ASTContext.cpp revision 896ceed74e95f043ef74f74d86d80b9909a7ebab
1//===--- ASTContext.cpp - Context to hold long-lived AST nodes ------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements the ASTContext interface.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/AST/ASTContext.h"
15#include "clang/AST/DeclCXX.h"
16#include "clang/AST/DeclObjC.h"
17#include "clang/AST/DeclTemplate.h"
18#include "clang/AST/Expr.h"
19#include "clang/AST/RecordLayout.h"
20#include "clang/Basic/SourceManager.h"
21#include "clang/Basic/TargetInfo.h"
22#include "llvm/ADT/StringExtras.h"
23#include "llvm/Bitcode/Serialize.h"
24#include "llvm/Bitcode/Deserialize.h"
25#include "llvm/Support/MathExtras.h"
26#include "llvm/Support/MemoryBuffer.h"
27using namespace clang;
28
29enum FloatingRank {
30  FloatRank, DoubleRank, LongDoubleRank
31};
32
33ASTContext::ASTContext(const LangOptions& LOpts, SourceManager &SM,
34                       TargetInfo &t,
35                       IdentifierTable &idents, SelectorTable &sels,
36                       bool FreeMem, unsigned size_reserve) :
37  GlobalNestedNameSpecifier(0), CFConstantStringTypeDecl(0),
38  ObjCFastEnumerationStateTypeDecl(0), SourceMgr(SM), LangOpts(LOpts),
39  FreeMemory(FreeMem), Target(t), Idents(idents), Selectors(sels) {
40  if (size_reserve > 0) Types.reserve(size_reserve);
41  InitBuiltinTypes();
42  BuiltinInfo.InitializeBuiltins(idents, Target, LangOpts.NoBuiltin);
43  TUDecl = TranslationUnitDecl::Create(*this);
44}
45
46ASTContext::~ASTContext() {
47  // Deallocate all the types.
48  while (!Types.empty()) {
49    Types.back()->Destroy(*this);
50    Types.pop_back();
51  }
52
53  {
54    llvm::DenseMap<const RecordDecl*, const ASTRecordLayout*>::iterator
55      I = ASTRecordLayouts.begin(), E = ASTRecordLayouts.end();
56    while (I != E) {
57      ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second);
58      delete R;
59    }
60  }
61
62  {
63    llvm::DenseMap<const ObjCInterfaceDecl*, const ASTRecordLayout*>::iterator
64      I = ASTObjCInterfaces.begin(), E = ASTObjCInterfaces.end();
65    while (I != E) {
66      ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second);
67      delete R;
68    }
69  }
70
71  {
72    llvm::DenseMap<const ObjCInterfaceDecl*, RecordDecl*>::iterator
73      I = ASTRecordForInterface.begin(), E = ASTRecordForInterface.end();
74    while (I != E) {
75      RecordDecl *R = (I++)->second;
76      R->Destroy(*this);
77    }
78  }
79
80  // Destroy nested-name-specifiers.
81  for (llvm::FoldingSet<NestedNameSpecifier>::iterator
82         NNS = NestedNameSpecifiers.begin(),
83         NNSEnd = NestedNameSpecifiers.end();
84       NNS != NNSEnd;
85       /* Increment in loop */)
86    (*NNS++).Destroy(*this);
87
88  if (GlobalNestedNameSpecifier)
89    GlobalNestedNameSpecifier->Destroy(*this);
90
91  TUDecl->Destroy(*this);
92}
93
94void ASTContext::PrintStats() const {
95  fprintf(stderr, "*** AST Context Stats:\n");
96  fprintf(stderr, "  %d types total.\n", (int)Types.size());
97  unsigned NumBuiltin = 0, NumPointer = 0, NumArray = 0, NumFunctionP = 0;
98  unsigned NumVector = 0, NumComplex = 0, NumBlockPointer = 0;
99  unsigned NumFunctionNP = 0, NumTypeName = 0, NumTagged = 0;
100  unsigned NumLValueReference = 0, NumRValueReference = 0, NumMemberPointer = 0;
101
102  unsigned NumTagStruct = 0, NumTagUnion = 0, NumTagEnum = 0, NumTagClass = 0;
103  unsigned NumObjCInterfaces = 0, NumObjCQualifiedInterfaces = 0;
104  unsigned NumObjCQualifiedIds = 0;
105  unsigned NumTypeOfTypes = 0, NumTypeOfExprTypes = 0;
106
107  for (unsigned i = 0, e = Types.size(); i != e; ++i) {
108    Type *T = Types[i];
109    if (isa<BuiltinType>(T))
110      ++NumBuiltin;
111    else if (isa<PointerType>(T))
112      ++NumPointer;
113    else if (isa<BlockPointerType>(T))
114      ++NumBlockPointer;
115    else if (isa<LValueReferenceType>(T))
116      ++NumLValueReference;
117    else if (isa<RValueReferenceType>(T))
118      ++NumRValueReference;
119    else if (isa<MemberPointerType>(T))
120      ++NumMemberPointer;
121    else if (isa<ComplexType>(T))
122      ++NumComplex;
123    else if (isa<ArrayType>(T))
124      ++NumArray;
125    else if (isa<VectorType>(T))
126      ++NumVector;
127    else if (isa<FunctionNoProtoType>(T))
128      ++NumFunctionNP;
129    else if (isa<FunctionProtoType>(T))
130      ++NumFunctionP;
131    else if (isa<TypedefType>(T))
132      ++NumTypeName;
133    else if (TagType *TT = dyn_cast<TagType>(T)) {
134      ++NumTagged;
135      switch (TT->getDecl()->getTagKind()) {
136      default: assert(0 && "Unknown tagged type!");
137      case TagDecl::TK_struct: ++NumTagStruct; break;
138      case TagDecl::TK_union:  ++NumTagUnion; break;
139      case TagDecl::TK_class:  ++NumTagClass; break;
140      case TagDecl::TK_enum:   ++NumTagEnum; break;
141      }
142    } else if (isa<ObjCInterfaceType>(T))
143      ++NumObjCInterfaces;
144    else if (isa<ObjCQualifiedInterfaceType>(T))
145      ++NumObjCQualifiedInterfaces;
146    else if (isa<ObjCQualifiedIdType>(T))
147      ++NumObjCQualifiedIds;
148    else if (isa<TypeOfType>(T))
149      ++NumTypeOfTypes;
150    else if (isa<TypeOfExprType>(T))
151      ++NumTypeOfExprTypes;
152    else {
153      QualType(T, 0).dump();
154      assert(0 && "Unknown type!");
155    }
156  }
157
158  fprintf(stderr, "    %d builtin types\n", NumBuiltin);
159  fprintf(stderr, "    %d pointer types\n", NumPointer);
160  fprintf(stderr, "    %d block pointer types\n", NumBlockPointer);
161  fprintf(stderr, "    %d lvalue reference types\n", NumLValueReference);
162  fprintf(stderr, "    %d rvalue reference types\n", NumRValueReference);
163  fprintf(stderr, "    %d member pointer types\n", NumMemberPointer);
164  fprintf(stderr, "    %d complex types\n", NumComplex);
165  fprintf(stderr, "    %d array types\n", NumArray);
166  fprintf(stderr, "    %d vector types\n", NumVector);
167  fprintf(stderr, "    %d function types with proto\n", NumFunctionP);
168  fprintf(stderr, "    %d function types with no proto\n", NumFunctionNP);
169  fprintf(stderr, "    %d typename (typedef) types\n", NumTypeName);
170  fprintf(stderr, "    %d tagged types\n", NumTagged);
171  fprintf(stderr, "      %d struct types\n", NumTagStruct);
172  fprintf(stderr, "      %d union types\n", NumTagUnion);
173  fprintf(stderr, "      %d class types\n", NumTagClass);
174  fprintf(stderr, "      %d enum types\n", NumTagEnum);
175  fprintf(stderr, "    %d interface types\n", NumObjCInterfaces);
176  fprintf(stderr, "    %d protocol qualified interface types\n",
177          NumObjCQualifiedInterfaces);
178  fprintf(stderr, "    %d protocol qualified id types\n",
179          NumObjCQualifiedIds);
180  fprintf(stderr, "    %d typeof types\n", NumTypeOfTypes);
181  fprintf(stderr, "    %d typeof exprs\n", NumTypeOfExprTypes);
182
183  fprintf(stderr, "Total bytes = %d\n", int(NumBuiltin*sizeof(BuiltinType)+
184    NumPointer*sizeof(PointerType)+NumArray*sizeof(ArrayType)+
185    NumComplex*sizeof(ComplexType)+NumVector*sizeof(VectorType)+
186    NumLValueReference*sizeof(LValueReferenceType)+
187    NumRValueReference*sizeof(RValueReferenceType)+
188    NumMemberPointer*sizeof(MemberPointerType)+
189    NumFunctionP*sizeof(FunctionProtoType)+
190    NumFunctionNP*sizeof(FunctionNoProtoType)+
191    NumTypeName*sizeof(TypedefType)+NumTagged*sizeof(TagType)+
192    NumTypeOfTypes*sizeof(TypeOfType)+NumTypeOfExprTypes*sizeof(TypeOfExprType)));
193}
194
195
196void ASTContext::InitBuiltinType(QualType &R, BuiltinType::Kind K) {
197  Types.push_back((R = QualType(new (*this,8) BuiltinType(K),0)).getTypePtr());
198}
199
200void ASTContext::InitBuiltinTypes() {
201  assert(VoidTy.isNull() && "Context reinitialized?");
202
203  // C99 6.2.5p19.
204  InitBuiltinType(VoidTy,              BuiltinType::Void);
205
206  // C99 6.2.5p2.
207  InitBuiltinType(BoolTy,              BuiltinType::Bool);
208  // C99 6.2.5p3.
209  if (Target.isCharSigned())
210    InitBuiltinType(CharTy,            BuiltinType::Char_S);
211  else
212    InitBuiltinType(CharTy,            BuiltinType::Char_U);
213  // C99 6.2.5p4.
214  InitBuiltinType(SignedCharTy,        BuiltinType::SChar);
215  InitBuiltinType(ShortTy,             BuiltinType::Short);
216  InitBuiltinType(IntTy,               BuiltinType::Int);
217  InitBuiltinType(LongTy,              BuiltinType::Long);
218  InitBuiltinType(LongLongTy,          BuiltinType::LongLong);
219
220  // C99 6.2.5p6.
221  InitBuiltinType(UnsignedCharTy,      BuiltinType::UChar);
222  InitBuiltinType(UnsignedShortTy,     BuiltinType::UShort);
223  InitBuiltinType(UnsignedIntTy,       BuiltinType::UInt);
224  InitBuiltinType(UnsignedLongTy,      BuiltinType::ULong);
225  InitBuiltinType(UnsignedLongLongTy,  BuiltinType::ULongLong);
226
227  // C99 6.2.5p10.
228  InitBuiltinType(FloatTy,             BuiltinType::Float);
229  InitBuiltinType(DoubleTy,            BuiltinType::Double);
230  InitBuiltinType(LongDoubleTy,        BuiltinType::LongDouble);
231
232  if (LangOpts.CPlusPlus) // C++ 3.9.1p5
233    InitBuiltinType(WCharTy,           BuiltinType::WChar);
234  else // C99
235    WCharTy = getFromTargetType(Target.getWCharType());
236
237  // Placeholder type for functions.
238  InitBuiltinType(OverloadTy,          BuiltinType::Overload);
239
240  // Placeholder type for type-dependent expressions whose type is
241  // completely unknown. No code should ever check a type against
242  // DependentTy and users should never see it; however, it is here to
243  // help diagnose failures to properly check for type-dependent
244  // expressions.
245  InitBuiltinType(DependentTy,         BuiltinType::Dependent);
246
247  // C99 6.2.5p11.
248  FloatComplexTy      = getComplexType(FloatTy);
249  DoubleComplexTy     = getComplexType(DoubleTy);
250  LongDoubleComplexTy = getComplexType(LongDoubleTy);
251
252  BuiltinVaListType = QualType();
253  ObjCIdType = QualType();
254  IdStructType = 0;
255  ObjCClassType = QualType();
256  ClassStructType = 0;
257
258  ObjCConstantStringType = QualType();
259
260  // void * type
261  VoidPtrTy = getPointerType(VoidTy);
262}
263
264//===----------------------------------------------------------------------===//
265//                         Type Sizing and Analysis
266//===----------------------------------------------------------------------===//
267
268/// getFloatTypeSemantics - Return the APFloat 'semantics' for the specified
269/// scalar floating point type.
270const llvm::fltSemantics &ASTContext::getFloatTypeSemantics(QualType T) const {
271  const BuiltinType *BT = T->getAsBuiltinType();
272  assert(BT && "Not a floating point type!");
273  switch (BT->getKind()) {
274  default: assert(0 && "Not a floating point type!");
275  case BuiltinType::Float:      return Target.getFloatFormat();
276  case BuiltinType::Double:     return Target.getDoubleFormat();
277  case BuiltinType::LongDouble: return Target.getLongDoubleFormat();
278  }
279}
280
281/// getDeclAlign - Return a conservative estimate of the alignment of the
282/// specified decl.  Note that bitfields do not have a valid alignment, so
283/// this method will assert on them.
284unsigned ASTContext::getDeclAlignInBytes(const Decl *D) {
285  unsigned Align = Target.getCharWidth();
286
287  if (const AlignedAttr* AA = D->getAttr<AlignedAttr>())
288    Align = std::max(Align, AA->getAlignment());
289
290  if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
291    QualType T = VD->getType();
292    // Incomplete or function types default to 1.
293    if (!T->isIncompleteType() && !T->isFunctionType()) {
294      while (isa<VariableArrayType>(T) || isa<IncompleteArrayType>(T))
295        T = cast<ArrayType>(T)->getElementType();
296
297      Align = std::max(Align, getPreferredTypeAlign(T.getTypePtr()));
298    }
299  }
300
301  return Align / Target.getCharWidth();
302}
303
304/// getTypeSize - Return the size of the specified type, in bits.  This method
305/// does not work on incomplete types.
306std::pair<uint64_t, unsigned>
307ASTContext::getTypeInfo(const Type *T) {
308  T = getCanonicalType(T);
309  uint64_t Width=0;
310  unsigned Align=8;
311  switch (T->getTypeClass()) {
312#define TYPE(Class, Base)
313#define ABSTRACT_TYPE(Class, Base)
314#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
315#define DEPENDENT_TYPE(Class, Base) case Type::Class:
316#include "clang/AST/TypeNodes.def"
317    assert(false && "Should not see non-canonical or dependent types");
318    break;
319
320  case Type::FunctionNoProto:
321  case Type::FunctionProto:
322  case Type::IncompleteArray:
323    assert(0 && "Incomplete types have no size!");
324  case Type::VariableArray:
325    assert(0 && "VLAs not implemented yet!");
326  case Type::ConstantArray: {
327    const ConstantArrayType *CAT = cast<ConstantArrayType>(T);
328
329    std::pair<uint64_t, unsigned> EltInfo = getTypeInfo(CAT->getElementType());
330    Width = EltInfo.first*CAT->getSize().getZExtValue();
331    Align = EltInfo.second;
332    break;
333  }
334  case Type::ExtVector:
335  case Type::Vector: {
336    std::pair<uint64_t, unsigned> EltInfo =
337      getTypeInfo(cast<VectorType>(T)->getElementType());
338    Width = EltInfo.first*cast<VectorType>(T)->getNumElements();
339    Align = Width;
340    // If the alignment is not a power of 2, round up to the next power of 2.
341    // This happens for non-power-of-2 length vectors.
342    // FIXME: this should probably be a target property.
343    Align = 1 << llvm::Log2_32_Ceil(Align);
344    break;
345  }
346
347  case Type::Builtin:
348    switch (cast<BuiltinType>(T)->getKind()) {
349    default: assert(0 && "Unknown builtin type!");
350    case BuiltinType::Void:
351      assert(0 && "Incomplete types have no size!");
352    case BuiltinType::Bool:
353      Width = Target.getBoolWidth();
354      Align = Target.getBoolAlign();
355      break;
356    case BuiltinType::Char_S:
357    case BuiltinType::Char_U:
358    case BuiltinType::UChar:
359    case BuiltinType::SChar:
360      Width = Target.getCharWidth();
361      Align = Target.getCharAlign();
362      break;
363    case BuiltinType::WChar:
364      Width = Target.getWCharWidth();
365      Align = Target.getWCharAlign();
366      break;
367    case BuiltinType::UShort:
368    case BuiltinType::Short:
369      Width = Target.getShortWidth();
370      Align = Target.getShortAlign();
371      break;
372    case BuiltinType::UInt:
373    case BuiltinType::Int:
374      Width = Target.getIntWidth();
375      Align = Target.getIntAlign();
376      break;
377    case BuiltinType::ULong:
378    case BuiltinType::Long:
379      Width = Target.getLongWidth();
380      Align = Target.getLongAlign();
381      break;
382    case BuiltinType::ULongLong:
383    case BuiltinType::LongLong:
384      Width = Target.getLongLongWidth();
385      Align = Target.getLongLongAlign();
386      break;
387    case BuiltinType::Float:
388      Width = Target.getFloatWidth();
389      Align = Target.getFloatAlign();
390      break;
391    case BuiltinType::Double:
392      Width = Target.getDoubleWidth();
393      Align = Target.getDoubleAlign();
394      break;
395    case BuiltinType::LongDouble:
396      Width = Target.getLongDoubleWidth();
397      Align = Target.getLongDoubleAlign();
398      break;
399    }
400    break;
401  case Type::FixedWidthInt:
402    // FIXME: This isn't precisely correct; the width/alignment should depend
403    // on the available types for the target
404    Width = cast<FixedWidthIntType>(T)->getWidth();
405    Width = std::max(llvm::NextPowerOf2(Width - 1), (uint64_t)8);
406    Align = Width;
407    break;
408  case Type::ExtQual:
409    // FIXME: Pointers into different addr spaces could have different sizes and
410    // alignment requirements: getPointerInfo should take an AddrSpace.
411    return getTypeInfo(QualType(cast<ExtQualType>(T)->getBaseType(), 0));
412  case Type::ObjCQualifiedId:
413  case Type::ObjCQualifiedClass:
414  case Type::ObjCQualifiedInterface:
415    Width = Target.getPointerWidth(0);
416    Align = Target.getPointerAlign(0);
417    break;
418  case Type::BlockPointer: {
419    unsigned AS = cast<BlockPointerType>(T)->getPointeeType().getAddressSpace();
420    Width = Target.getPointerWidth(AS);
421    Align = Target.getPointerAlign(AS);
422    break;
423  }
424  case Type::Pointer: {
425    unsigned AS = cast<PointerType>(T)->getPointeeType().getAddressSpace();
426    Width = Target.getPointerWidth(AS);
427    Align = Target.getPointerAlign(AS);
428    break;
429  }
430  case Type::LValueReference:
431  case Type::RValueReference:
432    // "When applied to a reference or a reference type, the result is the size
433    // of the referenced type." C++98 5.3.3p2: expr.sizeof.
434    // FIXME: This is wrong for struct layout: a reference in a struct has
435    // pointer size.
436    return getTypeInfo(cast<ReferenceType>(T)->getPointeeType());
437  case Type::MemberPointer: {
438    // FIXME: This is not only platform- but also ABI-dependent. We follow
439    // the GCC ABI, where pointers to data are one pointer large, pointers to
440    // functions two pointers. But if we want to support ABI compatibility with
441    // other compilers too, we need to delegate this completely to TargetInfo
442    // or some ABI abstraction layer.
443    QualType Pointee = cast<MemberPointerType>(T)->getPointeeType();
444    unsigned AS = Pointee.getAddressSpace();
445    Width = Target.getPointerWidth(AS);
446    if (Pointee->isFunctionType())
447      Width *= 2;
448    Align = Target.getPointerAlign(AS);
449    // GCC aligns at single pointer width.
450  }
451  case Type::Complex: {
452    // Complex types have the same alignment as their elements, but twice the
453    // size.
454    std::pair<uint64_t, unsigned> EltInfo =
455      getTypeInfo(cast<ComplexType>(T)->getElementType());
456    Width = EltInfo.first*2;
457    Align = EltInfo.second;
458    break;
459  }
460  case Type::ObjCInterface: {
461    const ObjCInterfaceType *ObjCI = cast<ObjCInterfaceType>(T);
462    const ASTRecordLayout &Layout = getASTObjCInterfaceLayout(ObjCI->getDecl());
463    Width = Layout.getSize();
464    Align = Layout.getAlignment();
465    break;
466  }
467  case Type::Record:
468  case Type::Enum: {
469    const TagType *TT = cast<TagType>(T);
470
471    if (TT->getDecl()->isInvalidDecl()) {
472      Width = 1;
473      Align = 1;
474      break;
475    }
476
477    if (const EnumType *ET = dyn_cast<EnumType>(TT))
478      return getTypeInfo(ET->getDecl()->getIntegerType());
479
480    const RecordType *RT = cast<RecordType>(TT);
481    const ASTRecordLayout &Layout = getASTRecordLayout(RT->getDecl());
482    Width = Layout.getSize();
483    Align = Layout.getAlignment();
484    break;
485  }
486
487  case Type::TemplateSpecialization:
488    assert(false && "Dependent types have no size");
489    break;
490  }
491
492  assert(Align && (Align & (Align-1)) == 0 && "Alignment must be power of 2");
493  return std::make_pair(Width, Align);
494}
495
496/// getPreferredTypeAlign - Return the "preferred" alignment of the specified
497/// type for the current target in bits.  This can be different than the ABI
498/// alignment in cases where it is beneficial for performance to overalign
499/// a data type.
500unsigned ASTContext::getPreferredTypeAlign(const Type *T) {
501  unsigned ABIAlign = getTypeAlign(T);
502
503  // Doubles should be naturally aligned if possible.
504  if (T->isSpecificBuiltinType(BuiltinType::Double))
505    return std::max(ABIAlign, 64U);
506
507  return ABIAlign;
508}
509
510
511/// LayoutField - Field layout.
512void ASTRecordLayout::LayoutField(const FieldDecl *FD, unsigned FieldNo,
513                                  bool IsUnion, unsigned StructPacking,
514                                  ASTContext &Context) {
515  unsigned FieldPacking = StructPacking;
516  uint64_t FieldOffset = IsUnion ? 0 : Size;
517  uint64_t FieldSize;
518  unsigned FieldAlign;
519
520  // FIXME: Should this override struct packing? Probably we want to
521  // take the minimum?
522  if (const PackedAttr *PA = FD->getAttr<PackedAttr>())
523    FieldPacking = PA->getAlignment();
524
525  if (const Expr *BitWidthExpr = FD->getBitWidth()) {
526    // TODO: Need to check this algorithm on other targets!
527    //       (tested on Linux-X86)
528    FieldSize =
529      BitWidthExpr->getIntegerConstantExprValue(Context).getZExtValue();
530
531    std::pair<uint64_t, unsigned> FieldInfo =
532      Context.getTypeInfo(FD->getType());
533    uint64_t TypeSize = FieldInfo.first;
534
535    // Determine the alignment of this bitfield. The packing
536    // attributes define a maximum and the alignment attribute defines
537    // a minimum.
538    // FIXME: What is the right behavior when the specified alignment
539    // is smaller than the specified packing?
540    FieldAlign = FieldInfo.second;
541    if (FieldPacking)
542      FieldAlign = std::min(FieldAlign, FieldPacking);
543    if (const AlignedAttr *AA = FD->getAttr<AlignedAttr>())
544      FieldAlign = std::max(FieldAlign, AA->getAlignment());
545
546    // Check if we need to add padding to give the field the correct
547    // alignment.
548    if (FieldSize == 0 || (FieldOffset & (FieldAlign-1)) + FieldSize > TypeSize)
549      FieldOffset = (FieldOffset + (FieldAlign-1)) & ~(FieldAlign-1);
550
551    // Padding members don't affect overall alignment
552    if (!FD->getIdentifier())
553      FieldAlign = 1;
554  } else {
555    if (FD->getType()->isIncompleteArrayType()) {
556      // This is a flexible array member; we can't directly
557      // query getTypeInfo about these, so we figure it out here.
558      // Flexible array members don't have any size, but they
559      // have to be aligned appropriately for their element type.
560      FieldSize = 0;
561      const ArrayType* ATy = Context.getAsArrayType(FD->getType());
562      FieldAlign = Context.getTypeAlign(ATy->getElementType());
563    } else {
564      std::pair<uint64_t, unsigned> FieldInfo =
565        Context.getTypeInfo(FD->getType());
566      FieldSize = FieldInfo.first;
567      FieldAlign = FieldInfo.second;
568    }
569
570    // Determine the alignment of this bitfield. The packing
571    // attributes define a maximum and the alignment attribute defines
572    // a minimum. Additionally, the packing alignment must be at least
573    // a byte for non-bitfields.
574    //
575    // FIXME: What is the right behavior when the specified alignment
576    // is smaller than the specified packing?
577    if (FieldPacking)
578      FieldAlign = std::min(FieldAlign, std::max(8U, FieldPacking));
579    if (const AlignedAttr *AA = FD->getAttr<AlignedAttr>())
580      FieldAlign = std::max(FieldAlign, AA->getAlignment());
581
582    // Round up the current record size to the field's alignment boundary.
583    FieldOffset = (FieldOffset + (FieldAlign-1)) & ~(FieldAlign-1);
584  }
585
586  // Place this field at the current location.
587  FieldOffsets[FieldNo] = FieldOffset;
588
589  // Reserve space for this field.
590  if (IsUnion) {
591    Size = std::max(Size, FieldSize);
592  } else {
593    Size = FieldOffset + FieldSize;
594  }
595
596  // Remember max struct/class alignment.
597  Alignment = std::max(Alignment, FieldAlign);
598}
599
600void ASTContext::CollectObjCIvars(const ObjCInterfaceDecl *OI,
601                             llvm::SmallVectorImpl<FieldDecl*> &Fields) const {
602  const ObjCInterfaceDecl *SuperClass = OI->getSuperClass();
603  if (SuperClass)
604    CollectObjCIvars(SuperClass, Fields);
605  for (ObjCInterfaceDecl::ivar_iterator I = OI->ivar_begin(),
606       E = OI->ivar_end(); I != E; ++I) {
607    ObjCIvarDecl *IVDecl = *I;
608    if (!IVDecl->isInvalidDecl())
609      Fields.push_back(cast<FieldDecl>(IVDecl));
610  }
611  // look into properties.
612  for (ObjCInterfaceDecl::prop_iterator I = OI->prop_begin(),
613       E = OI->prop_end(); I != E; ++I) {
614    if (ObjCIvarDecl *IV = (*I)->getPropertyIvarDecl())
615      Fields.push_back(cast<FieldDecl>(IV));
616  }
617}
618
619/// addRecordToClass - produces record info. for the class for its
620/// ivars and all those inherited.
621///
622const RecordDecl *ASTContext::addRecordToClass(const ObjCInterfaceDecl *D) {
623  RecordDecl *&RD = ASTRecordForInterface[D];
624  if (RD) {
625    // If we have a record decl already and it is either a definition or if 'D'
626    // is still a forward declaration, return it.
627    if (RD->isDefinition() || D->isForwardDecl())
628      return RD;
629  }
630
631  // If D is a forward declaration, then just make a forward struct decl.
632  if (D->isForwardDecl())
633    return RD = RecordDecl::Create(*this, TagDecl::TK_struct, 0,
634                                   D->getLocation(),
635                                   D->getIdentifier());
636
637  llvm::SmallVector<FieldDecl*, 32> RecFields;
638  CollectObjCIvars(D, RecFields);
639
640  if (RD == 0)
641    RD = RecordDecl::Create(*this, TagDecl::TK_struct, 0, D->getLocation(),
642                            D->getIdentifier());
643  /// FIXME! Can do collection of ivars and adding to the record while
644  /// doing it.
645  for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
646    RD->addDecl(FieldDecl::Create(*this, RD,
647                                  RecFields[i]->getLocation(),
648                                  RecFields[i]->getIdentifier(),
649                                  RecFields[i]->getType(),
650                                  RecFields[i]->getBitWidth(), false));
651  }
652
653  RD->completeDefinition(*this);
654  return RD;
655}
656
657/// setFieldDecl - maps a field for the given Ivar reference node.
658//
659void ASTContext::setFieldDecl(const ObjCInterfaceDecl *OI,
660                              const ObjCIvarDecl *Ivar,
661                              const ObjCIvarRefExpr *MRef) {
662  ASTFieldForIvarRef[MRef] = OI->lookupFieldDeclForIvar(*this, Ivar);
663}
664
665/// getASTObjcInterfaceLayout - Get or compute information about the layout of
666/// the specified Objective C, which indicates its size and ivar
667/// position information.
668const ASTRecordLayout &
669ASTContext::getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D) {
670  // Look up this layout, if already laid out, return what we have.
671  const ASTRecordLayout *&Entry = ASTObjCInterfaces[D];
672  if (Entry) return *Entry;
673
674  // Allocate and assign into ASTRecordLayouts here.  The "Entry" reference can
675  // be invalidated (dangle) if the ASTRecordLayouts hashtable is inserted into.
676  ASTRecordLayout *NewEntry = NULL;
677  unsigned FieldCount = D->ivar_size();
678  if (ObjCInterfaceDecl *SD = D->getSuperClass()) {
679    FieldCount++;
680    const ASTRecordLayout &SL = getASTObjCInterfaceLayout(SD);
681    unsigned Alignment = SL.getAlignment();
682    uint64_t Size = SL.getSize();
683    NewEntry = new ASTRecordLayout(Size, Alignment);
684    NewEntry->InitializeLayout(FieldCount);
685    // Super class is at the beginning of the layout.
686    NewEntry->SetFieldOffset(0, 0);
687  } else {
688    NewEntry = new ASTRecordLayout();
689    NewEntry->InitializeLayout(FieldCount);
690  }
691  Entry = NewEntry;
692
693  unsigned StructPacking = 0;
694  if (const PackedAttr *PA = D->getAttr<PackedAttr>())
695    StructPacking = PA->getAlignment();
696
697  if (const AlignedAttr *AA = D->getAttr<AlignedAttr>())
698    NewEntry->SetAlignment(std::max(NewEntry->getAlignment(),
699                                    AA->getAlignment()));
700
701  // Layout each ivar sequentially.
702  unsigned i = 0;
703  for (ObjCInterfaceDecl::ivar_iterator IVI = D->ivar_begin(),
704       IVE = D->ivar_end(); IVI != IVE; ++IVI) {
705    const ObjCIvarDecl* Ivar = (*IVI);
706    NewEntry->LayoutField(Ivar, i++, false, StructPacking, *this);
707  }
708  // Also synthesized ivars
709  for (ObjCInterfaceDecl::prop_iterator I = D->prop_begin(),
710       E = D->prop_end(); I != E; ++I) {
711    if (ObjCIvarDecl *Ivar = (*I)->getPropertyIvarDecl())
712      NewEntry->LayoutField(Ivar, i++, false, StructPacking, *this);
713  }
714
715  // Finally, round the size of the total struct up to the alignment of the
716  // struct itself.
717  NewEntry->FinalizeLayout();
718  return *NewEntry;
719}
720
721/// getASTRecordLayout - Get or compute information about the layout of the
722/// specified record (struct/union/class), which indicates its size and field
723/// position information.
724const ASTRecordLayout &ASTContext::getASTRecordLayout(const RecordDecl *D) {
725  D = D->getDefinition(*this);
726  assert(D && "Cannot get layout of forward declarations!");
727
728  // Look up this layout, if already laid out, return what we have.
729  const ASTRecordLayout *&Entry = ASTRecordLayouts[D];
730  if (Entry) return *Entry;
731
732  // Allocate and assign into ASTRecordLayouts here.  The "Entry" reference can
733  // be invalidated (dangle) if the ASTRecordLayouts hashtable is inserted into.
734  ASTRecordLayout *NewEntry = new ASTRecordLayout();
735  Entry = NewEntry;
736
737  // FIXME: Avoid linear walk through the fields, if possible.
738  NewEntry->InitializeLayout(std::distance(D->field_begin(), D->field_end()));
739  bool IsUnion = D->isUnion();
740
741  unsigned StructPacking = 0;
742  if (const PackedAttr *PA = D->getAttr<PackedAttr>())
743    StructPacking = PA->getAlignment();
744
745  if (const AlignedAttr *AA = D->getAttr<AlignedAttr>())
746    NewEntry->SetAlignment(std::max(NewEntry->getAlignment(),
747                                    AA->getAlignment()));
748
749  // Layout each field, for now, just sequentially, respecting alignment.  In
750  // the future, this will need to be tweakable by targets.
751  unsigned FieldIdx = 0;
752  for (RecordDecl::field_iterator Field = D->field_begin(),
753                               FieldEnd = D->field_end();
754       Field != FieldEnd; (void)++Field, ++FieldIdx)
755    NewEntry->LayoutField(*Field, FieldIdx, IsUnion, StructPacking, *this);
756
757  // Finally, round the size of the total struct up to the alignment of the
758  // struct itself.
759  NewEntry->FinalizeLayout();
760  return *NewEntry;
761}
762
763//===----------------------------------------------------------------------===//
764//                   Type creation/memoization methods
765//===----------------------------------------------------------------------===//
766
767QualType ASTContext::getAddrSpaceQualType(QualType T, unsigned AddressSpace) {
768  QualType CanT = getCanonicalType(T);
769  if (CanT.getAddressSpace() == AddressSpace)
770    return T;
771
772  // If we are composing extended qualifiers together, merge together into one
773  // ExtQualType node.
774  unsigned CVRQuals = T.getCVRQualifiers();
775  QualType::GCAttrTypes GCAttr = QualType::GCNone;
776  Type *TypeNode = T.getTypePtr();
777
778  if (ExtQualType *EQT = dyn_cast<ExtQualType>(TypeNode)) {
779    // If this type already has an address space specified, it cannot get
780    // another one.
781    assert(EQT->getAddressSpace() == 0 &&
782           "Type cannot be in multiple addr spaces!");
783    GCAttr = EQT->getObjCGCAttr();
784    TypeNode = EQT->getBaseType();
785  }
786
787  // Check if we've already instantiated this type.
788  llvm::FoldingSetNodeID ID;
789  ExtQualType::Profile(ID, TypeNode, AddressSpace, GCAttr);
790  void *InsertPos = 0;
791  if (ExtQualType *EXTQy = ExtQualTypes.FindNodeOrInsertPos(ID, InsertPos))
792    return QualType(EXTQy, CVRQuals);
793
794  // If the base type isn't canonical, this won't be a canonical type either,
795  // so fill in the canonical type field.
796  QualType Canonical;
797  if (!TypeNode->isCanonical()) {
798    Canonical = getAddrSpaceQualType(CanT, AddressSpace);
799
800    // Update InsertPos, the previous call could have invalidated it.
801    ExtQualType *NewIP = ExtQualTypes.FindNodeOrInsertPos(ID, InsertPos);
802    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
803  }
804  ExtQualType *New =
805    new (*this, 8) ExtQualType(TypeNode, Canonical, AddressSpace, GCAttr);
806  ExtQualTypes.InsertNode(New, InsertPos);
807  Types.push_back(New);
808  return QualType(New, CVRQuals);
809}
810
811QualType ASTContext::getObjCGCQualType(QualType T,
812                                       QualType::GCAttrTypes GCAttr) {
813  QualType CanT = getCanonicalType(T);
814  if (CanT.getObjCGCAttr() == GCAttr)
815    return T;
816
817  // If we are composing extended qualifiers together, merge together into one
818  // ExtQualType node.
819  unsigned CVRQuals = T.getCVRQualifiers();
820  Type *TypeNode = T.getTypePtr();
821  unsigned AddressSpace = 0;
822
823  if (ExtQualType *EQT = dyn_cast<ExtQualType>(TypeNode)) {
824    // If this type already has an address space specified, it cannot get
825    // another one.
826    assert(EQT->getObjCGCAttr() == QualType::GCNone &&
827           "Type cannot be in multiple addr spaces!");
828    AddressSpace = EQT->getAddressSpace();
829    TypeNode = EQT->getBaseType();
830  }
831
832  // Check if we've already instantiated an gc qual'd type of this type.
833  llvm::FoldingSetNodeID ID;
834  ExtQualType::Profile(ID, TypeNode, AddressSpace, GCAttr);
835  void *InsertPos = 0;
836  if (ExtQualType *EXTQy = ExtQualTypes.FindNodeOrInsertPos(ID, InsertPos))
837    return QualType(EXTQy, CVRQuals);
838
839  // If the base type isn't canonical, this won't be a canonical type either,
840  // so fill in the canonical type field.
841  // FIXME: Isn't this also not canonical if the base type is a array
842  // or pointer type?  I can't find any documentation for objc_gc, though...
843  QualType Canonical;
844  if (!T->isCanonical()) {
845    Canonical = getObjCGCQualType(CanT, GCAttr);
846
847    // Update InsertPos, the previous call could have invalidated it.
848    ExtQualType *NewIP = ExtQualTypes.FindNodeOrInsertPos(ID, InsertPos);
849    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
850  }
851  ExtQualType *New =
852    new (*this, 8) ExtQualType(TypeNode, Canonical, AddressSpace, GCAttr);
853  ExtQualTypes.InsertNode(New, InsertPos);
854  Types.push_back(New);
855  return QualType(New, CVRQuals);
856}
857
858/// getComplexType - Return the uniqued reference to the type for a complex
859/// number with the specified element type.
860QualType ASTContext::getComplexType(QualType T) {
861  // Unique pointers, to guarantee there is only one pointer of a particular
862  // structure.
863  llvm::FoldingSetNodeID ID;
864  ComplexType::Profile(ID, T);
865
866  void *InsertPos = 0;
867  if (ComplexType *CT = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos))
868    return QualType(CT, 0);
869
870  // If the pointee type isn't canonical, this won't be a canonical type either,
871  // so fill in the canonical type field.
872  QualType Canonical;
873  if (!T->isCanonical()) {
874    Canonical = getComplexType(getCanonicalType(T));
875
876    // Get the new insert position for the node we care about.
877    ComplexType *NewIP = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos);
878    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
879  }
880  ComplexType *New = new (*this,8) ComplexType(T, Canonical);
881  Types.push_back(New);
882  ComplexTypes.InsertNode(New, InsertPos);
883  return QualType(New, 0);
884}
885
886QualType ASTContext::getFixedWidthIntType(unsigned Width, bool Signed) {
887  llvm::DenseMap<unsigned, FixedWidthIntType*> &Map = Signed ?
888     SignedFixedWidthIntTypes : UnsignedFixedWidthIntTypes;
889  FixedWidthIntType *&Entry = Map[Width];
890  if (!Entry)
891    Entry = new FixedWidthIntType(Width, Signed);
892  return QualType(Entry, 0);
893}
894
895/// getPointerType - Return the uniqued reference to the type for a pointer to
896/// the specified type.
897QualType ASTContext::getPointerType(QualType T) {
898  // Unique pointers, to guarantee there is only one pointer of a particular
899  // structure.
900  llvm::FoldingSetNodeID ID;
901  PointerType::Profile(ID, T);
902
903  void *InsertPos = 0;
904  if (PointerType *PT = PointerTypes.FindNodeOrInsertPos(ID, InsertPos))
905    return QualType(PT, 0);
906
907  // If the pointee type isn't canonical, this won't be a canonical type either,
908  // so fill in the canonical type field.
909  QualType Canonical;
910  if (!T->isCanonical()) {
911    Canonical = getPointerType(getCanonicalType(T));
912
913    // Get the new insert position for the node we care about.
914    PointerType *NewIP = PointerTypes.FindNodeOrInsertPos(ID, InsertPos);
915    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
916  }
917  PointerType *New = new (*this,8) PointerType(T, Canonical);
918  Types.push_back(New);
919  PointerTypes.InsertNode(New, InsertPos);
920  return QualType(New, 0);
921}
922
923/// getBlockPointerType - Return the uniqued reference to the type for
924/// a pointer to the specified block.
925QualType ASTContext::getBlockPointerType(QualType T) {
926  assert(T->isFunctionType() && "block of function types only");
927  // Unique pointers, to guarantee there is only one block of a particular
928  // structure.
929  llvm::FoldingSetNodeID ID;
930  BlockPointerType::Profile(ID, T);
931
932  void *InsertPos = 0;
933  if (BlockPointerType *PT =
934        BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
935    return QualType(PT, 0);
936
937  // If the block pointee type isn't canonical, this won't be a canonical
938  // type either so fill in the canonical type field.
939  QualType Canonical;
940  if (!T->isCanonical()) {
941    Canonical = getBlockPointerType(getCanonicalType(T));
942
943    // Get the new insert position for the node we care about.
944    BlockPointerType *NewIP =
945      BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
946    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
947  }
948  BlockPointerType *New = new (*this,8) BlockPointerType(T, Canonical);
949  Types.push_back(New);
950  BlockPointerTypes.InsertNode(New, InsertPos);
951  return QualType(New, 0);
952}
953
954/// getLValueReferenceType - Return the uniqued reference to the type for an
955/// lvalue reference to the specified type.
956QualType ASTContext::getLValueReferenceType(QualType T) {
957  // Unique pointers, to guarantee there is only one pointer of a particular
958  // structure.
959  llvm::FoldingSetNodeID ID;
960  ReferenceType::Profile(ID, T);
961
962  void *InsertPos = 0;
963  if (LValueReferenceType *RT =
964        LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
965    return QualType(RT, 0);
966
967  // If the referencee type isn't canonical, this won't be a canonical type
968  // either, so fill in the canonical type field.
969  QualType Canonical;
970  if (!T->isCanonical()) {
971    Canonical = getLValueReferenceType(getCanonicalType(T));
972
973    // Get the new insert position for the node we care about.
974    LValueReferenceType *NewIP =
975      LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
976    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
977  }
978
979  LValueReferenceType *New = new (*this,8) LValueReferenceType(T, Canonical);
980  Types.push_back(New);
981  LValueReferenceTypes.InsertNode(New, InsertPos);
982  return QualType(New, 0);
983}
984
985/// getRValueReferenceType - Return the uniqued reference to the type for an
986/// rvalue reference to the specified type.
987QualType ASTContext::getRValueReferenceType(QualType T) {
988  // Unique pointers, to guarantee there is only one pointer of a particular
989  // structure.
990  llvm::FoldingSetNodeID ID;
991  ReferenceType::Profile(ID, T);
992
993  void *InsertPos = 0;
994  if (RValueReferenceType *RT =
995        RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
996    return QualType(RT, 0);
997
998  // If the referencee type isn't canonical, this won't be a canonical type
999  // either, so fill in the canonical type field.
1000  QualType Canonical;
1001  if (!T->isCanonical()) {
1002    Canonical = getRValueReferenceType(getCanonicalType(T));
1003
1004    // Get the new insert position for the node we care about.
1005    RValueReferenceType *NewIP =
1006      RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
1007    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1008  }
1009
1010  RValueReferenceType *New = new (*this,8) RValueReferenceType(T, Canonical);
1011  Types.push_back(New);
1012  RValueReferenceTypes.InsertNode(New, InsertPos);
1013  return QualType(New, 0);
1014}
1015
1016/// getMemberPointerType - Return the uniqued reference to the type for a
1017/// member pointer to the specified type, in the specified class.
1018QualType ASTContext::getMemberPointerType(QualType T, const Type *Cls)
1019{
1020  // Unique pointers, to guarantee there is only one pointer of a particular
1021  // structure.
1022  llvm::FoldingSetNodeID ID;
1023  MemberPointerType::Profile(ID, T, Cls);
1024
1025  void *InsertPos = 0;
1026  if (MemberPointerType *PT =
1027      MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1028    return QualType(PT, 0);
1029
1030  // If the pointee or class type isn't canonical, this won't be a canonical
1031  // type either, so fill in the canonical type field.
1032  QualType Canonical;
1033  if (!T->isCanonical()) {
1034    Canonical = getMemberPointerType(getCanonicalType(T),getCanonicalType(Cls));
1035
1036    // Get the new insert position for the node we care about.
1037    MemberPointerType *NewIP =
1038      MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
1039    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1040  }
1041  MemberPointerType *New = new (*this,8) MemberPointerType(T, Cls, Canonical);
1042  Types.push_back(New);
1043  MemberPointerTypes.InsertNode(New, InsertPos);
1044  return QualType(New, 0);
1045}
1046
1047/// getConstantArrayType - Return the unique reference to the type for an
1048/// array of the specified element type.
1049QualType ASTContext::getConstantArrayType(QualType EltTy,
1050                                          const llvm::APInt &ArySize,
1051                                          ArrayType::ArraySizeModifier ASM,
1052                                          unsigned EltTypeQuals) {
1053  llvm::FoldingSetNodeID ID;
1054  ConstantArrayType::Profile(ID, EltTy, ArySize, ASM, EltTypeQuals);
1055
1056  void *InsertPos = 0;
1057  if (ConstantArrayType *ATP =
1058      ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
1059    return QualType(ATP, 0);
1060
1061  // If the element type isn't canonical, this won't be a canonical type either,
1062  // so fill in the canonical type field.
1063  QualType Canonical;
1064  if (!EltTy->isCanonical()) {
1065    Canonical = getConstantArrayType(getCanonicalType(EltTy), ArySize,
1066                                     ASM, EltTypeQuals);
1067    // Get the new insert position for the node we care about.
1068    ConstantArrayType *NewIP =
1069      ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
1070    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1071  }
1072
1073  ConstantArrayType *New =
1074    new(*this,8)ConstantArrayType(EltTy, Canonical, ArySize, ASM, EltTypeQuals);
1075  ConstantArrayTypes.InsertNode(New, InsertPos);
1076  Types.push_back(New);
1077  return QualType(New, 0);
1078}
1079
1080/// getVariableArrayType - Returns a non-unique reference to the type for a
1081/// variable array of the specified element type.
1082QualType ASTContext::getVariableArrayType(QualType EltTy, Expr *NumElts,
1083                                          ArrayType::ArraySizeModifier ASM,
1084                                          unsigned EltTypeQuals) {
1085  // Since we don't unique expressions, it isn't possible to unique VLA's
1086  // that have an expression provided for their size.
1087
1088  VariableArrayType *New =
1089    new(*this,8)VariableArrayType(EltTy,QualType(), NumElts, ASM, EltTypeQuals);
1090
1091  VariableArrayTypes.push_back(New);
1092  Types.push_back(New);
1093  return QualType(New, 0);
1094}
1095
1096/// getDependentSizedArrayType - Returns a non-unique reference to
1097/// the type for a dependently-sized array of the specified element
1098/// type. FIXME: We will need these to be uniqued, or at least
1099/// comparable, at some point.
1100QualType ASTContext::getDependentSizedArrayType(QualType EltTy, Expr *NumElts,
1101                                                ArrayType::ArraySizeModifier ASM,
1102                                                unsigned EltTypeQuals) {
1103  assert((NumElts->isTypeDependent() || NumElts->isValueDependent()) &&
1104         "Size must be type- or value-dependent!");
1105
1106  // Since we don't unique expressions, it isn't possible to unique
1107  // dependently-sized array types.
1108
1109  DependentSizedArrayType *New =
1110      new (*this,8) DependentSizedArrayType(EltTy, QualType(), NumElts,
1111                                            ASM, EltTypeQuals);
1112
1113  DependentSizedArrayTypes.push_back(New);
1114  Types.push_back(New);
1115  return QualType(New, 0);
1116}
1117
1118QualType ASTContext::getIncompleteArrayType(QualType EltTy,
1119                                            ArrayType::ArraySizeModifier ASM,
1120                                            unsigned EltTypeQuals) {
1121  llvm::FoldingSetNodeID ID;
1122  IncompleteArrayType::Profile(ID, EltTy, ASM, EltTypeQuals);
1123
1124  void *InsertPos = 0;
1125  if (IncompleteArrayType *ATP =
1126       IncompleteArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
1127    return QualType(ATP, 0);
1128
1129  // If the element type isn't canonical, this won't be a canonical type
1130  // either, so fill in the canonical type field.
1131  QualType Canonical;
1132
1133  if (!EltTy->isCanonical()) {
1134    Canonical = getIncompleteArrayType(getCanonicalType(EltTy),
1135                                       ASM, EltTypeQuals);
1136
1137    // Get the new insert position for the node we care about.
1138    IncompleteArrayType *NewIP =
1139      IncompleteArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
1140    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1141  }
1142
1143  IncompleteArrayType *New = new (*this,8) IncompleteArrayType(EltTy, Canonical,
1144                                                           ASM, EltTypeQuals);
1145
1146  IncompleteArrayTypes.InsertNode(New, InsertPos);
1147  Types.push_back(New);
1148  return QualType(New, 0);
1149}
1150
1151/// getVectorType - Return the unique reference to a vector type of
1152/// the specified element type and size. VectorType must be a built-in type.
1153QualType ASTContext::getVectorType(QualType vecType, unsigned NumElts) {
1154  BuiltinType *baseType;
1155
1156  baseType = dyn_cast<BuiltinType>(getCanonicalType(vecType).getTypePtr());
1157  assert(baseType != 0 && "getVectorType(): Expecting a built-in type");
1158
1159  // Check if we've already instantiated a vector of this type.
1160  llvm::FoldingSetNodeID ID;
1161  VectorType::Profile(ID, vecType, NumElts, Type::Vector);
1162  void *InsertPos = 0;
1163  if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
1164    return QualType(VTP, 0);
1165
1166  // If the element type isn't canonical, this won't be a canonical type either,
1167  // so fill in the canonical type field.
1168  QualType Canonical;
1169  if (!vecType->isCanonical()) {
1170    Canonical = getVectorType(getCanonicalType(vecType), NumElts);
1171
1172    // Get the new insert position for the node we care about.
1173    VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
1174    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1175  }
1176  VectorType *New = new (*this,8) VectorType(vecType, NumElts, Canonical);
1177  VectorTypes.InsertNode(New, InsertPos);
1178  Types.push_back(New);
1179  return QualType(New, 0);
1180}
1181
1182/// getExtVectorType - Return the unique reference to an extended vector type of
1183/// the specified element type and size. VectorType must be a built-in type.
1184QualType ASTContext::getExtVectorType(QualType vecType, unsigned NumElts) {
1185  BuiltinType *baseType;
1186
1187  baseType = dyn_cast<BuiltinType>(getCanonicalType(vecType).getTypePtr());
1188  assert(baseType != 0 && "getExtVectorType(): Expecting a built-in type");
1189
1190  // Check if we've already instantiated a vector of this type.
1191  llvm::FoldingSetNodeID ID;
1192  VectorType::Profile(ID, vecType, NumElts, Type::ExtVector);
1193  void *InsertPos = 0;
1194  if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
1195    return QualType(VTP, 0);
1196
1197  // If the element type isn't canonical, this won't be a canonical type either,
1198  // so fill in the canonical type field.
1199  QualType Canonical;
1200  if (!vecType->isCanonical()) {
1201    Canonical = getExtVectorType(getCanonicalType(vecType), NumElts);
1202
1203    // Get the new insert position for the node we care about.
1204    VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
1205    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1206  }
1207  ExtVectorType *New = new (*this,8) ExtVectorType(vecType, NumElts, Canonical);
1208  VectorTypes.InsertNode(New, InsertPos);
1209  Types.push_back(New);
1210  return QualType(New, 0);
1211}
1212
1213/// getFunctionNoProtoType - Return a K&R style C function type like 'int()'.
1214///
1215QualType ASTContext::getFunctionNoProtoType(QualType ResultTy) {
1216  // Unique functions, to guarantee there is only one function of a particular
1217  // structure.
1218  llvm::FoldingSetNodeID ID;
1219  FunctionNoProtoType::Profile(ID, ResultTy);
1220
1221  void *InsertPos = 0;
1222  if (FunctionNoProtoType *FT =
1223        FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
1224    return QualType(FT, 0);
1225
1226  QualType Canonical;
1227  if (!ResultTy->isCanonical()) {
1228    Canonical = getFunctionNoProtoType(getCanonicalType(ResultTy));
1229
1230    // Get the new insert position for the node we care about.
1231    FunctionNoProtoType *NewIP =
1232      FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
1233    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1234  }
1235
1236  FunctionNoProtoType *New =new(*this,8)FunctionNoProtoType(ResultTy,Canonical);
1237  Types.push_back(New);
1238  FunctionNoProtoTypes.InsertNode(New, InsertPos);
1239  return QualType(New, 0);
1240}
1241
1242/// getFunctionType - Return a normal function type with a typed argument
1243/// list.  isVariadic indicates whether the argument list includes '...'.
1244QualType ASTContext::getFunctionType(QualType ResultTy,const QualType *ArgArray,
1245                                     unsigned NumArgs, bool isVariadic,
1246                                     unsigned TypeQuals) {
1247  // Unique functions, to guarantee there is only one function of a particular
1248  // structure.
1249  llvm::FoldingSetNodeID ID;
1250  FunctionProtoType::Profile(ID, ResultTy, ArgArray, NumArgs, isVariadic,
1251                             TypeQuals);
1252
1253  void *InsertPos = 0;
1254  if (FunctionProtoType *FTP =
1255        FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
1256    return QualType(FTP, 0);
1257
1258  // Determine whether the type being created is already canonical or not.
1259  bool isCanonical = ResultTy->isCanonical();
1260  for (unsigned i = 0; i != NumArgs && isCanonical; ++i)
1261    if (!ArgArray[i]->isCanonical())
1262      isCanonical = false;
1263
1264  // If this type isn't canonical, get the canonical version of it.
1265  QualType Canonical;
1266  if (!isCanonical) {
1267    llvm::SmallVector<QualType, 16> CanonicalArgs;
1268    CanonicalArgs.reserve(NumArgs);
1269    for (unsigned i = 0; i != NumArgs; ++i)
1270      CanonicalArgs.push_back(getCanonicalType(ArgArray[i]));
1271
1272    Canonical = getFunctionType(getCanonicalType(ResultTy),
1273                                &CanonicalArgs[0], NumArgs,
1274                                isVariadic, TypeQuals);
1275
1276    // Get the new insert position for the node we care about.
1277    FunctionProtoType *NewIP =
1278      FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
1279    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1280  }
1281
1282  // FunctionProtoType objects are allocated with extra bytes after them
1283  // for a variable size array (for parameter types) at the end of them.
1284  FunctionProtoType *FTP =
1285    (FunctionProtoType*)Allocate(sizeof(FunctionProtoType) +
1286                                 NumArgs*sizeof(QualType), 8);
1287  new (FTP) FunctionProtoType(ResultTy, ArgArray, NumArgs, isVariadic,
1288                              TypeQuals, Canonical);
1289  Types.push_back(FTP);
1290  FunctionProtoTypes.InsertNode(FTP, InsertPos);
1291  return QualType(FTP, 0);
1292}
1293
1294/// getTypeDeclType - Return the unique reference to the type for the
1295/// specified type declaration.
1296QualType ASTContext::getTypeDeclType(TypeDecl *Decl, TypeDecl* PrevDecl) {
1297  assert(Decl && "Passed null for Decl param");
1298  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
1299
1300  if (TypedefDecl *Typedef = dyn_cast<TypedefDecl>(Decl))
1301    return getTypedefType(Typedef);
1302  else if (isa<TemplateTypeParmDecl>(Decl)) {
1303    assert(false && "Template type parameter types are always available.");
1304  } else if (ObjCInterfaceDecl *ObjCInterface = dyn_cast<ObjCInterfaceDecl>(Decl))
1305    return getObjCInterfaceType(ObjCInterface);
1306
1307  if (RecordDecl *Record = dyn_cast<RecordDecl>(Decl)) {
1308    if (PrevDecl)
1309      Decl->TypeForDecl = PrevDecl->TypeForDecl;
1310    else
1311      Decl->TypeForDecl = new (*this,8) RecordType(Record);
1312  }
1313  else if (EnumDecl *Enum = dyn_cast<EnumDecl>(Decl)) {
1314    if (PrevDecl)
1315      Decl->TypeForDecl = PrevDecl->TypeForDecl;
1316    else
1317      Decl->TypeForDecl = new (*this,8) EnumType(Enum);
1318  }
1319  else
1320    assert(false && "TypeDecl without a type?");
1321
1322  if (!PrevDecl) Types.push_back(Decl->TypeForDecl);
1323  return QualType(Decl->TypeForDecl, 0);
1324}
1325
1326/// getTypedefType - Return the unique reference to the type for the
1327/// specified typename decl.
1328QualType ASTContext::getTypedefType(TypedefDecl *Decl) {
1329  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
1330
1331  QualType Canonical = getCanonicalType(Decl->getUnderlyingType());
1332  Decl->TypeForDecl = new(*this,8) TypedefType(Type::Typedef, Decl, Canonical);
1333  Types.push_back(Decl->TypeForDecl);
1334  return QualType(Decl->TypeForDecl, 0);
1335}
1336
1337/// getObjCInterfaceType - Return the unique reference to the type for the
1338/// specified ObjC interface decl.
1339QualType ASTContext::getObjCInterfaceType(ObjCInterfaceDecl *Decl) {
1340  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
1341
1342  Decl->TypeForDecl = new(*this,8) ObjCInterfaceType(Type::ObjCInterface, Decl);
1343  Types.push_back(Decl->TypeForDecl);
1344  return QualType(Decl->TypeForDecl, 0);
1345}
1346
1347/// buildObjCInterfaceType - Returns a new type for the interface
1348/// declaration, regardless. It also removes any previously built
1349/// record declaration so caller can rebuild it.
1350QualType ASTContext::buildObjCInterfaceType(ObjCInterfaceDecl *Decl) {
1351  RecordDecl *&RD = ASTRecordForInterface[Decl];
1352  if (RD)
1353    RD = 0;
1354  Decl->TypeForDecl = new(*this,8) ObjCInterfaceType(Type::ObjCInterface, Decl);
1355  Types.push_back(Decl->TypeForDecl);
1356  return QualType(Decl->TypeForDecl, 0);
1357}
1358
1359/// \brief Retrieve the template type parameter type for a template
1360/// parameter with the given depth, index, and (optionally) name.
1361QualType ASTContext::getTemplateTypeParmType(unsigned Depth, unsigned Index,
1362                                             IdentifierInfo *Name) {
1363  llvm::FoldingSetNodeID ID;
1364  TemplateTypeParmType::Profile(ID, Depth, Index, Name);
1365  void *InsertPos = 0;
1366  TemplateTypeParmType *TypeParm
1367    = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
1368
1369  if (TypeParm)
1370    return QualType(TypeParm, 0);
1371
1372  if (Name)
1373    TypeParm = new (*this, 8) TemplateTypeParmType(Depth, Index, Name,
1374                                         getTemplateTypeParmType(Depth, Index));
1375  else
1376    TypeParm = new (*this, 8) TemplateTypeParmType(Depth, Index);
1377
1378  Types.push_back(TypeParm);
1379  TemplateTypeParmTypes.InsertNode(TypeParm, InsertPos);
1380
1381  return QualType(TypeParm, 0);
1382}
1383
1384QualType
1385ASTContext::getTemplateSpecializationType(TemplateName Template,
1386                                          const TemplateArgument *Args,
1387                                          unsigned NumArgs,
1388                                          QualType Canon) {
1389  if (!Canon.isNull())
1390    Canon = getCanonicalType(Canon);
1391
1392  llvm::FoldingSetNodeID ID;
1393  TemplateSpecializationType::Profile(ID, Template, Args, NumArgs);
1394
1395  void *InsertPos = 0;
1396  TemplateSpecializationType *Spec
1397    = TemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
1398
1399  if (Spec)
1400    return QualType(Spec, 0);
1401
1402  void *Mem = Allocate((sizeof(TemplateSpecializationType) +
1403                        sizeof(TemplateArgument) * NumArgs),
1404                       8);
1405  Spec = new (Mem) TemplateSpecializationType(Template, Args, NumArgs, Canon);
1406  Types.push_back(Spec);
1407  TemplateSpecializationTypes.InsertNode(Spec, InsertPos);
1408
1409  return QualType(Spec, 0);
1410}
1411
1412QualType
1413ASTContext::getQualifiedNameType(NestedNameSpecifier *NNS,
1414                                 QualType NamedType) {
1415  llvm::FoldingSetNodeID ID;
1416  QualifiedNameType::Profile(ID, NNS, NamedType);
1417
1418  void *InsertPos = 0;
1419  QualifiedNameType *T
1420    = QualifiedNameTypes.FindNodeOrInsertPos(ID, InsertPos);
1421  if (T)
1422    return QualType(T, 0);
1423
1424  T = new (*this) QualifiedNameType(NNS, NamedType,
1425                                    getCanonicalType(NamedType));
1426  Types.push_back(T);
1427  QualifiedNameTypes.InsertNode(T, InsertPos);
1428  return QualType(T, 0);
1429}
1430
1431QualType ASTContext::getTypenameType(NestedNameSpecifier *NNS,
1432                                     const IdentifierInfo *Name,
1433                                     QualType Canon) {
1434  assert(NNS->isDependent() && "nested-name-specifier must be dependent");
1435
1436  if (Canon.isNull()) {
1437    NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
1438    if (CanonNNS != NNS)
1439      Canon = getTypenameType(CanonNNS, Name);
1440  }
1441
1442  llvm::FoldingSetNodeID ID;
1443  TypenameType::Profile(ID, NNS, Name);
1444
1445  void *InsertPos = 0;
1446  TypenameType *T
1447    = TypenameTypes.FindNodeOrInsertPos(ID, InsertPos);
1448  if (T)
1449    return QualType(T, 0);
1450
1451  T = new (*this) TypenameType(NNS, Name, Canon);
1452  Types.push_back(T);
1453  TypenameTypes.InsertNode(T, InsertPos);
1454  return QualType(T, 0);
1455}
1456
1457QualType
1458ASTContext::getTypenameType(NestedNameSpecifier *NNS,
1459                            const TemplateSpecializationType *TemplateId,
1460                            QualType Canon) {
1461  assert(NNS->isDependent() && "nested-name-specifier must be dependent");
1462
1463  if (Canon.isNull()) {
1464    NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
1465    QualType CanonType = getCanonicalType(QualType(TemplateId, 0));
1466    if (CanonNNS != NNS || CanonType != QualType(TemplateId, 0)) {
1467      const TemplateSpecializationType *CanonTemplateId
1468        = CanonType->getAsTemplateSpecializationType();
1469      assert(CanonTemplateId &&
1470             "Canonical type must also be a template specialization type");
1471      Canon = getTypenameType(CanonNNS, CanonTemplateId);
1472    }
1473  }
1474
1475  llvm::FoldingSetNodeID ID;
1476  TypenameType::Profile(ID, NNS, TemplateId);
1477
1478  void *InsertPos = 0;
1479  TypenameType *T
1480    = TypenameTypes.FindNodeOrInsertPos(ID, InsertPos);
1481  if (T)
1482    return QualType(T, 0);
1483
1484  T = new (*this) TypenameType(NNS, TemplateId, Canon);
1485  Types.push_back(T);
1486  TypenameTypes.InsertNode(T, InsertPos);
1487  return QualType(T, 0);
1488}
1489
1490/// CmpProtocolNames - Comparison predicate for sorting protocols
1491/// alphabetically.
1492static bool CmpProtocolNames(const ObjCProtocolDecl *LHS,
1493                            const ObjCProtocolDecl *RHS) {
1494  return LHS->getDeclName() < RHS->getDeclName();
1495}
1496
1497static void SortAndUniqueProtocols(ObjCProtocolDecl **&Protocols,
1498                                   unsigned &NumProtocols) {
1499  ObjCProtocolDecl **ProtocolsEnd = Protocols+NumProtocols;
1500
1501  // Sort protocols, keyed by name.
1502  std::sort(Protocols, Protocols+NumProtocols, CmpProtocolNames);
1503
1504  // Remove duplicates.
1505  ProtocolsEnd = std::unique(Protocols, ProtocolsEnd);
1506  NumProtocols = ProtocolsEnd-Protocols;
1507}
1508
1509
1510/// getObjCQualifiedInterfaceType - Return a ObjCQualifiedInterfaceType type for
1511/// the given interface decl and the conforming protocol list.
1512QualType ASTContext::getObjCQualifiedInterfaceType(ObjCInterfaceDecl *Decl,
1513                       ObjCProtocolDecl **Protocols, unsigned NumProtocols) {
1514  // Sort the protocol list alphabetically to canonicalize it.
1515  SortAndUniqueProtocols(Protocols, NumProtocols);
1516
1517  llvm::FoldingSetNodeID ID;
1518  ObjCQualifiedInterfaceType::Profile(ID, Decl, Protocols, NumProtocols);
1519
1520  void *InsertPos = 0;
1521  if (ObjCQualifiedInterfaceType *QT =
1522      ObjCQualifiedInterfaceTypes.FindNodeOrInsertPos(ID, InsertPos))
1523    return QualType(QT, 0);
1524
1525  // No Match;
1526  ObjCQualifiedInterfaceType *QType =
1527    new (*this,8) ObjCQualifiedInterfaceType(Decl, Protocols, NumProtocols);
1528
1529  Types.push_back(QType);
1530  ObjCQualifiedInterfaceTypes.InsertNode(QType, InsertPos);
1531  return QualType(QType, 0);
1532}
1533
1534/// getObjCQualifiedIdType - Return an ObjCQualifiedIdType for the 'id' decl
1535/// and the conforming protocol list.
1536QualType ASTContext::getObjCQualifiedIdType(ObjCProtocolDecl **Protocols,
1537                                            unsigned NumProtocols) {
1538  // Sort the protocol list alphabetically to canonicalize it.
1539  SortAndUniqueProtocols(Protocols, NumProtocols);
1540
1541  llvm::FoldingSetNodeID ID;
1542  ObjCQualifiedIdType::Profile(ID, Protocols, NumProtocols);
1543
1544  void *InsertPos = 0;
1545  if (ObjCQualifiedIdType *QT =
1546        ObjCQualifiedIdTypes.FindNodeOrInsertPos(ID, InsertPos))
1547    return QualType(QT, 0);
1548
1549  // No Match;
1550  ObjCQualifiedIdType *QType =
1551    new (*this,8) ObjCQualifiedIdType(Protocols, NumProtocols);
1552  Types.push_back(QType);
1553  ObjCQualifiedIdTypes.InsertNode(QType, InsertPos);
1554  return QualType(QType, 0);
1555}
1556
1557/// getTypeOfExprType - Unlike many "get<Type>" functions, we can't unique
1558/// TypeOfExprType AST's (since expression's are never shared). For example,
1559/// multiple declarations that refer to "typeof(x)" all contain different
1560/// DeclRefExpr's. This doesn't effect the type checker, since it operates
1561/// on canonical type's (which are always unique).
1562QualType ASTContext::getTypeOfExprType(Expr *tofExpr) {
1563  QualType Canonical = getCanonicalType(tofExpr->getType());
1564  TypeOfExprType *toe = new (*this,8) TypeOfExprType(tofExpr, Canonical);
1565  Types.push_back(toe);
1566  return QualType(toe, 0);
1567}
1568
1569/// getTypeOfType -  Unlike many "get<Type>" functions, we don't unique
1570/// TypeOfType AST's. The only motivation to unique these nodes would be
1571/// memory savings. Since typeof(t) is fairly uncommon, space shouldn't be
1572/// an issue. This doesn't effect the type checker, since it operates
1573/// on canonical type's (which are always unique).
1574QualType ASTContext::getTypeOfType(QualType tofType) {
1575  QualType Canonical = getCanonicalType(tofType);
1576  TypeOfType *tot = new (*this,8) TypeOfType(tofType, Canonical);
1577  Types.push_back(tot);
1578  return QualType(tot, 0);
1579}
1580
1581/// getTagDeclType - Return the unique reference to the type for the
1582/// specified TagDecl (struct/union/class/enum) decl.
1583QualType ASTContext::getTagDeclType(TagDecl *Decl) {
1584  assert (Decl);
1585  return getTypeDeclType(Decl);
1586}
1587
1588/// getSizeType - Return the unique type for "size_t" (C99 7.17), the result
1589/// of the sizeof operator (C99 6.5.3.4p4). The value is target dependent and
1590/// needs to agree with the definition in <stddef.h>.
1591QualType ASTContext::getSizeType() const {
1592  return getFromTargetType(Target.getSizeType());
1593}
1594
1595/// getSignedWCharType - Return the type of "signed wchar_t".
1596/// Used when in C++, as a GCC extension.
1597QualType ASTContext::getSignedWCharType() const {
1598  // FIXME: derive from "Target" ?
1599  return WCharTy;
1600}
1601
1602/// getUnsignedWCharType - Return the type of "unsigned wchar_t".
1603/// Used when in C++, as a GCC extension.
1604QualType ASTContext::getUnsignedWCharType() const {
1605  // FIXME: derive from "Target" ?
1606  return UnsignedIntTy;
1607}
1608
1609/// getPointerDiffType - Return the unique type for "ptrdiff_t" (ref?)
1610/// defined in <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9).
1611QualType ASTContext::getPointerDiffType() const {
1612  return getFromTargetType(Target.getPtrDiffType(0));
1613}
1614
1615//===----------------------------------------------------------------------===//
1616//                              Type Operators
1617//===----------------------------------------------------------------------===//
1618
1619/// getCanonicalType - Return the canonical (structural) type corresponding to
1620/// the specified potentially non-canonical type.  The non-canonical version
1621/// of a type may have many "decorated" versions of types.  Decorators can
1622/// include typedefs, 'typeof' operators, etc. The returned type is guaranteed
1623/// to be free of any of these, allowing two canonical types to be compared
1624/// for exact equality with a simple pointer comparison.
1625QualType ASTContext::getCanonicalType(QualType T) {
1626  QualType CanType = T.getTypePtr()->getCanonicalTypeInternal();
1627
1628  // If the result has type qualifiers, make sure to canonicalize them as well.
1629  unsigned TypeQuals = T.getCVRQualifiers() | CanType.getCVRQualifiers();
1630  if (TypeQuals == 0) return CanType;
1631
1632  // If the type qualifiers are on an array type, get the canonical type of the
1633  // array with the qualifiers applied to the element type.
1634  ArrayType *AT = dyn_cast<ArrayType>(CanType);
1635  if (!AT)
1636    return CanType.getQualifiedType(TypeQuals);
1637
1638  // Get the canonical version of the element with the extra qualifiers on it.
1639  // This can recursively sink qualifiers through multiple levels of arrays.
1640  QualType NewEltTy=AT->getElementType().getWithAdditionalQualifiers(TypeQuals);
1641  NewEltTy = getCanonicalType(NewEltTy);
1642
1643  if (ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
1644    return getConstantArrayType(NewEltTy, CAT->getSize(),CAT->getSizeModifier(),
1645                                CAT->getIndexTypeQualifier());
1646  if (IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT))
1647    return getIncompleteArrayType(NewEltTy, IAT->getSizeModifier(),
1648                                  IAT->getIndexTypeQualifier());
1649
1650  if (DependentSizedArrayType *DSAT = dyn_cast<DependentSizedArrayType>(AT))
1651    return getDependentSizedArrayType(NewEltTy, DSAT->getSizeExpr(),
1652                                      DSAT->getSizeModifier(),
1653                                      DSAT->getIndexTypeQualifier());
1654
1655  VariableArrayType *VAT = cast<VariableArrayType>(AT);
1656  return getVariableArrayType(NewEltTy, VAT->getSizeExpr(),
1657                              VAT->getSizeModifier(),
1658                              VAT->getIndexTypeQualifier());
1659}
1660
1661NestedNameSpecifier *
1662ASTContext::getCanonicalNestedNameSpecifier(NestedNameSpecifier *NNS) {
1663  if (!NNS)
1664    return 0;
1665
1666  switch (NNS->getKind()) {
1667  case NestedNameSpecifier::Identifier:
1668    // Canonicalize the prefix but keep the identifier the same.
1669    return NestedNameSpecifier::Create(*this,
1670                         getCanonicalNestedNameSpecifier(NNS->getPrefix()),
1671                                       NNS->getAsIdentifier());
1672
1673  case NestedNameSpecifier::Namespace:
1674    // A namespace is canonical; build a nested-name-specifier with
1675    // this namespace and no prefix.
1676    return NestedNameSpecifier::Create(*this, 0, NNS->getAsNamespace());
1677
1678  case NestedNameSpecifier::TypeSpec:
1679  case NestedNameSpecifier::TypeSpecWithTemplate: {
1680    QualType T = getCanonicalType(QualType(NNS->getAsType(), 0));
1681    NestedNameSpecifier *Prefix = 0;
1682
1683    // FIXME: This isn't the right check!
1684    if (T->isDependentType())
1685      Prefix = getCanonicalNestedNameSpecifier(NNS->getPrefix());
1686
1687    return NestedNameSpecifier::Create(*this, Prefix,
1688                 NNS->getKind() == NestedNameSpecifier::TypeSpecWithTemplate,
1689                                       T.getTypePtr());
1690  }
1691
1692  case NestedNameSpecifier::Global:
1693    // The global specifier is canonical and unique.
1694    return NNS;
1695  }
1696
1697  // Required to silence a GCC warning
1698  return 0;
1699}
1700
1701
1702const ArrayType *ASTContext::getAsArrayType(QualType T) {
1703  // Handle the non-qualified case efficiently.
1704  if (T.getCVRQualifiers() == 0) {
1705    // Handle the common positive case fast.
1706    if (const ArrayType *AT = dyn_cast<ArrayType>(T))
1707      return AT;
1708  }
1709
1710  // Handle the common negative case fast, ignoring CVR qualifiers.
1711  QualType CType = T->getCanonicalTypeInternal();
1712
1713  // Make sure to look through type qualifiers (like ExtQuals) for the negative
1714  // test.
1715  if (!isa<ArrayType>(CType) &&
1716      !isa<ArrayType>(CType.getUnqualifiedType()))
1717    return 0;
1718
1719  // Apply any CVR qualifiers from the array type to the element type.  This
1720  // implements C99 6.7.3p8: "If the specification of an array type includes
1721  // any type qualifiers, the element type is so qualified, not the array type."
1722
1723  // If we get here, we either have type qualifiers on the type, or we have
1724  // sugar such as a typedef in the way.  If we have type qualifiers on the type
1725  // we must propagate them down into the elemeng type.
1726  unsigned CVRQuals = T.getCVRQualifiers();
1727  unsigned AddrSpace = 0;
1728  Type *Ty = T.getTypePtr();
1729
1730  // Rip through ExtQualType's and typedefs to get to a concrete type.
1731  while (1) {
1732    if (const ExtQualType *EXTQT = dyn_cast<ExtQualType>(Ty)) {
1733      AddrSpace = EXTQT->getAddressSpace();
1734      Ty = EXTQT->getBaseType();
1735    } else {
1736      T = Ty->getDesugaredType();
1737      if (T.getTypePtr() == Ty && T.getCVRQualifiers() == 0)
1738        break;
1739      CVRQuals |= T.getCVRQualifiers();
1740      Ty = T.getTypePtr();
1741    }
1742  }
1743
1744  // If we have a simple case, just return now.
1745  const ArrayType *ATy = dyn_cast<ArrayType>(Ty);
1746  if (ATy == 0 || (AddrSpace == 0 && CVRQuals == 0))
1747    return ATy;
1748
1749  // Otherwise, we have an array and we have qualifiers on it.  Push the
1750  // qualifiers into the array element type and return a new array type.
1751  // Get the canonical version of the element with the extra qualifiers on it.
1752  // This can recursively sink qualifiers through multiple levels of arrays.
1753  QualType NewEltTy = ATy->getElementType();
1754  if (AddrSpace)
1755    NewEltTy = getAddrSpaceQualType(NewEltTy, AddrSpace);
1756  NewEltTy = NewEltTy.getWithAdditionalQualifiers(CVRQuals);
1757
1758  if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(ATy))
1759    return cast<ArrayType>(getConstantArrayType(NewEltTy, CAT->getSize(),
1760                                                CAT->getSizeModifier(),
1761                                                CAT->getIndexTypeQualifier()));
1762  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(ATy))
1763    return cast<ArrayType>(getIncompleteArrayType(NewEltTy,
1764                                                  IAT->getSizeModifier(),
1765                                                 IAT->getIndexTypeQualifier()));
1766
1767  if (const DependentSizedArrayType *DSAT
1768        = dyn_cast<DependentSizedArrayType>(ATy))
1769    return cast<ArrayType>(
1770                     getDependentSizedArrayType(NewEltTy,
1771                                                DSAT->getSizeExpr(),
1772                                                DSAT->getSizeModifier(),
1773                                                DSAT->getIndexTypeQualifier()));
1774
1775  const VariableArrayType *VAT = cast<VariableArrayType>(ATy);
1776  return cast<ArrayType>(getVariableArrayType(NewEltTy, VAT->getSizeExpr(),
1777                                              VAT->getSizeModifier(),
1778                                              VAT->getIndexTypeQualifier()));
1779}
1780
1781
1782/// getArrayDecayedType - Return the properly qualified result of decaying the
1783/// specified array type to a pointer.  This operation is non-trivial when
1784/// handling typedefs etc.  The canonical type of "T" must be an array type,
1785/// this returns a pointer to a properly qualified element of the array.
1786///
1787/// See C99 6.7.5.3p7 and C99 6.3.2.1p3.
1788QualType ASTContext::getArrayDecayedType(QualType Ty) {
1789  // Get the element type with 'getAsArrayType' so that we don't lose any
1790  // typedefs in the element type of the array.  This also handles propagation
1791  // of type qualifiers from the array type into the element type if present
1792  // (C99 6.7.3p8).
1793  const ArrayType *PrettyArrayType = getAsArrayType(Ty);
1794  assert(PrettyArrayType && "Not an array type!");
1795
1796  QualType PtrTy = getPointerType(PrettyArrayType->getElementType());
1797
1798  // int x[restrict 4] ->  int *restrict
1799  return PtrTy.getQualifiedType(PrettyArrayType->getIndexTypeQualifier());
1800}
1801
1802QualType ASTContext::getBaseElementType(const VariableArrayType *VAT) {
1803  QualType ElemTy = VAT->getElementType();
1804
1805  if (const VariableArrayType *VAT = getAsVariableArrayType(ElemTy))
1806    return getBaseElementType(VAT);
1807
1808  return ElemTy;
1809}
1810
1811/// getFloatingRank - Return a relative rank for floating point types.
1812/// This routine will assert if passed a built-in type that isn't a float.
1813static FloatingRank getFloatingRank(QualType T) {
1814  if (const ComplexType *CT = T->getAsComplexType())
1815    return getFloatingRank(CT->getElementType());
1816
1817  assert(T->getAsBuiltinType() && "getFloatingRank(): not a floating type");
1818  switch (T->getAsBuiltinType()->getKind()) {
1819  default: assert(0 && "getFloatingRank(): not a floating type");
1820  case BuiltinType::Float:      return FloatRank;
1821  case BuiltinType::Double:     return DoubleRank;
1822  case BuiltinType::LongDouble: return LongDoubleRank;
1823  }
1824}
1825
1826/// getFloatingTypeOfSizeWithinDomain - Returns a real floating
1827/// point or a complex type (based on typeDomain/typeSize).
1828/// 'typeDomain' is a real floating point or complex type.
1829/// 'typeSize' is a real floating point or complex type.
1830QualType ASTContext::getFloatingTypeOfSizeWithinDomain(QualType Size,
1831                                                       QualType Domain) const {
1832  FloatingRank EltRank = getFloatingRank(Size);
1833  if (Domain->isComplexType()) {
1834    switch (EltRank) {
1835    default: assert(0 && "getFloatingRank(): illegal value for rank");
1836    case FloatRank:      return FloatComplexTy;
1837    case DoubleRank:     return DoubleComplexTy;
1838    case LongDoubleRank: return LongDoubleComplexTy;
1839    }
1840  }
1841
1842  assert(Domain->isRealFloatingType() && "Unknown domain!");
1843  switch (EltRank) {
1844  default: assert(0 && "getFloatingRank(): illegal value for rank");
1845  case FloatRank:      return FloatTy;
1846  case DoubleRank:     return DoubleTy;
1847  case LongDoubleRank: return LongDoubleTy;
1848  }
1849}
1850
1851/// getFloatingTypeOrder - Compare the rank of the two specified floating
1852/// point types, ignoring the domain of the type (i.e. 'double' ==
1853/// '_Complex double').  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
1854/// LHS < RHS, return -1.
1855int ASTContext::getFloatingTypeOrder(QualType LHS, QualType RHS) {
1856  FloatingRank LHSR = getFloatingRank(LHS);
1857  FloatingRank RHSR = getFloatingRank(RHS);
1858
1859  if (LHSR == RHSR)
1860    return 0;
1861  if (LHSR > RHSR)
1862    return 1;
1863  return -1;
1864}
1865
1866/// getIntegerRank - Return an integer conversion rank (C99 6.3.1.1p1). This
1867/// routine will assert if passed a built-in type that isn't an integer or enum,
1868/// or if it is not canonicalized.
1869unsigned ASTContext::getIntegerRank(Type *T) {
1870  assert(T->isCanonical() && "T should be canonicalized");
1871  if (EnumType* ET = dyn_cast<EnumType>(T))
1872    T = ET->getDecl()->getIntegerType().getTypePtr();
1873
1874  // There are two things which impact the integer rank: the width, and
1875  // the ordering of builtins.  The builtin ordering is encoded in the
1876  // bottom three bits; the width is encoded in the bits above that.
1877  if (FixedWidthIntType* FWIT = dyn_cast<FixedWidthIntType>(T)) {
1878    return FWIT->getWidth() << 3;
1879  }
1880
1881  switch (cast<BuiltinType>(T)->getKind()) {
1882  default: assert(0 && "getIntegerRank(): not a built-in integer");
1883  case BuiltinType::Bool:
1884    return 1 + (getIntWidth(BoolTy) << 3);
1885  case BuiltinType::Char_S:
1886  case BuiltinType::Char_U:
1887  case BuiltinType::SChar:
1888  case BuiltinType::UChar:
1889    return 2 + (getIntWidth(CharTy) << 3);
1890  case BuiltinType::Short:
1891  case BuiltinType::UShort:
1892    return 3 + (getIntWidth(ShortTy) << 3);
1893  case BuiltinType::Int:
1894  case BuiltinType::UInt:
1895    return 4 + (getIntWidth(IntTy) << 3);
1896  case BuiltinType::Long:
1897  case BuiltinType::ULong:
1898    return 5 + (getIntWidth(LongTy) << 3);
1899  case BuiltinType::LongLong:
1900  case BuiltinType::ULongLong:
1901    return 6 + (getIntWidth(LongLongTy) << 3);
1902  }
1903}
1904
1905/// getIntegerTypeOrder - Returns the highest ranked integer type:
1906/// C99 6.3.1.8p1.  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
1907/// LHS < RHS, return -1.
1908int ASTContext::getIntegerTypeOrder(QualType LHS, QualType RHS) {
1909  Type *LHSC = getCanonicalType(LHS).getTypePtr();
1910  Type *RHSC = getCanonicalType(RHS).getTypePtr();
1911  if (LHSC == RHSC) return 0;
1912
1913  bool LHSUnsigned = LHSC->isUnsignedIntegerType();
1914  bool RHSUnsigned = RHSC->isUnsignedIntegerType();
1915
1916  unsigned LHSRank = getIntegerRank(LHSC);
1917  unsigned RHSRank = getIntegerRank(RHSC);
1918
1919  if (LHSUnsigned == RHSUnsigned) {  // Both signed or both unsigned.
1920    if (LHSRank == RHSRank) return 0;
1921    return LHSRank > RHSRank ? 1 : -1;
1922  }
1923
1924  // Otherwise, the LHS is signed and the RHS is unsigned or visa versa.
1925  if (LHSUnsigned) {
1926    // If the unsigned [LHS] type is larger, return it.
1927    if (LHSRank >= RHSRank)
1928      return 1;
1929
1930    // If the signed type can represent all values of the unsigned type, it
1931    // wins.  Because we are dealing with 2's complement and types that are
1932    // powers of two larger than each other, this is always safe.
1933    return -1;
1934  }
1935
1936  // If the unsigned [RHS] type is larger, return it.
1937  if (RHSRank >= LHSRank)
1938    return -1;
1939
1940  // If the signed type can represent all values of the unsigned type, it
1941  // wins.  Because we are dealing with 2's complement and types that are
1942  // powers of two larger than each other, this is always safe.
1943  return 1;
1944}
1945
1946// getCFConstantStringType - Return the type used for constant CFStrings.
1947QualType ASTContext::getCFConstantStringType() {
1948  if (!CFConstantStringTypeDecl) {
1949    CFConstantStringTypeDecl =
1950      RecordDecl::Create(*this, TagDecl::TK_struct, TUDecl, SourceLocation(),
1951                         &Idents.get("NSConstantString"));
1952    QualType FieldTypes[4];
1953
1954    // const int *isa;
1955    FieldTypes[0] = getPointerType(IntTy.getQualifiedType(QualType::Const));
1956    // int flags;
1957    FieldTypes[1] = IntTy;
1958    // const char *str;
1959    FieldTypes[2] = getPointerType(CharTy.getQualifiedType(QualType::Const));
1960    // long length;
1961    FieldTypes[3] = LongTy;
1962
1963    // Create fields
1964    for (unsigned i = 0; i < 4; ++i) {
1965      FieldDecl *Field = FieldDecl::Create(*this, CFConstantStringTypeDecl,
1966                                           SourceLocation(), 0,
1967                                           FieldTypes[i], /*BitWidth=*/0,
1968                                           /*Mutable=*/false);
1969      CFConstantStringTypeDecl->addDecl(Field);
1970    }
1971
1972    CFConstantStringTypeDecl->completeDefinition(*this);
1973  }
1974
1975  return getTagDeclType(CFConstantStringTypeDecl);
1976}
1977
1978QualType ASTContext::getObjCFastEnumerationStateType()
1979{
1980  if (!ObjCFastEnumerationStateTypeDecl) {
1981    ObjCFastEnumerationStateTypeDecl =
1982      RecordDecl::Create(*this, TagDecl::TK_struct, TUDecl, SourceLocation(),
1983                         &Idents.get("__objcFastEnumerationState"));
1984
1985    QualType FieldTypes[] = {
1986      UnsignedLongTy,
1987      getPointerType(ObjCIdType),
1988      getPointerType(UnsignedLongTy),
1989      getConstantArrayType(UnsignedLongTy,
1990                           llvm::APInt(32, 5), ArrayType::Normal, 0)
1991    };
1992
1993    for (size_t i = 0; i < 4; ++i) {
1994      FieldDecl *Field = FieldDecl::Create(*this,
1995                                           ObjCFastEnumerationStateTypeDecl,
1996                                           SourceLocation(), 0,
1997                                           FieldTypes[i], /*BitWidth=*/0,
1998                                           /*Mutable=*/false);
1999      ObjCFastEnumerationStateTypeDecl->addDecl(Field);
2000    }
2001
2002    ObjCFastEnumerationStateTypeDecl->completeDefinition(*this);
2003  }
2004
2005  return getTagDeclType(ObjCFastEnumerationStateTypeDecl);
2006}
2007
2008// This returns true if a type has been typedefed to BOOL:
2009// typedef <type> BOOL;
2010static bool isTypeTypedefedAsBOOL(QualType T) {
2011  if (const TypedefType *TT = dyn_cast<TypedefType>(T))
2012    if (IdentifierInfo *II = TT->getDecl()->getIdentifier())
2013      return II->isStr("BOOL");
2014
2015  return false;
2016}
2017
2018/// getObjCEncodingTypeSize returns size of type for objective-c encoding
2019/// purpose.
2020int ASTContext::getObjCEncodingTypeSize(QualType type) {
2021  uint64_t sz = getTypeSize(type);
2022
2023  // Make all integer and enum types at least as large as an int
2024  if (sz > 0 && type->isIntegralType())
2025    sz = std::max(sz, getTypeSize(IntTy));
2026  // Treat arrays as pointers, since that's how they're passed in.
2027  else if (type->isArrayType())
2028    sz = getTypeSize(VoidPtrTy);
2029  return sz / getTypeSize(CharTy);
2030}
2031
2032/// getObjCEncodingForMethodDecl - Return the encoded type for this method
2033/// declaration.
2034void ASTContext::getObjCEncodingForMethodDecl(const ObjCMethodDecl *Decl,
2035                                              std::string& S) {
2036  // FIXME: This is not very efficient.
2037  // Encode type qualifer, 'in', 'inout', etc. for the return type.
2038  getObjCEncodingForTypeQualifier(Decl->getObjCDeclQualifier(), S);
2039  // Encode result type.
2040  getObjCEncodingForType(Decl->getResultType(), S);
2041  // Compute size of all parameters.
2042  // Start with computing size of a pointer in number of bytes.
2043  // FIXME: There might(should) be a better way of doing this computation!
2044  SourceLocation Loc;
2045  int PtrSize = getTypeSize(VoidPtrTy) / getTypeSize(CharTy);
2046  // The first two arguments (self and _cmd) are pointers; account for
2047  // their size.
2048  int ParmOffset = 2 * PtrSize;
2049  for (ObjCMethodDecl::param_iterator PI = Decl->param_begin(),
2050       E = Decl->param_end(); PI != E; ++PI) {
2051    QualType PType = (*PI)->getType();
2052    int sz = getObjCEncodingTypeSize(PType);
2053    assert (sz > 0 && "getObjCEncodingForMethodDecl - Incomplete param type");
2054    ParmOffset += sz;
2055  }
2056  S += llvm::utostr(ParmOffset);
2057  S += "@0:";
2058  S += llvm::utostr(PtrSize);
2059
2060  // Argument types.
2061  ParmOffset = 2 * PtrSize;
2062  for (ObjCMethodDecl::param_iterator PI = Decl->param_begin(),
2063       E = Decl->param_end(); PI != E; ++PI) {
2064    ParmVarDecl *PVDecl = *PI;
2065    QualType PType = PVDecl->getOriginalType();
2066    if (const ArrayType *AT =
2067          dyn_cast<ArrayType>(PType->getCanonicalTypeInternal()))
2068        // Use array's original type only if it has known number of
2069        // elements.
2070        if (!dyn_cast<ConstantArrayType>(AT))
2071          PType = PVDecl->getType();
2072    // Process argument qualifiers for user supplied arguments; such as,
2073    // 'in', 'inout', etc.
2074    getObjCEncodingForTypeQualifier(PVDecl->getObjCDeclQualifier(), S);
2075    getObjCEncodingForType(PType, S);
2076    S += llvm::utostr(ParmOffset);
2077    ParmOffset += getObjCEncodingTypeSize(PType);
2078  }
2079}
2080
2081/// getObjCEncodingForPropertyDecl - Return the encoded type for this
2082/// property declaration. If non-NULL, Container must be either an
2083/// ObjCCategoryImplDecl or ObjCImplementationDecl; it should only be
2084/// NULL when getting encodings for protocol properties.
2085/// Property attributes are stored as a comma-delimited C string. The simple
2086/// attributes readonly and bycopy are encoded as single characters. The
2087/// parametrized attributes, getter=name, setter=name, and ivar=name, are
2088/// encoded as single characters, followed by an identifier. Property types
2089/// are also encoded as a parametrized attribute. The characters used to encode
2090/// these attributes are defined by the following enumeration:
2091/// @code
2092/// enum PropertyAttributes {
2093/// kPropertyReadOnly = 'R',   // property is read-only.
2094/// kPropertyBycopy = 'C',     // property is a copy of the value last assigned
2095/// kPropertyByref = '&',  // property is a reference to the value last assigned
2096/// kPropertyDynamic = 'D',    // property is dynamic
2097/// kPropertyGetter = 'G',     // followed by getter selector name
2098/// kPropertySetter = 'S',     // followed by setter selector name
2099/// kPropertyInstanceVariable = 'V'  // followed by instance variable  name
2100/// kPropertyType = 't'              // followed by old-style type encoding.
2101/// kPropertyWeak = 'W'              // 'weak' property
2102/// kPropertyStrong = 'P'            // property GC'able
2103/// kPropertyNonAtomic = 'N'         // property non-atomic
2104/// };
2105/// @endcode
2106void ASTContext::getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD,
2107                                                const Decl *Container,
2108                                                std::string& S) {
2109  // Collect information from the property implementation decl(s).
2110  bool Dynamic = false;
2111  ObjCPropertyImplDecl *SynthesizePID = 0;
2112
2113  // FIXME: Duplicated code due to poor abstraction.
2114  if (Container) {
2115    if (const ObjCCategoryImplDecl *CID =
2116        dyn_cast<ObjCCategoryImplDecl>(Container)) {
2117      for (ObjCCategoryImplDecl::propimpl_iterator
2118             i = CID->propimpl_begin(), e = CID->propimpl_end(); i != e; ++i) {
2119        ObjCPropertyImplDecl *PID = *i;
2120        if (PID->getPropertyDecl() == PD) {
2121          if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) {
2122            Dynamic = true;
2123          } else {
2124            SynthesizePID = PID;
2125          }
2126        }
2127      }
2128    } else {
2129      const ObjCImplementationDecl *OID=cast<ObjCImplementationDecl>(Container);
2130      for (ObjCCategoryImplDecl::propimpl_iterator
2131             i = OID->propimpl_begin(), e = OID->propimpl_end(); i != e; ++i) {
2132        ObjCPropertyImplDecl *PID = *i;
2133        if (PID->getPropertyDecl() == PD) {
2134          if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) {
2135            Dynamic = true;
2136          } else {
2137            SynthesizePID = PID;
2138          }
2139        }
2140      }
2141    }
2142  }
2143
2144  // FIXME: This is not very efficient.
2145  S = "T";
2146
2147  // Encode result type.
2148  // GCC has some special rules regarding encoding of properties which
2149  // closely resembles encoding of ivars.
2150  getObjCEncodingForTypeImpl(PD->getType(), S, true, true, NULL,
2151                             true /* outermost type */,
2152                             true /* encoding for property */);
2153
2154  if (PD->isReadOnly()) {
2155    S += ",R";
2156  } else {
2157    switch (PD->getSetterKind()) {
2158    case ObjCPropertyDecl::Assign: break;
2159    case ObjCPropertyDecl::Copy:   S += ",C"; break;
2160    case ObjCPropertyDecl::Retain: S += ",&"; break;
2161    }
2162  }
2163
2164  // It really isn't clear at all what this means, since properties
2165  // are "dynamic by default".
2166  if (Dynamic)
2167    S += ",D";
2168
2169  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_nonatomic)
2170    S += ",N";
2171
2172  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_getter) {
2173    S += ",G";
2174    S += PD->getGetterName().getAsString();
2175  }
2176
2177  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_setter) {
2178    S += ",S";
2179    S += PD->getSetterName().getAsString();
2180  }
2181
2182  if (SynthesizePID) {
2183    const ObjCIvarDecl *OID = SynthesizePID->getPropertyIvarDecl();
2184    S += ",V";
2185    S += OID->getNameAsString();
2186  }
2187
2188  // FIXME: OBJCGC: weak & strong
2189}
2190
2191/// getLegacyIntegralTypeEncoding -
2192/// Another legacy compatibility encoding: 32-bit longs are encoded as
2193/// 'l' or 'L' , but not always.  For typedefs, we need to use
2194/// 'i' or 'I' instead if encoding a struct field, or a pointer!
2195///
2196void ASTContext::getLegacyIntegralTypeEncoding (QualType &PointeeTy) const {
2197  if (dyn_cast<TypedefType>(PointeeTy.getTypePtr())) {
2198    if (const BuiltinType *BT = PointeeTy->getAsBuiltinType()) {
2199      if (BT->getKind() == BuiltinType::ULong &&
2200          ((const_cast<ASTContext *>(this))->getIntWidth(PointeeTy) == 32))
2201        PointeeTy = UnsignedIntTy;
2202      else
2203        if (BT->getKind() == BuiltinType::Long &&
2204            ((const_cast<ASTContext *>(this))->getIntWidth(PointeeTy) == 32))
2205          PointeeTy = IntTy;
2206    }
2207  }
2208}
2209
2210void ASTContext::getObjCEncodingForType(QualType T, std::string& S,
2211                                        FieldDecl *Field) const {
2212  // We follow the behavior of gcc, expanding structures which are
2213  // directly pointed to, and expanding embedded structures. Note that
2214  // these rules are sufficient to prevent recursive encoding of the
2215  // same type.
2216  getObjCEncodingForTypeImpl(T, S, true, true, Field,
2217                             true /* outermost type */);
2218}
2219
2220static void EncodeBitField(const ASTContext *Context, std::string& S,
2221                           FieldDecl *FD) {
2222  const Expr *E = FD->getBitWidth();
2223  assert(E && "bitfield width not there - getObjCEncodingForTypeImpl");
2224  ASTContext *Ctx = const_cast<ASTContext*>(Context);
2225  unsigned N = E->getIntegerConstantExprValue(*Ctx).getZExtValue();
2226  S += 'b';
2227  S += llvm::utostr(N);
2228}
2229
2230void ASTContext::getObjCEncodingForTypeImpl(QualType T, std::string& S,
2231                                            bool ExpandPointedToStructures,
2232                                            bool ExpandStructures,
2233                                            FieldDecl *FD,
2234                                            bool OutermostType,
2235                                            bool EncodingProperty) const {
2236  if (const BuiltinType *BT = T->getAsBuiltinType()) {
2237    if (FD && FD->isBitField()) {
2238      EncodeBitField(this, S, FD);
2239    }
2240    else {
2241      char encoding;
2242      switch (BT->getKind()) {
2243      default: assert(0 && "Unhandled builtin type kind");
2244      case BuiltinType::Void:       encoding = 'v'; break;
2245      case BuiltinType::Bool:       encoding = 'B'; break;
2246      case BuiltinType::Char_U:
2247      case BuiltinType::UChar:      encoding = 'C'; break;
2248      case BuiltinType::UShort:     encoding = 'S'; break;
2249      case BuiltinType::UInt:       encoding = 'I'; break;
2250      case BuiltinType::ULong:
2251          encoding =
2252            (const_cast<ASTContext *>(this))->getIntWidth(T) == 32 ? 'L' : 'Q';
2253          break;
2254      case BuiltinType::ULongLong:  encoding = 'Q'; break;
2255      case BuiltinType::Char_S:
2256      case BuiltinType::SChar:      encoding = 'c'; break;
2257      case BuiltinType::Short:      encoding = 's'; break;
2258      case BuiltinType::Int:        encoding = 'i'; break;
2259      case BuiltinType::Long:
2260        encoding =
2261          (const_cast<ASTContext *>(this))->getIntWidth(T) == 32 ? 'l' : 'q';
2262        break;
2263      case BuiltinType::LongLong:   encoding = 'q'; break;
2264      case BuiltinType::Float:      encoding = 'f'; break;
2265      case BuiltinType::Double:     encoding = 'd'; break;
2266      case BuiltinType::LongDouble: encoding = 'd'; break;
2267      }
2268
2269      S += encoding;
2270    }
2271  }
2272  else if (T->isObjCQualifiedIdType()) {
2273    getObjCEncodingForTypeImpl(getObjCIdType(), S,
2274                               ExpandPointedToStructures,
2275                               ExpandStructures, FD);
2276    if (FD || EncodingProperty) {
2277      // Note that we do extended encoding of protocol qualifer list
2278      // Only when doing ivar or property encoding.
2279      const ObjCQualifiedIdType *QIDT = T->getAsObjCQualifiedIdType();
2280      S += '"';
2281      for (unsigned i =0; i < QIDT->getNumProtocols(); i++) {
2282        ObjCProtocolDecl *Proto = QIDT->getProtocols(i);
2283        S += '<';
2284        S += Proto->getNameAsString();
2285        S += '>';
2286      }
2287      S += '"';
2288    }
2289    return;
2290  }
2291  else if (const PointerType *PT = T->getAsPointerType()) {
2292    QualType PointeeTy = PT->getPointeeType();
2293    bool isReadOnly = false;
2294    // For historical/compatibility reasons, the read-only qualifier of the
2295    // pointee gets emitted _before_ the '^'.  The read-only qualifier of
2296    // the pointer itself gets ignored, _unless_ we are looking at a typedef!
2297    // Also, do not emit the 'r' for anything but the outermost type!
2298    if (dyn_cast<TypedefType>(T.getTypePtr())) {
2299      if (OutermostType && T.isConstQualified()) {
2300        isReadOnly = true;
2301        S += 'r';
2302      }
2303    }
2304    else if (OutermostType) {
2305      QualType P = PointeeTy;
2306      while (P->getAsPointerType())
2307        P = P->getAsPointerType()->getPointeeType();
2308      if (P.isConstQualified()) {
2309        isReadOnly = true;
2310        S += 'r';
2311      }
2312    }
2313    if (isReadOnly) {
2314      // Another legacy compatibility encoding. Some ObjC qualifier and type
2315      // combinations need to be rearranged.
2316      // Rewrite "in const" from "nr" to "rn"
2317      const char * s = S.c_str();
2318      int len = S.length();
2319      if (len >= 2 && s[len-2] == 'n' && s[len-1] == 'r') {
2320        std::string replace = "rn";
2321        S.replace(S.end()-2, S.end(), replace);
2322      }
2323    }
2324    if (isObjCIdStructType(PointeeTy)) {
2325      S += '@';
2326      return;
2327    }
2328    else if (PointeeTy->isObjCInterfaceType()) {
2329      if (!EncodingProperty &&
2330          isa<TypedefType>(PointeeTy.getTypePtr())) {
2331        // Another historical/compatibility reason.
2332        // We encode the underlying type which comes out as
2333        // {...};
2334        S += '^';
2335        getObjCEncodingForTypeImpl(PointeeTy, S,
2336                                   false, ExpandPointedToStructures,
2337                                   NULL);
2338        return;
2339      }
2340      S += '@';
2341      if (FD || EncodingProperty) {
2342        const ObjCInterfaceType *OIT =
2343                PointeeTy.getUnqualifiedType()->getAsObjCInterfaceType();
2344        ObjCInterfaceDecl *OI = OIT->getDecl();
2345        S += '"';
2346        S += OI->getNameAsCString();
2347        for (unsigned i =0; i < OIT->getNumProtocols(); i++) {
2348          ObjCProtocolDecl *Proto = OIT->getProtocol(i);
2349          S += '<';
2350          S += Proto->getNameAsString();
2351          S += '>';
2352        }
2353        S += '"';
2354      }
2355      return;
2356    } else if (isObjCClassStructType(PointeeTy)) {
2357      S += '#';
2358      return;
2359    } else if (isObjCSelType(PointeeTy)) {
2360      S += ':';
2361      return;
2362    }
2363
2364    if (PointeeTy->isCharType()) {
2365      // char pointer types should be encoded as '*' unless it is a
2366      // type that has been typedef'd to 'BOOL'.
2367      if (!isTypeTypedefedAsBOOL(PointeeTy)) {
2368        S += '*';
2369        return;
2370      }
2371    }
2372
2373    S += '^';
2374    getLegacyIntegralTypeEncoding(PointeeTy);
2375
2376    getObjCEncodingForTypeImpl(PointeeTy, S,
2377                               false, ExpandPointedToStructures,
2378                               NULL);
2379  } else if (const ArrayType *AT =
2380               // Ignore type qualifiers etc.
2381               dyn_cast<ArrayType>(T->getCanonicalTypeInternal())) {
2382    if (isa<IncompleteArrayType>(AT)) {
2383      // Incomplete arrays are encoded as a pointer to the array element.
2384      S += '^';
2385
2386      getObjCEncodingForTypeImpl(AT->getElementType(), S,
2387                                 false, ExpandStructures, FD);
2388    } else {
2389      S += '[';
2390
2391      if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
2392        S += llvm::utostr(CAT->getSize().getZExtValue());
2393      else {
2394        //Variable length arrays are encoded as a regular array with 0 elements.
2395        assert(isa<VariableArrayType>(AT) && "Unknown array type!");
2396        S += '0';
2397      }
2398
2399      getObjCEncodingForTypeImpl(AT->getElementType(), S,
2400                                 false, ExpandStructures, FD);
2401      S += ']';
2402    }
2403  } else if (T->getAsFunctionType()) {
2404    S += '?';
2405  } else if (const RecordType *RTy = T->getAsRecordType()) {
2406    RecordDecl *RDecl = RTy->getDecl();
2407    S += RDecl->isUnion() ? '(' : '{';
2408    // Anonymous structures print as '?'
2409    if (const IdentifierInfo *II = RDecl->getIdentifier()) {
2410      S += II->getName();
2411    } else {
2412      S += '?';
2413    }
2414    if (ExpandStructures) {
2415      S += '=';
2416      for (RecordDecl::field_iterator Field = RDecl->field_begin(),
2417                                   FieldEnd = RDecl->field_end();
2418           Field != FieldEnd; ++Field) {
2419        if (FD) {
2420          S += '"';
2421          S += Field->getNameAsString();
2422          S += '"';
2423        }
2424
2425        // Special case bit-fields.
2426        if (Field->isBitField()) {
2427          getObjCEncodingForTypeImpl(Field->getType(), S, false, true,
2428                                     (*Field));
2429        } else {
2430          QualType qt = Field->getType();
2431          getLegacyIntegralTypeEncoding(qt);
2432          getObjCEncodingForTypeImpl(qt, S, false, true,
2433                                     FD);
2434        }
2435      }
2436    }
2437    S += RDecl->isUnion() ? ')' : '}';
2438  } else if (T->isEnumeralType()) {
2439    if (FD && FD->isBitField())
2440      EncodeBitField(this, S, FD);
2441    else
2442      S += 'i';
2443  } else if (T->isBlockPointerType()) {
2444    S += "@?"; // Unlike a pointer-to-function, which is "^?".
2445  } else if (T->isObjCInterfaceType()) {
2446    // @encode(class_name)
2447    ObjCInterfaceDecl *OI = T->getAsObjCInterfaceType()->getDecl();
2448    S += '{';
2449    const IdentifierInfo *II = OI->getIdentifier();
2450    S += II->getName();
2451    S += '=';
2452    llvm::SmallVector<FieldDecl*, 32> RecFields;
2453    CollectObjCIvars(OI, RecFields);
2454    for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
2455      if (RecFields[i]->isBitField())
2456        getObjCEncodingForTypeImpl(RecFields[i]->getType(), S, false, true,
2457                                   RecFields[i]);
2458      else
2459        getObjCEncodingForTypeImpl(RecFields[i]->getType(), S, false, true,
2460                                   FD);
2461    }
2462    S += '}';
2463  }
2464  else
2465    assert(0 && "@encode for type not implemented!");
2466}
2467
2468void ASTContext::getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT,
2469                                                 std::string& S) const {
2470  if (QT & Decl::OBJC_TQ_In)
2471    S += 'n';
2472  if (QT & Decl::OBJC_TQ_Inout)
2473    S += 'N';
2474  if (QT & Decl::OBJC_TQ_Out)
2475    S += 'o';
2476  if (QT & Decl::OBJC_TQ_Bycopy)
2477    S += 'O';
2478  if (QT & Decl::OBJC_TQ_Byref)
2479    S += 'R';
2480  if (QT & Decl::OBJC_TQ_Oneway)
2481    S += 'V';
2482}
2483
2484void ASTContext::setBuiltinVaListType(QualType T)
2485{
2486  assert(BuiltinVaListType.isNull() && "__builtin_va_list type already set!");
2487
2488  BuiltinVaListType = T;
2489}
2490
2491void ASTContext::setObjCIdType(TypedefDecl *TD)
2492{
2493  ObjCIdType = getTypedefType(TD);
2494
2495  // typedef struct objc_object *id;
2496  const PointerType *ptr = TD->getUnderlyingType()->getAsPointerType();
2497  // User error - caller will issue diagnostics.
2498  if (!ptr)
2499    return;
2500  const RecordType *rec = ptr->getPointeeType()->getAsStructureType();
2501  // User error - caller will issue diagnostics.
2502  if (!rec)
2503    return;
2504  IdStructType = rec;
2505}
2506
2507void ASTContext::setObjCSelType(TypedefDecl *TD)
2508{
2509  ObjCSelType = getTypedefType(TD);
2510
2511  // typedef struct objc_selector *SEL;
2512  const PointerType *ptr = TD->getUnderlyingType()->getAsPointerType();
2513  if (!ptr)
2514    return;
2515  const RecordType *rec = ptr->getPointeeType()->getAsStructureType();
2516  if (!rec)
2517    return;
2518  SelStructType = rec;
2519}
2520
2521void ASTContext::setObjCProtoType(QualType QT)
2522{
2523  ObjCProtoType = QT;
2524}
2525
2526void ASTContext::setObjCClassType(TypedefDecl *TD)
2527{
2528  ObjCClassType = getTypedefType(TD);
2529
2530  // typedef struct objc_class *Class;
2531  const PointerType *ptr = TD->getUnderlyingType()->getAsPointerType();
2532  assert(ptr && "'Class' incorrectly typed");
2533  const RecordType *rec = ptr->getPointeeType()->getAsStructureType();
2534  assert(rec && "'Class' incorrectly typed");
2535  ClassStructType = rec;
2536}
2537
2538void ASTContext::setObjCConstantStringInterface(ObjCInterfaceDecl *Decl) {
2539  assert(ObjCConstantStringType.isNull() &&
2540         "'NSConstantString' type already set!");
2541
2542  ObjCConstantStringType = getObjCInterfaceType(Decl);
2543}
2544
2545/// \brief Retrieve the template name that represents a qualified
2546/// template name such as \c std::vector.
2547TemplateName ASTContext::getQualifiedTemplateName(NestedNameSpecifier *NNS,
2548                                                  bool TemplateKeyword,
2549                                                  TemplateDecl *Template) {
2550  llvm::FoldingSetNodeID ID;
2551  QualifiedTemplateName::Profile(ID, NNS, TemplateKeyword, Template);
2552
2553  void *InsertPos = 0;
2554  QualifiedTemplateName *QTN =
2555    QualifiedTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
2556  if (!QTN) {
2557    QTN = new (*this,4) QualifiedTemplateName(NNS, TemplateKeyword, Template);
2558    QualifiedTemplateNames.InsertNode(QTN, InsertPos);
2559  }
2560
2561  return TemplateName(QTN);
2562}
2563
2564/// \brief Retrieve the template name that represents a dependent
2565/// template name such as \c MetaFun::template apply.
2566TemplateName ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
2567                                                  const IdentifierInfo *Name) {
2568  assert(NNS->isDependent() && "Nested name specifier must be dependent");
2569
2570  llvm::FoldingSetNodeID ID;
2571  DependentTemplateName::Profile(ID, NNS, Name);
2572
2573  void *InsertPos = 0;
2574  DependentTemplateName *QTN =
2575    DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
2576
2577  if (QTN)
2578    return TemplateName(QTN);
2579
2580  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
2581  if (CanonNNS == NNS) {
2582    QTN = new (*this,4) DependentTemplateName(NNS, Name);
2583  } else {
2584    TemplateName Canon = getDependentTemplateName(CanonNNS, Name);
2585    QTN = new (*this,4) DependentTemplateName(NNS, Name, Canon);
2586  }
2587
2588  DependentTemplateNames.InsertNode(QTN, InsertPos);
2589  return TemplateName(QTN);
2590}
2591
2592/// getFromTargetType - Given one of the integer types provided by
2593/// TargetInfo, produce the corresponding type. The unsigned @p Type
2594/// is actually a value of type @c TargetInfo::IntType.
2595QualType ASTContext::getFromTargetType(unsigned Type) const {
2596  switch (Type) {
2597  case TargetInfo::NoInt: return QualType();
2598  case TargetInfo::SignedShort: return ShortTy;
2599  case TargetInfo::UnsignedShort: return UnsignedShortTy;
2600  case TargetInfo::SignedInt: return IntTy;
2601  case TargetInfo::UnsignedInt: return UnsignedIntTy;
2602  case TargetInfo::SignedLong: return LongTy;
2603  case TargetInfo::UnsignedLong: return UnsignedLongTy;
2604  case TargetInfo::SignedLongLong: return LongLongTy;
2605  case TargetInfo::UnsignedLongLong: return UnsignedLongLongTy;
2606  }
2607
2608  assert(false && "Unhandled TargetInfo::IntType value");
2609  return QualType();
2610}
2611
2612//===----------------------------------------------------------------------===//
2613//                        Type Predicates.
2614//===----------------------------------------------------------------------===//
2615
2616/// isObjCNSObjectType - Return true if this is an NSObject object using
2617/// NSObject attribute on a c-style pointer type.
2618/// FIXME - Make it work directly on types.
2619///
2620bool ASTContext::isObjCNSObjectType(QualType Ty) const {
2621  if (TypedefType *TDT = dyn_cast<TypedefType>(Ty)) {
2622    if (TypedefDecl *TD = TDT->getDecl())
2623      if (TD->getAttr<ObjCNSObjectAttr>())
2624        return true;
2625  }
2626  return false;
2627}
2628
2629/// isObjCObjectPointerType - Returns true if type is an Objective-C pointer
2630/// to an object type.  This includes "id" and "Class" (two 'special' pointers
2631/// to struct), Interface* (pointer to ObjCInterfaceType) and id<P> (qualified
2632/// ID type).
2633bool ASTContext::isObjCObjectPointerType(QualType Ty) const {
2634  if (Ty->isObjCQualifiedIdType())
2635    return true;
2636
2637  // Blocks are objects.
2638  if (Ty->isBlockPointerType())
2639    return true;
2640
2641  // All other object types are pointers.
2642  if (!Ty->isPointerType())
2643    return false;
2644
2645  // Check to see if this is 'id' or 'Class', both of which are typedefs for
2646  // pointer types.  This looks for the typedef specifically, not for the
2647  // underlying type.
2648  if (Ty.getUnqualifiedType() == getObjCIdType() ||
2649      Ty.getUnqualifiedType() == getObjCClassType())
2650    return true;
2651
2652  // If this a pointer to an interface (e.g. NSString*), it is ok.
2653  if (Ty->getAsPointerType()->getPointeeType()->isObjCInterfaceType())
2654    return true;
2655
2656  // If is has NSObject attribute, OK as well.
2657  return isObjCNSObjectType(Ty);
2658}
2659
2660/// getObjCGCAttr - Returns one of GCNone, Weak or Strong objc's
2661/// garbage collection attribute.
2662///
2663QualType::GCAttrTypes ASTContext::getObjCGCAttrKind(const QualType &Ty) const {
2664  QualType::GCAttrTypes GCAttrs = QualType::GCNone;
2665  if (getLangOptions().ObjC1 &&
2666      getLangOptions().getGCMode() != LangOptions::NonGC) {
2667    GCAttrs = Ty.getObjCGCAttr();
2668    // Default behavious under objective-c's gc is for objective-c pointers
2669    // (or pointers to them) be treated as though they were declared
2670    // as __strong.
2671    if (GCAttrs == QualType::GCNone) {
2672      if (isObjCObjectPointerType(Ty))
2673        GCAttrs = QualType::Strong;
2674      else if (Ty->isPointerType())
2675        return getObjCGCAttrKind(Ty->getAsPointerType()->getPointeeType());
2676    }
2677  }
2678  return GCAttrs;
2679}
2680
2681//===----------------------------------------------------------------------===//
2682//                        Type Compatibility Testing
2683//===----------------------------------------------------------------------===//
2684
2685/// typesAreBlockCompatible - This routine is called when comparing two
2686/// block types. Types must be strictly compatible here. For example,
2687/// C unfortunately doesn't produce an error for the following:
2688///
2689///   int (*emptyArgFunc)();
2690///   int (*intArgList)(int) = emptyArgFunc;
2691///
2692/// For blocks, we will produce an error for the following (similar to C++):
2693///
2694///   int (^emptyArgBlock)();
2695///   int (^intArgBlock)(int) = emptyArgBlock;
2696///
2697/// FIXME: When the dust settles on this integration, fold this into mergeTypes.
2698///
2699bool ASTContext::typesAreBlockCompatible(QualType lhs, QualType rhs) {
2700  const FunctionType *lbase = lhs->getAsFunctionType();
2701  const FunctionType *rbase = rhs->getAsFunctionType();
2702  const FunctionProtoType *lproto = dyn_cast<FunctionProtoType>(lbase);
2703  const FunctionProtoType *rproto = dyn_cast<FunctionProtoType>(rbase);
2704  if (lproto && rproto == 0)
2705    return false;
2706  return !mergeTypes(lhs, rhs).isNull();
2707}
2708
2709/// areCompatVectorTypes - Return true if the two specified vector types are
2710/// compatible.
2711static bool areCompatVectorTypes(const VectorType *LHS,
2712                                 const VectorType *RHS) {
2713  assert(LHS->isCanonical() && RHS->isCanonical());
2714  return LHS->getElementType() == RHS->getElementType() &&
2715         LHS->getNumElements() == RHS->getNumElements();
2716}
2717
2718/// canAssignObjCInterfaces - Return true if the two interface types are
2719/// compatible for assignment from RHS to LHS.  This handles validation of any
2720/// protocol qualifiers on the LHS or RHS.
2721///
2722bool ASTContext::canAssignObjCInterfaces(const ObjCInterfaceType *LHS,
2723                                         const ObjCInterfaceType *RHS) {
2724  // Verify that the base decls are compatible: the RHS must be a subclass of
2725  // the LHS.
2726  if (!LHS->getDecl()->isSuperClassOf(RHS->getDecl()))
2727    return false;
2728
2729  // RHS must have a superset of the protocols in the LHS.  If the LHS is not
2730  // protocol qualified at all, then we are good.
2731  if (!isa<ObjCQualifiedInterfaceType>(LHS))
2732    return true;
2733
2734  // Okay, we know the LHS has protocol qualifiers.  If the RHS doesn't, then it
2735  // isn't a superset.
2736  if (!isa<ObjCQualifiedInterfaceType>(RHS))
2737    return true;  // FIXME: should return false!
2738
2739  // Finally, we must have two protocol-qualified interfaces.
2740  const ObjCQualifiedInterfaceType *LHSP =cast<ObjCQualifiedInterfaceType>(LHS);
2741  const ObjCQualifiedInterfaceType *RHSP =cast<ObjCQualifiedInterfaceType>(RHS);
2742
2743  // All LHS protocols must have a presence on the RHS.
2744  assert(LHSP->qual_begin() != LHSP->qual_end() && "Empty LHS protocol list?");
2745
2746  for (ObjCQualifiedInterfaceType::qual_iterator LHSPI = LHSP->qual_begin(),
2747                                                 LHSPE = LHSP->qual_end();
2748       LHSPI != LHSPE; LHSPI++) {
2749    bool RHSImplementsProtocol = false;
2750
2751    // If the RHS doesn't implement the protocol on the left, the types
2752    // are incompatible.
2753    for (ObjCQualifiedInterfaceType::qual_iterator RHSPI = RHSP->qual_begin(),
2754                                                   RHSPE = RHSP->qual_end();
2755         !RHSImplementsProtocol && (RHSPI != RHSPE); RHSPI++) {
2756      if ((*RHSPI)->lookupProtocolNamed((*LHSPI)->getIdentifier()))
2757        RHSImplementsProtocol = true;
2758    }
2759    // FIXME: For better diagnostics, consider passing back the protocol name.
2760    if (!RHSImplementsProtocol)
2761      return false;
2762  }
2763  // The RHS implements all protocols listed on the LHS.
2764  return true;
2765}
2766
2767bool ASTContext::areComparableObjCPointerTypes(QualType LHS, QualType RHS) {
2768  // get the "pointed to" types
2769  const PointerType *LHSPT = LHS->getAsPointerType();
2770  const PointerType *RHSPT = RHS->getAsPointerType();
2771
2772  if (!LHSPT || !RHSPT)
2773    return false;
2774
2775  QualType lhptee = LHSPT->getPointeeType();
2776  QualType rhptee = RHSPT->getPointeeType();
2777  const ObjCInterfaceType* LHSIface = lhptee->getAsObjCInterfaceType();
2778  const ObjCInterfaceType* RHSIface = rhptee->getAsObjCInterfaceType();
2779  // ID acts sort of like void* for ObjC interfaces
2780  if (LHSIface && isObjCIdStructType(rhptee))
2781    return true;
2782  if (RHSIface && isObjCIdStructType(lhptee))
2783    return true;
2784  if (!LHSIface || !RHSIface)
2785    return false;
2786  return canAssignObjCInterfaces(LHSIface, RHSIface) ||
2787         canAssignObjCInterfaces(RHSIface, LHSIface);
2788}
2789
2790/// typesAreCompatible - C99 6.7.3p9: For two qualified types to be compatible,
2791/// both shall have the identically qualified version of a compatible type.
2792/// C99 6.2.7p1: Two types have compatible types if their types are the
2793/// same. See 6.7.[2,3,5] for additional rules.
2794bool ASTContext::typesAreCompatible(QualType LHS, QualType RHS) {
2795  return !mergeTypes(LHS, RHS).isNull();
2796}
2797
2798QualType ASTContext::mergeFunctionTypes(QualType lhs, QualType rhs) {
2799  const FunctionType *lbase = lhs->getAsFunctionType();
2800  const FunctionType *rbase = rhs->getAsFunctionType();
2801  const FunctionProtoType *lproto = dyn_cast<FunctionProtoType>(lbase);
2802  const FunctionProtoType *rproto = dyn_cast<FunctionProtoType>(rbase);
2803  bool allLTypes = true;
2804  bool allRTypes = true;
2805
2806  // Check return type
2807  QualType retType = mergeTypes(lbase->getResultType(), rbase->getResultType());
2808  if (retType.isNull()) return QualType();
2809  if (getCanonicalType(retType) != getCanonicalType(lbase->getResultType()))
2810    allLTypes = false;
2811  if (getCanonicalType(retType) != getCanonicalType(rbase->getResultType()))
2812    allRTypes = false;
2813
2814  if (lproto && rproto) { // two C99 style function prototypes
2815    unsigned lproto_nargs = lproto->getNumArgs();
2816    unsigned rproto_nargs = rproto->getNumArgs();
2817
2818    // Compatible functions must have the same number of arguments
2819    if (lproto_nargs != rproto_nargs)
2820      return QualType();
2821
2822    // Variadic and non-variadic functions aren't compatible
2823    if (lproto->isVariadic() != rproto->isVariadic())
2824      return QualType();
2825
2826    if (lproto->getTypeQuals() != rproto->getTypeQuals())
2827      return QualType();
2828
2829    // Check argument compatibility
2830    llvm::SmallVector<QualType, 10> types;
2831    for (unsigned i = 0; i < lproto_nargs; i++) {
2832      QualType largtype = lproto->getArgType(i).getUnqualifiedType();
2833      QualType rargtype = rproto->getArgType(i).getUnqualifiedType();
2834      QualType argtype = mergeTypes(largtype, rargtype);
2835      if (argtype.isNull()) return QualType();
2836      types.push_back(argtype);
2837      if (getCanonicalType(argtype) != getCanonicalType(largtype))
2838        allLTypes = false;
2839      if (getCanonicalType(argtype) != getCanonicalType(rargtype))
2840        allRTypes = false;
2841    }
2842    if (allLTypes) return lhs;
2843    if (allRTypes) return rhs;
2844    return getFunctionType(retType, types.begin(), types.size(),
2845                           lproto->isVariadic(), lproto->getTypeQuals());
2846  }
2847
2848  if (lproto) allRTypes = false;
2849  if (rproto) allLTypes = false;
2850
2851  const FunctionProtoType *proto = lproto ? lproto : rproto;
2852  if (proto) {
2853    if (proto->isVariadic()) return QualType();
2854    // Check that the types are compatible with the types that
2855    // would result from default argument promotions (C99 6.7.5.3p15).
2856    // The only types actually affected are promotable integer
2857    // types and floats, which would be passed as a different
2858    // type depending on whether the prototype is visible.
2859    unsigned proto_nargs = proto->getNumArgs();
2860    for (unsigned i = 0; i < proto_nargs; ++i) {
2861      QualType argTy = proto->getArgType(i);
2862      if (argTy->isPromotableIntegerType() ||
2863          getCanonicalType(argTy).getUnqualifiedType() == FloatTy)
2864        return QualType();
2865    }
2866
2867    if (allLTypes) return lhs;
2868    if (allRTypes) return rhs;
2869    return getFunctionType(retType, proto->arg_type_begin(),
2870                           proto->getNumArgs(), lproto->isVariadic(),
2871                           lproto->getTypeQuals());
2872  }
2873
2874  if (allLTypes) return lhs;
2875  if (allRTypes) return rhs;
2876  return getFunctionNoProtoType(retType);
2877}
2878
2879QualType ASTContext::mergeTypes(QualType LHS, QualType RHS) {
2880  // C++ [expr]: If an expression initially has the type "reference to T", the
2881  // type is adjusted to "T" prior to any further analysis, the expression
2882  // designates the object or function denoted by the reference, and the
2883  // expression is an lvalue unless the reference is an rvalue reference and
2884  // the expression is a function call (possibly inside parentheses).
2885  // FIXME: C++ shouldn't be going through here!  The rules are different
2886  // enough that they should be handled separately.
2887  // FIXME: Merging of lvalue and rvalue references is incorrect. C++ *really*
2888  // shouldn't be going through here!
2889  if (const ReferenceType *RT = LHS->getAsReferenceType())
2890    LHS = RT->getPointeeType();
2891  if (const ReferenceType *RT = RHS->getAsReferenceType())
2892    RHS = RT->getPointeeType();
2893
2894  QualType LHSCan = getCanonicalType(LHS),
2895           RHSCan = getCanonicalType(RHS);
2896
2897  // If two types are identical, they are compatible.
2898  if (LHSCan == RHSCan)
2899    return LHS;
2900
2901  // If the qualifiers are different, the types aren't compatible
2902  // Note that we handle extended qualifiers later, in the
2903  // case for ExtQualType.
2904  if (LHSCan.getCVRQualifiers() != RHSCan.getCVRQualifiers())
2905    return QualType();
2906
2907  Type::TypeClass LHSClass = LHSCan->getTypeClass();
2908  Type::TypeClass RHSClass = RHSCan->getTypeClass();
2909
2910  // We want to consider the two function types to be the same for these
2911  // comparisons, just force one to the other.
2912  if (LHSClass == Type::FunctionProto) LHSClass = Type::FunctionNoProto;
2913  if (RHSClass == Type::FunctionProto) RHSClass = Type::FunctionNoProto;
2914
2915  // Same as above for arrays
2916  if (LHSClass == Type::VariableArray || LHSClass == Type::IncompleteArray)
2917    LHSClass = Type::ConstantArray;
2918  if (RHSClass == Type::VariableArray || RHSClass == Type::IncompleteArray)
2919    RHSClass = Type::ConstantArray;
2920
2921  // Canonicalize ExtVector -> Vector.
2922  if (LHSClass == Type::ExtVector) LHSClass = Type::Vector;
2923  if (RHSClass == Type::ExtVector) RHSClass = Type::Vector;
2924
2925  // Consider qualified interfaces and interfaces the same.
2926  if (LHSClass == Type::ObjCQualifiedInterface) LHSClass = Type::ObjCInterface;
2927  if (RHSClass == Type::ObjCQualifiedInterface) RHSClass = Type::ObjCInterface;
2928
2929  // If the canonical type classes don't match.
2930  if (LHSClass != RHSClass) {
2931    const ObjCInterfaceType* LHSIface = LHS->getAsObjCInterfaceType();
2932    const ObjCInterfaceType* RHSIface = RHS->getAsObjCInterfaceType();
2933
2934    // ID acts sort of like void* for ObjC interfaces
2935    if (LHSIface && isObjCIdStructType(RHS))
2936      return LHS;
2937    if (RHSIface && isObjCIdStructType(LHS))
2938      return RHS;
2939
2940    // ID is compatible with all qualified id types.
2941    if (LHS->isObjCQualifiedIdType()) {
2942      if (const PointerType *PT = RHS->getAsPointerType()) {
2943        QualType pType = PT->getPointeeType();
2944        if (isObjCIdStructType(pType))
2945          return LHS;
2946        // FIXME: need to use ObjCQualifiedIdTypesAreCompatible(LHS, RHS, true).
2947        // Unfortunately, this API is part of Sema (which we don't have access
2948        // to. Need to refactor. The following check is insufficient, since we
2949        // need to make sure the class implements the protocol.
2950        if (pType->isObjCInterfaceType())
2951          return LHS;
2952      }
2953    }
2954    if (RHS->isObjCQualifiedIdType()) {
2955      if (const PointerType *PT = LHS->getAsPointerType()) {
2956        QualType pType = PT->getPointeeType();
2957        if (isObjCIdStructType(pType))
2958          return RHS;
2959        // FIXME: need to use ObjCQualifiedIdTypesAreCompatible(LHS, RHS, true).
2960        // Unfortunately, this API is part of Sema (which we don't have access
2961        // to. Need to refactor. The following check is insufficient, since we
2962        // need to make sure the class implements the protocol.
2963        if (pType->isObjCInterfaceType())
2964          return RHS;
2965      }
2966    }
2967    // C99 6.7.2.2p4: Each enumerated type shall be compatible with char,
2968    // a signed integer type, or an unsigned integer type.
2969    if (const EnumType* ETy = LHS->getAsEnumType()) {
2970      if (ETy->getDecl()->getIntegerType() == RHSCan.getUnqualifiedType())
2971        return RHS;
2972    }
2973    if (const EnumType* ETy = RHS->getAsEnumType()) {
2974      if (ETy->getDecl()->getIntegerType() == LHSCan.getUnqualifiedType())
2975        return LHS;
2976    }
2977
2978    return QualType();
2979  }
2980
2981  // The canonical type classes match.
2982  switch (LHSClass) {
2983#define TYPE(Class, Base)
2984#define ABSTRACT_TYPE(Class, Base)
2985#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
2986#define DEPENDENT_TYPE(Class, Base) case Type::Class:
2987#include "clang/AST/TypeNodes.def"
2988    assert(false && "Non-canonical and dependent types shouldn't get here");
2989    return QualType();
2990
2991  case Type::LValueReference:
2992  case Type::RValueReference:
2993  case Type::MemberPointer:
2994    assert(false && "C++ should never be in mergeTypes");
2995    return QualType();
2996
2997  case Type::IncompleteArray:
2998  case Type::VariableArray:
2999  case Type::FunctionProto:
3000  case Type::ExtVector:
3001  case Type::ObjCQualifiedInterface:
3002    assert(false && "Types are eliminated above");
3003    return QualType();
3004
3005  case Type::Pointer:
3006  {
3007    // Merge two pointer types, while trying to preserve typedef info
3008    QualType LHSPointee = LHS->getAsPointerType()->getPointeeType();
3009    QualType RHSPointee = RHS->getAsPointerType()->getPointeeType();
3010    QualType ResultType = mergeTypes(LHSPointee, RHSPointee);
3011    if (ResultType.isNull()) return QualType();
3012    if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
3013      return LHS;
3014    if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
3015      return RHS;
3016    return getPointerType(ResultType);
3017  }
3018  case Type::BlockPointer:
3019  {
3020    // Merge two block pointer types, while trying to preserve typedef info
3021    QualType LHSPointee = LHS->getAsBlockPointerType()->getPointeeType();
3022    QualType RHSPointee = RHS->getAsBlockPointerType()->getPointeeType();
3023    QualType ResultType = mergeTypes(LHSPointee, RHSPointee);
3024    if (ResultType.isNull()) return QualType();
3025    if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
3026      return LHS;
3027    if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
3028      return RHS;
3029    return getBlockPointerType(ResultType);
3030  }
3031  case Type::ConstantArray:
3032  {
3033    const ConstantArrayType* LCAT = getAsConstantArrayType(LHS);
3034    const ConstantArrayType* RCAT = getAsConstantArrayType(RHS);
3035    if (LCAT && RCAT && RCAT->getSize() != LCAT->getSize())
3036      return QualType();
3037
3038    QualType LHSElem = getAsArrayType(LHS)->getElementType();
3039    QualType RHSElem = getAsArrayType(RHS)->getElementType();
3040    QualType ResultType = mergeTypes(LHSElem, RHSElem);
3041    if (ResultType.isNull()) return QualType();
3042    if (LCAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
3043      return LHS;
3044    if (RCAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
3045      return RHS;
3046    if (LCAT) return getConstantArrayType(ResultType, LCAT->getSize(),
3047                                          ArrayType::ArraySizeModifier(), 0);
3048    if (RCAT) return getConstantArrayType(ResultType, RCAT->getSize(),
3049                                          ArrayType::ArraySizeModifier(), 0);
3050    const VariableArrayType* LVAT = getAsVariableArrayType(LHS);
3051    const VariableArrayType* RVAT = getAsVariableArrayType(RHS);
3052    if (LVAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
3053      return LHS;
3054    if (RVAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
3055      return RHS;
3056    if (LVAT) {
3057      // FIXME: This isn't correct! But tricky to implement because
3058      // the array's size has to be the size of LHS, but the type
3059      // has to be different.
3060      return LHS;
3061    }
3062    if (RVAT) {
3063      // FIXME: This isn't correct! But tricky to implement because
3064      // the array's size has to be the size of RHS, but the type
3065      // has to be different.
3066      return RHS;
3067    }
3068    if (getCanonicalType(LHSElem) == getCanonicalType(ResultType)) return LHS;
3069    if (getCanonicalType(RHSElem) == getCanonicalType(ResultType)) return RHS;
3070    return getIncompleteArrayType(ResultType, ArrayType::ArraySizeModifier(),0);
3071  }
3072  case Type::FunctionNoProto:
3073    return mergeFunctionTypes(LHS, RHS);
3074  case Type::Record:
3075  case Type::Enum:
3076    // FIXME: Why are these compatible?
3077    if (isObjCIdStructType(LHS) && isObjCClassStructType(RHS)) return LHS;
3078    if (isObjCClassStructType(LHS) && isObjCIdStructType(RHS)) return LHS;
3079    return QualType();
3080  case Type::Builtin:
3081    // Only exactly equal builtin types are compatible, which is tested above.
3082    return QualType();
3083  case Type::Complex:
3084    // Distinct complex types are incompatible.
3085    return QualType();
3086  case Type::Vector:
3087    // FIXME: The merged type should be an ExtVector!
3088    if (areCompatVectorTypes(LHS->getAsVectorType(), RHS->getAsVectorType()))
3089      return LHS;
3090    return QualType();
3091  case Type::ObjCInterface: {
3092    // Check if the interfaces are assignment compatible.
3093    // FIXME: This should be type compatibility, e.g. whether
3094    // "LHS x; RHS x;" at global scope is legal.
3095    const ObjCInterfaceType* LHSIface = LHS->getAsObjCInterfaceType();
3096    const ObjCInterfaceType* RHSIface = RHS->getAsObjCInterfaceType();
3097    if (LHSIface && RHSIface &&
3098        canAssignObjCInterfaces(LHSIface, RHSIface))
3099      return LHS;
3100
3101    return QualType();
3102  }
3103  case Type::ObjCQualifiedId:
3104    // Distinct qualified id's are not compatible.
3105    return QualType();
3106  case Type::FixedWidthInt:
3107    // Distinct fixed-width integers are not compatible.
3108    return QualType();
3109  case Type::ObjCQualifiedClass:
3110    // Distinct qualified classes are not compatible.
3111    return QualType();
3112  case Type::ExtQual:
3113    // FIXME: ExtQual types can be compatible even if they're not
3114    // identical!
3115    return QualType();
3116    // First attempt at an implementation, but I'm not really sure it's
3117    // right...
3118#if 0
3119    ExtQualType* LQual = cast<ExtQualType>(LHSCan);
3120    ExtQualType* RQual = cast<ExtQualType>(RHSCan);
3121    if (LQual->getAddressSpace() != RQual->getAddressSpace() ||
3122        LQual->getObjCGCAttr() != RQual->getObjCGCAttr())
3123      return QualType();
3124    QualType LHSBase, RHSBase, ResultType, ResCanUnqual;
3125    LHSBase = QualType(LQual->getBaseType(), 0);
3126    RHSBase = QualType(RQual->getBaseType(), 0);
3127    ResultType = mergeTypes(LHSBase, RHSBase);
3128    if (ResultType.isNull()) return QualType();
3129    ResCanUnqual = getCanonicalType(ResultType).getUnqualifiedType();
3130    if (LHSCan.getUnqualifiedType() == ResCanUnqual)
3131      return LHS;
3132    if (RHSCan.getUnqualifiedType() == ResCanUnqual)
3133      return RHS;
3134    ResultType = getAddrSpaceQualType(ResultType, LQual->getAddressSpace());
3135    ResultType = getObjCGCQualType(ResultType, LQual->getObjCGCAttr());
3136    ResultType.setCVRQualifiers(LHSCan.getCVRQualifiers());
3137    return ResultType;
3138#endif
3139
3140  case Type::TemplateSpecialization:
3141    assert(false && "Dependent types have no size");
3142    break;
3143  }
3144
3145  return QualType();
3146}
3147
3148//===----------------------------------------------------------------------===//
3149//                         Integer Predicates
3150//===----------------------------------------------------------------------===//
3151
3152unsigned ASTContext::getIntWidth(QualType T) {
3153  if (T == BoolTy)
3154    return 1;
3155  if (FixedWidthIntType* FWIT = dyn_cast<FixedWidthIntType>(T)) {
3156    return FWIT->getWidth();
3157  }
3158  // For builtin types, just use the standard type sizing method
3159  return (unsigned)getTypeSize(T);
3160}
3161
3162QualType ASTContext::getCorrespondingUnsignedType(QualType T) {
3163  assert(T->isSignedIntegerType() && "Unexpected type");
3164  if (const EnumType* ETy = T->getAsEnumType())
3165    T = ETy->getDecl()->getIntegerType();
3166  const BuiltinType* BTy = T->getAsBuiltinType();
3167  assert (BTy && "Unexpected signed integer type");
3168  switch (BTy->getKind()) {
3169  case BuiltinType::Char_S:
3170  case BuiltinType::SChar:
3171    return UnsignedCharTy;
3172  case BuiltinType::Short:
3173    return UnsignedShortTy;
3174  case BuiltinType::Int:
3175    return UnsignedIntTy;
3176  case BuiltinType::Long:
3177    return UnsignedLongTy;
3178  case BuiltinType::LongLong:
3179    return UnsignedLongLongTy;
3180  default:
3181    assert(0 && "Unexpected signed integer type");
3182    return QualType();
3183  }
3184}
3185
3186
3187//===----------------------------------------------------------------------===//
3188//                         Serialization Support
3189//===----------------------------------------------------------------------===//
3190
3191enum {
3192  BasicMetadataBlock = 1,
3193  ASTContextBlock = 2,
3194  DeclsBlock = 3
3195};
3196
3197void ASTContext::EmitASTBitcodeBuffer(std::vector<unsigned char> &Buffer) const{
3198  // Create bitstream.
3199  llvm::BitstreamWriter Stream(Buffer);
3200
3201  // Emit the preamble.
3202  Stream.Emit((unsigned)'B', 8);
3203  Stream.Emit((unsigned)'C', 8);
3204  Stream.Emit(0xC, 4);
3205  Stream.Emit(0xF, 4);
3206  Stream.Emit(0xE, 4);
3207  Stream.Emit(0x0, 4);
3208
3209  // Create serializer.
3210  llvm::Serializer S(Stream);
3211
3212  // ===---------------------------------------------------===/
3213  //      Serialize the "Translation Unit" metadata.
3214  // ===---------------------------------------------------===/
3215
3216  // Emit ASTContext.
3217  S.EnterBlock(ASTContextBlock);
3218  S.EmitOwnedPtr(this);
3219  S.ExitBlock();      // exit "ASTContextBlock"
3220
3221  S.EnterBlock(BasicMetadataBlock);
3222
3223  // Block for SourceManager and Target.  Allows easy skipping
3224  // around to the block for the Selectors during deserialization.
3225  S.EnterBlock();
3226
3227  // Emit the SourceManager.
3228  S.Emit(getSourceManager());
3229
3230  // Emit the Target.
3231  S.EmitPtr(&Target);
3232  S.EmitCStr(Target.getTargetTriple());
3233
3234  S.ExitBlock(); // exit "SourceManager and Target Block"
3235
3236  // Emit the Selectors.
3237  S.Emit(Selectors);
3238
3239  // Emit the Identifier Table.
3240  S.Emit(Idents);
3241
3242  S.ExitBlock(); // exit "BasicMetadataBlock"
3243}
3244
3245
3246/// Emit - Serialize an ASTContext object to Bitcode.
3247void ASTContext::Emit(llvm::Serializer& S) const {
3248  S.Emit(LangOpts);
3249  S.EmitRef(SourceMgr);
3250  S.EmitRef(Target);
3251  S.EmitRef(Idents);
3252  S.EmitRef(Selectors);
3253
3254  // Emit the size of the type vector so that we can reserve that size
3255  // when we reconstitute the ASTContext object.
3256  S.EmitInt(Types.size());
3257
3258  for (std::vector<Type*>::const_iterator I=Types.begin(), E=Types.end();
3259                                          I!=E;++I)
3260    (*I)->Emit(S);
3261
3262  S.EmitOwnedPtr(TUDecl);
3263
3264  // FIXME: S.EmitOwnedPtr(CFConstantStringTypeDecl);
3265}
3266
3267
3268ASTContext *ASTContext::ReadASTBitcodeBuffer(llvm::MemoryBuffer &Buffer,
3269                                             FileManager &FMgr) {
3270  // Check if the file is of the proper length.
3271  if (Buffer.getBufferSize() & 0x3) {
3272    // FIXME: Provide diagnostic: "Length should be a multiple of 4 bytes."
3273    return 0;
3274  }
3275
3276  // Create the bitstream reader.
3277  unsigned char *BufPtr = (unsigned char *)Buffer.getBufferStart();
3278  llvm::BitstreamReader Stream(BufPtr, BufPtr+Buffer.getBufferSize());
3279
3280  if (Stream.Read(8) != 'B' ||
3281      Stream.Read(8) != 'C' ||
3282      Stream.Read(4) != 0xC ||
3283      Stream.Read(4) != 0xF ||
3284      Stream.Read(4) != 0xE ||
3285      Stream.Read(4) != 0x0) {
3286    // FIXME: Provide diagnostic.
3287    return NULL;
3288  }
3289
3290  // Create the deserializer.
3291  llvm::Deserializer Dezr(Stream);
3292
3293  // ===---------------------------------------------------===/
3294  //      Deserialize the "Translation Unit" metadata.
3295  // ===---------------------------------------------------===/
3296
3297  // Skip to the BasicMetaDataBlock.  First jump to ASTContextBlock
3298  // (which will appear earlier) and record its location.
3299
3300  bool FoundBlock = Dezr.SkipToBlock(ASTContextBlock);
3301  assert (FoundBlock);
3302
3303  llvm::Deserializer::Location ASTContextBlockLoc =
3304  Dezr.getCurrentBlockLocation();
3305
3306  FoundBlock = Dezr.SkipToBlock(BasicMetadataBlock);
3307  assert (FoundBlock);
3308
3309  // Read the SourceManager.
3310  SourceManager::CreateAndRegister(Dezr, FMgr);
3311
3312  { // Read the TargetInfo.
3313    llvm::SerializedPtrID PtrID = Dezr.ReadPtrID();
3314    char* triple = Dezr.ReadCStr(NULL,0,true);
3315    Dezr.RegisterPtr(PtrID, TargetInfo::CreateTargetInfo(std::string(triple)));
3316    delete [] triple;
3317  }
3318
3319  // For Selectors, we must read the identifier table first because the
3320  //  SelectorTable depends on the identifiers being already deserialized.
3321  llvm::Deserializer::Location SelectorBlkLoc = Dezr.getCurrentBlockLocation();
3322  Dezr.SkipBlock();
3323
3324  // Read the identifier table.
3325  IdentifierTable::CreateAndRegister(Dezr);
3326
3327  // Now jump back and read the selectors.
3328  Dezr.JumpTo(SelectorBlkLoc);
3329  SelectorTable::CreateAndRegister(Dezr);
3330
3331  // Now jump back to ASTContextBlock and read the ASTContext.
3332  Dezr.JumpTo(ASTContextBlockLoc);
3333  return Dezr.ReadOwnedPtr<ASTContext>();
3334}
3335
3336ASTContext* ASTContext::Create(llvm::Deserializer& D) {
3337
3338  // Read the language options.
3339  LangOptions LOpts;
3340  LOpts.Read(D);
3341
3342  SourceManager &SM = D.ReadRef<SourceManager>();
3343  TargetInfo &t = D.ReadRef<TargetInfo>();
3344  IdentifierTable &idents = D.ReadRef<IdentifierTable>();
3345  SelectorTable &sels = D.ReadRef<SelectorTable>();
3346
3347  unsigned size_reserve = D.ReadInt();
3348
3349  ASTContext* A = new ASTContext(LOpts, SM, t, idents, sels,
3350                                 size_reserve);
3351
3352  for (unsigned i = 0; i < size_reserve; ++i)
3353    Type::Create(*A,i,D);
3354
3355  A->TUDecl = cast<TranslationUnitDecl>(D.ReadOwnedPtr<Decl>(*A));
3356
3357  // FIXME: A->CFConstantStringTypeDecl = D.ReadOwnedPtr<RecordDecl>();
3358
3359  return A;
3360}
3361