ASTContext.cpp revision 7b9a2ee5a4393001bdec7dec841eb7c811da492c
1//===--- ASTContext.cpp - Context to hold long-lived AST nodes ------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements the ASTContext interface.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/AST/ASTContext.h"
15#include "clang/AST/DeclCXX.h"
16#include "clang/AST/DeclObjC.h"
17#include "clang/AST/DeclTemplate.h"
18#include "clang/AST/Expr.h"
19#include "clang/AST/ExternalASTSource.h"
20#include "clang/AST/RecordLayout.h"
21#include "clang/Basic/SourceManager.h"
22#include "clang/Basic/TargetInfo.h"
23#include "llvm/ADT/StringExtras.h"
24#include "llvm/Support/MathExtras.h"
25#include "llvm/Support/MemoryBuffer.h"
26using namespace clang;
27
28enum FloatingRank {
29  FloatRank, DoubleRank, LongDoubleRank
30};
31
32ASTContext::ASTContext(const LangOptions& LOpts, SourceManager &SM,
33                       TargetInfo &t,
34                       IdentifierTable &idents, SelectorTable &sels,
35                       bool FreeMem, unsigned size_reserve,
36                       bool InitializeBuiltins) :
37  GlobalNestedNameSpecifier(0), CFConstantStringTypeDecl(0),
38  ObjCFastEnumerationStateTypeDecl(0), SourceMgr(SM), LangOpts(LOpts),
39  FreeMemory(FreeMem), Target(t), Idents(idents), Selectors(sels),
40  ExternalSource(0) {
41  if (size_reserve > 0) Types.reserve(size_reserve);
42  InitBuiltinTypes();
43  TUDecl = TranslationUnitDecl::Create(*this);
44  BuiltinInfo.InitializeTargetBuiltins(Target);
45  if (InitializeBuiltins)
46    this->InitializeBuiltins(idents);
47}
48
49ASTContext::~ASTContext() {
50  // Deallocate all the types.
51  while (!Types.empty()) {
52    Types.back()->Destroy(*this);
53    Types.pop_back();
54  }
55
56  {
57    llvm::DenseMap<const RecordDecl*, const ASTRecordLayout*>::iterator
58      I = ASTRecordLayouts.begin(), E = ASTRecordLayouts.end();
59    while (I != E) {
60      ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second);
61      delete R;
62    }
63  }
64
65  {
66    llvm::DenseMap<const ObjCInterfaceDecl*, const ASTRecordLayout*>::iterator
67      I = ASTObjCInterfaces.begin(), E = ASTObjCInterfaces.end();
68    while (I != E) {
69      ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second);
70      delete R;
71    }
72  }
73
74  {
75    llvm::DenseMap<const ObjCInterfaceDecl*, RecordDecl*>::iterator
76      I = ASTRecordForInterface.begin(), E = ASTRecordForInterface.end();
77    while (I != E) {
78      RecordDecl *R = (I++)->second;
79      R->Destroy(*this);
80    }
81  }
82
83  // Destroy nested-name-specifiers.
84  for (llvm::FoldingSet<NestedNameSpecifier>::iterator
85         NNS = NestedNameSpecifiers.begin(),
86         NNSEnd = NestedNameSpecifiers.end();
87       NNS != NNSEnd;
88       /* Increment in loop */)
89    (*NNS++).Destroy(*this);
90
91  if (GlobalNestedNameSpecifier)
92    GlobalNestedNameSpecifier->Destroy(*this);
93
94  TUDecl->Destroy(*this);
95}
96
97void ASTContext::InitializeBuiltins(IdentifierTable &idents) {
98  BuiltinInfo.InitializeBuiltins(idents, LangOpts.NoBuiltin);
99}
100
101void
102ASTContext::setExternalSource(llvm::OwningPtr<ExternalASTSource> &Source) {
103  ExternalSource.reset(Source.take());
104}
105
106void ASTContext::PrintStats() const {
107  fprintf(stderr, "*** AST Context Stats:\n");
108  fprintf(stderr, "  %d types total.\n", (int)Types.size());
109  unsigned NumBuiltin = 0, NumPointer = 0, NumArray = 0, NumFunctionP = 0;
110  unsigned NumVector = 0, NumComplex = 0, NumBlockPointer = 0;
111  unsigned NumFunctionNP = 0, NumTypeName = 0, NumTagged = 0;
112  unsigned NumLValueReference = 0, NumRValueReference = 0, NumMemberPointer = 0;
113
114  unsigned NumTagStruct = 0, NumTagUnion = 0, NumTagEnum = 0, NumTagClass = 0;
115  unsigned NumObjCInterfaces = 0, NumObjCQualifiedInterfaces = 0;
116  unsigned NumObjCQualifiedIds = 0;
117  unsigned NumTypeOfTypes = 0, NumTypeOfExprTypes = 0;
118  unsigned NumExtQual = 0;
119
120  for (unsigned i = 0, e = Types.size(); i != e; ++i) {
121    Type *T = Types[i];
122    if (isa<BuiltinType>(T))
123      ++NumBuiltin;
124    else if (isa<PointerType>(T))
125      ++NumPointer;
126    else if (isa<BlockPointerType>(T))
127      ++NumBlockPointer;
128    else if (isa<LValueReferenceType>(T))
129      ++NumLValueReference;
130    else if (isa<RValueReferenceType>(T))
131      ++NumRValueReference;
132    else if (isa<MemberPointerType>(T))
133      ++NumMemberPointer;
134    else if (isa<ComplexType>(T))
135      ++NumComplex;
136    else if (isa<ArrayType>(T))
137      ++NumArray;
138    else if (isa<VectorType>(T))
139      ++NumVector;
140    else if (isa<FunctionNoProtoType>(T))
141      ++NumFunctionNP;
142    else if (isa<FunctionProtoType>(T))
143      ++NumFunctionP;
144    else if (isa<TypedefType>(T))
145      ++NumTypeName;
146    else if (TagType *TT = dyn_cast<TagType>(T)) {
147      ++NumTagged;
148      switch (TT->getDecl()->getTagKind()) {
149      default: assert(0 && "Unknown tagged type!");
150      case TagDecl::TK_struct: ++NumTagStruct; break;
151      case TagDecl::TK_union:  ++NumTagUnion; break;
152      case TagDecl::TK_class:  ++NumTagClass; break;
153      case TagDecl::TK_enum:   ++NumTagEnum; break;
154      }
155    } else if (isa<ObjCInterfaceType>(T))
156      ++NumObjCInterfaces;
157    else if (isa<ObjCQualifiedInterfaceType>(T))
158      ++NumObjCQualifiedInterfaces;
159    else if (isa<ObjCQualifiedIdType>(T))
160      ++NumObjCQualifiedIds;
161    else if (isa<TypeOfType>(T))
162      ++NumTypeOfTypes;
163    else if (isa<TypeOfExprType>(T))
164      ++NumTypeOfExprTypes;
165    else if (isa<ExtQualType>(T))
166      ++NumExtQual;
167    else {
168      QualType(T, 0).dump();
169      assert(0 && "Unknown type!");
170    }
171  }
172
173  fprintf(stderr, "    %d builtin types\n", NumBuiltin);
174  fprintf(stderr, "    %d pointer types\n", NumPointer);
175  fprintf(stderr, "    %d block pointer types\n", NumBlockPointer);
176  fprintf(stderr, "    %d lvalue reference types\n", NumLValueReference);
177  fprintf(stderr, "    %d rvalue reference types\n", NumRValueReference);
178  fprintf(stderr, "    %d member pointer types\n", NumMemberPointer);
179  fprintf(stderr, "    %d complex types\n", NumComplex);
180  fprintf(stderr, "    %d array types\n", NumArray);
181  fprintf(stderr, "    %d vector types\n", NumVector);
182  fprintf(stderr, "    %d function types with proto\n", NumFunctionP);
183  fprintf(stderr, "    %d function types with no proto\n", NumFunctionNP);
184  fprintf(stderr, "    %d typename (typedef) types\n", NumTypeName);
185  fprintf(stderr, "    %d tagged types\n", NumTagged);
186  fprintf(stderr, "      %d struct types\n", NumTagStruct);
187  fprintf(stderr, "      %d union types\n", NumTagUnion);
188  fprintf(stderr, "      %d class types\n", NumTagClass);
189  fprintf(stderr, "      %d enum types\n", NumTagEnum);
190  fprintf(stderr, "    %d interface types\n", NumObjCInterfaces);
191  fprintf(stderr, "    %d protocol qualified interface types\n",
192          NumObjCQualifiedInterfaces);
193  fprintf(stderr, "    %d protocol qualified id types\n",
194          NumObjCQualifiedIds);
195  fprintf(stderr, "    %d typeof types\n", NumTypeOfTypes);
196  fprintf(stderr, "    %d typeof exprs\n", NumTypeOfExprTypes);
197  fprintf(stderr, "    %d attribute-qualified types\n", NumExtQual);
198
199  fprintf(stderr, "Total bytes = %d\n", int(NumBuiltin*sizeof(BuiltinType)+
200    NumPointer*sizeof(PointerType)+NumArray*sizeof(ArrayType)+
201    NumComplex*sizeof(ComplexType)+NumVector*sizeof(VectorType)+
202    NumLValueReference*sizeof(LValueReferenceType)+
203    NumRValueReference*sizeof(RValueReferenceType)+
204    NumMemberPointer*sizeof(MemberPointerType)+
205    NumFunctionP*sizeof(FunctionProtoType)+
206    NumFunctionNP*sizeof(FunctionNoProtoType)+
207    NumTypeName*sizeof(TypedefType)+NumTagged*sizeof(TagType)+
208    NumTypeOfTypes*sizeof(TypeOfType)+NumTypeOfExprTypes*sizeof(TypeOfExprType)+
209    NumExtQual*sizeof(ExtQualType)));
210
211  if (ExternalSource.get()) {
212    fprintf(stderr, "\n");
213    ExternalSource->PrintStats();
214  }
215}
216
217
218void ASTContext::InitBuiltinType(QualType &R, BuiltinType::Kind K) {
219  Types.push_back((R = QualType(new (*this,8) BuiltinType(K),0)).getTypePtr());
220}
221
222void ASTContext::InitBuiltinTypes() {
223  assert(VoidTy.isNull() && "Context reinitialized?");
224
225  // C99 6.2.5p19.
226  InitBuiltinType(VoidTy,              BuiltinType::Void);
227
228  // C99 6.2.5p2.
229  InitBuiltinType(BoolTy,              BuiltinType::Bool);
230  // C99 6.2.5p3.
231  if (Target.isCharSigned())
232    InitBuiltinType(CharTy,            BuiltinType::Char_S);
233  else
234    InitBuiltinType(CharTy,            BuiltinType::Char_U);
235  // C99 6.2.5p4.
236  InitBuiltinType(SignedCharTy,        BuiltinType::SChar);
237  InitBuiltinType(ShortTy,             BuiltinType::Short);
238  InitBuiltinType(IntTy,               BuiltinType::Int);
239  InitBuiltinType(LongTy,              BuiltinType::Long);
240  InitBuiltinType(LongLongTy,          BuiltinType::LongLong);
241
242  // C99 6.2.5p6.
243  InitBuiltinType(UnsignedCharTy,      BuiltinType::UChar);
244  InitBuiltinType(UnsignedShortTy,     BuiltinType::UShort);
245  InitBuiltinType(UnsignedIntTy,       BuiltinType::UInt);
246  InitBuiltinType(UnsignedLongTy,      BuiltinType::ULong);
247  InitBuiltinType(UnsignedLongLongTy,  BuiltinType::ULongLong);
248
249  // C99 6.2.5p10.
250  InitBuiltinType(FloatTy,             BuiltinType::Float);
251  InitBuiltinType(DoubleTy,            BuiltinType::Double);
252  InitBuiltinType(LongDoubleTy,        BuiltinType::LongDouble);
253
254  // GNU extension, 128-bit integers.
255  InitBuiltinType(Int128Ty,            BuiltinType::Int128);
256  InitBuiltinType(UnsignedInt128Ty,    BuiltinType::UInt128);
257
258  if (LangOpts.CPlusPlus) // C++ 3.9.1p5
259    InitBuiltinType(WCharTy,           BuiltinType::WChar);
260  else // C99
261    WCharTy = getFromTargetType(Target.getWCharType());
262
263  // Placeholder type for functions.
264  InitBuiltinType(OverloadTy,          BuiltinType::Overload);
265
266  // Placeholder type for type-dependent expressions whose type is
267  // completely unknown. No code should ever check a type against
268  // DependentTy and users should never see it; however, it is here to
269  // help diagnose failures to properly check for type-dependent
270  // expressions.
271  InitBuiltinType(DependentTy,         BuiltinType::Dependent);
272
273  // C99 6.2.5p11.
274  FloatComplexTy      = getComplexType(FloatTy);
275  DoubleComplexTy     = getComplexType(DoubleTy);
276  LongDoubleComplexTy = getComplexType(LongDoubleTy);
277
278  BuiltinVaListType = QualType();
279  ObjCIdType = QualType();
280  IdStructType = 0;
281  ObjCClassType = QualType();
282  ClassStructType = 0;
283
284  ObjCConstantStringType = QualType();
285
286  // void * type
287  VoidPtrTy = getPointerType(VoidTy);
288}
289
290//===----------------------------------------------------------------------===//
291//                         Type Sizing and Analysis
292//===----------------------------------------------------------------------===//
293
294/// getFloatTypeSemantics - Return the APFloat 'semantics' for the specified
295/// scalar floating point type.
296const llvm::fltSemantics &ASTContext::getFloatTypeSemantics(QualType T) const {
297  const BuiltinType *BT = T->getAsBuiltinType();
298  assert(BT && "Not a floating point type!");
299  switch (BT->getKind()) {
300  default: assert(0 && "Not a floating point type!");
301  case BuiltinType::Float:      return Target.getFloatFormat();
302  case BuiltinType::Double:     return Target.getDoubleFormat();
303  case BuiltinType::LongDouble: return Target.getLongDoubleFormat();
304  }
305}
306
307/// getDeclAlign - Return a conservative estimate of the alignment of the
308/// specified decl.  Note that bitfields do not have a valid alignment, so
309/// this method will assert on them.
310unsigned ASTContext::getDeclAlignInBytes(const Decl *D) {
311  unsigned Align = Target.getCharWidth();
312
313  if (const AlignedAttr* AA = D->getAttr<AlignedAttr>())
314    Align = std::max(Align, AA->getAlignment());
315
316  if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
317    QualType T = VD->getType();
318    if (const ReferenceType* RT = T->getAsReferenceType()) {
319      unsigned AS = RT->getPointeeType().getAddressSpace();
320      Align = Target.getPointerAlign(AS);
321    } else if (!T->isIncompleteType() && !T->isFunctionType()) {
322      // Incomplete or function types default to 1.
323      while (isa<VariableArrayType>(T) || isa<IncompleteArrayType>(T))
324        T = cast<ArrayType>(T)->getElementType();
325
326      Align = std::max(Align, getPreferredTypeAlign(T.getTypePtr()));
327    }
328  }
329
330  return Align / Target.getCharWidth();
331}
332
333/// getTypeSize - Return the size of the specified type, in bits.  This method
334/// does not work on incomplete types.
335std::pair<uint64_t, unsigned>
336ASTContext::getTypeInfo(const Type *T) {
337  uint64_t Width=0;
338  unsigned Align=8;
339  switch (T->getTypeClass()) {
340#define TYPE(Class, Base)
341#define ABSTRACT_TYPE(Class, Base)
342#define NON_CANONICAL_TYPE(Class, Base)
343#define DEPENDENT_TYPE(Class, Base) case Type::Class:
344#include "clang/AST/TypeNodes.def"
345    assert(false && "Should not see dependent types");
346    break;
347
348  case Type::FunctionNoProto:
349  case Type::FunctionProto:
350    // GCC extension: alignof(function) = 32 bits
351    Width = 0;
352    Align = 32;
353    break;
354
355  case Type::IncompleteArray:
356  case Type::VariableArray:
357    Width = 0;
358    Align = getTypeAlign(cast<ArrayType>(T)->getElementType());
359    break;
360
361  case Type::ConstantArray: {
362    const ConstantArrayType *CAT = cast<ConstantArrayType>(T);
363
364    std::pair<uint64_t, unsigned> EltInfo = getTypeInfo(CAT->getElementType());
365    Width = EltInfo.first*CAT->getSize().getZExtValue();
366    Align = EltInfo.second;
367    break;
368  }
369  case Type::ExtVector:
370  case Type::Vector: {
371    std::pair<uint64_t, unsigned> EltInfo =
372      getTypeInfo(cast<VectorType>(T)->getElementType());
373    Width = EltInfo.first*cast<VectorType>(T)->getNumElements();
374    Align = Width;
375    // If the alignment is not a power of 2, round up to the next power of 2.
376    // This happens for non-power-of-2 length vectors.
377    // FIXME: this should probably be a target property.
378    Align = 1 << llvm::Log2_32_Ceil(Align);
379    break;
380  }
381
382  case Type::Builtin:
383    switch (cast<BuiltinType>(T)->getKind()) {
384    default: assert(0 && "Unknown builtin type!");
385    case BuiltinType::Void:
386      // GCC extension: alignof(void) = 8 bits.
387      Width = 0;
388      Align = 8;
389      break;
390
391    case BuiltinType::Bool:
392      Width = Target.getBoolWidth();
393      Align = Target.getBoolAlign();
394      break;
395    case BuiltinType::Char_S:
396    case BuiltinType::Char_U:
397    case BuiltinType::UChar:
398    case BuiltinType::SChar:
399      Width = Target.getCharWidth();
400      Align = Target.getCharAlign();
401      break;
402    case BuiltinType::WChar:
403      Width = Target.getWCharWidth();
404      Align = Target.getWCharAlign();
405      break;
406    case BuiltinType::UShort:
407    case BuiltinType::Short:
408      Width = Target.getShortWidth();
409      Align = Target.getShortAlign();
410      break;
411    case BuiltinType::UInt:
412    case BuiltinType::Int:
413      Width = Target.getIntWidth();
414      Align = Target.getIntAlign();
415      break;
416    case BuiltinType::ULong:
417    case BuiltinType::Long:
418      Width = Target.getLongWidth();
419      Align = Target.getLongAlign();
420      break;
421    case BuiltinType::ULongLong:
422    case BuiltinType::LongLong:
423      Width = Target.getLongLongWidth();
424      Align = Target.getLongLongAlign();
425      break;
426    case BuiltinType::Int128:
427    case BuiltinType::UInt128:
428      Width = 128;
429      Align = 128; // int128_t is 128-bit aligned on all targets.
430      break;
431    case BuiltinType::Float:
432      Width = Target.getFloatWidth();
433      Align = Target.getFloatAlign();
434      break;
435    case BuiltinType::Double:
436      Width = Target.getDoubleWidth();
437      Align = Target.getDoubleAlign();
438      break;
439    case BuiltinType::LongDouble:
440      Width = Target.getLongDoubleWidth();
441      Align = Target.getLongDoubleAlign();
442      break;
443    }
444    break;
445  case Type::FixedWidthInt:
446    // FIXME: This isn't precisely correct; the width/alignment should depend
447    // on the available types for the target
448    Width = cast<FixedWidthIntType>(T)->getWidth();
449    Width = std::max(llvm::NextPowerOf2(Width - 1), (uint64_t)8);
450    Align = Width;
451    break;
452  case Type::ExtQual:
453    // FIXME: Pointers into different addr spaces could have different sizes and
454    // alignment requirements: getPointerInfo should take an AddrSpace.
455    return getTypeInfo(QualType(cast<ExtQualType>(T)->getBaseType(), 0));
456  case Type::ObjCQualifiedId:
457  case Type::ObjCQualifiedInterface:
458    Width = Target.getPointerWidth(0);
459    Align = Target.getPointerAlign(0);
460    break;
461  case Type::BlockPointer: {
462    unsigned AS = cast<BlockPointerType>(T)->getPointeeType().getAddressSpace();
463    Width = Target.getPointerWidth(AS);
464    Align = Target.getPointerAlign(AS);
465    break;
466  }
467  case Type::Pointer: {
468    unsigned AS = cast<PointerType>(T)->getPointeeType().getAddressSpace();
469    Width = Target.getPointerWidth(AS);
470    Align = Target.getPointerAlign(AS);
471    break;
472  }
473  case Type::LValueReference:
474  case Type::RValueReference:
475    // "When applied to a reference or a reference type, the result is the size
476    // of the referenced type." C++98 5.3.3p2: expr.sizeof.
477    // FIXME: This is wrong for struct layout: a reference in a struct has
478    // pointer size.
479    return getTypeInfo(cast<ReferenceType>(T)->getPointeeType());
480  case Type::MemberPointer: {
481    // FIXME: This is not only platform- but also ABI-dependent. We follow
482    // the GCC ABI, where pointers to data are one pointer large, pointers to
483    // functions two pointers. But if we want to support ABI compatibility with
484    // other compilers too, we need to delegate this completely to TargetInfo
485    // or some ABI abstraction layer.
486    QualType Pointee = cast<MemberPointerType>(T)->getPointeeType();
487    unsigned AS = Pointee.getAddressSpace();
488    Width = Target.getPointerWidth(AS);
489    if (Pointee->isFunctionType())
490      Width *= 2;
491    Align = Target.getPointerAlign(AS);
492    // GCC aligns at single pointer width.
493  }
494  case Type::Complex: {
495    // Complex types have the same alignment as their elements, but twice the
496    // size.
497    std::pair<uint64_t, unsigned> EltInfo =
498      getTypeInfo(cast<ComplexType>(T)->getElementType());
499    Width = EltInfo.first*2;
500    Align = EltInfo.second;
501    break;
502  }
503  case Type::ObjCInterface: {
504    const ObjCInterfaceType *ObjCI = cast<ObjCInterfaceType>(T);
505    const ASTRecordLayout &Layout = getASTObjCInterfaceLayout(ObjCI->getDecl());
506    Width = Layout.getSize();
507    Align = Layout.getAlignment();
508    break;
509  }
510  case Type::Record:
511  case Type::Enum: {
512    const TagType *TT = cast<TagType>(T);
513
514    if (TT->getDecl()->isInvalidDecl()) {
515      Width = 1;
516      Align = 1;
517      break;
518    }
519
520    if (const EnumType *ET = dyn_cast<EnumType>(TT))
521      return getTypeInfo(ET->getDecl()->getIntegerType());
522
523    const RecordType *RT = cast<RecordType>(TT);
524    const ASTRecordLayout &Layout = getASTRecordLayout(RT->getDecl());
525    Width = Layout.getSize();
526    Align = Layout.getAlignment();
527    break;
528  }
529
530  case Type::Typedef: {
531    const TypedefDecl *Typedef = cast<TypedefType>(T)->getDecl();
532    if (const AlignedAttr *Aligned = Typedef->getAttr<AlignedAttr>()) {
533      Align = Aligned->getAlignment();
534      Width = getTypeSize(Typedef->getUnderlyingType().getTypePtr());
535    } else
536      return getTypeInfo(Typedef->getUnderlyingType().getTypePtr());
537    break;
538  }
539
540  case Type::TypeOfExpr:
541    return getTypeInfo(cast<TypeOfExprType>(T)->getUnderlyingExpr()->getType()
542                         .getTypePtr());
543
544  case Type::TypeOf:
545    return getTypeInfo(cast<TypeOfType>(T)->getUnderlyingType().getTypePtr());
546
547  case Type::QualifiedName:
548    return getTypeInfo(cast<QualifiedNameType>(T)->getNamedType().getTypePtr());
549
550  case Type::TemplateSpecialization:
551    assert(getCanonicalType(T) != T &&
552           "Cannot request the size of a dependent type");
553    // FIXME: this is likely to be wrong once we support template
554    // aliases, since a template alias could refer to a typedef that
555    // has an __aligned__ attribute on it.
556    return getTypeInfo(getCanonicalType(T));
557  }
558
559  assert(Align && (Align & (Align-1)) == 0 && "Alignment must be power of 2");
560  return std::make_pair(Width, Align);
561}
562
563/// getPreferredTypeAlign - Return the "preferred" alignment of the specified
564/// type for the current target in bits.  This can be different than the ABI
565/// alignment in cases where it is beneficial for performance to overalign
566/// a data type.
567unsigned ASTContext::getPreferredTypeAlign(const Type *T) {
568  unsigned ABIAlign = getTypeAlign(T);
569
570  // Doubles should be naturally aligned if possible.
571  if (T->isSpecificBuiltinType(BuiltinType::Double))
572    return std::max(ABIAlign, 64U);
573
574  return ABIAlign;
575}
576
577
578/// LayoutField - Field layout.
579void ASTRecordLayout::LayoutField(const FieldDecl *FD, unsigned FieldNo,
580                                  bool IsUnion, unsigned StructPacking,
581                                  ASTContext &Context) {
582  unsigned FieldPacking = StructPacking;
583  uint64_t FieldOffset = IsUnion ? 0 : Size;
584  uint64_t FieldSize;
585  unsigned FieldAlign;
586
587  // FIXME: Should this override struct packing? Probably we want to
588  // take the minimum?
589  if (const PackedAttr *PA = FD->getAttr<PackedAttr>())
590    FieldPacking = PA->getAlignment();
591
592  if (const Expr *BitWidthExpr = FD->getBitWidth()) {
593    // TODO: Need to check this algorithm on other targets!
594    //       (tested on Linux-X86)
595    FieldSize = BitWidthExpr->EvaluateAsInt(Context).getZExtValue();
596
597    std::pair<uint64_t, unsigned> FieldInfo =
598      Context.getTypeInfo(FD->getType());
599    uint64_t TypeSize = FieldInfo.first;
600
601    // Determine the alignment of this bitfield. The packing
602    // attributes define a maximum and the alignment attribute defines
603    // a minimum.
604    // FIXME: What is the right behavior when the specified alignment
605    // is smaller than the specified packing?
606    FieldAlign = FieldInfo.second;
607    if (FieldPacking)
608      FieldAlign = std::min(FieldAlign, FieldPacking);
609    if (const AlignedAttr *AA = FD->getAttr<AlignedAttr>())
610      FieldAlign = std::max(FieldAlign, AA->getAlignment());
611
612    // Check if we need to add padding to give the field the correct
613    // alignment.
614    if (FieldSize == 0 || (FieldOffset & (FieldAlign-1)) + FieldSize > TypeSize)
615      FieldOffset = (FieldOffset + (FieldAlign-1)) & ~(FieldAlign-1);
616
617    // Padding members don't affect overall alignment
618    if (!FD->getIdentifier())
619      FieldAlign = 1;
620  } else {
621    if (FD->getType()->isIncompleteArrayType()) {
622      // This is a flexible array member; we can't directly
623      // query getTypeInfo about these, so we figure it out here.
624      // Flexible array members don't have any size, but they
625      // have to be aligned appropriately for their element type.
626      FieldSize = 0;
627      const ArrayType* ATy = Context.getAsArrayType(FD->getType());
628      FieldAlign = Context.getTypeAlign(ATy->getElementType());
629    } else if (const ReferenceType *RT = FD->getType()->getAsReferenceType()) {
630      unsigned AS = RT->getPointeeType().getAddressSpace();
631      FieldSize = Context.Target.getPointerWidth(AS);
632      FieldAlign = Context.Target.getPointerAlign(AS);
633    } else {
634      std::pair<uint64_t, unsigned> FieldInfo =
635        Context.getTypeInfo(FD->getType());
636      FieldSize = FieldInfo.first;
637      FieldAlign = FieldInfo.second;
638    }
639
640    // Determine the alignment of this bitfield. The packing
641    // attributes define a maximum and the alignment attribute defines
642    // a minimum. Additionally, the packing alignment must be at least
643    // a byte for non-bitfields.
644    //
645    // FIXME: What is the right behavior when the specified alignment
646    // is smaller than the specified packing?
647    if (FieldPacking)
648      FieldAlign = std::min(FieldAlign, std::max(8U, FieldPacking));
649    if (const AlignedAttr *AA = FD->getAttr<AlignedAttr>())
650      FieldAlign = std::max(FieldAlign, AA->getAlignment());
651
652    // Round up the current record size to the field's alignment boundary.
653    FieldOffset = (FieldOffset + (FieldAlign-1)) & ~(FieldAlign-1);
654  }
655
656  // Place this field at the current location.
657  FieldOffsets[FieldNo] = FieldOffset;
658
659  // Reserve space for this field.
660  if (IsUnion) {
661    Size = std::max(Size, FieldSize);
662  } else {
663    Size = FieldOffset + FieldSize;
664  }
665
666  // Remember max struct/class alignment.
667  Alignment = std::max(Alignment, FieldAlign);
668}
669
670static void CollectLocalObjCIvars(ASTContext *Ctx,
671                                  const ObjCInterfaceDecl *OI,
672                                  llvm::SmallVectorImpl<FieldDecl*> &Fields) {
673  for (ObjCInterfaceDecl::ivar_iterator I = OI->ivar_begin(),
674       E = OI->ivar_end(); I != E; ++I) {
675    ObjCIvarDecl *IVDecl = *I;
676    if (!IVDecl->isInvalidDecl())
677      Fields.push_back(cast<FieldDecl>(IVDecl));
678  }
679  // look into properties.
680  for (ObjCInterfaceDecl::prop_iterator I = OI->prop_begin(*Ctx),
681       E = OI->prop_end(*Ctx); I != E; ++I) {
682    if (ObjCIvarDecl *IV = (*I)->getPropertyIvarDecl())
683      Fields.push_back(cast<FieldDecl>(IV));
684  }
685}
686
687void ASTContext::CollectObjCIvars(const ObjCInterfaceDecl *OI,
688                             llvm::SmallVectorImpl<FieldDecl*> &Fields) {
689  if (const ObjCInterfaceDecl *SuperClass = OI->getSuperClass())
690    CollectObjCIvars(SuperClass, Fields);
691  CollectLocalObjCIvars(this, OI, Fields);
692}
693
694/// addRecordToClass - produces record info. for the class for its
695/// ivars and all those inherited.
696///
697const RecordDecl *ASTContext::addRecordToClass(const ObjCInterfaceDecl *D) {
698  assert(!D->isForwardDecl() && "Invalid decl!");
699
700  RecordDecl *&RD = ASTRecordForInterface[D];
701  if (RD)
702    return RD;
703
704  llvm::SmallVector<FieldDecl*, 32> RecFields;
705  CollectLocalObjCIvars(this, D, RecFields);
706
707  RD = RecordDecl::Create(*this, TagDecl::TK_struct, 0, D->getLocation(),
708                          D->getIdentifier());
709  const RecordDecl *SRD;
710  if (const ObjCInterfaceDecl *SuperClass = D->getSuperClass()) {
711    SRD = addRecordToClass(SuperClass);
712  } else {
713    SRD = RecordDecl::Create(*this, TagDecl::TK_struct, 0, SourceLocation(), 0);
714    const_cast<RecordDecl*>(SRD)->completeDefinition(*this);
715  }
716
717  RD->addDecl(*this,
718              FieldDecl::Create(*this, RD,
719                                SourceLocation(),
720                                0,
721                                getTagDeclType(const_cast<RecordDecl*>(SRD)),
722                                0, false));
723
724  /// FIXME! Can do collection of ivars and adding to the record while
725  /// doing it.
726  for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
727    RD->addDecl(*this,
728                FieldDecl::Create(*this, RD,
729                                  RecFields[i]->getLocation(),
730                                  RecFields[i]->getIdentifier(),
731                                  RecFields[i]->getType(),
732                                  RecFields[i]->getBitWidth(), false));
733  }
734
735  RD->completeDefinition(*this);
736  return RD;
737}
738
739/// getASTObjcInterfaceLayout - Get or compute information about the layout of
740/// the specified Objective C, which indicates its size and ivar
741/// position information.
742const ASTRecordLayout &
743ASTContext::getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D) {
744  // Look up this layout, if already laid out, return what we have.
745  const ASTRecordLayout *&Entry = ASTObjCInterfaces[D];
746  if (Entry) return *Entry;
747
748  // Allocate and assign into ASTRecordLayouts here.  The "Entry" reference can
749  // be invalidated (dangle) if the ASTRecordLayouts hashtable is inserted into.
750  ASTRecordLayout *NewEntry = NULL;
751  // FIXME. Add actual count of synthesized ivars, instead of count
752  // of properties which is the upper bound, but is safe.
753  unsigned FieldCount =
754    D->ivar_size() + std::distance(D->prop_begin(*this), D->prop_end(*this));
755  if (ObjCInterfaceDecl *SD = D->getSuperClass()) {
756    FieldCount++;
757    const ASTRecordLayout &SL = getASTObjCInterfaceLayout(SD);
758    unsigned Alignment = SL.getAlignment();
759    uint64_t Size = SL.getSize();
760    NewEntry = new ASTRecordLayout(Size, Alignment);
761    NewEntry->InitializeLayout(FieldCount);
762    // Super class is at the beginning of the layout.
763    NewEntry->SetFieldOffset(0, 0);
764  } else {
765    NewEntry = new ASTRecordLayout();
766    NewEntry->InitializeLayout(FieldCount);
767  }
768  Entry = NewEntry;
769
770  unsigned StructPacking = 0;
771  if (const PackedAttr *PA = D->getAttr<PackedAttr>())
772    StructPacking = PA->getAlignment();
773
774  if (const AlignedAttr *AA = D->getAttr<AlignedAttr>())
775    NewEntry->SetAlignment(std::max(NewEntry->getAlignment(),
776                                    AA->getAlignment()));
777
778  // Layout each ivar sequentially.
779  unsigned i = 0;
780  for (ObjCInterfaceDecl::ivar_iterator IVI = D->ivar_begin(),
781       IVE = D->ivar_end(); IVI != IVE; ++IVI) {
782    const ObjCIvarDecl* Ivar = (*IVI);
783    NewEntry->LayoutField(Ivar, i++, false, StructPacking, *this);
784  }
785  // Also synthesized ivars
786  for (ObjCInterfaceDecl::prop_iterator I = D->prop_begin(*this),
787       E = D->prop_end(*this); I != E; ++I) {
788    if (ObjCIvarDecl *Ivar = (*I)->getPropertyIvarDecl())
789      NewEntry->LayoutField(Ivar, i++, false, StructPacking, *this);
790  }
791
792  // Finally, round the size of the total struct up to the alignment of the
793  // struct itself.
794  NewEntry->FinalizeLayout();
795  return *NewEntry;
796}
797
798/// getASTRecordLayout - Get or compute information about the layout of the
799/// specified record (struct/union/class), which indicates its size and field
800/// position information.
801const ASTRecordLayout &ASTContext::getASTRecordLayout(const RecordDecl *D) {
802  D = D->getDefinition(*this);
803  assert(D && "Cannot get layout of forward declarations!");
804
805  // Look up this layout, if already laid out, return what we have.
806  const ASTRecordLayout *&Entry = ASTRecordLayouts[D];
807  if (Entry) return *Entry;
808
809  // Allocate and assign into ASTRecordLayouts here.  The "Entry" reference can
810  // be invalidated (dangle) if the ASTRecordLayouts hashtable is inserted into.
811  ASTRecordLayout *NewEntry = new ASTRecordLayout();
812  Entry = NewEntry;
813
814  // FIXME: Avoid linear walk through the fields, if possible.
815  NewEntry->InitializeLayout(std::distance(D->field_begin(*this),
816                                           D->field_end(*this)));
817  bool IsUnion = D->isUnion();
818
819  unsigned StructPacking = 0;
820  if (const PackedAttr *PA = D->getAttr<PackedAttr>())
821    StructPacking = PA->getAlignment();
822
823  if (const AlignedAttr *AA = D->getAttr<AlignedAttr>())
824    NewEntry->SetAlignment(std::max(NewEntry->getAlignment(),
825                                    AA->getAlignment()));
826
827  // Layout each field, for now, just sequentially, respecting alignment.  In
828  // the future, this will need to be tweakable by targets.
829  unsigned FieldIdx = 0;
830  for (RecordDecl::field_iterator Field = D->field_begin(*this),
831                               FieldEnd = D->field_end(*this);
832       Field != FieldEnd; (void)++Field, ++FieldIdx)
833    NewEntry->LayoutField(*Field, FieldIdx, IsUnion, StructPacking, *this);
834
835  // Finally, round the size of the total struct up to the alignment of the
836  // struct itself.
837  NewEntry->FinalizeLayout();
838  return *NewEntry;
839}
840
841//===----------------------------------------------------------------------===//
842//                   Type creation/memoization methods
843//===----------------------------------------------------------------------===//
844
845QualType ASTContext::getAddrSpaceQualType(QualType T, unsigned AddressSpace) {
846  QualType CanT = getCanonicalType(T);
847  if (CanT.getAddressSpace() == AddressSpace)
848    return T;
849
850  // If we are composing extended qualifiers together, merge together into one
851  // ExtQualType node.
852  unsigned CVRQuals = T.getCVRQualifiers();
853  QualType::GCAttrTypes GCAttr = QualType::GCNone;
854  Type *TypeNode = T.getTypePtr();
855
856  if (ExtQualType *EQT = dyn_cast<ExtQualType>(TypeNode)) {
857    // If this type already has an address space specified, it cannot get
858    // another one.
859    assert(EQT->getAddressSpace() == 0 &&
860           "Type cannot be in multiple addr spaces!");
861    GCAttr = EQT->getObjCGCAttr();
862    TypeNode = EQT->getBaseType();
863  }
864
865  // Check if we've already instantiated this type.
866  llvm::FoldingSetNodeID ID;
867  ExtQualType::Profile(ID, TypeNode, AddressSpace, GCAttr);
868  void *InsertPos = 0;
869  if (ExtQualType *EXTQy = ExtQualTypes.FindNodeOrInsertPos(ID, InsertPos))
870    return QualType(EXTQy, CVRQuals);
871
872  // If the base type isn't canonical, this won't be a canonical type either,
873  // so fill in the canonical type field.
874  QualType Canonical;
875  if (!TypeNode->isCanonical()) {
876    Canonical = getAddrSpaceQualType(CanT, AddressSpace);
877
878    // Update InsertPos, the previous call could have invalidated it.
879    ExtQualType *NewIP = ExtQualTypes.FindNodeOrInsertPos(ID, InsertPos);
880    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
881  }
882  ExtQualType *New =
883    new (*this, 8) ExtQualType(TypeNode, Canonical, AddressSpace, GCAttr);
884  ExtQualTypes.InsertNode(New, InsertPos);
885  Types.push_back(New);
886  return QualType(New, CVRQuals);
887}
888
889QualType ASTContext::getObjCGCQualType(QualType T,
890                                       QualType::GCAttrTypes GCAttr) {
891  QualType CanT = getCanonicalType(T);
892  if (CanT.getObjCGCAttr() == GCAttr)
893    return T;
894
895  // If we are composing extended qualifiers together, merge together into one
896  // ExtQualType node.
897  unsigned CVRQuals = T.getCVRQualifiers();
898  Type *TypeNode = T.getTypePtr();
899  unsigned AddressSpace = 0;
900
901  if (ExtQualType *EQT = dyn_cast<ExtQualType>(TypeNode)) {
902    // If this type already has an address space specified, it cannot get
903    // another one.
904    assert(EQT->getObjCGCAttr() == QualType::GCNone &&
905           "Type cannot be in multiple addr spaces!");
906    AddressSpace = EQT->getAddressSpace();
907    TypeNode = EQT->getBaseType();
908  }
909
910  // Check if we've already instantiated an gc qual'd type of this type.
911  llvm::FoldingSetNodeID ID;
912  ExtQualType::Profile(ID, TypeNode, AddressSpace, GCAttr);
913  void *InsertPos = 0;
914  if (ExtQualType *EXTQy = ExtQualTypes.FindNodeOrInsertPos(ID, InsertPos))
915    return QualType(EXTQy, CVRQuals);
916
917  // If the base type isn't canonical, this won't be a canonical type either,
918  // so fill in the canonical type field.
919  // FIXME: Isn't this also not canonical if the base type is a array
920  // or pointer type?  I can't find any documentation for objc_gc, though...
921  QualType Canonical;
922  if (!T->isCanonical()) {
923    Canonical = getObjCGCQualType(CanT, GCAttr);
924
925    // Update InsertPos, the previous call could have invalidated it.
926    ExtQualType *NewIP = ExtQualTypes.FindNodeOrInsertPos(ID, InsertPos);
927    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
928  }
929  ExtQualType *New =
930    new (*this, 8) ExtQualType(TypeNode, Canonical, AddressSpace, GCAttr);
931  ExtQualTypes.InsertNode(New, InsertPos);
932  Types.push_back(New);
933  return QualType(New, CVRQuals);
934}
935
936/// getComplexType - Return the uniqued reference to the type for a complex
937/// number with the specified element type.
938QualType ASTContext::getComplexType(QualType T) {
939  // Unique pointers, to guarantee there is only one pointer of a particular
940  // structure.
941  llvm::FoldingSetNodeID ID;
942  ComplexType::Profile(ID, T);
943
944  void *InsertPos = 0;
945  if (ComplexType *CT = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos))
946    return QualType(CT, 0);
947
948  // If the pointee type isn't canonical, this won't be a canonical type either,
949  // so fill in the canonical type field.
950  QualType Canonical;
951  if (!T->isCanonical()) {
952    Canonical = getComplexType(getCanonicalType(T));
953
954    // Get the new insert position for the node we care about.
955    ComplexType *NewIP = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos);
956    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
957  }
958  ComplexType *New = new (*this,8) ComplexType(T, Canonical);
959  Types.push_back(New);
960  ComplexTypes.InsertNode(New, InsertPos);
961  return QualType(New, 0);
962}
963
964QualType ASTContext::getFixedWidthIntType(unsigned Width, bool Signed) {
965  llvm::DenseMap<unsigned, FixedWidthIntType*> &Map = Signed ?
966     SignedFixedWidthIntTypes : UnsignedFixedWidthIntTypes;
967  FixedWidthIntType *&Entry = Map[Width];
968  if (!Entry)
969    Entry = new FixedWidthIntType(Width, Signed);
970  return QualType(Entry, 0);
971}
972
973/// getPointerType - Return the uniqued reference to the type for a pointer to
974/// the specified type.
975QualType ASTContext::getPointerType(QualType T) {
976  // Unique pointers, to guarantee there is only one pointer of a particular
977  // structure.
978  llvm::FoldingSetNodeID ID;
979  PointerType::Profile(ID, T);
980
981  void *InsertPos = 0;
982  if (PointerType *PT = PointerTypes.FindNodeOrInsertPos(ID, InsertPos))
983    return QualType(PT, 0);
984
985  // If the pointee type isn't canonical, this won't be a canonical type either,
986  // so fill in the canonical type field.
987  QualType Canonical;
988  if (!T->isCanonical()) {
989    Canonical = getPointerType(getCanonicalType(T));
990
991    // Get the new insert position for the node we care about.
992    PointerType *NewIP = PointerTypes.FindNodeOrInsertPos(ID, InsertPos);
993    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
994  }
995  PointerType *New = new (*this,8) PointerType(T, Canonical);
996  Types.push_back(New);
997  PointerTypes.InsertNode(New, InsertPos);
998  return QualType(New, 0);
999}
1000
1001/// getBlockPointerType - Return the uniqued reference to the type for
1002/// a pointer to the specified block.
1003QualType ASTContext::getBlockPointerType(QualType T) {
1004  assert(T->isFunctionType() && "block of function types only");
1005  // Unique pointers, to guarantee there is only one block of a particular
1006  // structure.
1007  llvm::FoldingSetNodeID ID;
1008  BlockPointerType::Profile(ID, T);
1009
1010  void *InsertPos = 0;
1011  if (BlockPointerType *PT =
1012        BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1013    return QualType(PT, 0);
1014
1015  // If the block pointee type isn't canonical, this won't be a canonical
1016  // type either so fill in the canonical type field.
1017  QualType Canonical;
1018  if (!T->isCanonical()) {
1019    Canonical = getBlockPointerType(getCanonicalType(T));
1020
1021    // Get the new insert position for the node we care about.
1022    BlockPointerType *NewIP =
1023      BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
1024    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1025  }
1026  BlockPointerType *New = new (*this,8) BlockPointerType(T, Canonical);
1027  Types.push_back(New);
1028  BlockPointerTypes.InsertNode(New, InsertPos);
1029  return QualType(New, 0);
1030}
1031
1032/// getLValueReferenceType - Return the uniqued reference to the type for an
1033/// lvalue reference to the specified type.
1034QualType ASTContext::getLValueReferenceType(QualType T) {
1035  // Unique pointers, to guarantee there is only one pointer of a particular
1036  // structure.
1037  llvm::FoldingSetNodeID ID;
1038  ReferenceType::Profile(ID, T);
1039
1040  void *InsertPos = 0;
1041  if (LValueReferenceType *RT =
1042        LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
1043    return QualType(RT, 0);
1044
1045  // If the referencee type isn't canonical, this won't be a canonical type
1046  // either, so fill in the canonical type field.
1047  QualType Canonical;
1048  if (!T->isCanonical()) {
1049    Canonical = getLValueReferenceType(getCanonicalType(T));
1050
1051    // Get the new insert position for the node we care about.
1052    LValueReferenceType *NewIP =
1053      LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
1054    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1055  }
1056
1057  LValueReferenceType *New = new (*this,8) LValueReferenceType(T, Canonical);
1058  Types.push_back(New);
1059  LValueReferenceTypes.InsertNode(New, InsertPos);
1060  return QualType(New, 0);
1061}
1062
1063/// getRValueReferenceType - Return the uniqued reference to the type for an
1064/// rvalue reference to the specified type.
1065QualType ASTContext::getRValueReferenceType(QualType T) {
1066  // Unique pointers, to guarantee there is only one pointer of a particular
1067  // structure.
1068  llvm::FoldingSetNodeID ID;
1069  ReferenceType::Profile(ID, T);
1070
1071  void *InsertPos = 0;
1072  if (RValueReferenceType *RT =
1073        RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
1074    return QualType(RT, 0);
1075
1076  // If the referencee type isn't canonical, this won't be a canonical type
1077  // either, so fill in the canonical type field.
1078  QualType Canonical;
1079  if (!T->isCanonical()) {
1080    Canonical = getRValueReferenceType(getCanonicalType(T));
1081
1082    // Get the new insert position for the node we care about.
1083    RValueReferenceType *NewIP =
1084      RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
1085    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1086  }
1087
1088  RValueReferenceType *New = new (*this,8) RValueReferenceType(T, Canonical);
1089  Types.push_back(New);
1090  RValueReferenceTypes.InsertNode(New, InsertPos);
1091  return QualType(New, 0);
1092}
1093
1094/// getMemberPointerType - Return the uniqued reference to the type for a
1095/// member pointer to the specified type, in the specified class.
1096QualType ASTContext::getMemberPointerType(QualType T, const Type *Cls)
1097{
1098  // Unique pointers, to guarantee there is only one pointer of a particular
1099  // structure.
1100  llvm::FoldingSetNodeID ID;
1101  MemberPointerType::Profile(ID, T, Cls);
1102
1103  void *InsertPos = 0;
1104  if (MemberPointerType *PT =
1105      MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1106    return QualType(PT, 0);
1107
1108  // If the pointee or class type isn't canonical, this won't be a canonical
1109  // type either, so fill in the canonical type field.
1110  QualType Canonical;
1111  if (!T->isCanonical()) {
1112    Canonical = getMemberPointerType(getCanonicalType(T),getCanonicalType(Cls));
1113
1114    // Get the new insert position for the node we care about.
1115    MemberPointerType *NewIP =
1116      MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
1117    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1118  }
1119  MemberPointerType *New = new (*this,8) MemberPointerType(T, Cls, Canonical);
1120  Types.push_back(New);
1121  MemberPointerTypes.InsertNode(New, InsertPos);
1122  return QualType(New, 0);
1123}
1124
1125/// getConstantArrayType - Return the unique reference to the type for an
1126/// array of the specified element type.
1127QualType ASTContext::getConstantArrayType(QualType EltTy,
1128                                          const llvm::APInt &ArySize,
1129                                          ArrayType::ArraySizeModifier ASM,
1130                                          unsigned EltTypeQuals) {
1131  llvm::FoldingSetNodeID ID;
1132  ConstantArrayType::Profile(ID, EltTy, ArySize, ASM, EltTypeQuals);
1133
1134  void *InsertPos = 0;
1135  if (ConstantArrayType *ATP =
1136      ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
1137    return QualType(ATP, 0);
1138
1139  // If the element type isn't canonical, this won't be a canonical type either,
1140  // so fill in the canonical type field.
1141  QualType Canonical;
1142  if (!EltTy->isCanonical()) {
1143    Canonical = getConstantArrayType(getCanonicalType(EltTy), ArySize,
1144                                     ASM, EltTypeQuals);
1145    // Get the new insert position for the node we care about.
1146    ConstantArrayType *NewIP =
1147      ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
1148    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1149  }
1150
1151  ConstantArrayType *New =
1152    new(*this,8)ConstantArrayType(EltTy, Canonical, ArySize, ASM, EltTypeQuals);
1153  ConstantArrayTypes.InsertNode(New, InsertPos);
1154  Types.push_back(New);
1155  return QualType(New, 0);
1156}
1157
1158/// getVariableArrayType - Returns a non-unique reference to the type for a
1159/// variable array of the specified element type.
1160QualType ASTContext::getVariableArrayType(QualType EltTy, Expr *NumElts,
1161                                          ArrayType::ArraySizeModifier ASM,
1162                                          unsigned EltTypeQuals) {
1163  // Since we don't unique expressions, it isn't possible to unique VLA's
1164  // that have an expression provided for their size.
1165
1166  VariableArrayType *New =
1167    new(*this,8)VariableArrayType(EltTy,QualType(), NumElts, ASM, EltTypeQuals);
1168
1169  VariableArrayTypes.push_back(New);
1170  Types.push_back(New);
1171  return QualType(New, 0);
1172}
1173
1174/// getDependentSizedArrayType - Returns a non-unique reference to
1175/// the type for a dependently-sized array of the specified element
1176/// type. FIXME: We will need these to be uniqued, or at least
1177/// comparable, at some point.
1178QualType ASTContext::getDependentSizedArrayType(QualType EltTy, Expr *NumElts,
1179                                                ArrayType::ArraySizeModifier ASM,
1180                                                unsigned EltTypeQuals) {
1181  assert((NumElts->isTypeDependent() || NumElts->isValueDependent()) &&
1182         "Size must be type- or value-dependent!");
1183
1184  // Since we don't unique expressions, it isn't possible to unique
1185  // dependently-sized array types.
1186
1187  DependentSizedArrayType *New =
1188      new (*this,8) DependentSizedArrayType(EltTy, QualType(), NumElts,
1189                                            ASM, EltTypeQuals);
1190
1191  DependentSizedArrayTypes.push_back(New);
1192  Types.push_back(New);
1193  return QualType(New, 0);
1194}
1195
1196QualType ASTContext::getIncompleteArrayType(QualType EltTy,
1197                                            ArrayType::ArraySizeModifier ASM,
1198                                            unsigned EltTypeQuals) {
1199  llvm::FoldingSetNodeID ID;
1200  IncompleteArrayType::Profile(ID, EltTy, ASM, EltTypeQuals);
1201
1202  void *InsertPos = 0;
1203  if (IncompleteArrayType *ATP =
1204       IncompleteArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
1205    return QualType(ATP, 0);
1206
1207  // If the element type isn't canonical, this won't be a canonical type
1208  // either, so fill in the canonical type field.
1209  QualType Canonical;
1210
1211  if (!EltTy->isCanonical()) {
1212    Canonical = getIncompleteArrayType(getCanonicalType(EltTy),
1213                                       ASM, EltTypeQuals);
1214
1215    // Get the new insert position for the node we care about.
1216    IncompleteArrayType *NewIP =
1217      IncompleteArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
1218    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1219  }
1220
1221  IncompleteArrayType *New = new (*this,8) IncompleteArrayType(EltTy, Canonical,
1222                                                           ASM, EltTypeQuals);
1223
1224  IncompleteArrayTypes.InsertNode(New, InsertPos);
1225  Types.push_back(New);
1226  return QualType(New, 0);
1227}
1228
1229/// getVectorType - Return the unique reference to a vector type of
1230/// the specified element type and size. VectorType must be a built-in type.
1231QualType ASTContext::getVectorType(QualType vecType, unsigned NumElts) {
1232  BuiltinType *baseType;
1233
1234  baseType = dyn_cast<BuiltinType>(getCanonicalType(vecType).getTypePtr());
1235  assert(baseType != 0 && "getVectorType(): Expecting a built-in type");
1236
1237  // Check if we've already instantiated a vector of this type.
1238  llvm::FoldingSetNodeID ID;
1239  VectorType::Profile(ID, vecType, NumElts, Type::Vector);
1240  void *InsertPos = 0;
1241  if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
1242    return QualType(VTP, 0);
1243
1244  // If the element type isn't canonical, this won't be a canonical type either,
1245  // so fill in the canonical type field.
1246  QualType Canonical;
1247  if (!vecType->isCanonical()) {
1248    Canonical = getVectorType(getCanonicalType(vecType), NumElts);
1249
1250    // Get the new insert position for the node we care about.
1251    VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
1252    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1253  }
1254  VectorType *New = new (*this,8) VectorType(vecType, NumElts, Canonical);
1255  VectorTypes.InsertNode(New, InsertPos);
1256  Types.push_back(New);
1257  return QualType(New, 0);
1258}
1259
1260/// getExtVectorType - Return the unique reference to an extended vector type of
1261/// the specified element type and size. VectorType must be a built-in type.
1262QualType ASTContext::getExtVectorType(QualType vecType, unsigned NumElts) {
1263  BuiltinType *baseType;
1264
1265  baseType = dyn_cast<BuiltinType>(getCanonicalType(vecType).getTypePtr());
1266  assert(baseType != 0 && "getExtVectorType(): Expecting a built-in type");
1267
1268  // Check if we've already instantiated a vector of this type.
1269  llvm::FoldingSetNodeID ID;
1270  VectorType::Profile(ID, vecType, NumElts, Type::ExtVector);
1271  void *InsertPos = 0;
1272  if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
1273    return QualType(VTP, 0);
1274
1275  // If the element type isn't canonical, this won't be a canonical type either,
1276  // so fill in the canonical type field.
1277  QualType Canonical;
1278  if (!vecType->isCanonical()) {
1279    Canonical = getExtVectorType(getCanonicalType(vecType), NumElts);
1280
1281    // Get the new insert position for the node we care about.
1282    VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
1283    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1284  }
1285  ExtVectorType *New = new (*this,8) ExtVectorType(vecType, NumElts, Canonical);
1286  VectorTypes.InsertNode(New, InsertPos);
1287  Types.push_back(New);
1288  return QualType(New, 0);
1289}
1290
1291/// getFunctionNoProtoType - Return a K&R style C function type like 'int()'.
1292///
1293QualType ASTContext::getFunctionNoProtoType(QualType ResultTy) {
1294  // Unique functions, to guarantee there is only one function of a particular
1295  // structure.
1296  llvm::FoldingSetNodeID ID;
1297  FunctionNoProtoType::Profile(ID, ResultTy);
1298
1299  void *InsertPos = 0;
1300  if (FunctionNoProtoType *FT =
1301        FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
1302    return QualType(FT, 0);
1303
1304  QualType Canonical;
1305  if (!ResultTy->isCanonical()) {
1306    Canonical = getFunctionNoProtoType(getCanonicalType(ResultTy));
1307
1308    // Get the new insert position for the node we care about.
1309    FunctionNoProtoType *NewIP =
1310      FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
1311    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1312  }
1313
1314  FunctionNoProtoType *New =new(*this,8)FunctionNoProtoType(ResultTy,Canonical);
1315  Types.push_back(New);
1316  FunctionNoProtoTypes.InsertNode(New, InsertPos);
1317  return QualType(New, 0);
1318}
1319
1320/// getFunctionType - Return a normal function type with a typed argument
1321/// list.  isVariadic indicates whether the argument list includes '...'.
1322QualType ASTContext::getFunctionType(QualType ResultTy,const QualType *ArgArray,
1323                                     unsigned NumArgs, bool isVariadic,
1324                                     unsigned TypeQuals, bool hasExceptionSpec,
1325                                     bool hasAnyExceptionSpec, unsigned NumExs,
1326                                     const QualType *ExArray) {
1327  // Unique functions, to guarantee there is only one function of a particular
1328  // structure.
1329  llvm::FoldingSetNodeID ID;
1330  FunctionProtoType::Profile(ID, ResultTy, ArgArray, NumArgs, isVariadic,
1331                             TypeQuals, hasExceptionSpec, hasAnyExceptionSpec,
1332                             NumExs, ExArray);
1333
1334  void *InsertPos = 0;
1335  if (FunctionProtoType *FTP =
1336        FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
1337    return QualType(FTP, 0);
1338
1339  // Determine whether the type being created is already canonical or not.
1340  bool isCanonical = ResultTy->isCanonical();
1341  for (unsigned i = 0; i != NumArgs && isCanonical; ++i)
1342    if (!ArgArray[i]->isCanonical())
1343      isCanonical = false;
1344
1345  // If this type isn't canonical, get the canonical version of it.
1346  QualType Canonical;
1347  if (!isCanonical) {
1348    llvm::SmallVector<QualType, 16> CanonicalArgs;
1349    CanonicalArgs.reserve(NumArgs);
1350    for (unsigned i = 0; i != NumArgs; ++i)
1351      CanonicalArgs.push_back(getCanonicalType(ArgArray[i]));
1352    llvm::SmallVector<QualType, 2> CanonicalExs;
1353    CanonicalExs.reserve(NumExs);
1354    for (unsigned i = 0; i != NumExs; ++i)
1355      CanonicalExs.push_back(getCanonicalType(ExArray[i]));
1356
1357    Canonical = getFunctionType(getCanonicalType(ResultTy),
1358                                &CanonicalArgs[0], NumArgs,
1359                                isVariadic, TypeQuals, hasExceptionSpec,
1360                                hasAnyExceptionSpec, NumExs, &CanonicalExs[0]);
1361
1362    // Get the new insert position for the node we care about.
1363    FunctionProtoType *NewIP =
1364      FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
1365    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1366  }
1367
1368  // FunctionProtoType objects are allocated with extra bytes after them
1369  // for two variable size arrays (for parameter and exception types) at the
1370  // end of them.
1371  FunctionProtoType *FTP =
1372    (FunctionProtoType*)Allocate(sizeof(FunctionProtoType) +
1373                                 NumArgs*sizeof(QualType) +
1374                                 NumExs*sizeof(QualType), 8);
1375  new (FTP) FunctionProtoType(ResultTy, ArgArray, NumArgs, isVariadic,
1376                              TypeQuals, hasExceptionSpec, hasAnyExceptionSpec,
1377                              ExArray, NumExs, Canonical);
1378  Types.push_back(FTP);
1379  FunctionProtoTypes.InsertNode(FTP, InsertPos);
1380  return QualType(FTP, 0);
1381}
1382
1383/// getTypeDeclType - Return the unique reference to the type for the
1384/// specified type declaration.
1385QualType ASTContext::getTypeDeclType(TypeDecl *Decl, TypeDecl* PrevDecl) {
1386  assert(Decl && "Passed null for Decl param");
1387  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
1388
1389  if (TypedefDecl *Typedef = dyn_cast<TypedefDecl>(Decl))
1390    return getTypedefType(Typedef);
1391  else if (isa<TemplateTypeParmDecl>(Decl)) {
1392    assert(false && "Template type parameter types are always available.");
1393  } else if (ObjCInterfaceDecl *ObjCInterface = dyn_cast<ObjCInterfaceDecl>(Decl))
1394    return getObjCInterfaceType(ObjCInterface);
1395
1396  if (RecordDecl *Record = dyn_cast<RecordDecl>(Decl)) {
1397    if (PrevDecl)
1398      Decl->TypeForDecl = PrevDecl->TypeForDecl;
1399    else
1400      Decl->TypeForDecl = new (*this,8) RecordType(Record);
1401  }
1402  else if (EnumDecl *Enum = dyn_cast<EnumDecl>(Decl)) {
1403    if (PrevDecl)
1404      Decl->TypeForDecl = PrevDecl->TypeForDecl;
1405    else
1406      Decl->TypeForDecl = new (*this,8) EnumType(Enum);
1407  }
1408  else
1409    assert(false && "TypeDecl without a type?");
1410
1411  if (!PrevDecl) Types.push_back(Decl->TypeForDecl);
1412  return QualType(Decl->TypeForDecl, 0);
1413}
1414
1415/// getTypedefType - Return the unique reference to the type for the
1416/// specified typename decl.
1417QualType ASTContext::getTypedefType(TypedefDecl *Decl) {
1418  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
1419
1420  QualType Canonical = getCanonicalType(Decl->getUnderlyingType());
1421  Decl->TypeForDecl = new(*this,8) TypedefType(Type::Typedef, Decl, Canonical);
1422  Types.push_back(Decl->TypeForDecl);
1423  return QualType(Decl->TypeForDecl, 0);
1424}
1425
1426/// getObjCInterfaceType - Return the unique reference to the type for the
1427/// specified ObjC interface decl.
1428QualType ASTContext::getObjCInterfaceType(const ObjCInterfaceDecl *Decl) {
1429  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
1430
1431  ObjCInterfaceDecl *OID = const_cast<ObjCInterfaceDecl*>(Decl);
1432  Decl->TypeForDecl = new(*this,8) ObjCInterfaceType(Type::ObjCInterface, OID);
1433  Types.push_back(Decl->TypeForDecl);
1434  return QualType(Decl->TypeForDecl, 0);
1435}
1436
1437/// \brief Retrieve the template type parameter type for a template
1438/// parameter with the given depth, index, and (optionally) name.
1439QualType ASTContext::getTemplateTypeParmType(unsigned Depth, unsigned Index,
1440                                             IdentifierInfo *Name) {
1441  llvm::FoldingSetNodeID ID;
1442  TemplateTypeParmType::Profile(ID, Depth, Index, Name);
1443  void *InsertPos = 0;
1444  TemplateTypeParmType *TypeParm
1445    = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
1446
1447  if (TypeParm)
1448    return QualType(TypeParm, 0);
1449
1450  if (Name)
1451    TypeParm = new (*this, 8) TemplateTypeParmType(Depth, Index, Name,
1452                                         getTemplateTypeParmType(Depth, Index));
1453  else
1454    TypeParm = new (*this, 8) TemplateTypeParmType(Depth, Index);
1455
1456  Types.push_back(TypeParm);
1457  TemplateTypeParmTypes.InsertNode(TypeParm, InsertPos);
1458
1459  return QualType(TypeParm, 0);
1460}
1461
1462QualType
1463ASTContext::getTemplateSpecializationType(TemplateName Template,
1464                                          const TemplateArgument *Args,
1465                                          unsigned NumArgs,
1466                                          QualType Canon) {
1467  if (!Canon.isNull())
1468    Canon = getCanonicalType(Canon);
1469
1470  llvm::FoldingSetNodeID ID;
1471  TemplateSpecializationType::Profile(ID, Template, Args, NumArgs);
1472
1473  void *InsertPos = 0;
1474  TemplateSpecializationType *Spec
1475    = TemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
1476
1477  if (Spec)
1478    return QualType(Spec, 0);
1479
1480  void *Mem = Allocate((sizeof(TemplateSpecializationType) +
1481                        sizeof(TemplateArgument) * NumArgs),
1482                       8);
1483  Spec = new (Mem) TemplateSpecializationType(Template, Args, NumArgs, Canon);
1484  Types.push_back(Spec);
1485  TemplateSpecializationTypes.InsertNode(Spec, InsertPos);
1486
1487  return QualType(Spec, 0);
1488}
1489
1490QualType
1491ASTContext::getQualifiedNameType(NestedNameSpecifier *NNS,
1492                                 QualType NamedType) {
1493  llvm::FoldingSetNodeID ID;
1494  QualifiedNameType::Profile(ID, NNS, NamedType);
1495
1496  void *InsertPos = 0;
1497  QualifiedNameType *T
1498    = QualifiedNameTypes.FindNodeOrInsertPos(ID, InsertPos);
1499  if (T)
1500    return QualType(T, 0);
1501
1502  T = new (*this) QualifiedNameType(NNS, NamedType,
1503                                    getCanonicalType(NamedType));
1504  Types.push_back(T);
1505  QualifiedNameTypes.InsertNode(T, InsertPos);
1506  return QualType(T, 0);
1507}
1508
1509QualType ASTContext::getTypenameType(NestedNameSpecifier *NNS,
1510                                     const IdentifierInfo *Name,
1511                                     QualType Canon) {
1512  assert(NNS->isDependent() && "nested-name-specifier must be dependent");
1513
1514  if (Canon.isNull()) {
1515    NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
1516    if (CanonNNS != NNS)
1517      Canon = getTypenameType(CanonNNS, Name);
1518  }
1519
1520  llvm::FoldingSetNodeID ID;
1521  TypenameType::Profile(ID, NNS, Name);
1522
1523  void *InsertPos = 0;
1524  TypenameType *T
1525    = TypenameTypes.FindNodeOrInsertPos(ID, InsertPos);
1526  if (T)
1527    return QualType(T, 0);
1528
1529  T = new (*this) TypenameType(NNS, Name, Canon);
1530  Types.push_back(T);
1531  TypenameTypes.InsertNode(T, InsertPos);
1532  return QualType(T, 0);
1533}
1534
1535QualType
1536ASTContext::getTypenameType(NestedNameSpecifier *NNS,
1537                            const TemplateSpecializationType *TemplateId,
1538                            QualType Canon) {
1539  assert(NNS->isDependent() && "nested-name-specifier must be dependent");
1540
1541  if (Canon.isNull()) {
1542    NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
1543    QualType CanonType = getCanonicalType(QualType(TemplateId, 0));
1544    if (CanonNNS != NNS || CanonType != QualType(TemplateId, 0)) {
1545      const TemplateSpecializationType *CanonTemplateId
1546        = CanonType->getAsTemplateSpecializationType();
1547      assert(CanonTemplateId &&
1548             "Canonical type must also be a template specialization type");
1549      Canon = getTypenameType(CanonNNS, CanonTemplateId);
1550    }
1551  }
1552
1553  llvm::FoldingSetNodeID ID;
1554  TypenameType::Profile(ID, NNS, TemplateId);
1555
1556  void *InsertPos = 0;
1557  TypenameType *T
1558    = TypenameTypes.FindNodeOrInsertPos(ID, InsertPos);
1559  if (T)
1560    return QualType(T, 0);
1561
1562  T = new (*this) TypenameType(NNS, TemplateId, Canon);
1563  Types.push_back(T);
1564  TypenameTypes.InsertNode(T, InsertPos);
1565  return QualType(T, 0);
1566}
1567
1568/// CmpProtocolNames - Comparison predicate for sorting protocols
1569/// alphabetically.
1570static bool CmpProtocolNames(const ObjCProtocolDecl *LHS,
1571                            const ObjCProtocolDecl *RHS) {
1572  return LHS->getDeclName() < RHS->getDeclName();
1573}
1574
1575static void SortAndUniqueProtocols(ObjCProtocolDecl **&Protocols,
1576                                   unsigned &NumProtocols) {
1577  ObjCProtocolDecl **ProtocolsEnd = Protocols+NumProtocols;
1578
1579  // Sort protocols, keyed by name.
1580  std::sort(Protocols, Protocols+NumProtocols, CmpProtocolNames);
1581
1582  // Remove duplicates.
1583  ProtocolsEnd = std::unique(Protocols, ProtocolsEnd);
1584  NumProtocols = ProtocolsEnd-Protocols;
1585}
1586
1587
1588/// getObjCQualifiedInterfaceType - Return a ObjCQualifiedInterfaceType type for
1589/// the given interface decl and the conforming protocol list.
1590QualType ASTContext::getObjCQualifiedInterfaceType(ObjCInterfaceDecl *Decl,
1591                       ObjCProtocolDecl **Protocols, unsigned NumProtocols) {
1592  // Sort the protocol list alphabetically to canonicalize it.
1593  SortAndUniqueProtocols(Protocols, NumProtocols);
1594
1595  llvm::FoldingSetNodeID ID;
1596  ObjCQualifiedInterfaceType::Profile(ID, Decl, Protocols, NumProtocols);
1597
1598  void *InsertPos = 0;
1599  if (ObjCQualifiedInterfaceType *QT =
1600      ObjCQualifiedInterfaceTypes.FindNodeOrInsertPos(ID, InsertPos))
1601    return QualType(QT, 0);
1602
1603  // No Match;
1604  ObjCQualifiedInterfaceType *QType =
1605    new (*this,8) ObjCQualifiedInterfaceType(Decl, Protocols, NumProtocols);
1606
1607  Types.push_back(QType);
1608  ObjCQualifiedInterfaceTypes.InsertNode(QType, InsertPos);
1609  return QualType(QType, 0);
1610}
1611
1612/// getObjCQualifiedIdType - Return an ObjCQualifiedIdType for the 'id' decl
1613/// and the conforming protocol list.
1614QualType ASTContext::getObjCQualifiedIdType(ObjCProtocolDecl **Protocols,
1615                                            unsigned NumProtocols) {
1616  // Sort the protocol list alphabetically to canonicalize it.
1617  SortAndUniqueProtocols(Protocols, NumProtocols);
1618
1619  llvm::FoldingSetNodeID ID;
1620  ObjCQualifiedIdType::Profile(ID, Protocols, NumProtocols);
1621
1622  void *InsertPos = 0;
1623  if (ObjCQualifiedIdType *QT =
1624        ObjCQualifiedIdTypes.FindNodeOrInsertPos(ID, InsertPos))
1625    return QualType(QT, 0);
1626
1627  // No Match;
1628  ObjCQualifiedIdType *QType =
1629    new (*this,8) ObjCQualifiedIdType(Protocols, NumProtocols);
1630  Types.push_back(QType);
1631  ObjCQualifiedIdTypes.InsertNode(QType, InsertPos);
1632  return QualType(QType, 0);
1633}
1634
1635/// getTypeOfExprType - Unlike many "get<Type>" functions, we can't unique
1636/// TypeOfExprType AST's (since expression's are never shared). For example,
1637/// multiple declarations that refer to "typeof(x)" all contain different
1638/// DeclRefExpr's. This doesn't effect the type checker, since it operates
1639/// on canonical type's (which are always unique).
1640QualType ASTContext::getTypeOfExprType(Expr *tofExpr) {
1641  QualType Canonical = getCanonicalType(tofExpr->getType());
1642  TypeOfExprType *toe = new (*this,8) TypeOfExprType(tofExpr, Canonical);
1643  Types.push_back(toe);
1644  return QualType(toe, 0);
1645}
1646
1647/// getTypeOfType -  Unlike many "get<Type>" functions, we don't unique
1648/// TypeOfType AST's. The only motivation to unique these nodes would be
1649/// memory savings. Since typeof(t) is fairly uncommon, space shouldn't be
1650/// an issue. This doesn't effect the type checker, since it operates
1651/// on canonical type's (which are always unique).
1652QualType ASTContext::getTypeOfType(QualType tofType) {
1653  QualType Canonical = getCanonicalType(tofType);
1654  TypeOfType *tot = new (*this,8) TypeOfType(tofType, Canonical);
1655  Types.push_back(tot);
1656  return QualType(tot, 0);
1657}
1658
1659/// getTagDeclType - Return the unique reference to the type for the
1660/// specified TagDecl (struct/union/class/enum) decl.
1661QualType ASTContext::getTagDeclType(TagDecl *Decl) {
1662  assert (Decl);
1663  return getTypeDeclType(Decl);
1664}
1665
1666/// getSizeType - Return the unique type for "size_t" (C99 7.17), the result
1667/// of the sizeof operator (C99 6.5.3.4p4). The value is target dependent and
1668/// needs to agree with the definition in <stddef.h>.
1669QualType ASTContext::getSizeType() const {
1670  return getFromTargetType(Target.getSizeType());
1671}
1672
1673/// getSignedWCharType - Return the type of "signed wchar_t".
1674/// Used when in C++, as a GCC extension.
1675QualType ASTContext::getSignedWCharType() const {
1676  // FIXME: derive from "Target" ?
1677  return WCharTy;
1678}
1679
1680/// getUnsignedWCharType - Return the type of "unsigned wchar_t".
1681/// Used when in C++, as a GCC extension.
1682QualType ASTContext::getUnsignedWCharType() const {
1683  // FIXME: derive from "Target" ?
1684  return UnsignedIntTy;
1685}
1686
1687/// getPointerDiffType - Return the unique type for "ptrdiff_t" (ref?)
1688/// defined in <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9).
1689QualType ASTContext::getPointerDiffType() const {
1690  return getFromTargetType(Target.getPtrDiffType(0));
1691}
1692
1693//===----------------------------------------------------------------------===//
1694//                              Type Operators
1695//===----------------------------------------------------------------------===//
1696
1697/// getCanonicalType - Return the canonical (structural) type corresponding to
1698/// the specified potentially non-canonical type.  The non-canonical version
1699/// of a type may have many "decorated" versions of types.  Decorators can
1700/// include typedefs, 'typeof' operators, etc. The returned type is guaranteed
1701/// to be free of any of these, allowing two canonical types to be compared
1702/// for exact equality with a simple pointer comparison.
1703QualType ASTContext::getCanonicalType(QualType T) {
1704  QualType CanType = T.getTypePtr()->getCanonicalTypeInternal();
1705
1706  // If the result has type qualifiers, make sure to canonicalize them as well.
1707  unsigned TypeQuals = T.getCVRQualifiers() | CanType.getCVRQualifiers();
1708  if (TypeQuals == 0) return CanType;
1709
1710  // If the type qualifiers are on an array type, get the canonical type of the
1711  // array with the qualifiers applied to the element type.
1712  ArrayType *AT = dyn_cast<ArrayType>(CanType);
1713  if (!AT)
1714    return CanType.getQualifiedType(TypeQuals);
1715
1716  // Get the canonical version of the element with the extra qualifiers on it.
1717  // This can recursively sink qualifiers through multiple levels of arrays.
1718  QualType NewEltTy=AT->getElementType().getWithAdditionalQualifiers(TypeQuals);
1719  NewEltTy = getCanonicalType(NewEltTy);
1720
1721  if (ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
1722    return getConstantArrayType(NewEltTy, CAT->getSize(),CAT->getSizeModifier(),
1723                                CAT->getIndexTypeQualifier());
1724  if (IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT))
1725    return getIncompleteArrayType(NewEltTy, IAT->getSizeModifier(),
1726                                  IAT->getIndexTypeQualifier());
1727
1728  if (DependentSizedArrayType *DSAT = dyn_cast<DependentSizedArrayType>(AT))
1729    return getDependentSizedArrayType(NewEltTy, DSAT->getSizeExpr(),
1730                                      DSAT->getSizeModifier(),
1731                                      DSAT->getIndexTypeQualifier());
1732
1733  VariableArrayType *VAT = cast<VariableArrayType>(AT);
1734  return getVariableArrayType(NewEltTy, VAT->getSizeExpr(),
1735                              VAT->getSizeModifier(),
1736                              VAT->getIndexTypeQualifier());
1737}
1738
1739NestedNameSpecifier *
1740ASTContext::getCanonicalNestedNameSpecifier(NestedNameSpecifier *NNS) {
1741  if (!NNS)
1742    return 0;
1743
1744  switch (NNS->getKind()) {
1745  case NestedNameSpecifier::Identifier:
1746    // Canonicalize the prefix but keep the identifier the same.
1747    return NestedNameSpecifier::Create(*this,
1748                         getCanonicalNestedNameSpecifier(NNS->getPrefix()),
1749                                       NNS->getAsIdentifier());
1750
1751  case NestedNameSpecifier::Namespace:
1752    // A namespace is canonical; build a nested-name-specifier with
1753    // this namespace and no prefix.
1754    return NestedNameSpecifier::Create(*this, 0, NNS->getAsNamespace());
1755
1756  case NestedNameSpecifier::TypeSpec:
1757  case NestedNameSpecifier::TypeSpecWithTemplate: {
1758    QualType T = getCanonicalType(QualType(NNS->getAsType(), 0));
1759    NestedNameSpecifier *Prefix = 0;
1760
1761    // FIXME: This isn't the right check!
1762    if (T->isDependentType())
1763      Prefix = getCanonicalNestedNameSpecifier(NNS->getPrefix());
1764
1765    return NestedNameSpecifier::Create(*this, Prefix,
1766                 NNS->getKind() == NestedNameSpecifier::TypeSpecWithTemplate,
1767                                       T.getTypePtr());
1768  }
1769
1770  case NestedNameSpecifier::Global:
1771    // The global specifier is canonical and unique.
1772    return NNS;
1773  }
1774
1775  // Required to silence a GCC warning
1776  return 0;
1777}
1778
1779
1780const ArrayType *ASTContext::getAsArrayType(QualType T) {
1781  // Handle the non-qualified case efficiently.
1782  if (T.getCVRQualifiers() == 0) {
1783    // Handle the common positive case fast.
1784    if (const ArrayType *AT = dyn_cast<ArrayType>(T))
1785      return AT;
1786  }
1787
1788  // Handle the common negative case fast, ignoring CVR qualifiers.
1789  QualType CType = T->getCanonicalTypeInternal();
1790
1791  // Make sure to look through type qualifiers (like ExtQuals) for the negative
1792  // test.
1793  if (!isa<ArrayType>(CType) &&
1794      !isa<ArrayType>(CType.getUnqualifiedType()))
1795    return 0;
1796
1797  // Apply any CVR qualifiers from the array type to the element type.  This
1798  // implements C99 6.7.3p8: "If the specification of an array type includes
1799  // any type qualifiers, the element type is so qualified, not the array type."
1800
1801  // If we get here, we either have type qualifiers on the type, or we have
1802  // sugar such as a typedef in the way.  If we have type qualifiers on the type
1803  // we must propagate them down into the elemeng type.
1804  unsigned CVRQuals = T.getCVRQualifiers();
1805  unsigned AddrSpace = 0;
1806  Type *Ty = T.getTypePtr();
1807
1808  // Rip through ExtQualType's and typedefs to get to a concrete type.
1809  while (1) {
1810    if (const ExtQualType *EXTQT = dyn_cast<ExtQualType>(Ty)) {
1811      AddrSpace = EXTQT->getAddressSpace();
1812      Ty = EXTQT->getBaseType();
1813    } else {
1814      T = Ty->getDesugaredType();
1815      if (T.getTypePtr() == Ty && T.getCVRQualifiers() == 0)
1816        break;
1817      CVRQuals |= T.getCVRQualifiers();
1818      Ty = T.getTypePtr();
1819    }
1820  }
1821
1822  // If we have a simple case, just return now.
1823  const ArrayType *ATy = dyn_cast<ArrayType>(Ty);
1824  if (ATy == 0 || (AddrSpace == 0 && CVRQuals == 0))
1825    return ATy;
1826
1827  // Otherwise, we have an array and we have qualifiers on it.  Push the
1828  // qualifiers into the array element type and return a new array type.
1829  // Get the canonical version of the element with the extra qualifiers on it.
1830  // This can recursively sink qualifiers through multiple levels of arrays.
1831  QualType NewEltTy = ATy->getElementType();
1832  if (AddrSpace)
1833    NewEltTy = getAddrSpaceQualType(NewEltTy, AddrSpace);
1834  NewEltTy = NewEltTy.getWithAdditionalQualifiers(CVRQuals);
1835
1836  if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(ATy))
1837    return cast<ArrayType>(getConstantArrayType(NewEltTy, CAT->getSize(),
1838                                                CAT->getSizeModifier(),
1839                                                CAT->getIndexTypeQualifier()));
1840  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(ATy))
1841    return cast<ArrayType>(getIncompleteArrayType(NewEltTy,
1842                                                  IAT->getSizeModifier(),
1843                                                 IAT->getIndexTypeQualifier()));
1844
1845  if (const DependentSizedArrayType *DSAT
1846        = dyn_cast<DependentSizedArrayType>(ATy))
1847    return cast<ArrayType>(
1848                     getDependentSizedArrayType(NewEltTy,
1849                                                DSAT->getSizeExpr(),
1850                                                DSAT->getSizeModifier(),
1851                                                DSAT->getIndexTypeQualifier()));
1852
1853  const VariableArrayType *VAT = cast<VariableArrayType>(ATy);
1854  return cast<ArrayType>(getVariableArrayType(NewEltTy, VAT->getSizeExpr(),
1855                                              VAT->getSizeModifier(),
1856                                              VAT->getIndexTypeQualifier()));
1857}
1858
1859
1860/// getArrayDecayedType - Return the properly qualified result of decaying the
1861/// specified array type to a pointer.  This operation is non-trivial when
1862/// handling typedefs etc.  The canonical type of "T" must be an array type,
1863/// this returns a pointer to a properly qualified element of the array.
1864///
1865/// See C99 6.7.5.3p7 and C99 6.3.2.1p3.
1866QualType ASTContext::getArrayDecayedType(QualType Ty) {
1867  // Get the element type with 'getAsArrayType' so that we don't lose any
1868  // typedefs in the element type of the array.  This also handles propagation
1869  // of type qualifiers from the array type into the element type if present
1870  // (C99 6.7.3p8).
1871  const ArrayType *PrettyArrayType = getAsArrayType(Ty);
1872  assert(PrettyArrayType && "Not an array type!");
1873
1874  QualType PtrTy = getPointerType(PrettyArrayType->getElementType());
1875
1876  // int x[restrict 4] ->  int *restrict
1877  return PtrTy.getQualifiedType(PrettyArrayType->getIndexTypeQualifier());
1878}
1879
1880QualType ASTContext::getBaseElementType(const VariableArrayType *VAT) {
1881  QualType ElemTy = VAT->getElementType();
1882
1883  if (const VariableArrayType *VAT = getAsVariableArrayType(ElemTy))
1884    return getBaseElementType(VAT);
1885
1886  return ElemTy;
1887}
1888
1889/// getFloatingRank - Return a relative rank for floating point types.
1890/// This routine will assert if passed a built-in type that isn't a float.
1891static FloatingRank getFloatingRank(QualType T) {
1892  if (const ComplexType *CT = T->getAsComplexType())
1893    return getFloatingRank(CT->getElementType());
1894
1895  assert(T->getAsBuiltinType() && "getFloatingRank(): not a floating type");
1896  switch (T->getAsBuiltinType()->getKind()) {
1897  default: assert(0 && "getFloatingRank(): not a floating type");
1898  case BuiltinType::Float:      return FloatRank;
1899  case BuiltinType::Double:     return DoubleRank;
1900  case BuiltinType::LongDouble: return LongDoubleRank;
1901  }
1902}
1903
1904/// getFloatingTypeOfSizeWithinDomain - Returns a real floating
1905/// point or a complex type (based on typeDomain/typeSize).
1906/// 'typeDomain' is a real floating point or complex type.
1907/// 'typeSize' is a real floating point or complex type.
1908QualType ASTContext::getFloatingTypeOfSizeWithinDomain(QualType Size,
1909                                                       QualType Domain) const {
1910  FloatingRank EltRank = getFloatingRank(Size);
1911  if (Domain->isComplexType()) {
1912    switch (EltRank) {
1913    default: assert(0 && "getFloatingRank(): illegal value for rank");
1914    case FloatRank:      return FloatComplexTy;
1915    case DoubleRank:     return DoubleComplexTy;
1916    case LongDoubleRank: return LongDoubleComplexTy;
1917    }
1918  }
1919
1920  assert(Domain->isRealFloatingType() && "Unknown domain!");
1921  switch (EltRank) {
1922  default: assert(0 && "getFloatingRank(): illegal value for rank");
1923  case FloatRank:      return FloatTy;
1924  case DoubleRank:     return DoubleTy;
1925  case LongDoubleRank: return LongDoubleTy;
1926  }
1927}
1928
1929/// getFloatingTypeOrder - Compare the rank of the two specified floating
1930/// point types, ignoring the domain of the type (i.e. 'double' ==
1931/// '_Complex double').  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
1932/// LHS < RHS, return -1.
1933int ASTContext::getFloatingTypeOrder(QualType LHS, QualType RHS) {
1934  FloatingRank LHSR = getFloatingRank(LHS);
1935  FloatingRank RHSR = getFloatingRank(RHS);
1936
1937  if (LHSR == RHSR)
1938    return 0;
1939  if (LHSR > RHSR)
1940    return 1;
1941  return -1;
1942}
1943
1944/// getIntegerRank - Return an integer conversion rank (C99 6.3.1.1p1). This
1945/// routine will assert if passed a built-in type that isn't an integer or enum,
1946/// or if it is not canonicalized.
1947unsigned ASTContext::getIntegerRank(Type *T) {
1948  assert(T->isCanonical() && "T should be canonicalized");
1949  if (EnumType* ET = dyn_cast<EnumType>(T))
1950    T = ET->getDecl()->getIntegerType().getTypePtr();
1951
1952  // There are two things which impact the integer rank: the width, and
1953  // the ordering of builtins.  The builtin ordering is encoded in the
1954  // bottom three bits; the width is encoded in the bits above that.
1955  if (FixedWidthIntType* FWIT = dyn_cast<FixedWidthIntType>(T)) {
1956    return FWIT->getWidth() << 3;
1957  }
1958
1959  switch (cast<BuiltinType>(T)->getKind()) {
1960  default: assert(0 && "getIntegerRank(): not a built-in integer");
1961  case BuiltinType::Bool:
1962    return 1 + (getIntWidth(BoolTy) << 3);
1963  case BuiltinType::Char_S:
1964  case BuiltinType::Char_U:
1965  case BuiltinType::SChar:
1966  case BuiltinType::UChar:
1967    return 2 + (getIntWidth(CharTy) << 3);
1968  case BuiltinType::Short:
1969  case BuiltinType::UShort:
1970    return 3 + (getIntWidth(ShortTy) << 3);
1971  case BuiltinType::Int:
1972  case BuiltinType::UInt:
1973    return 4 + (getIntWidth(IntTy) << 3);
1974  case BuiltinType::Long:
1975  case BuiltinType::ULong:
1976    return 5 + (getIntWidth(LongTy) << 3);
1977  case BuiltinType::LongLong:
1978  case BuiltinType::ULongLong:
1979    return 6 + (getIntWidth(LongLongTy) << 3);
1980  case BuiltinType::Int128:
1981  case BuiltinType::UInt128:
1982    return 7 + (getIntWidth(Int128Ty) << 3);
1983  }
1984}
1985
1986/// getIntegerTypeOrder - Returns the highest ranked integer type:
1987/// C99 6.3.1.8p1.  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
1988/// LHS < RHS, return -1.
1989int ASTContext::getIntegerTypeOrder(QualType LHS, QualType RHS) {
1990  Type *LHSC = getCanonicalType(LHS).getTypePtr();
1991  Type *RHSC = getCanonicalType(RHS).getTypePtr();
1992  if (LHSC == RHSC) return 0;
1993
1994  bool LHSUnsigned = LHSC->isUnsignedIntegerType();
1995  bool RHSUnsigned = RHSC->isUnsignedIntegerType();
1996
1997  unsigned LHSRank = getIntegerRank(LHSC);
1998  unsigned RHSRank = getIntegerRank(RHSC);
1999
2000  if (LHSUnsigned == RHSUnsigned) {  // Both signed or both unsigned.
2001    if (LHSRank == RHSRank) return 0;
2002    return LHSRank > RHSRank ? 1 : -1;
2003  }
2004
2005  // Otherwise, the LHS is signed and the RHS is unsigned or visa versa.
2006  if (LHSUnsigned) {
2007    // If the unsigned [LHS] type is larger, return it.
2008    if (LHSRank >= RHSRank)
2009      return 1;
2010
2011    // If the signed type can represent all values of the unsigned type, it
2012    // wins.  Because we are dealing with 2's complement and types that are
2013    // powers of two larger than each other, this is always safe.
2014    return -1;
2015  }
2016
2017  // If the unsigned [RHS] type is larger, return it.
2018  if (RHSRank >= LHSRank)
2019    return -1;
2020
2021  // If the signed type can represent all values of the unsigned type, it
2022  // wins.  Because we are dealing with 2's complement and types that are
2023  // powers of two larger than each other, this is always safe.
2024  return 1;
2025}
2026
2027// getCFConstantStringType - Return the type used for constant CFStrings.
2028QualType ASTContext::getCFConstantStringType() {
2029  if (!CFConstantStringTypeDecl) {
2030    CFConstantStringTypeDecl =
2031      RecordDecl::Create(*this, TagDecl::TK_struct, TUDecl, SourceLocation(),
2032                         &Idents.get("NSConstantString"));
2033    QualType FieldTypes[4];
2034
2035    // const int *isa;
2036    FieldTypes[0] = getPointerType(IntTy.getQualifiedType(QualType::Const));
2037    // int flags;
2038    FieldTypes[1] = IntTy;
2039    // const char *str;
2040    FieldTypes[2] = getPointerType(CharTy.getQualifiedType(QualType::Const));
2041    // long length;
2042    FieldTypes[3] = LongTy;
2043
2044    // Create fields
2045    for (unsigned i = 0; i < 4; ++i) {
2046      FieldDecl *Field = FieldDecl::Create(*this, CFConstantStringTypeDecl,
2047                                           SourceLocation(), 0,
2048                                           FieldTypes[i], /*BitWidth=*/0,
2049                                           /*Mutable=*/false);
2050      CFConstantStringTypeDecl->addDecl(*this, Field);
2051    }
2052
2053    CFConstantStringTypeDecl->completeDefinition(*this);
2054  }
2055
2056  return getTagDeclType(CFConstantStringTypeDecl);
2057}
2058
2059void ASTContext::setCFConstantStringType(QualType T) {
2060  const RecordType *Rec = T->getAsRecordType();
2061  assert(Rec && "Invalid CFConstantStringType");
2062  CFConstantStringTypeDecl = Rec->getDecl();
2063}
2064
2065QualType ASTContext::getObjCFastEnumerationStateType()
2066{
2067  if (!ObjCFastEnumerationStateTypeDecl) {
2068    ObjCFastEnumerationStateTypeDecl =
2069      RecordDecl::Create(*this, TagDecl::TK_struct, TUDecl, SourceLocation(),
2070                         &Idents.get("__objcFastEnumerationState"));
2071
2072    QualType FieldTypes[] = {
2073      UnsignedLongTy,
2074      getPointerType(ObjCIdType),
2075      getPointerType(UnsignedLongTy),
2076      getConstantArrayType(UnsignedLongTy,
2077                           llvm::APInt(32, 5), ArrayType::Normal, 0)
2078    };
2079
2080    for (size_t i = 0; i < 4; ++i) {
2081      FieldDecl *Field = FieldDecl::Create(*this,
2082                                           ObjCFastEnumerationStateTypeDecl,
2083                                           SourceLocation(), 0,
2084                                           FieldTypes[i], /*BitWidth=*/0,
2085                                           /*Mutable=*/false);
2086      ObjCFastEnumerationStateTypeDecl->addDecl(*this, Field);
2087    }
2088
2089    ObjCFastEnumerationStateTypeDecl->completeDefinition(*this);
2090  }
2091
2092  return getTagDeclType(ObjCFastEnumerationStateTypeDecl);
2093}
2094
2095void ASTContext::setObjCFastEnumerationStateType(QualType T) {
2096  const RecordType *Rec = T->getAsRecordType();
2097  assert(Rec && "Invalid ObjCFAstEnumerationStateType");
2098  ObjCFastEnumerationStateTypeDecl = Rec->getDecl();
2099}
2100
2101// This returns true if a type has been typedefed to BOOL:
2102// typedef <type> BOOL;
2103static bool isTypeTypedefedAsBOOL(QualType T) {
2104  if (const TypedefType *TT = dyn_cast<TypedefType>(T))
2105    if (IdentifierInfo *II = TT->getDecl()->getIdentifier())
2106      return II->isStr("BOOL");
2107
2108  return false;
2109}
2110
2111/// getObjCEncodingTypeSize returns size of type for objective-c encoding
2112/// purpose.
2113int ASTContext::getObjCEncodingTypeSize(QualType type) {
2114  uint64_t sz = getTypeSize(type);
2115
2116  // Make all integer and enum types at least as large as an int
2117  if (sz > 0 && type->isIntegralType())
2118    sz = std::max(sz, getTypeSize(IntTy));
2119  // Treat arrays as pointers, since that's how they're passed in.
2120  else if (type->isArrayType())
2121    sz = getTypeSize(VoidPtrTy);
2122  return sz / getTypeSize(CharTy);
2123}
2124
2125/// getObjCEncodingForMethodDecl - Return the encoded type for this method
2126/// declaration.
2127void ASTContext::getObjCEncodingForMethodDecl(const ObjCMethodDecl *Decl,
2128                                              std::string& S) {
2129  // FIXME: This is not very efficient.
2130  // Encode type qualifer, 'in', 'inout', etc. for the return type.
2131  getObjCEncodingForTypeQualifier(Decl->getObjCDeclQualifier(), S);
2132  // Encode result type.
2133  getObjCEncodingForType(Decl->getResultType(), S);
2134  // Compute size of all parameters.
2135  // Start with computing size of a pointer in number of bytes.
2136  // FIXME: There might(should) be a better way of doing this computation!
2137  SourceLocation Loc;
2138  int PtrSize = getTypeSize(VoidPtrTy) / getTypeSize(CharTy);
2139  // The first two arguments (self and _cmd) are pointers; account for
2140  // their size.
2141  int ParmOffset = 2 * PtrSize;
2142  for (ObjCMethodDecl::param_iterator PI = Decl->param_begin(),
2143       E = Decl->param_end(); PI != E; ++PI) {
2144    QualType PType = (*PI)->getType();
2145    int sz = getObjCEncodingTypeSize(PType);
2146    assert (sz > 0 && "getObjCEncodingForMethodDecl - Incomplete param type");
2147    ParmOffset += sz;
2148  }
2149  S += llvm::utostr(ParmOffset);
2150  S += "@0:";
2151  S += llvm::utostr(PtrSize);
2152
2153  // Argument types.
2154  ParmOffset = 2 * PtrSize;
2155  for (ObjCMethodDecl::param_iterator PI = Decl->param_begin(),
2156       E = Decl->param_end(); PI != E; ++PI) {
2157    ParmVarDecl *PVDecl = *PI;
2158    QualType PType = PVDecl->getOriginalType();
2159    if (const ArrayType *AT =
2160          dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
2161      // Use array's original type only if it has known number of
2162      // elements.
2163      if (!isa<ConstantArrayType>(AT))
2164        PType = PVDecl->getType();
2165    } else if (PType->isFunctionType())
2166      PType = PVDecl->getType();
2167    // Process argument qualifiers for user supplied arguments; such as,
2168    // 'in', 'inout', etc.
2169    getObjCEncodingForTypeQualifier(PVDecl->getObjCDeclQualifier(), S);
2170    getObjCEncodingForType(PType, S);
2171    S += llvm::utostr(ParmOffset);
2172    ParmOffset += getObjCEncodingTypeSize(PType);
2173  }
2174}
2175
2176/// getObjCEncodingForPropertyDecl - Return the encoded type for this
2177/// property declaration. If non-NULL, Container must be either an
2178/// ObjCCategoryImplDecl or ObjCImplementationDecl; it should only be
2179/// NULL when getting encodings for protocol properties.
2180/// Property attributes are stored as a comma-delimited C string. The simple
2181/// attributes readonly and bycopy are encoded as single characters. The
2182/// parametrized attributes, getter=name, setter=name, and ivar=name, are
2183/// encoded as single characters, followed by an identifier. Property types
2184/// are also encoded as a parametrized attribute. The characters used to encode
2185/// these attributes are defined by the following enumeration:
2186/// @code
2187/// enum PropertyAttributes {
2188/// kPropertyReadOnly = 'R',   // property is read-only.
2189/// kPropertyBycopy = 'C',     // property is a copy of the value last assigned
2190/// kPropertyByref = '&',  // property is a reference to the value last assigned
2191/// kPropertyDynamic = 'D',    // property is dynamic
2192/// kPropertyGetter = 'G',     // followed by getter selector name
2193/// kPropertySetter = 'S',     // followed by setter selector name
2194/// kPropertyInstanceVariable = 'V'  // followed by instance variable  name
2195/// kPropertyType = 't'              // followed by old-style type encoding.
2196/// kPropertyWeak = 'W'              // 'weak' property
2197/// kPropertyStrong = 'P'            // property GC'able
2198/// kPropertyNonAtomic = 'N'         // property non-atomic
2199/// };
2200/// @endcode
2201void ASTContext::getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD,
2202                                                const Decl *Container,
2203                                                std::string& S) {
2204  // Collect information from the property implementation decl(s).
2205  bool Dynamic = false;
2206  ObjCPropertyImplDecl *SynthesizePID = 0;
2207
2208  // FIXME: Duplicated code due to poor abstraction.
2209  if (Container) {
2210    if (const ObjCCategoryImplDecl *CID =
2211        dyn_cast<ObjCCategoryImplDecl>(Container)) {
2212      for (ObjCCategoryImplDecl::propimpl_iterator
2213             i = CID->propimpl_begin(*this), e = CID->propimpl_end(*this);
2214           i != e; ++i) {
2215        ObjCPropertyImplDecl *PID = *i;
2216        if (PID->getPropertyDecl() == PD) {
2217          if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) {
2218            Dynamic = true;
2219          } else {
2220            SynthesizePID = PID;
2221          }
2222        }
2223      }
2224    } else {
2225      const ObjCImplementationDecl *OID=cast<ObjCImplementationDecl>(Container);
2226      for (ObjCCategoryImplDecl::propimpl_iterator
2227             i = OID->propimpl_begin(*this), e = OID->propimpl_end(*this);
2228           i != e; ++i) {
2229        ObjCPropertyImplDecl *PID = *i;
2230        if (PID->getPropertyDecl() == PD) {
2231          if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) {
2232            Dynamic = true;
2233          } else {
2234            SynthesizePID = PID;
2235          }
2236        }
2237      }
2238    }
2239  }
2240
2241  // FIXME: This is not very efficient.
2242  S = "T";
2243
2244  // Encode result type.
2245  // GCC has some special rules regarding encoding of properties which
2246  // closely resembles encoding of ivars.
2247  getObjCEncodingForTypeImpl(PD->getType(), S, true, true, 0,
2248                             true /* outermost type */,
2249                             true /* encoding for property */);
2250
2251  if (PD->isReadOnly()) {
2252    S += ",R";
2253  } else {
2254    switch (PD->getSetterKind()) {
2255    case ObjCPropertyDecl::Assign: break;
2256    case ObjCPropertyDecl::Copy:   S += ",C"; break;
2257    case ObjCPropertyDecl::Retain: S += ",&"; break;
2258    }
2259  }
2260
2261  // It really isn't clear at all what this means, since properties
2262  // are "dynamic by default".
2263  if (Dynamic)
2264    S += ",D";
2265
2266  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_nonatomic)
2267    S += ",N";
2268
2269  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_getter) {
2270    S += ",G";
2271    S += PD->getGetterName().getAsString();
2272  }
2273
2274  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_setter) {
2275    S += ",S";
2276    S += PD->getSetterName().getAsString();
2277  }
2278
2279  if (SynthesizePID) {
2280    const ObjCIvarDecl *OID = SynthesizePID->getPropertyIvarDecl();
2281    S += ",V";
2282    S += OID->getNameAsString();
2283  }
2284
2285  // FIXME: OBJCGC: weak & strong
2286}
2287
2288/// getLegacyIntegralTypeEncoding -
2289/// Another legacy compatibility encoding: 32-bit longs are encoded as
2290/// 'l' or 'L' , but not always.  For typedefs, we need to use
2291/// 'i' or 'I' instead if encoding a struct field, or a pointer!
2292///
2293void ASTContext::getLegacyIntegralTypeEncoding (QualType &PointeeTy) const {
2294  if (dyn_cast<TypedefType>(PointeeTy.getTypePtr())) {
2295    if (const BuiltinType *BT = PointeeTy->getAsBuiltinType()) {
2296      if (BT->getKind() == BuiltinType::ULong &&
2297          ((const_cast<ASTContext *>(this))->getIntWidth(PointeeTy) == 32))
2298        PointeeTy = UnsignedIntTy;
2299      else
2300        if (BT->getKind() == BuiltinType::Long &&
2301            ((const_cast<ASTContext *>(this))->getIntWidth(PointeeTy) == 32))
2302          PointeeTy = IntTy;
2303    }
2304  }
2305}
2306
2307void ASTContext::getObjCEncodingForType(QualType T, std::string& S,
2308                                        const FieldDecl *Field) {
2309  // We follow the behavior of gcc, expanding structures which are
2310  // directly pointed to, and expanding embedded structures. Note that
2311  // these rules are sufficient to prevent recursive encoding of the
2312  // same type.
2313  getObjCEncodingForTypeImpl(T, S, true, true, Field,
2314                             true /* outermost type */);
2315}
2316
2317static void EncodeBitField(const ASTContext *Context, std::string& S,
2318                           const FieldDecl *FD) {
2319  const Expr *E = FD->getBitWidth();
2320  assert(E && "bitfield width not there - getObjCEncodingForTypeImpl");
2321  ASTContext *Ctx = const_cast<ASTContext*>(Context);
2322  unsigned N = E->EvaluateAsInt(*Ctx).getZExtValue();
2323  S += 'b';
2324  S += llvm::utostr(N);
2325}
2326
2327void ASTContext::getObjCEncodingForTypeImpl(QualType T, std::string& S,
2328                                            bool ExpandPointedToStructures,
2329                                            bool ExpandStructures,
2330                                            const FieldDecl *FD,
2331                                            bool OutermostType,
2332                                            bool EncodingProperty) {
2333  if (const BuiltinType *BT = T->getAsBuiltinType()) {
2334    if (FD && FD->isBitField()) {
2335      EncodeBitField(this, S, FD);
2336    }
2337    else {
2338      char encoding;
2339      switch (BT->getKind()) {
2340      default: assert(0 && "Unhandled builtin type kind");
2341      case BuiltinType::Void:       encoding = 'v'; break;
2342      case BuiltinType::Bool:       encoding = 'B'; break;
2343      case BuiltinType::Char_U:
2344      case BuiltinType::UChar:      encoding = 'C'; break;
2345      case BuiltinType::UShort:     encoding = 'S'; break;
2346      case BuiltinType::UInt:       encoding = 'I'; break;
2347      case BuiltinType::ULong:
2348          encoding =
2349            (const_cast<ASTContext *>(this))->getIntWidth(T) == 32 ? 'L' : 'Q';
2350          break;
2351      case BuiltinType::UInt128:    encoding = 'T'; break;
2352      case BuiltinType::ULongLong:  encoding = 'Q'; break;
2353      case BuiltinType::Char_S:
2354      case BuiltinType::SChar:      encoding = 'c'; break;
2355      case BuiltinType::Short:      encoding = 's'; break;
2356      case BuiltinType::Int:        encoding = 'i'; break;
2357      case BuiltinType::Long:
2358        encoding =
2359          (const_cast<ASTContext *>(this))->getIntWidth(T) == 32 ? 'l' : 'q';
2360        break;
2361      case BuiltinType::LongLong:   encoding = 'q'; break;
2362      case BuiltinType::Int128:     encoding = 't'; break;
2363      case BuiltinType::Float:      encoding = 'f'; break;
2364      case BuiltinType::Double:     encoding = 'd'; break;
2365      case BuiltinType::LongDouble: encoding = 'd'; break;
2366      }
2367
2368      S += encoding;
2369    }
2370  } else if (const ComplexType *CT = T->getAsComplexType()) {
2371    S += 'j';
2372    getObjCEncodingForTypeImpl(CT->getElementType(), S, false, false, 0, false,
2373                               false);
2374  } else if (T->isObjCQualifiedIdType()) {
2375    getObjCEncodingForTypeImpl(getObjCIdType(), S,
2376                               ExpandPointedToStructures,
2377                               ExpandStructures, FD);
2378    if (FD || EncodingProperty) {
2379      // Note that we do extended encoding of protocol qualifer list
2380      // Only when doing ivar or property encoding.
2381      const ObjCQualifiedIdType *QIDT = T->getAsObjCQualifiedIdType();
2382      S += '"';
2383      for (unsigned i =0; i < QIDT->getNumProtocols(); i++) {
2384        ObjCProtocolDecl *Proto = QIDT->getProtocols(i);
2385        S += '<';
2386        S += Proto->getNameAsString();
2387        S += '>';
2388      }
2389      S += '"';
2390    }
2391    return;
2392  }
2393  else if (const PointerType *PT = T->getAsPointerType()) {
2394    QualType PointeeTy = PT->getPointeeType();
2395    bool isReadOnly = false;
2396    // For historical/compatibility reasons, the read-only qualifier of the
2397    // pointee gets emitted _before_ the '^'.  The read-only qualifier of
2398    // the pointer itself gets ignored, _unless_ we are looking at a typedef!
2399    // Also, do not emit the 'r' for anything but the outermost type!
2400    if (dyn_cast<TypedefType>(T.getTypePtr())) {
2401      if (OutermostType && T.isConstQualified()) {
2402        isReadOnly = true;
2403        S += 'r';
2404      }
2405    }
2406    else if (OutermostType) {
2407      QualType P = PointeeTy;
2408      while (P->getAsPointerType())
2409        P = P->getAsPointerType()->getPointeeType();
2410      if (P.isConstQualified()) {
2411        isReadOnly = true;
2412        S += 'r';
2413      }
2414    }
2415    if (isReadOnly) {
2416      // Another legacy compatibility encoding. Some ObjC qualifier and type
2417      // combinations need to be rearranged.
2418      // Rewrite "in const" from "nr" to "rn"
2419      const char * s = S.c_str();
2420      int len = S.length();
2421      if (len >= 2 && s[len-2] == 'n' && s[len-1] == 'r') {
2422        std::string replace = "rn";
2423        S.replace(S.end()-2, S.end(), replace);
2424      }
2425    }
2426    if (isObjCIdStructType(PointeeTy)) {
2427      S += '@';
2428      return;
2429    }
2430    else if (PointeeTy->isObjCInterfaceType()) {
2431      if (!EncodingProperty &&
2432          isa<TypedefType>(PointeeTy.getTypePtr())) {
2433        // Another historical/compatibility reason.
2434        // We encode the underlying type which comes out as
2435        // {...};
2436        S += '^';
2437        getObjCEncodingForTypeImpl(PointeeTy, S,
2438                                   false, ExpandPointedToStructures,
2439                                   NULL);
2440        return;
2441      }
2442      S += '@';
2443      if (FD || EncodingProperty) {
2444        const ObjCInterfaceType *OIT =
2445                PointeeTy.getUnqualifiedType()->getAsObjCInterfaceType();
2446        ObjCInterfaceDecl *OI = OIT->getDecl();
2447        S += '"';
2448        S += OI->getNameAsCString();
2449        for (unsigned i =0; i < OIT->getNumProtocols(); i++) {
2450          ObjCProtocolDecl *Proto = OIT->getProtocol(i);
2451          S += '<';
2452          S += Proto->getNameAsString();
2453          S += '>';
2454        }
2455        S += '"';
2456      }
2457      return;
2458    } else if (isObjCClassStructType(PointeeTy)) {
2459      S += '#';
2460      return;
2461    } else if (isObjCSelType(PointeeTy)) {
2462      S += ':';
2463      return;
2464    }
2465
2466    if (PointeeTy->isCharType()) {
2467      // char pointer types should be encoded as '*' unless it is a
2468      // type that has been typedef'd to 'BOOL'.
2469      if (!isTypeTypedefedAsBOOL(PointeeTy)) {
2470        S += '*';
2471        return;
2472      }
2473    }
2474
2475    S += '^';
2476    getLegacyIntegralTypeEncoding(PointeeTy);
2477
2478    getObjCEncodingForTypeImpl(PointeeTy, S,
2479                               false, ExpandPointedToStructures,
2480                               NULL);
2481  } else if (const ArrayType *AT =
2482               // Ignore type qualifiers etc.
2483               dyn_cast<ArrayType>(T->getCanonicalTypeInternal())) {
2484    if (isa<IncompleteArrayType>(AT)) {
2485      // Incomplete arrays are encoded as a pointer to the array element.
2486      S += '^';
2487
2488      getObjCEncodingForTypeImpl(AT->getElementType(), S,
2489                                 false, ExpandStructures, FD);
2490    } else {
2491      S += '[';
2492
2493      if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
2494        S += llvm::utostr(CAT->getSize().getZExtValue());
2495      else {
2496        //Variable length arrays are encoded as a regular array with 0 elements.
2497        assert(isa<VariableArrayType>(AT) && "Unknown array type!");
2498        S += '0';
2499      }
2500
2501      getObjCEncodingForTypeImpl(AT->getElementType(), S,
2502                                 false, ExpandStructures, FD);
2503      S += ']';
2504    }
2505  } else if (T->getAsFunctionType()) {
2506    S += '?';
2507  } else if (const RecordType *RTy = T->getAsRecordType()) {
2508    RecordDecl *RDecl = RTy->getDecl();
2509    S += RDecl->isUnion() ? '(' : '{';
2510    // Anonymous structures print as '?'
2511    if (const IdentifierInfo *II = RDecl->getIdentifier()) {
2512      S += II->getName();
2513    } else {
2514      S += '?';
2515    }
2516    if (ExpandStructures) {
2517      S += '=';
2518      for (RecordDecl::field_iterator Field = RDecl->field_begin(*this),
2519                                   FieldEnd = RDecl->field_end(*this);
2520           Field != FieldEnd; ++Field) {
2521        if (FD) {
2522          S += '"';
2523          S += Field->getNameAsString();
2524          S += '"';
2525        }
2526
2527        // Special case bit-fields.
2528        if (Field->isBitField()) {
2529          getObjCEncodingForTypeImpl(Field->getType(), S, false, true,
2530                                     (*Field));
2531        } else {
2532          QualType qt = Field->getType();
2533          getLegacyIntegralTypeEncoding(qt);
2534          getObjCEncodingForTypeImpl(qt, S, false, true,
2535                                     FD);
2536        }
2537      }
2538    }
2539    S += RDecl->isUnion() ? ')' : '}';
2540  } else if (T->isEnumeralType()) {
2541    if (FD && FD->isBitField())
2542      EncodeBitField(this, S, FD);
2543    else
2544      S += 'i';
2545  } else if (T->isBlockPointerType()) {
2546    S += "@?"; // Unlike a pointer-to-function, which is "^?".
2547  } else if (T->isObjCInterfaceType()) {
2548    // @encode(class_name)
2549    ObjCInterfaceDecl *OI = T->getAsObjCInterfaceType()->getDecl();
2550    S += '{';
2551    const IdentifierInfo *II = OI->getIdentifier();
2552    S += II->getName();
2553    S += '=';
2554    llvm::SmallVector<FieldDecl*, 32> RecFields;
2555    CollectObjCIvars(OI, RecFields);
2556    for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
2557      if (RecFields[i]->isBitField())
2558        getObjCEncodingForTypeImpl(RecFields[i]->getType(), S, false, true,
2559                                   RecFields[i]);
2560      else
2561        getObjCEncodingForTypeImpl(RecFields[i]->getType(), S, false, true,
2562                                   FD);
2563    }
2564    S += '}';
2565  }
2566  else
2567    assert(0 && "@encode for type not implemented!");
2568}
2569
2570void ASTContext::getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT,
2571                                                 std::string& S) const {
2572  if (QT & Decl::OBJC_TQ_In)
2573    S += 'n';
2574  if (QT & Decl::OBJC_TQ_Inout)
2575    S += 'N';
2576  if (QT & Decl::OBJC_TQ_Out)
2577    S += 'o';
2578  if (QT & Decl::OBJC_TQ_Bycopy)
2579    S += 'O';
2580  if (QT & Decl::OBJC_TQ_Byref)
2581    S += 'R';
2582  if (QT & Decl::OBJC_TQ_Oneway)
2583    S += 'V';
2584}
2585
2586void ASTContext::setBuiltinVaListType(QualType T)
2587{
2588  assert(BuiltinVaListType.isNull() && "__builtin_va_list type already set!");
2589
2590  BuiltinVaListType = T;
2591}
2592
2593void ASTContext::setObjCIdType(QualType T)
2594{
2595  ObjCIdType = T;
2596
2597  const TypedefType *TT = T->getAsTypedefType();
2598  if (!TT)
2599    return;
2600
2601  TypedefDecl *TD = TT->getDecl();
2602
2603  // typedef struct objc_object *id;
2604  const PointerType *ptr = TD->getUnderlyingType()->getAsPointerType();
2605  // User error - caller will issue diagnostics.
2606  if (!ptr)
2607    return;
2608  const RecordType *rec = ptr->getPointeeType()->getAsStructureType();
2609  // User error - caller will issue diagnostics.
2610  if (!rec)
2611    return;
2612  IdStructType = rec;
2613}
2614
2615void ASTContext::setObjCSelType(QualType T)
2616{
2617  ObjCSelType = T;
2618
2619  const TypedefType *TT = T->getAsTypedefType();
2620  if (!TT)
2621    return;
2622  TypedefDecl *TD = TT->getDecl();
2623
2624  // typedef struct objc_selector *SEL;
2625  const PointerType *ptr = TD->getUnderlyingType()->getAsPointerType();
2626  if (!ptr)
2627    return;
2628  const RecordType *rec = ptr->getPointeeType()->getAsStructureType();
2629  if (!rec)
2630    return;
2631  SelStructType = rec;
2632}
2633
2634void ASTContext::setObjCProtoType(QualType QT)
2635{
2636  ObjCProtoType = QT;
2637}
2638
2639void ASTContext::setObjCClassType(QualType T)
2640{
2641  ObjCClassType = T;
2642
2643  const TypedefType *TT = T->getAsTypedefType();
2644  if (!TT)
2645    return;
2646  TypedefDecl *TD = TT->getDecl();
2647
2648  // typedef struct objc_class *Class;
2649  const PointerType *ptr = TD->getUnderlyingType()->getAsPointerType();
2650  assert(ptr && "'Class' incorrectly typed");
2651  const RecordType *rec = ptr->getPointeeType()->getAsStructureType();
2652  assert(rec && "'Class' incorrectly typed");
2653  ClassStructType = rec;
2654}
2655
2656void ASTContext::setObjCConstantStringInterface(ObjCInterfaceDecl *Decl) {
2657  assert(ObjCConstantStringType.isNull() &&
2658         "'NSConstantString' type already set!");
2659
2660  ObjCConstantStringType = getObjCInterfaceType(Decl);
2661}
2662
2663/// \brief Retrieve the template name that represents a qualified
2664/// template name such as \c std::vector.
2665TemplateName ASTContext::getQualifiedTemplateName(NestedNameSpecifier *NNS,
2666                                                  bool TemplateKeyword,
2667                                                  TemplateDecl *Template) {
2668  llvm::FoldingSetNodeID ID;
2669  QualifiedTemplateName::Profile(ID, NNS, TemplateKeyword, Template);
2670
2671  void *InsertPos = 0;
2672  QualifiedTemplateName *QTN =
2673    QualifiedTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
2674  if (!QTN) {
2675    QTN = new (*this,4) QualifiedTemplateName(NNS, TemplateKeyword, Template);
2676    QualifiedTemplateNames.InsertNode(QTN, InsertPos);
2677  }
2678
2679  return TemplateName(QTN);
2680}
2681
2682/// \brief Retrieve the template name that represents a dependent
2683/// template name such as \c MetaFun::template apply.
2684TemplateName ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
2685                                                  const IdentifierInfo *Name) {
2686  assert(NNS->isDependent() && "Nested name specifier must be dependent");
2687
2688  llvm::FoldingSetNodeID ID;
2689  DependentTemplateName::Profile(ID, NNS, Name);
2690
2691  void *InsertPos = 0;
2692  DependentTemplateName *QTN =
2693    DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
2694
2695  if (QTN)
2696    return TemplateName(QTN);
2697
2698  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
2699  if (CanonNNS == NNS) {
2700    QTN = new (*this,4) DependentTemplateName(NNS, Name);
2701  } else {
2702    TemplateName Canon = getDependentTemplateName(CanonNNS, Name);
2703    QTN = new (*this,4) DependentTemplateName(NNS, Name, Canon);
2704  }
2705
2706  DependentTemplateNames.InsertNode(QTN, InsertPos);
2707  return TemplateName(QTN);
2708}
2709
2710/// getFromTargetType - Given one of the integer types provided by
2711/// TargetInfo, produce the corresponding type. The unsigned @p Type
2712/// is actually a value of type @c TargetInfo::IntType.
2713QualType ASTContext::getFromTargetType(unsigned Type) const {
2714  switch (Type) {
2715  case TargetInfo::NoInt: return QualType();
2716  case TargetInfo::SignedShort: return ShortTy;
2717  case TargetInfo::UnsignedShort: return UnsignedShortTy;
2718  case TargetInfo::SignedInt: return IntTy;
2719  case TargetInfo::UnsignedInt: return UnsignedIntTy;
2720  case TargetInfo::SignedLong: return LongTy;
2721  case TargetInfo::UnsignedLong: return UnsignedLongTy;
2722  case TargetInfo::SignedLongLong: return LongLongTy;
2723  case TargetInfo::UnsignedLongLong: return UnsignedLongLongTy;
2724  }
2725
2726  assert(false && "Unhandled TargetInfo::IntType value");
2727  return QualType();
2728}
2729
2730//===----------------------------------------------------------------------===//
2731//                        Type Predicates.
2732//===----------------------------------------------------------------------===//
2733
2734/// isObjCNSObjectType - Return true if this is an NSObject object using
2735/// NSObject attribute on a c-style pointer type.
2736/// FIXME - Make it work directly on types.
2737///
2738bool ASTContext::isObjCNSObjectType(QualType Ty) const {
2739  if (TypedefType *TDT = dyn_cast<TypedefType>(Ty)) {
2740    if (TypedefDecl *TD = TDT->getDecl())
2741      if (TD->getAttr<ObjCNSObjectAttr>())
2742        return true;
2743  }
2744  return false;
2745}
2746
2747/// isObjCObjectPointerType - Returns true if type is an Objective-C pointer
2748/// to an object type.  This includes "id" and "Class" (two 'special' pointers
2749/// to struct), Interface* (pointer to ObjCInterfaceType) and id<P> (qualified
2750/// ID type).
2751bool ASTContext::isObjCObjectPointerType(QualType Ty) const {
2752  if (Ty->isObjCQualifiedIdType())
2753    return true;
2754
2755  // Blocks are objects.
2756  if (Ty->isBlockPointerType())
2757    return true;
2758
2759  // All other object types are pointers.
2760  const PointerType *PT = Ty->getAsPointerType();
2761  if (PT == 0)
2762    return false;
2763
2764  // If this a pointer to an interface (e.g. NSString*), it is ok.
2765  if (PT->getPointeeType()->isObjCInterfaceType() ||
2766      // If is has NSObject attribute, OK as well.
2767      isObjCNSObjectType(Ty))
2768    return true;
2769
2770  // Check to see if this is 'id' or 'Class', both of which are typedefs for
2771  // pointer types.  This looks for the typedef specifically, not for the
2772  // underlying type.  Iteratively strip off typedefs so that we can handle
2773  // typedefs of typedefs.
2774  while (TypedefType *TDT = dyn_cast<TypedefType>(Ty)) {
2775    if (Ty.getUnqualifiedType() == getObjCIdType() ||
2776        Ty.getUnqualifiedType() == getObjCClassType())
2777      return true;
2778
2779    Ty = TDT->getDecl()->getUnderlyingType();
2780  }
2781
2782  return false;
2783}
2784
2785/// getObjCGCAttr - Returns one of GCNone, Weak or Strong objc's
2786/// garbage collection attribute.
2787///
2788QualType::GCAttrTypes ASTContext::getObjCGCAttrKind(const QualType &Ty) const {
2789  QualType::GCAttrTypes GCAttrs = QualType::GCNone;
2790  if (getLangOptions().ObjC1 &&
2791      getLangOptions().getGCMode() != LangOptions::NonGC) {
2792    GCAttrs = Ty.getObjCGCAttr();
2793    // Default behavious under objective-c's gc is for objective-c pointers
2794    // (or pointers to them) be treated as though they were declared
2795    // as __strong.
2796    if (GCAttrs == QualType::GCNone) {
2797      if (isObjCObjectPointerType(Ty))
2798        GCAttrs = QualType::Strong;
2799      else if (Ty->isPointerType())
2800        return getObjCGCAttrKind(Ty->getAsPointerType()->getPointeeType());
2801    }
2802    // Non-pointers have none gc'able attribute regardless of the attribute
2803    // set on them.
2804    else if (!isObjCObjectPointerType(Ty) && !Ty->isPointerType())
2805      return QualType::GCNone;
2806  }
2807  return GCAttrs;
2808}
2809
2810//===----------------------------------------------------------------------===//
2811//                        Type Compatibility Testing
2812//===----------------------------------------------------------------------===//
2813
2814/// typesAreBlockCompatible - This routine is called when comparing two
2815/// block types. Types must be strictly compatible here. For example,
2816/// C unfortunately doesn't produce an error for the following:
2817///
2818///   int (*emptyArgFunc)();
2819///   int (*intArgList)(int) = emptyArgFunc;
2820///
2821/// For blocks, we will produce an error for the following (similar to C++):
2822///
2823///   int (^emptyArgBlock)();
2824///   int (^intArgBlock)(int) = emptyArgBlock;
2825///
2826/// FIXME: When the dust settles on this integration, fold this into mergeTypes.
2827///
2828bool ASTContext::typesAreBlockCompatible(QualType lhs, QualType rhs) {
2829  const FunctionType *lbase = lhs->getAsFunctionType();
2830  const FunctionType *rbase = rhs->getAsFunctionType();
2831  const FunctionProtoType *lproto = dyn_cast<FunctionProtoType>(lbase);
2832  const FunctionProtoType *rproto = dyn_cast<FunctionProtoType>(rbase);
2833  if (lproto && rproto == 0)
2834    return false;
2835  return !mergeTypes(lhs, rhs).isNull();
2836}
2837
2838/// areCompatVectorTypes - Return true if the two specified vector types are
2839/// compatible.
2840static bool areCompatVectorTypes(const VectorType *LHS,
2841                                 const VectorType *RHS) {
2842  assert(LHS->isCanonical() && RHS->isCanonical());
2843  return LHS->getElementType() == RHS->getElementType() &&
2844         LHS->getNumElements() == RHS->getNumElements();
2845}
2846
2847/// canAssignObjCInterfaces - Return true if the two interface types are
2848/// compatible for assignment from RHS to LHS.  This handles validation of any
2849/// protocol qualifiers on the LHS or RHS.
2850///
2851bool ASTContext::canAssignObjCInterfaces(const ObjCInterfaceType *LHS,
2852                                         const ObjCInterfaceType *RHS) {
2853  // Verify that the base decls are compatible: the RHS must be a subclass of
2854  // the LHS.
2855  if (!LHS->getDecl()->isSuperClassOf(RHS->getDecl()))
2856    return false;
2857
2858  // RHS must have a superset of the protocols in the LHS.  If the LHS is not
2859  // protocol qualified at all, then we are good.
2860  if (!isa<ObjCQualifiedInterfaceType>(LHS))
2861    return true;
2862
2863  // Okay, we know the LHS has protocol qualifiers.  If the RHS doesn't, then it
2864  // isn't a superset.
2865  if (!isa<ObjCQualifiedInterfaceType>(RHS))
2866    return true;  // FIXME: should return false!
2867
2868  // Finally, we must have two protocol-qualified interfaces.
2869  const ObjCQualifiedInterfaceType *LHSP =cast<ObjCQualifiedInterfaceType>(LHS);
2870  const ObjCQualifiedInterfaceType *RHSP =cast<ObjCQualifiedInterfaceType>(RHS);
2871
2872  // All LHS protocols must have a presence on the RHS.
2873  assert(LHSP->qual_begin() != LHSP->qual_end() && "Empty LHS protocol list?");
2874
2875  for (ObjCQualifiedInterfaceType::qual_iterator LHSPI = LHSP->qual_begin(),
2876                                                 LHSPE = LHSP->qual_end();
2877       LHSPI != LHSPE; LHSPI++) {
2878    bool RHSImplementsProtocol = false;
2879
2880    // If the RHS doesn't implement the protocol on the left, the types
2881    // are incompatible.
2882    for (ObjCQualifiedInterfaceType::qual_iterator RHSPI = RHSP->qual_begin(),
2883                                                   RHSPE = RHSP->qual_end();
2884         !RHSImplementsProtocol && (RHSPI != RHSPE); RHSPI++) {
2885      if ((*RHSPI)->lookupProtocolNamed((*LHSPI)->getIdentifier()))
2886        RHSImplementsProtocol = true;
2887    }
2888    // FIXME: For better diagnostics, consider passing back the protocol name.
2889    if (!RHSImplementsProtocol)
2890      return false;
2891  }
2892  // The RHS implements all protocols listed on the LHS.
2893  return true;
2894}
2895
2896bool ASTContext::areComparableObjCPointerTypes(QualType LHS, QualType RHS) {
2897  // get the "pointed to" types
2898  const PointerType *LHSPT = LHS->getAsPointerType();
2899  const PointerType *RHSPT = RHS->getAsPointerType();
2900
2901  if (!LHSPT || !RHSPT)
2902    return false;
2903
2904  QualType lhptee = LHSPT->getPointeeType();
2905  QualType rhptee = RHSPT->getPointeeType();
2906  const ObjCInterfaceType* LHSIface = lhptee->getAsObjCInterfaceType();
2907  const ObjCInterfaceType* RHSIface = rhptee->getAsObjCInterfaceType();
2908  // ID acts sort of like void* for ObjC interfaces
2909  if (LHSIface && isObjCIdStructType(rhptee))
2910    return true;
2911  if (RHSIface && isObjCIdStructType(lhptee))
2912    return true;
2913  if (!LHSIface || !RHSIface)
2914    return false;
2915  return canAssignObjCInterfaces(LHSIface, RHSIface) ||
2916         canAssignObjCInterfaces(RHSIface, LHSIface);
2917}
2918
2919/// typesAreCompatible - C99 6.7.3p9: For two qualified types to be compatible,
2920/// both shall have the identically qualified version of a compatible type.
2921/// C99 6.2.7p1: Two types have compatible types if their types are the
2922/// same. See 6.7.[2,3,5] for additional rules.
2923bool ASTContext::typesAreCompatible(QualType LHS, QualType RHS) {
2924  return !mergeTypes(LHS, RHS).isNull();
2925}
2926
2927QualType ASTContext::mergeFunctionTypes(QualType lhs, QualType rhs) {
2928  const FunctionType *lbase = lhs->getAsFunctionType();
2929  const FunctionType *rbase = rhs->getAsFunctionType();
2930  const FunctionProtoType *lproto = dyn_cast<FunctionProtoType>(lbase);
2931  const FunctionProtoType *rproto = dyn_cast<FunctionProtoType>(rbase);
2932  bool allLTypes = true;
2933  bool allRTypes = true;
2934
2935  // Check return type
2936  QualType retType = mergeTypes(lbase->getResultType(), rbase->getResultType());
2937  if (retType.isNull()) return QualType();
2938  if (getCanonicalType(retType) != getCanonicalType(lbase->getResultType()))
2939    allLTypes = false;
2940  if (getCanonicalType(retType) != getCanonicalType(rbase->getResultType()))
2941    allRTypes = false;
2942
2943  if (lproto && rproto) { // two C99 style function prototypes
2944    assert(!lproto->hasExceptionSpec() && !rproto->hasExceptionSpec() &&
2945           "C++ shouldn't be here");
2946    unsigned lproto_nargs = lproto->getNumArgs();
2947    unsigned rproto_nargs = rproto->getNumArgs();
2948
2949    // Compatible functions must have the same number of arguments
2950    if (lproto_nargs != rproto_nargs)
2951      return QualType();
2952
2953    // Variadic and non-variadic functions aren't compatible
2954    if (lproto->isVariadic() != rproto->isVariadic())
2955      return QualType();
2956
2957    if (lproto->getTypeQuals() != rproto->getTypeQuals())
2958      return QualType();
2959
2960    // Check argument compatibility
2961    llvm::SmallVector<QualType, 10> types;
2962    for (unsigned i = 0; i < lproto_nargs; i++) {
2963      QualType largtype = lproto->getArgType(i).getUnqualifiedType();
2964      QualType rargtype = rproto->getArgType(i).getUnqualifiedType();
2965      QualType argtype = mergeTypes(largtype, rargtype);
2966      if (argtype.isNull()) return QualType();
2967      types.push_back(argtype);
2968      if (getCanonicalType(argtype) != getCanonicalType(largtype))
2969        allLTypes = false;
2970      if (getCanonicalType(argtype) != getCanonicalType(rargtype))
2971        allRTypes = false;
2972    }
2973    if (allLTypes) return lhs;
2974    if (allRTypes) return rhs;
2975    return getFunctionType(retType, types.begin(), types.size(),
2976                           lproto->isVariadic(), lproto->getTypeQuals());
2977  }
2978
2979  if (lproto) allRTypes = false;
2980  if (rproto) allLTypes = false;
2981
2982  const FunctionProtoType *proto = lproto ? lproto : rproto;
2983  if (proto) {
2984    assert(!proto->hasExceptionSpec() && "C++ shouldn't be here");
2985    if (proto->isVariadic()) return QualType();
2986    // Check that the types are compatible with the types that
2987    // would result from default argument promotions (C99 6.7.5.3p15).
2988    // The only types actually affected are promotable integer
2989    // types and floats, which would be passed as a different
2990    // type depending on whether the prototype is visible.
2991    unsigned proto_nargs = proto->getNumArgs();
2992    for (unsigned i = 0; i < proto_nargs; ++i) {
2993      QualType argTy = proto->getArgType(i);
2994      if (argTy->isPromotableIntegerType() ||
2995          getCanonicalType(argTy).getUnqualifiedType() == FloatTy)
2996        return QualType();
2997    }
2998
2999    if (allLTypes) return lhs;
3000    if (allRTypes) return rhs;
3001    return getFunctionType(retType, proto->arg_type_begin(),
3002                           proto->getNumArgs(), lproto->isVariadic(),
3003                           lproto->getTypeQuals());
3004  }
3005
3006  if (allLTypes) return lhs;
3007  if (allRTypes) return rhs;
3008  return getFunctionNoProtoType(retType);
3009}
3010
3011QualType ASTContext::mergeTypes(QualType LHS, QualType RHS) {
3012  // C++ [expr]: If an expression initially has the type "reference to T", the
3013  // type is adjusted to "T" prior to any further analysis, the expression
3014  // designates the object or function denoted by the reference, and the
3015  // expression is an lvalue unless the reference is an rvalue reference and
3016  // the expression is a function call (possibly inside parentheses).
3017  // FIXME: C++ shouldn't be going through here!  The rules are different
3018  // enough that they should be handled separately.
3019  // FIXME: Merging of lvalue and rvalue references is incorrect. C++ *really*
3020  // shouldn't be going through here!
3021  if (const ReferenceType *RT = LHS->getAsReferenceType())
3022    LHS = RT->getPointeeType();
3023  if (const ReferenceType *RT = RHS->getAsReferenceType())
3024    RHS = RT->getPointeeType();
3025
3026  QualType LHSCan = getCanonicalType(LHS),
3027           RHSCan = getCanonicalType(RHS);
3028
3029  // If two types are identical, they are compatible.
3030  if (LHSCan == RHSCan)
3031    return LHS;
3032
3033  // If the qualifiers are different, the types aren't compatible
3034  // Note that we handle extended qualifiers later, in the
3035  // case for ExtQualType.
3036  if (LHSCan.getCVRQualifiers() != RHSCan.getCVRQualifiers())
3037    return QualType();
3038
3039  Type::TypeClass LHSClass = LHSCan.getUnqualifiedType()->getTypeClass();
3040  Type::TypeClass RHSClass = RHSCan.getUnqualifiedType()->getTypeClass();
3041
3042  // We want to consider the two function types to be the same for these
3043  // comparisons, just force one to the other.
3044  if (LHSClass == Type::FunctionProto) LHSClass = Type::FunctionNoProto;
3045  if (RHSClass == Type::FunctionProto) RHSClass = Type::FunctionNoProto;
3046
3047  // Same as above for arrays
3048  if (LHSClass == Type::VariableArray || LHSClass == Type::IncompleteArray)
3049    LHSClass = Type::ConstantArray;
3050  if (RHSClass == Type::VariableArray || RHSClass == Type::IncompleteArray)
3051    RHSClass = Type::ConstantArray;
3052
3053  // Canonicalize ExtVector -> Vector.
3054  if (LHSClass == Type::ExtVector) LHSClass = Type::Vector;
3055  if (RHSClass == Type::ExtVector) RHSClass = Type::Vector;
3056
3057  // Consider qualified interfaces and interfaces the same.
3058  if (LHSClass == Type::ObjCQualifiedInterface) LHSClass = Type::ObjCInterface;
3059  if (RHSClass == Type::ObjCQualifiedInterface) RHSClass = Type::ObjCInterface;
3060
3061  // If the canonical type classes don't match.
3062  if (LHSClass != RHSClass) {
3063    const ObjCInterfaceType* LHSIface = LHS->getAsObjCInterfaceType();
3064    const ObjCInterfaceType* RHSIface = RHS->getAsObjCInterfaceType();
3065
3066    // 'id' and 'Class' act sort of like void* for ObjC interfaces
3067    if (LHSIface && (isObjCIdStructType(RHS) || isObjCClassStructType(RHS)))
3068      return LHS;
3069    if (RHSIface && (isObjCIdStructType(LHS) || isObjCClassStructType(LHS)))
3070      return RHS;
3071
3072    // ID is compatible with all qualified id types.
3073    if (LHS->isObjCQualifiedIdType()) {
3074      if (const PointerType *PT = RHS->getAsPointerType()) {
3075        QualType pType = PT->getPointeeType();
3076        if (isObjCIdStructType(pType) || isObjCClassStructType(pType))
3077          return LHS;
3078        // FIXME: need to use ObjCQualifiedIdTypesAreCompatible(LHS, RHS, true).
3079        // Unfortunately, this API is part of Sema (which we don't have access
3080        // to. Need to refactor. The following check is insufficient, since we
3081        // need to make sure the class implements the protocol.
3082        if (pType->isObjCInterfaceType())
3083          return LHS;
3084      }
3085    }
3086    if (RHS->isObjCQualifiedIdType()) {
3087      if (const PointerType *PT = LHS->getAsPointerType()) {
3088        QualType pType = PT->getPointeeType();
3089        if (isObjCIdStructType(pType) || isObjCClassStructType(pType))
3090          return RHS;
3091        // FIXME: need to use ObjCQualifiedIdTypesAreCompatible(LHS, RHS, true).
3092        // Unfortunately, this API is part of Sema (which we don't have access
3093        // to. Need to refactor. The following check is insufficient, since we
3094        // need to make sure the class implements the protocol.
3095        if (pType->isObjCInterfaceType())
3096          return RHS;
3097      }
3098    }
3099    // C99 6.7.2.2p4: Each enumerated type shall be compatible with char,
3100    // a signed integer type, or an unsigned integer type.
3101    if (const EnumType* ETy = LHS->getAsEnumType()) {
3102      if (ETy->getDecl()->getIntegerType() == RHSCan.getUnqualifiedType())
3103        return RHS;
3104    }
3105    if (const EnumType* ETy = RHS->getAsEnumType()) {
3106      if (ETy->getDecl()->getIntegerType() == LHSCan.getUnqualifiedType())
3107        return LHS;
3108    }
3109
3110    return QualType();
3111  }
3112
3113  // The canonical type classes match.
3114  switch (LHSClass) {
3115#define TYPE(Class, Base)
3116#define ABSTRACT_TYPE(Class, Base)
3117#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
3118#define DEPENDENT_TYPE(Class, Base) case Type::Class:
3119#include "clang/AST/TypeNodes.def"
3120    assert(false && "Non-canonical and dependent types shouldn't get here");
3121    return QualType();
3122
3123  case Type::LValueReference:
3124  case Type::RValueReference:
3125  case Type::MemberPointer:
3126    assert(false && "C++ should never be in mergeTypes");
3127    return QualType();
3128
3129  case Type::IncompleteArray:
3130  case Type::VariableArray:
3131  case Type::FunctionProto:
3132  case Type::ExtVector:
3133  case Type::ObjCQualifiedInterface:
3134    assert(false && "Types are eliminated above");
3135    return QualType();
3136
3137  case Type::Pointer:
3138  {
3139    // Merge two pointer types, while trying to preserve typedef info
3140    QualType LHSPointee = LHS->getAsPointerType()->getPointeeType();
3141    QualType RHSPointee = RHS->getAsPointerType()->getPointeeType();
3142    QualType ResultType = mergeTypes(LHSPointee, RHSPointee);
3143    if (ResultType.isNull()) return QualType();
3144    if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
3145      return LHS;
3146    if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
3147      return RHS;
3148    return getPointerType(ResultType);
3149  }
3150  case Type::BlockPointer:
3151  {
3152    // Merge two block pointer types, while trying to preserve typedef info
3153    QualType LHSPointee = LHS->getAsBlockPointerType()->getPointeeType();
3154    QualType RHSPointee = RHS->getAsBlockPointerType()->getPointeeType();
3155    QualType ResultType = mergeTypes(LHSPointee, RHSPointee);
3156    if (ResultType.isNull()) return QualType();
3157    if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
3158      return LHS;
3159    if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
3160      return RHS;
3161    return getBlockPointerType(ResultType);
3162  }
3163  case Type::ConstantArray:
3164  {
3165    const ConstantArrayType* LCAT = getAsConstantArrayType(LHS);
3166    const ConstantArrayType* RCAT = getAsConstantArrayType(RHS);
3167    if (LCAT && RCAT && RCAT->getSize() != LCAT->getSize())
3168      return QualType();
3169
3170    QualType LHSElem = getAsArrayType(LHS)->getElementType();
3171    QualType RHSElem = getAsArrayType(RHS)->getElementType();
3172    QualType ResultType = mergeTypes(LHSElem, RHSElem);
3173    if (ResultType.isNull()) return QualType();
3174    if (LCAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
3175      return LHS;
3176    if (RCAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
3177      return RHS;
3178    if (LCAT) return getConstantArrayType(ResultType, LCAT->getSize(),
3179                                          ArrayType::ArraySizeModifier(), 0);
3180    if (RCAT) return getConstantArrayType(ResultType, RCAT->getSize(),
3181                                          ArrayType::ArraySizeModifier(), 0);
3182    const VariableArrayType* LVAT = getAsVariableArrayType(LHS);
3183    const VariableArrayType* RVAT = getAsVariableArrayType(RHS);
3184    if (LVAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
3185      return LHS;
3186    if (RVAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
3187      return RHS;
3188    if (LVAT) {
3189      // FIXME: This isn't correct! But tricky to implement because
3190      // the array's size has to be the size of LHS, but the type
3191      // has to be different.
3192      return LHS;
3193    }
3194    if (RVAT) {
3195      // FIXME: This isn't correct! But tricky to implement because
3196      // the array's size has to be the size of RHS, but the type
3197      // has to be different.
3198      return RHS;
3199    }
3200    if (getCanonicalType(LHSElem) == getCanonicalType(ResultType)) return LHS;
3201    if (getCanonicalType(RHSElem) == getCanonicalType(ResultType)) return RHS;
3202    return getIncompleteArrayType(ResultType, ArrayType::ArraySizeModifier(),0);
3203  }
3204  case Type::FunctionNoProto:
3205    return mergeFunctionTypes(LHS, RHS);
3206  case Type::Record:
3207  case Type::Enum:
3208    // FIXME: Why are these compatible?
3209    if (isObjCIdStructType(LHS) && isObjCClassStructType(RHS)) return LHS;
3210    if (isObjCClassStructType(LHS) && isObjCIdStructType(RHS)) return LHS;
3211    return QualType();
3212  case Type::Builtin:
3213    // Only exactly equal builtin types are compatible, which is tested above.
3214    return QualType();
3215  case Type::Complex:
3216    // Distinct complex types are incompatible.
3217    return QualType();
3218  case Type::Vector:
3219    // FIXME: The merged type should be an ExtVector!
3220    if (areCompatVectorTypes(LHS->getAsVectorType(), RHS->getAsVectorType()))
3221      return LHS;
3222    return QualType();
3223  case Type::ObjCInterface: {
3224    // Check if the interfaces are assignment compatible.
3225    // FIXME: This should be type compatibility, e.g. whether
3226    // "LHS x; RHS x;" at global scope is legal.
3227    const ObjCInterfaceType* LHSIface = LHS->getAsObjCInterfaceType();
3228    const ObjCInterfaceType* RHSIface = RHS->getAsObjCInterfaceType();
3229    if (LHSIface && RHSIface &&
3230        canAssignObjCInterfaces(LHSIface, RHSIface))
3231      return LHS;
3232
3233    return QualType();
3234  }
3235  case Type::ObjCQualifiedId:
3236    // Distinct qualified id's are not compatible.
3237    return QualType();
3238  case Type::FixedWidthInt:
3239    // Distinct fixed-width integers are not compatible.
3240    return QualType();
3241  case Type::ExtQual:
3242    // FIXME: ExtQual types can be compatible even if they're not
3243    // identical!
3244    return QualType();
3245    // First attempt at an implementation, but I'm not really sure it's
3246    // right...
3247#if 0
3248    ExtQualType* LQual = cast<ExtQualType>(LHSCan);
3249    ExtQualType* RQual = cast<ExtQualType>(RHSCan);
3250    if (LQual->getAddressSpace() != RQual->getAddressSpace() ||
3251        LQual->getObjCGCAttr() != RQual->getObjCGCAttr())
3252      return QualType();
3253    QualType LHSBase, RHSBase, ResultType, ResCanUnqual;
3254    LHSBase = QualType(LQual->getBaseType(), 0);
3255    RHSBase = QualType(RQual->getBaseType(), 0);
3256    ResultType = mergeTypes(LHSBase, RHSBase);
3257    if (ResultType.isNull()) return QualType();
3258    ResCanUnqual = getCanonicalType(ResultType).getUnqualifiedType();
3259    if (LHSCan.getUnqualifiedType() == ResCanUnqual)
3260      return LHS;
3261    if (RHSCan.getUnqualifiedType() == ResCanUnqual)
3262      return RHS;
3263    ResultType = getAddrSpaceQualType(ResultType, LQual->getAddressSpace());
3264    ResultType = getObjCGCQualType(ResultType, LQual->getObjCGCAttr());
3265    ResultType.setCVRQualifiers(LHSCan.getCVRQualifiers());
3266    return ResultType;
3267#endif
3268
3269  case Type::TemplateSpecialization:
3270    assert(false && "Dependent types have no size");
3271    break;
3272  }
3273
3274  return QualType();
3275}
3276
3277//===----------------------------------------------------------------------===//
3278//                         Integer Predicates
3279//===----------------------------------------------------------------------===//
3280
3281unsigned ASTContext::getIntWidth(QualType T) {
3282  if (T == BoolTy)
3283    return 1;
3284  if (FixedWidthIntType* FWIT = dyn_cast<FixedWidthIntType>(T)) {
3285    return FWIT->getWidth();
3286  }
3287  // For builtin types, just use the standard type sizing method
3288  return (unsigned)getTypeSize(T);
3289}
3290
3291QualType ASTContext::getCorrespondingUnsignedType(QualType T) {
3292  assert(T->isSignedIntegerType() && "Unexpected type");
3293  if (const EnumType* ETy = T->getAsEnumType())
3294    T = ETy->getDecl()->getIntegerType();
3295  const BuiltinType* BTy = T->getAsBuiltinType();
3296  assert (BTy && "Unexpected signed integer type");
3297  switch (BTy->getKind()) {
3298  case BuiltinType::Char_S:
3299  case BuiltinType::SChar:
3300    return UnsignedCharTy;
3301  case BuiltinType::Short:
3302    return UnsignedShortTy;
3303  case BuiltinType::Int:
3304    return UnsignedIntTy;
3305  case BuiltinType::Long:
3306    return UnsignedLongTy;
3307  case BuiltinType::LongLong:
3308    return UnsignedLongLongTy;
3309  case BuiltinType::Int128:
3310    return UnsignedInt128Ty;
3311  default:
3312    assert(0 && "Unexpected signed integer type");
3313    return QualType();
3314  }
3315}
3316
3317ExternalASTSource::~ExternalASTSource() { }
3318
3319void ExternalASTSource::PrintStats() { }
3320