->getAs<BlockPointerType>()) {
1226    QualType Pointee = BlockPointer->getPointeeType();
1227    ResultType = getNoReturnCallConvType(Context, Pointee, AddNoReturn,
1228                                         CallConv);
1229    if (ResultType == Pointee)
1230      return T;
1231
1232    ResultType = Context.getBlockPointerType(ResultType);
1233   } else if (const FunctionType *F = T->getAs<FunctionType>()) {
1234    if (F->getNoReturnAttr() == AddNoReturn && F->getCallConv() == CallConv)
1235      return T;
1236
1237    if (const FunctionNoProtoType *FNPT = dyn_cast<FunctionNoProtoType>(F)) {
1238      ResultType = Context.getFunctionNoProtoType(FNPT->getResultType(),
1239                                                  AddNoReturn, CallConv);
1240    } else {
1241      const FunctionProtoType *FPT = cast<FunctionProtoType>(F);
1242      ResultType
1243        = Context.getFunctionType(FPT->getResultType(), FPT->arg_type_begin(),
1244                                  FPT->getNumArgs(), FPT->isVariadic(),
1245                                  FPT->getTypeQuals(),
1246                                  FPT->hasExceptionSpec(),
1247                                  FPT->hasAnyExceptionSpec(),
1248                                  FPT->getNumExceptions(),
1249                                  FPT->exception_begin(),
1250                                  AddNoReturn, CallConv);
1251    }
1252  } else
1253    return T;
1254
1255  return Context.getQualifiedType(ResultType, T.getLocalQualifiers());
1256}
1257
1258QualType ASTContext::getNoReturnType(QualType T, bool AddNoReturn) {
1259  return getNoReturnCallConvType(*this, T, AddNoReturn, T.getCallConv());
1260}
1261
1262QualType ASTContext::getCallConvType(QualType T, CallingConv CallConv) {
1263  return getNoReturnCallConvType(*this, T, T.getNoReturnAttr(), CallConv);
1264}
1265
1266/// getComplexType - Return the uniqued reference to the type for a complex
1267/// number with the specified element type.
1268QualType ASTContext::getComplexType(QualType T) {
1269  // Unique pointers, to guarantee there is only one pointer of a particular
1270  // structure.
1271  llvm::FoldingSetNodeID ID;
1272  ComplexType::Profile(ID, T);
1273
1274  void *InsertPos = 0;
1275  if (ComplexType *CT = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos))
1276    return QualType(CT, 0);
1277
1278  // If the pointee type isn't canonical, this won't be a canonical type either,
1279  // so fill in the canonical type field.
1280  QualType Canonical;
1281  if (!T.isCanonical()) {
1282    Canonical = getComplexType(getCanonicalType(T));
1283
1284    // Get the new insert position for the node we care about.
1285    ComplexType *NewIP = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos);
1286    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1287  }
1288  ComplexType *New = new (*this, TypeAlignment) ComplexType(T, Canonical);
1289  Types.push_back(New);
1290  ComplexTypes.InsertNode(New, InsertPos);
1291  return QualType(New, 0);
1292}
1293
1294/// getPointerType - Return the uniqued reference to the type for a pointer to
1295/// the specified type.
1296QualType ASTContext::getPointerType(QualType T) {
1297  // Unique pointers, to guarantee there is only one pointer of a particular
1298  // structure.
1299  llvm::FoldingSetNodeID ID;
1300  PointerType::Profile(ID, T);
1301
1302  void *InsertPos = 0;
1303  if (PointerType *PT = PointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1304    return QualType(PT, 0);
1305
1306  // If the pointee type isn't canonical, this won't be a canonical type either,
1307  // so fill in the canonical type field.
1308  QualType Canonical;
1309  if (!T.isCanonical()) {
1310    Canonical = getPointerType(getCanonicalType(T));
1311
1312    // Get the new insert position for the node we care about.
1313    PointerType *NewIP = PointerTypes.FindNodeOrInsertPos(ID, InsertPos);
1314    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1315  }
1316  PointerType *New = new (*this, TypeAlignment) PointerType(T, Canonical);
1317  Types.push_back(New);
1318  PointerTypes.InsertNode(New, InsertPos);
1319  return QualType(New, 0);
1320}
1321
1322/// getBlockPointerType - Return the uniqued reference to the type for
1323/// a pointer to the specified block.
1324QualType ASTContext::getBlockPointerType(QualType T) {
1325  assert(T->isFunctionType() && "block of function types only");
1326  // Unique pointers, to guarantee there is only one block of a particular
1327  // structure.
1328  llvm::FoldingSetNodeID ID;
1329  BlockPointerType::Profile(ID, T);
1330
1331  void *InsertPos = 0;
1332  if (BlockPointerType *PT =
1333        BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1334    return QualType(PT, 0);
1335
1336  // If the block pointee type isn't canonical, this won't be a canonical
1337  // type either so fill in the canonical type field.
1338  QualType Canonical;
1339  if (!T.isCanonical()) {
1340    Canonical = getBlockPointerType(getCanonicalType(T));
1341
1342    // Get the new insert position for the node we care about.
1343    BlockPointerType *NewIP =
1344      BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
1345    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1346  }
1347  BlockPointerType *New
1348    = new (*this, TypeAlignment) BlockPointerType(T, Canonical);
1349  Types.push_back(New);
1350  BlockPointerTypes.InsertNode(New, InsertPos);
1351  return QualType(New, 0);
1352}
1353
1354/// getLValueReferenceType - Return the uniqued reference to the type for an
1355/// lvalue reference to the specified type.
1356QualType ASTContext::getLValueReferenceType(QualType T, bool SpelledAsLValue) {
1357  // Unique pointers, to guarantee there is only one pointer of a particular
1358  // structure.
1359  llvm::FoldingSetNodeID ID;
1360  ReferenceType::Profile(ID, T, SpelledAsLValue);
1361
1362  void *InsertPos = 0;
1363  if (LValueReferenceType *RT =
1364        LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
1365    return QualType(RT, 0);
1366
1367  const ReferenceType *InnerRef = T->getAs<ReferenceType>();
1368
1369  // If the referencee type isn't canonical, this won't be a canonical type
1370  // either, so fill in the canonical type field.
1371  QualType Canonical;
1372  if (!SpelledAsLValue || InnerRef || !T.isCanonical()) {
1373    QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
1374    Canonical = getLValueReferenceType(getCanonicalType(PointeeType));
1375
1376    // Get the new insert position for the node we care about.
1377    LValueReferenceType *NewIP =
1378      LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
1379    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1380  }
1381
1382  LValueReferenceType *New
1383    = new (*this, TypeAlignment) LValueReferenceType(T, Canonical,
1384                                                     SpelledAsLValue);
1385  Types.push_back(New);
1386  LValueReferenceTypes.InsertNode(New, InsertPos);
1387
1388  return QualType(New, 0);
1389}
1390
1391/// getRValueReferenceType - Return the uniqued reference to the type for an
1392/// rvalue reference to the specified type.
1393QualType ASTContext::getRValueReferenceType(QualType T) {
1394  // Unique pointers, to guarantee there is only one pointer of a particular
1395  // structure.
1396  llvm::FoldingSetNodeID ID;
1397  ReferenceType::Profile(ID, T, false);
1398
1399  void *InsertPos = 0;
1400  if (RValueReferenceType *RT =
1401        RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
1402    return QualType(RT, 0);
1403
1404  const ReferenceType *InnerRef = T->getAs<ReferenceType>();
1405
1406  // If the referencee type isn't canonical, this won't be a canonical type
1407  // either, so fill in the canonical type field.
1408  QualType Canonical;
1409  if (InnerRef || !T.isCanonical()) {
1410    QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
1411    Canonical = getRValueReferenceType(getCanonicalType(PointeeType));
1412
1413    // Get the new insert position for the node we care about.
1414    RValueReferenceType *NewIP =
1415      RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
1416    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1417  }
1418
1419  RValueReferenceType *New
1420    = new (*this, TypeAlignment) RValueReferenceType(T, Canonical);
1421  Types.push_back(New);
1422  RValueReferenceTypes.InsertNode(New, InsertPos);
1423  return QualType(New, 0);
1424}
1425
1426/// getMemberPointerType - Return the uniqued reference to the type for a
1427/// member pointer to the specified type, in the specified class.
1428QualType ASTContext::getMemberPointerType(QualType T, const Type *Cls) {
1429  // Unique pointers, to guarantee there is only one pointer of a particular
1430  // structure.
1431  llvm::FoldingSetNodeID ID;
1432  MemberPointerType::Profile(ID, T, Cls);
1433
1434  void *InsertPos = 0;
1435  if (MemberPointerType *PT =
1436      MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1437    return QualType(PT, 0);
1438
1439  // If the pointee or class type isn't canonical, this won't be a canonical
1440  // type either, so fill in the canonical type field.
1441  QualType Canonical;
1442  if (!T.isCanonical() || !Cls->isCanonicalUnqualified()) {
1443    Canonical = getMemberPointerType(getCanonicalType(T),getCanonicalType(Cls));
1444
1445    // Get the new insert position for the node we care about.
1446    MemberPointerType *NewIP =
1447      MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
1448    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1449  }
1450  MemberPointerType *New
1451    = new (*this, TypeAlignment) MemberPointerType(T, Cls, Canonical);
1452  Types.push_back(New);
1453  MemberPointerTypes.InsertNode(New, InsertPos);
1454  return QualType(New, 0);
1455}
1456
1457/// getConstantArrayType - Return the unique reference to the type for an
1458/// array of the specified element type.
1459QualType ASTContext::getConstantArrayType(QualType EltTy,
1460                                          const llvm::APInt &ArySizeIn,
1461                                          ArrayType::ArraySizeModifier ASM,
1462                                          unsigned EltTypeQuals) {
1463  assert((EltTy->isDependentType() ||
1464          EltTy->isIncompleteType() || EltTy->isConstantSizeType()) &&
1465         "Constant array of VLAs is illegal!");
1466
1467  // Convert the array size into a canonical width matching the pointer size for
1468  // the target.
1469  llvm::APInt ArySize(ArySizeIn);
1470  ArySize.zextOrTrunc(Target.getPointerWidth(EltTy.getAddressSpace()));
1471
1472  llvm::FoldingSetNodeID ID;
1473  ConstantArrayType::Profile(ID, EltTy, ArySize, ASM, EltTypeQuals);
1474
1475  void *InsertPos = 0;
1476  if (ConstantArrayType *ATP =
1477      ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
1478    return QualType(ATP, 0);
1479
1480  // If the element type isn't canonical, this won't be a canonical type either,
1481  // so fill in the canonical type field.
1482  QualType Canonical;
1483  if (!EltTy.isCanonical()) {
1484    Canonical = getConstantArrayType(getCanonicalType(EltTy), ArySize,
1485                                     ASM, EltTypeQuals);
1486    // Get the new insert position for the node we care about.
1487    ConstantArrayType *NewIP =
1488      ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
1489    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1490  }
1491
1492  ConstantArrayType *New = new(*this,TypeAlignment)
1493    ConstantArrayType(EltTy, Canonical, ArySize, ASM, EltTypeQuals);
1494  ConstantArrayTypes.InsertNode(New, InsertPos);
1495  Types.push_back(New);
1496  return QualType(New, 0);
1497}
1498
1499/// getVariableArrayType - Returns a non-unique reference to the type for a
1500/// variable array of the specified element type.
1501QualType ASTContext::getVariableArrayType(QualType EltTy,
1502                                          Expr *NumElts,
1503                                          ArrayType::ArraySizeModifier ASM,
1504                                          unsigned EltTypeQuals,
1505                                          SourceRange Brackets) {
1506  // Since we don't unique expressions, it isn't possible to unique VLA's
1507  // that have an expression provided for their size.
1508
1509  VariableArrayType *New = new(*this, TypeAlignment)
1510    VariableArrayType(EltTy, QualType(), NumElts, ASM, EltTypeQuals, Brackets);
1511
1512  VariableArrayTypes.push_back(New);
1513  Types.push_back(New);
1514  return QualType(New, 0);
1515}
1516
1517/// getDependentSizedArrayType - Returns a non-unique reference to
1518/// the type for a dependently-sized array of the specified element
1519/// type.
1520QualType ASTContext::getDependentSizedArrayType(QualType EltTy,
1521                                                Expr *NumElts,
1522                                                ArrayType::ArraySizeModifier ASM,
1523                                                unsigned EltTypeQuals,
1524                                                SourceRange Brackets) {
1525  assert((!NumElts || NumElts->isTypeDependent() ||
1526          NumElts->isValueDependent()) &&
1527         "Size must be type- or value-dependent!");
1528
1529  void *InsertPos = 0;
1530  DependentSizedArrayType *Canon = 0;
1531  llvm::FoldingSetNodeID ID;
1532
1533  if (NumElts) {
1534    // Dependently-sized array types that do not have a specified
1535    // number of elements will have their sizes deduced from an
1536    // initializer.
1537    DependentSizedArrayType::Profile(ID, *this, getCanonicalType(EltTy), ASM,
1538                                     EltTypeQuals, NumElts);
1539
1540    Canon = DependentSizedArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
1541  }
1542
1543  DependentSizedArrayType *New;
1544  if (Canon) {
1545    // We already have a canonical version of this array type; use it as
1546    // the canonical type for a newly-built type.
1547    New = new (*this, TypeAlignment)
1548      DependentSizedArrayType(*this, EltTy, QualType(Canon, 0),
1549                              NumElts, ASM, EltTypeQuals, Brackets);
1550  } else {
1551    QualType CanonEltTy = getCanonicalType(EltTy);
1552    if (CanonEltTy == EltTy) {
1553      New = new (*this, TypeAlignment)
1554        DependentSizedArrayType(*this, EltTy, QualType(),
1555                                NumElts, ASM, EltTypeQuals, Brackets);
1556
1557      if (NumElts) {
1558        DependentSizedArrayType *CanonCheck
1559          = DependentSizedArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
1560        assert(!CanonCheck && "Dependent-sized canonical array type broken");
1561        (void)CanonCheck;
1562        DependentSizedArrayTypes.InsertNode(New, InsertPos);
1563      }
1564    } else {
1565      QualType Canon = getDependentSizedArrayType(CanonEltTy, NumElts,
1566                                                  ASM, EltTypeQuals,
1567                                                  SourceRange());
1568      New = new (*this, TypeAlignment)
1569        DependentSizedArrayType(*this, EltTy, Canon,
1570                                NumElts, ASM, EltTypeQuals, Brackets);
1571    }
1572  }
1573
1574  Types.push_back(New);
1575  return QualType(New, 0);
1576}
1577
1578QualType ASTContext::getIncompleteArrayType(QualType EltTy,
1579                                            ArrayType::ArraySizeModifier ASM,
1580                                            unsigned EltTypeQuals) {
1581  llvm::FoldingSetNodeID ID;
1582  IncompleteArrayType::Profile(ID, EltTy, ASM, EltTypeQuals);
1583
1584  void *InsertPos = 0;
1585  if (IncompleteArrayType *ATP =
1586       IncompleteArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
1587    return QualType(ATP, 0);
1588
1589  // If the element type isn't canonical, this won't be a canonical type
1590  // either, so fill in the canonical type field.
1591  QualType Canonical;
1592
1593  if (!EltTy.isCanonical()) {
1594    Canonical = getIncompleteArrayType(getCanonicalType(EltTy),
1595                                       ASM, EltTypeQuals);
1596
1597    // Get the new insert position for the node we care about.
1598    IncompleteArrayType *NewIP =
1599      IncompleteArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
1600    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1601  }
1602
1603  IncompleteArrayType *New = new (*this, TypeAlignment)
1604    IncompleteArrayType(EltTy, Canonical, ASM, EltTypeQuals);
1605
1606  IncompleteArrayTypes.InsertNode(New, InsertPos);
1607  Types.push_back(New);
1608  return QualType(New, 0);
1609}
1610
1611/// getVectorType - Return the unique reference to a vector type of
1612/// the specified element type and size. VectorType must be a built-in type.
1613QualType ASTContext::getVectorType(QualType vecType, unsigned NumElts,
1614                                   bool IsAltiVec, bool IsPixel) {
1615  BuiltinType *baseType;
1616
1617  baseType = dyn_cast<BuiltinType>(getCanonicalType(vecType).getTypePtr());
1618  assert(baseType != 0 && "getVectorType(): Expecting a built-in type");
1619
1620  // Check if we've already instantiated a vector of this type.
1621  llvm::FoldingSetNodeID ID;
1622  VectorType::Profile(ID, vecType, NumElts, Type::Vector,
1623    IsAltiVec, IsPixel);
1624  void *InsertPos = 0;
1625  if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
1626    return QualType(VTP, 0);
1627
1628  // If the element type isn't canonical, this won't be a canonical type either,
1629  // so fill in the canonical type field.
1630  QualType Canonical;
1631  if (!vecType.isCanonical() || IsAltiVec || IsPixel) {
1632    Canonical = getVectorType(getCanonicalType(vecType),
1633      NumElts, false, false);
1634
1635    // Get the new insert position for the node we care about.
1636    VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
1637    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1638  }
1639  VectorType *New = new (*this, TypeAlignment)
1640    VectorType(vecType, NumElts, Canonical, IsAltiVec, IsPixel);
1641  VectorTypes.InsertNode(New, InsertPos);
1642  Types.push_back(New);
1643  return QualType(New, 0);
1644}
1645
1646/// getExtVectorType - Return the unique reference to an extended vector type of
1647/// the specified element type and size. VectorType must be a built-in type.
1648QualType ASTContext::getExtVectorType(QualType vecType, unsigned NumElts) {
1649  BuiltinType *baseType;
1650
1651  baseType = dyn_cast<BuiltinType>(getCanonicalType(vecType).getTypePtr());
1652  assert(baseType != 0 && "getExtVectorType(): Expecting a built-in type");
1653
1654  // Check if we've already instantiated a vector of this type.
1655  llvm::FoldingSetNodeID ID;
1656  VectorType::Profile(ID, vecType, NumElts, Type::ExtVector, false, false);
1657  void *InsertPos = 0;
1658  if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
1659    return QualType(VTP, 0);
1660
1661  // If the element type isn't canonical, this won't be a canonical type either,
1662  // so fill in the canonical type field.
1663  QualType Canonical;
1664  if (!vecType.isCanonical()) {
1665    Canonical = getExtVectorType(getCanonicalType(vecType), NumElts);
1666
1667    // Get the new insert position for the node we care about.
1668    VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
1669    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1670  }
1671  ExtVectorType *New = new (*this, TypeAlignment)
1672    ExtVectorType(vecType, NumElts, Canonical);
1673  VectorTypes.InsertNode(New, InsertPos);
1674  Types.push_back(New);
1675  return QualType(New, 0);
1676}
1677
1678QualType ASTContext::getDependentSizedExtVectorType(QualType vecType,
1679                                                    Expr *SizeExpr,
1680                                                    SourceLocation AttrLoc) {
1681  llvm::FoldingSetNodeID ID;
1682  DependentSizedExtVectorType::Profile(ID, *this, getCanonicalType(vecType),
1683                                       SizeExpr);
1684
1685  void *InsertPos = 0;
1686  DependentSizedExtVectorType *Canon
1687    = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
1688  DependentSizedExtVectorType *New;
1689  if (Canon) {
1690    // We already have a canonical version of this array type; use it as
1691    // the canonical type for a newly-built type.
1692    New = new (*this, TypeAlignment)
1693      DependentSizedExtVectorType(*this, vecType, QualType(Canon, 0),
1694                                  SizeExpr, AttrLoc);
1695  } else {
1696    QualType CanonVecTy = getCanonicalType(vecType);
1697    if (CanonVecTy == vecType) {
1698      New = new (*this, TypeAlignment)
1699        DependentSizedExtVectorType(*this, vecType, QualType(), SizeExpr,
1700                                    AttrLoc);
1701
1702      DependentSizedExtVectorType *CanonCheck
1703        = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
1704      assert(!CanonCheck && "Dependent-sized ext_vector canonical type broken");
1705      (void)CanonCheck;
1706      DependentSizedExtVectorTypes.InsertNode(New, InsertPos);
1707    } else {
1708      QualType Canon = getDependentSizedExtVectorType(CanonVecTy, SizeExpr,
1709                                                      SourceLocation());
1710      New = new (*this, TypeAlignment)
1711        DependentSizedExtVectorType(*this, vecType, Canon, SizeExpr, AttrLoc);
1712    }
1713  }
1714
1715  Types.push_back(New);
1716  return QualType(New, 0);
1717}
1718
1719static CallingConv getCanonicalCallingConv(CallingConv CC) {
1720  if (CC == CC_C)
1721    return CC_Default;
1722  return CC;
1723}
1724
1725/// getFunctionNoProtoType - Return a K&R style C function type like 'int()'.
1726///
1727QualType ASTContext::getFunctionNoProtoType(QualType ResultTy, bool NoReturn,
1728                                            CallingConv CallConv) {
1729  // Unique functions, to guarantee there is only one function of a particular
1730  // structure.
1731  llvm::FoldingSetNodeID ID;
1732  FunctionNoProtoType::Profile(ID, ResultTy, NoReturn, CallConv);
1733
1734  void *InsertPos = 0;
1735  if (FunctionNoProtoType *FT =
1736        FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
1737    return QualType(FT, 0);
1738
1739  QualType Canonical;
1740  if (!ResultTy.isCanonical() ||
1741      getCanonicalCallingConv(CallConv) != CallConv) {
1742    Canonical = getFunctionNoProtoType(getCanonicalType(ResultTy), NoReturn,
1743                                       getCanonicalCallingConv(CallConv));
1744
1745    // Get the new insert position for the node we care about.
1746    FunctionNoProtoType *NewIP =
1747      FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
1748    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1749  }
1750
1751  FunctionNoProtoType *New = new (*this, TypeAlignment)
1752    FunctionNoProtoType(ResultTy, Canonical, NoReturn, CallConv);
1753  Types.push_back(New);
1754  FunctionNoProtoTypes.InsertNode(New, InsertPos);
1755  return QualType(New, 0);
1756}
1757
1758/// getFunctionType - Return a normal function type with a typed argument
1759/// list.  isVariadic indicates whether the argument list includes '...'.
1760QualType ASTContext::getFunctionType(QualType ResultTy,const QualType *ArgArray,
1761                                     unsigned NumArgs, bool isVariadic,
1762                                     unsigned TypeQuals, bool hasExceptionSpec,
1763                                     bool hasAnyExceptionSpec, unsigned NumExs,
1764                                     const QualType *ExArray, bool NoReturn,
1765                                     CallingConv CallConv) {
1766  // Unique functions, to guarantee there is only one function of a particular
1767  // structure.
1768  llvm::FoldingSetNodeID ID;
1769  FunctionProtoType::Profile(ID, ResultTy, ArgArray, NumArgs, isVariadic,
1770                             TypeQuals, hasExceptionSpec, hasAnyExceptionSpec,
1771                             NumExs, ExArray, NoReturn, CallConv);
1772
1773  void *InsertPos = 0;
1774  if (FunctionProtoType *FTP =
1775        FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
1776    return QualType(FTP, 0);
1777
1778  // Determine whether the type being created is already canonical or not.
1779  bool isCanonical = !hasExceptionSpec && ResultTy.isCanonical();
1780  for (unsigned i = 0; i != NumArgs && isCanonical; ++i)
1781    if (!ArgArray[i].isCanonicalAsParam())
1782      isCanonical = false;
1783
1784  // If this type isn't canonical, get the canonical version of it.
1785  // The exception spec is not part of the canonical type.
1786  QualType Canonical;
1787  if (!isCanonical || getCanonicalCallingConv(CallConv) != CallConv) {
1788    llvm::SmallVector<QualType, 16> CanonicalArgs;
1789    CanonicalArgs.reserve(NumArgs);
1790    for (unsigned i = 0; i != NumArgs; ++i)
1791      CanonicalArgs.push_back(getCanonicalParamType(ArgArray[i]));
1792
1793    Canonical = getFunctionType(getCanonicalType(ResultTy),
1794                                CanonicalArgs.data(), NumArgs,
1795                                isVariadic, TypeQuals, false,
1796                                false, 0, 0, NoReturn,
1797                                getCanonicalCallingConv(CallConv));
1798
1799    // Get the new insert position for the node we care about.
1800    FunctionProtoType *NewIP =
1801      FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
1802    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1803  }
1804
1805  // FunctionProtoType objects are allocated with extra bytes after them
1806  // for two variable size arrays (for parameter and exception types) at the
1807  // end of them.
1808  FunctionProtoType *FTP =
1809    (FunctionProtoType*)Allocate(sizeof(FunctionProtoType) +
1810                                 NumArgs*sizeof(QualType) +
1811                                 NumExs*sizeof(QualType), TypeAlignment);
1812  new (FTP) FunctionProtoType(ResultTy, ArgArray, NumArgs, isVariadic,
1813                              TypeQuals, hasExceptionSpec, hasAnyExceptionSpec,
1814                              ExArray, NumExs, Canonical, NoReturn, CallConv);
1815  Types.push_back(FTP);
1816  FunctionProtoTypes.InsertNode(FTP, InsertPos);
1817  return QualType(FTP, 0);
1818}
1819
1820/// getTypeDeclType - Return the unique reference to the type for the
1821/// specified type declaration.
1822QualType ASTContext::getTypeDeclType(TypeDecl *Decl, TypeDecl* PrevDecl) {
1823  assert(Decl && "Passed null for Decl param");
1824  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
1825
1826  if (TypedefDecl *Typedef = dyn_cast<TypedefDecl>(Decl))
1827    return getTypedefType(Typedef);
1828  else if (isa<TemplateTypeParmDecl>(Decl)) {
1829    assert(false && "Template type parameter types are always available.");
1830  } else if (ObjCInterfaceDecl *ObjCInterface
1831               = dyn_cast<ObjCInterfaceDecl>(Decl))
1832    return getObjCInterfaceType(ObjCInterface);
1833
1834  if (RecordDecl *Record = dyn_cast<RecordDecl>(Decl)) {
1835    if (PrevDecl)
1836      Decl->TypeForDecl = PrevDecl->TypeForDecl;
1837    else
1838      Decl->TypeForDecl = new (*this, TypeAlignment) RecordType(Record);
1839  } else if (EnumDecl *Enum = dyn_cast<EnumDecl>(Decl)) {
1840    if (PrevDecl)
1841      Decl->TypeForDecl = PrevDecl->TypeForDecl;
1842    else
1843      Decl->TypeForDecl = new (*this, TypeAlignment) EnumType(Enum);
1844  } else if (UnresolvedUsingTypenameDecl *Using =
1845               dyn_cast<UnresolvedUsingTypenameDecl>(Decl)) {
1846    Decl->TypeForDecl = new (*this, TypeAlignment) UnresolvedUsingType(Using);
1847  } else
1848    assert(false && "TypeDecl without a type?");
1849
1850  if (!PrevDecl) Types.push_back(Decl->TypeForDecl);
1851  return QualType(Decl->TypeForDecl, 0);
1852}
1853
1854/// getTypedefType - Return the unique reference to the type for the
1855/// specified typename decl.
1856QualType ASTContext::getTypedefType(TypedefDecl *Decl) {
1857  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
1858
1859  QualType Canonical = getCanonicalType(Decl->getUnderlyingType());
1860  Decl->TypeForDecl = new(*this, TypeAlignment)
1861    TypedefType(Type::Typedef, Decl, Canonical);
1862  Types.push_back(Decl->TypeForDecl);
1863  return QualType(Decl->TypeForDecl, 0);
1864}
1865
1866/// \brief Retrieve a substitution-result type.
1867QualType
1868ASTContext::getSubstTemplateTypeParmType(const TemplateTypeParmType *Parm,
1869                                         QualType Replacement) {
1870  assert(Replacement.isCanonical()
1871         && "replacement types must always be canonical");
1872
1873  llvm::FoldingSetNodeID ID;
1874  SubstTemplateTypeParmType::Profile(ID, Parm, Replacement);
1875  void *InsertPos = 0;
1876  SubstTemplateTypeParmType *SubstParm
1877    = SubstTemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
1878
1879  if (!SubstParm) {
1880    SubstParm = new (*this, TypeAlignment)
1881      SubstTemplateTypeParmType(Parm, Replacement);
1882    Types.push_back(SubstParm);
1883    SubstTemplateTypeParmTypes.InsertNode(SubstParm, InsertPos);
1884  }
1885
1886  return QualType(SubstParm, 0);
1887}
1888
1889/// \brief Retrieve the template type parameter type for a template
1890/// parameter or parameter pack with the given depth, index, and (optionally)
1891/// name.
1892QualType ASTContext::getTemplateTypeParmType(unsigned Depth, unsigned Index,
1893                                             bool ParameterPack,
1894                                             IdentifierInfo *Name) {
1895  llvm::FoldingSetNodeID ID;
1896  TemplateTypeParmType::Profile(ID, Depth, Index, ParameterPack, Name);
1897  void *InsertPos = 0;
1898  TemplateTypeParmType *TypeParm
1899    = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
1900
1901  if (TypeParm)
1902    return QualType(TypeParm, 0);
1903
1904  if (Name) {
1905    QualType Canon = getTemplateTypeParmType(Depth, Index, ParameterPack);
1906    TypeParm = new (*this, TypeAlignment)
1907      TemplateTypeParmType(Depth, Index, ParameterPack, Name, Canon);
1908
1909    TemplateTypeParmType *TypeCheck
1910      = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
1911    assert(!TypeCheck && "Template type parameter canonical type broken");
1912    (void)TypeCheck;
1913  } else
1914    TypeParm = new (*this, TypeAlignment)
1915      TemplateTypeParmType(Depth, Index, ParameterPack);
1916
1917  Types.push_back(TypeParm);
1918  TemplateTypeParmTypes.InsertNode(TypeParm, InsertPos);
1919
1920  return QualType(TypeParm, 0);
1921}
1922
1923QualType
1924ASTContext::getTemplateSpecializationType(TemplateName Template,
1925                                          const TemplateArgumentListInfo &Args,
1926                                          QualType Canon) {
1927  unsigned NumArgs = Args.size();
1928
1929  llvm::SmallVector<TemplateArgument, 4> ArgVec;
1930  ArgVec.reserve(NumArgs);
1931  for (unsigned i = 0; i != NumArgs; ++i)
1932    ArgVec.push_back(Args[i].getArgument());
1933
1934  return getTemplateSpecializationType(Template, ArgVec.data(), NumArgs, Canon);
1935}
1936
1937QualType
1938ASTContext::getTemplateSpecializationType(TemplateName Template,
1939                                          const TemplateArgument *Args,
1940                                          unsigned NumArgs,
1941                                          QualType Canon) {
1942  if (!Canon.isNull())
1943    Canon = getCanonicalType(Canon);
1944  else {
1945    // Build the canonical template specialization type.
1946    TemplateName CanonTemplate = getCanonicalTemplateName(Template);
1947    llvm::SmallVector<TemplateArgument, 4> CanonArgs;
1948    CanonArgs.reserve(NumArgs);
1949    for (unsigned I = 0; I != NumArgs; ++I)
1950      CanonArgs.push_back(getCanonicalTemplateArgument(Args[I]));
1951
1952    // Determine whether this canonical template specialization type already
1953    // exists.
1954    llvm::FoldingSetNodeID ID;
1955    TemplateSpecializationType::Profile(ID, CanonTemplate,
1956                                        CanonArgs.data(), NumArgs, *this);
1957
1958    void *InsertPos = 0;
1959    TemplateSpecializationType *Spec
1960      = TemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
1961
1962    if (!Spec) {
1963      // Allocate a new canonical template specialization type.
1964      void *Mem = Allocate((sizeof(TemplateSpecializationType) +
1965                            sizeof(TemplateArgument) * NumArgs),
1966                           TypeAlignment);
1967      Spec = new (Mem) TemplateSpecializationType(*this, CanonTemplate,
1968                                                  CanonArgs.data(), NumArgs,
1969                                                  Canon);
1970      Types.push_back(Spec);
1971      TemplateSpecializationTypes.InsertNode(Spec, InsertPos);
1972    }
1973
1974    if (Canon.isNull())
1975      Canon = QualType(Spec, 0);
1976    assert(Canon->isDependentType() &&
1977           "Non-dependent template-id type must have a canonical type");
1978  }
1979
1980  // Allocate the (non-canonical) template specialization type, but don't
1981  // try to unique it: these types typically have location information that
1982  // we don't unique and don't want to lose.
1983  void *Mem = Allocate((sizeof(TemplateSpecializationType) +
1984                        sizeof(TemplateArgument) * NumArgs),
1985                       TypeAlignment);
1986  TemplateSpecializationType *Spec
1987    = new (Mem) TemplateSpecializationType(*this, Template, Args, NumArgs,
1988                                           Canon);
1989
1990  Types.push_back(Spec);
1991  return QualType(Spec, 0);
1992}
1993
1994QualType
1995ASTContext::getQualifiedNameType(NestedNameSpecifier *NNS,
1996                                 QualType NamedType) {
1997  llvm::FoldingSetNodeID ID;
1998  QualifiedNameType::Profile(ID, NNS, NamedType);
1999
2000  void *InsertPos = 0;
2001  QualifiedNameType *T
2002    = QualifiedNameTypes.FindNodeOrInsertPos(ID, InsertPos);
2003  if (T)
2004    return QualType(T, 0);
2005
2006  QualType Canon = NamedType;
2007  if (!Canon.isCanonical()) {
2008    Canon = getCanonicalType(NamedType);
2009    QualifiedNameType *CheckT
2010      = QualifiedNameTypes.FindNodeOrInsertPos(ID, InsertPos);
2011    assert(!CheckT && "Qualified name canonical type broken");
2012    (void)CheckT;
2013  }
2014
2015  T = new (*this) QualifiedNameType(NNS, NamedType, Canon);
2016  Types.push_back(T);
2017  QualifiedNameTypes.InsertNode(T, InsertPos);
2018  return QualType(T, 0);
2019}
2020
2021QualType ASTContext::getTypenameType(NestedNameSpecifier *NNS,
2022                                     const IdentifierInfo *Name,
2023                                     QualType Canon) {
2024  assert(NNS->isDependent() && "nested-name-specifier must be dependent");
2025
2026  if (Canon.isNull()) {
2027    NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
2028    if (CanonNNS != NNS)
2029      Canon = getTypenameType(CanonNNS, Name);
2030  }
2031
2032  llvm::FoldingSetNodeID ID;
2033  TypenameType::Profile(ID, NNS, Name);
2034
2035  void *InsertPos = 0;
2036  TypenameType *T
2037    = TypenameTypes.FindNodeOrInsertPos(ID, InsertPos);
2038  if (T)
2039    return QualType(T, 0);
2040
2041  T = new (*this) TypenameType(NNS, Name, Canon);
2042  Types.push_back(T);
2043  TypenameTypes.InsertNode(T, InsertPos);
2044  return QualType(T, 0);
2045}
2046
2047QualType
2048ASTContext::getTypenameType(NestedNameSpecifier *NNS,
2049                            const TemplateSpecializationType *TemplateId,
2050                            QualType Canon) {
2051  assert(NNS->isDependent() && "nested-name-specifier must be dependent");
2052
2053  llvm::FoldingSetNodeID ID;
2054  TypenameType::Profile(ID, NNS, TemplateId);
2055
2056  void *InsertPos = 0;
2057  TypenameType *T
2058    = TypenameTypes.FindNodeOrInsertPos(ID, InsertPos);
2059  if (T)
2060    return QualType(T, 0);
2061
2062  if (Canon.isNull()) {
2063    NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
2064    QualType CanonType = getCanonicalType(QualType(TemplateId, 0));
2065    if (CanonNNS != NNS || CanonType != QualType(TemplateId, 0)) {
2066      const TemplateSpecializationType *CanonTemplateId
2067        = CanonType->getAs<TemplateSpecializationType>();
2068      assert(CanonTemplateId &&
2069             "Canonical type must also be a template specialization type");
2070      Canon = getTypenameType(CanonNNS, CanonTemplateId);
2071    }
2072
2073    TypenameType *CheckT
2074      = TypenameTypes.FindNodeOrInsertPos(ID, InsertPos);
2075    assert(!CheckT && "Typename canonical type is broken"); (void)CheckT;
2076  }
2077
2078  T = new (*this) TypenameType(NNS, TemplateId, Canon);
2079  Types.push_back(T);
2080  TypenameTypes.InsertNode(T, InsertPos);
2081  return QualType(T, 0);
2082}
2083
2084QualType
2085ASTContext::getElaboratedType(QualType UnderlyingType,
2086                              ElaboratedType::TagKind Tag) {
2087  llvm::FoldingSetNodeID ID;
2088  ElaboratedType::Profile(ID, UnderlyingType, Tag);
2089
2090  void *InsertPos = 0;
2091  ElaboratedType *T = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
2092  if (T)
2093    return QualType(T, 0);
2094
2095  QualType Canon = UnderlyingType;
2096  if (!Canon.isCanonical()) {
2097    Canon = getCanonicalType(Canon);
2098    ElaboratedType *CheckT = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
2099    assert(!CheckT && "Elaborated canonical type is broken"); (void)CheckT;
2100  }
2101
2102  T = new (*this) ElaboratedType(UnderlyingType, Tag, Canon);
2103  Types.push_back(T);
2104  ElaboratedTypes.InsertNode(T, InsertPos);
2105  return QualType(T, 0);
2106}
2107
2108/// CmpProtocolNames - Comparison predicate for sorting protocols
2109/// alphabetically.
2110static bool CmpProtocolNames(const ObjCProtocolDecl *LHS,
2111                            const ObjCProtocolDecl *RHS) {
2112  return LHS->getDeclName() < RHS->getDeclName();
2113}
2114
2115static bool areSortedAndUniqued(ObjCProtocolDecl **Protocols,
2116                                unsigned NumProtocols) {
2117  if (NumProtocols == 0) return true;
2118
2119  for (unsigned i = 1; i != NumProtocols; ++i)
2120    if (!CmpProtocolNames(Protocols[i-1], Protocols[i]))
2121      return false;
2122  return true;
2123}
2124
2125static void SortAndUniqueProtocols(ObjCProtocolDecl **Protocols,
2126                                   unsigned &NumProtocols) {
2127  ObjCProtocolDecl **ProtocolsEnd = Protocols+NumProtocols;
2128
2129  // Sort protocols, keyed by name.
2130  std::sort(Protocols, Protocols+NumProtocols, CmpProtocolNames);
2131
2132  // Remove duplicates.
2133  ProtocolsEnd = std::unique(Protocols, ProtocolsEnd);
2134  NumProtocols = ProtocolsEnd-Protocols;
2135}
2136
2137/// getObjCObjectPointerType - Return a ObjCObjectPointerType type for
2138/// the given interface decl and the conforming protocol list.
2139QualType ASTContext::getObjCObjectPointerType(QualType InterfaceT,
2140                                              ObjCProtocolDecl **Protocols,
2141                                              unsigned NumProtocols) {
2142  llvm::FoldingSetNodeID ID;
2143  ObjCObjectPointerType::Profile(ID, InterfaceT, Protocols, NumProtocols);
2144
2145  void *InsertPos = 0;
2146  if (ObjCObjectPointerType *QT =
2147              ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
2148    return QualType(QT, 0);
2149
2150  // Sort the protocol list alphabetically to canonicalize it.
2151  QualType Canonical;
2152  if (!InterfaceT.isCanonical() ||
2153      !areSortedAndUniqued(Protocols, NumProtocols)) {
2154    if (!areSortedAndUniqued(Protocols, NumProtocols)) {
2155      llvm::SmallVector<ObjCProtocolDecl*, 8> Sorted(NumProtocols);
2156      unsigned UniqueCount = NumProtocols;
2157
2158      std::copy(Protocols, Protocols + NumProtocols, Sorted.begin());
2159      SortAndUniqueProtocols(&Sorted[0], UniqueCount);
2160
2161      Canonical = getObjCObjectPointerType(getCanonicalType(InterfaceT),
2162                                           &Sorted[0], UniqueCount);
2163    } else {
2164      Canonical = getObjCObjectPointerType(getCanonicalType(InterfaceT),
2165                                           Protocols, NumProtocols);
2166    }
2167
2168    // Regenerate InsertPos.
2169    ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
2170  }
2171
2172  // No Match;
2173  ObjCObjectPointerType *QType = new (*this, TypeAlignment)
2174    ObjCObjectPointerType(*this, Canonical, InterfaceT, Protocols,
2175                          NumProtocols);
2176
2177  Types.push_back(QType);
2178  ObjCObjectPointerTypes.InsertNode(QType, InsertPos);
2179  return QualType(QType, 0);
2180}
2181
2182/// getObjCInterfaceType - Return the unique reference to the type for the
2183/// specified ObjC interface decl. The list of protocols is optional.
2184QualType ASTContext::getObjCInterfaceType(const ObjCInterfaceDecl *Decl,
2185                       ObjCProtocolDecl **Protocols, unsigned NumProtocols) {
2186  llvm::FoldingSetNodeID ID;
2187  ObjCInterfaceType::Profile(ID, Decl, Protocols, NumProtocols);
2188
2189  void *InsertPos = 0;
2190  if (ObjCInterfaceType *QT =
2191      ObjCInterfaceTypes.FindNodeOrInsertPos(ID, InsertPos))
2192    return QualType(QT, 0);
2193
2194  // Sort the protocol list alphabetically to canonicalize it.
2195  QualType Canonical;
2196  if (NumProtocols && !areSortedAndUniqued(Protocols, NumProtocols)) {
2197    llvm::SmallVector<ObjCProtocolDecl*, 8> Sorted(NumProtocols);
2198    std::copy(Protocols, Protocols + NumProtocols, Sorted.begin());
2199
2200    unsigned UniqueCount = NumProtocols;
2201    SortAndUniqueProtocols(&Sorted[0], UniqueCount);
2202
2203    Canonical = getObjCInterfaceType(Decl, &Sorted[0], UniqueCount);
2204
2205    ObjCInterfaceTypes.FindNodeOrInsertPos(ID, InsertPos);
2206  }
2207
2208  ObjCInterfaceType *QType = new (*this, TypeAlignment)
2209    ObjCInterfaceType(*this, Canonical, const_cast<ObjCInterfaceDecl*>(Decl),
2210                      Protocols, NumProtocols);
2211
2212  Types.push_back(QType);
2213  ObjCInterfaceTypes.InsertNode(QType, InsertPos);
2214  return QualType(QType, 0);
2215}
2216
2217/// getTypeOfExprType - Unlike many "get<Type>" functions, we can't unique
2218/// TypeOfExprType AST's (since expression's are never shared). For example,
2219/// multiple declarations that refer to "typeof(x)" all contain different
2220/// DeclRefExpr's. This doesn't effect the type checker, since it operates
2221/// on canonical type's (which are always unique).
2222QualType ASTContext::getTypeOfExprType(Expr *tofExpr) {
2223  TypeOfExprType *toe;
2224  if (tofExpr->isTypeDependent()) {
2225    llvm::FoldingSetNodeID ID;
2226    DependentTypeOfExprType::Profile(ID, *this, tofExpr);
2227
2228    void *InsertPos = 0;
2229    DependentTypeOfExprType *Canon
2230      = DependentTypeOfExprTypes.FindNodeOrInsertPos(ID, InsertPos);
2231    if (Canon) {
2232      // We already have a "canonical" version of an identical, dependent
2233      // typeof(expr) type. Use that as our canonical type.
2234      toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr,
2235                                          QualType((TypeOfExprType*)Canon, 0));
2236    }
2237    else {
2238      // Build a new, canonical typeof(expr) type.
2239      Canon
2240        = new (*this, TypeAlignment) DependentTypeOfExprType(*this, tofExpr);
2241      DependentTypeOfExprTypes.InsertNode(Canon, InsertPos);
2242      toe = Canon;
2243    }
2244  } else {
2245    QualType Canonical = getCanonicalType(tofExpr->getType());
2246    toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr, Canonical);
2247  }
2248  Types.push_back(toe);
2249  return QualType(toe, 0);
2250}
2251
2252/// getTypeOfType -  Unlike many "get<Type>" functions, we don't unique
2253/// TypeOfType AST's. The only motivation to unique these nodes would be
2254/// memory savings. Since typeof(t) is fairly uncommon, space shouldn't be
2255/// an issue. This doesn't effect the type checker, since it operates
2256/// on canonical type's (which are always unique).
2257QualType ASTContext::getTypeOfType(QualType tofType) {
2258  QualType Canonical = getCanonicalType(tofType);
2259  TypeOfType *tot = new (*this, TypeAlignment) TypeOfType(tofType, Canonical);
2260  Types.push_back(tot);
2261  return QualType(tot, 0);
2262}
2263
2264/// getDecltypeForExpr - Given an expr, will return the decltype for that
2265/// expression, according to the rules in C++0x [dcl.type.simple]p4
2266static QualType getDecltypeForExpr(const Expr *e, ASTContext &Context) {
2267  if (e->isTypeDependent())
2268    return Context.DependentTy;
2269
2270  // If e is an id expression or a class member access, decltype(e) is defined
2271  // as the type of the entity named by e.
2272  if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(e)) {
2273    if (const ValueDecl *VD = dyn_cast<ValueDecl>(DRE->getDecl()))
2274      return VD->getType();
2275  }
2276  if (const MemberExpr *ME = dyn_cast<MemberExpr>(e)) {
2277    if (const FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl()))
2278      return FD->getType();
2279  }
2280  // If e is a function call or an invocation of an overloaded operator,
2281  // (parentheses around e are ignored), decltype(e) is defined as the
2282  // return type of that function.
2283  if (const CallExpr *CE = dyn_cast<CallExpr>(e->IgnoreParens()))
2284    return CE->getCallReturnType();
2285
2286  QualType T = e->getType();
2287
2288  // Otherwise, where T is the type of e, if e is an lvalue, decltype(e) is
2289  // defined as T&, otherwise decltype(e) is defined as T.
2290  if (e->isLvalue(Context) == Expr::LV_Valid)
2291    T = Context.getLValueReferenceType(T);
2292
2293  return T;
2294}
2295
2296/// getDecltypeType -  Unlike many "get<Type>" functions, we don't unique
2297/// DecltypeType AST's. The only motivation to unique these nodes would be
2298/// memory savings. Since decltype(t) is fairly uncommon, space shouldn't be
2299/// an issue. This doesn't effect the type checker, since it operates
2300/// on canonical type's (which are always unique).
2301QualType ASTContext::getDecltypeType(Expr *e) {
2302  DecltypeType *dt;
2303  if (e->isTypeDependent()) {
2304    llvm::FoldingSetNodeID ID;
2305    DependentDecltypeType::Profile(ID, *this, e);
2306
2307    void *InsertPos = 0;
2308    DependentDecltypeType *Canon
2309      = DependentDecltypeTypes.FindNodeOrInsertPos(ID, InsertPos);
2310    if (Canon) {
2311      // We already have a "canonical" version of an equivalent, dependent
2312      // decltype type. Use that as our canonical type.
2313      dt = new (*this, TypeAlignment) DecltypeType(e, DependentTy,
2314                                       QualType((DecltypeType*)Canon, 0));
2315    }
2316    else {
2317      // Build a new, canonical typeof(expr) type.
2318      Canon = new (*this, TypeAlignment) DependentDecltypeType(*this, e);
2319      DependentDecltypeTypes.InsertNode(Canon, InsertPos);
2320      dt = Canon;
2321    }
2322  } else {
2323    QualType T = getDecltypeForExpr(e, *this);
2324    dt = new (*this, TypeAlignment) DecltypeType(e, T, getCanonicalType(T));
2325  }
2326  Types.push_back(dt);
2327  return QualType(dt, 0);
2328}
2329
2330/// getTagDeclType - Return the unique reference to the type for the
2331/// specified TagDecl (struct/union/class/enum) decl.
2332QualType ASTContext::getTagDeclType(const TagDecl *Decl) {
2333  assert (Decl);
2334  // FIXME: What is the design on getTagDeclType when it requires casting
2335  // away const?  mutable?
2336  return getTypeDeclType(const_cast<TagDecl*>(Decl));
2337}
2338
2339/// getSizeType - Return the unique type for "size_t" (C99 7.17), the result
2340/// of the sizeof operator (C99 6.5.3.4p4). The value is target dependent and
2341/// needs to agree with the definition in <stddef.h>.
2342CanQualType ASTContext::getSizeType() const {
2343  return getFromTargetType(Target.getSizeType());
2344}
2345
2346/// getSignedWCharType - Return the type of "signed wchar_t".
2347/// Used when in C++, as a GCC extension.
2348QualType ASTContext::getSignedWCharType() const {
2349  // FIXME: derive from "Target" ?
2350  return WCharTy;
2351}
2352
2353/// getUnsignedWCharType - Return the type of "unsigned wchar_t".
2354/// Used when in C++, as a GCC extension.
2355QualType ASTContext::getUnsignedWCharType() const {
2356  // FIXME: derive from "Target" ?
2357  return UnsignedIntTy;
2358}
2359
2360/// getPointerDiffType - Return the unique type for "ptrdiff_t" (ref?)
2361/// defined in <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9).
2362QualType ASTContext::getPointerDiffType() const {
2363  return getFromTargetType(Target.getPtrDiffType(0));
2364}
2365
2366//===----------------------------------------------------------------------===//
2367//                              Type Operators
2368//===----------------------------------------------------------------------===//
2369
2370CanQualType ASTContext::getCanonicalParamType(QualType T) {
2371  // Push qualifiers into arrays, and then discard any remaining
2372  // qualifiers.
2373  T = getCanonicalType(T);
2374  const Type *Ty = T.getTypePtr();
2375
2376  QualType Result;
2377  if (isa<ArrayType>(Ty)) {
2378    Result = getArrayDecayedType(QualType(Ty,0));
2379  } else if (isa<FunctionType>(Ty)) {
2380    Result = getPointerType(QualType(Ty, 0));
2381  } else {
2382    Result = QualType(Ty, 0);
2383  }
2384
2385  return CanQualType::CreateUnsafe(Result);
2386}
2387
2388/// getCanonicalType - Return the canonical (structural) type corresponding to
2389/// the specified potentially non-canonical type.  The non-canonical version
2390/// of a type may have many "decorated" versions of types.  Decorators can
2391/// include typedefs, 'typeof' operators, etc. The returned type is guaranteed
2392/// to be free of any of these, allowing two canonical types to be compared
2393/// for exact equality with a simple pointer comparison.
2394CanQualType ASTContext::getCanonicalType(QualType T) {
2395  QualifierCollector Quals;
2396  const Type *Ptr = Quals.strip(T);
2397  QualType CanType = Ptr->getCanonicalTypeInternal();
2398
2399  // The canonical internal type will be the canonical type *except*
2400  // that we push type qualifiers down through array types.
2401
2402  // If there are no new qualifiers to push down, stop here.
2403  if (!Quals.hasQualifiers())
2404    return CanQualType::CreateUnsafe(CanType);
2405
2406  // If the type qualifiers are on an array type, get the canonical
2407  // type of the array with the qualifiers applied to the element
2408  // type.
2409  ArrayType *AT = dyn_cast<ArrayType>(CanType);
2410  if (!AT)
2411    return CanQualType::CreateUnsafe(getQualifiedType(CanType, Quals));
2412
2413  // Get the canonical version of the element with the extra qualifiers on it.
2414  // This can recursively sink qualifiers through multiple levels of arrays.
2415  QualType NewEltTy = getQualifiedType(AT->getElementType(), Quals);
2416  NewEltTy = getCanonicalType(NewEltTy);
2417
2418  if (ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
2419    return CanQualType::CreateUnsafe(
2420             getConstantArrayType(NewEltTy, CAT->getSize(),
2421                                  CAT->getSizeModifier(),
2422                                  CAT->getIndexTypeCVRQualifiers()));
2423  if (IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT))
2424    return CanQualType::CreateUnsafe(
2425             getIncompleteArrayType(NewEltTy, IAT->getSizeModifier(),
2426                                    IAT->getIndexTypeCVRQualifiers()));
2427
2428  if (DependentSizedArrayType *DSAT = dyn_cast<DependentSizedArrayType>(AT))
2429    return CanQualType::CreateUnsafe(
2430             getDependentSizedArrayType(NewEltTy,
2431                                        DSAT->getSizeExpr() ?
2432                                          DSAT->getSizeExpr()->Retain() : 0,
2433                                        DSAT->getSizeModifier(),
2434                                        DSAT->getIndexTypeCVRQualifiers(),
2435                        DSAT->getBracketsRange())->getCanonicalTypeInternal());
2436
2437  VariableArrayType *VAT = cast<VariableArrayType>(AT);
2438  return CanQualType::CreateUnsafe(getVariableArrayType(NewEltTy,
2439                                                        VAT->getSizeExpr() ?
2440                                              VAT->getSizeExpr()->Retain() : 0,
2441                                                        VAT->getSizeModifier(),
2442                                              VAT->getIndexTypeCVRQualifiers(),
2443                                                     VAT->getBracketsRange()));
2444}
2445
2446QualType ASTContext::getUnqualifiedArrayType(QualType T,
2447                                             Qualifiers &Quals) {
2448  Quals = T.getQualifiers();
2449  if (!isa<ArrayType>(T)) {
2450    return T.getUnqualifiedType();
2451  }
2452
2453  const ArrayType *AT = cast<ArrayType>(T);
2454  QualType Elt = AT->getElementType();
2455  QualType UnqualElt = getUnqualifiedArrayType(Elt, Quals);
2456  if (Elt == UnqualElt)
2457    return T;
2458
2459  if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(T)) {
2460    return getConstantArrayType(UnqualElt, CAT->getSize(),
2461                                CAT->getSizeModifier(), 0);
2462  }
2463
2464  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(T)) {
2465    return getIncompleteArrayType(UnqualElt, IAT->getSizeModifier(), 0);
2466  }
2467
2468  const DependentSizedArrayType *DSAT = cast<DependentSizedArrayType>(T);
2469  return getDependentSizedArrayType(UnqualElt, DSAT->getSizeExpr()->Retain(),
2470                                    DSAT->getSizeModifier(), 0,
2471                                    SourceRange());
2472}
2473
2474DeclarationName ASTContext::getNameForTemplate(TemplateName Name) {
2475  if (TemplateDecl *TD = Name.getAsTemplateDecl())
2476    return TD->getDeclName();
2477
2478  if (DependentTemplateName *DTN = Name.getAsDependentTemplateName()) {
2479    if (DTN->isIdentifier()) {
2480      return DeclarationNames.getIdentifier(DTN->getIdentifier());
2481    } else {
2482      return DeclarationNames.getCXXOperatorName(DTN->getOperator());
2483    }
2484  }
2485
2486  OverloadedTemplateStorage *Storage = Name.getAsOverloadedTemplate();
2487  assert(Storage);
2488  return (*Storage->begin())->getDeclName();
2489}
2490
2491TemplateName ASTContext::getCanonicalTemplateName(TemplateName Name) {
2492  // If this template name refers to a template, the canonical
2493  // template name merely stores the template itself.
2494  if (TemplateDecl *Template = Name.getAsTemplateDecl())
2495    return TemplateName(cast<TemplateDecl>(Template->getCanonicalDecl()));
2496
2497  assert(!Name.getAsOverloadedTemplate());
2498
2499  DependentTemplateName *DTN = Name.getAsDependentTemplateName();
2500  assert(DTN && "Non-dependent template names must refer to template decls.");
2501  return DTN->CanonicalTemplateName;
2502}
2503
2504bool ASTContext::hasSameTemplateName(TemplateName X, TemplateName Y) {
2505  X = getCanonicalTemplateName(X);
2506  Y = getCanonicalTemplateName(Y);
2507  return X.getAsVoidPointer() == Y.getAsVoidPointer();
2508}
2509
2510TemplateArgument
2511ASTContext::getCanonicalTemplateArgument(const TemplateArgument &Arg) {
2512  switch (Arg.getKind()) {
2513    case TemplateArgument::Null:
2514      return Arg;
2515
2516    case TemplateArgument::Expression:
2517      return Arg;
2518
2519    case TemplateArgument::Declaration:
2520      return TemplateArgument(Arg.getAsDecl()->getCanonicalDecl());
2521
2522    case TemplateArgument::Template:
2523      return TemplateArgument(getCanonicalTemplateName(Arg.getAsTemplate()));
2524
2525    case TemplateArgument::Integral:
2526      return TemplateArgument(*Arg.getAsIntegral(),
2527                              getCanonicalType(Arg.getIntegralType()));
2528
2529    case TemplateArgument::Type:
2530      return TemplateArgument(getCanonicalType(Arg.getAsType()));
2531
2532    case TemplateArgument::Pack: {
2533      // FIXME: Allocate in ASTContext
2534      TemplateArgument *CanonArgs = new TemplateArgument[Arg.pack_size()];
2535      unsigned Idx = 0;
2536      for (TemplateArgument::pack_iterator A = Arg.pack_begin(),
2537                                        AEnd = Arg.pack_end();
2538           A != AEnd; (void)++A, ++Idx)
2539        CanonArgs[Idx] = getCanonicalTemplateArgument(*A);
2540
2541      TemplateArgument Result;
2542      Result.setArgumentPack(CanonArgs, Arg.pack_size(), false);
2543      return Result;
2544    }
2545  }
2546
2547  // Silence GCC warning
2548  assert(false && "Unhandled template argument kind");
2549  return TemplateArgument();
2550}
2551
2552NestedNameSpecifier *
2553ASTContext::getCanonicalNestedNameSpecifier(NestedNameSpecifier *NNS) {
2554  if (!NNS)
2555    return 0;
2556
2557  switch (NNS->getKind()) {
2558  case NestedNameSpecifier::Identifier:
2559    // Canonicalize the prefix but keep the identifier the same.
2560    return NestedNameSpecifier::Create(*this,
2561                         getCanonicalNestedNameSpecifier(NNS->getPrefix()),
2562                                       NNS->getAsIdentifier());
2563
2564  case NestedNameSpecifier::Namespace:
2565    // A namespace is canonical; build a nested-name-specifier with
2566    // this namespace and no prefix.
2567    return NestedNameSpecifier::Create(*this, 0, NNS->getAsNamespace());
2568
2569  case NestedNameSpecifier::TypeSpec:
2570  case NestedNameSpecifier::TypeSpecWithTemplate: {
2571    QualType T = getCanonicalType(QualType(NNS->getAsType(), 0));
2572    return NestedNameSpecifier::Create(*this, 0,
2573                 NNS->getKind() == NestedNameSpecifier::TypeSpecWithTemplate,
2574                                       T.getTypePtr());
2575  }
2576
2577  case NestedNameSpecifier::Global:
2578    // The global specifier is canonical and unique.
2579    return NNS;
2580  }
2581
2582  // Required to silence a GCC warning
2583  return 0;
2584}
2585
2586
2587const ArrayType *ASTContext::getAsArrayType(QualType T) {
2588  // Handle the non-qualified case efficiently.
2589  if (!T.hasLocalQualifiers()) {
2590    // Handle the common positive case fast.
2591    if (const ArrayType *AT = dyn_cast<ArrayType>(T))
2592      return AT;
2593  }
2594
2595  // Handle the common negative case fast.
2596  QualType CType = T->getCanonicalTypeInternal();
2597  if (!isa<ArrayType>(CType))
2598    return 0;
2599
2600  // Apply any qualifiers from the array type to the element type.  This
2601  // implements C99 6.7.3p8: "If the specification of an array type includes
2602  // any type qualifiers, the element type is so qualified, not the array type."
2603
2604  // If we get here, we either have type qualifiers on the type, or we have
2605  // sugar such as a typedef in the way.  If we have type qualifiers on the type
2606  // we must propagate them down into the element type.
2607
2608  QualifierCollector Qs;
2609  const Type *Ty = Qs.strip(T.getDesugaredType());
2610
2611  // If we have a simple case, just return now.
2612  const ArrayType *ATy = dyn_cast<ArrayType>(Ty);
2613  if (ATy == 0 || Qs.empty())
2614    return ATy;
2615
2616  // Otherwise, we have an array and we have qualifiers on it.  Push the
2617  // qualifiers into the array element type and return a new array type.
2618  // Get the canonical version of the element with the extra qualifiers on it.
2619  // This can recursively sink qualifiers through multiple levels of arrays.
2620  QualType NewEltTy = getQualifiedType(ATy->getElementType(), Qs);
2621
2622  if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(ATy))
2623    return cast<ArrayType>(getConstantArrayType(NewEltTy, CAT->getSize(),
2624                                                CAT->getSizeModifier(),
2625                                           CAT->getIndexTypeCVRQualifiers()));
2626  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(ATy))
2627    return cast<ArrayType>(getIncompleteArrayType(NewEltTy,
2628                                                  IAT->getSizeModifier(),
2629                                           IAT->getIndexTypeCVRQualifiers()));
2630
2631  if (const DependentSizedArrayType *DSAT
2632        = dyn_cast<DependentSizedArrayType>(ATy))
2633    return cast<ArrayType>(
2634                     getDependentSizedArrayType(NewEltTy,
2635                                                DSAT->getSizeExpr() ?
2636                                              DSAT->getSizeExpr()->Retain() : 0,
2637                                                DSAT->getSizeModifier(),
2638                                              DSAT->getIndexTypeCVRQualifiers(),
2639                                                DSAT->getBracketsRange()));
2640
2641  const VariableArrayType *VAT = cast<VariableArrayType>(ATy);
2642  return cast<ArrayType>(getVariableArrayType(NewEltTy,
2643                                              VAT->getSizeExpr() ?
2644                                              VAT->getSizeExpr()->Retain() : 0,
2645                                              VAT->getSizeModifier(),
2646                                              VAT->getIndexTypeCVRQualifiers(),
2647                                              VAT->getBracketsRange()));
2648}
2649
2650
2651/// getArrayDecayedType - Return the properly qualified result of decaying the
2652/// specified array type to a pointer.  This operation is non-trivial when
2653/// handling typedefs etc.  The canonical type of "T" must be an array type,
2654/// this returns a pointer to a properly qualified element of the array.
2655///
2656/// See C99 6.7.5.3p7 and C99 6.3.2.1p3.
2657QualType ASTContext::getArrayDecayedType(QualType Ty) {
2658  // Get the element type with 'getAsArrayType' so that we don't lose any
2659  // typedefs in the element type of the array.  This also handles propagation
2660  // of type qualifiers from the array type into the element type if present
2661  // (C99 6.7.3p8).
2662  const ArrayType *PrettyArrayType = getAsArrayType(Ty);
2663  assert(PrettyArrayType && "Not an array type!");
2664
2665  QualType PtrTy = getPointerType(PrettyArrayType->getElementType());
2666
2667  // int x[restrict 4] ->  int *restrict
2668  return getQualifiedType(PtrTy, PrettyArrayType->getIndexTypeQualifiers());
2669}
2670
2671QualType ASTContext::getBaseElementType(QualType QT) {
2672  QualifierCollector Qs;
2673  while (true) {
2674    const Type *UT = Qs.strip(QT);
2675    if (const ArrayType *AT = getAsArrayType(QualType(UT,0))) {
2676      QT = AT->getElementType();
2677    } else {
2678      return Qs.apply(QT);
2679    }
2680  }
2681}
2682
2683QualType ASTContext::getBaseElementType(const ArrayType *AT) {
2684  QualType ElemTy = AT->getElementType();
2685
2686  if (const ArrayType *AT = getAsArrayType(ElemTy))
2687    return getBaseElementType(AT);
2688
2689  return ElemTy;
2690}
2691
2692/// getConstantArrayElementCount - Returns number of constant array elements.
2693uint64_t
2694ASTContext::getConstantArrayElementCount(const ConstantArrayType *CA)  const {
2695  uint64_t ElementCount = 1;
2696  do {
2697    ElementCount *= CA->getSize().getZExtValue();
2698    CA = dyn_cast<ConstantArrayType>(CA->getElementType());
2699  } while (CA);
2700  return ElementCount;
2701}
2702
2703/// getFloatingRank - Return a relative rank for floating point types.
2704/// This routine will assert if passed a built-in type that isn't a float.
2705static FloatingRank getFloatingRank(QualType T) {
2706  if (const ComplexType *CT = T->getAs<ComplexType>())
2707    return getFloatingRank(CT->getElementType());
2708
2709  assert(T->getAs<BuiltinType>() && "getFloatingRank(): not a floating type");
2710  switch (T->getAs<BuiltinType>()->getKind()) {
2711  default: assert(0 && "getFloatingRank(): not a floating type");
2712  case BuiltinType::Float:      return FloatRank;
2713  case BuiltinType::Double:     return DoubleRank;
2714  case BuiltinType::LongDouble: return LongDoubleRank;
2715  }
2716}
2717
2718/// getFloatingTypeOfSizeWithinDomain - Returns a real floating
2719/// point or a complex type (based on typeDomain/typeSize).
2720/// 'typeDomain' is a real floating point or complex type.
2721/// 'typeSize' is a real floating point or complex type.
2722QualType ASTContext::getFloatingTypeOfSizeWithinDomain(QualType Size,
2723                                                       QualType Domain) const {
2724  FloatingRank EltRank = getFloatingRank(Size);
2725  if (Domain->isComplexType()) {
2726    switch (EltRank) {
2727    default: assert(0 && "getFloatingRank(): illegal value for rank");
2728    case FloatRank:      return FloatComplexTy;
2729    case DoubleRank:     return DoubleComplexTy;
2730    case LongDoubleRank: return LongDoubleComplexTy;
2731    }
2732  }
2733
2734  assert(Domain->isRealFloatingType() && "Unknown domain!");
2735  switch (EltRank) {
2736  default: assert(0 && "getFloatingRank(): illegal value for rank");
2737  case FloatRank:      return FloatTy;
2738  case DoubleRank:     return DoubleTy;
2739  case LongDoubleRank: return LongDoubleTy;
2740  }
2741}
2742
2743/// getFloatingTypeOrder - Compare the rank of the two specified floating
2744/// point types, ignoring the domain of the type (i.e. 'double' ==
2745/// '_Complex double').  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
2746/// LHS < RHS, return -1.
2747int ASTContext::getFloatingTypeOrder(QualType LHS, QualType RHS) {
2748  FloatingRank LHSR = getFloatingRank(LHS);
2749  FloatingRank RHSR = getFloatingRank(RHS);
2750
2751  if (LHSR == RHSR)
2752    return 0;
2753  if (LHSR > RHSR)
2754    return 1;
2755  return -1;
2756}
2757
2758/// getIntegerRank - Return an integer conversion rank (C99 6.3.1.1p1). This
2759/// routine will assert if passed a built-in type that isn't an integer or enum,
2760/// or if it is not canonicalized.
2761unsigned ASTContext::getIntegerRank(Type *T) {
2762  assert(T->isCanonicalUnqualified() && "T should be canonicalized");
2763  if (EnumType* ET = dyn_cast<EnumType>(T))
2764    T = ET->getDecl()->getPromotionType().getTypePtr();
2765
2766  if (T->isSpecificBuiltinType(BuiltinType::WChar))
2767    T = getFromTargetType(Target.getWCharType()).getTypePtr();
2768
2769  if (T->isSpecificBuiltinType(BuiltinType::Char16))
2770    T = getFromTargetType(Target.getChar16Type()).getTypePtr();
2771
2772  if (T->isSpecificBuiltinType(BuiltinType::Char32))
2773    T = getFromTargetType(Target.getChar32Type()).getTypePtr();
2774
2775  switch (cast<BuiltinType>(T)->getKind()) {
2776  default: assert(0 && "getIntegerRank(): not a built-in integer");
2777  case BuiltinType::Bool:
2778    return 1 + (getIntWidth(BoolTy) << 3);
2779  case BuiltinType::Char_S:
2780  case BuiltinType::Char_U:
2781  case BuiltinType::SChar:
2782  case BuiltinType::UChar:
2783    return 2 + (getIntWidth(CharTy) << 3);
2784  case BuiltinType::Short:
2785  case BuiltinType::UShort:
2786    return 3 + (getIntWidth(ShortTy) << 3);
2787  case BuiltinType::Int:
2788  case BuiltinType::UInt:
2789    return 4 + (getIntWidth(IntTy) << 3);
2790  case BuiltinType::Long:
2791  case BuiltinType::ULong:
2792    return 5 + (getIntWidth(LongTy) << 3);
2793  case BuiltinType::LongLong:
2794  case BuiltinType::ULongLong:
2795    return 6 + (getIntWidth(LongLongTy) << 3);
2796  case BuiltinType::Int128:
2797  case BuiltinType::UInt128:
2798    return 7 + (getIntWidth(Int128Ty) << 3);
2799  }
2800}
2801
2802/// \brief Whether this is a promotable bitfield reference according
2803/// to C99 6.3.1.1p2, bullet 2 (and GCC extensions).
2804///
2805/// \returns the type this bit-field will promote to, or NULL if no
2806/// promotion occurs.
2807QualType ASTContext::isPromotableBitField(Expr *E) {
2808  FieldDecl *Field = E->getBitField();
2809  if (!Field)
2810    return QualType();
2811
2812  QualType FT = Field->getType();
2813
2814  llvm::APSInt BitWidthAP = Field->getBitWidth()->EvaluateAsInt(*this);
2815  uint64_t BitWidth = BitWidthAP.getZExtValue();
2816  uint64_t IntSize = getTypeSize(IntTy);
2817  // GCC extension compatibility: if the bit-field size is less than or equal
2818  // to the size of int, it gets promoted no matter what its type is.
2819  // For instance, unsigned long bf : 4 gets promoted to signed int.
2820  if (BitWidth < IntSize)
2821    return IntTy;
2822
2823  if (BitWidth == IntSize)
2824    return FT->isSignedIntegerType() ? IntTy : UnsignedIntTy;
2825
2826  // Types bigger than int are not subject to promotions, and therefore act
2827  // like the base type.
2828  // FIXME: This doesn't quite match what gcc does, but what gcc does here
2829  // is ridiculous.
2830  return QualType();
2831}
2832
2833/// getPromotedIntegerType - Returns the type that Promotable will
2834/// promote to: C99 6.3.1.1p2, assuming that Promotable is a promotable
2835/// integer type.
2836QualType ASTContext::getPromotedIntegerType(QualType Promotable) {
2837  assert(!Promotable.isNull());
2838  assert(Promotable->isPromotableIntegerType());
2839  if (const EnumType *ET = Promotable->getAs<EnumType>())
2840    return ET->getDecl()->getPromotionType();
2841  if (Promotable->isSignedIntegerType())
2842    return IntTy;
2843  uint64_t PromotableSize = getTypeSize(Promotable);
2844  uint64_t IntSize = getTypeSize(IntTy);
2845  assert(Promotable->isUnsignedIntegerType() && PromotableSize <= IntSize);
2846  return (PromotableSize != IntSize) ? IntTy : UnsignedIntTy;
2847}
2848
2849/// getIntegerTypeOrder - Returns the highest ranked integer type:
2850/// C99 6.3.1.8p1.  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
2851/// LHS < RHS, return -1.
2852int ASTContext::getIntegerTypeOrder(QualType LHS, QualType RHS) {
2853  Type *LHSC = getCanonicalType(LHS).getTypePtr();
2854  Type *RHSC = getCanonicalType(RHS).getTypePtr();
2855  if (LHSC == RHSC) return 0;
2856
2857  bool LHSUnsigned = LHSC->isUnsignedIntegerType();
2858  bool RHSUnsigned = RHSC->isUnsignedIntegerType();
2859
2860  unsigned LHSRank = getIntegerRank(LHSC);
2861  unsigned RHSRank = getIntegerRank(RHSC);
2862
2863  if (LHSUnsigned == RHSUnsigned) {  // Both signed or both unsigned.
2864    if (LHSRank == RHSRank) return 0;
2865    return LHSRank > RHSRank ? 1 : -1;
2866  }
2867
2868  // Otherwise, the LHS is signed and the RHS is unsigned or visa versa.
2869  if (LHSUnsigned) {
2870    // If the unsigned [LHS] type is larger, return it.
2871    if (LHSRank >= RHSRank)
2872      return 1;
2873
2874    // If the signed type can represent all values of the unsigned type, it
2875    // wins.  Because we are dealing with 2's complement and types that are
2876    // powers of two larger than each other, this is always safe.
2877    return -1;
2878  }
2879
2880  // If the unsigned [RHS] type is larger, return it.
2881  if (RHSRank >= LHSRank)
2882    return -1;
2883
2884  // If the signed type can represent all values of the unsigned type, it
2885  // wins.  Because we are dealing with 2's complement and types that are
2886  // powers of two larger than each other, this is always safe.
2887  return 1;
2888}
2889
2890static RecordDecl *
2891CreateRecordDecl(ASTContext &Ctx, RecordDecl::TagKind TK, DeclContext *DC,
2892                 SourceLocation L, IdentifierInfo *Id) {
2893  if (Ctx.getLangOptions().CPlusPlus)
2894    return CXXRecordDecl::Create(Ctx, TK, DC, L, Id);
2895  else
2896    return RecordDecl::Create(Ctx, TK, DC, L, Id);
2897}
2898
2899// getCFConstantStringType - Return the type used for constant CFStrings.
2900QualType ASTContext::getCFConstantStringType() {
2901  if (!CFConstantStringTypeDecl) {
2902    CFConstantStringTypeDecl =
2903      CreateRecordDecl(*this, TagDecl::TK_struct, TUDecl, SourceLocation(),
2904                       &Idents.get("NSConstantString"));
2905    CFConstantStringTypeDecl->startDefinition();
2906
2907    QualType FieldTypes[4];
2908
2909    // const int *isa;
2910    FieldTypes[0] = getPointerType(IntTy.withConst());
2911    // int flags;
2912    FieldTypes[1] = IntTy;
2913    // const char *str;
2914    FieldTypes[2] = getPointerType(CharTy.withConst());
2915    // long length;
2916    FieldTypes[3] = LongTy;
2917
2918    // Create fields
2919    for (unsigned i = 0; i < 4; ++i) {
2920      FieldDecl *Field = FieldDecl::Create(*this, CFConstantStringTypeDecl,
2921                                           SourceLocation(), 0,
2922                                           FieldTypes[i], /*TInfo=*/0,
2923                                           /*BitWidth=*/0,
2924                                           /*Mutable=*/false);
2925      CFConstantStringTypeDecl->addDecl(Field);
2926    }
2927
2928    CFConstantStringTypeDecl->completeDefinition(*this);
2929  }
2930
2931  return getTagDeclType(CFConstantStringTypeDecl);
2932}
2933
2934void ASTContext::setCFConstantStringType(QualType T) {
2935  const RecordType *Rec = T->getAs<RecordType>();
2936  assert(Rec && "Invalid CFConstantStringType");
2937  CFConstantStringTypeDecl = Rec->getDecl();
2938}
2939
2940QualType ASTContext::getObjCFastEnumerationStateType() {
2941  if (!ObjCFastEnumerationStateTypeDecl) {
2942    ObjCFastEnumerationStateTypeDecl =
2943      CreateRecordDecl(*this, TagDecl::TK_struct, TUDecl, SourceLocation(),
2944                       &Idents.get("__objcFastEnumerationState"));
2945    ObjCFastEnumerationStateTypeDecl->startDefinition();
2946
2947    QualType FieldTypes[] = {
2948      UnsignedLongTy,
2949      getPointerType(ObjCIdTypedefType),
2950      getPointerType(UnsignedLongTy),
2951      getConstantArrayType(UnsignedLongTy,
2952                           llvm::APInt(32, 5), ArrayType::Normal, 0)
2953    };
2954
2955    for (size_t i = 0; i < 4; ++i) {
2956      FieldDecl *Field = FieldDecl::Create(*this,
2957                                           ObjCFastEnumerationStateTypeDecl,
2958                                           SourceLocation(), 0,
2959                                           FieldTypes[i], /*TInfo=*/0,
2960                                           /*BitWidth=*/0,
2961                                           /*Mutable=*/false);
2962      ObjCFastEnumerationStateTypeDecl->addDecl(Field);
2963    }
2964
2965    ObjCFastEnumerationStateTypeDecl->completeDefinition(*this);
2966  }
2967
2968  return getTagDeclType(ObjCFastEnumerationStateTypeDecl);
2969}
2970
2971QualType ASTContext::getBlockDescriptorType() {
2972  if (BlockDescriptorType)
2973    return getTagDeclType(BlockDescriptorType);
2974
2975  RecordDecl *T;
2976  // FIXME: Needs the FlagAppleBlock bit.
2977  T = CreateRecordDecl(*this, TagDecl::TK_struct, TUDecl, SourceLocation(),
2978                       &Idents.get("__block_descriptor"));
2979  T->startDefinition();
2980
2981  QualType FieldTypes[] = {
2982    UnsignedLongTy,
2983    UnsignedLongTy,
2984  };
2985
2986  const char *FieldNames[] = {
2987    "reserved",
2988    "Size"
2989  };
2990
2991  for (size_t i = 0; i < 2; ++i) {
2992    FieldDecl *Field = FieldDecl::Create(*this,
2993                                         T,
2994                                         SourceLocation(),
2995                                         &Idents.get(FieldNames[i]),
2996                                         FieldTypes[i], /*TInfo=*/0,
2997                                         /*BitWidth=*/0,
2998                                         /*Mutable=*/false);
2999    T->addDecl(Field);
3000  }
3001
3002  T->completeDefinition(*this);
3003
3004  BlockDescriptorType = T;
3005
3006  return getTagDeclType(BlockDescriptorType);
3007}
3008
3009void ASTContext::setBlockDescriptorType(QualType T) {
3010  const RecordType *Rec = T->getAs<RecordType>();
3011  assert(Rec && "Invalid BlockDescriptorType");
3012  BlockDescriptorType = Rec->getDecl();
3013}
3014
3015QualType ASTContext::getBlockDescriptorExtendedType() {
3016  if (BlockDescriptorExtendedType)
3017    return getTagDeclType(BlockDescriptorExtendedType);
3018
3019  RecordDecl *T;
3020  // FIXME: Needs the FlagAppleBlock bit.
3021  T = CreateRecordDecl(*this, TagDecl::TK_struct, TUDecl, SourceLocation(),
3022                       &Idents.get("__block_descriptor_withcopydispose"));
3023  T->startDefinition();
3024
3025  QualType FieldTypes[] = {
3026    UnsignedLongTy,
3027    UnsignedLongTy,
3028    getPointerType(VoidPtrTy),
3029    getPointerType(VoidPtrTy)
3030  };
3031
3032  const char *FieldNames[] = {
3033    "reserved",
3034    "Size",
3035    "CopyFuncPtr",
3036    "DestroyFuncPtr"
3037  };
3038
3039  for (size_t i = 0; i < 4; ++i) {
3040    FieldDecl *Field = FieldDecl::Create(*this,
3041                                         T,
3042                                         SourceLocation(),
3043                                         &Idents.get(FieldNames[i]),
3044                                         FieldTypes[i], /*TInfo=*/0,
3045                                         /*BitWidth=*/0,
3046                                         /*Mutable=*/false);
3047    T->addDecl(Field);
3048  }
3049
3050  T->completeDefinition(*this);
3051
3052  BlockDescriptorExtendedType = T;
3053
3054  return getTagDeclType(BlockDescriptorExtendedType);
3055}
3056
3057void ASTContext::setBlockDescriptorExtendedType(QualType T) {
3058  const RecordType *Rec = T->getAs<RecordType>();
3059  assert(Rec && "Invalid BlockDescriptorType");
3060  BlockDescriptorExtendedType = Rec->getDecl();
3061}
3062
3063bool ASTContext::BlockRequiresCopying(QualType Ty) {
3064  if (Ty->isBlockPointerType())
3065    return true;
3066  if (isObjCNSObjectType(Ty))
3067    return true;
3068  if (Ty->isObjCObjectPointerType())
3069    return true;
3070  return false;
3071}
3072
3073QualType ASTContext::BuildByRefType(const char *DeclName, QualType Ty) {
3074  //  type = struct __Block_byref_1_X {
3075  //    void *__isa;
3076  //    struct __Block_byref_1_X *__forwarding;
3077  //    unsigned int __flags;
3078  //    unsigned int __size;
3079  //    void *__copy_helper;		// as needed
3080  //    void *__destroy_help		// as needed
3081  //    int X;
3082  //  } *
3083
3084  bool HasCopyAndDispose = BlockRequiresCopying(Ty);
3085
3086  // FIXME: Move up
3087  static unsigned int UniqueBlockByRefTypeID = 0;
3088  llvm::SmallString<36> Name;
3089  llvm::raw_svector_ostream(Name) << "__Block_byref_" <<
3090                                  ++UniqueBlockByRefTypeID << '_' << DeclName;
3091  RecordDecl *T;
3092  T = CreateRecordDecl(*this, TagDecl::TK_struct, TUDecl, SourceLocation(),
3093                       &Idents.get(Name.str()));
3094  T->startDefinition();
3095  QualType Int32Ty = IntTy;
3096  assert(getIntWidth(IntTy) == 32 && "non-32bit int not supported");
3097  QualType FieldTypes[] = {
3098    getPointerType(VoidPtrTy),
3099    getPointerType(getTagDeclType(T)),
3100    Int32Ty,
3101    Int32Ty,
3102    getPointerType(VoidPtrTy),
3103    getPointerType(VoidPtrTy),
3104    Ty
3105  };
3106
3107  const char *FieldNames[] = {
3108    "__isa",
3109    "__forwarding",
3110    "__flags",
3111    "__size",
3112    "__copy_helper",
3113    "__destroy_helper",
3114    DeclName,
3115  };
3116
3117  for (size_t i = 0; i < 7; ++i) {
3118    if (!HasCopyAndDispose && i >=4 && i <= 5)
3119      continue;
3120    FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(),
3121                                         &Idents.get(FieldNames[i]),
3122                                         FieldTypes[i], /*TInfo=*/0,
3123                                         /*BitWidth=*/0, /*Mutable=*/false);
3124    T->addDecl(Field);
3125  }
3126
3127  T->completeDefinition(*this);
3128
3129  return getPointerType(getTagDeclType(T));
3130}
3131
3132
3133QualType ASTContext::getBlockParmType(
3134  bool BlockHasCopyDispose,
3135  llvm::SmallVector<const Expr *, 8> &BlockDeclRefDecls) {
3136  // FIXME: Move up
3137  static unsigned int UniqueBlockParmTypeID = 0;
3138  llvm::SmallString<36> Name;
3139  llvm::raw_svector_ostream(Name) << "__block_literal_"
3140                                  << ++UniqueBlockParmTypeID;
3141  RecordDecl *T;
3142  T = CreateRecordDecl(*this, TagDecl::TK_struct, TUDecl, SourceLocation(),
3143                       &Idents.get(Name.str()));
3144  T->startDefinition();
3145  QualType FieldTypes[] = {
3146    getPointerType(VoidPtrTy),
3147    IntTy,
3148    IntTy,
3149    getPointerType(VoidPtrTy),
3150    (BlockHasCopyDispose ?
3151     getPointerType(getBlockDescriptorExtendedType()) :
3152     getPointerType(getBlockDescriptorType()))
3153  };
3154
3155  const char *FieldNames[] = {
3156    "__isa",
3157    "__flags",
3158    "__reserved",
3159    "__FuncPtr",
3160    "__descriptor"
3161  };
3162
3163  for (size_t i = 0; i < 5; ++i) {
3164    FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(),
3165                                         &Idents.get(FieldNames[i]),
3166                                         FieldTypes[i], /*TInfo=*/0,
3167                                         /*BitWidth=*/0, /*Mutable=*/false);
3168    T->addDecl(Field);
3169  }
3170
3171  for (size_t i = 0; i < BlockDeclRefDecls.size(); ++i) {
3172    const Expr *E = BlockDeclRefDecls[i];
3173    const BlockDeclRefExpr *BDRE = dyn_cast<BlockDeclRefExpr>(E);
3174    clang::IdentifierInfo *Name = 0;
3175    if (BDRE) {
3176      const ValueDecl *D = BDRE->getDecl();
3177      Name = &Idents.get(D->getName());
3178    }
3179    QualType FieldType = E->getType();
3180
3181    if (BDRE && BDRE->isByRef())
3182      FieldType = BuildByRefType(BDRE->getDecl()->getNameAsCString(),
3183                                 FieldType);
3184
3185    FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(),
3186                                         Name, FieldType, /*TInfo=*/0,
3187                                         /*BitWidth=*/0, /*Mutable=*/false);
3188    T->addDecl(Field);
3189  }
3190
3191  T->completeDefinition(*this);
3192
3193  return getPointerType(getTagDeclType(T));
3194}
3195
3196void ASTContext::setObjCFastEnumerationStateType(QualType T) {
3197  const RecordType *Rec = T->getAs<RecordType>();
3198  assert(Rec && "Invalid ObjCFAstEnumerationStateType");
3199  ObjCFastEnumerationStateTypeDecl = Rec->getDecl();
3200}
3201
3202// This returns true if a type has been typedefed to BOOL:
3203// typedef <type> BOOL;
3204static bool isTypeTypedefedAsBOOL(QualType T) {
3205  if (const TypedefType *TT = dyn_cast<TypedefType>(T))
3206    if (IdentifierInfo *II = TT->getDecl()->getIdentifier())
3207      return II->isStr("BOOL");
3208
3209  return false;
3210}
3211
3212/// getObjCEncodingTypeSize returns size of type for objective-c encoding
3213/// purpose.
3214CharUnits ASTContext::getObjCEncodingTypeSize(QualType type) {
3215  CharUnits sz = getTypeSizeInChars(type);
3216
3217  // Make all integer and enum types at least as large as an int
3218  if (sz.isPositive() && type->isIntegralType())
3219    sz = std::max(sz, getTypeSizeInChars(IntTy));
3220  // Treat arrays as pointers, since that's how they're passed in.
3221  else if (type->isArrayType())
3222    sz = getTypeSizeInChars(VoidPtrTy);
3223  return sz;
3224}
3225
3226static inline
3227std::string charUnitsToString(const CharUnits &CU) {
3228  return llvm::itostr(CU.getQuantity());
3229}
3230
3231/// getObjCEncodingForBlockDecl - Return the encoded type for this method
3232/// declaration.
3233void ASTContext::getObjCEncodingForBlock(const BlockExpr *Expr,
3234                                             std::string& S) {
3235  const BlockDecl *Decl = Expr->getBlockDecl();
3236  QualType BlockTy =
3237      Expr->getType()->getAs<BlockPointerType>()->getPointeeType();
3238  // Encode result type.
3239  getObjCEncodingForType(cast<FunctionType>(BlockTy)->getResultType(), S);
3240  // Compute size of all parameters.
3241  // Start with computing size of a pointer in number of bytes.
3242  // FIXME: There might(should) be a better way of doing this computation!
3243  SourceLocation Loc;
3244  CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy);
3245  CharUnits ParmOffset = PtrSize;
3246  for (ObjCMethodDecl::param_iterator PI = Decl->param_begin(),
3247       E = Decl->param_end(); PI != E; ++PI) {
3248    QualType PType = (*PI)->getType();
3249    CharUnits sz = getObjCEncodingTypeSize(PType);
3250    assert (sz.isPositive() && "BlockExpr - Incomplete param type");
3251    ParmOffset += sz;
3252  }
3253  // Size of the argument frame
3254  S += charUnitsToString(ParmOffset);
3255  // Block pointer and offset.
3256  S += "@?0";
3257  ParmOffset = PtrSize;
3258
3259  // Argument types.
3260  ParmOffset = PtrSize;
3261  for (BlockDecl::param_const_iterator PI = Decl->param_begin(), E =
3262       Decl->param_end(); PI != E; ++PI) {
3263    ParmVarDecl *PVDecl = *PI;
3264    QualType PType = PVDecl->getOriginalType();
3265    if (const ArrayType *AT =
3266          dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
3267      // Use array's original type only if it has known number of
3268      // elements.
3269      if (!isa<ConstantArrayType>(AT))
3270        PType = PVDecl->getType();
3271    } else if (PType->isFunctionType())
3272      PType = PVDecl->getType();
3273    getObjCEncodingForType(PType, S);
3274    S += charUnitsToString(ParmOffset);
3275    ParmOffset += getObjCEncodingTypeSize(PType);
3276  }
3277}
3278
3279/// getObjCEncodingForMethodDecl - Return the encoded type for this method
3280/// declaration.
3281void ASTContext::getObjCEncodingForMethodDecl(const ObjCMethodDecl *Decl,
3282                                              std::string& S) {
3283  // FIXME: This is not very efficient.
3284  // Encode type qualifer, 'in', 'inout', etc. for the return type.
3285  getObjCEncodingForTypeQualifier(Decl->getObjCDeclQualifier(), S);
3286  // Encode result type.
3287  getObjCEncodingForType(Decl->getResultType(), S);
3288  // Compute size of all parameters.
3289  // Start with computing size of a pointer in number of bytes.
3290  // FIXME: There might(should) be a better way of doing this computation!
3291  SourceLocation Loc;
3292  CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy);
3293  // The first two arguments (self and _cmd) are pointers; account for
3294  // their size.
3295  CharUnits ParmOffset = 2 * PtrSize;
3296  for (ObjCMethodDecl::param_iterator PI = Decl->param_begin(),
3297       E = Decl->param_end(); PI != E; ++PI) {
3298    QualType PType = (*PI)->getType();
3299    CharUnits sz = getObjCEncodingTypeSize(PType);
3300    assert (sz.isPositive() &&
3301        "getObjCEncodingForMethodDecl - Incomplete param type");
3302    ParmOffset += sz;
3303  }
3304  S += charUnitsToString(ParmOffset);
3305  S += "@0:";
3306  S += charUnitsToString(PtrSize);
3307
3308  // Argument types.
3309  ParmOffset = 2 * PtrSize;
3310  for (ObjCMethodDecl::param_iterator PI = Decl->param_begin(),
3311       E = Decl->param_end(); PI != E; ++PI) {
3312    ParmVarDecl *PVDecl = *PI;
3313    QualType PType = PVDecl->getOriginalType();
3314    if (const ArrayType *AT =
3315          dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
3316      // Use array's original type only if it has known number of
3317      // elements.
3318      if (!isa<ConstantArrayType>(AT))
3319        PType = PVDecl->getType();
3320    } else if (PType->isFunctionType())
3321      PType = PVDecl->getType();
3322    // Process argument qualifiers for user supplied arguments; such as,
3323    // 'in', 'inout', etc.
3324    getObjCEncodingForTypeQualifier(PVDecl->getObjCDeclQualifier(), S);
3325    getObjCEncodingForType(PType, S);
3326    S += charUnitsToString(ParmOffset);
3327    ParmOffset += getObjCEncodingTypeSize(PType);
3328  }
3329}
3330
3331/// getObjCEncodingForPropertyDecl - Return the encoded type for this
3332/// property declaration. If non-NULL, Container must be either an
3333/// ObjCCategoryImplDecl or ObjCImplementationDecl; it should only be
3334/// NULL when getting encodings for protocol properties.
3335/// Property attributes are stored as a comma-delimited C string. The simple
3336/// attributes readonly and bycopy are encoded as single characters. The
3337/// parametrized attributes, getter=name, setter=name, and ivar=name, are
3338/// encoded as single characters, followed by an identifier. Property types
3339/// are also encoded as a parametrized attribute. The characters used to encode
3340/// these attributes are defined by the following enumeration:
3341/// @code
3342/// enum PropertyAttributes {
3343/// kPropertyReadOnly = 'R',   // property is read-only.
3344/// kPropertyBycopy = 'C',     // property is a copy of the value last assigned
3345/// kPropertyByref = '&',  // property is a reference to the value last assigned
3346/// kPropertyDynamic = 'D',    // property is dynamic
3347/// kPropertyGetter = 'G',     // followed by getter selector name
3348/// kPropertySetter = 'S',     // followed by setter selector name
3349/// kPropertyInstanceVariable = 'V'  // followed by instance variable  name
3350/// kPropertyType = 't'              // followed by old-style type encoding.
3351/// kPropertyWeak = 'W'              // 'weak' property
3352/// kPropertyStrong = 'P'            // property GC'able
3353/// kPropertyNonAtomic = 'N'         // property non-atomic
3354/// };
3355/// @endcode
3356void ASTContext::getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD,
3357                                                const Decl *Container,
3358                                                std::string& S) {
3359  // Collect information from the property implementation decl(s).
3360  bool Dynamic = false;
3361  ObjCPropertyImplDecl *SynthesizePID = 0;
3362
3363  // FIXME: Duplicated code due to poor abstraction.
3364  if (Container) {
3365    if (const ObjCCategoryImplDecl *CID =
3366        dyn_cast<ObjCCategoryImplDecl>(Container)) {
3367      for (ObjCCategoryImplDecl::propimpl_iterator
3368             i = CID->propimpl_begin(), e = CID->propimpl_end();
3369           i != e; ++i) {
3370        ObjCPropertyImplDecl *PID = *i;
3371        if (PID->getPropertyDecl() == PD) {
3372          if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) {
3373            Dynamic = true;
3374          } else {
3375            SynthesizePID = PID;
3376          }
3377        }
3378      }
3379    } else {
3380      const ObjCImplementationDecl *OID=cast<ObjCImplementationDecl>(Container);
3381      for (ObjCCategoryImplDecl::propimpl_iterator
3382             i = OID->propimpl_begin(), e = OID->propimpl_end();
3383           i != e; ++i) {
3384        ObjCPropertyImplDecl *PID = *i;
3385        if (PID->getPropertyDecl() == PD) {
3386          if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) {
3387            Dynamic = true;
3388          } else {
3389            SynthesizePID = PID;
3390          }
3391        }
3392      }
3393    }
3394  }
3395
3396  // FIXME: This is not very efficient.
3397  S = "T";
3398
3399  // Encode result type.
3400  // GCC has some special rules regarding encoding of properties which
3401  // closely resembles encoding of ivars.
3402  getObjCEncodingForTypeImpl(PD->getType(), S, true, true, 0,
3403                             true /* outermost type */,
3404                             true /* encoding for property */);
3405
3406  if (PD->isReadOnly()) {
3407    S += ",R";
3408  } else {
3409    switch (PD->getSetterKind()) {
3410    case ObjCPropertyDecl::Assign: break;
3411    case ObjCPropertyDecl::Copy:   S += ",C"; break;
3412    case ObjCPropertyDecl::Retain: S += ",&"; break;
3413    }
3414  }
3415
3416  // It really isn't clear at all what this means, since properties
3417  // are "dynamic by default".
3418  if (Dynamic)
3419    S += ",D";
3420
3421  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_nonatomic)
3422    S += ",N";
3423
3424  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_getter) {
3425    S += ",G";
3426    S += PD->getGetterName().getAsString();
3427  }
3428
3429  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_setter) {
3430    S += ",S";
3431    S += PD->getSetterName().getAsString();
3432  }
3433
3434  if (SynthesizePID) {
3435    const ObjCIvarDecl *OID = SynthesizePID->getPropertyIvarDecl();
3436    S += ",V";
3437    S += OID->getNameAsString();
3438  }
3439
3440  // FIXME: OBJCGC: weak & strong
3441}
3442
3443/// getLegacyIntegralTypeEncoding -
3444/// Another legacy compatibility encoding: 32-bit longs are encoded as
3445/// 'l' or 'L' , but not always.  For typedefs, we need to use
3446/// 'i' or 'I' instead if encoding a struct field, or a pointer!
3447///
3448void ASTContext::getLegacyIntegralTypeEncoding (QualType &PointeeTy) const {
3449  if (isa<TypedefType>(PointeeTy.getTypePtr())) {
3450    if (const BuiltinType *BT = PointeeTy->getAs<BuiltinType>()) {
3451      if (BT->getKind() == BuiltinType::ULong &&
3452          ((const_cast<ASTContext *>(this))->getIntWidth(PointeeTy) == 32))
3453        PointeeTy = UnsignedIntTy;
3454      else
3455        if (BT->getKind() == BuiltinType::Long &&
3456            ((const_cast<ASTContext *>(this))->getIntWidth(PointeeTy) == 32))
3457          PointeeTy = IntTy;
3458    }
3459  }
3460}
3461
3462void ASTContext::getObjCEncodingForType(QualType T, std::string& S,
3463                                        const FieldDecl *Field) {
3464  // We follow the behavior of gcc, expanding structures which are
3465  // directly pointed to, and expanding embedded structures. Note that
3466  // these rules are sufficient to prevent recursive encoding of the
3467  // same type.
3468  getObjCEncodingForTypeImpl(T, S, true, true, Field,
3469                             true /* outermost type */);
3470}
3471
3472static void EncodeBitField(const ASTContext *Context, std::string& S,
3473                           const FieldDecl *FD) {
3474  const Expr *E = FD->getBitWidth();
3475  assert(E && "bitfield width not there - getObjCEncodingForTypeImpl");
3476  ASTContext *Ctx = const_cast<ASTContext*>(Context);
3477  unsigned N = E->EvaluateAsInt(*Ctx).getZExtValue();
3478  S += 'b';
3479  S += llvm::utostr(N);
3480}
3481
3482// FIXME: Use SmallString for accumulating string.
3483void ASTContext::getObjCEncodingForTypeImpl(QualType T, std::string& S,
3484                                            bool ExpandPointedToStructures,
3485                                            bool ExpandStructures,
3486                                            const FieldDecl *FD,
3487                                            bool OutermostType,
3488                                            bool EncodingProperty) {
3489  if (const BuiltinType *BT = T->getAs<BuiltinType>()) {
3490    if (FD && FD->isBitField())
3491      return EncodeBitField(this, S, FD);
3492    char encoding;
3493    switch (BT->getKind()) {
3494    default: assert(0 && "Unhandled builtin type kind");
3495    case BuiltinType::Void:       encoding = 'v'; break;
3496    case BuiltinType::Bool:       encoding = 'B'; break;
3497    case BuiltinType::Char_U:
3498    case BuiltinType::UChar:      encoding = 'C'; break;
3499    case BuiltinType::UShort:     encoding = 'S'; break;
3500    case BuiltinType::UInt:       encoding = 'I'; break;
3501    case BuiltinType::ULong:
3502        encoding =
3503          (const_cast<ASTContext *>(this))->getIntWidth(T) == 32 ? 'L' : 'Q';
3504        break;
3505    case BuiltinType::UInt128:    encoding = 'T'; break;
3506    case BuiltinType::ULongLong:  encoding = 'Q'; break;
3507    case BuiltinType::Char_S:
3508    case BuiltinType::SChar:      encoding = 'c'; break;
3509    case BuiltinType::Short:      encoding = 's'; break;
3510    case BuiltinType::Int:        encoding = 'i'; break;
3511    case BuiltinType::Long:
3512      encoding =
3513        (const_cast<ASTContext *>(this))->getIntWidth(T) == 32 ? 'l' : 'q';
3514      break;
3515    case BuiltinType::LongLong:   encoding = 'q'; break;
3516    case BuiltinType::Int128:     encoding = 't'; break;
3517    case BuiltinType::Float:      encoding = 'f'; break;
3518    case BuiltinType::Double:     encoding = 'd'; break;
3519    case BuiltinType::LongDouble: encoding = 'd'; break;
3520    }
3521
3522    S += encoding;
3523    return;
3524  }
3525
3526  if (const ComplexType *CT = T->getAs<ComplexType>()) {
3527    S += 'j';
3528    getObjCEncodingForTypeImpl(CT->getElementType(), S, false, false, 0, false,
3529                               false);
3530    return;
3531  }
3532
3533  if (const PointerType *PT = T->getAs<PointerType>()) {
3534    if (PT->isObjCSelType()) {
3535      S += ':';
3536      return;
3537    }
3538    QualType PointeeTy = PT->getPointeeType();
3539
3540    bool isReadOnly = false;
3541    // For historical/compatibility reasons, the read-only qualifier of the
3542    // pointee gets emitted _before_ the '^'.  The read-only qualifier of
3543    // the pointer itself gets ignored, _unless_ we are looking at a typedef!
3544    // Also, do not emit the 'r' for anything but the outermost type!
3545    if (isa<TypedefType>(T.getTypePtr())) {
3546      if (OutermostType && T.isConstQualified()) {
3547        isReadOnly = true;
3548        S += 'r';
3549      }
3550    } else if (OutermostType) {
3551      QualType P = PointeeTy;
3552      while (P->getAs<PointerType>())
3553        P = P->getAs<PointerType>()->getPointeeType();
3554      if (P.isConstQualified()) {
3555        isReadOnly = true;
3556        S += 'r';
3557      }
3558    }
3559    if (isReadOnly) {
3560      // Another legacy compatibility encoding. Some ObjC qualifier and type
3561      // combinations need to be rearranged.
3562      // Rewrite "in const" from "nr" to "rn"
3563      const char * s = S.c_str();
3564      int len = S.length();
3565      if (len >= 2 && s[len-2] == 'n' && s[len-1] == 'r') {
3566        std::string replace = "rn";
3567        S.replace(S.end()-2, S.end(), replace);
3568      }
3569    }
3570
3571    if (PointeeTy->isCharType()) {
3572      // char pointer types should be encoded as '*' unless it is a
3573      // type that has been typedef'd to 'BOOL'.
3574      if (!isTypeTypedefedAsBOOL(PointeeTy)) {
3575        S += '*';
3576        return;
3577      }
3578    } else if (const RecordType *RTy = PointeeTy->getAs<RecordType>()) {
3579      // GCC binary compat: Need to convert "struct objc_class *" to "#".
3580      if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_class")) {
3581        S += '#';
3582        return;
3583      }
3584      // GCC binary compat: Need to convert "struct objc_object *" to "@".
3585      if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_object")) {
3586        S += '@';
3587        return;
3588      }
3589      // fall through...
3590    }
3591    S += '^';
3592    getLegacyIntegralTypeEncoding(PointeeTy);
3593
3594    getObjCEncodingForTypeImpl(PointeeTy, S, false, ExpandPointedToStructures,
3595                               NULL);
3596    return;
3597  }
3598
3599  if (const ArrayType *AT =
3600      // Ignore type qualifiers etc.
3601        dyn_cast<ArrayType>(T->getCanonicalTypeInternal())) {
3602    if (isa<IncompleteArrayType>(AT)) {
3603      // Incomplete arrays are encoded as a pointer to the array element.
3604      S += '^';
3605
3606      getObjCEncodingForTypeImpl(AT->getElementType(), S,
3607                                 false, ExpandStructures, FD);
3608    } else {
3609      S += '[';
3610
3611      if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
3612        S += llvm::utostr(CAT->getSize().getZExtValue());
3613      else {
3614        //Variable length arrays are encoded as a regular array with 0 elements.
3615        assert(isa<VariableArrayType>(AT) && "Unknown array type!");
3616        S += '0';
3617      }
3618
3619      getObjCEncodingForTypeImpl(AT->getElementType(), S,
3620                                 false, ExpandStructures, FD);
3621      S += ']';
3622    }
3623    return;
3624  }
3625
3626  if (T->getAs<FunctionType>()) {
3627    S += '?';
3628    return;
3629  }
3630
3631  if (const RecordType *RTy = T->getAs<RecordType>()) {
3632    RecordDecl *RDecl = RTy->getDecl();
3633    S += RDecl->isUnion() ? '(' : '{';
3634    // Anonymous structures print as '?'
3635    if (const IdentifierInfo *II = RDecl->getIdentifier()) {
3636      S += II->getName();
3637    } else {
3638      S += '?';
3639    }
3640    if (ExpandStructures) {
3641      S += '=';
3642      for (RecordDecl::field_iterator Field = RDecl->field_begin(),
3643                                   FieldEnd = RDecl->field_end();
3644           Field != FieldEnd; ++Field) {
3645        if (FD) {
3646          S += '"';
3647          S += Field->getNameAsString();
3648          S += '"';
3649        }
3650
3651        // Special case bit-fields.
3652        if (Field->isBitField()) {
3653          getObjCEncodingForTypeImpl(Field->getType(), S, false, true,
3654                                     (*Field));
3655        } else {
3656          QualType qt = Field->getType();
3657          getLegacyIntegralTypeEncoding(qt);
3658          getObjCEncodingForTypeImpl(qt, S, false, true,
3659                                     FD);
3660        }
3661      }
3662    }
3663    S += RDecl->isUnion() ? ')' : '}';
3664    return;
3665  }
3666
3667  if (T->isEnumeralType()) {
3668    if (FD && FD->isBitField())
3669      EncodeBitField(this, S, FD);
3670    else
3671      S += 'i';
3672    return;
3673  }
3674
3675  if (T->isBlockPointerType()) {
3676    S += "@?"; // Unlike a pointer-to-function, which is "^?".
3677    return;
3678  }
3679
3680  if (const ObjCInterfaceType *OIT = T->getAs<ObjCInterfaceType>()) {
3681    // @encode(class_name)
3682    ObjCInterfaceDecl *OI = OIT->getDecl();
3683    S += '{';
3684    const IdentifierInfo *II = OI->getIdentifier();
3685    S += II->getName();
3686    S += '=';
3687    llvm::SmallVector<FieldDecl*, 32> RecFields;
3688    CollectObjCIvars(OI, RecFields);
3689    for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
3690      if (RecFields[i]->isBitField())
3691        getObjCEncodingForTypeImpl(RecFields[i]->getType(), S, false, true,
3692                                   RecFields[i]);
3693      else
3694        getObjCEncodingForTypeImpl(RecFields[i]->getType(), S, false, true,
3695                                   FD);
3696    }
3697    S += '}';
3698    return;
3699  }
3700
3701  if (const ObjCObjectPointerType *OPT = T->getAs<ObjCObjectPointerType>()) {
3702    if (OPT->isObjCIdType()) {
3703      S += '@';
3704      return;
3705    }
3706
3707    if (OPT->isObjCClassType() || OPT->isObjCQualifiedClassType()) {
3708      // FIXME: Consider if we need to output qualifiers for 'Class<p>'.
3709      // Since this is a binary compatibility issue, need to consult with runtime
3710      // folks. Fortunately, this is a *very* obsure construct.
3711      S += '#';
3712      return;
3713    }
3714
3715    if (OPT->isObjCQualifiedIdType()) {
3716      getObjCEncodingForTypeImpl(getObjCIdType(), S,
3717                                 ExpandPointedToStructures,
3718                                 ExpandStructures, FD);
3719      if (FD || EncodingProperty) {
3720        // Note that we do extended encoding of protocol qualifer list
3721        // Only when doing ivar or property encoding.
3722        S += '"';
3723        for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(),
3724             E = OPT->qual_end(); I != E; ++I) {
3725          S += '<';
3726          S += (*I)->getNameAsString();
3727          S += '>';
3728        }
3729        S += '"';
3730      }
3731      return;
3732    }
3733
3734    QualType PointeeTy = OPT->getPointeeType();
3735    if (!EncodingProperty &&
3736        isa<TypedefType>(PointeeTy.getTypePtr())) {
3737      // Another historical/compatibility reason.
3738      // We encode the underlying type which comes out as
3739      // {...};
3740      S += '^';
3741      getObjCEncodingForTypeImpl(PointeeTy, S,
3742                                 false, ExpandPointedToStructures,
3743                                 NULL);
3744      return;
3745    }
3746
3747    S += '@';
3748    if (OPT->getInterfaceDecl() && (FD || EncodingProperty)) {
3749      S += '"';
3750      S += OPT->getInterfaceDecl()->getIdentifier()->getName();
3751      for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(),
3752           E = OPT->qual_end(); I != E; ++I) {
3753        S += '<';
3754        S += (*I)->getNameAsString();
3755        S += '>';
3756      }
3757      S += '"';
3758    }
3759    return;
3760  }
3761
3762  assert(0 && "@encode for type not implemented!");
3763}
3764
3765void ASTContext::getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT,
3766                                                 std::string& S) const {
3767  if (QT & Decl::OBJC_TQ_In)
3768    S += 'n';
3769  if (QT & Decl::OBJC_TQ_Inout)
3770    S += 'N';
3771  if (QT & Decl::OBJC_TQ_Out)
3772    S += 'o';
3773  if (QT & Decl::OBJC_TQ_Bycopy)
3774    S += 'O';
3775  if (QT & Decl::OBJC_TQ_Byref)
3776    S += 'R';
3777  if (QT & Decl::OBJC_TQ_Oneway)
3778    S += 'V';
3779}
3780
3781void ASTContext::setBuiltinVaListType(QualType T) {
3782  assert(BuiltinVaListType.isNull() && "__builtin_va_list type already set!");
3783
3784  BuiltinVaListType = T;
3785}
3786
3787void ASTContext::setObjCIdType(QualType T) {
3788  ObjCIdTypedefType = T;
3789}
3790
3791void ASTContext::setObjCSelType(QualType T) {
3792  ObjCSelTypedefType = T;
3793}
3794
3795void ASTContext::setObjCProtoType(QualType QT) {
3796  ObjCProtoType = QT;
3797}
3798
3799void ASTContext::setObjCClassType(QualType T) {
3800  ObjCClassTypedefType = T;
3801}
3802
3803void ASTContext::setObjCConstantStringInterface(ObjCInterfaceDecl *Decl) {
3804  assert(ObjCConstantStringType.isNull() &&
3805         "'NSConstantString' type already set!");
3806
3807  ObjCConstantStringType = getObjCInterfaceType(Decl);
3808}
3809
3810/// \brief Retrieve the template name that corresponds to a non-empty
3811/// lookup.
3812TemplateName ASTContext::getOverloadedTemplateName(UnresolvedSetIterator Begin,
3813                                                   UnresolvedSetIterator End) {
3814  unsigned size = End - Begin;
3815  assert(size > 1 && "set is not overloaded!");
3816
3817  void *memory = Allocate(sizeof(OverloadedTemplateStorage) +
3818                          size * sizeof(FunctionTemplateDecl*));
3819  OverloadedTemplateStorage *OT = new(memory) OverloadedTemplateStorage(size);
3820
3821  NamedDecl **Storage = OT->getStorage();
3822  for (UnresolvedSetIterator I = Begin; I != End; ++I) {
3823    NamedDecl *D = *I;
3824    assert(isa<FunctionTemplateDecl>(D) ||
3825           (isa<UsingShadowDecl>(D) &&
3826            isa<FunctionTemplateDecl>(D->getUnderlyingDecl())));
3827    *Storage++ = D;
3828  }
3829
3830  return TemplateName(OT);
3831}
3832
3833/// \brief Retrieve the template name that represents a qualified
3834/// template name such as \c std::vector.
3835TemplateName ASTContext::getQualifiedTemplateName(NestedNameSpecifier *NNS,
3836                                                  bool TemplateKeyword,
3837                                                  TemplateDecl *Template) {
3838  // FIXME: Canonicalization?
3839  llvm::FoldingSetNodeID ID;
3840  QualifiedTemplateName::Profile(ID, NNS, TemplateKeyword, Template);
3841
3842  void *InsertPos = 0;
3843  QualifiedTemplateName *QTN =
3844    QualifiedTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
3845  if (!QTN) {
3846    QTN = new (*this,4) QualifiedTemplateName(NNS, TemplateKeyword, Template);
3847    QualifiedTemplateNames.InsertNode(QTN, InsertPos);
3848  }
3849
3850  return TemplateName(QTN);
3851}
3852
3853/// \brief Retrieve the template name that represents a dependent
3854/// template name such as \c MetaFun::template apply.
3855TemplateName ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
3856                                                  const IdentifierInfo *Name) {
3857  assert((!NNS || NNS->isDependent()) &&
3858         "Nested name specifier must be dependent");
3859
3860  llvm::FoldingSetNodeID ID;
3861  DependentTemplateName::Profile(ID, NNS, Name);
3862
3863  void *InsertPos = 0;
3864  DependentTemplateName *QTN =
3865    DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
3866
3867  if (QTN)
3868    return TemplateName(QTN);
3869
3870  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
3871  if (CanonNNS == NNS) {
3872    QTN = new (*this,4) DependentTemplateName(NNS, Name);
3873  } else {
3874    TemplateName Canon = getDependentTemplateName(CanonNNS, Name);
3875    QTN = new (*this,4) DependentTemplateName(NNS, Name, Canon);
3876    DependentTemplateName *CheckQTN =
3877      DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
3878    assert(!CheckQTN && "Dependent type name canonicalization broken");
3879    (void)CheckQTN;
3880  }
3881
3882  DependentTemplateNames.InsertNode(QTN, InsertPos);
3883  return TemplateName(QTN);
3884}
3885
3886/// \brief Retrieve the template name that represents a dependent
3887/// template name such as \c MetaFun::template operator+.
3888TemplateName
3889ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
3890                                     OverloadedOperatorKind Operator) {
3891  assert((!NNS || NNS->isDependent()) &&
3892         "Nested name specifier must be dependent");
3893
3894  llvm::FoldingSetNodeID ID;
3895  DependentTemplateName::Profile(ID, NNS, Operator);
3896
3897  void *InsertPos = 0;
3898  DependentTemplateName *QTN
3899    = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
3900
3901  if (QTN)
3902    return TemplateName(QTN);
3903
3904  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
3905  if (CanonNNS == NNS) {
3906    QTN = new (*this,4) DependentTemplateName(NNS, Operator);
3907  } else {
3908    TemplateName Canon = getDependentTemplateName(CanonNNS, Operator);
3909    QTN = new (*this,4) DependentTemplateName(NNS, Operator, Canon);
3910
3911    DependentTemplateName *CheckQTN
3912      = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
3913    assert(!CheckQTN && "Dependent template name canonicalization broken");
3914    (void)CheckQTN;
3915  }
3916
3917  DependentTemplateNames.InsertNode(QTN, InsertPos);
3918  return TemplateName(QTN);
3919}
3920
3921/// getFromTargetType - Given one of the integer types provided by
3922/// TargetInfo, produce the corresponding type. The unsigned @p Type
3923/// is actually a value of type @c TargetInfo::IntType.
3924CanQualType ASTContext::getFromTargetType(unsigned Type) const {
3925  switch (Type) {
3926  case TargetInfo::NoInt: return CanQualType();
3927  case TargetInfo::SignedShort: return ShortTy;
3928  case TargetInfo::UnsignedShort: return UnsignedShortTy;
3929  case TargetInfo::SignedInt: return IntTy;
3930  case TargetInfo::UnsignedInt: return UnsignedIntTy;
3931  case TargetInfo::SignedLong: return LongTy;
3932  case TargetInfo::UnsignedLong: return UnsignedLongTy;
3933  case TargetInfo::SignedLongLong: return LongLongTy;
3934  case TargetInfo::UnsignedLongLong: return UnsignedLongLongTy;
3935  }
3936
3937  assert(false && "Unhandled TargetInfo::IntType value");
3938  return CanQualType();
3939}
3940
3941//===----------------------------------------------------------------------===//
3942//                        Type Predicates.
3943//===----------------------------------------------------------------------===//
3944
3945/// isObjCNSObjectType - Return true if this is an NSObject object using
3946/// NSObject attribute on a c-style pointer type.
3947/// FIXME - Make it work directly on types.
3948/// FIXME: Move to Type.
3949///
3950bool ASTContext::isObjCNSObjectType(QualType Ty) const {
3951  if (TypedefType *TDT = dyn_cast<TypedefType>(Ty)) {
3952    if (TypedefDecl *TD = TDT->getDecl())
3953      if (TD->getAttr<ObjCNSObjectAttr>())
3954        return true;
3955  }
3956  return false;
3957}
3958
3959/// getObjCGCAttr - Returns one of GCNone, Weak or Strong objc's
3960/// garbage collection attribute.
3961///
3962Qualifiers::GC ASTContext::getObjCGCAttrKind(const QualType &Ty) const {
3963  Qualifiers::GC GCAttrs = Qualifiers::GCNone;
3964  if (getLangOptions().ObjC1 &&
3965      getLangOptions().getGCMode() != LangOptions::NonGC) {
3966    GCAttrs = Ty.getObjCGCAttr();
3967    // Default behavious under objective-c's gc is for objective-c pointers
3968    // (or pointers to them) be treated as though they were declared
3969    // as __strong.
3970    if (GCAttrs == Qualifiers::GCNone) {
3971      if (Ty->isObjCObjectPointerType() || Ty->isBlockPointerType())
3972        GCAttrs = Qualifiers::Strong;
3973      else if (Ty->isPointerType())
3974        return getObjCGCAttrKind(Ty->getAs<PointerType>()->getPointeeType());
3975    }
3976    // Non-pointers have none gc'able attribute regardless of the attribute
3977    // set on them.
3978    else if (!Ty->isAnyPointerType() && !Ty->isBlockPointerType())
3979      return Qualifiers::GCNone;
3980  }
3981  return GCAttrs;
3982}
3983
3984//===----------------------------------------------------------------------===//
3985//                        Type Compatibility Testing
3986//===----------------------------------------------------------------------===//
3987
3988/// areCompatVectorTypes - Return true if the two specified vector types are
3989/// compatible.
3990static bool areCompatVectorTypes(const VectorType *LHS,
3991                                 const VectorType *RHS) {
3992  assert(LHS->isCanonicalUnqualified() && RHS->isCanonicalUnqualified());
3993  return LHS->getElementType() == RHS->getElementType() &&
3994         LHS->getNumElements() == RHS->getNumElements();
3995}
3996
3997//===----------------------------------------------------------------------===//
3998// ObjCQualifiedIdTypesAreCompatible - Compatibility testing for qualified id's.
3999//===----------------------------------------------------------------------===//
4000
4001/// ProtocolCompatibleWithProtocol - return 'true' if 'lProto' is in the
4002/// inheritance hierarchy of 'rProto'.
4003bool ASTContext::ProtocolCompatibleWithProtocol(ObjCProtocolDecl *lProto,
4004                                                ObjCProtocolDecl *rProto) {
4005  if (lProto == rProto)
4006    return true;
4007  for (ObjCProtocolDecl::protocol_iterator PI = rProto->protocol_begin(),
4008       E = rProto->protocol_end(); PI != E; ++PI)
4009    if (ProtocolCompatibleWithProtocol(lProto, *PI))
4010      return true;
4011  return false;
4012}
4013
4014/// QualifiedIdConformsQualifiedId - compare id<p,...> with id<p1,...>
4015/// return true if lhs's protocols conform to rhs's protocol; false
4016/// otherwise.
4017bool ASTContext::QualifiedIdConformsQualifiedId(QualType lhs, QualType rhs) {
4018  if (lhs->isObjCQualifiedIdType() && rhs->isObjCQualifiedIdType())
4019    return ObjCQualifiedIdTypesAreCompatible(lhs, rhs, false);
4020  return false;
4021}
4022
4023/// ObjCQualifiedIdTypesAreCompatible - We know that one of lhs/rhs is an
4024/// ObjCQualifiedIDType.
4025bool ASTContext::ObjCQualifiedIdTypesAreCompatible(QualType lhs, QualType rhs,
4026                                                   bool compare) {
4027  // Allow id<P..> and an 'id' or void* type in all cases.
4028  if (lhs->isVoidPointerType() ||
4029      lhs->isObjCIdType() || lhs->isObjCClassType())
4030    return true;
4031  else if (rhs->isVoidPointerType() ||
4032           rhs->isObjCIdType() || rhs->isObjCClassType())
4033    return true;
4034
4035  if (const ObjCObjectPointerType *lhsQID = lhs->getAsObjCQualifiedIdType()) {
4036    const ObjCObjectPointerType *rhsOPT = rhs->getAs<ObjCObjectPointerType>();
4037
4038    if (!rhsOPT) return false;
4039
4040    if (rhsOPT->qual_empty()) {
4041      // If the RHS is a unqualified interface pointer "NSString*",
4042      // make sure we check the class hierarchy.
4043      if (ObjCInterfaceDecl *rhsID = rhsOPT->getInterfaceDecl()) {
4044        for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
4045             E = lhsQID->qual_end(); I != E; ++I) {
4046          // when comparing an id<P> on lhs with a static type on rhs,
4047          // see if static class implements all of id's protocols, directly or
4048          // through its super class and categories.
4049          if (!rhsID->ClassImplementsProtocol(*I, true))
4050            return false;
4051        }
4052      }
4053      // If there are no qualifiers and no interface, we have an 'id'.
4054      return true;
4055    }
4056    // Both the right and left sides have qualifiers.
4057    for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
4058         E = lhsQID->qual_end(); I != E; ++I) {
4059      ObjCProtocolDecl *lhsProto = *I;
4060      bool match = false;
4061
4062      // when comparing an id<P> on lhs with a static type on rhs,
4063      // see if static class implements all of id's protocols, directly or
4064      // through its super class and categories.
4065      for (ObjCObjectPointerType::qual_iterator J = rhsOPT->qual_begin(),
4066           E = rhsOPT->qual_end(); J != E; ++J) {
4067        ObjCProtocolDecl *rhsProto = *J;
4068        if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
4069            (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
4070          match = true;
4071          break;
4072        }
4073      }
4074      // If the RHS is a qualified interface pointer "NSString<P>*",
4075      // make sure we check the class hierarchy.
4076      if (ObjCInterfaceDecl *rhsID = rhsOPT->getInterfaceDecl()) {
4077        for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
4078             E = lhsQID->qual_end(); I != E; ++I) {
4079          // when comparing an id<P> on lhs with a static type on rhs,
4080          // see if static class implements all of id's protocols, directly or
4081          // through its super class and categories.
4082          if (rhsID->ClassImplementsProtocol(*I, true)) {
4083            match = true;
4084            break;
4085          }
4086        }
4087      }
4088      if (!match)
4089        return false;
4090    }
4091
4092    return true;
4093  }
4094
4095  const ObjCObjectPointerType *rhsQID = rhs->getAsObjCQualifiedIdType();
4096  assert(rhsQID && "One of the LHS/RHS should be id<x>");
4097
4098  if (const ObjCObjectPointerType *lhsOPT =
4099        lhs->getAsObjCInterfacePointerType()) {
4100    if (lhsOPT->qual_empty()) {
4101      bool match = false;
4102      if (ObjCInterfaceDecl *lhsID = lhsOPT->getInterfaceDecl()) {
4103        for (ObjCObjectPointerType::qual_iterator I = rhsQID->qual_begin(),
4104             E = rhsQID->qual_end(); I != E; ++I) {
4105          // when comparing an id<P> on lhs with a static type on rhs,
4106          // see if static class implements all of id's protocols, directly or
4107          // through its super class and categories.
4108          if (lhsID->ClassImplementsProtocol(*I, true)) {
4109            match = true;
4110            break;
4111          }
4112        }
4113        if (!match)
4114          return false;
4115      }
4116      return true;
4117    }
4118    // Both the right and left sides have qualifiers.
4119    for (ObjCObjectPointerType::qual_iterator I = lhsOPT->qual_begin(),
4120         E = lhsOPT->qual_end(); I != E; ++I) {
4121      ObjCProtocolDecl *lhsProto = *I;
4122      bool match = false;
4123
4124      // when comparing an id<P> on lhs with a static type on rhs,
4125      // see if static class implements all of id's protocols, directly or
4126      // through its super class and categories.
4127      for (ObjCObjectPointerType::qual_iterator J = rhsQID->qual_begin(),
4128           E = rhsQID->qual_end(); J != E; ++J) {
4129        ObjCProtocolDecl *rhsProto = *J;
4130        if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
4131            (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
4132          match = true;
4133          break;
4134        }
4135      }
4136      if (!match)
4137        return false;
4138    }
4139    return true;
4140  }
4141  return false;
4142}
4143
4144/// canAssignObjCInterfaces - Return true if the two interface types are
4145/// compatible for assignment from RHS to LHS.  This handles validation of any
4146/// protocol qualifiers on the LHS or RHS.
4147///
4148bool ASTContext::canAssignObjCInterfaces(const ObjCObjectPointerType *LHSOPT,
4149                                         const ObjCObjectPointerType *RHSOPT) {
4150  // If either type represents the built-in 'id' or 'Class' types, return true.
4151  if (LHSOPT->isObjCBuiltinType() || RHSOPT->isObjCBuiltinType())
4152    return true;
4153
4154  if (LHSOPT->isObjCQualifiedIdType() || RHSOPT->isObjCQualifiedIdType())
4155    return ObjCQualifiedIdTypesAreCompatible(QualType(LHSOPT,0),
4156                                             QualType(RHSOPT,0),
4157                                             false);
4158
4159  const ObjCInterfaceType* LHS = LHSOPT->getInterfaceType();
4160  const ObjCInterfaceType* RHS = RHSOPT->getInterfaceType();
4161  if (LHS && RHS) // We have 2 user-defined types.
4162    return canAssignObjCInterfaces(LHS, RHS);
4163
4164  return false;
4165}
4166
4167/// getIntersectionOfProtocols - This routine finds the intersection of set
4168/// of protocols inherited from two distinct objective-c pointer objects.
4169/// It is used to build composite qualifier list of the composite type of
4170/// the conditional expression involving two objective-c pointer objects.
4171static
4172void getIntersectionOfProtocols(ASTContext &Context,
4173                                const ObjCObjectPointerType *LHSOPT,
4174                                const ObjCObjectPointerType *RHSOPT,
4175      llvm::SmallVectorImpl<ObjCProtocolDecl *> &IntersectionOfProtocols) {
4176
4177  const ObjCInterfaceType* LHS = LHSOPT->getInterfaceType();
4178  const ObjCInterfaceType* RHS = RHSOPT->getInterfaceType();
4179
4180  llvm::SmallPtrSet<ObjCProtocolDecl *, 8> InheritedProtocolSet;
4181  unsigned LHSNumProtocols = LHS->getNumProtocols();
4182  if (LHSNumProtocols > 0)
4183    InheritedProtocolSet.insert(LHS->qual_begin(), LHS->qual_end());
4184  else {
4185    llvm::SmallVector<ObjCProtocolDecl *, 8> LHSInheritedProtocols;
4186     Context.CollectInheritedProtocols(LHS->getDecl(), LHSInheritedProtocols);
4187    InheritedProtocolSet.insert(LHSInheritedProtocols.begin(),
4188                                LHSInheritedProtocols.end());
4189  }
4190
4191  unsigned RHSNumProtocols = RHS->getNumProtocols();
4192  if (RHSNumProtocols > 0) {
4193    ObjCProtocolDecl **RHSProtocols = (ObjCProtocolDecl **)RHS->qual_begin();
4194    for (unsigned i = 0; i < RHSNumProtocols; ++i)
4195      if (InheritedProtocolSet.count(RHSProtocols[i]))
4196        IntersectionOfProtocols.push_back(RHSProtocols[i]);
4197  }
4198  else {
4199    llvm::SmallVector<ObjCProtocolDecl *, 8> RHSInheritedProtocols;
4200    Context.CollectInheritedProtocols(RHS->getDecl(), RHSInheritedProtocols);
4201    // FIXME. This may cause duplication of protocols in the list, but should
4202    // be harmless.
4203    for (unsigned i = 0, len = RHSInheritedProtocols.size(); i < len; ++i)
4204      if (InheritedProtocolSet.count(RHSInheritedProtocols[i]))
4205        IntersectionOfProtocols.push_back(RHSInheritedProtocols[i]);
4206  }
4207}
4208
4209/// areCommonBaseCompatible - Returns common base class of the two classes if
4210/// one found. Note that this is O'2 algorithm. But it will be called as the
4211/// last type comparison in a ?-exp of ObjC pointer types before a
4212/// warning is issued. So, its invokation is extremely rare.
4213QualType ASTContext::areCommonBaseCompatible(
4214                                          const ObjCObjectPointerType *LHSOPT,
4215                                          const ObjCObjectPointerType *RHSOPT) {
4216  const ObjCInterfaceType* LHS = LHSOPT->getInterfaceType();
4217  const ObjCInterfaceType* RHS = RHSOPT->getInterfaceType();
4218  if (!LHS || !RHS)
4219    return QualType();
4220
4221  while (const ObjCInterfaceDecl *LHSIDecl = LHS->getDecl()->getSuperClass()) {
4222    QualType LHSTy = getObjCInterfaceType(LHSIDecl);
4223    LHS = LHSTy->getAs<ObjCInterfaceType>();
4224    if (canAssignObjCInterfaces(LHS, RHS)) {
4225      llvm::SmallVector<ObjCProtocolDecl *, 8> IntersectionOfProtocols;
4226      getIntersectionOfProtocols(*this,
4227                                 LHSOPT, RHSOPT, IntersectionOfProtocols);
4228      if (IntersectionOfProtocols.empty())
4229        LHSTy = getObjCObjectPointerType(LHSTy);
4230      else
4231        LHSTy = getObjCObjectPointerType(LHSTy, &IntersectionOfProtocols[0],
4232                                                IntersectionOfProtocols.size());
4233      return LHSTy;
4234    }
4235  }
4236
4237  return QualType();
4238}
4239
4240bool ASTContext::canAssignObjCInterfaces(const ObjCInterfaceType *LHS,
4241                                         const ObjCInterfaceType *RHS) {
4242  // Verify that the base decls are compatible: the RHS must be a subclass of
4243  // the LHS.
4244  if (!LHS->getDecl()->isSuperClassOf(RHS->getDecl()))
4245    return false;
4246
4247  // RHS must have a superset of the protocols in the LHS.  If the LHS is not
4248  // protocol qualified at all, then we are good.
4249  if (LHS->getNumProtocols() == 0)
4250    return true;
4251
4252  // Okay, we know the LHS has protocol qualifiers.  If the RHS doesn't, then it
4253  // isn't a superset.
4254  if (RHS->getNumProtocols() == 0)
4255    return true;  // FIXME: should return false!
4256
4257  for (ObjCInterfaceType::qual_iterator LHSPI = LHS->qual_begin(),
4258                                        LHSPE = LHS->qual_end();
4259       LHSPI != LHSPE; LHSPI++) {
4260    bool RHSImplementsProtocol = false;
4261
4262    // If the RHS doesn't implement the protocol on the left, the types
4263    // are incompatible.
4264    for (ObjCInterfaceType::qual_iterator RHSPI = RHS->qual_begin(),
4265                                          RHSPE = RHS->qual_end();
4266         RHSPI != RHSPE; RHSPI++) {
4267      if ((*RHSPI)->lookupProtocolNamed((*LHSPI)->getIdentifier())) {
4268        RHSImplementsProtocol = true;
4269        break;
4270      }
4271    }
4272    // FIXME: For better diagnostics, consider passing back the protocol name.
4273    if (!RHSImplementsProtocol)
4274      return false;
4275  }
4276  // The RHS implements all protocols listed on the LHS.
4277  return true;
4278}
4279
4280bool ASTContext::areComparableObjCPointerTypes(QualType LHS, QualType RHS) {
4281  // get the "pointed to" types
4282  const ObjCObjectPointerType *LHSOPT = LHS->getAs<ObjCObjectPointerType>();
4283  const ObjCObjectPointerType *RHSOPT = RHS->getAs<ObjCObjectPointerType>();
4284
4285  if (!LHSOPT || !RHSOPT)
4286    return false;
4287
4288  return canAssignObjCInterfaces(LHSOPT, RHSOPT) ||
4289         canAssignObjCInterfaces(RHSOPT, LHSOPT);
4290}
4291
4292/// typesAreCompatible - C99 6.7.3p9: For two qualified types to be compatible,
4293/// both shall have the identically qualified version of a compatible type.
4294/// C99 6.2.7p1: Two types have compatible types if their types are the
4295/// same. See 6.7.[2,3,5] for additional rules.
4296bool ASTContext::typesAreCompatible(QualType LHS, QualType RHS) {
4297  if (getLangOptions().CPlusPlus)
4298    return hasSameType(LHS, RHS);
4299
4300  return !mergeTypes(LHS, RHS).isNull();
4301}
4302
4303static bool isSameCallingConvention(CallingConv lcc, CallingConv rcc) {
4304  return (getCanonicalCallingConv(lcc) == getCanonicalCallingConv(rcc));
4305}
4306
4307QualType ASTContext::mergeFunctionTypes(QualType lhs, QualType rhs) {
4308  const FunctionType *lbase = lhs->getAs<FunctionType>();
4309  const FunctionType *rbase = rhs->getAs<FunctionType>();
4310  const FunctionProtoType *lproto = dyn_cast<FunctionProtoType>(lbase);
4311  const FunctionProtoType *rproto = dyn_cast<FunctionProtoType>(rbase);
4312  bool allLTypes = true;
4313  bool allRTypes = true;
4314
4315  // Check return type
4316  QualType retType = mergeTypes(lbase->getResultType(), rbase->getResultType());
4317  if (retType.isNull()) return QualType();
4318  if (getCanonicalType(retType) != getCanonicalType(lbase->getResultType()))
4319    allLTypes = false;
4320  if (getCanonicalType(retType) != getCanonicalType(rbase->getResultType()))
4321    allRTypes = false;
4322  // FIXME: double check this
4323  bool NoReturn = lbase->getNoReturnAttr() || rbase->getNoReturnAttr();
4324  if (NoReturn != lbase->getNoReturnAttr())
4325    allLTypes = false;
4326  if (NoReturn != rbase->getNoReturnAttr())
4327    allRTypes = false;
4328  CallingConv lcc = lbase->getCallConv();
4329  CallingConv rcc = rbase->getCallConv();
4330  // Compatible functions must have compatible calling conventions
4331  if (!isSameCallingConvention(lcc, rcc))
4332    return QualType();
4333
4334  if (lproto && rproto) { // two C99 style function prototypes
4335    assert(!lproto->hasExceptionSpec() && !rproto->hasExceptionSpec() &&
4336           "C++ shouldn't be here");
4337    unsigned lproto_nargs = lproto->getNumArgs();
4338    unsigned rproto_nargs = rproto->getNumArgs();
4339
4340    // Compatible functions must have the same number of arguments
4341    if (lproto_nargs != rproto_nargs)
4342      return QualType();
4343
4344    // Variadic and non-variadic functions aren't compatible
4345    if (lproto->isVariadic() != rproto->isVariadic())
4346      return QualType();
4347
4348    if (lproto->getTypeQuals() != rproto->getTypeQuals())
4349      return QualType();
4350
4351    // Check argument compatibility
4352    llvm::SmallVector<QualType, 10> types;
4353    for (unsigned i = 0; i < lproto_nargs; i++) {
4354      QualType largtype = lproto->getArgType(i).getUnqualifiedType();
4355      QualType rargtype = rproto->getArgType(i).getUnqualifiedType();
4356      QualType argtype = mergeTypes(largtype, rargtype);
4357      if (argtype.isNull()) return QualType();
4358      types.push_back(argtype);
4359      if (getCanonicalType(argtype) != getCanonicalType(largtype))
4360        allLTypes = false;
4361      if (getCanonicalType(argtype) != getCanonicalType(rargtype))
4362        allRTypes = false;
4363    }
4364    if (allLTypes) return lhs;
4365    if (allRTypes) return rhs;
4366    return getFunctionType(retType, types.begin(), types.size(),
4367                           lproto->isVariadic(), lproto->getTypeQuals(),
4368                           NoReturn, lcc);
4369  }
4370
4371  if (lproto) allRTypes = false;
4372  if (rproto) allLTypes = false;
4373
4374  const FunctionProtoType *proto = lproto ? lproto : rproto;
4375  if (proto) {
4376    assert(!proto->hasExceptionSpec() && "C++ shouldn't be here");
4377    if (proto->isVariadic()) return QualType();
4378    // Check that the types are compatible with the types that
4379    // would result from default argument promotions (C99 6.7.5.3p15).
4380    // The only types actually affected are promotable integer
4381    // types and floats, which would be passed as a different
4382    // type depending on whether the prototype is visible.
4383    unsigned proto_nargs = proto->getNumArgs();
4384    for (unsigned i = 0; i < proto_nargs; ++i) {
4385      QualType argTy = proto->getArgType(i);
4386
4387      // Look at the promotion type of enum types, since that is the type used
4388      // to pass enum values.
4389      if (const EnumType *Enum = argTy->getAs<EnumType>())
4390        argTy = Enum->getDecl()->getPromotionType();
4391
4392      if (argTy->isPromotableIntegerType() ||
4393          getCanonicalType(argTy).getUnqualifiedType() == FloatTy)
4394        return QualType();
4395    }
4396
4397    if (allLTypes) return lhs;
4398    if (allRTypes) return rhs;
4399    return getFunctionType(retType, proto->arg_type_begin(),
4400                           proto->getNumArgs(), proto->isVariadic(),
4401                           proto->getTypeQuals(), NoReturn, lcc);
4402  }
4403
4404  if (allLTypes) return lhs;
4405  if (allRTypes) return rhs;
4406  return getFunctionNoProtoType(retType, NoReturn, lcc);
4407}
4408
4409QualType ASTContext::mergeTypes(QualType LHS, QualType RHS) {
4410  // C++ [expr]: If an expression initially has the type "reference to T", the
4411  // type is adjusted to "T" prior to any further analysis, the expression
4412  // designates the object or function denoted by the reference, and the
4413  // expression is an lvalue unless the reference is an rvalue reference and
4414  // the expression is a function call (possibly inside parentheses).
4415  assert(!LHS->getAs<ReferenceType>() && "LHS is a reference type?");
4416  assert(!RHS->getAs<ReferenceType>() && "RHS is a reference type?");
4417
4418  QualType LHSCan = getCanonicalType(LHS),
4419           RHSCan = getCanonicalType(RHS);
4420
4421  // If two types are identical, they are compatible.
4422  if (LHSCan == RHSCan)
4423    return LHS;
4424
4425  // If the qualifiers are different, the types aren't compatible... mostly.
4426  Qualifiers LQuals = LHSCan.getLocalQualifiers();
4427  Qualifiers RQuals = RHSCan.getLocalQualifiers();
4428  if (LQuals != RQuals) {
4429    // If any of these qualifiers are different, we have a type
4430    // mismatch.
4431    if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() ||
4432        LQuals.getAddressSpace() != RQuals.getAddressSpace())
4433      return QualType();
4434
4435    // Exactly one GC qualifier difference is allowed: __strong is
4436    // okay if the other type has no GC qualifier but is an Objective
4437    // C object pointer (i.e. implicitly strong by default).  We fix
4438    // this by pretending that the unqualified type was actually
4439    // qualified __strong.
4440    Qualifiers::GC GC_L = LQuals.getObjCGCAttr();
4441    Qualifiers::GC GC_R = RQuals.getObjCGCAttr();
4442    assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements");
4443
4444    if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak)
4445      return QualType();
4446
4447    if (GC_L == Qualifiers::Strong && RHSCan->isObjCObjectPointerType()) {
4448      return mergeTypes(LHS, getObjCGCQualType(RHS, Qualifiers::Strong));
4449    }
4450    if (GC_R == Qualifiers::Strong && LHSCan->isObjCObjectPointerType()) {
4451      return mergeTypes(getObjCGCQualType(LHS, Qualifiers::Strong), RHS);
4452    }
4453    return QualType();
4454  }
4455
4456  // Okay, qualifiers are equal.
4457
4458  Type::TypeClass LHSClass = LHSCan->getTypeClass();
4459  Type::TypeClass RHSClass = RHSCan->getTypeClass();
4460
4461  // We want to consider the two function types to be the same for these
4462  // comparisons, just force one to the other.
4463  if (LHSClass == Type::FunctionProto) LHSClass = Type::FunctionNoProto;
4464  if (RHSClass == Type::FunctionProto) RHSClass = Type::FunctionNoProto;
4465
4466  // Same as above for arrays
4467  if (LHSClass == Type::VariableArray || LHSClass == Type::IncompleteArray)
4468    LHSClass = Type::ConstantArray;
4469  if (RHSClass == Type::VariableArray || RHSClass == Type::IncompleteArray)
4470    RHSClass = Type::ConstantArray;
4471
4472  // Canonicalize ExtVector -> Vector.
4473  if (LHSClass == Type::ExtVector) LHSClass = Type::Vector;
4474  if (RHSClass == Type::ExtVector) RHSClass = Type::Vector;
4475
4476  // If the canonical type classes don't match.
4477  if (LHSClass != RHSClass) {
4478    // C99 6.7.2.2p4: Each enumerated type shall be compatible with char,
4479    // a signed integer type, or an unsigned integer type.
4480    // Compatibility is based on the underlying type, not the promotion
4481    // type.
4482    if (const EnumType* ETy = LHS->getAs<EnumType>()) {
4483      if (ETy->getDecl()->getIntegerType() == RHSCan.getUnqualifiedType())
4484        return RHS;
4485    }
4486    if (const EnumType* ETy = RHS->getAs<EnumType>()) {
4487      if (ETy->getDecl()->getIntegerType() == LHSCan.getUnqualifiedType())
4488        return LHS;
4489    }
4490
4491    return QualType();
4492  }
4493
4494  // The canonical type classes match.
4495  switch (LHSClass) {
4496#define TYPE(Class, Base)
4497#define ABSTRACT_TYPE(Class, Base)
4498#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
4499#define DEPENDENT_TYPE(Class, Base) case Type::Class:
4500#include "clang/AST/TypeNodes.def"
4501    assert(false && "Non-canonical and dependent types shouldn't get here");
4502    return QualType();
4503
4504  case Type::LValueReference:
4505  case Type::RValueReference:
4506  case Type::MemberPointer:
4507    assert(false && "C++ should never be in mergeTypes");
4508    return QualType();
4509
4510  case Type::IncompleteArray:
4511  case Type::VariableArray:
4512  case Type::FunctionProto:
4513  case Type::ExtVector:
4514    assert(false && "Types are eliminated above");
4515    return QualType();
4516
4517  case Type::Pointer:
4518  {
4519    // Merge two pointer types, while trying to preserve typedef info
4520    QualType LHSPointee = LHS->getAs<PointerType>()->getPointeeType();
4521    QualType RHSPointee = RHS->getAs<PointerType>()->getPointeeType();
4522    QualType ResultType = mergeTypes(LHSPointee, RHSPointee);
4523    if (ResultType.isNull()) return QualType();
4524    if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
4525      return LHS;
4526    if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
4527      return RHS;
4528    return getPointerType(ResultType);
4529  }
4530  case Type::BlockPointer:
4531  {
4532    // Merge two block pointer types, while trying to preserve typedef info
4533    QualType LHSPointee = LHS->getAs<BlockPointerType>()->getPointeeType();
4534    QualType RHSPointee = RHS->getAs<BlockPointerType>()->getPointeeType();
4535    QualType ResultType = mergeTypes(LHSPointee, RHSPointee);
4536    if (ResultType.isNull()) return QualType();
4537    if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
4538      return LHS;
4539    if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
4540      return RHS;
4541    return getBlockPointerType(ResultType);
4542  }
4543  case Type::ConstantArray:
4544  {
4545    const ConstantArrayType* LCAT = getAsConstantArrayType(LHS);
4546    const ConstantArrayType* RCAT = getAsConstantArrayType(RHS);
4547    if (LCAT && RCAT && RCAT->getSize() != LCAT->getSize())
4548      return QualType();
4549
4550    QualType LHSElem = getAsArrayType(LHS)->getElementType();
4551    QualType RHSElem = getAsArrayType(RHS)->getElementType();
4552    QualType ResultType = mergeTypes(LHSElem, RHSElem);
4553    if (ResultType.isNull()) return QualType();
4554    if (LCAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
4555      return LHS;
4556    if (RCAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
4557      return RHS;
4558    if (LCAT) return getConstantArrayType(ResultType, LCAT->getSize(),
4559                                          ArrayType::ArraySizeModifier(), 0);
4560    if (RCAT) return getConstantArrayType(ResultType, RCAT->getSize(),
4561                                          ArrayType::ArraySizeModifier(), 0);
4562    const VariableArrayType* LVAT = getAsVariableArrayType(LHS);
4563    const VariableArrayType* RVAT = getAsVariableArrayType(RHS);
4564    if (LVAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
4565      return LHS;
4566    if (RVAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
4567      return RHS;
4568    if (LVAT) {
4569      // FIXME: This isn't correct! But tricky to implement because
4570      // the array's size has to be the size of LHS, but the type
4571      // has to be different.
4572      return LHS;
4573    }
4574    if (RVAT) {
4575      // FIXME: This isn't correct! But tricky to implement because
4576      // the array's size has to be the size of RHS, but the type
4577      // has to be different.
4578      return RHS;
4579    }
4580    if (getCanonicalType(LHSElem) == getCanonicalType(ResultType)) return LHS;
4581    if (getCanonicalType(RHSElem) == getCanonicalType(ResultType)) return RHS;
4582    return getIncompleteArrayType(ResultType,
4583                                  ArrayType::ArraySizeModifier(), 0);
4584  }
4585  case Type::FunctionNoProto:
4586    return mergeFunctionTypes(LHS, RHS);
4587  case Type::Record:
4588  case Type::Enum:
4589    return QualType();
4590  case Type::Builtin:
4591    // Only exactly equal builtin types are compatible, which is tested above.
4592    return QualType();
4593  case Type::Complex:
4594    // Distinct complex types are incompatible.
4595    return QualType();
4596  case Type::Vector:
4597    // FIXME: The merged type should be an ExtVector!
4598    if (areCompatVectorTypes(LHS->getAs<VectorType>(), RHS->getAs<VectorType>()))
4599      return LHS;
4600    return QualType();
4601  case Type::ObjCInterface: {
4602    // Check if the interfaces are assignment compatible.
4603    // FIXME: This should be type compatibility, e.g. whether
4604    // "LHS x; RHS x;" at global scope is legal.
4605    const ObjCInterfaceType* LHSIface = LHS->getAs<ObjCInterfaceType>();
4606    const ObjCInterfaceType* RHSIface = RHS->getAs<ObjCInterfaceType>();
4607    if (LHSIface && RHSIface &&
4608        canAssignObjCInterfaces(LHSIface, RHSIface))
4609      return LHS;
4610
4611    return QualType();
4612  }
4613  case Type::ObjCObjectPointer: {
4614    if (canAssignObjCInterfaces(LHS->getAs<ObjCObjectPointerType>(),
4615                                RHS->getAs<ObjCObjectPointerType>()))
4616      return LHS;
4617
4618    return QualType();
4619  }
4620  case Type::TemplateSpecialization:
4621    assert(false && "Dependent types have no size");
4622    break;
4623  }
4624
4625  return QualType();
4626}
4627
4628//===----------------------------------------------------------------------===//
4629//                         Integer Predicates
4630//===----------------------------------------------------------------------===//
4631
4632unsigned ASTContext::getIntWidth(QualType T) {
4633  if (T->isBooleanType())
4634    return 1;
4635  if (EnumType *ET = dyn_cast<EnumType>(T))
4636    T = ET->getDecl()->getIntegerType();
4637  // For builtin types, just use the standard type sizing method
4638  return (unsigned)getTypeSize(T);
4639}
4640
4641QualType ASTContext::getCorrespondingUnsignedType(QualType T) {
4642  assert(T->isSignedIntegerType() && "Unexpected type");
4643
4644  // Turn <4 x signed int> -> <4 x unsigned int>
4645  if (const VectorType *VTy = T->getAs<VectorType>())
4646    return getVectorType(getCorrespondingUnsignedType(VTy->getElementType()),
4647             VTy->getNumElements(), VTy->isAltiVec(), VTy->isPixel());
4648
4649  // For enums, we return the unsigned version of the base type.
4650  if (const EnumType *ETy = T->getAs<EnumType>())
4651    T = ETy->getDecl()->getIntegerType();
4652
4653  const BuiltinType *BTy = T->getAs<BuiltinType>();
4654  assert(BTy && "Unexpected signed integer type");
4655  switch (BTy->getKind()) {
4656  case BuiltinType::Char_S:
4657  case BuiltinType::SChar:
4658    return UnsignedCharTy;
4659  case BuiltinType::Short:
4660    return UnsignedShortTy;
4661  case BuiltinType::Int:
4662    return UnsignedIntTy;
4663  case BuiltinType::Long:
4664    return UnsignedLongTy;
4665  case BuiltinType::LongLong:
4666    return UnsignedLongLongTy;
4667  case BuiltinType::Int128:
4668    return UnsignedInt128Ty;
4669  default:
4670    assert(0 && "Unexpected signed integer type");
4671    return QualType();
4672  }
4673}
4674
4675ExternalASTSource::~ExternalASTSource() { }
4676
4677void ExternalASTSource::PrintStats() { }
4678
4679
4680//===----------------------------------------------------------------------===//
4681//                          Builtin Type Computation
4682//===----------------------------------------------------------------------===//
4683
4684/// DecodeTypeFromStr - This decodes one type descriptor from Str, advancing the
4685/// pointer over the consumed characters.  This returns the resultant type.
4686static QualType DecodeTypeFromStr(const char *&Str, ASTContext &Context,
4687                                  ASTContext::GetBuiltinTypeError &Error,
4688                                  bool AllowTypeModifiers = true) {
4689  // Modifiers.
4690  int HowLong = 0;
4691  bool Signed = false, Unsigned = false;
4692
4693  // Read the modifiers first.
4694  bool Done = false;
4695  while (!Done) {
4696    switch (*Str++) {
4697    default: Done = true; --Str; break;
4698    case 'S':
4699      assert(!Unsigned && "Can't use both 'S' and 'U' modifiers!");
4700      assert(!Signed && "Can't use 'S' modifier multiple times!");
4701      Signed = true;
4702      break;
4703    case 'U':
4704      assert(!Signed && "Can't use both 'S' and 'U' modifiers!");
4705      assert(!Unsigned && "Can't use 'S' modifier multiple times!");
4706      Unsigned = true;
4707      break;
4708    case 'L':
4709      assert(HowLong <= 2 && "Can't have LLLL modifier");
4710      ++HowLong;
4711      break;
4712    }
4713  }
4714
4715  QualType Type;
4716
4717  // Read the base type.
4718  switch (*Str++) {
4719  default: assert(0 && "Unknown builtin type letter!");
4720  case 'v':
4721    assert(HowLong == 0 && !Signed && !Unsigned &&
4722           "Bad modifiers used with 'v'!");
4723    Type = Context.VoidTy;
4724    break;
4725  case 'f':
4726    assert(HowLong == 0 && !Signed && !Unsigned &&
4727           "Bad modifiers used with 'f'!");
4728    Type = Context.FloatTy;
4729    break;
4730  case 'd':
4731    assert(HowLong < 2 && !Signed && !Unsigned &&
4732           "Bad modifiers used with 'd'!");
4733    if (HowLong)
4734      Type = Context.LongDoubleTy;
4735    else
4736      Type = Context.DoubleTy;
4737    break;
4738  case 's':
4739    assert(HowLong == 0 && "Bad modifiers used with 's'!");
4740    if (Unsigned)
4741      Type = Context.UnsignedShortTy;
4742    else
4743      Type = Context.ShortTy;
4744    break;
4745  case 'i':
4746    if (HowLong == 3)
4747      Type = Unsigned ? Context.UnsignedInt128Ty : Context.Int128Ty;
4748    else if (HowLong == 2)
4749      Type = Unsigned ? Context.UnsignedLongLongTy : Context.LongLongTy;
4750    else if (HowLong == 1)
4751      Type = Unsigned ? Context.UnsignedLongTy : Context.LongTy;
4752    else
4753      Type = Unsigned ? Context.UnsignedIntTy : Context.IntTy;
4754    break;
4755  case 'c':
4756    assert(HowLong == 0 && "Bad modifiers used with 'c'!");
4757    if (Signed)
4758      Type = Context.SignedCharTy;
4759    else if (Unsigned)
4760      Type = Context.UnsignedCharTy;
4761    else
4762      Type = Context.CharTy;
4763    break;
4764  case 'b': // boolean
4765    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'b'!");
4766    Type = Context.BoolTy;
4767    break;
4768  case 'z':  // size_t.
4769    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'z'!");
4770    Type = Context.getSizeType();
4771    break;
4772  case 'F':
4773    Type = Context.getCFConstantStringType();
4774    break;
4775  case 'a':
4776    Type = Context.getBuiltinVaListType();
4777    assert(!Type.isNull() && "builtin va list type not initialized!");
4778    break;
4779  case 'A':
4780    // This is a "reference" to a va_list; however, what exactly
4781    // this means depends on how va_list is defined. There are two
4782    // different kinds of va_list: ones passed by value, and ones
4783    // passed by reference.  An example of a by-value va_list is
4784    // x86, where va_list is a char*. An example of by-ref va_list
4785    // is x86-64, where va_list is a __va_list_tag[1]. For x86,
4786    // we want this argument to be a char*&; for x86-64, we want
4787    // it to be a __va_list_tag*.
4788    Type = Context.getBuiltinVaListType();
4789    assert(!Type.isNull() && "builtin va list type not initialized!");
4790    if (Type->isArrayType()) {
4791      Type = Context.getArrayDecayedType(Type);
4792    } else {
4793      Type = Context.getLValueReferenceType(Type);
4794    }
4795    break;
4796  case 'V': {
4797    char *End;
4798    unsigned NumElements = strtoul(Str, &End, 10);
4799    assert(End != Str && "Missing vector size");
4800
4801    Str = End;
4802
4803    QualType ElementType = DecodeTypeFromStr(Str, Context, Error, false);
4804    // FIXME: Don't know what to do about AltiVec.
4805    Type = Context.getVectorType(ElementType, NumElements, false, false);
4806    break;
4807  }
4808  case 'X': {
4809    QualType ElementType = DecodeTypeFromStr(Str, Context, Error, false);
4810    Type = Context.getComplexType(ElementType);
4811    break;
4812  }
4813  case 'P':
4814    Type = Context.getFILEType();
4815    if (Type.isNull()) {
4816      Error = ASTContext::GE_Missing_stdio;
4817      return QualType();
4818    }
4819    break;
4820  case 'J':
4821    if (Signed)
4822      Type = Context.getsigjmp_bufType();
4823    else
4824      Type = Context.getjmp_bufType();
4825
4826    if (Type.isNull()) {
4827      Error = ASTContext::GE_Missing_setjmp;
4828      return QualType();
4829    }
4830    break;
4831  }
4832
4833  if (!AllowTypeModifiers)
4834    return Type;
4835
4836  Done = false;
4837  while (!Done) {
4838    switch (*Str++) {
4839      default: Done = true; --Str; break;
4840      case '*':
4841        Type = Context.getPointerType(Type);
4842        break;
4843      case '&':
4844        Type = Context.getLValueReferenceType(Type);
4845        break;
4846      // FIXME: There's no way to have a built-in with an rvalue ref arg.
4847      case 'C':
4848        Type = Type.withConst();
4849        break;
4850      case 'D':
4851        Type = Context.getVolatileType(Type);
4852        break;
4853    }
4854  }
4855
4856  return Type;
4857}
4858
4859/// GetBuiltinType - Return the type for the specified builtin.
4860QualType ASTContext::GetBuiltinType(unsigned id,
4861                                    GetBuiltinTypeError &Error) {
4862  const char *TypeStr = BuiltinInfo.GetTypeString(id);
4863
4864  llvm::SmallVector<QualType, 8> ArgTypes;
4865
4866  Error = GE_None;
4867  QualType ResType = DecodeTypeFromStr(TypeStr, *this, Error);
4868  if (Error != GE_None)
4869    return QualType();
4870  while (TypeStr[0] && TypeStr[0] != '.') {
4871    QualType Ty = DecodeTypeFromStr(TypeStr, *this, Error);
4872    if (Error != GE_None)
4873      return QualType();
4874
4875    // Do array -> pointer decay.  The builtin should use the decayed type.
4876    if (Ty->isArrayType())
4877      Ty = getArrayDecayedType(Ty);
4878
4879    ArgTypes.push_back(Ty);
4880  }
4881
4882  assert((TypeStr[0] != '.' || TypeStr[1] == 0) &&
4883         "'.' should only occur at end of builtin type list!");
4884
4885  // handle untyped/variadic arguments "T c99Style();" or "T cppStyle(...);".
4886  if (ArgTypes.size() == 0 && TypeStr[0] == '.')
4887    return getFunctionNoProtoType(ResType);
4888  return getFunctionType(ResType, ArgTypes.data(), ArgTypes.size(),
4889                         TypeStr[0] == '.', 0);
4890}
4891
4892QualType
4893ASTContext::UsualArithmeticConversionsType(QualType lhs, QualType rhs) {
4894  // Perform the usual unary conversions. We do this early so that
4895  // integral promotions to "int" can allow us to exit early, in the
4896  // lhs == rhs check. Also, for conversion purposes, we ignore any
4897  // qualifiers.  For example, "const float" and "float" are
4898  // equivalent.
4899  if (lhs->isPromotableIntegerType())
4900    lhs = getPromotedIntegerType(lhs);
4901  else
4902    lhs = lhs.getUnqualifiedType();
4903  if (rhs->isPromotableIntegerType())
4904    rhs = getPromotedIntegerType(rhs);
4905  else
4906    rhs = rhs.getUnqualifiedType();
4907
4908  // If both types are identical, no conversion is needed.
4909  if (lhs == rhs)
4910    return lhs;
4911
4912  // If either side is a non-arithmetic type (e.g. a pointer), we are done.
4913  // The caller can deal with this (e.g. pointer + int).
4914  if (!lhs->isArithmeticType() || !rhs->isArithmeticType())
4915    return lhs;
4916
4917  // At this point, we have two different arithmetic types.
4918
4919  // Handle complex types first (C99 6.3.1.8p1).
4920  if (lhs->isComplexType() || rhs->isComplexType()) {
4921    // if we have an integer operand, the result is the complex type.
4922    if (rhs->isIntegerType() || rhs->isComplexIntegerType()) {
4923      // convert the rhs to the lhs complex type.
4924      return lhs;
4925    }
4926    if (lhs->isIntegerType() || lhs->isComplexIntegerType()) {
4927      // convert the lhs to the rhs complex type.
4928      return rhs;
4929    }
4930    // This handles complex/complex, complex/float, or float/complex.
4931    // When both operands are complex, the shorter operand is converted to the
4932    // type of the longer, and that is the type of the result. This corresponds
4933    // to what is done when combining two real floating-point operands.
4934    // The fun begins when size promotion occur across type domains.
4935    // From H&S 6.3.4: When one operand is complex and the other is a real
4936    // floating-point type, the less precise type is converted, within it's
4937    // real or complex domain, to the precision of the other type. For example,
4938    // when combining a "long double" with a "double _Complex", the
4939    // "double _Complex" is promoted to "long double _Complex".
4940    int result = getFloatingTypeOrder(lhs, rhs);
4941
4942    if (result > 0) { // The left side is bigger, convert rhs.
4943      rhs = getFloatingTypeOfSizeWithinDomain(lhs, rhs);
4944    } else if (result < 0) { // The right side is bigger, convert lhs.
4945      lhs = getFloatingTypeOfSizeWithinDomain(rhs, lhs);
4946    }
4947    // At this point, lhs and rhs have the same rank/size. Now, make sure the
4948    // domains match. This is a requirement for our implementation, C99
4949    // does not require this promotion.
4950    if (lhs != rhs) { // Domains don't match, we have complex/float mix.
4951      if (lhs->isRealFloatingType()) { // handle "double, _Complex double".
4952        return rhs;
4953      } else { // handle "_Complex double, double".
4954        return lhs;
4955      }
4956    }
4957    return lhs; // The domain/size match exactly.
4958  }
4959  // Now handle "real" floating types (i.e. float, double, long double).
4960  if (lhs->isRealFloatingType() || rhs->isRealFloatingType()) {
4961    // if we have an integer operand, the result is the real floating type.
4962    if (rhs->isIntegerType()) {
4963      // convert rhs to the lhs floating point type.
4964      return lhs;
4965    }
4966    if (rhs->isComplexIntegerType()) {
4967      // convert rhs to the complex floating point type.
4968      return getComplexType(lhs);
4969    }
4970    if (lhs->isIntegerType()) {
4971      // convert lhs to the rhs floating point type.
4972      return rhs;
4973    }
4974    if (lhs->isComplexIntegerType()) {
4975      // convert lhs to the complex floating point type.
4976      return getComplexType(rhs);
4977    }
4978    // We have two real floating types, float/complex combos were handled above.
4979    // Convert the smaller operand to the bigger result.
4980    int result = getFloatingTypeOrder(lhs, rhs);
4981    if (result > 0) // convert the rhs
4982      return lhs;
4983    assert(result < 0 && "illegal float comparison");
4984    return rhs;   // convert the lhs
4985  }
4986  if (lhs->isComplexIntegerType() || rhs->isComplexIntegerType()) {
4987    // Handle GCC complex int extension.
4988    const ComplexType *lhsComplexInt = lhs->getAsComplexIntegerType();
4989    const ComplexType *rhsComplexInt = rhs->getAsComplexIntegerType();
4990
4991    if (lhsComplexInt && rhsComplexInt) {
4992      if (getIntegerTypeOrder(lhsComplexInt->getElementType(),
4993                              rhsComplexInt->getElementType()) >= 0)
4994        return lhs; // convert the rhs
4995      return rhs;
4996    } else if (lhsComplexInt && rhs->isIntegerType()) {
4997      // convert the rhs to the lhs complex type.
4998      return lhs;
4999    } else if (rhsComplexInt && lhs->isIntegerType()) {
5000      // convert the lhs to the rhs complex type.
5001      return rhs;
5002    }
5003  }
5004  // Finally, we have two differing integer types.
5005  // The rules for this case are in C99 6.3.1.8
5006  int compare = getIntegerTypeOrder(lhs, rhs);
5007  bool lhsSigned = lhs->isSignedIntegerType(),
5008       rhsSigned = rhs->isSignedIntegerType();
5009  QualType destType;
5010  if (lhsSigned == rhsSigned) {
5011    // Same signedness; use the higher-ranked type
5012    destType = compare >= 0 ? lhs : rhs;
5013  } else if (compare != (lhsSigned ? 1 : -1)) {
5014    // The unsigned type has greater than or equal rank to the
5015    // signed type, so use the unsigned type
5016    destType = lhsSigned ? rhs : lhs;
5017  } else if (getIntWidth(lhs) != getIntWidth(rhs)) {
5018    // The two types are different widths; if we are here, that
5019    // means the signed type is larger than the unsigned type, so
5020    // use the signed type.
5021    destType = lhsSigned ? lhs : rhs;
5022  } else {
5023    // The signed type is higher-ranked than the unsigned type,
5024    // but isn't actually any bigger (like unsigned int and long
5025    // on most 32-bit systems).  Use the unsigned type corresponding
5026    // to the signed type.
5027    destType = getCorrespondingUnsignedType(lhsSigned ? lhs : rhs);
5028  }
5029  return destType;
5030}
5031