ASTContext.cpp revision 9e9c454b12671a624f666fc6fbf132fdf183effc
1//===--- ASTContext.cpp - Context to hold long-lived AST nodes ------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements the ASTContext interface.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/AST/ASTContext.h"
15#include "clang/AST/CharUnits.h"
16#include "clang/AST/DeclCXX.h"
17#include "clang/AST/DeclObjC.h"
18#include "clang/AST/DeclTemplate.h"
19#include "clang/AST/TypeLoc.h"
20#include "clang/AST/Expr.h"
21#include "clang/AST/ExprCXX.h"
22#include "clang/AST/ExternalASTSource.h"
23#include "clang/AST/ASTMutationListener.h"
24#include "clang/AST/RecordLayout.h"
25#include "clang/AST/Mangle.h"
26#include "clang/Basic/Builtins.h"
27#include "clang/Basic/SourceManager.h"
28#include "clang/Basic/TargetInfo.h"
29#include "llvm/ADT/SmallString.h"
30#include "llvm/ADT/StringExtras.h"
31#include "llvm/Support/MathExtras.h"
32#include "llvm/Support/raw_ostream.h"
33#include "llvm/Support/Capacity.h"
34#include "CXXABI.h"
35#include <map>
36
37using namespace clang;
38
39unsigned ASTContext::NumImplicitDefaultConstructors;
40unsigned ASTContext::NumImplicitDefaultConstructorsDeclared;
41unsigned ASTContext::NumImplicitCopyConstructors;
42unsigned ASTContext::NumImplicitCopyConstructorsDeclared;
43unsigned ASTContext::NumImplicitMoveConstructors;
44unsigned ASTContext::NumImplicitMoveConstructorsDeclared;
45unsigned ASTContext::NumImplicitCopyAssignmentOperators;
46unsigned ASTContext::NumImplicitCopyAssignmentOperatorsDeclared;
47unsigned ASTContext::NumImplicitMoveAssignmentOperators;
48unsigned ASTContext::NumImplicitMoveAssignmentOperatorsDeclared;
49unsigned ASTContext::NumImplicitDestructors;
50unsigned ASTContext::NumImplicitDestructorsDeclared;
51
52enum FloatingRank {
53  HalfRank, FloatRank, DoubleRank, LongDoubleRank
54};
55
56void
57ASTContext::CanonicalTemplateTemplateParm::Profile(llvm::FoldingSetNodeID &ID,
58                                               TemplateTemplateParmDecl *Parm) {
59  ID.AddInteger(Parm->getDepth());
60  ID.AddInteger(Parm->getPosition());
61  ID.AddBoolean(Parm->isParameterPack());
62
63  TemplateParameterList *Params = Parm->getTemplateParameters();
64  ID.AddInteger(Params->size());
65  for (TemplateParameterList::const_iterator P = Params->begin(),
66                                          PEnd = Params->end();
67       P != PEnd; ++P) {
68    if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*P)) {
69      ID.AddInteger(0);
70      ID.AddBoolean(TTP->isParameterPack());
71      continue;
72    }
73
74    if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(*P)) {
75      ID.AddInteger(1);
76      ID.AddBoolean(NTTP->isParameterPack());
77      ID.AddPointer(NTTP->getType().getCanonicalType().getAsOpaquePtr());
78      if (NTTP->isExpandedParameterPack()) {
79        ID.AddBoolean(true);
80        ID.AddInteger(NTTP->getNumExpansionTypes());
81        for (unsigned I = 0, N = NTTP->getNumExpansionTypes(); I != N; ++I) {
82          QualType T = NTTP->getExpansionType(I);
83          ID.AddPointer(T.getCanonicalType().getAsOpaquePtr());
84        }
85      } else
86        ID.AddBoolean(false);
87      continue;
88    }
89
90    TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(*P);
91    ID.AddInteger(2);
92    Profile(ID, TTP);
93  }
94}
95
96TemplateTemplateParmDecl *
97ASTContext::getCanonicalTemplateTemplateParmDecl(
98                                          TemplateTemplateParmDecl *TTP) const {
99  // Check if we already have a canonical template template parameter.
100  llvm::FoldingSetNodeID ID;
101  CanonicalTemplateTemplateParm::Profile(ID, TTP);
102  void *InsertPos = 0;
103  CanonicalTemplateTemplateParm *Canonical
104    = CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos);
105  if (Canonical)
106    return Canonical->getParam();
107
108  // Build a canonical template parameter list.
109  TemplateParameterList *Params = TTP->getTemplateParameters();
110  SmallVector<NamedDecl *, 4> CanonParams;
111  CanonParams.reserve(Params->size());
112  for (TemplateParameterList::const_iterator P = Params->begin(),
113                                          PEnd = Params->end();
114       P != PEnd; ++P) {
115    if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*P))
116      CanonParams.push_back(
117                  TemplateTypeParmDecl::Create(*this, getTranslationUnitDecl(),
118                                               SourceLocation(),
119                                               SourceLocation(),
120                                               TTP->getDepth(),
121                                               TTP->getIndex(), 0, false,
122                                               TTP->isParameterPack()));
123    else if (NonTypeTemplateParmDecl *NTTP
124             = dyn_cast<NonTypeTemplateParmDecl>(*P)) {
125      QualType T = getCanonicalType(NTTP->getType());
126      TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(T);
127      NonTypeTemplateParmDecl *Param;
128      if (NTTP->isExpandedParameterPack()) {
129        SmallVector<QualType, 2> ExpandedTypes;
130        SmallVector<TypeSourceInfo *, 2> ExpandedTInfos;
131        for (unsigned I = 0, N = NTTP->getNumExpansionTypes(); I != N; ++I) {
132          ExpandedTypes.push_back(getCanonicalType(NTTP->getExpansionType(I)));
133          ExpandedTInfos.push_back(
134                                getTrivialTypeSourceInfo(ExpandedTypes.back()));
135        }
136
137        Param = NonTypeTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
138                                                SourceLocation(),
139                                                SourceLocation(),
140                                                NTTP->getDepth(),
141                                                NTTP->getPosition(), 0,
142                                                T,
143                                                TInfo,
144                                                ExpandedTypes.data(),
145                                                ExpandedTypes.size(),
146                                                ExpandedTInfos.data());
147      } else {
148        Param = NonTypeTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
149                                                SourceLocation(),
150                                                SourceLocation(),
151                                                NTTP->getDepth(),
152                                                NTTP->getPosition(), 0,
153                                                T,
154                                                NTTP->isParameterPack(),
155                                                TInfo);
156      }
157      CanonParams.push_back(Param);
158
159    } else
160      CanonParams.push_back(getCanonicalTemplateTemplateParmDecl(
161                                           cast<TemplateTemplateParmDecl>(*P)));
162  }
163
164  TemplateTemplateParmDecl *CanonTTP
165    = TemplateTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
166                                       SourceLocation(), TTP->getDepth(),
167                                       TTP->getPosition(),
168                                       TTP->isParameterPack(),
169                                       0,
170                         TemplateParameterList::Create(*this, SourceLocation(),
171                                                       SourceLocation(),
172                                                       CanonParams.data(),
173                                                       CanonParams.size(),
174                                                       SourceLocation()));
175
176  // Get the new insert position for the node we care about.
177  Canonical = CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos);
178  assert(Canonical == 0 && "Shouldn't be in the map!");
179  (void)Canonical;
180
181  // Create the canonical template template parameter entry.
182  Canonical = new (*this) CanonicalTemplateTemplateParm(CanonTTP);
183  CanonTemplateTemplateParms.InsertNode(Canonical, InsertPos);
184  return CanonTTP;
185}
186
187CXXABI *ASTContext::createCXXABI(const TargetInfo &T) {
188  if (!LangOpts.CPlusPlus) return 0;
189
190  switch (T.getCXXABI()) {
191  case CXXABI_ARM:
192    return CreateARMCXXABI(*this);
193  case CXXABI_Itanium:
194    return CreateItaniumCXXABI(*this);
195  case CXXABI_Microsoft:
196    return CreateMicrosoftCXXABI(*this);
197  }
198  llvm_unreachable("Invalid CXXABI type!");
199}
200
201static const LangAS::Map *getAddressSpaceMap(const TargetInfo &T,
202                                             const LangOptions &LOpts) {
203  if (LOpts.FakeAddressSpaceMap) {
204    // The fake address space map must have a distinct entry for each
205    // language-specific address space.
206    static const unsigned FakeAddrSpaceMap[] = {
207      1, // opencl_global
208      2, // opencl_local
209      3  // opencl_constant
210    };
211    return &FakeAddrSpaceMap;
212  } else {
213    return &T.getAddressSpaceMap();
214  }
215}
216
217ASTContext::ASTContext(LangOptions& LOpts, SourceManager &SM,
218                       const TargetInfo *t,
219                       IdentifierTable &idents, SelectorTable &sels,
220                       Builtin::Context &builtins,
221                       unsigned size_reserve,
222                       bool DelayInitialization)
223  : FunctionProtoTypes(this_()),
224    TemplateSpecializationTypes(this_()),
225    DependentTemplateSpecializationTypes(this_()),
226    SubstTemplateTemplateParmPacks(this_()),
227    GlobalNestedNameSpecifier(0),
228    Int128Decl(0), UInt128Decl(0),
229    ObjCIdDecl(0), ObjCSelDecl(0), ObjCClassDecl(0), ObjCProtocolClassDecl(0),
230    CFConstantStringTypeDecl(0), ObjCInstanceTypeDecl(0),
231    FILEDecl(0),
232    jmp_bufDecl(0), sigjmp_bufDecl(0), ucontext_tDecl(0),
233    BlockDescriptorType(0), BlockDescriptorExtendedType(0),
234    cudaConfigureCallDecl(0),
235    NullTypeSourceInfo(QualType()),
236    FirstLocalImport(), LastLocalImport(),
237    SourceMgr(SM), LangOpts(LOpts),
238    AddrSpaceMap(0), Target(t), PrintingPolicy(LOpts),
239    Idents(idents), Selectors(sels),
240    BuiltinInfo(builtins),
241    DeclarationNames(*this),
242    ExternalSource(0), Listener(0),
243    LastSDM(0, 0),
244    UniqueBlockByRefTypeID(0)
245{
246  if (size_reserve > 0) Types.reserve(size_reserve);
247  TUDecl = TranslationUnitDecl::Create(*this);
248
249  if (!DelayInitialization) {
250    assert(t && "No target supplied for ASTContext initialization");
251    InitBuiltinTypes(*t);
252  }
253}
254
255ASTContext::~ASTContext() {
256  // Release the DenseMaps associated with DeclContext objects.
257  // FIXME: Is this the ideal solution?
258  ReleaseDeclContextMaps();
259
260  // Call all of the deallocation functions.
261  for (unsigned I = 0, N = Deallocations.size(); I != N; ++I)
262    Deallocations[I].first(Deallocations[I].second);
263
264  // ASTRecordLayout objects in ASTRecordLayouts must always be destroyed
265  // because they can contain DenseMaps.
266  for (llvm::DenseMap<const ObjCContainerDecl*,
267       const ASTRecordLayout*>::iterator
268       I = ObjCLayouts.begin(), E = ObjCLayouts.end(); I != E; )
269    // Increment in loop to prevent using deallocated memory.
270    if (ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second))
271      R->Destroy(*this);
272
273  for (llvm::DenseMap<const RecordDecl*, const ASTRecordLayout*>::iterator
274       I = ASTRecordLayouts.begin(), E = ASTRecordLayouts.end(); I != E; ) {
275    // Increment in loop to prevent using deallocated memory.
276    if (ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second))
277      R->Destroy(*this);
278  }
279
280  for (llvm::DenseMap<const Decl*, AttrVec*>::iterator A = DeclAttrs.begin(),
281                                                    AEnd = DeclAttrs.end();
282       A != AEnd; ++A)
283    A->second->~AttrVec();
284}
285
286void ASTContext::AddDeallocation(void (*Callback)(void*), void *Data) {
287  Deallocations.push_back(std::make_pair(Callback, Data));
288}
289
290void
291ASTContext::setExternalSource(OwningPtr<ExternalASTSource> &Source) {
292  ExternalSource.reset(Source.take());
293}
294
295void ASTContext::PrintStats() const {
296  llvm::errs() << "\n*** AST Context Stats:\n";
297  llvm::errs() << "  " << Types.size() << " types total.\n";
298
299  unsigned counts[] = {
300#define TYPE(Name, Parent) 0,
301#define ABSTRACT_TYPE(Name, Parent)
302#include "clang/AST/TypeNodes.def"
303    0 // Extra
304  };
305
306  for (unsigned i = 0, e = Types.size(); i != e; ++i) {
307    Type *T = Types[i];
308    counts[(unsigned)T->getTypeClass()]++;
309  }
310
311  unsigned Idx = 0;
312  unsigned TotalBytes = 0;
313#define TYPE(Name, Parent)                                              \
314  if (counts[Idx])                                                      \
315    llvm::errs() << "    " << counts[Idx] << " " << #Name               \
316                 << " types\n";                                         \
317  TotalBytes += counts[Idx] * sizeof(Name##Type);                       \
318  ++Idx;
319#define ABSTRACT_TYPE(Name, Parent)
320#include "clang/AST/TypeNodes.def"
321
322  llvm::errs() << "Total bytes = " << TotalBytes << "\n";
323
324  // Implicit special member functions.
325  llvm::errs() << NumImplicitDefaultConstructorsDeclared << "/"
326               << NumImplicitDefaultConstructors
327               << " implicit default constructors created\n";
328  llvm::errs() << NumImplicitCopyConstructorsDeclared << "/"
329               << NumImplicitCopyConstructors
330               << " implicit copy constructors created\n";
331  if (getLangOptions().CPlusPlus)
332    llvm::errs() << NumImplicitMoveConstructorsDeclared << "/"
333                 << NumImplicitMoveConstructors
334                 << " implicit move constructors created\n";
335  llvm::errs() << NumImplicitCopyAssignmentOperatorsDeclared << "/"
336               << NumImplicitCopyAssignmentOperators
337               << " implicit copy assignment operators created\n";
338  if (getLangOptions().CPlusPlus)
339    llvm::errs() << NumImplicitMoveAssignmentOperatorsDeclared << "/"
340                 << NumImplicitMoveAssignmentOperators
341                 << " implicit move assignment operators created\n";
342  llvm::errs() << NumImplicitDestructorsDeclared << "/"
343               << NumImplicitDestructors
344               << " implicit destructors created\n";
345
346  if (ExternalSource.get()) {
347    llvm::errs() << "\n";
348    ExternalSource->PrintStats();
349  }
350
351  BumpAlloc.PrintStats();
352}
353
354TypedefDecl *ASTContext::getInt128Decl() const {
355  if (!Int128Decl) {
356    TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(Int128Ty);
357    Int128Decl = TypedefDecl::Create(const_cast<ASTContext &>(*this),
358                                     getTranslationUnitDecl(),
359                                     SourceLocation(),
360                                     SourceLocation(),
361                                     &Idents.get("__int128_t"),
362                                     TInfo);
363  }
364
365  return Int128Decl;
366}
367
368TypedefDecl *ASTContext::getUInt128Decl() const {
369  if (!UInt128Decl) {
370    TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(UnsignedInt128Ty);
371    UInt128Decl = TypedefDecl::Create(const_cast<ASTContext &>(*this),
372                                     getTranslationUnitDecl(),
373                                     SourceLocation(),
374                                     SourceLocation(),
375                                     &Idents.get("__uint128_t"),
376                                     TInfo);
377  }
378
379  return UInt128Decl;
380}
381
382void ASTContext::InitBuiltinType(CanQualType &R, BuiltinType::Kind K) {
383  BuiltinType *Ty = new (*this, TypeAlignment) BuiltinType(K);
384  R = CanQualType::CreateUnsafe(QualType(Ty, 0));
385  Types.push_back(Ty);
386}
387
388void ASTContext::InitBuiltinTypes(const TargetInfo &Target) {
389  assert((!this->Target || this->Target == &Target) &&
390         "Incorrect target reinitialization");
391  assert(VoidTy.isNull() && "Context reinitialized?");
392
393  this->Target = &Target;
394
395  ABI.reset(createCXXABI(Target));
396  AddrSpaceMap = getAddressSpaceMap(Target, LangOpts);
397
398  // C99 6.2.5p19.
399  InitBuiltinType(VoidTy,              BuiltinType::Void);
400
401  // C99 6.2.5p2.
402  InitBuiltinType(BoolTy,              BuiltinType::Bool);
403  // C99 6.2.5p3.
404  if (LangOpts.CharIsSigned)
405    InitBuiltinType(CharTy,            BuiltinType::Char_S);
406  else
407    InitBuiltinType(CharTy,            BuiltinType::Char_U);
408  // C99 6.2.5p4.
409  InitBuiltinType(SignedCharTy,        BuiltinType::SChar);
410  InitBuiltinType(ShortTy,             BuiltinType::Short);
411  InitBuiltinType(IntTy,               BuiltinType::Int);
412  InitBuiltinType(LongTy,              BuiltinType::Long);
413  InitBuiltinType(LongLongTy,          BuiltinType::LongLong);
414
415  // C99 6.2.5p6.
416  InitBuiltinType(UnsignedCharTy,      BuiltinType::UChar);
417  InitBuiltinType(UnsignedShortTy,     BuiltinType::UShort);
418  InitBuiltinType(UnsignedIntTy,       BuiltinType::UInt);
419  InitBuiltinType(UnsignedLongTy,      BuiltinType::ULong);
420  InitBuiltinType(UnsignedLongLongTy,  BuiltinType::ULongLong);
421
422  // C99 6.2.5p10.
423  InitBuiltinType(FloatTy,             BuiltinType::Float);
424  InitBuiltinType(DoubleTy,            BuiltinType::Double);
425  InitBuiltinType(LongDoubleTy,        BuiltinType::LongDouble);
426
427  // GNU extension, 128-bit integers.
428  InitBuiltinType(Int128Ty,            BuiltinType::Int128);
429  InitBuiltinType(UnsignedInt128Ty,    BuiltinType::UInt128);
430
431  if (LangOpts.CPlusPlus) { // C++ 3.9.1p5
432    if (TargetInfo::isTypeSigned(Target.getWCharType()))
433      InitBuiltinType(WCharTy,           BuiltinType::WChar_S);
434    else  // -fshort-wchar makes wchar_t be unsigned.
435      InitBuiltinType(WCharTy,           BuiltinType::WChar_U);
436  } else // C99
437    WCharTy = getFromTargetType(Target.getWCharType());
438
439  if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
440    InitBuiltinType(Char16Ty,           BuiltinType::Char16);
441  else // C99
442    Char16Ty = getFromTargetType(Target.getChar16Type());
443
444  if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
445    InitBuiltinType(Char32Ty,           BuiltinType::Char32);
446  else // C99
447    Char32Ty = getFromTargetType(Target.getChar32Type());
448
449  // Placeholder type for type-dependent expressions whose type is
450  // completely unknown. No code should ever check a type against
451  // DependentTy and users should never see it; however, it is here to
452  // help diagnose failures to properly check for type-dependent
453  // expressions.
454  InitBuiltinType(DependentTy,         BuiltinType::Dependent);
455
456  // Placeholder type for functions.
457  InitBuiltinType(OverloadTy,          BuiltinType::Overload);
458
459  // Placeholder type for bound members.
460  InitBuiltinType(BoundMemberTy,       BuiltinType::BoundMember);
461
462  // Placeholder type for pseudo-objects.
463  InitBuiltinType(PseudoObjectTy,      BuiltinType::PseudoObject);
464
465  // "any" type; useful for debugger-like clients.
466  InitBuiltinType(UnknownAnyTy,        BuiltinType::UnknownAny);
467
468  // Placeholder type for unbridged ARC casts.
469  InitBuiltinType(ARCUnbridgedCastTy,  BuiltinType::ARCUnbridgedCast);
470
471  // C99 6.2.5p11.
472  FloatComplexTy      = getComplexType(FloatTy);
473  DoubleComplexTy     = getComplexType(DoubleTy);
474  LongDoubleComplexTy = getComplexType(LongDoubleTy);
475
476  BuiltinVaListType = QualType();
477
478  // Builtin types for 'id', 'Class', and 'SEL'.
479  InitBuiltinType(ObjCBuiltinIdTy, BuiltinType::ObjCId);
480  InitBuiltinType(ObjCBuiltinClassTy, BuiltinType::ObjCClass);
481  InitBuiltinType(ObjCBuiltinSelTy, BuiltinType::ObjCSel);
482
483  // Builtin type for __objc_yes and __objc_no
484  ObjCBuiltinBoolTy = SignedCharTy;
485
486  ObjCConstantStringType = QualType();
487
488  // void * type
489  VoidPtrTy = getPointerType(VoidTy);
490
491  // nullptr type (C++0x 2.14.7)
492  InitBuiltinType(NullPtrTy,           BuiltinType::NullPtr);
493
494  // half type (OpenCL 6.1.1.1) / ARM NEON __fp16
495  InitBuiltinType(HalfTy, BuiltinType::Half);
496}
497
498DiagnosticsEngine &ASTContext::getDiagnostics() const {
499  return SourceMgr.getDiagnostics();
500}
501
502AttrVec& ASTContext::getDeclAttrs(const Decl *D) {
503  AttrVec *&Result = DeclAttrs[D];
504  if (!Result) {
505    void *Mem = Allocate(sizeof(AttrVec));
506    Result = new (Mem) AttrVec;
507  }
508
509  return *Result;
510}
511
512/// \brief Erase the attributes corresponding to the given declaration.
513void ASTContext::eraseDeclAttrs(const Decl *D) {
514  llvm::DenseMap<const Decl*, AttrVec*>::iterator Pos = DeclAttrs.find(D);
515  if (Pos != DeclAttrs.end()) {
516    Pos->second->~AttrVec();
517    DeclAttrs.erase(Pos);
518  }
519}
520
521MemberSpecializationInfo *
522ASTContext::getInstantiatedFromStaticDataMember(const VarDecl *Var) {
523  assert(Var->isStaticDataMember() && "Not a static data member");
524  llvm::DenseMap<const VarDecl *, MemberSpecializationInfo *>::iterator Pos
525    = InstantiatedFromStaticDataMember.find(Var);
526  if (Pos == InstantiatedFromStaticDataMember.end())
527    return 0;
528
529  return Pos->second;
530}
531
532void
533ASTContext::setInstantiatedFromStaticDataMember(VarDecl *Inst, VarDecl *Tmpl,
534                                                TemplateSpecializationKind TSK,
535                                          SourceLocation PointOfInstantiation) {
536  assert(Inst->isStaticDataMember() && "Not a static data member");
537  assert(Tmpl->isStaticDataMember() && "Not a static data member");
538  assert(!InstantiatedFromStaticDataMember[Inst] &&
539         "Already noted what static data member was instantiated from");
540  InstantiatedFromStaticDataMember[Inst]
541    = new (*this) MemberSpecializationInfo(Tmpl, TSK, PointOfInstantiation);
542}
543
544FunctionDecl *ASTContext::getClassScopeSpecializationPattern(
545                                                     const FunctionDecl *FD){
546  assert(FD && "Specialization is 0");
547  llvm::DenseMap<const FunctionDecl*, FunctionDecl *>::const_iterator Pos
548    = ClassScopeSpecializationPattern.find(FD);
549  if (Pos == ClassScopeSpecializationPattern.end())
550    return 0;
551
552  return Pos->second;
553}
554
555void ASTContext::setClassScopeSpecializationPattern(FunctionDecl *FD,
556                                        FunctionDecl *Pattern) {
557  assert(FD && "Specialization is 0");
558  assert(Pattern && "Class scope specialization pattern is 0");
559  ClassScopeSpecializationPattern[FD] = Pattern;
560}
561
562NamedDecl *
563ASTContext::getInstantiatedFromUsingDecl(UsingDecl *UUD) {
564  llvm::DenseMap<UsingDecl *, NamedDecl *>::const_iterator Pos
565    = InstantiatedFromUsingDecl.find(UUD);
566  if (Pos == InstantiatedFromUsingDecl.end())
567    return 0;
568
569  return Pos->second;
570}
571
572void
573ASTContext::setInstantiatedFromUsingDecl(UsingDecl *Inst, NamedDecl *Pattern) {
574  assert((isa<UsingDecl>(Pattern) ||
575          isa<UnresolvedUsingValueDecl>(Pattern) ||
576          isa<UnresolvedUsingTypenameDecl>(Pattern)) &&
577         "pattern decl is not a using decl");
578  assert(!InstantiatedFromUsingDecl[Inst] && "pattern already exists");
579  InstantiatedFromUsingDecl[Inst] = Pattern;
580}
581
582UsingShadowDecl *
583ASTContext::getInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst) {
584  llvm::DenseMap<UsingShadowDecl*, UsingShadowDecl*>::const_iterator Pos
585    = InstantiatedFromUsingShadowDecl.find(Inst);
586  if (Pos == InstantiatedFromUsingShadowDecl.end())
587    return 0;
588
589  return Pos->second;
590}
591
592void
593ASTContext::setInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst,
594                                               UsingShadowDecl *Pattern) {
595  assert(!InstantiatedFromUsingShadowDecl[Inst] && "pattern already exists");
596  InstantiatedFromUsingShadowDecl[Inst] = Pattern;
597}
598
599FieldDecl *ASTContext::getInstantiatedFromUnnamedFieldDecl(FieldDecl *Field) {
600  llvm::DenseMap<FieldDecl *, FieldDecl *>::iterator Pos
601    = InstantiatedFromUnnamedFieldDecl.find(Field);
602  if (Pos == InstantiatedFromUnnamedFieldDecl.end())
603    return 0;
604
605  return Pos->second;
606}
607
608void ASTContext::setInstantiatedFromUnnamedFieldDecl(FieldDecl *Inst,
609                                                     FieldDecl *Tmpl) {
610  assert(!Inst->getDeclName() && "Instantiated field decl is not unnamed");
611  assert(!Tmpl->getDeclName() && "Template field decl is not unnamed");
612  assert(!InstantiatedFromUnnamedFieldDecl[Inst] &&
613         "Already noted what unnamed field was instantiated from");
614
615  InstantiatedFromUnnamedFieldDecl[Inst] = Tmpl;
616}
617
618bool ASTContext::ZeroBitfieldFollowsNonBitfield(const FieldDecl *FD,
619                                    const FieldDecl *LastFD) const {
620  return (FD->isBitField() && LastFD && !LastFD->isBitField() &&
621          FD->getBitWidthValue(*this) == 0);
622}
623
624bool ASTContext::ZeroBitfieldFollowsBitfield(const FieldDecl *FD,
625                                             const FieldDecl *LastFD) const {
626  return (FD->isBitField() && LastFD && LastFD->isBitField() &&
627          FD->getBitWidthValue(*this) == 0 &&
628          LastFD->getBitWidthValue(*this) != 0);
629}
630
631bool ASTContext::BitfieldFollowsBitfield(const FieldDecl *FD,
632                                         const FieldDecl *LastFD) const {
633  return (FD->isBitField() && LastFD && LastFD->isBitField() &&
634          FD->getBitWidthValue(*this) &&
635          LastFD->getBitWidthValue(*this));
636}
637
638bool ASTContext::NonBitfieldFollowsBitfield(const FieldDecl *FD,
639                                         const FieldDecl *LastFD) const {
640  return (!FD->isBitField() && LastFD && LastFD->isBitField() &&
641          LastFD->getBitWidthValue(*this));
642}
643
644bool ASTContext::BitfieldFollowsNonBitfield(const FieldDecl *FD,
645                                             const FieldDecl *LastFD) const {
646  return (FD->isBitField() && LastFD && !LastFD->isBitField() &&
647          FD->getBitWidthValue(*this));
648}
649
650ASTContext::overridden_cxx_method_iterator
651ASTContext::overridden_methods_begin(const CXXMethodDecl *Method) const {
652  llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
653    = OverriddenMethods.find(Method);
654  if (Pos == OverriddenMethods.end())
655    return 0;
656
657  return Pos->second.begin();
658}
659
660ASTContext::overridden_cxx_method_iterator
661ASTContext::overridden_methods_end(const CXXMethodDecl *Method) const {
662  llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
663    = OverriddenMethods.find(Method);
664  if (Pos == OverriddenMethods.end())
665    return 0;
666
667  return Pos->second.end();
668}
669
670unsigned
671ASTContext::overridden_methods_size(const CXXMethodDecl *Method) const {
672  llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
673    = OverriddenMethods.find(Method);
674  if (Pos == OverriddenMethods.end())
675    return 0;
676
677  return Pos->second.size();
678}
679
680void ASTContext::addOverriddenMethod(const CXXMethodDecl *Method,
681                                     const CXXMethodDecl *Overridden) {
682  OverriddenMethods[Method].push_back(Overridden);
683}
684
685void ASTContext::addedLocalImportDecl(ImportDecl *Import) {
686  assert(!Import->NextLocalImport && "Import declaration already in the chain");
687  assert(!Import->isFromASTFile() && "Non-local import declaration");
688  if (!FirstLocalImport) {
689    FirstLocalImport = Import;
690    LastLocalImport = Import;
691    return;
692  }
693
694  LastLocalImport->NextLocalImport = Import;
695  LastLocalImport = Import;
696}
697
698//===----------------------------------------------------------------------===//
699//                         Type Sizing and Analysis
700//===----------------------------------------------------------------------===//
701
702/// getFloatTypeSemantics - Return the APFloat 'semantics' for the specified
703/// scalar floating point type.
704const llvm::fltSemantics &ASTContext::getFloatTypeSemantics(QualType T) const {
705  const BuiltinType *BT = T->getAs<BuiltinType>();
706  assert(BT && "Not a floating point type!");
707  switch (BT->getKind()) {
708  default: llvm_unreachable("Not a floating point type!");
709  case BuiltinType::Half:       return Target->getHalfFormat();
710  case BuiltinType::Float:      return Target->getFloatFormat();
711  case BuiltinType::Double:     return Target->getDoubleFormat();
712  case BuiltinType::LongDouble: return Target->getLongDoubleFormat();
713  }
714}
715
716/// getDeclAlign - Return a conservative estimate of the alignment of the
717/// specified decl.  Note that bitfields do not have a valid alignment, so
718/// this method will assert on them.
719/// If @p RefAsPointee, references are treated like their underlying type
720/// (for alignof), else they're treated like pointers (for CodeGen).
721CharUnits ASTContext::getDeclAlign(const Decl *D, bool RefAsPointee) const {
722  unsigned Align = Target->getCharWidth();
723
724  bool UseAlignAttrOnly = false;
725  if (unsigned AlignFromAttr = D->getMaxAlignment()) {
726    Align = AlignFromAttr;
727
728    // __attribute__((aligned)) can increase or decrease alignment
729    // *except* on a struct or struct member, where it only increases
730    // alignment unless 'packed' is also specified.
731    //
732    // It is an error for alignas to decrease alignment, so we can
733    // ignore that possibility;  Sema should diagnose it.
734    if (isa<FieldDecl>(D)) {
735      UseAlignAttrOnly = D->hasAttr<PackedAttr>() ||
736        cast<FieldDecl>(D)->getParent()->hasAttr<PackedAttr>();
737    } else {
738      UseAlignAttrOnly = true;
739    }
740  }
741  else if (isa<FieldDecl>(D))
742      UseAlignAttrOnly =
743        D->hasAttr<PackedAttr>() ||
744        cast<FieldDecl>(D)->getParent()->hasAttr<PackedAttr>();
745
746  // If we're using the align attribute only, just ignore everything
747  // else about the declaration and its type.
748  if (UseAlignAttrOnly) {
749    // do nothing
750
751  } else if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
752    QualType T = VD->getType();
753    if (const ReferenceType* RT = T->getAs<ReferenceType>()) {
754      if (RefAsPointee)
755        T = RT->getPointeeType();
756      else
757        T = getPointerType(RT->getPointeeType());
758    }
759    if (!T->isIncompleteType() && !T->isFunctionType()) {
760      // Adjust alignments of declarations with array type by the
761      // large-array alignment on the target.
762      unsigned MinWidth = Target->getLargeArrayMinWidth();
763      const ArrayType *arrayType;
764      if (MinWidth && (arrayType = getAsArrayType(T))) {
765        if (isa<VariableArrayType>(arrayType))
766          Align = std::max(Align, Target->getLargeArrayAlign());
767        else if (isa<ConstantArrayType>(arrayType) &&
768                 MinWidth <= getTypeSize(cast<ConstantArrayType>(arrayType)))
769          Align = std::max(Align, Target->getLargeArrayAlign());
770
771        // Walk through any array types while we're at it.
772        T = getBaseElementType(arrayType);
773      }
774      Align = std::max(Align, getPreferredTypeAlign(T.getTypePtr()));
775    }
776
777    // Fields can be subject to extra alignment constraints, like if
778    // the field is packed, the struct is packed, or the struct has a
779    // a max-field-alignment constraint (#pragma pack).  So calculate
780    // the actual alignment of the field within the struct, and then
781    // (as we're expected to) constrain that by the alignment of the type.
782    if (const FieldDecl *field = dyn_cast<FieldDecl>(VD)) {
783      // So calculate the alignment of the field.
784      const ASTRecordLayout &layout = getASTRecordLayout(field->getParent());
785
786      // Start with the record's overall alignment.
787      unsigned fieldAlign = toBits(layout.getAlignment());
788
789      // Use the GCD of that and the offset within the record.
790      uint64_t offset = layout.getFieldOffset(field->getFieldIndex());
791      if (offset > 0) {
792        // Alignment is always a power of 2, so the GCD will be a power of 2,
793        // which means we get to do this crazy thing instead of Euclid's.
794        uint64_t lowBitOfOffset = offset & (~offset + 1);
795        if (lowBitOfOffset < fieldAlign)
796          fieldAlign = static_cast<unsigned>(lowBitOfOffset);
797      }
798
799      Align = std::min(Align, fieldAlign);
800    }
801  }
802
803  return toCharUnitsFromBits(Align);
804}
805
806std::pair<CharUnits, CharUnits>
807ASTContext::getTypeInfoInChars(const Type *T) const {
808  std::pair<uint64_t, unsigned> Info = getTypeInfo(T);
809  return std::make_pair(toCharUnitsFromBits(Info.first),
810                        toCharUnitsFromBits(Info.second));
811}
812
813std::pair<CharUnits, CharUnits>
814ASTContext::getTypeInfoInChars(QualType T) const {
815  return getTypeInfoInChars(T.getTypePtr());
816}
817
818/// getTypeSize - Return the size of the specified type, in bits.  This method
819/// does not work on incomplete types.
820///
821/// FIXME: Pointers into different addr spaces could have different sizes and
822/// alignment requirements: getPointerInfo should take an AddrSpace, this
823/// should take a QualType, &c.
824std::pair<uint64_t, unsigned>
825ASTContext::getTypeInfo(const Type *T) const {
826  uint64_t Width=0;
827  unsigned Align=8;
828  switch (T->getTypeClass()) {
829#define TYPE(Class, Base)
830#define ABSTRACT_TYPE(Class, Base)
831#define NON_CANONICAL_TYPE(Class, Base)
832#define DEPENDENT_TYPE(Class, Base) case Type::Class:
833#include "clang/AST/TypeNodes.def"
834    llvm_unreachable("Should not see dependent types");
835
836  case Type::FunctionNoProto:
837  case Type::FunctionProto:
838    // GCC extension: alignof(function) = 32 bits
839    Width = 0;
840    Align = 32;
841    break;
842
843  case Type::IncompleteArray:
844  case Type::VariableArray:
845    Width = 0;
846    Align = getTypeAlign(cast<ArrayType>(T)->getElementType());
847    break;
848
849  case Type::ConstantArray: {
850    const ConstantArrayType *CAT = cast<ConstantArrayType>(T);
851
852    std::pair<uint64_t, unsigned> EltInfo = getTypeInfo(CAT->getElementType());
853    uint64_t Size = CAT->getSize().getZExtValue();
854    assert((Size == 0 || EltInfo.first <= (uint64_t)(-1)/Size) && "Overflow in array type bit size evaluation");
855    Width = EltInfo.first*Size;
856    Align = EltInfo.second;
857    Width = llvm::RoundUpToAlignment(Width, Align);
858    break;
859  }
860  case Type::ExtVector:
861  case Type::Vector: {
862    const VectorType *VT = cast<VectorType>(T);
863    std::pair<uint64_t, unsigned> EltInfo = getTypeInfo(VT->getElementType());
864    Width = EltInfo.first*VT->getNumElements();
865    Align = Width;
866    // If the alignment is not a power of 2, round up to the next power of 2.
867    // This happens for non-power-of-2 length vectors.
868    if (Align & (Align-1)) {
869      Align = llvm::NextPowerOf2(Align);
870      Width = llvm::RoundUpToAlignment(Width, Align);
871    }
872    break;
873  }
874
875  case Type::Builtin:
876    switch (cast<BuiltinType>(T)->getKind()) {
877    default: llvm_unreachable("Unknown builtin type!");
878    case BuiltinType::Void:
879      // GCC extension: alignof(void) = 8 bits.
880      Width = 0;
881      Align = 8;
882      break;
883
884    case BuiltinType::Bool:
885      Width = Target->getBoolWidth();
886      Align = Target->getBoolAlign();
887      break;
888    case BuiltinType::Char_S:
889    case BuiltinType::Char_U:
890    case BuiltinType::UChar:
891    case BuiltinType::SChar:
892      Width = Target->getCharWidth();
893      Align = Target->getCharAlign();
894      break;
895    case BuiltinType::WChar_S:
896    case BuiltinType::WChar_U:
897      Width = Target->getWCharWidth();
898      Align = Target->getWCharAlign();
899      break;
900    case BuiltinType::Char16:
901      Width = Target->getChar16Width();
902      Align = Target->getChar16Align();
903      break;
904    case BuiltinType::Char32:
905      Width = Target->getChar32Width();
906      Align = Target->getChar32Align();
907      break;
908    case BuiltinType::UShort:
909    case BuiltinType::Short:
910      Width = Target->getShortWidth();
911      Align = Target->getShortAlign();
912      break;
913    case BuiltinType::UInt:
914    case BuiltinType::Int:
915      Width = Target->getIntWidth();
916      Align = Target->getIntAlign();
917      break;
918    case BuiltinType::ULong:
919    case BuiltinType::Long:
920      Width = Target->getLongWidth();
921      Align = Target->getLongAlign();
922      break;
923    case BuiltinType::ULongLong:
924    case BuiltinType::LongLong:
925      Width = Target->getLongLongWidth();
926      Align = Target->getLongLongAlign();
927      break;
928    case BuiltinType::Int128:
929    case BuiltinType::UInt128:
930      Width = 128;
931      Align = 128; // int128_t is 128-bit aligned on all targets.
932      break;
933    case BuiltinType::Half:
934      Width = Target->getHalfWidth();
935      Align = Target->getHalfAlign();
936      break;
937    case BuiltinType::Float:
938      Width = Target->getFloatWidth();
939      Align = Target->getFloatAlign();
940      break;
941    case BuiltinType::Double:
942      Width = Target->getDoubleWidth();
943      Align = Target->getDoubleAlign();
944      break;
945    case BuiltinType::LongDouble:
946      Width = Target->getLongDoubleWidth();
947      Align = Target->getLongDoubleAlign();
948      break;
949    case BuiltinType::NullPtr:
950      Width = Target->getPointerWidth(0); // C++ 3.9.1p11: sizeof(nullptr_t)
951      Align = Target->getPointerAlign(0); //   == sizeof(void*)
952      break;
953    case BuiltinType::ObjCId:
954    case BuiltinType::ObjCClass:
955    case BuiltinType::ObjCSel:
956      Width = Target->getPointerWidth(0);
957      Align = Target->getPointerAlign(0);
958      break;
959    }
960    break;
961  case Type::ObjCObjectPointer:
962    Width = Target->getPointerWidth(0);
963    Align = Target->getPointerAlign(0);
964    break;
965  case Type::BlockPointer: {
966    unsigned AS = getTargetAddressSpace(
967        cast<BlockPointerType>(T)->getPointeeType());
968    Width = Target->getPointerWidth(AS);
969    Align = Target->getPointerAlign(AS);
970    break;
971  }
972  case Type::LValueReference:
973  case Type::RValueReference: {
974    // alignof and sizeof should never enter this code path here, so we go
975    // the pointer route.
976    unsigned AS = getTargetAddressSpace(
977        cast<ReferenceType>(T)->getPointeeType());
978    Width = Target->getPointerWidth(AS);
979    Align = Target->getPointerAlign(AS);
980    break;
981  }
982  case Type::Pointer: {
983    unsigned AS = getTargetAddressSpace(cast<PointerType>(T)->getPointeeType());
984    Width = Target->getPointerWidth(AS);
985    Align = Target->getPointerAlign(AS);
986    break;
987  }
988  case Type::MemberPointer: {
989    const MemberPointerType *MPT = cast<MemberPointerType>(T);
990    std::pair<uint64_t, unsigned> PtrDiffInfo =
991      getTypeInfo(getPointerDiffType());
992    Width = PtrDiffInfo.first * ABI->getMemberPointerSize(MPT);
993    Align = PtrDiffInfo.second;
994    break;
995  }
996  case Type::Complex: {
997    // Complex types have the same alignment as their elements, but twice the
998    // size.
999    std::pair<uint64_t, unsigned> EltInfo =
1000      getTypeInfo(cast<ComplexType>(T)->getElementType());
1001    Width = EltInfo.first*2;
1002    Align = EltInfo.second;
1003    break;
1004  }
1005  case Type::ObjCObject:
1006    return getTypeInfo(cast<ObjCObjectType>(T)->getBaseType().getTypePtr());
1007  case Type::ObjCInterface: {
1008    const ObjCInterfaceType *ObjCI = cast<ObjCInterfaceType>(T);
1009    const ASTRecordLayout &Layout = getASTObjCInterfaceLayout(ObjCI->getDecl());
1010    Width = toBits(Layout.getSize());
1011    Align = toBits(Layout.getAlignment());
1012    break;
1013  }
1014  case Type::Record:
1015  case Type::Enum: {
1016    const TagType *TT = cast<TagType>(T);
1017
1018    if (TT->getDecl()->isInvalidDecl()) {
1019      Width = 8;
1020      Align = 8;
1021      break;
1022    }
1023
1024    if (const EnumType *ET = dyn_cast<EnumType>(TT))
1025      return getTypeInfo(ET->getDecl()->getIntegerType());
1026
1027    const RecordType *RT = cast<RecordType>(TT);
1028    const ASTRecordLayout &Layout = getASTRecordLayout(RT->getDecl());
1029    Width = toBits(Layout.getSize());
1030    Align = toBits(Layout.getAlignment());
1031    break;
1032  }
1033
1034  case Type::SubstTemplateTypeParm:
1035    return getTypeInfo(cast<SubstTemplateTypeParmType>(T)->
1036                       getReplacementType().getTypePtr());
1037
1038  case Type::Auto: {
1039    const AutoType *A = cast<AutoType>(T);
1040    assert(A->isDeduced() && "Cannot request the size of a dependent type");
1041    return getTypeInfo(A->getDeducedType().getTypePtr());
1042  }
1043
1044  case Type::Paren:
1045    return getTypeInfo(cast<ParenType>(T)->getInnerType().getTypePtr());
1046
1047  case Type::Typedef: {
1048    const TypedefNameDecl *Typedef = cast<TypedefType>(T)->getDecl();
1049    std::pair<uint64_t, unsigned> Info
1050      = getTypeInfo(Typedef->getUnderlyingType().getTypePtr());
1051    // If the typedef has an aligned attribute on it, it overrides any computed
1052    // alignment we have.  This violates the GCC documentation (which says that
1053    // attribute(aligned) can only round up) but matches its implementation.
1054    if (unsigned AttrAlign = Typedef->getMaxAlignment())
1055      Align = AttrAlign;
1056    else
1057      Align = Info.second;
1058    Width = Info.first;
1059    break;
1060  }
1061
1062  case Type::TypeOfExpr:
1063    return getTypeInfo(cast<TypeOfExprType>(T)->getUnderlyingExpr()->getType()
1064                         .getTypePtr());
1065
1066  case Type::TypeOf:
1067    return getTypeInfo(cast<TypeOfType>(T)->getUnderlyingType().getTypePtr());
1068
1069  case Type::Decltype:
1070    return getTypeInfo(cast<DecltypeType>(T)->getUnderlyingExpr()->getType()
1071                        .getTypePtr());
1072
1073  case Type::UnaryTransform:
1074    return getTypeInfo(cast<UnaryTransformType>(T)->getUnderlyingType());
1075
1076  case Type::Elaborated:
1077    return getTypeInfo(cast<ElaboratedType>(T)->getNamedType().getTypePtr());
1078
1079  case Type::Attributed:
1080    return getTypeInfo(
1081                  cast<AttributedType>(T)->getEquivalentType().getTypePtr());
1082
1083  case Type::TemplateSpecialization: {
1084    assert(getCanonicalType(T) != T &&
1085           "Cannot request the size of a dependent type");
1086    const TemplateSpecializationType *TST = cast<TemplateSpecializationType>(T);
1087    // A type alias template specialization may refer to a typedef with the
1088    // aligned attribute on it.
1089    if (TST->isTypeAlias())
1090      return getTypeInfo(TST->getAliasedType().getTypePtr());
1091    else
1092      return getTypeInfo(getCanonicalType(T));
1093  }
1094
1095  case Type::Atomic: {
1096    std::pair<uint64_t, unsigned> Info
1097      = getTypeInfo(cast<AtomicType>(T)->getValueType());
1098    Width = Info.first;
1099    Align = Info.second;
1100    if (Width != 0 && Width <= Target->getMaxAtomicPromoteWidth() &&
1101        llvm::isPowerOf2_64(Width)) {
1102      // We can potentially perform lock-free atomic operations for this
1103      // type; promote the alignment appropriately.
1104      // FIXME: We could potentially promote the width here as well...
1105      // is that worthwhile?  (Non-struct atomic types generally have
1106      // power-of-two size anyway, but structs might not.  Requires a bit
1107      // of implementation work to make sure we zero out the extra bits.)
1108      Align = static_cast<unsigned>(Width);
1109    }
1110  }
1111
1112  }
1113
1114  assert(llvm::isPowerOf2_32(Align) && "Alignment must be power of 2");
1115  return std::make_pair(Width, Align);
1116}
1117
1118/// toCharUnitsFromBits - Convert a size in bits to a size in characters.
1119CharUnits ASTContext::toCharUnitsFromBits(int64_t BitSize) const {
1120  return CharUnits::fromQuantity(BitSize / getCharWidth());
1121}
1122
1123/// toBits - Convert a size in characters to a size in characters.
1124int64_t ASTContext::toBits(CharUnits CharSize) const {
1125  return CharSize.getQuantity() * getCharWidth();
1126}
1127
1128/// getTypeSizeInChars - Return the size of the specified type, in characters.
1129/// This method does not work on incomplete types.
1130CharUnits ASTContext::getTypeSizeInChars(QualType T) const {
1131  return toCharUnitsFromBits(getTypeSize(T));
1132}
1133CharUnits ASTContext::getTypeSizeInChars(const Type *T) const {
1134  return toCharUnitsFromBits(getTypeSize(T));
1135}
1136
1137/// getTypeAlignInChars - Return the ABI-specified alignment of a type, in
1138/// characters. This method does not work on incomplete types.
1139CharUnits ASTContext::getTypeAlignInChars(QualType T) const {
1140  return toCharUnitsFromBits(getTypeAlign(T));
1141}
1142CharUnits ASTContext::getTypeAlignInChars(const Type *T) const {
1143  return toCharUnitsFromBits(getTypeAlign(T));
1144}
1145
1146/// getPreferredTypeAlign - Return the "preferred" alignment of the specified
1147/// type for the current target in bits.  This can be different than the ABI
1148/// alignment in cases where it is beneficial for performance to overalign
1149/// a data type.
1150unsigned ASTContext::getPreferredTypeAlign(const Type *T) const {
1151  unsigned ABIAlign = getTypeAlign(T);
1152
1153  // Double and long long should be naturally aligned if possible.
1154  if (const ComplexType* CT = T->getAs<ComplexType>())
1155    T = CT->getElementType().getTypePtr();
1156  if (T->isSpecificBuiltinType(BuiltinType::Double) ||
1157      T->isSpecificBuiltinType(BuiltinType::LongLong))
1158    return std::max(ABIAlign, (unsigned)getTypeSize(T));
1159
1160  return ABIAlign;
1161}
1162
1163/// DeepCollectObjCIvars -
1164/// This routine first collects all declared, but not synthesized, ivars in
1165/// super class and then collects all ivars, including those synthesized for
1166/// current class. This routine is used for implementation of current class
1167/// when all ivars, declared and synthesized are known.
1168///
1169void ASTContext::DeepCollectObjCIvars(const ObjCInterfaceDecl *OI,
1170                                      bool leafClass,
1171                            SmallVectorImpl<const ObjCIvarDecl*> &Ivars) const {
1172  if (const ObjCInterfaceDecl *SuperClass = OI->getSuperClass())
1173    DeepCollectObjCIvars(SuperClass, false, Ivars);
1174  if (!leafClass) {
1175    for (ObjCInterfaceDecl::ivar_iterator I = OI->ivar_begin(),
1176         E = OI->ivar_end(); I != E; ++I)
1177      Ivars.push_back(*I);
1178  } else {
1179    ObjCInterfaceDecl *IDecl = const_cast<ObjCInterfaceDecl *>(OI);
1180    for (const ObjCIvarDecl *Iv = IDecl->all_declared_ivar_begin(); Iv;
1181         Iv= Iv->getNextIvar())
1182      Ivars.push_back(Iv);
1183  }
1184}
1185
1186/// CollectInheritedProtocols - Collect all protocols in current class and
1187/// those inherited by it.
1188void ASTContext::CollectInheritedProtocols(const Decl *CDecl,
1189                          llvm::SmallPtrSet<ObjCProtocolDecl*, 8> &Protocols) {
1190  if (const ObjCInterfaceDecl *OI = dyn_cast<ObjCInterfaceDecl>(CDecl)) {
1191    // We can use protocol_iterator here instead of
1192    // all_referenced_protocol_iterator since we are walking all categories.
1193    for (ObjCInterfaceDecl::all_protocol_iterator P = OI->all_referenced_protocol_begin(),
1194         PE = OI->all_referenced_protocol_end(); P != PE; ++P) {
1195      ObjCProtocolDecl *Proto = (*P);
1196      Protocols.insert(Proto->getCanonicalDecl());
1197      for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
1198           PE = Proto->protocol_end(); P != PE; ++P) {
1199        Protocols.insert((*P)->getCanonicalDecl());
1200        CollectInheritedProtocols(*P, Protocols);
1201      }
1202    }
1203
1204    // Categories of this Interface.
1205    for (const ObjCCategoryDecl *CDeclChain = OI->getCategoryList();
1206         CDeclChain; CDeclChain = CDeclChain->getNextClassCategory())
1207      CollectInheritedProtocols(CDeclChain, Protocols);
1208    if (ObjCInterfaceDecl *SD = OI->getSuperClass())
1209      while (SD) {
1210        CollectInheritedProtocols(SD, Protocols);
1211        SD = SD->getSuperClass();
1212      }
1213  } else if (const ObjCCategoryDecl *OC = dyn_cast<ObjCCategoryDecl>(CDecl)) {
1214    for (ObjCCategoryDecl::protocol_iterator P = OC->protocol_begin(),
1215         PE = OC->protocol_end(); P != PE; ++P) {
1216      ObjCProtocolDecl *Proto = (*P);
1217      Protocols.insert(Proto->getCanonicalDecl());
1218      for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
1219           PE = Proto->protocol_end(); P != PE; ++P)
1220        CollectInheritedProtocols(*P, Protocols);
1221    }
1222  } else if (const ObjCProtocolDecl *OP = dyn_cast<ObjCProtocolDecl>(CDecl)) {
1223    for (ObjCProtocolDecl::protocol_iterator P = OP->protocol_begin(),
1224         PE = OP->protocol_end(); P != PE; ++P) {
1225      ObjCProtocolDecl *Proto = (*P);
1226      Protocols.insert(Proto->getCanonicalDecl());
1227      for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
1228           PE = Proto->protocol_end(); P != PE; ++P)
1229        CollectInheritedProtocols(*P, Protocols);
1230    }
1231  }
1232}
1233
1234unsigned ASTContext::CountNonClassIvars(const ObjCInterfaceDecl *OI) const {
1235  unsigned count = 0;
1236  // Count ivars declared in class extension.
1237  for (const ObjCCategoryDecl *CDecl = OI->getFirstClassExtension(); CDecl;
1238       CDecl = CDecl->getNextClassExtension())
1239    count += CDecl->ivar_size();
1240
1241  // Count ivar defined in this class's implementation.  This
1242  // includes synthesized ivars.
1243  if (ObjCImplementationDecl *ImplDecl = OI->getImplementation())
1244    count += ImplDecl->ivar_size();
1245
1246  return count;
1247}
1248
1249bool ASTContext::isSentinelNullExpr(const Expr *E) {
1250  if (!E)
1251    return false;
1252
1253  // nullptr_t is always treated as null.
1254  if (E->getType()->isNullPtrType()) return true;
1255
1256  if (E->getType()->isAnyPointerType() &&
1257      E->IgnoreParenCasts()->isNullPointerConstant(*this,
1258                                                Expr::NPC_ValueDependentIsNull))
1259    return true;
1260
1261  // Unfortunately, __null has type 'int'.
1262  if (isa<GNUNullExpr>(E)) return true;
1263
1264  return false;
1265}
1266
1267/// \brief Get the implementation of ObjCInterfaceDecl,or NULL if none exists.
1268ObjCImplementationDecl *ASTContext::getObjCImplementation(ObjCInterfaceDecl *D) {
1269  llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
1270    I = ObjCImpls.find(D);
1271  if (I != ObjCImpls.end())
1272    return cast<ObjCImplementationDecl>(I->second);
1273  return 0;
1274}
1275/// \brief Get the implementation of ObjCCategoryDecl, or NULL if none exists.
1276ObjCCategoryImplDecl *ASTContext::getObjCImplementation(ObjCCategoryDecl *D) {
1277  llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
1278    I = ObjCImpls.find(D);
1279  if (I != ObjCImpls.end())
1280    return cast<ObjCCategoryImplDecl>(I->second);
1281  return 0;
1282}
1283
1284/// \brief Set the implementation of ObjCInterfaceDecl.
1285void ASTContext::setObjCImplementation(ObjCInterfaceDecl *IFaceD,
1286                           ObjCImplementationDecl *ImplD) {
1287  assert(IFaceD && ImplD && "Passed null params");
1288  ObjCImpls[IFaceD] = ImplD;
1289}
1290/// \brief Set the implementation of ObjCCategoryDecl.
1291void ASTContext::setObjCImplementation(ObjCCategoryDecl *CatD,
1292                           ObjCCategoryImplDecl *ImplD) {
1293  assert(CatD && ImplD && "Passed null params");
1294  ObjCImpls[CatD] = ImplD;
1295}
1296
1297ObjCInterfaceDecl *ASTContext::getObjContainingInterface(NamedDecl *ND) const {
1298  if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(ND->getDeclContext()))
1299    return ID;
1300  if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(ND->getDeclContext()))
1301    return CD->getClassInterface();
1302  if (ObjCImplDecl *IMD = dyn_cast<ObjCImplDecl>(ND->getDeclContext()))
1303    return IMD->getClassInterface();
1304
1305  return 0;
1306}
1307
1308/// \brief Get the copy initialization expression of VarDecl,or NULL if
1309/// none exists.
1310Expr *ASTContext::getBlockVarCopyInits(const VarDecl*VD) {
1311  assert(VD && "Passed null params");
1312  assert(VD->hasAttr<BlocksAttr>() &&
1313         "getBlockVarCopyInits - not __block var");
1314  llvm::DenseMap<const VarDecl*, Expr*>::iterator
1315    I = BlockVarCopyInits.find(VD);
1316  return (I != BlockVarCopyInits.end()) ? cast<Expr>(I->second) : 0;
1317}
1318
1319/// \brief Set the copy inialization expression of a block var decl.
1320void ASTContext::setBlockVarCopyInits(VarDecl*VD, Expr* Init) {
1321  assert(VD && Init && "Passed null params");
1322  assert(VD->hasAttr<BlocksAttr>() &&
1323         "setBlockVarCopyInits - not __block var");
1324  BlockVarCopyInits[VD] = Init;
1325}
1326
1327/// \brief Allocate an uninitialized TypeSourceInfo.
1328///
1329/// The caller should initialize the memory held by TypeSourceInfo using
1330/// the TypeLoc wrappers.
1331///
1332/// \param T the type that will be the basis for type source info. This type
1333/// should refer to how the declarator was written in source code, not to
1334/// what type semantic analysis resolved the declarator to.
1335TypeSourceInfo *ASTContext::CreateTypeSourceInfo(QualType T,
1336                                                 unsigned DataSize) const {
1337  if (!DataSize)
1338    DataSize = TypeLoc::getFullDataSizeForType(T);
1339  else
1340    assert(DataSize == TypeLoc::getFullDataSizeForType(T) &&
1341           "incorrect data size provided to CreateTypeSourceInfo!");
1342
1343  TypeSourceInfo *TInfo =
1344    (TypeSourceInfo*)BumpAlloc.Allocate(sizeof(TypeSourceInfo) + DataSize, 8);
1345  new (TInfo) TypeSourceInfo(T);
1346  return TInfo;
1347}
1348
1349TypeSourceInfo *ASTContext::getTrivialTypeSourceInfo(QualType T,
1350                                                     SourceLocation L) const {
1351  TypeSourceInfo *DI = CreateTypeSourceInfo(T);
1352  DI->getTypeLoc().initialize(const_cast<ASTContext &>(*this), L);
1353  return DI;
1354}
1355
1356const ASTRecordLayout &
1357ASTContext::getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D) const {
1358  return getObjCLayout(D, 0);
1359}
1360
1361const ASTRecordLayout &
1362ASTContext::getASTObjCImplementationLayout(
1363                                        const ObjCImplementationDecl *D) const {
1364  return getObjCLayout(D->getClassInterface(), D);
1365}
1366
1367//===----------------------------------------------------------------------===//
1368//                   Type creation/memoization methods
1369//===----------------------------------------------------------------------===//
1370
1371QualType
1372ASTContext::getExtQualType(const Type *baseType, Qualifiers quals) const {
1373  unsigned fastQuals = quals.getFastQualifiers();
1374  quals.removeFastQualifiers();
1375
1376  // Check if we've already instantiated this type.
1377  llvm::FoldingSetNodeID ID;
1378  ExtQuals::Profile(ID, baseType, quals);
1379  void *insertPos = 0;
1380  if (ExtQuals *eq = ExtQualNodes.FindNodeOrInsertPos(ID, insertPos)) {
1381    assert(eq->getQualifiers() == quals);
1382    return QualType(eq, fastQuals);
1383  }
1384
1385  // If the base type is not canonical, make the appropriate canonical type.
1386  QualType canon;
1387  if (!baseType->isCanonicalUnqualified()) {
1388    SplitQualType canonSplit = baseType->getCanonicalTypeInternal().split();
1389    canonSplit.Quals.addConsistentQualifiers(quals);
1390    canon = getExtQualType(canonSplit.Ty, canonSplit.Quals);
1391
1392    // Re-find the insert position.
1393    (void) ExtQualNodes.FindNodeOrInsertPos(ID, insertPos);
1394  }
1395
1396  ExtQuals *eq = new (*this, TypeAlignment) ExtQuals(baseType, canon, quals);
1397  ExtQualNodes.InsertNode(eq, insertPos);
1398  return QualType(eq, fastQuals);
1399}
1400
1401QualType
1402ASTContext::getAddrSpaceQualType(QualType T, unsigned AddressSpace) const {
1403  QualType CanT = getCanonicalType(T);
1404  if (CanT.getAddressSpace() == AddressSpace)
1405    return T;
1406
1407  // If we are composing extended qualifiers together, merge together
1408  // into one ExtQuals node.
1409  QualifierCollector Quals;
1410  const Type *TypeNode = Quals.strip(T);
1411
1412  // If this type already has an address space specified, it cannot get
1413  // another one.
1414  assert(!Quals.hasAddressSpace() &&
1415         "Type cannot be in multiple addr spaces!");
1416  Quals.addAddressSpace(AddressSpace);
1417
1418  return getExtQualType(TypeNode, Quals);
1419}
1420
1421QualType ASTContext::getObjCGCQualType(QualType T,
1422                                       Qualifiers::GC GCAttr) const {
1423  QualType CanT = getCanonicalType(T);
1424  if (CanT.getObjCGCAttr() == GCAttr)
1425    return T;
1426
1427  if (const PointerType *ptr = T->getAs<PointerType>()) {
1428    QualType Pointee = ptr->getPointeeType();
1429    if (Pointee->isAnyPointerType()) {
1430      QualType ResultType = getObjCGCQualType(Pointee, GCAttr);
1431      return getPointerType(ResultType);
1432    }
1433  }
1434
1435  // If we are composing extended qualifiers together, merge together
1436  // into one ExtQuals node.
1437  QualifierCollector Quals;
1438  const Type *TypeNode = Quals.strip(T);
1439
1440  // If this type already has an ObjCGC specified, it cannot get
1441  // another one.
1442  assert(!Quals.hasObjCGCAttr() &&
1443         "Type cannot have multiple ObjCGCs!");
1444  Quals.addObjCGCAttr(GCAttr);
1445
1446  return getExtQualType(TypeNode, Quals);
1447}
1448
1449const FunctionType *ASTContext::adjustFunctionType(const FunctionType *T,
1450                                                   FunctionType::ExtInfo Info) {
1451  if (T->getExtInfo() == Info)
1452    return T;
1453
1454  QualType Result;
1455  if (const FunctionNoProtoType *FNPT = dyn_cast<FunctionNoProtoType>(T)) {
1456    Result = getFunctionNoProtoType(FNPT->getResultType(), Info);
1457  } else {
1458    const FunctionProtoType *FPT = cast<FunctionProtoType>(T);
1459    FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
1460    EPI.ExtInfo = Info;
1461    Result = getFunctionType(FPT->getResultType(), FPT->arg_type_begin(),
1462                             FPT->getNumArgs(), EPI);
1463  }
1464
1465  return cast<FunctionType>(Result.getTypePtr());
1466}
1467
1468/// getComplexType - Return the uniqued reference to the type for a complex
1469/// number with the specified element type.
1470QualType ASTContext::getComplexType(QualType T) const {
1471  // Unique pointers, to guarantee there is only one pointer of a particular
1472  // structure.
1473  llvm::FoldingSetNodeID ID;
1474  ComplexType::Profile(ID, T);
1475
1476  void *InsertPos = 0;
1477  if (ComplexType *CT = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos))
1478    return QualType(CT, 0);
1479
1480  // If the pointee type isn't canonical, this won't be a canonical type either,
1481  // so fill in the canonical type field.
1482  QualType Canonical;
1483  if (!T.isCanonical()) {
1484    Canonical = getComplexType(getCanonicalType(T));
1485
1486    // Get the new insert position for the node we care about.
1487    ComplexType *NewIP = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos);
1488    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1489  }
1490  ComplexType *New = new (*this, TypeAlignment) ComplexType(T, Canonical);
1491  Types.push_back(New);
1492  ComplexTypes.InsertNode(New, InsertPos);
1493  return QualType(New, 0);
1494}
1495
1496/// getPointerType - Return the uniqued reference to the type for a pointer to
1497/// the specified type.
1498QualType ASTContext::getPointerType(QualType T) const {
1499  // Unique pointers, to guarantee there is only one pointer of a particular
1500  // structure.
1501  llvm::FoldingSetNodeID ID;
1502  PointerType::Profile(ID, T);
1503
1504  void *InsertPos = 0;
1505  if (PointerType *PT = PointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1506    return QualType(PT, 0);
1507
1508  // If the pointee type isn't canonical, this won't be a canonical type either,
1509  // so fill in the canonical type field.
1510  QualType Canonical;
1511  if (!T.isCanonical()) {
1512    Canonical = getPointerType(getCanonicalType(T));
1513
1514    // Get the new insert position for the node we care about.
1515    PointerType *NewIP = PointerTypes.FindNodeOrInsertPos(ID, InsertPos);
1516    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1517  }
1518  PointerType *New = new (*this, TypeAlignment) PointerType(T, Canonical);
1519  Types.push_back(New);
1520  PointerTypes.InsertNode(New, InsertPos);
1521  return QualType(New, 0);
1522}
1523
1524/// getBlockPointerType - Return the uniqued reference to the type for
1525/// a pointer to the specified block.
1526QualType ASTContext::getBlockPointerType(QualType T) const {
1527  assert(T->isFunctionType() && "block of function types only");
1528  // Unique pointers, to guarantee there is only one block of a particular
1529  // structure.
1530  llvm::FoldingSetNodeID ID;
1531  BlockPointerType::Profile(ID, T);
1532
1533  void *InsertPos = 0;
1534  if (BlockPointerType *PT =
1535        BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1536    return QualType(PT, 0);
1537
1538  // If the block pointee type isn't canonical, this won't be a canonical
1539  // type either so fill in the canonical type field.
1540  QualType Canonical;
1541  if (!T.isCanonical()) {
1542    Canonical = getBlockPointerType(getCanonicalType(T));
1543
1544    // Get the new insert position for the node we care about.
1545    BlockPointerType *NewIP =
1546      BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
1547    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1548  }
1549  BlockPointerType *New
1550    = new (*this, TypeAlignment) BlockPointerType(T, Canonical);
1551  Types.push_back(New);
1552  BlockPointerTypes.InsertNode(New, InsertPos);
1553  return QualType(New, 0);
1554}
1555
1556/// getLValueReferenceType - Return the uniqued reference to the type for an
1557/// lvalue reference to the specified type.
1558QualType
1559ASTContext::getLValueReferenceType(QualType T, bool SpelledAsLValue) const {
1560  assert(getCanonicalType(T) != OverloadTy &&
1561         "Unresolved overloaded function type");
1562
1563  // Unique pointers, to guarantee there is only one pointer of a particular
1564  // structure.
1565  llvm::FoldingSetNodeID ID;
1566  ReferenceType::Profile(ID, T, SpelledAsLValue);
1567
1568  void *InsertPos = 0;
1569  if (LValueReferenceType *RT =
1570        LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
1571    return QualType(RT, 0);
1572
1573  const ReferenceType *InnerRef = T->getAs<ReferenceType>();
1574
1575  // If the referencee type isn't canonical, this won't be a canonical type
1576  // either, so fill in the canonical type field.
1577  QualType Canonical;
1578  if (!SpelledAsLValue || InnerRef || !T.isCanonical()) {
1579    QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
1580    Canonical = getLValueReferenceType(getCanonicalType(PointeeType));
1581
1582    // Get the new insert position for the node we care about.
1583    LValueReferenceType *NewIP =
1584      LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
1585    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1586  }
1587
1588  LValueReferenceType *New
1589    = new (*this, TypeAlignment) LValueReferenceType(T, Canonical,
1590                                                     SpelledAsLValue);
1591  Types.push_back(New);
1592  LValueReferenceTypes.InsertNode(New, InsertPos);
1593
1594  return QualType(New, 0);
1595}
1596
1597/// getRValueReferenceType - Return the uniqued reference to the type for an
1598/// rvalue reference to the specified type.
1599QualType ASTContext::getRValueReferenceType(QualType T) const {
1600  // Unique pointers, to guarantee there is only one pointer of a particular
1601  // structure.
1602  llvm::FoldingSetNodeID ID;
1603  ReferenceType::Profile(ID, T, false);
1604
1605  void *InsertPos = 0;
1606  if (RValueReferenceType *RT =
1607        RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
1608    return QualType(RT, 0);
1609
1610  const ReferenceType *InnerRef = T->getAs<ReferenceType>();
1611
1612  // If the referencee type isn't canonical, this won't be a canonical type
1613  // either, so fill in the canonical type field.
1614  QualType Canonical;
1615  if (InnerRef || !T.isCanonical()) {
1616    QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
1617    Canonical = getRValueReferenceType(getCanonicalType(PointeeType));
1618
1619    // Get the new insert position for the node we care about.
1620    RValueReferenceType *NewIP =
1621      RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
1622    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1623  }
1624
1625  RValueReferenceType *New
1626    = new (*this, TypeAlignment) RValueReferenceType(T, Canonical);
1627  Types.push_back(New);
1628  RValueReferenceTypes.InsertNode(New, InsertPos);
1629  return QualType(New, 0);
1630}
1631
1632/// getMemberPointerType - Return the uniqued reference to the type for a
1633/// member pointer to the specified type, in the specified class.
1634QualType ASTContext::getMemberPointerType(QualType T, const Type *Cls) const {
1635  // Unique pointers, to guarantee there is only one pointer of a particular
1636  // structure.
1637  llvm::FoldingSetNodeID ID;
1638  MemberPointerType::Profile(ID, T, Cls);
1639
1640  void *InsertPos = 0;
1641  if (MemberPointerType *PT =
1642      MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1643    return QualType(PT, 0);
1644
1645  // If the pointee or class type isn't canonical, this won't be a canonical
1646  // type either, so fill in the canonical type field.
1647  QualType Canonical;
1648  if (!T.isCanonical() || !Cls->isCanonicalUnqualified()) {
1649    Canonical = getMemberPointerType(getCanonicalType(T),getCanonicalType(Cls));
1650
1651    // Get the new insert position for the node we care about.
1652    MemberPointerType *NewIP =
1653      MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
1654    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1655  }
1656  MemberPointerType *New
1657    = new (*this, TypeAlignment) MemberPointerType(T, Cls, Canonical);
1658  Types.push_back(New);
1659  MemberPointerTypes.InsertNode(New, InsertPos);
1660  return QualType(New, 0);
1661}
1662
1663/// getConstantArrayType - Return the unique reference to the type for an
1664/// array of the specified element type.
1665QualType ASTContext::getConstantArrayType(QualType EltTy,
1666                                          const llvm::APInt &ArySizeIn,
1667                                          ArrayType::ArraySizeModifier ASM,
1668                                          unsigned IndexTypeQuals) const {
1669  assert((EltTy->isDependentType() ||
1670          EltTy->isIncompleteType() || EltTy->isConstantSizeType()) &&
1671         "Constant array of VLAs is illegal!");
1672
1673  // Convert the array size into a canonical width matching the pointer size for
1674  // the target.
1675  llvm::APInt ArySize(ArySizeIn);
1676  ArySize =
1677    ArySize.zextOrTrunc(Target->getPointerWidth(getTargetAddressSpace(EltTy)));
1678
1679  llvm::FoldingSetNodeID ID;
1680  ConstantArrayType::Profile(ID, EltTy, ArySize, ASM, IndexTypeQuals);
1681
1682  void *InsertPos = 0;
1683  if (ConstantArrayType *ATP =
1684      ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
1685    return QualType(ATP, 0);
1686
1687  // If the element type isn't canonical or has qualifiers, this won't
1688  // be a canonical type either, so fill in the canonical type field.
1689  QualType Canon;
1690  if (!EltTy.isCanonical() || EltTy.hasLocalQualifiers()) {
1691    SplitQualType canonSplit = getCanonicalType(EltTy).split();
1692    Canon = getConstantArrayType(QualType(canonSplit.Ty, 0), ArySize,
1693                                 ASM, IndexTypeQuals);
1694    Canon = getQualifiedType(Canon, canonSplit.Quals);
1695
1696    // Get the new insert position for the node we care about.
1697    ConstantArrayType *NewIP =
1698      ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
1699    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1700  }
1701
1702  ConstantArrayType *New = new(*this,TypeAlignment)
1703    ConstantArrayType(EltTy, Canon, ArySize, ASM, IndexTypeQuals);
1704  ConstantArrayTypes.InsertNode(New, InsertPos);
1705  Types.push_back(New);
1706  return QualType(New, 0);
1707}
1708
1709/// getVariableArrayDecayedType - Turns the given type, which may be
1710/// variably-modified, into the corresponding type with all the known
1711/// sizes replaced with [*].
1712QualType ASTContext::getVariableArrayDecayedType(QualType type) const {
1713  // Vastly most common case.
1714  if (!type->isVariablyModifiedType()) return type;
1715
1716  QualType result;
1717
1718  SplitQualType split = type.getSplitDesugaredType();
1719  const Type *ty = split.Ty;
1720  switch (ty->getTypeClass()) {
1721#define TYPE(Class, Base)
1722#define ABSTRACT_TYPE(Class, Base)
1723#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
1724#include "clang/AST/TypeNodes.def"
1725    llvm_unreachable("didn't desugar past all non-canonical types?");
1726
1727  // These types should never be variably-modified.
1728  case Type::Builtin:
1729  case Type::Complex:
1730  case Type::Vector:
1731  case Type::ExtVector:
1732  case Type::DependentSizedExtVector:
1733  case Type::ObjCObject:
1734  case Type::ObjCInterface:
1735  case Type::ObjCObjectPointer:
1736  case Type::Record:
1737  case Type::Enum:
1738  case Type::UnresolvedUsing:
1739  case Type::TypeOfExpr:
1740  case Type::TypeOf:
1741  case Type::Decltype:
1742  case Type::UnaryTransform:
1743  case Type::DependentName:
1744  case Type::InjectedClassName:
1745  case Type::TemplateSpecialization:
1746  case Type::DependentTemplateSpecialization:
1747  case Type::TemplateTypeParm:
1748  case Type::SubstTemplateTypeParmPack:
1749  case Type::Auto:
1750  case Type::PackExpansion:
1751    llvm_unreachable("type should never be variably-modified");
1752
1753  // These types can be variably-modified but should never need to
1754  // further decay.
1755  case Type::FunctionNoProto:
1756  case Type::FunctionProto:
1757  case Type::BlockPointer:
1758  case Type::MemberPointer:
1759    return type;
1760
1761  // These types can be variably-modified.  All these modifications
1762  // preserve structure except as noted by comments.
1763  // TODO: if we ever care about optimizing VLAs, there are no-op
1764  // optimizations available here.
1765  case Type::Pointer:
1766    result = getPointerType(getVariableArrayDecayedType(
1767                              cast<PointerType>(ty)->getPointeeType()));
1768    break;
1769
1770  case Type::LValueReference: {
1771    const LValueReferenceType *lv = cast<LValueReferenceType>(ty);
1772    result = getLValueReferenceType(
1773                 getVariableArrayDecayedType(lv->getPointeeType()),
1774                                    lv->isSpelledAsLValue());
1775    break;
1776  }
1777
1778  case Type::RValueReference: {
1779    const RValueReferenceType *lv = cast<RValueReferenceType>(ty);
1780    result = getRValueReferenceType(
1781                 getVariableArrayDecayedType(lv->getPointeeType()));
1782    break;
1783  }
1784
1785  case Type::Atomic: {
1786    const AtomicType *at = cast<AtomicType>(ty);
1787    result = getAtomicType(getVariableArrayDecayedType(at->getValueType()));
1788    break;
1789  }
1790
1791  case Type::ConstantArray: {
1792    const ConstantArrayType *cat = cast<ConstantArrayType>(ty);
1793    result = getConstantArrayType(
1794                 getVariableArrayDecayedType(cat->getElementType()),
1795                                  cat->getSize(),
1796                                  cat->getSizeModifier(),
1797                                  cat->getIndexTypeCVRQualifiers());
1798    break;
1799  }
1800
1801  case Type::DependentSizedArray: {
1802    const DependentSizedArrayType *dat = cast<DependentSizedArrayType>(ty);
1803    result = getDependentSizedArrayType(
1804                 getVariableArrayDecayedType(dat->getElementType()),
1805                                        dat->getSizeExpr(),
1806                                        dat->getSizeModifier(),
1807                                        dat->getIndexTypeCVRQualifiers(),
1808                                        dat->getBracketsRange());
1809    break;
1810  }
1811
1812  // Turn incomplete types into [*] types.
1813  case Type::IncompleteArray: {
1814    const IncompleteArrayType *iat = cast<IncompleteArrayType>(ty);
1815    result = getVariableArrayType(
1816                 getVariableArrayDecayedType(iat->getElementType()),
1817                                  /*size*/ 0,
1818                                  ArrayType::Normal,
1819                                  iat->getIndexTypeCVRQualifiers(),
1820                                  SourceRange());
1821    break;
1822  }
1823
1824  // Turn VLA types into [*] types.
1825  case Type::VariableArray: {
1826    const VariableArrayType *vat = cast<VariableArrayType>(ty);
1827    result = getVariableArrayType(
1828                 getVariableArrayDecayedType(vat->getElementType()),
1829                                  /*size*/ 0,
1830                                  ArrayType::Star,
1831                                  vat->getIndexTypeCVRQualifiers(),
1832                                  vat->getBracketsRange());
1833    break;
1834  }
1835  }
1836
1837  // Apply the top-level qualifiers from the original.
1838  return getQualifiedType(result, split.Quals);
1839}
1840
1841/// getVariableArrayType - Returns a non-unique reference to the type for a
1842/// variable array of the specified element type.
1843QualType ASTContext::getVariableArrayType(QualType EltTy,
1844                                          Expr *NumElts,
1845                                          ArrayType::ArraySizeModifier ASM,
1846                                          unsigned IndexTypeQuals,
1847                                          SourceRange Brackets) const {
1848  // Since we don't unique expressions, it isn't possible to unique VLA's
1849  // that have an expression provided for their size.
1850  QualType Canon;
1851
1852  // Be sure to pull qualifiers off the element type.
1853  if (!EltTy.isCanonical() || EltTy.hasLocalQualifiers()) {
1854    SplitQualType canonSplit = getCanonicalType(EltTy).split();
1855    Canon = getVariableArrayType(QualType(canonSplit.Ty, 0), NumElts, ASM,
1856                                 IndexTypeQuals, Brackets);
1857    Canon = getQualifiedType(Canon, canonSplit.Quals);
1858  }
1859
1860  VariableArrayType *New = new(*this, TypeAlignment)
1861    VariableArrayType(EltTy, Canon, NumElts, ASM, IndexTypeQuals, Brackets);
1862
1863  VariableArrayTypes.push_back(New);
1864  Types.push_back(New);
1865  return QualType(New, 0);
1866}
1867
1868/// getDependentSizedArrayType - Returns a non-unique reference to
1869/// the type for a dependently-sized array of the specified element
1870/// type.
1871QualType ASTContext::getDependentSizedArrayType(QualType elementType,
1872                                                Expr *numElements,
1873                                                ArrayType::ArraySizeModifier ASM,
1874                                                unsigned elementTypeQuals,
1875                                                SourceRange brackets) const {
1876  assert((!numElements || numElements->isTypeDependent() ||
1877          numElements->isValueDependent()) &&
1878         "Size must be type- or value-dependent!");
1879
1880  // Dependently-sized array types that do not have a specified number
1881  // of elements will have their sizes deduced from a dependent
1882  // initializer.  We do no canonicalization here at all, which is okay
1883  // because they can't be used in most locations.
1884  if (!numElements) {
1885    DependentSizedArrayType *newType
1886      = new (*this, TypeAlignment)
1887          DependentSizedArrayType(*this, elementType, QualType(),
1888                                  numElements, ASM, elementTypeQuals,
1889                                  brackets);
1890    Types.push_back(newType);
1891    return QualType(newType, 0);
1892  }
1893
1894  // Otherwise, we actually build a new type every time, but we
1895  // also build a canonical type.
1896
1897  SplitQualType canonElementType = getCanonicalType(elementType).split();
1898
1899  void *insertPos = 0;
1900  llvm::FoldingSetNodeID ID;
1901  DependentSizedArrayType::Profile(ID, *this,
1902                                   QualType(canonElementType.Ty, 0),
1903                                   ASM, elementTypeQuals, numElements);
1904
1905  // Look for an existing type with these properties.
1906  DependentSizedArrayType *canonTy =
1907    DependentSizedArrayTypes.FindNodeOrInsertPos(ID, insertPos);
1908
1909  // If we don't have one, build one.
1910  if (!canonTy) {
1911    canonTy = new (*this, TypeAlignment)
1912      DependentSizedArrayType(*this, QualType(canonElementType.Ty, 0),
1913                              QualType(), numElements, ASM, elementTypeQuals,
1914                              brackets);
1915    DependentSizedArrayTypes.InsertNode(canonTy, insertPos);
1916    Types.push_back(canonTy);
1917  }
1918
1919  // Apply qualifiers from the element type to the array.
1920  QualType canon = getQualifiedType(QualType(canonTy,0),
1921                                    canonElementType.Quals);
1922
1923  // If we didn't need extra canonicalization for the element type,
1924  // then just use that as our result.
1925  if (QualType(canonElementType.Ty, 0) == elementType)
1926    return canon;
1927
1928  // Otherwise, we need to build a type which follows the spelling
1929  // of the element type.
1930  DependentSizedArrayType *sugaredType
1931    = new (*this, TypeAlignment)
1932        DependentSizedArrayType(*this, elementType, canon, numElements,
1933                                ASM, elementTypeQuals, brackets);
1934  Types.push_back(sugaredType);
1935  return QualType(sugaredType, 0);
1936}
1937
1938QualType ASTContext::getIncompleteArrayType(QualType elementType,
1939                                            ArrayType::ArraySizeModifier ASM,
1940                                            unsigned elementTypeQuals) const {
1941  llvm::FoldingSetNodeID ID;
1942  IncompleteArrayType::Profile(ID, elementType, ASM, elementTypeQuals);
1943
1944  void *insertPos = 0;
1945  if (IncompleteArrayType *iat =
1946       IncompleteArrayTypes.FindNodeOrInsertPos(ID, insertPos))
1947    return QualType(iat, 0);
1948
1949  // If the element type isn't canonical, this won't be a canonical type
1950  // either, so fill in the canonical type field.  We also have to pull
1951  // qualifiers off the element type.
1952  QualType canon;
1953
1954  if (!elementType.isCanonical() || elementType.hasLocalQualifiers()) {
1955    SplitQualType canonSplit = getCanonicalType(elementType).split();
1956    canon = getIncompleteArrayType(QualType(canonSplit.Ty, 0),
1957                                   ASM, elementTypeQuals);
1958    canon = getQualifiedType(canon, canonSplit.Quals);
1959
1960    // Get the new insert position for the node we care about.
1961    IncompleteArrayType *existing =
1962      IncompleteArrayTypes.FindNodeOrInsertPos(ID, insertPos);
1963    assert(!existing && "Shouldn't be in the map!"); (void) existing;
1964  }
1965
1966  IncompleteArrayType *newType = new (*this, TypeAlignment)
1967    IncompleteArrayType(elementType, canon, ASM, elementTypeQuals);
1968
1969  IncompleteArrayTypes.InsertNode(newType, insertPos);
1970  Types.push_back(newType);
1971  return QualType(newType, 0);
1972}
1973
1974/// getVectorType - Return the unique reference to a vector type of
1975/// the specified element type and size. VectorType must be a built-in type.
1976QualType ASTContext::getVectorType(QualType vecType, unsigned NumElts,
1977                                   VectorType::VectorKind VecKind) const {
1978  assert(vecType->isBuiltinType());
1979
1980  // Check if we've already instantiated a vector of this type.
1981  llvm::FoldingSetNodeID ID;
1982  VectorType::Profile(ID, vecType, NumElts, Type::Vector, VecKind);
1983
1984  void *InsertPos = 0;
1985  if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
1986    return QualType(VTP, 0);
1987
1988  // If the element type isn't canonical, this won't be a canonical type either,
1989  // so fill in the canonical type field.
1990  QualType Canonical;
1991  if (!vecType.isCanonical()) {
1992    Canonical = getVectorType(getCanonicalType(vecType), NumElts, VecKind);
1993
1994    // Get the new insert position for the node we care about.
1995    VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
1996    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1997  }
1998  VectorType *New = new (*this, TypeAlignment)
1999    VectorType(vecType, NumElts, Canonical, VecKind);
2000  VectorTypes.InsertNode(New, InsertPos);
2001  Types.push_back(New);
2002  return QualType(New, 0);
2003}
2004
2005/// getExtVectorType - Return the unique reference to an extended vector type of
2006/// the specified element type and size. VectorType must be a built-in type.
2007QualType
2008ASTContext::getExtVectorType(QualType vecType, unsigned NumElts) const {
2009  assert(vecType->isBuiltinType() || vecType->isDependentType());
2010
2011  // Check if we've already instantiated a vector of this type.
2012  llvm::FoldingSetNodeID ID;
2013  VectorType::Profile(ID, vecType, NumElts, Type::ExtVector,
2014                      VectorType::GenericVector);
2015  void *InsertPos = 0;
2016  if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
2017    return QualType(VTP, 0);
2018
2019  // If the element type isn't canonical, this won't be a canonical type either,
2020  // so fill in the canonical type field.
2021  QualType Canonical;
2022  if (!vecType.isCanonical()) {
2023    Canonical = getExtVectorType(getCanonicalType(vecType), NumElts);
2024
2025    // Get the new insert position for the node we care about.
2026    VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
2027    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2028  }
2029  ExtVectorType *New = new (*this, TypeAlignment)
2030    ExtVectorType(vecType, NumElts, Canonical);
2031  VectorTypes.InsertNode(New, InsertPos);
2032  Types.push_back(New);
2033  return QualType(New, 0);
2034}
2035
2036QualType
2037ASTContext::getDependentSizedExtVectorType(QualType vecType,
2038                                           Expr *SizeExpr,
2039                                           SourceLocation AttrLoc) const {
2040  llvm::FoldingSetNodeID ID;
2041  DependentSizedExtVectorType::Profile(ID, *this, getCanonicalType(vecType),
2042                                       SizeExpr);
2043
2044  void *InsertPos = 0;
2045  DependentSizedExtVectorType *Canon
2046    = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
2047  DependentSizedExtVectorType *New;
2048  if (Canon) {
2049    // We already have a canonical version of this array type; use it as
2050    // the canonical type for a newly-built type.
2051    New = new (*this, TypeAlignment)
2052      DependentSizedExtVectorType(*this, vecType, QualType(Canon, 0),
2053                                  SizeExpr, AttrLoc);
2054  } else {
2055    QualType CanonVecTy = getCanonicalType(vecType);
2056    if (CanonVecTy == vecType) {
2057      New = new (*this, TypeAlignment)
2058        DependentSizedExtVectorType(*this, vecType, QualType(), SizeExpr,
2059                                    AttrLoc);
2060
2061      DependentSizedExtVectorType *CanonCheck
2062        = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
2063      assert(!CanonCheck && "Dependent-sized ext_vector canonical type broken");
2064      (void)CanonCheck;
2065      DependentSizedExtVectorTypes.InsertNode(New, InsertPos);
2066    } else {
2067      QualType Canon = getDependentSizedExtVectorType(CanonVecTy, SizeExpr,
2068                                                      SourceLocation());
2069      New = new (*this, TypeAlignment)
2070        DependentSizedExtVectorType(*this, vecType, Canon, SizeExpr, AttrLoc);
2071    }
2072  }
2073
2074  Types.push_back(New);
2075  return QualType(New, 0);
2076}
2077
2078/// getFunctionNoProtoType - Return a K&R style C function type like 'int()'.
2079///
2080QualType
2081ASTContext::getFunctionNoProtoType(QualType ResultTy,
2082                                   const FunctionType::ExtInfo &Info) const {
2083  const CallingConv DefaultCC = Info.getCC();
2084  const CallingConv CallConv = (LangOpts.MRTD && DefaultCC == CC_Default) ?
2085                               CC_X86StdCall : DefaultCC;
2086  // Unique functions, to guarantee there is only one function of a particular
2087  // structure.
2088  llvm::FoldingSetNodeID ID;
2089  FunctionNoProtoType::Profile(ID, ResultTy, Info);
2090
2091  void *InsertPos = 0;
2092  if (FunctionNoProtoType *FT =
2093        FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
2094    return QualType(FT, 0);
2095
2096  QualType Canonical;
2097  if (!ResultTy.isCanonical() ||
2098      getCanonicalCallConv(CallConv) != CallConv) {
2099    Canonical =
2100      getFunctionNoProtoType(getCanonicalType(ResultTy),
2101                     Info.withCallingConv(getCanonicalCallConv(CallConv)));
2102
2103    // Get the new insert position for the node we care about.
2104    FunctionNoProtoType *NewIP =
2105      FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
2106    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2107  }
2108
2109  FunctionProtoType::ExtInfo newInfo = Info.withCallingConv(CallConv);
2110  FunctionNoProtoType *New = new (*this, TypeAlignment)
2111    FunctionNoProtoType(ResultTy, Canonical, newInfo);
2112  Types.push_back(New);
2113  FunctionNoProtoTypes.InsertNode(New, InsertPos);
2114  return QualType(New, 0);
2115}
2116
2117/// getFunctionType - Return a normal function type with a typed argument
2118/// list.  isVariadic indicates whether the argument list includes '...'.
2119QualType
2120ASTContext::getFunctionType(QualType ResultTy,
2121                            const QualType *ArgArray, unsigned NumArgs,
2122                            const FunctionProtoType::ExtProtoInfo &EPI) const {
2123  // Unique functions, to guarantee there is only one function of a particular
2124  // structure.
2125  llvm::FoldingSetNodeID ID;
2126  FunctionProtoType::Profile(ID, ResultTy, ArgArray, NumArgs, EPI, *this);
2127
2128  void *InsertPos = 0;
2129  if (FunctionProtoType *FTP =
2130        FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
2131    return QualType(FTP, 0);
2132
2133  // Determine whether the type being created is already canonical or not.
2134  bool isCanonical =
2135    EPI.ExceptionSpecType == EST_None && ResultTy.isCanonical() &&
2136    !EPI.HasTrailingReturn;
2137  for (unsigned i = 0; i != NumArgs && isCanonical; ++i)
2138    if (!ArgArray[i].isCanonicalAsParam())
2139      isCanonical = false;
2140
2141  const CallingConv DefaultCC = EPI.ExtInfo.getCC();
2142  const CallingConv CallConv = (LangOpts.MRTD && DefaultCC == CC_Default) ?
2143                               CC_X86StdCall : DefaultCC;
2144
2145  // If this type isn't canonical, get the canonical version of it.
2146  // The exception spec is not part of the canonical type.
2147  QualType Canonical;
2148  if (!isCanonical || getCanonicalCallConv(CallConv) != CallConv) {
2149    SmallVector<QualType, 16> CanonicalArgs;
2150    CanonicalArgs.reserve(NumArgs);
2151    for (unsigned i = 0; i != NumArgs; ++i)
2152      CanonicalArgs.push_back(getCanonicalParamType(ArgArray[i]));
2153
2154    FunctionProtoType::ExtProtoInfo CanonicalEPI = EPI;
2155    CanonicalEPI.HasTrailingReturn = false;
2156    CanonicalEPI.ExceptionSpecType = EST_None;
2157    CanonicalEPI.NumExceptions = 0;
2158    CanonicalEPI.ExtInfo
2159      = CanonicalEPI.ExtInfo.withCallingConv(getCanonicalCallConv(CallConv));
2160
2161    Canonical = getFunctionType(getCanonicalType(ResultTy),
2162                                CanonicalArgs.data(), NumArgs,
2163                                CanonicalEPI);
2164
2165    // Get the new insert position for the node we care about.
2166    FunctionProtoType *NewIP =
2167      FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
2168    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2169  }
2170
2171  // FunctionProtoType objects are allocated with extra bytes after
2172  // them for three variable size arrays at the end:
2173  //  - parameter types
2174  //  - exception types
2175  //  - consumed-arguments flags
2176  // Instead of the exception types, there could be a noexcept
2177  // expression.
2178  size_t Size = sizeof(FunctionProtoType) +
2179                NumArgs * sizeof(QualType);
2180  if (EPI.ExceptionSpecType == EST_Dynamic)
2181    Size += EPI.NumExceptions * sizeof(QualType);
2182  else if (EPI.ExceptionSpecType == EST_ComputedNoexcept) {
2183    Size += sizeof(Expr*);
2184  }
2185  if (EPI.ConsumedArguments)
2186    Size += NumArgs * sizeof(bool);
2187
2188  FunctionProtoType *FTP = (FunctionProtoType*) Allocate(Size, TypeAlignment);
2189  FunctionProtoType::ExtProtoInfo newEPI = EPI;
2190  newEPI.ExtInfo = EPI.ExtInfo.withCallingConv(CallConv);
2191  new (FTP) FunctionProtoType(ResultTy, ArgArray, NumArgs, Canonical, newEPI);
2192  Types.push_back(FTP);
2193  FunctionProtoTypes.InsertNode(FTP, InsertPos);
2194  return QualType(FTP, 0);
2195}
2196
2197#ifndef NDEBUG
2198static bool NeedsInjectedClassNameType(const RecordDecl *D) {
2199  if (!isa<CXXRecordDecl>(D)) return false;
2200  const CXXRecordDecl *RD = cast<CXXRecordDecl>(D);
2201  if (isa<ClassTemplatePartialSpecializationDecl>(RD))
2202    return true;
2203  if (RD->getDescribedClassTemplate() &&
2204      !isa<ClassTemplateSpecializationDecl>(RD))
2205    return true;
2206  return false;
2207}
2208#endif
2209
2210/// getInjectedClassNameType - Return the unique reference to the
2211/// injected class name type for the specified templated declaration.
2212QualType ASTContext::getInjectedClassNameType(CXXRecordDecl *Decl,
2213                                              QualType TST) const {
2214  assert(NeedsInjectedClassNameType(Decl));
2215  if (Decl->TypeForDecl) {
2216    assert(isa<InjectedClassNameType>(Decl->TypeForDecl));
2217  } else if (CXXRecordDecl *PrevDecl = Decl->getPreviousDecl()) {
2218    assert(PrevDecl->TypeForDecl && "previous declaration has no type");
2219    Decl->TypeForDecl = PrevDecl->TypeForDecl;
2220    assert(isa<InjectedClassNameType>(Decl->TypeForDecl));
2221  } else {
2222    Type *newType =
2223      new (*this, TypeAlignment) InjectedClassNameType(Decl, TST);
2224    Decl->TypeForDecl = newType;
2225    Types.push_back(newType);
2226  }
2227  return QualType(Decl->TypeForDecl, 0);
2228}
2229
2230/// getTypeDeclType - Return the unique reference to the type for the
2231/// specified type declaration.
2232QualType ASTContext::getTypeDeclTypeSlow(const TypeDecl *Decl) const {
2233  assert(Decl && "Passed null for Decl param");
2234  assert(!Decl->TypeForDecl && "TypeForDecl present in slow case");
2235
2236  if (const TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Decl))
2237    return getTypedefType(Typedef);
2238
2239  assert(!isa<TemplateTypeParmDecl>(Decl) &&
2240         "Template type parameter types are always available.");
2241
2242  if (const RecordDecl *Record = dyn_cast<RecordDecl>(Decl)) {
2243    assert(!Record->getPreviousDecl() &&
2244           "struct/union has previous declaration");
2245    assert(!NeedsInjectedClassNameType(Record));
2246    return getRecordType(Record);
2247  } else if (const EnumDecl *Enum = dyn_cast<EnumDecl>(Decl)) {
2248    assert(!Enum->getPreviousDecl() &&
2249           "enum has previous declaration");
2250    return getEnumType(Enum);
2251  } else if (const UnresolvedUsingTypenameDecl *Using =
2252               dyn_cast<UnresolvedUsingTypenameDecl>(Decl)) {
2253    Type *newType = new (*this, TypeAlignment) UnresolvedUsingType(Using);
2254    Decl->TypeForDecl = newType;
2255    Types.push_back(newType);
2256  } else
2257    llvm_unreachable("TypeDecl without a type?");
2258
2259  return QualType(Decl->TypeForDecl, 0);
2260}
2261
2262/// getTypedefType - Return the unique reference to the type for the
2263/// specified typedef name decl.
2264QualType
2265ASTContext::getTypedefType(const TypedefNameDecl *Decl,
2266                           QualType Canonical) const {
2267  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
2268
2269  if (Canonical.isNull())
2270    Canonical = getCanonicalType(Decl->getUnderlyingType());
2271  TypedefType *newType = new(*this, TypeAlignment)
2272    TypedefType(Type::Typedef, Decl, Canonical);
2273  Decl->TypeForDecl = newType;
2274  Types.push_back(newType);
2275  return QualType(newType, 0);
2276}
2277
2278QualType ASTContext::getRecordType(const RecordDecl *Decl) const {
2279  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
2280
2281  if (const RecordDecl *PrevDecl = Decl->getPreviousDecl())
2282    if (PrevDecl->TypeForDecl)
2283      return QualType(Decl->TypeForDecl = PrevDecl->TypeForDecl, 0);
2284
2285  RecordType *newType = new (*this, TypeAlignment) RecordType(Decl);
2286  Decl->TypeForDecl = newType;
2287  Types.push_back(newType);
2288  return QualType(newType, 0);
2289}
2290
2291QualType ASTContext::getEnumType(const EnumDecl *Decl) const {
2292  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
2293
2294  if (const EnumDecl *PrevDecl = Decl->getPreviousDecl())
2295    if (PrevDecl->TypeForDecl)
2296      return QualType(Decl->TypeForDecl = PrevDecl->TypeForDecl, 0);
2297
2298  EnumType *newType = new (*this, TypeAlignment) EnumType(Decl);
2299  Decl->TypeForDecl = newType;
2300  Types.push_back(newType);
2301  return QualType(newType, 0);
2302}
2303
2304QualType ASTContext::getAttributedType(AttributedType::Kind attrKind,
2305                                       QualType modifiedType,
2306                                       QualType equivalentType) {
2307  llvm::FoldingSetNodeID id;
2308  AttributedType::Profile(id, attrKind, modifiedType, equivalentType);
2309
2310  void *insertPos = 0;
2311  AttributedType *type = AttributedTypes.FindNodeOrInsertPos(id, insertPos);
2312  if (type) return QualType(type, 0);
2313
2314  QualType canon = getCanonicalType(equivalentType);
2315  type = new (*this, TypeAlignment)
2316           AttributedType(canon, attrKind, modifiedType, equivalentType);
2317
2318  Types.push_back(type);
2319  AttributedTypes.InsertNode(type, insertPos);
2320
2321  return QualType(type, 0);
2322}
2323
2324
2325/// \brief Retrieve a substitution-result type.
2326QualType
2327ASTContext::getSubstTemplateTypeParmType(const TemplateTypeParmType *Parm,
2328                                         QualType Replacement) const {
2329  assert(Replacement.isCanonical()
2330         && "replacement types must always be canonical");
2331
2332  llvm::FoldingSetNodeID ID;
2333  SubstTemplateTypeParmType::Profile(ID, Parm, Replacement);
2334  void *InsertPos = 0;
2335  SubstTemplateTypeParmType *SubstParm
2336    = SubstTemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
2337
2338  if (!SubstParm) {
2339    SubstParm = new (*this, TypeAlignment)
2340      SubstTemplateTypeParmType(Parm, Replacement);
2341    Types.push_back(SubstParm);
2342    SubstTemplateTypeParmTypes.InsertNode(SubstParm, InsertPos);
2343  }
2344
2345  return QualType(SubstParm, 0);
2346}
2347
2348/// \brief Retrieve a
2349QualType ASTContext::getSubstTemplateTypeParmPackType(
2350                                          const TemplateTypeParmType *Parm,
2351                                              const TemplateArgument &ArgPack) {
2352#ifndef NDEBUG
2353  for (TemplateArgument::pack_iterator P = ArgPack.pack_begin(),
2354                                    PEnd = ArgPack.pack_end();
2355       P != PEnd; ++P) {
2356    assert(P->getKind() == TemplateArgument::Type &&"Pack contains a non-type");
2357    assert(P->getAsType().isCanonical() && "Pack contains non-canonical type");
2358  }
2359#endif
2360
2361  llvm::FoldingSetNodeID ID;
2362  SubstTemplateTypeParmPackType::Profile(ID, Parm, ArgPack);
2363  void *InsertPos = 0;
2364  if (SubstTemplateTypeParmPackType *SubstParm
2365        = SubstTemplateTypeParmPackTypes.FindNodeOrInsertPos(ID, InsertPos))
2366    return QualType(SubstParm, 0);
2367
2368  QualType Canon;
2369  if (!Parm->isCanonicalUnqualified()) {
2370    Canon = getCanonicalType(QualType(Parm, 0));
2371    Canon = getSubstTemplateTypeParmPackType(cast<TemplateTypeParmType>(Canon),
2372                                             ArgPack);
2373    SubstTemplateTypeParmPackTypes.FindNodeOrInsertPos(ID, InsertPos);
2374  }
2375
2376  SubstTemplateTypeParmPackType *SubstParm
2377    = new (*this, TypeAlignment) SubstTemplateTypeParmPackType(Parm, Canon,
2378                                                               ArgPack);
2379  Types.push_back(SubstParm);
2380  SubstTemplateTypeParmTypes.InsertNode(SubstParm, InsertPos);
2381  return QualType(SubstParm, 0);
2382}
2383
2384/// \brief Retrieve the template type parameter type for a template
2385/// parameter or parameter pack with the given depth, index, and (optionally)
2386/// name.
2387QualType ASTContext::getTemplateTypeParmType(unsigned Depth, unsigned Index,
2388                                             bool ParameterPack,
2389                                             TemplateTypeParmDecl *TTPDecl) const {
2390  llvm::FoldingSetNodeID ID;
2391  TemplateTypeParmType::Profile(ID, Depth, Index, ParameterPack, TTPDecl);
2392  void *InsertPos = 0;
2393  TemplateTypeParmType *TypeParm
2394    = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
2395
2396  if (TypeParm)
2397    return QualType(TypeParm, 0);
2398
2399  if (TTPDecl) {
2400    QualType Canon = getTemplateTypeParmType(Depth, Index, ParameterPack);
2401    TypeParm = new (*this, TypeAlignment) TemplateTypeParmType(TTPDecl, Canon);
2402
2403    TemplateTypeParmType *TypeCheck
2404      = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
2405    assert(!TypeCheck && "Template type parameter canonical type broken");
2406    (void)TypeCheck;
2407  } else
2408    TypeParm = new (*this, TypeAlignment)
2409      TemplateTypeParmType(Depth, Index, ParameterPack);
2410
2411  Types.push_back(TypeParm);
2412  TemplateTypeParmTypes.InsertNode(TypeParm, InsertPos);
2413
2414  return QualType(TypeParm, 0);
2415}
2416
2417TypeSourceInfo *
2418ASTContext::getTemplateSpecializationTypeInfo(TemplateName Name,
2419                                              SourceLocation NameLoc,
2420                                        const TemplateArgumentListInfo &Args,
2421                                              QualType Underlying) const {
2422  assert(!Name.getAsDependentTemplateName() &&
2423         "No dependent template names here!");
2424  QualType TST = getTemplateSpecializationType(Name, Args, Underlying);
2425
2426  TypeSourceInfo *DI = CreateTypeSourceInfo(TST);
2427  TemplateSpecializationTypeLoc TL
2428    = cast<TemplateSpecializationTypeLoc>(DI->getTypeLoc());
2429  TL.setTemplateKeywordLoc(SourceLocation());
2430  TL.setTemplateNameLoc(NameLoc);
2431  TL.setLAngleLoc(Args.getLAngleLoc());
2432  TL.setRAngleLoc(Args.getRAngleLoc());
2433  for (unsigned i = 0, e = TL.getNumArgs(); i != e; ++i)
2434    TL.setArgLocInfo(i, Args[i].getLocInfo());
2435  return DI;
2436}
2437
2438QualType
2439ASTContext::getTemplateSpecializationType(TemplateName Template,
2440                                          const TemplateArgumentListInfo &Args,
2441                                          QualType Underlying) const {
2442  assert(!Template.getAsDependentTemplateName() &&
2443         "No dependent template names here!");
2444
2445  unsigned NumArgs = Args.size();
2446
2447  SmallVector<TemplateArgument, 4> ArgVec;
2448  ArgVec.reserve(NumArgs);
2449  for (unsigned i = 0; i != NumArgs; ++i)
2450    ArgVec.push_back(Args[i].getArgument());
2451
2452  return getTemplateSpecializationType(Template, ArgVec.data(), NumArgs,
2453                                       Underlying);
2454}
2455
2456#ifndef NDEBUG
2457static bool hasAnyPackExpansions(const TemplateArgument *Args,
2458                                 unsigned NumArgs) {
2459  for (unsigned I = 0; I != NumArgs; ++I)
2460    if (Args[I].isPackExpansion())
2461      return true;
2462
2463  return true;
2464}
2465#endif
2466
2467QualType
2468ASTContext::getTemplateSpecializationType(TemplateName Template,
2469                                          const TemplateArgument *Args,
2470                                          unsigned NumArgs,
2471                                          QualType Underlying) const {
2472  assert(!Template.getAsDependentTemplateName() &&
2473         "No dependent template names here!");
2474  // Look through qualified template names.
2475  if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName())
2476    Template = TemplateName(QTN->getTemplateDecl());
2477
2478  bool IsTypeAlias =
2479    Template.getAsTemplateDecl() &&
2480    isa<TypeAliasTemplateDecl>(Template.getAsTemplateDecl());
2481  QualType CanonType;
2482  if (!Underlying.isNull())
2483    CanonType = getCanonicalType(Underlying);
2484  else {
2485    // We can get here with an alias template when the specialization contains
2486    // a pack expansion that does not match up with a parameter pack.
2487    assert((!IsTypeAlias || hasAnyPackExpansions(Args, NumArgs)) &&
2488           "Caller must compute aliased type");
2489    IsTypeAlias = false;
2490    CanonType = getCanonicalTemplateSpecializationType(Template, Args,
2491                                                       NumArgs);
2492  }
2493
2494  // Allocate the (non-canonical) template specialization type, but don't
2495  // try to unique it: these types typically have location information that
2496  // we don't unique and don't want to lose.
2497  void *Mem = Allocate(sizeof(TemplateSpecializationType) +
2498                       sizeof(TemplateArgument) * NumArgs +
2499                       (IsTypeAlias? sizeof(QualType) : 0),
2500                       TypeAlignment);
2501  TemplateSpecializationType *Spec
2502    = new (Mem) TemplateSpecializationType(Template, Args, NumArgs, CanonType,
2503                                         IsTypeAlias ? Underlying : QualType());
2504
2505  Types.push_back(Spec);
2506  return QualType(Spec, 0);
2507}
2508
2509QualType
2510ASTContext::getCanonicalTemplateSpecializationType(TemplateName Template,
2511                                                   const TemplateArgument *Args,
2512                                                   unsigned NumArgs) const {
2513  assert(!Template.getAsDependentTemplateName() &&
2514         "No dependent template names here!");
2515
2516  // Look through qualified template names.
2517  if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName())
2518    Template = TemplateName(QTN->getTemplateDecl());
2519
2520  // Build the canonical template specialization type.
2521  TemplateName CanonTemplate = getCanonicalTemplateName(Template);
2522  SmallVector<TemplateArgument, 4> CanonArgs;
2523  CanonArgs.reserve(NumArgs);
2524  for (unsigned I = 0; I != NumArgs; ++I)
2525    CanonArgs.push_back(getCanonicalTemplateArgument(Args[I]));
2526
2527  // Determine whether this canonical template specialization type already
2528  // exists.
2529  llvm::FoldingSetNodeID ID;
2530  TemplateSpecializationType::Profile(ID, CanonTemplate,
2531                                      CanonArgs.data(), NumArgs, *this);
2532
2533  void *InsertPos = 0;
2534  TemplateSpecializationType *Spec
2535    = TemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
2536
2537  if (!Spec) {
2538    // Allocate a new canonical template specialization type.
2539    void *Mem = Allocate((sizeof(TemplateSpecializationType) +
2540                          sizeof(TemplateArgument) * NumArgs),
2541                         TypeAlignment);
2542    Spec = new (Mem) TemplateSpecializationType(CanonTemplate,
2543                                                CanonArgs.data(), NumArgs,
2544                                                QualType(), QualType());
2545    Types.push_back(Spec);
2546    TemplateSpecializationTypes.InsertNode(Spec, InsertPos);
2547  }
2548
2549  assert(Spec->isDependentType() &&
2550         "Non-dependent template-id type must have a canonical type");
2551  return QualType(Spec, 0);
2552}
2553
2554QualType
2555ASTContext::getElaboratedType(ElaboratedTypeKeyword Keyword,
2556                              NestedNameSpecifier *NNS,
2557                              QualType NamedType) const {
2558  llvm::FoldingSetNodeID ID;
2559  ElaboratedType::Profile(ID, Keyword, NNS, NamedType);
2560
2561  void *InsertPos = 0;
2562  ElaboratedType *T = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
2563  if (T)
2564    return QualType(T, 0);
2565
2566  QualType Canon = NamedType;
2567  if (!Canon.isCanonical()) {
2568    Canon = getCanonicalType(NamedType);
2569    ElaboratedType *CheckT = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
2570    assert(!CheckT && "Elaborated canonical type broken");
2571    (void)CheckT;
2572  }
2573
2574  T = new (*this) ElaboratedType(Keyword, NNS, NamedType, Canon);
2575  Types.push_back(T);
2576  ElaboratedTypes.InsertNode(T, InsertPos);
2577  return QualType(T, 0);
2578}
2579
2580QualType
2581ASTContext::getParenType(QualType InnerType) const {
2582  llvm::FoldingSetNodeID ID;
2583  ParenType::Profile(ID, InnerType);
2584
2585  void *InsertPos = 0;
2586  ParenType *T = ParenTypes.FindNodeOrInsertPos(ID, InsertPos);
2587  if (T)
2588    return QualType(T, 0);
2589
2590  QualType Canon = InnerType;
2591  if (!Canon.isCanonical()) {
2592    Canon = getCanonicalType(InnerType);
2593    ParenType *CheckT = ParenTypes.FindNodeOrInsertPos(ID, InsertPos);
2594    assert(!CheckT && "Paren canonical type broken");
2595    (void)CheckT;
2596  }
2597
2598  T = new (*this) ParenType(InnerType, Canon);
2599  Types.push_back(T);
2600  ParenTypes.InsertNode(T, InsertPos);
2601  return QualType(T, 0);
2602}
2603
2604QualType ASTContext::getDependentNameType(ElaboratedTypeKeyword Keyword,
2605                                          NestedNameSpecifier *NNS,
2606                                          const IdentifierInfo *Name,
2607                                          QualType Canon) const {
2608  assert(NNS->isDependent() && "nested-name-specifier must be dependent");
2609
2610  if (Canon.isNull()) {
2611    NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
2612    ElaboratedTypeKeyword CanonKeyword = Keyword;
2613    if (Keyword == ETK_None)
2614      CanonKeyword = ETK_Typename;
2615
2616    if (CanonNNS != NNS || CanonKeyword != Keyword)
2617      Canon = getDependentNameType(CanonKeyword, CanonNNS, Name);
2618  }
2619
2620  llvm::FoldingSetNodeID ID;
2621  DependentNameType::Profile(ID, Keyword, NNS, Name);
2622
2623  void *InsertPos = 0;
2624  DependentNameType *T
2625    = DependentNameTypes.FindNodeOrInsertPos(ID, InsertPos);
2626  if (T)
2627    return QualType(T, 0);
2628
2629  T = new (*this) DependentNameType(Keyword, NNS, Name, Canon);
2630  Types.push_back(T);
2631  DependentNameTypes.InsertNode(T, InsertPos);
2632  return QualType(T, 0);
2633}
2634
2635QualType
2636ASTContext::getDependentTemplateSpecializationType(
2637                                 ElaboratedTypeKeyword Keyword,
2638                                 NestedNameSpecifier *NNS,
2639                                 const IdentifierInfo *Name,
2640                                 const TemplateArgumentListInfo &Args) const {
2641  // TODO: avoid this copy
2642  SmallVector<TemplateArgument, 16> ArgCopy;
2643  for (unsigned I = 0, E = Args.size(); I != E; ++I)
2644    ArgCopy.push_back(Args[I].getArgument());
2645  return getDependentTemplateSpecializationType(Keyword, NNS, Name,
2646                                                ArgCopy.size(),
2647                                                ArgCopy.data());
2648}
2649
2650QualType
2651ASTContext::getDependentTemplateSpecializationType(
2652                                 ElaboratedTypeKeyword Keyword,
2653                                 NestedNameSpecifier *NNS,
2654                                 const IdentifierInfo *Name,
2655                                 unsigned NumArgs,
2656                                 const TemplateArgument *Args) const {
2657  assert((!NNS || NNS->isDependent()) &&
2658         "nested-name-specifier must be dependent");
2659
2660  llvm::FoldingSetNodeID ID;
2661  DependentTemplateSpecializationType::Profile(ID, *this, Keyword, NNS,
2662                                               Name, NumArgs, Args);
2663
2664  void *InsertPos = 0;
2665  DependentTemplateSpecializationType *T
2666    = DependentTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
2667  if (T)
2668    return QualType(T, 0);
2669
2670  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
2671
2672  ElaboratedTypeKeyword CanonKeyword = Keyword;
2673  if (Keyword == ETK_None) CanonKeyword = ETK_Typename;
2674
2675  bool AnyNonCanonArgs = false;
2676  SmallVector<TemplateArgument, 16> CanonArgs(NumArgs);
2677  for (unsigned I = 0; I != NumArgs; ++I) {
2678    CanonArgs[I] = getCanonicalTemplateArgument(Args[I]);
2679    if (!CanonArgs[I].structurallyEquals(Args[I]))
2680      AnyNonCanonArgs = true;
2681  }
2682
2683  QualType Canon;
2684  if (AnyNonCanonArgs || CanonNNS != NNS || CanonKeyword != Keyword) {
2685    Canon = getDependentTemplateSpecializationType(CanonKeyword, CanonNNS,
2686                                                   Name, NumArgs,
2687                                                   CanonArgs.data());
2688
2689    // Find the insert position again.
2690    DependentTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
2691  }
2692
2693  void *Mem = Allocate((sizeof(DependentTemplateSpecializationType) +
2694                        sizeof(TemplateArgument) * NumArgs),
2695                       TypeAlignment);
2696  T = new (Mem) DependentTemplateSpecializationType(Keyword, NNS,
2697                                                    Name, NumArgs, Args, Canon);
2698  Types.push_back(T);
2699  DependentTemplateSpecializationTypes.InsertNode(T, InsertPos);
2700  return QualType(T, 0);
2701}
2702
2703QualType ASTContext::getPackExpansionType(QualType Pattern,
2704                                      llvm::Optional<unsigned> NumExpansions) {
2705  llvm::FoldingSetNodeID ID;
2706  PackExpansionType::Profile(ID, Pattern, NumExpansions);
2707
2708  assert(Pattern->containsUnexpandedParameterPack() &&
2709         "Pack expansions must expand one or more parameter packs");
2710  void *InsertPos = 0;
2711  PackExpansionType *T
2712    = PackExpansionTypes.FindNodeOrInsertPos(ID, InsertPos);
2713  if (T)
2714    return QualType(T, 0);
2715
2716  QualType Canon;
2717  if (!Pattern.isCanonical()) {
2718    Canon = getPackExpansionType(getCanonicalType(Pattern), NumExpansions);
2719
2720    // Find the insert position again.
2721    PackExpansionTypes.FindNodeOrInsertPos(ID, InsertPos);
2722  }
2723
2724  T = new (*this) PackExpansionType(Pattern, Canon, NumExpansions);
2725  Types.push_back(T);
2726  PackExpansionTypes.InsertNode(T, InsertPos);
2727  return QualType(T, 0);
2728}
2729
2730/// CmpProtocolNames - Comparison predicate for sorting protocols
2731/// alphabetically.
2732static bool CmpProtocolNames(const ObjCProtocolDecl *LHS,
2733                            const ObjCProtocolDecl *RHS) {
2734  return LHS->getDeclName() < RHS->getDeclName();
2735}
2736
2737static bool areSortedAndUniqued(ObjCProtocolDecl * const *Protocols,
2738                                unsigned NumProtocols) {
2739  if (NumProtocols == 0) return true;
2740
2741  if (Protocols[0]->getCanonicalDecl() != Protocols[0])
2742    return false;
2743
2744  for (unsigned i = 1; i != NumProtocols; ++i)
2745    if (!CmpProtocolNames(Protocols[i-1], Protocols[i]) ||
2746        Protocols[i]->getCanonicalDecl() != Protocols[i])
2747      return false;
2748  return true;
2749}
2750
2751static void SortAndUniqueProtocols(ObjCProtocolDecl **Protocols,
2752                                   unsigned &NumProtocols) {
2753  ObjCProtocolDecl **ProtocolsEnd = Protocols+NumProtocols;
2754
2755  // Sort protocols, keyed by name.
2756  std::sort(Protocols, Protocols+NumProtocols, CmpProtocolNames);
2757
2758  // Canonicalize.
2759  for (unsigned I = 0, N = NumProtocols; I != N; ++I)
2760    Protocols[I] = Protocols[I]->getCanonicalDecl();
2761
2762  // Remove duplicates.
2763  ProtocolsEnd = std::unique(Protocols, ProtocolsEnd);
2764  NumProtocols = ProtocolsEnd-Protocols;
2765}
2766
2767QualType ASTContext::getObjCObjectType(QualType BaseType,
2768                                       ObjCProtocolDecl * const *Protocols,
2769                                       unsigned NumProtocols) const {
2770  // If the base type is an interface and there aren't any protocols
2771  // to add, then the interface type will do just fine.
2772  if (!NumProtocols && isa<ObjCInterfaceType>(BaseType))
2773    return BaseType;
2774
2775  // Look in the folding set for an existing type.
2776  llvm::FoldingSetNodeID ID;
2777  ObjCObjectTypeImpl::Profile(ID, BaseType, Protocols, NumProtocols);
2778  void *InsertPos = 0;
2779  if (ObjCObjectType *QT = ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos))
2780    return QualType(QT, 0);
2781
2782  // Build the canonical type, which has the canonical base type and
2783  // a sorted-and-uniqued list of protocols.
2784  QualType Canonical;
2785  bool ProtocolsSorted = areSortedAndUniqued(Protocols, NumProtocols);
2786  if (!ProtocolsSorted || !BaseType.isCanonical()) {
2787    if (!ProtocolsSorted) {
2788      SmallVector<ObjCProtocolDecl*, 8> Sorted(Protocols,
2789                                                     Protocols + NumProtocols);
2790      unsigned UniqueCount = NumProtocols;
2791
2792      SortAndUniqueProtocols(&Sorted[0], UniqueCount);
2793      Canonical = getObjCObjectType(getCanonicalType(BaseType),
2794                                    &Sorted[0], UniqueCount);
2795    } else {
2796      Canonical = getObjCObjectType(getCanonicalType(BaseType),
2797                                    Protocols, NumProtocols);
2798    }
2799
2800    // Regenerate InsertPos.
2801    ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos);
2802  }
2803
2804  unsigned Size = sizeof(ObjCObjectTypeImpl);
2805  Size += NumProtocols * sizeof(ObjCProtocolDecl *);
2806  void *Mem = Allocate(Size, TypeAlignment);
2807  ObjCObjectTypeImpl *T =
2808    new (Mem) ObjCObjectTypeImpl(Canonical, BaseType, Protocols, NumProtocols);
2809
2810  Types.push_back(T);
2811  ObjCObjectTypes.InsertNode(T, InsertPos);
2812  return QualType(T, 0);
2813}
2814
2815/// getObjCObjectPointerType - Return a ObjCObjectPointerType type for
2816/// the given object type.
2817QualType ASTContext::getObjCObjectPointerType(QualType ObjectT) const {
2818  llvm::FoldingSetNodeID ID;
2819  ObjCObjectPointerType::Profile(ID, ObjectT);
2820
2821  void *InsertPos = 0;
2822  if (ObjCObjectPointerType *QT =
2823              ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
2824    return QualType(QT, 0);
2825
2826  // Find the canonical object type.
2827  QualType Canonical;
2828  if (!ObjectT.isCanonical()) {
2829    Canonical = getObjCObjectPointerType(getCanonicalType(ObjectT));
2830
2831    // Regenerate InsertPos.
2832    ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
2833  }
2834
2835  // No match.
2836  void *Mem = Allocate(sizeof(ObjCObjectPointerType), TypeAlignment);
2837  ObjCObjectPointerType *QType =
2838    new (Mem) ObjCObjectPointerType(Canonical, ObjectT);
2839
2840  Types.push_back(QType);
2841  ObjCObjectPointerTypes.InsertNode(QType, InsertPos);
2842  return QualType(QType, 0);
2843}
2844
2845/// getObjCInterfaceType - Return the unique reference to the type for the
2846/// specified ObjC interface decl. The list of protocols is optional.
2847QualType ASTContext::getObjCInterfaceType(const ObjCInterfaceDecl *Decl,
2848                                          ObjCInterfaceDecl *PrevDecl) const {
2849  if (Decl->TypeForDecl)
2850    return QualType(Decl->TypeForDecl, 0);
2851
2852  if (PrevDecl) {
2853    assert(PrevDecl->TypeForDecl && "previous decl has no TypeForDecl");
2854    Decl->TypeForDecl = PrevDecl->TypeForDecl;
2855    return QualType(PrevDecl->TypeForDecl, 0);
2856  }
2857
2858  // Prefer the definition, if there is one.
2859  if (const ObjCInterfaceDecl *Def = Decl->getDefinition())
2860    Decl = Def;
2861
2862  void *Mem = Allocate(sizeof(ObjCInterfaceType), TypeAlignment);
2863  ObjCInterfaceType *T = new (Mem) ObjCInterfaceType(Decl);
2864  Decl->TypeForDecl = T;
2865  Types.push_back(T);
2866  return QualType(T, 0);
2867}
2868
2869/// getTypeOfExprType - Unlike many "get<Type>" functions, we can't unique
2870/// TypeOfExprType AST's (since expression's are never shared). For example,
2871/// multiple declarations that refer to "typeof(x)" all contain different
2872/// DeclRefExpr's. This doesn't effect the type checker, since it operates
2873/// on canonical type's (which are always unique).
2874QualType ASTContext::getTypeOfExprType(Expr *tofExpr) const {
2875  TypeOfExprType *toe;
2876  if (tofExpr->isTypeDependent()) {
2877    llvm::FoldingSetNodeID ID;
2878    DependentTypeOfExprType::Profile(ID, *this, tofExpr);
2879
2880    void *InsertPos = 0;
2881    DependentTypeOfExprType *Canon
2882      = DependentTypeOfExprTypes.FindNodeOrInsertPos(ID, InsertPos);
2883    if (Canon) {
2884      // We already have a "canonical" version of an identical, dependent
2885      // typeof(expr) type. Use that as our canonical type.
2886      toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr,
2887                                          QualType((TypeOfExprType*)Canon, 0));
2888    } else {
2889      // Build a new, canonical typeof(expr) type.
2890      Canon
2891        = new (*this, TypeAlignment) DependentTypeOfExprType(*this, tofExpr);
2892      DependentTypeOfExprTypes.InsertNode(Canon, InsertPos);
2893      toe = Canon;
2894    }
2895  } else {
2896    QualType Canonical = getCanonicalType(tofExpr->getType());
2897    toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr, Canonical);
2898  }
2899  Types.push_back(toe);
2900  return QualType(toe, 0);
2901}
2902
2903/// getTypeOfType -  Unlike many "get<Type>" functions, we don't unique
2904/// TypeOfType AST's. The only motivation to unique these nodes would be
2905/// memory savings. Since typeof(t) is fairly uncommon, space shouldn't be
2906/// an issue. This doesn't effect the type checker, since it operates
2907/// on canonical type's (which are always unique).
2908QualType ASTContext::getTypeOfType(QualType tofType) const {
2909  QualType Canonical = getCanonicalType(tofType);
2910  TypeOfType *tot = new (*this, TypeAlignment) TypeOfType(tofType, Canonical);
2911  Types.push_back(tot);
2912  return QualType(tot, 0);
2913}
2914
2915
2916/// getDecltypeType -  Unlike many "get<Type>" functions, we don't unique
2917/// DecltypeType AST's. The only motivation to unique these nodes would be
2918/// memory savings. Since decltype(t) is fairly uncommon, space shouldn't be
2919/// an issue. This doesn't effect the type checker, since it operates
2920/// on canonical types (which are always unique).
2921QualType ASTContext::getDecltypeType(Expr *e, QualType UnderlyingType) const {
2922  DecltypeType *dt;
2923
2924  // C++0x [temp.type]p2:
2925  //   If an expression e involves a template parameter, decltype(e) denotes a
2926  //   unique dependent type. Two such decltype-specifiers refer to the same
2927  //   type only if their expressions are equivalent (14.5.6.1).
2928  if (e->isInstantiationDependent()) {
2929    llvm::FoldingSetNodeID ID;
2930    DependentDecltypeType::Profile(ID, *this, e);
2931
2932    void *InsertPos = 0;
2933    DependentDecltypeType *Canon
2934      = DependentDecltypeTypes.FindNodeOrInsertPos(ID, InsertPos);
2935    if (Canon) {
2936      // We already have a "canonical" version of an equivalent, dependent
2937      // decltype type. Use that as our canonical type.
2938      dt = new (*this, TypeAlignment) DecltypeType(e, DependentTy,
2939                                       QualType((DecltypeType*)Canon, 0));
2940    } else {
2941      // Build a new, canonical typeof(expr) type.
2942      Canon = new (*this, TypeAlignment) DependentDecltypeType(*this, e);
2943      DependentDecltypeTypes.InsertNode(Canon, InsertPos);
2944      dt = Canon;
2945    }
2946  } else {
2947    dt = new (*this, TypeAlignment) DecltypeType(e, UnderlyingType,
2948                                      getCanonicalType(UnderlyingType));
2949  }
2950  Types.push_back(dt);
2951  return QualType(dt, 0);
2952}
2953
2954/// getUnaryTransformationType - We don't unique these, since the memory
2955/// savings are minimal and these are rare.
2956QualType ASTContext::getUnaryTransformType(QualType BaseType,
2957                                           QualType UnderlyingType,
2958                                           UnaryTransformType::UTTKind Kind)
2959    const {
2960  UnaryTransformType *Ty =
2961    new (*this, TypeAlignment) UnaryTransformType (BaseType, UnderlyingType,
2962                                                   Kind,
2963                                 UnderlyingType->isDependentType() ?
2964                                 QualType() : getCanonicalType(UnderlyingType));
2965  Types.push_back(Ty);
2966  return QualType(Ty, 0);
2967}
2968
2969/// getAutoType - We only unique auto types after they've been deduced.
2970QualType ASTContext::getAutoType(QualType DeducedType) const {
2971  void *InsertPos = 0;
2972  if (!DeducedType.isNull()) {
2973    // Look in the folding set for an existing type.
2974    llvm::FoldingSetNodeID ID;
2975    AutoType::Profile(ID, DeducedType);
2976    if (AutoType *AT = AutoTypes.FindNodeOrInsertPos(ID, InsertPos))
2977      return QualType(AT, 0);
2978  }
2979
2980  AutoType *AT = new (*this, TypeAlignment) AutoType(DeducedType);
2981  Types.push_back(AT);
2982  if (InsertPos)
2983    AutoTypes.InsertNode(AT, InsertPos);
2984  return QualType(AT, 0);
2985}
2986
2987/// getAtomicType - Return the uniqued reference to the atomic type for
2988/// the given value type.
2989QualType ASTContext::getAtomicType(QualType T) const {
2990  // Unique pointers, to guarantee there is only one pointer of a particular
2991  // structure.
2992  llvm::FoldingSetNodeID ID;
2993  AtomicType::Profile(ID, T);
2994
2995  void *InsertPos = 0;
2996  if (AtomicType *AT = AtomicTypes.FindNodeOrInsertPos(ID, InsertPos))
2997    return QualType(AT, 0);
2998
2999  // If the atomic value type isn't canonical, this won't be a canonical type
3000  // either, so fill in the canonical type field.
3001  QualType Canonical;
3002  if (!T.isCanonical()) {
3003    Canonical = getAtomicType(getCanonicalType(T));
3004
3005    // Get the new insert position for the node we care about.
3006    AtomicType *NewIP = AtomicTypes.FindNodeOrInsertPos(ID, InsertPos);
3007    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
3008  }
3009  AtomicType *New = new (*this, TypeAlignment) AtomicType(T, Canonical);
3010  Types.push_back(New);
3011  AtomicTypes.InsertNode(New, InsertPos);
3012  return QualType(New, 0);
3013}
3014
3015/// getAutoDeductType - Get type pattern for deducing against 'auto'.
3016QualType ASTContext::getAutoDeductType() const {
3017  if (AutoDeductTy.isNull())
3018    AutoDeductTy = getAutoType(QualType());
3019  assert(!AutoDeductTy.isNull() && "can't build 'auto' pattern");
3020  return AutoDeductTy;
3021}
3022
3023/// getAutoRRefDeductType - Get type pattern for deducing against 'auto &&'.
3024QualType ASTContext::getAutoRRefDeductType() const {
3025  if (AutoRRefDeductTy.isNull())
3026    AutoRRefDeductTy = getRValueReferenceType(getAutoDeductType());
3027  assert(!AutoRRefDeductTy.isNull() && "can't build 'auto &&' pattern");
3028  return AutoRRefDeductTy;
3029}
3030
3031/// getTagDeclType - Return the unique reference to the type for the
3032/// specified TagDecl (struct/union/class/enum) decl.
3033QualType ASTContext::getTagDeclType(const TagDecl *Decl) const {
3034  assert (Decl);
3035  // FIXME: What is the design on getTagDeclType when it requires casting
3036  // away const?  mutable?
3037  return getTypeDeclType(const_cast<TagDecl*>(Decl));
3038}
3039
3040/// getSizeType - Return the unique type for "size_t" (C99 7.17), the result
3041/// of the sizeof operator (C99 6.5.3.4p4). The value is target dependent and
3042/// needs to agree with the definition in <stddef.h>.
3043CanQualType ASTContext::getSizeType() const {
3044  return getFromTargetType(Target->getSizeType());
3045}
3046
3047/// getIntMaxType - Return the unique type for "intmax_t" (C99 7.18.1.5).
3048CanQualType ASTContext::getIntMaxType() const {
3049  return getFromTargetType(Target->getIntMaxType());
3050}
3051
3052/// getUIntMaxType - Return the unique type for "uintmax_t" (C99 7.18.1.5).
3053CanQualType ASTContext::getUIntMaxType() const {
3054  return getFromTargetType(Target->getUIntMaxType());
3055}
3056
3057/// getSignedWCharType - Return the type of "signed wchar_t".
3058/// Used when in C++, as a GCC extension.
3059QualType ASTContext::getSignedWCharType() const {
3060  // FIXME: derive from "Target" ?
3061  return WCharTy;
3062}
3063
3064/// getUnsignedWCharType - Return the type of "unsigned wchar_t".
3065/// Used when in C++, as a GCC extension.
3066QualType ASTContext::getUnsignedWCharType() const {
3067  // FIXME: derive from "Target" ?
3068  return UnsignedIntTy;
3069}
3070
3071/// getPointerDiffType - Return the unique type for "ptrdiff_t" (C99 7.17)
3072/// defined in <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9).
3073QualType ASTContext::getPointerDiffType() const {
3074  return getFromTargetType(Target->getPtrDiffType(0));
3075}
3076
3077//===----------------------------------------------------------------------===//
3078//                              Type Operators
3079//===----------------------------------------------------------------------===//
3080
3081CanQualType ASTContext::getCanonicalParamType(QualType T) const {
3082  // Push qualifiers into arrays, and then discard any remaining
3083  // qualifiers.
3084  T = getCanonicalType(T);
3085  T = getVariableArrayDecayedType(T);
3086  const Type *Ty = T.getTypePtr();
3087  QualType Result;
3088  if (isa<ArrayType>(Ty)) {
3089    Result = getArrayDecayedType(QualType(Ty,0));
3090  } else if (isa<FunctionType>(Ty)) {
3091    Result = getPointerType(QualType(Ty, 0));
3092  } else {
3093    Result = QualType(Ty, 0);
3094  }
3095
3096  return CanQualType::CreateUnsafe(Result);
3097}
3098
3099QualType ASTContext::getUnqualifiedArrayType(QualType type,
3100                                             Qualifiers &quals) {
3101  SplitQualType splitType = type.getSplitUnqualifiedType();
3102
3103  // FIXME: getSplitUnqualifiedType() actually walks all the way to
3104  // the unqualified desugared type and then drops it on the floor.
3105  // We then have to strip that sugar back off with
3106  // getUnqualifiedDesugaredType(), which is silly.
3107  const ArrayType *AT =
3108    dyn_cast<ArrayType>(splitType.Ty->getUnqualifiedDesugaredType());
3109
3110  // If we don't have an array, just use the results in splitType.
3111  if (!AT) {
3112    quals = splitType.Quals;
3113    return QualType(splitType.Ty, 0);
3114  }
3115
3116  // Otherwise, recurse on the array's element type.
3117  QualType elementType = AT->getElementType();
3118  QualType unqualElementType = getUnqualifiedArrayType(elementType, quals);
3119
3120  // If that didn't change the element type, AT has no qualifiers, so we
3121  // can just use the results in splitType.
3122  if (elementType == unqualElementType) {
3123    assert(quals.empty()); // from the recursive call
3124    quals = splitType.Quals;
3125    return QualType(splitType.Ty, 0);
3126  }
3127
3128  // Otherwise, add in the qualifiers from the outermost type, then
3129  // build the type back up.
3130  quals.addConsistentQualifiers(splitType.Quals);
3131
3132  if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) {
3133    return getConstantArrayType(unqualElementType, CAT->getSize(),
3134                                CAT->getSizeModifier(), 0);
3135  }
3136
3137  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) {
3138    return getIncompleteArrayType(unqualElementType, IAT->getSizeModifier(), 0);
3139  }
3140
3141  if (const VariableArrayType *VAT = dyn_cast<VariableArrayType>(AT)) {
3142    return getVariableArrayType(unqualElementType,
3143                                VAT->getSizeExpr(),
3144                                VAT->getSizeModifier(),
3145                                VAT->getIndexTypeCVRQualifiers(),
3146                                VAT->getBracketsRange());
3147  }
3148
3149  const DependentSizedArrayType *DSAT = cast<DependentSizedArrayType>(AT);
3150  return getDependentSizedArrayType(unqualElementType, DSAT->getSizeExpr(),
3151                                    DSAT->getSizeModifier(), 0,
3152                                    SourceRange());
3153}
3154
3155/// UnwrapSimilarPointerTypes - If T1 and T2 are pointer types  that
3156/// may be similar (C++ 4.4), replaces T1 and T2 with the type that
3157/// they point to and return true. If T1 and T2 aren't pointer types
3158/// or pointer-to-member types, or if they are not similar at this
3159/// level, returns false and leaves T1 and T2 unchanged. Top-level
3160/// qualifiers on T1 and T2 are ignored. This function will typically
3161/// be called in a loop that successively "unwraps" pointer and
3162/// pointer-to-member types to compare them at each level.
3163bool ASTContext::UnwrapSimilarPointerTypes(QualType &T1, QualType &T2) {
3164  const PointerType *T1PtrType = T1->getAs<PointerType>(),
3165                    *T2PtrType = T2->getAs<PointerType>();
3166  if (T1PtrType && T2PtrType) {
3167    T1 = T1PtrType->getPointeeType();
3168    T2 = T2PtrType->getPointeeType();
3169    return true;
3170  }
3171
3172  const MemberPointerType *T1MPType = T1->getAs<MemberPointerType>(),
3173                          *T2MPType = T2->getAs<MemberPointerType>();
3174  if (T1MPType && T2MPType &&
3175      hasSameUnqualifiedType(QualType(T1MPType->getClass(), 0),
3176                             QualType(T2MPType->getClass(), 0))) {
3177    T1 = T1MPType->getPointeeType();
3178    T2 = T2MPType->getPointeeType();
3179    return true;
3180  }
3181
3182  if (getLangOptions().ObjC1) {
3183    const ObjCObjectPointerType *T1OPType = T1->getAs<ObjCObjectPointerType>(),
3184                                *T2OPType = T2->getAs<ObjCObjectPointerType>();
3185    if (T1OPType && T2OPType) {
3186      T1 = T1OPType->getPointeeType();
3187      T2 = T2OPType->getPointeeType();
3188      return true;
3189    }
3190  }
3191
3192  // FIXME: Block pointers, too?
3193
3194  return false;
3195}
3196
3197DeclarationNameInfo
3198ASTContext::getNameForTemplate(TemplateName Name,
3199                               SourceLocation NameLoc) const {
3200  switch (Name.getKind()) {
3201  case TemplateName::QualifiedTemplate:
3202  case TemplateName::Template:
3203    // DNInfo work in progress: CHECKME: what about DNLoc?
3204    return DeclarationNameInfo(Name.getAsTemplateDecl()->getDeclName(),
3205                               NameLoc);
3206
3207  case TemplateName::OverloadedTemplate: {
3208    OverloadedTemplateStorage *Storage = Name.getAsOverloadedTemplate();
3209    // DNInfo work in progress: CHECKME: what about DNLoc?
3210    return DeclarationNameInfo((*Storage->begin())->getDeclName(), NameLoc);
3211  }
3212
3213  case TemplateName::DependentTemplate: {
3214    DependentTemplateName *DTN = Name.getAsDependentTemplateName();
3215    DeclarationName DName;
3216    if (DTN->isIdentifier()) {
3217      DName = DeclarationNames.getIdentifier(DTN->getIdentifier());
3218      return DeclarationNameInfo(DName, NameLoc);
3219    } else {
3220      DName = DeclarationNames.getCXXOperatorName(DTN->getOperator());
3221      // DNInfo work in progress: FIXME: source locations?
3222      DeclarationNameLoc DNLoc;
3223      DNLoc.CXXOperatorName.BeginOpNameLoc = SourceLocation().getRawEncoding();
3224      DNLoc.CXXOperatorName.EndOpNameLoc = SourceLocation().getRawEncoding();
3225      return DeclarationNameInfo(DName, NameLoc, DNLoc);
3226    }
3227  }
3228
3229  case TemplateName::SubstTemplateTemplateParm: {
3230    SubstTemplateTemplateParmStorage *subst
3231      = Name.getAsSubstTemplateTemplateParm();
3232    return DeclarationNameInfo(subst->getParameter()->getDeclName(),
3233                               NameLoc);
3234  }
3235
3236  case TemplateName::SubstTemplateTemplateParmPack: {
3237    SubstTemplateTemplateParmPackStorage *subst
3238      = Name.getAsSubstTemplateTemplateParmPack();
3239    return DeclarationNameInfo(subst->getParameterPack()->getDeclName(),
3240                               NameLoc);
3241  }
3242  }
3243
3244  llvm_unreachable("bad template name kind!");
3245}
3246
3247TemplateName ASTContext::getCanonicalTemplateName(TemplateName Name) const {
3248  switch (Name.getKind()) {
3249  case TemplateName::QualifiedTemplate:
3250  case TemplateName::Template: {
3251    TemplateDecl *Template = Name.getAsTemplateDecl();
3252    if (TemplateTemplateParmDecl *TTP
3253          = dyn_cast<TemplateTemplateParmDecl>(Template))
3254      Template = getCanonicalTemplateTemplateParmDecl(TTP);
3255
3256    // The canonical template name is the canonical template declaration.
3257    return TemplateName(cast<TemplateDecl>(Template->getCanonicalDecl()));
3258  }
3259
3260  case TemplateName::OverloadedTemplate:
3261    llvm_unreachable("cannot canonicalize overloaded template");
3262
3263  case TemplateName::DependentTemplate: {
3264    DependentTemplateName *DTN = Name.getAsDependentTemplateName();
3265    assert(DTN && "Non-dependent template names must refer to template decls.");
3266    return DTN->CanonicalTemplateName;
3267  }
3268
3269  case TemplateName::SubstTemplateTemplateParm: {
3270    SubstTemplateTemplateParmStorage *subst
3271      = Name.getAsSubstTemplateTemplateParm();
3272    return getCanonicalTemplateName(subst->getReplacement());
3273  }
3274
3275  case TemplateName::SubstTemplateTemplateParmPack: {
3276    SubstTemplateTemplateParmPackStorage *subst
3277                                  = Name.getAsSubstTemplateTemplateParmPack();
3278    TemplateTemplateParmDecl *canonParameter
3279      = getCanonicalTemplateTemplateParmDecl(subst->getParameterPack());
3280    TemplateArgument canonArgPack
3281      = getCanonicalTemplateArgument(subst->getArgumentPack());
3282    return getSubstTemplateTemplateParmPack(canonParameter, canonArgPack);
3283  }
3284  }
3285
3286  llvm_unreachable("bad template name!");
3287}
3288
3289bool ASTContext::hasSameTemplateName(TemplateName X, TemplateName Y) {
3290  X = getCanonicalTemplateName(X);
3291  Y = getCanonicalTemplateName(Y);
3292  return X.getAsVoidPointer() == Y.getAsVoidPointer();
3293}
3294
3295TemplateArgument
3296ASTContext::getCanonicalTemplateArgument(const TemplateArgument &Arg) const {
3297  switch (Arg.getKind()) {
3298    case TemplateArgument::Null:
3299      return Arg;
3300
3301    case TemplateArgument::Expression:
3302      return Arg;
3303
3304    case TemplateArgument::Declaration:
3305      return TemplateArgument(Arg.getAsDecl()->getCanonicalDecl());
3306
3307    case TemplateArgument::Template:
3308      return TemplateArgument(getCanonicalTemplateName(Arg.getAsTemplate()));
3309
3310    case TemplateArgument::TemplateExpansion:
3311      return TemplateArgument(getCanonicalTemplateName(
3312                                         Arg.getAsTemplateOrTemplatePattern()),
3313                              Arg.getNumTemplateExpansions());
3314
3315    case TemplateArgument::Integral:
3316      return TemplateArgument(*Arg.getAsIntegral(),
3317                              getCanonicalType(Arg.getIntegralType()));
3318
3319    case TemplateArgument::Type:
3320      return TemplateArgument(getCanonicalType(Arg.getAsType()));
3321
3322    case TemplateArgument::Pack: {
3323      if (Arg.pack_size() == 0)
3324        return Arg;
3325
3326      TemplateArgument *CanonArgs
3327        = new (*this) TemplateArgument[Arg.pack_size()];
3328      unsigned Idx = 0;
3329      for (TemplateArgument::pack_iterator A = Arg.pack_begin(),
3330                                        AEnd = Arg.pack_end();
3331           A != AEnd; (void)++A, ++Idx)
3332        CanonArgs[Idx] = getCanonicalTemplateArgument(*A);
3333
3334      return TemplateArgument(CanonArgs, Arg.pack_size());
3335    }
3336  }
3337
3338  // Silence GCC warning
3339  llvm_unreachable("Unhandled template argument kind");
3340}
3341
3342NestedNameSpecifier *
3343ASTContext::getCanonicalNestedNameSpecifier(NestedNameSpecifier *NNS) const {
3344  if (!NNS)
3345    return 0;
3346
3347  switch (NNS->getKind()) {
3348  case NestedNameSpecifier::Identifier:
3349    // Canonicalize the prefix but keep the identifier the same.
3350    return NestedNameSpecifier::Create(*this,
3351                         getCanonicalNestedNameSpecifier(NNS->getPrefix()),
3352                                       NNS->getAsIdentifier());
3353
3354  case NestedNameSpecifier::Namespace:
3355    // A namespace is canonical; build a nested-name-specifier with
3356    // this namespace and no prefix.
3357    return NestedNameSpecifier::Create(*this, 0,
3358                                 NNS->getAsNamespace()->getOriginalNamespace());
3359
3360  case NestedNameSpecifier::NamespaceAlias:
3361    // A namespace is canonical; build a nested-name-specifier with
3362    // this namespace and no prefix.
3363    return NestedNameSpecifier::Create(*this, 0,
3364                                    NNS->getAsNamespaceAlias()->getNamespace()
3365                                                      ->getOriginalNamespace());
3366
3367  case NestedNameSpecifier::TypeSpec:
3368  case NestedNameSpecifier::TypeSpecWithTemplate: {
3369    QualType T = getCanonicalType(QualType(NNS->getAsType(), 0));
3370
3371    // If we have some kind of dependent-named type (e.g., "typename T::type"),
3372    // break it apart into its prefix and identifier, then reconsititute those
3373    // as the canonical nested-name-specifier. This is required to canonicalize
3374    // a dependent nested-name-specifier involving typedefs of dependent-name
3375    // types, e.g.,
3376    //   typedef typename T::type T1;
3377    //   typedef typename T1::type T2;
3378    if (const DependentNameType *DNT = T->getAs<DependentNameType>())
3379      return NestedNameSpecifier::Create(*this, DNT->getQualifier(),
3380                           const_cast<IdentifierInfo *>(DNT->getIdentifier()));
3381
3382    // Otherwise, just canonicalize the type, and force it to be a TypeSpec.
3383    // FIXME: Why are TypeSpec and TypeSpecWithTemplate distinct in the
3384    // first place?
3385    return NestedNameSpecifier::Create(*this, 0, false,
3386                                       const_cast<Type*>(T.getTypePtr()));
3387  }
3388
3389  case NestedNameSpecifier::Global:
3390    // The global specifier is canonical and unique.
3391    return NNS;
3392  }
3393
3394  llvm_unreachable("Invalid NestedNameSpecifier::Kind!");
3395}
3396
3397
3398const ArrayType *ASTContext::getAsArrayType(QualType T) const {
3399  // Handle the non-qualified case efficiently.
3400  if (!T.hasLocalQualifiers()) {
3401    // Handle the common positive case fast.
3402    if (const ArrayType *AT = dyn_cast<ArrayType>(T))
3403      return AT;
3404  }
3405
3406  // Handle the common negative case fast.
3407  if (!isa<ArrayType>(T.getCanonicalType()))
3408    return 0;
3409
3410  // Apply any qualifiers from the array type to the element type.  This
3411  // implements C99 6.7.3p8: "If the specification of an array type includes
3412  // any type qualifiers, the element type is so qualified, not the array type."
3413
3414  // If we get here, we either have type qualifiers on the type, or we have
3415  // sugar such as a typedef in the way.  If we have type qualifiers on the type
3416  // we must propagate them down into the element type.
3417
3418  SplitQualType split = T.getSplitDesugaredType();
3419  Qualifiers qs = split.Quals;
3420
3421  // If we have a simple case, just return now.
3422  const ArrayType *ATy = dyn_cast<ArrayType>(split.Ty);
3423  if (ATy == 0 || qs.empty())
3424    return ATy;
3425
3426  // Otherwise, we have an array and we have qualifiers on it.  Push the
3427  // qualifiers into the array element type and return a new array type.
3428  QualType NewEltTy = getQualifiedType(ATy->getElementType(), qs);
3429
3430  if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(ATy))
3431    return cast<ArrayType>(getConstantArrayType(NewEltTy, CAT->getSize(),
3432                                                CAT->getSizeModifier(),
3433                                           CAT->getIndexTypeCVRQualifiers()));
3434  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(ATy))
3435    return cast<ArrayType>(getIncompleteArrayType(NewEltTy,
3436                                                  IAT->getSizeModifier(),
3437                                           IAT->getIndexTypeCVRQualifiers()));
3438
3439  if (const DependentSizedArrayType *DSAT
3440        = dyn_cast<DependentSizedArrayType>(ATy))
3441    return cast<ArrayType>(
3442                     getDependentSizedArrayType(NewEltTy,
3443                                                DSAT->getSizeExpr(),
3444                                                DSAT->getSizeModifier(),
3445                                              DSAT->getIndexTypeCVRQualifiers(),
3446                                                DSAT->getBracketsRange()));
3447
3448  const VariableArrayType *VAT = cast<VariableArrayType>(ATy);
3449  return cast<ArrayType>(getVariableArrayType(NewEltTy,
3450                                              VAT->getSizeExpr(),
3451                                              VAT->getSizeModifier(),
3452                                              VAT->getIndexTypeCVRQualifiers(),
3453                                              VAT->getBracketsRange()));
3454}
3455
3456QualType ASTContext::getAdjustedParameterType(QualType T) {
3457  // C99 6.7.5.3p7:
3458  //   A declaration of a parameter as "array of type" shall be
3459  //   adjusted to "qualified pointer to type", where the type
3460  //   qualifiers (if any) are those specified within the [ and ] of
3461  //   the array type derivation.
3462  if (T->isArrayType())
3463    return getArrayDecayedType(T);
3464
3465  // C99 6.7.5.3p8:
3466  //   A declaration of a parameter as "function returning type"
3467  //   shall be adjusted to "pointer to function returning type", as
3468  //   in 6.3.2.1.
3469  if (T->isFunctionType())
3470    return getPointerType(T);
3471
3472  return T;
3473}
3474
3475QualType ASTContext::getSignatureParameterType(QualType T) {
3476  T = getVariableArrayDecayedType(T);
3477  T = getAdjustedParameterType(T);
3478  return T.getUnqualifiedType();
3479}
3480
3481/// getArrayDecayedType - Return the properly qualified result of decaying the
3482/// specified array type to a pointer.  This operation is non-trivial when
3483/// handling typedefs etc.  The canonical type of "T" must be an array type,
3484/// this returns a pointer to a properly qualified element of the array.
3485///
3486/// See C99 6.7.5.3p7 and C99 6.3.2.1p3.
3487QualType ASTContext::getArrayDecayedType(QualType Ty) const {
3488  // Get the element type with 'getAsArrayType' so that we don't lose any
3489  // typedefs in the element type of the array.  This also handles propagation
3490  // of type qualifiers from the array type into the element type if present
3491  // (C99 6.7.3p8).
3492  const ArrayType *PrettyArrayType = getAsArrayType(Ty);
3493  assert(PrettyArrayType && "Not an array type!");
3494
3495  QualType PtrTy = getPointerType(PrettyArrayType->getElementType());
3496
3497  // int x[restrict 4] ->  int *restrict
3498  return getQualifiedType(PtrTy, PrettyArrayType->getIndexTypeQualifiers());
3499}
3500
3501QualType ASTContext::getBaseElementType(const ArrayType *array) const {
3502  return getBaseElementType(array->getElementType());
3503}
3504
3505QualType ASTContext::getBaseElementType(QualType type) const {
3506  Qualifiers qs;
3507  while (true) {
3508    SplitQualType split = type.getSplitDesugaredType();
3509    const ArrayType *array = split.Ty->getAsArrayTypeUnsafe();
3510    if (!array) break;
3511
3512    type = array->getElementType();
3513    qs.addConsistentQualifiers(split.Quals);
3514  }
3515
3516  return getQualifiedType(type, qs);
3517}
3518
3519/// getConstantArrayElementCount - Returns number of constant array elements.
3520uint64_t
3521ASTContext::getConstantArrayElementCount(const ConstantArrayType *CA)  const {
3522  uint64_t ElementCount = 1;
3523  do {
3524    ElementCount *= CA->getSize().getZExtValue();
3525    CA = dyn_cast<ConstantArrayType>(CA->getElementType());
3526  } while (CA);
3527  return ElementCount;
3528}
3529
3530/// getFloatingRank - Return a relative rank for floating point types.
3531/// This routine will assert if passed a built-in type that isn't a float.
3532static FloatingRank getFloatingRank(QualType T) {
3533  if (const ComplexType *CT = T->getAs<ComplexType>())
3534    return getFloatingRank(CT->getElementType());
3535
3536  assert(T->getAs<BuiltinType>() && "getFloatingRank(): not a floating type");
3537  switch (T->getAs<BuiltinType>()->getKind()) {
3538  default: llvm_unreachable("getFloatingRank(): not a floating type");
3539  case BuiltinType::Half:       return HalfRank;
3540  case BuiltinType::Float:      return FloatRank;
3541  case BuiltinType::Double:     return DoubleRank;
3542  case BuiltinType::LongDouble: return LongDoubleRank;
3543  }
3544}
3545
3546/// getFloatingTypeOfSizeWithinDomain - Returns a real floating
3547/// point or a complex type (based on typeDomain/typeSize).
3548/// 'typeDomain' is a real floating point or complex type.
3549/// 'typeSize' is a real floating point or complex type.
3550QualType ASTContext::getFloatingTypeOfSizeWithinDomain(QualType Size,
3551                                                       QualType Domain) const {
3552  FloatingRank EltRank = getFloatingRank(Size);
3553  if (Domain->isComplexType()) {
3554    switch (EltRank) {
3555    case HalfRank: llvm_unreachable("Complex half is not supported");
3556    case FloatRank:      return FloatComplexTy;
3557    case DoubleRank:     return DoubleComplexTy;
3558    case LongDoubleRank: return LongDoubleComplexTy;
3559    }
3560  }
3561
3562  assert(Domain->isRealFloatingType() && "Unknown domain!");
3563  switch (EltRank) {
3564  case HalfRank: llvm_unreachable("Half ranks are not valid here");
3565  case FloatRank:      return FloatTy;
3566  case DoubleRank:     return DoubleTy;
3567  case LongDoubleRank: return LongDoubleTy;
3568  }
3569  llvm_unreachable("getFloatingRank(): illegal value for rank");
3570}
3571
3572/// getFloatingTypeOrder - Compare the rank of the two specified floating
3573/// point types, ignoring the domain of the type (i.e. 'double' ==
3574/// '_Complex double').  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
3575/// LHS < RHS, return -1.
3576int ASTContext::getFloatingTypeOrder(QualType LHS, QualType RHS) const {
3577  FloatingRank LHSR = getFloatingRank(LHS);
3578  FloatingRank RHSR = getFloatingRank(RHS);
3579
3580  if (LHSR == RHSR)
3581    return 0;
3582  if (LHSR > RHSR)
3583    return 1;
3584  return -1;
3585}
3586
3587/// getIntegerRank - Return an integer conversion rank (C99 6.3.1.1p1). This
3588/// routine will assert if passed a built-in type that isn't an integer or enum,
3589/// or if it is not canonicalized.
3590unsigned ASTContext::getIntegerRank(const Type *T) const {
3591  assert(T->isCanonicalUnqualified() && "T should be canonicalized");
3592
3593  switch (cast<BuiltinType>(T)->getKind()) {
3594  default: llvm_unreachable("getIntegerRank(): not a built-in integer");
3595  case BuiltinType::Bool:
3596    return 1 + (getIntWidth(BoolTy) << 3);
3597  case BuiltinType::Char_S:
3598  case BuiltinType::Char_U:
3599  case BuiltinType::SChar:
3600  case BuiltinType::UChar:
3601    return 2 + (getIntWidth(CharTy) << 3);
3602  case BuiltinType::Short:
3603  case BuiltinType::UShort:
3604    return 3 + (getIntWidth(ShortTy) << 3);
3605  case BuiltinType::Int:
3606  case BuiltinType::UInt:
3607    return 4 + (getIntWidth(IntTy) << 3);
3608  case BuiltinType::Long:
3609  case BuiltinType::ULong:
3610    return 5 + (getIntWidth(LongTy) << 3);
3611  case BuiltinType::LongLong:
3612  case BuiltinType::ULongLong:
3613    return 6 + (getIntWidth(LongLongTy) << 3);
3614  case BuiltinType::Int128:
3615  case BuiltinType::UInt128:
3616    return 7 + (getIntWidth(Int128Ty) << 3);
3617  }
3618}
3619
3620/// \brief Whether this is a promotable bitfield reference according
3621/// to C99 6.3.1.1p2, bullet 2 (and GCC extensions).
3622///
3623/// \returns the type this bit-field will promote to, or NULL if no
3624/// promotion occurs.
3625QualType ASTContext::isPromotableBitField(Expr *E) const {
3626  if (E->isTypeDependent() || E->isValueDependent())
3627    return QualType();
3628
3629  FieldDecl *Field = E->getBitField();
3630  if (!Field)
3631    return QualType();
3632
3633  QualType FT = Field->getType();
3634
3635  uint64_t BitWidth = Field->getBitWidthValue(*this);
3636  uint64_t IntSize = getTypeSize(IntTy);
3637  // GCC extension compatibility: if the bit-field size is less than or equal
3638  // to the size of int, it gets promoted no matter what its type is.
3639  // For instance, unsigned long bf : 4 gets promoted to signed int.
3640  if (BitWidth < IntSize)
3641    return IntTy;
3642
3643  if (BitWidth == IntSize)
3644    return FT->isSignedIntegerType() ? IntTy : UnsignedIntTy;
3645
3646  // Types bigger than int are not subject to promotions, and therefore act
3647  // like the base type.
3648  // FIXME: This doesn't quite match what gcc does, but what gcc does here
3649  // is ridiculous.
3650  return QualType();
3651}
3652
3653/// getPromotedIntegerType - Returns the type that Promotable will
3654/// promote to: C99 6.3.1.1p2, assuming that Promotable is a promotable
3655/// integer type.
3656QualType ASTContext::getPromotedIntegerType(QualType Promotable) const {
3657  assert(!Promotable.isNull());
3658  assert(Promotable->isPromotableIntegerType());
3659  if (const EnumType *ET = Promotable->getAs<EnumType>())
3660    return ET->getDecl()->getPromotionType();
3661
3662  if (const BuiltinType *BT = Promotable->getAs<BuiltinType>()) {
3663    // C++ [conv.prom]: A prvalue of type char16_t, char32_t, or wchar_t
3664    // (3.9.1) can be converted to a prvalue of the first of the following
3665    // types that can represent all the values of its underlying type:
3666    // int, unsigned int, long int, unsigned long int, long long int, or
3667    // unsigned long long int [...]
3668    // FIXME: Is there some better way to compute this?
3669    if (BT->getKind() == BuiltinType::WChar_S ||
3670        BT->getKind() == BuiltinType::WChar_U ||
3671        BT->getKind() == BuiltinType::Char16 ||
3672        BT->getKind() == BuiltinType::Char32) {
3673      bool FromIsSigned = BT->getKind() == BuiltinType::WChar_S;
3674      uint64_t FromSize = getTypeSize(BT);
3675      QualType PromoteTypes[] = { IntTy, UnsignedIntTy, LongTy, UnsignedLongTy,
3676                                  LongLongTy, UnsignedLongLongTy };
3677      for (size_t Idx = 0; Idx < llvm::array_lengthof(PromoteTypes); ++Idx) {
3678        uint64_t ToSize = getTypeSize(PromoteTypes[Idx]);
3679        if (FromSize < ToSize ||
3680            (FromSize == ToSize &&
3681             FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType()))
3682          return PromoteTypes[Idx];
3683      }
3684      llvm_unreachable("char type should fit into long long");
3685    }
3686  }
3687
3688  // At this point, we should have a signed or unsigned integer type.
3689  if (Promotable->isSignedIntegerType())
3690    return IntTy;
3691  uint64_t PromotableSize = getTypeSize(Promotable);
3692  uint64_t IntSize = getTypeSize(IntTy);
3693  assert(Promotable->isUnsignedIntegerType() && PromotableSize <= IntSize);
3694  return (PromotableSize != IntSize) ? IntTy : UnsignedIntTy;
3695}
3696
3697/// \brief Recurses in pointer/array types until it finds an objc retainable
3698/// type and returns its ownership.
3699Qualifiers::ObjCLifetime ASTContext::getInnerObjCOwnership(QualType T) const {
3700  while (!T.isNull()) {
3701    if (T.getObjCLifetime() != Qualifiers::OCL_None)
3702      return T.getObjCLifetime();
3703    if (T->isArrayType())
3704      T = getBaseElementType(T);
3705    else if (const PointerType *PT = T->getAs<PointerType>())
3706      T = PT->getPointeeType();
3707    else if (const ReferenceType *RT = T->getAs<ReferenceType>())
3708      T = RT->getPointeeType();
3709    else
3710      break;
3711  }
3712
3713  return Qualifiers::OCL_None;
3714}
3715
3716/// getIntegerTypeOrder - Returns the highest ranked integer type:
3717/// C99 6.3.1.8p1.  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
3718/// LHS < RHS, return -1.
3719int ASTContext::getIntegerTypeOrder(QualType LHS, QualType RHS) const {
3720  const Type *LHSC = getCanonicalType(LHS).getTypePtr();
3721  const Type *RHSC = getCanonicalType(RHS).getTypePtr();
3722  if (LHSC == RHSC) return 0;
3723
3724  bool LHSUnsigned = LHSC->isUnsignedIntegerType();
3725  bool RHSUnsigned = RHSC->isUnsignedIntegerType();
3726
3727  unsigned LHSRank = getIntegerRank(LHSC);
3728  unsigned RHSRank = getIntegerRank(RHSC);
3729
3730  if (LHSUnsigned == RHSUnsigned) {  // Both signed or both unsigned.
3731    if (LHSRank == RHSRank) return 0;
3732    return LHSRank > RHSRank ? 1 : -1;
3733  }
3734
3735  // Otherwise, the LHS is signed and the RHS is unsigned or visa versa.
3736  if (LHSUnsigned) {
3737    // If the unsigned [LHS] type is larger, return it.
3738    if (LHSRank >= RHSRank)
3739      return 1;
3740
3741    // If the signed type can represent all values of the unsigned type, it
3742    // wins.  Because we are dealing with 2's complement and types that are
3743    // powers of two larger than each other, this is always safe.
3744    return -1;
3745  }
3746
3747  // If the unsigned [RHS] type is larger, return it.
3748  if (RHSRank >= LHSRank)
3749    return -1;
3750
3751  // If the signed type can represent all values of the unsigned type, it
3752  // wins.  Because we are dealing with 2's complement and types that are
3753  // powers of two larger than each other, this is always safe.
3754  return 1;
3755}
3756
3757static RecordDecl *
3758CreateRecordDecl(const ASTContext &Ctx, RecordDecl::TagKind TK,
3759                 DeclContext *DC, IdentifierInfo *Id) {
3760  SourceLocation Loc;
3761  if (Ctx.getLangOptions().CPlusPlus)
3762    return CXXRecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id);
3763  else
3764    return RecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id);
3765}
3766
3767// getCFConstantStringType - Return the type used for constant CFStrings.
3768QualType ASTContext::getCFConstantStringType() const {
3769  if (!CFConstantStringTypeDecl) {
3770    CFConstantStringTypeDecl =
3771      CreateRecordDecl(*this, TTK_Struct, TUDecl,
3772                       &Idents.get("NSConstantString"));
3773    CFConstantStringTypeDecl->startDefinition();
3774
3775    QualType FieldTypes[4];
3776
3777    // const int *isa;
3778    FieldTypes[0] = getPointerType(IntTy.withConst());
3779    // int flags;
3780    FieldTypes[1] = IntTy;
3781    // const char *str;
3782    FieldTypes[2] = getPointerType(CharTy.withConst());
3783    // long length;
3784    FieldTypes[3] = LongTy;
3785
3786    // Create fields
3787    for (unsigned i = 0; i < 4; ++i) {
3788      FieldDecl *Field = FieldDecl::Create(*this, CFConstantStringTypeDecl,
3789                                           SourceLocation(),
3790                                           SourceLocation(), 0,
3791                                           FieldTypes[i], /*TInfo=*/0,
3792                                           /*BitWidth=*/0,
3793                                           /*Mutable=*/false,
3794                                           /*HasInit=*/false);
3795      Field->setAccess(AS_public);
3796      CFConstantStringTypeDecl->addDecl(Field);
3797    }
3798
3799    CFConstantStringTypeDecl->completeDefinition();
3800  }
3801
3802  return getTagDeclType(CFConstantStringTypeDecl);
3803}
3804
3805void ASTContext::setCFConstantStringType(QualType T) {
3806  const RecordType *Rec = T->getAs<RecordType>();
3807  assert(Rec && "Invalid CFConstantStringType");
3808  CFConstantStringTypeDecl = Rec->getDecl();
3809}
3810
3811QualType ASTContext::getBlockDescriptorType() const {
3812  if (BlockDescriptorType)
3813    return getTagDeclType(BlockDescriptorType);
3814
3815  RecordDecl *T;
3816  // FIXME: Needs the FlagAppleBlock bit.
3817  T = CreateRecordDecl(*this, TTK_Struct, TUDecl,
3818                       &Idents.get("__block_descriptor"));
3819  T->startDefinition();
3820
3821  QualType FieldTypes[] = {
3822    UnsignedLongTy,
3823    UnsignedLongTy,
3824  };
3825
3826  const char *FieldNames[] = {
3827    "reserved",
3828    "Size"
3829  };
3830
3831  for (size_t i = 0; i < 2; ++i) {
3832    FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(),
3833                                         SourceLocation(),
3834                                         &Idents.get(FieldNames[i]),
3835                                         FieldTypes[i], /*TInfo=*/0,
3836                                         /*BitWidth=*/0,
3837                                         /*Mutable=*/false,
3838                                         /*HasInit=*/false);
3839    Field->setAccess(AS_public);
3840    T->addDecl(Field);
3841  }
3842
3843  T->completeDefinition();
3844
3845  BlockDescriptorType = T;
3846
3847  return getTagDeclType(BlockDescriptorType);
3848}
3849
3850QualType ASTContext::getBlockDescriptorExtendedType() const {
3851  if (BlockDescriptorExtendedType)
3852    return getTagDeclType(BlockDescriptorExtendedType);
3853
3854  RecordDecl *T;
3855  // FIXME: Needs the FlagAppleBlock bit.
3856  T = CreateRecordDecl(*this, TTK_Struct, TUDecl,
3857                       &Idents.get("__block_descriptor_withcopydispose"));
3858  T->startDefinition();
3859
3860  QualType FieldTypes[] = {
3861    UnsignedLongTy,
3862    UnsignedLongTy,
3863    getPointerType(VoidPtrTy),
3864    getPointerType(VoidPtrTy)
3865  };
3866
3867  const char *FieldNames[] = {
3868    "reserved",
3869    "Size",
3870    "CopyFuncPtr",
3871    "DestroyFuncPtr"
3872  };
3873
3874  for (size_t i = 0; i < 4; ++i) {
3875    FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(),
3876                                         SourceLocation(),
3877                                         &Idents.get(FieldNames[i]),
3878                                         FieldTypes[i], /*TInfo=*/0,
3879                                         /*BitWidth=*/0,
3880                                         /*Mutable=*/false,
3881                                         /*HasInit=*/false);
3882    Field->setAccess(AS_public);
3883    T->addDecl(Field);
3884  }
3885
3886  T->completeDefinition();
3887
3888  BlockDescriptorExtendedType = T;
3889
3890  return getTagDeclType(BlockDescriptorExtendedType);
3891}
3892
3893bool ASTContext::BlockRequiresCopying(QualType Ty) const {
3894  if (Ty->isObjCRetainableType())
3895    return true;
3896  if (getLangOptions().CPlusPlus) {
3897    if (const RecordType *RT = Ty->getAs<RecordType>()) {
3898      CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
3899      return RD->hasConstCopyConstructor();
3900
3901    }
3902  }
3903  return false;
3904}
3905
3906QualType
3907ASTContext::BuildByRefType(StringRef DeclName, QualType Ty) const {
3908  //  type = struct __Block_byref_1_X {
3909  //    void *__isa;
3910  //    struct __Block_byref_1_X *__forwarding;
3911  //    unsigned int __flags;
3912  //    unsigned int __size;
3913  //    void *__copy_helper;            // as needed
3914  //    void *__destroy_help            // as needed
3915  //    int X;
3916  //  } *
3917
3918  bool HasCopyAndDispose = BlockRequiresCopying(Ty);
3919
3920  // FIXME: Move up
3921  SmallString<36> Name;
3922  llvm::raw_svector_ostream(Name) << "__Block_byref_" <<
3923                                  ++UniqueBlockByRefTypeID << '_' << DeclName;
3924  RecordDecl *T;
3925  T = CreateRecordDecl(*this, TTK_Struct, TUDecl, &Idents.get(Name.str()));
3926  T->startDefinition();
3927  QualType Int32Ty = IntTy;
3928  assert(getIntWidth(IntTy) == 32 && "non-32bit int not supported");
3929  QualType FieldTypes[] = {
3930    getPointerType(VoidPtrTy),
3931    getPointerType(getTagDeclType(T)),
3932    Int32Ty,
3933    Int32Ty,
3934    getPointerType(VoidPtrTy),
3935    getPointerType(VoidPtrTy),
3936    Ty
3937  };
3938
3939  StringRef FieldNames[] = {
3940    "__isa",
3941    "__forwarding",
3942    "__flags",
3943    "__size",
3944    "__copy_helper",
3945    "__destroy_helper",
3946    DeclName,
3947  };
3948
3949  for (size_t i = 0; i < 7; ++i) {
3950    if (!HasCopyAndDispose && i >=4 && i <= 5)
3951      continue;
3952    FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(),
3953                                         SourceLocation(),
3954                                         &Idents.get(FieldNames[i]),
3955                                         FieldTypes[i], /*TInfo=*/0,
3956                                         /*BitWidth=*/0, /*Mutable=*/false,
3957                                         /*HasInit=*/false);
3958    Field->setAccess(AS_public);
3959    T->addDecl(Field);
3960  }
3961
3962  T->completeDefinition();
3963
3964  return getPointerType(getTagDeclType(T));
3965}
3966
3967TypedefDecl *ASTContext::getObjCInstanceTypeDecl() {
3968  if (!ObjCInstanceTypeDecl)
3969    ObjCInstanceTypeDecl = TypedefDecl::Create(*this,
3970                                               getTranslationUnitDecl(),
3971                                               SourceLocation(),
3972                                               SourceLocation(),
3973                                               &Idents.get("instancetype"),
3974                                     getTrivialTypeSourceInfo(getObjCIdType()));
3975  return ObjCInstanceTypeDecl;
3976}
3977
3978// This returns true if a type has been typedefed to BOOL:
3979// typedef <type> BOOL;
3980static bool isTypeTypedefedAsBOOL(QualType T) {
3981  if (const TypedefType *TT = dyn_cast<TypedefType>(T))
3982    if (IdentifierInfo *II = TT->getDecl()->getIdentifier())
3983      return II->isStr("BOOL");
3984
3985  return false;
3986}
3987
3988/// getObjCEncodingTypeSize returns size of type for objective-c encoding
3989/// purpose.
3990CharUnits ASTContext::getObjCEncodingTypeSize(QualType type) const {
3991  if (!type->isIncompleteArrayType() && type->isIncompleteType())
3992    return CharUnits::Zero();
3993
3994  CharUnits sz = getTypeSizeInChars(type);
3995
3996  // Make all integer and enum types at least as large as an int
3997  if (sz.isPositive() && type->isIntegralOrEnumerationType())
3998    sz = std::max(sz, getTypeSizeInChars(IntTy));
3999  // Treat arrays as pointers, since that's how they're passed in.
4000  else if (type->isArrayType())
4001    sz = getTypeSizeInChars(VoidPtrTy);
4002  return sz;
4003}
4004
4005static inline
4006std::string charUnitsToString(const CharUnits &CU) {
4007  return llvm::itostr(CU.getQuantity());
4008}
4009
4010/// getObjCEncodingForBlock - Return the encoded type for this block
4011/// declaration.
4012std::string ASTContext::getObjCEncodingForBlock(const BlockExpr *Expr) const {
4013  std::string S;
4014
4015  const BlockDecl *Decl = Expr->getBlockDecl();
4016  QualType BlockTy =
4017      Expr->getType()->getAs<BlockPointerType>()->getPointeeType();
4018  // Encode result type.
4019  getObjCEncodingForType(BlockTy->getAs<FunctionType>()->getResultType(), S);
4020  // Compute size of all parameters.
4021  // Start with computing size of a pointer in number of bytes.
4022  // FIXME: There might(should) be a better way of doing this computation!
4023  SourceLocation Loc;
4024  CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy);
4025  CharUnits ParmOffset = PtrSize;
4026  for (BlockDecl::param_const_iterator PI = Decl->param_begin(),
4027       E = Decl->param_end(); PI != E; ++PI) {
4028    QualType PType = (*PI)->getType();
4029    CharUnits sz = getObjCEncodingTypeSize(PType);
4030    assert (sz.isPositive() && "BlockExpr - Incomplete param type");
4031    ParmOffset += sz;
4032  }
4033  // Size of the argument frame
4034  S += charUnitsToString(ParmOffset);
4035  // Block pointer and offset.
4036  S += "@?0";
4037
4038  // Argument types.
4039  ParmOffset = PtrSize;
4040  for (BlockDecl::param_const_iterator PI = Decl->param_begin(), E =
4041       Decl->param_end(); PI != E; ++PI) {
4042    ParmVarDecl *PVDecl = *PI;
4043    QualType PType = PVDecl->getOriginalType();
4044    if (const ArrayType *AT =
4045          dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
4046      // Use array's original type only if it has known number of
4047      // elements.
4048      if (!isa<ConstantArrayType>(AT))
4049        PType = PVDecl->getType();
4050    } else if (PType->isFunctionType())
4051      PType = PVDecl->getType();
4052    getObjCEncodingForType(PType, S);
4053    S += charUnitsToString(ParmOffset);
4054    ParmOffset += getObjCEncodingTypeSize(PType);
4055  }
4056
4057  return S;
4058}
4059
4060bool ASTContext::getObjCEncodingForFunctionDecl(const FunctionDecl *Decl,
4061                                                std::string& S) {
4062  // Encode result type.
4063  getObjCEncodingForType(Decl->getResultType(), S);
4064  CharUnits ParmOffset;
4065  // Compute size of all parameters.
4066  for (FunctionDecl::param_const_iterator PI = Decl->param_begin(),
4067       E = Decl->param_end(); PI != E; ++PI) {
4068    QualType PType = (*PI)->getType();
4069    CharUnits sz = getObjCEncodingTypeSize(PType);
4070    if (sz.isZero())
4071      return true;
4072
4073    assert (sz.isPositive() &&
4074        "getObjCEncodingForFunctionDecl - Incomplete param type");
4075    ParmOffset += sz;
4076  }
4077  S += charUnitsToString(ParmOffset);
4078  ParmOffset = CharUnits::Zero();
4079
4080  // Argument types.
4081  for (FunctionDecl::param_const_iterator PI = Decl->param_begin(),
4082       E = Decl->param_end(); PI != E; ++PI) {
4083    ParmVarDecl *PVDecl = *PI;
4084    QualType PType = PVDecl->getOriginalType();
4085    if (const ArrayType *AT =
4086          dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
4087      // Use array's original type only if it has known number of
4088      // elements.
4089      if (!isa<ConstantArrayType>(AT))
4090        PType = PVDecl->getType();
4091    } else if (PType->isFunctionType())
4092      PType = PVDecl->getType();
4093    getObjCEncodingForType(PType, S);
4094    S += charUnitsToString(ParmOffset);
4095    ParmOffset += getObjCEncodingTypeSize(PType);
4096  }
4097
4098  return false;
4099}
4100
4101/// getObjCEncodingForMethodParameter - Return the encoded type for a single
4102/// method parameter or return type. If Extended, include class names and
4103/// block object types.
4104void ASTContext::getObjCEncodingForMethodParameter(Decl::ObjCDeclQualifier QT,
4105                                                   QualType T, std::string& S,
4106                                                   bool Extended) const {
4107  // Encode type qualifer, 'in', 'inout', etc. for the parameter.
4108  getObjCEncodingForTypeQualifier(QT, S);
4109  // Encode parameter type.
4110  getObjCEncodingForTypeImpl(T, S, true, true, 0,
4111                             true     /*OutermostType*/,
4112                             false    /*EncodingProperty*/,
4113                             false    /*StructField*/,
4114                             Extended /*EncodeBlockParameters*/,
4115                             Extended /*EncodeClassNames*/);
4116}
4117
4118/// getObjCEncodingForMethodDecl - Return the encoded type for this method
4119/// declaration.
4120bool ASTContext::getObjCEncodingForMethodDecl(const ObjCMethodDecl *Decl,
4121                                              std::string& S,
4122                                              bool Extended) const {
4123  // FIXME: This is not very efficient.
4124  // Encode return type.
4125  getObjCEncodingForMethodParameter(Decl->getObjCDeclQualifier(),
4126                                    Decl->getResultType(), S, Extended);
4127  // Compute size of all parameters.
4128  // Start with computing size of a pointer in number of bytes.
4129  // FIXME: There might(should) be a better way of doing this computation!
4130  SourceLocation Loc;
4131  CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy);
4132  // The first two arguments (self and _cmd) are pointers; account for
4133  // their size.
4134  CharUnits ParmOffset = 2 * PtrSize;
4135  for (ObjCMethodDecl::param_const_iterator PI = Decl->param_begin(),
4136       E = Decl->sel_param_end(); PI != E; ++PI) {
4137    QualType PType = (*PI)->getType();
4138    CharUnits sz = getObjCEncodingTypeSize(PType);
4139    if (sz.isZero())
4140      return true;
4141
4142    assert (sz.isPositive() &&
4143        "getObjCEncodingForMethodDecl - Incomplete param type");
4144    ParmOffset += sz;
4145  }
4146  S += charUnitsToString(ParmOffset);
4147  S += "@0:";
4148  S += charUnitsToString(PtrSize);
4149
4150  // Argument types.
4151  ParmOffset = 2 * PtrSize;
4152  for (ObjCMethodDecl::param_const_iterator PI = Decl->param_begin(),
4153       E = Decl->sel_param_end(); PI != E; ++PI) {
4154    const ParmVarDecl *PVDecl = *PI;
4155    QualType PType = PVDecl->getOriginalType();
4156    if (const ArrayType *AT =
4157          dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
4158      // Use array's original type only if it has known number of
4159      // elements.
4160      if (!isa<ConstantArrayType>(AT))
4161        PType = PVDecl->getType();
4162    } else if (PType->isFunctionType())
4163      PType = PVDecl->getType();
4164    getObjCEncodingForMethodParameter(PVDecl->getObjCDeclQualifier(),
4165                                      PType, S, Extended);
4166    S += charUnitsToString(ParmOffset);
4167    ParmOffset += getObjCEncodingTypeSize(PType);
4168  }
4169
4170  return false;
4171}
4172
4173/// getObjCEncodingForPropertyDecl - Return the encoded type for this
4174/// property declaration. If non-NULL, Container must be either an
4175/// ObjCCategoryImplDecl or ObjCImplementationDecl; it should only be
4176/// NULL when getting encodings for protocol properties.
4177/// Property attributes are stored as a comma-delimited C string. The simple
4178/// attributes readonly and bycopy are encoded as single characters. The
4179/// parametrized attributes, getter=name, setter=name, and ivar=name, are
4180/// encoded as single characters, followed by an identifier. Property types
4181/// are also encoded as a parametrized attribute. The characters used to encode
4182/// these attributes are defined by the following enumeration:
4183/// @code
4184/// enum PropertyAttributes {
4185/// kPropertyReadOnly = 'R',   // property is read-only.
4186/// kPropertyBycopy = 'C',     // property is a copy of the value last assigned
4187/// kPropertyByref = '&',  // property is a reference to the value last assigned
4188/// kPropertyDynamic = 'D',    // property is dynamic
4189/// kPropertyGetter = 'G',     // followed by getter selector name
4190/// kPropertySetter = 'S',     // followed by setter selector name
4191/// kPropertyInstanceVariable = 'V'  // followed by instance variable  name
4192/// kPropertyType = 't'              // followed by old-style type encoding.
4193/// kPropertyWeak = 'W'              // 'weak' property
4194/// kPropertyStrong = 'P'            // property GC'able
4195/// kPropertyNonAtomic = 'N'         // property non-atomic
4196/// };
4197/// @endcode
4198void ASTContext::getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD,
4199                                                const Decl *Container,
4200                                                std::string& S) const {
4201  // Collect information from the property implementation decl(s).
4202  bool Dynamic = false;
4203  ObjCPropertyImplDecl *SynthesizePID = 0;
4204
4205  // FIXME: Duplicated code due to poor abstraction.
4206  if (Container) {
4207    if (const ObjCCategoryImplDecl *CID =
4208        dyn_cast<ObjCCategoryImplDecl>(Container)) {
4209      for (ObjCCategoryImplDecl::propimpl_iterator
4210             i = CID->propimpl_begin(), e = CID->propimpl_end();
4211           i != e; ++i) {
4212        ObjCPropertyImplDecl *PID = *i;
4213        if (PID->getPropertyDecl() == PD) {
4214          if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) {
4215            Dynamic = true;
4216          } else {
4217            SynthesizePID = PID;
4218          }
4219        }
4220      }
4221    } else {
4222      const ObjCImplementationDecl *OID=cast<ObjCImplementationDecl>(Container);
4223      for (ObjCCategoryImplDecl::propimpl_iterator
4224             i = OID->propimpl_begin(), e = OID->propimpl_end();
4225           i != e; ++i) {
4226        ObjCPropertyImplDecl *PID = *i;
4227        if (PID->getPropertyDecl() == PD) {
4228          if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) {
4229            Dynamic = true;
4230          } else {
4231            SynthesizePID = PID;
4232          }
4233        }
4234      }
4235    }
4236  }
4237
4238  // FIXME: This is not very efficient.
4239  S = "T";
4240
4241  // Encode result type.
4242  // GCC has some special rules regarding encoding of properties which
4243  // closely resembles encoding of ivars.
4244  getObjCEncodingForTypeImpl(PD->getType(), S, true, true, 0,
4245                             true /* outermost type */,
4246                             true /* encoding for property */);
4247
4248  if (PD->isReadOnly()) {
4249    S += ",R";
4250  } else {
4251    switch (PD->getSetterKind()) {
4252    case ObjCPropertyDecl::Assign: break;
4253    case ObjCPropertyDecl::Copy:   S += ",C"; break;
4254    case ObjCPropertyDecl::Retain: S += ",&"; break;
4255    case ObjCPropertyDecl::Weak:   S += ",W"; break;
4256    }
4257  }
4258
4259  // It really isn't clear at all what this means, since properties
4260  // are "dynamic by default".
4261  if (Dynamic)
4262    S += ",D";
4263
4264  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_nonatomic)
4265    S += ",N";
4266
4267  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_getter) {
4268    S += ",G";
4269    S += PD->getGetterName().getAsString();
4270  }
4271
4272  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_setter) {
4273    S += ",S";
4274    S += PD->getSetterName().getAsString();
4275  }
4276
4277  if (SynthesizePID) {
4278    const ObjCIvarDecl *OID = SynthesizePID->getPropertyIvarDecl();
4279    S += ",V";
4280    S += OID->getNameAsString();
4281  }
4282
4283  // FIXME: OBJCGC: weak & strong
4284}
4285
4286/// getLegacyIntegralTypeEncoding -
4287/// Another legacy compatibility encoding: 32-bit longs are encoded as
4288/// 'l' or 'L' , but not always.  For typedefs, we need to use
4289/// 'i' or 'I' instead if encoding a struct field, or a pointer!
4290///
4291void ASTContext::getLegacyIntegralTypeEncoding (QualType &PointeeTy) const {
4292  if (isa<TypedefType>(PointeeTy.getTypePtr())) {
4293    if (const BuiltinType *BT = PointeeTy->getAs<BuiltinType>()) {
4294      if (BT->getKind() == BuiltinType::ULong && getIntWidth(PointeeTy) == 32)
4295        PointeeTy = UnsignedIntTy;
4296      else
4297        if (BT->getKind() == BuiltinType::Long && getIntWidth(PointeeTy) == 32)
4298          PointeeTy = IntTy;
4299    }
4300  }
4301}
4302
4303void ASTContext::getObjCEncodingForType(QualType T, std::string& S,
4304                                        const FieldDecl *Field) const {
4305  // We follow the behavior of gcc, expanding structures which are
4306  // directly pointed to, and expanding embedded structures. Note that
4307  // these rules are sufficient to prevent recursive encoding of the
4308  // same type.
4309  getObjCEncodingForTypeImpl(T, S, true, true, Field,
4310                             true /* outermost type */);
4311}
4312
4313static char ObjCEncodingForPrimitiveKind(const ASTContext *C, QualType T) {
4314    switch (T->getAs<BuiltinType>()->getKind()) {
4315    default: llvm_unreachable("Unhandled builtin type kind");
4316    case BuiltinType::Void:       return 'v';
4317    case BuiltinType::Bool:       return 'B';
4318    case BuiltinType::Char_U:
4319    case BuiltinType::UChar:      return 'C';
4320    case BuiltinType::UShort:     return 'S';
4321    case BuiltinType::UInt:       return 'I';
4322    case BuiltinType::ULong:
4323        return C->getIntWidth(T) == 32 ? 'L' : 'Q';
4324    case BuiltinType::UInt128:    return 'T';
4325    case BuiltinType::ULongLong:  return 'Q';
4326    case BuiltinType::Char_S:
4327    case BuiltinType::SChar:      return 'c';
4328    case BuiltinType::Short:      return 's';
4329    case BuiltinType::WChar_S:
4330    case BuiltinType::WChar_U:
4331    case BuiltinType::Int:        return 'i';
4332    case BuiltinType::Long:
4333      return C->getIntWidth(T) == 32 ? 'l' : 'q';
4334    case BuiltinType::LongLong:   return 'q';
4335    case BuiltinType::Int128:     return 't';
4336    case BuiltinType::Float:      return 'f';
4337    case BuiltinType::Double:     return 'd';
4338    case BuiltinType::LongDouble: return 'D';
4339    }
4340}
4341
4342static char ObjCEncodingForEnumType(const ASTContext *C, const EnumType *ET) {
4343  EnumDecl *Enum = ET->getDecl();
4344
4345  // The encoding of an non-fixed enum type is always 'i', regardless of size.
4346  if (!Enum->isFixed())
4347    return 'i';
4348
4349  // The encoding of a fixed enum type matches its fixed underlying type.
4350  return ObjCEncodingForPrimitiveKind(C, Enum->getIntegerType());
4351}
4352
4353static void EncodeBitField(const ASTContext *Ctx, std::string& S,
4354                           QualType T, const FieldDecl *FD) {
4355  assert(FD->isBitField() && "not a bitfield - getObjCEncodingForTypeImpl");
4356  S += 'b';
4357  // The NeXT runtime encodes bit fields as b followed by the number of bits.
4358  // The GNU runtime requires more information; bitfields are encoded as b,
4359  // then the offset (in bits) of the first element, then the type of the
4360  // bitfield, then the size in bits.  For example, in this structure:
4361  //
4362  // struct
4363  // {
4364  //    int integer;
4365  //    int flags:2;
4366  // };
4367  // On a 32-bit system, the encoding for flags would be b2 for the NeXT
4368  // runtime, but b32i2 for the GNU runtime.  The reason for this extra
4369  // information is not especially sensible, but we're stuck with it for
4370  // compatibility with GCC, although providing it breaks anything that
4371  // actually uses runtime introspection and wants to work on both runtimes...
4372  if (!Ctx->getLangOptions().NeXTRuntime) {
4373    const RecordDecl *RD = FD->getParent();
4374    const ASTRecordLayout &RL = Ctx->getASTRecordLayout(RD);
4375    S += llvm::utostr(RL.getFieldOffset(FD->getFieldIndex()));
4376    if (const EnumType *ET = T->getAs<EnumType>())
4377      S += ObjCEncodingForEnumType(Ctx, ET);
4378    else
4379      S += ObjCEncodingForPrimitiveKind(Ctx, T);
4380  }
4381  S += llvm::utostr(FD->getBitWidthValue(*Ctx));
4382}
4383
4384// FIXME: Use SmallString for accumulating string.
4385void ASTContext::getObjCEncodingForTypeImpl(QualType T, std::string& S,
4386                                            bool ExpandPointedToStructures,
4387                                            bool ExpandStructures,
4388                                            const FieldDecl *FD,
4389                                            bool OutermostType,
4390                                            bool EncodingProperty,
4391                                            bool StructField,
4392                                            bool EncodeBlockParameters,
4393                                            bool EncodeClassNames) const {
4394  if (T->getAs<BuiltinType>()) {
4395    if (FD && FD->isBitField())
4396      return EncodeBitField(this, S, T, FD);
4397    S += ObjCEncodingForPrimitiveKind(this, T);
4398    return;
4399  }
4400
4401  if (const ComplexType *CT = T->getAs<ComplexType>()) {
4402    S += 'j';
4403    getObjCEncodingForTypeImpl(CT->getElementType(), S, false, false, 0, false,
4404                               false);
4405    return;
4406  }
4407
4408  // encoding for pointer or r3eference types.
4409  QualType PointeeTy;
4410  if (const PointerType *PT = T->getAs<PointerType>()) {
4411    if (PT->isObjCSelType()) {
4412      S += ':';
4413      return;
4414    }
4415    PointeeTy = PT->getPointeeType();
4416  }
4417  else if (const ReferenceType *RT = T->getAs<ReferenceType>())
4418    PointeeTy = RT->getPointeeType();
4419  if (!PointeeTy.isNull()) {
4420    bool isReadOnly = false;
4421    // For historical/compatibility reasons, the read-only qualifier of the
4422    // pointee gets emitted _before_ the '^'.  The read-only qualifier of
4423    // the pointer itself gets ignored, _unless_ we are looking at a typedef!
4424    // Also, do not emit the 'r' for anything but the outermost type!
4425    if (isa<TypedefType>(T.getTypePtr())) {
4426      if (OutermostType && T.isConstQualified()) {
4427        isReadOnly = true;
4428        S += 'r';
4429      }
4430    } else if (OutermostType) {
4431      QualType P = PointeeTy;
4432      while (P->getAs<PointerType>())
4433        P = P->getAs<PointerType>()->getPointeeType();
4434      if (P.isConstQualified()) {
4435        isReadOnly = true;
4436        S += 'r';
4437      }
4438    }
4439    if (isReadOnly) {
4440      // Another legacy compatibility encoding. Some ObjC qualifier and type
4441      // combinations need to be rearranged.
4442      // Rewrite "in const" from "nr" to "rn"
4443      if (StringRef(S).endswith("nr"))
4444        S.replace(S.end()-2, S.end(), "rn");
4445    }
4446
4447    if (PointeeTy->isCharType()) {
4448      // char pointer types should be encoded as '*' unless it is a
4449      // type that has been typedef'd to 'BOOL'.
4450      if (!isTypeTypedefedAsBOOL(PointeeTy)) {
4451        S += '*';
4452        return;
4453      }
4454    } else if (const RecordType *RTy = PointeeTy->getAs<RecordType>()) {
4455      // GCC binary compat: Need to convert "struct objc_class *" to "#".
4456      if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_class")) {
4457        S += '#';
4458        return;
4459      }
4460      // GCC binary compat: Need to convert "struct objc_object *" to "@".
4461      if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_object")) {
4462        S += '@';
4463        return;
4464      }
4465      // fall through...
4466    }
4467    S += '^';
4468    getLegacyIntegralTypeEncoding(PointeeTy);
4469
4470    getObjCEncodingForTypeImpl(PointeeTy, S, false, ExpandPointedToStructures,
4471                               NULL);
4472    return;
4473  }
4474
4475  if (const ArrayType *AT =
4476      // Ignore type qualifiers etc.
4477        dyn_cast<ArrayType>(T->getCanonicalTypeInternal())) {
4478    if (isa<IncompleteArrayType>(AT) && !StructField) {
4479      // Incomplete arrays are encoded as a pointer to the array element.
4480      S += '^';
4481
4482      getObjCEncodingForTypeImpl(AT->getElementType(), S,
4483                                 false, ExpandStructures, FD);
4484    } else {
4485      S += '[';
4486
4487      if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) {
4488        if (getTypeSize(CAT->getElementType()) == 0)
4489          S += '0';
4490        else
4491          S += llvm::utostr(CAT->getSize().getZExtValue());
4492      } else {
4493        //Variable length arrays are encoded as a regular array with 0 elements.
4494        assert((isa<VariableArrayType>(AT) || isa<IncompleteArrayType>(AT)) &&
4495               "Unknown array type!");
4496        S += '0';
4497      }
4498
4499      getObjCEncodingForTypeImpl(AT->getElementType(), S,
4500                                 false, ExpandStructures, FD);
4501      S += ']';
4502    }
4503    return;
4504  }
4505
4506  if (T->getAs<FunctionType>()) {
4507    S += '?';
4508    return;
4509  }
4510
4511  if (const RecordType *RTy = T->getAs<RecordType>()) {
4512    RecordDecl *RDecl = RTy->getDecl();
4513    S += RDecl->isUnion() ? '(' : '{';
4514    // Anonymous structures print as '?'
4515    if (const IdentifierInfo *II = RDecl->getIdentifier()) {
4516      S += II->getName();
4517      if (ClassTemplateSpecializationDecl *Spec
4518          = dyn_cast<ClassTemplateSpecializationDecl>(RDecl)) {
4519        const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
4520        std::string TemplateArgsStr
4521          = TemplateSpecializationType::PrintTemplateArgumentList(
4522                                            TemplateArgs.data(),
4523                                            TemplateArgs.size(),
4524                                            (*this).getPrintingPolicy());
4525
4526        S += TemplateArgsStr;
4527      }
4528    } else {
4529      S += '?';
4530    }
4531    if (ExpandStructures) {
4532      S += '=';
4533      if (!RDecl->isUnion()) {
4534        getObjCEncodingForStructureImpl(RDecl, S, FD);
4535      } else {
4536        for (RecordDecl::field_iterator Field = RDecl->field_begin(),
4537                                     FieldEnd = RDecl->field_end();
4538             Field != FieldEnd; ++Field) {
4539          if (FD) {
4540            S += '"';
4541            S += Field->getNameAsString();
4542            S += '"';
4543          }
4544
4545          // Special case bit-fields.
4546          if (Field->isBitField()) {
4547            getObjCEncodingForTypeImpl(Field->getType(), S, false, true,
4548                                       (*Field));
4549          } else {
4550            QualType qt = Field->getType();
4551            getLegacyIntegralTypeEncoding(qt);
4552            getObjCEncodingForTypeImpl(qt, S, false, true,
4553                                       FD, /*OutermostType*/false,
4554                                       /*EncodingProperty*/false,
4555                                       /*StructField*/true);
4556          }
4557        }
4558      }
4559    }
4560    S += RDecl->isUnion() ? ')' : '}';
4561    return;
4562  }
4563
4564  if (const EnumType *ET = T->getAs<EnumType>()) {
4565    if (FD && FD->isBitField())
4566      EncodeBitField(this, S, T, FD);
4567    else
4568      S += ObjCEncodingForEnumType(this, ET);
4569    return;
4570  }
4571
4572  if (const BlockPointerType *BT = T->getAs<BlockPointerType>()) {
4573    S += "@?"; // Unlike a pointer-to-function, which is "^?".
4574    if (EncodeBlockParameters) {
4575      const FunctionType *FT = BT->getPointeeType()->getAs<FunctionType>();
4576
4577      S += '<';
4578      // Block return type
4579      getObjCEncodingForTypeImpl(FT->getResultType(), S,
4580                                 ExpandPointedToStructures, ExpandStructures,
4581                                 FD,
4582                                 false /* OutermostType */,
4583                                 EncodingProperty,
4584                                 false /* StructField */,
4585                                 EncodeBlockParameters,
4586                                 EncodeClassNames);
4587      // Block self
4588      S += "@?";
4589      // Block parameters
4590      if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(FT)) {
4591        for (FunctionProtoType::arg_type_iterator I = FPT->arg_type_begin(),
4592               E = FPT->arg_type_end(); I && (I != E); ++I) {
4593          getObjCEncodingForTypeImpl(*I, S,
4594                                     ExpandPointedToStructures,
4595                                     ExpandStructures,
4596                                     FD,
4597                                     false /* OutermostType */,
4598                                     EncodingProperty,
4599                                     false /* StructField */,
4600                                     EncodeBlockParameters,
4601                                     EncodeClassNames);
4602        }
4603      }
4604      S += '>';
4605    }
4606    return;
4607  }
4608
4609  // Ignore protocol qualifiers when mangling at this level.
4610  if (const ObjCObjectType *OT = T->getAs<ObjCObjectType>())
4611    T = OT->getBaseType();
4612
4613  if (const ObjCInterfaceType *OIT = T->getAs<ObjCInterfaceType>()) {
4614    // @encode(class_name)
4615    ObjCInterfaceDecl *OI = OIT->getDecl();
4616    S += '{';
4617    const IdentifierInfo *II = OI->getIdentifier();
4618    S += II->getName();
4619    S += '=';
4620    SmallVector<const ObjCIvarDecl*, 32> Ivars;
4621    DeepCollectObjCIvars(OI, true, Ivars);
4622    for (unsigned i = 0, e = Ivars.size(); i != e; ++i) {
4623      const FieldDecl *Field = cast<FieldDecl>(Ivars[i]);
4624      if (Field->isBitField())
4625        getObjCEncodingForTypeImpl(Field->getType(), S, false, true, Field);
4626      else
4627        getObjCEncodingForTypeImpl(Field->getType(), S, false, true, FD);
4628    }
4629    S += '}';
4630    return;
4631  }
4632
4633  if (const ObjCObjectPointerType *OPT = T->getAs<ObjCObjectPointerType>()) {
4634    if (OPT->isObjCIdType()) {
4635      S += '@';
4636      return;
4637    }
4638
4639    if (OPT->isObjCClassType() || OPT->isObjCQualifiedClassType()) {
4640      // FIXME: Consider if we need to output qualifiers for 'Class<p>'.
4641      // Since this is a binary compatibility issue, need to consult with runtime
4642      // folks. Fortunately, this is a *very* obsure construct.
4643      S += '#';
4644      return;
4645    }
4646
4647    if (OPT->isObjCQualifiedIdType()) {
4648      getObjCEncodingForTypeImpl(getObjCIdType(), S,
4649                                 ExpandPointedToStructures,
4650                                 ExpandStructures, FD);
4651      if (FD || EncodingProperty || EncodeClassNames) {
4652        // Note that we do extended encoding of protocol qualifer list
4653        // Only when doing ivar or property encoding.
4654        S += '"';
4655        for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(),
4656             E = OPT->qual_end(); I != E; ++I) {
4657          S += '<';
4658          S += (*I)->getNameAsString();
4659          S += '>';
4660        }
4661        S += '"';
4662      }
4663      return;
4664    }
4665
4666    QualType PointeeTy = OPT->getPointeeType();
4667    if (!EncodingProperty &&
4668        isa<TypedefType>(PointeeTy.getTypePtr())) {
4669      // Another historical/compatibility reason.
4670      // We encode the underlying type which comes out as
4671      // {...};
4672      S += '^';
4673      getObjCEncodingForTypeImpl(PointeeTy, S,
4674                                 false, ExpandPointedToStructures,
4675                                 NULL);
4676      return;
4677    }
4678
4679    S += '@';
4680    if (OPT->getInterfaceDecl() &&
4681        (FD || EncodingProperty || EncodeClassNames)) {
4682      S += '"';
4683      S += OPT->getInterfaceDecl()->getIdentifier()->getName();
4684      for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(),
4685           E = OPT->qual_end(); I != E; ++I) {
4686        S += '<';
4687        S += (*I)->getNameAsString();
4688        S += '>';
4689      }
4690      S += '"';
4691    }
4692    return;
4693  }
4694
4695  // gcc just blithely ignores member pointers.
4696  // TODO: maybe there should be a mangling for these
4697  if (T->getAs<MemberPointerType>())
4698    return;
4699
4700  if (T->isVectorType()) {
4701    // This matches gcc's encoding, even though technically it is
4702    // insufficient.
4703    // FIXME. We should do a better job than gcc.
4704    return;
4705  }
4706
4707  llvm_unreachable("@encode for type not implemented!");
4708}
4709
4710void ASTContext::getObjCEncodingForStructureImpl(RecordDecl *RDecl,
4711                                                 std::string &S,
4712                                                 const FieldDecl *FD,
4713                                                 bool includeVBases) const {
4714  assert(RDecl && "Expected non-null RecordDecl");
4715  assert(!RDecl->isUnion() && "Should not be called for unions");
4716  if (!RDecl->getDefinition())
4717    return;
4718
4719  CXXRecordDecl *CXXRec = dyn_cast<CXXRecordDecl>(RDecl);
4720  std::multimap<uint64_t, NamedDecl *> FieldOrBaseOffsets;
4721  const ASTRecordLayout &layout = getASTRecordLayout(RDecl);
4722
4723  if (CXXRec) {
4724    for (CXXRecordDecl::base_class_iterator
4725           BI = CXXRec->bases_begin(),
4726           BE = CXXRec->bases_end(); BI != BE; ++BI) {
4727      if (!BI->isVirtual()) {
4728        CXXRecordDecl *base = BI->getType()->getAsCXXRecordDecl();
4729        if (base->isEmpty())
4730          continue;
4731        uint64_t offs = layout.getBaseClassOffsetInBits(base);
4732        FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
4733                                  std::make_pair(offs, base));
4734      }
4735    }
4736  }
4737
4738  unsigned i = 0;
4739  for (RecordDecl::field_iterator Field = RDecl->field_begin(),
4740                               FieldEnd = RDecl->field_end();
4741       Field != FieldEnd; ++Field, ++i) {
4742    uint64_t offs = layout.getFieldOffset(i);
4743    FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
4744                              std::make_pair(offs, *Field));
4745  }
4746
4747  if (CXXRec && includeVBases) {
4748    for (CXXRecordDecl::base_class_iterator
4749           BI = CXXRec->vbases_begin(),
4750           BE = CXXRec->vbases_end(); BI != BE; ++BI) {
4751      CXXRecordDecl *base = BI->getType()->getAsCXXRecordDecl();
4752      if (base->isEmpty())
4753        continue;
4754      uint64_t offs = layout.getVBaseClassOffsetInBits(base);
4755      if (FieldOrBaseOffsets.find(offs) == FieldOrBaseOffsets.end())
4756        FieldOrBaseOffsets.insert(FieldOrBaseOffsets.end(),
4757                                  std::make_pair(offs, base));
4758    }
4759  }
4760
4761  CharUnits size;
4762  if (CXXRec) {
4763    size = includeVBases ? layout.getSize() : layout.getNonVirtualSize();
4764  } else {
4765    size = layout.getSize();
4766  }
4767
4768  uint64_t CurOffs = 0;
4769  std::multimap<uint64_t, NamedDecl *>::iterator
4770    CurLayObj = FieldOrBaseOffsets.begin();
4771
4772  if ((CurLayObj != FieldOrBaseOffsets.end() && CurLayObj->first != 0) ||
4773      (CurLayObj == FieldOrBaseOffsets.end() &&
4774         CXXRec && CXXRec->isDynamicClass())) {
4775    assert(CXXRec && CXXRec->isDynamicClass() &&
4776           "Offset 0 was empty but no VTable ?");
4777    if (FD) {
4778      S += "\"_vptr$";
4779      std::string recname = CXXRec->getNameAsString();
4780      if (recname.empty()) recname = "?";
4781      S += recname;
4782      S += '"';
4783    }
4784    S += "^^?";
4785    CurOffs += getTypeSize(VoidPtrTy);
4786  }
4787
4788  if (!RDecl->hasFlexibleArrayMember()) {
4789    // Mark the end of the structure.
4790    uint64_t offs = toBits(size);
4791    FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
4792                              std::make_pair(offs, (NamedDecl*)0));
4793  }
4794
4795  for (; CurLayObj != FieldOrBaseOffsets.end(); ++CurLayObj) {
4796    assert(CurOffs <= CurLayObj->first);
4797
4798    if (CurOffs < CurLayObj->first) {
4799      uint64_t padding = CurLayObj->first - CurOffs;
4800      // FIXME: There doesn't seem to be a way to indicate in the encoding that
4801      // packing/alignment of members is different that normal, in which case
4802      // the encoding will be out-of-sync with the real layout.
4803      // If the runtime switches to just consider the size of types without
4804      // taking into account alignment, we could make padding explicit in the
4805      // encoding (e.g. using arrays of chars). The encoding strings would be
4806      // longer then though.
4807      CurOffs += padding;
4808    }
4809
4810    NamedDecl *dcl = CurLayObj->second;
4811    if (dcl == 0)
4812      break; // reached end of structure.
4813
4814    if (CXXRecordDecl *base = dyn_cast<CXXRecordDecl>(dcl)) {
4815      // We expand the bases without their virtual bases since those are going
4816      // in the initial structure. Note that this differs from gcc which
4817      // expands virtual bases each time one is encountered in the hierarchy,
4818      // making the encoding type bigger than it really is.
4819      getObjCEncodingForStructureImpl(base, S, FD, /*includeVBases*/false);
4820      assert(!base->isEmpty());
4821      CurOffs += toBits(getASTRecordLayout(base).getNonVirtualSize());
4822    } else {
4823      FieldDecl *field = cast<FieldDecl>(dcl);
4824      if (FD) {
4825        S += '"';
4826        S += field->getNameAsString();
4827        S += '"';
4828      }
4829
4830      if (field->isBitField()) {
4831        EncodeBitField(this, S, field->getType(), field);
4832        CurOffs += field->getBitWidthValue(*this);
4833      } else {
4834        QualType qt = field->getType();
4835        getLegacyIntegralTypeEncoding(qt);
4836        getObjCEncodingForTypeImpl(qt, S, false, true, FD,
4837                                   /*OutermostType*/false,
4838                                   /*EncodingProperty*/false,
4839                                   /*StructField*/true);
4840        CurOffs += getTypeSize(field->getType());
4841      }
4842    }
4843  }
4844}
4845
4846void ASTContext::getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT,
4847                                                 std::string& S) const {
4848  if (QT & Decl::OBJC_TQ_In)
4849    S += 'n';
4850  if (QT & Decl::OBJC_TQ_Inout)
4851    S += 'N';
4852  if (QT & Decl::OBJC_TQ_Out)
4853    S += 'o';
4854  if (QT & Decl::OBJC_TQ_Bycopy)
4855    S += 'O';
4856  if (QT & Decl::OBJC_TQ_Byref)
4857    S += 'R';
4858  if (QT & Decl::OBJC_TQ_Oneway)
4859    S += 'V';
4860}
4861
4862void ASTContext::setBuiltinVaListType(QualType T) {
4863  assert(BuiltinVaListType.isNull() && "__builtin_va_list type already set!");
4864
4865  BuiltinVaListType = T;
4866}
4867
4868TypedefDecl *ASTContext::getObjCIdDecl() const {
4869  if (!ObjCIdDecl) {
4870    QualType T = getObjCObjectType(ObjCBuiltinIdTy, 0, 0);
4871    T = getObjCObjectPointerType(T);
4872    TypeSourceInfo *IdInfo = getTrivialTypeSourceInfo(T);
4873    ObjCIdDecl = TypedefDecl::Create(const_cast<ASTContext &>(*this),
4874                                     getTranslationUnitDecl(),
4875                                     SourceLocation(), SourceLocation(),
4876                                     &Idents.get("id"), IdInfo);
4877  }
4878
4879  return ObjCIdDecl;
4880}
4881
4882TypedefDecl *ASTContext::getObjCSelDecl() const {
4883  if (!ObjCSelDecl) {
4884    QualType SelT = getPointerType(ObjCBuiltinSelTy);
4885    TypeSourceInfo *SelInfo = getTrivialTypeSourceInfo(SelT);
4886    ObjCSelDecl = TypedefDecl::Create(const_cast<ASTContext &>(*this),
4887                                      getTranslationUnitDecl(),
4888                                      SourceLocation(), SourceLocation(),
4889                                      &Idents.get("SEL"), SelInfo);
4890  }
4891  return ObjCSelDecl;
4892}
4893
4894TypedefDecl *ASTContext::getObjCClassDecl() const {
4895  if (!ObjCClassDecl) {
4896    QualType T = getObjCObjectType(ObjCBuiltinClassTy, 0, 0);
4897    T = getObjCObjectPointerType(T);
4898    TypeSourceInfo *ClassInfo = getTrivialTypeSourceInfo(T);
4899    ObjCClassDecl = TypedefDecl::Create(const_cast<ASTContext &>(*this),
4900                                        getTranslationUnitDecl(),
4901                                        SourceLocation(), SourceLocation(),
4902                                        &Idents.get("Class"), ClassInfo);
4903  }
4904
4905  return ObjCClassDecl;
4906}
4907
4908ObjCInterfaceDecl *ASTContext::getObjCProtocolDecl() const {
4909  if (!ObjCProtocolClassDecl) {
4910    ObjCProtocolClassDecl
4911      = ObjCInterfaceDecl::Create(*this, getTranslationUnitDecl(),
4912                                  SourceLocation(),
4913                                  &Idents.get("Protocol"),
4914                                  /*PrevDecl=*/0,
4915                                  SourceLocation(), true);
4916  }
4917
4918  return ObjCProtocolClassDecl;
4919}
4920
4921void ASTContext::setObjCConstantStringInterface(ObjCInterfaceDecl *Decl) {
4922  assert(ObjCConstantStringType.isNull() &&
4923         "'NSConstantString' type already set!");
4924
4925  ObjCConstantStringType = getObjCInterfaceType(Decl);
4926}
4927
4928/// \brief Retrieve the template name that corresponds to a non-empty
4929/// lookup.
4930TemplateName
4931ASTContext::getOverloadedTemplateName(UnresolvedSetIterator Begin,
4932                                      UnresolvedSetIterator End) const {
4933  unsigned size = End - Begin;
4934  assert(size > 1 && "set is not overloaded!");
4935
4936  void *memory = Allocate(sizeof(OverloadedTemplateStorage) +
4937                          size * sizeof(FunctionTemplateDecl*));
4938  OverloadedTemplateStorage *OT = new(memory) OverloadedTemplateStorage(size);
4939
4940  NamedDecl **Storage = OT->getStorage();
4941  for (UnresolvedSetIterator I = Begin; I != End; ++I) {
4942    NamedDecl *D = *I;
4943    assert(isa<FunctionTemplateDecl>(D) ||
4944           (isa<UsingShadowDecl>(D) &&
4945            isa<FunctionTemplateDecl>(D->getUnderlyingDecl())));
4946    *Storage++ = D;
4947  }
4948
4949  return TemplateName(OT);
4950}
4951
4952/// \brief Retrieve the template name that represents a qualified
4953/// template name such as \c std::vector.
4954TemplateName
4955ASTContext::getQualifiedTemplateName(NestedNameSpecifier *NNS,
4956                                     bool TemplateKeyword,
4957                                     TemplateDecl *Template) const {
4958  assert(NNS && "Missing nested-name-specifier in qualified template name");
4959
4960  // FIXME: Canonicalization?
4961  llvm::FoldingSetNodeID ID;
4962  QualifiedTemplateName::Profile(ID, NNS, TemplateKeyword, Template);
4963
4964  void *InsertPos = 0;
4965  QualifiedTemplateName *QTN =
4966    QualifiedTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
4967  if (!QTN) {
4968    QTN = new (*this,4) QualifiedTemplateName(NNS, TemplateKeyword, Template);
4969    QualifiedTemplateNames.InsertNode(QTN, InsertPos);
4970  }
4971
4972  return TemplateName(QTN);
4973}
4974
4975/// \brief Retrieve the template name that represents a dependent
4976/// template name such as \c MetaFun::template apply.
4977TemplateName
4978ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
4979                                     const IdentifierInfo *Name) const {
4980  assert((!NNS || NNS->isDependent()) &&
4981         "Nested name specifier must be dependent");
4982
4983  llvm::FoldingSetNodeID ID;
4984  DependentTemplateName::Profile(ID, NNS, Name);
4985
4986  void *InsertPos = 0;
4987  DependentTemplateName *QTN =
4988    DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
4989
4990  if (QTN)
4991    return TemplateName(QTN);
4992
4993  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
4994  if (CanonNNS == NNS) {
4995    QTN = new (*this,4) DependentTemplateName(NNS, Name);
4996  } else {
4997    TemplateName Canon = getDependentTemplateName(CanonNNS, Name);
4998    QTN = new (*this,4) DependentTemplateName(NNS, Name, Canon);
4999    DependentTemplateName *CheckQTN =
5000      DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
5001    assert(!CheckQTN && "Dependent type name canonicalization broken");
5002    (void)CheckQTN;
5003  }
5004
5005  DependentTemplateNames.InsertNode(QTN, InsertPos);
5006  return TemplateName(QTN);
5007}
5008
5009/// \brief Retrieve the template name that represents a dependent
5010/// template name such as \c MetaFun::template operator+.
5011TemplateName
5012ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
5013                                     OverloadedOperatorKind Operator) const {
5014  assert((!NNS || NNS->isDependent()) &&
5015         "Nested name specifier must be dependent");
5016
5017  llvm::FoldingSetNodeID ID;
5018  DependentTemplateName::Profile(ID, NNS, Operator);
5019
5020  void *InsertPos = 0;
5021  DependentTemplateName *QTN
5022    = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
5023
5024  if (QTN)
5025    return TemplateName(QTN);
5026
5027  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
5028  if (CanonNNS == NNS) {
5029    QTN = new (*this,4) DependentTemplateName(NNS, Operator);
5030  } else {
5031    TemplateName Canon = getDependentTemplateName(CanonNNS, Operator);
5032    QTN = new (*this,4) DependentTemplateName(NNS, Operator, Canon);
5033
5034    DependentTemplateName *CheckQTN
5035      = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
5036    assert(!CheckQTN && "Dependent template name canonicalization broken");
5037    (void)CheckQTN;
5038  }
5039
5040  DependentTemplateNames.InsertNode(QTN, InsertPos);
5041  return TemplateName(QTN);
5042}
5043
5044TemplateName
5045ASTContext::getSubstTemplateTemplateParm(TemplateTemplateParmDecl *param,
5046                                         TemplateName replacement) const {
5047  llvm::FoldingSetNodeID ID;
5048  SubstTemplateTemplateParmStorage::Profile(ID, param, replacement);
5049
5050  void *insertPos = 0;
5051  SubstTemplateTemplateParmStorage *subst
5052    = SubstTemplateTemplateParms.FindNodeOrInsertPos(ID, insertPos);
5053
5054  if (!subst) {
5055    subst = new (*this) SubstTemplateTemplateParmStorage(param, replacement);
5056    SubstTemplateTemplateParms.InsertNode(subst, insertPos);
5057  }
5058
5059  return TemplateName(subst);
5060}
5061
5062TemplateName
5063ASTContext::getSubstTemplateTemplateParmPack(TemplateTemplateParmDecl *Param,
5064                                       const TemplateArgument &ArgPack) const {
5065  ASTContext &Self = const_cast<ASTContext &>(*this);
5066  llvm::FoldingSetNodeID ID;
5067  SubstTemplateTemplateParmPackStorage::Profile(ID, Self, Param, ArgPack);
5068
5069  void *InsertPos = 0;
5070  SubstTemplateTemplateParmPackStorage *Subst
5071    = SubstTemplateTemplateParmPacks.FindNodeOrInsertPos(ID, InsertPos);
5072
5073  if (!Subst) {
5074    Subst = new (*this) SubstTemplateTemplateParmPackStorage(Param,
5075                                                           ArgPack.pack_size(),
5076                                                         ArgPack.pack_begin());
5077    SubstTemplateTemplateParmPacks.InsertNode(Subst, InsertPos);
5078  }
5079
5080  return TemplateName(Subst);
5081}
5082
5083/// getFromTargetType - Given one of the integer types provided by
5084/// TargetInfo, produce the corresponding type. The unsigned @p Type
5085/// is actually a value of type @c TargetInfo::IntType.
5086CanQualType ASTContext::getFromTargetType(unsigned Type) const {
5087  switch (Type) {
5088  case TargetInfo::NoInt: return CanQualType();
5089  case TargetInfo::SignedShort: return ShortTy;
5090  case TargetInfo::UnsignedShort: return UnsignedShortTy;
5091  case TargetInfo::SignedInt: return IntTy;
5092  case TargetInfo::UnsignedInt: return UnsignedIntTy;
5093  case TargetInfo::SignedLong: return LongTy;
5094  case TargetInfo::UnsignedLong: return UnsignedLongTy;
5095  case TargetInfo::SignedLongLong: return LongLongTy;
5096  case TargetInfo::UnsignedLongLong: return UnsignedLongLongTy;
5097  }
5098
5099  llvm_unreachable("Unhandled TargetInfo::IntType value");
5100}
5101
5102//===----------------------------------------------------------------------===//
5103//                        Type Predicates.
5104//===----------------------------------------------------------------------===//
5105
5106/// getObjCGCAttr - Returns one of GCNone, Weak or Strong objc's
5107/// garbage collection attribute.
5108///
5109Qualifiers::GC ASTContext::getObjCGCAttrKind(QualType Ty) const {
5110  if (getLangOptions().getGC() == LangOptions::NonGC)
5111    return Qualifiers::GCNone;
5112
5113  assert(getLangOptions().ObjC1);
5114  Qualifiers::GC GCAttrs = Ty.getObjCGCAttr();
5115
5116  // Default behaviour under objective-C's gc is for ObjC pointers
5117  // (or pointers to them) be treated as though they were declared
5118  // as __strong.
5119  if (GCAttrs == Qualifiers::GCNone) {
5120    if (Ty->isObjCObjectPointerType() || Ty->isBlockPointerType())
5121      return Qualifiers::Strong;
5122    else if (Ty->isPointerType())
5123      return getObjCGCAttrKind(Ty->getAs<PointerType>()->getPointeeType());
5124  } else {
5125    // It's not valid to set GC attributes on anything that isn't a
5126    // pointer.
5127#ifndef NDEBUG
5128    QualType CT = Ty->getCanonicalTypeInternal();
5129    while (const ArrayType *AT = dyn_cast<ArrayType>(CT))
5130      CT = AT->getElementType();
5131    assert(CT->isAnyPointerType() || CT->isBlockPointerType());
5132#endif
5133  }
5134  return GCAttrs;
5135}
5136
5137//===----------------------------------------------------------------------===//
5138//                        Type Compatibility Testing
5139//===----------------------------------------------------------------------===//
5140
5141/// areCompatVectorTypes - Return true if the two specified vector types are
5142/// compatible.
5143static bool areCompatVectorTypes(const VectorType *LHS,
5144                                 const VectorType *RHS) {
5145  assert(LHS->isCanonicalUnqualified() && RHS->isCanonicalUnqualified());
5146  return LHS->getElementType() == RHS->getElementType() &&
5147         LHS->getNumElements() == RHS->getNumElements();
5148}
5149
5150bool ASTContext::areCompatibleVectorTypes(QualType FirstVec,
5151                                          QualType SecondVec) {
5152  assert(FirstVec->isVectorType() && "FirstVec should be a vector type");
5153  assert(SecondVec->isVectorType() && "SecondVec should be a vector type");
5154
5155  if (hasSameUnqualifiedType(FirstVec, SecondVec))
5156    return true;
5157
5158  // Treat Neon vector types and most AltiVec vector types as if they are the
5159  // equivalent GCC vector types.
5160  const VectorType *First = FirstVec->getAs<VectorType>();
5161  const VectorType *Second = SecondVec->getAs<VectorType>();
5162  if (First->getNumElements() == Second->getNumElements() &&
5163      hasSameType(First->getElementType(), Second->getElementType()) &&
5164      First->getVectorKind() != VectorType::AltiVecPixel &&
5165      First->getVectorKind() != VectorType::AltiVecBool &&
5166      Second->getVectorKind() != VectorType::AltiVecPixel &&
5167      Second->getVectorKind() != VectorType::AltiVecBool)
5168    return true;
5169
5170  return false;
5171}
5172
5173//===----------------------------------------------------------------------===//
5174// ObjCQualifiedIdTypesAreCompatible - Compatibility testing for qualified id's.
5175//===----------------------------------------------------------------------===//
5176
5177/// ProtocolCompatibleWithProtocol - return 'true' if 'lProto' is in the
5178/// inheritance hierarchy of 'rProto'.
5179bool
5180ASTContext::ProtocolCompatibleWithProtocol(ObjCProtocolDecl *lProto,
5181                                           ObjCProtocolDecl *rProto) const {
5182  if (declaresSameEntity(lProto, rProto))
5183    return true;
5184  for (ObjCProtocolDecl::protocol_iterator PI = rProto->protocol_begin(),
5185       E = rProto->protocol_end(); PI != E; ++PI)
5186    if (ProtocolCompatibleWithProtocol(lProto, *PI))
5187      return true;
5188  return false;
5189}
5190
5191/// QualifiedIdConformsQualifiedId - compare id<p,...> with id<p1,...>
5192/// return true if lhs's protocols conform to rhs's protocol; false
5193/// otherwise.
5194bool ASTContext::QualifiedIdConformsQualifiedId(QualType lhs, QualType rhs) {
5195  if (lhs->isObjCQualifiedIdType() && rhs->isObjCQualifiedIdType())
5196    return ObjCQualifiedIdTypesAreCompatible(lhs, rhs, false);
5197  return false;
5198}
5199
5200/// ObjCQualifiedClassTypesAreCompatible - compare  Class<p,...> and
5201/// Class<p1, ...>.
5202bool ASTContext::ObjCQualifiedClassTypesAreCompatible(QualType lhs,
5203                                                      QualType rhs) {
5204  const ObjCObjectPointerType *lhsQID = lhs->getAs<ObjCObjectPointerType>();
5205  const ObjCObjectPointerType *rhsOPT = rhs->getAs<ObjCObjectPointerType>();
5206  assert ((lhsQID && rhsOPT) && "ObjCQualifiedClassTypesAreCompatible");
5207
5208  for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
5209       E = lhsQID->qual_end(); I != E; ++I) {
5210    bool match = false;
5211    ObjCProtocolDecl *lhsProto = *I;
5212    for (ObjCObjectPointerType::qual_iterator J = rhsOPT->qual_begin(),
5213         E = rhsOPT->qual_end(); J != E; ++J) {
5214      ObjCProtocolDecl *rhsProto = *J;
5215      if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto)) {
5216        match = true;
5217        break;
5218      }
5219    }
5220    if (!match)
5221      return false;
5222  }
5223  return true;
5224}
5225
5226/// ObjCQualifiedIdTypesAreCompatible - We know that one of lhs/rhs is an
5227/// ObjCQualifiedIDType.
5228bool ASTContext::ObjCQualifiedIdTypesAreCompatible(QualType lhs, QualType rhs,
5229                                                   bool compare) {
5230  // Allow id<P..> and an 'id' or void* type in all cases.
5231  if (lhs->isVoidPointerType() ||
5232      lhs->isObjCIdType() || lhs->isObjCClassType())
5233    return true;
5234  else if (rhs->isVoidPointerType() ||
5235           rhs->isObjCIdType() || rhs->isObjCClassType())
5236    return true;
5237
5238  if (const ObjCObjectPointerType *lhsQID = lhs->getAsObjCQualifiedIdType()) {
5239    const ObjCObjectPointerType *rhsOPT = rhs->getAs<ObjCObjectPointerType>();
5240
5241    if (!rhsOPT) return false;
5242
5243    if (rhsOPT->qual_empty()) {
5244      // If the RHS is a unqualified interface pointer "NSString*",
5245      // make sure we check the class hierarchy.
5246      if (ObjCInterfaceDecl *rhsID = rhsOPT->getInterfaceDecl()) {
5247        for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
5248             E = lhsQID->qual_end(); I != E; ++I) {
5249          // when comparing an id<P> on lhs with a static type on rhs,
5250          // see if static class implements all of id's protocols, directly or
5251          // through its super class and categories.
5252          if (!rhsID->ClassImplementsProtocol(*I, true))
5253            return false;
5254        }
5255      }
5256      // If there are no qualifiers and no interface, we have an 'id'.
5257      return true;
5258    }
5259    // Both the right and left sides have qualifiers.
5260    for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
5261         E = lhsQID->qual_end(); I != E; ++I) {
5262      ObjCProtocolDecl *lhsProto = *I;
5263      bool match = false;
5264
5265      // when comparing an id<P> on lhs with a static type on rhs,
5266      // see if static class implements all of id's protocols, directly or
5267      // through its super class and categories.
5268      for (ObjCObjectPointerType::qual_iterator J = rhsOPT->qual_begin(),
5269           E = rhsOPT->qual_end(); J != E; ++J) {
5270        ObjCProtocolDecl *rhsProto = *J;
5271        if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
5272            (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
5273          match = true;
5274          break;
5275        }
5276      }
5277      // If the RHS is a qualified interface pointer "NSString<P>*",
5278      // make sure we check the class hierarchy.
5279      if (ObjCInterfaceDecl *rhsID = rhsOPT->getInterfaceDecl()) {
5280        for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
5281             E = lhsQID->qual_end(); I != E; ++I) {
5282          // when comparing an id<P> on lhs with a static type on rhs,
5283          // see if static class implements all of id's protocols, directly or
5284          // through its super class and categories.
5285          if (rhsID->ClassImplementsProtocol(*I, true)) {
5286            match = true;
5287            break;
5288          }
5289        }
5290      }
5291      if (!match)
5292        return false;
5293    }
5294
5295    return true;
5296  }
5297
5298  const ObjCObjectPointerType *rhsQID = rhs->getAsObjCQualifiedIdType();
5299  assert(rhsQID && "One of the LHS/RHS should be id<x>");
5300
5301  if (const ObjCObjectPointerType *lhsOPT =
5302        lhs->getAsObjCInterfacePointerType()) {
5303    // If both the right and left sides have qualifiers.
5304    for (ObjCObjectPointerType::qual_iterator I = lhsOPT->qual_begin(),
5305         E = lhsOPT->qual_end(); I != E; ++I) {
5306      ObjCProtocolDecl *lhsProto = *I;
5307      bool match = false;
5308
5309      // when comparing an id<P> on rhs with a static type on lhs,
5310      // see if static class implements all of id's protocols, directly or
5311      // through its super class and categories.
5312      // First, lhs protocols in the qualifier list must be found, direct
5313      // or indirect in rhs's qualifier list or it is a mismatch.
5314      for (ObjCObjectPointerType::qual_iterator J = rhsQID->qual_begin(),
5315           E = rhsQID->qual_end(); J != E; ++J) {
5316        ObjCProtocolDecl *rhsProto = *J;
5317        if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
5318            (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
5319          match = true;
5320          break;
5321        }
5322      }
5323      if (!match)
5324        return false;
5325    }
5326
5327    // Static class's protocols, or its super class or category protocols
5328    // must be found, direct or indirect in rhs's qualifier list or it is a mismatch.
5329    if (ObjCInterfaceDecl *lhsID = lhsOPT->getInterfaceDecl()) {
5330      llvm::SmallPtrSet<ObjCProtocolDecl *, 8> LHSInheritedProtocols;
5331      CollectInheritedProtocols(lhsID, LHSInheritedProtocols);
5332      // This is rather dubious but matches gcc's behavior. If lhs has
5333      // no type qualifier and its class has no static protocol(s)
5334      // assume that it is mismatch.
5335      if (LHSInheritedProtocols.empty() && lhsOPT->qual_empty())
5336        return false;
5337      for (llvm::SmallPtrSet<ObjCProtocolDecl*,8>::iterator I =
5338           LHSInheritedProtocols.begin(),
5339           E = LHSInheritedProtocols.end(); I != E; ++I) {
5340        bool match = false;
5341        ObjCProtocolDecl *lhsProto = (*I);
5342        for (ObjCObjectPointerType::qual_iterator J = rhsQID->qual_begin(),
5343             E = rhsQID->qual_end(); J != E; ++J) {
5344          ObjCProtocolDecl *rhsProto = *J;
5345          if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
5346              (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
5347            match = true;
5348            break;
5349          }
5350        }
5351        if (!match)
5352          return false;
5353      }
5354    }
5355    return true;
5356  }
5357  return false;
5358}
5359
5360/// canAssignObjCInterfaces - Return true if the two interface types are
5361/// compatible for assignment from RHS to LHS.  This handles validation of any
5362/// protocol qualifiers on the LHS or RHS.
5363///
5364bool ASTContext::canAssignObjCInterfaces(const ObjCObjectPointerType *LHSOPT,
5365                                         const ObjCObjectPointerType *RHSOPT) {
5366  const ObjCObjectType* LHS = LHSOPT->getObjectType();
5367  const ObjCObjectType* RHS = RHSOPT->getObjectType();
5368
5369  // If either type represents the built-in 'id' or 'Class' types, return true.
5370  if (LHS->isObjCUnqualifiedIdOrClass() ||
5371      RHS->isObjCUnqualifiedIdOrClass())
5372    return true;
5373
5374  if (LHS->isObjCQualifiedId() || RHS->isObjCQualifiedId())
5375    return ObjCQualifiedIdTypesAreCompatible(QualType(LHSOPT,0),
5376                                             QualType(RHSOPT,0),
5377                                             false);
5378
5379  if (LHS->isObjCQualifiedClass() && RHS->isObjCQualifiedClass())
5380    return ObjCQualifiedClassTypesAreCompatible(QualType(LHSOPT,0),
5381                                                QualType(RHSOPT,0));
5382
5383  // If we have 2 user-defined types, fall into that path.
5384  if (LHS->getInterface() && RHS->getInterface())
5385    return canAssignObjCInterfaces(LHS, RHS);
5386
5387  return false;
5388}
5389
5390/// canAssignObjCInterfacesInBlockPointer - This routine is specifically written
5391/// for providing type-safety for objective-c pointers used to pass/return
5392/// arguments in block literals. When passed as arguments, passing 'A*' where
5393/// 'id' is expected is not OK. Passing 'Sub *" where 'Super *" is expected is
5394/// not OK. For the return type, the opposite is not OK.
5395bool ASTContext::canAssignObjCInterfacesInBlockPointer(
5396                                         const ObjCObjectPointerType *LHSOPT,
5397                                         const ObjCObjectPointerType *RHSOPT,
5398                                         bool BlockReturnType) {
5399  if (RHSOPT->isObjCBuiltinType() || LHSOPT->isObjCIdType())
5400    return true;
5401
5402  if (LHSOPT->isObjCBuiltinType()) {
5403    return RHSOPT->isObjCBuiltinType() || RHSOPT->isObjCQualifiedIdType();
5404  }
5405
5406  if (LHSOPT->isObjCQualifiedIdType() || RHSOPT->isObjCQualifiedIdType())
5407    return ObjCQualifiedIdTypesAreCompatible(QualType(LHSOPT,0),
5408                                             QualType(RHSOPT,0),
5409                                             false);
5410
5411  const ObjCInterfaceType* LHS = LHSOPT->getInterfaceType();
5412  const ObjCInterfaceType* RHS = RHSOPT->getInterfaceType();
5413  if (LHS && RHS)  { // We have 2 user-defined types.
5414    if (LHS != RHS) {
5415      if (LHS->getDecl()->isSuperClassOf(RHS->getDecl()))
5416        return BlockReturnType;
5417      if (RHS->getDecl()->isSuperClassOf(LHS->getDecl()))
5418        return !BlockReturnType;
5419    }
5420    else
5421      return true;
5422  }
5423  return false;
5424}
5425
5426/// getIntersectionOfProtocols - This routine finds the intersection of set
5427/// of protocols inherited from two distinct objective-c pointer objects.
5428/// It is used to build composite qualifier list of the composite type of
5429/// the conditional expression involving two objective-c pointer objects.
5430static
5431void getIntersectionOfProtocols(ASTContext &Context,
5432                                const ObjCObjectPointerType *LHSOPT,
5433                                const ObjCObjectPointerType *RHSOPT,
5434      SmallVectorImpl<ObjCProtocolDecl *> &IntersectionOfProtocols) {
5435
5436  const ObjCObjectType* LHS = LHSOPT->getObjectType();
5437  const ObjCObjectType* RHS = RHSOPT->getObjectType();
5438  assert(LHS->getInterface() && "LHS must have an interface base");
5439  assert(RHS->getInterface() && "RHS must have an interface base");
5440
5441  llvm::SmallPtrSet<ObjCProtocolDecl *, 8> InheritedProtocolSet;
5442  unsigned LHSNumProtocols = LHS->getNumProtocols();
5443  if (LHSNumProtocols > 0)
5444    InheritedProtocolSet.insert(LHS->qual_begin(), LHS->qual_end());
5445  else {
5446    llvm::SmallPtrSet<ObjCProtocolDecl *, 8> LHSInheritedProtocols;
5447    Context.CollectInheritedProtocols(LHS->getInterface(),
5448                                      LHSInheritedProtocols);
5449    InheritedProtocolSet.insert(LHSInheritedProtocols.begin(),
5450                                LHSInheritedProtocols.end());
5451  }
5452
5453  unsigned RHSNumProtocols = RHS->getNumProtocols();
5454  if (RHSNumProtocols > 0) {
5455    ObjCProtocolDecl **RHSProtocols =
5456      const_cast<ObjCProtocolDecl **>(RHS->qual_begin());
5457    for (unsigned i = 0; i < RHSNumProtocols; ++i)
5458      if (InheritedProtocolSet.count(RHSProtocols[i]))
5459        IntersectionOfProtocols.push_back(RHSProtocols[i]);
5460  } else {
5461    llvm::SmallPtrSet<ObjCProtocolDecl *, 8> RHSInheritedProtocols;
5462    Context.CollectInheritedProtocols(RHS->getInterface(),
5463                                      RHSInheritedProtocols);
5464    for (llvm::SmallPtrSet<ObjCProtocolDecl*,8>::iterator I =
5465         RHSInheritedProtocols.begin(),
5466         E = RHSInheritedProtocols.end(); I != E; ++I)
5467      if (InheritedProtocolSet.count((*I)))
5468        IntersectionOfProtocols.push_back((*I));
5469  }
5470}
5471
5472/// areCommonBaseCompatible - Returns common base class of the two classes if
5473/// one found. Note that this is O'2 algorithm. But it will be called as the
5474/// last type comparison in a ?-exp of ObjC pointer types before a
5475/// warning is issued. So, its invokation is extremely rare.
5476QualType ASTContext::areCommonBaseCompatible(
5477                                          const ObjCObjectPointerType *Lptr,
5478                                          const ObjCObjectPointerType *Rptr) {
5479  const ObjCObjectType *LHS = Lptr->getObjectType();
5480  const ObjCObjectType *RHS = Rptr->getObjectType();
5481  const ObjCInterfaceDecl* LDecl = LHS->getInterface();
5482  const ObjCInterfaceDecl* RDecl = RHS->getInterface();
5483  if (!LDecl || !RDecl || (declaresSameEntity(LDecl, RDecl)))
5484    return QualType();
5485
5486  do {
5487    LHS = cast<ObjCInterfaceType>(getObjCInterfaceType(LDecl));
5488    if (canAssignObjCInterfaces(LHS, RHS)) {
5489      SmallVector<ObjCProtocolDecl *, 8> Protocols;
5490      getIntersectionOfProtocols(*this, Lptr, Rptr, Protocols);
5491
5492      QualType Result = QualType(LHS, 0);
5493      if (!Protocols.empty())
5494        Result = getObjCObjectType(Result, Protocols.data(), Protocols.size());
5495      Result = getObjCObjectPointerType(Result);
5496      return Result;
5497    }
5498  } while ((LDecl = LDecl->getSuperClass()));
5499
5500  return QualType();
5501}
5502
5503bool ASTContext::canAssignObjCInterfaces(const ObjCObjectType *LHS,
5504                                         const ObjCObjectType *RHS) {
5505  assert(LHS->getInterface() && "LHS is not an interface type");
5506  assert(RHS->getInterface() && "RHS is not an interface type");
5507
5508  // Verify that the base decls are compatible: the RHS must be a subclass of
5509  // the LHS.
5510  if (!LHS->getInterface()->isSuperClassOf(RHS->getInterface()))
5511    return false;
5512
5513  // RHS must have a superset of the protocols in the LHS.  If the LHS is not
5514  // protocol qualified at all, then we are good.
5515  if (LHS->getNumProtocols() == 0)
5516    return true;
5517
5518  // Okay, we know the LHS has protocol qualifiers.  If the RHS doesn't,
5519  // more detailed analysis is required.
5520  if (RHS->getNumProtocols() == 0) {
5521    // OK, if LHS is a superclass of RHS *and*
5522    // this superclass is assignment compatible with LHS.
5523    // false otherwise.
5524    bool IsSuperClass =
5525      LHS->getInterface()->isSuperClassOf(RHS->getInterface());
5526    if (IsSuperClass) {
5527      // OK if conversion of LHS to SuperClass results in narrowing of types
5528      // ; i.e., SuperClass may implement at least one of the protocols
5529      // in LHS's protocol list. Example, SuperObj<P1> = lhs<P1,P2> is ok.
5530      // But not SuperObj<P1,P2,P3> = lhs<P1,P2>.
5531      llvm::SmallPtrSet<ObjCProtocolDecl *, 8> SuperClassInheritedProtocols;
5532      CollectInheritedProtocols(RHS->getInterface(), SuperClassInheritedProtocols);
5533      // If super class has no protocols, it is not a match.
5534      if (SuperClassInheritedProtocols.empty())
5535        return false;
5536
5537      for (ObjCObjectType::qual_iterator LHSPI = LHS->qual_begin(),
5538           LHSPE = LHS->qual_end();
5539           LHSPI != LHSPE; LHSPI++) {
5540        bool SuperImplementsProtocol = false;
5541        ObjCProtocolDecl *LHSProto = (*LHSPI);
5542
5543        for (llvm::SmallPtrSet<ObjCProtocolDecl*,8>::iterator I =
5544             SuperClassInheritedProtocols.begin(),
5545             E = SuperClassInheritedProtocols.end(); I != E; ++I) {
5546          ObjCProtocolDecl *SuperClassProto = (*I);
5547          if (SuperClassProto->lookupProtocolNamed(LHSProto->getIdentifier())) {
5548            SuperImplementsProtocol = true;
5549            break;
5550          }
5551        }
5552        if (!SuperImplementsProtocol)
5553          return false;
5554      }
5555      return true;
5556    }
5557    return false;
5558  }
5559
5560  for (ObjCObjectType::qual_iterator LHSPI = LHS->qual_begin(),
5561                                     LHSPE = LHS->qual_end();
5562       LHSPI != LHSPE; LHSPI++) {
5563    bool RHSImplementsProtocol = false;
5564
5565    // If the RHS doesn't implement the protocol on the left, the types
5566    // are incompatible.
5567    for (ObjCObjectType::qual_iterator RHSPI = RHS->qual_begin(),
5568                                       RHSPE = RHS->qual_end();
5569         RHSPI != RHSPE; RHSPI++) {
5570      if ((*RHSPI)->lookupProtocolNamed((*LHSPI)->getIdentifier())) {
5571        RHSImplementsProtocol = true;
5572        break;
5573      }
5574    }
5575    // FIXME: For better diagnostics, consider passing back the protocol name.
5576    if (!RHSImplementsProtocol)
5577      return false;
5578  }
5579  // The RHS implements all protocols listed on the LHS.
5580  return true;
5581}
5582
5583bool ASTContext::areComparableObjCPointerTypes(QualType LHS, QualType RHS) {
5584  // get the "pointed to" types
5585  const ObjCObjectPointerType *LHSOPT = LHS->getAs<ObjCObjectPointerType>();
5586  const ObjCObjectPointerType *RHSOPT = RHS->getAs<ObjCObjectPointerType>();
5587
5588  if (!LHSOPT || !RHSOPT)
5589    return false;
5590
5591  return canAssignObjCInterfaces(LHSOPT, RHSOPT) ||
5592         canAssignObjCInterfaces(RHSOPT, LHSOPT);
5593}
5594
5595bool ASTContext::canBindObjCObjectType(QualType To, QualType From) {
5596  return canAssignObjCInterfaces(
5597                getObjCObjectPointerType(To)->getAs<ObjCObjectPointerType>(),
5598                getObjCObjectPointerType(From)->getAs<ObjCObjectPointerType>());
5599}
5600
5601/// typesAreCompatible - C99 6.7.3p9: For two qualified types to be compatible,
5602/// both shall have the identically qualified version of a compatible type.
5603/// C99 6.2.7p1: Two types have compatible types if their types are the
5604/// same. See 6.7.[2,3,5] for additional rules.
5605bool ASTContext::typesAreCompatible(QualType LHS, QualType RHS,
5606                                    bool CompareUnqualified) {
5607  if (getLangOptions().CPlusPlus)
5608    return hasSameType(LHS, RHS);
5609
5610  return !mergeTypes(LHS, RHS, false, CompareUnqualified).isNull();
5611}
5612
5613bool ASTContext::propertyTypesAreCompatible(QualType LHS, QualType RHS) {
5614  return typesAreCompatible(LHS, RHS);
5615}
5616
5617bool ASTContext::typesAreBlockPointerCompatible(QualType LHS, QualType RHS) {
5618  return !mergeTypes(LHS, RHS, true).isNull();
5619}
5620
5621/// mergeTransparentUnionType - if T is a transparent union type and a member
5622/// of T is compatible with SubType, return the merged type, else return
5623/// QualType()
5624QualType ASTContext::mergeTransparentUnionType(QualType T, QualType SubType,
5625                                               bool OfBlockPointer,
5626                                               bool Unqualified) {
5627  if (const RecordType *UT = T->getAsUnionType()) {
5628    RecordDecl *UD = UT->getDecl();
5629    if (UD->hasAttr<TransparentUnionAttr>()) {
5630      for (RecordDecl::field_iterator it = UD->field_begin(),
5631           itend = UD->field_end(); it != itend; ++it) {
5632        QualType ET = it->getType().getUnqualifiedType();
5633        QualType MT = mergeTypes(ET, SubType, OfBlockPointer, Unqualified);
5634        if (!MT.isNull())
5635          return MT;
5636      }
5637    }
5638  }
5639
5640  return QualType();
5641}
5642
5643/// mergeFunctionArgumentTypes - merge two types which appear as function
5644/// argument types
5645QualType ASTContext::mergeFunctionArgumentTypes(QualType lhs, QualType rhs,
5646                                                bool OfBlockPointer,
5647                                                bool Unqualified) {
5648  // GNU extension: two types are compatible if they appear as a function
5649  // argument, one of the types is a transparent union type and the other
5650  // type is compatible with a union member
5651  QualType lmerge = mergeTransparentUnionType(lhs, rhs, OfBlockPointer,
5652                                              Unqualified);
5653  if (!lmerge.isNull())
5654    return lmerge;
5655
5656  QualType rmerge = mergeTransparentUnionType(rhs, lhs, OfBlockPointer,
5657                                              Unqualified);
5658  if (!rmerge.isNull())
5659    return rmerge;
5660
5661  return mergeTypes(lhs, rhs, OfBlockPointer, Unqualified);
5662}
5663
5664QualType ASTContext::mergeFunctionTypes(QualType lhs, QualType rhs,
5665                                        bool OfBlockPointer,
5666                                        bool Unqualified) {
5667  const FunctionType *lbase = lhs->getAs<FunctionType>();
5668  const FunctionType *rbase = rhs->getAs<FunctionType>();
5669  const FunctionProtoType *lproto = dyn_cast<FunctionProtoType>(lbase);
5670  const FunctionProtoType *rproto = dyn_cast<FunctionProtoType>(rbase);
5671  bool allLTypes = true;
5672  bool allRTypes = true;
5673
5674  // Check return type
5675  QualType retType;
5676  if (OfBlockPointer) {
5677    QualType RHS = rbase->getResultType();
5678    QualType LHS = lbase->getResultType();
5679    bool UnqualifiedResult = Unqualified;
5680    if (!UnqualifiedResult)
5681      UnqualifiedResult = (!RHS.hasQualifiers() && LHS.hasQualifiers());
5682    retType = mergeTypes(LHS, RHS, true, UnqualifiedResult, true);
5683  }
5684  else
5685    retType = mergeTypes(lbase->getResultType(), rbase->getResultType(), false,
5686                         Unqualified);
5687  if (retType.isNull()) return QualType();
5688
5689  if (Unqualified)
5690    retType = retType.getUnqualifiedType();
5691
5692  CanQualType LRetType = getCanonicalType(lbase->getResultType());
5693  CanQualType RRetType = getCanonicalType(rbase->getResultType());
5694  if (Unqualified) {
5695    LRetType = LRetType.getUnqualifiedType();
5696    RRetType = RRetType.getUnqualifiedType();
5697  }
5698
5699  if (getCanonicalType(retType) != LRetType)
5700    allLTypes = false;
5701  if (getCanonicalType(retType) != RRetType)
5702    allRTypes = false;
5703
5704  // FIXME: double check this
5705  // FIXME: should we error if lbase->getRegParmAttr() != 0 &&
5706  //                           rbase->getRegParmAttr() != 0 &&
5707  //                           lbase->getRegParmAttr() != rbase->getRegParmAttr()?
5708  FunctionType::ExtInfo lbaseInfo = lbase->getExtInfo();
5709  FunctionType::ExtInfo rbaseInfo = rbase->getExtInfo();
5710
5711  // Compatible functions must have compatible calling conventions
5712  if (!isSameCallConv(lbaseInfo.getCC(), rbaseInfo.getCC()))
5713    return QualType();
5714
5715  // Regparm is part of the calling convention.
5716  if (lbaseInfo.getHasRegParm() != rbaseInfo.getHasRegParm())
5717    return QualType();
5718  if (lbaseInfo.getRegParm() != rbaseInfo.getRegParm())
5719    return QualType();
5720
5721  if (lbaseInfo.getProducesResult() != rbaseInfo.getProducesResult())
5722    return QualType();
5723
5724  // functypes which return are preferred over those that do not.
5725  if (lbaseInfo.getNoReturn() && !rbaseInfo.getNoReturn())
5726    allLTypes = false;
5727  else if (!lbaseInfo.getNoReturn() && rbaseInfo.getNoReturn())
5728    allRTypes = false;
5729  // FIXME: some uses, e.g. conditional exprs, really want this to be 'both'.
5730  bool NoReturn = lbaseInfo.getNoReturn() || rbaseInfo.getNoReturn();
5731
5732  FunctionType::ExtInfo einfo = lbaseInfo.withNoReturn(NoReturn);
5733
5734  if (lproto && rproto) { // two C99 style function prototypes
5735    assert(!lproto->hasExceptionSpec() && !rproto->hasExceptionSpec() &&
5736           "C++ shouldn't be here");
5737    unsigned lproto_nargs = lproto->getNumArgs();
5738    unsigned rproto_nargs = rproto->getNumArgs();
5739
5740    // Compatible functions must have the same number of arguments
5741    if (lproto_nargs != rproto_nargs)
5742      return QualType();
5743
5744    // Variadic and non-variadic functions aren't compatible
5745    if (lproto->isVariadic() != rproto->isVariadic())
5746      return QualType();
5747
5748    if (lproto->getTypeQuals() != rproto->getTypeQuals())
5749      return QualType();
5750
5751    if (LangOpts.ObjCAutoRefCount &&
5752        !FunctionTypesMatchOnNSConsumedAttrs(rproto, lproto))
5753      return QualType();
5754
5755    // Check argument compatibility
5756    SmallVector<QualType, 10> types;
5757    for (unsigned i = 0; i < lproto_nargs; i++) {
5758      QualType largtype = lproto->getArgType(i).getUnqualifiedType();
5759      QualType rargtype = rproto->getArgType(i).getUnqualifiedType();
5760      QualType argtype = mergeFunctionArgumentTypes(largtype, rargtype,
5761                                                    OfBlockPointer,
5762                                                    Unqualified);
5763      if (argtype.isNull()) return QualType();
5764
5765      if (Unqualified)
5766        argtype = argtype.getUnqualifiedType();
5767
5768      types.push_back(argtype);
5769      if (Unqualified) {
5770        largtype = largtype.getUnqualifiedType();
5771        rargtype = rargtype.getUnqualifiedType();
5772      }
5773
5774      if (getCanonicalType(argtype) != getCanonicalType(largtype))
5775        allLTypes = false;
5776      if (getCanonicalType(argtype) != getCanonicalType(rargtype))
5777        allRTypes = false;
5778    }
5779
5780    if (allLTypes) return lhs;
5781    if (allRTypes) return rhs;
5782
5783    FunctionProtoType::ExtProtoInfo EPI = lproto->getExtProtoInfo();
5784    EPI.ExtInfo = einfo;
5785    return getFunctionType(retType, types.begin(), types.size(), EPI);
5786  }
5787
5788  if (lproto) allRTypes = false;
5789  if (rproto) allLTypes = false;
5790
5791  const FunctionProtoType *proto = lproto ? lproto : rproto;
5792  if (proto) {
5793    assert(!proto->hasExceptionSpec() && "C++ shouldn't be here");
5794    if (proto->isVariadic()) return QualType();
5795    // Check that the types are compatible with the types that
5796    // would result from default argument promotions (C99 6.7.5.3p15).
5797    // The only types actually affected are promotable integer
5798    // types and floats, which would be passed as a different
5799    // type depending on whether the prototype is visible.
5800    unsigned proto_nargs = proto->getNumArgs();
5801    for (unsigned i = 0; i < proto_nargs; ++i) {
5802      QualType argTy = proto->getArgType(i);
5803
5804      // Look at the promotion type of enum types, since that is the type used
5805      // to pass enum values.
5806      if (const EnumType *Enum = argTy->getAs<EnumType>())
5807        argTy = Enum->getDecl()->getPromotionType();
5808
5809      if (argTy->isPromotableIntegerType() ||
5810          getCanonicalType(argTy).getUnqualifiedType() == FloatTy)
5811        return QualType();
5812    }
5813
5814    if (allLTypes) return lhs;
5815    if (allRTypes) return rhs;
5816
5817    FunctionProtoType::ExtProtoInfo EPI = proto->getExtProtoInfo();
5818    EPI.ExtInfo = einfo;
5819    return getFunctionType(retType, proto->arg_type_begin(),
5820                           proto->getNumArgs(), EPI);
5821  }
5822
5823  if (allLTypes) return lhs;
5824  if (allRTypes) return rhs;
5825  return getFunctionNoProtoType(retType, einfo);
5826}
5827
5828QualType ASTContext::mergeTypes(QualType LHS, QualType RHS,
5829                                bool OfBlockPointer,
5830                                bool Unqualified, bool BlockReturnType) {
5831  // C++ [expr]: If an expression initially has the type "reference to T", the
5832  // type is adjusted to "T" prior to any further analysis, the expression
5833  // designates the object or function denoted by the reference, and the
5834  // expression is an lvalue unless the reference is an rvalue reference and
5835  // the expression is a function call (possibly inside parentheses).
5836  assert(!LHS->getAs<ReferenceType>() && "LHS is a reference type?");
5837  assert(!RHS->getAs<ReferenceType>() && "RHS is a reference type?");
5838
5839  if (Unqualified) {
5840    LHS = LHS.getUnqualifiedType();
5841    RHS = RHS.getUnqualifiedType();
5842  }
5843
5844  QualType LHSCan = getCanonicalType(LHS),
5845           RHSCan = getCanonicalType(RHS);
5846
5847  // If two types are identical, they are compatible.
5848  if (LHSCan == RHSCan)
5849    return LHS;
5850
5851  // If the qualifiers are different, the types aren't compatible... mostly.
5852  Qualifiers LQuals = LHSCan.getLocalQualifiers();
5853  Qualifiers RQuals = RHSCan.getLocalQualifiers();
5854  if (LQuals != RQuals) {
5855    // If any of these qualifiers are different, we have a type
5856    // mismatch.
5857    if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() ||
5858        LQuals.getAddressSpace() != RQuals.getAddressSpace() ||
5859        LQuals.getObjCLifetime() != RQuals.getObjCLifetime())
5860      return QualType();
5861
5862    // Exactly one GC qualifier difference is allowed: __strong is
5863    // okay if the other type has no GC qualifier but is an Objective
5864    // C object pointer (i.e. implicitly strong by default).  We fix
5865    // this by pretending that the unqualified type was actually
5866    // qualified __strong.
5867    Qualifiers::GC GC_L = LQuals.getObjCGCAttr();
5868    Qualifiers::GC GC_R = RQuals.getObjCGCAttr();
5869    assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements");
5870
5871    if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak)
5872      return QualType();
5873
5874    if (GC_L == Qualifiers::Strong && RHSCan->isObjCObjectPointerType()) {
5875      return mergeTypes(LHS, getObjCGCQualType(RHS, Qualifiers::Strong));
5876    }
5877    if (GC_R == Qualifiers::Strong && LHSCan->isObjCObjectPointerType()) {
5878      return mergeTypes(getObjCGCQualType(LHS, Qualifiers::Strong), RHS);
5879    }
5880    return QualType();
5881  }
5882
5883  // Okay, qualifiers are equal.
5884
5885  Type::TypeClass LHSClass = LHSCan->getTypeClass();
5886  Type::TypeClass RHSClass = RHSCan->getTypeClass();
5887
5888  // We want to consider the two function types to be the same for these
5889  // comparisons, just force one to the other.
5890  if (LHSClass == Type::FunctionProto) LHSClass = Type::FunctionNoProto;
5891  if (RHSClass == Type::FunctionProto) RHSClass = Type::FunctionNoProto;
5892
5893  // Same as above for arrays
5894  if (LHSClass == Type::VariableArray || LHSClass == Type::IncompleteArray)
5895    LHSClass = Type::ConstantArray;
5896  if (RHSClass == Type::VariableArray || RHSClass == Type::IncompleteArray)
5897    RHSClass = Type::ConstantArray;
5898
5899  // ObjCInterfaces are just specialized ObjCObjects.
5900  if (LHSClass == Type::ObjCInterface) LHSClass = Type::ObjCObject;
5901  if (RHSClass == Type::ObjCInterface) RHSClass = Type::ObjCObject;
5902
5903  // Canonicalize ExtVector -> Vector.
5904  if (LHSClass == Type::ExtVector) LHSClass = Type::Vector;
5905  if (RHSClass == Type::ExtVector) RHSClass = Type::Vector;
5906
5907  // If the canonical type classes don't match.
5908  if (LHSClass != RHSClass) {
5909    // C99 6.7.2.2p4: Each enumerated type shall be compatible with char,
5910    // a signed integer type, or an unsigned integer type.
5911    // Compatibility is based on the underlying type, not the promotion
5912    // type.
5913    if (const EnumType* ETy = LHS->getAs<EnumType>()) {
5914      QualType TINT = ETy->getDecl()->getIntegerType();
5915      if (!TINT.isNull() && hasSameType(TINT, RHSCan.getUnqualifiedType()))
5916        return RHS;
5917    }
5918    if (const EnumType* ETy = RHS->getAs<EnumType>()) {
5919      QualType TINT = ETy->getDecl()->getIntegerType();
5920      if (!TINT.isNull() && hasSameType(TINT, LHSCan.getUnqualifiedType()))
5921        return LHS;
5922    }
5923    // allow block pointer type to match an 'id' type.
5924    if (OfBlockPointer && !BlockReturnType) {
5925       if (LHS->isObjCIdType() && RHS->isBlockPointerType())
5926         return LHS;
5927      if (RHS->isObjCIdType() && LHS->isBlockPointerType())
5928        return RHS;
5929    }
5930
5931    return QualType();
5932  }
5933
5934  // The canonical type classes match.
5935  switch (LHSClass) {
5936#define TYPE(Class, Base)
5937#define ABSTRACT_TYPE(Class, Base)
5938#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
5939#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
5940#define DEPENDENT_TYPE(Class, Base) case Type::Class:
5941#include "clang/AST/TypeNodes.def"
5942    llvm_unreachable("Non-canonical and dependent types shouldn't get here");
5943
5944  case Type::LValueReference:
5945  case Type::RValueReference:
5946  case Type::MemberPointer:
5947    llvm_unreachable("C++ should never be in mergeTypes");
5948
5949  case Type::ObjCInterface:
5950  case Type::IncompleteArray:
5951  case Type::VariableArray:
5952  case Type::FunctionProto:
5953  case Type::ExtVector:
5954    llvm_unreachable("Types are eliminated above");
5955
5956  case Type::Pointer:
5957  {
5958    // Merge two pointer types, while trying to preserve typedef info
5959    QualType LHSPointee = LHS->getAs<PointerType>()->getPointeeType();
5960    QualType RHSPointee = RHS->getAs<PointerType>()->getPointeeType();
5961    if (Unqualified) {
5962      LHSPointee = LHSPointee.getUnqualifiedType();
5963      RHSPointee = RHSPointee.getUnqualifiedType();
5964    }
5965    QualType ResultType = mergeTypes(LHSPointee, RHSPointee, false,
5966                                     Unqualified);
5967    if (ResultType.isNull()) return QualType();
5968    if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
5969      return LHS;
5970    if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
5971      return RHS;
5972    return getPointerType(ResultType);
5973  }
5974  case Type::BlockPointer:
5975  {
5976    // Merge two block pointer types, while trying to preserve typedef info
5977    QualType LHSPointee = LHS->getAs<BlockPointerType>()->getPointeeType();
5978    QualType RHSPointee = RHS->getAs<BlockPointerType>()->getPointeeType();
5979    if (Unqualified) {
5980      LHSPointee = LHSPointee.getUnqualifiedType();
5981      RHSPointee = RHSPointee.getUnqualifiedType();
5982    }
5983    QualType ResultType = mergeTypes(LHSPointee, RHSPointee, OfBlockPointer,
5984                                     Unqualified);
5985    if (ResultType.isNull()) return QualType();
5986    if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
5987      return LHS;
5988    if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
5989      return RHS;
5990    return getBlockPointerType(ResultType);
5991  }
5992  case Type::Atomic:
5993  {
5994    // Merge two pointer types, while trying to preserve typedef info
5995    QualType LHSValue = LHS->getAs<AtomicType>()->getValueType();
5996    QualType RHSValue = RHS->getAs<AtomicType>()->getValueType();
5997    if (Unqualified) {
5998      LHSValue = LHSValue.getUnqualifiedType();
5999      RHSValue = RHSValue.getUnqualifiedType();
6000    }
6001    QualType ResultType = mergeTypes(LHSValue, RHSValue, false,
6002                                     Unqualified);
6003    if (ResultType.isNull()) return QualType();
6004    if (getCanonicalType(LHSValue) == getCanonicalType(ResultType))
6005      return LHS;
6006    if (getCanonicalType(RHSValue) == getCanonicalType(ResultType))
6007      return RHS;
6008    return getAtomicType(ResultType);
6009  }
6010  case Type::ConstantArray:
6011  {
6012    const ConstantArrayType* LCAT = getAsConstantArrayType(LHS);
6013    const ConstantArrayType* RCAT = getAsConstantArrayType(RHS);
6014    if (LCAT && RCAT && RCAT->getSize() != LCAT->getSize())
6015      return QualType();
6016
6017    QualType LHSElem = getAsArrayType(LHS)->getElementType();
6018    QualType RHSElem = getAsArrayType(RHS)->getElementType();
6019    if (Unqualified) {
6020      LHSElem = LHSElem.getUnqualifiedType();
6021      RHSElem = RHSElem.getUnqualifiedType();
6022    }
6023
6024    QualType ResultType = mergeTypes(LHSElem, RHSElem, false, Unqualified);
6025    if (ResultType.isNull()) return QualType();
6026    if (LCAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
6027      return LHS;
6028    if (RCAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
6029      return RHS;
6030    if (LCAT) return getConstantArrayType(ResultType, LCAT->getSize(),
6031                                          ArrayType::ArraySizeModifier(), 0);
6032    if (RCAT) return getConstantArrayType(ResultType, RCAT->getSize(),
6033                                          ArrayType::ArraySizeModifier(), 0);
6034    const VariableArrayType* LVAT = getAsVariableArrayType(LHS);
6035    const VariableArrayType* RVAT = getAsVariableArrayType(RHS);
6036    if (LVAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
6037      return LHS;
6038    if (RVAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
6039      return RHS;
6040    if (LVAT) {
6041      // FIXME: This isn't correct! But tricky to implement because
6042      // the array's size has to be the size of LHS, but the type
6043      // has to be different.
6044      return LHS;
6045    }
6046    if (RVAT) {
6047      // FIXME: This isn't correct! But tricky to implement because
6048      // the array's size has to be the size of RHS, but the type
6049      // has to be different.
6050      return RHS;
6051    }
6052    if (getCanonicalType(LHSElem) == getCanonicalType(ResultType)) return LHS;
6053    if (getCanonicalType(RHSElem) == getCanonicalType(ResultType)) return RHS;
6054    return getIncompleteArrayType(ResultType,
6055                                  ArrayType::ArraySizeModifier(), 0);
6056  }
6057  case Type::FunctionNoProto:
6058    return mergeFunctionTypes(LHS, RHS, OfBlockPointer, Unqualified);
6059  case Type::Record:
6060  case Type::Enum:
6061    return QualType();
6062  case Type::Builtin:
6063    // Only exactly equal builtin types are compatible, which is tested above.
6064    return QualType();
6065  case Type::Complex:
6066    // Distinct complex types are incompatible.
6067    return QualType();
6068  case Type::Vector:
6069    // FIXME: The merged type should be an ExtVector!
6070    if (areCompatVectorTypes(LHSCan->getAs<VectorType>(),
6071                             RHSCan->getAs<VectorType>()))
6072      return LHS;
6073    return QualType();
6074  case Type::ObjCObject: {
6075    // Check if the types are assignment compatible.
6076    // FIXME: This should be type compatibility, e.g. whether
6077    // "LHS x; RHS x;" at global scope is legal.
6078    const ObjCObjectType* LHSIface = LHS->getAs<ObjCObjectType>();
6079    const ObjCObjectType* RHSIface = RHS->getAs<ObjCObjectType>();
6080    if (canAssignObjCInterfaces(LHSIface, RHSIface))
6081      return LHS;
6082
6083    return QualType();
6084  }
6085  case Type::ObjCObjectPointer: {
6086    if (OfBlockPointer) {
6087      if (canAssignObjCInterfacesInBlockPointer(
6088                                          LHS->getAs<ObjCObjectPointerType>(),
6089                                          RHS->getAs<ObjCObjectPointerType>(),
6090                                          BlockReturnType))
6091        return LHS;
6092      return QualType();
6093    }
6094    if (canAssignObjCInterfaces(LHS->getAs<ObjCObjectPointerType>(),
6095                                RHS->getAs<ObjCObjectPointerType>()))
6096      return LHS;
6097
6098    return QualType();
6099  }
6100  }
6101
6102  llvm_unreachable("Invalid Type::Class!");
6103}
6104
6105bool ASTContext::FunctionTypesMatchOnNSConsumedAttrs(
6106                   const FunctionProtoType *FromFunctionType,
6107                   const FunctionProtoType *ToFunctionType) {
6108  if (FromFunctionType->hasAnyConsumedArgs() !=
6109      ToFunctionType->hasAnyConsumedArgs())
6110    return false;
6111  FunctionProtoType::ExtProtoInfo FromEPI =
6112    FromFunctionType->getExtProtoInfo();
6113  FunctionProtoType::ExtProtoInfo ToEPI =
6114    ToFunctionType->getExtProtoInfo();
6115  if (FromEPI.ConsumedArguments && ToEPI.ConsumedArguments)
6116    for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumArgs();
6117         ArgIdx != NumArgs; ++ArgIdx)  {
6118      if (FromEPI.ConsumedArguments[ArgIdx] !=
6119          ToEPI.ConsumedArguments[ArgIdx])
6120        return false;
6121    }
6122  return true;
6123}
6124
6125/// mergeObjCGCQualifiers - This routine merges ObjC's GC attribute of 'LHS' and
6126/// 'RHS' attributes and returns the merged version; including for function
6127/// return types.
6128QualType ASTContext::mergeObjCGCQualifiers(QualType LHS, QualType RHS) {
6129  QualType LHSCan = getCanonicalType(LHS),
6130  RHSCan = getCanonicalType(RHS);
6131  // If two types are identical, they are compatible.
6132  if (LHSCan == RHSCan)
6133    return LHS;
6134  if (RHSCan->isFunctionType()) {
6135    if (!LHSCan->isFunctionType())
6136      return QualType();
6137    QualType OldReturnType =
6138      cast<FunctionType>(RHSCan.getTypePtr())->getResultType();
6139    QualType NewReturnType =
6140      cast<FunctionType>(LHSCan.getTypePtr())->getResultType();
6141    QualType ResReturnType =
6142      mergeObjCGCQualifiers(NewReturnType, OldReturnType);
6143    if (ResReturnType.isNull())
6144      return QualType();
6145    if (ResReturnType == NewReturnType || ResReturnType == OldReturnType) {
6146      // id foo(); ... __strong id foo(); or: __strong id foo(); ... id foo();
6147      // In either case, use OldReturnType to build the new function type.
6148      const FunctionType *F = LHS->getAs<FunctionType>();
6149      if (const FunctionProtoType *FPT = cast<FunctionProtoType>(F)) {
6150        FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
6151        EPI.ExtInfo = getFunctionExtInfo(LHS);
6152        QualType ResultType
6153          = getFunctionType(OldReturnType, FPT->arg_type_begin(),
6154                            FPT->getNumArgs(), EPI);
6155        return ResultType;
6156      }
6157    }
6158    return QualType();
6159  }
6160
6161  // If the qualifiers are different, the types can still be merged.
6162  Qualifiers LQuals = LHSCan.getLocalQualifiers();
6163  Qualifiers RQuals = RHSCan.getLocalQualifiers();
6164  if (LQuals != RQuals) {
6165    // If any of these qualifiers are different, we have a type mismatch.
6166    if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() ||
6167        LQuals.getAddressSpace() != RQuals.getAddressSpace())
6168      return QualType();
6169
6170    // Exactly one GC qualifier difference is allowed: __strong is
6171    // okay if the other type has no GC qualifier but is an Objective
6172    // C object pointer (i.e. implicitly strong by default).  We fix
6173    // this by pretending that the unqualified type was actually
6174    // qualified __strong.
6175    Qualifiers::GC GC_L = LQuals.getObjCGCAttr();
6176    Qualifiers::GC GC_R = RQuals.getObjCGCAttr();
6177    assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements");
6178
6179    if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak)
6180      return QualType();
6181
6182    if (GC_L == Qualifiers::Strong)
6183      return LHS;
6184    if (GC_R == Qualifiers::Strong)
6185      return RHS;
6186    return QualType();
6187  }
6188
6189  if (LHSCan->isObjCObjectPointerType() && RHSCan->isObjCObjectPointerType()) {
6190    QualType LHSBaseQT = LHS->getAs<ObjCObjectPointerType>()->getPointeeType();
6191    QualType RHSBaseQT = RHS->getAs<ObjCObjectPointerType>()->getPointeeType();
6192    QualType ResQT = mergeObjCGCQualifiers(LHSBaseQT, RHSBaseQT);
6193    if (ResQT == LHSBaseQT)
6194      return LHS;
6195    if (ResQT == RHSBaseQT)
6196      return RHS;
6197  }
6198  return QualType();
6199}
6200
6201//===----------------------------------------------------------------------===//
6202//                         Integer Predicates
6203//===----------------------------------------------------------------------===//
6204
6205unsigned ASTContext::getIntWidth(QualType T) const {
6206  if (const EnumType *ET = dyn_cast<EnumType>(T))
6207    T = ET->getDecl()->getIntegerType();
6208  if (T->isBooleanType())
6209    return 1;
6210  // For builtin types, just use the standard type sizing method
6211  return (unsigned)getTypeSize(T);
6212}
6213
6214QualType ASTContext::getCorrespondingUnsignedType(QualType T) {
6215  assert(T->hasSignedIntegerRepresentation() && "Unexpected type");
6216
6217  // Turn <4 x signed int> -> <4 x unsigned int>
6218  if (const VectorType *VTy = T->getAs<VectorType>())
6219    return getVectorType(getCorrespondingUnsignedType(VTy->getElementType()),
6220                         VTy->getNumElements(), VTy->getVectorKind());
6221
6222  // For enums, we return the unsigned version of the base type.
6223  if (const EnumType *ETy = T->getAs<EnumType>())
6224    T = ETy->getDecl()->getIntegerType();
6225
6226  const BuiltinType *BTy = T->getAs<BuiltinType>();
6227  assert(BTy && "Unexpected signed integer type");
6228  switch (BTy->getKind()) {
6229  case BuiltinType::Char_S:
6230  case BuiltinType::SChar:
6231    return UnsignedCharTy;
6232  case BuiltinType::Short:
6233    return UnsignedShortTy;
6234  case BuiltinType::Int:
6235    return UnsignedIntTy;
6236  case BuiltinType::Long:
6237    return UnsignedLongTy;
6238  case BuiltinType::LongLong:
6239    return UnsignedLongLongTy;
6240  case BuiltinType::Int128:
6241    return UnsignedInt128Ty;
6242  default:
6243    llvm_unreachable("Unexpected signed integer type");
6244  }
6245}
6246
6247ASTMutationListener::~ASTMutationListener() { }
6248
6249
6250//===----------------------------------------------------------------------===//
6251//                          Builtin Type Computation
6252//===----------------------------------------------------------------------===//
6253
6254/// DecodeTypeFromStr - This decodes one type descriptor from Str, advancing the
6255/// pointer over the consumed characters.  This returns the resultant type.  If
6256/// AllowTypeModifiers is false then modifier like * are not parsed, just basic
6257/// types.  This allows "v2i*" to be parsed as a pointer to a v2i instead of
6258/// a vector of "i*".
6259///
6260/// RequiresICE is filled in on return to indicate whether the value is required
6261/// to be an Integer Constant Expression.
6262static QualType DecodeTypeFromStr(const char *&Str, const ASTContext &Context,
6263                                  ASTContext::GetBuiltinTypeError &Error,
6264                                  bool &RequiresICE,
6265                                  bool AllowTypeModifiers) {
6266  // Modifiers.
6267  int HowLong = 0;
6268  bool Signed = false, Unsigned = false;
6269  RequiresICE = false;
6270
6271  // Read the prefixed modifiers first.
6272  bool Done = false;
6273  while (!Done) {
6274    switch (*Str++) {
6275    default: Done = true; --Str; break;
6276    case 'I':
6277      RequiresICE = true;
6278      break;
6279    case 'S':
6280      assert(!Unsigned && "Can't use both 'S' and 'U' modifiers!");
6281      assert(!Signed && "Can't use 'S' modifier multiple times!");
6282      Signed = true;
6283      break;
6284    case 'U':
6285      assert(!Signed && "Can't use both 'S' and 'U' modifiers!");
6286      assert(!Unsigned && "Can't use 'S' modifier multiple times!");
6287      Unsigned = true;
6288      break;
6289    case 'L':
6290      assert(HowLong <= 2 && "Can't have LLLL modifier");
6291      ++HowLong;
6292      break;
6293    }
6294  }
6295
6296  QualType Type;
6297
6298  // Read the base type.
6299  switch (*Str++) {
6300  default: llvm_unreachable("Unknown builtin type letter!");
6301  case 'v':
6302    assert(HowLong == 0 && !Signed && !Unsigned &&
6303           "Bad modifiers used with 'v'!");
6304    Type = Context.VoidTy;
6305    break;
6306  case 'f':
6307    assert(HowLong == 0 && !Signed && !Unsigned &&
6308           "Bad modifiers used with 'f'!");
6309    Type = Context.FloatTy;
6310    break;
6311  case 'd':
6312    assert(HowLong < 2 && !Signed && !Unsigned &&
6313           "Bad modifiers used with 'd'!");
6314    if (HowLong)
6315      Type = Context.LongDoubleTy;
6316    else
6317      Type = Context.DoubleTy;
6318    break;
6319  case 's':
6320    assert(HowLong == 0 && "Bad modifiers used with 's'!");
6321    if (Unsigned)
6322      Type = Context.UnsignedShortTy;
6323    else
6324      Type = Context.ShortTy;
6325    break;
6326  case 'i':
6327    if (HowLong == 3)
6328      Type = Unsigned ? Context.UnsignedInt128Ty : Context.Int128Ty;
6329    else if (HowLong == 2)
6330      Type = Unsigned ? Context.UnsignedLongLongTy : Context.LongLongTy;
6331    else if (HowLong == 1)
6332      Type = Unsigned ? Context.UnsignedLongTy : Context.LongTy;
6333    else
6334      Type = Unsigned ? Context.UnsignedIntTy : Context.IntTy;
6335    break;
6336  case 'c':
6337    assert(HowLong == 0 && "Bad modifiers used with 'c'!");
6338    if (Signed)
6339      Type = Context.SignedCharTy;
6340    else if (Unsigned)
6341      Type = Context.UnsignedCharTy;
6342    else
6343      Type = Context.CharTy;
6344    break;
6345  case 'b': // boolean
6346    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'b'!");
6347    Type = Context.BoolTy;
6348    break;
6349  case 'z':  // size_t.
6350    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'z'!");
6351    Type = Context.getSizeType();
6352    break;
6353  case 'F':
6354    Type = Context.getCFConstantStringType();
6355    break;
6356  case 'G':
6357    Type = Context.getObjCIdType();
6358    break;
6359  case 'H':
6360    Type = Context.getObjCSelType();
6361    break;
6362  case 'a':
6363    Type = Context.getBuiltinVaListType();
6364    assert(!Type.isNull() && "builtin va list type not initialized!");
6365    break;
6366  case 'A':
6367    // This is a "reference" to a va_list; however, what exactly
6368    // this means depends on how va_list is defined. There are two
6369    // different kinds of va_list: ones passed by value, and ones
6370    // passed by reference.  An example of a by-value va_list is
6371    // x86, where va_list is a char*. An example of by-ref va_list
6372    // is x86-64, where va_list is a __va_list_tag[1]. For x86,
6373    // we want this argument to be a char*&; for x86-64, we want
6374    // it to be a __va_list_tag*.
6375    Type = Context.getBuiltinVaListType();
6376    assert(!Type.isNull() && "builtin va list type not initialized!");
6377    if (Type->isArrayType())
6378      Type = Context.getArrayDecayedType(Type);
6379    else
6380      Type = Context.getLValueReferenceType(Type);
6381    break;
6382  case 'V': {
6383    char *End;
6384    unsigned NumElements = strtoul(Str, &End, 10);
6385    assert(End != Str && "Missing vector size");
6386    Str = End;
6387
6388    QualType ElementType = DecodeTypeFromStr(Str, Context, Error,
6389                                             RequiresICE, false);
6390    assert(!RequiresICE && "Can't require vector ICE");
6391
6392    // TODO: No way to make AltiVec vectors in builtins yet.
6393    Type = Context.getVectorType(ElementType, NumElements,
6394                                 VectorType::GenericVector);
6395    break;
6396  }
6397  case 'X': {
6398    QualType ElementType = DecodeTypeFromStr(Str, Context, Error, RequiresICE,
6399                                             false);
6400    assert(!RequiresICE && "Can't require complex ICE");
6401    Type = Context.getComplexType(ElementType);
6402    break;
6403  }
6404  case 'Y' : {
6405    Type = Context.getPointerDiffType();
6406    break;
6407  }
6408  case 'P':
6409    Type = Context.getFILEType();
6410    if (Type.isNull()) {
6411      Error = ASTContext::GE_Missing_stdio;
6412      return QualType();
6413    }
6414    break;
6415  case 'J':
6416    if (Signed)
6417      Type = Context.getsigjmp_bufType();
6418    else
6419      Type = Context.getjmp_bufType();
6420
6421    if (Type.isNull()) {
6422      Error = ASTContext::GE_Missing_setjmp;
6423      return QualType();
6424    }
6425    break;
6426  case 'K':
6427    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'K'!");
6428    Type = Context.getucontext_tType();
6429
6430    if (Type.isNull()) {
6431      Error = ASTContext::GE_Missing_ucontext;
6432      return QualType();
6433    }
6434    break;
6435  }
6436
6437  // If there are modifiers and if we're allowed to parse them, go for it.
6438  Done = !AllowTypeModifiers;
6439  while (!Done) {
6440    switch (char c = *Str++) {
6441    default: Done = true; --Str; break;
6442    case '*':
6443    case '&': {
6444      // Both pointers and references can have their pointee types
6445      // qualified with an address space.
6446      char *End;
6447      unsigned AddrSpace = strtoul(Str, &End, 10);
6448      if (End != Str && AddrSpace != 0) {
6449        Type = Context.getAddrSpaceQualType(Type, AddrSpace);
6450        Str = End;
6451      }
6452      if (c == '*')
6453        Type = Context.getPointerType(Type);
6454      else
6455        Type = Context.getLValueReferenceType(Type);
6456      break;
6457    }
6458    // FIXME: There's no way to have a built-in with an rvalue ref arg.
6459    case 'C':
6460      Type = Type.withConst();
6461      break;
6462    case 'D':
6463      Type = Context.getVolatileType(Type);
6464      break;
6465    case 'R':
6466      Type = Type.withRestrict();
6467      break;
6468    }
6469  }
6470
6471  assert((!RequiresICE || Type->isIntegralOrEnumerationType()) &&
6472         "Integer constant 'I' type must be an integer");
6473
6474  return Type;
6475}
6476
6477/// GetBuiltinType - Return the type for the specified builtin.
6478QualType ASTContext::GetBuiltinType(unsigned Id,
6479                                    GetBuiltinTypeError &Error,
6480                                    unsigned *IntegerConstantArgs) const {
6481  const char *TypeStr = BuiltinInfo.GetTypeString(Id);
6482
6483  SmallVector<QualType, 8> ArgTypes;
6484
6485  bool RequiresICE = false;
6486  Error = GE_None;
6487  QualType ResType = DecodeTypeFromStr(TypeStr, *this, Error,
6488                                       RequiresICE, true);
6489  if (Error != GE_None)
6490    return QualType();
6491
6492  assert(!RequiresICE && "Result of intrinsic cannot be required to be an ICE");
6493
6494  while (TypeStr[0] && TypeStr[0] != '.') {
6495    QualType Ty = DecodeTypeFromStr(TypeStr, *this, Error, RequiresICE, true);
6496    if (Error != GE_None)
6497      return QualType();
6498
6499    // If this argument is required to be an IntegerConstantExpression and the
6500    // caller cares, fill in the bitmask we return.
6501    if (RequiresICE && IntegerConstantArgs)
6502      *IntegerConstantArgs |= 1 << ArgTypes.size();
6503
6504    // Do array -> pointer decay.  The builtin should use the decayed type.
6505    if (Ty->isArrayType())
6506      Ty = getArrayDecayedType(Ty);
6507
6508    ArgTypes.push_back(Ty);
6509  }
6510
6511  assert((TypeStr[0] != '.' || TypeStr[1] == 0) &&
6512         "'.' should only occur at end of builtin type list!");
6513
6514  FunctionType::ExtInfo EI;
6515  if (BuiltinInfo.isNoReturn(Id)) EI = EI.withNoReturn(true);
6516
6517  bool Variadic = (TypeStr[0] == '.');
6518
6519  // We really shouldn't be making a no-proto type here, especially in C++.
6520  if (ArgTypes.empty() && Variadic)
6521    return getFunctionNoProtoType(ResType, EI);
6522
6523  FunctionProtoType::ExtProtoInfo EPI;
6524  EPI.ExtInfo = EI;
6525  EPI.Variadic = Variadic;
6526
6527  return getFunctionType(ResType, ArgTypes.data(), ArgTypes.size(), EPI);
6528}
6529
6530GVALinkage ASTContext::GetGVALinkageForFunction(const FunctionDecl *FD) {
6531  GVALinkage External = GVA_StrongExternal;
6532
6533  Linkage L = FD->getLinkage();
6534  switch (L) {
6535  case NoLinkage:
6536  case InternalLinkage:
6537  case UniqueExternalLinkage:
6538    return GVA_Internal;
6539
6540  case ExternalLinkage:
6541    switch (FD->getTemplateSpecializationKind()) {
6542    case TSK_Undeclared:
6543    case TSK_ExplicitSpecialization:
6544      External = GVA_StrongExternal;
6545      break;
6546
6547    case TSK_ExplicitInstantiationDefinition:
6548      return GVA_ExplicitTemplateInstantiation;
6549
6550    case TSK_ExplicitInstantiationDeclaration:
6551    case TSK_ImplicitInstantiation:
6552      External = GVA_TemplateInstantiation;
6553      break;
6554    }
6555  }
6556
6557  if (!FD->isInlined())
6558    return External;
6559
6560  if (!getLangOptions().CPlusPlus || FD->hasAttr<GNUInlineAttr>()) {
6561    // GNU or C99 inline semantics. Determine whether this symbol should be
6562    // externally visible.
6563    if (FD->isInlineDefinitionExternallyVisible())
6564      return External;
6565
6566    // C99 inline semantics, where the symbol is not externally visible.
6567    return GVA_C99Inline;
6568  }
6569
6570  // C++0x [temp.explicit]p9:
6571  //   [ Note: The intent is that an inline function that is the subject of
6572  //   an explicit instantiation declaration will still be implicitly
6573  //   instantiated when used so that the body can be considered for
6574  //   inlining, but that no out-of-line copy of the inline function would be
6575  //   generated in the translation unit. -- end note ]
6576  if (FD->getTemplateSpecializationKind()
6577                                       == TSK_ExplicitInstantiationDeclaration)
6578    return GVA_C99Inline;
6579
6580  return GVA_CXXInline;
6581}
6582
6583GVALinkage ASTContext::GetGVALinkageForVariable(const VarDecl *VD) {
6584  // If this is a static data member, compute the kind of template
6585  // specialization. Otherwise, this variable is not part of a
6586  // template.
6587  TemplateSpecializationKind TSK = TSK_Undeclared;
6588  if (VD->isStaticDataMember())
6589    TSK = VD->getTemplateSpecializationKind();
6590
6591  Linkage L = VD->getLinkage();
6592  if (L == ExternalLinkage && getLangOptions().CPlusPlus &&
6593      VD->getType()->getLinkage() == UniqueExternalLinkage)
6594    L = UniqueExternalLinkage;
6595
6596  switch (L) {
6597  case NoLinkage:
6598  case InternalLinkage:
6599  case UniqueExternalLinkage:
6600    return GVA_Internal;
6601
6602  case ExternalLinkage:
6603    switch (TSK) {
6604    case TSK_Undeclared:
6605    case TSK_ExplicitSpecialization:
6606      return GVA_StrongExternal;
6607
6608    case TSK_ExplicitInstantiationDeclaration:
6609      llvm_unreachable("Variable should not be instantiated");
6610      // Fall through to treat this like any other instantiation.
6611
6612    case TSK_ExplicitInstantiationDefinition:
6613      return GVA_ExplicitTemplateInstantiation;
6614
6615    case TSK_ImplicitInstantiation:
6616      return GVA_TemplateInstantiation;
6617    }
6618  }
6619
6620  llvm_unreachable("Invalid Linkage!");
6621}
6622
6623bool ASTContext::DeclMustBeEmitted(const Decl *D) {
6624  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
6625    if (!VD->isFileVarDecl())
6626      return false;
6627  } else if (!isa<FunctionDecl>(D))
6628    return false;
6629
6630  // Weak references don't produce any output by themselves.
6631  if (D->hasAttr<WeakRefAttr>())
6632    return false;
6633
6634  // Aliases and used decls are required.
6635  if (D->hasAttr<AliasAttr>() || D->hasAttr<UsedAttr>())
6636    return true;
6637
6638  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
6639    // Forward declarations aren't required.
6640    if (!FD->doesThisDeclarationHaveABody())
6641      return FD->doesDeclarationForceExternallyVisibleDefinition();
6642
6643    // Constructors and destructors are required.
6644    if (FD->hasAttr<ConstructorAttr>() || FD->hasAttr<DestructorAttr>())
6645      return true;
6646
6647    // The key function for a class is required.
6648    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
6649      const CXXRecordDecl *RD = MD->getParent();
6650      if (MD->isOutOfLine() && RD->isDynamicClass()) {
6651        const CXXMethodDecl *KeyFunc = getKeyFunction(RD);
6652        if (KeyFunc && KeyFunc->getCanonicalDecl() == MD->getCanonicalDecl())
6653          return true;
6654      }
6655    }
6656
6657    GVALinkage Linkage = GetGVALinkageForFunction(FD);
6658
6659    // static, static inline, always_inline, and extern inline functions can
6660    // always be deferred.  Normal inline functions can be deferred in C99/C++.
6661    // Implicit template instantiations can also be deferred in C++.
6662    if (Linkage == GVA_Internal  || Linkage == GVA_C99Inline ||
6663        Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation)
6664      return false;
6665    return true;
6666  }
6667
6668  const VarDecl *VD = cast<VarDecl>(D);
6669  assert(VD->isFileVarDecl() && "Expected file scoped var");
6670
6671  if (VD->isThisDeclarationADefinition() == VarDecl::DeclarationOnly)
6672    return false;
6673
6674  // Structs that have non-trivial constructors or destructors are required.
6675
6676  // FIXME: Handle references.
6677  // FIXME: Be more selective about which constructors we care about.
6678  if (const RecordType *RT = VD->getType()->getAs<RecordType>()) {
6679    if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
6680      if (RD->hasDefinition() && !(RD->hasTrivialDefaultConstructor() &&
6681                                   RD->hasTrivialCopyConstructor() &&
6682                                   RD->hasTrivialMoveConstructor() &&
6683                                   RD->hasTrivialDestructor()))
6684        return true;
6685    }
6686  }
6687
6688  GVALinkage L = GetGVALinkageForVariable(VD);
6689  if (L == GVA_Internal || L == GVA_TemplateInstantiation) {
6690    if (!(VD->getInit() && VD->getInit()->HasSideEffects(*this)))
6691      return false;
6692  }
6693
6694  return true;
6695}
6696
6697CallingConv ASTContext::getDefaultMethodCallConv() {
6698  // Pass through to the C++ ABI object
6699  return ABI->getDefaultMethodCallConv();
6700}
6701
6702bool ASTContext::isNearlyEmpty(const CXXRecordDecl *RD) const {
6703  // Pass through to the C++ ABI object
6704  return ABI->isNearlyEmpty(RD);
6705}
6706
6707MangleContext *ASTContext::createMangleContext() {
6708  switch (Target->getCXXABI()) {
6709  case CXXABI_ARM:
6710  case CXXABI_Itanium:
6711    return createItaniumMangleContext(*this, getDiagnostics());
6712  case CXXABI_Microsoft:
6713    return createMicrosoftMangleContext(*this, getDiagnostics());
6714  }
6715  llvm_unreachable("Unsupported ABI");
6716}
6717
6718CXXABI::~CXXABI() {}
6719
6720size_t ASTContext::getSideTableAllocatedMemory() const {
6721  return ASTRecordLayouts.getMemorySize()
6722    + llvm::capacity_in_bytes(ObjCLayouts)
6723    + llvm::capacity_in_bytes(KeyFunctions)
6724    + llvm::capacity_in_bytes(ObjCImpls)
6725    + llvm::capacity_in_bytes(BlockVarCopyInits)
6726    + llvm::capacity_in_bytes(DeclAttrs)
6727    + llvm::capacity_in_bytes(InstantiatedFromStaticDataMember)
6728    + llvm::capacity_in_bytes(InstantiatedFromUsingDecl)
6729    + llvm::capacity_in_bytes(InstantiatedFromUsingShadowDecl)
6730    + llvm::capacity_in_bytes(InstantiatedFromUnnamedFieldDecl)
6731    + llvm::capacity_in_bytes(OverriddenMethods)
6732    + llvm::capacity_in_bytes(Types)
6733    + llvm::capacity_in_bytes(VariableArrayTypes)
6734    + llvm::capacity_in_bytes(ClassScopeSpecializationPattern);
6735}
6736
6737unsigned ASTContext::getLambdaManglingNumber(CXXMethodDecl *CallOperator) {
6738  CXXRecordDecl *Lambda = CallOperator->getParent();
6739  return LambdaMangleContexts[Lambda->getDeclContext()]
6740           .getManglingNumber(CallOperator);
6741}
6742
6743
6744void ASTContext::setParameterIndex(const ParmVarDecl *D, unsigned int index) {
6745  ParamIndices[D] = index;
6746}
6747
6748unsigned ASTContext::getParameterIndex(const ParmVarDecl *D) const {
6749  ParameterIndexTable::const_iterator I = ParamIndices.find(D);
6750  assert(I != ParamIndices.end() &&
6751         "ParmIndices lacks entry set by ParmVarDecl");
6752  return I->second;
6753}
6754