ASTContext.cpp revision 7da2431c23ef1ee8acb114e39692246e1801afc2
1//===--- ASTContext.cpp - Context to hold long-lived AST nodes ------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements the ASTContext interface.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/AST/ASTContext.h"
15#include "clang/AST/DeclCXX.h"
16#include "clang/AST/DeclObjC.h"
17#include "clang/AST/DeclTemplate.h"
18#include "clang/AST/TypeLoc.h"
19#include "clang/AST/Expr.h"
20#include "clang/AST/ExternalASTSource.h"
21#include "clang/AST/RecordLayout.h"
22#include "clang/Basic/Builtins.h"
23#include "clang/Basic/SourceManager.h"
24#include "clang/Basic/TargetInfo.h"
25#include "llvm/ADT/StringExtras.h"
26#include "llvm/Support/MathExtras.h"
27#include "llvm/Support/MemoryBuffer.h"
28#include "RecordLayoutBuilder.h"
29
30using namespace clang;
31
32enum FloatingRank {
33  FloatRank, DoubleRank, LongDoubleRank
34};
35
36ASTContext::ASTContext(const LangOptions& LOpts, SourceManager &SM,
37                       TargetInfo &t,
38                       IdentifierTable &idents, SelectorTable &sels,
39                       Builtin::Context &builtins,
40                       bool FreeMem, unsigned size_reserve) :
41  GlobalNestedNameSpecifier(0), CFConstantStringTypeDecl(0),
42  ObjCFastEnumerationStateTypeDecl(0), FILEDecl(0), jmp_bufDecl(0),
43  sigjmp_bufDecl(0), SourceMgr(SM), LangOpts(LOpts),
44  LoadedExternalComments(false), FreeMemory(FreeMem), Target(t),
45  Idents(idents), Selectors(sels),
46  BuiltinInfo(builtins), ExternalSource(0), PrintingPolicy(LOpts) {
47  ObjCIdRedefinitionType = QualType();
48  ObjCClassRedefinitionType = QualType();
49  if (size_reserve > 0) Types.reserve(size_reserve);
50  TUDecl = TranslationUnitDecl::Create(*this);
51  InitBuiltinTypes();
52}
53
54ASTContext::~ASTContext() {
55  // Deallocate all the types.
56  while (!Types.empty()) {
57    Types.back()->Destroy(*this);
58    Types.pop_back();
59  }
60
61  {
62    llvm::DenseMap<const RecordDecl*, const ASTRecordLayout*>::iterator
63      I = ASTRecordLayouts.begin(), E = ASTRecordLayouts.end();
64    while (I != E) {
65      ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second);
66      delete R;
67    }
68  }
69
70  {
71    llvm::DenseMap<const ObjCContainerDecl*, const ASTRecordLayout*>::iterator
72      I = ObjCLayouts.begin(), E = ObjCLayouts.end();
73    while (I != E) {
74      ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second);
75      delete R;
76    }
77  }
78
79  // Destroy nested-name-specifiers.
80  for (llvm::FoldingSet<NestedNameSpecifier>::iterator
81         NNS = NestedNameSpecifiers.begin(),
82         NNSEnd = NestedNameSpecifiers.end();
83       NNS != NNSEnd;
84       /* Increment in loop */)
85    (*NNS++).Destroy(*this);
86
87  if (GlobalNestedNameSpecifier)
88    GlobalNestedNameSpecifier->Destroy(*this);
89
90  TUDecl->Destroy(*this);
91}
92
93void
94ASTContext::setExternalSource(llvm::OwningPtr<ExternalASTSource> &Source) {
95  ExternalSource.reset(Source.take());
96}
97
98void ASTContext::PrintStats() const {
99  fprintf(stderr, "*** AST Context Stats:\n");
100  fprintf(stderr, "  %d types total.\n", (int)Types.size());
101
102  unsigned counts[] = {
103#define TYPE(Name, Parent) 0,
104#define ABSTRACT_TYPE(Name, Parent)
105#include "clang/AST/TypeNodes.def"
106    0 // Extra
107  };
108
109  for (unsigned i = 0, e = Types.size(); i != e; ++i) {
110    Type *T = Types[i];
111    counts[(unsigned)T->getTypeClass()]++;
112  }
113
114  unsigned Idx = 0;
115  unsigned TotalBytes = 0;
116#define TYPE(Name, Parent)                                              \
117  if (counts[Idx])                                                      \
118    fprintf(stderr, "    %d %s types\n", (int)counts[Idx], #Name);      \
119  TotalBytes += counts[Idx] * sizeof(Name##Type);                       \
120  ++Idx;
121#define ABSTRACT_TYPE(Name, Parent)
122#include "clang/AST/TypeNodes.def"
123
124  fprintf(stderr, "Total bytes = %d\n", int(TotalBytes));
125
126  if (ExternalSource.get()) {
127    fprintf(stderr, "\n");
128    ExternalSource->PrintStats();
129  }
130}
131
132
133void ASTContext::InitBuiltinType(QualType &R, BuiltinType::Kind K) {
134  Types.push_back((R = QualType(new (*this,8) BuiltinType(K),0)).getTypePtr());
135}
136
137void ASTContext::InitBuiltinTypes() {
138  assert(VoidTy.isNull() && "Context reinitialized?");
139
140  // C99 6.2.5p19.
141  InitBuiltinType(VoidTy,              BuiltinType::Void);
142
143  // C99 6.2.5p2.
144  InitBuiltinType(BoolTy,              BuiltinType::Bool);
145  // C99 6.2.5p3.
146  if (LangOpts.CharIsSigned)
147    InitBuiltinType(CharTy,            BuiltinType::Char_S);
148  else
149    InitBuiltinType(CharTy,            BuiltinType::Char_U);
150  // C99 6.2.5p4.
151  InitBuiltinType(SignedCharTy,        BuiltinType::SChar);
152  InitBuiltinType(ShortTy,             BuiltinType::Short);
153  InitBuiltinType(IntTy,               BuiltinType::Int);
154  InitBuiltinType(LongTy,              BuiltinType::Long);
155  InitBuiltinType(LongLongTy,          BuiltinType::LongLong);
156
157  // C99 6.2.5p6.
158  InitBuiltinType(UnsignedCharTy,      BuiltinType::UChar);
159  InitBuiltinType(UnsignedShortTy,     BuiltinType::UShort);
160  InitBuiltinType(UnsignedIntTy,       BuiltinType::UInt);
161  InitBuiltinType(UnsignedLongTy,      BuiltinType::ULong);
162  InitBuiltinType(UnsignedLongLongTy,  BuiltinType::ULongLong);
163
164  // C99 6.2.5p10.
165  InitBuiltinType(FloatTy,             BuiltinType::Float);
166  InitBuiltinType(DoubleTy,            BuiltinType::Double);
167  InitBuiltinType(LongDoubleTy,        BuiltinType::LongDouble);
168
169  // GNU extension, 128-bit integers.
170  InitBuiltinType(Int128Ty,            BuiltinType::Int128);
171  InitBuiltinType(UnsignedInt128Ty,    BuiltinType::UInt128);
172
173  if (LangOpts.CPlusPlus) // C++ 3.9.1p5
174    InitBuiltinType(WCharTy,           BuiltinType::WChar);
175  else // C99
176    WCharTy = getFromTargetType(Target.getWCharType());
177
178  if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
179    InitBuiltinType(Char16Ty,           BuiltinType::Char16);
180  else // C99
181    Char16Ty = getFromTargetType(Target.getChar16Type());
182
183  if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
184    InitBuiltinType(Char32Ty,           BuiltinType::Char32);
185  else // C99
186    Char32Ty = getFromTargetType(Target.getChar32Type());
187
188  // Placeholder type for functions.
189  InitBuiltinType(OverloadTy,          BuiltinType::Overload);
190
191  // Placeholder type for type-dependent expressions whose type is
192  // completely unknown. No code should ever check a type against
193  // DependentTy and users should never see it; however, it is here to
194  // help diagnose failures to properly check for type-dependent
195  // expressions.
196  InitBuiltinType(DependentTy,         BuiltinType::Dependent);
197
198  // Placeholder type for C++0x auto declarations whose real type has
199  // not yet been deduced.
200  InitBuiltinType(UndeducedAutoTy, BuiltinType::UndeducedAuto);
201
202  // C99 6.2.5p11.
203  FloatComplexTy      = getComplexType(FloatTy);
204  DoubleComplexTy     = getComplexType(DoubleTy);
205  LongDoubleComplexTy = getComplexType(LongDoubleTy);
206
207  BuiltinVaListType = QualType();
208
209  // "Builtin" typedefs set by Sema::ActOnTranslationUnitScope().
210  ObjCIdTypedefType = QualType();
211  ObjCClassTypedefType = QualType();
212
213  // Builtin types for 'id' and 'Class'.
214  InitBuiltinType(ObjCBuiltinIdTy, BuiltinType::ObjCId);
215  InitBuiltinType(ObjCBuiltinClassTy, BuiltinType::ObjCClass);
216
217  ObjCConstantStringType = QualType();
218
219  // void * type
220  VoidPtrTy = getPointerType(VoidTy);
221
222  // nullptr type (C++0x 2.14.7)
223  InitBuiltinType(NullPtrTy,           BuiltinType::NullPtr);
224}
225
226VarDecl *ASTContext::getInstantiatedFromStaticDataMember(VarDecl *Var) {
227  assert(Var->isStaticDataMember() && "Not a static data member");
228  llvm::DenseMap<VarDecl *, VarDecl *>::iterator Pos
229    = InstantiatedFromStaticDataMember.find(Var);
230  if (Pos == InstantiatedFromStaticDataMember.end())
231    return 0;
232
233  return Pos->second;
234}
235
236void
237ASTContext::setInstantiatedFromStaticDataMember(VarDecl *Inst, VarDecl *Tmpl) {
238  assert(Inst->isStaticDataMember() && "Not a static data member");
239  assert(Tmpl->isStaticDataMember() && "Not a static data member");
240  assert(!InstantiatedFromStaticDataMember[Inst] &&
241         "Already noted what static data member was instantiated from");
242  InstantiatedFromStaticDataMember[Inst] = Tmpl;
243}
244
245UnresolvedUsingDecl *
246ASTContext::getInstantiatedFromUnresolvedUsingDecl(UsingDecl *UUD) {
247  llvm::DenseMap<UsingDecl *, UnresolvedUsingDecl *>::iterator Pos
248    = InstantiatedFromUnresolvedUsingDecl.find(UUD);
249  if (Pos == InstantiatedFromUnresolvedUsingDecl.end())
250    return 0;
251
252  return Pos->second;
253}
254
255void
256ASTContext::setInstantiatedFromUnresolvedUsingDecl(UsingDecl *UD,
257                                                   UnresolvedUsingDecl *UUD) {
258  assert(!InstantiatedFromUnresolvedUsingDecl[UD] &&
259         "Already noted what using decl what instantiated from");
260  InstantiatedFromUnresolvedUsingDecl[UD] = UUD;
261}
262
263FieldDecl *ASTContext::getInstantiatedFromUnnamedFieldDecl(FieldDecl *Field) {
264  llvm::DenseMap<FieldDecl *, FieldDecl *>::iterator Pos
265    = InstantiatedFromUnnamedFieldDecl.find(Field);
266  if (Pos == InstantiatedFromUnnamedFieldDecl.end())
267    return 0;
268
269  return Pos->second;
270}
271
272void ASTContext::setInstantiatedFromUnnamedFieldDecl(FieldDecl *Inst,
273                                                     FieldDecl *Tmpl) {
274  assert(!Inst->getDeclName() && "Instantiated field decl is not unnamed");
275  assert(!Tmpl->getDeclName() && "Template field decl is not unnamed");
276  assert(!InstantiatedFromUnnamedFieldDecl[Inst] &&
277         "Already noted what unnamed field was instantiated from");
278
279  InstantiatedFromUnnamedFieldDecl[Inst] = Tmpl;
280}
281
282namespace {
283  class BeforeInTranslationUnit
284    : std::binary_function<SourceRange, SourceRange, bool> {
285    SourceManager *SourceMgr;
286
287  public:
288    explicit BeforeInTranslationUnit(SourceManager *SM) : SourceMgr(SM) { }
289
290    bool operator()(SourceRange X, SourceRange Y) {
291      return SourceMgr->isBeforeInTranslationUnit(X.getBegin(), Y.getBegin());
292    }
293  };
294}
295
296/// \brief Determine whether the given comment is a Doxygen-style comment.
297///
298/// \param Start the start of the comment text.
299///
300/// \param End the end of the comment text.
301///
302/// \param Member whether we want to check whether this is a member comment
303/// (which requires a < after the Doxygen-comment delimiter). Otherwise,
304/// we only return true when we find a non-member comment.
305static bool
306isDoxygenComment(SourceManager &SourceMgr, SourceRange Comment,
307                 bool Member = false) {
308  const char *BufferStart
309    = SourceMgr.getBufferData(SourceMgr.getFileID(Comment.getBegin())).first;
310  const char *Start = BufferStart + SourceMgr.getFileOffset(Comment.getBegin());
311  const char* End = BufferStart + SourceMgr.getFileOffset(Comment.getEnd());
312
313  if (End - Start < 4)
314    return false;
315
316  assert(Start[0] == '/' && "Not a comment?");
317  if (Start[1] == '*' && !(Start[2] == '!' || Start[2] == '*'))
318    return false;
319  if (Start[1] == '/' && !(Start[2] == '!' || Start[2] == '/'))
320    return false;
321
322  return (Start[3] == '<') == Member;
323}
324
325/// \brief Retrieve the comment associated with the given declaration, if
326/// it has one.
327const char *ASTContext::getCommentForDecl(const Decl *D) {
328  if (!D)
329    return 0;
330
331  // Check whether we have cached a comment string for this declaration
332  // already.
333  llvm::DenseMap<const Decl *, std::string>::iterator Pos
334    = DeclComments.find(D);
335  if (Pos != DeclComments.end())
336    return Pos->second.c_str();
337
338  // If we have an external AST source and have not yet loaded comments from
339  // that source, do so now.
340  if (ExternalSource && !LoadedExternalComments) {
341    std::vector<SourceRange> LoadedComments;
342    ExternalSource->ReadComments(LoadedComments);
343
344    if (!LoadedComments.empty())
345      Comments.insert(Comments.begin(), LoadedComments.begin(),
346                      LoadedComments.end());
347
348    LoadedExternalComments = true;
349  }
350
351  // If there are no comments anywhere, we won't find anything.
352  if (Comments.empty())
353    return 0;
354
355  // If the declaration doesn't map directly to a location in a file, we
356  // can't find the comment.
357  SourceLocation DeclStartLoc = D->getLocStart();
358  if (DeclStartLoc.isInvalid() || !DeclStartLoc.isFileID())
359    return 0;
360
361  // Find the comment that occurs just before this declaration.
362  std::vector<SourceRange>::iterator LastComment
363    = std::lower_bound(Comments.begin(), Comments.end(),
364                       SourceRange(DeclStartLoc),
365                       BeforeInTranslationUnit(&SourceMgr));
366
367  // Decompose the location for the start of the declaration and find the
368  // beginning of the file buffer.
369  std::pair<FileID, unsigned> DeclStartDecomp
370    = SourceMgr.getDecomposedLoc(DeclStartLoc);
371  const char *FileBufferStart
372    = SourceMgr.getBufferData(DeclStartDecomp.first).first;
373
374  // First check whether we have a comment for a member.
375  if (LastComment != Comments.end() &&
376      !isa<TagDecl>(D) && !isa<NamespaceDecl>(D) &&
377      isDoxygenComment(SourceMgr, *LastComment, true)) {
378    std::pair<FileID, unsigned> LastCommentEndDecomp
379      = SourceMgr.getDecomposedLoc(LastComment->getEnd());
380    if (DeclStartDecomp.first == LastCommentEndDecomp.first &&
381        SourceMgr.getLineNumber(DeclStartDecomp.first, DeclStartDecomp.second)
382          == SourceMgr.getLineNumber(LastCommentEndDecomp.first,
383                                     LastCommentEndDecomp.second)) {
384      // The Doxygen member comment comes after the declaration starts and
385      // is on the same line and in the same file as the declaration. This
386      // is the comment we want.
387      std::string &Result = DeclComments[D];
388      Result.append(FileBufferStart +
389                      SourceMgr.getFileOffset(LastComment->getBegin()),
390                    FileBufferStart + LastCommentEndDecomp.second + 1);
391      return Result.c_str();
392    }
393  }
394
395  if (LastComment == Comments.begin())
396    return 0;
397  --LastComment;
398
399  // Decompose the end of the comment.
400  std::pair<FileID, unsigned> LastCommentEndDecomp
401    = SourceMgr.getDecomposedLoc(LastComment->getEnd());
402
403  // If the comment and the declaration aren't in the same file, then they
404  // aren't related.
405  if (DeclStartDecomp.first != LastCommentEndDecomp.first)
406    return 0;
407
408  // Check that we actually have a Doxygen comment.
409  if (!isDoxygenComment(SourceMgr, *LastComment))
410    return 0;
411
412  // Compute the starting line for the declaration and for the end of the
413  // comment (this is expensive).
414  unsigned DeclStartLine
415    = SourceMgr.getLineNumber(DeclStartDecomp.first, DeclStartDecomp.second);
416  unsigned CommentEndLine
417    = SourceMgr.getLineNumber(LastCommentEndDecomp.first,
418                              LastCommentEndDecomp.second);
419
420  // If the comment does not end on the line prior to the declaration, then
421  // the comment is not associated with the declaration at all.
422  if (CommentEndLine + 1 != DeclStartLine)
423    return 0;
424
425  // We have a comment, but there may be more comments on the previous lines.
426  // Keep looking so long as the comments are still Doxygen comments and are
427  // still adjacent.
428  unsigned ExpectedLine
429    = SourceMgr.getSpellingLineNumber(LastComment->getBegin()) - 1;
430  std::vector<SourceRange>::iterator FirstComment = LastComment;
431  while (FirstComment != Comments.begin()) {
432    // Look at the previous comment
433    --FirstComment;
434    std::pair<FileID, unsigned> Decomp
435      = SourceMgr.getDecomposedLoc(FirstComment->getEnd());
436
437    // If this previous comment is in a different file, we're done.
438    if (Decomp.first != DeclStartDecomp.first) {
439      ++FirstComment;
440      break;
441    }
442
443    // If this comment is not a Doxygen comment, we're done.
444    if (!isDoxygenComment(SourceMgr, *FirstComment)) {
445      ++FirstComment;
446      break;
447    }
448
449    // If the line number is not what we expected, we're done.
450    unsigned Line = SourceMgr.getLineNumber(Decomp.first, Decomp.second);
451    if (Line != ExpectedLine) {
452      ++FirstComment;
453      break;
454    }
455
456    // Set the next expected line number.
457    ExpectedLine
458      = SourceMgr.getSpellingLineNumber(FirstComment->getBegin()) - 1;
459  }
460
461  // The iterator range [FirstComment, LastComment] contains all of the
462  // BCPL comments that, together, are associated with this declaration.
463  // Form a single comment block string for this declaration that concatenates
464  // all of these comments.
465  std::string &Result = DeclComments[D];
466  while (FirstComment != LastComment) {
467    std::pair<FileID, unsigned> DecompStart
468      = SourceMgr.getDecomposedLoc(FirstComment->getBegin());
469    std::pair<FileID, unsigned> DecompEnd
470      = SourceMgr.getDecomposedLoc(FirstComment->getEnd());
471    Result.append(FileBufferStart + DecompStart.second,
472                  FileBufferStart + DecompEnd.second + 1);
473    ++FirstComment;
474  }
475
476  // Append the last comment line.
477  Result.append(FileBufferStart +
478                  SourceMgr.getFileOffset(LastComment->getBegin()),
479                FileBufferStart + LastCommentEndDecomp.second + 1);
480  return Result.c_str();
481}
482
483//===----------------------------------------------------------------------===//
484//                         Type Sizing and Analysis
485//===----------------------------------------------------------------------===//
486
487/// getFloatTypeSemantics - Return the APFloat 'semantics' for the specified
488/// scalar floating point type.
489const llvm::fltSemantics &ASTContext::getFloatTypeSemantics(QualType T) const {
490  const BuiltinType *BT = T->getAsBuiltinType();
491  assert(BT && "Not a floating point type!");
492  switch (BT->getKind()) {
493  default: assert(0 && "Not a floating point type!");
494  case BuiltinType::Float:      return Target.getFloatFormat();
495  case BuiltinType::Double:     return Target.getDoubleFormat();
496  case BuiltinType::LongDouble: return Target.getLongDoubleFormat();
497  }
498}
499
500/// getDeclAlign - Return a conservative estimate of the alignment of the
501/// specified decl.  Note that bitfields do not have a valid alignment, so
502/// this method will assert on them.
503unsigned ASTContext::getDeclAlignInBytes(const Decl *D) {
504  unsigned Align = Target.getCharWidth();
505
506  if (const AlignedAttr* AA = D->getAttr<AlignedAttr>())
507    Align = std::max(Align, AA->getAlignment());
508
509  if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
510    QualType T = VD->getType();
511    if (const ReferenceType* RT = T->getAs<ReferenceType>()) {
512      unsigned AS = RT->getPointeeType().getAddressSpace();
513      Align = Target.getPointerAlign(AS);
514    } else if (!T->isIncompleteType() && !T->isFunctionType()) {
515      // Incomplete or function types default to 1.
516      while (isa<VariableArrayType>(T) || isa<IncompleteArrayType>(T))
517        T = cast<ArrayType>(T)->getElementType();
518
519      Align = std::max(Align, getPreferredTypeAlign(T.getTypePtr()));
520    }
521  }
522
523  return Align / Target.getCharWidth();
524}
525
526/// getTypeSize - Return the size of the specified type, in bits.  This method
527/// does not work on incomplete types.
528std::pair<uint64_t, unsigned>
529ASTContext::getTypeInfo(const Type *T) {
530  uint64_t Width=0;
531  unsigned Align=8;
532  switch (T->getTypeClass()) {
533#define TYPE(Class, Base)
534#define ABSTRACT_TYPE(Class, Base)
535#define NON_CANONICAL_TYPE(Class, Base)
536#define DEPENDENT_TYPE(Class, Base) case Type::Class:
537#include "clang/AST/TypeNodes.def"
538    assert(false && "Should not see dependent types");
539    break;
540
541  case Type::FunctionNoProto:
542  case Type::FunctionProto:
543    // GCC extension: alignof(function) = 32 bits
544    Width = 0;
545    Align = 32;
546    break;
547
548  case Type::IncompleteArray:
549  case Type::VariableArray:
550    Width = 0;
551    Align = getTypeAlign(cast<ArrayType>(T)->getElementType());
552    break;
553
554  case Type::ConstantArrayWithExpr:
555  case Type::ConstantArrayWithoutExpr:
556  case Type::ConstantArray: {
557    const ConstantArrayType *CAT = cast<ConstantArrayType>(T);
558
559    std::pair<uint64_t, unsigned> EltInfo = getTypeInfo(CAT->getElementType());
560    Width = EltInfo.first*CAT->getSize().getZExtValue();
561    Align = EltInfo.second;
562    break;
563  }
564  case Type::ExtVector:
565  case Type::Vector: {
566    std::pair<uint64_t, unsigned> EltInfo =
567      getTypeInfo(cast<VectorType>(T)->getElementType());
568    Width = EltInfo.first*cast<VectorType>(T)->getNumElements();
569    Align = Width;
570    // If the alignment is not a power of 2, round up to the next power of 2.
571    // This happens for non-power-of-2 length vectors.
572    // FIXME: this should probably be a target property.
573    Align = 1 << llvm::Log2_32_Ceil(Align);
574    break;
575  }
576
577  case Type::Builtin:
578    switch (cast<BuiltinType>(T)->getKind()) {
579    default: assert(0 && "Unknown builtin type!");
580    case BuiltinType::Void:
581      // GCC extension: alignof(void) = 8 bits.
582      Width = 0;
583      Align = 8;
584      break;
585
586    case BuiltinType::Bool:
587      Width = Target.getBoolWidth();
588      Align = Target.getBoolAlign();
589      break;
590    case BuiltinType::Char_S:
591    case BuiltinType::Char_U:
592    case BuiltinType::UChar:
593    case BuiltinType::SChar:
594      Width = Target.getCharWidth();
595      Align = Target.getCharAlign();
596      break;
597    case BuiltinType::WChar:
598      Width = Target.getWCharWidth();
599      Align = Target.getWCharAlign();
600      break;
601    case BuiltinType::Char16:
602      Width = Target.getChar16Width();
603      Align = Target.getChar16Align();
604      break;
605    case BuiltinType::Char32:
606      Width = Target.getChar32Width();
607      Align = Target.getChar32Align();
608      break;
609    case BuiltinType::UShort:
610    case BuiltinType::Short:
611      Width = Target.getShortWidth();
612      Align = Target.getShortAlign();
613      break;
614    case BuiltinType::UInt:
615    case BuiltinType::Int:
616      Width = Target.getIntWidth();
617      Align = Target.getIntAlign();
618      break;
619    case BuiltinType::ULong:
620    case BuiltinType::Long:
621      Width = Target.getLongWidth();
622      Align = Target.getLongAlign();
623      break;
624    case BuiltinType::ULongLong:
625    case BuiltinType::LongLong:
626      Width = Target.getLongLongWidth();
627      Align = Target.getLongLongAlign();
628      break;
629    case BuiltinType::Int128:
630    case BuiltinType::UInt128:
631      Width = 128;
632      Align = 128; // int128_t is 128-bit aligned on all targets.
633      break;
634    case BuiltinType::Float:
635      Width = Target.getFloatWidth();
636      Align = Target.getFloatAlign();
637      break;
638    case BuiltinType::Double:
639      Width = Target.getDoubleWidth();
640      Align = Target.getDoubleAlign();
641      break;
642    case BuiltinType::LongDouble:
643      Width = Target.getLongDoubleWidth();
644      Align = Target.getLongDoubleAlign();
645      break;
646    case BuiltinType::NullPtr:
647      Width = Target.getPointerWidth(0); // C++ 3.9.1p11: sizeof(nullptr_t)
648      Align = Target.getPointerAlign(0); //   == sizeof(void*)
649      break;
650    }
651    break;
652  case Type::FixedWidthInt:
653    // FIXME: This isn't precisely correct; the width/alignment should depend
654    // on the available types for the target
655    Width = cast<FixedWidthIntType>(T)->getWidth();
656    Width = std::max(llvm::NextPowerOf2(Width - 1), (uint64_t)8);
657    Align = Width;
658    break;
659  case Type::ExtQual:
660    // FIXME: Pointers into different addr spaces could have different sizes and
661    // alignment requirements: getPointerInfo should take an AddrSpace.
662    return getTypeInfo(QualType(cast<ExtQualType>(T)->getBaseType(), 0));
663  case Type::ObjCObjectPointer:
664    Width = Target.getPointerWidth(0);
665    Align = Target.getPointerAlign(0);
666    break;
667  case Type::BlockPointer: {
668    unsigned AS = cast<BlockPointerType>(T)->getPointeeType().getAddressSpace();
669    Width = Target.getPointerWidth(AS);
670    Align = Target.getPointerAlign(AS);
671    break;
672  }
673  case Type::Pointer: {
674    unsigned AS = cast<PointerType>(T)->getPointeeType().getAddressSpace();
675    Width = Target.getPointerWidth(AS);
676    Align = Target.getPointerAlign(AS);
677    break;
678  }
679  case Type::LValueReference:
680  case Type::RValueReference:
681    // "When applied to a reference or a reference type, the result is the size
682    // of the referenced type." C++98 5.3.3p2: expr.sizeof.
683    // FIXME: This is wrong for struct layout: a reference in a struct has
684    // pointer size.
685    return getTypeInfo(cast<ReferenceType>(T)->getPointeeType());
686  case Type::MemberPointer: {
687    // FIXME: This is ABI dependent. We use the Itanium C++ ABI.
688    // http://www.codesourcery.com/public/cxx-abi/abi.html#member-pointers
689    // If we ever want to support other ABIs this needs to be abstracted.
690
691    QualType Pointee = cast<MemberPointerType>(T)->getPointeeType();
692    std::pair<uint64_t, unsigned> PtrDiffInfo =
693      getTypeInfo(getPointerDiffType());
694    Width = PtrDiffInfo.first;
695    if (Pointee->isFunctionType())
696      Width *= 2;
697    Align = PtrDiffInfo.second;
698    break;
699  }
700  case Type::Complex: {
701    // Complex types have the same alignment as their elements, but twice the
702    // size.
703    std::pair<uint64_t, unsigned> EltInfo =
704      getTypeInfo(cast<ComplexType>(T)->getElementType());
705    Width = EltInfo.first*2;
706    Align = EltInfo.second;
707    break;
708  }
709  case Type::ObjCInterface: {
710    const ObjCInterfaceType *ObjCI = cast<ObjCInterfaceType>(T);
711    const ASTRecordLayout &Layout = getASTObjCInterfaceLayout(ObjCI->getDecl());
712    Width = Layout.getSize();
713    Align = Layout.getAlignment();
714    break;
715  }
716  case Type::Record:
717  case Type::Enum: {
718    const TagType *TT = cast<TagType>(T);
719
720    if (TT->getDecl()->isInvalidDecl()) {
721      Width = 1;
722      Align = 1;
723      break;
724    }
725
726    if (const EnumType *ET = dyn_cast<EnumType>(TT))
727      return getTypeInfo(ET->getDecl()->getIntegerType());
728
729    const RecordType *RT = cast<RecordType>(TT);
730    const ASTRecordLayout &Layout = getASTRecordLayout(RT->getDecl());
731    Width = Layout.getSize();
732    Align = Layout.getAlignment();
733    break;
734  }
735
736  case Type::Elaborated: {
737    return getTypeInfo(cast<ElaboratedType>(T)->getUnderlyingType().getTypePtr());
738  }
739
740  case Type::Typedef: {
741    const TypedefDecl *Typedef = cast<TypedefType>(T)->getDecl();
742    if (const AlignedAttr *Aligned = Typedef->getAttr<AlignedAttr>()) {
743      Align = Aligned->getAlignment();
744      Width = getTypeSize(Typedef->getUnderlyingType().getTypePtr());
745    } else
746      return getTypeInfo(Typedef->getUnderlyingType().getTypePtr());
747    break;
748  }
749
750  case Type::TypeOfExpr:
751    return getTypeInfo(cast<TypeOfExprType>(T)->getUnderlyingExpr()->getType()
752                         .getTypePtr());
753
754  case Type::TypeOf:
755    return getTypeInfo(cast<TypeOfType>(T)->getUnderlyingType().getTypePtr());
756
757  case Type::Decltype:
758    return getTypeInfo(cast<DecltypeType>(T)->getUnderlyingExpr()->getType()
759                        .getTypePtr());
760
761  case Type::QualifiedName:
762    return getTypeInfo(cast<QualifiedNameType>(T)->getNamedType().getTypePtr());
763
764  case Type::TemplateSpecialization:
765    assert(getCanonicalType(T) != T &&
766           "Cannot request the size of a dependent type");
767    // FIXME: this is likely to be wrong once we support template
768    // aliases, since a template alias could refer to a typedef that
769    // has an __aligned__ attribute on it.
770    return getTypeInfo(getCanonicalType(T));
771  }
772
773  assert(Align && (Align & (Align-1)) == 0 && "Alignment must be power of 2");
774  return std::make_pair(Width, Align);
775}
776
777/// getPreferredTypeAlign - Return the "preferred" alignment of the specified
778/// type for the current target in bits.  This can be different than the ABI
779/// alignment in cases where it is beneficial for performance to overalign
780/// a data type.
781unsigned ASTContext::getPreferredTypeAlign(const Type *T) {
782  unsigned ABIAlign = getTypeAlign(T);
783
784  // Double and long long should be naturally aligned if possible.
785  if (const ComplexType* CT = T->getAsComplexType())
786    T = CT->getElementType().getTypePtr();
787  if (T->isSpecificBuiltinType(BuiltinType::Double) ||
788      T->isSpecificBuiltinType(BuiltinType::LongLong))
789    return std::max(ABIAlign, (unsigned)getTypeSize(T));
790
791  return ABIAlign;
792}
793
794static void CollectLocalObjCIvars(ASTContext *Ctx,
795                                  const ObjCInterfaceDecl *OI,
796                                  llvm::SmallVectorImpl<FieldDecl*> &Fields) {
797  for (ObjCInterfaceDecl::ivar_iterator I = OI->ivar_begin(),
798       E = OI->ivar_end(); I != E; ++I) {
799    ObjCIvarDecl *IVDecl = *I;
800    if (!IVDecl->isInvalidDecl())
801      Fields.push_back(cast<FieldDecl>(IVDecl));
802  }
803}
804
805void ASTContext::CollectObjCIvars(const ObjCInterfaceDecl *OI,
806                             llvm::SmallVectorImpl<FieldDecl*> &Fields) {
807  if (const ObjCInterfaceDecl *SuperClass = OI->getSuperClass())
808    CollectObjCIvars(SuperClass, Fields);
809  CollectLocalObjCIvars(this, OI, Fields);
810}
811
812/// ShallowCollectObjCIvars -
813/// Collect all ivars, including those synthesized, in the current class.
814///
815void ASTContext::ShallowCollectObjCIvars(const ObjCInterfaceDecl *OI,
816                                 llvm::SmallVectorImpl<ObjCIvarDecl*> &Ivars,
817                                 bool CollectSynthesized) {
818  for (ObjCInterfaceDecl::ivar_iterator I = OI->ivar_begin(),
819         E = OI->ivar_end(); I != E; ++I) {
820     Ivars.push_back(*I);
821  }
822  if (CollectSynthesized)
823    CollectSynthesizedIvars(OI, Ivars);
824}
825
826void ASTContext::CollectProtocolSynthesizedIvars(const ObjCProtocolDecl *PD,
827                                llvm::SmallVectorImpl<ObjCIvarDecl*> &Ivars) {
828  for (ObjCContainerDecl::prop_iterator I = PD->prop_begin(),
829       E = PD->prop_end(); I != E; ++I)
830    if (ObjCIvarDecl *Ivar = (*I)->getPropertyIvarDecl())
831      Ivars.push_back(Ivar);
832
833  // Also look into nested protocols.
834  for (ObjCProtocolDecl::protocol_iterator P = PD->protocol_begin(),
835       E = PD->protocol_end(); P != E; ++P)
836    CollectProtocolSynthesizedIvars(*P, Ivars);
837}
838
839/// CollectSynthesizedIvars -
840/// This routine collect synthesized ivars for the designated class.
841///
842void ASTContext::CollectSynthesizedIvars(const ObjCInterfaceDecl *OI,
843                                llvm::SmallVectorImpl<ObjCIvarDecl*> &Ivars) {
844  for (ObjCInterfaceDecl::prop_iterator I = OI->prop_begin(),
845       E = OI->prop_end(); I != E; ++I) {
846    if (ObjCIvarDecl *Ivar = (*I)->getPropertyIvarDecl())
847      Ivars.push_back(Ivar);
848  }
849  // Also look into interface's protocol list for properties declared
850  // in the protocol and whose ivars are synthesized.
851  for (ObjCInterfaceDecl::protocol_iterator P = OI->protocol_begin(),
852       PE = OI->protocol_end(); P != PE; ++P) {
853    ObjCProtocolDecl *PD = (*P);
854    CollectProtocolSynthesizedIvars(PD, Ivars);
855  }
856}
857
858unsigned ASTContext::CountProtocolSynthesizedIvars(const ObjCProtocolDecl *PD) {
859  unsigned count = 0;
860  for (ObjCContainerDecl::prop_iterator I = PD->prop_begin(),
861       E = PD->prop_end(); I != E; ++I)
862    if ((*I)->getPropertyIvarDecl())
863      ++count;
864
865  // Also look into nested protocols.
866  for (ObjCProtocolDecl::protocol_iterator P = PD->protocol_begin(),
867       E = PD->protocol_end(); P != E; ++P)
868    count += CountProtocolSynthesizedIvars(*P);
869  return count;
870}
871
872unsigned ASTContext::CountSynthesizedIvars(const ObjCInterfaceDecl *OI)
873{
874  unsigned count = 0;
875  for (ObjCInterfaceDecl::prop_iterator I = OI->prop_begin(),
876       E = OI->prop_end(); I != E; ++I) {
877    if ((*I)->getPropertyIvarDecl())
878      ++count;
879  }
880  // Also look into interface's protocol list for properties declared
881  // in the protocol and whose ivars are synthesized.
882  for (ObjCInterfaceDecl::protocol_iterator P = OI->protocol_begin(),
883       PE = OI->protocol_end(); P != PE; ++P) {
884    ObjCProtocolDecl *PD = (*P);
885    count += CountProtocolSynthesizedIvars(PD);
886  }
887  return count;
888}
889
890/// \brief Get the implementation of ObjCInterfaceDecl,or NULL if none exists.
891ObjCImplementationDecl *ASTContext::getObjCImplementation(ObjCInterfaceDecl *D) {
892  llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
893    I = ObjCImpls.find(D);
894  if (I != ObjCImpls.end())
895    return cast<ObjCImplementationDecl>(I->second);
896  return 0;
897}
898/// \brief Get the implementation of ObjCCategoryDecl, or NULL if none exists.
899ObjCCategoryImplDecl *ASTContext::getObjCImplementation(ObjCCategoryDecl *D) {
900  llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
901    I = ObjCImpls.find(D);
902  if (I != ObjCImpls.end())
903    return cast<ObjCCategoryImplDecl>(I->second);
904  return 0;
905}
906
907/// \brief Set the implementation of ObjCInterfaceDecl.
908void ASTContext::setObjCImplementation(ObjCInterfaceDecl *IFaceD,
909                           ObjCImplementationDecl *ImplD) {
910  assert(IFaceD && ImplD && "Passed null params");
911  ObjCImpls[IFaceD] = ImplD;
912}
913/// \brief Set the implementation of ObjCCategoryDecl.
914void ASTContext::setObjCImplementation(ObjCCategoryDecl *CatD,
915                           ObjCCategoryImplDecl *ImplD) {
916  assert(CatD && ImplD && "Passed null params");
917  ObjCImpls[CatD] = ImplD;
918}
919
920/// \brief Allocate an uninitialized DeclaratorInfo.
921///
922/// The caller should initialize the memory held by DeclaratorInfo using
923/// the TypeLoc wrappers.
924///
925/// \param T the type that will be the basis for type source info. This type
926/// should refer to how the declarator was written in source code, not to
927/// what type semantic analysis resolved the declarator to.
928DeclaratorInfo *ASTContext::CreateDeclaratorInfo(QualType T) {
929  unsigned DataSize = TypeLoc::getFullDataSizeForType(T);
930  DeclaratorInfo *DInfo =
931    (DeclaratorInfo*)BumpAlloc.Allocate(sizeof(DeclaratorInfo) + DataSize, 8);
932  new (DInfo) DeclaratorInfo(T);
933  return DInfo;
934}
935
936/// getInterfaceLayoutImpl - Get or compute information about the
937/// layout of the given interface.
938///
939/// \param Impl - If given, also include the layout of the interface's
940/// implementation. This may differ by including synthesized ivars.
941const ASTRecordLayout &
942ASTContext::getObjCLayout(const ObjCInterfaceDecl *D,
943                          const ObjCImplementationDecl *Impl) {
944  assert(!D->isForwardDecl() && "Invalid interface decl!");
945
946  // Look up this layout, if already laid out, return what we have.
947  ObjCContainerDecl *Key =
948    Impl ? (ObjCContainerDecl*) Impl : (ObjCContainerDecl*) D;
949  if (const ASTRecordLayout *Entry = ObjCLayouts[Key])
950    return *Entry;
951
952  // Add in synthesized ivar count if laying out an implementation.
953  if (Impl) {
954    unsigned FieldCount = D->ivar_size();
955    unsigned SynthCount = CountSynthesizedIvars(D);
956    FieldCount += SynthCount;
957    // If there aren't any sythesized ivars then reuse the interface
958    // entry. Note we can't cache this because we simply free all
959    // entries later; however we shouldn't look up implementations
960    // frequently.
961    if (SynthCount == 0)
962      return getObjCLayout(D, 0);
963  }
964
965  const ASTRecordLayout *NewEntry =
966    ASTRecordLayoutBuilder::ComputeLayout(*this, D, Impl);
967  ObjCLayouts[Key] = NewEntry;
968
969  return *NewEntry;
970}
971
972const ASTRecordLayout &
973ASTContext::getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D) {
974  return getObjCLayout(D, 0);
975}
976
977const ASTRecordLayout &
978ASTContext::getASTObjCImplementationLayout(const ObjCImplementationDecl *D) {
979  return getObjCLayout(D->getClassInterface(), D);
980}
981
982/// getASTRecordLayout - Get or compute information about the layout of the
983/// specified record (struct/union/class), which indicates its size and field
984/// position information.
985const ASTRecordLayout &ASTContext::getASTRecordLayout(const RecordDecl *D) {
986  D = D->getDefinition(*this);
987  assert(D && "Cannot get layout of forward declarations!");
988
989  // Look up this layout, if already laid out, return what we have.
990  // Note that we can't save a reference to the entry because this function
991  // is recursive.
992  const ASTRecordLayout *Entry = ASTRecordLayouts[D];
993  if (Entry) return *Entry;
994
995  const ASTRecordLayout *NewEntry =
996    ASTRecordLayoutBuilder::ComputeLayout(*this, D);
997  ASTRecordLayouts[D] = NewEntry;
998
999  return *NewEntry;
1000}
1001
1002//===----------------------------------------------------------------------===//
1003//                   Type creation/memoization methods
1004//===----------------------------------------------------------------------===//
1005
1006QualType ASTContext::getAddrSpaceQualType(QualType T, unsigned AddressSpace) {
1007  QualType CanT = getCanonicalType(T);
1008  if (CanT.getAddressSpace() == AddressSpace)
1009    return T;
1010
1011  // If we are composing extended qualifiers together, merge together into one
1012  // ExtQualType node.
1013  unsigned CVRQuals = T.getCVRQualifiers();
1014  QualType::GCAttrTypes GCAttr = QualType::GCNone;
1015  Type *TypeNode = T.getTypePtr();
1016
1017  if (ExtQualType *EQT = dyn_cast<ExtQualType>(TypeNode)) {
1018    // If this type already has an address space specified, it cannot get
1019    // another one.
1020    assert(EQT->getAddressSpace() == 0 &&
1021           "Type cannot be in multiple addr spaces!");
1022    GCAttr = EQT->getObjCGCAttr();
1023    TypeNode = EQT->getBaseType();
1024  }
1025
1026  // Check if we've already instantiated this type.
1027  llvm::FoldingSetNodeID ID;
1028  ExtQualType::Profile(ID, TypeNode, AddressSpace, GCAttr);
1029  void *InsertPos = 0;
1030  if (ExtQualType *EXTQy = ExtQualTypes.FindNodeOrInsertPos(ID, InsertPos))
1031    return QualType(EXTQy, CVRQuals);
1032
1033  // If the base type isn't canonical, this won't be a canonical type either,
1034  // so fill in the canonical type field.
1035  QualType Canonical;
1036  if (!TypeNode->isCanonical()) {
1037    Canonical = getAddrSpaceQualType(CanT, AddressSpace);
1038
1039    // Update InsertPos, the previous call could have invalidated it.
1040    ExtQualType *NewIP = ExtQualTypes.FindNodeOrInsertPos(ID, InsertPos);
1041    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1042  }
1043  ExtQualType *New =
1044    new (*this, 8) ExtQualType(TypeNode, Canonical, AddressSpace, GCAttr);
1045  ExtQualTypes.InsertNode(New, InsertPos);
1046  Types.push_back(New);
1047  return QualType(New, CVRQuals);
1048}
1049
1050QualType ASTContext::getObjCGCQualType(QualType T,
1051                                       QualType::GCAttrTypes GCAttr) {
1052  QualType CanT = getCanonicalType(T);
1053  if (CanT.getObjCGCAttr() == GCAttr)
1054    return T;
1055
1056  if (T->isPointerType()) {
1057    QualType Pointee = T->getAs<PointerType>()->getPointeeType();
1058    if (Pointee->isAnyPointerType()) {
1059      QualType ResultType = getObjCGCQualType(Pointee, GCAttr);
1060      return getPointerType(ResultType);
1061    }
1062  }
1063  // If we are composing extended qualifiers together, merge together into one
1064  // ExtQualType node.
1065  unsigned CVRQuals = T.getCVRQualifiers();
1066  Type *TypeNode = T.getTypePtr();
1067  unsigned AddressSpace = 0;
1068
1069  if (ExtQualType *EQT = dyn_cast<ExtQualType>(TypeNode)) {
1070    // If this type already has an ObjCGC specified, it cannot get
1071    // another one.
1072    assert(EQT->getObjCGCAttr() == QualType::GCNone &&
1073           "Type cannot have multiple ObjCGCs!");
1074    AddressSpace = EQT->getAddressSpace();
1075    TypeNode = EQT->getBaseType();
1076  }
1077
1078  // Check if we've already instantiated an gc qual'd type of this type.
1079  llvm::FoldingSetNodeID ID;
1080  ExtQualType::Profile(ID, TypeNode, AddressSpace, GCAttr);
1081  void *InsertPos = 0;
1082  if (ExtQualType *EXTQy = ExtQualTypes.FindNodeOrInsertPos(ID, InsertPos))
1083    return QualType(EXTQy, CVRQuals);
1084
1085  // If the base type isn't canonical, this won't be a canonical type either,
1086  // so fill in the canonical type field.
1087  // FIXME: Isn't this also not canonical if the base type is a array
1088  // or pointer type?  I can't find any documentation for objc_gc, though...
1089  QualType Canonical;
1090  if (!T->isCanonical()) {
1091    Canonical = getObjCGCQualType(CanT, GCAttr);
1092
1093    // Update InsertPos, the previous call could have invalidated it.
1094    ExtQualType *NewIP = ExtQualTypes.FindNodeOrInsertPos(ID, InsertPos);
1095    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1096  }
1097  ExtQualType *New =
1098    new (*this, 8) ExtQualType(TypeNode, Canonical, AddressSpace, GCAttr);
1099  ExtQualTypes.InsertNode(New, InsertPos);
1100  Types.push_back(New);
1101  return QualType(New, CVRQuals);
1102}
1103
1104QualType ASTContext::getNoReturnType(QualType T) {
1105  QualifierSet qs;
1106  qs.strip(T);
1107  if (T->isPointerType()) {
1108    QualType Pointee = T->getAs<PointerType>()->getPointeeType();
1109    QualType ResultType = getNoReturnType(Pointee);
1110    ResultType = getPointerType(ResultType);
1111    ResultType.setCVRQualifiers(T.getCVRQualifiers());
1112    return qs.apply(ResultType, *this);
1113  }
1114  if (T->isBlockPointerType()) {
1115    QualType Pointee = T->getAs<BlockPointerType>()->getPointeeType();
1116    QualType ResultType = getNoReturnType(Pointee);
1117    ResultType = getBlockPointerType(ResultType);
1118    ResultType.setCVRQualifiers(T.getCVRQualifiers());
1119    return qs.apply(ResultType, *this);
1120  }
1121  if (!T->isFunctionType())
1122    assert(0 && "can't noreturn qualify non-pointer to function or block type");
1123
1124  if (const FunctionNoProtoType *F = T->getAsFunctionNoProtoType()) {
1125    return getFunctionNoProtoType(F->getResultType(), true);
1126  }
1127  const FunctionProtoType *F = T->getAsFunctionProtoType();
1128  return getFunctionType(F->getResultType(), F->arg_type_begin(),
1129                         F->getNumArgs(), F->isVariadic(), F->getTypeQuals(),
1130                         F->hasExceptionSpec(), F->hasAnyExceptionSpec(),
1131                         F->getNumExceptions(), F->exception_begin(), true);
1132}
1133
1134/// getComplexType - Return the uniqued reference to the type for a complex
1135/// number with the specified element type.
1136QualType ASTContext::getComplexType(QualType T) {
1137  // Unique pointers, to guarantee there is only one pointer of a particular
1138  // structure.
1139  llvm::FoldingSetNodeID ID;
1140  ComplexType::Profile(ID, T);
1141
1142  void *InsertPos = 0;
1143  if (ComplexType *CT = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos))
1144    return QualType(CT, 0);
1145
1146  // If the pointee type isn't canonical, this won't be a canonical type either,
1147  // so fill in the canonical type field.
1148  QualType Canonical;
1149  if (!T->isCanonical()) {
1150    Canonical = getComplexType(getCanonicalType(T));
1151
1152    // Get the new insert position for the node we care about.
1153    ComplexType *NewIP = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos);
1154    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1155  }
1156  ComplexType *New = new (*this,8) ComplexType(T, Canonical);
1157  Types.push_back(New);
1158  ComplexTypes.InsertNode(New, InsertPos);
1159  return QualType(New, 0);
1160}
1161
1162QualType ASTContext::getFixedWidthIntType(unsigned Width, bool Signed) {
1163  llvm::DenseMap<unsigned, FixedWidthIntType*> &Map = Signed ?
1164     SignedFixedWidthIntTypes : UnsignedFixedWidthIntTypes;
1165  FixedWidthIntType *&Entry = Map[Width];
1166  if (!Entry)
1167    Entry = new FixedWidthIntType(Width, Signed);
1168  return QualType(Entry, 0);
1169}
1170
1171/// getPointerType - Return the uniqued reference to the type for a pointer to
1172/// the specified type.
1173QualType ASTContext::getPointerType(QualType T) {
1174  // Unique pointers, to guarantee there is only one pointer of a particular
1175  // structure.
1176  llvm::FoldingSetNodeID ID;
1177  PointerType::Profile(ID, T);
1178
1179  void *InsertPos = 0;
1180  if (PointerType *PT = PointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1181    return QualType(PT, 0);
1182
1183  // If the pointee type isn't canonical, this won't be a canonical type either,
1184  // so fill in the canonical type field.
1185  QualType Canonical;
1186  if (!T->isCanonical()) {
1187    Canonical = getPointerType(getCanonicalType(T));
1188
1189    // Get the new insert position for the node we care about.
1190    PointerType *NewIP = PointerTypes.FindNodeOrInsertPos(ID, InsertPos);
1191    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1192  }
1193  PointerType *New = new (*this,8) PointerType(T, Canonical);
1194  Types.push_back(New);
1195  PointerTypes.InsertNode(New, InsertPos);
1196  return QualType(New, 0);
1197}
1198
1199/// getBlockPointerType - Return the uniqued reference to the type for
1200/// a pointer to the specified block.
1201QualType ASTContext::getBlockPointerType(QualType T) {
1202  assert(T->isFunctionType() && "block of function types only");
1203  // Unique pointers, to guarantee there is only one block of a particular
1204  // structure.
1205  llvm::FoldingSetNodeID ID;
1206  BlockPointerType::Profile(ID, T);
1207
1208  void *InsertPos = 0;
1209  if (BlockPointerType *PT =
1210        BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1211    return QualType(PT, 0);
1212
1213  // If the block pointee type isn't canonical, this won't be a canonical
1214  // type either so fill in the canonical type field.
1215  QualType Canonical;
1216  if (!T->isCanonical()) {
1217    Canonical = getBlockPointerType(getCanonicalType(T));
1218
1219    // Get the new insert position for the node we care about.
1220    BlockPointerType *NewIP =
1221      BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
1222    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1223  }
1224  BlockPointerType *New = new (*this,8) BlockPointerType(T, Canonical);
1225  Types.push_back(New);
1226  BlockPointerTypes.InsertNode(New, InsertPos);
1227  return QualType(New, 0);
1228}
1229
1230/// getLValueReferenceType - Return the uniqued reference to the type for an
1231/// lvalue reference to the specified type.
1232QualType ASTContext::getLValueReferenceType(QualType T) {
1233  // Unique pointers, to guarantee there is only one pointer of a particular
1234  // structure.
1235  llvm::FoldingSetNodeID ID;
1236  ReferenceType::Profile(ID, T);
1237
1238  void *InsertPos = 0;
1239  if (LValueReferenceType *RT =
1240        LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
1241    return QualType(RT, 0);
1242
1243  // If the referencee type isn't canonical, this won't be a canonical type
1244  // either, so fill in the canonical type field.
1245  QualType Canonical;
1246  if (!T->isCanonical()) {
1247    Canonical = getLValueReferenceType(getCanonicalType(T));
1248
1249    // Get the new insert position for the node we care about.
1250    LValueReferenceType *NewIP =
1251      LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
1252    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1253  }
1254
1255  LValueReferenceType *New = new (*this,8) LValueReferenceType(T, Canonical);
1256  Types.push_back(New);
1257  LValueReferenceTypes.InsertNode(New, InsertPos);
1258  return QualType(New, 0);
1259}
1260
1261/// getRValueReferenceType - Return the uniqued reference to the type for an
1262/// rvalue reference to the specified type.
1263QualType ASTContext::getRValueReferenceType(QualType T) {
1264  // Unique pointers, to guarantee there is only one pointer of a particular
1265  // structure.
1266  llvm::FoldingSetNodeID ID;
1267  ReferenceType::Profile(ID, T);
1268
1269  void *InsertPos = 0;
1270  if (RValueReferenceType *RT =
1271        RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
1272    return QualType(RT, 0);
1273
1274  // If the referencee type isn't canonical, this won't be a canonical type
1275  // either, so fill in the canonical type field.
1276  QualType Canonical;
1277  if (!T->isCanonical()) {
1278    Canonical = getRValueReferenceType(getCanonicalType(T));
1279
1280    // Get the new insert position for the node we care about.
1281    RValueReferenceType *NewIP =
1282      RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
1283    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1284  }
1285
1286  RValueReferenceType *New = new (*this,8) RValueReferenceType(T, Canonical);
1287  Types.push_back(New);
1288  RValueReferenceTypes.InsertNode(New, InsertPos);
1289  return QualType(New, 0);
1290}
1291
1292/// getMemberPointerType - Return the uniqued reference to the type for a
1293/// member pointer to the specified type, in the specified class.
1294QualType ASTContext::getMemberPointerType(QualType T, const Type *Cls)
1295{
1296  // Unique pointers, to guarantee there is only one pointer of a particular
1297  // structure.
1298  llvm::FoldingSetNodeID ID;
1299  MemberPointerType::Profile(ID, T, Cls);
1300
1301  void *InsertPos = 0;
1302  if (MemberPointerType *PT =
1303      MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1304    return QualType(PT, 0);
1305
1306  // If the pointee or class type isn't canonical, this won't be a canonical
1307  // type either, so fill in the canonical type field.
1308  QualType Canonical;
1309  if (!T->isCanonical()) {
1310    Canonical = getMemberPointerType(getCanonicalType(T),getCanonicalType(Cls));
1311
1312    // Get the new insert position for the node we care about.
1313    MemberPointerType *NewIP =
1314      MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
1315    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1316  }
1317  MemberPointerType *New = new (*this,8) MemberPointerType(T, Cls, Canonical);
1318  Types.push_back(New);
1319  MemberPointerTypes.InsertNode(New, InsertPos);
1320  return QualType(New, 0);
1321}
1322
1323/// getConstantArrayType - Return the unique reference to the type for an
1324/// array of the specified element type.
1325QualType ASTContext::getConstantArrayType(QualType EltTy,
1326                                          const llvm::APInt &ArySizeIn,
1327                                          ArrayType::ArraySizeModifier ASM,
1328                                          unsigned EltTypeQuals) {
1329  assert((EltTy->isDependentType() || EltTy->isConstantSizeType()) &&
1330         "Constant array of VLAs is illegal!");
1331
1332  // Convert the array size into a canonical width matching the pointer size for
1333  // the target.
1334  llvm::APInt ArySize(ArySizeIn);
1335  ArySize.zextOrTrunc(Target.getPointerWidth(EltTy.getAddressSpace()));
1336
1337  llvm::FoldingSetNodeID ID;
1338  ConstantArrayType::Profile(ID, EltTy, ArySize, ASM, EltTypeQuals);
1339
1340  void *InsertPos = 0;
1341  if (ConstantArrayType *ATP =
1342      ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
1343    return QualType(ATP, 0);
1344
1345  // If the element type isn't canonical, this won't be a canonical type either,
1346  // so fill in the canonical type field.
1347  QualType Canonical;
1348  if (!EltTy->isCanonical()) {
1349    Canonical = getConstantArrayType(getCanonicalType(EltTy), ArySize,
1350                                     ASM, EltTypeQuals);
1351    // Get the new insert position for the node we care about.
1352    ConstantArrayType *NewIP =
1353      ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
1354    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1355  }
1356
1357  ConstantArrayType *New =
1358    new(*this,8)ConstantArrayType(EltTy, Canonical, ArySize, ASM, EltTypeQuals);
1359  ConstantArrayTypes.InsertNode(New, InsertPos);
1360  Types.push_back(New);
1361  return QualType(New, 0);
1362}
1363
1364/// getConstantArrayWithExprType - Return a reference to the type for
1365/// an array of the specified element type.
1366QualType
1367ASTContext::getConstantArrayWithExprType(QualType EltTy,
1368                                         const llvm::APInt &ArySizeIn,
1369                                         Expr *ArySizeExpr,
1370                                         ArrayType::ArraySizeModifier ASM,
1371                                         unsigned EltTypeQuals,
1372                                         SourceRange Brackets) {
1373  // Convert the array size into a canonical width matching the pointer
1374  // size for the target.
1375  llvm::APInt ArySize(ArySizeIn);
1376  ArySize.zextOrTrunc(Target.getPointerWidth(EltTy.getAddressSpace()));
1377
1378  // Compute the canonical ConstantArrayType.
1379  QualType Canonical = getConstantArrayType(getCanonicalType(EltTy),
1380                                            ArySize, ASM, EltTypeQuals);
1381  // Since we don't unique expressions, it isn't possible to unique VLA's
1382  // that have an expression provided for their size.
1383  ConstantArrayWithExprType *New =
1384    new(*this,8)ConstantArrayWithExprType(EltTy, Canonical,
1385                                          ArySize, ArySizeExpr,
1386                                          ASM, EltTypeQuals, Brackets);
1387  Types.push_back(New);
1388  return QualType(New, 0);
1389}
1390
1391/// getConstantArrayWithoutExprType - Return a reference to the type for
1392/// an array of the specified element type.
1393QualType
1394ASTContext::getConstantArrayWithoutExprType(QualType EltTy,
1395                                            const llvm::APInt &ArySizeIn,
1396                                            ArrayType::ArraySizeModifier ASM,
1397                                            unsigned EltTypeQuals) {
1398  // Convert the array size into a canonical width matching the pointer
1399  // size for the target.
1400  llvm::APInt ArySize(ArySizeIn);
1401  ArySize.zextOrTrunc(Target.getPointerWidth(EltTy.getAddressSpace()));
1402
1403  // Compute the canonical ConstantArrayType.
1404  QualType Canonical = getConstantArrayType(getCanonicalType(EltTy),
1405                                            ArySize, ASM, EltTypeQuals);
1406  ConstantArrayWithoutExprType *New =
1407    new(*this,8)ConstantArrayWithoutExprType(EltTy, Canonical,
1408                                             ArySize, ASM, EltTypeQuals);
1409  Types.push_back(New);
1410  return QualType(New, 0);
1411}
1412
1413/// getVariableArrayType - Returns a non-unique reference to the type for a
1414/// variable array of the specified element type.
1415QualType ASTContext::getVariableArrayType(QualType EltTy,
1416                                          Expr *NumElts,
1417                                          ArrayType::ArraySizeModifier ASM,
1418                                          unsigned EltTypeQuals,
1419                                          SourceRange Brackets) {
1420  // Since we don't unique expressions, it isn't possible to unique VLA's
1421  // that have an expression provided for their size.
1422
1423  VariableArrayType *New =
1424    new(*this,8)VariableArrayType(EltTy, QualType(),
1425                                  NumElts, ASM, EltTypeQuals, Brackets);
1426
1427  VariableArrayTypes.push_back(New);
1428  Types.push_back(New);
1429  return QualType(New, 0);
1430}
1431
1432/// getDependentSizedArrayType - Returns a non-unique reference to
1433/// the type for a dependently-sized array of the specified element
1434/// type.
1435QualType ASTContext::getDependentSizedArrayType(QualType EltTy,
1436                                                Expr *NumElts,
1437                                                ArrayType::ArraySizeModifier ASM,
1438                                                unsigned EltTypeQuals,
1439                                                SourceRange Brackets) {
1440  assert((NumElts->isTypeDependent() || NumElts->isValueDependent()) &&
1441         "Size must be type- or value-dependent!");
1442
1443  llvm::FoldingSetNodeID ID;
1444  DependentSizedArrayType::Profile(ID, *this, getCanonicalType(EltTy), ASM,
1445                                   EltTypeQuals, NumElts);
1446
1447  void *InsertPos = 0;
1448  DependentSizedArrayType *Canon
1449    = DependentSizedArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
1450  DependentSizedArrayType *New;
1451  if (Canon) {
1452    // We already have a canonical version of this array type; use it as
1453    // the canonical type for a newly-built type.
1454    New = new (*this,8) DependentSizedArrayType(*this, EltTy,
1455                                                QualType(Canon, 0),
1456                                                NumElts, ASM, EltTypeQuals,
1457                                                Brackets);
1458  } else {
1459    QualType CanonEltTy = getCanonicalType(EltTy);
1460    if (CanonEltTy == EltTy) {
1461      New = new (*this,8) DependentSizedArrayType(*this, EltTy, QualType(),
1462                                                  NumElts, ASM, EltTypeQuals,
1463                                                  Brackets);
1464      DependentSizedArrayTypes.InsertNode(New, InsertPos);
1465    } else {
1466      QualType Canon = getDependentSizedArrayType(CanonEltTy, NumElts,
1467                                                  ASM, EltTypeQuals,
1468                                                  SourceRange());
1469      New = new (*this,8) DependentSizedArrayType(*this, EltTy, Canon,
1470                                                  NumElts, ASM, EltTypeQuals,
1471                                                  Brackets);
1472    }
1473  }
1474
1475  Types.push_back(New);
1476  return QualType(New, 0);
1477}
1478
1479QualType ASTContext::getIncompleteArrayType(QualType EltTy,
1480                                            ArrayType::ArraySizeModifier ASM,
1481                                            unsigned EltTypeQuals) {
1482  llvm::FoldingSetNodeID ID;
1483  IncompleteArrayType::Profile(ID, EltTy, ASM, EltTypeQuals);
1484
1485  void *InsertPos = 0;
1486  if (IncompleteArrayType *ATP =
1487       IncompleteArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
1488    return QualType(ATP, 0);
1489
1490  // If the element type isn't canonical, this won't be a canonical type
1491  // either, so fill in the canonical type field.
1492  QualType Canonical;
1493
1494  if (!EltTy->isCanonical()) {
1495    Canonical = getIncompleteArrayType(getCanonicalType(EltTy),
1496                                       ASM, EltTypeQuals);
1497
1498    // Get the new insert position for the node we care about.
1499    IncompleteArrayType *NewIP =
1500      IncompleteArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
1501    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1502  }
1503
1504  IncompleteArrayType *New
1505    = new (*this,8) IncompleteArrayType(EltTy, Canonical,
1506                                        ASM, EltTypeQuals);
1507
1508  IncompleteArrayTypes.InsertNode(New, InsertPos);
1509  Types.push_back(New);
1510  return QualType(New, 0);
1511}
1512
1513/// getVectorType - Return the unique reference to a vector type of
1514/// the specified element type and size. VectorType must be a built-in type.
1515QualType ASTContext::getVectorType(QualType vecType, unsigned NumElts) {
1516  BuiltinType *baseType;
1517
1518  baseType = dyn_cast<BuiltinType>(getCanonicalType(vecType).getTypePtr());
1519  assert(baseType != 0 && "getVectorType(): Expecting a built-in type");
1520
1521  // Check if we've already instantiated a vector of this type.
1522  llvm::FoldingSetNodeID ID;
1523  VectorType::Profile(ID, vecType, NumElts, Type::Vector);
1524  void *InsertPos = 0;
1525  if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
1526    return QualType(VTP, 0);
1527
1528  // If the element type isn't canonical, this won't be a canonical type either,
1529  // so fill in the canonical type field.
1530  QualType Canonical;
1531  if (!vecType->isCanonical()) {
1532    Canonical = getVectorType(getCanonicalType(vecType), NumElts);
1533
1534    // Get the new insert position for the node we care about.
1535    VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
1536    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1537  }
1538  VectorType *New = new (*this,8) VectorType(vecType, NumElts, Canonical);
1539  VectorTypes.InsertNode(New, InsertPos);
1540  Types.push_back(New);
1541  return QualType(New, 0);
1542}
1543
1544/// getExtVectorType - Return the unique reference to an extended vector type of
1545/// the specified element type and size. VectorType must be a built-in type.
1546QualType ASTContext::getExtVectorType(QualType vecType, unsigned NumElts) {
1547  BuiltinType *baseType;
1548
1549  baseType = dyn_cast<BuiltinType>(getCanonicalType(vecType).getTypePtr());
1550  assert(baseType != 0 && "getExtVectorType(): Expecting a built-in type");
1551
1552  // Check if we've already instantiated a vector of this type.
1553  llvm::FoldingSetNodeID ID;
1554  VectorType::Profile(ID, vecType, NumElts, Type::ExtVector);
1555  void *InsertPos = 0;
1556  if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
1557    return QualType(VTP, 0);
1558
1559  // If the element type isn't canonical, this won't be a canonical type either,
1560  // so fill in the canonical type field.
1561  QualType Canonical;
1562  if (!vecType->isCanonical()) {
1563    Canonical = getExtVectorType(getCanonicalType(vecType), NumElts);
1564
1565    // Get the new insert position for the node we care about.
1566    VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
1567    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1568  }
1569  ExtVectorType *New = new (*this,8) ExtVectorType(vecType, NumElts, Canonical);
1570  VectorTypes.InsertNode(New, InsertPos);
1571  Types.push_back(New);
1572  return QualType(New, 0);
1573}
1574
1575QualType ASTContext::getDependentSizedExtVectorType(QualType vecType,
1576                                                    Expr *SizeExpr,
1577                                                    SourceLocation AttrLoc) {
1578  llvm::FoldingSetNodeID ID;
1579  DependentSizedExtVectorType::Profile(ID, *this, getCanonicalType(vecType),
1580                                       SizeExpr);
1581
1582  void *InsertPos = 0;
1583  DependentSizedExtVectorType *Canon
1584    = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
1585  DependentSizedExtVectorType *New;
1586  if (Canon) {
1587    // We already have a canonical version of this array type; use it as
1588    // the canonical type for a newly-built type.
1589    New = new (*this,8) DependentSizedExtVectorType(*this, vecType,
1590                                                    QualType(Canon, 0),
1591                                                    SizeExpr, AttrLoc);
1592  } else {
1593    QualType CanonVecTy = getCanonicalType(vecType);
1594    if (CanonVecTy == vecType) {
1595      New = new (*this,8) DependentSizedExtVectorType(*this, vecType,
1596                                                      QualType(), SizeExpr,
1597                                                      AttrLoc);
1598      DependentSizedExtVectorTypes.InsertNode(New, InsertPos);
1599    } else {
1600      QualType Canon = getDependentSizedExtVectorType(CanonVecTy, SizeExpr,
1601                                                      SourceLocation());
1602      New = new (*this,8) DependentSizedExtVectorType(*this, vecType, Canon,
1603                                                      SizeExpr, AttrLoc);
1604    }
1605  }
1606
1607  Types.push_back(New);
1608  return QualType(New, 0);
1609}
1610
1611/// getFunctionNoProtoType - Return a K&R style C function type like 'int()'.
1612///
1613QualType ASTContext::getFunctionNoProtoType(QualType ResultTy, bool NoReturn) {
1614  // Unique functions, to guarantee there is only one function of a particular
1615  // structure.
1616  llvm::FoldingSetNodeID ID;
1617  FunctionNoProtoType::Profile(ID, ResultTy, NoReturn);
1618
1619  void *InsertPos = 0;
1620  if (FunctionNoProtoType *FT =
1621        FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
1622    return QualType(FT, 0);
1623
1624  QualType Canonical;
1625  if (!ResultTy->isCanonical()) {
1626    Canonical = getFunctionNoProtoType(getCanonicalType(ResultTy), NoReturn);
1627
1628    // Get the new insert position for the node we care about.
1629    FunctionNoProtoType *NewIP =
1630      FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
1631    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1632  }
1633
1634  FunctionNoProtoType *New
1635    = new (*this,8) FunctionNoProtoType(ResultTy, Canonical, NoReturn);
1636  Types.push_back(New);
1637  FunctionNoProtoTypes.InsertNode(New, InsertPos);
1638  return QualType(New, 0);
1639}
1640
1641/// getFunctionType - Return a normal function type with a typed argument
1642/// list.  isVariadic indicates whether the argument list includes '...'.
1643QualType ASTContext::getFunctionType(QualType ResultTy,const QualType *ArgArray,
1644                                     unsigned NumArgs, bool isVariadic,
1645                                     unsigned TypeQuals, bool hasExceptionSpec,
1646                                     bool hasAnyExceptionSpec, unsigned NumExs,
1647                                     const QualType *ExArray, bool NoReturn) {
1648  // Unique functions, to guarantee there is only one function of a particular
1649  // structure.
1650  llvm::FoldingSetNodeID ID;
1651  FunctionProtoType::Profile(ID, ResultTy, ArgArray, NumArgs, isVariadic,
1652                             TypeQuals, hasExceptionSpec, hasAnyExceptionSpec,
1653                             NumExs, ExArray, NoReturn);
1654
1655  void *InsertPos = 0;
1656  if (FunctionProtoType *FTP =
1657        FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
1658    return QualType(FTP, 0);
1659
1660  // Determine whether the type being created is already canonical or not.
1661  bool isCanonical = ResultTy->isCanonical();
1662  if (hasExceptionSpec)
1663    isCanonical = false;
1664  for (unsigned i = 0; i != NumArgs && isCanonical; ++i)
1665    if (!ArgArray[i]->isCanonical())
1666      isCanonical = false;
1667
1668  // If this type isn't canonical, get the canonical version of it.
1669  // The exception spec is not part of the canonical type.
1670  QualType Canonical;
1671  if (!isCanonical) {
1672    llvm::SmallVector<QualType, 16> CanonicalArgs;
1673    CanonicalArgs.reserve(NumArgs);
1674    for (unsigned i = 0; i != NumArgs; ++i)
1675      CanonicalArgs.push_back(getCanonicalType(ArgArray[i]));
1676
1677    Canonical = getFunctionType(getCanonicalType(ResultTy),
1678                                CanonicalArgs.data(), NumArgs,
1679                                isVariadic, TypeQuals, false,
1680                                false, 0, 0, NoReturn);
1681
1682    // Get the new insert position for the node we care about.
1683    FunctionProtoType *NewIP =
1684      FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
1685    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1686  }
1687
1688  // FunctionProtoType objects are allocated with extra bytes after them
1689  // for two variable size arrays (for parameter and exception types) at the
1690  // end of them.
1691  FunctionProtoType *FTP =
1692    (FunctionProtoType*)Allocate(sizeof(FunctionProtoType) +
1693                                 NumArgs*sizeof(QualType) +
1694                                 NumExs*sizeof(QualType), 8);
1695  new (FTP) FunctionProtoType(ResultTy, ArgArray, NumArgs, isVariadic,
1696                              TypeQuals, hasExceptionSpec, hasAnyExceptionSpec,
1697                              ExArray, NumExs, Canonical, NoReturn);
1698  Types.push_back(FTP);
1699  FunctionProtoTypes.InsertNode(FTP, InsertPos);
1700  return QualType(FTP, 0);
1701}
1702
1703/// getTypeDeclType - Return the unique reference to the type for the
1704/// specified type declaration.
1705QualType ASTContext::getTypeDeclType(TypeDecl *Decl, TypeDecl* PrevDecl) {
1706  assert(Decl && "Passed null for Decl param");
1707  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
1708
1709  if (TypedefDecl *Typedef = dyn_cast<TypedefDecl>(Decl))
1710    return getTypedefType(Typedef);
1711  else if (isa<TemplateTypeParmDecl>(Decl)) {
1712    assert(false && "Template type parameter types are always available.");
1713  } else if (ObjCInterfaceDecl *ObjCInterface
1714               = dyn_cast<ObjCInterfaceDecl>(Decl))
1715    return getObjCInterfaceType(ObjCInterface);
1716
1717  if (RecordDecl *Record = dyn_cast<RecordDecl>(Decl)) {
1718    if (PrevDecl)
1719      Decl->TypeForDecl = PrevDecl->TypeForDecl;
1720    else
1721      Decl->TypeForDecl = new (*this,8) RecordType(Record);
1722  } else if (EnumDecl *Enum = dyn_cast<EnumDecl>(Decl)) {
1723    if (PrevDecl)
1724      Decl->TypeForDecl = PrevDecl->TypeForDecl;
1725    else
1726      Decl->TypeForDecl = new (*this,8) EnumType(Enum);
1727  } else
1728    assert(false && "TypeDecl without a type?");
1729
1730  if (!PrevDecl) Types.push_back(Decl->TypeForDecl);
1731  return QualType(Decl->TypeForDecl, 0);
1732}
1733
1734/// getTypedefType - Return the unique reference to the type for the
1735/// specified typename decl.
1736QualType ASTContext::getTypedefType(TypedefDecl *Decl) {
1737  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
1738
1739  QualType Canonical = getCanonicalType(Decl->getUnderlyingType());
1740  Decl->TypeForDecl = new(*this,8) TypedefType(Type::Typedef, Decl, Canonical);
1741  Types.push_back(Decl->TypeForDecl);
1742  return QualType(Decl->TypeForDecl, 0);
1743}
1744
1745/// \brief Retrieve the template type parameter type for a template
1746/// parameter or parameter pack with the given depth, index, and (optionally)
1747/// name.
1748QualType ASTContext::getTemplateTypeParmType(unsigned Depth, unsigned Index,
1749                                             bool ParameterPack,
1750                                             IdentifierInfo *Name) {
1751  llvm::FoldingSetNodeID ID;
1752  TemplateTypeParmType::Profile(ID, Depth, Index, ParameterPack, Name);
1753  void *InsertPos = 0;
1754  TemplateTypeParmType *TypeParm
1755    = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
1756
1757  if (TypeParm)
1758    return QualType(TypeParm, 0);
1759
1760  if (Name) {
1761    QualType Canon = getTemplateTypeParmType(Depth, Index, ParameterPack);
1762    TypeParm = new (*this, 8) TemplateTypeParmType(Depth, Index, ParameterPack,
1763                                                   Name, Canon);
1764  } else
1765    TypeParm = new (*this, 8) TemplateTypeParmType(Depth, Index, ParameterPack);
1766
1767  Types.push_back(TypeParm);
1768  TemplateTypeParmTypes.InsertNode(TypeParm, InsertPos);
1769
1770  return QualType(TypeParm, 0);
1771}
1772
1773QualType
1774ASTContext::getTemplateSpecializationType(TemplateName Template,
1775                                          const TemplateArgument *Args,
1776                                          unsigned NumArgs,
1777                                          QualType Canon) {
1778  if (!Canon.isNull())
1779    Canon = getCanonicalType(Canon);
1780  else {
1781    // Build the canonical template specialization type.
1782    TemplateName CanonTemplate = getCanonicalTemplateName(Template);
1783    llvm::SmallVector<TemplateArgument, 4> CanonArgs;
1784    CanonArgs.reserve(NumArgs);
1785    for (unsigned I = 0; I != NumArgs; ++I)
1786      CanonArgs.push_back(getCanonicalTemplateArgument(Args[I]));
1787
1788    // Determine whether this canonical template specialization type already
1789    // exists.
1790    llvm::FoldingSetNodeID ID;
1791    TemplateSpecializationType::Profile(ID, CanonTemplate,
1792                                        CanonArgs.data(), NumArgs, *this);
1793
1794    void *InsertPos = 0;
1795    TemplateSpecializationType *Spec
1796      = TemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
1797
1798    if (!Spec) {
1799      // Allocate a new canonical template specialization type.
1800      void *Mem = Allocate((sizeof(TemplateSpecializationType) +
1801                            sizeof(TemplateArgument) * NumArgs),
1802                           8);
1803      Spec = new (Mem) TemplateSpecializationType(*this, CanonTemplate,
1804                                                  CanonArgs.data(), NumArgs,
1805                                                  Canon);
1806      Types.push_back(Spec);
1807      TemplateSpecializationTypes.InsertNode(Spec, InsertPos);
1808    }
1809
1810    if (Canon.isNull())
1811      Canon = QualType(Spec, 0);
1812    assert(Canon->isDependentType() &&
1813           "Non-dependent template-id type must have a canonical type");
1814  }
1815
1816  // Allocate the (non-canonical) template specialization type, but don't
1817  // try to unique it: these types typically have location information that
1818  // we don't unique and don't want to lose.
1819  void *Mem = Allocate((sizeof(TemplateSpecializationType) +
1820                        sizeof(TemplateArgument) * NumArgs),
1821                       8);
1822  TemplateSpecializationType *Spec
1823    = new (Mem) TemplateSpecializationType(*this, Template, Args, NumArgs,
1824                                           Canon);
1825
1826  Types.push_back(Spec);
1827  return QualType(Spec, 0);
1828}
1829
1830QualType
1831ASTContext::getQualifiedNameType(NestedNameSpecifier *NNS,
1832                                 QualType NamedType) {
1833  llvm::FoldingSetNodeID ID;
1834  QualifiedNameType::Profile(ID, NNS, NamedType);
1835
1836  void *InsertPos = 0;
1837  QualifiedNameType *T
1838    = QualifiedNameTypes.FindNodeOrInsertPos(ID, InsertPos);
1839  if (T)
1840    return QualType(T, 0);
1841
1842  T = new (*this) QualifiedNameType(NNS, NamedType,
1843                                    getCanonicalType(NamedType));
1844  Types.push_back(T);
1845  QualifiedNameTypes.InsertNode(T, InsertPos);
1846  return QualType(T, 0);
1847}
1848
1849QualType ASTContext::getTypenameType(NestedNameSpecifier *NNS,
1850                                     const IdentifierInfo *Name,
1851                                     QualType Canon) {
1852  assert(NNS->isDependent() && "nested-name-specifier must be dependent");
1853
1854  if (Canon.isNull()) {
1855    NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
1856    if (CanonNNS != NNS)
1857      Canon = getTypenameType(CanonNNS, Name);
1858  }
1859
1860  llvm::FoldingSetNodeID ID;
1861  TypenameType::Profile(ID, NNS, Name);
1862
1863  void *InsertPos = 0;
1864  TypenameType *T
1865    = TypenameTypes.FindNodeOrInsertPos(ID, InsertPos);
1866  if (T)
1867    return QualType(T, 0);
1868
1869  T = new (*this) TypenameType(NNS, Name, Canon);
1870  Types.push_back(T);
1871  TypenameTypes.InsertNode(T, InsertPos);
1872  return QualType(T, 0);
1873}
1874
1875QualType
1876ASTContext::getTypenameType(NestedNameSpecifier *NNS,
1877                            const TemplateSpecializationType *TemplateId,
1878                            QualType Canon) {
1879  assert(NNS->isDependent() && "nested-name-specifier must be dependent");
1880
1881  if (Canon.isNull()) {
1882    NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
1883    QualType CanonType = getCanonicalType(QualType(TemplateId, 0));
1884    if (CanonNNS != NNS || CanonType != QualType(TemplateId, 0)) {
1885      const TemplateSpecializationType *CanonTemplateId
1886        = CanonType->getAsTemplateSpecializationType();
1887      assert(CanonTemplateId &&
1888             "Canonical type must also be a template specialization type");
1889      Canon = getTypenameType(CanonNNS, CanonTemplateId);
1890    }
1891  }
1892
1893  llvm::FoldingSetNodeID ID;
1894  TypenameType::Profile(ID, NNS, TemplateId);
1895
1896  void *InsertPos = 0;
1897  TypenameType *T
1898    = TypenameTypes.FindNodeOrInsertPos(ID, InsertPos);
1899  if (T)
1900    return QualType(T, 0);
1901
1902  T = new (*this) TypenameType(NNS, TemplateId, Canon);
1903  Types.push_back(T);
1904  TypenameTypes.InsertNode(T, InsertPos);
1905  return QualType(T, 0);
1906}
1907
1908QualType
1909ASTContext::getElaboratedType(QualType UnderlyingType,
1910                              ElaboratedType::TagKind Tag) {
1911  llvm::FoldingSetNodeID ID;
1912  ElaboratedType::Profile(ID, UnderlyingType, Tag);
1913
1914  void *InsertPos = 0;
1915  ElaboratedType *T = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
1916  if (T)
1917    return QualType(T, 0);
1918
1919  QualType Canon = getCanonicalType(UnderlyingType);
1920
1921  T = new (*this) ElaboratedType(UnderlyingType, Tag, Canon);
1922  Types.push_back(T);
1923  ElaboratedTypes.InsertNode(T, InsertPos);
1924  return QualType(T, 0);
1925}
1926
1927/// CmpProtocolNames - Comparison predicate for sorting protocols
1928/// alphabetically.
1929static bool CmpProtocolNames(const ObjCProtocolDecl *LHS,
1930                            const ObjCProtocolDecl *RHS) {
1931  return LHS->getDeclName() < RHS->getDeclName();
1932}
1933
1934static void SortAndUniqueProtocols(ObjCProtocolDecl **&Protocols,
1935                                   unsigned &NumProtocols) {
1936  ObjCProtocolDecl **ProtocolsEnd = Protocols+NumProtocols;
1937
1938  // Sort protocols, keyed by name.
1939  std::sort(Protocols, Protocols+NumProtocols, CmpProtocolNames);
1940
1941  // Remove duplicates.
1942  ProtocolsEnd = std::unique(Protocols, ProtocolsEnd);
1943  NumProtocols = ProtocolsEnd-Protocols;
1944}
1945
1946/// getObjCObjectPointerType - Return a ObjCObjectPointerType type for
1947/// the given interface decl and the conforming protocol list.
1948QualType ASTContext::getObjCObjectPointerType(QualType InterfaceT,
1949                                              ObjCProtocolDecl **Protocols,
1950                                              unsigned NumProtocols) {
1951  // Sort the protocol list alphabetically to canonicalize it.
1952  if (NumProtocols)
1953    SortAndUniqueProtocols(Protocols, NumProtocols);
1954
1955  llvm::FoldingSetNodeID ID;
1956  ObjCObjectPointerType::Profile(ID, InterfaceT, Protocols, NumProtocols);
1957
1958  void *InsertPos = 0;
1959  if (ObjCObjectPointerType *QT =
1960              ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1961    return QualType(QT, 0);
1962
1963  // No Match;
1964  ObjCObjectPointerType *QType =
1965    new (*this,8) ObjCObjectPointerType(InterfaceT, Protocols, NumProtocols);
1966
1967  Types.push_back(QType);
1968  ObjCObjectPointerTypes.InsertNode(QType, InsertPos);
1969  return QualType(QType, 0);
1970}
1971
1972/// getObjCInterfaceType - Return the unique reference to the type for the
1973/// specified ObjC interface decl. The list of protocols is optional.
1974QualType ASTContext::getObjCInterfaceType(const ObjCInterfaceDecl *Decl,
1975                       ObjCProtocolDecl **Protocols, unsigned NumProtocols) {
1976  if (NumProtocols)
1977    // Sort the protocol list alphabetically to canonicalize it.
1978    SortAndUniqueProtocols(Protocols, NumProtocols);
1979
1980  llvm::FoldingSetNodeID ID;
1981  ObjCInterfaceType::Profile(ID, Decl, Protocols, NumProtocols);
1982
1983  void *InsertPos = 0;
1984  if (ObjCInterfaceType *QT =
1985      ObjCInterfaceTypes.FindNodeOrInsertPos(ID, InsertPos))
1986    return QualType(QT, 0);
1987
1988  // No Match;
1989  ObjCInterfaceType *QType =
1990    new (*this,8) ObjCInterfaceType(const_cast<ObjCInterfaceDecl*>(Decl),
1991                                    Protocols, NumProtocols);
1992  Types.push_back(QType);
1993  ObjCInterfaceTypes.InsertNode(QType, InsertPos);
1994  return QualType(QType, 0);
1995}
1996
1997/// getTypeOfExprType - Unlike many "get<Type>" functions, we can't unique
1998/// TypeOfExprType AST's (since expression's are never shared). For example,
1999/// multiple declarations that refer to "typeof(x)" all contain different
2000/// DeclRefExpr's. This doesn't effect the type checker, since it operates
2001/// on canonical type's (which are always unique).
2002QualType ASTContext::getTypeOfExprType(Expr *tofExpr) {
2003  TypeOfExprType *toe;
2004  if (tofExpr->isTypeDependent()) {
2005    llvm::FoldingSetNodeID ID;
2006    DependentTypeOfExprType::Profile(ID, *this, tofExpr);
2007
2008    void *InsertPos = 0;
2009    DependentTypeOfExprType *Canon
2010      = DependentTypeOfExprTypes.FindNodeOrInsertPos(ID, InsertPos);
2011    if (Canon) {
2012      // We already have a "canonical" version of an identical, dependent
2013      // typeof(expr) type. Use that as our canonical type.
2014      toe = new (*this, 8) TypeOfExprType(tofExpr,
2015                                          QualType((TypeOfExprType*)Canon, 0));
2016    }
2017    else {
2018      // Build a new, canonical typeof(expr) type.
2019      Canon = new (*this, 8) DependentTypeOfExprType(*this, tofExpr);
2020      DependentTypeOfExprTypes.InsertNode(Canon, InsertPos);
2021      toe = Canon;
2022    }
2023  } else {
2024    QualType Canonical = getCanonicalType(tofExpr->getType());
2025    toe = new (*this,8) TypeOfExprType(tofExpr, Canonical);
2026  }
2027  Types.push_back(toe);
2028  return QualType(toe, 0);
2029}
2030
2031/// getTypeOfType -  Unlike many "get<Type>" functions, we don't unique
2032/// TypeOfType AST's. The only motivation to unique these nodes would be
2033/// memory savings. Since typeof(t) is fairly uncommon, space shouldn't be
2034/// an issue. This doesn't effect the type checker, since it operates
2035/// on canonical type's (which are always unique).
2036QualType ASTContext::getTypeOfType(QualType tofType) {
2037  QualType Canonical = getCanonicalType(tofType);
2038  TypeOfType *tot = new (*this,8) TypeOfType(tofType, Canonical);
2039  Types.push_back(tot);
2040  return QualType(tot, 0);
2041}
2042
2043/// getDecltypeForExpr - Given an expr, will return the decltype for that
2044/// expression, according to the rules in C++0x [dcl.type.simple]p4
2045static QualType getDecltypeForExpr(const Expr *e, ASTContext &Context) {
2046  if (e->isTypeDependent())
2047    return Context.DependentTy;
2048
2049  // If e is an id expression or a class member access, decltype(e) is defined
2050  // as the type of the entity named by e.
2051  if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(e)) {
2052    if (const ValueDecl *VD = dyn_cast<ValueDecl>(DRE->getDecl()))
2053      return VD->getType();
2054  }
2055  if (const MemberExpr *ME = dyn_cast<MemberExpr>(e)) {
2056    if (const FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl()))
2057      return FD->getType();
2058  }
2059  // If e is a function call or an invocation of an overloaded operator,
2060  // (parentheses around e are ignored), decltype(e) is defined as the
2061  // return type of that function.
2062  if (const CallExpr *CE = dyn_cast<CallExpr>(e->IgnoreParens()))
2063    return CE->getCallReturnType();
2064
2065  QualType T = e->getType();
2066
2067  // Otherwise, where T is the type of e, if e is an lvalue, decltype(e) is
2068  // defined as T&, otherwise decltype(e) is defined as T.
2069  if (e->isLvalue(Context) == Expr::LV_Valid)
2070    T = Context.getLValueReferenceType(T);
2071
2072  return T;
2073}
2074
2075/// getDecltypeType -  Unlike many "get<Type>" functions, we don't unique
2076/// DecltypeType AST's. The only motivation to unique these nodes would be
2077/// memory savings. Since decltype(t) is fairly uncommon, space shouldn't be
2078/// an issue. This doesn't effect the type checker, since it operates
2079/// on canonical type's (which are always unique).
2080QualType ASTContext::getDecltypeType(Expr *e) {
2081  DecltypeType *dt;
2082  if (e->isTypeDependent()) {
2083    llvm::FoldingSetNodeID ID;
2084    DependentDecltypeType::Profile(ID, *this, e);
2085
2086    void *InsertPos = 0;
2087    DependentDecltypeType *Canon
2088      = DependentDecltypeTypes.FindNodeOrInsertPos(ID, InsertPos);
2089    if (Canon) {
2090      // We already have a "canonical" version of an equivalent, dependent
2091      // decltype type. Use that as our canonical type.
2092      dt = new (*this, 8) DecltypeType(e, DependentTy,
2093                                       QualType((DecltypeType*)Canon, 0));
2094    }
2095    else {
2096      // Build a new, canonical typeof(expr) type.
2097      Canon = new (*this, 8) DependentDecltypeType(*this, e);
2098      DependentDecltypeTypes.InsertNode(Canon, InsertPos);
2099      dt = Canon;
2100    }
2101  } else {
2102    QualType T = getDecltypeForExpr(e, *this);
2103    dt = new (*this, 8) DecltypeType(e, T, getCanonicalType(T));
2104  }
2105  Types.push_back(dt);
2106  return QualType(dt, 0);
2107}
2108
2109/// getTagDeclType - Return the unique reference to the type for the
2110/// specified TagDecl (struct/union/class/enum) decl.
2111QualType ASTContext::getTagDeclType(const TagDecl *Decl) {
2112  assert (Decl);
2113  // FIXME: What is the design on getTagDeclType when it requires casting
2114  // away const?  mutable?
2115  return getTypeDeclType(const_cast<TagDecl*>(Decl));
2116}
2117
2118/// getSizeType - Return the unique type for "size_t" (C99 7.17), the result
2119/// of the sizeof operator (C99 6.5.3.4p4). The value is target dependent and
2120/// needs to agree with the definition in <stddef.h>.
2121QualType ASTContext::getSizeType() const {
2122  return getFromTargetType(Target.getSizeType());
2123}
2124
2125/// getSignedWCharType - Return the type of "signed wchar_t".
2126/// Used when in C++, as a GCC extension.
2127QualType ASTContext::getSignedWCharType() const {
2128  // FIXME: derive from "Target" ?
2129  return WCharTy;
2130}
2131
2132/// getUnsignedWCharType - Return the type of "unsigned wchar_t".
2133/// Used when in C++, as a GCC extension.
2134QualType ASTContext::getUnsignedWCharType() const {
2135  // FIXME: derive from "Target" ?
2136  return UnsignedIntTy;
2137}
2138
2139/// getPointerDiffType - Return the unique type for "ptrdiff_t" (ref?)
2140/// defined in <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9).
2141QualType ASTContext::getPointerDiffType() const {
2142  return getFromTargetType(Target.getPtrDiffType(0));
2143}
2144
2145//===----------------------------------------------------------------------===//
2146//                              Type Operators
2147//===----------------------------------------------------------------------===//
2148
2149/// getCanonicalType - Return the canonical (structural) type corresponding to
2150/// the specified potentially non-canonical type.  The non-canonical version
2151/// of a type may have many "decorated" versions of types.  Decorators can
2152/// include typedefs, 'typeof' operators, etc. The returned type is guaranteed
2153/// to be free of any of these, allowing two canonical types to be compared
2154/// for exact equality with a simple pointer comparison.
2155CanQualType ASTContext::getCanonicalType(QualType T) {
2156  QualType CanType = T.getTypePtr()->getCanonicalTypeInternal();
2157
2158  // If the result has type qualifiers, make sure to canonicalize them as well.
2159  unsigned TypeQuals = T.getCVRQualifiers() | CanType.getCVRQualifiers();
2160  if (TypeQuals == 0)
2161    return CanQualType::CreateUnsafe(CanType);
2162
2163  // If the type qualifiers are on an array type, get the canonical type of the
2164  // array with the qualifiers applied to the element type.
2165  ArrayType *AT = dyn_cast<ArrayType>(CanType);
2166  if (!AT)
2167    return CanQualType::CreateUnsafe(CanType.getQualifiedType(TypeQuals));
2168
2169  // Get the canonical version of the element with the extra qualifiers on it.
2170  // This can recursively sink qualifiers through multiple levels of arrays.
2171  QualType NewEltTy=AT->getElementType().getWithAdditionalQualifiers(TypeQuals);
2172  NewEltTy = getCanonicalType(NewEltTy);
2173
2174  if (ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
2175    return CanQualType::CreateUnsafe(
2176             getConstantArrayType(NewEltTy, CAT->getSize(),
2177                                  CAT->getSizeModifier(),
2178                                  CAT->getIndexTypeQualifier()));
2179  if (IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT))
2180    return CanQualType::CreateUnsafe(
2181             getIncompleteArrayType(NewEltTy, IAT->getSizeModifier(),
2182                                    IAT->getIndexTypeQualifier()));
2183
2184  if (DependentSizedArrayType *DSAT = dyn_cast<DependentSizedArrayType>(AT))
2185    return CanQualType::CreateUnsafe(
2186             getDependentSizedArrayType(NewEltTy,
2187                                        DSAT->getSizeExpr() ?
2188                                          DSAT->getSizeExpr()->Retain() : 0,
2189                                        DSAT->getSizeModifier(),
2190                                        DSAT->getIndexTypeQualifier(),
2191                                        DSAT->getBracketsRange()));
2192
2193  VariableArrayType *VAT = cast<VariableArrayType>(AT);
2194  return CanQualType::CreateUnsafe(getVariableArrayType(NewEltTy,
2195                                                        VAT->getSizeExpr() ?
2196                                              VAT->getSizeExpr()->Retain() : 0,
2197                                                        VAT->getSizeModifier(),
2198                                                  VAT->getIndexTypeQualifier(),
2199                                                     VAT->getBracketsRange()));
2200}
2201
2202TemplateName ASTContext::getCanonicalTemplateName(TemplateName Name) {
2203  // If this template name refers to a template, the canonical
2204  // template name merely stores the template itself.
2205  if (TemplateDecl *Template = Name.getAsTemplateDecl())
2206    return TemplateName(cast<TemplateDecl>(Template->getCanonicalDecl()));
2207
2208  // If this template name refers to a set of overloaded function templates,
2209  /// the canonical template name merely stores the set of function templates.
2210  if (OverloadedFunctionDecl *Ovl = Name.getAsOverloadedFunctionDecl()) {
2211    OverloadedFunctionDecl *CanonOvl = 0;
2212    for (OverloadedFunctionDecl::function_iterator F = Ovl->function_begin(),
2213                                                FEnd = Ovl->function_end();
2214         F != FEnd; ++F) {
2215      Decl *Canon = F->get()->getCanonicalDecl();
2216      if (CanonOvl || Canon != F->get()) {
2217        if (!CanonOvl)
2218          CanonOvl = OverloadedFunctionDecl::Create(*this,
2219                                                    Ovl->getDeclContext(),
2220                                                    Ovl->getDeclName());
2221
2222        CanonOvl->addOverload(
2223                    AnyFunctionDecl::getFromNamedDecl(cast<NamedDecl>(Canon)));
2224      }
2225    }
2226
2227    return TemplateName(CanonOvl? CanonOvl : Ovl);
2228  }
2229
2230  DependentTemplateName *DTN = Name.getAsDependentTemplateName();
2231  assert(DTN && "Non-dependent template names must refer to template decls.");
2232  return DTN->CanonicalTemplateName;
2233}
2234
2235TemplateArgument
2236ASTContext::getCanonicalTemplateArgument(const TemplateArgument &Arg) {
2237  switch (Arg.getKind()) {
2238    case TemplateArgument::Null:
2239      return Arg;
2240
2241    case TemplateArgument::Expression:
2242      // FIXME: Build canonical expression?
2243      return Arg;
2244
2245    case TemplateArgument::Declaration:
2246      return TemplateArgument(SourceLocation(),
2247                              Arg.getAsDecl()->getCanonicalDecl());
2248
2249    case TemplateArgument::Integral:
2250      return TemplateArgument(SourceLocation(),
2251                              *Arg.getAsIntegral(),
2252                              getCanonicalType(Arg.getIntegralType()));
2253
2254    case TemplateArgument::Type:
2255      return TemplateArgument(SourceLocation(),
2256                              getCanonicalType(Arg.getAsType()));
2257
2258    case TemplateArgument::Pack: {
2259      // FIXME: Allocate in ASTContext
2260      TemplateArgument *CanonArgs = new TemplateArgument[Arg.pack_size()];
2261      unsigned Idx = 0;
2262      for (TemplateArgument::pack_iterator A = Arg.pack_begin(),
2263                                        AEnd = Arg.pack_end();
2264           A != AEnd; (void)++A, ++Idx)
2265        CanonArgs[Idx] = getCanonicalTemplateArgument(*A);
2266
2267      TemplateArgument Result;
2268      Result.setArgumentPack(CanonArgs, Arg.pack_size(), false);
2269      return Result;
2270    }
2271  }
2272
2273  // Silence GCC warning
2274  assert(false && "Unhandled template argument kind");
2275  return TemplateArgument();
2276}
2277
2278NestedNameSpecifier *
2279ASTContext::getCanonicalNestedNameSpecifier(NestedNameSpecifier *NNS) {
2280  if (!NNS)
2281    return 0;
2282
2283  switch (NNS->getKind()) {
2284  case NestedNameSpecifier::Identifier:
2285    // Canonicalize the prefix but keep the identifier the same.
2286    return NestedNameSpecifier::Create(*this,
2287                         getCanonicalNestedNameSpecifier(NNS->getPrefix()),
2288                                       NNS->getAsIdentifier());
2289
2290  case NestedNameSpecifier::Namespace:
2291    // A namespace is canonical; build a nested-name-specifier with
2292    // this namespace and no prefix.
2293    return NestedNameSpecifier::Create(*this, 0, NNS->getAsNamespace());
2294
2295  case NestedNameSpecifier::TypeSpec:
2296  case NestedNameSpecifier::TypeSpecWithTemplate: {
2297    QualType T = getCanonicalType(QualType(NNS->getAsType(), 0));
2298    return NestedNameSpecifier::Create(*this, 0,
2299                 NNS->getKind() == NestedNameSpecifier::TypeSpecWithTemplate,
2300                                       T.getTypePtr());
2301  }
2302
2303  case NestedNameSpecifier::Global:
2304    // The global specifier is canonical and unique.
2305    return NNS;
2306  }
2307
2308  // Required to silence a GCC warning
2309  return 0;
2310}
2311
2312
2313const ArrayType *ASTContext::getAsArrayType(QualType T) {
2314  // Handle the non-qualified case efficiently.
2315  if (T.getCVRQualifiers() == 0) {
2316    // Handle the common positive case fast.
2317    if (const ArrayType *AT = dyn_cast<ArrayType>(T))
2318      return AT;
2319  }
2320
2321  // Handle the common negative case fast, ignoring CVR qualifiers.
2322  QualType CType = T->getCanonicalTypeInternal();
2323
2324  // Make sure to look through type qualifiers (like ExtQuals) for the negative
2325  // test.
2326  if (!isa<ArrayType>(CType) &&
2327      !isa<ArrayType>(CType.getUnqualifiedType()))
2328    return 0;
2329
2330  // Apply any CVR qualifiers from the array type to the element type.  This
2331  // implements C99 6.7.3p8: "If the specification of an array type includes
2332  // any type qualifiers, the element type is so qualified, not the array type."
2333
2334  // If we get here, we either have type qualifiers on the type, or we have
2335  // sugar such as a typedef in the way.  If we have type qualifiers on the type
2336  // we must propagate them down into the element type.
2337  unsigned CVRQuals = T.getCVRQualifiers();
2338  unsigned AddrSpace = 0;
2339  Type *Ty = T.getTypePtr();
2340
2341  // Rip through ExtQualType's and typedefs to get to a concrete type.
2342  while (1) {
2343    if (const ExtQualType *EXTQT = dyn_cast<ExtQualType>(Ty)) {
2344      AddrSpace = EXTQT->getAddressSpace();
2345      Ty = EXTQT->getBaseType();
2346    } else {
2347      T = Ty->getDesugaredType();
2348      if (T.getTypePtr() == Ty && T.getCVRQualifiers() == 0)
2349        break;
2350      CVRQuals |= T.getCVRQualifiers();
2351      Ty = T.getTypePtr();
2352    }
2353  }
2354
2355  // If we have a simple case, just return now.
2356  const ArrayType *ATy = dyn_cast<ArrayType>(Ty);
2357  if (ATy == 0 || (AddrSpace == 0 && CVRQuals == 0))
2358    return ATy;
2359
2360  // Otherwise, we have an array and we have qualifiers on it.  Push the
2361  // qualifiers into the array element type and return a new array type.
2362  // Get the canonical version of the element with the extra qualifiers on it.
2363  // This can recursively sink qualifiers through multiple levels of arrays.
2364  QualType NewEltTy = ATy->getElementType();
2365  if (AddrSpace)
2366    NewEltTy = getAddrSpaceQualType(NewEltTy, AddrSpace);
2367  NewEltTy = NewEltTy.getWithAdditionalQualifiers(CVRQuals);
2368
2369  if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(ATy))
2370    return cast<ArrayType>(getConstantArrayType(NewEltTy, CAT->getSize(),
2371                                                CAT->getSizeModifier(),
2372                                                CAT->getIndexTypeQualifier()));
2373  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(ATy))
2374    return cast<ArrayType>(getIncompleteArrayType(NewEltTy,
2375                                                  IAT->getSizeModifier(),
2376                                                  IAT->getIndexTypeQualifier()));
2377
2378  if (const DependentSizedArrayType *DSAT
2379        = dyn_cast<DependentSizedArrayType>(ATy))
2380    return cast<ArrayType>(
2381                     getDependentSizedArrayType(NewEltTy,
2382                                                DSAT->getSizeExpr() ?
2383                                              DSAT->getSizeExpr()->Retain() : 0,
2384                                                DSAT->getSizeModifier(),
2385                                                DSAT->getIndexTypeQualifier(),
2386                                                DSAT->getBracketsRange()));
2387
2388  const VariableArrayType *VAT = cast<VariableArrayType>(ATy);
2389  return cast<ArrayType>(getVariableArrayType(NewEltTy,
2390                                              VAT->getSizeExpr() ?
2391                                               VAT->getSizeExpr()->Retain() : 0,
2392                                              VAT->getSizeModifier(),
2393                                              VAT->getIndexTypeQualifier(),
2394                                              VAT->getBracketsRange()));
2395}
2396
2397
2398/// getArrayDecayedType - Return the properly qualified result of decaying the
2399/// specified array type to a pointer.  This operation is non-trivial when
2400/// handling typedefs etc.  The canonical type of "T" must be an array type,
2401/// this returns a pointer to a properly qualified element of the array.
2402///
2403/// See C99 6.7.5.3p7 and C99 6.3.2.1p3.
2404QualType ASTContext::getArrayDecayedType(QualType Ty) {
2405  // Get the element type with 'getAsArrayType' so that we don't lose any
2406  // typedefs in the element type of the array.  This also handles propagation
2407  // of type qualifiers from the array type into the element type if present
2408  // (C99 6.7.3p8).
2409  const ArrayType *PrettyArrayType = getAsArrayType(Ty);
2410  assert(PrettyArrayType && "Not an array type!");
2411
2412  QualType PtrTy = getPointerType(PrettyArrayType->getElementType());
2413
2414  // int x[restrict 4] ->  int *restrict
2415  return PtrTy.getQualifiedType(PrettyArrayType->getIndexTypeQualifier());
2416}
2417
2418QualType ASTContext::getBaseElementType(QualType QT) {
2419  QualifierSet qualifiers;
2420  while (true) {
2421    const Type *UT = qualifiers.strip(QT);
2422    if (const ArrayType *AT = getAsArrayType(QualType(UT,0))) {
2423      QT = AT->getElementType();
2424    } else {
2425      return qualifiers.apply(QT, *this);
2426    }
2427  }
2428}
2429
2430QualType ASTContext::getBaseElementType(const VariableArrayType *VAT) {
2431  QualType ElemTy = VAT->getElementType();
2432
2433  if (const VariableArrayType *VAT = getAsVariableArrayType(ElemTy))
2434    return getBaseElementType(VAT);
2435
2436  return ElemTy;
2437}
2438
2439/// getConstantArrayElementCount - Returns number of constant array elements.
2440uint64_t
2441ASTContext::getConstantArrayElementCount(const ConstantArrayType *CA)  const {
2442  uint64_t ElementCount = 1;
2443  do {
2444    ElementCount *= CA->getSize().getZExtValue();
2445    CA = dyn_cast<ConstantArrayType>(CA->getElementType());
2446  } while (CA);
2447  return ElementCount;
2448}
2449
2450/// getFloatingRank - Return a relative rank for floating point types.
2451/// This routine will assert if passed a built-in type that isn't a float.
2452static FloatingRank getFloatingRank(QualType T) {
2453  if (const ComplexType *CT = T->getAsComplexType())
2454    return getFloatingRank(CT->getElementType());
2455
2456  assert(T->getAsBuiltinType() && "getFloatingRank(): not a floating type");
2457  switch (T->getAsBuiltinType()->getKind()) {
2458  default: assert(0 && "getFloatingRank(): not a floating type");
2459  case BuiltinType::Float:      return FloatRank;
2460  case BuiltinType::Double:     return DoubleRank;
2461  case BuiltinType::LongDouble: return LongDoubleRank;
2462  }
2463}
2464
2465/// getFloatingTypeOfSizeWithinDomain - Returns a real floating
2466/// point or a complex type (based on typeDomain/typeSize).
2467/// 'typeDomain' is a real floating point or complex type.
2468/// 'typeSize' is a real floating point or complex type.
2469QualType ASTContext::getFloatingTypeOfSizeWithinDomain(QualType Size,
2470                                                       QualType Domain) const {
2471  FloatingRank EltRank = getFloatingRank(Size);
2472  if (Domain->isComplexType()) {
2473    switch (EltRank) {
2474    default: assert(0 && "getFloatingRank(): illegal value for rank");
2475    case FloatRank:      return FloatComplexTy;
2476    case DoubleRank:     return DoubleComplexTy;
2477    case LongDoubleRank: return LongDoubleComplexTy;
2478    }
2479  }
2480
2481  assert(Domain->isRealFloatingType() && "Unknown domain!");
2482  switch (EltRank) {
2483  default: assert(0 && "getFloatingRank(): illegal value for rank");
2484  case FloatRank:      return FloatTy;
2485  case DoubleRank:     return DoubleTy;
2486  case LongDoubleRank: return LongDoubleTy;
2487  }
2488}
2489
2490/// getFloatingTypeOrder - Compare the rank of the two specified floating
2491/// point types, ignoring the domain of the type (i.e. 'double' ==
2492/// '_Complex double').  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
2493/// LHS < RHS, return -1.
2494int ASTContext::getFloatingTypeOrder(QualType LHS, QualType RHS) {
2495  FloatingRank LHSR = getFloatingRank(LHS);
2496  FloatingRank RHSR = getFloatingRank(RHS);
2497
2498  if (LHSR == RHSR)
2499    return 0;
2500  if (LHSR > RHSR)
2501    return 1;
2502  return -1;
2503}
2504
2505/// getIntegerRank - Return an integer conversion rank (C99 6.3.1.1p1). This
2506/// routine will assert if passed a built-in type that isn't an integer or enum,
2507/// or if it is not canonicalized.
2508unsigned ASTContext::getIntegerRank(Type *T) {
2509  assert(T->isCanonical() && "T should be canonicalized");
2510  if (EnumType* ET = dyn_cast<EnumType>(T))
2511    T = ET->getDecl()->getIntegerType().getTypePtr();
2512
2513  if (T->isSpecificBuiltinType(BuiltinType::WChar))
2514    T = getFromTargetType(Target.getWCharType()).getTypePtr();
2515
2516  if (T->isSpecificBuiltinType(BuiltinType::Char16))
2517    T = getFromTargetType(Target.getChar16Type()).getTypePtr();
2518
2519  if (T->isSpecificBuiltinType(BuiltinType::Char32))
2520    T = getFromTargetType(Target.getChar32Type()).getTypePtr();
2521
2522  // There are two things which impact the integer rank: the width, and
2523  // the ordering of builtins.  The builtin ordering is encoded in the
2524  // bottom three bits; the width is encoded in the bits above that.
2525  if (FixedWidthIntType* FWIT = dyn_cast<FixedWidthIntType>(T))
2526    return FWIT->getWidth() << 3;
2527
2528  switch (cast<BuiltinType>(T)->getKind()) {
2529  default: assert(0 && "getIntegerRank(): not a built-in integer");
2530  case BuiltinType::Bool:
2531    return 1 + (getIntWidth(BoolTy) << 3);
2532  case BuiltinType::Char_S:
2533  case BuiltinType::Char_U:
2534  case BuiltinType::SChar:
2535  case BuiltinType::UChar:
2536    return 2 + (getIntWidth(CharTy) << 3);
2537  case BuiltinType::Short:
2538  case BuiltinType::UShort:
2539    return 3 + (getIntWidth(ShortTy) << 3);
2540  case BuiltinType::Int:
2541  case BuiltinType::UInt:
2542    return 4 + (getIntWidth(IntTy) << 3);
2543  case BuiltinType::Long:
2544  case BuiltinType::ULong:
2545    return 5 + (getIntWidth(LongTy) << 3);
2546  case BuiltinType::LongLong:
2547  case BuiltinType::ULongLong:
2548    return 6 + (getIntWidth(LongLongTy) << 3);
2549  case BuiltinType::Int128:
2550  case BuiltinType::UInt128:
2551    return 7 + (getIntWidth(Int128Ty) << 3);
2552  }
2553}
2554
2555/// \brief Whether this is a promotable bitfield reference according
2556/// to C99 6.3.1.1p2, bullet 2 (and GCC extensions).
2557///
2558/// \returns the type this bit-field will promote to, or NULL if no
2559/// promotion occurs.
2560QualType ASTContext::isPromotableBitField(Expr *E) {
2561  FieldDecl *Field = E->getBitField();
2562  if (!Field)
2563    return QualType();
2564
2565  QualType FT = Field->getType();
2566
2567  llvm::APSInt BitWidthAP = Field->getBitWidth()->EvaluateAsInt(*this);
2568  uint64_t BitWidth = BitWidthAP.getZExtValue();
2569  uint64_t IntSize = getTypeSize(IntTy);
2570  // GCC extension compatibility: if the bit-field size is less than or equal
2571  // to the size of int, it gets promoted no matter what its type is.
2572  // For instance, unsigned long bf : 4 gets promoted to signed int.
2573  if (BitWidth < IntSize)
2574    return IntTy;
2575
2576  if (BitWidth == IntSize)
2577    return FT->isSignedIntegerType() ? IntTy : UnsignedIntTy;
2578
2579  // Types bigger than int are not subject to promotions, and therefore act
2580  // like the base type.
2581  // FIXME: This doesn't quite match what gcc does, but what gcc does here
2582  // is ridiculous.
2583  return QualType();
2584}
2585
2586/// getPromotedIntegerType - Returns the type that Promotable will
2587/// promote to: C99 6.3.1.1p2, assuming that Promotable is a promotable
2588/// integer type.
2589QualType ASTContext::getPromotedIntegerType(QualType Promotable) {
2590  assert(!Promotable.isNull());
2591  assert(Promotable->isPromotableIntegerType());
2592  if (Promotable->isSignedIntegerType())
2593    return IntTy;
2594  uint64_t PromotableSize = getTypeSize(Promotable);
2595  uint64_t IntSize = getTypeSize(IntTy);
2596  assert(Promotable->isUnsignedIntegerType() && PromotableSize <= IntSize);
2597  return (PromotableSize != IntSize) ? IntTy : UnsignedIntTy;
2598}
2599
2600/// getIntegerTypeOrder - Returns the highest ranked integer type:
2601/// C99 6.3.1.8p1.  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
2602/// LHS < RHS, return -1.
2603int ASTContext::getIntegerTypeOrder(QualType LHS, QualType RHS) {
2604  Type *LHSC = getCanonicalType(LHS).getTypePtr();
2605  Type *RHSC = getCanonicalType(RHS).getTypePtr();
2606  if (LHSC == RHSC) return 0;
2607
2608  bool LHSUnsigned = LHSC->isUnsignedIntegerType();
2609  bool RHSUnsigned = RHSC->isUnsignedIntegerType();
2610
2611  unsigned LHSRank = getIntegerRank(LHSC);
2612  unsigned RHSRank = getIntegerRank(RHSC);
2613
2614  if (LHSUnsigned == RHSUnsigned) {  // Both signed or both unsigned.
2615    if (LHSRank == RHSRank) return 0;
2616    return LHSRank > RHSRank ? 1 : -1;
2617  }
2618
2619  // Otherwise, the LHS is signed and the RHS is unsigned or visa versa.
2620  if (LHSUnsigned) {
2621    // If the unsigned [LHS] type is larger, return it.
2622    if (LHSRank >= RHSRank)
2623      return 1;
2624
2625    // If the signed type can represent all values of the unsigned type, it
2626    // wins.  Because we are dealing with 2's complement and types that are
2627    // powers of two larger than each other, this is always safe.
2628    return -1;
2629  }
2630
2631  // If the unsigned [RHS] type is larger, return it.
2632  if (RHSRank >= LHSRank)
2633    return -1;
2634
2635  // If the signed type can represent all values of the unsigned type, it
2636  // wins.  Because we are dealing with 2's complement and types that are
2637  // powers of two larger than each other, this is always safe.
2638  return 1;
2639}
2640
2641// getCFConstantStringType - Return the type used for constant CFStrings.
2642QualType ASTContext::getCFConstantStringType() {
2643  if (!CFConstantStringTypeDecl) {
2644    CFConstantStringTypeDecl =
2645      RecordDecl::Create(*this, TagDecl::TK_struct, TUDecl, SourceLocation(),
2646                         &Idents.get("NSConstantString"));
2647    QualType FieldTypes[4];
2648
2649    // const int *isa;
2650    FieldTypes[0] = getPointerType(IntTy.getQualifiedType(QualType::Const));
2651    // int flags;
2652    FieldTypes[1] = IntTy;
2653    // const char *str;
2654    FieldTypes[2] = getPointerType(CharTy.getQualifiedType(QualType::Const));
2655    // long length;
2656    FieldTypes[3] = LongTy;
2657
2658    // Create fields
2659    for (unsigned i = 0; i < 4; ++i) {
2660      FieldDecl *Field = FieldDecl::Create(*this, CFConstantStringTypeDecl,
2661                                           SourceLocation(), 0,
2662                                           FieldTypes[i], /*DInfo=*/0,
2663                                           /*BitWidth=*/0,
2664                                           /*Mutable=*/false);
2665      CFConstantStringTypeDecl->addDecl(Field);
2666    }
2667
2668    CFConstantStringTypeDecl->completeDefinition(*this);
2669  }
2670
2671  return getTagDeclType(CFConstantStringTypeDecl);
2672}
2673
2674void ASTContext::setCFConstantStringType(QualType T) {
2675  const RecordType *Rec = T->getAs<RecordType>();
2676  assert(Rec && "Invalid CFConstantStringType");
2677  CFConstantStringTypeDecl = Rec->getDecl();
2678}
2679
2680QualType ASTContext::getObjCFastEnumerationStateType()
2681{
2682  if (!ObjCFastEnumerationStateTypeDecl) {
2683    ObjCFastEnumerationStateTypeDecl =
2684      RecordDecl::Create(*this, TagDecl::TK_struct, TUDecl, SourceLocation(),
2685                         &Idents.get("__objcFastEnumerationState"));
2686
2687    QualType FieldTypes[] = {
2688      UnsignedLongTy,
2689      getPointerType(ObjCIdTypedefType),
2690      getPointerType(UnsignedLongTy),
2691      getConstantArrayType(UnsignedLongTy,
2692                           llvm::APInt(32, 5), ArrayType::Normal, 0)
2693    };
2694
2695    for (size_t i = 0; i < 4; ++i) {
2696      FieldDecl *Field = FieldDecl::Create(*this,
2697                                           ObjCFastEnumerationStateTypeDecl,
2698                                           SourceLocation(), 0,
2699                                           FieldTypes[i], /*DInfo=*/0,
2700                                           /*BitWidth=*/0,
2701                                           /*Mutable=*/false);
2702      ObjCFastEnumerationStateTypeDecl->addDecl(Field);
2703    }
2704
2705    ObjCFastEnumerationStateTypeDecl->completeDefinition(*this);
2706  }
2707
2708  return getTagDeclType(ObjCFastEnumerationStateTypeDecl);
2709}
2710
2711void ASTContext::setObjCFastEnumerationStateType(QualType T) {
2712  const RecordType *Rec = T->getAs<RecordType>();
2713  assert(Rec && "Invalid ObjCFAstEnumerationStateType");
2714  ObjCFastEnumerationStateTypeDecl = Rec->getDecl();
2715}
2716
2717// This returns true if a type has been typedefed to BOOL:
2718// typedef <type> BOOL;
2719static bool isTypeTypedefedAsBOOL(QualType T) {
2720  if (const TypedefType *TT = dyn_cast<TypedefType>(T))
2721    if (IdentifierInfo *II = TT->getDecl()->getIdentifier())
2722      return II->isStr("BOOL");
2723
2724  return false;
2725}
2726
2727/// getObjCEncodingTypeSize returns size of type for objective-c encoding
2728/// purpose.
2729int ASTContext::getObjCEncodingTypeSize(QualType type) {
2730  uint64_t sz = getTypeSize(type);
2731
2732  // Make all integer and enum types at least as large as an int
2733  if (sz > 0 && type->isIntegralType())
2734    sz = std::max(sz, getTypeSize(IntTy));
2735  // Treat arrays as pointers, since that's how they're passed in.
2736  else if (type->isArrayType())
2737    sz = getTypeSize(VoidPtrTy);
2738  return sz / getTypeSize(CharTy);
2739}
2740
2741/// getObjCEncodingForMethodDecl - Return the encoded type for this method
2742/// declaration.
2743void ASTContext::getObjCEncodingForMethodDecl(const ObjCMethodDecl *Decl,
2744                                              std::string& S) {
2745  // FIXME: This is not very efficient.
2746  // Encode type qualifer, 'in', 'inout', etc. for the return type.
2747  getObjCEncodingForTypeQualifier(Decl->getObjCDeclQualifier(), S);
2748  // Encode result type.
2749  getObjCEncodingForType(Decl->getResultType(), S);
2750  // Compute size of all parameters.
2751  // Start with computing size of a pointer in number of bytes.
2752  // FIXME: There might(should) be a better way of doing this computation!
2753  SourceLocation Loc;
2754  int PtrSize = getTypeSize(VoidPtrTy) / getTypeSize(CharTy);
2755  // The first two arguments (self and _cmd) are pointers; account for
2756  // their size.
2757  int ParmOffset = 2 * PtrSize;
2758  for (ObjCMethodDecl::param_iterator PI = Decl->param_begin(),
2759       E = Decl->param_end(); PI != E; ++PI) {
2760    QualType PType = (*PI)->getType();
2761    int sz = getObjCEncodingTypeSize(PType);
2762    assert (sz > 0 && "getObjCEncodingForMethodDecl - Incomplete param type");
2763    ParmOffset += sz;
2764  }
2765  S += llvm::utostr(ParmOffset);
2766  S += "@0:";
2767  S += llvm::utostr(PtrSize);
2768
2769  // Argument types.
2770  ParmOffset = 2 * PtrSize;
2771  for (ObjCMethodDecl::param_iterator PI = Decl->param_begin(),
2772       E = Decl->param_end(); PI != E; ++PI) {
2773    ParmVarDecl *PVDecl = *PI;
2774    QualType PType = PVDecl->getOriginalType();
2775    if (const ArrayType *AT =
2776          dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
2777      // Use array's original type only if it has known number of
2778      // elements.
2779      if (!isa<ConstantArrayType>(AT))
2780        PType = PVDecl->getType();
2781    } else if (PType->isFunctionType())
2782      PType = PVDecl->getType();
2783    // Process argument qualifiers for user supplied arguments; such as,
2784    // 'in', 'inout', etc.
2785    getObjCEncodingForTypeQualifier(PVDecl->getObjCDeclQualifier(), S);
2786    getObjCEncodingForType(PType, S);
2787    S += llvm::utostr(ParmOffset);
2788    ParmOffset += getObjCEncodingTypeSize(PType);
2789  }
2790}
2791
2792/// getObjCEncodingForPropertyDecl - Return the encoded type for this
2793/// property declaration. If non-NULL, Container must be either an
2794/// ObjCCategoryImplDecl or ObjCImplementationDecl; it should only be
2795/// NULL when getting encodings for protocol properties.
2796/// Property attributes are stored as a comma-delimited C string. The simple
2797/// attributes readonly and bycopy are encoded as single characters. The
2798/// parametrized attributes, getter=name, setter=name, and ivar=name, are
2799/// encoded as single characters, followed by an identifier. Property types
2800/// are also encoded as a parametrized attribute. The characters used to encode
2801/// these attributes are defined by the following enumeration:
2802/// @code
2803/// enum PropertyAttributes {
2804/// kPropertyReadOnly = 'R',   // property is read-only.
2805/// kPropertyBycopy = 'C',     // property is a copy of the value last assigned
2806/// kPropertyByref = '&',  // property is a reference to the value last assigned
2807/// kPropertyDynamic = 'D',    // property is dynamic
2808/// kPropertyGetter = 'G',     // followed by getter selector name
2809/// kPropertySetter = 'S',     // followed by setter selector name
2810/// kPropertyInstanceVariable = 'V'  // followed by instance variable  name
2811/// kPropertyType = 't'              // followed by old-style type encoding.
2812/// kPropertyWeak = 'W'              // 'weak' property
2813/// kPropertyStrong = 'P'            // property GC'able
2814/// kPropertyNonAtomic = 'N'         // property non-atomic
2815/// };
2816/// @endcode
2817void ASTContext::getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD,
2818                                                const Decl *Container,
2819                                                std::string& S) {
2820  // Collect information from the property implementation decl(s).
2821  bool Dynamic = false;
2822  ObjCPropertyImplDecl *SynthesizePID = 0;
2823
2824  // FIXME: Duplicated code due to poor abstraction.
2825  if (Container) {
2826    if (const ObjCCategoryImplDecl *CID =
2827        dyn_cast<ObjCCategoryImplDecl>(Container)) {
2828      for (ObjCCategoryImplDecl::propimpl_iterator
2829             i = CID->propimpl_begin(), e = CID->propimpl_end();
2830           i != e; ++i) {
2831        ObjCPropertyImplDecl *PID = *i;
2832        if (PID->getPropertyDecl() == PD) {
2833          if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) {
2834            Dynamic = true;
2835          } else {
2836            SynthesizePID = PID;
2837          }
2838        }
2839      }
2840    } else {
2841      const ObjCImplementationDecl *OID=cast<ObjCImplementationDecl>(Container);
2842      for (ObjCCategoryImplDecl::propimpl_iterator
2843             i = OID->propimpl_begin(), e = OID->propimpl_end();
2844           i != e; ++i) {
2845        ObjCPropertyImplDecl *PID = *i;
2846        if (PID->getPropertyDecl() == PD) {
2847          if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) {
2848            Dynamic = true;
2849          } else {
2850            SynthesizePID = PID;
2851          }
2852        }
2853      }
2854    }
2855  }
2856
2857  // FIXME: This is not very efficient.
2858  S = "T";
2859
2860  // Encode result type.
2861  // GCC has some special rules regarding encoding of properties which
2862  // closely resembles encoding of ivars.
2863  getObjCEncodingForTypeImpl(PD->getType(), S, true, true, 0,
2864                             true /* outermost type */,
2865                             true /* encoding for property */);
2866
2867  if (PD->isReadOnly()) {
2868    S += ",R";
2869  } else {
2870    switch (PD->getSetterKind()) {
2871    case ObjCPropertyDecl::Assign: break;
2872    case ObjCPropertyDecl::Copy:   S += ",C"; break;
2873    case ObjCPropertyDecl::Retain: S += ",&"; break;
2874    }
2875  }
2876
2877  // It really isn't clear at all what this means, since properties
2878  // are "dynamic by default".
2879  if (Dynamic)
2880    S += ",D";
2881
2882  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_nonatomic)
2883    S += ",N";
2884
2885  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_getter) {
2886    S += ",G";
2887    S += PD->getGetterName().getAsString();
2888  }
2889
2890  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_setter) {
2891    S += ",S";
2892    S += PD->getSetterName().getAsString();
2893  }
2894
2895  if (SynthesizePID) {
2896    const ObjCIvarDecl *OID = SynthesizePID->getPropertyIvarDecl();
2897    S += ",V";
2898    S += OID->getNameAsString();
2899  }
2900
2901  // FIXME: OBJCGC: weak & strong
2902}
2903
2904/// getLegacyIntegralTypeEncoding -
2905/// Another legacy compatibility encoding: 32-bit longs are encoded as
2906/// 'l' or 'L' , but not always.  For typedefs, we need to use
2907/// 'i' or 'I' instead if encoding a struct field, or a pointer!
2908///
2909void ASTContext::getLegacyIntegralTypeEncoding (QualType &PointeeTy) const {
2910  if (isa<TypedefType>(PointeeTy.getTypePtr())) {
2911    if (const BuiltinType *BT = PointeeTy->getAsBuiltinType()) {
2912      if (BT->getKind() == BuiltinType::ULong &&
2913          ((const_cast<ASTContext *>(this))->getIntWidth(PointeeTy) == 32))
2914        PointeeTy = UnsignedIntTy;
2915      else
2916        if (BT->getKind() == BuiltinType::Long &&
2917            ((const_cast<ASTContext *>(this))->getIntWidth(PointeeTy) == 32))
2918          PointeeTy = IntTy;
2919    }
2920  }
2921}
2922
2923void ASTContext::getObjCEncodingForType(QualType T, std::string& S,
2924                                        const FieldDecl *Field) {
2925  // We follow the behavior of gcc, expanding structures which are
2926  // directly pointed to, and expanding embedded structures. Note that
2927  // these rules are sufficient to prevent recursive encoding of the
2928  // same type.
2929  getObjCEncodingForTypeImpl(T, S, true, true, Field,
2930                             true /* outermost type */);
2931}
2932
2933static void EncodeBitField(const ASTContext *Context, std::string& S,
2934                           const FieldDecl *FD) {
2935  const Expr *E = FD->getBitWidth();
2936  assert(E && "bitfield width not there - getObjCEncodingForTypeImpl");
2937  ASTContext *Ctx = const_cast<ASTContext*>(Context);
2938  unsigned N = E->EvaluateAsInt(*Ctx).getZExtValue();
2939  S += 'b';
2940  S += llvm::utostr(N);
2941}
2942
2943void ASTContext::getObjCEncodingForTypeImpl(QualType T, std::string& S,
2944                                            bool ExpandPointedToStructures,
2945                                            bool ExpandStructures,
2946                                            const FieldDecl *FD,
2947                                            bool OutermostType,
2948                                            bool EncodingProperty) {
2949  if (const BuiltinType *BT = T->getAsBuiltinType()) {
2950    if (FD && FD->isBitField())
2951      return EncodeBitField(this, S, FD);
2952    char encoding;
2953    switch (BT->getKind()) {
2954    default: assert(0 && "Unhandled builtin type kind");
2955    case BuiltinType::Void:       encoding = 'v'; break;
2956    case BuiltinType::Bool:       encoding = 'B'; break;
2957    case BuiltinType::Char_U:
2958    case BuiltinType::UChar:      encoding = 'C'; break;
2959    case BuiltinType::UShort:     encoding = 'S'; break;
2960    case BuiltinType::UInt:       encoding = 'I'; break;
2961    case BuiltinType::ULong:
2962        encoding =
2963          (const_cast<ASTContext *>(this))->getIntWidth(T) == 32 ? 'L' : 'Q';
2964        break;
2965    case BuiltinType::UInt128:    encoding = 'T'; break;
2966    case BuiltinType::ULongLong:  encoding = 'Q'; break;
2967    case BuiltinType::Char_S:
2968    case BuiltinType::SChar:      encoding = 'c'; break;
2969    case BuiltinType::Short:      encoding = 's'; break;
2970    case BuiltinType::Int:        encoding = 'i'; break;
2971    case BuiltinType::Long:
2972      encoding =
2973        (const_cast<ASTContext *>(this))->getIntWidth(T) == 32 ? 'l' : 'q';
2974      break;
2975    case BuiltinType::LongLong:   encoding = 'q'; break;
2976    case BuiltinType::Int128:     encoding = 't'; break;
2977    case BuiltinType::Float:      encoding = 'f'; break;
2978    case BuiltinType::Double:     encoding = 'd'; break;
2979    case BuiltinType::LongDouble: encoding = 'd'; break;
2980    }
2981
2982    S += encoding;
2983    return;
2984  }
2985
2986  if (const ComplexType *CT = T->getAsComplexType()) {
2987    S += 'j';
2988    getObjCEncodingForTypeImpl(CT->getElementType(), S, false, false, 0, false,
2989                               false);
2990    return;
2991  }
2992
2993  if (const PointerType *PT = T->getAs<PointerType>()) {
2994    QualType PointeeTy = PT->getPointeeType();
2995    bool isReadOnly = false;
2996    // For historical/compatibility reasons, the read-only qualifier of the
2997    // pointee gets emitted _before_ the '^'.  The read-only qualifier of
2998    // the pointer itself gets ignored, _unless_ we are looking at a typedef!
2999    // Also, do not emit the 'r' for anything but the outermost type!
3000    if (isa<TypedefType>(T.getTypePtr())) {
3001      if (OutermostType && T.isConstQualified()) {
3002        isReadOnly = true;
3003        S += 'r';
3004      }
3005    } else if (OutermostType) {
3006      QualType P = PointeeTy;
3007      while (P->getAs<PointerType>())
3008        P = P->getAs<PointerType>()->getPointeeType();
3009      if (P.isConstQualified()) {
3010        isReadOnly = true;
3011        S += 'r';
3012      }
3013    }
3014    if (isReadOnly) {
3015      // Another legacy compatibility encoding. Some ObjC qualifier and type
3016      // combinations need to be rearranged.
3017      // Rewrite "in const" from "nr" to "rn"
3018      const char * s = S.c_str();
3019      int len = S.length();
3020      if (len >= 2 && s[len-2] == 'n' && s[len-1] == 'r') {
3021        std::string replace = "rn";
3022        S.replace(S.end()-2, S.end(), replace);
3023      }
3024    }
3025    if (isObjCSelType(PointeeTy)) {
3026      S += ':';
3027      return;
3028    }
3029
3030    if (PointeeTy->isCharType()) {
3031      // char pointer types should be encoded as '*' unless it is a
3032      // type that has been typedef'd to 'BOOL'.
3033      if (!isTypeTypedefedAsBOOL(PointeeTy)) {
3034        S += '*';
3035        return;
3036      }
3037    } else if (const RecordType *RTy = PointeeTy->getAs<RecordType>()) {
3038      // GCC binary compat: Need to convert "struct objc_class *" to "#".
3039      if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_class")) {
3040        S += '#';
3041        return;
3042      }
3043      // GCC binary compat: Need to convert "struct objc_object *" to "@".
3044      if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_object")) {
3045        S += '@';
3046        return;
3047      }
3048      // fall through...
3049    }
3050    S += '^';
3051    getLegacyIntegralTypeEncoding(PointeeTy);
3052
3053    getObjCEncodingForTypeImpl(PointeeTy, S, false, ExpandPointedToStructures,
3054                               NULL);
3055    return;
3056  }
3057
3058  if (const ArrayType *AT =
3059      // Ignore type qualifiers etc.
3060        dyn_cast<ArrayType>(T->getCanonicalTypeInternal())) {
3061    if (isa<IncompleteArrayType>(AT)) {
3062      // Incomplete arrays are encoded as a pointer to the array element.
3063      S += '^';
3064
3065      getObjCEncodingForTypeImpl(AT->getElementType(), S,
3066                                 false, ExpandStructures, FD);
3067    } else {
3068      S += '[';
3069
3070      if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
3071        S += llvm::utostr(CAT->getSize().getZExtValue());
3072      else {
3073        //Variable length arrays are encoded as a regular array with 0 elements.
3074        assert(isa<VariableArrayType>(AT) && "Unknown array type!");
3075        S += '0';
3076      }
3077
3078      getObjCEncodingForTypeImpl(AT->getElementType(), S,
3079                                 false, ExpandStructures, FD);
3080      S += ']';
3081    }
3082    return;
3083  }
3084
3085  if (T->getAsFunctionType()) {
3086    S += '?';
3087    return;
3088  }
3089
3090  if (const RecordType *RTy = T->getAs<RecordType>()) {
3091    RecordDecl *RDecl = RTy->getDecl();
3092    S += RDecl->isUnion() ? '(' : '{';
3093    // Anonymous structures print as '?'
3094    if (const IdentifierInfo *II = RDecl->getIdentifier()) {
3095      S += II->getName();
3096    } else {
3097      S += '?';
3098    }
3099    if (ExpandStructures) {
3100      S += '=';
3101      for (RecordDecl::field_iterator Field = RDecl->field_begin(),
3102                                   FieldEnd = RDecl->field_end();
3103           Field != FieldEnd; ++Field) {
3104        if (FD) {
3105          S += '"';
3106          S += Field->getNameAsString();
3107          S += '"';
3108        }
3109
3110        // Special case bit-fields.
3111        if (Field->isBitField()) {
3112          getObjCEncodingForTypeImpl(Field->getType(), S, false, true,
3113                                     (*Field));
3114        } else {
3115          QualType qt = Field->getType();
3116          getLegacyIntegralTypeEncoding(qt);
3117          getObjCEncodingForTypeImpl(qt, S, false, true,
3118                                     FD);
3119        }
3120      }
3121    }
3122    S += RDecl->isUnion() ? ')' : '}';
3123    return;
3124  }
3125
3126  if (T->isEnumeralType()) {
3127    if (FD && FD->isBitField())
3128      EncodeBitField(this, S, FD);
3129    else
3130      S += 'i';
3131    return;
3132  }
3133
3134  if (T->isBlockPointerType()) {
3135    S += "@?"; // Unlike a pointer-to-function, which is "^?".
3136    return;
3137  }
3138
3139  if (T->isObjCInterfaceType()) {
3140    // @encode(class_name)
3141    ObjCInterfaceDecl *OI = T->getAsObjCInterfaceType()->getDecl();
3142    S += '{';
3143    const IdentifierInfo *II = OI->getIdentifier();
3144    S += II->getName();
3145    S += '=';
3146    llvm::SmallVector<FieldDecl*, 32> RecFields;
3147    CollectObjCIvars(OI, RecFields);
3148    for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
3149      if (RecFields[i]->isBitField())
3150        getObjCEncodingForTypeImpl(RecFields[i]->getType(), S, false, true,
3151                                   RecFields[i]);
3152      else
3153        getObjCEncodingForTypeImpl(RecFields[i]->getType(), S, false, true,
3154                                   FD);
3155    }
3156    S += '}';
3157    return;
3158  }
3159
3160  if (const ObjCObjectPointerType *OPT = T->getAsObjCObjectPointerType()) {
3161    if (OPT->isObjCIdType()) {
3162      S += '@';
3163      return;
3164    }
3165
3166    if (OPT->isObjCClassType()) {
3167      S += '#';
3168      return;
3169    }
3170
3171    if (OPT->isObjCQualifiedIdType()) {
3172      getObjCEncodingForTypeImpl(getObjCIdType(), S,
3173                                 ExpandPointedToStructures,
3174                                 ExpandStructures, FD);
3175      if (FD || EncodingProperty) {
3176        // Note that we do extended encoding of protocol qualifer list
3177        // Only when doing ivar or property encoding.
3178        S += '"';
3179        for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(),
3180             E = OPT->qual_end(); I != E; ++I) {
3181          S += '<';
3182          S += (*I)->getNameAsString();
3183          S += '>';
3184        }
3185        S += '"';
3186      }
3187      return;
3188    }
3189
3190    QualType PointeeTy = OPT->getPointeeType();
3191    if (!EncodingProperty &&
3192        isa<TypedefType>(PointeeTy.getTypePtr())) {
3193      // Another historical/compatibility reason.
3194      // We encode the underlying type which comes out as
3195      // {...};
3196      S += '^';
3197      getObjCEncodingForTypeImpl(PointeeTy, S,
3198                                 false, ExpandPointedToStructures,
3199                                 NULL);
3200      return;
3201    }
3202
3203    S += '@';
3204    if (FD || EncodingProperty) {
3205      S += '"';
3206      S += OPT->getInterfaceDecl()->getNameAsCString();
3207      for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(),
3208           E = OPT->qual_end(); I != E; ++I) {
3209        S += '<';
3210        S += (*I)->getNameAsString();
3211        S += '>';
3212      }
3213      S += '"';
3214    }
3215    return;
3216  }
3217
3218  assert(0 && "@encode for type not implemented!");
3219}
3220
3221void ASTContext::getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT,
3222                                                 std::string& S) const {
3223  if (QT & Decl::OBJC_TQ_In)
3224    S += 'n';
3225  if (QT & Decl::OBJC_TQ_Inout)
3226    S += 'N';
3227  if (QT & Decl::OBJC_TQ_Out)
3228    S += 'o';
3229  if (QT & Decl::OBJC_TQ_Bycopy)
3230    S += 'O';
3231  if (QT & Decl::OBJC_TQ_Byref)
3232    S += 'R';
3233  if (QT & Decl::OBJC_TQ_Oneway)
3234    S += 'V';
3235}
3236
3237void ASTContext::setBuiltinVaListType(QualType T) {
3238  assert(BuiltinVaListType.isNull() && "__builtin_va_list type already set!");
3239
3240  BuiltinVaListType = T;
3241}
3242
3243void ASTContext::setObjCIdType(QualType T) {
3244  ObjCIdTypedefType = T;
3245}
3246
3247void ASTContext::setObjCSelType(QualType T) {
3248  ObjCSelType = T;
3249
3250  const TypedefType *TT = T->getAsTypedefType();
3251  if (!TT)
3252    return;
3253  TypedefDecl *TD = TT->getDecl();
3254
3255  // typedef struct objc_selector *SEL;
3256  const PointerType *ptr = TD->getUnderlyingType()->getAs<PointerType>();
3257  if (!ptr)
3258    return;
3259  const RecordType *rec = ptr->getPointeeType()->getAsStructureType();
3260  if (!rec)
3261    return;
3262  SelStructType = rec;
3263}
3264
3265void ASTContext::setObjCProtoType(QualType QT) {
3266  ObjCProtoType = QT;
3267}
3268
3269void ASTContext::setObjCClassType(QualType T) {
3270  ObjCClassTypedefType = T;
3271}
3272
3273void ASTContext::setObjCConstantStringInterface(ObjCInterfaceDecl *Decl) {
3274  assert(ObjCConstantStringType.isNull() &&
3275         "'NSConstantString' type already set!");
3276
3277  ObjCConstantStringType = getObjCInterfaceType(Decl);
3278}
3279
3280/// \brief Retrieve the template name that represents a qualified
3281/// template name such as \c std::vector.
3282TemplateName ASTContext::getQualifiedTemplateName(NestedNameSpecifier *NNS,
3283                                                  bool TemplateKeyword,
3284                                                  TemplateDecl *Template) {
3285  llvm::FoldingSetNodeID ID;
3286  QualifiedTemplateName::Profile(ID, NNS, TemplateKeyword, Template);
3287
3288  void *InsertPos = 0;
3289  QualifiedTemplateName *QTN =
3290    QualifiedTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
3291  if (!QTN) {
3292    QTN = new (*this,4) QualifiedTemplateName(NNS, TemplateKeyword, Template);
3293    QualifiedTemplateNames.InsertNode(QTN, InsertPos);
3294  }
3295
3296  return TemplateName(QTN);
3297}
3298
3299/// \brief Retrieve the template name that represents a qualified
3300/// template name such as \c std::vector.
3301TemplateName ASTContext::getQualifiedTemplateName(NestedNameSpecifier *NNS,
3302                                                  bool TemplateKeyword,
3303                                            OverloadedFunctionDecl *Template) {
3304  llvm::FoldingSetNodeID ID;
3305  QualifiedTemplateName::Profile(ID, NNS, TemplateKeyword, Template);
3306
3307  void *InsertPos = 0;
3308  QualifiedTemplateName *QTN =
3309  QualifiedTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
3310  if (!QTN) {
3311    QTN = new (*this,4) QualifiedTemplateName(NNS, TemplateKeyword, Template);
3312    QualifiedTemplateNames.InsertNode(QTN, InsertPos);
3313  }
3314
3315  return TemplateName(QTN);
3316}
3317
3318/// \brief Retrieve the template name that represents a dependent
3319/// template name such as \c MetaFun::template apply.
3320TemplateName ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
3321                                                  const IdentifierInfo *Name) {
3322  assert(NNS->isDependent() && "Nested name specifier must be dependent");
3323
3324  llvm::FoldingSetNodeID ID;
3325  DependentTemplateName::Profile(ID, NNS, Name);
3326
3327  void *InsertPos = 0;
3328  DependentTemplateName *QTN =
3329    DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
3330
3331  if (QTN)
3332    return TemplateName(QTN);
3333
3334  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
3335  if (CanonNNS == NNS) {
3336    QTN = new (*this,4) DependentTemplateName(NNS, Name);
3337  } else {
3338    TemplateName Canon = getDependentTemplateName(CanonNNS, Name);
3339    QTN = new (*this,4) DependentTemplateName(NNS, Name, Canon);
3340  }
3341
3342  DependentTemplateNames.InsertNode(QTN, InsertPos);
3343  return TemplateName(QTN);
3344}
3345
3346/// getFromTargetType - Given one of the integer types provided by
3347/// TargetInfo, produce the corresponding type. The unsigned @p Type
3348/// is actually a value of type @c TargetInfo::IntType.
3349QualType ASTContext::getFromTargetType(unsigned Type) const {
3350  switch (Type) {
3351  case TargetInfo::NoInt: return QualType();
3352  case TargetInfo::SignedShort: return ShortTy;
3353  case TargetInfo::UnsignedShort: return UnsignedShortTy;
3354  case TargetInfo::SignedInt: return IntTy;
3355  case TargetInfo::UnsignedInt: return UnsignedIntTy;
3356  case TargetInfo::SignedLong: return LongTy;
3357  case TargetInfo::UnsignedLong: return UnsignedLongTy;
3358  case TargetInfo::SignedLongLong: return LongLongTy;
3359  case TargetInfo::UnsignedLongLong: return UnsignedLongLongTy;
3360  }
3361
3362  assert(false && "Unhandled TargetInfo::IntType value");
3363  return QualType();
3364}
3365
3366//===----------------------------------------------------------------------===//
3367//                        Type Predicates.
3368//===----------------------------------------------------------------------===//
3369
3370/// isObjCNSObjectType - Return true if this is an NSObject object using
3371/// NSObject attribute on a c-style pointer type.
3372/// FIXME - Make it work directly on types.
3373/// FIXME: Move to Type.
3374///
3375bool ASTContext::isObjCNSObjectType(QualType Ty) const {
3376  if (TypedefType *TDT = dyn_cast<TypedefType>(Ty)) {
3377    if (TypedefDecl *TD = TDT->getDecl())
3378      if (TD->getAttr<ObjCNSObjectAttr>())
3379        return true;
3380  }
3381  return false;
3382}
3383
3384/// getObjCGCAttr - Returns one of GCNone, Weak or Strong objc's
3385/// garbage collection attribute.
3386///
3387QualType::GCAttrTypes ASTContext::getObjCGCAttrKind(const QualType &Ty) const {
3388  QualType::GCAttrTypes GCAttrs = QualType::GCNone;
3389  if (getLangOptions().ObjC1 &&
3390      getLangOptions().getGCMode() != LangOptions::NonGC) {
3391    GCAttrs = Ty.getObjCGCAttr();
3392    // Default behavious under objective-c's gc is for objective-c pointers
3393    // (or pointers to them) be treated as though they were declared
3394    // as __strong.
3395    if (GCAttrs == QualType::GCNone) {
3396      if (Ty->isObjCObjectPointerType())
3397        GCAttrs = QualType::Strong;
3398      else if (Ty->isPointerType())
3399        return getObjCGCAttrKind(Ty->getAs<PointerType>()->getPointeeType());
3400    }
3401    // Non-pointers have none gc'able attribute regardless of the attribute
3402    // set on them.
3403    else if (!Ty->isAnyPointerType() && !Ty->isBlockPointerType())
3404      return QualType::GCNone;
3405  }
3406  return GCAttrs;
3407}
3408
3409//===----------------------------------------------------------------------===//
3410//                        Type Compatibility Testing
3411//===----------------------------------------------------------------------===//
3412
3413/// areCompatVectorTypes - Return true if the two specified vector types are
3414/// compatible.
3415static bool areCompatVectorTypes(const VectorType *LHS,
3416                                 const VectorType *RHS) {
3417  assert(LHS->isCanonical() && RHS->isCanonical());
3418  return LHS->getElementType() == RHS->getElementType() &&
3419         LHS->getNumElements() == RHS->getNumElements();
3420}
3421
3422//===----------------------------------------------------------------------===//
3423// ObjCQualifiedIdTypesAreCompatible - Compatibility testing for qualified id's.
3424//===----------------------------------------------------------------------===//
3425
3426/// ProtocolCompatibleWithProtocol - return 'true' if 'lProto' is in the
3427/// inheritance hierarchy of 'rProto'.
3428bool ASTContext::ProtocolCompatibleWithProtocol(ObjCProtocolDecl *lProto,
3429                                                ObjCProtocolDecl *rProto) {
3430  if (lProto == rProto)
3431    return true;
3432  for (ObjCProtocolDecl::protocol_iterator PI = rProto->protocol_begin(),
3433       E = rProto->protocol_end(); PI != E; ++PI)
3434    if (ProtocolCompatibleWithProtocol(lProto, *PI))
3435      return true;
3436  return false;
3437}
3438
3439/// QualifiedIdConformsQualifiedId - compare id<p,...> with id<p1,...>
3440/// return true if lhs's protocols conform to rhs's protocol; false
3441/// otherwise.
3442bool ASTContext::QualifiedIdConformsQualifiedId(QualType lhs, QualType rhs) {
3443  if (lhs->isObjCQualifiedIdType() && rhs->isObjCQualifiedIdType())
3444    return ObjCQualifiedIdTypesAreCompatible(lhs, rhs, false);
3445  return false;
3446}
3447
3448/// ObjCQualifiedIdTypesAreCompatible - We know that one of lhs/rhs is an
3449/// ObjCQualifiedIDType.
3450bool ASTContext::ObjCQualifiedIdTypesAreCompatible(QualType lhs, QualType rhs,
3451                                                   bool compare) {
3452  // Allow id<P..> and an 'id' or void* type in all cases.
3453  if (lhs->isVoidPointerType() ||
3454      lhs->isObjCIdType() || lhs->isObjCClassType())
3455    return true;
3456  else if (rhs->isVoidPointerType() ||
3457           rhs->isObjCIdType() || rhs->isObjCClassType())
3458    return true;
3459
3460  if (const ObjCObjectPointerType *lhsQID = lhs->getAsObjCQualifiedIdType()) {
3461    const ObjCObjectPointerType *rhsOPT = rhs->getAsObjCObjectPointerType();
3462
3463    if (!rhsOPT) return false;
3464
3465    if (rhsOPT->qual_empty()) {
3466      // If the RHS is a unqualified interface pointer "NSString*",
3467      // make sure we check the class hierarchy.
3468      if (ObjCInterfaceDecl *rhsID = rhsOPT->getInterfaceDecl()) {
3469        for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
3470             E = lhsQID->qual_end(); I != E; ++I) {
3471          // when comparing an id<P> on lhs with a static type on rhs,
3472          // see if static class implements all of id's protocols, directly or
3473          // through its super class and categories.
3474          if (!rhsID->ClassImplementsProtocol(*I, true))
3475            return false;
3476        }
3477      }
3478      // If there are no qualifiers and no interface, we have an 'id'.
3479      return true;
3480    }
3481    // Both the right and left sides have qualifiers.
3482    for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
3483         E = lhsQID->qual_end(); I != E; ++I) {
3484      ObjCProtocolDecl *lhsProto = *I;
3485      bool match = false;
3486
3487      // when comparing an id<P> on lhs with a static type on rhs,
3488      // see if static class implements all of id's protocols, directly or
3489      // through its super class and categories.
3490      for (ObjCObjectPointerType::qual_iterator J = rhsOPT->qual_begin(),
3491           E = rhsOPT->qual_end(); J != E; ++J) {
3492        ObjCProtocolDecl *rhsProto = *J;
3493        if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
3494            (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
3495          match = true;
3496          break;
3497        }
3498      }
3499      // If the RHS is a qualified interface pointer "NSString<P>*",
3500      // make sure we check the class hierarchy.
3501      if (ObjCInterfaceDecl *rhsID = rhsOPT->getInterfaceDecl()) {
3502        for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
3503             E = lhsQID->qual_end(); I != E; ++I) {
3504          // when comparing an id<P> on lhs with a static type on rhs,
3505          // see if static class implements all of id's protocols, directly or
3506          // through its super class and categories.
3507          if (rhsID->ClassImplementsProtocol(*I, true)) {
3508            match = true;
3509            break;
3510          }
3511        }
3512      }
3513      if (!match)
3514        return false;
3515    }
3516
3517    return true;
3518  }
3519
3520  const ObjCObjectPointerType *rhsQID = rhs->getAsObjCQualifiedIdType();
3521  assert(rhsQID && "One of the LHS/RHS should be id<x>");
3522
3523  if (const ObjCObjectPointerType *lhsOPT =
3524        lhs->getAsObjCInterfacePointerType()) {
3525    if (lhsOPT->qual_empty()) {
3526      bool match = false;
3527      if (ObjCInterfaceDecl *lhsID = lhsOPT->getInterfaceDecl()) {
3528        for (ObjCObjectPointerType::qual_iterator I = rhsQID->qual_begin(),
3529             E = rhsQID->qual_end(); I != E; ++I) {
3530          // when comparing an id<P> on lhs with a static type on rhs,
3531          // see if static class implements all of id's protocols, directly or
3532          // through its super class and categories.
3533          if (lhsID->ClassImplementsProtocol(*I, true)) {
3534            match = true;
3535            break;
3536          }
3537        }
3538        if (!match)
3539          return false;
3540      }
3541      return true;
3542    }
3543    // Both the right and left sides have qualifiers.
3544    for (ObjCObjectPointerType::qual_iterator I = lhsOPT->qual_begin(),
3545         E = lhsOPT->qual_end(); I != E; ++I) {
3546      ObjCProtocolDecl *lhsProto = *I;
3547      bool match = false;
3548
3549      // when comparing an id<P> on lhs with a static type on rhs,
3550      // see if static class implements all of id's protocols, directly or
3551      // through its super class and categories.
3552      for (ObjCObjectPointerType::qual_iterator J = rhsQID->qual_begin(),
3553           E = rhsQID->qual_end(); J != E; ++J) {
3554        ObjCProtocolDecl *rhsProto = *J;
3555        if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
3556            (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
3557          match = true;
3558          break;
3559        }
3560      }
3561      if (!match)
3562        return false;
3563    }
3564    return true;
3565  }
3566  return false;
3567}
3568
3569/// canAssignObjCInterfaces - Return true if the two interface types are
3570/// compatible for assignment from RHS to LHS.  This handles validation of any
3571/// protocol qualifiers on the LHS or RHS.
3572///
3573bool ASTContext::canAssignObjCInterfaces(const ObjCObjectPointerType *LHSOPT,
3574                                         const ObjCObjectPointerType *RHSOPT) {
3575  // If either type represents the built-in 'id' or 'Class' types, return true.
3576  if (LHSOPT->isObjCBuiltinType() || RHSOPT->isObjCBuiltinType())
3577    return true;
3578
3579  if (LHSOPT->isObjCQualifiedIdType() || RHSOPT->isObjCQualifiedIdType())
3580    return ObjCQualifiedIdTypesAreCompatible(QualType(LHSOPT,0),
3581                                             QualType(RHSOPT,0),
3582                                             false);
3583
3584  const ObjCInterfaceType* LHS = LHSOPT->getInterfaceType();
3585  const ObjCInterfaceType* RHS = RHSOPT->getInterfaceType();
3586  if (LHS && RHS) // We have 2 user-defined types.
3587    return canAssignObjCInterfaces(LHS, RHS);
3588
3589  return false;
3590}
3591
3592bool ASTContext::canAssignObjCInterfaces(const ObjCInterfaceType *LHS,
3593                                         const ObjCInterfaceType *RHS) {
3594  // Verify that the base decls are compatible: the RHS must be a subclass of
3595  // the LHS.
3596  if (!LHS->getDecl()->isSuperClassOf(RHS->getDecl()))
3597    return false;
3598
3599  // RHS must have a superset of the protocols in the LHS.  If the LHS is not
3600  // protocol qualified at all, then we are good.
3601  if (LHS->getNumProtocols() == 0)
3602    return true;
3603
3604  // Okay, we know the LHS has protocol qualifiers.  If the RHS doesn't, then it
3605  // isn't a superset.
3606  if (RHS->getNumProtocols() == 0)
3607    return true;  // FIXME: should return false!
3608
3609  for (ObjCInterfaceType::qual_iterator LHSPI = LHS->qual_begin(),
3610                                        LHSPE = LHS->qual_end();
3611       LHSPI != LHSPE; LHSPI++) {
3612    bool RHSImplementsProtocol = false;
3613
3614    // If the RHS doesn't implement the protocol on the left, the types
3615    // are incompatible.
3616    for (ObjCInterfaceType::qual_iterator RHSPI = RHS->qual_begin(),
3617                                          RHSPE = RHS->qual_end();
3618         RHSPI != RHSPE; RHSPI++) {
3619      if ((*RHSPI)->lookupProtocolNamed((*LHSPI)->getIdentifier())) {
3620        RHSImplementsProtocol = true;
3621        break;
3622      }
3623    }
3624    // FIXME: For better diagnostics, consider passing back the protocol name.
3625    if (!RHSImplementsProtocol)
3626      return false;
3627  }
3628  // The RHS implements all protocols listed on the LHS.
3629  return true;
3630}
3631
3632bool ASTContext::areComparableObjCPointerTypes(QualType LHS, QualType RHS) {
3633  // get the "pointed to" types
3634  const ObjCObjectPointerType *LHSOPT = LHS->getAsObjCObjectPointerType();
3635  const ObjCObjectPointerType *RHSOPT = RHS->getAsObjCObjectPointerType();
3636
3637  if (!LHSOPT || !RHSOPT)
3638    return false;
3639
3640  return canAssignObjCInterfaces(LHSOPT, RHSOPT) ||
3641         canAssignObjCInterfaces(RHSOPT, LHSOPT);
3642}
3643
3644/// typesAreCompatible - C99 6.7.3p9: For two qualified types to be compatible,
3645/// both shall have the identically qualified version of a compatible type.
3646/// C99 6.2.7p1: Two types have compatible types if their types are the
3647/// same. See 6.7.[2,3,5] for additional rules.
3648bool ASTContext::typesAreCompatible(QualType LHS, QualType RHS) {
3649  return !mergeTypes(LHS, RHS).isNull();
3650}
3651
3652QualType ASTContext::mergeFunctionTypes(QualType lhs, QualType rhs) {
3653  const FunctionType *lbase = lhs->getAsFunctionType();
3654  const FunctionType *rbase = rhs->getAsFunctionType();
3655  const FunctionProtoType *lproto = dyn_cast<FunctionProtoType>(lbase);
3656  const FunctionProtoType *rproto = dyn_cast<FunctionProtoType>(rbase);
3657  bool allLTypes = true;
3658  bool allRTypes = true;
3659
3660  // Check return type
3661  QualType retType = mergeTypes(lbase->getResultType(), rbase->getResultType());
3662  if (retType.isNull()) return QualType();
3663  if (getCanonicalType(retType) != getCanonicalType(lbase->getResultType()))
3664    allLTypes = false;
3665  if (getCanonicalType(retType) != getCanonicalType(rbase->getResultType()))
3666    allRTypes = false;
3667  // FIXME: double check this
3668  bool NoReturn = lbase->getNoReturnAttr() || rbase->getNoReturnAttr();
3669  if (NoReturn != lbase->getNoReturnAttr())
3670    allLTypes = false;
3671  if (NoReturn != rbase->getNoReturnAttr())
3672    allRTypes = false;
3673
3674  if (lproto && rproto) { // two C99 style function prototypes
3675    assert(!lproto->hasExceptionSpec() && !rproto->hasExceptionSpec() &&
3676           "C++ shouldn't be here");
3677    unsigned lproto_nargs = lproto->getNumArgs();
3678    unsigned rproto_nargs = rproto->getNumArgs();
3679
3680    // Compatible functions must have the same number of arguments
3681    if (lproto_nargs != rproto_nargs)
3682      return QualType();
3683
3684    // Variadic and non-variadic functions aren't compatible
3685    if (lproto->isVariadic() != rproto->isVariadic())
3686      return QualType();
3687
3688    if (lproto->getTypeQuals() != rproto->getTypeQuals())
3689      return QualType();
3690
3691    // Check argument compatibility
3692    llvm::SmallVector<QualType, 10> types;
3693    for (unsigned i = 0; i < lproto_nargs; i++) {
3694      QualType largtype = lproto->getArgType(i).getUnqualifiedType();
3695      QualType rargtype = rproto->getArgType(i).getUnqualifiedType();
3696      QualType argtype = mergeTypes(largtype, rargtype);
3697      if (argtype.isNull()) return QualType();
3698      types.push_back(argtype);
3699      if (getCanonicalType(argtype) != getCanonicalType(largtype))
3700        allLTypes = false;
3701      if (getCanonicalType(argtype) != getCanonicalType(rargtype))
3702        allRTypes = false;
3703    }
3704    if (allLTypes) return lhs;
3705    if (allRTypes) return rhs;
3706    return getFunctionType(retType, types.begin(), types.size(),
3707                           lproto->isVariadic(), lproto->getTypeQuals(),
3708                           NoReturn);
3709  }
3710
3711  if (lproto) allRTypes = false;
3712  if (rproto) allLTypes = false;
3713
3714  const FunctionProtoType *proto = lproto ? lproto : rproto;
3715  if (proto) {
3716    assert(!proto->hasExceptionSpec() && "C++ shouldn't be here");
3717    if (proto->isVariadic()) return QualType();
3718    // Check that the types are compatible with the types that
3719    // would result from default argument promotions (C99 6.7.5.3p15).
3720    // The only types actually affected are promotable integer
3721    // types and floats, which would be passed as a different
3722    // type depending on whether the prototype is visible.
3723    unsigned proto_nargs = proto->getNumArgs();
3724    for (unsigned i = 0; i < proto_nargs; ++i) {
3725      QualType argTy = proto->getArgType(i);
3726      if (argTy->isPromotableIntegerType() ||
3727          getCanonicalType(argTy).getUnqualifiedType() == FloatTy)
3728        return QualType();
3729    }
3730
3731    if (allLTypes) return lhs;
3732    if (allRTypes) return rhs;
3733    return getFunctionType(retType, proto->arg_type_begin(),
3734                           proto->getNumArgs(), proto->isVariadic(),
3735                           proto->getTypeQuals(), NoReturn);
3736  }
3737
3738  if (allLTypes) return lhs;
3739  if (allRTypes) return rhs;
3740  return getFunctionNoProtoType(retType, NoReturn);
3741}
3742
3743QualType ASTContext::mergeTypes(QualType LHS, QualType RHS) {
3744  // C++ [expr]: If an expression initially has the type "reference to T", the
3745  // type is adjusted to "T" prior to any further analysis, the expression
3746  // designates the object or function denoted by the reference, and the
3747  // expression is an lvalue unless the reference is an rvalue reference and
3748  // the expression is a function call (possibly inside parentheses).
3749  // FIXME: C++ shouldn't be going through here!  The rules are different
3750  // enough that they should be handled separately.
3751  // FIXME: Merging of lvalue and rvalue references is incorrect. C++ *really*
3752  // shouldn't be going through here!
3753  if (const ReferenceType *RT = LHS->getAs<ReferenceType>())
3754    LHS = RT->getPointeeType();
3755  if (const ReferenceType *RT = RHS->getAs<ReferenceType>())
3756    RHS = RT->getPointeeType();
3757
3758  QualType LHSCan = getCanonicalType(LHS),
3759           RHSCan = getCanonicalType(RHS);
3760
3761  // If two types are identical, they are compatible.
3762  if (LHSCan == RHSCan)
3763    return LHS;
3764
3765  // If the qualifiers are different, the types aren't compatible
3766  // Note that we handle extended qualifiers later, in the
3767  // case for ExtQualType.
3768  if (LHSCan.getCVRQualifiers() != RHSCan.getCVRQualifiers())
3769    return QualType();
3770
3771  Type::TypeClass LHSClass = LHSCan->getTypeClass();
3772  Type::TypeClass RHSClass = RHSCan->getTypeClass();
3773
3774  // We want to consider the two function types to be the same for these
3775  // comparisons, just force one to the other.
3776  if (LHSClass == Type::FunctionProto) LHSClass = Type::FunctionNoProto;
3777  if (RHSClass == Type::FunctionProto) RHSClass = Type::FunctionNoProto;
3778
3779  // Strip off objc_gc attributes off the top level so they can be merged.
3780  // This is a complete mess, but the attribute itself doesn't make much sense.
3781  if (RHSClass == Type::ExtQual) {
3782    QualType::GCAttrTypes GCAttr = RHSCan.getObjCGCAttr();
3783    if (GCAttr != QualType::GCNone) {
3784      QualType::GCAttrTypes GCLHSAttr = LHSCan.getObjCGCAttr();
3785      // __weak attribute must appear on both declarations.
3786      // __strong attribue is redundant if other decl is an objective-c
3787      // object pointer (or decorated with __strong attribute); otherwise
3788      // issue error.
3789      if ((GCAttr == QualType::Weak && GCLHSAttr != GCAttr) ||
3790          (GCAttr == QualType::Strong && GCLHSAttr != GCAttr &&
3791           !LHSCan->isObjCObjectPointerType()))
3792        return QualType();
3793
3794      RHS = QualType(cast<ExtQualType>(RHS.getDesugaredType())->getBaseType(),
3795                     RHS.getCVRQualifiers());
3796      QualType Result = mergeTypes(LHS, RHS);
3797      if (!Result.isNull()) {
3798        if (Result.getObjCGCAttr() == QualType::GCNone)
3799          Result = getObjCGCQualType(Result, GCAttr);
3800        else if (Result.getObjCGCAttr() != GCAttr)
3801          Result = QualType();
3802      }
3803      return Result;
3804    }
3805  }
3806  if (LHSClass == Type::ExtQual) {
3807    QualType::GCAttrTypes GCAttr = LHSCan.getObjCGCAttr();
3808    if (GCAttr != QualType::GCNone) {
3809      QualType::GCAttrTypes GCRHSAttr = RHSCan.getObjCGCAttr();
3810      // __weak attribute must appear on both declarations. __strong
3811      // __strong attribue is redundant if other decl is an objective-c
3812      // object pointer (or decorated with __strong attribute); otherwise
3813      // issue error.
3814      if ((GCAttr == QualType::Weak && GCRHSAttr != GCAttr) ||
3815          (GCAttr == QualType::Strong && GCRHSAttr != GCAttr &&
3816           !RHSCan->isObjCObjectPointerType()))
3817        return QualType();
3818
3819      LHS = QualType(cast<ExtQualType>(LHS.getDesugaredType())->getBaseType(),
3820                     LHS.getCVRQualifiers());
3821      QualType Result = mergeTypes(LHS, RHS);
3822      if (!Result.isNull()) {
3823        if (Result.getObjCGCAttr() == QualType::GCNone)
3824          Result = getObjCGCQualType(Result, GCAttr);
3825        else if (Result.getObjCGCAttr() != GCAttr)
3826          Result = QualType();
3827      }
3828      return Result;
3829    }
3830  }
3831
3832  // Same as above for arrays
3833  if (LHSClass == Type::VariableArray || LHSClass == Type::IncompleteArray)
3834    LHSClass = Type::ConstantArray;
3835  if (RHSClass == Type::VariableArray || RHSClass == Type::IncompleteArray)
3836    RHSClass = Type::ConstantArray;
3837
3838  // Canonicalize ExtVector -> Vector.
3839  if (LHSClass == Type::ExtVector) LHSClass = Type::Vector;
3840  if (RHSClass == Type::ExtVector) RHSClass = Type::Vector;
3841
3842  // If the canonical type classes don't match.
3843  if (LHSClass != RHSClass) {
3844    // C99 6.7.2.2p4: Each enumerated type shall be compatible with char,
3845    // a signed integer type, or an unsigned integer type.
3846    if (const EnumType* ETy = LHS->getAsEnumType()) {
3847      if (ETy->getDecl()->getIntegerType() == RHSCan.getUnqualifiedType())
3848        return RHS;
3849    }
3850    if (const EnumType* ETy = RHS->getAsEnumType()) {
3851      if (ETy->getDecl()->getIntegerType() == LHSCan.getUnqualifiedType())
3852        return LHS;
3853    }
3854
3855    return QualType();
3856  }
3857
3858  // The canonical type classes match.
3859  switch (LHSClass) {
3860#define TYPE(Class, Base)
3861#define ABSTRACT_TYPE(Class, Base)
3862#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
3863#define DEPENDENT_TYPE(Class, Base) case Type::Class:
3864#include "clang/AST/TypeNodes.def"
3865    assert(false && "Non-canonical and dependent types shouldn't get here");
3866    return QualType();
3867
3868  case Type::LValueReference:
3869  case Type::RValueReference:
3870  case Type::MemberPointer:
3871    assert(false && "C++ should never be in mergeTypes");
3872    return QualType();
3873
3874  case Type::IncompleteArray:
3875  case Type::VariableArray:
3876  case Type::FunctionProto:
3877  case Type::ExtVector:
3878    assert(false && "Types are eliminated above");
3879    return QualType();
3880
3881  case Type::Pointer:
3882  {
3883    // Merge two pointer types, while trying to preserve typedef info
3884    QualType LHSPointee = LHS->getAs<PointerType>()->getPointeeType();
3885    QualType RHSPointee = RHS->getAs<PointerType>()->getPointeeType();
3886    QualType ResultType = mergeTypes(LHSPointee, RHSPointee);
3887    if (ResultType.isNull()) return QualType();
3888    if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
3889      return LHS;
3890    if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
3891      return RHS;
3892    return getPointerType(ResultType);
3893  }
3894  case Type::BlockPointer:
3895  {
3896    // Merge two block pointer types, while trying to preserve typedef info
3897    QualType LHSPointee = LHS->getAs<BlockPointerType>()->getPointeeType();
3898    QualType RHSPointee = RHS->getAs<BlockPointerType>()->getPointeeType();
3899    QualType ResultType = mergeTypes(LHSPointee, RHSPointee);
3900    if (ResultType.isNull()) return QualType();
3901    if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
3902      return LHS;
3903    if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
3904      return RHS;
3905    return getBlockPointerType(ResultType);
3906  }
3907  case Type::ConstantArray:
3908  {
3909    const ConstantArrayType* LCAT = getAsConstantArrayType(LHS);
3910    const ConstantArrayType* RCAT = getAsConstantArrayType(RHS);
3911    if (LCAT && RCAT && RCAT->getSize() != LCAT->getSize())
3912      return QualType();
3913
3914    QualType LHSElem = getAsArrayType(LHS)->getElementType();
3915    QualType RHSElem = getAsArrayType(RHS)->getElementType();
3916    QualType ResultType = mergeTypes(LHSElem, RHSElem);
3917    if (ResultType.isNull()) return QualType();
3918    if (LCAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
3919      return LHS;
3920    if (RCAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
3921      return RHS;
3922    if (LCAT) return getConstantArrayType(ResultType, LCAT->getSize(),
3923                                          ArrayType::ArraySizeModifier(), 0);
3924    if (RCAT) return getConstantArrayType(ResultType, RCAT->getSize(),
3925                                          ArrayType::ArraySizeModifier(), 0);
3926    const VariableArrayType* LVAT = getAsVariableArrayType(LHS);
3927    const VariableArrayType* RVAT = getAsVariableArrayType(RHS);
3928    if (LVAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
3929      return LHS;
3930    if (RVAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
3931      return RHS;
3932    if (LVAT) {
3933      // FIXME: This isn't correct! But tricky to implement because
3934      // the array's size has to be the size of LHS, but the type
3935      // has to be different.
3936      return LHS;
3937    }
3938    if (RVAT) {
3939      // FIXME: This isn't correct! But tricky to implement because
3940      // the array's size has to be the size of RHS, but the type
3941      // has to be different.
3942      return RHS;
3943    }
3944    if (getCanonicalType(LHSElem) == getCanonicalType(ResultType)) return LHS;
3945    if (getCanonicalType(RHSElem) == getCanonicalType(ResultType)) return RHS;
3946    return getIncompleteArrayType(ResultType,
3947                                  ArrayType::ArraySizeModifier(), 0);
3948  }
3949  case Type::FunctionNoProto:
3950    return mergeFunctionTypes(LHS, RHS);
3951  case Type::Record:
3952  case Type::Enum:
3953    return QualType();
3954  case Type::Builtin:
3955    // Only exactly equal builtin types are compatible, which is tested above.
3956    return QualType();
3957  case Type::Complex:
3958    // Distinct complex types are incompatible.
3959    return QualType();
3960  case Type::Vector:
3961    // FIXME: The merged type should be an ExtVector!
3962    if (areCompatVectorTypes(LHS->getAsVectorType(), RHS->getAsVectorType()))
3963      return LHS;
3964    return QualType();
3965  case Type::ObjCInterface: {
3966    // Check if the interfaces are assignment compatible.
3967    // FIXME: This should be type compatibility, e.g. whether
3968    // "LHS x; RHS x;" at global scope is legal.
3969    const ObjCInterfaceType* LHSIface = LHS->getAsObjCInterfaceType();
3970    const ObjCInterfaceType* RHSIface = RHS->getAsObjCInterfaceType();
3971    if (LHSIface && RHSIface &&
3972        canAssignObjCInterfaces(LHSIface, RHSIface))
3973      return LHS;
3974
3975    return QualType();
3976  }
3977  case Type::ObjCObjectPointer: {
3978    if (canAssignObjCInterfaces(LHS->getAsObjCObjectPointerType(),
3979                                RHS->getAsObjCObjectPointerType()))
3980      return LHS;
3981
3982    return QualType();
3983  }
3984  case Type::FixedWidthInt:
3985    // Distinct fixed-width integers are not compatible.
3986    return QualType();
3987  case Type::ExtQual:
3988    // FIXME: ExtQual types can be compatible even if they're not
3989    // identical!
3990    return QualType();
3991    // First attempt at an implementation, but I'm not really sure it's
3992    // right...
3993#if 0
3994    ExtQualType* LQual = cast<ExtQualType>(LHSCan);
3995    ExtQualType* RQual = cast<ExtQualType>(RHSCan);
3996    if (LQual->getAddressSpace() != RQual->getAddressSpace() ||
3997        LQual->getObjCGCAttr() != RQual->getObjCGCAttr())
3998      return QualType();
3999    QualType LHSBase, RHSBase, ResultType, ResCanUnqual;
4000    LHSBase = QualType(LQual->getBaseType(), 0);
4001    RHSBase = QualType(RQual->getBaseType(), 0);
4002    ResultType = mergeTypes(LHSBase, RHSBase);
4003    if (ResultType.isNull()) return QualType();
4004    ResCanUnqual = getCanonicalType(ResultType).getUnqualifiedType();
4005    if (LHSCan.getUnqualifiedType() == ResCanUnqual)
4006      return LHS;
4007    if (RHSCan.getUnqualifiedType() == ResCanUnqual)
4008      return RHS;
4009    ResultType = getAddrSpaceQualType(ResultType, LQual->getAddressSpace());
4010    ResultType = getObjCGCQualType(ResultType, LQual->getObjCGCAttr());
4011    ResultType.setCVRQualifiers(LHSCan.getCVRQualifiers());
4012    return ResultType;
4013#endif
4014
4015  case Type::TemplateSpecialization:
4016    assert(false && "Dependent types have no size");
4017    break;
4018  }
4019
4020  return QualType();
4021}
4022
4023//===----------------------------------------------------------------------===//
4024//                         Integer Predicates
4025//===----------------------------------------------------------------------===//
4026
4027unsigned ASTContext::getIntWidth(QualType T) {
4028  if (T == BoolTy)
4029    return 1;
4030  if (FixedWidthIntType* FWIT = dyn_cast<FixedWidthIntType>(T)) {
4031    return FWIT->getWidth();
4032  }
4033  // For builtin types, just use the standard type sizing method
4034  return (unsigned)getTypeSize(T);
4035}
4036
4037QualType ASTContext::getCorrespondingUnsignedType(QualType T) {
4038  assert(T->isSignedIntegerType() && "Unexpected type");
4039  if (const EnumType* ETy = T->getAsEnumType())
4040    T = ETy->getDecl()->getIntegerType();
4041  const BuiltinType* BTy = T->getAsBuiltinType();
4042  assert (BTy && "Unexpected signed integer type");
4043  switch (BTy->getKind()) {
4044  case BuiltinType::Char_S:
4045  case BuiltinType::SChar:
4046    return UnsignedCharTy;
4047  case BuiltinType::Short:
4048    return UnsignedShortTy;
4049  case BuiltinType::Int:
4050    return UnsignedIntTy;
4051  case BuiltinType::Long:
4052    return UnsignedLongTy;
4053  case BuiltinType::LongLong:
4054    return UnsignedLongLongTy;
4055  case BuiltinType::Int128:
4056    return UnsignedInt128Ty;
4057  default:
4058    assert(0 && "Unexpected signed integer type");
4059    return QualType();
4060  }
4061}
4062
4063ExternalASTSource::~ExternalASTSource() { }
4064
4065void ExternalASTSource::PrintStats() { }
4066
4067
4068//===----------------------------------------------------------------------===//
4069//                          Builtin Type Computation
4070//===----------------------------------------------------------------------===//
4071
4072/// DecodeTypeFromStr - This decodes one type descriptor from Str, advancing the
4073/// pointer over the consumed characters.  This returns the resultant type.
4074static QualType DecodeTypeFromStr(const char *&Str, ASTContext &Context,
4075                                  ASTContext::GetBuiltinTypeError &Error,
4076                                  bool AllowTypeModifiers = true) {
4077  // Modifiers.
4078  int HowLong = 0;
4079  bool Signed = false, Unsigned = false;
4080
4081  // Read the modifiers first.
4082  bool Done = false;
4083  while (!Done) {
4084    switch (*Str++) {
4085    default: Done = true; --Str; break;
4086    case 'S':
4087      assert(!Unsigned && "Can't use both 'S' and 'U' modifiers!");
4088      assert(!Signed && "Can't use 'S' modifier multiple times!");
4089      Signed = true;
4090      break;
4091    case 'U':
4092      assert(!Signed && "Can't use both 'S' and 'U' modifiers!");
4093      assert(!Unsigned && "Can't use 'S' modifier multiple times!");
4094      Unsigned = true;
4095      break;
4096    case 'L':
4097      assert(HowLong <= 2 && "Can't have LLLL modifier");
4098      ++HowLong;
4099      break;
4100    }
4101  }
4102
4103  QualType Type;
4104
4105  // Read the base type.
4106  switch (*Str++) {
4107  default: assert(0 && "Unknown builtin type letter!");
4108  case 'v':
4109    assert(HowLong == 0 && !Signed && !Unsigned &&
4110           "Bad modifiers used with 'v'!");
4111    Type = Context.VoidTy;
4112    break;
4113  case 'f':
4114    assert(HowLong == 0 && !Signed && !Unsigned &&
4115           "Bad modifiers used with 'f'!");
4116    Type = Context.FloatTy;
4117    break;
4118  case 'd':
4119    assert(HowLong < 2 && !Signed && !Unsigned &&
4120           "Bad modifiers used with 'd'!");
4121    if (HowLong)
4122      Type = Context.LongDoubleTy;
4123    else
4124      Type = Context.DoubleTy;
4125    break;
4126  case 's':
4127    assert(HowLong == 0 && "Bad modifiers used with 's'!");
4128    if (Unsigned)
4129      Type = Context.UnsignedShortTy;
4130    else
4131      Type = Context.ShortTy;
4132    break;
4133  case 'i':
4134    if (HowLong == 3)
4135      Type = Unsigned ? Context.UnsignedInt128Ty : Context.Int128Ty;
4136    else if (HowLong == 2)
4137      Type = Unsigned ? Context.UnsignedLongLongTy : Context.LongLongTy;
4138    else if (HowLong == 1)
4139      Type = Unsigned ? Context.UnsignedLongTy : Context.LongTy;
4140    else
4141      Type = Unsigned ? Context.UnsignedIntTy : Context.IntTy;
4142    break;
4143  case 'c':
4144    assert(HowLong == 0 && "Bad modifiers used with 'c'!");
4145    if (Signed)
4146      Type = Context.SignedCharTy;
4147    else if (Unsigned)
4148      Type = Context.UnsignedCharTy;
4149    else
4150      Type = Context.CharTy;
4151    break;
4152  case 'b': // boolean
4153    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'b'!");
4154    Type = Context.BoolTy;
4155    break;
4156  case 'z':  // size_t.
4157    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'z'!");
4158    Type = Context.getSizeType();
4159    break;
4160  case 'F':
4161    Type = Context.getCFConstantStringType();
4162    break;
4163  case 'a':
4164    Type = Context.getBuiltinVaListType();
4165    assert(!Type.isNull() && "builtin va list type not initialized!");
4166    break;
4167  case 'A':
4168    // This is a "reference" to a va_list; however, what exactly
4169    // this means depends on how va_list is defined. There are two
4170    // different kinds of va_list: ones passed by value, and ones
4171    // passed by reference.  An example of a by-value va_list is
4172    // x86, where va_list is a char*. An example of by-ref va_list
4173    // is x86-64, where va_list is a __va_list_tag[1]. For x86,
4174    // we want this argument to be a char*&; for x86-64, we want
4175    // it to be a __va_list_tag*.
4176    Type = Context.getBuiltinVaListType();
4177    assert(!Type.isNull() && "builtin va list type not initialized!");
4178    if (Type->isArrayType()) {
4179      Type = Context.getArrayDecayedType(Type);
4180    } else {
4181      Type = Context.getLValueReferenceType(Type);
4182    }
4183    break;
4184  case 'V': {
4185    char *End;
4186    unsigned NumElements = strtoul(Str, &End, 10);
4187    assert(End != Str && "Missing vector size");
4188
4189    Str = End;
4190
4191    QualType ElementType = DecodeTypeFromStr(Str, Context, Error, false);
4192    Type = Context.getVectorType(ElementType, NumElements);
4193    break;
4194  }
4195  case 'P':
4196    Type = Context.getFILEType();
4197    if (Type.isNull()) {
4198      Error = ASTContext::GE_Missing_stdio;
4199      return QualType();
4200    }
4201    break;
4202  case 'J':
4203    if (Signed)
4204      Type = Context.getsigjmp_bufType();
4205    else
4206      Type = Context.getjmp_bufType();
4207
4208    if (Type.isNull()) {
4209      Error = ASTContext::GE_Missing_setjmp;
4210      return QualType();
4211    }
4212    break;
4213  }
4214
4215  if (!AllowTypeModifiers)
4216    return Type;
4217
4218  Done = false;
4219  while (!Done) {
4220    switch (*Str++) {
4221      default: Done = true; --Str; break;
4222      case '*':
4223        Type = Context.getPointerType(Type);
4224        break;
4225      case '&':
4226        Type = Context.getLValueReferenceType(Type);
4227        break;
4228      // FIXME: There's no way to have a built-in with an rvalue ref arg.
4229      case 'C':
4230        Type = Type.getQualifiedType(QualType::Const);
4231        break;
4232    }
4233  }
4234
4235  return Type;
4236}
4237
4238/// GetBuiltinType - Return the type for the specified builtin.
4239QualType ASTContext::GetBuiltinType(unsigned id,
4240                                    GetBuiltinTypeError &Error) {
4241  const char *TypeStr = BuiltinInfo.GetTypeString(id);
4242
4243  llvm::SmallVector<QualType, 8> ArgTypes;
4244
4245  Error = GE_None;
4246  QualType ResType = DecodeTypeFromStr(TypeStr, *this, Error);
4247  if (Error != GE_None)
4248    return QualType();
4249  while (TypeStr[0] && TypeStr[0] != '.') {
4250    QualType Ty = DecodeTypeFromStr(TypeStr, *this, Error);
4251    if (Error != GE_None)
4252      return QualType();
4253
4254    // Do array -> pointer decay.  The builtin should use the decayed type.
4255    if (Ty->isArrayType())
4256      Ty = getArrayDecayedType(Ty);
4257
4258    ArgTypes.push_back(Ty);
4259  }
4260
4261  assert((TypeStr[0] != '.' || TypeStr[1] == 0) &&
4262         "'.' should only occur at end of builtin type list!");
4263
4264  // handle untyped/variadic arguments "T c99Style();" or "T cppStyle(...);".
4265  if (ArgTypes.size() == 0 && TypeStr[0] == '.')
4266    return getFunctionNoProtoType(ResType);
4267  return getFunctionType(ResType, ArgTypes.data(), ArgTypes.size(),
4268                         TypeStr[0] == '.', 0);
4269}
4270
4271QualType
4272ASTContext::UsualArithmeticConversionsType(QualType lhs, QualType rhs) {
4273  // Perform the usual unary conversions. We do this early so that
4274  // integral promotions to "int" can allow us to exit early, in the
4275  // lhs == rhs check. Also, for conversion purposes, we ignore any
4276  // qualifiers.  For example, "const float" and "float" are
4277  // equivalent.
4278  if (lhs->isPromotableIntegerType())
4279    lhs = getPromotedIntegerType(lhs);
4280  else
4281    lhs = lhs.getUnqualifiedType();
4282  if (rhs->isPromotableIntegerType())
4283    rhs = getPromotedIntegerType(rhs);
4284  else
4285    rhs = rhs.getUnqualifiedType();
4286
4287  // If both types are identical, no conversion is needed.
4288  if (lhs == rhs)
4289    return lhs;
4290
4291  // If either side is a non-arithmetic type (e.g. a pointer), we are done.
4292  // The caller can deal with this (e.g. pointer + int).
4293  if (!lhs->isArithmeticType() || !rhs->isArithmeticType())
4294    return lhs;
4295
4296  // At this point, we have two different arithmetic types.
4297
4298  // Handle complex types first (C99 6.3.1.8p1).
4299  if (lhs->isComplexType() || rhs->isComplexType()) {
4300    // if we have an integer operand, the result is the complex type.
4301    if (rhs->isIntegerType() || rhs->isComplexIntegerType()) {
4302      // convert the rhs to the lhs complex type.
4303      return lhs;
4304    }
4305    if (lhs->isIntegerType() || lhs->isComplexIntegerType()) {
4306      // convert the lhs to the rhs complex type.
4307      return rhs;
4308    }
4309    // This handles complex/complex, complex/float, or float/complex.
4310    // When both operands are complex, the shorter operand is converted to the
4311    // type of the longer, and that is the type of the result. This corresponds
4312    // to what is done when combining two real floating-point operands.
4313    // The fun begins when size promotion occur across type domains.
4314    // From H&S 6.3.4: When one operand is complex and the other is a real
4315    // floating-point type, the less precise type is converted, within it's
4316    // real or complex domain, to the precision of the other type. For example,
4317    // when combining a "long double" with a "double _Complex", the
4318    // "double _Complex" is promoted to "long double _Complex".
4319    int result = getFloatingTypeOrder(lhs, rhs);
4320
4321    if (result > 0) { // The left side is bigger, convert rhs.
4322      rhs = getFloatingTypeOfSizeWithinDomain(lhs, rhs);
4323    } else if (result < 0) { // The right side is bigger, convert lhs.
4324      lhs = getFloatingTypeOfSizeWithinDomain(rhs, lhs);
4325    }
4326    // At this point, lhs and rhs have the same rank/size. Now, make sure the
4327    // domains match. This is a requirement for our implementation, C99
4328    // does not require this promotion.
4329    if (lhs != rhs) { // Domains don't match, we have complex/float mix.
4330      if (lhs->isRealFloatingType()) { // handle "double, _Complex double".
4331        return rhs;
4332      } else { // handle "_Complex double, double".
4333        return lhs;
4334      }
4335    }
4336    return lhs; // The domain/size match exactly.
4337  }
4338  // Now handle "real" floating types (i.e. float, double, long double).
4339  if (lhs->isRealFloatingType() || rhs->isRealFloatingType()) {
4340    // if we have an integer operand, the result is the real floating type.
4341    if (rhs->isIntegerType()) {
4342      // convert rhs to the lhs floating point type.
4343      return lhs;
4344    }
4345    if (rhs->isComplexIntegerType()) {
4346      // convert rhs to the complex floating point type.
4347      return getComplexType(lhs);
4348    }
4349    if (lhs->isIntegerType()) {
4350      // convert lhs to the rhs floating point type.
4351      return rhs;
4352    }
4353    if (lhs->isComplexIntegerType()) {
4354      // convert lhs to the complex floating point type.
4355      return getComplexType(rhs);
4356    }
4357    // We have two real floating types, float/complex combos were handled above.
4358    // Convert the smaller operand to the bigger result.
4359    int result = getFloatingTypeOrder(lhs, rhs);
4360    if (result > 0) // convert the rhs
4361      return lhs;
4362    assert(result < 0 && "illegal float comparison");
4363    return rhs;   // convert the lhs
4364  }
4365  if (lhs->isComplexIntegerType() || rhs->isComplexIntegerType()) {
4366    // Handle GCC complex int extension.
4367    const ComplexType *lhsComplexInt = lhs->getAsComplexIntegerType();
4368    const ComplexType *rhsComplexInt = rhs->getAsComplexIntegerType();
4369
4370    if (lhsComplexInt && rhsComplexInt) {
4371      if (getIntegerTypeOrder(lhsComplexInt->getElementType(),
4372                              rhsComplexInt->getElementType()) >= 0)
4373        return lhs; // convert the rhs
4374      return rhs;
4375    } else if (lhsComplexInt && rhs->isIntegerType()) {
4376      // convert the rhs to the lhs complex type.
4377      return lhs;
4378    } else if (rhsComplexInt && lhs->isIntegerType()) {
4379      // convert the lhs to the rhs complex type.
4380      return rhs;
4381    }
4382  }
4383  // Finally, we have two differing integer types.
4384  // The rules for this case are in C99 6.3.1.8
4385  int compare = getIntegerTypeOrder(lhs, rhs);
4386  bool lhsSigned = lhs->isSignedIntegerType(),
4387       rhsSigned = rhs->isSignedIntegerType();
4388  QualType destType;
4389  if (lhsSigned == rhsSigned) {
4390    // Same signedness; use the higher-ranked type
4391    destType = compare >= 0 ? lhs : rhs;
4392  } else if (compare != (lhsSigned ? 1 : -1)) {
4393    // The unsigned type has greater than or equal rank to the
4394    // signed type, so use the unsigned type
4395    destType = lhsSigned ? rhs : lhs;
4396  } else if (getIntWidth(lhs) != getIntWidth(rhs)) {
4397    // The two types are different widths; if we are here, that
4398    // means the signed type is larger than the unsigned type, so
4399    // use the signed type.
4400    destType = lhsSigned ? lhs : rhs;
4401  } else {
4402    // The signed type is higher-ranked than the unsigned type,
4403    // but isn't actually any bigger (like unsigned int and long
4404    // on most 32-bit systems).  Use the unsigned type corresponding
4405    // to the signed type.
4406    destType = getCorrespondingUnsignedType(lhsSigned ? lhs : rhs);
4407  }
4408  return destType;
4409}
4410