ASTContext.cpp revision 7c3179cf463c3b3b8c21dbb955f933ba50b74f28
1//===--- ASTContext.cpp - Context to hold long-lived AST nodes ------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements the ASTContext interface.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/AST/ASTContext.h"
15#include "clang/AST/CharUnits.h"
16#include "clang/AST/DeclCXX.h"
17#include "clang/AST/DeclObjC.h"
18#include "clang/AST/DeclTemplate.h"
19#include "clang/AST/TypeLoc.h"
20#include "clang/AST/Expr.h"
21#include "clang/AST/ExprCXX.h"
22#include "clang/AST/ExternalASTSource.h"
23#include "clang/AST/ASTMutationListener.h"
24#include "clang/AST/RecordLayout.h"
25#include "clang/AST/Mangle.h"
26#include "clang/Basic/Builtins.h"
27#include "clang/Basic/SourceManager.h"
28#include "clang/Basic/TargetInfo.h"
29#include "llvm/ADT/SmallString.h"
30#include "llvm/ADT/StringExtras.h"
31#include "llvm/Support/MathExtras.h"
32#include "llvm/Support/raw_ostream.h"
33#include "CXXABI.h"
34
35using namespace clang;
36
37unsigned ASTContext::NumImplicitDefaultConstructors;
38unsigned ASTContext::NumImplicitDefaultConstructorsDeclared;
39unsigned ASTContext::NumImplicitCopyConstructors;
40unsigned ASTContext::NumImplicitCopyConstructorsDeclared;
41unsigned ASTContext::NumImplicitCopyAssignmentOperators;
42unsigned ASTContext::NumImplicitCopyAssignmentOperatorsDeclared;
43unsigned ASTContext::NumImplicitDestructors;
44unsigned ASTContext::NumImplicitDestructorsDeclared;
45
46enum FloatingRank {
47  FloatRank, DoubleRank, LongDoubleRank
48};
49
50void
51ASTContext::CanonicalTemplateTemplateParm::Profile(llvm::FoldingSetNodeID &ID,
52                                               TemplateTemplateParmDecl *Parm) {
53  ID.AddInteger(Parm->getDepth());
54  ID.AddInteger(Parm->getPosition());
55  ID.AddBoolean(Parm->isParameterPack());
56
57  TemplateParameterList *Params = Parm->getTemplateParameters();
58  ID.AddInteger(Params->size());
59  for (TemplateParameterList::const_iterator P = Params->begin(),
60                                          PEnd = Params->end();
61       P != PEnd; ++P) {
62    if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*P)) {
63      ID.AddInteger(0);
64      ID.AddBoolean(TTP->isParameterPack());
65      continue;
66    }
67
68    if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(*P)) {
69      ID.AddInteger(1);
70      ID.AddBoolean(NTTP->isParameterPack());
71      ID.AddPointer(NTTP->getType().getAsOpaquePtr());
72      if (NTTP->isExpandedParameterPack()) {
73        ID.AddBoolean(true);
74        ID.AddInteger(NTTP->getNumExpansionTypes());
75        for (unsigned I = 0, N = NTTP->getNumExpansionTypes(); I != N; ++I)
76          ID.AddPointer(NTTP->getExpansionType(I).getAsOpaquePtr());
77      } else
78        ID.AddBoolean(false);
79      continue;
80    }
81
82    TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(*P);
83    ID.AddInteger(2);
84    Profile(ID, TTP);
85  }
86}
87
88TemplateTemplateParmDecl *
89ASTContext::getCanonicalTemplateTemplateParmDecl(
90                                          TemplateTemplateParmDecl *TTP) const {
91  // Check if we already have a canonical template template parameter.
92  llvm::FoldingSetNodeID ID;
93  CanonicalTemplateTemplateParm::Profile(ID, TTP);
94  void *InsertPos = 0;
95  CanonicalTemplateTemplateParm *Canonical
96    = CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos);
97  if (Canonical)
98    return Canonical->getParam();
99
100  // Build a canonical template parameter list.
101  TemplateParameterList *Params = TTP->getTemplateParameters();
102  llvm::SmallVector<NamedDecl *, 4> CanonParams;
103  CanonParams.reserve(Params->size());
104  for (TemplateParameterList::const_iterator P = Params->begin(),
105                                          PEnd = Params->end();
106       P != PEnd; ++P) {
107    if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*P))
108      CanonParams.push_back(
109                  TemplateTypeParmDecl::Create(*this, getTranslationUnitDecl(),
110                                               SourceLocation(), TTP->getDepth(),
111                                               TTP->getIndex(), 0, false,
112                                               TTP->isParameterPack()));
113    else if (NonTypeTemplateParmDecl *NTTP
114             = dyn_cast<NonTypeTemplateParmDecl>(*P)) {
115      QualType T = getCanonicalType(NTTP->getType());
116      TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(T);
117      NonTypeTemplateParmDecl *Param;
118      if (NTTP->isExpandedParameterPack()) {
119        llvm::SmallVector<QualType, 2> ExpandedTypes;
120        llvm::SmallVector<TypeSourceInfo *, 2> ExpandedTInfos;
121        for (unsigned I = 0, N = NTTP->getNumExpansionTypes(); I != N; ++I) {
122          ExpandedTypes.push_back(getCanonicalType(NTTP->getExpansionType(I)));
123          ExpandedTInfos.push_back(
124                                getTrivialTypeSourceInfo(ExpandedTypes.back()));
125        }
126
127        Param = NonTypeTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
128                                                SourceLocation(),
129                                                NTTP->getDepth(),
130                                                NTTP->getPosition(), 0,
131                                                T,
132                                                TInfo,
133                                                ExpandedTypes.data(),
134                                                ExpandedTypes.size(),
135                                                ExpandedTInfos.data());
136      } else {
137        Param = NonTypeTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
138                                                SourceLocation(),
139                                                NTTP->getDepth(),
140                                                NTTP->getPosition(), 0,
141                                                T,
142                                                NTTP->isParameterPack(),
143                                                TInfo);
144      }
145      CanonParams.push_back(Param);
146
147    } else
148      CanonParams.push_back(getCanonicalTemplateTemplateParmDecl(
149                                           cast<TemplateTemplateParmDecl>(*P)));
150  }
151
152  TemplateTemplateParmDecl *CanonTTP
153    = TemplateTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
154                                       SourceLocation(), TTP->getDepth(),
155                                       TTP->getPosition(),
156                                       TTP->isParameterPack(),
157                                       0,
158                         TemplateParameterList::Create(*this, SourceLocation(),
159                                                       SourceLocation(),
160                                                       CanonParams.data(),
161                                                       CanonParams.size(),
162                                                       SourceLocation()));
163
164  // Get the new insert position for the node we care about.
165  Canonical = CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos);
166  assert(Canonical == 0 && "Shouldn't be in the map!");
167  (void)Canonical;
168
169  // Create the canonical template template parameter entry.
170  Canonical = new (*this) CanonicalTemplateTemplateParm(CanonTTP);
171  CanonTemplateTemplateParms.InsertNode(Canonical, InsertPos);
172  return CanonTTP;
173}
174
175CXXABI *ASTContext::createCXXABI(const TargetInfo &T) {
176  if (!LangOpts.CPlusPlus) return 0;
177
178  switch (T.getCXXABI()) {
179  case CXXABI_ARM:
180    return CreateARMCXXABI(*this);
181  case CXXABI_Itanium:
182    return CreateItaniumCXXABI(*this);
183  case CXXABI_Microsoft:
184    return CreateMicrosoftCXXABI(*this);
185  }
186  return 0;
187}
188
189ASTContext::ASTContext(const LangOptions& LOpts, SourceManager &SM,
190                       const TargetInfo &t,
191                       IdentifierTable &idents, SelectorTable &sels,
192                       Builtin::Context &builtins,
193                       unsigned size_reserve) :
194  TemplateSpecializationTypes(this_()),
195  DependentTemplateSpecializationTypes(this_()),
196  GlobalNestedNameSpecifier(0), IsInt128Installed(false),
197  CFConstantStringTypeDecl(0), NSConstantStringTypeDecl(0),
198  ObjCFastEnumerationStateTypeDecl(0), FILEDecl(0), jmp_bufDecl(0),
199  sigjmp_bufDecl(0), BlockDescriptorType(0), BlockDescriptorExtendedType(0),
200  cudaConfigureCallDecl(0),
201  NullTypeSourceInfo(QualType()),
202  SourceMgr(SM), LangOpts(LOpts), ABI(createCXXABI(t)), Target(t),
203  Idents(idents), Selectors(sels),
204  BuiltinInfo(builtins),
205  DeclarationNames(*this),
206  ExternalSource(0), Listener(0), PrintingPolicy(LOpts),
207  LastSDM(0, 0),
208  UniqueBlockByRefTypeID(0) {
209  ObjCIdRedefinitionType = QualType();
210  ObjCClassRedefinitionType = QualType();
211  ObjCSelRedefinitionType = QualType();
212  if (size_reserve > 0) Types.reserve(size_reserve);
213  TUDecl = TranslationUnitDecl::Create(*this);
214  InitBuiltinTypes();
215}
216
217ASTContext::~ASTContext() {
218  // Release the DenseMaps associated with DeclContext objects.
219  // FIXME: Is this the ideal solution?
220  ReleaseDeclContextMaps();
221
222  // Call all of the deallocation functions.
223  for (unsigned I = 0, N = Deallocations.size(); I != N; ++I)
224    Deallocations[I].first(Deallocations[I].second);
225
226  // Release all of the memory associated with overridden C++ methods.
227  for (llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::iterator
228         OM = OverriddenMethods.begin(), OMEnd = OverriddenMethods.end();
229       OM != OMEnd; ++OM)
230    OM->second.Destroy();
231
232  // ASTRecordLayout objects in ASTRecordLayouts must always be destroyed
233  // because they can contain DenseMaps.
234  for (llvm::DenseMap<const ObjCContainerDecl*,
235       const ASTRecordLayout*>::iterator
236       I = ObjCLayouts.begin(), E = ObjCLayouts.end(); I != E; )
237    // Increment in loop to prevent using deallocated memory.
238    if (ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second))
239      R->Destroy(*this);
240
241  for (llvm::DenseMap<const RecordDecl*, const ASTRecordLayout*>::iterator
242       I = ASTRecordLayouts.begin(), E = ASTRecordLayouts.end(); I != E; ) {
243    // Increment in loop to prevent using deallocated memory.
244    if (ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second))
245      R->Destroy(*this);
246  }
247
248  for (llvm::DenseMap<const Decl*, AttrVec*>::iterator A = DeclAttrs.begin(),
249                                                    AEnd = DeclAttrs.end();
250       A != AEnd; ++A)
251    A->second->~AttrVec();
252}
253
254void ASTContext::AddDeallocation(void (*Callback)(void*), void *Data) {
255  Deallocations.push_back(std::make_pair(Callback, Data));
256}
257
258void
259ASTContext::setExternalSource(llvm::OwningPtr<ExternalASTSource> &Source) {
260  ExternalSource.reset(Source.take());
261}
262
263void ASTContext::PrintStats() const {
264  fprintf(stderr, "*** AST Context Stats:\n");
265  fprintf(stderr, "  %d types total.\n", (int)Types.size());
266
267  unsigned counts[] = {
268#define TYPE(Name, Parent) 0,
269#define ABSTRACT_TYPE(Name, Parent)
270#include "clang/AST/TypeNodes.def"
271    0 // Extra
272  };
273
274  for (unsigned i = 0, e = Types.size(); i != e; ++i) {
275    Type *T = Types[i];
276    counts[(unsigned)T->getTypeClass()]++;
277  }
278
279  unsigned Idx = 0;
280  unsigned TotalBytes = 0;
281#define TYPE(Name, Parent)                                              \
282  if (counts[Idx])                                                      \
283    fprintf(stderr, "    %d %s types\n", (int)counts[Idx], #Name);      \
284  TotalBytes += counts[Idx] * sizeof(Name##Type);                       \
285  ++Idx;
286#define ABSTRACT_TYPE(Name, Parent)
287#include "clang/AST/TypeNodes.def"
288
289  fprintf(stderr, "Total bytes = %d\n", int(TotalBytes));
290
291  // Implicit special member functions.
292  fprintf(stderr, "  %u/%u implicit default constructors created\n",
293          NumImplicitDefaultConstructorsDeclared,
294          NumImplicitDefaultConstructors);
295  fprintf(stderr, "  %u/%u implicit copy constructors created\n",
296          NumImplicitCopyConstructorsDeclared,
297          NumImplicitCopyConstructors);
298  fprintf(stderr, "  %u/%u implicit copy assignment operators created\n",
299          NumImplicitCopyAssignmentOperatorsDeclared,
300          NumImplicitCopyAssignmentOperators);
301  fprintf(stderr, "  %u/%u implicit destructors created\n",
302          NumImplicitDestructorsDeclared, NumImplicitDestructors);
303
304  if (ExternalSource.get()) {
305    fprintf(stderr, "\n");
306    ExternalSource->PrintStats();
307  }
308
309  BumpAlloc.PrintStats();
310}
311
312
313void ASTContext::InitBuiltinType(CanQualType &R, BuiltinType::Kind K) {
314  BuiltinType *Ty = new (*this, TypeAlignment) BuiltinType(K);
315  R = CanQualType::CreateUnsafe(QualType(Ty, 0));
316  Types.push_back(Ty);
317}
318
319void ASTContext::InitBuiltinTypes() {
320  assert(VoidTy.isNull() && "Context reinitialized?");
321
322  // C99 6.2.5p19.
323  InitBuiltinType(VoidTy,              BuiltinType::Void);
324
325  // C99 6.2.5p2.
326  InitBuiltinType(BoolTy,              BuiltinType::Bool);
327  // C99 6.2.5p3.
328  if (LangOpts.CharIsSigned)
329    InitBuiltinType(CharTy,            BuiltinType::Char_S);
330  else
331    InitBuiltinType(CharTy,            BuiltinType::Char_U);
332  // C99 6.2.5p4.
333  InitBuiltinType(SignedCharTy,        BuiltinType::SChar);
334  InitBuiltinType(ShortTy,             BuiltinType::Short);
335  InitBuiltinType(IntTy,               BuiltinType::Int);
336  InitBuiltinType(LongTy,              BuiltinType::Long);
337  InitBuiltinType(LongLongTy,          BuiltinType::LongLong);
338
339  // C99 6.2.5p6.
340  InitBuiltinType(UnsignedCharTy,      BuiltinType::UChar);
341  InitBuiltinType(UnsignedShortTy,     BuiltinType::UShort);
342  InitBuiltinType(UnsignedIntTy,       BuiltinType::UInt);
343  InitBuiltinType(UnsignedLongTy,      BuiltinType::ULong);
344  InitBuiltinType(UnsignedLongLongTy,  BuiltinType::ULongLong);
345
346  // C99 6.2.5p10.
347  InitBuiltinType(FloatTy,             BuiltinType::Float);
348  InitBuiltinType(DoubleTy,            BuiltinType::Double);
349  InitBuiltinType(LongDoubleTy,        BuiltinType::LongDouble);
350
351  // GNU extension, 128-bit integers.
352  InitBuiltinType(Int128Ty,            BuiltinType::Int128);
353  InitBuiltinType(UnsignedInt128Ty,    BuiltinType::UInt128);
354
355  if (LangOpts.CPlusPlus) { // C++ 3.9.1p5
356    if (!LangOpts.ShortWChar)
357      InitBuiltinType(WCharTy,           BuiltinType::WChar_S);
358    else  // -fshort-wchar makes wchar_t be unsigned.
359      InitBuiltinType(WCharTy,           BuiltinType::WChar_U);
360  } else // C99
361    WCharTy = getFromTargetType(Target.getWCharType());
362
363  if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
364    InitBuiltinType(Char16Ty,           BuiltinType::Char16);
365  else // C99
366    Char16Ty = getFromTargetType(Target.getChar16Type());
367
368  if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
369    InitBuiltinType(Char32Ty,           BuiltinType::Char32);
370  else // C99
371    Char32Ty = getFromTargetType(Target.getChar32Type());
372
373  // Placeholder type for type-dependent expressions whose type is
374  // completely unknown. No code should ever check a type against
375  // DependentTy and users should never see it; however, it is here to
376  // help diagnose failures to properly check for type-dependent
377  // expressions.
378  InitBuiltinType(DependentTy,         BuiltinType::Dependent);
379
380  // Placeholder type for functions.
381  InitBuiltinType(OverloadTy,          BuiltinType::Overload);
382
383  // C99 6.2.5p11.
384  FloatComplexTy      = getComplexType(FloatTy);
385  DoubleComplexTy     = getComplexType(DoubleTy);
386  LongDoubleComplexTy = getComplexType(LongDoubleTy);
387
388  BuiltinVaListType = QualType();
389
390  // "Builtin" typedefs set by Sema::ActOnTranslationUnitScope().
391  ObjCIdTypedefType = QualType();
392  ObjCClassTypedefType = QualType();
393  ObjCSelTypedefType = QualType();
394
395  // Builtin types for 'id', 'Class', and 'SEL'.
396  InitBuiltinType(ObjCBuiltinIdTy, BuiltinType::ObjCId);
397  InitBuiltinType(ObjCBuiltinClassTy, BuiltinType::ObjCClass);
398  InitBuiltinType(ObjCBuiltinSelTy, BuiltinType::ObjCSel);
399
400  ObjCConstantStringType = QualType();
401
402  // void * type
403  VoidPtrTy = getPointerType(VoidTy);
404
405  // nullptr type (C++0x 2.14.7)
406  InitBuiltinType(NullPtrTy,           BuiltinType::NullPtr);
407}
408
409Diagnostic &ASTContext::getDiagnostics() const {
410  return SourceMgr.getDiagnostics();
411}
412
413AttrVec& ASTContext::getDeclAttrs(const Decl *D) {
414  AttrVec *&Result = DeclAttrs[D];
415  if (!Result) {
416    void *Mem = Allocate(sizeof(AttrVec));
417    Result = new (Mem) AttrVec;
418  }
419
420  return *Result;
421}
422
423/// \brief Erase the attributes corresponding to the given declaration.
424void ASTContext::eraseDeclAttrs(const Decl *D) {
425  llvm::DenseMap<const Decl*, AttrVec*>::iterator Pos = DeclAttrs.find(D);
426  if (Pos != DeclAttrs.end()) {
427    Pos->second->~AttrVec();
428    DeclAttrs.erase(Pos);
429  }
430}
431
432
433MemberSpecializationInfo *
434ASTContext::getInstantiatedFromStaticDataMember(const VarDecl *Var) {
435  assert(Var->isStaticDataMember() && "Not a static data member");
436  llvm::DenseMap<const VarDecl *, MemberSpecializationInfo *>::iterator Pos
437    = InstantiatedFromStaticDataMember.find(Var);
438  if (Pos == InstantiatedFromStaticDataMember.end())
439    return 0;
440
441  return Pos->second;
442}
443
444void
445ASTContext::setInstantiatedFromStaticDataMember(VarDecl *Inst, VarDecl *Tmpl,
446                                                TemplateSpecializationKind TSK,
447                                          SourceLocation PointOfInstantiation) {
448  assert(Inst->isStaticDataMember() && "Not a static data member");
449  assert(Tmpl->isStaticDataMember() && "Not a static data member");
450  assert(!InstantiatedFromStaticDataMember[Inst] &&
451         "Already noted what static data member was instantiated from");
452  InstantiatedFromStaticDataMember[Inst]
453    = new (*this) MemberSpecializationInfo(Tmpl, TSK, PointOfInstantiation);
454}
455
456NamedDecl *
457ASTContext::getInstantiatedFromUsingDecl(UsingDecl *UUD) {
458  llvm::DenseMap<UsingDecl *, NamedDecl *>::const_iterator Pos
459    = InstantiatedFromUsingDecl.find(UUD);
460  if (Pos == InstantiatedFromUsingDecl.end())
461    return 0;
462
463  return Pos->second;
464}
465
466void
467ASTContext::setInstantiatedFromUsingDecl(UsingDecl *Inst, NamedDecl *Pattern) {
468  assert((isa<UsingDecl>(Pattern) ||
469          isa<UnresolvedUsingValueDecl>(Pattern) ||
470          isa<UnresolvedUsingTypenameDecl>(Pattern)) &&
471         "pattern decl is not a using decl");
472  assert(!InstantiatedFromUsingDecl[Inst] && "pattern already exists");
473  InstantiatedFromUsingDecl[Inst] = Pattern;
474}
475
476UsingShadowDecl *
477ASTContext::getInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst) {
478  llvm::DenseMap<UsingShadowDecl*, UsingShadowDecl*>::const_iterator Pos
479    = InstantiatedFromUsingShadowDecl.find(Inst);
480  if (Pos == InstantiatedFromUsingShadowDecl.end())
481    return 0;
482
483  return Pos->second;
484}
485
486void
487ASTContext::setInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst,
488                                               UsingShadowDecl *Pattern) {
489  assert(!InstantiatedFromUsingShadowDecl[Inst] && "pattern already exists");
490  InstantiatedFromUsingShadowDecl[Inst] = Pattern;
491}
492
493FieldDecl *ASTContext::getInstantiatedFromUnnamedFieldDecl(FieldDecl *Field) {
494  llvm::DenseMap<FieldDecl *, FieldDecl *>::iterator Pos
495    = InstantiatedFromUnnamedFieldDecl.find(Field);
496  if (Pos == InstantiatedFromUnnamedFieldDecl.end())
497    return 0;
498
499  return Pos->second;
500}
501
502void ASTContext::setInstantiatedFromUnnamedFieldDecl(FieldDecl *Inst,
503                                                     FieldDecl *Tmpl) {
504  assert(!Inst->getDeclName() && "Instantiated field decl is not unnamed");
505  assert(!Tmpl->getDeclName() && "Template field decl is not unnamed");
506  assert(!InstantiatedFromUnnamedFieldDecl[Inst] &&
507         "Already noted what unnamed field was instantiated from");
508
509  InstantiatedFromUnnamedFieldDecl[Inst] = Tmpl;
510}
511
512ASTContext::overridden_cxx_method_iterator
513ASTContext::overridden_methods_begin(const CXXMethodDecl *Method) const {
514  llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
515    = OverriddenMethods.find(Method);
516  if (Pos == OverriddenMethods.end())
517    return 0;
518
519  return Pos->second.begin();
520}
521
522ASTContext::overridden_cxx_method_iterator
523ASTContext::overridden_methods_end(const CXXMethodDecl *Method) const {
524  llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
525    = OverriddenMethods.find(Method);
526  if (Pos == OverriddenMethods.end())
527    return 0;
528
529  return Pos->second.end();
530}
531
532unsigned
533ASTContext::overridden_methods_size(const CXXMethodDecl *Method) const {
534  llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
535    = OverriddenMethods.find(Method);
536  if (Pos == OverriddenMethods.end())
537    return 0;
538
539  return Pos->second.size();
540}
541
542void ASTContext::addOverriddenMethod(const CXXMethodDecl *Method,
543                                     const CXXMethodDecl *Overridden) {
544  OverriddenMethods[Method].push_back(Overridden);
545}
546
547//===----------------------------------------------------------------------===//
548//                         Type Sizing and Analysis
549//===----------------------------------------------------------------------===//
550
551/// getFloatTypeSemantics - Return the APFloat 'semantics' for the specified
552/// scalar floating point type.
553const llvm::fltSemantics &ASTContext::getFloatTypeSemantics(QualType T) const {
554  const BuiltinType *BT = T->getAs<BuiltinType>();
555  assert(BT && "Not a floating point type!");
556  switch (BT->getKind()) {
557  default: assert(0 && "Not a floating point type!");
558  case BuiltinType::Float:      return Target.getFloatFormat();
559  case BuiltinType::Double:     return Target.getDoubleFormat();
560  case BuiltinType::LongDouble: return Target.getLongDoubleFormat();
561  }
562}
563
564/// getDeclAlign - Return a conservative estimate of the alignment of the
565/// specified decl.  Note that bitfields do not have a valid alignment, so
566/// this method will assert on them.
567/// If @p RefAsPointee, references are treated like their underlying type
568/// (for alignof), else they're treated like pointers (for CodeGen).
569CharUnits ASTContext::getDeclAlign(const Decl *D, bool RefAsPointee) const {
570  unsigned Align = Target.getCharWidth();
571
572  bool UseAlignAttrOnly = false;
573  if (unsigned AlignFromAttr = D->getMaxAlignment()) {
574    Align = AlignFromAttr;
575
576    // __attribute__((aligned)) can increase or decrease alignment
577    // *except* on a struct or struct member, where it only increases
578    // alignment unless 'packed' is also specified.
579    //
580    // It is an error for [[align]] to decrease alignment, so we can
581    // ignore that possibility;  Sema should diagnose it.
582    if (isa<FieldDecl>(D)) {
583      UseAlignAttrOnly = D->hasAttr<PackedAttr>() ||
584        cast<FieldDecl>(D)->getParent()->hasAttr<PackedAttr>();
585    } else {
586      UseAlignAttrOnly = true;
587    }
588  }
589
590  // If we're using the align attribute only, just ignore everything
591  // else about the declaration and its type.
592  if (UseAlignAttrOnly) {
593    // do nothing
594
595  } else if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
596    QualType T = VD->getType();
597    if (const ReferenceType* RT = T->getAs<ReferenceType>()) {
598      if (RefAsPointee)
599        T = RT->getPointeeType();
600      else
601        T = getPointerType(RT->getPointeeType());
602    }
603    if (!T->isIncompleteType() && !T->isFunctionType()) {
604      // Adjust alignments of declarations with array type by the
605      // large-array alignment on the target.
606      unsigned MinWidth = Target.getLargeArrayMinWidth();
607      const ArrayType *arrayType;
608      if (MinWidth && (arrayType = getAsArrayType(T))) {
609        if (isa<VariableArrayType>(arrayType))
610          Align = std::max(Align, Target.getLargeArrayAlign());
611        else if (isa<ConstantArrayType>(arrayType) &&
612                 MinWidth <= getTypeSize(cast<ConstantArrayType>(arrayType)))
613          Align = std::max(Align, Target.getLargeArrayAlign());
614
615        // Walk through any array types while we're at it.
616        T = getBaseElementType(arrayType);
617      }
618      Align = std::max(Align, getPreferredTypeAlign(T.getTypePtr()));
619    }
620
621    // Fields can be subject to extra alignment constraints, like if
622    // the field is packed, the struct is packed, or the struct has a
623    // a max-field-alignment constraint (#pragma pack).  So calculate
624    // the actual alignment of the field within the struct, and then
625    // (as we're expected to) constrain that by the alignment of the type.
626    if (const FieldDecl *field = dyn_cast<FieldDecl>(VD)) {
627      // So calculate the alignment of the field.
628      const ASTRecordLayout &layout = getASTRecordLayout(field->getParent());
629
630      // Start with the record's overall alignment.
631      unsigned fieldAlign = toBits(layout.getAlignment());
632
633      // Use the GCD of that and the offset within the record.
634      uint64_t offset = layout.getFieldOffset(field->getFieldIndex());
635      if (offset > 0) {
636        // Alignment is always a power of 2, so the GCD will be a power of 2,
637        // which means we get to do this crazy thing instead of Euclid's.
638        uint64_t lowBitOfOffset = offset & (~offset + 1);
639        if (lowBitOfOffset < fieldAlign)
640          fieldAlign = static_cast<unsigned>(lowBitOfOffset);
641      }
642
643      Align = std::min(Align, fieldAlign);
644    }
645  }
646
647  return toCharUnitsFromBits(Align);
648}
649
650std::pair<CharUnits, CharUnits>
651ASTContext::getTypeInfoInChars(const Type *T) const {
652  std::pair<uint64_t, unsigned> Info = getTypeInfo(T);
653  return std::make_pair(toCharUnitsFromBits(Info.first),
654                        toCharUnitsFromBits(Info.second));
655}
656
657std::pair<CharUnits, CharUnits>
658ASTContext::getTypeInfoInChars(QualType T) const {
659  return getTypeInfoInChars(T.getTypePtr());
660}
661
662/// getTypeSize - Return the size of the specified type, in bits.  This method
663/// does not work on incomplete types.
664///
665/// FIXME: Pointers into different addr spaces could have different sizes and
666/// alignment requirements: getPointerInfo should take an AddrSpace, this
667/// should take a QualType, &c.
668std::pair<uint64_t, unsigned>
669ASTContext::getTypeInfo(const Type *T) const {
670  uint64_t Width=0;
671  unsigned Align=8;
672  switch (T->getTypeClass()) {
673#define TYPE(Class, Base)
674#define ABSTRACT_TYPE(Class, Base)
675#define NON_CANONICAL_TYPE(Class, Base)
676#define DEPENDENT_TYPE(Class, Base) case Type::Class:
677#include "clang/AST/TypeNodes.def"
678    assert(false && "Should not see dependent types");
679    break;
680
681  case Type::FunctionNoProto:
682  case Type::FunctionProto:
683    // GCC extension: alignof(function) = 32 bits
684    Width = 0;
685    Align = 32;
686    break;
687
688  case Type::IncompleteArray:
689  case Type::VariableArray:
690    Width = 0;
691    Align = getTypeAlign(cast<ArrayType>(T)->getElementType());
692    break;
693
694  case Type::ConstantArray: {
695    const ConstantArrayType *CAT = cast<ConstantArrayType>(T);
696
697    std::pair<uint64_t, unsigned> EltInfo = getTypeInfo(CAT->getElementType());
698    Width = EltInfo.first*CAT->getSize().getZExtValue();
699    Align = EltInfo.second;
700    break;
701  }
702  case Type::ExtVector:
703  case Type::Vector: {
704    const VectorType *VT = cast<VectorType>(T);
705    std::pair<uint64_t, unsigned> EltInfo = getTypeInfo(VT->getElementType());
706    Width = EltInfo.first*VT->getNumElements();
707    Align = Width;
708    // If the alignment is not a power of 2, round up to the next power of 2.
709    // This happens for non-power-of-2 length vectors.
710    if (Align & (Align-1)) {
711      Align = llvm::NextPowerOf2(Align);
712      Width = llvm::RoundUpToAlignment(Width, Align);
713    }
714    break;
715  }
716
717  case Type::Builtin:
718    switch (cast<BuiltinType>(T)->getKind()) {
719    default: assert(0 && "Unknown builtin type!");
720    case BuiltinType::Void:
721      // GCC extension: alignof(void) = 8 bits.
722      Width = 0;
723      Align = 8;
724      break;
725
726    case BuiltinType::Bool:
727      Width = Target.getBoolWidth();
728      Align = Target.getBoolAlign();
729      break;
730    case BuiltinType::Char_S:
731    case BuiltinType::Char_U:
732    case BuiltinType::UChar:
733    case BuiltinType::SChar:
734      Width = Target.getCharWidth();
735      Align = Target.getCharAlign();
736      break;
737    case BuiltinType::WChar_S:
738    case BuiltinType::WChar_U:
739      Width = Target.getWCharWidth();
740      Align = Target.getWCharAlign();
741      break;
742    case BuiltinType::Char16:
743      Width = Target.getChar16Width();
744      Align = Target.getChar16Align();
745      break;
746    case BuiltinType::Char32:
747      Width = Target.getChar32Width();
748      Align = Target.getChar32Align();
749      break;
750    case BuiltinType::UShort:
751    case BuiltinType::Short:
752      Width = Target.getShortWidth();
753      Align = Target.getShortAlign();
754      break;
755    case BuiltinType::UInt:
756    case BuiltinType::Int:
757      Width = Target.getIntWidth();
758      Align = Target.getIntAlign();
759      break;
760    case BuiltinType::ULong:
761    case BuiltinType::Long:
762      Width = Target.getLongWidth();
763      Align = Target.getLongAlign();
764      break;
765    case BuiltinType::ULongLong:
766    case BuiltinType::LongLong:
767      Width = Target.getLongLongWidth();
768      Align = Target.getLongLongAlign();
769      break;
770    case BuiltinType::Int128:
771    case BuiltinType::UInt128:
772      Width = 128;
773      Align = 128; // int128_t is 128-bit aligned on all targets.
774      break;
775    case BuiltinType::Float:
776      Width = Target.getFloatWidth();
777      Align = Target.getFloatAlign();
778      break;
779    case BuiltinType::Double:
780      Width = Target.getDoubleWidth();
781      Align = Target.getDoubleAlign();
782      break;
783    case BuiltinType::LongDouble:
784      Width = Target.getLongDoubleWidth();
785      Align = Target.getLongDoubleAlign();
786      break;
787    case BuiltinType::NullPtr:
788      Width = Target.getPointerWidth(0); // C++ 3.9.1p11: sizeof(nullptr_t)
789      Align = Target.getPointerAlign(0); //   == sizeof(void*)
790      break;
791    case BuiltinType::ObjCId:
792    case BuiltinType::ObjCClass:
793    case BuiltinType::ObjCSel:
794      Width = Target.getPointerWidth(0);
795      Align = Target.getPointerAlign(0);
796      break;
797    }
798    break;
799  case Type::ObjCObjectPointer:
800    Width = Target.getPointerWidth(0);
801    Align = Target.getPointerAlign(0);
802    break;
803  case Type::BlockPointer: {
804    unsigned AS = cast<BlockPointerType>(T)->getPointeeType().getAddressSpace();
805    Width = Target.getPointerWidth(AS);
806    Align = Target.getPointerAlign(AS);
807    break;
808  }
809  case Type::LValueReference:
810  case Type::RValueReference: {
811    // alignof and sizeof should never enter this code path here, so we go
812    // the pointer route.
813    unsigned AS = cast<ReferenceType>(T)->getPointeeType().getAddressSpace();
814    Width = Target.getPointerWidth(AS);
815    Align = Target.getPointerAlign(AS);
816    break;
817  }
818  case Type::Pointer: {
819    unsigned AS = cast<PointerType>(T)->getPointeeType().getAddressSpace();
820    Width = Target.getPointerWidth(AS);
821    Align = Target.getPointerAlign(AS);
822    break;
823  }
824  case Type::MemberPointer: {
825    const MemberPointerType *MPT = cast<MemberPointerType>(T);
826    std::pair<uint64_t, unsigned> PtrDiffInfo =
827      getTypeInfo(getPointerDiffType());
828    Width = PtrDiffInfo.first * ABI->getMemberPointerSize(MPT);
829    Align = PtrDiffInfo.second;
830    break;
831  }
832  case Type::Complex: {
833    // Complex types have the same alignment as their elements, but twice the
834    // size.
835    std::pair<uint64_t, unsigned> EltInfo =
836      getTypeInfo(cast<ComplexType>(T)->getElementType());
837    Width = EltInfo.first*2;
838    Align = EltInfo.second;
839    break;
840  }
841  case Type::ObjCObject:
842    return getTypeInfo(cast<ObjCObjectType>(T)->getBaseType().getTypePtr());
843  case Type::ObjCInterface: {
844    const ObjCInterfaceType *ObjCI = cast<ObjCInterfaceType>(T);
845    const ASTRecordLayout &Layout = getASTObjCInterfaceLayout(ObjCI->getDecl());
846    Width = toBits(Layout.getSize());
847    Align = toBits(Layout.getAlignment());
848    break;
849  }
850  case Type::Record:
851  case Type::Enum: {
852    const TagType *TT = cast<TagType>(T);
853
854    if (TT->getDecl()->isInvalidDecl()) {
855      Width = 1;
856      Align = 1;
857      break;
858    }
859
860    if (const EnumType *ET = dyn_cast<EnumType>(TT))
861      return getTypeInfo(ET->getDecl()->getIntegerType());
862
863    const RecordType *RT = cast<RecordType>(TT);
864    const ASTRecordLayout &Layout = getASTRecordLayout(RT->getDecl());
865    Width = toBits(Layout.getSize());
866    Align = toBits(Layout.getAlignment());
867    break;
868  }
869
870  case Type::SubstTemplateTypeParm:
871    return getTypeInfo(cast<SubstTemplateTypeParmType>(T)->
872                       getReplacementType().getTypePtr());
873
874  case Type::Auto: {
875    const AutoType *A = cast<AutoType>(T);
876    assert(A->isDeduced() && "Cannot request the size of a dependent type");
877    return getTypeInfo(A->getDeducedType().getTypePtr());
878  }
879
880  case Type::Paren:
881    return getTypeInfo(cast<ParenType>(T)->getInnerType().getTypePtr());
882
883  case Type::Typedef: {
884    const TypedefDecl *Typedef = cast<TypedefType>(T)->getDecl();
885    std::pair<uint64_t, unsigned> Info
886      = getTypeInfo(Typedef->getUnderlyingType().getTypePtr());
887    // If the typedef has an aligned attribute on it, it overrides any computed
888    // alignment we have.  This violates the GCC documentation (which says that
889    // attribute(aligned) can only round up) but matches its implementation.
890    if (unsigned AttrAlign = Typedef->getMaxAlignment())
891      Align = AttrAlign;
892    else
893      Align = Info.second;
894    Width = Info.first;
895    break;
896  }
897
898  case Type::TypeOfExpr:
899    return getTypeInfo(cast<TypeOfExprType>(T)->getUnderlyingExpr()->getType()
900                         .getTypePtr());
901
902  case Type::TypeOf:
903    return getTypeInfo(cast<TypeOfType>(T)->getUnderlyingType().getTypePtr());
904
905  case Type::Decltype:
906    return getTypeInfo(cast<DecltypeType>(T)->getUnderlyingExpr()->getType()
907                        .getTypePtr());
908
909  case Type::Elaborated:
910    return getTypeInfo(cast<ElaboratedType>(T)->getNamedType().getTypePtr());
911
912  case Type::Attributed:
913    return getTypeInfo(
914                  cast<AttributedType>(T)->getEquivalentType().getTypePtr());
915
916  case Type::TemplateSpecialization:
917    assert(getCanonicalType(T) != T &&
918           "Cannot request the size of a dependent type");
919    // FIXME: this is likely to be wrong once we support template
920    // aliases, since a template alias could refer to a typedef that
921    // has an __aligned__ attribute on it.
922    return getTypeInfo(getCanonicalType(T));
923  }
924
925  assert(Align && (Align & (Align-1)) == 0 && "Alignment must be power of 2");
926  return std::make_pair(Width, Align);
927}
928
929/// toCharUnitsFromBits - Convert a size in bits to a size in characters.
930CharUnits ASTContext::toCharUnitsFromBits(int64_t BitSize) const {
931  return CharUnits::fromQuantity(BitSize / getCharWidth());
932}
933
934/// toBits - Convert a size in characters to a size in characters.
935int64_t ASTContext::toBits(CharUnits CharSize) const {
936  return CharSize.getQuantity() * getCharWidth();
937}
938
939/// getTypeSizeInChars - Return the size of the specified type, in characters.
940/// This method does not work on incomplete types.
941CharUnits ASTContext::getTypeSizeInChars(QualType T) const {
942  return toCharUnitsFromBits(getTypeSize(T));
943}
944CharUnits ASTContext::getTypeSizeInChars(const Type *T) const {
945  return toCharUnitsFromBits(getTypeSize(T));
946}
947
948/// getTypeAlignInChars - Return the ABI-specified alignment of a type, in
949/// characters. This method does not work on incomplete types.
950CharUnits ASTContext::getTypeAlignInChars(QualType T) const {
951  return toCharUnitsFromBits(getTypeAlign(T));
952}
953CharUnits ASTContext::getTypeAlignInChars(const Type *T) const {
954  return toCharUnitsFromBits(getTypeAlign(T));
955}
956
957/// getPreferredTypeAlign - Return the "preferred" alignment of the specified
958/// type for the current target in bits.  This can be different than the ABI
959/// alignment in cases where it is beneficial for performance to overalign
960/// a data type.
961unsigned ASTContext::getPreferredTypeAlign(const Type *T) const {
962  unsigned ABIAlign = getTypeAlign(T);
963
964  // Double and long long should be naturally aligned if possible.
965  if (const ComplexType* CT = T->getAs<ComplexType>())
966    T = CT->getElementType().getTypePtr();
967  if (T->isSpecificBuiltinType(BuiltinType::Double) ||
968      T->isSpecificBuiltinType(BuiltinType::LongLong))
969    return std::max(ABIAlign, (unsigned)getTypeSize(T));
970
971  return ABIAlign;
972}
973
974/// ShallowCollectObjCIvars -
975/// Collect all ivars, including those synthesized, in the current class.
976///
977void ASTContext::ShallowCollectObjCIvars(const ObjCInterfaceDecl *OI,
978                            llvm::SmallVectorImpl<ObjCIvarDecl*> &Ivars) const {
979  // FIXME. This need be removed but there are two many places which
980  // assume const-ness of ObjCInterfaceDecl
981  ObjCInterfaceDecl *IDecl = const_cast<ObjCInterfaceDecl *>(OI);
982  for (ObjCIvarDecl *Iv = IDecl->all_declared_ivar_begin(); Iv;
983        Iv= Iv->getNextIvar())
984    Ivars.push_back(Iv);
985}
986
987/// DeepCollectObjCIvars -
988/// This routine first collects all declared, but not synthesized, ivars in
989/// super class and then collects all ivars, including those synthesized for
990/// current class. This routine is used for implementation of current class
991/// when all ivars, declared and synthesized are known.
992///
993void ASTContext::DeepCollectObjCIvars(const ObjCInterfaceDecl *OI,
994                                      bool leafClass,
995                            llvm::SmallVectorImpl<ObjCIvarDecl*> &Ivars) const {
996  if (const ObjCInterfaceDecl *SuperClass = OI->getSuperClass())
997    DeepCollectObjCIvars(SuperClass, false, Ivars);
998  if (!leafClass) {
999    for (ObjCInterfaceDecl::ivar_iterator I = OI->ivar_begin(),
1000         E = OI->ivar_end(); I != E; ++I)
1001      Ivars.push_back(*I);
1002  }
1003  else
1004    ShallowCollectObjCIvars(OI, Ivars);
1005}
1006
1007/// CollectInheritedProtocols - Collect all protocols in current class and
1008/// those inherited by it.
1009void ASTContext::CollectInheritedProtocols(const Decl *CDecl,
1010                          llvm::SmallPtrSet<ObjCProtocolDecl*, 8> &Protocols) {
1011  if (const ObjCInterfaceDecl *OI = dyn_cast<ObjCInterfaceDecl>(CDecl)) {
1012    // We can use protocol_iterator here instead of
1013    // all_referenced_protocol_iterator since we are walking all categories.
1014    for (ObjCInterfaceDecl::all_protocol_iterator P = OI->all_referenced_protocol_begin(),
1015         PE = OI->all_referenced_protocol_end(); P != PE; ++P) {
1016      ObjCProtocolDecl *Proto = (*P);
1017      Protocols.insert(Proto);
1018      for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
1019           PE = Proto->protocol_end(); P != PE; ++P) {
1020        Protocols.insert(*P);
1021        CollectInheritedProtocols(*P, Protocols);
1022      }
1023    }
1024
1025    // Categories of this Interface.
1026    for (const ObjCCategoryDecl *CDeclChain = OI->getCategoryList();
1027         CDeclChain; CDeclChain = CDeclChain->getNextClassCategory())
1028      CollectInheritedProtocols(CDeclChain, Protocols);
1029    if (ObjCInterfaceDecl *SD = OI->getSuperClass())
1030      while (SD) {
1031        CollectInheritedProtocols(SD, Protocols);
1032        SD = SD->getSuperClass();
1033      }
1034  } else if (const ObjCCategoryDecl *OC = dyn_cast<ObjCCategoryDecl>(CDecl)) {
1035    for (ObjCCategoryDecl::protocol_iterator P = OC->protocol_begin(),
1036         PE = OC->protocol_end(); P != PE; ++P) {
1037      ObjCProtocolDecl *Proto = (*P);
1038      Protocols.insert(Proto);
1039      for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
1040           PE = Proto->protocol_end(); P != PE; ++P)
1041        CollectInheritedProtocols(*P, Protocols);
1042    }
1043  } else if (const ObjCProtocolDecl *OP = dyn_cast<ObjCProtocolDecl>(CDecl)) {
1044    for (ObjCProtocolDecl::protocol_iterator P = OP->protocol_begin(),
1045         PE = OP->protocol_end(); P != PE; ++P) {
1046      ObjCProtocolDecl *Proto = (*P);
1047      Protocols.insert(Proto);
1048      for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
1049           PE = Proto->protocol_end(); P != PE; ++P)
1050        CollectInheritedProtocols(*P, Protocols);
1051    }
1052  }
1053}
1054
1055unsigned ASTContext::CountNonClassIvars(const ObjCInterfaceDecl *OI) const {
1056  unsigned count = 0;
1057  // Count ivars declared in class extension.
1058  for (const ObjCCategoryDecl *CDecl = OI->getFirstClassExtension(); CDecl;
1059       CDecl = CDecl->getNextClassExtension())
1060    count += CDecl->ivar_size();
1061
1062  // Count ivar defined in this class's implementation.  This
1063  // includes synthesized ivars.
1064  if (ObjCImplementationDecl *ImplDecl = OI->getImplementation())
1065    count += ImplDecl->ivar_size();
1066
1067  return count;
1068}
1069
1070/// \brief Get the implementation of ObjCInterfaceDecl,or NULL if none exists.
1071ObjCImplementationDecl *ASTContext::getObjCImplementation(ObjCInterfaceDecl *D) {
1072  llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
1073    I = ObjCImpls.find(D);
1074  if (I != ObjCImpls.end())
1075    return cast<ObjCImplementationDecl>(I->second);
1076  return 0;
1077}
1078/// \brief Get the implementation of ObjCCategoryDecl, or NULL if none exists.
1079ObjCCategoryImplDecl *ASTContext::getObjCImplementation(ObjCCategoryDecl *D) {
1080  llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
1081    I = ObjCImpls.find(D);
1082  if (I != ObjCImpls.end())
1083    return cast<ObjCCategoryImplDecl>(I->second);
1084  return 0;
1085}
1086
1087/// \brief Set the implementation of ObjCInterfaceDecl.
1088void ASTContext::setObjCImplementation(ObjCInterfaceDecl *IFaceD,
1089                           ObjCImplementationDecl *ImplD) {
1090  assert(IFaceD && ImplD && "Passed null params");
1091  ObjCImpls[IFaceD] = ImplD;
1092}
1093/// \brief Set the implementation of ObjCCategoryDecl.
1094void ASTContext::setObjCImplementation(ObjCCategoryDecl *CatD,
1095                           ObjCCategoryImplDecl *ImplD) {
1096  assert(CatD && ImplD && "Passed null params");
1097  ObjCImpls[CatD] = ImplD;
1098}
1099
1100/// \brief Get the copy initialization expression of VarDecl,or NULL if
1101/// none exists.
1102Expr *ASTContext::getBlockVarCopyInits(const VarDecl*VD) {
1103  assert(VD && "Passed null params");
1104  assert(VD->hasAttr<BlocksAttr>() &&
1105         "getBlockVarCopyInits - not __block var");
1106  llvm::DenseMap<const VarDecl*, Expr*>::iterator
1107    I = BlockVarCopyInits.find(VD);
1108  return (I != BlockVarCopyInits.end()) ? cast<Expr>(I->second) : 0;
1109}
1110
1111/// \brief Set the copy inialization expression of a block var decl.
1112void ASTContext::setBlockVarCopyInits(VarDecl*VD, Expr* Init) {
1113  assert(VD && Init && "Passed null params");
1114  assert(VD->hasAttr<BlocksAttr>() &&
1115         "setBlockVarCopyInits - not __block var");
1116  BlockVarCopyInits[VD] = Init;
1117}
1118
1119/// \brief Allocate an uninitialized TypeSourceInfo.
1120///
1121/// The caller should initialize the memory held by TypeSourceInfo using
1122/// the TypeLoc wrappers.
1123///
1124/// \param T the type that will be the basis for type source info. This type
1125/// should refer to how the declarator was written in source code, not to
1126/// what type semantic analysis resolved the declarator to.
1127TypeSourceInfo *ASTContext::CreateTypeSourceInfo(QualType T,
1128                                                 unsigned DataSize) const {
1129  if (!DataSize)
1130    DataSize = TypeLoc::getFullDataSizeForType(T);
1131  else
1132    assert(DataSize == TypeLoc::getFullDataSizeForType(T) &&
1133           "incorrect data size provided to CreateTypeSourceInfo!");
1134
1135  TypeSourceInfo *TInfo =
1136    (TypeSourceInfo*)BumpAlloc.Allocate(sizeof(TypeSourceInfo) + DataSize, 8);
1137  new (TInfo) TypeSourceInfo(T);
1138  return TInfo;
1139}
1140
1141TypeSourceInfo *ASTContext::getTrivialTypeSourceInfo(QualType T,
1142                                                     SourceLocation L) const {
1143  TypeSourceInfo *DI = CreateTypeSourceInfo(T);
1144  DI->getTypeLoc().initialize(const_cast<ASTContext &>(*this), L);
1145  return DI;
1146}
1147
1148const ASTRecordLayout &
1149ASTContext::getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D) const {
1150  return getObjCLayout(D, 0);
1151}
1152
1153const ASTRecordLayout &
1154ASTContext::getASTObjCImplementationLayout(
1155                                        const ObjCImplementationDecl *D) const {
1156  return getObjCLayout(D->getClassInterface(), D);
1157}
1158
1159//===----------------------------------------------------------------------===//
1160//                   Type creation/memoization methods
1161//===----------------------------------------------------------------------===//
1162
1163QualType
1164ASTContext::getExtQualType(const Type *baseType, Qualifiers quals) const {
1165  unsigned fastQuals = quals.getFastQualifiers();
1166  quals.removeFastQualifiers();
1167
1168  // Check if we've already instantiated this type.
1169  llvm::FoldingSetNodeID ID;
1170  ExtQuals::Profile(ID, baseType, quals);
1171  void *insertPos = 0;
1172  if (ExtQuals *eq = ExtQualNodes.FindNodeOrInsertPos(ID, insertPos)) {
1173    assert(eq->getQualifiers() == quals);
1174    return QualType(eq, fastQuals);
1175  }
1176
1177  // If the base type is not canonical, make the appropriate canonical type.
1178  QualType canon;
1179  if (!baseType->isCanonicalUnqualified()) {
1180    SplitQualType canonSplit = baseType->getCanonicalTypeInternal().split();
1181    canonSplit.second.addConsistentQualifiers(quals);
1182    canon = getExtQualType(canonSplit.first, canonSplit.second);
1183
1184    // Re-find the insert position.
1185    (void) ExtQualNodes.FindNodeOrInsertPos(ID, insertPos);
1186  }
1187
1188  ExtQuals *eq = new (*this, TypeAlignment) ExtQuals(baseType, canon, quals);
1189  ExtQualNodes.InsertNode(eq, insertPos);
1190  return QualType(eq, fastQuals);
1191}
1192
1193QualType
1194ASTContext::getAddrSpaceQualType(QualType T, unsigned AddressSpace) const {
1195  QualType CanT = getCanonicalType(T);
1196  if (CanT.getAddressSpace() == AddressSpace)
1197    return T;
1198
1199  // If we are composing extended qualifiers together, merge together
1200  // into one ExtQuals node.
1201  QualifierCollector Quals;
1202  const Type *TypeNode = Quals.strip(T);
1203
1204  // If this type already has an address space specified, it cannot get
1205  // another one.
1206  assert(!Quals.hasAddressSpace() &&
1207         "Type cannot be in multiple addr spaces!");
1208  Quals.addAddressSpace(AddressSpace);
1209
1210  return getExtQualType(TypeNode, Quals);
1211}
1212
1213QualType ASTContext::getObjCGCQualType(QualType T,
1214                                       Qualifiers::GC GCAttr) const {
1215  QualType CanT = getCanonicalType(T);
1216  if (CanT.getObjCGCAttr() == GCAttr)
1217    return T;
1218
1219  if (const PointerType *ptr = T->getAs<PointerType>()) {
1220    QualType Pointee = ptr->getPointeeType();
1221    if (Pointee->isAnyPointerType()) {
1222      QualType ResultType = getObjCGCQualType(Pointee, GCAttr);
1223      return getPointerType(ResultType);
1224    }
1225  }
1226
1227  // If we are composing extended qualifiers together, merge together
1228  // into one ExtQuals node.
1229  QualifierCollector Quals;
1230  const Type *TypeNode = Quals.strip(T);
1231
1232  // If this type already has an ObjCGC specified, it cannot get
1233  // another one.
1234  assert(!Quals.hasObjCGCAttr() &&
1235         "Type cannot have multiple ObjCGCs!");
1236  Quals.addObjCGCAttr(GCAttr);
1237
1238  return getExtQualType(TypeNode, Quals);
1239}
1240
1241const FunctionType *ASTContext::adjustFunctionType(const FunctionType *T,
1242                                                   FunctionType::ExtInfo Info) {
1243  if (T->getExtInfo() == Info)
1244    return T;
1245
1246  QualType Result;
1247  if (const FunctionNoProtoType *FNPT = dyn_cast<FunctionNoProtoType>(T)) {
1248    Result = getFunctionNoProtoType(FNPT->getResultType(), Info);
1249  } else {
1250    const FunctionProtoType *FPT = cast<FunctionProtoType>(T);
1251    FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
1252    EPI.ExtInfo = Info;
1253    Result = getFunctionType(FPT->getResultType(), FPT->arg_type_begin(),
1254                             FPT->getNumArgs(), EPI);
1255  }
1256
1257  return cast<FunctionType>(Result.getTypePtr());
1258}
1259
1260/// getComplexType - Return the uniqued reference to the type for a complex
1261/// number with the specified element type.
1262QualType ASTContext::getComplexType(QualType T) const {
1263  // Unique pointers, to guarantee there is only one pointer of a particular
1264  // structure.
1265  llvm::FoldingSetNodeID ID;
1266  ComplexType::Profile(ID, T);
1267
1268  void *InsertPos = 0;
1269  if (ComplexType *CT = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos))
1270    return QualType(CT, 0);
1271
1272  // If the pointee type isn't canonical, this won't be a canonical type either,
1273  // so fill in the canonical type field.
1274  QualType Canonical;
1275  if (!T.isCanonical()) {
1276    Canonical = getComplexType(getCanonicalType(T));
1277
1278    // Get the new insert position for the node we care about.
1279    ComplexType *NewIP = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos);
1280    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1281  }
1282  ComplexType *New = new (*this, TypeAlignment) ComplexType(T, Canonical);
1283  Types.push_back(New);
1284  ComplexTypes.InsertNode(New, InsertPos);
1285  return QualType(New, 0);
1286}
1287
1288/// getPointerType - Return the uniqued reference to the type for a pointer to
1289/// the specified type.
1290QualType ASTContext::getPointerType(QualType T) const {
1291  // Unique pointers, to guarantee there is only one pointer of a particular
1292  // structure.
1293  llvm::FoldingSetNodeID ID;
1294  PointerType::Profile(ID, T);
1295
1296  void *InsertPos = 0;
1297  if (PointerType *PT = PointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1298    return QualType(PT, 0);
1299
1300  // If the pointee type isn't canonical, this won't be a canonical type either,
1301  // so fill in the canonical type field.
1302  QualType Canonical;
1303  if (!T.isCanonical()) {
1304    Canonical = getPointerType(getCanonicalType(T));
1305
1306    // Get the new insert position for the node we care about.
1307    PointerType *NewIP = PointerTypes.FindNodeOrInsertPos(ID, InsertPos);
1308    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1309  }
1310  PointerType *New = new (*this, TypeAlignment) PointerType(T, Canonical);
1311  Types.push_back(New);
1312  PointerTypes.InsertNode(New, InsertPos);
1313  return QualType(New, 0);
1314}
1315
1316/// getBlockPointerType - Return the uniqued reference to the type for
1317/// a pointer to the specified block.
1318QualType ASTContext::getBlockPointerType(QualType T) const {
1319  assert(T->isFunctionType() && "block of function types only");
1320  // Unique pointers, to guarantee there is only one block of a particular
1321  // structure.
1322  llvm::FoldingSetNodeID ID;
1323  BlockPointerType::Profile(ID, T);
1324
1325  void *InsertPos = 0;
1326  if (BlockPointerType *PT =
1327        BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1328    return QualType(PT, 0);
1329
1330  // If the block pointee type isn't canonical, this won't be a canonical
1331  // type either so fill in the canonical type field.
1332  QualType Canonical;
1333  if (!T.isCanonical()) {
1334    Canonical = getBlockPointerType(getCanonicalType(T));
1335
1336    // Get the new insert position for the node we care about.
1337    BlockPointerType *NewIP =
1338      BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
1339    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1340  }
1341  BlockPointerType *New
1342    = new (*this, TypeAlignment) BlockPointerType(T, Canonical);
1343  Types.push_back(New);
1344  BlockPointerTypes.InsertNode(New, InsertPos);
1345  return QualType(New, 0);
1346}
1347
1348/// getLValueReferenceType - Return the uniqued reference to the type for an
1349/// lvalue reference to the specified type.
1350QualType
1351ASTContext::getLValueReferenceType(QualType T, bool SpelledAsLValue) const {
1352  // Unique pointers, to guarantee there is only one pointer of a particular
1353  // structure.
1354  llvm::FoldingSetNodeID ID;
1355  ReferenceType::Profile(ID, T, SpelledAsLValue);
1356
1357  void *InsertPos = 0;
1358  if (LValueReferenceType *RT =
1359        LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
1360    return QualType(RT, 0);
1361
1362  const ReferenceType *InnerRef = T->getAs<ReferenceType>();
1363
1364  // If the referencee type isn't canonical, this won't be a canonical type
1365  // either, so fill in the canonical type field.
1366  QualType Canonical;
1367  if (!SpelledAsLValue || InnerRef || !T.isCanonical()) {
1368    QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
1369    Canonical = getLValueReferenceType(getCanonicalType(PointeeType));
1370
1371    // Get the new insert position for the node we care about.
1372    LValueReferenceType *NewIP =
1373      LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
1374    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1375  }
1376
1377  LValueReferenceType *New
1378    = new (*this, TypeAlignment) LValueReferenceType(T, Canonical,
1379                                                     SpelledAsLValue);
1380  Types.push_back(New);
1381  LValueReferenceTypes.InsertNode(New, InsertPos);
1382
1383  return QualType(New, 0);
1384}
1385
1386/// getRValueReferenceType - Return the uniqued reference to the type for an
1387/// rvalue reference to the specified type.
1388QualType ASTContext::getRValueReferenceType(QualType T) const {
1389  // Unique pointers, to guarantee there is only one pointer of a particular
1390  // structure.
1391  llvm::FoldingSetNodeID ID;
1392  ReferenceType::Profile(ID, T, false);
1393
1394  void *InsertPos = 0;
1395  if (RValueReferenceType *RT =
1396        RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
1397    return QualType(RT, 0);
1398
1399  const ReferenceType *InnerRef = T->getAs<ReferenceType>();
1400
1401  // If the referencee type isn't canonical, this won't be a canonical type
1402  // either, so fill in the canonical type field.
1403  QualType Canonical;
1404  if (InnerRef || !T.isCanonical()) {
1405    QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
1406    Canonical = getRValueReferenceType(getCanonicalType(PointeeType));
1407
1408    // Get the new insert position for the node we care about.
1409    RValueReferenceType *NewIP =
1410      RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
1411    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1412  }
1413
1414  RValueReferenceType *New
1415    = new (*this, TypeAlignment) RValueReferenceType(T, Canonical);
1416  Types.push_back(New);
1417  RValueReferenceTypes.InsertNode(New, InsertPos);
1418  return QualType(New, 0);
1419}
1420
1421/// getMemberPointerType - Return the uniqued reference to the type for a
1422/// member pointer to the specified type, in the specified class.
1423QualType ASTContext::getMemberPointerType(QualType T, const Type *Cls) const {
1424  // Unique pointers, to guarantee there is only one pointer of a particular
1425  // structure.
1426  llvm::FoldingSetNodeID ID;
1427  MemberPointerType::Profile(ID, T, Cls);
1428
1429  void *InsertPos = 0;
1430  if (MemberPointerType *PT =
1431      MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1432    return QualType(PT, 0);
1433
1434  // If the pointee or class type isn't canonical, this won't be a canonical
1435  // type either, so fill in the canonical type field.
1436  QualType Canonical;
1437  if (!T.isCanonical() || !Cls->isCanonicalUnqualified()) {
1438    Canonical = getMemberPointerType(getCanonicalType(T),getCanonicalType(Cls));
1439
1440    // Get the new insert position for the node we care about.
1441    MemberPointerType *NewIP =
1442      MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
1443    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1444  }
1445  MemberPointerType *New
1446    = new (*this, TypeAlignment) MemberPointerType(T, Cls, Canonical);
1447  Types.push_back(New);
1448  MemberPointerTypes.InsertNode(New, InsertPos);
1449  return QualType(New, 0);
1450}
1451
1452/// getConstantArrayType - Return the unique reference to the type for an
1453/// array of the specified element type.
1454QualType ASTContext::getConstantArrayType(QualType EltTy,
1455                                          const llvm::APInt &ArySizeIn,
1456                                          ArrayType::ArraySizeModifier ASM,
1457                                          unsigned IndexTypeQuals) const {
1458  assert((EltTy->isDependentType() ||
1459          EltTy->isIncompleteType() || EltTy->isConstantSizeType()) &&
1460         "Constant array of VLAs is illegal!");
1461
1462  // Convert the array size into a canonical width matching the pointer size for
1463  // the target.
1464  llvm::APInt ArySize(ArySizeIn);
1465  ArySize =
1466    ArySize.zextOrTrunc(Target.getPointerWidth(EltTy.getAddressSpace()));
1467
1468  llvm::FoldingSetNodeID ID;
1469  ConstantArrayType::Profile(ID, EltTy, ArySize, ASM, IndexTypeQuals);
1470
1471  void *InsertPos = 0;
1472  if (ConstantArrayType *ATP =
1473      ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
1474    return QualType(ATP, 0);
1475
1476  // If the element type isn't canonical or has qualifiers, this won't
1477  // be a canonical type either, so fill in the canonical type field.
1478  QualType Canon;
1479  if (!EltTy.isCanonical() || EltTy.hasLocalQualifiers()) {
1480    SplitQualType canonSplit = getCanonicalType(EltTy).split();
1481    Canon = getConstantArrayType(QualType(canonSplit.first, 0), ArySize,
1482                                 ASM, IndexTypeQuals);
1483    Canon = getQualifiedType(Canon, canonSplit.second);
1484
1485    // Get the new insert position for the node we care about.
1486    ConstantArrayType *NewIP =
1487      ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
1488    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1489  }
1490
1491  ConstantArrayType *New = new(*this,TypeAlignment)
1492    ConstantArrayType(EltTy, Canon, ArySize, ASM, IndexTypeQuals);
1493  ConstantArrayTypes.InsertNode(New, InsertPos);
1494  Types.push_back(New);
1495  return QualType(New, 0);
1496}
1497
1498/// getVariableArrayDecayedType - Turns the given type, which may be
1499/// variably-modified, into the corresponding type with all the known
1500/// sizes replaced with [*].
1501QualType ASTContext::getVariableArrayDecayedType(QualType type) const {
1502  // Vastly most common case.
1503  if (!type->isVariablyModifiedType()) return type;
1504
1505  QualType result;
1506
1507  SplitQualType split = type.getSplitDesugaredType();
1508  const Type *ty = split.first;
1509  switch (ty->getTypeClass()) {
1510#define TYPE(Class, Base)
1511#define ABSTRACT_TYPE(Class, Base)
1512#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
1513#include "clang/AST/TypeNodes.def"
1514    llvm_unreachable("didn't desugar past all non-canonical types?");
1515
1516  // These types should never be variably-modified.
1517  case Type::Builtin:
1518  case Type::Complex:
1519  case Type::Vector:
1520  case Type::ExtVector:
1521  case Type::DependentSizedExtVector:
1522  case Type::ObjCObject:
1523  case Type::ObjCInterface:
1524  case Type::ObjCObjectPointer:
1525  case Type::Record:
1526  case Type::Enum:
1527  case Type::UnresolvedUsing:
1528  case Type::TypeOfExpr:
1529  case Type::TypeOf:
1530  case Type::Decltype:
1531  case Type::DependentName:
1532  case Type::InjectedClassName:
1533  case Type::TemplateSpecialization:
1534  case Type::DependentTemplateSpecialization:
1535  case Type::TemplateTypeParm:
1536  case Type::SubstTemplateTypeParmPack:
1537  case Type::Auto:
1538  case Type::PackExpansion:
1539    llvm_unreachable("type should never be variably-modified");
1540
1541  // These types can be variably-modified but should never need to
1542  // further decay.
1543  case Type::FunctionNoProto:
1544  case Type::FunctionProto:
1545  case Type::BlockPointer:
1546  case Type::MemberPointer:
1547    return type;
1548
1549  // These types can be variably-modified.  All these modifications
1550  // preserve structure except as noted by comments.
1551  // TODO: if we ever care about optimizing VLAs, there are no-op
1552  // optimizations available here.
1553  case Type::Pointer:
1554    result = getPointerType(getVariableArrayDecayedType(
1555                              cast<PointerType>(ty)->getPointeeType()));
1556    break;
1557
1558  case Type::LValueReference: {
1559    const LValueReferenceType *lv = cast<LValueReferenceType>(ty);
1560    result = getLValueReferenceType(
1561                 getVariableArrayDecayedType(lv->getPointeeType()),
1562                                    lv->isSpelledAsLValue());
1563    break;
1564  }
1565
1566  case Type::RValueReference: {
1567    const RValueReferenceType *lv = cast<RValueReferenceType>(ty);
1568    result = getRValueReferenceType(
1569                 getVariableArrayDecayedType(lv->getPointeeType()));
1570    break;
1571  }
1572
1573  case Type::ConstantArray: {
1574    const ConstantArrayType *cat = cast<ConstantArrayType>(ty);
1575    result = getConstantArrayType(
1576                 getVariableArrayDecayedType(cat->getElementType()),
1577                                  cat->getSize(),
1578                                  cat->getSizeModifier(),
1579                                  cat->getIndexTypeCVRQualifiers());
1580    break;
1581  }
1582
1583  case Type::DependentSizedArray: {
1584    const DependentSizedArrayType *dat = cast<DependentSizedArrayType>(ty);
1585    result = getDependentSizedArrayType(
1586                 getVariableArrayDecayedType(dat->getElementType()),
1587                                        dat->getSizeExpr(),
1588                                        dat->getSizeModifier(),
1589                                        dat->getIndexTypeCVRQualifiers(),
1590                                        dat->getBracketsRange());
1591    break;
1592  }
1593
1594  // Turn incomplete types into [*] types.
1595  case Type::IncompleteArray: {
1596    const IncompleteArrayType *iat = cast<IncompleteArrayType>(ty);
1597    result = getVariableArrayType(
1598                 getVariableArrayDecayedType(iat->getElementType()),
1599                                  /*size*/ 0,
1600                                  ArrayType::Normal,
1601                                  iat->getIndexTypeCVRQualifiers(),
1602                                  SourceRange());
1603    break;
1604  }
1605
1606  // Turn VLA types into [*] types.
1607  case Type::VariableArray: {
1608    const VariableArrayType *vat = cast<VariableArrayType>(ty);
1609    result = getVariableArrayType(
1610                 getVariableArrayDecayedType(vat->getElementType()),
1611                                  /*size*/ 0,
1612                                  ArrayType::Star,
1613                                  vat->getIndexTypeCVRQualifiers(),
1614                                  vat->getBracketsRange());
1615    break;
1616  }
1617  }
1618
1619  // Apply the top-level qualifiers from the original.
1620  return getQualifiedType(result, split.second);
1621}
1622
1623/// getVariableArrayType - Returns a non-unique reference to the type for a
1624/// variable array of the specified element type.
1625QualType ASTContext::getVariableArrayType(QualType EltTy,
1626                                          Expr *NumElts,
1627                                          ArrayType::ArraySizeModifier ASM,
1628                                          unsigned IndexTypeQuals,
1629                                          SourceRange Brackets) const {
1630  // Since we don't unique expressions, it isn't possible to unique VLA's
1631  // that have an expression provided for their size.
1632  QualType Canon;
1633
1634  // Be sure to pull qualifiers off the element type.
1635  if (!EltTy.isCanonical() || EltTy.hasLocalQualifiers()) {
1636    SplitQualType canonSplit = getCanonicalType(EltTy).split();
1637    Canon = getVariableArrayType(QualType(canonSplit.first, 0), NumElts, ASM,
1638                                 IndexTypeQuals, Brackets);
1639    Canon = getQualifiedType(Canon, canonSplit.second);
1640  }
1641
1642  VariableArrayType *New = new(*this, TypeAlignment)
1643    VariableArrayType(EltTy, Canon, NumElts, ASM, IndexTypeQuals, Brackets);
1644
1645  VariableArrayTypes.push_back(New);
1646  Types.push_back(New);
1647  return QualType(New, 0);
1648}
1649
1650/// getDependentSizedArrayType - Returns a non-unique reference to
1651/// the type for a dependently-sized array of the specified element
1652/// type.
1653QualType ASTContext::getDependentSizedArrayType(QualType elementType,
1654                                                Expr *numElements,
1655                                                ArrayType::ArraySizeModifier ASM,
1656                                                unsigned elementTypeQuals,
1657                                                SourceRange brackets) const {
1658  assert((!numElements || numElements->isTypeDependent() ||
1659          numElements->isValueDependent()) &&
1660         "Size must be type- or value-dependent!");
1661
1662  // Dependently-sized array types that do not have a specified number
1663  // of elements will have their sizes deduced from a dependent
1664  // initializer.  We do no canonicalization here at all, which is okay
1665  // because they can't be used in most locations.
1666  if (!numElements) {
1667    DependentSizedArrayType *newType
1668      = new (*this, TypeAlignment)
1669          DependentSizedArrayType(*this, elementType, QualType(),
1670                                  numElements, ASM, elementTypeQuals,
1671                                  brackets);
1672    Types.push_back(newType);
1673    return QualType(newType, 0);
1674  }
1675
1676  // Otherwise, we actually build a new type every time, but we
1677  // also build a canonical type.
1678
1679  SplitQualType canonElementType = getCanonicalType(elementType).split();
1680
1681  void *insertPos = 0;
1682  llvm::FoldingSetNodeID ID;
1683  DependentSizedArrayType::Profile(ID, *this,
1684                                   QualType(canonElementType.first, 0),
1685                                   ASM, elementTypeQuals, numElements);
1686
1687  // Look for an existing type with these properties.
1688  DependentSizedArrayType *canonTy =
1689    DependentSizedArrayTypes.FindNodeOrInsertPos(ID, insertPos);
1690
1691  // If we don't have one, build one.
1692  if (!canonTy) {
1693    canonTy = new (*this, TypeAlignment)
1694      DependentSizedArrayType(*this, QualType(canonElementType.first, 0),
1695                              QualType(), numElements, ASM, elementTypeQuals,
1696                              brackets);
1697    DependentSizedArrayTypes.InsertNode(canonTy, insertPos);
1698    Types.push_back(canonTy);
1699  }
1700
1701  // Apply qualifiers from the element type to the array.
1702  QualType canon = getQualifiedType(QualType(canonTy,0),
1703                                    canonElementType.second);
1704
1705  // If we didn't need extra canonicalization for the element type,
1706  // then just use that as our result.
1707  if (QualType(canonElementType.first, 0) == elementType)
1708    return canon;
1709
1710  // Otherwise, we need to build a type which follows the spelling
1711  // of the element type.
1712  DependentSizedArrayType *sugaredType
1713    = new (*this, TypeAlignment)
1714        DependentSizedArrayType(*this, elementType, canon, numElements,
1715                                ASM, elementTypeQuals, brackets);
1716  Types.push_back(sugaredType);
1717  return QualType(sugaredType, 0);
1718}
1719
1720QualType ASTContext::getIncompleteArrayType(QualType elementType,
1721                                            ArrayType::ArraySizeModifier ASM,
1722                                            unsigned elementTypeQuals) const {
1723  llvm::FoldingSetNodeID ID;
1724  IncompleteArrayType::Profile(ID, elementType, ASM, elementTypeQuals);
1725
1726  void *insertPos = 0;
1727  if (IncompleteArrayType *iat =
1728       IncompleteArrayTypes.FindNodeOrInsertPos(ID, insertPos))
1729    return QualType(iat, 0);
1730
1731  // If the element type isn't canonical, this won't be a canonical type
1732  // either, so fill in the canonical type field.  We also have to pull
1733  // qualifiers off the element type.
1734  QualType canon;
1735
1736  if (!elementType.isCanonical() || elementType.hasLocalQualifiers()) {
1737    SplitQualType canonSplit = getCanonicalType(elementType).split();
1738    canon = getIncompleteArrayType(QualType(canonSplit.first, 0),
1739                                   ASM, elementTypeQuals);
1740    canon = getQualifiedType(canon, canonSplit.second);
1741
1742    // Get the new insert position for the node we care about.
1743    IncompleteArrayType *existing =
1744      IncompleteArrayTypes.FindNodeOrInsertPos(ID, insertPos);
1745    assert(!existing && "Shouldn't be in the map!"); (void) existing;
1746  }
1747
1748  IncompleteArrayType *newType = new (*this, TypeAlignment)
1749    IncompleteArrayType(elementType, canon, ASM, elementTypeQuals);
1750
1751  IncompleteArrayTypes.InsertNode(newType, insertPos);
1752  Types.push_back(newType);
1753  return QualType(newType, 0);
1754}
1755
1756/// getVectorType - Return the unique reference to a vector type of
1757/// the specified element type and size. VectorType must be a built-in type.
1758QualType ASTContext::getVectorType(QualType vecType, unsigned NumElts,
1759                                   VectorType::VectorKind VecKind) const {
1760  assert(vecType->isBuiltinType());
1761
1762  // Check if we've already instantiated a vector of this type.
1763  llvm::FoldingSetNodeID ID;
1764  VectorType::Profile(ID, vecType, NumElts, Type::Vector, VecKind);
1765
1766  void *InsertPos = 0;
1767  if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
1768    return QualType(VTP, 0);
1769
1770  // If the element type isn't canonical, this won't be a canonical type either,
1771  // so fill in the canonical type field.
1772  QualType Canonical;
1773  if (!vecType.isCanonical()) {
1774    Canonical = getVectorType(getCanonicalType(vecType), NumElts, VecKind);
1775
1776    // Get the new insert position for the node we care about.
1777    VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
1778    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1779  }
1780  VectorType *New = new (*this, TypeAlignment)
1781    VectorType(vecType, NumElts, Canonical, VecKind);
1782  VectorTypes.InsertNode(New, InsertPos);
1783  Types.push_back(New);
1784  return QualType(New, 0);
1785}
1786
1787/// getExtVectorType - Return the unique reference to an extended vector type of
1788/// the specified element type and size. VectorType must be a built-in type.
1789QualType
1790ASTContext::getExtVectorType(QualType vecType, unsigned NumElts) const {
1791  assert(vecType->isBuiltinType());
1792
1793  // Check if we've already instantiated a vector of this type.
1794  llvm::FoldingSetNodeID ID;
1795  VectorType::Profile(ID, vecType, NumElts, Type::ExtVector,
1796                      VectorType::GenericVector);
1797  void *InsertPos = 0;
1798  if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
1799    return QualType(VTP, 0);
1800
1801  // If the element type isn't canonical, this won't be a canonical type either,
1802  // so fill in the canonical type field.
1803  QualType Canonical;
1804  if (!vecType.isCanonical()) {
1805    Canonical = getExtVectorType(getCanonicalType(vecType), NumElts);
1806
1807    // Get the new insert position for the node we care about.
1808    VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
1809    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1810  }
1811  ExtVectorType *New = new (*this, TypeAlignment)
1812    ExtVectorType(vecType, NumElts, Canonical);
1813  VectorTypes.InsertNode(New, InsertPos);
1814  Types.push_back(New);
1815  return QualType(New, 0);
1816}
1817
1818QualType
1819ASTContext::getDependentSizedExtVectorType(QualType vecType,
1820                                           Expr *SizeExpr,
1821                                           SourceLocation AttrLoc) const {
1822  llvm::FoldingSetNodeID ID;
1823  DependentSizedExtVectorType::Profile(ID, *this, getCanonicalType(vecType),
1824                                       SizeExpr);
1825
1826  void *InsertPos = 0;
1827  DependentSizedExtVectorType *Canon
1828    = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
1829  DependentSizedExtVectorType *New;
1830  if (Canon) {
1831    // We already have a canonical version of this array type; use it as
1832    // the canonical type for a newly-built type.
1833    New = new (*this, TypeAlignment)
1834      DependentSizedExtVectorType(*this, vecType, QualType(Canon, 0),
1835                                  SizeExpr, AttrLoc);
1836  } else {
1837    QualType CanonVecTy = getCanonicalType(vecType);
1838    if (CanonVecTy == vecType) {
1839      New = new (*this, TypeAlignment)
1840        DependentSizedExtVectorType(*this, vecType, QualType(), SizeExpr,
1841                                    AttrLoc);
1842
1843      DependentSizedExtVectorType *CanonCheck
1844        = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
1845      assert(!CanonCheck && "Dependent-sized ext_vector canonical type broken");
1846      (void)CanonCheck;
1847      DependentSizedExtVectorTypes.InsertNode(New, InsertPos);
1848    } else {
1849      QualType Canon = getDependentSizedExtVectorType(CanonVecTy, SizeExpr,
1850                                                      SourceLocation());
1851      New = new (*this, TypeAlignment)
1852        DependentSizedExtVectorType(*this, vecType, Canon, SizeExpr, AttrLoc);
1853    }
1854  }
1855
1856  Types.push_back(New);
1857  return QualType(New, 0);
1858}
1859
1860/// getFunctionNoProtoType - Return a K&R style C function type like 'int()'.
1861///
1862QualType
1863ASTContext::getFunctionNoProtoType(QualType ResultTy,
1864                                   const FunctionType::ExtInfo &Info) const {
1865  const CallingConv CallConv = Info.getCC();
1866  // Unique functions, to guarantee there is only one function of a particular
1867  // structure.
1868  llvm::FoldingSetNodeID ID;
1869  FunctionNoProtoType::Profile(ID, ResultTy, Info);
1870
1871  void *InsertPos = 0;
1872  if (FunctionNoProtoType *FT =
1873        FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
1874    return QualType(FT, 0);
1875
1876  QualType Canonical;
1877  if (!ResultTy.isCanonical() ||
1878      getCanonicalCallConv(CallConv) != CallConv) {
1879    Canonical =
1880      getFunctionNoProtoType(getCanonicalType(ResultTy),
1881                     Info.withCallingConv(getCanonicalCallConv(CallConv)));
1882
1883    // Get the new insert position for the node we care about.
1884    FunctionNoProtoType *NewIP =
1885      FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
1886    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1887  }
1888
1889  FunctionNoProtoType *New = new (*this, TypeAlignment)
1890    FunctionNoProtoType(ResultTy, Canonical, Info);
1891  Types.push_back(New);
1892  FunctionNoProtoTypes.InsertNode(New, InsertPos);
1893  return QualType(New, 0);
1894}
1895
1896/// getFunctionType - Return a normal function type with a typed argument
1897/// list.  isVariadic indicates whether the argument list includes '...'.
1898QualType
1899ASTContext::getFunctionType(QualType ResultTy,
1900                            const QualType *ArgArray, unsigned NumArgs,
1901                            const FunctionProtoType::ExtProtoInfo &EPI) const {
1902  // Unique functions, to guarantee there is only one function of a particular
1903  // structure.
1904  llvm::FoldingSetNodeID ID;
1905  FunctionProtoType::Profile(ID, ResultTy, ArgArray, NumArgs, EPI);
1906
1907  void *InsertPos = 0;
1908  if (FunctionProtoType *FTP =
1909        FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
1910    return QualType(FTP, 0);
1911
1912  // Determine whether the type being created is already canonical or not.
1913  bool isCanonical = !EPI.HasExceptionSpec && ResultTy.isCanonical();
1914  for (unsigned i = 0; i != NumArgs && isCanonical; ++i)
1915    if (!ArgArray[i].isCanonicalAsParam())
1916      isCanonical = false;
1917
1918  const CallingConv CallConv = EPI.ExtInfo.getCC();
1919
1920  // If this type isn't canonical, get the canonical version of it.
1921  // The exception spec is not part of the canonical type.
1922  QualType Canonical;
1923  if (!isCanonical || getCanonicalCallConv(CallConv) != CallConv) {
1924    llvm::SmallVector<QualType, 16> CanonicalArgs;
1925    CanonicalArgs.reserve(NumArgs);
1926    for (unsigned i = 0; i != NumArgs; ++i)
1927      CanonicalArgs.push_back(getCanonicalParamType(ArgArray[i]));
1928
1929    FunctionProtoType::ExtProtoInfo CanonicalEPI = EPI;
1930    if (CanonicalEPI.HasExceptionSpec) {
1931      CanonicalEPI.HasExceptionSpec = false;
1932      CanonicalEPI.HasAnyExceptionSpec = false;
1933      CanonicalEPI.NumExceptions = 0;
1934    }
1935    CanonicalEPI.ExtInfo
1936      = CanonicalEPI.ExtInfo.withCallingConv(getCanonicalCallConv(CallConv));
1937
1938    Canonical = getFunctionType(getCanonicalType(ResultTy),
1939                                CanonicalArgs.data(), NumArgs,
1940                                CanonicalEPI);
1941
1942    // Get the new insert position for the node we care about.
1943    FunctionProtoType *NewIP =
1944      FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
1945    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1946  }
1947
1948  // FunctionProtoType objects are allocated with extra bytes after them
1949  // for two variable size arrays (for parameter and exception types) at the
1950  // end of them.
1951  size_t Size = sizeof(FunctionProtoType) +
1952                NumArgs * sizeof(QualType) +
1953                EPI.NumExceptions * sizeof(QualType);
1954  FunctionProtoType *FTP = (FunctionProtoType*) Allocate(Size, TypeAlignment);
1955  new (FTP) FunctionProtoType(ResultTy, ArgArray, NumArgs, Canonical, EPI);
1956  Types.push_back(FTP);
1957  FunctionProtoTypes.InsertNode(FTP, InsertPos);
1958  return QualType(FTP, 0);
1959}
1960
1961#ifndef NDEBUG
1962static bool NeedsInjectedClassNameType(const RecordDecl *D) {
1963  if (!isa<CXXRecordDecl>(D)) return false;
1964  const CXXRecordDecl *RD = cast<CXXRecordDecl>(D);
1965  if (isa<ClassTemplatePartialSpecializationDecl>(RD))
1966    return true;
1967  if (RD->getDescribedClassTemplate() &&
1968      !isa<ClassTemplateSpecializationDecl>(RD))
1969    return true;
1970  return false;
1971}
1972#endif
1973
1974/// getInjectedClassNameType - Return the unique reference to the
1975/// injected class name type for the specified templated declaration.
1976QualType ASTContext::getInjectedClassNameType(CXXRecordDecl *Decl,
1977                                              QualType TST) const {
1978  assert(NeedsInjectedClassNameType(Decl));
1979  if (Decl->TypeForDecl) {
1980    assert(isa<InjectedClassNameType>(Decl->TypeForDecl));
1981  } else if (CXXRecordDecl *PrevDecl = Decl->getPreviousDeclaration()) {
1982    assert(PrevDecl->TypeForDecl && "previous declaration has no type");
1983    Decl->TypeForDecl = PrevDecl->TypeForDecl;
1984    assert(isa<InjectedClassNameType>(Decl->TypeForDecl));
1985  } else {
1986    Type *newType =
1987      new (*this, TypeAlignment) InjectedClassNameType(Decl, TST);
1988    Decl->TypeForDecl = newType;
1989    Types.push_back(newType);
1990  }
1991  return QualType(Decl->TypeForDecl, 0);
1992}
1993
1994/// getTypeDeclType - Return the unique reference to the type for the
1995/// specified type declaration.
1996QualType ASTContext::getTypeDeclTypeSlow(const TypeDecl *Decl) const {
1997  assert(Decl && "Passed null for Decl param");
1998  assert(!Decl->TypeForDecl && "TypeForDecl present in slow case");
1999
2000  if (const TypedefDecl *Typedef = dyn_cast<TypedefDecl>(Decl))
2001    return getTypedefType(Typedef);
2002
2003  assert(!isa<TemplateTypeParmDecl>(Decl) &&
2004         "Template type parameter types are always available.");
2005
2006  if (const RecordDecl *Record = dyn_cast<RecordDecl>(Decl)) {
2007    assert(!Record->getPreviousDeclaration() &&
2008           "struct/union has previous declaration");
2009    assert(!NeedsInjectedClassNameType(Record));
2010    return getRecordType(Record);
2011  } else if (const EnumDecl *Enum = dyn_cast<EnumDecl>(Decl)) {
2012    assert(!Enum->getPreviousDeclaration() &&
2013           "enum has previous declaration");
2014    return getEnumType(Enum);
2015  } else if (const UnresolvedUsingTypenameDecl *Using =
2016               dyn_cast<UnresolvedUsingTypenameDecl>(Decl)) {
2017    Type *newType = new (*this, TypeAlignment) UnresolvedUsingType(Using);
2018    Decl->TypeForDecl = newType;
2019    Types.push_back(newType);
2020  } else
2021    llvm_unreachable("TypeDecl without a type?");
2022
2023  return QualType(Decl->TypeForDecl, 0);
2024}
2025
2026/// getTypedefType - Return the unique reference to the type for the
2027/// specified typename decl.
2028QualType
2029ASTContext::getTypedefType(const TypedefDecl *Decl, QualType Canonical) const {
2030  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
2031
2032  if (Canonical.isNull())
2033    Canonical = getCanonicalType(Decl->getUnderlyingType());
2034  TypedefType *newType = new(*this, TypeAlignment)
2035    TypedefType(Type::Typedef, Decl, Canonical);
2036  Decl->TypeForDecl = newType;
2037  Types.push_back(newType);
2038  return QualType(newType, 0);
2039}
2040
2041QualType ASTContext::getRecordType(const RecordDecl *Decl) const {
2042  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
2043
2044  if (const RecordDecl *PrevDecl = Decl->getPreviousDeclaration())
2045    if (PrevDecl->TypeForDecl)
2046      return QualType(Decl->TypeForDecl = PrevDecl->TypeForDecl, 0);
2047
2048  RecordType *newType = new (*this, TypeAlignment) RecordType(Decl);
2049  Decl->TypeForDecl = newType;
2050  Types.push_back(newType);
2051  return QualType(newType, 0);
2052}
2053
2054QualType ASTContext::getEnumType(const EnumDecl *Decl) const {
2055  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
2056
2057  if (const EnumDecl *PrevDecl = Decl->getPreviousDeclaration())
2058    if (PrevDecl->TypeForDecl)
2059      return QualType(Decl->TypeForDecl = PrevDecl->TypeForDecl, 0);
2060
2061  EnumType *newType = new (*this, TypeAlignment) EnumType(Decl);
2062  Decl->TypeForDecl = newType;
2063  Types.push_back(newType);
2064  return QualType(newType, 0);
2065}
2066
2067QualType ASTContext::getAttributedType(AttributedType::Kind attrKind,
2068                                       QualType modifiedType,
2069                                       QualType equivalentType) {
2070  llvm::FoldingSetNodeID id;
2071  AttributedType::Profile(id, attrKind, modifiedType, equivalentType);
2072
2073  void *insertPos = 0;
2074  AttributedType *type = AttributedTypes.FindNodeOrInsertPos(id, insertPos);
2075  if (type) return QualType(type, 0);
2076
2077  QualType canon = getCanonicalType(equivalentType);
2078  type = new (*this, TypeAlignment)
2079           AttributedType(canon, attrKind, modifiedType, equivalentType);
2080
2081  Types.push_back(type);
2082  AttributedTypes.InsertNode(type, insertPos);
2083
2084  return QualType(type, 0);
2085}
2086
2087
2088/// \brief Retrieve a substitution-result type.
2089QualType
2090ASTContext::getSubstTemplateTypeParmType(const TemplateTypeParmType *Parm,
2091                                         QualType Replacement) const {
2092  assert(Replacement.isCanonical()
2093         && "replacement types must always be canonical");
2094
2095  llvm::FoldingSetNodeID ID;
2096  SubstTemplateTypeParmType::Profile(ID, Parm, Replacement);
2097  void *InsertPos = 0;
2098  SubstTemplateTypeParmType *SubstParm
2099    = SubstTemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
2100
2101  if (!SubstParm) {
2102    SubstParm = new (*this, TypeAlignment)
2103      SubstTemplateTypeParmType(Parm, Replacement);
2104    Types.push_back(SubstParm);
2105    SubstTemplateTypeParmTypes.InsertNode(SubstParm, InsertPos);
2106  }
2107
2108  return QualType(SubstParm, 0);
2109}
2110
2111/// \brief Retrieve a
2112QualType ASTContext::getSubstTemplateTypeParmPackType(
2113                                          const TemplateTypeParmType *Parm,
2114                                              const TemplateArgument &ArgPack) {
2115#ifndef NDEBUG
2116  for (TemplateArgument::pack_iterator P = ArgPack.pack_begin(),
2117                                    PEnd = ArgPack.pack_end();
2118       P != PEnd; ++P) {
2119    assert(P->getKind() == TemplateArgument::Type &&"Pack contains a non-type");
2120    assert(P->getAsType().isCanonical() && "Pack contains non-canonical type");
2121  }
2122#endif
2123
2124  llvm::FoldingSetNodeID ID;
2125  SubstTemplateTypeParmPackType::Profile(ID, Parm, ArgPack);
2126  void *InsertPos = 0;
2127  if (SubstTemplateTypeParmPackType *SubstParm
2128        = SubstTemplateTypeParmPackTypes.FindNodeOrInsertPos(ID, InsertPos))
2129    return QualType(SubstParm, 0);
2130
2131  QualType Canon;
2132  if (!Parm->isCanonicalUnqualified()) {
2133    Canon = getCanonicalType(QualType(Parm, 0));
2134    Canon = getSubstTemplateTypeParmPackType(cast<TemplateTypeParmType>(Canon),
2135                                             ArgPack);
2136    SubstTemplateTypeParmPackTypes.FindNodeOrInsertPos(ID, InsertPos);
2137  }
2138
2139  SubstTemplateTypeParmPackType *SubstParm
2140    = new (*this, TypeAlignment) SubstTemplateTypeParmPackType(Parm, Canon,
2141                                                               ArgPack);
2142  Types.push_back(SubstParm);
2143  SubstTemplateTypeParmTypes.InsertNode(SubstParm, InsertPos);
2144  return QualType(SubstParm, 0);
2145}
2146
2147/// \brief Retrieve the template type parameter type for a template
2148/// parameter or parameter pack with the given depth, index, and (optionally)
2149/// name.
2150QualType ASTContext::getTemplateTypeParmType(unsigned Depth, unsigned Index,
2151                                             bool ParameterPack,
2152                                             IdentifierInfo *Name) const {
2153  llvm::FoldingSetNodeID ID;
2154  TemplateTypeParmType::Profile(ID, Depth, Index, ParameterPack, Name);
2155  void *InsertPos = 0;
2156  TemplateTypeParmType *TypeParm
2157    = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
2158
2159  if (TypeParm)
2160    return QualType(TypeParm, 0);
2161
2162  if (Name) {
2163    QualType Canon = getTemplateTypeParmType(Depth, Index, ParameterPack);
2164    TypeParm = new (*this, TypeAlignment)
2165      TemplateTypeParmType(Depth, Index, ParameterPack, Name, Canon);
2166
2167    TemplateTypeParmType *TypeCheck
2168      = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
2169    assert(!TypeCheck && "Template type parameter canonical type broken");
2170    (void)TypeCheck;
2171  } else
2172    TypeParm = new (*this, TypeAlignment)
2173      TemplateTypeParmType(Depth, Index, ParameterPack);
2174
2175  Types.push_back(TypeParm);
2176  TemplateTypeParmTypes.InsertNode(TypeParm, InsertPos);
2177
2178  return QualType(TypeParm, 0);
2179}
2180
2181TypeSourceInfo *
2182ASTContext::getTemplateSpecializationTypeInfo(TemplateName Name,
2183                                              SourceLocation NameLoc,
2184                                        const TemplateArgumentListInfo &Args,
2185                                              QualType CanonType) const {
2186  assert(!Name.getAsDependentTemplateName() &&
2187         "No dependent template names here!");
2188  QualType TST = getTemplateSpecializationType(Name, Args, CanonType);
2189
2190  TypeSourceInfo *DI = CreateTypeSourceInfo(TST);
2191  TemplateSpecializationTypeLoc TL
2192    = cast<TemplateSpecializationTypeLoc>(DI->getTypeLoc());
2193  TL.setTemplateNameLoc(NameLoc);
2194  TL.setLAngleLoc(Args.getLAngleLoc());
2195  TL.setRAngleLoc(Args.getRAngleLoc());
2196  for (unsigned i = 0, e = TL.getNumArgs(); i != e; ++i)
2197    TL.setArgLocInfo(i, Args[i].getLocInfo());
2198  return DI;
2199}
2200
2201QualType
2202ASTContext::getTemplateSpecializationType(TemplateName Template,
2203                                          const TemplateArgumentListInfo &Args,
2204                                          QualType Canon) const {
2205  assert(!Template.getAsDependentTemplateName() &&
2206         "No dependent template names here!");
2207
2208  unsigned NumArgs = Args.size();
2209
2210  llvm::SmallVector<TemplateArgument, 4> ArgVec;
2211  ArgVec.reserve(NumArgs);
2212  for (unsigned i = 0; i != NumArgs; ++i)
2213    ArgVec.push_back(Args[i].getArgument());
2214
2215  return getTemplateSpecializationType(Template, ArgVec.data(), NumArgs,
2216                                       Canon);
2217}
2218
2219QualType
2220ASTContext::getTemplateSpecializationType(TemplateName Template,
2221                                          const TemplateArgument *Args,
2222                                          unsigned NumArgs,
2223                                          QualType Canon) const {
2224  assert(!Template.getAsDependentTemplateName() &&
2225         "No dependent template names here!");
2226
2227  if (!Canon.isNull())
2228    Canon = getCanonicalType(Canon);
2229  else
2230    Canon = getCanonicalTemplateSpecializationType(Template, Args, NumArgs);
2231
2232  // Allocate the (non-canonical) template specialization type, but don't
2233  // try to unique it: these types typically have location information that
2234  // we don't unique and don't want to lose.
2235  void *Mem = Allocate((sizeof(TemplateSpecializationType) +
2236                        sizeof(TemplateArgument) * NumArgs),
2237                       TypeAlignment);
2238  TemplateSpecializationType *Spec
2239    = new (Mem) TemplateSpecializationType(Template,
2240                                           Args, NumArgs,
2241                                           Canon);
2242
2243  Types.push_back(Spec);
2244  return QualType(Spec, 0);
2245}
2246
2247QualType
2248ASTContext::getCanonicalTemplateSpecializationType(TemplateName Template,
2249                                                   const TemplateArgument *Args,
2250                                                   unsigned NumArgs) const {
2251  assert(!Template.getAsDependentTemplateName() &&
2252         "No dependent template names here!");
2253
2254  // Build the canonical template specialization type.
2255  TemplateName CanonTemplate = getCanonicalTemplateName(Template);
2256  llvm::SmallVector<TemplateArgument, 4> CanonArgs;
2257  CanonArgs.reserve(NumArgs);
2258  for (unsigned I = 0; I != NumArgs; ++I)
2259    CanonArgs.push_back(getCanonicalTemplateArgument(Args[I]));
2260
2261  // Determine whether this canonical template specialization type already
2262  // exists.
2263  llvm::FoldingSetNodeID ID;
2264  TemplateSpecializationType::Profile(ID, CanonTemplate,
2265                                      CanonArgs.data(), NumArgs, *this);
2266
2267  void *InsertPos = 0;
2268  TemplateSpecializationType *Spec
2269    = TemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
2270
2271  if (!Spec) {
2272    // Allocate a new canonical template specialization type.
2273    void *Mem = Allocate((sizeof(TemplateSpecializationType) +
2274                          sizeof(TemplateArgument) * NumArgs),
2275                         TypeAlignment);
2276    Spec = new (Mem) TemplateSpecializationType(CanonTemplate,
2277                                                CanonArgs.data(), NumArgs,
2278                                                QualType());
2279    Types.push_back(Spec);
2280    TemplateSpecializationTypes.InsertNode(Spec, InsertPos);
2281  }
2282
2283  assert(Spec->isDependentType() &&
2284         "Non-dependent template-id type must have a canonical type");
2285  return QualType(Spec, 0);
2286}
2287
2288QualType
2289ASTContext::getElaboratedType(ElaboratedTypeKeyword Keyword,
2290                              NestedNameSpecifier *NNS,
2291                              QualType NamedType) const {
2292  llvm::FoldingSetNodeID ID;
2293  ElaboratedType::Profile(ID, Keyword, NNS, NamedType);
2294
2295  void *InsertPos = 0;
2296  ElaboratedType *T = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
2297  if (T)
2298    return QualType(T, 0);
2299
2300  QualType Canon = NamedType;
2301  if (!Canon.isCanonical()) {
2302    Canon = getCanonicalType(NamedType);
2303    ElaboratedType *CheckT = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
2304    assert(!CheckT && "Elaborated canonical type broken");
2305    (void)CheckT;
2306  }
2307
2308  T = new (*this) ElaboratedType(Keyword, NNS, NamedType, Canon);
2309  Types.push_back(T);
2310  ElaboratedTypes.InsertNode(T, InsertPos);
2311  return QualType(T, 0);
2312}
2313
2314QualType
2315ASTContext::getParenType(QualType InnerType) const {
2316  llvm::FoldingSetNodeID ID;
2317  ParenType::Profile(ID, InnerType);
2318
2319  void *InsertPos = 0;
2320  ParenType *T = ParenTypes.FindNodeOrInsertPos(ID, InsertPos);
2321  if (T)
2322    return QualType(T, 0);
2323
2324  QualType Canon = InnerType;
2325  if (!Canon.isCanonical()) {
2326    Canon = getCanonicalType(InnerType);
2327    ParenType *CheckT = ParenTypes.FindNodeOrInsertPos(ID, InsertPos);
2328    assert(!CheckT && "Paren canonical type broken");
2329    (void)CheckT;
2330  }
2331
2332  T = new (*this) ParenType(InnerType, Canon);
2333  Types.push_back(T);
2334  ParenTypes.InsertNode(T, InsertPos);
2335  return QualType(T, 0);
2336}
2337
2338QualType ASTContext::getDependentNameType(ElaboratedTypeKeyword Keyword,
2339                                          NestedNameSpecifier *NNS,
2340                                          const IdentifierInfo *Name,
2341                                          QualType Canon) const {
2342  assert(NNS->isDependent() && "nested-name-specifier must be dependent");
2343
2344  if (Canon.isNull()) {
2345    NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
2346    ElaboratedTypeKeyword CanonKeyword = Keyword;
2347    if (Keyword == ETK_None)
2348      CanonKeyword = ETK_Typename;
2349
2350    if (CanonNNS != NNS || CanonKeyword != Keyword)
2351      Canon = getDependentNameType(CanonKeyword, CanonNNS, Name);
2352  }
2353
2354  llvm::FoldingSetNodeID ID;
2355  DependentNameType::Profile(ID, Keyword, NNS, Name);
2356
2357  void *InsertPos = 0;
2358  DependentNameType *T
2359    = DependentNameTypes.FindNodeOrInsertPos(ID, InsertPos);
2360  if (T)
2361    return QualType(T, 0);
2362
2363  T = new (*this) DependentNameType(Keyword, NNS, Name, Canon);
2364  Types.push_back(T);
2365  DependentNameTypes.InsertNode(T, InsertPos);
2366  return QualType(T, 0);
2367}
2368
2369QualType
2370ASTContext::getDependentTemplateSpecializationType(
2371                                 ElaboratedTypeKeyword Keyword,
2372                                 NestedNameSpecifier *NNS,
2373                                 const IdentifierInfo *Name,
2374                                 const TemplateArgumentListInfo &Args) const {
2375  // TODO: avoid this copy
2376  llvm::SmallVector<TemplateArgument, 16> ArgCopy;
2377  for (unsigned I = 0, E = Args.size(); I != E; ++I)
2378    ArgCopy.push_back(Args[I].getArgument());
2379  return getDependentTemplateSpecializationType(Keyword, NNS, Name,
2380                                                ArgCopy.size(),
2381                                                ArgCopy.data());
2382}
2383
2384QualType
2385ASTContext::getDependentTemplateSpecializationType(
2386                                 ElaboratedTypeKeyword Keyword,
2387                                 NestedNameSpecifier *NNS,
2388                                 const IdentifierInfo *Name,
2389                                 unsigned NumArgs,
2390                                 const TemplateArgument *Args) const {
2391  assert((!NNS || NNS->isDependent()) &&
2392         "nested-name-specifier must be dependent");
2393
2394  llvm::FoldingSetNodeID ID;
2395  DependentTemplateSpecializationType::Profile(ID, *this, Keyword, NNS,
2396                                               Name, NumArgs, Args);
2397
2398  void *InsertPos = 0;
2399  DependentTemplateSpecializationType *T
2400    = DependentTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
2401  if (T)
2402    return QualType(T, 0);
2403
2404  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
2405
2406  ElaboratedTypeKeyword CanonKeyword = Keyword;
2407  if (Keyword == ETK_None) CanonKeyword = ETK_Typename;
2408
2409  bool AnyNonCanonArgs = false;
2410  llvm::SmallVector<TemplateArgument, 16> CanonArgs(NumArgs);
2411  for (unsigned I = 0; I != NumArgs; ++I) {
2412    CanonArgs[I] = getCanonicalTemplateArgument(Args[I]);
2413    if (!CanonArgs[I].structurallyEquals(Args[I]))
2414      AnyNonCanonArgs = true;
2415  }
2416
2417  QualType Canon;
2418  if (AnyNonCanonArgs || CanonNNS != NNS || CanonKeyword != Keyword) {
2419    Canon = getDependentTemplateSpecializationType(CanonKeyword, CanonNNS,
2420                                                   Name, NumArgs,
2421                                                   CanonArgs.data());
2422
2423    // Find the insert position again.
2424    DependentTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
2425  }
2426
2427  void *Mem = Allocate((sizeof(DependentTemplateSpecializationType) +
2428                        sizeof(TemplateArgument) * NumArgs),
2429                       TypeAlignment);
2430  T = new (Mem) DependentTemplateSpecializationType(Keyword, NNS,
2431                                                    Name, NumArgs, Args, Canon);
2432  Types.push_back(T);
2433  DependentTemplateSpecializationTypes.InsertNode(T, InsertPos);
2434  return QualType(T, 0);
2435}
2436
2437QualType ASTContext::getPackExpansionType(QualType Pattern,
2438                                      llvm::Optional<unsigned> NumExpansions) {
2439  llvm::FoldingSetNodeID ID;
2440  PackExpansionType::Profile(ID, Pattern, NumExpansions);
2441
2442  assert(Pattern->containsUnexpandedParameterPack() &&
2443         "Pack expansions must expand one or more parameter packs");
2444  void *InsertPos = 0;
2445  PackExpansionType *T
2446    = PackExpansionTypes.FindNodeOrInsertPos(ID, InsertPos);
2447  if (T)
2448    return QualType(T, 0);
2449
2450  QualType Canon;
2451  if (!Pattern.isCanonical()) {
2452    Canon = getPackExpansionType(getCanonicalType(Pattern), NumExpansions);
2453
2454    // Find the insert position again.
2455    PackExpansionTypes.FindNodeOrInsertPos(ID, InsertPos);
2456  }
2457
2458  T = new (*this) PackExpansionType(Pattern, Canon, NumExpansions);
2459  Types.push_back(T);
2460  PackExpansionTypes.InsertNode(T, InsertPos);
2461  return QualType(T, 0);
2462}
2463
2464/// CmpProtocolNames - Comparison predicate for sorting protocols
2465/// alphabetically.
2466static bool CmpProtocolNames(const ObjCProtocolDecl *LHS,
2467                            const ObjCProtocolDecl *RHS) {
2468  return LHS->getDeclName() < RHS->getDeclName();
2469}
2470
2471static bool areSortedAndUniqued(ObjCProtocolDecl * const *Protocols,
2472                                unsigned NumProtocols) {
2473  if (NumProtocols == 0) return true;
2474
2475  for (unsigned i = 1; i != NumProtocols; ++i)
2476    if (!CmpProtocolNames(Protocols[i-1], Protocols[i]))
2477      return false;
2478  return true;
2479}
2480
2481static void SortAndUniqueProtocols(ObjCProtocolDecl **Protocols,
2482                                   unsigned &NumProtocols) {
2483  ObjCProtocolDecl **ProtocolsEnd = Protocols+NumProtocols;
2484
2485  // Sort protocols, keyed by name.
2486  std::sort(Protocols, Protocols+NumProtocols, CmpProtocolNames);
2487
2488  // Remove duplicates.
2489  ProtocolsEnd = std::unique(Protocols, ProtocolsEnd);
2490  NumProtocols = ProtocolsEnd-Protocols;
2491}
2492
2493QualType ASTContext::getObjCObjectType(QualType BaseType,
2494                                       ObjCProtocolDecl * const *Protocols,
2495                                       unsigned NumProtocols) const {
2496  // If the base type is an interface and there aren't any protocols
2497  // to add, then the interface type will do just fine.
2498  if (!NumProtocols && isa<ObjCInterfaceType>(BaseType))
2499    return BaseType;
2500
2501  // Look in the folding set for an existing type.
2502  llvm::FoldingSetNodeID ID;
2503  ObjCObjectTypeImpl::Profile(ID, BaseType, Protocols, NumProtocols);
2504  void *InsertPos = 0;
2505  if (ObjCObjectType *QT = ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos))
2506    return QualType(QT, 0);
2507
2508  // Build the canonical type, which has the canonical base type and
2509  // a sorted-and-uniqued list of protocols.
2510  QualType Canonical;
2511  bool ProtocolsSorted = areSortedAndUniqued(Protocols, NumProtocols);
2512  if (!ProtocolsSorted || !BaseType.isCanonical()) {
2513    if (!ProtocolsSorted) {
2514      llvm::SmallVector<ObjCProtocolDecl*, 8> Sorted(Protocols,
2515                                                     Protocols + NumProtocols);
2516      unsigned UniqueCount = NumProtocols;
2517
2518      SortAndUniqueProtocols(&Sorted[0], UniqueCount);
2519      Canonical = getObjCObjectType(getCanonicalType(BaseType),
2520                                    &Sorted[0], UniqueCount);
2521    } else {
2522      Canonical = getObjCObjectType(getCanonicalType(BaseType),
2523                                    Protocols, NumProtocols);
2524    }
2525
2526    // Regenerate InsertPos.
2527    ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos);
2528  }
2529
2530  unsigned Size = sizeof(ObjCObjectTypeImpl);
2531  Size += NumProtocols * sizeof(ObjCProtocolDecl *);
2532  void *Mem = Allocate(Size, TypeAlignment);
2533  ObjCObjectTypeImpl *T =
2534    new (Mem) ObjCObjectTypeImpl(Canonical, BaseType, Protocols, NumProtocols);
2535
2536  Types.push_back(T);
2537  ObjCObjectTypes.InsertNode(T, InsertPos);
2538  return QualType(T, 0);
2539}
2540
2541/// getObjCObjectPointerType - Return a ObjCObjectPointerType type for
2542/// the given object type.
2543QualType ASTContext::getObjCObjectPointerType(QualType ObjectT) const {
2544  llvm::FoldingSetNodeID ID;
2545  ObjCObjectPointerType::Profile(ID, ObjectT);
2546
2547  void *InsertPos = 0;
2548  if (ObjCObjectPointerType *QT =
2549              ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
2550    return QualType(QT, 0);
2551
2552  // Find the canonical object type.
2553  QualType Canonical;
2554  if (!ObjectT.isCanonical()) {
2555    Canonical = getObjCObjectPointerType(getCanonicalType(ObjectT));
2556
2557    // Regenerate InsertPos.
2558    ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
2559  }
2560
2561  // No match.
2562  void *Mem = Allocate(sizeof(ObjCObjectPointerType), TypeAlignment);
2563  ObjCObjectPointerType *QType =
2564    new (Mem) ObjCObjectPointerType(Canonical, ObjectT);
2565
2566  Types.push_back(QType);
2567  ObjCObjectPointerTypes.InsertNode(QType, InsertPos);
2568  return QualType(QType, 0);
2569}
2570
2571/// getObjCInterfaceType - Return the unique reference to the type for the
2572/// specified ObjC interface decl. The list of protocols is optional.
2573QualType ASTContext::getObjCInterfaceType(const ObjCInterfaceDecl *Decl) const {
2574  if (Decl->TypeForDecl)
2575    return QualType(Decl->TypeForDecl, 0);
2576
2577  // FIXME: redeclarations?
2578  void *Mem = Allocate(sizeof(ObjCInterfaceType), TypeAlignment);
2579  ObjCInterfaceType *T = new (Mem) ObjCInterfaceType(Decl);
2580  Decl->TypeForDecl = T;
2581  Types.push_back(T);
2582  return QualType(T, 0);
2583}
2584
2585/// getTypeOfExprType - Unlike many "get<Type>" functions, we can't unique
2586/// TypeOfExprType AST's (since expression's are never shared). For example,
2587/// multiple declarations that refer to "typeof(x)" all contain different
2588/// DeclRefExpr's. This doesn't effect the type checker, since it operates
2589/// on canonical type's (which are always unique).
2590QualType ASTContext::getTypeOfExprType(Expr *tofExpr) const {
2591  TypeOfExprType *toe;
2592  if (tofExpr->isTypeDependent()) {
2593    llvm::FoldingSetNodeID ID;
2594    DependentTypeOfExprType::Profile(ID, *this, tofExpr);
2595
2596    void *InsertPos = 0;
2597    DependentTypeOfExprType *Canon
2598      = DependentTypeOfExprTypes.FindNodeOrInsertPos(ID, InsertPos);
2599    if (Canon) {
2600      // We already have a "canonical" version of an identical, dependent
2601      // typeof(expr) type. Use that as our canonical type.
2602      toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr,
2603                                          QualType((TypeOfExprType*)Canon, 0));
2604    }
2605    else {
2606      // Build a new, canonical typeof(expr) type.
2607      Canon
2608        = new (*this, TypeAlignment) DependentTypeOfExprType(*this, tofExpr);
2609      DependentTypeOfExprTypes.InsertNode(Canon, InsertPos);
2610      toe = Canon;
2611    }
2612  } else {
2613    QualType Canonical = getCanonicalType(tofExpr->getType());
2614    toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr, Canonical);
2615  }
2616  Types.push_back(toe);
2617  return QualType(toe, 0);
2618}
2619
2620/// getTypeOfType -  Unlike many "get<Type>" functions, we don't unique
2621/// TypeOfType AST's. The only motivation to unique these nodes would be
2622/// memory savings. Since typeof(t) is fairly uncommon, space shouldn't be
2623/// an issue. This doesn't effect the type checker, since it operates
2624/// on canonical type's (which are always unique).
2625QualType ASTContext::getTypeOfType(QualType tofType) const {
2626  QualType Canonical = getCanonicalType(tofType);
2627  TypeOfType *tot = new (*this, TypeAlignment) TypeOfType(tofType, Canonical);
2628  Types.push_back(tot);
2629  return QualType(tot, 0);
2630}
2631
2632/// getDecltypeForExpr - Given an expr, will return the decltype for that
2633/// expression, according to the rules in C++0x [dcl.type.simple]p4
2634static QualType getDecltypeForExpr(const Expr *e, const ASTContext &Context) {
2635  if (e->isTypeDependent())
2636    return Context.DependentTy;
2637
2638  // If e is an id expression or a class member access, decltype(e) is defined
2639  // as the type of the entity named by e.
2640  if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(e)) {
2641    if (const ValueDecl *VD = dyn_cast<ValueDecl>(DRE->getDecl()))
2642      return VD->getType();
2643  }
2644  if (const MemberExpr *ME = dyn_cast<MemberExpr>(e)) {
2645    if (const FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl()))
2646      return FD->getType();
2647  }
2648  // If e is a function call or an invocation of an overloaded operator,
2649  // (parentheses around e are ignored), decltype(e) is defined as the
2650  // return type of that function.
2651  if (const CallExpr *CE = dyn_cast<CallExpr>(e->IgnoreParens()))
2652    return CE->getCallReturnType();
2653
2654  QualType T = e->getType();
2655
2656  // Otherwise, where T is the type of e, if e is an lvalue, decltype(e) is
2657  // defined as T&, otherwise decltype(e) is defined as T.
2658  if (e->isLValue())
2659    T = Context.getLValueReferenceType(T);
2660
2661  return T;
2662}
2663
2664/// getDecltypeType -  Unlike many "get<Type>" functions, we don't unique
2665/// DecltypeType AST's. The only motivation to unique these nodes would be
2666/// memory savings. Since decltype(t) is fairly uncommon, space shouldn't be
2667/// an issue. This doesn't effect the type checker, since it operates
2668/// on canonical type's (which are always unique).
2669QualType ASTContext::getDecltypeType(Expr *e) const {
2670  DecltypeType *dt;
2671  if (e->isTypeDependent()) {
2672    llvm::FoldingSetNodeID ID;
2673    DependentDecltypeType::Profile(ID, *this, e);
2674
2675    void *InsertPos = 0;
2676    DependentDecltypeType *Canon
2677      = DependentDecltypeTypes.FindNodeOrInsertPos(ID, InsertPos);
2678    if (Canon) {
2679      // We already have a "canonical" version of an equivalent, dependent
2680      // decltype type. Use that as our canonical type.
2681      dt = new (*this, TypeAlignment) DecltypeType(e, DependentTy,
2682                                       QualType((DecltypeType*)Canon, 0));
2683    }
2684    else {
2685      // Build a new, canonical typeof(expr) type.
2686      Canon = new (*this, TypeAlignment) DependentDecltypeType(*this, e);
2687      DependentDecltypeTypes.InsertNode(Canon, InsertPos);
2688      dt = Canon;
2689    }
2690  } else {
2691    QualType T = getDecltypeForExpr(e, *this);
2692    dt = new (*this, TypeAlignment) DecltypeType(e, T, getCanonicalType(T));
2693  }
2694  Types.push_back(dt);
2695  return QualType(dt, 0);
2696}
2697
2698/// getAutoType - We only unique auto types after they've been deduced.
2699QualType ASTContext::getAutoType(QualType DeducedType) const {
2700  void *InsertPos = 0;
2701  if (!DeducedType.isNull()) {
2702    // Look in the folding set for an existing type.
2703    llvm::FoldingSetNodeID ID;
2704    AutoType::Profile(ID, DeducedType);
2705    if (AutoType *AT = AutoTypes.FindNodeOrInsertPos(ID, InsertPos))
2706      return QualType(AT, 0);
2707  }
2708
2709  AutoType *AT = new (*this, TypeAlignment) AutoType(DeducedType);
2710  Types.push_back(AT);
2711  if (InsertPos)
2712    AutoTypes.InsertNode(AT, InsertPos);
2713  return QualType(AT, 0);
2714}
2715
2716/// getTagDeclType - Return the unique reference to the type for the
2717/// specified TagDecl (struct/union/class/enum) decl.
2718QualType ASTContext::getTagDeclType(const TagDecl *Decl) const {
2719  assert (Decl);
2720  // FIXME: What is the design on getTagDeclType when it requires casting
2721  // away const?  mutable?
2722  return getTypeDeclType(const_cast<TagDecl*>(Decl));
2723}
2724
2725/// getSizeType - Return the unique type for "size_t" (C99 7.17), the result
2726/// of the sizeof operator (C99 6.5.3.4p4). The value is target dependent and
2727/// needs to agree with the definition in <stddef.h>.
2728CanQualType ASTContext::getSizeType() const {
2729  return getFromTargetType(Target.getSizeType());
2730}
2731
2732/// getSignedWCharType - Return the type of "signed wchar_t".
2733/// Used when in C++, as a GCC extension.
2734QualType ASTContext::getSignedWCharType() const {
2735  // FIXME: derive from "Target" ?
2736  return WCharTy;
2737}
2738
2739/// getUnsignedWCharType - Return the type of "unsigned wchar_t".
2740/// Used when in C++, as a GCC extension.
2741QualType ASTContext::getUnsignedWCharType() const {
2742  // FIXME: derive from "Target" ?
2743  return UnsignedIntTy;
2744}
2745
2746/// getPointerDiffType - Return the unique type for "ptrdiff_t" (ref?)
2747/// defined in <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9).
2748QualType ASTContext::getPointerDiffType() const {
2749  return getFromTargetType(Target.getPtrDiffType(0));
2750}
2751
2752//===----------------------------------------------------------------------===//
2753//                              Type Operators
2754//===----------------------------------------------------------------------===//
2755
2756CanQualType ASTContext::getCanonicalParamType(QualType T) const {
2757  // Push qualifiers into arrays, and then discard any remaining
2758  // qualifiers.
2759  T = getCanonicalType(T);
2760  T = getVariableArrayDecayedType(T);
2761  const Type *Ty = T.getTypePtr();
2762  QualType Result;
2763  if (isa<ArrayType>(Ty)) {
2764    Result = getArrayDecayedType(QualType(Ty,0));
2765  } else if (isa<FunctionType>(Ty)) {
2766    Result = getPointerType(QualType(Ty, 0));
2767  } else {
2768    Result = QualType(Ty, 0);
2769  }
2770
2771  return CanQualType::CreateUnsafe(Result);
2772}
2773
2774
2775QualType ASTContext::getUnqualifiedArrayType(QualType type,
2776                                             Qualifiers &quals) {
2777  SplitQualType splitType = type.getSplitUnqualifiedType();
2778
2779  // FIXME: getSplitUnqualifiedType() actually walks all the way to
2780  // the unqualified desugared type and then drops it on the floor.
2781  // We then have to strip that sugar back off with
2782  // getUnqualifiedDesugaredType(), which is silly.
2783  const ArrayType *AT =
2784    dyn_cast<ArrayType>(splitType.first->getUnqualifiedDesugaredType());
2785
2786  // If we don't have an array, just use the results in splitType.
2787  if (!AT) {
2788    quals = splitType.second;
2789    return QualType(splitType.first, 0);
2790  }
2791
2792  // Otherwise, recurse on the array's element type.
2793  QualType elementType = AT->getElementType();
2794  QualType unqualElementType = getUnqualifiedArrayType(elementType, quals);
2795
2796  // If that didn't change the element type, AT has no qualifiers, so we
2797  // can just use the results in splitType.
2798  if (elementType == unqualElementType) {
2799    assert(quals.empty()); // from the recursive call
2800    quals = splitType.second;
2801    return QualType(splitType.first, 0);
2802  }
2803
2804  // Otherwise, add in the qualifiers from the outermost type, then
2805  // build the type back up.
2806  quals.addConsistentQualifiers(splitType.second);
2807
2808  if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) {
2809    return getConstantArrayType(unqualElementType, CAT->getSize(),
2810                                CAT->getSizeModifier(), 0);
2811  }
2812
2813  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) {
2814    return getIncompleteArrayType(unqualElementType, IAT->getSizeModifier(), 0);
2815  }
2816
2817  if (const VariableArrayType *VAT = dyn_cast<VariableArrayType>(AT)) {
2818    return getVariableArrayType(unqualElementType,
2819                                VAT->getSizeExpr(),
2820                                VAT->getSizeModifier(),
2821                                VAT->getIndexTypeCVRQualifiers(),
2822                                VAT->getBracketsRange());
2823  }
2824
2825  const DependentSizedArrayType *DSAT = cast<DependentSizedArrayType>(AT);
2826  return getDependentSizedArrayType(unqualElementType, DSAT->getSizeExpr(),
2827                                    DSAT->getSizeModifier(), 0,
2828                                    SourceRange());
2829}
2830
2831/// UnwrapSimilarPointerTypes - If T1 and T2 are pointer types  that
2832/// may be similar (C++ 4.4), replaces T1 and T2 with the type that
2833/// they point to and return true. If T1 and T2 aren't pointer types
2834/// or pointer-to-member types, or if they are not similar at this
2835/// level, returns false and leaves T1 and T2 unchanged. Top-level
2836/// qualifiers on T1 and T2 are ignored. This function will typically
2837/// be called in a loop that successively "unwraps" pointer and
2838/// pointer-to-member types to compare them at each level.
2839bool ASTContext::UnwrapSimilarPointerTypes(QualType &T1, QualType &T2) {
2840  const PointerType *T1PtrType = T1->getAs<PointerType>(),
2841                    *T2PtrType = T2->getAs<PointerType>();
2842  if (T1PtrType && T2PtrType) {
2843    T1 = T1PtrType->getPointeeType();
2844    T2 = T2PtrType->getPointeeType();
2845    return true;
2846  }
2847
2848  const MemberPointerType *T1MPType = T1->getAs<MemberPointerType>(),
2849                          *T2MPType = T2->getAs<MemberPointerType>();
2850  if (T1MPType && T2MPType &&
2851      hasSameUnqualifiedType(QualType(T1MPType->getClass(), 0),
2852                             QualType(T2MPType->getClass(), 0))) {
2853    T1 = T1MPType->getPointeeType();
2854    T2 = T2MPType->getPointeeType();
2855    return true;
2856  }
2857
2858  if (getLangOptions().ObjC1) {
2859    const ObjCObjectPointerType *T1OPType = T1->getAs<ObjCObjectPointerType>(),
2860                                *T2OPType = T2->getAs<ObjCObjectPointerType>();
2861    if (T1OPType && T2OPType) {
2862      T1 = T1OPType->getPointeeType();
2863      T2 = T2OPType->getPointeeType();
2864      return true;
2865    }
2866  }
2867
2868  // FIXME: Block pointers, too?
2869
2870  return false;
2871}
2872
2873DeclarationNameInfo
2874ASTContext::getNameForTemplate(TemplateName Name,
2875                               SourceLocation NameLoc) const {
2876  if (TemplateDecl *TD = Name.getAsTemplateDecl())
2877    // DNInfo work in progress: CHECKME: what about DNLoc?
2878    return DeclarationNameInfo(TD->getDeclName(), NameLoc);
2879
2880  if (DependentTemplateName *DTN = Name.getAsDependentTemplateName()) {
2881    DeclarationName DName;
2882    if (DTN->isIdentifier()) {
2883      DName = DeclarationNames.getIdentifier(DTN->getIdentifier());
2884      return DeclarationNameInfo(DName, NameLoc);
2885    } else {
2886      DName = DeclarationNames.getCXXOperatorName(DTN->getOperator());
2887      // DNInfo work in progress: FIXME: source locations?
2888      DeclarationNameLoc DNLoc;
2889      DNLoc.CXXOperatorName.BeginOpNameLoc = SourceLocation().getRawEncoding();
2890      DNLoc.CXXOperatorName.EndOpNameLoc = SourceLocation().getRawEncoding();
2891      return DeclarationNameInfo(DName, NameLoc, DNLoc);
2892    }
2893  }
2894
2895  OverloadedTemplateStorage *Storage = Name.getAsOverloadedTemplate();
2896  assert(Storage);
2897  // DNInfo work in progress: CHECKME: what about DNLoc?
2898  return DeclarationNameInfo((*Storage->begin())->getDeclName(), NameLoc);
2899}
2900
2901TemplateName ASTContext::getCanonicalTemplateName(TemplateName Name) const {
2902  if (TemplateDecl *Template = Name.getAsTemplateDecl()) {
2903    if (TemplateTemplateParmDecl *TTP
2904                              = dyn_cast<TemplateTemplateParmDecl>(Template))
2905      Template = getCanonicalTemplateTemplateParmDecl(TTP);
2906
2907    // The canonical template name is the canonical template declaration.
2908    return TemplateName(cast<TemplateDecl>(Template->getCanonicalDecl()));
2909  }
2910
2911  if (SubstTemplateTemplateParmPackStorage *SubstPack
2912                                  = Name.getAsSubstTemplateTemplateParmPack()) {
2913    TemplateTemplateParmDecl *CanonParam
2914      = getCanonicalTemplateTemplateParmDecl(SubstPack->getParameterPack());
2915    TemplateArgument CanonArgPack
2916      = getCanonicalTemplateArgument(SubstPack->getArgumentPack());
2917    return getSubstTemplateTemplateParmPack(CanonParam, CanonArgPack);
2918  }
2919
2920  assert(!Name.getAsOverloadedTemplate());
2921
2922  DependentTemplateName *DTN = Name.getAsDependentTemplateName();
2923  assert(DTN && "Non-dependent template names must refer to template decls.");
2924  return DTN->CanonicalTemplateName;
2925}
2926
2927bool ASTContext::hasSameTemplateName(TemplateName X, TemplateName Y) {
2928  X = getCanonicalTemplateName(X);
2929  Y = getCanonicalTemplateName(Y);
2930  return X.getAsVoidPointer() == Y.getAsVoidPointer();
2931}
2932
2933TemplateArgument
2934ASTContext::getCanonicalTemplateArgument(const TemplateArgument &Arg) const {
2935  switch (Arg.getKind()) {
2936    case TemplateArgument::Null:
2937      return Arg;
2938
2939    case TemplateArgument::Expression:
2940      return Arg;
2941
2942    case TemplateArgument::Declaration:
2943      return TemplateArgument(Arg.getAsDecl()->getCanonicalDecl());
2944
2945    case TemplateArgument::Template:
2946      return TemplateArgument(getCanonicalTemplateName(Arg.getAsTemplate()));
2947
2948    case TemplateArgument::TemplateExpansion:
2949      return TemplateArgument(getCanonicalTemplateName(
2950                                         Arg.getAsTemplateOrTemplatePattern()),
2951                              Arg.getNumTemplateExpansions());
2952
2953    case TemplateArgument::Integral:
2954      return TemplateArgument(*Arg.getAsIntegral(),
2955                              getCanonicalType(Arg.getIntegralType()));
2956
2957    case TemplateArgument::Type:
2958      return TemplateArgument(getCanonicalType(Arg.getAsType()));
2959
2960    case TemplateArgument::Pack: {
2961      if (Arg.pack_size() == 0)
2962        return Arg;
2963
2964      TemplateArgument *CanonArgs
2965        = new (*this) TemplateArgument[Arg.pack_size()];
2966      unsigned Idx = 0;
2967      for (TemplateArgument::pack_iterator A = Arg.pack_begin(),
2968                                        AEnd = Arg.pack_end();
2969           A != AEnd; (void)++A, ++Idx)
2970        CanonArgs[Idx] = getCanonicalTemplateArgument(*A);
2971
2972      return TemplateArgument(CanonArgs, Arg.pack_size());
2973    }
2974  }
2975
2976  // Silence GCC warning
2977  assert(false && "Unhandled template argument kind");
2978  return TemplateArgument();
2979}
2980
2981NestedNameSpecifier *
2982ASTContext::getCanonicalNestedNameSpecifier(NestedNameSpecifier *NNS) const {
2983  if (!NNS)
2984    return 0;
2985
2986  switch (NNS->getKind()) {
2987  case NestedNameSpecifier::Identifier:
2988    // Canonicalize the prefix but keep the identifier the same.
2989    return NestedNameSpecifier::Create(*this,
2990                         getCanonicalNestedNameSpecifier(NNS->getPrefix()),
2991                                       NNS->getAsIdentifier());
2992
2993  case NestedNameSpecifier::Namespace:
2994    // A namespace is canonical; build a nested-name-specifier with
2995    // this namespace and no prefix.
2996    return NestedNameSpecifier::Create(*this, 0,
2997                                 NNS->getAsNamespace()->getOriginalNamespace());
2998
2999  case NestedNameSpecifier::NamespaceAlias:
3000    // A namespace is canonical; build a nested-name-specifier with
3001    // this namespace and no prefix.
3002    return NestedNameSpecifier::Create(*this, 0,
3003                                    NNS->getAsNamespaceAlias()->getNamespace()
3004                                                      ->getOriginalNamespace());
3005
3006  case NestedNameSpecifier::TypeSpec:
3007  case NestedNameSpecifier::TypeSpecWithTemplate: {
3008    QualType T = getCanonicalType(QualType(NNS->getAsType(), 0));
3009
3010    // If we have some kind of dependent-named type (e.g., "typename T::type"),
3011    // break it apart into its prefix and identifier, then reconsititute those
3012    // as the canonical nested-name-specifier. This is required to canonicalize
3013    // a dependent nested-name-specifier involving typedefs of dependent-name
3014    // types, e.g.,
3015    //   typedef typename T::type T1;
3016    //   typedef typename T1::type T2;
3017    if (const DependentNameType *DNT = T->getAs<DependentNameType>()) {
3018      NestedNameSpecifier *Prefix
3019        = getCanonicalNestedNameSpecifier(DNT->getQualifier());
3020      return NestedNameSpecifier::Create(*this, Prefix,
3021                           const_cast<IdentifierInfo *>(DNT->getIdentifier()));
3022    }
3023
3024    // Do the same thing as above, but with dependent-named specializations.
3025    if (const DependentTemplateSpecializationType *DTST
3026          = T->getAs<DependentTemplateSpecializationType>()) {
3027      NestedNameSpecifier *Prefix
3028        = getCanonicalNestedNameSpecifier(DTST->getQualifier());
3029
3030      T = getDependentTemplateSpecializationType(DTST->getKeyword(),
3031                                                 Prefix, DTST->getIdentifier(),
3032                                                 DTST->getNumArgs(),
3033                                                 DTST->getArgs());
3034      T = getCanonicalType(T);
3035    }
3036
3037    return NestedNameSpecifier::Create(*this, 0, false,
3038                                       const_cast<Type*>(T.getTypePtr()));
3039  }
3040
3041  case NestedNameSpecifier::Global:
3042    // The global specifier is canonical and unique.
3043    return NNS;
3044  }
3045
3046  // Required to silence a GCC warning
3047  return 0;
3048}
3049
3050
3051const ArrayType *ASTContext::getAsArrayType(QualType T) const {
3052  // Handle the non-qualified case efficiently.
3053  if (!T.hasLocalQualifiers()) {
3054    // Handle the common positive case fast.
3055    if (const ArrayType *AT = dyn_cast<ArrayType>(T))
3056      return AT;
3057  }
3058
3059  // Handle the common negative case fast.
3060  if (!isa<ArrayType>(T.getCanonicalType()))
3061    return 0;
3062
3063  // Apply any qualifiers from the array type to the element type.  This
3064  // implements C99 6.7.3p8: "If the specification of an array type includes
3065  // any type qualifiers, the element type is so qualified, not the array type."
3066
3067  // If we get here, we either have type qualifiers on the type, or we have
3068  // sugar such as a typedef in the way.  If we have type qualifiers on the type
3069  // we must propagate them down into the element type.
3070
3071  SplitQualType split = T.getSplitDesugaredType();
3072  Qualifiers qs = split.second;
3073
3074  // If we have a simple case, just return now.
3075  const ArrayType *ATy = dyn_cast<ArrayType>(split.first);
3076  if (ATy == 0 || qs.empty())
3077    return ATy;
3078
3079  // Otherwise, we have an array and we have qualifiers on it.  Push the
3080  // qualifiers into the array element type and return a new array type.
3081  QualType NewEltTy = getQualifiedType(ATy->getElementType(), qs);
3082
3083  if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(ATy))
3084    return cast<ArrayType>(getConstantArrayType(NewEltTy, CAT->getSize(),
3085                                                CAT->getSizeModifier(),
3086                                           CAT->getIndexTypeCVRQualifiers()));
3087  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(ATy))
3088    return cast<ArrayType>(getIncompleteArrayType(NewEltTy,
3089                                                  IAT->getSizeModifier(),
3090                                           IAT->getIndexTypeCVRQualifiers()));
3091
3092  if (const DependentSizedArrayType *DSAT
3093        = dyn_cast<DependentSizedArrayType>(ATy))
3094    return cast<ArrayType>(
3095                     getDependentSizedArrayType(NewEltTy,
3096                                                DSAT->getSizeExpr(),
3097                                                DSAT->getSizeModifier(),
3098                                              DSAT->getIndexTypeCVRQualifiers(),
3099                                                DSAT->getBracketsRange()));
3100
3101  const VariableArrayType *VAT = cast<VariableArrayType>(ATy);
3102  return cast<ArrayType>(getVariableArrayType(NewEltTy,
3103                                              VAT->getSizeExpr(),
3104                                              VAT->getSizeModifier(),
3105                                              VAT->getIndexTypeCVRQualifiers(),
3106                                              VAT->getBracketsRange()));
3107}
3108
3109/// getArrayDecayedType - Return the properly qualified result of decaying the
3110/// specified array type to a pointer.  This operation is non-trivial when
3111/// handling typedefs etc.  The canonical type of "T" must be an array type,
3112/// this returns a pointer to a properly qualified element of the array.
3113///
3114/// See C99 6.7.5.3p7 and C99 6.3.2.1p3.
3115QualType ASTContext::getArrayDecayedType(QualType Ty) const {
3116  // Get the element type with 'getAsArrayType' so that we don't lose any
3117  // typedefs in the element type of the array.  This also handles propagation
3118  // of type qualifiers from the array type into the element type if present
3119  // (C99 6.7.3p8).
3120  const ArrayType *PrettyArrayType = getAsArrayType(Ty);
3121  assert(PrettyArrayType && "Not an array type!");
3122
3123  QualType PtrTy = getPointerType(PrettyArrayType->getElementType());
3124
3125  // int x[restrict 4] ->  int *restrict
3126  return getQualifiedType(PtrTy, PrettyArrayType->getIndexTypeQualifiers());
3127}
3128
3129QualType ASTContext::getBaseElementType(const ArrayType *array) const {
3130  return getBaseElementType(array->getElementType());
3131}
3132
3133QualType ASTContext::getBaseElementType(QualType type) const {
3134  Qualifiers qs;
3135  while (true) {
3136    SplitQualType split = type.getSplitDesugaredType();
3137    const ArrayType *array = split.first->getAsArrayTypeUnsafe();
3138    if (!array) break;
3139
3140    type = array->getElementType();
3141    qs.addConsistentQualifiers(split.second);
3142  }
3143
3144  return getQualifiedType(type, qs);
3145}
3146
3147/// getConstantArrayElementCount - Returns number of constant array elements.
3148uint64_t
3149ASTContext::getConstantArrayElementCount(const ConstantArrayType *CA)  const {
3150  uint64_t ElementCount = 1;
3151  do {
3152    ElementCount *= CA->getSize().getZExtValue();
3153    CA = dyn_cast<ConstantArrayType>(CA->getElementType());
3154  } while (CA);
3155  return ElementCount;
3156}
3157
3158/// getFloatingRank - Return a relative rank for floating point types.
3159/// This routine will assert if passed a built-in type that isn't a float.
3160static FloatingRank getFloatingRank(QualType T) {
3161  if (const ComplexType *CT = T->getAs<ComplexType>())
3162    return getFloatingRank(CT->getElementType());
3163
3164  assert(T->getAs<BuiltinType>() && "getFloatingRank(): not a floating type");
3165  switch (T->getAs<BuiltinType>()->getKind()) {
3166  default: assert(0 && "getFloatingRank(): not a floating type");
3167  case BuiltinType::Float:      return FloatRank;
3168  case BuiltinType::Double:     return DoubleRank;
3169  case BuiltinType::LongDouble: return LongDoubleRank;
3170  }
3171}
3172
3173/// getFloatingTypeOfSizeWithinDomain - Returns a real floating
3174/// point or a complex type (based on typeDomain/typeSize).
3175/// 'typeDomain' is a real floating point or complex type.
3176/// 'typeSize' is a real floating point or complex type.
3177QualType ASTContext::getFloatingTypeOfSizeWithinDomain(QualType Size,
3178                                                       QualType Domain) const {
3179  FloatingRank EltRank = getFloatingRank(Size);
3180  if (Domain->isComplexType()) {
3181    switch (EltRank) {
3182    default: assert(0 && "getFloatingRank(): illegal value for rank");
3183    case FloatRank:      return FloatComplexTy;
3184    case DoubleRank:     return DoubleComplexTy;
3185    case LongDoubleRank: return LongDoubleComplexTy;
3186    }
3187  }
3188
3189  assert(Domain->isRealFloatingType() && "Unknown domain!");
3190  switch (EltRank) {
3191  default: assert(0 && "getFloatingRank(): illegal value for rank");
3192  case FloatRank:      return FloatTy;
3193  case DoubleRank:     return DoubleTy;
3194  case LongDoubleRank: return LongDoubleTy;
3195  }
3196}
3197
3198/// getFloatingTypeOrder - Compare the rank of the two specified floating
3199/// point types, ignoring the domain of the type (i.e. 'double' ==
3200/// '_Complex double').  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
3201/// LHS < RHS, return -1.
3202int ASTContext::getFloatingTypeOrder(QualType LHS, QualType RHS) const {
3203  FloatingRank LHSR = getFloatingRank(LHS);
3204  FloatingRank RHSR = getFloatingRank(RHS);
3205
3206  if (LHSR == RHSR)
3207    return 0;
3208  if (LHSR > RHSR)
3209    return 1;
3210  return -1;
3211}
3212
3213/// getIntegerRank - Return an integer conversion rank (C99 6.3.1.1p1). This
3214/// routine will assert if passed a built-in type that isn't an integer or enum,
3215/// or if it is not canonicalized.
3216unsigned ASTContext::getIntegerRank(const Type *T) const {
3217  assert(T->isCanonicalUnqualified() && "T should be canonicalized");
3218  if (const EnumType* ET = dyn_cast<EnumType>(T))
3219    T = ET->getDecl()->getPromotionType().getTypePtr();
3220
3221  if (T->isSpecificBuiltinType(BuiltinType::WChar_S) ||
3222      T->isSpecificBuiltinType(BuiltinType::WChar_U))
3223    T = getFromTargetType(Target.getWCharType()).getTypePtr();
3224
3225  if (T->isSpecificBuiltinType(BuiltinType::Char16))
3226    T = getFromTargetType(Target.getChar16Type()).getTypePtr();
3227
3228  if (T->isSpecificBuiltinType(BuiltinType::Char32))
3229    T = getFromTargetType(Target.getChar32Type()).getTypePtr();
3230
3231  switch (cast<BuiltinType>(T)->getKind()) {
3232  default: assert(0 && "getIntegerRank(): not a built-in integer");
3233  case BuiltinType::Bool:
3234    return 1 + (getIntWidth(BoolTy) << 3);
3235  case BuiltinType::Char_S:
3236  case BuiltinType::Char_U:
3237  case BuiltinType::SChar:
3238  case BuiltinType::UChar:
3239    return 2 + (getIntWidth(CharTy) << 3);
3240  case BuiltinType::Short:
3241  case BuiltinType::UShort:
3242    return 3 + (getIntWidth(ShortTy) << 3);
3243  case BuiltinType::Int:
3244  case BuiltinType::UInt:
3245    return 4 + (getIntWidth(IntTy) << 3);
3246  case BuiltinType::Long:
3247  case BuiltinType::ULong:
3248    return 5 + (getIntWidth(LongTy) << 3);
3249  case BuiltinType::LongLong:
3250  case BuiltinType::ULongLong:
3251    return 6 + (getIntWidth(LongLongTy) << 3);
3252  case BuiltinType::Int128:
3253  case BuiltinType::UInt128:
3254    return 7 + (getIntWidth(Int128Ty) << 3);
3255  }
3256}
3257
3258/// \brief Whether this is a promotable bitfield reference according
3259/// to C99 6.3.1.1p2, bullet 2 (and GCC extensions).
3260///
3261/// \returns the type this bit-field will promote to, or NULL if no
3262/// promotion occurs.
3263QualType ASTContext::isPromotableBitField(Expr *E) const {
3264  if (E->isTypeDependent() || E->isValueDependent())
3265    return QualType();
3266
3267  FieldDecl *Field = E->getBitField();
3268  if (!Field)
3269    return QualType();
3270
3271  QualType FT = Field->getType();
3272
3273  llvm::APSInt BitWidthAP = Field->getBitWidth()->EvaluateAsInt(*this);
3274  uint64_t BitWidth = BitWidthAP.getZExtValue();
3275  uint64_t IntSize = getTypeSize(IntTy);
3276  // GCC extension compatibility: if the bit-field size is less than or equal
3277  // to the size of int, it gets promoted no matter what its type is.
3278  // For instance, unsigned long bf : 4 gets promoted to signed int.
3279  if (BitWidth < IntSize)
3280    return IntTy;
3281
3282  if (BitWidth == IntSize)
3283    return FT->isSignedIntegerType() ? IntTy : UnsignedIntTy;
3284
3285  // Types bigger than int are not subject to promotions, and therefore act
3286  // like the base type.
3287  // FIXME: This doesn't quite match what gcc does, but what gcc does here
3288  // is ridiculous.
3289  return QualType();
3290}
3291
3292/// getPromotedIntegerType - Returns the type that Promotable will
3293/// promote to: C99 6.3.1.1p2, assuming that Promotable is a promotable
3294/// integer type.
3295QualType ASTContext::getPromotedIntegerType(QualType Promotable) const {
3296  assert(!Promotable.isNull());
3297  assert(Promotable->isPromotableIntegerType());
3298  if (const EnumType *ET = Promotable->getAs<EnumType>())
3299    return ET->getDecl()->getPromotionType();
3300  if (Promotable->isSignedIntegerType())
3301    return IntTy;
3302  uint64_t PromotableSize = getTypeSize(Promotable);
3303  uint64_t IntSize = getTypeSize(IntTy);
3304  assert(Promotable->isUnsignedIntegerType() && PromotableSize <= IntSize);
3305  return (PromotableSize != IntSize) ? IntTy : UnsignedIntTy;
3306}
3307
3308/// getIntegerTypeOrder - Returns the highest ranked integer type:
3309/// C99 6.3.1.8p1.  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
3310/// LHS < RHS, return -1.
3311int ASTContext::getIntegerTypeOrder(QualType LHS, QualType RHS) const {
3312  const Type *LHSC = getCanonicalType(LHS).getTypePtr();
3313  const Type *RHSC = getCanonicalType(RHS).getTypePtr();
3314  if (LHSC == RHSC) return 0;
3315
3316  bool LHSUnsigned = LHSC->isUnsignedIntegerType();
3317  bool RHSUnsigned = RHSC->isUnsignedIntegerType();
3318
3319  unsigned LHSRank = getIntegerRank(LHSC);
3320  unsigned RHSRank = getIntegerRank(RHSC);
3321
3322  if (LHSUnsigned == RHSUnsigned) {  // Both signed or both unsigned.
3323    if (LHSRank == RHSRank) return 0;
3324    return LHSRank > RHSRank ? 1 : -1;
3325  }
3326
3327  // Otherwise, the LHS is signed and the RHS is unsigned or visa versa.
3328  if (LHSUnsigned) {
3329    // If the unsigned [LHS] type is larger, return it.
3330    if (LHSRank >= RHSRank)
3331      return 1;
3332
3333    // If the signed type can represent all values of the unsigned type, it
3334    // wins.  Because we are dealing with 2's complement and types that are
3335    // powers of two larger than each other, this is always safe.
3336    return -1;
3337  }
3338
3339  // If the unsigned [RHS] type is larger, return it.
3340  if (RHSRank >= LHSRank)
3341    return -1;
3342
3343  // If the signed type can represent all values of the unsigned type, it
3344  // wins.  Because we are dealing with 2's complement and types that are
3345  // powers of two larger than each other, this is always safe.
3346  return 1;
3347}
3348
3349static RecordDecl *
3350CreateRecordDecl(const ASTContext &Ctx, RecordDecl::TagKind TK, DeclContext *DC,
3351                 SourceLocation L, IdentifierInfo *Id) {
3352  if (Ctx.getLangOptions().CPlusPlus)
3353    return CXXRecordDecl::Create(Ctx, TK, DC, L, Id);
3354  else
3355    return RecordDecl::Create(Ctx, TK, DC, L, Id);
3356}
3357
3358// getCFConstantStringType - Return the type used for constant CFStrings.
3359QualType ASTContext::getCFConstantStringType() const {
3360  if (!CFConstantStringTypeDecl) {
3361    CFConstantStringTypeDecl =
3362      CreateRecordDecl(*this, TTK_Struct, TUDecl, SourceLocation(),
3363                       &Idents.get("NSConstantString"));
3364    CFConstantStringTypeDecl->startDefinition();
3365
3366    QualType FieldTypes[4];
3367
3368    // const int *isa;
3369    FieldTypes[0] = getPointerType(IntTy.withConst());
3370    // int flags;
3371    FieldTypes[1] = IntTy;
3372    // const char *str;
3373    FieldTypes[2] = getPointerType(CharTy.withConst());
3374    // long length;
3375    FieldTypes[3] = LongTy;
3376
3377    // Create fields
3378    for (unsigned i = 0; i < 4; ++i) {
3379      FieldDecl *Field = FieldDecl::Create(*this, CFConstantStringTypeDecl,
3380                                           SourceLocation(), 0,
3381                                           FieldTypes[i], /*TInfo=*/0,
3382                                           /*BitWidth=*/0,
3383                                           /*Mutable=*/false);
3384      Field->setAccess(AS_public);
3385      CFConstantStringTypeDecl->addDecl(Field);
3386    }
3387
3388    CFConstantStringTypeDecl->completeDefinition();
3389  }
3390
3391  return getTagDeclType(CFConstantStringTypeDecl);
3392}
3393
3394void ASTContext::setCFConstantStringType(QualType T) {
3395  const RecordType *Rec = T->getAs<RecordType>();
3396  assert(Rec && "Invalid CFConstantStringType");
3397  CFConstantStringTypeDecl = Rec->getDecl();
3398}
3399
3400// getNSConstantStringType - Return the type used for constant NSStrings.
3401QualType ASTContext::getNSConstantStringType() const {
3402  if (!NSConstantStringTypeDecl) {
3403    NSConstantStringTypeDecl =
3404    CreateRecordDecl(*this, TTK_Struct, TUDecl, SourceLocation(),
3405                     &Idents.get("__builtin_NSString"));
3406    NSConstantStringTypeDecl->startDefinition();
3407
3408    QualType FieldTypes[3];
3409
3410    // const int *isa;
3411    FieldTypes[0] = getPointerType(IntTy.withConst());
3412    // const char *str;
3413    FieldTypes[1] = getPointerType(CharTy.withConst());
3414    // unsigned int length;
3415    FieldTypes[2] = UnsignedIntTy;
3416
3417    // Create fields
3418    for (unsigned i = 0; i < 3; ++i) {
3419      FieldDecl *Field = FieldDecl::Create(*this, NSConstantStringTypeDecl,
3420                                           SourceLocation(), 0,
3421                                           FieldTypes[i], /*TInfo=*/0,
3422                                           /*BitWidth=*/0,
3423                                           /*Mutable=*/false);
3424      Field->setAccess(AS_public);
3425      NSConstantStringTypeDecl->addDecl(Field);
3426    }
3427
3428    NSConstantStringTypeDecl->completeDefinition();
3429  }
3430
3431  return getTagDeclType(NSConstantStringTypeDecl);
3432}
3433
3434void ASTContext::setNSConstantStringType(QualType T) {
3435  const RecordType *Rec = T->getAs<RecordType>();
3436  assert(Rec && "Invalid NSConstantStringType");
3437  NSConstantStringTypeDecl = Rec->getDecl();
3438}
3439
3440QualType ASTContext::getObjCFastEnumerationStateType() const {
3441  if (!ObjCFastEnumerationStateTypeDecl) {
3442    ObjCFastEnumerationStateTypeDecl =
3443      CreateRecordDecl(*this, TTK_Struct, TUDecl, SourceLocation(),
3444                       &Idents.get("__objcFastEnumerationState"));
3445    ObjCFastEnumerationStateTypeDecl->startDefinition();
3446
3447    QualType FieldTypes[] = {
3448      UnsignedLongTy,
3449      getPointerType(ObjCIdTypedefType),
3450      getPointerType(UnsignedLongTy),
3451      getConstantArrayType(UnsignedLongTy,
3452                           llvm::APInt(32, 5), ArrayType::Normal, 0)
3453    };
3454
3455    for (size_t i = 0; i < 4; ++i) {
3456      FieldDecl *Field = FieldDecl::Create(*this,
3457                                           ObjCFastEnumerationStateTypeDecl,
3458                                           SourceLocation(), 0,
3459                                           FieldTypes[i], /*TInfo=*/0,
3460                                           /*BitWidth=*/0,
3461                                           /*Mutable=*/false);
3462      Field->setAccess(AS_public);
3463      ObjCFastEnumerationStateTypeDecl->addDecl(Field);
3464    }
3465
3466    ObjCFastEnumerationStateTypeDecl->completeDefinition();
3467  }
3468
3469  return getTagDeclType(ObjCFastEnumerationStateTypeDecl);
3470}
3471
3472QualType ASTContext::getBlockDescriptorType() const {
3473  if (BlockDescriptorType)
3474    return getTagDeclType(BlockDescriptorType);
3475
3476  RecordDecl *T;
3477  // FIXME: Needs the FlagAppleBlock bit.
3478  T = CreateRecordDecl(*this, TTK_Struct, TUDecl, SourceLocation(),
3479                       &Idents.get("__block_descriptor"));
3480  T->startDefinition();
3481
3482  QualType FieldTypes[] = {
3483    UnsignedLongTy,
3484    UnsignedLongTy,
3485  };
3486
3487  const char *FieldNames[] = {
3488    "reserved",
3489    "Size"
3490  };
3491
3492  for (size_t i = 0; i < 2; ++i) {
3493    FieldDecl *Field = FieldDecl::Create(*this,
3494                                         T,
3495                                         SourceLocation(),
3496                                         &Idents.get(FieldNames[i]),
3497                                         FieldTypes[i], /*TInfo=*/0,
3498                                         /*BitWidth=*/0,
3499                                         /*Mutable=*/false);
3500    Field->setAccess(AS_public);
3501    T->addDecl(Field);
3502  }
3503
3504  T->completeDefinition();
3505
3506  BlockDescriptorType = T;
3507
3508  return getTagDeclType(BlockDescriptorType);
3509}
3510
3511void ASTContext::setBlockDescriptorType(QualType T) {
3512  const RecordType *Rec = T->getAs<RecordType>();
3513  assert(Rec && "Invalid BlockDescriptorType");
3514  BlockDescriptorType = Rec->getDecl();
3515}
3516
3517QualType ASTContext::getBlockDescriptorExtendedType() const {
3518  if (BlockDescriptorExtendedType)
3519    return getTagDeclType(BlockDescriptorExtendedType);
3520
3521  RecordDecl *T;
3522  // FIXME: Needs the FlagAppleBlock bit.
3523  T = CreateRecordDecl(*this, TTK_Struct, TUDecl, SourceLocation(),
3524                       &Idents.get("__block_descriptor_withcopydispose"));
3525  T->startDefinition();
3526
3527  QualType FieldTypes[] = {
3528    UnsignedLongTy,
3529    UnsignedLongTy,
3530    getPointerType(VoidPtrTy),
3531    getPointerType(VoidPtrTy)
3532  };
3533
3534  const char *FieldNames[] = {
3535    "reserved",
3536    "Size",
3537    "CopyFuncPtr",
3538    "DestroyFuncPtr"
3539  };
3540
3541  for (size_t i = 0; i < 4; ++i) {
3542    FieldDecl *Field = FieldDecl::Create(*this,
3543                                         T,
3544                                         SourceLocation(),
3545                                         &Idents.get(FieldNames[i]),
3546                                         FieldTypes[i], /*TInfo=*/0,
3547                                         /*BitWidth=*/0,
3548                                         /*Mutable=*/false);
3549    Field->setAccess(AS_public);
3550    T->addDecl(Field);
3551  }
3552
3553  T->completeDefinition();
3554
3555  BlockDescriptorExtendedType = T;
3556
3557  return getTagDeclType(BlockDescriptorExtendedType);
3558}
3559
3560void ASTContext::setBlockDescriptorExtendedType(QualType T) {
3561  const RecordType *Rec = T->getAs<RecordType>();
3562  assert(Rec && "Invalid BlockDescriptorType");
3563  BlockDescriptorExtendedType = Rec->getDecl();
3564}
3565
3566bool ASTContext::BlockRequiresCopying(QualType Ty) const {
3567  if (Ty->isBlockPointerType())
3568    return true;
3569  if (isObjCNSObjectType(Ty))
3570    return true;
3571  if (Ty->isObjCObjectPointerType())
3572    return true;
3573  if (getLangOptions().CPlusPlus) {
3574    if (const RecordType *RT = Ty->getAs<RecordType>()) {
3575      CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
3576      return RD->hasConstCopyConstructor(*this);
3577
3578    }
3579  }
3580  return false;
3581}
3582
3583QualType
3584ASTContext::BuildByRefType(llvm::StringRef DeclName, QualType Ty) const {
3585  //  type = struct __Block_byref_1_X {
3586  //    void *__isa;
3587  //    struct __Block_byref_1_X *__forwarding;
3588  //    unsigned int __flags;
3589  //    unsigned int __size;
3590  //    void *__copy_helper;            // as needed
3591  //    void *__destroy_help            // as needed
3592  //    int X;
3593  //  } *
3594
3595  bool HasCopyAndDispose = BlockRequiresCopying(Ty);
3596
3597  // FIXME: Move up
3598  llvm::SmallString<36> Name;
3599  llvm::raw_svector_ostream(Name) << "__Block_byref_" <<
3600                                  ++UniqueBlockByRefTypeID << '_' << DeclName;
3601  RecordDecl *T;
3602  T = CreateRecordDecl(*this, TTK_Struct, TUDecl, SourceLocation(),
3603                       &Idents.get(Name.str()));
3604  T->startDefinition();
3605  QualType Int32Ty = IntTy;
3606  assert(getIntWidth(IntTy) == 32 && "non-32bit int not supported");
3607  QualType FieldTypes[] = {
3608    getPointerType(VoidPtrTy),
3609    getPointerType(getTagDeclType(T)),
3610    Int32Ty,
3611    Int32Ty,
3612    getPointerType(VoidPtrTy),
3613    getPointerType(VoidPtrTy),
3614    Ty
3615  };
3616
3617  llvm::StringRef FieldNames[] = {
3618    "__isa",
3619    "__forwarding",
3620    "__flags",
3621    "__size",
3622    "__copy_helper",
3623    "__destroy_helper",
3624    DeclName,
3625  };
3626
3627  for (size_t i = 0; i < 7; ++i) {
3628    if (!HasCopyAndDispose && i >=4 && i <= 5)
3629      continue;
3630    FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(),
3631                                         &Idents.get(FieldNames[i]),
3632                                         FieldTypes[i], /*TInfo=*/0,
3633                                         /*BitWidth=*/0, /*Mutable=*/false);
3634    Field->setAccess(AS_public);
3635    T->addDecl(Field);
3636  }
3637
3638  T->completeDefinition();
3639
3640  return getPointerType(getTagDeclType(T));
3641}
3642
3643void ASTContext::setObjCFastEnumerationStateType(QualType T) {
3644  const RecordType *Rec = T->getAs<RecordType>();
3645  assert(Rec && "Invalid ObjCFAstEnumerationStateType");
3646  ObjCFastEnumerationStateTypeDecl = Rec->getDecl();
3647}
3648
3649// This returns true if a type has been typedefed to BOOL:
3650// typedef <type> BOOL;
3651static bool isTypeTypedefedAsBOOL(QualType T) {
3652  if (const TypedefType *TT = dyn_cast<TypedefType>(T))
3653    if (IdentifierInfo *II = TT->getDecl()->getIdentifier())
3654      return II->isStr("BOOL");
3655
3656  return false;
3657}
3658
3659/// getObjCEncodingTypeSize returns size of type for objective-c encoding
3660/// purpose.
3661CharUnits ASTContext::getObjCEncodingTypeSize(QualType type) const {
3662  CharUnits sz = getTypeSizeInChars(type);
3663
3664  // Make all integer and enum types at least as large as an int
3665  if (sz.isPositive() && type->isIntegralOrEnumerationType())
3666    sz = std::max(sz, getTypeSizeInChars(IntTy));
3667  // Treat arrays as pointers, since that's how they're passed in.
3668  else if (type->isArrayType())
3669    sz = getTypeSizeInChars(VoidPtrTy);
3670  return sz;
3671}
3672
3673static inline
3674std::string charUnitsToString(const CharUnits &CU) {
3675  return llvm::itostr(CU.getQuantity());
3676}
3677
3678/// getObjCEncodingForBlock - Return the encoded type for this block
3679/// declaration.
3680std::string ASTContext::getObjCEncodingForBlock(const BlockExpr *Expr) const {
3681  std::string S;
3682
3683  const BlockDecl *Decl = Expr->getBlockDecl();
3684  QualType BlockTy =
3685      Expr->getType()->getAs<BlockPointerType>()->getPointeeType();
3686  // Encode result type.
3687  getObjCEncodingForType(BlockTy->getAs<FunctionType>()->getResultType(), S);
3688  // Compute size of all parameters.
3689  // Start with computing size of a pointer in number of bytes.
3690  // FIXME: There might(should) be a better way of doing this computation!
3691  SourceLocation Loc;
3692  CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy);
3693  CharUnits ParmOffset = PtrSize;
3694  for (BlockDecl::param_const_iterator PI = Decl->param_begin(),
3695       E = Decl->param_end(); PI != E; ++PI) {
3696    QualType PType = (*PI)->getType();
3697    CharUnits sz = getObjCEncodingTypeSize(PType);
3698    assert (sz.isPositive() && "BlockExpr - Incomplete param type");
3699    ParmOffset += sz;
3700  }
3701  // Size of the argument frame
3702  S += charUnitsToString(ParmOffset);
3703  // Block pointer and offset.
3704  S += "@?0";
3705  ParmOffset = PtrSize;
3706
3707  // Argument types.
3708  ParmOffset = PtrSize;
3709  for (BlockDecl::param_const_iterator PI = Decl->param_begin(), E =
3710       Decl->param_end(); PI != E; ++PI) {
3711    ParmVarDecl *PVDecl = *PI;
3712    QualType PType = PVDecl->getOriginalType();
3713    if (const ArrayType *AT =
3714          dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
3715      // Use array's original type only if it has known number of
3716      // elements.
3717      if (!isa<ConstantArrayType>(AT))
3718        PType = PVDecl->getType();
3719    } else if (PType->isFunctionType())
3720      PType = PVDecl->getType();
3721    getObjCEncodingForType(PType, S);
3722    S += charUnitsToString(ParmOffset);
3723    ParmOffset += getObjCEncodingTypeSize(PType);
3724  }
3725
3726  return S;
3727}
3728
3729void ASTContext::getObjCEncodingForFunctionDecl(const FunctionDecl *Decl,
3730                                                std::string& S) {
3731  // Encode result type.
3732  getObjCEncodingForType(Decl->getResultType(), S);
3733  CharUnits ParmOffset;
3734  // Compute size of all parameters.
3735  for (FunctionDecl::param_const_iterator PI = Decl->param_begin(),
3736       E = Decl->param_end(); PI != E; ++PI) {
3737    QualType PType = (*PI)->getType();
3738    CharUnits sz = getObjCEncodingTypeSize(PType);
3739    assert (sz.isPositive() &&
3740        "getObjCEncodingForMethodDecl - Incomplete param type");
3741    ParmOffset += sz;
3742  }
3743  S += charUnitsToString(ParmOffset);
3744  ParmOffset = CharUnits::Zero();
3745
3746  // Argument types.
3747  for (FunctionDecl::param_const_iterator PI = Decl->param_begin(),
3748       E = Decl->param_end(); PI != E; ++PI) {
3749    ParmVarDecl *PVDecl = *PI;
3750    QualType PType = PVDecl->getOriginalType();
3751    if (const ArrayType *AT =
3752          dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
3753      // Use array's original type only if it has known number of
3754      // elements.
3755      if (!isa<ConstantArrayType>(AT))
3756        PType = PVDecl->getType();
3757    } else if (PType->isFunctionType())
3758      PType = PVDecl->getType();
3759    getObjCEncodingForType(PType, S);
3760    S += charUnitsToString(ParmOffset);
3761    ParmOffset += getObjCEncodingTypeSize(PType);
3762  }
3763}
3764
3765/// getObjCEncodingForMethodDecl - Return the encoded type for this method
3766/// declaration.
3767void ASTContext::getObjCEncodingForMethodDecl(const ObjCMethodDecl *Decl,
3768                                              std::string& S) const {
3769  // FIXME: This is not very efficient.
3770  // Encode type qualifer, 'in', 'inout', etc. for the return type.
3771  getObjCEncodingForTypeQualifier(Decl->getObjCDeclQualifier(), S);
3772  // Encode result type.
3773  getObjCEncodingForType(Decl->getResultType(), S);
3774  // Compute size of all parameters.
3775  // Start with computing size of a pointer in number of bytes.
3776  // FIXME: There might(should) be a better way of doing this computation!
3777  SourceLocation Loc;
3778  CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy);
3779  // The first two arguments (self and _cmd) are pointers; account for
3780  // their size.
3781  CharUnits ParmOffset = 2 * PtrSize;
3782  for (ObjCMethodDecl::param_iterator PI = Decl->param_begin(),
3783       E = Decl->sel_param_end(); PI != E; ++PI) {
3784    QualType PType = (*PI)->getType();
3785    CharUnits sz = getObjCEncodingTypeSize(PType);
3786    assert (sz.isPositive() &&
3787        "getObjCEncodingForMethodDecl - Incomplete param type");
3788    ParmOffset += sz;
3789  }
3790  S += charUnitsToString(ParmOffset);
3791  S += "@0:";
3792  S += charUnitsToString(PtrSize);
3793
3794  // Argument types.
3795  ParmOffset = 2 * PtrSize;
3796  for (ObjCMethodDecl::param_iterator PI = Decl->param_begin(),
3797       E = Decl->sel_param_end(); PI != E; ++PI) {
3798    ParmVarDecl *PVDecl = *PI;
3799    QualType PType = PVDecl->getOriginalType();
3800    if (const ArrayType *AT =
3801          dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
3802      // Use array's original type only if it has known number of
3803      // elements.
3804      if (!isa<ConstantArrayType>(AT))
3805        PType = PVDecl->getType();
3806    } else if (PType->isFunctionType())
3807      PType = PVDecl->getType();
3808    // Process argument qualifiers for user supplied arguments; such as,
3809    // 'in', 'inout', etc.
3810    getObjCEncodingForTypeQualifier(PVDecl->getObjCDeclQualifier(), S);
3811    getObjCEncodingForType(PType, S);
3812    S += charUnitsToString(ParmOffset);
3813    ParmOffset += getObjCEncodingTypeSize(PType);
3814  }
3815}
3816
3817/// getObjCEncodingForPropertyDecl - Return the encoded type for this
3818/// property declaration. If non-NULL, Container must be either an
3819/// ObjCCategoryImplDecl or ObjCImplementationDecl; it should only be
3820/// NULL when getting encodings for protocol properties.
3821/// Property attributes are stored as a comma-delimited C string. The simple
3822/// attributes readonly and bycopy are encoded as single characters. The
3823/// parametrized attributes, getter=name, setter=name, and ivar=name, are
3824/// encoded as single characters, followed by an identifier. Property types
3825/// are also encoded as a parametrized attribute. The characters used to encode
3826/// these attributes are defined by the following enumeration:
3827/// @code
3828/// enum PropertyAttributes {
3829/// kPropertyReadOnly = 'R',   // property is read-only.
3830/// kPropertyBycopy = 'C',     // property is a copy of the value last assigned
3831/// kPropertyByref = '&',  // property is a reference to the value last assigned
3832/// kPropertyDynamic = 'D',    // property is dynamic
3833/// kPropertyGetter = 'G',     // followed by getter selector name
3834/// kPropertySetter = 'S',     // followed by setter selector name
3835/// kPropertyInstanceVariable = 'V'  // followed by instance variable  name
3836/// kPropertyType = 't'              // followed by old-style type encoding.
3837/// kPropertyWeak = 'W'              // 'weak' property
3838/// kPropertyStrong = 'P'            // property GC'able
3839/// kPropertyNonAtomic = 'N'         // property non-atomic
3840/// };
3841/// @endcode
3842void ASTContext::getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD,
3843                                                const Decl *Container,
3844                                                std::string& S) const {
3845  // Collect information from the property implementation decl(s).
3846  bool Dynamic = false;
3847  ObjCPropertyImplDecl *SynthesizePID = 0;
3848
3849  // FIXME: Duplicated code due to poor abstraction.
3850  if (Container) {
3851    if (const ObjCCategoryImplDecl *CID =
3852        dyn_cast<ObjCCategoryImplDecl>(Container)) {
3853      for (ObjCCategoryImplDecl::propimpl_iterator
3854             i = CID->propimpl_begin(), e = CID->propimpl_end();
3855           i != e; ++i) {
3856        ObjCPropertyImplDecl *PID = *i;
3857        if (PID->getPropertyDecl() == PD) {
3858          if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) {
3859            Dynamic = true;
3860          } else {
3861            SynthesizePID = PID;
3862          }
3863        }
3864      }
3865    } else {
3866      const ObjCImplementationDecl *OID=cast<ObjCImplementationDecl>(Container);
3867      for (ObjCCategoryImplDecl::propimpl_iterator
3868             i = OID->propimpl_begin(), e = OID->propimpl_end();
3869           i != e; ++i) {
3870        ObjCPropertyImplDecl *PID = *i;
3871        if (PID->getPropertyDecl() == PD) {
3872          if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) {
3873            Dynamic = true;
3874          } else {
3875            SynthesizePID = PID;
3876          }
3877        }
3878      }
3879    }
3880  }
3881
3882  // FIXME: This is not very efficient.
3883  S = "T";
3884
3885  // Encode result type.
3886  // GCC has some special rules regarding encoding of properties which
3887  // closely resembles encoding of ivars.
3888  getObjCEncodingForTypeImpl(PD->getType(), S, true, true, 0,
3889                             true /* outermost type */,
3890                             true /* encoding for property */);
3891
3892  if (PD->isReadOnly()) {
3893    S += ",R";
3894  } else {
3895    switch (PD->getSetterKind()) {
3896    case ObjCPropertyDecl::Assign: break;
3897    case ObjCPropertyDecl::Copy:   S += ",C"; break;
3898    case ObjCPropertyDecl::Retain: S += ",&"; break;
3899    }
3900  }
3901
3902  // It really isn't clear at all what this means, since properties
3903  // are "dynamic by default".
3904  if (Dynamic)
3905    S += ",D";
3906
3907  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_nonatomic)
3908    S += ",N";
3909
3910  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_getter) {
3911    S += ",G";
3912    S += PD->getGetterName().getAsString();
3913  }
3914
3915  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_setter) {
3916    S += ",S";
3917    S += PD->getSetterName().getAsString();
3918  }
3919
3920  if (SynthesizePID) {
3921    const ObjCIvarDecl *OID = SynthesizePID->getPropertyIvarDecl();
3922    S += ",V";
3923    S += OID->getNameAsString();
3924  }
3925
3926  // FIXME: OBJCGC: weak & strong
3927}
3928
3929/// getLegacyIntegralTypeEncoding -
3930/// Another legacy compatibility encoding: 32-bit longs are encoded as
3931/// 'l' or 'L' , but not always.  For typedefs, we need to use
3932/// 'i' or 'I' instead if encoding a struct field, or a pointer!
3933///
3934void ASTContext::getLegacyIntegralTypeEncoding (QualType &PointeeTy) const {
3935  if (isa<TypedefType>(PointeeTy.getTypePtr())) {
3936    if (const BuiltinType *BT = PointeeTy->getAs<BuiltinType>()) {
3937      if (BT->getKind() == BuiltinType::ULong && getIntWidth(PointeeTy) == 32)
3938        PointeeTy = UnsignedIntTy;
3939      else
3940        if (BT->getKind() == BuiltinType::Long && getIntWidth(PointeeTy) == 32)
3941          PointeeTy = IntTy;
3942    }
3943  }
3944}
3945
3946void ASTContext::getObjCEncodingForType(QualType T, std::string& S,
3947                                        const FieldDecl *Field) const {
3948  // We follow the behavior of gcc, expanding structures which are
3949  // directly pointed to, and expanding embedded structures. Note that
3950  // these rules are sufficient to prevent recursive encoding of the
3951  // same type.
3952  getObjCEncodingForTypeImpl(T, S, true, true, Field,
3953                             true /* outermost type */);
3954}
3955
3956static char ObjCEncodingForPrimitiveKind(const ASTContext *C, QualType T) {
3957    switch (T->getAs<BuiltinType>()->getKind()) {
3958    default: assert(0 && "Unhandled builtin type kind");
3959    case BuiltinType::Void:       return 'v';
3960    case BuiltinType::Bool:       return 'B';
3961    case BuiltinType::Char_U:
3962    case BuiltinType::UChar:      return 'C';
3963    case BuiltinType::UShort:     return 'S';
3964    case BuiltinType::UInt:       return 'I';
3965    case BuiltinType::ULong:
3966        return C->getIntWidth(T) == 32 ? 'L' : 'Q';
3967    case BuiltinType::UInt128:    return 'T';
3968    case BuiltinType::ULongLong:  return 'Q';
3969    case BuiltinType::Char_S:
3970    case BuiltinType::SChar:      return 'c';
3971    case BuiltinType::Short:      return 's';
3972    case BuiltinType::WChar_S:
3973    case BuiltinType::WChar_U:
3974    case BuiltinType::Int:        return 'i';
3975    case BuiltinType::Long:
3976      return C->getIntWidth(T) == 32 ? 'l' : 'q';
3977    case BuiltinType::LongLong:   return 'q';
3978    case BuiltinType::Int128:     return 't';
3979    case BuiltinType::Float:      return 'f';
3980    case BuiltinType::Double:     return 'd';
3981    case BuiltinType::LongDouble: return 'D';
3982    }
3983}
3984
3985static void EncodeBitField(const ASTContext *Ctx, std::string& S,
3986                           QualType T, const FieldDecl *FD) {
3987  const Expr *E = FD->getBitWidth();
3988  assert(E && "bitfield width not there - getObjCEncodingForTypeImpl");
3989  S += 'b';
3990  // The NeXT runtime encodes bit fields as b followed by the number of bits.
3991  // The GNU runtime requires more information; bitfields are encoded as b,
3992  // then the offset (in bits) of the first element, then the type of the
3993  // bitfield, then the size in bits.  For example, in this structure:
3994  //
3995  // struct
3996  // {
3997  //    int integer;
3998  //    int flags:2;
3999  // };
4000  // On a 32-bit system, the encoding for flags would be b2 for the NeXT
4001  // runtime, but b32i2 for the GNU runtime.  The reason for this extra
4002  // information is not especially sensible, but we're stuck with it for
4003  // compatibility with GCC, although providing it breaks anything that
4004  // actually uses runtime introspection and wants to work on both runtimes...
4005  if (!Ctx->getLangOptions().NeXTRuntime) {
4006    const RecordDecl *RD = FD->getParent();
4007    const ASTRecordLayout &RL = Ctx->getASTRecordLayout(RD);
4008    // FIXME: This same linear search is also used in ExprConstant - it might
4009    // be better if the FieldDecl stored its offset.  We'd be increasing the
4010    // size of the object slightly, but saving some time every time it is used.
4011    unsigned i = 0;
4012    for (RecordDecl::field_iterator Field = RD->field_begin(),
4013                                 FieldEnd = RD->field_end();
4014         Field != FieldEnd; (void)++Field, ++i) {
4015      if (*Field == FD)
4016        break;
4017    }
4018    S += llvm::utostr(RL.getFieldOffset(i));
4019    if (T->isEnumeralType())
4020      S += 'i';
4021    else
4022      S += ObjCEncodingForPrimitiveKind(Ctx, T);
4023  }
4024  unsigned N = E->EvaluateAsInt(*Ctx).getZExtValue();
4025  S += llvm::utostr(N);
4026}
4027
4028// FIXME: Use SmallString for accumulating string.
4029void ASTContext::getObjCEncodingForTypeImpl(QualType T, std::string& S,
4030                                            bool ExpandPointedToStructures,
4031                                            bool ExpandStructures,
4032                                            const FieldDecl *FD,
4033                                            bool OutermostType,
4034                                            bool EncodingProperty) const {
4035  if (T->getAs<BuiltinType>()) {
4036    if (FD && FD->isBitField())
4037      return EncodeBitField(this, S, T, FD);
4038    S += ObjCEncodingForPrimitiveKind(this, T);
4039    return;
4040  }
4041
4042  if (const ComplexType *CT = T->getAs<ComplexType>()) {
4043    S += 'j';
4044    getObjCEncodingForTypeImpl(CT->getElementType(), S, false, false, 0, false,
4045                               false);
4046    return;
4047  }
4048
4049  // encoding for pointer or r3eference types.
4050  QualType PointeeTy;
4051  if (const PointerType *PT = T->getAs<PointerType>()) {
4052    if (PT->isObjCSelType()) {
4053      S += ':';
4054      return;
4055    }
4056    PointeeTy = PT->getPointeeType();
4057  }
4058  else if (const ReferenceType *RT = T->getAs<ReferenceType>())
4059    PointeeTy = RT->getPointeeType();
4060  if (!PointeeTy.isNull()) {
4061    bool isReadOnly = false;
4062    // For historical/compatibility reasons, the read-only qualifier of the
4063    // pointee gets emitted _before_ the '^'.  The read-only qualifier of
4064    // the pointer itself gets ignored, _unless_ we are looking at a typedef!
4065    // Also, do not emit the 'r' for anything but the outermost type!
4066    if (isa<TypedefType>(T.getTypePtr())) {
4067      if (OutermostType && T.isConstQualified()) {
4068        isReadOnly = true;
4069        S += 'r';
4070      }
4071    } else if (OutermostType) {
4072      QualType P = PointeeTy;
4073      while (P->getAs<PointerType>())
4074        P = P->getAs<PointerType>()->getPointeeType();
4075      if (P.isConstQualified()) {
4076        isReadOnly = true;
4077        S += 'r';
4078      }
4079    }
4080    if (isReadOnly) {
4081      // Another legacy compatibility encoding. Some ObjC qualifier and type
4082      // combinations need to be rearranged.
4083      // Rewrite "in const" from "nr" to "rn"
4084      if (llvm::StringRef(S).endswith("nr"))
4085        S.replace(S.end()-2, S.end(), "rn");
4086    }
4087
4088    if (PointeeTy->isCharType()) {
4089      // char pointer types should be encoded as '*' unless it is a
4090      // type that has been typedef'd to 'BOOL'.
4091      if (!isTypeTypedefedAsBOOL(PointeeTy)) {
4092        S += '*';
4093        return;
4094      }
4095    } else if (const RecordType *RTy = PointeeTy->getAs<RecordType>()) {
4096      // GCC binary compat: Need to convert "struct objc_class *" to "#".
4097      if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_class")) {
4098        S += '#';
4099        return;
4100      }
4101      // GCC binary compat: Need to convert "struct objc_object *" to "@".
4102      if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_object")) {
4103        S += '@';
4104        return;
4105      }
4106      // fall through...
4107    }
4108    S += '^';
4109    getLegacyIntegralTypeEncoding(PointeeTy);
4110
4111    getObjCEncodingForTypeImpl(PointeeTy, S, false, ExpandPointedToStructures,
4112                               NULL);
4113    return;
4114  }
4115
4116  if (const ArrayType *AT =
4117      // Ignore type qualifiers etc.
4118        dyn_cast<ArrayType>(T->getCanonicalTypeInternal())) {
4119    if (isa<IncompleteArrayType>(AT)) {
4120      // Incomplete arrays are encoded as a pointer to the array element.
4121      S += '^';
4122
4123      getObjCEncodingForTypeImpl(AT->getElementType(), S,
4124                                 false, ExpandStructures, FD);
4125    } else {
4126      S += '[';
4127
4128      if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
4129        S += llvm::utostr(CAT->getSize().getZExtValue());
4130      else {
4131        //Variable length arrays are encoded as a regular array with 0 elements.
4132        assert(isa<VariableArrayType>(AT) && "Unknown array type!");
4133        S += '0';
4134      }
4135
4136      getObjCEncodingForTypeImpl(AT->getElementType(), S,
4137                                 false, ExpandStructures, FD);
4138      S += ']';
4139    }
4140    return;
4141  }
4142
4143  if (T->getAs<FunctionType>()) {
4144    S += '?';
4145    return;
4146  }
4147
4148  if (const RecordType *RTy = T->getAs<RecordType>()) {
4149    RecordDecl *RDecl = RTy->getDecl();
4150    S += RDecl->isUnion() ? '(' : '{';
4151    // Anonymous structures print as '?'
4152    if (const IdentifierInfo *II = RDecl->getIdentifier()) {
4153      S += II->getName();
4154      if (ClassTemplateSpecializationDecl *Spec
4155          = dyn_cast<ClassTemplateSpecializationDecl>(RDecl)) {
4156        const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
4157        std::string TemplateArgsStr
4158          = TemplateSpecializationType::PrintTemplateArgumentList(
4159                                            TemplateArgs.data(),
4160                                            TemplateArgs.size(),
4161                                            (*this).PrintingPolicy);
4162
4163        S += TemplateArgsStr;
4164      }
4165    } else {
4166      S += '?';
4167    }
4168    if (ExpandStructures) {
4169      S += '=';
4170      for (RecordDecl::field_iterator Field = RDecl->field_begin(),
4171                                   FieldEnd = RDecl->field_end();
4172           Field != FieldEnd; ++Field) {
4173        if (FD) {
4174          S += '"';
4175          S += Field->getNameAsString();
4176          S += '"';
4177        }
4178
4179        // Special case bit-fields.
4180        if (Field->isBitField()) {
4181          getObjCEncodingForTypeImpl(Field->getType(), S, false, true,
4182                                     (*Field));
4183        } else {
4184          QualType qt = Field->getType();
4185          getLegacyIntegralTypeEncoding(qt);
4186          getObjCEncodingForTypeImpl(qt, S, false, true,
4187                                     FD);
4188        }
4189      }
4190    }
4191    S += RDecl->isUnion() ? ')' : '}';
4192    return;
4193  }
4194
4195  if (T->isEnumeralType()) {
4196    if (FD && FD->isBitField())
4197      EncodeBitField(this, S, T, FD);
4198    else
4199      S += 'i';
4200    return;
4201  }
4202
4203  if (T->isBlockPointerType()) {
4204    S += "@?"; // Unlike a pointer-to-function, which is "^?".
4205    return;
4206  }
4207
4208  // Ignore protocol qualifiers when mangling at this level.
4209  if (const ObjCObjectType *OT = T->getAs<ObjCObjectType>())
4210    T = OT->getBaseType();
4211
4212  if (const ObjCInterfaceType *OIT = T->getAs<ObjCInterfaceType>()) {
4213    // @encode(class_name)
4214    ObjCInterfaceDecl *OI = OIT->getDecl();
4215    S += '{';
4216    const IdentifierInfo *II = OI->getIdentifier();
4217    S += II->getName();
4218    S += '=';
4219    llvm::SmallVector<ObjCIvarDecl*, 32> Ivars;
4220    DeepCollectObjCIvars(OI, true, Ivars);
4221    for (unsigned i = 0, e = Ivars.size(); i != e; ++i) {
4222      FieldDecl *Field = cast<FieldDecl>(Ivars[i]);
4223      if (Field->isBitField())
4224        getObjCEncodingForTypeImpl(Field->getType(), S, false, true, Field);
4225      else
4226        getObjCEncodingForTypeImpl(Field->getType(), S, false, true, FD);
4227    }
4228    S += '}';
4229    return;
4230  }
4231
4232  if (const ObjCObjectPointerType *OPT = T->getAs<ObjCObjectPointerType>()) {
4233    if (OPT->isObjCIdType()) {
4234      S += '@';
4235      return;
4236    }
4237
4238    if (OPT->isObjCClassType() || OPT->isObjCQualifiedClassType()) {
4239      // FIXME: Consider if we need to output qualifiers for 'Class<p>'.
4240      // Since this is a binary compatibility issue, need to consult with runtime
4241      // folks. Fortunately, this is a *very* obsure construct.
4242      S += '#';
4243      return;
4244    }
4245
4246    if (OPT->isObjCQualifiedIdType()) {
4247      getObjCEncodingForTypeImpl(getObjCIdType(), S,
4248                                 ExpandPointedToStructures,
4249                                 ExpandStructures, FD);
4250      if (FD || EncodingProperty) {
4251        // Note that we do extended encoding of protocol qualifer list
4252        // Only when doing ivar or property encoding.
4253        S += '"';
4254        for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(),
4255             E = OPT->qual_end(); I != E; ++I) {
4256          S += '<';
4257          S += (*I)->getNameAsString();
4258          S += '>';
4259        }
4260        S += '"';
4261      }
4262      return;
4263    }
4264
4265    QualType PointeeTy = OPT->getPointeeType();
4266    if (!EncodingProperty &&
4267        isa<TypedefType>(PointeeTy.getTypePtr())) {
4268      // Another historical/compatibility reason.
4269      // We encode the underlying type which comes out as
4270      // {...};
4271      S += '^';
4272      getObjCEncodingForTypeImpl(PointeeTy, S,
4273                                 false, ExpandPointedToStructures,
4274                                 NULL);
4275      return;
4276    }
4277
4278    S += '@';
4279    if (OPT->getInterfaceDecl() && (FD || EncodingProperty)) {
4280      S += '"';
4281      S += OPT->getInterfaceDecl()->getIdentifier()->getName();
4282      for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(),
4283           E = OPT->qual_end(); I != E; ++I) {
4284        S += '<';
4285        S += (*I)->getNameAsString();
4286        S += '>';
4287      }
4288      S += '"';
4289    }
4290    return;
4291  }
4292
4293  // gcc just blithely ignores member pointers.
4294  // TODO: maybe there should be a mangling for these
4295  if (T->getAs<MemberPointerType>())
4296    return;
4297
4298  if (T->isVectorType()) {
4299    // This matches gcc's encoding, even though technically it is
4300    // insufficient.
4301    // FIXME. We should do a better job than gcc.
4302    return;
4303  }
4304
4305  assert(0 && "@encode for type not implemented!");
4306}
4307
4308void ASTContext::getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT,
4309                                                 std::string& S) const {
4310  if (QT & Decl::OBJC_TQ_In)
4311    S += 'n';
4312  if (QT & Decl::OBJC_TQ_Inout)
4313    S += 'N';
4314  if (QT & Decl::OBJC_TQ_Out)
4315    S += 'o';
4316  if (QT & Decl::OBJC_TQ_Bycopy)
4317    S += 'O';
4318  if (QT & Decl::OBJC_TQ_Byref)
4319    S += 'R';
4320  if (QT & Decl::OBJC_TQ_Oneway)
4321    S += 'V';
4322}
4323
4324void ASTContext::setBuiltinVaListType(QualType T) {
4325  assert(BuiltinVaListType.isNull() && "__builtin_va_list type already set!");
4326
4327  BuiltinVaListType = T;
4328}
4329
4330void ASTContext::setObjCIdType(QualType T) {
4331  ObjCIdTypedefType = T;
4332}
4333
4334void ASTContext::setObjCSelType(QualType T) {
4335  ObjCSelTypedefType = T;
4336}
4337
4338void ASTContext::setObjCProtoType(QualType QT) {
4339  ObjCProtoType = QT;
4340}
4341
4342void ASTContext::setObjCClassType(QualType T) {
4343  ObjCClassTypedefType = T;
4344}
4345
4346void ASTContext::setObjCConstantStringInterface(ObjCInterfaceDecl *Decl) {
4347  assert(ObjCConstantStringType.isNull() &&
4348         "'NSConstantString' type already set!");
4349
4350  ObjCConstantStringType = getObjCInterfaceType(Decl);
4351}
4352
4353/// \brief Retrieve the template name that corresponds to a non-empty
4354/// lookup.
4355TemplateName
4356ASTContext::getOverloadedTemplateName(UnresolvedSetIterator Begin,
4357                                      UnresolvedSetIterator End) const {
4358  unsigned size = End - Begin;
4359  assert(size > 1 && "set is not overloaded!");
4360
4361  void *memory = Allocate(sizeof(OverloadedTemplateStorage) +
4362                          size * sizeof(FunctionTemplateDecl*));
4363  OverloadedTemplateStorage *OT = new(memory) OverloadedTemplateStorage(size);
4364
4365  NamedDecl **Storage = OT->getStorage();
4366  for (UnresolvedSetIterator I = Begin; I != End; ++I) {
4367    NamedDecl *D = *I;
4368    assert(isa<FunctionTemplateDecl>(D) ||
4369           (isa<UsingShadowDecl>(D) &&
4370            isa<FunctionTemplateDecl>(D->getUnderlyingDecl())));
4371    *Storage++ = D;
4372  }
4373
4374  return TemplateName(OT);
4375}
4376
4377/// \brief Retrieve the template name that represents a qualified
4378/// template name such as \c std::vector.
4379TemplateName
4380ASTContext::getQualifiedTemplateName(NestedNameSpecifier *NNS,
4381                                     bool TemplateKeyword,
4382                                     TemplateDecl *Template) const {
4383  // FIXME: Canonicalization?
4384  llvm::FoldingSetNodeID ID;
4385  QualifiedTemplateName::Profile(ID, NNS, TemplateKeyword, Template);
4386
4387  void *InsertPos = 0;
4388  QualifiedTemplateName *QTN =
4389    QualifiedTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
4390  if (!QTN) {
4391    QTN = new (*this,4) QualifiedTemplateName(NNS, TemplateKeyword, Template);
4392    QualifiedTemplateNames.InsertNode(QTN, InsertPos);
4393  }
4394
4395  return TemplateName(QTN);
4396}
4397
4398/// \brief Retrieve the template name that represents a dependent
4399/// template name such as \c MetaFun::template apply.
4400TemplateName
4401ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
4402                                     const IdentifierInfo *Name) const {
4403  assert((!NNS || NNS->isDependent()) &&
4404         "Nested name specifier must be dependent");
4405
4406  llvm::FoldingSetNodeID ID;
4407  DependentTemplateName::Profile(ID, NNS, Name);
4408
4409  void *InsertPos = 0;
4410  DependentTemplateName *QTN =
4411    DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
4412
4413  if (QTN)
4414    return TemplateName(QTN);
4415
4416  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
4417  if (CanonNNS == NNS) {
4418    QTN = new (*this,4) DependentTemplateName(NNS, Name);
4419  } else {
4420    TemplateName Canon = getDependentTemplateName(CanonNNS, Name);
4421    QTN = new (*this,4) DependentTemplateName(NNS, Name, Canon);
4422    DependentTemplateName *CheckQTN =
4423      DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
4424    assert(!CheckQTN && "Dependent type name canonicalization broken");
4425    (void)CheckQTN;
4426  }
4427
4428  DependentTemplateNames.InsertNode(QTN, InsertPos);
4429  return TemplateName(QTN);
4430}
4431
4432/// \brief Retrieve the template name that represents a dependent
4433/// template name such as \c MetaFun::template operator+.
4434TemplateName
4435ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
4436                                     OverloadedOperatorKind Operator) const {
4437  assert((!NNS || NNS->isDependent()) &&
4438         "Nested name specifier must be dependent");
4439
4440  llvm::FoldingSetNodeID ID;
4441  DependentTemplateName::Profile(ID, NNS, Operator);
4442
4443  void *InsertPos = 0;
4444  DependentTemplateName *QTN
4445    = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
4446
4447  if (QTN)
4448    return TemplateName(QTN);
4449
4450  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
4451  if (CanonNNS == NNS) {
4452    QTN = new (*this,4) DependentTemplateName(NNS, Operator);
4453  } else {
4454    TemplateName Canon = getDependentTemplateName(CanonNNS, Operator);
4455    QTN = new (*this,4) DependentTemplateName(NNS, Operator, Canon);
4456
4457    DependentTemplateName *CheckQTN
4458      = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
4459    assert(!CheckQTN && "Dependent template name canonicalization broken");
4460    (void)CheckQTN;
4461  }
4462
4463  DependentTemplateNames.InsertNode(QTN, InsertPos);
4464  return TemplateName(QTN);
4465}
4466
4467TemplateName
4468ASTContext::getSubstTemplateTemplateParmPack(TemplateTemplateParmDecl *Param,
4469                                       const TemplateArgument &ArgPack) const {
4470  ASTContext &Self = const_cast<ASTContext &>(*this);
4471  llvm::FoldingSetNodeID ID;
4472  SubstTemplateTemplateParmPackStorage::Profile(ID, Self, Param, ArgPack);
4473
4474  void *InsertPos = 0;
4475  SubstTemplateTemplateParmPackStorage *Subst
4476    = SubstTemplateTemplateParmPacks.FindNodeOrInsertPos(ID, InsertPos);
4477
4478  if (!Subst) {
4479    Subst = new (*this) SubstTemplateTemplateParmPackStorage(Self, Param,
4480                                                           ArgPack.pack_size(),
4481                                                         ArgPack.pack_begin());
4482    SubstTemplateTemplateParmPacks.InsertNode(Subst, InsertPos);
4483  }
4484
4485  return TemplateName(Subst);
4486}
4487
4488/// getFromTargetType - Given one of the integer types provided by
4489/// TargetInfo, produce the corresponding type. The unsigned @p Type
4490/// is actually a value of type @c TargetInfo::IntType.
4491CanQualType ASTContext::getFromTargetType(unsigned Type) const {
4492  switch (Type) {
4493  case TargetInfo::NoInt: return CanQualType();
4494  case TargetInfo::SignedShort: return ShortTy;
4495  case TargetInfo::UnsignedShort: return UnsignedShortTy;
4496  case TargetInfo::SignedInt: return IntTy;
4497  case TargetInfo::UnsignedInt: return UnsignedIntTy;
4498  case TargetInfo::SignedLong: return LongTy;
4499  case TargetInfo::UnsignedLong: return UnsignedLongTy;
4500  case TargetInfo::SignedLongLong: return LongLongTy;
4501  case TargetInfo::UnsignedLongLong: return UnsignedLongLongTy;
4502  }
4503
4504  assert(false && "Unhandled TargetInfo::IntType value");
4505  return CanQualType();
4506}
4507
4508//===----------------------------------------------------------------------===//
4509//                        Type Predicates.
4510//===----------------------------------------------------------------------===//
4511
4512/// isObjCNSObjectType - Return true if this is an NSObject object using
4513/// NSObject attribute on a c-style pointer type.
4514/// FIXME - Make it work directly on types.
4515/// FIXME: Move to Type.
4516///
4517bool ASTContext::isObjCNSObjectType(QualType Ty) const {
4518  if (const TypedefType *TDT = dyn_cast<TypedefType>(Ty)) {
4519    if (TypedefDecl *TD = TDT->getDecl())
4520      if (TD->getAttr<ObjCNSObjectAttr>())
4521        return true;
4522  }
4523  return false;
4524}
4525
4526/// getObjCGCAttr - Returns one of GCNone, Weak or Strong objc's
4527/// garbage collection attribute.
4528///
4529Qualifiers::GC ASTContext::getObjCGCAttrKind(QualType Ty) const {
4530  if (getLangOptions().getGCMode() == LangOptions::NonGC)
4531    return Qualifiers::GCNone;
4532
4533  assert(getLangOptions().ObjC1);
4534  Qualifiers::GC GCAttrs = Ty.getObjCGCAttr();
4535
4536  // Default behaviour under objective-C's gc is for ObjC pointers
4537  // (or pointers to them) be treated as though they were declared
4538  // as __strong.
4539  if (GCAttrs == Qualifiers::GCNone) {
4540    if (Ty->isObjCObjectPointerType() || Ty->isBlockPointerType())
4541      return Qualifiers::Strong;
4542    else if (Ty->isPointerType())
4543      return getObjCGCAttrKind(Ty->getAs<PointerType>()->getPointeeType());
4544  } else {
4545    // It's not valid to set GC attributes on anything that isn't a
4546    // pointer.
4547#ifndef NDEBUG
4548    QualType CT = Ty->getCanonicalTypeInternal();
4549    while (const ArrayType *AT = dyn_cast<ArrayType>(CT))
4550      CT = AT->getElementType();
4551    assert(CT->isAnyPointerType() || CT->isBlockPointerType());
4552#endif
4553  }
4554  return GCAttrs;
4555}
4556
4557//===----------------------------------------------------------------------===//
4558//                        Type Compatibility Testing
4559//===----------------------------------------------------------------------===//
4560
4561/// areCompatVectorTypes - Return true if the two specified vector types are
4562/// compatible.
4563static bool areCompatVectorTypes(const VectorType *LHS,
4564                                 const VectorType *RHS) {
4565  assert(LHS->isCanonicalUnqualified() && RHS->isCanonicalUnqualified());
4566  return LHS->getElementType() == RHS->getElementType() &&
4567         LHS->getNumElements() == RHS->getNumElements();
4568}
4569
4570bool ASTContext::areCompatibleVectorTypes(QualType FirstVec,
4571                                          QualType SecondVec) {
4572  assert(FirstVec->isVectorType() && "FirstVec should be a vector type");
4573  assert(SecondVec->isVectorType() && "SecondVec should be a vector type");
4574
4575  if (hasSameUnqualifiedType(FirstVec, SecondVec))
4576    return true;
4577
4578  // Treat Neon vector types and most AltiVec vector types as if they are the
4579  // equivalent GCC vector types.
4580  const VectorType *First = FirstVec->getAs<VectorType>();
4581  const VectorType *Second = SecondVec->getAs<VectorType>();
4582  if (First->getNumElements() == Second->getNumElements() &&
4583      hasSameType(First->getElementType(), Second->getElementType()) &&
4584      First->getVectorKind() != VectorType::AltiVecPixel &&
4585      First->getVectorKind() != VectorType::AltiVecBool &&
4586      Second->getVectorKind() != VectorType::AltiVecPixel &&
4587      Second->getVectorKind() != VectorType::AltiVecBool)
4588    return true;
4589
4590  return false;
4591}
4592
4593//===----------------------------------------------------------------------===//
4594// ObjCQualifiedIdTypesAreCompatible - Compatibility testing for qualified id's.
4595//===----------------------------------------------------------------------===//
4596
4597/// ProtocolCompatibleWithProtocol - return 'true' if 'lProto' is in the
4598/// inheritance hierarchy of 'rProto'.
4599bool
4600ASTContext::ProtocolCompatibleWithProtocol(ObjCProtocolDecl *lProto,
4601                                           ObjCProtocolDecl *rProto) const {
4602  if (lProto == rProto)
4603    return true;
4604  for (ObjCProtocolDecl::protocol_iterator PI = rProto->protocol_begin(),
4605       E = rProto->protocol_end(); PI != E; ++PI)
4606    if (ProtocolCompatibleWithProtocol(lProto, *PI))
4607      return true;
4608  return false;
4609}
4610
4611/// QualifiedIdConformsQualifiedId - compare id<p,...> with id<p1,...>
4612/// return true if lhs's protocols conform to rhs's protocol; false
4613/// otherwise.
4614bool ASTContext::QualifiedIdConformsQualifiedId(QualType lhs, QualType rhs) {
4615  if (lhs->isObjCQualifiedIdType() && rhs->isObjCQualifiedIdType())
4616    return ObjCQualifiedIdTypesAreCompatible(lhs, rhs, false);
4617  return false;
4618}
4619
4620/// ObjCQualifiedClassTypesAreCompatible - compare  Class<p,...> and
4621/// Class<p1, ...>.
4622bool ASTContext::ObjCQualifiedClassTypesAreCompatible(QualType lhs,
4623                                                      QualType rhs) {
4624  const ObjCObjectPointerType *lhsQID = lhs->getAs<ObjCObjectPointerType>();
4625  const ObjCObjectPointerType *rhsOPT = rhs->getAs<ObjCObjectPointerType>();
4626  assert ((lhsQID && rhsOPT) && "ObjCQualifiedClassTypesAreCompatible");
4627
4628  for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
4629       E = lhsQID->qual_end(); I != E; ++I) {
4630    bool match = false;
4631    ObjCProtocolDecl *lhsProto = *I;
4632    for (ObjCObjectPointerType::qual_iterator J = rhsOPT->qual_begin(),
4633         E = rhsOPT->qual_end(); J != E; ++J) {
4634      ObjCProtocolDecl *rhsProto = *J;
4635      if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto)) {
4636        match = true;
4637        break;
4638      }
4639    }
4640    if (!match)
4641      return false;
4642  }
4643  return true;
4644}
4645
4646/// ObjCQualifiedIdTypesAreCompatible - We know that one of lhs/rhs is an
4647/// ObjCQualifiedIDType.
4648bool ASTContext::ObjCQualifiedIdTypesAreCompatible(QualType lhs, QualType rhs,
4649                                                   bool compare) {
4650  // Allow id<P..> and an 'id' or void* type in all cases.
4651  if (lhs->isVoidPointerType() ||
4652      lhs->isObjCIdType() || lhs->isObjCClassType())
4653    return true;
4654  else if (rhs->isVoidPointerType() ||
4655           rhs->isObjCIdType() || rhs->isObjCClassType())
4656    return true;
4657
4658  if (const ObjCObjectPointerType *lhsQID = lhs->getAsObjCQualifiedIdType()) {
4659    const ObjCObjectPointerType *rhsOPT = rhs->getAs<ObjCObjectPointerType>();
4660
4661    if (!rhsOPT) return false;
4662
4663    if (rhsOPT->qual_empty()) {
4664      // If the RHS is a unqualified interface pointer "NSString*",
4665      // make sure we check the class hierarchy.
4666      if (ObjCInterfaceDecl *rhsID = rhsOPT->getInterfaceDecl()) {
4667        for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
4668             E = lhsQID->qual_end(); I != E; ++I) {
4669          // when comparing an id<P> on lhs with a static type on rhs,
4670          // see if static class implements all of id's protocols, directly or
4671          // through its super class and categories.
4672          if (!rhsID->ClassImplementsProtocol(*I, true))
4673            return false;
4674        }
4675      }
4676      // If there are no qualifiers and no interface, we have an 'id'.
4677      return true;
4678    }
4679    // Both the right and left sides have qualifiers.
4680    for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
4681         E = lhsQID->qual_end(); I != E; ++I) {
4682      ObjCProtocolDecl *lhsProto = *I;
4683      bool match = false;
4684
4685      // when comparing an id<P> on lhs with a static type on rhs,
4686      // see if static class implements all of id's protocols, directly or
4687      // through its super class and categories.
4688      for (ObjCObjectPointerType::qual_iterator J = rhsOPT->qual_begin(),
4689           E = rhsOPT->qual_end(); J != E; ++J) {
4690        ObjCProtocolDecl *rhsProto = *J;
4691        if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
4692            (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
4693          match = true;
4694          break;
4695        }
4696      }
4697      // If the RHS is a qualified interface pointer "NSString<P>*",
4698      // make sure we check the class hierarchy.
4699      if (ObjCInterfaceDecl *rhsID = rhsOPT->getInterfaceDecl()) {
4700        for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
4701             E = lhsQID->qual_end(); I != E; ++I) {
4702          // when comparing an id<P> on lhs with a static type on rhs,
4703          // see if static class implements all of id's protocols, directly or
4704          // through its super class and categories.
4705          if (rhsID->ClassImplementsProtocol(*I, true)) {
4706            match = true;
4707            break;
4708          }
4709        }
4710      }
4711      if (!match)
4712        return false;
4713    }
4714
4715    return true;
4716  }
4717
4718  const ObjCObjectPointerType *rhsQID = rhs->getAsObjCQualifiedIdType();
4719  assert(rhsQID && "One of the LHS/RHS should be id<x>");
4720
4721  if (const ObjCObjectPointerType *lhsOPT =
4722        lhs->getAsObjCInterfacePointerType()) {
4723    // If both the right and left sides have qualifiers.
4724    for (ObjCObjectPointerType::qual_iterator I = lhsOPT->qual_begin(),
4725         E = lhsOPT->qual_end(); I != E; ++I) {
4726      ObjCProtocolDecl *lhsProto = *I;
4727      bool match = false;
4728
4729      // when comparing an id<P> on rhs with a static type on lhs,
4730      // see if static class implements all of id's protocols, directly or
4731      // through its super class and categories.
4732      // First, lhs protocols in the qualifier list must be found, direct
4733      // or indirect in rhs's qualifier list or it is a mismatch.
4734      for (ObjCObjectPointerType::qual_iterator J = rhsQID->qual_begin(),
4735           E = rhsQID->qual_end(); J != E; ++J) {
4736        ObjCProtocolDecl *rhsProto = *J;
4737        if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
4738            (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
4739          match = true;
4740          break;
4741        }
4742      }
4743      if (!match)
4744        return false;
4745    }
4746
4747    // Static class's protocols, or its super class or category protocols
4748    // must be found, direct or indirect in rhs's qualifier list or it is a mismatch.
4749    if (ObjCInterfaceDecl *lhsID = lhsOPT->getInterfaceDecl()) {
4750      llvm::SmallPtrSet<ObjCProtocolDecl *, 8> LHSInheritedProtocols;
4751      CollectInheritedProtocols(lhsID, LHSInheritedProtocols);
4752      // This is rather dubious but matches gcc's behavior. If lhs has
4753      // no type qualifier and its class has no static protocol(s)
4754      // assume that it is mismatch.
4755      if (LHSInheritedProtocols.empty() && lhsOPT->qual_empty())
4756        return false;
4757      for (llvm::SmallPtrSet<ObjCProtocolDecl*,8>::iterator I =
4758           LHSInheritedProtocols.begin(),
4759           E = LHSInheritedProtocols.end(); I != E; ++I) {
4760        bool match = false;
4761        ObjCProtocolDecl *lhsProto = (*I);
4762        for (ObjCObjectPointerType::qual_iterator J = rhsQID->qual_begin(),
4763             E = rhsQID->qual_end(); J != E; ++J) {
4764          ObjCProtocolDecl *rhsProto = *J;
4765          if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
4766              (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
4767            match = true;
4768            break;
4769          }
4770        }
4771        if (!match)
4772          return false;
4773      }
4774    }
4775    return true;
4776  }
4777  return false;
4778}
4779
4780/// canAssignObjCInterfaces - Return true if the two interface types are
4781/// compatible for assignment from RHS to LHS.  This handles validation of any
4782/// protocol qualifiers on the LHS or RHS.
4783///
4784bool ASTContext::canAssignObjCInterfaces(const ObjCObjectPointerType *LHSOPT,
4785                                         const ObjCObjectPointerType *RHSOPT) {
4786  const ObjCObjectType* LHS = LHSOPT->getObjectType();
4787  const ObjCObjectType* RHS = RHSOPT->getObjectType();
4788
4789  // If either type represents the built-in 'id' or 'Class' types, return true.
4790  if (LHS->isObjCUnqualifiedIdOrClass() ||
4791      RHS->isObjCUnqualifiedIdOrClass())
4792    return true;
4793
4794  if (LHS->isObjCQualifiedId() || RHS->isObjCQualifiedId())
4795    return ObjCQualifiedIdTypesAreCompatible(QualType(LHSOPT,0),
4796                                             QualType(RHSOPT,0),
4797                                             false);
4798
4799  if (LHS->isObjCQualifiedClass() && RHS->isObjCQualifiedClass())
4800    return ObjCQualifiedClassTypesAreCompatible(QualType(LHSOPT,0),
4801                                                QualType(RHSOPT,0));
4802
4803  // If we have 2 user-defined types, fall into that path.
4804  if (LHS->getInterface() && RHS->getInterface())
4805    return canAssignObjCInterfaces(LHS, RHS);
4806
4807  return false;
4808}
4809
4810/// canAssignObjCInterfacesInBlockPointer - This routine is specifically written
4811/// for providing type-safty for objective-c pointers used to pass/return
4812/// arguments in block literals. When passed as arguments, passing 'A*' where
4813/// 'id' is expected is not OK. Passing 'Sub *" where 'Super *" is expected is
4814/// not OK. For the return type, the opposite is not OK.
4815bool ASTContext::canAssignObjCInterfacesInBlockPointer(
4816                                         const ObjCObjectPointerType *LHSOPT,
4817                                         const ObjCObjectPointerType *RHSOPT) {
4818  if (RHSOPT->isObjCBuiltinType() || LHSOPT->isObjCIdType())
4819    return true;
4820
4821  if (LHSOPT->isObjCBuiltinType()) {
4822    return RHSOPT->isObjCBuiltinType() || RHSOPT->isObjCQualifiedIdType();
4823  }
4824
4825  if (LHSOPT->isObjCQualifiedIdType() || RHSOPT->isObjCQualifiedIdType())
4826    return ObjCQualifiedIdTypesAreCompatible(QualType(LHSOPT,0),
4827                                             QualType(RHSOPT,0),
4828                                             false);
4829
4830  const ObjCInterfaceType* LHS = LHSOPT->getInterfaceType();
4831  const ObjCInterfaceType* RHS = RHSOPT->getInterfaceType();
4832  if (LHS && RHS)  { // We have 2 user-defined types.
4833    if (LHS != RHS) {
4834      if (LHS->getDecl()->isSuperClassOf(RHS->getDecl()))
4835        return false;
4836      if (RHS->getDecl()->isSuperClassOf(LHS->getDecl()))
4837        return true;
4838    }
4839    else
4840      return true;
4841  }
4842  return false;
4843}
4844
4845/// getIntersectionOfProtocols - This routine finds the intersection of set
4846/// of protocols inherited from two distinct objective-c pointer objects.
4847/// It is used to build composite qualifier list of the composite type of
4848/// the conditional expression involving two objective-c pointer objects.
4849static
4850void getIntersectionOfProtocols(ASTContext &Context,
4851                                const ObjCObjectPointerType *LHSOPT,
4852                                const ObjCObjectPointerType *RHSOPT,
4853      llvm::SmallVectorImpl<ObjCProtocolDecl *> &IntersectionOfProtocols) {
4854
4855  const ObjCObjectType* LHS = LHSOPT->getObjectType();
4856  const ObjCObjectType* RHS = RHSOPT->getObjectType();
4857  assert(LHS->getInterface() && "LHS must have an interface base");
4858  assert(RHS->getInterface() && "RHS must have an interface base");
4859
4860  llvm::SmallPtrSet<ObjCProtocolDecl *, 8> InheritedProtocolSet;
4861  unsigned LHSNumProtocols = LHS->getNumProtocols();
4862  if (LHSNumProtocols > 0)
4863    InheritedProtocolSet.insert(LHS->qual_begin(), LHS->qual_end());
4864  else {
4865    llvm::SmallPtrSet<ObjCProtocolDecl *, 8> LHSInheritedProtocols;
4866    Context.CollectInheritedProtocols(LHS->getInterface(),
4867                                      LHSInheritedProtocols);
4868    InheritedProtocolSet.insert(LHSInheritedProtocols.begin(),
4869                                LHSInheritedProtocols.end());
4870  }
4871
4872  unsigned RHSNumProtocols = RHS->getNumProtocols();
4873  if (RHSNumProtocols > 0) {
4874    ObjCProtocolDecl **RHSProtocols =
4875      const_cast<ObjCProtocolDecl **>(RHS->qual_begin());
4876    for (unsigned i = 0; i < RHSNumProtocols; ++i)
4877      if (InheritedProtocolSet.count(RHSProtocols[i]))
4878        IntersectionOfProtocols.push_back(RHSProtocols[i]);
4879  }
4880  else {
4881    llvm::SmallPtrSet<ObjCProtocolDecl *, 8> RHSInheritedProtocols;
4882    Context.CollectInheritedProtocols(RHS->getInterface(),
4883                                      RHSInheritedProtocols);
4884    for (llvm::SmallPtrSet<ObjCProtocolDecl*,8>::iterator I =
4885         RHSInheritedProtocols.begin(),
4886         E = RHSInheritedProtocols.end(); I != E; ++I)
4887      if (InheritedProtocolSet.count((*I)))
4888        IntersectionOfProtocols.push_back((*I));
4889  }
4890}
4891
4892/// areCommonBaseCompatible - Returns common base class of the two classes if
4893/// one found. Note that this is O'2 algorithm. But it will be called as the
4894/// last type comparison in a ?-exp of ObjC pointer types before a
4895/// warning is issued. So, its invokation is extremely rare.
4896QualType ASTContext::areCommonBaseCompatible(
4897                                          const ObjCObjectPointerType *Lptr,
4898                                          const ObjCObjectPointerType *Rptr) {
4899  const ObjCObjectType *LHS = Lptr->getObjectType();
4900  const ObjCObjectType *RHS = Rptr->getObjectType();
4901  const ObjCInterfaceDecl* LDecl = LHS->getInterface();
4902  const ObjCInterfaceDecl* RDecl = RHS->getInterface();
4903  if (!LDecl || !RDecl)
4904    return QualType();
4905
4906  while ((LDecl = LDecl->getSuperClass())) {
4907    LHS = cast<ObjCInterfaceType>(getObjCInterfaceType(LDecl));
4908    if (canAssignObjCInterfaces(LHS, RHS)) {
4909      llvm::SmallVector<ObjCProtocolDecl *, 8> Protocols;
4910      getIntersectionOfProtocols(*this, Lptr, Rptr, Protocols);
4911
4912      QualType Result = QualType(LHS, 0);
4913      if (!Protocols.empty())
4914        Result = getObjCObjectType(Result, Protocols.data(), Protocols.size());
4915      Result = getObjCObjectPointerType(Result);
4916      return Result;
4917    }
4918  }
4919
4920  return QualType();
4921}
4922
4923bool ASTContext::canAssignObjCInterfaces(const ObjCObjectType *LHS,
4924                                         const ObjCObjectType *RHS) {
4925  assert(LHS->getInterface() && "LHS is not an interface type");
4926  assert(RHS->getInterface() && "RHS is not an interface type");
4927
4928  // Verify that the base decls are compatible: the RHS must be a subclass of
4929  // the LHS.
4930  if (!LHS->getInterface()->isSuperClassOf(RHS->getInterface()))
4931    return false;
4932
4933  // RHS must have a superset of the protocols in the LHS.  If the LHS is not
4934  // protocol qualified at all, then we are good.
4935  if (LHS->getNumProtocols() == 0)
4936    return true;
4937
4938  // Okay, we know the LHS has protocol qualifiers.  If the RHS doesn't, then it
4939  // isn't a superset.
4940  if (RHS->getNumProtocols() == 0)
4941    return true;  // FIXME: should return false!
4942
4943  for (ObjCObjectType::qual_iterator LHSPI = LHS->qual_begin(),
4944                                     LHSPE = LHS->qual_end();
4945       LHSPI != LHSPE; LHSPI++) {
4946    bool RHSImplementsProtocol = false;
4947
4948    // If the RHS doesn't implement the protocol on the left, the types
4949    // are incompatible.
4950    for (ObjCObjectType::qual_iterator RHSPI = RHS->qual_begin(),
4951                                       RHSPE = RHS->qual_end();
4952         RHSPI != RHSPE; RHSPI++) {
4953      if ((*RHSPI)->lookupProtocolNamed((*LHSPI)->getIdentifier())) {
4954        RHSImplementsProtocol = true;
4955        break;
4956      }
4957    }
4958    // FIXME: For better diagnostics, consider passing back the protocol name.
4959    if (!RHSImplementsProtocol)
4960      return false;
4961  }
4962  // The RHS implements all protocols listed on the LHS.
4963  return true;
4964}
4965
4966bool ASTContext::areComparableObjCPointerTypes(QualType LHS, QualType RHS) {
4967  // get the "pointed to" types
4968  const ObjCObjectPointerType *LHSOPT = LHS->getAs<ObjCObjectPointerType>();
4969  const ObjCObjectPointerType *RHSOPT = RHS->getAs<ObjCObjectPointerType>();
4970
4971  if (!LHSOPT || !RHSOPT)
4972    return false;
4973
4974  return canAssignObjCInterfaces(LHSOPT, RHSOPT) ||
4975         canAssignObjCInterfaces(RHSOPT, LHSOPT);
4976}
4977
4978bool ASTContext::canBindObjCObjectType(QualType To, QualType From) {
4979  return canAssignObjCInterfaces(
4980                getObjCObjectPointerType(To)->getAs<ObjCObjectPointerType>(),
4981                getObjCObjectPointerType(From)->getAs<ObjCObjectPointerType>());
4982}
4983
4984/// typesAreCompatible - C99 6.7.3p9: For two qualified types to be compatible,
4985/// both shall have the identically qualified version of a compatible type.
4986/// C99 6.2.7p1: Two types have compatible types if their types are the
4987/// same. See 6.7.[2,3,5] for additional rules.
4988bool ASTContext::typesAreCompatible(QualType LHS, QualType RHS,
4989                                    bool CompareUnqualified) {
4990  if (getLangOptions().CPlusPlus)
4991    return hasSameType(LHS, RHS);
4992
4993  return !mergeTypes(LHS, RHS, false, CompareUnqualified).isNull();
4994}
4995
4996bool ASTContext::typesAreBlockPointerCompatible(QualType LHS, QualType RHS) {
4997  return !mergeTypes(LHS, RHS, true).isNull();
4998}
4999
5000/// mergeTransparentUnionType - if T is a transparent union type and a member
5001/// of T is compatible with SubType, return the merged type, else return
5002/// QualType()
5003QualType ASTContext::mergeTransparentUnionType(QualType T, QualType SubType,
5004                                               bool OfBlockPointer,
5005                                               bool Unqualified) {
5006  if (const RecordType *UT = T->getAsUnionType()) {
5007    RecordDecl *UD = UT->getDecl();
5008    if (UD->hasAttr<TransparentUnionAttr>()) {
5009      for (RecordDecl::field_iterator it = UD->field_begin(),
5010           itend = UD->field_end(); it != itend; ++it) {
5011        QualType ET = it->getType().getUnqualifiedType();
5012        QualType MT = mergeTypes(ET, SubType, OfBlockPointer, Unqualified);
5013        if (!MT.isNull())
5014          return MT;
5015      }
5016    }
5017  }
5018
5019  return QualType();
5020}
5021
5022/// mergeFunctionArgumentTypes - merge two types which appear as function
5023/// argument types
5024QualType ASTContext::mergeFunctionArgumentTypes(QualType lhs, QualType rhs,
5025                                                bool OfBlockPointer,
5026                                                bool Unqualified) {
5027  // GNU extension: two types are compatible if they appear as a function
5028  // argument, one of the types is a transparent union type and the other
5029  // type is compatible with a union member
5030  QualType lmerge = mergeTransparentUnionType(lhs, rhs, OfBlockPointer,
5031                                              Unqualified);
5032  if (!lmerge.isNull())
5033    return lmerge;
5034
5035  QualType rmerge = mergeTransparentUnionType(rhs, lhs, OfBlockPointer,
5036                                              Unqualified);
5037  if (!rmerge.isNull())
5038    return rmerge;
5039
5040  return mergeTypes(lhs, rhs, OfBlockPointer, Unqualified);
5041}
5042
5043QualType ASTContext::mergeFunctionTypes(QualType lhs, QualType rhs,
5044                                        bool OfBlockPointer,
5045                                        bool Unqualified) {
5046  const FunctionType *lbase = lhs->getAs<FunctionType>();
5047  const FunctionType *rbase = rhs->getAs<FunctionType>();
5048  const FunctionProtoType *lproto = dyn_cast<FunctionProtoType>(lbase);
5049  const FunctionProtoType *rproto = dyn_cast<FunctionProtoType>(rbase);
5050  bool allLTypes = true;
5051  bool allRTypes = true;
5052
5053  // Check return type
5054  QualType retType;
5055  if (OfBlockPointer) {
5056    QualType RHS = rbase->getResultType();
5057    QualType LHS = lbase->getResultType();
5058    bool UnqualifiedResult = Unqualified;
5059    if (!UnqualifiedResult)
5060      UnqualifiedResult = (!RHS.hasQualifiers() && LHS.hasQualifiers());
5061    retType = mergeTypes(RHS, LHS, true, UnqualifiedResult);
5062  }
5063  else
5064    retType = mergeTypes(lbase->getResultType(), rbase->getResultType(), false,
5065                         Unqualified);
5066  if (retType.isNull()) return QualType();
5067
5068  if (Unqualified)
5069    retType = retType.getUnqualifiedType();
5070
5071  CanQualType LRetType = getCanonicalType(lbase->getResultType());
5072  CanQualType RRetType = getCanonicalType(rbase->getResultType());
5073  if (Unqualified) {
5074    LRetType = LRetType.getUnqualifiedType();
5075    RRetType = RRetType.getUnqualifiedType();
5076  }
5077
5078  if (getCanonicalType(retType) != LRetType)
5079    allLTypes = false;
5080  if (getCanonicalType(retType) != RRetType)
5081    allRTypes = false;
5082
5083  // FIXME: double check this
5084  // FIXME: should we error if lbase->getRegParmAttr() != 0 &&
5085  //                           rbase->getRegParmAttr() != 0 &&
5086  //                           lbase->getRegParmAttr() != rbase->getRegParmAttr()?
5087  FunctionType::ExtInfo lbaseInfo = lbase->getExtInfo();
5088  FunctionType::ExtInfo rbaseInfo = rbase->getExtInfo();
5089
5090  // Compatible functions must have compatible calling conventions
5091  if (!isSameCallConv(lbaseInfo.getCC(), rbaseInfo.getCC()))
5092    return QualType();
5093
5094  // Regparm is part of the calling convention.
5095  if (lbaseInfo.getRegParm() != rbaseInfo.getRegParm())
5096    return QualType();
5097
5098  // It's noreturn if either type is.
5099  // FIXME: some uses, e.g. conditional exprs, really want this to be 'both'.
5100  bool NoReturn = lbaseInfo.getNoReturn() || rbaseInfo.getNoReturn();
5101  if (NoReturn != lbaseInfo.getNoReturn())
5102    allLTypes = false;
5103  if (NoReturn != rbaseInfo.getNoReturn())
5104    allRTypes = false;
5105
5106  FunctionType::ExtInfo einfo(NoReturn,
5107                              lbaseInfo.getRegParm(),
5108                              lbaseInfo.getCC());
5109
5110  if (lproto && rproto) { // two C99 style function prototypes
5111    assert(!lproto->hasExceptionSpec() && !rproto->hasExceptionSpec() &&
5112           "C++ shouldn't be here");
5113    unsigned lproto_nargs = lproto->getNumArgs();
5114    unsigned rproto_nargs = rproto->getNumArgs();
5115
5116    // Compatible functions must have the same number of arguments
5117    if (lproto_nargs != rproto_nargs)
5118      return QualType();
5119
5120    // Variadic and non-variadic functions aren't compatible
5121    if (lproto->isVariadic() != rproto->isVariadic())
5122      return QualType();
5123
5124    if (lproto->getTypeQuals() != rproto->getTypeQuals())
5125      return QualType();
5126
5127    // Check argument compatibility
5128    llvm::SmallVector<QualType, 10> types;
5129    for (unsigned i = 0; i < lproto_nargs; i++) {
5130      QualType largtype = lproto->getArgType(i).getUnqualifiedType();
5131      QualType rargtype = rproto->getArgType(i).getUnqualifiedType();
5132      QualType argtype = mergeFunctionArgumentTypes(largtype, rargtype,
5133                                                    OfBlockPointer,
5134                                                    Unqualified);
5135      if (argtype.isNull()) return QualType();
5136
5137      if (Unqualified)
5138        argtype = argtype.getUnqualifiedType();
5139
5140      types.push_back(argtype);
5141      if (Unqualified) {
5142        largtype = largtype.getUnqualifiedType();
5143        rargtype = rargtype.getUnqualifiedType();
5144      }
5145
5146      if (getCanonicalType(argtype) != getCanonicalType(largtype))
5147        allLTypes = false;
5148      if (getCanonicalType(argtype) != getCanonicalType(rargtype))
5149        allRTypes = false;
5150    }
5151    if (allLTypes) return lhs;
5152    if (allRTypes) return rhs;
5153
5154    FunctionProtoType::ExtProtoInfo EPI = lproto->getExtProtoInfo();
5155    EPI.ExtInfo = einfo;
5156    return getFunctionType(retType, types.begin(), types.size(), EPI);
5157  }
5158
5159  if (lproto) allRTypes = false;
5160  if (rproto) allLTypes = false;
5161
5162  const FunctionProtoType *proto = lproto ? lproto : rproto;
5163  if (proto) {
5164    assert(!proto->hasExceptionSpec() && "C++ shouldn't be here");
5165    if (proto->isVariadic()) return QualType();
5166    // Check that the types are compatible with the types that
5167    // would result from default argument promotions (C99 6.7.5.3p15).
5168    // The only types actually affected are promotable integer
5169    // types and floats, which would be passed as a different
5170    // type depending on whether the prototype is visible.
5171    unsigned proto_nargs = proto->getNumArgs();
5172    for (unsigned i = 0; i < proto_nargs; ++i) {
5173      QualType argTy = proto->getArgType(i);
5174
5175      // Look at the promotion type of enum types, since that is the type used
5176      // to pass enum values.
5177      if (const EnumType *Enum = argTy->getAs<EnumType>())
5178        argTy = Enum->getDecl()->getPromotionType();
5179
5180      if (argTy->isPromotableIntegerType() ||
5181          getCanonicalType(argTy).getUnqualifiedType() == FloatTy)
5182        return QualType();
5183    }
5184
5185    if (allLTypes) return lhs;
5186    if (allRTypes) return rhs;
5187
5188    FunctionProtoType::ExtProtoInfo EPI = proto->getExtProtoInfo();
5189    EPI.ExtInfo = einfo;
5190    return getFunctionType(retType, proto->arg_type_begin(),
5191                           proto->getNumArgs(), EPI);
5192  }
5193
5194  if (allLTypes) return lhs;
5195  if (allRTypes) return rhs;
5196  return getFunctionNoProtoType(retType, einfo);
5197}
5198
5199QualType ASTContext::mergeTypes(QualType LHS, QualType RHS,
5200                                bool OfBlockPointer,
5201                                bool Unqualified) {
5202  // C++ [expr]: If an expression initially has the type "reference to T", the
5203  // type is adjusted to "T" prior to any further analysis, the expression
5204  // designates the object or function denoted by the reference, and the
5205  // expression is an lvalue unless the reference is an rvalue reference and
5206  // the expression is a function call (possibly inside parentheses).
5207  assert(!LHS->getAs<ReferenceType>() && "LHS is a reference type?");
5208  assert(!RHS->getAs<ReferenceType>() && "RHS is a reference type?");
5209
5210  if (Unqualified) {
5211    LHS = LHS.getUnqualifiedType();
5212    RHS = RHS.getUnqualifiedType();
5213  }
5214
5215  QualType LHSCan = getCanonicalType(LHS),
5216           RHSCan = getCanonicalType(RHS);
5217
5218  // If two types are identical, they are compatible.
5219  if (LHSCan == RHSCan)
5220    return LHS;
5221
5222  // If the qualifiers are different, the types aren't compatible... mostly.
5223  Qualifiers LQuals = LHSCan.getLocalQualifiers();
5224  Qualifiers RQuals = RHSCan.getLocalQualifiers();
5225  if (LQuals != RQuals) {
5226    // If any of these qualifiers are different, we have a type
5227    // mismatch.
5228    if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() ||
5229        LQuals.getAddressSpace() != RQuals.getAddressSpace())
5230      return QualType();
5231
5232    // Exactly one GC qualifier difference is allowed: __strong is
5233    // okay if the other type has no GC qualifier but is an Objective
5234    // C object pointer (i.e. implicitly strong by default).  We fix
5235    // this by pretending that the unqualified type was actually
5236    // qualified __strong.
5237    Qualifiers::GC GC_L = LQuals.getObjCGCAttr();
5238    Qualifiers::GC GC_R = RQuals.getObjCGCAttr();
5239    assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements");
5240
5241    if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak)
5242      return QualType();
5243
5244    if (GC_L == Qualifiers::Strong && RHSCan->isObjCObjectPointerType()) {
5245      return mergeTypes(LHS, getObjCGCQualType(RHS, Qualifiers::Strong));
5246    }
5247    if (GC_R == Qualifiers::Strong && LHSCan->isObjCObjectPointerType()) {
5248      return mergeTypes(getObjCGCQualType(LHS, Qualifiers::Strong), RHS);
5249    }
5250    return QualType();
5251  }
5252
5253  // Okay, qualifiers are equal.
5254
5255  Type::TypeClass LHSClass = LHSCan->getTypeClass();
5256  Type::TypeClass RHSClass = RHSCan->getTypeClass();
5257
5258  // We want to consider the two function types to be the same for these
5259  // comparisons, just force one to the other.
5260  if (LHSClass == Type::FunctionProto) LHSClass = Type::FunctionNoProto;
5261  if (RHSClass == Type::FunctionProto) RHSClass = Type::FunctionNoProto;
5262
5263  // Same as above for arrays
5264  if (LHSClass == Type::VariableArray || LHSClass == Type::IncompleteArray)
5265    LHSClass = Type::ConstantArray;
5266  if (RHSClass == Type::VariableArray || RHSClass == Type::IncompleteArray)
5267    RHSClass = Type::ConstantArray;
5268
5269  // ObjCInterfaces are just specialized ObjCObjects.
5270  if (LHSClass == Type::ObjCInterface) LHSClass = Type::ObjCObject;
5271  if (RHSClass == Type::ObjCInterface) RHSClass = Type::ObjCObject;
5272
5273  // Canonicalize ExtVector -> Vector.
5274  if (LHSClass == Type::ExtVector) LHSClass = Type::Vector;
5275  if (RHSClass == Type::ExtVector) RHSClass = Type::Vector;
5276
5277  // If the canonical type classes don't match.
5278  if (LHSClass != RHSClass) {
5279    // C99 6.7.2.2p4: Each enumerated type shall be compatible with char,
5280    // a signed integer type, or an unsigned integer type.
5281    // Compatibility is based on the underlying type, not the promotion
5282    // type.
5283    if (const EnumType* ETy = LHS->getAs<EnumType>()) {
5284      if (ETy->getDecl()->getIntegerType() == RHSCan.getUnqualifiedType())
5285        return RHS;
5286    }
5287    if (const EnumType* ETy = RHS->getAs<EnumType>()) {
5288      if (ETy->getDecl()->getIntegerType() == LHSCan.getUnqualifiedType())
5289        return LHS;
5290    }
5291
5292    return QualType();
5293  }
5294
5295  // The canonical type classes match.
5296  switch (LHSClass) {
5297#define TYPE(Class, Base)
5298#define ABSTRACT_TYPE(Class, Base)
5299#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
5300#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
5301#define DEPENDENT_TYPE(Class, Base) case Type::Class:
5302#include "clang/AST/TypeNodes.def"
5303    assert(false && "Non-canonical and dependent types shouldn't get here");
5304    return QualType();
5305
5306  case Type::LValueReference:
5307  case Type::RValueReference:
5308  case Type::MemberPointer:
5309    assert(false && "C++ should never be in mergeTypes");
5310    return QualType();
5311
5312  case Type::ObjCInterface:
5313  case Type::IncompleteArray:
5314  case Type::VariableArray:
5315  case Type::FunctionProto:
5316  case Type::ExtVector:
5317    assert(false && "Types are eliminated above");
5318    return QualType();
5319
5320  case Type::Pointer:
5321  {
5322    // Merge two pointer types, while trying to preserve typedef info
5323    QualType LHSPointee = LHS->getAs<PointerType>()->getPointeeType();
5324    QualType RHSPointee = RHS->getAs<PointerType>()->getPointeeType();
5325    if (Unqualified) {
5326      LHSPointee = LHSPointee.getUnqualifiedType();
5327      RHSPointee = RHSPointee.getUnqualifiedType();
5328    }
5329    QualType ResultType = mergeTypes(LHSPointee, RHSPointee, false,
5330                                     Unqualified);
5331    if (ResultType.isNull()) return QualType();
5332    if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
5333      return LHS;
5334    if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
5335      return RHS;
5336    return getPointerType(ResultType);
5337  }
5338  case Type::BlockPointer:
5339  {
5340    // Merge two block pointer types, while trying to preserve typedef info
5341    QualType LHSPointee = LHS->getAs<BlockPointerType>()->getPointeeType();
5342    QualType RHSPointee = RHS->getAs<BlockPointerType>()->getPointeeType();
5343    if (Unqualified) {
5344      LHSPointee = LHSPointee.getUnqualifiedType();
5345      RHSPointee = RHSPointee.getUnqualifiedType();
5346    }
5347    QualType ResultType = mergeTypes(LHSPointee, RHSPointee, OfBlockPointer,
5348                                     Unqualified);
5349    if (ResultType.isNull()) return QualType();
5350    if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
5351      return LHS;
5352    if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
5353      return RHS;
5354    return getBlockPointerType(ResultType);
5355  }
5356  case Type::ConstantArray:
5357  {
5358    const ConstantArrayType* LCAT = getAsConstantArrayType(LHS);
5359    const ConstantArrayType* RCAT = getAsConstantArrayType(RHS);
5360    if (LCAT && RCAT && RCAT->getSize() != LCAT->getSize())
5361      return QualType();
5362
5363    QualType LHSElem = getAsArrayType(LHS)->getElementType();
5364    QualType RHSElem = getAsArrayType(RHS)->getElementType();
5365    if (Unqualified) {
5366      LHSElem = LHSElem.getUnqualifiedType();
5367      RHSElem = RHSElem.getUnqualifiedType();
5368    }
5369
5370    QualType ResultType = mergeTypes(LHSElem, RHSElem, false, Unqualified);
5371    if (ResultType.isNull()) return QualType();
5372    if (LCAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
5373      return LHS;
5374    if (RCAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
5375      return RHS;
5376    if (LCAT) return getConstantArrayType(ResultType, LCAT->getSize(),
5377                                          ArrayType::ArraySizeModifier(), 0);
5378    if (RCAT) return getConstantArrayType(ResultType, RCAT->getSize(),
5379                                          ArrayType::ArraySizeModifier(), 0);
5380    const VariableArrayType* LVAT = getAsVariableArrayType(LHS);
5381    const VariableArrayType* RVAT = getAsVariableArrayType(RHS);
5382    if (LVAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
5383      return LHS;
5384    if (RVAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
5385      return RHS;
5386    if (LVAT) {
5387      // FIXME: This isn't correct! But tricky to implement because
5388      // the array's size has to be the size of LHS, but the type
5389      // has to be different.
5390      return LHS;
5391    }
5392    if (RVAT) {
5393      // FIXME: This isn't correct! But tricky to implement because
5394      // the array's size has to be the size of RHS, but the type
5395      // has to be different.
5396      return RHS;
5397    }
5398    if (getCanonicalType(LHSElem) == getCanonicalType(ResultType)) return LHS;
5399    if (getCanonicalType(RHSElem) == getCanonicalType(ResultType)) return RHS;
5400    return getIncompleteArrayType(ResultType,
5401                                  ArrayType::ArraySizeModifier(), 0);
5402  }
5403  case Type::FunctionNoProto:
5404    return mergeFunctionTypes(LHS, RHS, OfBlockPointer, Unqualified);
5405  case Type::Record:
5406  case Type::Enum:
5407    return QualType();
5408  case Type::Builtin:
5409    // Only exactly equal builtin types are compatible, which is tested above.
5410    return QualType();
5411  case Type::Complex:
5412    // Distinct complex types are incompatible.
5413    return QualType();
5414  case Type::Vector:
5415    // FIXME: The merged type should be an ExtVector!
5416    if (areCompatVectorTypes(LHSCan->getAs<VectorType>(),
5417                             RHSCan->getAs<VectorType>()))
5418      return LHS;
5419    return QualType();
5420  case Type::ObjCObject: {
5421    // Check if the types are assignment compatible.
5422    // FIXME: This should be type compatibility, e.g. whether
5423    // "LHS x; RHS x;" at global scope is legal.
5424    const ObjCObjectType* LHSIface = LHS->getAs<ObjCObjectType>();
5425    const ObjCObjectType* RHSIface = RHS->getAs<ObjCObjectType>();
5426    if (canAssignObjCInterfaces(LHSIface, RHSIface))
5427      return LHS;
5428
5429    return QualType();
5430  }
5431  case Type::ObjCObjectPointer: {
5432    if (OfBlockPointer) {
5433      if (canAssignObjCInterfacesInBlockPointer(
5434                                          LHS->getAs<ObjCObjectPointerType>(),
5435                                          RHS->getAs<ObjCObjectPointerType>()))
5436      return LHS;
5437      return QualType();
5438    }
5439    if (canAssignObjCInterfaces(LHS->getAs<ObjCObjectPointerType>(),
5440                                RHS->getAs<ObjCObjectPointerType>()))
5441      return LHS;
5442
5443    return QualType();
5444    }
5445  }
5446
5447  return QualType();
5448}
5449
5450/// mergeObjCGCQualifiers - This routine merges ObjC's GC attribute of 'LHS' and
5451/// 'RHS' attributes and returns the merged version; including for function
5452/// return types.
5453QualType ASTContext::mergeObjCGCQualifiers(QualType LHS, QualType RHS) {
5454  QualType LHSCan = getCanonicalType(LHS),
5455  RHSCan = getCanonicalType(RHS);
5456  // If two types are identical, they are compatible.
5457  if (LHSCan == RHSCan)
5458    return LHS;
5459  if (RHSCan->isFunctionType()) {
5460    if (!LHSCan->isFunctionType())
5461      return QualType();
5462    QualType OldReturnType =
5463      cast<FunctionType>(RHSCan.getTypePtr())->getResultType();
5464    QualType NewReturnType =
5465      cast<FunctionType>(LHSCan.getTypePtr())->getResultType();
5466    QualType ResReturnType =
5467      mergeObjCGCQualifiers(NewReturnType, OldReturnType);
5468    if (ResReturnType.isNull())
5469      return QualType();
5470    if (ResReturnType == NewReturnType || ResReturnType == OldReturnType) {
5471      // id foo(); ... __strong id foo(); or: __strong id foo(); ... id foo();
5472      // In either case, use OldReturnType to build the new function type.
5473      const FunctionType *F = LHS->getAs<FunctionType>();
5474      if (const FunctionProtoType *FPT = cast<FunctionProtoType>(F)) {
5475        FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
5476        EPI.ExtInfo = getFunctionExtInfo(LHS);
5477        QualType ResultType
5478          = getFunctionType(OldReturnType, FPT->arg_type_begin(),
5479                            FPT->getNumArgs(), EPI);
5480        return ResultType;
5481      }
5482    }
5483    return QualType();
5484  }
5485
5486  // If the qualifiers are different, the types can still be merged.
5487  Qualifiers LQuals = LHSCan.getLocalQualifiers();
5488  Qualifiers RQuals = RHSCan.getLocalQualifiers();
5489  if (LQuals != RQuals) {
5490    // If any of these qualifiers are different, we have a type mismatch.
5491    if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() ||
5492        LQuals.getAddressSpace() != RQuals.getAddressSpace())
5493      return QualType();
5494
5495    // Exactly one GC qualifier difference is allowed: __strong is
5496    // okay if the other type has no GC qualifier but is an Objective
5497    // C object pointer (i.e. implicitly strong by default).  We fix
5498    // this by pretending that the unqualified type was actually
5499    // qualified __strong.
5500    Qualifiers::GC GC_L = LQuals.getObjCGCAttr();
5501    Qualifiers::GC GC_R = RQuals.getObjCGCAttr();
5502    assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements");
5503
5504    if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak)
5505      return QualType();
5506
5507    if (GC_L == Qualifiers::Strong)
5508      return LHS;
5509    if (GC_R == Qualifiers::Strong)
5510      return RHS;
5511    return QualType();
5512  }
5513
5514  if (LHSCan->isObjCObjectPointerType() && RHSCan->isObjCObjectPointerType()) {
5515    QualType LHSBaseQT = LHS->getAs<ObjCObjectPointerType>()->getPointeeType();
5516    QualType RHSBaseQT = RHS->getAs<ObjCObjectPointerType>()->getPointeeType();
5517    QualType ResQT = mergeObjCGCQualifiers(LHSBaseQT, RHSBaseQT);
5518    if (ResQT == LHSBaseQT)
5519      return LHS;
5520    if (ResQT == RHSBaseQT)
5521      return RHS;
5522  }
5523  return QualType();
5524}
5525
5526//===----------------------------------------------------------------------===//
5527//                         Integer Predicates
5528//===----------------------------------------------------------------------===//
5529
5530unsigned ASTContext::getIntWidth(QualType T) const {
5531  if (const EnumType *ET = dyn_cast<EnumType>(T))
5532    T = ET->getDecl()->getIntegerType();
5533  if (T->isBooleanType())
5534    return 1;
5535  // For builtin types, just use the standard type sizing method
5536  return (unsigned)getTypeSize(T);
5537}
5538
5539QualType ASTContext::getCorrespondingUnsignedType(QualType T) {
5540  assert(T->hasSignedIntegerRepresentation() && "Unexpected type");
5541
5542  // Turn <4 x signed int> -> <4 x unsigned int>
5543  if (const VectorType *VTy = T->getAs<VectorType>())
5544    return getVectorType(getCorrespondingUnsignedType(VTy->getElementType()),
5545                         VTy->getNumElements(), VTy->getVectorKind());
5546
5547  // For enums, we return the unsigned version of the base type.
5548  if (const EnumType *ETy = T->getAs<EnumType>())
5549    T = ETy->getDecl()->getIntegerType();
5550
5551  const BuiltinType *BTy = T->getAs<BuiltinType>();
5552  assert(BTy && "Unexpected signed integer type");
5553  switch (BTy->getKind()) {
5554  case BuiltinType::Char_S:
5555  case BuiltinType::SChar:
5556    return UnsignedCharTy;
5557  case BuiltinType::Short:
5558    return UnsignedShortTy;
5559  case BuiltinType::Int:
5560    return UnsignedIntTy;
5561  case BuiltinType::Long:
5562    return UnsignedLongTy;
5563  case BuiltinType::LongLong:
5564    return UnsignedLongLongTy;
5565  case BuiltinType::Int128:
5566    return UnsignedInt128Ty;
5567  default:
5568    assert(0 && "Unexpected signed integer type");
5569    return QualType();
5570  }
5571}
5572
5573ASTMutationListener::~ASTMutationListener() { }
5574
5575
5576//===----------------------------------------------------------------------===//
5577//                          Builtin Type Computation
5578//===----------------------------------------------------------------------===//
5579
5580/// DecodeTypeFromStr - This decodes one type descriptor from Str, advancing the
5581/// pointer over the consumed characters.  This returns the resultant type.  If
5582/// AllowTypeModifiers is false then modifier like * are not parsed, just basic
5583/// types.  This allows "v2i*" to be parsed as a pointer to a v2i instead of
5584/// a vector of "i*".
5585///
5586/// RequiresICE is filled in on return to indicate whether the value is required
5587/// to be an Integer Constant Expression.
5588static QualType DecodeTypeFromStr(const char *&Str, const ASTContext &Context,
5589                                  ASTContext::GetBuiltinTypeError &Error,
5590                                  bool &RequiresICE,
5591                                  bool AllowTypeModifiers) {
5592  // Modifiers.
5593  int HowLong = 0;
5594  bool Signed = false, Unsigned = false;
5595  RequiresICE = false;
5596
5597  // Read the prefixed modifiers first.
5598  bool Done = false;
5599  while (!Done) {
5600    switch (*Str++) {
5601    default: Done = true; --Str; break;
5602    case 'I':
5603      RequiresICE = true;
5604      break;
5605    case 'S':
5606      assert(!Unsigned && "Can't use both 'S' and 'U' modifiers!");
5607      assert(!Signed && "Can't use 'S' modifier multiple times!");
5608      Signed = true;
5609      break;
5610    case 'U':
5611      assert(!Signed && "Can't use both 'S' and 'U' modifiers!");
5612      assert(!Unsigned && "Can't use 'S' modifier multiple times!");
5613      Unsigned = true;
5614      break;
5615    case 'L':
5616      assert(HowLong <= 2 && "Can't have LLLL modifier");
5617      ++HowLong;
5618      break;
5619    }
5620  }
5621
5622  QualType Type;
5623
5624  // Read the base type.
5625  switch (*Str++) {
5626  default: assert(0 && "Unknown builtin type letter!");
5627  case 'v':
5628    assert(HowLong == 0 && !Signed && !Unsigned &&
5629           "Bad modifiers used with 'v'!");
5630    Type = Context.VoidTy;
5631    break;
5632  case 'f':
5633    assert(HowLong == 0 && !Signed && !Unsigned &&
5634           "Bad modifiers used with 'f'!");
5635    Type = Context.FloatTy;
5636    break;
5637  case 'd':
5638    assert(HowLong < 2 && !Signed && !Unsigned &&
5639           "Bad modifiers used with 'd'!");
5640    if (HowLong)
5641      Type = Context.LongDoubleTy;
5642    else
5643      Type = Context.DoubleTy;
5644    break;
5645  case 's':
5646    assert(HowLong == 0 && "Bad modifiers used with 's'!");
5647    if (Unsigned)
5648      Type = Context.UnsignedShortTy;
5649    else
5650      Type = Context.ShortTy;
5651    break;
5652  case 'i':
5653    if (HowLong == 3)
5654      Type = Unsigned ? Context.UnsignedInt128Ty : Context.Int128Ty;
5655    else if (HowLong == 2)
5656      Type = Unsigned ? Context.UnsignedLongLongTy : Context.LongLongTy;
5657    else if (HowLong == 1)
5658      Type = Unsigned ? Context.UnsignedLongTy : Context.LongTy;
5659    else
5660      Type = Unsigned ? Context.UnsignedIntTy : Context.IntTy;
5661    break;
5662  case 'c':
5663    assert(HowLong == 0 && "Bad modifiers used with 'c'!");
5664    if (Signed)
5665      Type = Context.SignedCharTy;
5666    else if (Unsigned)
5667      Type = Context.UnsignedCharTy;
5668    else
5669      Type = Context.CharTy;
5670    break;
5671  case 'b': // boolean
5672    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'b'!");
5673    Type = Context.BoolTy;
5674    break;
5675  case 'z':  // size_t.
5676    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'z'!");
5677    Type = Context.getSizeType();
5678    break;
5679  case 'F':
5680    Type = Context.getCFConstantStringType();
5681    break;
5682  case 'G':
5683    Type = Context.getObjCIdType();
5684    break;
5685  case 'H':
5686    Type = Context.getObjCSelType();
5687    break;
5688  case 'a':
5689    Type = Context.getBuiltinVaListType();
5690    assert(!Type.isNull() && "builtin va list type not initialized!");
5691    break;
5692  case 'A':
5693    // This is a "reference" to a va_list; however, what exactly
5694    // this means depends on how va_list is defined. There are two
5695    // different kinds of va_list: ones passed by value, and ones
5696    // passed by reference.  An example of a by-value va_list is
5697    // x86, where va_list is a char*. An example of by-ref va_list
5698    // is x86-64, where va_list is a __va_list_tag[1]. For x86,
5699    // we want this argument to be a char*&; for x86-64, we want
5700    // it to be a __va_list_tag*.
5701    Type = Context.getBuiltinVaListType();
5702    assert(!Type.isNull() && "builtin va list type not initialized!");
5703    if (Type->isArrayType())
5704      Type = Context.getArrayDecayedType(Type);
5705    else
5706      Type = Context.getLValueReferenceType(Type);
5707    break;
5708  case 'V': {
5709    char *End;
5710    unsigned NumElements = strtoul(Str, &End, 10);
5711    assert(End != Str && "Missing vector size");
5712    Str = End;
5713
5714    QualType ElementType = DecodeTypeFromStr(Str, Context, Error,
5715                                             RequiresICE, false);
5716    assert(!RequiresICE && "Can't require vector ICE");
5717
5718    // TODO: No way to make AltiVec vectors in builtins yet.
5719    Type = Context.getVectorType(ElementType, NumElements,
5720                                 VectorType::GenericVector);
5721    break;
5722  }
5723  case 'X': {
5724    QualType ElementType = DecodeTypeFromStr(Str, Context, Error, RequiresICE,
5725                                             false);
5726    assert(!RequiresICE && "Can't require complex ICE");
5727    Type = Context.getComplexType(ElementType);
5728    break;
5729  }
5730  case 'P':
5731    Type = Context.getFILEType();
5732    if (Type.isNull()) {
5733      Error = ASTContext::GE_Missing_stdio;
5734      return QualType();
5735    }
5736    break;
5737  case 'J':
5738    if (Signed)
5739      Type = Context.getsigjmp_bufType();
5740    else
5741      Type = Context.getjmp_bufType();
5742
5743    if (Type.isNull()) {
5744      Error = ASTContext::GE_Missing_setjmp;
5745      return QualType();
5746    }
5747    break;
5748  }
5749
5750  // If there are modifiers and if we're allowed to parse them, go for it.
5751  Done = !AllowTypeModifiers;
5752  while (!Done) {
5753    switch (char c = *Str++) {
5754    default: Done = true; --Str; break;
5755    case '*':
5756    case '&': {
5757      // Both pointers and references can have their pointee types
5758      // qualified with an address space.
5759      char *End;
5760      unsigned AddrSpace = strtoul(Str, &End, 10);
5761      if (End != Str && AddrSpace != 0) {
5762        Type = Context.getAddrSpaceQualType(Type, AddrSpace);
5763        Str = End;
5764      }
5765      if (c == '*')
5766        Type = Context.getPointerType(Type);
5767      else
5768        Type = Context.getLValueReferenceType(Type);
5769      break;
5770    }
5771    // FIXME: There's no way to have a built-in with an rvalue ref arg.
5772    case 'C':
5773      Type = Type.withConst();
5774      break;
5775    case 'D':
5776      Type = Context.getVolatileType(Type);
5777      break;
5778    }
5779  }
5780
5781  assert((!RequiresICE || Type->isIntegralOrEnumerationType()) &&
5782         "Integer constant 'I' type must be an integer");
5783
5784  return Type;
5785}
5786
5787/// GetBuiltinType - Return the type for the specified builtin.
5788QualType ASTContext::GetBuiltinType(unsigned Id,
5789                                    GetBuiltinTypeError &Error,
5790                                    unsigned *IntegerConstantArgs) const {
5791  const char *TypeStr = BuiltinInfo.GetTypeString(Id);
5792
5793  llvm::SmallVector<QualType, 8> ArgTypes;
5794
5795  bool RequiresICE = false;
5796  Error = GE_None;
5797  QualType ResType = DecodeTypeFromStr(TypeStr, *this, Error,
5798                                       RequiresICE, true);
5799  if (Error != GE_None)
5800    return QualType();
5801
5802  assert(!RequiresICE && "Result of intrinsic cannot be required to be an ICE");
5803
5804  while (TypeStr[0] && TypeStr[0] != '.') {
5805    QualType Ty = DecodeTypeFromStr(TypeStr, *this, Error, RequiresICE, true);
5806    if (Error != GE_None)
5807      return QualType();
5808
5809    // If this argument is required to be an IntegerConstantExpression and the
5810    // caller cares, fill in the bitmask we return.
5811    if (RequiresICE && IntegerConstantArgs)
5812      *IntegerConstantArgs |= 1 << ArgTypes.size();
5813
5814    // Do array -> pointer decay.  The builtin should use the decayed type.
5815    if (Ty->isArrayType())
5816      Ty = getArrayDecayedType(Ty);
5817
5818    ArgTypes.push_back(Ty);
5819  }
5820
5821  assert((TypeStr[0] != '.' || TypeStr[1] == 0) &&
5822         "'.' should only occur at end of builtin type list!");
5823
5824  FunctionType::ExtInfo EI;
5825  if (BuiltinInfo.isNoReturn(Id)) EI = EI.withNoReturn(true);
5826
5827  bool Variadic = (TypeStr[0] == '.');
5828
5829  // We really shouldn't be making a no-proto type here, especially in C++.
5830  if (ArgTypes.empty() && Variadic)
5831    return getFunctionNoProtoType(ResType, EI);
5832
5833  FunctionProtoType::ExtProtoInfo EPI;
5834  EPI.ExtInfo = EI;
5835  EPI.Variadic = Variadic;
5836
5837  return getFunctionType(ResType, ArgTypes.data(), ArgTypes.size(), EPI);
5838}
5839
5840GVALinkage ASTContext::GetGVALinkageForFunction(const FunctionDecl *FD) {
5841  GVALinkage External = GVA_StrongExternal;
5842
5843  Linkage L = FD->getLinkage();
5844  switch (L) {
5845  case NoLinkage:
5846  case InternalLinkage:
5847  case UniqueExternalLinkage:
5848    return GVA_Internal;
5849
5850  case ExternalLinkage:
5851    switch (FD->getTemplateSpecializationKind()) {
5852    case TSK_Undeclared:
5853    case TSK_ExplicitSpecialization:
5854      External = GVA_StrongExternal;
5855      break;
5856
5857    case TSK_ExplicitInstantiationDefinition:
5858      return GVA_ExplicitTemplateInstantiation;
5859
5860    case TSK_ExplicitInstantiationDeclaration:
5861    case TSK_ImplicitInstantiation:
5862      External = GVA_TemplateInstantiation;
5863      break;
5864    }
5865  }
5866
5867  if (!FD->isInlined())
5868    return External;
5869
5870  if (!getLangOptions().CPlusPlus || FD->hasAttr<GNUInlineAttr>()) {
5871    // GNU or C99 inline semantics. Determine whether this symbol should be
5872    // externally visible.
5873    if (FD->isInlineDefinitionExternallyVisible())
5874      return External;
5875
5876    // C99 inline semantics, where the symbol is not externally visible.
5877    return GVA_C99Inline;
5878  }
5879
5880  // C++0x [temp.explicit]p9:
5881  //   [ Note: The intent is that an inline function that is the subject of
5882  //   an explicit instantiation declaration will still be implicitly
5883  //   instantiated when used so that the body can be considered for
5884  //   inlining, but that no out-of-line copy of the inline function would be
5885  //   generated in the translation unit. -- end note ]
5886  if (FD->getTemplateSpecializationKind()
5887                                       == TSK_ExplicitInstantiationDeclaration)
5888    return GVA_C99Inline;
5889
5890  return GVA_CXXInline;
5891}
5892
5893GVALinkage ASTContext::GetGVALinkageForVariable(const VarDecl *VD) {
5894  // If this is a static data member, compute the kind of template
5895  // specialization. Otherwise, this variable is not part of a
5896  // template.
5897  TemplateSpecializationKind TSK = TSK_Undeclared;
5898  if (VD->isStaticDataMember())
5899    TSK = VD->getTemplateSpecializationKind();
5900
5901  Linkage L = VD->getLinkage();
5902  if (L == ExternalLinkage && getLangOptions().CPlusPlus &&
5903      VD->getType()->getLinkage() == UniqueExternalLinkage)
5904    L = UniqueExternalLinkage;
5905
5906  switch (L) {
5907  case NoLinkage:
5908  case InternalLinkage:
5909  case UniqueExternalLinkage:
5910    return GVA_Internal;
5911
5912  case ExternalLinkage:
5913    switch (TSK) {
5914    case TSK_Undeclared:
5915    case TSK_ExplicitSpecialization:
5916      return GVA_StrongExternal;
5917
5918    case TSK_ExplicitInstantiationDeclaration:
5919      llvm_unreachable("Variable should not be instantiated");
5920      // Fall through to treat this like any other instantiation.
5921
5922    case TSK_ExplicitInstantiationDefinition:
5923      return GVA_ExplicitTemplateInstantiation;
5924
5925    case TSK_ImplicitInstantiation:
5926      return GVA_TemplateInstantiation;
5927    }
5928  }
5929
5930  return GVA_StrongExternal;
5931}
5932
5933bool ASTContext::DeclMustBeEmitted(const Decl *D) {
5934  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
5935    if (!VD->isFileVarDecl())
5936      return false;
5937  } else if (!isa<FunctionDecl>(D))
5938    return false;
5939
5940  // Weak references don't produce any output by themselves.
5941  if (D->hasAttr<WeakRefAttr>())
5942    return false;
5943
5944  // Aliases and used decls are required.
5945  if (D->hasAttr<AliasAttr>() || D->hasAttr<UsedAttr>())
5946    return true;
5947
5948  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
5949    // Forward declarations aren't required.
5950    if (!FD->isThisDeclarationADefinition())
5951      return false;
5952
5953    // Constructors and destructors are required.
5954    if (FD->hasAttr<ConstructorAttr>() || FD->hasAttr<DestructorAttr>())
5955      return true;
5956
5957    // The key function for a class is required.
5958    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
5959      const CXXRecordDecl *RD = MD->getParent();
5960      if (MD->isOutOfLine() && RD->isDynamicClass()) {
5961        const CXXMethodDecl *KeyFunc = getKeyFunction(RD);
5962        if (KeyFunc && KeyFunc->getCanonicalDecl() == MD->getCanonicalDecl())
5963          return true;
5964      }
5965    }
5966
5967    GVALinkage Linkage = GetGVALinkageForFunction(FD);
5968
5969    // static, static inline, always_inline, and extern inline functions can
5970    // always be deferred.  Normal inline functions can be deferred in C99/C++.
5971    // Implicit template instantiations can also be deferred in C++.
5972    if (Linkage == GVA_Internal  || Linkage == GVA_C99Inline ||
5973        Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation)
5974      return false;
5975    return true;
5976  }
5977
5978  const VarDecl *VD = cast<VarDecl>(D);
5979  assert(VD->isFileVarDecl() && "Expected file scoped var");
5980
5981  if (VD->isThisDeclarationADefinition() == VarDecl::DeclarationOnly)
5982    return false;
5983
5984  // Structs that have non-trivial constructors or destructors are required.
5985
5986  // FIXME: Handle references.
5987  if (const RecordType *RT = VD->getType()->getAs<RecordType>()) {
5988    if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
5989      if (RD->hasDefinition() &&
5990          (!RD->hasTrivialConstructor() || !RD->hasTrivialDestructor()))
5991        return true;
5992    }
5993  }
5994
5995  GVALinkage L = GetGVALinkageForVariable(VD);
5996  if (L == GVA_Internal || L == GVA_TemplateInstantiation) {
5997    if (!(VD->getInit() && VD->getInit()->HasSideEffects(*this)))
5998      return false;
5999  }
6000
6001  return true;
6002}
6003
6004CallingConv ASTContext::getDefaultMethodCallConv() {
6005  // Pass through to the C++ ABI object
6006  return ABI->getDefaultMethodCallConv();
6007}
6008
6009bool ASTContext::isNearlyEmpty(const CXXRecordDecl *RD) const {
6010  // Pass through to the C++ ABI object
6011  return ABI->isNearlyEmpty(RD);
6012}
6013
6014MangleContext *ASTContext::createMangleContext() {
6015  switch (Target.getCXXABI()) {
6016  case CXXABI_ARM:
6017  case CXXABI_Itanium:
6018    return createItaniumMangleContext(*this, getDiagnostics());
6019  case CXXABI_Microsoft:
6020    return createMicrosoftMangleContext(*this, getDiagnostics());
6021  }
6022  assert(0 && "Unsupported ABI");
6023  return 0;
6024}
6025
6026CXXABI::~CXXABI() {}
6027