ASTContext.cpp revision 60bce3ef20a4c9684e3825cdd739fefb9810327d
1//===--- ASTContext.cpp - Context to hold long-lived AST nodes ------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements the ASTContext interface.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/AST/ASTContext.h"
15#include "clang/AST/DeclCXX.h"
16#include "clang/AST/DeclObjC.h"
17#include "clang/AST/DeclTemplate.h"
18#include "clang/AST/TypeLoc.h"
19#include "clang/AST/Expr.h"
20#include "clang/AST/ExternalASTSource.h"
21#include "clang/AST/RecordLayout.h"
22#include "clang/Basic/Builtins.h"
23#include "clang/Basic/SourceManager.h"
24#include "clang/Basic/TargetInfo.h"
25#include "llvm/ADT/SmallString.h"
26#include "llvm/ADT/StringExtras.h"
27#include "llvm/Support/MathExtras.h"
28#include "llvm/Support/raw_ostream.h"
29#include "RecordLayoutBuilder.h"
30
31using namespace clang;
32
33enum FloatingRank {
34  FloatRank, DoubleRank, LongDoubleRank
35};
36
37ASTContext::ASTContext(const LangOptions& LOpts, SourceManager &SM,
38                       const TargetInfo &t,
39                       IdentifierTable &idents, SelectorTable &sels,
40                       Builtin::Context &builtins,
41                       bool FreeMem, unsigned size_reserve) :
42  GlobalNestedNameSpecifier(0), CFConstantStringTypeDecl(0),
43  ObjCFastEnumerationStateTypeDecl(0), FILEDecl(0), jmp_bufDecl(0),
44  sigjmp_bufDecl(0), BlockDescriptorType(0), BlockDescriptorExtendedType(0),
45  SourceMgr(SM), LangOpts(LOpts),
46  LoadedExternalComments(false), FreeMemory(FreeMem), Target(t),
47  Idents(idents), Selectors(sels),
48  BuiltinInfo(builtins), ExternalSource(0), PrintingPolicy(LOpts) {
49  ObjCIdRedefinitionType = QualType();
50  ObjCClassRedefinitionType = QualType();
51  ObjCSELRedefinitionType = QualType();
52  if (size_reserve > 0) Types.reserve(size_reserve);
53  TUDecl = TranslationUnitDecl::Create(*this);
54  InitBuiltinTypes();
55}
56
57ASTContext::~ASTContext() {
58  // Deallocate all the types.
59  while (!Types.empty()) {
60    Types.back()->Destroy(*this);
61    Types.pop_back();
62  }
63
64  {
65    llvm::FoldingSet<ExtQuals>::iterator
66      I = ExtQualNodes.begin(), E = ExtQualNodes.end();
67    while (I != E)
68      Deallocate(&*I++);
69  }
70
71  {
72    llvm::DenseMap<const RecordDecl*, const ASTRecordLayout*>::iterator
73      I = ASTRecordLayouts.begin(), E = ASTRecordLayouts.end();
74    while (I != E) {
75      ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second);
76      delete R;
77    }
78  }
79
80  {
81    llvm::DenseMap<const ObjCContainerDecl*, const ASTRecordLayout*>::iterator
82      I = ObjCLayouts.begin(), E = ObjCLayouts.end();
83    while (I != E) {
84      ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second);
85      delete R;
86    }
87  }
88
89  // Destroy nested-name-specifiers.
90  for (llvm::FoldingSet<NestedNameSpecifier>::iterator
91         NNS = NestedNameSpecifiers.begin(),
92         NNSEnd = NestedNameSpecifiers.end();
93       NNS != NNSEnd;
94       /* Increment in loop */)
95    (*NNS++).Destroy(*this);
96
97  if (GlobalNestedNameSpecifier)
98    GlobalNestedNameSpecifier->Destroy(*this);
99
100  TUDecl->Destroy(*this);
101}
102
103void
104ASTContext::setExternalSource(llvm::OwningPtr<ExternalASTSource> &Source) {
105  ExternalSource.reset(Source.take());
106}
107
108void ASTContext::PrintStats() const {
109  fprintf(stderr, "*** AST Context Stats:\n");
110  fprintf(stderr, "  %d types total.\n", (int)Types.size());
111
112  unsigned counts[] = {
113#define TYPE(Name, Parent) 0,
114#define ABSTRACT_TYPE(Name, Parent)
115#include "clang/AST/TypeNodes.def"
116    0 // Extra
117  };
118
119  for (unsigned i = 0, e = Types.size(); i != e; ++i) {
120    Type *T = Types[i];
121    counts[(unsigned)T->getTypeClass()]++;
122  }
123
124  unsigned Idx = 0;
125  unsigned TotalBytes = 0;
126#define TYPE(Name, Parent)                                              \
127  if (counts[Idx])                                                      \
128    fprintf(stderr, "    %d %s types\n", (int)counts[Idx], #Name);      \
129  TotalBytes += counts[Idx] * sizeof(Name##Type);                       \
130  ++Idx;
131#define ABSTRACT_TYPE(Name, Parent)
132#include "clang/AST/TypeNodes.def"
133
134  fprintf(stderr, "Total bytes = %d\n", int(TotalBytes));
135
136  if (ExternalSource.get()) {
137    fprintf(stderr, "\n");
138    ExternalSource->PrintStats();
139  }
140}
141
142
143void ASTContext::InitBuiltinType(CanQualType &R, BuiltinType::Kind K) {
144  BuiltinType *Ty = new (*this, TypeAlignment) BuiltinType(K);
145  R = CanQualType::CreateUnsafe(QualType(Ty, 0));
146  Types.push_back(Ty);
147}
148
149void ASTContext::InitBuiltinTypes() {
150  assert(VoidTy.isNull() && "Context reinitialized?");
151
152  // C99 6.2.5p19.
153  InitBuiltinType(VoidTy,              BuiltinType::Void);
154
155  // C99 6.2.5p2.
156  InitBuiltinType(BoolTy,              BuiltinType::Bool);
157  // C99 6.2.5p3.
158  if (LangOpts.CharIsSigned)
159    InitBuiltinType(CharTy,            BuiltinType::Char_S);
160  else
161    InitBuiltinType(CharTy,            BuiltinType::Char_U);
162  // C99 6.2.5p4.
163  InitBuiltinType(SignedCharTy,        BuiltinType::SChar);
164  InitBuiltinType(ShortTy,             BuiltinType::Short);
165  InitBuiltinType(IntTy,               BuiltinType::Int);
166  InitBuiltinType(LongTy,              BuiltinType::Long);
167  InitBuiltinType(LongLongTy,          BuiltinType::LongLong);
168
169  // C99 6.2.5p6.
170  InitBuiltinType(UnsignedCharTy,      BuiltinType::UChar);
171  InitBuiltinType(UnsignedShortTy,     BuiltinType::UShort);
172  InitBuiltinType(UnsignedIntTy,       BuiltinType::UInt);
173  InitBuiltinType(UnsignedLongTy,      BuiltinType::ULong);
174  InitBuiltinType(UnsignedLongLongTy,  BuiltinType::ULongLong);
175
176  // C99 6.2.5p10.
177  InitBuiltinType(FloatTy,             BuiltinType::Float);
178  InitBuiltinType(DoubleTy,            BuiltinType::Double);
179  InitBuiltinType(LongDoubleTy,        BuiltinType::LongDouble);
180
181  // GNU extension, 128-bit integers.
182  InitBuiltinType(Int128Ty,            BuiltinType::Int128);
183  InitBuiltinType(UnsignedInt128Ty,    BuiltinType::UInt128);
184
185  if (LangOpts.CPlusPlus) // C++ 3.9.1p5
186    InitBuiltinType(WCharTy,           BuiltinType::WChar);
187  else // C99
188    WCharTy = getFromTargetType(Target.getWCharType());
189
190  if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
191    InitBuiltinType(Char16Ty,           BuiltinType::Char16);
192  else // C99
193    Char16Ty = getFromTargetType(Target.getChar16Type());
194
195  if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
196    InitBuiltinType(Char32Ty,           BuiltinType::Char32);
197  else // C99
198    Char32Ty = getFromTargetType(Target.getChar32Type());
199
200  // Placeholder type for functions.
201  InitBuiltinType(OverloadTy,          BuiltinType::Overload);
202
203  // Placeholder type for type-dependent expressions whose type is
204  // completely unknown. No code should ever check a type against
205  // DependentTy and users should never see it; however, it is here to
206  // help diagnose failures to properly check for type-dependent
207  // expressions.
208  InitBuiltinType(DependentTy,         BuiltinType::Dependent);
209
210  // Placeholder type for C++0x auto declarations whose real type has
211  // not yet been deduced.
212  InitBuiltinType(UndeducedAutoTy, BuiltinType::UndeducedAuto);
213
214  // C99 6.2.5p11.
215  FloatComplexTy      = getComplexType(FloatTy);
216  DoubleComplexTy     = getComplexType(DoubleTy);
217  LongDoubleComplexTy = getComplexType(LongDoubleTy);
218
219  BuiltinVaListType = QualType();
220
221  // "Builtin" typedefs set by Sema::ActOnTranslationUnitScope().
222  ObjCIdTypedefType = QualType();
223  ObjCClassTypedefType = QualType();
224  ObjCSelTypedefType = QualType();
225
226  // Builtin types for 'id', 'Class', and 'SEL'.
227  InitBuiltinType(ObjCBuiltinIdTy, BuiltinType::ObjCId);
228  InitBuiltinType(ObjCBuiltinClassTy, BuiltinType::ObjCClass);
229  InitBuiltinType(ObjCBuiltinSelTy, BuiltinType::ObjCSel);
230
231  ObjCConstantStringType = QualType();
232
233  // void * type
234  VoidPtrTy = getPointerType(VoidTy);
235
236  // nullptr type (C++0x 2.14.7)
237  InitBuiltinType(NullPtrTy,           BuiltinType::NullPtr);
238}
239
240MemberSpecializationInfo *
241ASTContext::getInstantiatedFromStaticDataMember(const VarDecl *Var) {
242  assert(Var->isStaticDataMember() && "Not a static data member");
243  llvm::DenseMap<const VarDecl *, MemberSpecializationInfo *>::iterator Pos
244    = InstantiatedFromStaticDataMember.find(Var);
245  if (Pos == InstantiatedFromStaticDataMember.end())
246    return 0;
247
248  return Pos->second;
249}
250
251void
252ASTContext::setInstantiatedFromStaticDataMember(VarDecl *Inst, VarDecl *Tmpl,
253                                                TemplateSpecializationKind TSK) {
254  assert(Inst->isStaticDataMember() && "Not a static data member");
255  assert(Tmpl->isStaticDataMember() && "Not a static data member");
256  assert(!InstantiatedFromStaticDataMember[Inst] &&
257         "Already noted what static data member was instantiated from");
258  InstantiatedFromStaticDataMember[Inst]
259    = new (*this) MemberSpecializationInfo(Tmpl, TSK);
260}
261
262NamedDecl *
263ASTContext::getInstantiatedFromUnresolvedUsingDecl(UsingDecl *UUD) {
264  llvm::DenseMap<UsingDecl *, NamedDecl *>::const_iterator Pos
265    = InstantiatedFromUnresolvedUsingDecl.find(UUD);
266  if (Pos == InstantiatedFromUnresolvedUsingDecl.end())
267    return 0;
268
269  return Pos->second;
270}
271
272void
273ASTContext::setInstantiatedFromUnresolvedUsingDecl(UsingDecl *UD,
274                                                   NamedDecl *UUD) {
275  assert((isa<UnresolvedUsingValueDecl>(UUD) ||
276          isa<UnresolvedUsingTypenameDecl>(UUD)) &&
277         "original declaration is not an unresolved using decl");
278  assert(!InstantiatedFromUnresolvedUsingDecl[UD] &&
279         "Already noted what using decl what instantiated from");
280  InstantiatedFromUnresolvedUsingDecl[UD] = UUD;
281}
282
283FieldDecl *ASTContext::getInstantiatedFromUnnamedFieldDecl(FieldDecl *Field) {
284  llvm::DenseMap<FieldDecl *, FieldDecl *>::iterator Pos
285    = InstantiatedFromUnnamedFieldDecl.find(Field);
286  if (Pos == InstantiatedFromUnnamedFieldDecl.end())
287    return 0;
288
289  return Pos->second;
290}
291
292void ASTContext::setInstantiatedFromUnnamedFieldDecl(FieldDecl *Inst,
293                                                     FieldDecl *Tmpl) {
294  assert(!Inst->getDeclName() && "Instantiated field decl is not unnamed");
295  assert(!Tmpl->getDeclName() && "Template field decl is not unnamed");
296  assert(!InstantiatedFromUnnamedFieldDecl[Inst] &&
297         "Already noted what unnamed field was instantiated from");
298
299  InstantiatedFromUnnamedFieldDecl[Inst] = Tmpl;
300}
301
302namespace {
303  class BeforeInTranslationUnit
304    : std::binary_function<SourceRange, SourceRange, bool> {
305    SourceManager *SourceMgr;
306
307  public:
308    explicit BeforeInTranslationUnit(SourceManager *SM) : SourceMgr(SM) { }
309
310    bool operator()(SourceRange X, SourceRange Y) {
311      return SourceMgr->isBeforeInTranslationUnit(X.getBegin(), Y.getBegin());
312    }
313  };
314}
315
316/// \brief Determine whether the given comment is a Doxygen-style comment.
317///
318/// \param Start the start of the comment text.
319///
320/// \param End the end of the comment text.
321///
322/// \param Member whether we want to check whether this is a member comment
323/// (which requires a < after the Doxygen-comment delimiter). Otherwise,
324/// we only return true when we find a non-member comment.
325static bool
326isDoxygenComment(SourceManager &SourceMgr, SourceRange Comment,
327                 bool Member = false) {
328  const char *BufferStart
329    = SourceMgr.getBufferData(SourceMgr.getFileID(Comment.getBegin())).first;
330  const char *Start = BufferStart + SourceMgr.getFileOffset(Comment.getBegin());
331  const char* End = BufferStart + SourceMgr.getFileOffset(Comment.getEnd());
332
333  if (End - Start < 4)
334    return false;
335
336  assert(Start[0] == '/' && "Not a comment?");
337  if (Start[1] == '*' && !(Start[2] == '!' || Start[2] == '*'))
338    return false;
339  if (Start[1] == '/' && !(Start[2] == '!' || Start[2] == '/'))
340    return false;
341
342  return (Start[3] == '<') == Member;
343}
344
345/// \brief Retrieve the comment associated with the given declaration, if
346/// it has one.
347const char *ASTContext::getCommentForDecl(const Decl *D) {
348  if (!D)
349    return 0;
350
351  // Check whether we have cached a comment string for this declaration
352  // already.
353  llvm::DenseMap<const Decl *, std::string>::iterator Pos
354    = DeclComments.find(D);
355  if (Pos != DeclComments.end())
356    return Pos->second.c_str();
357
358  // If we have an external AST source and have not yet loaded comments from
359  // that source, do so now.
360  if (ExternalSource && !LoadedExternalComments) {
361    std::vector<SourceRange> LoadedComments;
362    ExternalSource->ReadComments(LoadedComments);
363
364    if (!LoadedComments.empty())
365      Comments.insert(Comments.begin(), LoadedComments.begin(),
366                      LoadedComments.end());
367
368    LoadedExternalComments = true;
369  }
370
371  // If there are no comments anywhere, we won't find anything.
372  if (Comments.empty())
373    return 0;
374
375  // If the declaration doesn't map directly to a location in a file, we
376  // can't find the comment.
377  SourceLocation DeclStartLoc = D->getLocStart();
378  if (DeclStartLoc.isInvalid() || !DeclStartLoc.isFileID())
379    return 0;
380
381  // Find the comment that occurs just before this declaration.
382  std::vector<SourceRange>::iterator LastComment
383    = std::lower_bound(Comments.begin(), Comments.end(),
384                       SourceRange(DeclStartLoc),
385                       BeforeInTranslationUnit(&SourceMgr));
386
387  // Decompose the location for the start of the declaration and find the
388  // beginning of the file buffer.
389  std::pair<FileID, unsigned> DeclStartDecomp
390    = SourceMgr.getDecomposedLoc(DeclStartLoc);
391  const char *FileBufferStart
392    = SourceMgr.getBufferData(DeclStartDecomp.first).first;
393
394  // First check whether we have a comment for a member.
395  if (LastComment != Comments.end() &&
396      !isa<TagDecl>(D) && !isa<NamespaceDecl>(D) &&
397      isDoxygenComment(SourceMgr, *LastComment, true)) {
398    std::pair<FileID, unsigned> LastCommentEndDecomp
399      = SourceMgr.getDecomposedLoc(LastComment->getEnd());
400    if (DeclStartDecomp.first == LastCommentEndDecomp.first &&
401        SourceMgr.getLineNumber(DeclStartDecomp.first, DeclStartDecomp.second)
402          == SourceMgr.getLineNumber(LastCommentEndDecomp.first,
403                                     LastCommentEndDecomp.second)) {
404      // The Doxygen member comment comes after the declaration starts and
405      // is on the same line and in the same file as the declaration. This
406      // is the comment we want.
407      std::string &Result = DeclComments[D];
408      Result.append(FileBufferStart +
409                      SourceMgr.getFileOffset(LastComment->getBegin()),
410                    FileBufferStart + LastCommentEndDecomp.second + 1);
411      return Result.c_str();
412    }
413  }
414
415  if (LastComment == Comments.begin())
416    return 0;
417  --LastComment;
418
419  // Decompose the end of the comment.
420  std::pair<FileID, unsigned> LastCommentEndDecomp
421    = SourceMgr.getDecomposedLoc(LastComment->getEnd());
422
423  // If the comment and the declaration aren't in the same file, then they
424  // aren't related.
425  if (DeclStartDecomp.first != LastCommentEndDecomp.first)
426    return 0;
427
428  // Check that we actually have a Doxygen comment.
429  if (!isDoxygenComment(SourceMgr, *LastComment))
430    return 0;
431
432  // Compute the starting line for the declaration and for the end of the
433  // comment (this is expensive).
434  unsigned DeclStartLine
435    = SourceMgr.getLineNumber(DeclStartDecomp.first, DeclStartDecomp.second);
436  unsigned CommentEndLine
437    = SourceMgr.getLineNumber(LastCommentEndDecomp.first,
438                              LastCommentEndDecomp.second);
439
440  // If the comment does not end on the line prior to the declaration, then
441  // the comment is not associated with the declaration at all.
442  if (CommentEndLine + 1 != DeclStartLine)
443    return 0;
444
445  // We have a comment, but there may be more comments on the previous lines.
446  // Keep looking so long as the comments are still Doxygen comments and are
447  // still adjacent.
448  unsigned ExpectedLine
449    = SourceMgr.getSpellingLineNumber(LastComment->getBegin()) - 1;
450  std::vector<SourceRange>::iterator FirstComment = LastComment;
451  while (FirstComment != Comments.begin()) {
452    // Look at the previous comment
453    --FirstComment;
454    std::pair<FileID, unsigned> Decomp
455      = SourceMgr.getDecomposedLoc(FirstComment->getEnd());
456
457    // If this previous comment is in a different file, we're done.
458    if (Decomp.first != DeclStartDecomp.first) {
459      ++FirstComment;
460      break;
461    }
462
463    // If this comment is not a Doxygen comment, we're done.
464    if (!isDoxygenComment(SourceMgr, *FirstComment)) {
465      ++FirstComment;
466      break;
467    }
468
469    // If the line number is not what we expected, we're done.
470    unsigned Line = SourceMgr.getLineNumber(Decomp.first, Decomp.second);
471    if (Line != ExpectedLine) {
472      ++FirstComment;
473      break;
474    }
475
476    // Set the next expected line number.
477    ExpectedLine
478      = SourceMgr.getSpellingLineNumber(FirstComment->getBegin()) - 1;
479  }
480
481  // The iterator range [FirstComment, LastComment] contains all of the
482  // BCPL comments that, together, are associated with this declaration.
483  // Form a single comment block string for this declaration that concatenates
484  // all of these comments.
485  std::string &Result = DeclComments[D];
486  while (FirstComment != LastComment) {
487    std::pair<FileID, unsigned> DecompStart
488      = SourceMgr.getDecomposedLoc(FirstComment->getBegin());
489    std::pair<FileID, unsigned> DecompEnd
490      = SourceMgr.getDecomposedLoc(FirstComment->getEnd());
491    Result.append(FileBufferStart + DecompStart.second,
492                  FileBufferStart + DecompEnd.second + 1);
493    ++FirstComment;
494  }
495
496  // Append the last comment line.
497  Result.append(FileBufferStart +
498                  SourceMgr.getFileOffset(LastComment->getBegin()),
499                FileBufferStart + LastCommentEndDecomp.second + 1);
500  return Result.c_str();
501}
502
503//===----------------------------------------------------------------------===//
504//                         Type Sizing and Analysis
505//===----------------------------------------------------------------------===//
506
507/// getFloatTypeSemantics - Return the APFloat 'semantics' for the specified
508/// scalar floating point type.
509const llvm::fltSemantics &ASTContext::getFloatTypeSemantics(QualType T) const {
510  const BuiltinType *BT = T->getAs<BuiltinType>();
511  assert(BT && "Not a floating point type!");
512  switch (BT->getKind()) {
513  default: assert(0 && "Not a floating point type!");
514  case BuiltinType::Float:      return Target.getFloatFormat();
515  case BuiltinType::Double:     return Target.getDoubleFormat();
516  case BuiltinType::LongDouble: return Target.getLongDoubleFormat();
517  }
518}
519
520/// getDeclAlignInBytes - Return a conservative estimate of the alignment of the
521/// specified decl.  Note that bitfields do not have a valid alignment, so
522/// this method will assert on them.
523/// If @p RefAsPointee, references are treated like their underlying type
524/// (for alignof), else they're treated like pointers (for CodeGen).
525unsigned ASTContext::getDeclAlignInBytes(const Decl *D, bool RefAsPointee) {
526  unsigned Align = Target.getCharWidth();
527
528  if (const AlignedAttr* AA = D->getAttr<AlignedAttr>())
529    Align = std::max(Align, AA->getMaxAlignment());
530
531  if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
532    QualType T = VD->getType();
533    if (const ReferenceType* RT = T->getAs<ReferenceType>()) {
534      if (RefAsPointee)
535        T = RT->getPointeeType();
536      else
537        T = getPointerType(RT->getPointeeType());
538    }
539    if (!T->isIncompleteType() && !T->isFunctionType()) {
540      // Incomplete or function types default to 1.
541      while (isa<VariableArrayType>(T) || isa<IncompleteArrayType>(T))
542        T = cast<ArrayType>(T)->getElementType();
543
544      Align = std::max(Align, getPreferredTypeAlign(T.getTypePtr()));
545    }
546  }
547
548  return Align / Target.getCharWidth();
549}
550
551/// getTypeSize - Return the size of the specified type, in bits.  This method
552/// does not work on incomplete types.
553///
554/// FIXME: Pointers into different addr spaces could have different sizes and
555/// alignment requirements: getPointerInfo should take an AddrSpace, this
556/// should take a QualType, &c.
557std::pair<uint64_t, unsigned>
558ASTContext::getTypeInfo(const Type *T) {
559  uint64_t Width=0;
560  unsigned Align=8;
561  switch (T->getTypeClass()) {
562#define TYPE(Class, Base)
563#define ABSTRACT_TYPE(Class, Base)
564#define NON_CANONICAL_TYPE(Class, Base)
565#define DEPENDENT_TYPE(Class, Base) case Type::Class:
566#include "clang/AST/TypeNodes.def"
567    assert(false && "Should not see dependent types");
568    break;
569
570  case Type::FunctionNoProto:
571  case Type::FunctionProto:
572    // GCC extension: alignof(function) = 32 bits
573    Width = 0;
574    Align = 32;
575    break;
576
577  case Type::IncompleteArray:
578  case Type::VariableArray:
579    Width = 0;
580    Align = getTypeAlign(cast<ArrayType>(T)->getElementType());
581    break;
582
583  case Type::ConstantArray: {
584    const ConstantArrayType *CAT = cast<ConstantArrayType>(T);
585
586    std::pair<uint64_t, unsigned> EltInfo = getTypeInfo(CAT->getElementType());
587    Width = EltInfo.first*CAT->getSize().getZExtValue();
588    Align = EltInfo.second;
589    break;
590  }
591  case Type::ExtVector:
592  case Type::Vector: {
593    const VectorType *VT = cast<VectorType>(T);
594    std::pair<uint64_t, unsigned> EltInfo = getTypeInfo(VT->getElementType());
595    Width = EltInfo.first*VT->getNumElements();
596    Align = Width;
597    // If the alignment is not a power of 2, round up to the next power of 2.
598    // This happens for non-power-of-2 length vectors.
599    if (VT->getNumElements() & (VT->getNumElements()-1)) {
600      Align = llvm::NextPowerOf2(Align);
601      Width = llvm::RoundUpToAlignment(Width, Align);
602    }
603    break;
604  }
605
606  case Type::Builtin:
607    switch (cast<BuiltinType>(T)->getKind()) {
608    default: assert(0 && "Unknown builtin type!");
609    case BuiltinType::Void:
610      // GCC extension: alignof(void) = 8 bits.
611      Width = 0;
612      Align = 8;
613      break;
614
615    case BuiltinType::Bool:
616      Width = Target.getBoolWidth();
617      Align = Target.getBoolAlign();
618      break;
619    case BuiltinType::Char_S:
620    case BuiltinType::Char_U:
621    case BuiltinType::UChar:
622    case BuiltinType::SChar:
623      Width = Target.getCharWidth();
624      Align = Target.getCharAlign();
625      break;
626    case BuiltinType::WChar:
627      Width = Target.getWCharWidth();
628      Align = Target.getWCharAlign();
629      break;
630    case BuiltinType::Char16:
631      Width = Target.getChar16Width();
632      Align = Target.getChar16Align();
633      break;
634    case BuiltinType::Char32:
635      Width = Target.getChar32Width();
636      Align = Target.getChar32Align();
637      break;
638    case BuiltinType::UShort:
639    case BuiltinType::Short:
640      Width = Target.getShortWidth();
641      Align = Target.getShortAlign();
642      break;
643    case BuiltinType::UInt:
644    case BuiltinType::Int:
645      Width = Target.getIntWidth();
646      Align = Target.getIntAlign();
647      break;
648    case BuiltinType::ULong:
649    case BuiltinType::Long:
650      Width = Target.getLongWidth();
651      Align = Target.getLongAlign();
652      break;
653    case BuiltinType::ULongLong:
654    case BuiltinType::LongLong:
655      Width = Target.getLongLongWidth();
656      Align = Target.getLongLongAlign();
657      break;
658    case BuiltinType::Int128:
659    case BuiltinType::UInt128:
660      Width = 128;
661      Align = 128; // int128_t is 128-bit aligned on all targets.
662      break;
663    case BuiltinType::Float:
664      Width = Target.getFloatWidth();
665      Align = Target.getFloatAlign();
666      break;
667    case BuiltinType::Double:
668      Width = Target.getDoubleWidth();
669      Align = Target.getDoubleAlign();
670      break;
671    case BuiltinType::LongDouble:
672      Width = Target.getLongDoubleWidth();
673      Align = Target.getLongDoubleAlign();
674      break;
675    case BuiltinType::NullPtr:
676      Width = Target.getPointerWidth(0); // C++ 3.9.1p11: sizeof(nullptr_t)
677      Align = Target.getPointerAlign(0); //   == sizeof(void*)
678      break;
679    }
680    break;
681  case Type::FixedWidthInt:
682    // FIXME: This isn't precisely correct; the width/alignment should depend
683    // on the available types for the target
684    Width = cast<FixedWidthIntType>(T)->getWidth();
685    Width = std::max(llvm::NextPowerOf2(Width - 1), (uint64_t)8);
686    Align = Width;
687    break;
688  case Type::ObjCObjectPointer:
689    Width = Target.getPointerWidth(0);
690    Align = Target.getPointerAlign(0);
691    break;
692  case Type::BlockPointer: {
693    unsigned AS = cast<BlockPointerType>(T)->getPointeeType().getAddressSpace();
694    Width = Target.getPointerWidth(AS);
695    Align = Target.getPointerAlign(AS);
696    break;
697  }
698  case Type::LValueReference:
699  case Type::RValueReference: {
700    // alignof and sizeof should never enter this code path here, so we go
701    // the pointer route.
702    unsigned AS = cast<ReferenceType>(T)->getPointeeType().getAddressSpace();
703    Width = Target.getPointerWidth(AS);
704    Align = Target.getPointerAlign(AS);
705    break;
706  }
707  case Type::Pointer: {
708    unsigned AS = cast<PointerType>(T)->getPointeeType().getAddressSpace();
709    Width = Target.getPointerWidth(AS);
710    Align = Target.getPointerAlign(AS);
711    break;
712  }
713  case Type::MemberPointer: {
714    // FIXME: This is ABI dependent. We use the Itanium C++ ABI.
715    // http://www.codesourcery.com/public/cxx-abi/abi.html#member-pointers
716    // If we ever want to support other ABIs this needs to be abstracted.
717
718    QualType Pointee = cast<MemberPointerType>(T)->getPointeeType();
719    std::pair<uint64_t, unsigned> PtrDiffInfo =
720      getTypeInfo(getPointerDiffType());
721    Width = PtrDiffInfo.first;
722    if (Pointee->isFunctionType())
723      Width *= 2;
724    Align = PtrDiffInfo.second;
725    break;
726  }
727  case Type::Complex: {
728    // Complex types have the same alignment as their elements, but twice the
729    // size.
730    std::pair<uint64_t, unsigned> EltInfo =
731      getTypeInfo(cast<ComplexType>(T)->getElementType());
732    Width = EltInfo.first*2;
733    Align = EltInfo.second;
734    break;
735  }
736  case Type::ObjCInterface: {
737    const ObjCInterfaceType *ObjCI = cast<ObjCInterfaceType>(T);
738    const ASTRecordLayout &Layout = getASTObjCInterfaceLayout(ObjCI->getDecl());
739    Width = Layout.getSize();
740    Align = Layout.getAlignment();
741    break;
742  }
743  case Type::Record:
744  case Type::Enum: {
745    const TagType *TT = cast<TagType>(T);
746
747    if (TT->getDecl()->isInvalidDecl()) {
748      Width = 1;
749      Align = 1;
750      break;
751    }
752
753    if (const EnumType *ET = dyn_cast<EnumType>(TT))
754      return getTypeInfo(ET->getDecl()->getIntegerType());
755
756    const RecordType *RT = cast<RecordType>(TT);
757    const ASTRecordLayout &Layout = getASTRecordLayout(RT->getDecl());
758    Width = Layout.getSize();
759    Align = Layout.getAlignment();
760    break;
761  }
762
763  case Type::SubstTemplateTypeParm:
764    return getTypeInfo(cast<SubstTemplateTypeParmType>(T)->
765                       getReplacementType().getTypePtr());
766
767  case Type::Elaborated:
768    return getTypeInfo(cast<ElaboratedType>(T)->getUnderlyingType()
769                         .getTypePtr());
770
771  case Type::Typedef: {
772    const TypedefDecl *Typedef = cast<TypedefType>(T)->getDecl();
773    if (const AlignedAttr *Aligned = Typedef->getAttr<AlignedAttr>()) {
774      Align = std::max(Aligned->getMaxAlignment(),
775                       getTypeAlign(Typedef->getUnderlyingType().getTypePtr()));
776      Width = getTypeSize(Typedef->getUnderlyingType().getTypePtr());
777    } else
778      return getTypeInfo(Typedef->getUnderlyingType().getTypePtr());
779    break;
780  }
781
782  case Type::TypeOfExpr:
783    return getTypeInfo(cast<TypeOfExprType>(T)->getUnderlyingExpr()->getType()
784                         .getTypePtr());
785
786  case Type::TypeOf:
787    return getTypeInfo(cast<TypeOfType>(T)->getUnderlyingType().getTypePtr());
788
789  case Type::Decltype:
790    return getTypeInfo(cast<DecltypeType>(T)->getUnderlyingExpr()->getType()
791                        .getTypePtr());
792
793  case Type::QualifiedName:
794    return getTypeInfo(cast<QualifiedNameType>(T)->getNamedType().getTypePtr());
795
796  case Type::TemplateSpecialization:
797    assert(getCanonicalType(T) != T &&
798           "Cannot request the size of a dependent type");
799    // FIXME: this is likely to be wrong once we support template
800    // aliases, since a template alias could refer to a typedef that
801    // has an __aligned__ attribute on it.
802    return getTypeInfo(getCanonicalType(T));
803  }
804
805  assert(Align && (Align & (Align-1)) == 0 && "Alignment must be power of 2");
806  return std::make_pair(Width, Align);
807}
808
809/// getPreferredTypeAlign - Return the "preferred" alignment of the specified
810/// type for the current target in bits.  This can be different than the ABI
811/// alignment in cases where it is beneficial for performance to overalign
812/// a data type.
813unsigned ASTContext::getPreferredTypeAlign(const Type *T) {
814  unsigned ABIAlign = getTypeAlign(T);
815
816  // Double and long long should be naturally aligned if possible.
817  if (const ComplexType* CT = T->getAs<ComplexType>())
818    T = CT->getElementType().getTypePtr();
819  if (T->isSpecificBuiltinType(BuiltinType::Double) ||
820      T->isSpecificBuiltinType(BuiltinType::LongLong))
821    return std::max(ABIAlign, (unsigned)getTypeSize(T));
822
823  return ABIAlign;
824}
825
826static void CollectLocalObjCIvars(ASTContext *Ctx,
827                                  const ObjCInterfaceDecl *OI,
828                                  llvm::SmallVectorImpl<FieldDecl*> &Fields) {
829  for (ObjCInterfaceDecl::ivar_iterator I = OI->ivar_begin(),
830       E = OI->ivar_end(); I != E; ++I) {
831    ObjCIvarDecl *IVDecl = *I;
832    if (!IVDecl->isInvalidDecl())
833      Fields.push_back(cast<FieldDecl>(IVDecl));
834  }
835}
836
837void ASTContext::CollectObjCIvars(const ObjCInterfaceDecl *OI,
838                             llvm::SmallVectorImpl<FieldDecl*> &Fields) {
839  if (const ObjCInterfaceDecl *SuperClass = OI->getSuperClass())
840    CollectObjCIvars(SuperClass, Fields);
841  CollectLocalObjCIvars(this, OI, Fields);
842}
843
844/// ShallowCollectObjCIvars -
845/// Collect all ivars, including those synthesized, in the current class.
846///
847void ASTContext::ShallowCollectObjCIvars(const ObjCInterfaceDecl *OI,
848                                 llvm::SmallVectorImpl<ObjCIvarDecl*> &Ivars,
849                                 bool CollectSynthesized) {
850  for (ObjCInterfaceDecl::ivar_iterator I = OI->ivar_begin(),
851         E = OI->ivar_end(); I != E; ++I) {
852     Ivars.push_back(*I);
853  }
854  if (CollectSynthesized)
855    CollectSynthesizedIvars(OI, Ivars);
856}
857
858void ASTContext::CollectProtocolSynthesizedIvars(const ObjCProtocolDecl *PD,
859                                llvm::SmallVectorImpl<ObjCIvarDecl*> &Ivars) {
860  for (ObjCContainerDecl::prop_iterator I = PD->prop_begin(),
861       E = PD->prop_end(); I != E; ++I)
862    if (ObjCIvarDecl *Ivar = (*I)->getPropertyIvarDecl())
863      Ivars.push_back(Ivar);
864
865  // Also look into nested protocols.
866  for (ObjCProtocolDecl::protocol_iterator P = PD->protocol_begin(),
867       E = PD->protocol_end(); P != E; ++P)
868    CollectProtocolSynthesizedIvars(*P, Ivars);
869}
870
871/// CollectSynthesizedIvars -
872/// This routine collect synthesized ivars for the designated class.
873///
874void ASTContext::CollectSynthesizedIvars(const ObjCInterfaceDecl *OI,
875                                llvm::SmallVectorImpl<ObjCIvarDecl*> &Ivars) {
876  for (ObjCInterfaceDecl::prop_iterator I = OI->prop_begin(),
877       E = OI->prop_end(); I != E; ++I) {
878    if (ObjCIvarDecl *Ivar = (*I)->getPropertyIvarDecl())
879      Ivars.push_back(Ivar);
880  }
881  // Also look into interface's protocol list for properties declared
882  // in the protocol and whose ivars are synthesized.
883  for (ObjCInterfaceDecl::protocol_iterator P = OI->protocol_begin(),
884       PE = OI->protocol_end(); P != PE; ++P) {
885    ObjCProtocolDecl *PD = (*P);
886    CollectProtocolSynthesizedIvars(PD, Ivars);
887  }
888}
889
890/// CollectInheritedProtocols - Collect all protocols in current class and
891/// those inherited by it.
892void ASTContext::CollectInheritedProtocols(const Decl *CDecl,
893                          llvm::SmallVectorImpl<ObjCProtocolDecl*> &Protocols) {
894  if (const ObjCInterfaceDecl *OI = dyn_cast<ObjCInterfaceDecl>(CDecl)) {
895    for (ObjCInterfaceDecl::protocol_iterator P = OI->protocol_begin(),
896         PE = OI->protocol_end(); P != PE; ++P) {
897      ObjCProtocolDecl *Proto = (*P);
898      Protocols.push_back(Proto);
899      for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
900           PE = Proto->protocol_end(); P != PE; ++P)
901        CollectInheritedProtocols(*P, Protocols);
902      }
903
904    // Categories of this Interface.
905    for (const ObjCCategoryDecl *CDeclChain = OI->getCategoryList();
906         CDeclChain; CDeclChain = CDeclChain->getNextClassCategory())
907      CollectInheritedProtocols(CDeclChain, Protocols);
908    if (ObjCInterfaceDecl *SD = OI->getSuperClass())
909      while (SD) {
910        CollectInheritedProtocols(SD, Protocols);
911        SD = SD->getSuperClass();
912      }
913    return;
914  }
915  if (const ObjCCategoryDecl *OC = dyn_cast<ObjCCategoryDecl>(CDecl)) {
916    for (ObjCInterfaceDecl::protocol_iterator P = OC->protocol_begin(),
917         PE = OC->protocol_end(); P != PE; ++P) {
918      ObjCProtocolDecl *Proto = (*P);
919      Protocols.push_back(Proto);
920      for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
921           PE = Proto->protocol_end(); P != PE; ++P)
922        CollectInheritedProtocols(*P, Protocols);
923    }
924    return;
925  }
926  if (const ObjCProtocolDecl *OP = dyn_cast<ObjCProtocolDecl>(CDecl)) {
927    for (ObjCProtocolDecl::protocol_iterator P = OP->protocol_begin(),
928         PE = OP->protocol_end(); P != PE; ++P) {
929      ObjCProtocolDecl *Proto = (*P);
930      Protocols.push_back(Proto);
931      for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
932           PE = Proto->protocol_end(); P != PE; ++P)
933        CollectInheritedProtocols(*P, Protocols);
934    }
935    return;
936  }
937}
938
939unsigned ASTContext::CountProtocolSynthesizedIvars(const ObjCProtocolDecl *PD) {
940  unsigned count = 0;
941  for (ObjCContainerDecl::prop_iterator I = PD->prop_begin(),
942       E = PD->prop_end(); I != E; ++I)
943    if ((*I)->getPropertyIvarDecl())
944      ++count;
945
946  // Also look into nested protocols.
947  for (ObjCProtocolDecl::protocol_iterator P = PD->protocol_begin(),
948       E = PD->protocol_end(); P != E; ++P)
949    count += CountProtocolSynthesizedIvars(*P);
950  return count;
951}
952
953unsigned ASTContext::CountSynthesizedIvars(const ObjCInterfaceDecl *OI) {
954  unsigned count = 0;
955  for (ObjCInterfaceDecl::prop_iterator I = OI->prop_begin(),
956       E = OI->prop_end(); I != E; ++I) {
957    if ((*I)->getPropertyIvarDecl())
958      ++count;
959  }
960  // Also look into interface's protocol list for properties declared
961  // in the protocol and whose ivars are synthesized.
962  for (ObjCInterfaceDecl::protocol_iterator P = OI->protocol_begin(),
963       PE = OI->protocol_end(); P != PE; ++P) {
964    ObjCProtocolDecl *PD = (*P);
965    count += CountProtocolSynthesizedIvars(PD);
966  }
967  return count;
968}
969
970/// \brief Get the implementation of ObjCInterfaceDecl,or NULL if none exists.
971ObjCImplementationDecl *ASTContext::getObjCImplementation(ObjCInterfaceDecl *D) {
972  llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
973    I = ObjCImpls.find(D);
974  if (I != ObjCImpls.end())
975    return cast<ObjCImplementationDecl>(I->second);
976  return 0;
977}
978/// \brief Get the implementation of ObjCCategoryDecl, or NULL if none exists.
979ObjCCategoryImplDecl *ASTContext::getObjCImplementation(ObjCCategoryDecl *D) {
980  llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
981    I = ObjCImpls.find(D);
982  if (I != ObjCImpls.end())
983    return cast<ObjCCategoryImplDecl>(I->second);
984  return 0;
985}
986
987/// \brief Set the implementation of ObjCInterfaceDecl.
988void ASTContext::setObjCImplementation(ObjCInterfaceDecl *IFaceD,
989                           ObjCImplementationDecl *ImplD) {
990  assert(IFaceD && ImplD && "Passed null params");
991  ObjCImpls[IFaceD] = ImplD;
992}
993/// \brief Set the implementation of ObjCCategoryDecl.
994void ASTContext::setObjCImplementation(ObjCCategoryDecl *CatD,
995                           ObjCCategoryImplDecl *ImplD) {
996  assert(CatD && ImplD && "Passed null params");
997  ObjCImpls[CatD] = ImplD;
998}
999
1000/// \brief Allocate an uninitialized DeclaratorInfo.
1001///
1002/// The caller should initialize the memory held by DeclaratorInfo using
1003/// the TypeLoc wrappers.
1004///
1005/// \param T the type that will be the basis for type source info. This type
1006/// should refer to how the declarator was written in source code, not to
1007/// what type semantic analysis resolved the declarator to.
1008DeclaratorInfo *ASTContext::CreateDeclaratorInfo(QualType T,
1009                                                 unsigned DataSize) {
1010  if (!DataSize)
1011    DataSize = TypeLoc::getFullDataSizeForType(T);
1012  else
1013    assert(DataSize == TypeLoc::getFullDataSizeForType(T) &&
1014           "incorrect data size provided to CreateDeclaratorInfo!");
1015
1016  DeclaratorInfo *DInfo =
1017    (DeclaratorInfo*)BumpAlloc.Allocate(sizeof(DeclaratorInfo) + DataSize, 8);
1018  new (DInfo) DeclaratorInfo(T);
1019  return DInfo;
1020}
1021
1022DeclaratorInfo *ASTContext::getTrivialDeclaratorInfo(QualType T,
1023                                                     SourceLocation L) {
1024  DeclaratorInfo *DI = CreateDeclaratorInfo(T);
1025  DI->getTypeLoc().initialize(L);
1026  return DI;
1027}
1028
1029/// getInterfaceLayoutImpl - Get or compute information about the
1030/// layout of the given interface.
1031///
1032/// \param Impl - If given, also include the layout of the interface's
1033/// implementation. This may differ by including synthesized ivars.
1034const ASTRecordLayout &
1035ASTContext::getObjCLayout(const ObjCInterfaceDecl *D,
1036                          const ObjCImplementationDecl *Impl) {
1037  assert(!D->isForwardDecl() && "Invalid interface decl!");
1038
1039  // Look up this layout, if already laid out, return what we have.
1040  ObjCContainerDecl *Key =
1041    Impl ? (ObjCContainerDecl*) Impl : (ObjCContainerDecl*) D;
1042  if (const ASTRecordLayout *Entry = ObjCLayouts[Key])
1043    return *Entry;
1044
1045  // Add in synthesized ivar count if laying out an implementation.
1046  if (Impl) {
1047    unsigned FieldCount = D->ivar_size();
1048    unsigned SynthCount = CountSynthesizedIvars(D);
1049    FieldCount += SynthCount;
1050    // If there aren't any sythesized ivars then reuse the interface
1051    // entry. Note we can't cache this because we simply free all
1052    // entries later; however we shouldn't look up implementations
1053    // frequently.
1054    if (SynthCount == 0)
1055      return getObjCLayout(D, 0);
1056  }
1057
1058  const ASTRecordLayout *NewEntry =
1059    ASTRecordLayoutBuilder::ComputeLayout(*this, D, Impl);
1060  ObjCLayouts[Key] = NewEntry;
1061
1062  return *NewEntry;
1063}
1064
1065const ASTRecordLayout &
1066ASTContext::getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D) {
1067  return getObjCLayout(D, 0);
1068}
1069
1070const ASTRecordLayout &
1071ASTContext::getASTObjCImplementationLayout(const ObjCImplementationDecl *D) {
1072  return getObjCLayout(D->getClassInterface(), D);
1073}
1074
1075/// getASTRecordLayout - Get or compute information about the layout of the
1076/// specified record (struct/union/class), which indicates its size and field
1077/// position information.
1078const ASTRecordLayout &ASTContext::getASTRecordLayout(const RecordDecl *D) {
1079  D = D->getDefinition(*this);
1080  assert(D && "Cannot get layout of forward declarations!");
1081
1082  // Look up this layout, if already laid out, return what we have.
1083  // Note that we can't save a reference to the entry because this function
1084  // is recursive.
1085  const ASTRecordLayout *Entry = ASTRecordLayouts[D];
1086  if (Entry) return *Entry;
1087
1088  const ASTRecordLayout *NewEntry =
1089    ASTRecordLayoutBuilder::ComputeLayout(*this, D);
1090  ASTRecordLayouts[D] = NewEntry;
1091
1092  return *NewEntry;
1093}
1094
1095//===----------------------------------------------------------------------===//
1096//                   Type creation/memoization methods
1097//===----------------------------------------------------------------------===//
1098
1099QualType ASTContext::getExtQualType(const Type *TypeNode, Qualifiers Quals) {
1100  unsigned Fast = Quals.getFastQualifiers();
1101  Quals.removeFastQualifiers();
1102
1103  // Check if we've already instantiated this type.
1104  llvm::FoldingSetNodeID ID;
1105  ExtQuals::Profile(ID, TypeNode, Quals);
1106  void *InsertPos = 0;
1107  if (ExtQuals *EQ = ExtQualNodes.FindNodeOrInsertPos(ID, InsertPos)) {
1108    assert(EQ->getQualifiers() == Quals);
1109    QualType T = QualType(EQ, Fast);
1110    return T;
1111  }
1112
1113  ExtQuals *New = new (*this, TypeAlignment) ExtQuals(*this, TypeNode, Quals);
1114  ExtQualNodes.InsertNode(New, InsertPos);
1115  QualType T = QualType(New, Fast);
1116  return T;
1117}
1118
1119QualType ASTContext::getVolatileType(QualType T) {
1120  QualType CanT = getCanonicalType(T);
1121  if (CanT.isVolatileQualified()) return T;
1122
1123  QualifierCollector Quals;
1124  const Type *TypeNode = Quals.strip(T);
1125  Quals.addVolatile();
1126
1127  return getExtQualType(TypeNode, Quals);
1128}
1129
1130QualType ASTContext::getAddrSpaceQualType(QualType T, unsigned AddressSpace) {
1131  QualType CanT = getCanonicalType(T);
1132  if (CanT.getAddressSpace() == AddressSpace)
1133    return T;
1134
1135  // If we are composing extended qualifiers together, merge together
1136  // into one ExtQuals node.
1137  QualifierCollector Quals;
1138  const Type *TypeNode = Quals.strip(T);
1139
1140  // If this type already has an address space specified, it cannot get
1141  // another one.
1142  assert(!Quals.hasAddressSpace() &&
1143         "Type cannot be in multiple addr spaces!");
1144  Quals.addAddressSpace(AddressSpace);
1145
1146  return getExtQualType(TypeNode, Quals);
1147}
1148
1149QualType ASTContext::getObjCGCQualType(QualType T,
1150                                       Qualifiers::GC GCAttr) {
1151  QualType CanT = getCanonicalType(T);
1152  if (CanT.getObjCGCAttr() == GCAttr)
1153    return T;
1154
1155  if (T->isPointerType()) {
1156    QualType Pointee = T->getAs<PointerType>()->getPointeeType();
1157    if (Pointee->isAnyPointerType()) {
1158      QualType ResultType = getObjCGCQualType(Pointee, GCAttr);
1159      return getPointerType(ResultType);
1160    }
1161  }
1162
1163  // If we are composing extended qualifiers together, merge together
1164  // into one ExtQuals node.
1165  QualifierCollector Quals;
1166  const Type *TypeNode = Quals.strip(T);
1167
1168  // If this type already has an ObjCGC specified, it cannot get
1169  // another one.
1170  assert(!Quals.hasObjCGCAttr() &&
1171         "Type cannot have multiple ObjCGCs!");
1172  Quals.addObjCGCAttr(GCAttr);
1173
1174  return getExtQualType(TypeNode, Quals);
1175}
1176
1177QualType ASTContext::getNoReturnType(QualType T) {
1178  QualType ResultType;
1179  if (T->isPointerType()) {
1180    QualType Pointee = T->getAs<PointerType>()->getPointeeType();
1181    ResultType = getNoReturnType(Pointee);
1182    ResultType = getPointerType(ResultType);
1183  } else if (T->isBlockPointerType()) {
1184    QualType Pointee = T->getAs<BlockPointerType>()->getPointeeType();
1185    ResultType = getNoReturnType(Pointee);
1186    ResultType = getBlockPointerType(ResultType);
1187  } else {
1188    assert (T->isFunctionType()
1189            && "can't noreturn qualify non-pointer to function or block type");
1190
1191    if (const FunctionNoProtoType *FNPT = T->getAs<FunctionNoProtoType>()) {
1192      ResultType = getFunctionNoProtoType(FNPT->getResultType(), true);
1193    } else {
1194      const FunctionProtoType *F = T->getAs<FunctionProtoType>();
1195      ResultType
1196        = getFunctionType(F->getResultType(), F->arg_type_begin(),
1197                          F->getNumArgs(), F->isVariadic(), F->getTypeQuals(),
1198                          F->hasExceptionSpec(), F->hasAnyExceptionSpec(),
1199                          F->getNumExceptions(), F->exception_begin(), true);
1200    }
1201  }
1202
1203  return getQualifiedType(ResultType, T.getLocalQualifiers());
1204}
1205
1206/// getComplexType - Return the uniqued reference to the type for a complex
1207/// number with the specified element type.
1208QualType ASTContext::getComplexType(QualType T) {
1209  // Unique pointers, to guarantee there is only one pointer of a particular
1210  // structure.
1211  llvm::FoldingSetNodeID ID;
1212  ComplexType::Profile(ID, T);
1213
1214  void *InsertPos = 0;
1215  if (ComplexType *CT = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos))
1216    return QualType(CT, 0);
1217
1218  // If the pointee type isn't canonical, this won't be a canonical type either,
1219  // so fill in the canonical type field.
1220  QualType Canonical;
1221  if (!T.isCanonical()) {
1222    Canonical = getComplexType(getCanonicalType(T));
1223
1224    // Get the new insert position for the node we care about.
1225    ComplexType *NewIP = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos);
1226    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1227  }
1228  ComplexType *New = new (*this, TypeAlignment) ComplexType(T, Canonical);
1229  Types.push_back(New);
1230  ComplexTypes.InsertNode(New, InsertPos);
1231  return QualType(New, 0);
1232}
1233
1234QualType ASTContext::getFixedWidthIntType(unsigned Width, bool Signed) {
1235  llvm::DenseMap<unsigned, FixedWidthIntType*> &Map = Signed ?
1236     SignedFixedWidthIntTypes : UnsignedFixedWidthIntTypes;
1237  FixedWidthIntType *&Entry = Map[Width];
1238  if (!Entry)
1239    Entry = new FixedWidthIntType(Width, Signed);
1240  return QualType(Entry, 0);
1241}
1242
1243/// getPointerType - Return the uniqued reference to the type for a pointer to
1244/// the specified type.
1245QualType ASTContext::getPointerType(QualType T) {
1246  // Unique pointers, to guarantee there is only one pointer of a particular
1247  // structure.
1248  llvm::FoldingSetNodeID ID;
1249  PointerType::Profile(ID, T);
1250
1251  void *InsertPos = 0;
1252  if (PointerType *PT = PointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1253    return QualType(PT, 0);
1254
1255  // If the pointee type isn't canonical, this won't be a canonical type either,
1256  // so fill in the canonical type field.
1257  QualType Canonical;
1258  if (!T.isCanonical()) {
1259    Canonical = getPointerType(getCanonicalType(T));
1260
1261    // Get the new insert position for the node we care about.
1262    PointerType *NewIP = PointerTypes.FindNodeOrInsertPos(ID, InsertPos);
1263    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1264  }
1265  PointerType *New = new (*this, TypeAlignment) PointerType(T, Canonical);
1266  Types.push_back(New);
1267  PointerTypes.InsertNode(New, InsertPos);
1268  return QualType(New, 0);
1269}
1270
1271/// getBlockPointerType - Return the uniqued reference to the type for
1272/// a pointer to the specified block.
1273QualType ASTContext::getBlockPointerType(QualType T) {
1274  assert(T->isFunctionType() && "block of function types only");
1275  // Unique pointers, to guarantee there is only one block of a particular
1276  // structure.
1277  llvm::FoldingSetNodeID ID;
1278  BlockPointerType::Profile(ID, T);
1279
1280  void *InsertPos = 0;
1281  if (BlockPointerType *PT =
1282        BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1283    return QualType(PT, 0);
1284
1285  // If the block pointee type isn't canonical, this won't be a canonical
1286  // type either so fill in the canonical type field.
1287  QualType Canonical;
1288  if (!T.isCanonical()) {
1289    Canonical = getBlockPointerType(getCanonicalType(T));
1290
1291    // Get the new insert position for the node we care about.
1292    BlockPointerType *NewIP =
1293      BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
1294    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1295  }
1296  BlockPointerType *New
1297    = new (*this, TypeAlignment) BlockPointerType(T, Canonical);
1298  Types.push_back(New);
1299  BlockPointerTypes.InsertNode(New, InsertPos);
1300  return QualType(New, 0);
1301}
1302
1303/// getLValueReferenceType - Return the uniqued reference to the type for an
1304/// lvalue reference to the specified type.
1305QualType ASTContext::getLValueReferenceType(QualType T, bool SpelledAsLValue) {
1306  // Unique pointers, to guarantee there is only one pointer of a particular
1307  // structure.
1308  llvm::FoldingSetNodeID ID;
1309  ReferenceType::Profile(ID, T, SpelledAsLValue);
1310
1311  void *InsertPos = 0;
1312  if (LValueReferenceType *RT =
1313        LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
1314    return QualType(RT, 0);
1315
1316  const ReferenceType *InnerRef = T->getAs<ReferenceType>();
1317
1318  // If the referencee type isn't canonical, this won't be a canonical type
1319  // either, so fill in the canonical type field.
1320  QualType Canonical;
1321  if (!SpelledAsLValue || InnerRef || !T.isCanonical()) {
1322    QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
1323    Canonical = getLValueReferenceType(getCanonicalType(PointeeType));
1324
1325    // Get the new insert position for the node we care about.
1326    LValueReferenceType *NewIP =
1327      LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
1328    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1329  }
1330
1331  LValueReferenceType *New
1332    = new (*this, TypeAlignment) LValueReferenceType(T, Canonical,
1333                                                     SpelledAsLValue);
1334  Types.push_back(New);
1335  LValueReferenceTypes.InsertNode(New, InsertPos);
1336
1337  return QualType(New, 0);
1338}
1339
1340/// getRValueReferenceType - Return the uniqued reference to the type for an
1341/// rvalue reference to the specified type.
1342QualType ASTContext::getRValueReferenceType(QualType T) {
1343  // Unique pointers, to guarantee there is only one pointer of a particular
1344  // structure.
1345  llvm::FoldingSetNodeID ID;
1346  ReferenceType::Profile(ID, T, false);
1347
1348  void *InsertPos = 0;
1349  if (RValueReferenceType *RT =
1350        RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
1351    return QualType(RT, 0);
1352
1353  const ReferenceType *InnerRef = T->getAs<ReferenceType>();
1354
1355  // If the referencee type isn't canonical, this won't be a canonical type
1356  // either, so fill in the canonical type field.
1357  QualType Canonical;
1358  if (InnerRef || !T.isCanonical()) {
1359    QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
1360    Canonical = getRValueReferenceType(getCanonicalType(PointeeType));
1361
1362    // Get the new insert position for the node we care about.
1363    RValueReferenceType *NewIP =
1364      RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
1365    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1366  }
1367
1368  RValueReferenceType *New
1369    = new (*this, TypeAlignment) RValueReferenceType(T, Canonical);
1370  Types.push_back(New);
1371  RValueReferenceTypes.InsertNode(New, InsertPos);
1372  return QualType(New, 0);
1373}
1374
1375/// getMemberPointerType - Return the uniqued reference to the type for a
1376/// member pointer to the specified type, in the specified class.
1377QualType ASTContext::getMemberPointerType(QualType T, const Type *Cls) {
1378  // Unique pointers, to guarantee there is only one pointer of a particular
1379  // structure.
1380  llvm::FoldingSetNodeID ID;
1381  MemberPointerType::Profile(ID, T, Cls);
1382
1383  void *InsertPos = 0;
1384  if (MemberPointerType *PT =
1385      MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1386    return QualType(PT, 0);
1387
1388  // If the pointee or class type isn't canonical, this won't be a canonical
1389  // type either, so fill in the canonical type field.
1390  QualType Canonical;
1391  if (!T.isCanonical() || !Cls->isCanonicalUnqualified()) {
1392    Canonical = getMemberPointerType(getCanonicalType(T),getCanonicalType(Cls));
1393
1394    // Get the new insert position for the node we care about.
1395    MemberPointerType *NewIP =
1396      MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
1397    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1398  }
1399  MemberPointerType *New
1400    = new (*this, TypeAlignment) MemberPointerType(T, Cls, Canonical);
1401  Types.push_back(New);
1402  MemberPointerTypes.InsertNode(New, InsertPos);
1403  return QualType(New, 0);
1404}
1405
1406/// getConstantArrayType - Return the unique reference to the type for an
1407/// array of the specified element type.
1408QualType ASTContext::getConstantArrayType(QualType EltTy,
1409                                          const llvm::APInt &ArySizeIn,
1410                                          ArrayType::ArraySizeModifier ASM,
1411                                          unsigned EltTypeQuals) {
1412  assert((EltTy->isDependentType() ||
1413          EltTy->isIncompleteType() || EltTy->isConstantSizeType()) &&
1414         "Constant array of VLAs is illegal!");
1415
1416  // Convert the array size into a canonical width matching the pointer size for
1417  // the target.
1418  llvm::APInt ArySize(ArySizeIn);
1419  ArySize.zextOrTrunc(Target.getPointerWidth(EltTy.getAddressSpace()));
1420
1421  llvm::FoldingSetNodeID ID;
1422  ConstantArrayType::Profile(ID, EltTy, ArySize, ASM, EltTypeQuals);
1423
1424  void *InsertPos = 0;
1425  if (ConstantArrayType *ATP =
1426      ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
1427    return QualType(ATP, 0);
1428
1429  // If the element type isn't canonical, this won't be a canonical type either,
1430  // so fill in the canonical type field.
1431  QualType Canonical;
1432  if (!EltTy.isCanonical()) {
1433    Canonical = getConstantArrayType(getCanonicalType(EltTy), ArySize,
1434                                     ASM, EltTypeQuals);
1435    // Get the new insert position for the node we care about.
1436    ConstantArrayType *NewIP =
1437      ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
1438    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1439  }
1440
1441  ConstantArrayType *New = new(*this,TypeAlignment)
1442    ConstantArrayType(EltTy, Canonical, ArySize, ASM, EltTypeQuals);
1443  ConstantArrayTypes.InsertNode(New, InsertPos);
1444  Types.push_back(New);
1445  return QualType(New, 0);
1446}
1447
1448/// getVariableArrayType - Returns a non-unique reference to the type for a
1449/// variable array of the specified element type.
1450QualType ASTContext::getVariableArrayType(QualType EltTy,
1451                                          Expr *NumElts,
1452                                          ArrayType::ArraySizeModifier ASM,
1453                                          unsigned EltTypeQuals,
1454                                          SourceRange Brackets) {
1455  // Since we don't unique expressions, it isn't possible to unique VLA's
1456  // that have an expression provided for their size.
1457
1458  VariableArrayType *New = new(*this, TypeAlignment)
1459    VariableArrayType(EltTy, QualType(), NumElts, ASM, EltTypeQuals, Brackets);
1460
1461  VariableArrayTypes.push_back(New);
1462  Types.push_back(New);
1463  return QualType(New, 0);
1464}
1465
1466/// getDependentSizedArrayType - Returns a non-unique reference to
1467/// the type for a dependently-sized array of the specified element
1468/// type.
1469QualType ASTContext::getDependentSizedArrayType(QualType EltTy,
1470                                                Expr *NumElts,
1471                                                ArrayType::ArraySizeModifier ASM,
1472                                                unsigned EltTypeQuals,
1473                                                SourceRange Brackets) {
1474  assert((!NumElts || NumElts->isTypeDependent() ||
1475          NumElts->isValueDependent()) &&
1476         "Size must be type- or value-dependent!");
1477
1478  void *InsertPos = 0;
1479  DependentSizedArrayType *Canon = 0;
1480
1481  if (NumElts) {
1482    // Dependently-sized array types that do not have a specified
1483    // number of elements will have their sizes deduced from an
1484    // initializer.
1485    llvm::FoldingSetNodeID ID;
1486    DependentSizedArrayType::Profile(ID, *this, getCanonicalType(EltTy), ASM,
1487                                     EltTypeQuals, NumElts);
1488
1489    Canon = DependentSizedArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
1490  }
1491
1492  DependentSizedArrayType *New;
1493  if (Canon) {
1494    // We already have a canonical version of this array type; use it as
1495    // the canonical type for a newly-built type.
1496    New = new (*this, TypeAlignment)
1497      DependentSizedArrayType(*this, EltTy, QualType(Canon, 0),
1498                              NumElts, ASM, EltTypeQuals, Brackets);
1499  } else {
1500    QualType CanonEltTy = getCanonicalType(EltTy);
1501    if (CanonEltTy == EltTy) {
1502      New = new (*this, TypeAlignment)
1503        DependentSizedArrayType(*this, EltTy, QualType(),
1504                                NumElts, ASM, EltTypeQuals, Brackets);
1505
1506      if (NumElts)
1507        DependentSizedArrayTypes.InsertNode(New, InsertPos);
1508    } else {
1509      QualType Canon = getDependentSizedArrayType(CanonEltTy, NumElts,
1510                                                  ASM, EltTypeQuals,
1511                                                  SourceRange());
1512      New = new (*this, TypeAlignment)
1513        DependentSizedArrayType(*this, EltTy, Canon,
1514                                NumElts, ASM, EltTypeQuals, Brackets);
1515    }
1516  }
1517
1518  Types.push_back(New);
1519  return QualType(New, 0);
1520}
1521
1522QualType ASTContext::getIncompleteArrayType(QualType EltTy,
1523                                            ArrayType::ArraySizeModifier ASM,
1524                                            unsigned EltTypeQuals) {
1525  llvm::FoldingSetNodeID ID;
1526  IncompleteArrayType::Profile(ID, EltTy, ASM, EltTypeQuals);
1527
1528  void *InsertPos = 0;
1529  if (IncompleteArrayType *ATP =
1530       IncompleteArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
1531    return QualType(ATP, 0);
1532
1533  // If the element type isn't canonical, this won't be a canonical type
1534  // either, so fill in the canonical type field.
1535  QualType Canonical;
1536
1537  if (!EltTy.isCanonical()) {
1538    Canonical = getIncompleteArrayType(getCanonicalType(EltTy),
1539                                       ASM, EltTypeQuals);
1540
1541    // Get the new insert position for the node we care about.
1542    IncompleteArrayType *NewIP =
1543      IncompleteArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
1544    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1545  }
1546
1547  IncompleteArrayType *New = new (*this, TypeAlignment)
1548    IncompleteArrayType(EltTy, Canonical, ASM, EltTypeQuals);
1549
1550  IncompleteArrayTypes.InsertNode(New, InsertPos);
1551  Types.push_back(New);
1552  return QualType(New, 0);
1553}
1554
1555/// getVectorType - Return the unique reference to a vector type of
1556/// the specified element type and size. VectorType must be a built-in type.
1557QualType ASTContext::getVectorType(QualType vecType, unsigned NumElts) {
1558  BuiltinType *baseType;
1559
1560  baseType = dyn_cast<BuiltinType>(getCanonicalType(vecType).getTypePtr());
1561  assert(baseType != 0 && "getVectorType(): Expecting a built-in type");
1562
1563  // Check if we've already instantiated a vector of this type.
1564  llvm::FoldingSetNodeID ID;
1565  VectorType::Profile(ID, vecType, NumElts, Type::Vector);
1566  void *InsertPos = 0;
1567  if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
1568    return QualType(VTP, 0);
1569
1570  // If the element type isn't canonical, this won't be a canonical type either,
1571  // so fill in the canonical type field.
1572  QualType Canonical;
1573  if (!vecType.isCanonical()) {
1574    Canonical = getVectorType(getCanonicalType(vecType), NumElts);
1575
1576    // Get the new insert position for the node we care about.
1577    VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
1578    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1579  }
1580  VectorType *New = new (*this, TypeAlignment)
1581    VectorType(vecType, NumElts, Canonical);
1582  VectorTypes.InsertNode(New, InsertPos);
1583  Types.push_back(New);
1584  return QualType(New, 0);
1585}
1586
1587/// getExtVectorType - Return the unique reference to an extended vector type of
1588/// the specified element type and size. VectorType must be a built-in type.
1589QualType ASTContext::getExtVectorType(QualType vecType, unsigned NumElts) {
1590  BuiltinType *baseType;
1591
1592  baseType = dyn_cast<BuiltinType>(getCanonicalType(vecType).getTypePtr());
1593  assert(baseType != 0 && "getExtVectorType(): Expecting a built-in type");
1594
1595  // Check if we've already instantiated a vector of this type.
1596  llvm::FoldingSetNodeID ID;
1597  VectorType::Profile(ID, vecType, NumElts, Type::ExtVector);
1598  void *InsertPos = 0;
1599  if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
1600    return QualType(VTP, 0);
1601
1602  // If the element type isn't canonical, this won't be a canonical type either,
1603  // so fill in the canonical type field.
1604  QualType Canonical;
1605  if (!vecType.isCanonical()) {
1606    Canonical = getExtVectorType(getCanonicalType(vecType), NumElts);
1607
1608    // Get the new insert position for the node we care about.
1609    VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
1610    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1611  }
1612  ExtVectorType *New = new (*this, TypeAlignment)
1613    ExtVectorType(vecType, NumElts, Canonical);
1614  VectorTypes.InsertNode(New, InsertPos);
1615  Types.push_back(New);
1616  return QualType(New, 0);
1617}
1618
1619QualType ASTContext::getDependentSizedExtVectorType(QualType vecType,
1620                                                    Expr *SizeExpr,
1621                                                    SourceLocation AttrLoc) {
1622  llvm::FoldingSetNodeID ID;
1623  DependentSizedExtVectorType::Profile(ID, *this, getCanonicalType(vecType),
1624                                       SizeExpr);
1625
1626  void *InsertPos = 0;
1627  DependentSizedExtVectorType *Canon
1628    = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
1629  DependentSizedExtVectorType *New;
1630  if (Canon) {
1631    // We already have a canonical version of this array type; use it as
1632    // the canonical type for a newly-built type.
1633    New = new (*this, TypeAlignment)
1634      DependentSizedExtVectorType(*this, vecType, QualType(Canon, 0),
1635                                  SizeExpr, AttrLoc);
1636  } else {
1637    QualType CanonVecTy = getCanonicalType(vecType);
1638    if (CanonVecTy == vecType) {
1639      New = new (*this, TypeAlignment)
1640        DependentSizedExtVectorType(*this, vecType, QualType(), SizeExpr,
1641                                    AttrLoc);
1642      DependentSizedExtVectorTypes.InsertNode(New, InsertPos);
1643    } else {
1644      QualType Canon = getDependentSizedExtVectorType(CanonVecTy, SizeExpr,
1645                                                      SourceLocation());
1646      New = new (*this, TypeAlignment)
1647        DependentSizedExtVectorType(*this, vecType, Canon, SizeExpr, AttrLoc);
1648    }
1649  }
1650
1651  Types.push_back(New);
1652  return QualType(New, 0);
1653}
1654
1655/// getFunctionNoProtoType - Return a K&R style C function type like 'int()'.
1656///
1657QualType ASTContext::getFunctionNoProtoType(QualType ResultTy, bool NoReturn) {
1658  // Unique functions, to guarantee there is only one function of a particular
1659  // structure.
1660  llvm::FoldingSetNodeID ID;
1661  FunctionNoProtoType::Profile(ID, ResultTy, NoReturn);
1662
1663  void *InsertPos = 0;
1664  if (FunctionNoProtoType *FT =
1665        FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
1666    return QualType(FT, 0);
1667
1668  QualType Canonical;
1669  if (!ResultTy.isCanonical()) {
1670    Canonical = getFunctionNoProtoType(getCanonicalType(ResultTy), NoReturn);
1671
1672    // Get the new insert position for the node we care about.
1673    FunctionNoProtoType *NewIP =
1674      FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
1675    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1676  }
1677
1678  FunctionNoProtoType *New = new (*this, TypeAlignment)
1679    FunctionNoProtoType(ResultTy, Canonical, NoReturn);
1680  Types.push_back(New);
1681  FunctionNoProtoTypes.InsertNode(New, InsertPos);
1682  return QualType(New, 0);
1683}
1684
1685/// getFunctionType - Return a normal function type with a typed argument
1686/// list.  isVariadic indicates whether the argument list includes '...'.
1687QualType ASTContext::getFunctionType(QualType ResultTy,const QualType *ArgArray,
1688                                     unsigned NumArgs, bool isVariadic,
1689                                     unsigned TypeQuals, bool hasExceptionSpec,
1690                                     bool hasAnyExceptionSpec, unsigned NumExs,
1691                                     const QualType *ExArray, bool NoReturn) {
1692  // Unique functions, to guarantee there is only one function of a particular
1693  // structure.
1694  llvm::FoldingSetNodeID ID;
1695  FunctionProtoType::Profile(ID, ResultTy, ArgArray, NumArgs, isVariadic,
1696                             TypeQuals, hasExceptionSpec, hasAnyExceptionSpec,
1697                             NumExs, ExArray, NoReturn);
1698
1699  void *InsertPos = 0;
1700  if (FunctionProtoType *FTP =
1701        FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
1702    return QualType(FTP, 0);
1703
1704  // Determine whether the type being created is already canonical or not.
1705  bool isCanonical = !hasExceptionSpec && ResultTy.isCanonical();
1706  for (unsigned i = 0; i != NumArgs && isCanonical; ++i)
1707    if (!ArgArray[i].isCanonicalAsParam())
1708      isCanonical = false;
1709
1710  // If this type isn't canonical, get the canonical version of it.
1711  // The exception spec is not part of the canonical type.
1712  QualType Canonical;
1713  if (!isCanonical) {
1714    llvm::SmallVector<QualType, 16> CanonicalArgs;
1715    CanonicalArgs.reserve(NumArgs);
1716    for (unsigned i = 0; i != NumArgs; ++i)
1717      CanonicalArgs.push_back(getCanonicalParamType(ArgArray[i]));
1718
1719    Canonical = getFunctionType(getCanonicalType(ResultTy),
1720                                CanonicalArgs.data(), NumArgs,
1721                                isVariadic, TypeQuals, false,
1722                                false, 0, 0, NoReturn);
1723
1724    // Get the new insert position for the node we care about.
1725    FunctionProtoType *NewIP =
1726      FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
1727    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1728  }
1729
1730  // FunctionProtoType objects are allocated with extra bytes after them
1731  // for two variable size arrays (for parameter and exception types) at the
1732  // end of them.
1733  FunctionProtoType *FTP =
1734    (FunctionProtoType*)Allocate(sizeof(FunctionProtoType) +
1735                                 NumArgs*sizeof(QualType) +
1736                                 NumExs*sizeof(QualType), TypeAlignment);
1737  new (FTP) FunctionProtoType(ResultTy, ArgArray, NumArgs, isVariadic,
1738                              TypeQuals, hasExceptionSpec, hasAnyExceptionSpec,
1739                              ExArray, NumExs, Canonical, NoReturn);
1740  Types.push_back(FTP);
1741  FunctionProtoTypes.InsertNode(FTP, InsertPos);
1742  return QualType(FTP, 0);
1743}
1744
1745/// getTypeDeclType - Return the unique reference to the type for the
1746/// specified type declaration.
1747QualType ASTContext::getTypeDeclType(TypeDecl *Decl, TypeDecl* PrevDecl) {
1748  assert(Decl && "Passed null for Decl param");
1749  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
1750
1751  if (TypedefDecl *Typedef = dyn_cast<TypedefDecl>(Decl))
1752    return getTypedefType(Typedef);
1753  else if (isa<TemplateTypeParmDecl>(Decl)) {
1754    assert(false && "Template type parameter types are always available.");
1755  } else if (ObjCInterfaceDecl *ObjCInterface
1756               = dyn_cast<ObjCInterfaceDecl>(Decl))
1757    return getObjCInterfaceType(ObjCInterface);
1758
1759  if (RecordDecl *Record = dyn_cast<RecordDecl>(Decl)) {
1760    if (PrevDecl)
1761      Decl->TypeForDecl = PrevDecl->TypeForDecl;
1762    else
1763      Decl->TypeForDecl = new (*this, TypeAlignment) RecordType(Record);
1764  } else if (EnumDecl *Enum = dyn_cast<EnumDecl>(Decl)) {
1765    if (PrevDecl)
1766      Decl->TypeForDecl = PrevDecl->TypeForDecl;
1767    else
1768      Decl->TypeForDecl = new (*this, TypeAlignment) EnumType(Enum);
1769  } else
1770    assert(false && "TypeDecl without a type?");
1771
1772  if (!PrevDecl) Types.push_back(Decl->TypeForDecl);
1773  return QualType(Decl->TypeForDecl, 0);
1774}
1775
1776/// getTypedefType - Return the unique reference to the type for the
1777/// specified typename decl.
1778QualType ASTContext::getTypedefType(TypedefDecl *Decl) {
1779  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
1780
1781  QualType Canonical = getCanonicalType(Decl->getUnderlyingType());
1782  Decl->TypeForDecl = new(*this, TypeAlignment)
1783    TypedefType(Type::Typedef, Decl, Canonical);
1784  Types.push_back(Decl->TypeForDecl);
1785  return QualType(Decl->TypeForDecl, 0);
1786}
1787
1788/// \brief Retrieve a substitution-result type.
1789QualType
1790ASTContext::getSubstTemplateTypeParmType(const TemplateTypeParmType *Parm,
1791                                         QualType Replacement) {
1792  assert(Replacement.isCanonical()
1793         && "replacement types must always be canonical");
1794
1795  llvm::FoldingSetNodeID ID;
1796  SubstTemplateTypeParmType::Profile(ID, Parm, Replacement);
1797  void *InsertPos = 0;
1798  SubstTemplateTypeParmType *SubstParm
1799    = SubstTemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
1800
1801  if (!SubstParm) {
1802    SubstParm = new (*this, TypeAlignment)
1803      SubstTemplateTypeParmType(Parm, Replacement);
1804    Types.push_back(SubstParm);
1805    SubstTemplateTypeParmTypes.InsertNode(SubstParm, InsertPos);
1806  }
1807
1808  return QualType(SubstParm, 0);
1809}
1810
1811/// \brief Retrieve the template type parameter type for a template
1812/// parameter or parameter pack with the given depth, index, and (optionally)
1813/// name.
1814QualType ASTContext::getTemplateTypeParmType(unsigned Depth, unsigned Index,
1815                                             bool ParameterPack,
1816                                             IdentifierInfo *Name) {
1817  llvm::FoldingSetNodeID ID;
1818  TemplateTypeParmType::Profile(ID, Depth, Index, ParameterPack, Name);
1819  void *InsertPos = 0;
1820  TemplateTypeParmType *TypeParm
1821    = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
1822
1823  if (TypeParm)
1824    return QualType(TypeParm, 0);
1825
1826  if (Name) {
1827    QualType Canon = getTemplateTypeParmType(Depth, Index, ParameterPack);
1828    TypeParm = new (*this, TypeAlignment)
1829      TemplateTypeParmType(Depth, Index, ParameterPack, Name, Canon);
1830  } else
1831    TypeParm = new (*this, TypeAlignment)
1832      TemplateTypeParmType(Depth, Index, ParameterPack);
1833
1834  Types.push_back(TypeParm);
1835  TemplateTypeParmTypes.InsertNode(TypeParm, InsertPos);
1836
1837  return QualType(TypeParm, 0);
1838}
1839
1840QualType
1841ASTContext::getTemplateSpecializationType(TemplateName Template,
1842                                          const TemplateArgumentListInfo &Args,
1843                                          QualType Canon) {
1844  unsigned NumArgs = Args.size();
1845
1846  llvm::SmallVector<TemplateArgument, 4> ArgVec;
1847  ArgVec.reserve(NumArgs);
1848  for (unsigned i = 0; i != NumArgs; ++i)
1849    ArgVec.push_back(Args[i].getArgument());
1850
1851  return getTemplateSpecializationType(Template, ArgVec.data(), NumArgs, Canon);
1852}
1853
1854QualType
1855ASTContext::getTemplateSpecializationType(TemplateName Template,
1856                                          const TemplateArgument *Args,
1857                                          unsigned NumArgs,
1858                                          QualType Canon) {
1859  if (!Canon.isNull())
1860    Canon = getCanonicalType(Canon);
1861  else {
1862    // Build the canonical template specialization type.
1863    TemplateName CanonTemplate = getCanonicalTemplateName(Template);
1864    llvm::SmallVector<TemplateArgument, 4> CanonArgs;
1865    CanonArgs.reserve(NumArgs);
1866    for (unsigned I = 0; I != NumArgs; ++I)
1867      CanonArgs.push_back(getCanonicalTemplateArgument(Args[I]));
1868
1869    // Determine whether this canonical template specialization type already
1870    // exists.
1871    llvm::FoldingSetNodeID ID;
1872    TemplateSpecializationType::Profile(ID, CanonTemplate,
1873                                        CanonArgs.data(), NumArgs, *this);
1874
1875    void *InsertPos = 0;
1876    TemplateSpecializationType *Spec
1877      = TemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
1878
1879    if (!Spec) {
1880      // Allocate a new canonical template specialization type.
1881      void *Mem = Allocate((sizeof(TemplateSpecializationType) +
1882                            sizeof(TemplateArgument) * NumArgs),
1883                           TypeAlignment);
1884      Spec = new (Mem) TemplateSpecializationType(*this, CanonTemplate,
1885                                                  CanonArgs.data(), NumArgs,
1886                                                  Canon);
1887      Types.push_back(Spec);
1888      TemplateSpecializationTypes.InsertNode(Spec, InsertPos);
1889    }
1890
1891    if (Canon.isNull())
1892      Canon = QualType(Spec, 0);
1893    assert(Canon->isDependentType() &&
1894           "Non-dependent template-id type must have a canonical type");
1895  }
1896
1897  // Allocate the (non-canonical) template specialization type, but don't
1898  // try to unique it: these types typically have location information that
1899  // we don't unique and don't want to lose.
1900  void *Mem = Allocate((sizeof(TemplateSpecializationType) +
1901                        sizeof(TemplateArgument) * NumArgs),
1902                       TypeAlignment);
1903  TemplateSpecializationType *Spec
1904    = new (Mem) TemplateSpecializationType(*this, Template, Args, NumArgs,
1905                                           Canon);
1906
1907  Types.push_back(Spec);
1908  return QualType(Spec, 0);
1909}
1910
1911QualType
1912ASTContext::getQualifiedNameType(NestedNameSpecifier *NNS,
1913                                 QualType NamedType) {
1914  llvm::FoldingSetNodeID ID;
1915  QualifiedNameType::Profile(ID, NNS, NamedType);
1916
1917  void *InsertPos = 0;
1918  QualifiedNameType *T
1919    = QualifiedNameTypes.FindNodeOrInsertPos(ID, InsertPos);
1920  if (T)
1921    return QualType(T, 0);
1922
1923  T = new (*this) QualifiedNameType(NNS, NamedType,
1924                                    getCanonicalType(NamedType));
1925  Types.push_back(T);
1926  QualifiedNameTypes.InsertNode(T, InsertPos);
1927  return QualType(T, 0);
1928}
1929
1930QualType ASTContext::getTypenameType(NestedNameSpecifier *NNS,
1931                                     const IdentifierInfo *Name,
1932                                     QualType Canon) {
1933  assert(NNS->isDependent() && "nested-name-specifier must be dependent");
1934
1935  if (Canon.isNull()) {
1936    NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
1937    if (CanonNNS != NNS)
1938      Canon = getTypenameType(CanonNNS, Name);
1939  }
1940
1941  llvm::FoldingSetNodeID ID;
1942  TypenameType::Profile(ID, NNS, Name);
1943
1944  void *InsertPos = 0;
1945  TypenameType *T
1946    = TypenameTypes.FindNodeOrInsertPos(ID, InsertPos);
1947  if (T)
1948    return QualType(T, 0);
1949
1950  T = new (*this) TypenameType(NNS, Name, Canon);
1951  Types.push_back(T);
1952  TypenameTypes.InsertNode(T, InsertPos);
1953  return QualType(T, 0);
1954}
1955
1956QualType
1957ASTContext::getTypenameType(NestedNameSpecifier *NNS,
1958                            const TemplateSpecializationType *TemplateId,
1959                            QualType Canon) {
1960  assert(NNS->isDependent() && "nested-name-specifier must be dependent");
1961
1962  if (Canon.isNull()) {
1963    NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
1964    QualType CanonType = getCanonicalType(QualType(TemplateId, 0));
1965    if (CanonNNS != NNS || CanonType != QualType(TemplateId, 0)) {
1966      const TemplateSpecializationType *CanonTemplateId
1967        = CanonType->getAs<TemplateSpecializationType>();
1968      assert(CanonTemplateId &&
1969             "Canonical type must also be a template specialization type");
1970      Canon = getTypenameType(CanonNNS, CanonTemplateId);
1971    }
1972  }
1973
1974  llvm::FoldingSetNodeID ID;
1975  TypenameType::Profile(ID, NNS, TemplateId);
1976
1977  void *InsertPos = 0;
1978  TypenameType *T
1979    = TypenameTypes.FindNodeOrInsertPos(ID, InsertPos);
1980  if (T)
1981    return QualType(T, 0);
1982
1983  T = new (*this) TypenameType(NNS, TemplateId, Canon);
1984  Types.push_back(T);
1985  TypenameTypes.InsertNode(T, InsertPos);
1986  return QualType(T, 0);
1987}
1988
1989QualType
1990ASTContext::getElaboratedType(QualType UnderlyingType,
1991                              ElaboratedType::TagKind Tag) {
1992  llvm::FoldingSetNodeID ID;
1993  ElaboratedType::Profile(ID, UnderlyingType, Tag);
1994
1995  void *InsertPos = 0;
1996  ElaboratedType *T = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
1997  if (T)
1998    return QualType(T, 0);
1999
2000  QualType Canon = getCanonicalType(UnderlyingType);
2001
2002  T = new (*this) ElaboratedType(UnderlyingType, Tag, Canon);
2003  Types.push_back(T);
2004  ElaboratedTypes.InsertNode(T, InsertPos);
2005  return QualType(T, 0);
2006}
2007
2008/// CmpProtocolNames - Comparison predicate for sorting protocols
2009/// alphabetically.
2010static bool CmpProtocolNames(const ObjCProtocolDecl *LHS,
2011                            const ObjCProtocolDecl *RHS) {
2012  return LHS->getDeclName() < RHS->getDeclName();
2013}
2014
2015static bool areSortedAndUniqued(ObjCProtocolDecl **Protocols,
2016                                unsigned NumProtocols) {
2017  if (NumProtocols == 0) return true;
2018
2019  for (unsigned i = 1; i != NumProtocols; ++i)
2020    if (!CmpProtocolNames(Protocols[i-1], Protocols[i]))
2021      return false;
2022  return true;
2023}
2024
2025static void SortAndUniqueProtocols(ObjCProtocolDecl **Protocols,
2026                                   unsigned &NumProtocols) {
2027  ObjCProtocolDecl **ProtocolsEnd = Protocols+NumProtocols;
2028
2029  // Sort protocols, keyed by name.
2030  std::sort(Protocols, Protocols+NumProtocols, CmpProtocolNames);
2031
2032  // Remove duplicates.
2033  ProtocolsEnd = std::unique(Protocols, ProtocolsEnd);
2034  NumProtocols = ProtocolsEnd-Protocols;
2035}
2036
2037/// getObjCObjectPointerType - Return a ObjCObjectPointerType type for
2038/// the given interface decl and the conforming protocol list.
2039QualType ASTContext::getObjCObjectPointerType(QualType InterfaceT,
2040                                              ObjCProtocolDecl **Protocols,
2041                                              unsigned NumProtocols) {
2042  llvm::FoldingSetNodeID ID;
2043  ObjCObjectPointerType::Profile(ID, InterfaceT, Protocols, NumProtocols);
2044
2045  void *InsertPos = 0;
2046  if (ObjCObjectPointerType *QT =
2047              ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
2048    return QualType(QT, 0);
2049
2050  // Sort the protocol list alphabetically to canonicalize it.
2051  QualType Canonical;
2052  if (!InterfaceT.isCanonical() ||
2053      !areSortedAndUniqued(Protocols, NumProtocols)) {
2054    if (!areSortedAndUniqued(Protocols, NumProtocols)) {
2055      llvm::SmallVector<ObjCProtocolDecl*, 8> Sorted(NumProtocols);
2056      unsigned UniqueCount = NumProtocols;
2057
2058      std::copy(Protocols, Protocols + NumProtocols, Sorted.begin());
2059      SortAndUniqueProtocols(&Sorted[0], UniqueCount);
2060
2061      Canonical = getObjCObjectPointerType(getCanonicalType(InterfaceT),
2062                                           &Sorted[0], UniqueCount);
2063    } else {
2064      Canonical = getObjCObjectPointerType(getCanonicalType(InterfaceT),
2065                                           Protocols, NumProtocols);
2066    }
2067
2068    // Regenerate InsertPos.
2069    ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
2070  }
2071
2072  // No Match;
2073  ObjCObjectPointerType *QType = new (*this, TypeAlignment)
2074    ObjCObjectPointerType(Canonical, InterfaceT, Protocols, NumProtocols);
2075
2076  Types.push_back(QType);
2077  ObjCObjectPointerTypes.InsertNode(QType, InsertPos);
2078  return QualType(QType, 0);
2079}
2080
2081/// getObjCInterfaceType - Return the unique reference to the type for the
2082/// specified ObjC interface decl. The list of protocols is optional.
2083QualType ASTContext::getObjCInterfaceType(const ObjCInterfaceDecl *Decl,
2084                       ObjCProtocolDecl **Protocols, unsigned NumProtocols) {
2085  llvm::FoldingSetNodeID ID;
2086  ObjCInterfaceType::Profile(ID, Decl, Protocols, NumProtocols);
2087
2088  void *InsertPos = 0;
2089  if (ObjCInterfaceType *QT =
2090      ObjCInterfaceTypes.FindNodeOrInsertPos(ID, InsertPos))
2091    return QualType(QT, 0);
2092
2093  // Sort the protocol list alphabetically to canonicalize it.
2094  QualType Canonical;
2095  if (NumProtocols && !areSortedAndUniqued(Protocols, NumProtocols)) {
2096    llvm::SmallVector<ObjCProtocolDecl*, 8> Sorted(NumProtocols);
2097    std::copy(Protocols, Protocols + NumProtocols, Sorted.begin());
2098
2099    unsigned UniqueCount = NumProtocols;
2100    SortAndUniqueProtocols(&Sorted[0], UniqueCount);
2101
2102    Canonical = getObjCInterfaceType(Decl, &Sorted[0], UniqueCount);
2103
2104    ObjCInterfaceTypes.FindNodeOrInsertPos(ID, InsertPos);
2105  }
2106
2107  ObjCInterfaceType *QType = new (*this, TypeAlignment)
2108    ObjCInterfaceType(Canonical, const_cast<ObjCInterfaceDecl*>(Decl),
2109                      Protocols, NumProtocols);
2110
2111  Types.push_back(QType);
2112  ObjCInterfaceTypes.InsertNode(QType, InsertPos);
2113  return QualType(QType, 0);
2114}
2115
2116/// getTypeOfExprType - Unlike many "get<Type>" functions, we can't unique
2117/// TypeOfExprType AST's (since expression's are never shared). For example,
2118/// multiple declarations that refer to "typeof(x)" all contain different
2119/// DeclRefExpr's. This doesn't effect the type checker, since it operates
2120/// on canonical type's (which are always unique).
2121QualType ASTContext::getTypeOfExprType(Expr *tofExpr) {
2122  TypeOfExprType *toe;
2123  if (tofExpr->isTypeDependent()) {
2124    llvm::FoldingSetNodeID ID;
2125    DependentTypeOfExprType::Profile(ID, *this, tofExpr);
2126
2127    void *InsertPos = 0;
2128    DependentTypeOfExprType *Canon
2129      = DependentTypeOfExprTypes.FindNodeOrInsertPos(ID, InsertPos);
2130    if (Canon) {
2131      // We already have a "canonical" version of an identical, dependent
2132      // typeof(expr) type. Use that as our canonical type.
2133      toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr,
2134                                          QualType((TypeOfExprType*)Canon, 0));
2135    }
2136    else {
2137      // Build a new, canonical typeof(expr) type.
2138      Canon
2139        = new (*this, TypeAlignment) DependentTypeOfExprType(*this, tofExpr);
2140      DependentTypeOfExprTypes.InsertNode(Canon, InsertPos);
2141      toe = Canon;
2142    }
2143  } else {
2144    QualType Canonical = getCanonicalType(tofExpr->getType());
2145    toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr, Canonical);
2146  }
2147  Types.push_back(toe);
2148  return QualType(toe, 0);
2149}
2150
2151/// getTypeOfType -  Unlike many "get<Type>" functions, we don't unique
2152/// TypeOfType AST's. The only motivation to unique these nodes would be
2153/// memory savings. Since typeof(t) is fairly uncommon, space shouldn't be
2154/// an issue. This doesn't effect the type checker, since it operates
2155/// on canonical type's (which are always unique).
2156QualType ASTContext::getTypeOfType(QualType tofType) {
2157  QualType Canonical = getCanonicalType(tofType);
2158  TypeOfType *tot = new (*this, TypeAlignment) TypeOfType(tofType, Canonical);
2159  Types.push_back(tot);
2160  return QualType(tot, 0);
2161}
2162
2163/// getDecltypeForExpr - Given an expr, will return the decltype for that
2164/// expression, according to the rules in C++0x [dcl.type.simple]p4
2165static QualType getDecltypeForExpr(const Expr *e, ASTContext &Context) {
2166  if (e->isTypeDependent())
2167    return Context.DependentTy;
2168
2169  // If e is an id expression or a class member access, decltype(e) is defined
2170  // as the type of the entity named by e.
2171  if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(e)) {
2172    if (const ValueDecl *VD = dyn_cast<ValueDecl>(DRE->getDecl()))
2173      return VD->getType();
2174  }
2175  if (const MemberExpr *ME = dyn_cast<MemberExpr>(e)) {
2176    if (const FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl()))
2177      return FD->getType();
2178  }
2179  // If e is a function call or an invocation of an overloaded operator,
2180  // (parentheses around e are ignored), decltype(e) is defined as the
2181  // return type of that function.
2182  if (const CallExpr *CE = dyn_cast<CallExpr>(e->IgnoreParens()))
2183    return CE->getCallReturnType();
2184
2185  QualType T = e->getType();
2186
2187  // Otherwise, where T is the type of e, if e is an lvalue, decltype(e) is
2188  // defined as T&, otherwise decltype(e) is defined as T.
2189  if (e->isLvalue(Context) == Expr::LV_Valid)
2190    T = Context.getLValueReferenceType(T);
2191
2192  return T;
2193}
2194
2195/// getDecltypeType -  Unlike many "get<Type>" functions, we don't unique
2196/// DecltypeType AST's. The only motivation to unique these nodes would be
2197/// memory savings. Since decltype(t) is fairly uncommon, space shouldn't be
2198/// an issue. This doesn't effect the type checker, since it operates
2199/// on canonical type's (which are always unique).
2200QualType ASTContext::getDecltypeType(Expr *e) {
2201  DecltypeType *dt;
2202  if (e->isTypeDependent()) {
2203    llvm::FoldingSetNodeID ID;
2204    DependentDecltypeType::Profile(ID, *this, e);
2205
2206    void *InsertPos = 0;
2207    DependentDecltypeType *Canon
2208      = DependentDecltypeTypes.FindNodeOrInsertPos(ID, InsertPos);
2209    if (Canon) {
2210      // We already have a "canonical" version of an equivalent, dependent
2211      // decltype type. Use that as our canonical type.
2212      dt = new (*this, TypeAlignment) DecltypeType(e, DependentTy,
2213                                       QualType((DecltypeType*)Canon, 0));
2214    }
2215    else {
2216      // Build a new, canonical typeof(expr) type.
2217      Canon = new (*this, TypeAlignment) DependentDecltypeType(*this, e);
2218      DependentDecltypeTypes.InsertNode(Canon, InsertPos);
2219      dt = Canon;
2220    }
2221  } else {
2222    QualType T = getDecltypeForExpr(e, *this);
2223    dt = new (*this, TypeAlignment) DecltypeType(e, T, getCanonicalType(T));
2224  }
2225  Types.push_back(dt);
2226  return QualType(dt, 0);
2227}
2228
2229/// getTagDeclType - Return the unique reference to the type for the
2230/// specified TagDecl (struct/union/class/enum) decl.
2231QualType ASTContext::getTagDeclType(const TagDecl *Decl) {
2232  assert (Decl);
2233  // FIXME: What is the design on getTagDeclType when it requires casting
2234  // away const?  mutable?
2235  return getTypeDeclType(const_cast<TagDecl*>(Decl));
2236}
2237
2238/// getSizeType - Return the unique type for "size_t" (C99 7.17), the result
2239/// of the sizeof operator (C99 6.5.3.4p4). The value is target dependent and
2240/// needs to agree with the definition in <stddef.h>.
2241QualType ASTContext::getSizeType() const {
2242  return getFromTargetType(Target.getSizeType());
2243}
2244
2245/// getSignedWCharType - Return the type of "signed wchar_t".
2246/// Used when in C++, as a GCC extension.
2247QualType ASTContext::getSignedWCharType() const {
2248  // FIXME: derive from "Target" ?
2249  return WCharTy;
2250}
2251
2252/// getUnsignedWCharType - Return the type of "unsigned wchar_t".
2253/// Used when in C++, as a GCC extension.
2254QualType ASTContext::getUnsignedWCharType() const {
2255  // FIXME: derive from "Target" ?
2256  return UnsignedIntTy;
2257}
2258
2259/// getPointerDiffType - Return the unique type for "ptrdiff_t" (ref?)
2260/// defined in <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9).
2261QualType ASTContext::getPointerDiffType() const {
2262  return getFromTargetType(Target.getPtrDiffType(0));
2263}
2264
2265//===----------------------------------------------------------------------===//
2266//                              Type Operators
2267//===----------------------------------------------------------------------===//
2268
2269CanQualType ASTContext::getCanonicalParamType(QualType T) {
2270  // Push qualifiers into arrays, and then discard any remaining
2271  // qualifiers.
2272  T = getCanonicalType(T);
2273  const Type *Ty = T.getTypePtr();
2274
2275  QualType Result;
2276  if (isa<ArrayType>(Ty)) {
2277    Result = getArrayDecayedType(QualType(Ty,0));
2278  } else if (isa<FunctionType>(Ty)) {
2279    Result = getPointerType(QualType(Ty, 0));
2280  } else {
2281    Result = QualType(Ty, 0);
2282  }
2283
2284  return CanQualType::CreateUnsafe(Result);
2285}
2286
2287/// getCanonicalType - Return the canonical (structural) type corresponding to
2288/// the specified potentially non-canonical type.  The non-canonical version
2289/// of a type may have many "decorated" versions of types.  Decorators can
2290/// include typedefs, 'typeof' operators, etc. The returned type is guaranteed
2291/// to be free of any of these, allowing two canonical types to be compared
2292/// for exact equality with a simple pointer comparison.
2293CanQualType ASTContext::getCanonicalType(QualType T) {
2294  QualifierCollector Quals;
2295  const Type *Ptr = Quals.strip(T);
2296  QualType CanType = Ptr->getCanonicalTypeInternal();
2297
2298  // The canonical internal type will be the canonical type *except*
2299  // that we push type qualifiers down through array types.
2300
2301  // If there are no new qualifiers to push down, stop here.
2302  if (!Quals.hasQualifiers())
2303    return CanQualType::CreateUnsafe(CanType);
2304
2305  // If the type qualifiers are on an array type, get the canonical
2306  // type of the array with the qualifiers applied to the element
2307  // type.
2308  ArrayType *AT = dyn_cast<ArrayType>(CanType);
2309  if (!AT)
2310    return CanQualType::CreateUnsafe(getQualifiedType(CanType, Quals));
2311
2312  // Get the canonical version of the element with the extra qualifiers on it.
2313  // This can recursively sink qualifiers through multiple levels of arrays.
2314  QualType NewEltTy = getQualifiedType(AT->getElementType(), Quals);
2315  NewEltTy = getCanonicalType(NewEltTy);
2316
2317  if (ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
2318    return CanQualType::CreateUnsafe(
2319             getConstantArrayType(NewEltTy, CAT->getSize(),
2320                                  CAT->getSizeModifier(),
2321                                  CAT->getIndexTypeCVRQualifiers()));
2322  if (IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT))
2323    return CanQualType::CreateUnsafe(
2324             getIncompleteArrayType(NewEltTy, IAT->getSizeModifier(),
2325                                    IAT->getIndexTypeCVRQualifiers()));
2326
2327  if (DependentSizedArrayType *DSAT = dyn_cast<DependentSizedArrayType>(AT))
2328    return CanQualType::CreateUnsafe(
2329             getDependentSizedArrayType(NewEltTy,
2330                                        DSAT->getSizeExpr() ?
2331                                          DSAT->getSizeExpr()->Retain() : 0,
2332                                        DSAT->getSizeModifier(),
2333                                        DSAT->getIndexTypeCVRQualifiers(),
2334                        DSAT->getBracketsRange())->getCanonicalTypeInternal());
2335
2336  VariableArrayType *VAT = cast<VariableArrayType>(AT);
2337  return CanQualType::CreateUnsafe(getVariableArrayType(NewEltTy,
2338                                                        VAT->getSizeExpr() ?
2339                                              VAT->getSizeExpr()->Retain() : 0,
2340                                                        VAT->getSizeModifier(),
2341                                              VAT->getIndexTypeCVRQualifiers(),
2342                                                     VAT->getBracketsRange()));
2343}
2344
2345TemplateName ASTContext::getCanonicalTemplateName(TemplateName Name) {
2346  // If this template name refers to a template, the canonical
2347  // template name merely stores the template itself.
2348  if (TemplateDecl *Template = Name.getAsTemplateDecl())
2349    return TemplateName(cast<TemplateDecl>(Template->getCanonicalDecl()));
2350
2351  // If this template name refers to a set of overloaded function templates,
2352  /// the canonical template name merely stores the set of function templates.
2353  if (OverloadedFunctionDecl *Ovl = Name.getAsOverloadedFunctionDecl()) {
2354    OverloadedFunctionDecl *CanonOvl = 0;
2355    for (OverloadedFunctionDecl::function_iterator F = Ovl->function_begin(),
2356                                                FEnd = Ovl->function_end();
2357         F != FEnd; ++F) {
2358      Decl *Canon = F->get()->getCanonicalDecl();
2359      if (CanonOvl || Canon != F->get()) {
2360        if (!CanonOvl)
2361          CanonOvl = OverloadedFunctionDecl::Create(*this,
2362                                                    Ovl->getDeclContext(),
2363                                                    Ovl->getDeclName());
2364
2365        CanonOvl->addOverload(
2366                    AnyFunctionDecl::getFromNamedDecl(cast<NamedDecl>(Canon)));
2367      }
2368    }
2369
2370    return TemplateName(CanonOvl? CanonOvl : Ovl);
2371  }
2372
2373  DependentTemplateName *DTN = Name.getAsDependentTemplateName();
2374  assert(DTN && "Non-dependent template names must refer to template decls.");
2375  return DTN->CanonicalTemplateName;
2376}
2377
2378bool ASTContext::hasSameTemplateName(TemplateName X, TemplateName Y) {
2379  X = getCanonicalTemplateName(X);
2380  Y = getCanonicalTemplateName(Y);
2381  return X.getAsVoidPointer() == Y.getAsVoidPointer();
2382}
2383
2384TemplateArgument
2385ASTContext::getCanonicalTemplateArgument(const TemplateArgument &Arg) {
2386  switch (Arg.getKind()) {
2387    case TemplateArgument::Null:
2388      return Arg;
2389
2390    case TemplateArgument::Expression:
2391      return Arg;
2392
2393    case TemplateArgument::Declaration:
2394      return TemplateArgument(Arg.getAsDecl()->getCanonicalDecl());
2395
2396    case TemplateArgument::Template:
2397      return TemplateArgument(getCanonicalTemplateName(Arg.getAsTemplate()));
2398
2399    case TemplateArgument::Integral:
2400      return TemplateArgument(*Arg.getAsIntegral(),
2401                              getCanonicalType(Arg.getIntegralType()));
2402
2403    case TemplateArgument::Type:
2404      return TemplateArgument(getCanonicalType(Arg.getAsType()));
2405
2406    case TemplateArgument::Pack: {
2407      // FIXME: Allocate in ASTContext
2408      TemplateArgument *CanonArgs = new TemplateArgument[Arg.pack_size()];
2409      unsigned Idx = 0;
2410      for (TemplateArgument::pack_iterator A = Arg.pack_begin(),
2411                                        AEnd = Arg.pack_end();
2412           A != AEnd; (void)++A, ++Idx)
2413        CanonArgs[Idx] = getCanonicalTemplateArgument(*A);
2414
2415      TemplateArgument Result;
2416      Result.setArgumentPack(CanonArgs, Arg.pack_size(), false);
2417      return Result;
2418    }
2419  }
2420
2421  // Silence GCC warning
2422  assert(false && "Unhandled template argument kind");
2423  return TemplateArgument();
2424}
2425
2426NestedNameSpecifier *
2427ASTContext::getCanonicalNestedNameSpecifier(NestedNameSpecifier *NNS) {
2428  if (!NNS)
2429    return 0;
2430
2431  switch (NNS->getKind()) {
2432  case NestedNameSpecifier::Identifier:
2433    // Canonicalize the prefix but keep the identifier the same.
2434    return NestedNameSpecifier::Create(*this,
2435                         getCanonicalNestedNameSpecifier(NNS->getPrefix()),
2436                                       NNS->getAsIdentifier());
2437
2438  case NestedNameSpecifier::Namespace:
2439    // A namespace is canonical; build a nested-name-specifier with
2440    // this namespace and no prefix.
2441    return NestedNameSpecifier::Create(*this, 0, NNS->getAsNamespace());
2442
2443  case NestedNameSpecifier::TypeSpec:
2444  case NestedNameSpecifier::TypeSpecWithTemplate: {
2445    QualType T = getCanonicalType(QualType(NNS->getAsType(), 0));
2446    return NestedNameSpecifier::Create(*this, 0,
2447                 NNS->getKind() == NestedNameSpecifier::TypeSpecWithTemplate,
2448                                       T.getTypePtr());
2449  }
2450
2451  case NestedNameSpecifier::Global:
2452    // The global specifier is canonical and unique.
2453    return NNS;
2454  }
2455
2456  // Required to silence a GCC warning
2457  return 0;
2458}
2459
2460
2461const ArrayType *ASTContext::getAsArrayType(QualType T) {
2462  // Handle the non-qualified case efficiently.
2463  if (!T.hasLocalQualifiers()) {
2464    // Handle the common positive case fast.
2465    if (const ArrayType *AT = dyn_cast<ArrayType>(T))
2466      return AT;
2467  }
2468
2469  // Handle the common negative case fast.
2470  QualType CType = T->getCanonicalTypeInternal();
2471  if (!isa<ArrayType>(CType))
2472    return 0;
2473
2474  // Apply any qualifiers from the array type to the element type.  This
2475  // implements C99 6.7.3p8: "If the specification of an array type includes
2476  // any type qualifiers, the element type is so qualified, not the array type."
2477
2478  // If we get here, we either have type qualifiers on the type, or we have
2479  // sugar such as a typedef in the way.  If we have type qualifiers on the type
2480  // we must propagate them down into the element type.
2481
2482  QualifierCollector Qs;
2483  const Type *Ty = Qs.strip(T.getDesugaredType());
2484
2485  // If we have a simple case, just return now.
2486  const ArrayType *ATy = dyn_cast<ArrayType>(Ty);
2487  if (ATy == 0 || Qs.empty())
2488    return ATy;
2489
2490  // Otherwise, we have an array and we have qualifiers on it.  Push the
2491  // qualifiers into the array element type and return a new array type.
2492  // Get the canonical version of the element with the extra qualifiers on it.
2493  // This can recursively sink qualifiers through multiple levels of arrays.
2494  QualType NewEltTy = getQualifiedType(ATy->getElementType(), Qs);
2495
2496  if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(ATy))
2497    return cast<ArrayType>(getConstantArrayType(NewEltTy, CAT->getSize(),
2498                                                CAT->getSizeModifier(),
2499                                           CAT->getIndexTypeCVRQualifiers()));
2500  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(ATy))
2501    return cast<ArrayType>(getIncompleteArrayType(NewEltTy,
2502                                                  IAT->getSizeModifier(),
2503                                           IAT->getIndexTypeCVRQualifiers()));
2504
2505  if (const DependentSizedArrayType *DSAT
2506        = dyn_cast<DependentSizedArrayType>(ATy))
2507    return cast<ArrayType>(
2508                     getDependentSizedArrayType(NewEltTy,
2509                                                DSAT->getSizeExpr() ?
2510                                              DSAT->getSizeExpr()->Retain() : 0,
2511                                                DSAT->getSizeModifier(),
2512                                              DSAT->getIndexTypeCVRQualifiers(),
2513                                                DSAT->getBracketsRange()));
2514
2515  const VariableArrayType *VAT = cast<VariableArrayType>(ATy);
2516  return cast<ArrayType>(getVariableArrayType(NewEltTy,
2517                                              VAT->getSizeExpr() ?
2518                                              VAT->getSizeExpr()->Retain() : 0,
2519                                              VAT->getSizeModifier(),
2520                                              VAT->getIndexTypeCVRQualifiers(),
2521                                              VAT->getBracketsRange()));
2522}
2523
2524
2525/// getArrayDecayedType - Return the properly qualified result of decaying the
2526/// specified array type to a pointer.  This operation is non-trivial when
2527/// handling typedefs etc.  The canonical type of "T" must be an array type,
2528/// this returns a pointer to a properly qualified element of the array.
2529///
2530/// See C99 6.7.5.3p7 and C99 6.3.2.1p3.
2531QualType ASTContext::getArrayDecayedType(QualType Ty) {
2532  // Get the element type with 'getAsArrayType' so that we don't lose any
2533  // typedefs in the element type of the array.  This also handles propagation
2534  // of type qualifiers from the array type into the element type if present
2535  // (C99 6.7.3p8).
2536  const ArrayType *PrettyArrayType = getAsArrayType(Ty);
2537  assert(PrettyArrayType && "Not an array type!");
2538
2539  QualType PtrTy = getPointerType(PrettyArrayType->getElementType());
2540
2541  // int x[restrict 4] ->  int *restrict
2542  return getQualifiedType(PtrTy, PrettyArrayType->getIndexTypeQualifiers());
2543}
2544
2545QualType ASTContext::getBaseElementType(QualType QT) {
2546  QualifierCollector Qs;
2547  while (true) {
2548    const Type *UT = Qs.strip(QT);
2549    if (const ArrayType *AT = getAsArrayType(QualType(UT,0))) {
2550      QT = AT->getElementType();
2551    } else {
2552      return Qs.apply(QT);
2553    }
2554  }
2555}
2556
2557QualType ASTContext::getBaseElementType(const ArrayType *AT) {
2558  QualType ElemTy = AT->getElementType();
2559
2560  if (const ArrayType *AT = getAsArrayType(ElemTy))
2561    return getBaseElementType(AT);
2562
2563  return ElemTy;
2564}
2565
2566/// getConstantArrayElementCount - Returns number of constant array elements.
2567uint64_t
2568ASTContext::getConstantArrayElementCount(const ConstantArrayType *CA)  const {
2569  uint64_t ElementCount = 1;
2570  do {
2571    ElementCount *= CA->getSize().getZExtValue();
2572    CA = dyn_cast<ConstantArrayType>(CA->getElementType());
2573  } while (CA);
2574  return ElementCount;
2575}
2576
2577/// getFloatingRank - Return a relative rank for floating point types.
2578/// This routine will assert if passed a built-in type that isn't a float.
2579static FloatingRank getFloatingRank(QualType T) {
2580  if (const ComplexType *CT = T->getAs<ComplexType>())
2581    return getFloatingRank(CT->getElementType());
2582
2583  assert(T->getAs<BuiltinType>() && "getFloatingRank(): not a floating type");
2584  switch (T->getAs<BuiltinType>()->getKind()) {
2585  default: assert(0 && "getFloatingRank(): not a floating type");
2586  case BuiltinType::Float:      return FloatRank;
2587  case BuiltinType::Double:     return DoubleRank;
2588  case BuiltinType::LongDouble: return LongDoubleRank;
2589  }
2590}
2591
2592/// getFloatingTypeOfSizeWithinDomain - Returns a real floating
2593/// point or a complex type (based on typeDomain/typeSize).
2594/// 'typeDomain' is a real floating point or complex type.
2595/// 'typeSize' is a real floating point or complex type.
2596QualType ASTContext::getFloatingTypeOfSizeWithinDomain(QualType Size,
2597                                                       QualType Domain) const {
2598  FloatingRank EltRank = getFloatingRank(Size);
2599  if (Domain->isComplexType()) {
2600    switch (EltRank) {
2601    default: assert(0 && "getFloatingRank(): illegal value for rank");
2602    case FloatRank:      return FloatComplexTy;
2603    case DoubleRank:     return DoubleComplexTy;
2604    case LongDoubleRank: return LongDoubleComplexTy;
2605    }
2606  }
2607
2608  assert(Domain->isRealFloatingType() && "Unknown domain!");
2609  switch (EltRank) {
2610  default: assert(0 && "getFloatingRank(): illegal value for rank");
2611  case FloatRank:      return FloatTy;
2612  case DoubleRank:     return DoubleTy;
2613  case LongDoubleRank: return LongDoubleTy;
2614  }
2615}
2616
2617/// getFloatingTypeOrder - Compare the rank of the two specified floating
2618/// point types, ignoring the domain of the type (i.e. 'double' ==
2619/// '_Complex double').  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
2620/// LHS < RHS, return -1.
2621int ASTContext::getFloatingTypeOrder(QualType LHS, QualType RHS) {
2622  FloatingRank LHSR = getFloatingRank(LHS);
2623  FloatingRank RHSR = getFloatingRank(RHS);
2624
2625  if (LHSR == RHSR)
2626    return 0;
2627  if (LHSR > RHSR)
2628    return 1;
2629  return -1;
2630}
2631
2632/// getIntegerRank - Return an integer conversion rank (C99 6.3.1.1p1). This
2633/// routine will assert if passed a built-in type that isn't an integer or enum,
2634/// or if it is not canonicalized.
2635unsigned ASTContext::getIntegerRank(Type *T) {
2636  assert(T->isCanonicalUnqualified() && "T should be canonicalized");
2637  if (EnumType* ET = dyn_cast<EnumType>(T))
2638    T = ET->getDecl()->getIntegerType().getTypePtr();
2639
2640  if (T->isSpecificBuiltinType(BuiltinType::WChar))
2641    T = getFromTargetType(Target.getWCharType()).getTypePtr();
2642
2643  if (T->isSpecificBuiltinType(BuiltinType::Char16))
2644    T = getFromTargetType(Target.getChar16Type()).getTypePtr();
2645
2646  if (T->isSpecificBuiltinType(BuiltinType::Char32))
2647    T = getFromTargetType(Target.getChar32Type()).getTypePtr();
2648
2649  // There are two things which impact the integer rank: the width, and
2650  // the ordering of builtins.  The builtin ordering is encoded in the
2651  // bottom three bits; the width is encoded in the bits above that.
2652  if (FixedWidthIntType* FWIT = dyn_cast<FixedWidthIntType>(T))
2653    return FWIT->getWidth() << 3;
2654
2655  switch (cast<BuiltinType>(T)->getKind()) {
2656  default: assert(0 && "getIntegerRank(): not a built-in integer");
2657  case BuiltinType::Bool:
2658    return 1 + (getIntWidth(BoolTy) << 3);
2659  case BuiltinType::Char_S:
2660  case BuiltinType::Char_U:
2661  case BuiltinType::SChar:
2662  case BuiltinType::UChar:
2663    return 2 + (getIntWidth(CharTy) << 3);
2664  case BuiltinType::Short:
2665  case BuiltinType::UShort:
2666    return 3 + (getIntWidth(ShortTy) << 3);
2667  case BuiltinType::Int:
2668  case BuiltinType::UInt:
2669    return 4 + (getIntWidth(IntTy) << 3);
2670  case BuiltinType::Long:
2671  case BuiltinType::ULong:
2672    return 5 + (getIntWidth(LongTy) << 3);
2673  case BuiltinType::LongLong:
2674  case BuiltinType::ULongLong:
2675    return 6 + (getIntWidth(LongLongTy) << 3);
2676  case BuiltinType::Int128:
2677  case BuiltinType::UInt128:
2678    return 7 + (getIntWidth(Int128Ty) << 3);
2679  }
2680}
2681
2682/// \brief Whether this is a promotable bitfield reference according
2683/// to C99 6.3.1.1p2, bullet 2 (and GCC extensions).
2684///
2685/// \returns the type this bit-field will promote to, or NULL if no
2686/// promotion occurs.
2687QualType ASTContext::isPromotableBitField(Expr *E) {
2688  FieldDecl *Field = E->getBitField();
2689  if (!Field)
2690    return QualType();
2691
2692  QualType FT = Field->getType();
2693
2694  llvm::APSInt BitWidthAP = Field->getBitWidth()->EvaluateAsInt(*this);
2695  uint64_t BitWidth = BitWidthAP.getZExtValue();
2696  uint64_t IntSize = getTypeSize(IntTy);
2697  // GCC extension compatibility: if the bit-field size is less than or equal
2698  // to the size of int, it gets promoted no matter what its type is.
2699  // For instance, unsigned long bf : 4 gets promoted to signed int.
2700  if (BitWidth < IntSize)
2701    return IntTy;
2702
2703  if (BitWidth == IntSize)
2704    return FT->isSignedIntegerType() ? IntTy : UnsignedIntTy;
2705
2706  // Types bigger than int are not subject to promotions, and therefore act
2707  // like the base type.
2708  // FIXME: This doesn't quite match what gcc does, but what gcc does here
2709  // is ridiculous.
2710  return QualType();
2711}
2712
2713/// getPromotedIntegerType - Returns the type that Promotable will
2714/// promote to: C99 6.3.1.1p2, assuming that Promotable is a promotable
2715/// integer type.
2716QualType ASTContext::getPromotedIntegerType(QualType Promotable) {
2717  assert(!Promotable.isNull());
2718  assert(Promotable->isPromotableIntegerType());
2719  if (Promotable->isSignedIntegerType())
2720    return IntTy;
2721  uint64_t PromotableSize = getTypeSize(Promotable);
2722  uint64_t IntSize = getTypeSize(IntTy);
2723  assert(Promotable->isUnsignedIntegerType() && PromotableSize <= IntSize);
2724  return (PromotableSize != IntSize) ? IntTy : UnsignedIntTy;
2725}
2726
2727/// getIntegerTypeOrder - Returns the highest ranked integer type:
2728/// C99 6.3.1.8p1.  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
2729/// LHS < RHS, return -1.
2730int ASTContext::getIntegerTypeOrder(QualType LHS, QualType RHS) {
2731  Type *LHSC = getCanonicalType(LHS).getTypePtr();
2732  Type *RHSC = getCanonicalType(RHS).getTypePtr();
2733  if (LHSC == RHSC) return 0;
2734
2735  bool LHSUnsigned = LHSC->isUnsignedIntegerType();
2736  bool RHSUnsigned = RHSC->isUnsignedIntegerType();
2737
2738  unsigned LHSRank = getIntegerRank(LHSC);
2739  unsigned RHSRank = getIntegerRank(RHSC);
2740
2741  if (LHSUnsigned == RHSUnsigned) {  // Both signed or both unsigned.
2742    if (LHSRank == RHSRank) return 0;
2743    return LHSRank > RHSRank ? 1 : -1;
2744  }
2745
2746  // Otherwise, the LHS is signed and the RHS is unsigned or visa versa.
2747  if (LHSUnsigned) {
2748    // If the unsigned [LHS] type is larger, return it.
2749    if (LHSRank >= RHSRank)
2750      return 1;
2751
2752    // If the signed type can represent all values of the unsigned type, it
2753    // wins.  Because we are dealing with 2's complement and types that are
2754    // powers of two larger than each other, this is always safe.
2755    return -1;
2756  }
2757
2758  // If the unsigned [RHS] type is larger, return it.
2759  if (RHSRank >= LHSRank)
2760    return -1;
2761
2762  // If the signed type can represent all values of the unsigned type, it
2763  // wins.  Because we are dealing with 2's complement and types that are
2764  // powers of two larger than each other, this is always safe.
2765  return 1;
2766}
2767
2768static RecordDecl *
2769CreateRecordDecl(ASTContext &Ctx, RecordDecl::TagKind TK, DeclContext *DC,
2770                 SourceLocation L, IdentifierInfo *Id) {
2771  if (Ctx.getLangOptions().CPlusPlus)
2772    return CXXRecordDecl::Create(Ctx, TK, DC, L, Id);
2773  else
2774    return RecordDecl::Create(Ctx, TK, DC, L, Id);
2775}
2776
2777// getCFConstantStringType - Return the type used for constant CFStrings.
2778QualType ASTContext::getCFConstantStringType() {
2779  if (!CFConstantStringTypeDecl) {
2780    CFConstantStringTypeDecl =
2781      CreateRecordDecl(*this, TagDecl::TK_struct, TUDecl, SourceLocation(),
2782                       &Idents.get("NSConstantString"));
2783
2784    QualType FieldTypes[4];
2785
2786    // const int *isa;
2787    FieldTypes[0] = getPointerType(IntTy.withConst());
2788    // int flags;
2789    FieldTypes[1] = IntTy;
2790    // const char *str;
2791    FieldTypes[2] = getPointerType(CharTy.withConst());
2792    // long length;
2793    FieldTypes[3] = LongTy;
2794
2795    // Create fields
2796    for (unsigned i = 0; i < 4; ++i) {
2797      FieldDecl *Field = FieldDecl::Create(*this, CFConstantStringTypeDecl,
2798                                           SourceLocation(), 0,
2799                                           FieldTypes[i], /*DInfo=*/0,
2800                                           /*BitWidth=*/0,
2801                                           /*Mutable=*/false);
2802      CFConstantStringTypeDecl->addDecl(Field);
2803    }
2804
2805    CFConstantStringTypeDecl->completeDefinition(*this);
2806  }
2807
2808  return getTagDeclType(CFConstantStringTypeDecl);
2809}
2810
2811void ASTContext::setCFConstantStringType(QualType T) {
2812  const RecordType *Rec = T->getAs<RecordType>();
2813  assert(Rec && "Invalid CFConstantStringType");
2814  CFConstantStringTypeDecl = Rec->getDecl();
2815}
2816
2817QualType ASTContext::getObjCFastEnumerationStateType() {
2818  if (!ObjCFastEnumerationStateTypeDecl) {
2819    ObjCFastEnumerationStateTypeDecl =
2820      CreateRecordDecl(*this, TagDecl::TK_struct, TUDecl, SourceLocation(),
2821                       &Idents.get("__objcFastEnumerationState"));
2822
2823    QualType FieldTypes[] = {
2824      UnsignedLongTy,
2825      getPointerType(ObjCIdTypedefType),
2826      getPointerType(UnsignedLongTy),
2827      getConstantArrayType(UnsignedLongTy,
2828                           llvm::APInt(32, 5), ArrayType::Normal, 0)
2829    };
2830
2831    for (size_t i = 0; i < 4; ++i) {
2832      FieldDecl *Field = FieldDecl::Create(*this,
2833                                           ObjCFastEnumerationStateTypeDecl,
2834                                           SourceLocation(), 0,
2835                                           FieldTypes[i], /*DInfo=*/0,
2836                                           /*BitWidth=*/0,
2837                                           /*Mutable=*/false);
2838      ObjCFastEnumerationStateTypeDecl->addDecl(Field);
2839    }
2840
2841    ObjCFastEnumerationStateTypeDecl->completeDefinition(*this);
2842  }
2843
2844  return getTagDeclType(ObjCFastEnumerationStateTypeDecl);
2845}
2846
2847QualType ASTContext::getBlockDescriptorType() {
2848  if (BlockDescriptorType)
2849    return getTagDeclType(BlockDescriptorType);
2850
2851  RecordDecl *T;
2852  // FIXME: Needs the FlagAppleBlock bit.
2853  T = CreateRecordDecl(*this, TagDecl::TK_struct, TUDecl, SourceLocation(),
2854                       &Idents.get("__block_descriptor"));
2855
2856  QualType FieldTypes[] = {
2857    UnsignedLongTy,
2858    UnsignedLongTy,
2859  };
2860
2861  const char *FieldNames[] = {
2862    "reserved",
2863    "Size"
2864  };
2865
2866  for (size_t i = 0; i < 2; ++i) {
2867    FieldDecl *Field = FieldDecl::Create(*this,
2868                                         T,
2869                                         SourceLocation(),
2870                                         &Idents.get(FieldNames[i]),
2871                                         FieldTypes[i], /*DInfo=*/0,
2872                                         /*BitWidth=*/0,
2873                                         /*Mutable=*/false);
2874    T->addDecl(Field);
2875  }
2876
2877  T->completeDefinition(*this);
2878
2879  BlockDescriptorType = T;
2880
2881  return getTagDeclType(BlockDescriptorType);
2882}
2883
2884void ASTContext::setBlockDescriptorType(QualType T) {
2885  const RecordType *Rec = T->getAs<RecordType>();
2886  assert(Rec && "Invalid BlockDescriptorType");
2887  BlockDescriptorType = Rec->getDecl();
2888}
2889
2890QualType ASTContext::getBlockDescriptorExtendedType() {
2891  if (BlockDescriptorExtendedType)
2892    return getTagDeclType(BlockDescriptorExtendedType);
2893
2894  RecordDecl *T;
2895  // FIXME: Needs the FlagAppleBlock bit.
2896  T = CreateRecordDecl(*this, TagDecl::TK_struct, TUDecl, SourceLocation(),
2897                       &Idents.get("__block_descriptor_withcopydispose"));
2898
2899  QualType FieldTypes[] = {
2900    UnsignedLongTy,
2901    UnsignedLongTy,
2902    getPointerType(VoidPtrTy),
2903    getPointerType(VoidPtrTy)
2904  };
2905
2906  const char *FieldNames[] = {
2907    "reserved",
2908    "Size",
2909    "CopyFuncPtr",
2910    "DestroyFuncPtr"
2911  };
2912
2913  for (size_t i = 0; i < 4; ++i) {
2914    FieldDecl *Field = FieldDecl::Create(*this,
2915                                         T,
2916                                         SourceLocation(),
2917                                         &Idents.get(FieldNames[i]),
2918                                         FieldTypes[i], /*DInfo=*/0,
2919                                         /*BitWidth=*/0,
2920                                         /*Mutable=*/false);
2921    T->addDecl(Field);
2922  }
2923
2924  T->completeDefinition(*this);
2925
2926  BlockDescriptorExtendedType = T;
2927
2928  return getTagDeclType(BlockDescriptorExtendedType);
2929}
2930
2931void ASTContext::setBlockDescriptorExtendedType(QualType T) {
2932  const RecordType *Rec = T->getAs<RecordType>();
2933  assert(Rec && "Invalid BlockDescriptorType");
2934  BlockDescriptorExtendedType = Rec->getDecl();
2935}
2936
2937bool ASTContext::BlockRequiresCopying(QualType Ty) {
2938  if (Ty->isBlockPointerType())
2939    return true;
2940  if (isObjCNSObjectType(Ty))
2941    return true;
2942  if (Ty->isObjCObjectPointerType())
2943    return true;
2944  return false;
2945}
2946
2947QualType ASTContext::BuildByRefType(const char *DeclName, QualType Ty) {
2948  //  type = struct __Block_byref_1_X {
2949  //    void *__isa;
2950  //    struct __Block_byref_1_X *__forwarding;
2951  //    unsigned int __flags;
2952  //    unsigned int __size;
2953  //    void *__copy_helper;		// as needed
2954  //    void *__destroy_help		// as needed
2955  //    int X;
2956  //  } *
2957
2958  bool HasCopyAndDispose = BlockRequiresCopying(Ty);
2959
2960  // FIXME: Move up
2961  static unsigned int UniqueBlockByRefTypeID = 0;
2962  llvm::SmallString<36> Name;
2963  llvm::raw_svector_ostream(Name) << "__Block_byref_" <<
2964                                  ++UniqueBlockByRefTypeID << '_' << DeclName;
2965  RecordDecl *T;
2966  T = CreateRecordDecl(*this, TagDecl::TK_struct, TUDecl, SourceLocation(),
2967                       &Idents.get(Name.str()));
2968  T->startDefinition();
2969  QualType Int32Ty = IntTy;
2970  assert(getIntWidth(IntTy) == 32 && "non-32bit int not supported");
2971  QualType FieldTypes[] = {
2972    getPointerType(VoidPtrTy),
2973    getPointerType(getTagDeclType(T)),
2974    Int32Ty,
2975    Int32Ty,
2976    getPointerType(VoidPtrTy),
2977    getPointerType(VoidPtrTy),
2978    Ty
2979  };
2980
2981  const char *FieldNames[] = {
2982    "__isa",
2983    "__forwarding",
2984    "__flags",
2985    "__size",
2986    "__copy_helper",
2987    "__destroy_helper",
2988    DeclName,
2989  };
2990
2991  for (size_t i = 0; i < 7; ++i) {
2992    if (!HasCopyAndDispose && i >=4 && i <= 5)
2993      continue;
2994    FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(),
2995                                         &Idents.get(FieldNames[i]),
2996                                         FieldTypes[i], /*DInfo=*/0,
2997                                         /*BitWidth=*/0, /*Mutable=*/false);
2998    T->addDecl(Field);
2999  }
3000
3001  T->completeDefinition(*this);
3002
3003  return getPointerType(getTagDeclType(T));
3004}
3005
3006
3007QualType ASTContext::getBlockParmType(
3008  bool BlockHasCopyDispose,
3009  llvm::SmallVector<const Expr *, 8> &BlockDeclRefDecls) {
3010  // FIXME: Move up
3011  static unsigned int UniqueBlockParmTypeID = 0;
3012  llvm::SmallString<36> Name;
3013  llvm::raw_svector_ostream(Name) << "__block_literal_"
3014                                  << ++UniqueBlockParmTypeID;
3015  RecordDecl *T;
3016  T = CreateRecordDecl(*this, TagDecl::TK_struct, TUDecl, SourceLocation(),
3017                       &Idents.get(Name.str()));
3018  QualType FieldTypes[] = {
3019    getPointerType(VoidPtrTy),
3020    IntTy,
3021    IntTy,
3022    getPointerType(VoidPtrTy),
3023    (BlockHasCopyDispose ?
3024     getPointerType(getBlockDescriptorExtendedType()) :
3025     getPointerType(getBlockDescriptorType()))
3026  };
3027
3028  const char *FieldNames[] = {
3029    "__isa",
3030    "__flags",
3031    "__reserved",
3032    "__FuncPtr",
3033    "__descriptor"
3034  };
3035
3036  for (size_t i = 0; i < 5; ++i) {
3037    FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(),
3038                                         &Idents.get(FieldNames[i]),
3039                                         FieldTypes[i], /*DInfo=*/0,
3040                                         /*BitWidth=*/0, /*Mutable=*/false);
3041    T->addDecl(Field);
3042  }
3043
3044  for (size_t i = 0; i < BlockDeclRefDecls.size(); ++i) {
3045    const Expr *E = BlockDeclRefDecls[i];
3046    const BlockDeclRefExpr *BDRE = dyn_cast<BlockDeclRefExpr>(E);
3047    clang::IdentifierInfo *Name = 0;
3048    if (BDRE) {
3049      const ValueDecl *D = BDRE->getDecl();
3050      Name = &Idents.get(D->getName());
3051    }
3052    QualType FieldType = E->getType();
3053
3054    if (BDRE && BDRE->isByRef())
3055      FieldType = BuildByRefType(BDRE->getDecl()->getNameAsCString(),
3056                                 FieldType);
3057
3058    FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(),
3059                                         Name, FieldType, /*DInfo=*/0,
3060                                         /*BitWidth=*/0, /*Mutable=*/false);
3061    T->addDecl(Field);
3062  }
3063
3064  T->completeDefinition(*this);
3065
3066  return getPointerType(getTagDeclType(T));
3067}
3068
3069void ASTContext::setObjCFastEnumerationStateType(QualType T) {
3070  const RecordType *Rec = T->getAs<RecordType>();
3071  assert(Rec && "Invalid ObjCFAstEnumerationStateType");
3072  ObjCFastEnumerationStateTypeDecl = Rec->getDecl();
3073}
3074
3075// This returns true if a type has been typedefed to BOOL:
3076// typedef <type> BOOL;
3077static bool isTypeTypedefedAsBOOL(QualType T) {
3078  if (const TypedefType *TT = dyn_cast<TypedefType>(T))
3079    if (IdentifierInfo *II = TT->getDecl()->getIdentifier())
3080      return II->isStr("BOOL");
3081
3082  return false;
3083}
3084
3085/// getObjCEncodingTypeSize returns size of type for objective-c encoding
3086/// purpose.
3087int ASTContext::getObjCEncodingTypeSize(QualType type) {
3088  uint64_t sz = getTypeSize(type);
3089
3090  // Make all integer and enum types at least as large as an int
3091  if (sz > 0 && type->isIntegralType())
3092    sz = std::max(sz, getTypeSize(IntTy));
3093  // Treat arrays as pointers, since that's how they're passed in.
3094  else if (type->isArrayType())
3095    sz = getTypeSize(VoidPtrTy);
3096  return sz / getTypeSize(CharTy);
3097}
3098
3099/// getObjCEncodingForBlockDecl - Return the encoded type for this method
3100/// declaration.
3101void ASTContext::getObjCEncodingForBlock(const BlockExpr *Expr,
3102                                             std::string& S) {
3103  const BlockDecl *Decl = Expr->getBlockDecl();
3104  QualType BlockTy =
3105      Expr->getType()->getAs<BlockPointerType>()->getPointeeType();
3106  // Encode result type.
3107  getObjCEncodingForType(cast<FunctionType>(BlockTy)->getResultType(), S);
3108  // Compute size of all parameters.
3109  // Start with computing size of a pointer in number of bytes.
3110  // FIXME: There might(should) be a better way of doing this computation!
3111  SourceLocation Loc;
3112  int PtrSize = getTypeSize(VoidPtrTy) / getTypeSize(CharTy);
3113  int ParmOffset = PtrSize;
3114  for (ObjCMethodDecl::param_iterator PI = Decl->param_begin(),
3115       E = Decl->param_end(); PI != E; ++PI) {
3116    QualType PType = (*PI)->getType();
3117    int sz = getObjCEncodingTypeSize(PType);
3118    assert (sz > 0 && "BlockExpr - Incomplete param type");
3119    ParmOffset += sz;
3120  }
3121  // Size of the argument frame
3122  S += llvm::utostr(ParmOffset);
3123  // Block pointer and offset.
3124  S += "@?0";
3125  ParmOffset = PtrSize;
3126
3127  // Argument types.
3128  ParmOffset = PtrSize;
3129  for (BlockDecl::param_const_iterator PI = Decl->param_begin(), E =
3130       Decl->param_end(); PI != E; ++PI) {
3131    ParmVarDecl *PVDecl = *PI;
3132    QualType PType = PVDecl->getOriginalType();
3133    if (const ArrayType *AT =
3134          dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
3135      // Use array's original type only if it has known number of
3136      // elements.
3137      if (!isa<ConstantArrayType>(AT))
3138        PType = PVDecl->getType();
3139    } else if (PType->isFunctionType())
3140      PType = PVDecl->getType();
3141    getObjCEncodingForType(PType, S);
3142    S += llvm::utostr(ParmOffset);
3143    ParmOffset += getObjCEncodingTypeSize(PType);
3144  }
3145}
3146
3147/// getObjCEncodingForMethodDecl - Return the encoded type for this method
3148/// declaration.
3149void ASTContext::getObjCEncodingForMethodDecl(const ObjCMethodDecl *Decl,
3150                                              std::string& S) {
3151  // FIXME: This is not very efficient.
3152  // Encode type qualifer, 'in', 'inout', etc. for the return type.
3153  getObjCEncodingForTypeQualifier(Decl->getObjCDeclQualifier(), S);
3154  // Encode result type.
3155  getObjCEncodingForType(Decl->getResultType(), S);
3156  // Compute size of all parameters.
3157  // Start with computing size of a pointer in number of bytes.
3158  // FIXME: There might(should) be a better way of doing this computation!
3159  SourceLocation Loc;
3160  int PtrSize = getTypeSize(VoidPtrTy) / getTypeSize(CharTy);
3161  // The first two arguments (self and _cmd) are pointers; account for
3162  // their size.
3163  int ParmOffset = 2 * PtrSize;
3164  for (ObjCMethodDecl::param_iterator PI = Decl->param_begin(),
3165       E = Decl->param_end(); PI != E; ++PI) {
3166    QualType PType = (*PI)->getType();
3167    int sz = getObjCEncodingTypeSize(PType);
3168    assert (sz > 0 && "getObjCEncodingForMethodDecl - Incomplete param type");
3169    ParmOffset += sz;
3170  }
3171  S += llvm::utostr(ParmOffset);
3172  S += "@0:";
3173  S += llvm::utostr(PtrSize);
3174
3175  // Argument types.
3176  ParmOffset = 2 * PtrSize;
3177  for (ObjCMethodDecl::param_iterator PI = Decl->param_begin(),
3178       E = Decl->param_end(); PI != E; ++PI) {
3179    ParmVarDecl *PVDecl = *PI;
3180    QualType PType = PVDecl->getOriginalType();
3181    if (const ArrayType *AT =
3182          dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
3183      // Use array's original type only if it has known number of
3184      // elements.
3185      if (!isa<ConstantArrayType>(AT))
3186        PType = PVDecl->getType();
3187    } else if (PType->isFunctionType())
3188      PType = PVDecl->getType();
3189    // Process argument qualifiers for user supplied arguments; such as,
3190    // 'in', 'inout', etc.
3191    getObjCEncodingForTypeQualifier(PVDecl->getObjCDeclQualifier(), S);
3192    getObjCEncodingForType(PType, S);
3193    S += llvm::utostr(ParmOffset);
3194    ParmOffset += getObjCEncodingTypeSize(PType);
3195  }
3196}
3197
3198/// getObjCEncodingForPropertyDecl - Return the encoded type for this
3199/// property declaration. If non-NULL, Container must be either an
3200/// ObjCCategoryImplDecl or ObjCImplementationDecl; it should only be
3201/// NULL when getting encodings for protocol properties.
3202/// Property attributes are stored as a comma-delimited C string. The simple
3203/// attributes readonly and bycopy are encoded as single characters. The
3204/// parametrized attributes, getter=name, setter=name, and ivar=name, are
3205/// encoded as single characters, followed by an identifier. Property types
3206/// are also encoded as a parametrized attribute. The characters used to encode
3207/// these attributes are defined by the following enumeration:
3208/// @code
3209/// enum PropertyAttributes {
3210/// kPropertyReadOnly = 'R',   // property is read-only.
3211/// kPropertyBycopy = 'C',     // property is a copy of the value last assigned
3212/// kPropertyByref = '&',  // property is a reference to the value last assigned
3213/// kPropertyDynamic = 'D',    // property is dynamic
3214/// kPropertyGetter = 'G',     // followed by getter selector name
3215/// kPropertySetter = 'S',     // followed by setter selector name
3216/// kPropertyInstanceVariable = 'V'  // followed by instance variable  name
3217/// kPropertyType = 't'              // followed by old-style type encoding.
3218/// kPropertyWeak = 'W'              // 'weak' property
3219/// kPropertyStrong = 'P'            // property GC'able
3220/// kPropertyNonAtomic = 'N'         // property non-atomic
3221/// };
3222/// @endcode
3223void ASTContext::getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD,
3224                                                const Decl *Container,
3225                                                std::string& S) {
3226  // Collect information from the property implementation decl(s).
3227  bool Dynamic = false;
3228  ObjCPropertyImplDecl *SynthesizePID = 0;
3229
3230  // FIXME: Duplicated code due to poor abstraction.
3231  if (Container) {
3232    if (const ObjCCategoryImplDecl *CID =
3233        dyn_cast<ObjCCategoryImplDecl>(Container)) {
3234      for (ObjCCategoryImplDecl::propimpl_iterator
3235             i = CID->propimpl_begin(), e = CID->propimpl_end();
3236           i != e; ++i) {
3237        ObjCPropertyImplDecl *PID = *i;
3238        if (PID->getPropertyDecl() == PD) {
3239          if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) {
3240            Dynamic = true;
3241          } else {
3242            SynthesizePID = PID;
3243          }
3244        }
3245      }
3246    } else {
3247      const ObjCImplementationDecl *OID=cast<ObjCImplementationDecl>(Container);
3248      for (ObjCCategoryImplDecl::propimpl_iterator
3249             i = OID->propimpl_begin(), e = OID->propimpl_end();
3250           i != e; ++i) {
3251        ObjCPropertyImplDecl *PID = *i;
3252        if (PID->getPropertyDecl() == PD) {
3253          if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) {
3254            Dynamic = true;
3255          } else {
3256            SynthesizePID = PID;
3257          }
3258        }
3259      }
3260    }
3261  }
3262
3263  // FIXME: This is not very efficient.
3264  S = "T";
3265
3266  // Encode result type.
3267  // GCC has some special rules regarding encoding of properties which
3268  // closely resembles encoding of ivars.
3269  getObjCEncodingForTypeImpl(PD->getType(), S, true, true, 0,
3270                             true /* outermost type */,
3271                             true /* encoding for property */);
3272
3273  if (PD->isReadOnly()) {
3274    S += ",R";
3275  } else {
3276    switch (PD->getSetterKind()) {
3277    case ObjCPropertyDecl::Assign: break;
3278    case ObjCPropertyDecl::Copy:   S += ",C"; break;
3279    case ObjCPropertyDecl::Retain: S += ",&"; break;
3280    }
3281  }
3282
3283  // It really isn't clear at all what this means, since properties
3284  // are "dynamic by default".
3285  if (Dynamic)
3286    S += ",D";
3287
3288  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_nonatomic)
3289    S += ",N";
3290
3291  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_getter) {
3292    S += ",G";
3293    S += PD->getGetterName().getAsString();
3294  }
3295
3296  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_setter) {
3297    S += ",S";
3298    S += PD->getSetterName().getAsString();
3299  }
3300
3301  if (SynthesizePID) {
3302    const ObjCIvarDecl *OID = SynthesizePID->getPropertyIvarDecl();
3303    S += ",V";
3304    S += OID->getNameAsString();
3305  }
3306
3307  // FIXME: OBJCGC: weak & strong
3308}
3309
3310/// getLegacyIntegralTypeEncoding -
3311/// Another legacy compatibility encoding: 32-bit longs are encoded as
3312/// 'l' or 'L' , but not always.  For typedefs, we need to use
3313/// 'i' or 'I' instead if encoding a struct field, or a pointer!
3314///
3315void ASTContext::getLegacyIntegralTypeEncoding (QualType &PointeeTy) const {
3316  if (isa<TypedefType>(PointeeTy.getTypePtr())) {
3317    if (const BuiltinType *BT = PointeeTy->getAs<BuiltinType>()) {
3318      if (BT->getKind() == BuiltinType::ULong &&
3319          ((const_cast<ASTContext *>(this))->getIntWidth(PointeeTy) == 32))
3320        PointeeTy = UnsignedIntTy;
3321      else
3322        if (BT->getKind() == BuiltinType::Long &&
3323            ((const_cast<ASTContext *>(this))->getIntWidth(PointeeTy) == 32))
3324          PointeeTy = IntTy;
3325    }
3326  }
3327}
3328
3329void ASTContext::getObjCEncodingForType(QualType T, std::string& S,
3330                                        const FieldDecl *Field) {
3331  // We follow the behavior of gcc, expanding structures which are
3332  // directly pointed to, and expanding embedded structures. Note that
3333  // these rules are sufficient to prevent recursive encoding of the
3334  // same type.
3335  getObjCEncodingForTypeImpl(T, S, true, true, Field,
3336                             true /* outermost type */);
3337}
3338
3339static void EncodeBitField(const ASTContext *Context, std::string& S,
3340                           const FieldDecl *FD) {
3341  const Expr *E = FD->getBitWidth();
3342  assert(E && "bitfield width not there - getObjCEncodingForTypeImpl");
3343  ASTContext *Ctx = const_cast<ASTContext*>(Context);
3344  unsigned N = E->EvaluateAsInt(*Ctx).getZExtValue();
3345  S += 'b';
3346  S += llvm::utostr(N);
3347}
3348
3349// FIXME: Use SmallString for accumulating string.
3350void ASTContext::getObjCEncodingForTypeImpl(QualType T, std::string& S,
3351                                            bool ExpandPointedToStructures,
3352                                            bool ExpandStructures,
3353                                            const FieldDecl *FD,
3354                                            bool OutermostType,
3355                                            bool EncodingProperty) {
3356  if (const BuiltinType *BT = T->getAs<BuiltinType>()) {
3357    if (FD && FD->isBitField())
3358      return EncodeBitField(this, S, FD);
3359    char encoding;
3360    switch (BT->getKind()) {
3361    default: assert(0 && "Unhandled builtin type kind");
3362    case BuiltinType::Void:       encoding = 'v'; break;
3363    case BuiltinType::Bool:       encoding = 'B'; break;
3364    case BuiltinType::Char_U:
3365    case BuiltinType::UChar:      encoding = 'C'; break;
3366    case BuiltinType::UShort:     encoding = 'S'; break;
3367    case BuiltinType::UInt:       encoding = 'I'; break;
3368    case BuiltinType::ULong:
3369        encoding =
3370          (const_cast<ASTContext *>(this))->getIntWidth(T) == 32 ? 'L' : 'Q';
3371        break;
3372    case BuiltinType::UInt128:    encoding = 'T'; break;
3373    case BuiltinType::ULongLong:  encoding = 'Q'; break;
3374    case BuiltinType::Char_S:
3375    case BuiltinType::SChar:      encoding = 'c'; break;
3376    case BuiltinType::Short:      encoding = 's'; break;
3377    case BuiltinType::Int:        encoding = 'i'; break;
3378    case BuiltinType::Long:
3379      encoding =
3380        (const_cast<ASTContext *>(this))->getIntWidth(T) == 32 ? 'l' : 'q';
3381      break;
3382    case BuiltinType::LongLong:   encoding = 'q'; break;
3383    case BuiltinType::Int128:     encoding = 't'; break;
3384    case BuiltinType::Float:      encoding = 'f'; break;
3385    case BuiltinType::Double:     encoding = 'd'; break;
3386    case BuiltinType::LongDouble: encoding = 'd'; break;
3387    }
3388
3389    S += encoding;
3390    return;
3391  }
3392
3393  if (const ComplexType *CT = T->getAs<ComplexType>()) {
3394    S += 'j';
3395    getObjCEncodingForTypeImpl(CT->getElementType(), S, false, false, 0, false,
3396                               false);
3397    return;
3398  }
3399
3400  if (isObjCSelType(T)) {
3401    S += ':';
3402    return;
3403  }
3404
3405  if (const PointerType *PT = T->getAs<PointerType>()) {
3406    QualType PointeeTy = PT->getPointeeType();
3407    bool isReadOnly = false;
3408    // For historical/compatibility reasons, the read-only qualifier of the
3409    // pointee gets emitted _before_ the '^'.  The read-only qualifier of
3410    // the pointer itself gets ignored, _unless_ we are looking at a typedef!
3411    // Also, do not emit the 'r' for anything but the outermost type!
3412    if (isa<TypedefType>(T.getTypePtr())) {
3413      if (OutermostType && T.isConstQualified()) {
3414        isReadOnly = true;
3415        S += 'r';
3416      }
3417    } else if (OutermostType) {
3418      QualType P = PointeeTy;
3419      while (P->getAs<PointerType>())
3420        P = P->getAs<PointerType>()->getPointeeType();
3421      if (P.isConstQualified()) {
3422        isReadOnly = true;
3423        S += 'r';
3424      }
3425    }
3426    if (isReadOnly) {
3427      // Another legacy compatibility encoding. Some ObjC qualifier and type
3428      // combinations need to be rearranged.
3429      // Rewrite "in const" from "nr" to "rn"
3430      const char * s = S.c_str();
3431      int len = S.length();
3432      if (len >= 2 && s[len-2] == 'n' && s[len-1] == 'r') {
3433        std::string replace = "rn";
3434        S.replace(S.end()-2, S.end(), replace);
3435      }
3436    }
3437
3438    if (PointeeTy->isCharType()) {
3439      // char pointer types should be encoded as '*' unless it is a
3440      // type that has been typedef'd to 'BOOL'.
3441      if (!isTypeTypedefedAsBOOL(PointeeTy)) {
3442        S += '*';
3443        return;
3444      }
3445    } else if (const RecordType *RTy = PointeeTy->getAs<RecordType>()) {
3446      // GCC binary compat: Need to convert "struct objc_class *" to "#".
3447      if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_class")) {
3448        S += '#';
3449        return;
3450      }
3451      // GCC binary compat: Need to convert "struct objc_object *" to "@".
3452      if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_object")) {
3453        S += '@';
3454        return;
3455      }
3456      // fall through...
3457    }
3458    S += '^';
3459    getLegacyIntegralTypeEncoding(PointeeTy);
3460
3461    getObjCEncodingForTypeImpl(PointeeTy, S, false, ExpandPointedToStructures,
3462                               NULL);
3463    return;
3464  }
3465
3466  if (const ArrayType *AT =
3467      // Ignore type qualifiers etc.
3468        dyn_cast<ArrayType>(T->getCanonicalTypeInternal())) {
3469    if (isa<IncompleteArrayType>(AT)) {
3470      // Incomplete arrays are encoded as a pointer to the array element.
3471      S += '^';
3472
3473      getObjCEncodingForTypeImpl(AT->getElementType(), S,
3474                                 false, ExpandStructures, FD);
3475    } else {
3476      S += '[';
3477
3478      if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
3479        S += llvm::utostr(CAT->getSize().getZExtValue());
3480      else {
3481        //Variable length arrays are encoded as a regular array with 0 elements.
3482        assert(isa<VariableArrayType>(AT) && "Unknown array type!");
3483        S += '0';
3484      }
3485
3486      getObjCEncodingForTypeImpl(AT->getElementType(), S,
3487                                 false, ExpandStructures, FD);
3488      S += ']';
3489    }
3490    return;
3491  }
3492
3493  if (T->getAs<FunctionType>()) {
3494    S += '?';
3495    return;
3496  }
3497
3498  if (const RecordType *RTy = T->getAs<RecordType>()) {
3499    RecordDecl *RDecl = RTy->getDecl();
3500    S += RDecl->isUnion() ? '(' : '{';
3501    // Anonymous structures print as '?'
3502    if (const IdentifierInfo *II = RDecl->getIdentifier()) {
3503      S += II->getName();
3504    } else {
3505      S += '?';
3506    }
3507    if (ExpandStructures) {
3508      S += '=';
3509      for (RecordDecl::field_iterator Field = RDecl->field_begin(),
3510                                   FieldEnd = RDecl->field_end();
3511           Field != FieldEnd; ++Field) {
3512        if (FD) {
3513          S += '"';
3514          S += Field->getNameAsString();
3515          S += '"';
3516        }
3517
3518        // Special case bit-fields.
3519        if (Field->isBitField()) {
3520          getObjCEncodingForTypeImpl(Field->getType(), S, false, true,
3521                                     (*Field));
3522        } else {
3523          QualType qt = Field->getType();
3524          getLegacyIntegralTypeEncoding(qt);
3525          getObjCEncodingForTypeImpl(qt, S, false, true,
3526                                     FD);
3527        }
3528      }
3529    }
3530    S += RDecl->isUnion() ? ')' : '}';
3531    return;
3532  }
3533
3534  if (T->isEnumeralType()) {
3535    if (FD && FD->isBitField())
3536      EncodeBitField(this, S, FD);
3537    else
3538      S += 'i';
3539    return;
3540  }
3541
3542  if (T->isBlockPointerType()) {
3543    S += "@?"; // Unlike a pointer-to-function, which is "^?".
3544    return;
3545  }
3546
3547  if (const ObjCInterfaceType *OIT = T->getAs<ObjCInterfaceType>()) {
3548    // @encode(class_name)
3549    ObjCInterfaceDecl *OI = OIT->getDecl();
3550    S += '{';
3551    const IdentifierInfo *II = OI->getIdentifier();
3552    S += II->getName();
3553    S += '=';
3554    llvm::SmallVector<FieldDecl*, 32> RecFields;
3555    CollectObjCIvars(OI, RecFields);
3556    for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
3557      if (RecFields[i]->isBitField())
3558        getObjCEncodingForTypeImpl(RecFields[i]->getType(), S, false, true,
3559                                   RecFields[i]);
3560      else
3561        getObjCEncodingForTypeImpl(RecFields[i]->getType(), S, false, true,
3562                                   FD);
3563    }
3564    S += '}';
3565    return;
3566  }
3567
3568  if (const ObjCObjectPointerType *OPT = T->getAs<ObjCObjectPointerType>()) {
3569    if (OPT->isObjCIdType()) {
3570      S += '@';
3571      return;
3572    }
3573
3574    if (OPT->isObjCClassType() || OPT->isObjCQualifiedClassType()) {
3575      // FIXME: Consider if we need to output qualifiers for 'Class<p>'.
3576      // Since this is a binary compatibility issue, need to consult with runtime
3577      // folks. Fortunately, this is a *very* obsure construct.
3578      S += '#';
3579      return;
3580    }
3581
3582    if (OPT->isObjCQualifiedIdType()) {
3583      getObjCEncodingForTypeImpl(getObjCIdType(), S,
3584                                 ExpandPointedToStructures,
3585                                 ExpandStructures, FD);
3586      if (FD || EncodingProperty) {
3587        // Note that we do extended encoding of protocol qualifer list
3588        // Only when doing ivar or property encoding.
3589        S += '"';
3590        for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(),
3591             E = OPT->qual_end(); I != E; ++I) {
3592          S += '<';
3593          S += (*I)->getNameAsString();
3594          S += '>';
3595        }
3596        S += '"';
3597      }
3598      return;
3599    }
3600
3601    QualType PointeeTy = OPT->getPointeeType();
3602    if (!EncodingProperty &&
3603        isa<TypedefType>(PointeeTy.getTypePtr())) {
3604      // Another historical/compatibility reason.
3605      // We encode the underlying type which comes out as
3606      // {...};
3607      S += '^';
3608      getObjCEncodingForTypeImpl(PointeeTy, S,
3609                                 false, ExpandPointedToStructures,
3610                                 NULL);
3611      return;
3612    }
3613
3614    S += '@';
3615    if (OPT->getInterfaceDecl() && (FD || EncodingProperty)) {
3616      S += '"';
3617      S += OPT->getInterfaceDecl()->getIdentifier()->getName();
3618      for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(),
3619           E = OPT->qual_end(); I != E; ++I) {
3620        S += '<';
3621        S += (*I)->getNameAsString();
3622        S += '>';
3623      }
3624      S += '"';
3625    }
3626    return;
3627  }
3628
3629  assert(0 && "@encode for type not implemented!");
3630}
3631
3632void ASTContext::getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT,
3633                                                 std::string& S) const {
3634  if (QT & Decl::OBJC_TQ_In)
3635    S += 'n';
3636  if (QT & Decl::OBJC_TQ_Inout)
3637    S += 'N';
3638  if (QT & Decl::OBJC_TQ_Out)
3639    S += 'o';
3640  if (QT & Decl::OBJC_TQ_Bycopy)
3641    S += 'O';
3642  if (QT & Decl::OBJC_TQ_Byref)
3643    S += 'R';
3644  if (QT & Decl::OBJC_TQ_Oneway)
3645    S += 'V';
3646}
3647
3648void ASTContext::setBuiltinVaListType(QualType T) {
3649  assert(BuiltinVaListType.isNull() && "__builtin_va_list type already set!");
3650
3651  BuiltinVaListType = T;
3652}
3653
3654void ASTContext::setObjCIdType(QualType T) {
3655  ObjCIdTypedefType = T;
3656}
3657
3658void ASTContext::setObjCSelType(QualType T) {
3659  ObjCSelTypedefType = T;
3660}
3661
3662void ASTContext::setObjCProtoType(QualType QT) {
3663  ObjCProtoType = QT;
3664}
3665
3666void ASTContext::setObjCClassType(QualType T) {
3667  ObjCClassTypedefType = T;
3668}
3669
3670void ASTContext::setObjCConstantStringInterface(ObjCInterfaceDecl *Decl) {
3671  assert(ObjCConstantStringType.isNull() &&
3672         "'NSConstantString' type already set!");
3673
3674  ObjCConstantStringType = getObjCInterfaceType(Decl);
3675}
3676
3677/// \brief Retrieve the template name that represents a qualified
3678/// template name such as \c std::vector.
3679TemplateName ASTContext::getQualifiedTemplateName(NestedNameSpecifier *NNS,
3680                                                  bool TemplateKeyword,
3681                                                  TemplateDecl *Template) {
3682  llvm::FoldingSetNodeID ID;
3683  QualifiedTemplateName::Profile(ID, NNS, TemplateKeyword, Template);
3684
3685  void *InsertPos = 0;
3686  QualifiedTemplateName *QTN =
3687    QualifiedTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
3688  if (!QTN) {
3689    QTN = new (*this,4) QualifiedTemplateName(NNS, TemplateKeyword, Template);
3690    QualifiedTemplateNames.InsertNode(QTN, InsertPos);
3691  }
3692
3693  return TemplateName(QTN);
3694}
3695
3696/// \brief Retrieve the template name that represents a qualified
3697/// template name such as \c std::vector.
3698TemplateName ASTContext::getQualifiedTemplateName(NestedNameSpecifier *NNS,
3699                                                  bool TemplateKeyword,
3700                                            OverloadedFunctionDecl *Template) {
3701  llvm::FoldingSetNodeID ID;
3702  QualifiedTemplateName::Profile(ID, NNS, TemplateKeyword, Template);
3703
3704  void *InsertPos = 0;
3705  QualifiedTemplateName *QTN =
3706  QualifiedTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
3707  if (!QTN) {
3708    QTN = new (*this,4) QualifiedTemplateName(NNS, TemplateKeyword, Template);
3709    QualifiedTemplateNames.InsertNode(QTN, InsertPos);
3710  }
3711
3712  return TemplateName(QTN);
3713}
3714
3715/// \brief Retrieve the template name that represents a dependent
3716/// template name such as \c MetaFun::template apply.
3717TemplateName ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
3718                                                  const IdentifierInfo *Name) {
3719  assert((!NNS || NNS->isDependent()) &&
3720         "Nested name specifier must be dependent");
3721
3722  llvm::FoldingSetNodeID ID;
3723  DependentTemplateName::Profile(ID, NNS, Name);
3724
3725  void *InsertPos = 0;
3726  DependentTemplateName *QTN =
3727    DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
3728
3729  if (QTN)
3730    return TemplateName(QTN);
3731
3732  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
3733  if (CanonNNS == NNS) {
3734    QTN = new (*this,4) DependentTemplateName(NNS, Name);
3735  } else {
3736    TemplateName Canon = getDependentTemplateName(CanonNNS, Name);
3737    QTN = new (*this,4) DependentTemplateName(NNS, Name, Canon);
3738  }
3739
3740  DependentTemplateNames.InsertNode(QTN, InsertPos);
3741  return TemplateName(QTN);
3742}
3743
3744/// \brief Retrieve the template name that represents a dependent
3745/// template name such as \c MetaFun::template operator+.
3746TemplateName
3747ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
3748                                     OverloadedOperatorKind Operator) {
3749  assert((!NNS || NNS->isDependent()) &&
3750         "Nested name specifier must be dependent");
3751
3752  llvm::FoldingSetNodeID ID;
3753  DependentTemplateName::Profile(ID, NNS, Operator);
3754
3755  void *InsertPos = 0;
3756  DependentTemplateName *QTN =
3757  DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
3758
3759  if (QTN)
3760    return TemplateName(QTN);
3761
3762  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
3763  if (CanonNNS == NNS) {
3764    QTN = new (*this,4) DependentTemplateName(NNS, Operator);
3765  } else {
3766    TemplateName Canon = getDependentTemplateName(CanonNNS, Operator);
3767    QTN = new (*this,4) DependentTemplateName(NNS, Operator, Canon);
3768  }
3769
3770  DependentTemplateNames.InsertNode(QTN, InsertPos);
3771  return TemplateName(QTN);
3772}
3773
3774/// getFromTargetType - Given one of the integer types provided by
3775/// TargetInfo, produce the corresponding type. The unsigned @p Type
3776/// is actually a value of type @c TargetInfo::IntType.
3777CanQualType ASTContext::getFromTargetType(unsigned Type) const {
3778  switch (Type) {
3779  case TargetInfo::NoInt: return CanQualType();
3780  case TargetInfo::SignedShort: return ShortTy;
3781  case TargetInfo::UnsignedShort: return UnsignedShortTy;
3782  case TargetInfo::SignedInt: return IntTy;
3783  case TargetInfo::UnsignedInt: return UnsignedIntTy;
3784  case TargetInfo::SignedLong: return LongTy;
3785  case TargetInfo::UnsignedLong: return UnsignedLongTy;
3786  case TargetInfo::SignedLongLong: return LongLongTy;
3787  case TargetInfo::UnsignedLongLong: return UnsignedLongLongTy;
3788  }
3789
3790  assert(false && "Unhandled TargetInfo::IntType value");
3791  return CanQualType();
3792}
3793
3794//===----------------------------------------------------------------------===//
3795//                        Type Predicates.
3796//===----------------------------------------------------------------------===//
3797
3798/// isObjCNSObjectType - Return true if this is an NSObject object using
3799/// NSObject attribute on a c-style pointer type.
3800/// FIXME - Make it work directly on types.
3801/// FIXME: Move to Type.
3802///
3803bool ASTContext::isObjCNSObjectType(QualType Ty) const {
3804  if (TypedefType *TDT = dyn_cast<TypedefType>(Ty)) {
3805    if (TypedefDecl *TD = TDT->getDecl())
3806      if (TD->getAttr<ObjCNSObjectAttr>())
3807        return true;
3808  }
3809  return false;
3810}
3811
3812/// getObjCGCAttr - Returns one of GCNone, Weak or Strong objc's
3813/// garbage collection attribute.
3814///
3815Qualifiers::GC ASTContext::getObjCGCAttrKind(const QualType &Ty) const {
3816  Qualifiers::GC GCAttrs = Qualifiers::GCNone;
3817  if (getLangOptions().ObjC1 &&
3818      getLangOptions().getGCMode() != LangOptions::NonGC) {
3819    GCAttrs = Ty.getObjCGCAttr();
3820    // Default behavious under objective-c's gc is for objective-c pointers
3821    // (or pointers to them) be treated as though they were declared
3822    // as __strong.
3823    if (GCAttrs == Qualifiers::GCNone) {
3824      if (Ty->isObjCObjectPointerType() || Ty->isBlockPointerType())
3825        GCAttrs = Qualifiers::Strong;
3826      else if (Ty->isPointerType())
3827        return getObjCGCAttrKind(Ty->getAs<PointerType>()->getPointeeType());
3828    }
3829    // Non-pointers have none gc'able attribute regardless of the attribute
3830    // set on them.
3831    else if (!Ty->isAnyPointerType() && !Ty->isBlockPointerType())
3832      return Qualifiers::GCNone;
3833  }
3834  return GCAttrs;
3835}
3836
3837//===----------------------------------------------------------------------===//
3838//                        Type Compatibility Testing
3839//===----------------------------------------------------------------------===//
3840
3841/// areCompatVectorTypes - Return true if the two specified vector types are
3842/// compatible.
3843static bool areCompatVectorTypes(const VectorType *LHS,
3844                                 const VectorType *RHS) {
3845  assert(LHS->isCanonicalUnqualified() && RHS->isCanonicalUnqualified());
3846  return LHS->getElementType() == RHS->getElementType() &&
3847         LHS->getNumElements() == RHS->getNumElements();
3848}
3849
3850//===----------------------------------------------------------------------===//
3851// ObjCQualifiedIdTypesAreCompatible - Compatibility testing for qualified id's.
3852//===----------------------------------------------------------------------===//
3853
3854/// ProtocolCompatibleWithProtocol - return 'true' if 'lProto' is in the
3855/// inheritance hierarchy of 'rProto'.
3856bool ASTContext::ProtocolCompatibleWithProtocol(ObjCProtocolDecl *lProto,
3857                                                ObjCProtocolDecl *rProto) {
3858  if (lProto == rProto)
3859    return true;
3860  for (ObjCProtocolDecl::protocol_iterator PI = rProto->protocol_begin(),
3861       E = rProto->protocol_end(); PI != E; ++PI)
3862    if (ProtocolCompatibleWithProtocol(lProto, *PI))
3863      return true;
3864  return false;
3865}
3866
3867/// QualifiedIdConformsQualifiedId - compare id<p,...> with id<p1,...>
3868/// return true if lhs's protocols conform to rhs's protocol; false
3869/// otherwise.
3870bool ASTContext::QualifiedIdConformsQualifiedId(QualType lhs, QualType rhs) {
3871  if (lhs->isObjCQualifiedIdType() && rhs->isObjCQualifiedIdType())
3872    return ObjCQualifiedIdTypesAreCompatible(lhs, rhs, false);
3873  return false;
3874}
3875
3876/// ObjCQualifiedIdTypesAreCompatible - We know that one of lhs/rhs is an
3877/// ObjCQualifiedIDType.
3878bool ASTContext::ObjCQualifiedIdTypesAreCompatible(QualType lhs, QualType rhs,
3879                                                   bool compare) {
3880  // Allow id<P..> and an 'id' or void* type in all cases.
3881  if (lhs->isVoidPointerType() ||
3882      lhs->isObjCIdType() || lhs->isObjCClassType())
3883    return true;
3884  else if (rhs->isVoidPointerType() ||
3885           rhs->isObjCIdType() || rhs->isObjCClassType())
3886    return true;
3887
3888  if (const ObjCObjectPointerType *lhsQID = lhs->getAsObjCQualifiedIdType()) {
3889    const ObjCObjectPointerType *rhsOPT = rhs->getAs<ObjCObjectPointerType>();
3890
3891    if (!rhsOPT) return false;
3892
3893    if (rhsOPT->qual_empty()) {
3894      // If the RHS is a unqualified interface pointer "NSString*",
3895      // make sure we check the class hierarchy.
3896      if (ObjCInterfaceDecl *rhsID = rhsOPT->getInterfaceDecl()) {
3897        for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
3898             E = lhsQID->qual_end(); I != E; ++I) {
3899          // when comparing an id<P> on lhs with a static type on rhs,
3900          // see if static class implements all of id's protocols, directly or
3901          // through its super class and categories.
3902          if (!rhsID->ClassImplementsProtocol(*I, true))
3903            return false;
3904        }
3905      }
3906      // If there are no qualifiers and no interface, we have an 'id'.
3907      return true;
3908    }
3909    // Both the right and left sides have qualifiers.
3910    for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
3911         E = lhsQID->qual_end(); I != E; ++I) {
3912      ObjCProtocolDecl *lhsProto = *I;
3913      bool match = false;
3914
3915      // when comparing an id<P> on lhs with a static type on rhs,
3916      // see if static class implements all of id's protocols, directly or
3917      // through its super class and categories.
3918      for (ObjCObjectPointerType::qual_iterator J = rhsOPT->qual_begin(),
3919           E = rhsOPT->qual_end(); J != E; ++J) {
3920        ObjCProtocolDecl *rhsProto = *J;
3921        if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
3922            (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
3923          match = true;
3924          break;
3925        }
3926      }
3927      // If the RHS is a qualified interface pointer "NSString<P>*",
3928      // make sure we check the class hierarchy.
3929      if (ObjCInterfaceDecl *rhsID = rhsOPT->getInterfaceDecl()) {
3930        for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
3931             E = lhsQID->qual_end(); I != E; ++I) {
3932          // when comparing an id<P> on lhs with a static type on rhs,
3933          // see if static class implements all of id's protocols, directly or
3934          // through its super class and categories.
3935          if (rhsID->ClassImplementsProtocol(*I, true)) {
3936            match = true;
3937            break;
3938          }
3939        }
3940      }
3941      if (!match)
3942        return false;
3943    }
3944
3945    return true;
3946  }
3947
3948  const ObjCObjectPointerType *rhsQID = rhs->getAsObjCQualifiedIdType();
3949  assert(rhsQID && "One of the LHS/RHS should be id<x>");
3950
3951  if (const ObjCObjectPointerType *lhsOPT =
3952        lhs->getAsObjCInterfacePointerType()) {
3953    if (lhsOPT->qual_empty()) {
3954      bool match = false;
3955      if (ObjCInterfaceDecl *lhsID = lhsOPT->getInterfaceDecl()) {
3956        for (ObjCObjectPointerType::qual_iterator I = rhsQID->qual_begin(),
3957             E = rhsQID->qual_end(); I != E; ++I) {
3958          // when comparing an id<P> on lhs with a static type on rhs,
3959          // see if static class implements all of id's protocols, directly or
3960          // through its super class and categories.
3961          if (lhsID->ClassImplementsProtocol(*I, true)) {
3962            match = true;
3963            break;
3964          }
3965        }
3966        if (!match)
3967          return false;
3968      }
3969      return true;
3970    }
3971    // Both the right and left sides have qualifiers.
3972    for (ObjCObjectPointerType::qual_iterator I = lhsOPT->qual_begin(),
3973         E = lhsOPT->qual_end(); I != E; ++I) {
3974      ObjCProtocolDecl *lhsProto = *I;
3975      bool match = false;
3976
3977      // when comparing an id<P> on lhs with a static type on rhs,
3978      // see if static class implements all of id's protocols, directly or
3979      // through its super class and categories.
3980      for (ObjCObjectPointerType::qual_iterator J = rhsQID->qual_begin(),
3981           E = rhsQID->qual_end(); J != E; ++J) {
3982        ObjCProtocolDecl *rhsProto = *J;
3983        if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
3984            (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
3985          match = true;
3986          break;
3987        }
3988      }
3989      if (!match)
3990        return false;
3991    }
3992    return true;
3993  }
3994  return false;
3995}
3996
3997/// canAssignObjCInterfaces - Return true if the two interface types are
3998/// compatible for assignment from RHS to LHS.  This handles validation of any
3999/// protocol qualifiers on the LHS or RHS.
4000///
4001bool ASTContext::canAssignObjCInterfaces(const ObjCObjectPointerType *LHSOPT,
4002                                         const ObjCObjectPointerType *RHSOPT) {
4003  // If either type represents the built-in 'id' or 'Class' types, return true.
4004  if (LHSOPT->isObjCBuiltinType() || RHSOPT->isObjCBuiltinType())
4005    return true;
4006
4007  if (LHSOPT->isObjCQualifiedIdType() || RHSOPT->isObjCQualifiedIdType())
4008    return ObjCQualifiedIdTypesAreCompatible(QualType(LHSOPT,0),
4009                                             QualType(RHSOPT,0),
4010                                             false);
4011
4012  const ObjCInterfaceType* LHS = LHSOPT->getInterfaceType();
4013  const ObjCInterfaceType* RHS = RHSOPT->getInterfaceType();
4014  if (LHS && RHS) // We have 2 user-defined types.
4015    return canAssignObjCInterfaces(LHS, RHS);
4016
4017  return false;
4018}
4019
4020/// getIntersectionOfProtocols - This routine finds the intersection of set
4021/// of protocols inherited from two distinct objective-c pointer objects.
4022/// It is used to build composite qualifier list of the composite type of
4023/// the conditional expression involving two objective-c pointer objects.
4024static
4025void getIntersectionOfProtocols(ASTContext &Context,
4026                                const ObjCObjectPointerType *LHSOPT,
4027                                const ObjCObjectPointerType *RHSOPT,
4028      llvm::SmallVectorImpl<ObjCProtocolDecl *> &IntersectionOfProtocols) {
4029
4030  const ObjCInterfaceType* LHS = LHSOPT->getInterfaceType();
4031  const ObjCInterfaceType* RHS = RHSOPT->getInterfaceType();
4032
4033  llvm::SmallPtrSet<ObjCProtocolDecl *, 8> InheritedProtocolSet;
4034  unsigned LHSNumProtocols = LHS->getNumProtocols();
4035  if (LHSNumProtocols > 0)
4036    InheritedProtocolSet.insert(LHS->qual_begin(), LHS->qual_end());
4037  else {
4038    llvm::SmallVector<ObjCProtocolDecl *, 8> LHSInheritedProtocols;
4039     Context.CollectInheritedProtocols(LHS->getDecl(), LHSInheritedProtocols);
4040    InheritedProtocolSet.insert(LHSInheritedProtocols.begin(),
4041                                LHSInheritedProtocols.end());
4042  }
4043
4044  unsigned RHSNumProtocols = RHS->getNumProtocols();
4045  if (RHSNumProtocols > 0) {
4046    ObjCProtocolDecl **RHSProtocols = (ObjCProtocolDecl **)RHS->qual_begin();
4047    for (unsigned i = 0; i < RHSNumProtocols; ++i)
4048      if (InheritedProtocolSet.count(RHSProtocols[i]))
4049        IntersectionOfProtocols.push_back(RHSProtocols[i]);
4050  }
4051  else {
4052    llvm::SmallVector<ObjCProtocolDecl *, 8> RHSInheritedProtocols;
4053    Context.CollectInheritedProtocols(RHS->getDecl(), RHSInheritedProtocols);
4054    // FIXME. This may cause duplication of protocols in the list, but should
4055    // be harmless.
4056    for (unsigned i = 0, len = RHSInheritedProtocols.size(); i < len; ++i)
4057      if (InheritedProtocolSet.count(RHSInheritedProtocols[i]))
4058        IntersectionOfProtocols.push_back(RHSInheritedProtocols[i]);
4059  }
4060}
4061
4062/// areCommonBaseCompatible - Returns common base class of the two classes if
4063/// one found. Note that this is O'2 algorithm. But it will be called as the
4064/// last type comparison in a ?-exp of ObjC pointer types before a
4065/// warning is issued. So, its invokation is extremely rare.
4066QualType ASTContext::areCommonBaseCompatible(
4067                                          const ObjCObjectPointerType *LHSOPT,
4068                                          const ObjCObjectPointerType *RHSOPT) {
4069  const ObjCInterfaceType* LHS = LHSOPT->getInterfaceType();
4070  const ObjCInterfaceType* RHS = RHSOPT->getInterfaceType();
4071  if (!LHS || !RHS)
4072    return QualType();
4073
4074  while (const ObjCInterfaceDecl *LHSIDecl = LHS->getDecl()->getSuperClass()) {
4075    QualType LHSTy = getObjCInterfaceType(LHSIDecl);
4076    LHS = LHSTy->getAs<ObjCInterfaceType>();
4077    if (canAssignObjCInterfaces(LHS, RHS)) {
4078      llvm::SmallVector<ObjCProtocolDecl *, 8> IntersectionOfProtocols;
4079      getIntersectionOfProtocols(*this,
4080                                 LHSOPT, RHSOPT, IntersectionOfProtocols);
4081      if (IntersectionOfProtocols.empty())
4082        LHSTy = getObjCObjectPointerType(LHSTy);
4083      else
4084        LHSTy = getObjCObjectPointerType(LHSTy, &IntersectionOfProtocols[0],
4085                                                IntersectionOfProtocols.size());
4086      return LHSTy;
4087    }
4088  }
4089
4090  return QualType();
4091}
4092
4093bool ASTContext::canAssignObjCInterfaces(const ObjCInterfaceType *LHS,
4094                                         const ObjCInterfaceType *RHS) {
4095  // Verify that the base decls are compatible: the RHS must be a subclass of
4096  // the LHS.
4097  if (!LHS->getDecl()->isSuperClassOf(RHS->getDecl()))
4098    return false;
4099
4100  // RHS must have a superset of the protocols in the LHS.  If the LHS is not
4101  // protocol qualified at all, then we are good.
4102  if (LHS->getNumProtocols() == 0)
4103    return true;
4104
4105  // Okay, we know the LHS has protocol qualifiers.  If the RHS doesn't, then it
4106  // isn't a superset.
4107  if (RHS->getNumProtocols() == 0)
4108    return true;  // FIXME: should return false!
4109
4110  for (ObjCInterfaceType::qual_iterator LHSPI = LHS->qual_begin(),
4111                                        LHSPE = LHS->qual_end();
4112       LHSPI != LHSPE; LHSPI++) {
4113    bool RHSImplementsProtocol = false;
4114
4115    // If the RHS doesn't implement the protocol on the left, the types
4116    // are incompatible.
4117    for (ObjCInterfaceType::qual_iterator RHSPI = RHS->qual_begin(),
4118                                          RHSPE = RHS->qual_end();
4119         RHSPI != RHSPE; RHSPI++) {
4120      if ((*RHSPI)->lookupProtocolNamed((*LHSPI)->getIdentifier())) {
4121        RHSImplementsProtocol = true;
4122        break;
4123      }
4124    }
4125    // FIXME: For better diagnostics, consider passing back the protocol name.
4126    if (!RHSImplementsProtocol)
4127      return false;
4128  }
4129  // The RHS implements all protocols listed on the LHS.
4130  return true;
4131}
4132
4133bool ASTContext::areComparableObjCPointerTypes(QualType LHS, QualType RHS) {
4134  // get the "pointed to" types
4135  const ObjCObjectPointerType *LHSOPT = LHS->getAs<ObjCObjectPointerType>();
4136  const ObjCObjectPointerType *RHSOPT = RHS->getAs<ObjCObjectPointerType>();
4137
4138  if (!LHSOPT || !RHSOPT)
4139    return false;
4140
4141  return canAssignObjCInterfaces(LHSOPT, RHSOPT) ||
4142         canAssignObjCInterfaces(RHSOPT, LHSOPT);
4143}
4144
4145/// typesAreCompatible - C99 6.7.3p9: For two qualified types to be compatible,
4146/// both shall have the identically qualified version of a compatible type.
4147/// C99 6.2.7p1: Two types have compatible types if their types are the
4148/// same. See 6.7.[2,3,5] for additional rules.
4149bool ASTContext::typesAreCompatible(QualType LHS, QualType RHS) {
4150  return !mergeTypes(LHS, RHS).isNull();
4151}
4152
4153QualType ASTContext::mergeFunctionTypes(QualType lhs, QualType rhs) {
4154  const FunctionType *lbase = lhs->getAs<FunctionType>();
4155  const FunctionType *rbase = rhs->getAs<FunctionType>();
4156  const FunctionProtoType *lproto = dyn_cast<FunctionProtoType>(lbase);
4157  const FunctionProtoType *rproto = dyn_cast<FunctionProtoType>(rbase);
4158  bool allLTypes = true;
4159  bool allRTypes = true;
4160
4161  // Check return type
4162  QualType retType = mergeTypes(lbase->getResultType(), rbase->getResultType());
4163  if (retType.isNull()) return QualType();
4164  if (getCanonicalType(retType) != getCanonicalType(lbase->getResultType()))
4165    allLTypes = false;
4166  if (getCanonicalType(retType) != getCanonicalType(rbase->getResultType()))
4167    allRTypes = false;
4168  // FIXME: double check this
4169  bool NoReturn = lbase->getNoReturnAttr() || rbase->getNoReturnAttr();
4170  if (NoReturn != lbase->getNoReturnAttr())
4171    allLTypes = false;
4172  if (NoReturn != rbase->getNoReturnAttr())
4173    allRTypes = false;
4174
4175  if (lproto && rproto) { // two C99 style function prototypes
4176    assert(!lproto->hasExceptionSpec() && !rproto->hasExceptionSpec() &&
4177           "C++ shouldn't be here");
4178    unsigned lproto_nargs = lproto->getNumArgs();
4179    unsigned rproto_nargs = rproto->getNumArgs();
4180
4181    // Compatible functions must have the same number of arguments
4182    if (lproto_nargs != rproto_nargs)
4183      return QualType();
4184
4185    // Variadic and non-variadic functions aren't compatible
4186    if (lproto->isVariadic() != rproto->isVariadic())
4187      return QualType();
4188
4189    if (lproto->getTypeQuals() != rproto->getTypeQuals())
4190      return QualType();
4191
4192    // Check argument compatibility
4193    llvm::SmallVector<QualType, 10> types;
4194    for (unsigned i = 0; i < lproto_nargs; i++) {
4195      QualType largtype = lproto->getArgType(i).getUnqualifiedType();
4196      QualType rargtype = rproto->getArgType(i).getUnqualifiedType();
4197      QualType argtype = mergeTypes(largtype, rargtype);
4198      if (argtype.isNull()) return QualType();
4199      types.push_back(argtype);
4200      if (getCanonicalType(argtype) != getCanonicalType(largtype))
4201        allLTypes = false;
4202      if (getCanonicalType(argtype) != getCanonicalType(rargtype))
4203        allRTypes = false;
4204    }
4205    if (allLTypes) return lhs;
4206    if (allRTypes) return rhs;
4207    return getFunctionType(retType, types.begin(), types.size(),
4208                           lproto->isVariadic(), lproto->getTypeQuals(),
4209                           NoReturn);
4210  }
4211
4212  if (lproto) allRTypes = false;
4213  if (rproto) allLTypes = false;
4214
4215  const FunctionProtoType *proto = lproto ? lproto : rproto;
4216  if (proto) {
4217    assert(!proto->hasExceptionSpec() && "C++ shouldn't be here");
4218    if (proto->isVariadic()) return QualType();
4219    // Check that the types are compatible with the types that
4220    // would result from default argument promotions (C99 6.7.5.3p15).
4221    // The only types actually affected are promotable integer
4222    // types and floats, which would be passed as a different
4223    // type depending on whether the prototype is visible.
4224    unsigned proto_nargs = proto->getNumArgs();
4225    for (unsigned i = 0; i < proto_nargs; ++i) {
4226      QualType argTy = proto->getArgType(i);
4227      if (argTy->isPromotableIntegerType() ||
4228          getCanonicalType(argTy).getUnqualifiedType() == FloatTy)
4229        return QualType();
4230    }
4231
4232    if (allLTypes) return lhs;
4233    if (allRTypes) return rhs;
4234    return getFunctionType(retType, proto->arg_type_begin(),
4235                           proto->getNumArgs(), proto->isVariadic(),
4236                           proto->getTypeQuals(), NoReturn);
4237  }
4238
4239  if (allLTypes) return lhs;
4240  if (allRTypes) return rhs;
4241  return getFunctionNoProtoType(retType, NoReturn);
4242}
4243
4244QualType ASTContext::mergeTypes(QualType LHS, QualType RHS) {
4245  // C++ [expr]: If an expression initially has the type "reference to T", the
4246  // type is adjusted to "T" prior to any further analysis, the expression
4247  // designates the object or function denoted by the reference, and the
4248  // expression is an lvalue unless the reference is an rvalue reference and
4249  // the expression is a function call (possibly inside parentheses).
4250  // FIXME: C++ shouldn't be going through here!  The rules are different
4251  // enough that they should be handled separately.
4252  // FIXME: Merging of lvalue and rvalue references is incorrect. C++ *really*
4253  // shouldn't be going through here!
4254  if (const ReferenceType *RT = LHS->getAs<ReferenceType>())
4255    LHS = RT->getPointeeType();
4256  if (const ReferenceType *RT = RHS->getAs<ReferenceType>())
4257    RHS = RT->getPointeeType();
4258
4259  QualType LHSCan = getCanonicalType(LHS),
4260           RHSCan = getCanonicalType(RHS);
4261
4262  // If two types are identical, they are compatible.
4263  if (LHSCan == RHSCan)
4264    return LHS;
4265
4266  // If the qualifiers are different, the types aren't compatible... mostly.
4267  Qualifiers LQuals = LHSCan.getLocalQualifiers();
4268  Qualifiers RQuals = RHSCan.getLocalQualifiers();
4269  if (LQuals != RQuals) {
4270    // If any of these qualifiers are different, we have a type
4271    // mismatch.
4272    if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() ||
4273        LQuals.getAddressSpace() != RQuals.getAddressSpace())
4274      return QualType();
4275
4276    // Exactly one GC qualifier difference is allowed: __strong is
4277    // okay if the other type has no GC qualifier but is an Objective
4278    // C object pointer (i.e. implicitly strong by default).  We fix
4279    // this by pretending that the unqualified type was actually
4280    // qualified __strong.
4281    Qualifiers::GC GC_L = LQuals.getObjCGCAttr();
4282    Qualifiers::GC GC_R = RQuals.getObjCGCAttr();
4283    assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements");
4284
4285    if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak)
4286      return QualType();
4287
4288    if (GC_L == Qualifiers::Strong && RHSCan->isObjCObjectPointerType()) {
4289      return mergeTypes(LHS, getObjCGCQualType(RHS, Qualifiers::Strong));
4290    }
4291    if (GC_R == Qualifiers::Strong && LHSCan->isObjCObjectPointerType()) {
4292      return mergeTypes(getObjCGCQualType(LHS, Qualifiers::Strong), RHS);
4293    }
4294    return QualType();
4295  }
4296
4297  // Okay, qualifiers are equal.
4298
4299  Type::TypeClass LHSClass = LHSCan->getTypeClass();
4300  Type::TypeClass RHSClass = RHSCan->getTypeClass();
4301
4302  // We want to consider the two function types to be the same for these
4303  // comparisons, just force one to the other.
4304  if (LHSClass == Type::FunctionProto) LHSClass = Type::FunctionNoProto;
4305  if (RHSClass == Type::FunctionProto) RHSClass = Type::FunctionNoProto;
4306
4307  // Same as above for arrays
4308  if (LHSClass == Type::VariableArray || LHSClass == Type::IncompleteArray)
4309    LHSClass = Type::ConstantArray;
4310  if (RHSClass == Type::VariableArray || RHSClass == Type::IncompleteArray)
4311    RHSClass = Type::ConstantArray;
4312
4313  // Canonicalize ExtVector -> Vector.
4314  if (LHSClass == Type::ExtVector) LHSClass = Type::Vector;
4315  if (RHSClass == Type::ExtVector) RHSClass = Type::Vector;
4316
4317  // If the canonical type classes don't match.
4318  if (LHSClass != RHSClass) {
4319    // C99 6.7.2.2p4: Each enumerated type shall be compatible with char,
4320    // a signed integer type, or an unsigned integer type.
4321    if (const EnumType* ETy = LHS->getAs<EnumType>()) {
4322      if (ETy->getDecl()->getIntegerType() == RHSCan.getUnqualifiedType())
4323        return RHS;
4324    }
4325    if (const EnumType* ETy = RHS->getAs<EnumType>()) {
4326      if (ETy->getDecl()->getIntegerType() == LHSCan.getUnqualifiedType())
4327        return LHS;
4328    }
4329
4330    return QualType();
4331  }
4332
4333  // The canonical type classes match.
4334  switch (LHSClass) {
4335#define TYPE(Class, Base)
4336#define ABSTRACT_TYPE(Class, Base)
4337#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
4338#define DEPENDENT_TYPE(Class, Base) case Type::Class:
4339#include "clang/AST/TypeNodes.def"
4340    assert(false && "Non-canonical and dependent types shouldn't get here");
4341    return QualType();
4342
4343  case Type::LValueReference:
4344  case Type::RValueReference:
4345  case Type::MemberPointer:
4346    assert(false && "C++ should never be in mergeTypes");
4347    return QualType();
4348
4349  case Type::IncompleteArray:
4350  case Type::VariableArray:
4351  case Type::FunctionProto:
4352  case Type::ExtVector:
4353    assert(false && "Types are eliminated above");
4354    return QualType();
4355
4356  case Type::Pointer:
4357  {
4358    // Merge two pointer types, while trying to preserve typedef info
4359    QualType LHSPointee = LHS->getAs<PointerType>()->getPointeeType();
4360    QualType RHSPointee = RHS->getAs<PointerType>()->getPointeeType();
4361    QualType ResultType = mergeTypes(LHSPointee, RHSPointee);
4362    if (ResultType.isNull()) return QualType();
4363    if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
4364      return LHS;
4365    if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
4366      return RHS;
4367    return getPointerType(ResultType);
4368  }
4369  case Type::BlockPointer:
4370  {
4371    // Merge two block pointer types, while trying to preserve typedef info
4372    QualType LHSPointee = LHS->getAs<BlockPointerType>()->getPointeeType();
4373    QualType RHSPointee = RHS->getAs<BlockPointerType>()->getPointeeType();
4374    QualType ResultType = mergeTypes(LHSPointee, RHSPointee);
4375    if (ResultType.isNull()) return QualType();
4376    if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
4377      return LHS;
4378    if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
4379      return RHS;
4380    return getBlockPointerType(ResultType);
4381  }
4382  case Type::ConstantArray:
4383  {
4384    const ConstantArrayType* LCAT = getAsConstantArrayType(LHS);
4385    const ConstantArrayType* RCAT = getAsConstantArrayType(RHS);
4386    if (LCAT && RCAT && RCAT->getSize() != LCAT->getSize())
4387      return QualType();
4388
4389    QualType LHSElem = getAsArrayType(LHS)->getElementType();
4390    QualType RHSElem = getAsArrayType(RHS)->getElementType();
4391    QualType ResultType = mergeTypes(LHSElem, RHSElem);
4392    if (ResultType.isNull()) return QualType();
4393    if (LCAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
4394      return LHS;
4395    if (RCAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
4396      return RHS;
4397    if (LCAT) return getConstantArrayType(ResultType, LCAT->getSize(),
4398                                          ArrayType::ArraySizeModifier(), 0);
4399    if (RCAT) return getConstantArrayType(ResultType, RCAT->getSize(),
4400                                          ArrayType::ArraySizeModifier(), 0);
4401    const VariableArrayType* LVAT = getAsVariableArrayType(LHS);
4402    const VariableArrayType* RVAT = getAsVariableArrayType(RHS);
4403    if (LVAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
4404      return LHS;
4405    if (RVAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
4406      return RHS;
4407    if (LVAT) {
4408      // FIXME: This isn't correct! But tricky to implement because
4409      // the array's size has to be the size of LHS, but the type
4410      // has to be different.
4411      return LHS;
4412    }
4413    if (RVAT) {
4414      // FIXME: This isn't correct! But tricky to implement because
4415      // the array's size has to be the size of RHS, but the type
4416      // has to be different.
4417      return RHS;
4418    }
4419    if (getCanonicalType(LHSElem) == getCanonicalType(ResultType)) return LHS;
4420    if (getCanonicalType(RHSElem) == getCanonicalType(ResultType)) return RHS;
4421    return getIncompleteArrayType(ResultType,
4422                                  ArrayType::ArraySizeModifier(), 0);
4423  }
4424  case Type::FunctionNoProto:
4425    return mergeFunctionTypes(LHS, RHS);
4426  case Type::Record:
4427  case Type::Enum:
4428    return QualType();
4429  case Type::Builtin:
4430    // Only exactly equal builtin types are compatible, which is tested above.
4431    return QualType();
4432  case Type::Complex:
4433    // Distinct complex types are incompatible.
4434    return QualType();
4435  case Type::Vector:
4436    // FIXME: The merged type should be an ExtVector!
4437    if (areCompatVectorTypes(LHS->getAs<VectorType>(), RHS->getAs<VectorType>()))
4438      return LHS;
4439    return QualType();
4440  case Type::ObjCInterface: {
4441    // Check if the interfaces are assignment compatible.
4442    // FIXME: This should be type compatibility, e.g. whether
4443    // "LHS x; RHS x;" at global scope is legal.
4444    const ObjCInterfaceType* LHSIface = LHS->getAs<ObjCInterfaceType>();
4445    const ObjCInterfaceType* RHSIface = RHS->getAs<ObjCInterfaceType>();
4446    if (LHSIface && RHSIface &&
4447        canAssignObjCInterfaces(LHSIface, RHSIface))
4448      return LHS;
4449
4450    return QualType();
4451  }
4452  case Type::ObjCObjectPointer: {
4453    if (canAssignObjCInterfaces(LHS->getAs<ObjCObjectPointerType>(),
4454                                RHS->getAs<ObjCObjectPointerType>()))
4455      return LHS;
4456
4457    return QualType();
4458  }
4459  case Type::FixedWidthInt:
4460    // Distinct fixed-width integers are not compatible.
4461    return QualType();
4462  case Type::TemplateSpecialization:
4463    assert(false && "Dependent types have no size");
4464    break;
4465  }
4466
4467  return QualType();
4468}
4469
4470//===----------------------------------------------------------------------===//
4471//                         Integer Predicates
4472//===----------------------------------------------------------------------===//
4473
4474unsigned ASTContext::getIntWidth(QualType T) {
4475  if (T->isBooleanType())
4476    return 1;
4477  if (FixedWidthIntType *FWIT = dyn_cast<FixedWidthIntType>(T)) {
4478    return FWIT->getWidth();
4479  }
4480  // For builtin types, just use the standard type sizing method
4481  return (unsigned)getTypeSize(T);
4482}
4483
4484QualType ASTContext::getCorrespondingUnsignedType(QualType T) {
4485  assert(T->isSignedIntegerType() && "Unexpected type");
4486
4487  // Turn <4 x signed int> -> <4 x unsigned int>
4488  if (const VectorType *VTy = T->getAs<VectorType>())
4489    return getVectorType(getCorrespondingUnsignedType(VTy->getElementType()),
4490                         VTy->getNumElements());
4491
4492  // For enums, we return the unsigned version of the base type.
4493  if (const EnumType *ETy = T->getAs<EnumType>())
4494    T = ETy->getDecl()->getIntegerType();
4495
4496  const BuiltinType *BTy = T->getAs<BuiltinType>();
4497  assert(BTy && "Unexpected signed integer type");
4498  switch (BTy->getKind()) {
4499  case BuiltinType::Char_S:
4500  case BuiltinType::SChar:
4501    return UnsignedCharTy;
4502  case BuiltinType::Short:
4503    return UnsignedShortTy;
4504  case BuiltinType::Int:
4505    return UnsignedIntTy;
4506  case BuiltinType::Long:
4507    return UnsignedLongTy;
4508  case BuiltinType::LongLong:
4509    return UnsignedLongLongTy;
4510  case BuiltinType::Int128:
4511    return UnsignedInt128Ty;
4512  default:
4513    assert(0 && "Unexpected signed integer type");
4514    return QualType();
4515  }
4516}
4517
4518ExternalASTSource::~ExternalASTSource() { }
4519
4520void ExternalASTSource::PrintStats() { }
4521
4522
4523//===----------------------------------------------------------------------===//
4524//                          Builtin Type Computation
4525//===----------------------------------------------------------------------===//
4526
4527/// DecodeTypeFromStr - This decodes one type descriptor from Str, advancing the
4528/// pointer over the consumed characters.  This returns the resultant type.
4529static QualType DecodeTypeFromStr(const char *&Str, ASTContext &Context,
4530                                  ASTContext::GetBuiltinTypeError &Error,
4531                                  bool AllowTypeModifiers = true) {
4532  // Modifiers.
4533  int HowLong = 0;
4534  bool Signed = false, Unsigned = false;
4535
4536  // Read the modifiers first.
4537  bool Done = false;
4538  while (!Done) {
4539    switch (*Str++) {
4540    default: Done = true; --Str; break;
4541    case 'S':
4542      assert(!Unsigned && "Can't use both 'S' and 'U' modifiers!");
4543      assert(!Signed && "Can't use 'S' modifier multiple times!");
4544      Signed = true;
4545      break;
4546    case 'U':
4547      assert(!Signed && "Can't use both 'S' and 'U' modifiers!");
4548      assert(!Unsigned && "Can't use 'S' modifier multiple times!");
4549      Unsigned = true;
4550      break;
4551    case 'L':
4552      assert(HowLong <= 2 && "Can't have LLLL modifier");
4553      ++HowLong;
4554      break;
4555    }
4556  }
4557
4558  QualType Type;
4559
4560  // Read the base type.
4561  switch (*Str++) {
4562  default: assert(0 && "Unknown builtin type letter!");
4563  case 'v':
4564    assert(HowLong == 0 && !Signed && !Unsigned &&
4565           "Bad modifiers used with 'v'!");
4566    Type = Context.VoidTy;
4567    break;
4568  case 'f':
4569    assert(HowLong == 0 && !Signed && !Unsigned &&
4570           "Bad modifiers used with 'f'!");
4571    Type = Context.FloatTy;
4572    break;
4573  case 'd':
4574    assert(HowLong < 2 && !Signed && !Unsigned &&
4575           "Bad modifiers used with 'd'!");
4576    if (HowLong)
4577      Type = Context.LongDoubleTy;
4578    else
4579      Type = Context.DoubleTy;
4580    break;
4581  case 's':
4582    assert(HowLong == 0 && "Bad modifiers used with 's'!");
4583    if (Unsigned)
4584      Type = Context.UnsignedShortTy;
4585    else
4586      Type = Context.ShortTy;
4587    break;
4588  case 'i':
4589    if (HowLong == 3)
4590      Type = Unsigned ? Context.UnsignedInt128Ty : Context.Int128Ty;
4591    else if (HowLong == 2)
4592      Type = Unsigned ? Context.UnsignedLongLongTy : Context.LongLongTy;
4593    else if (HowLong == 1)
4594      Type = Unsigned ? Context.UnsignedLongTy : Context.LongTy;
4595    else
4596      Type = Unsigned ? Context.UnsignedIntTy : Context.IntTy;
4597    break;
4598  case 'c':
4599    assert(HowLong == 0 && "Bad modifiers used with 'c'!");
4600    if (Signed)
4601      Type = Context.SignedCharTy;
4602    else if (Unsigned)
4603      Type = Context.UnsignedCharTy;
4604    else
4605      Type = Context.CharTy;
4606    break;
4607  case 'b': // boolean
4608    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'b'!");
4609    Type = Context.BoolTy;
4610    break;
4611  case 'z':  // size_t.
4612    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'z'!");
4613    Type = Context.getSizeType();
4614    break;
4615  case 'F':
4616    Type = Context.getCFConstantStringType();
4617    break;
4618  case 'a':
4619    Type = Context.getBuiltinVaListType();
4620    assert(!Type.isNull() && "builtin va list type not initialized!");
4621    break;
4622  case 'A':
4623    // This is a "reference" to a va_list; however, what exactly
4624    // this means depends on how va_list is defined. There are two
4625    // different kinds of va_list: ones passed by value, and ones
4626    // passed by reference.  An example of a by-value va_list is
4627    // x86, where va_list is a char*. An example of by-ref va_list
4628    // is x86-64, where va_list is a __va_list_tag[1]. For x86,
4629    // we want this argument to be a char*&; for x86-64, we want
4630    // it to be a __va_list_tag*.
4631    Type = Context.getBuiltinVaListType();
4632    assert(!Type.isNull() && "builtin va list type not initialized!");
4633    if (Type->isArrayType()) {
4634      Type = Context.getArrayDecayedType(Type);
4635    } else {
4636      Type = Context.getLValueReferenceType(Type);
4637    }
4638    break;
4639  case 'V': {
4640    char *End;
4641    unsigned NumElements = strtoul(Str, &End, 10);
4642    assert(End != Str && "Missing vector size");
4643
4644    Str = End;
4645
4646    QualType ElementType = DecodeTypeFromStr(Str, Context, Error, false);
4647    Type = Context.getVectorType(ElementType, NumElements);
4648    break;
4649  }
4650  case 'X': {
4651    QualType ElementType = DecodeTypeFromStr(Str, Context, Error, false);
4652    Type = Context.getComplexType(ElementType);
4653    break;
4654  }
4655  case 'P':
4656    Type = Context.getFILEType();
4657    if (Type.isNull()) {
4658      Error = ASTContext::GE_Missing_stdio;
4659      return QualType();
4660    }
4661    break;
4662  case 'J':
4663    if (Signed)
4664      Type = Context.getsigjmp_bufType();
4665    else
4666      Type = Context.getjmp_bufType();
4667
4668    if (Type.isNull()) {
4669      Error = ASTContext::GE_Missing_setjmp;
4670      return QualType();
4671    }
4672    break;
4673  }
4674
4675  if (!AllowTypeModifiers)
4676    return Type;
4677
4678  Done = false;
4679  while (!Done) {
4680    switch (*Str++) {
4681      default: Done = true; --Str; break;
4682      case '*':
4683        Type = Context.getPointerType(Type);
4684        break;
4685      case '&':
4686        Type = Context.getLValueReferenceType(Type);
4687        break;
4688      // FIXME: There's no way to have a built-in with an rvalue ref arg.
4689      case 'C':
4690        Type = Type.withConst();
4691        break;
4692    }
4693  }
4694
4695  return Type;
4696}
4697
4698/// GetBuiltinType - Return the type for the specified builtin.
4699QualType ASTContext::GetBuiltinType(unsigned id,
4700                                    GetBuiltinTypeError &Error) {
4701  const char *TypeStr = BuiltinInfo.GetTypeString(id);
4702
4703  llvm::SmallVector<QualType, 8> ArgTypes;
4704
4705  Error = GE_None;
4706  QualType ResType = DecodeTypeFromStr(TypeStr, *this, Error);
4707  if (Error != GE_None)
4708    return QualType();
4709  while (TypeStr[0] && TypeStr[0] != '.') {
4710    QualType Ty = DecodeTypeFromStr(TypeStr, *this, Error);
4711    if (Error != GE_None)
4712      return QualType();
4713
4714    // Do array -> pointer decay.  The builtin should use the decayed type.
4715    if (Ty->isArrayType())
4716      Ty = getArrayDecayedType(Ty);
4717
4718    ArgTypes.push_back(Ty);
4719  }
4720
4721  assert((TypeStr[0] != '.' || TypeStr[1] == 0) &&
4722         "'.' should only occur at end of builtin type list!");
4723
4724  // handle untyped/variadic arguments "T c99Style();" or "T cppStyle(...);".
4725  if (ArgTypes.size() == 0 && TypeStr[0] == '.')
4726    return getFunctionNoProtoType(ResType);
4727  return getFunctionType(ResType, ArgTypes.data(), ArgTypes.size(),
4728                         TypeStr[0] == '.', 0);
4729}
4730
4731QualType
4732ASTContext::UsualArithmeticConversionsType(QualType lhs, QualType rhs) {
4733  // Perform the usual unary conversions. We do this early so that
4734  // integral promotions to "int" can allow us to exit early, in the
4735  // lhs == rhs check. Also, for conversion purposes, we ignore any
4736  // qualifiers.  For example, "const float" and "float" are
4737  // equivalent.
4738  if (lhs->isPromotableIntegerType())
4739    lhs = getPromotedIntegerType(lhs);
4740  else
4741    lhs = lhs.getUnqualifiedType();
4742  if (rhs->isPromotableIntegerType())
4743    rhs = getPromotedIntegerType(rhs);
4744  else
4745    rhs = rhs.getUnqualifiedType();
4746
4747  // If both types are identical, no conversion is needed.
4748  if (lhs == rhs)
4749    return lhs;
4750
4751  // If either side is a non-arithmetic type (e.g. a pointer), we are done.
4752  // The caller can deal with this (e.g. pointer + int).
4753  if (!lhs->isArithmeticType() || !rhs->isArithmeticType())
4754    return lhs;
4755
4756  // At this point, we have two different arithmetic types.
4757
4758  // Handle complex types first (C99 6.3.1.8p1).
4759  if (lhs->isComplexType() || rhs->isComplexType()) {
4760    // if we have an integer operand, the result is the complex type.
4761    if (rhs->isIntegerType() || rhs->isComplexIntegerType()) {
4762      // convert the rhs to the lhs complex type.
4763      return lhs;
4764    }
4765    if (lhs->isIntegerType() || lhs->isComplexIntegerType()) {
4766      // convert the lhs to the rhs complex type.
4767      return rhs;
4768    }
4769    // This handles complex/complex, complex/float, or float/complex.
4770    // When both operands are complex, the shorter operand is converted to the
4771    // type of the longer, and that is the type of the result. This corresponds
4772    // to what is done when combining two real floating-point operands.
4773    // The fun begins when size promotion occur across type domains.
4774    // From H&S 6.3.4: When one operand is complex and the other is a real
4775    // floating-point type, the less precise type is converted, within it's
4776    // real or complex domain, to the precision of the other type. For example,
4777    // when combining a "long double" with a "double _Complex", the
4778    // "double _Complex" is promoted to "long double _Complex".
4779    int result = getFloatingTypeOrder(lhs, rhs);
4780
4781    if (result > 0) { // The left side is bigger, convert rhs.
4782      rhs = getFloatingTypeOfSizeWithinDomain(lhs, rhs);
4783    } else if (result < 0) { // The right side is bigger, convert lhs.
4784      lhs = getFloatingTypeOfSizeWithinDomain(rhs, lhs);
4785    }
4786    // At this point, lhs and rhs have the same rank/size. Now, make sure the
4787    // domains match. This is a requirement for our implementation, C99
4788    // does not require this promotion.
4789    if (lhs != rhs) { // Domains don't match, we have complex/float mix.
4790      if (lhs->isRealFloatingType()) { // handle "double, _Complex double".
4791        return rhs;
4792      } else { // handle "_Complex double, double".
4793        return lhs;
4794      }
4795    }
4796    return lhs; // The domain/size match exactly.
4797  }
4798  // Now handle "real" floating types (i.e. float, double, long double).
4799  if (lhs->isRealFloatingType() || rhs->isRealFloatingType()) {
4800    // if we have an integer operand, the result is the real floating type.
4801    if (rhs->isIntegerType()) {
4802      // convert rhs to the lhs floating point type.
4803      return lhs;
4804    }
4805    if (rhs->isComplexIntegerType()) {
4806      // convert rhs to the complex floating point type.
4807      return getComplexType(lhs);
4808    }
4809    if (lhs->isIntegerType()) {
4810      // convert lhs to the rhs floating point type.
4811      return rhs;
4812    }
4813    if (lhs->isComplexIntegerType()) {
4814      // convert lhs to the complex floating point type.
4815      return getComplexType(rhs);
4816    }
4817    // We have two real floating types, float/complex combos were handled above.
4818    // Convert the smaller operand to the bigger result.
4819    int result = getFloatingTypeOrder(lhs, rhs);
4820    if (result > 0) // convert the rhs
4821      return lhs;
4822    assert(result < 0 && "illegal float comparison");
4823    return rhs;   // convert the lhs
4824  }
4825  if (lhs->isComplexIntegerType() || rhs->isComplexIntegerType()) {
4826    // Handle GCC complex int extension.
4827    const ComplexType *lhsComplexInt = lhs->getAsComplexIntegerType();
4828    const ComplexType *rhsComplexInt = rhs->getAsComplexIntegerType();
4829
4830    if (lhsComplexInt && rhsComplexInt) {
4831      if (getIntegerTypeOrder(lhsComplexInt->getElementType(),
4832                              rhsComplexInt->getElementType()) >= 0)
4833        return lhs; // convert the rhs
4834      return rhs;
4835    } else if (lhsComplexInt && rhs->isIntegerType()) {
4836      // convert the rhs to the lhs complex type.
4837      return lhs;
4838    } else if (rhsComplexInt && lhs->isIntegerType()) {
4839      // convert the lhs to the rhs complex type.
4840      return rhs;
4841    }
4842  }
4843  // Finally, we have two differing integer types.
4844  // The rules for this case are in C99 6.3.1.8
4845  int compare = getIntegerTypeOrder(lhs, rhs);
4846  bool lhsSigned = lhs->isSignedIntegerType(),
4847       rhsSigned = rhs->isSignedIntegerType();
4848  QualType destType;
4849  if (lhsSigned == rhsSigned) {
4850    // Same signedness; use the higher-ranked type
4851    destType = compare >= 0 ? lhs : rhs;
4852  } else if (compare != (lhsSigned ? 1 : -1)) {
4853    // The unsigned type has greater than or equal rank to the
4854    // signed type, so use the unsigned type
4855    destType = lhsSigned ? rhs : lhs;
4856  } else if (getIntWidth(lhs) != getIntWidth(rhs)) {
4857    // The two types are different widths; if we are here, that
4858    // means the signed type is larger than the unsigned type, so
4859    // use the signed type.
4860    destType = lhsSigned ? lhs : rhs;
4861  } else {
4862    // The signed type is higher-ranked than the unsigned type,
4863    // but isn't actually any bigger (like unsigned int and long
4864    // on most 32-bit systems).  Use the unsigned type corresponding
4865    // to the signed type.
4866    destType = getCorrespondingUnsignedType(lhsSigned ? lhs : rhs);
4867  }
4868  return destType;
4869}
4870