ASTContext.cpp revision a1d5662d96465f0fddf8819d245da4d19b892eff
1//===--- ASTContext.cpp - Context to hold long-lived AST nodes ------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements the ASTContext interface.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/AST/ASTContext.h"
15#include "clang/AST/DeclCXX.h"
16#include "clang/AST/DeclObjC.h"
17#include "clang/AST/DeclTemplate.h"
18#include "clang/AST/TypeLoc.h"
19#include "clang/AST/Expr.h"
20#include "clang/AST/ExternalASTSource.h"
21#include "clang/AST/RecordLayout.h"
22#include "clang/Basic/Builtins.h"
23#include "clang/Basic/SourceManager.h"
24#include "clang/Basic/TargetInfo.h"
25#include "llvm/ADT/StringExtras.h"
26#include "llvm/Support/MathExtras.h"
27#include "llvm/Support/MemoryBuffer.h"
28#include "RecordLayoutBuilder.h"
29
30using namespace clang;
31
32enum FloatingRank {
33  FloatRank, DoubleRank, LongDoubleRank
34};
35
36ASTContext::ASTContext(const LangOptions& LOpts, SourceManager &SM,
37                       TargetInfo &t,
38                       IdentifierTable &idents, SelectorTable &sels,
39                       Builtin::Context &builtins,
40                       bool FreeMem, unsigned size_reserve) :
41  GlobalNestedNameSpecifier(0), CFConstantStringTypeDecl(0),
42  ObjCFastEnumerationStateTypeDecl(0), FILEDecl(0), jmp_bufDecl(0),
43  sigjmp_bufDecl(0), SourceMgr(SM), LangOpts(LOpts),
44  LoadedExternalComments(false), FreeMemory(FreeMem), Target(t),
45  Idents(idents), Selectors(sels),
46  BuiltinInfo(builtins), ExternalSource(0), PrintingPolicy(LOpts) {
47  ObjCIdRedefinitionType = QualType();
48  ObjCClassRedefinitionType = QualType();
49  if (size_reserve > 0) Types.reserve(size_reserve);
50  TUDecl = TranslationUnitDecl::Create(*this);
51  InitBuiltinTypes();
52}
53
54ASTContext::~ASTContext() {
55  // Deallocate all the types.
56  while (!Types.empty()) {
57    Types.back()->Destroy(*this);
58    Types.pop_back();
59  }
60
61  {
62    llvm::DenseMap<const RecordDecl*, const ASTRecordLayout*>::iterator
63      I = ASTRecordLayouts.begin(), E = ASTRecordLayouts.end();
64    while (I != E) {
65      ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second);
66      delete R;
67    }
68  }
69
70  {
71    llvm::DenseMap<const ObjCContainerDecl*, const ASTRecordLayout*>::iterator
72      I = ObjCLayouts.begin(), E = ObjCLayouts.end();
73    while (I != E) {
74      ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second);
75      delete R;
76    }
77  }
78
79  // Destroy nested-name-specifiers.
80  for (llvm::FoldingSet<NestedNameSpecifier>::iterator
81         NNS = NestedNameSpecifiers.begin(),
82         NNSEnd = NestedNameSpecifiers.end();
83       NNS != NNSEnd;
84       /* Increment in loop */)
85    (*NNS++).Destroy(*this);
86
87  if (GlobalNestedNameSpecifier)
88    GlobalNestedNameSpecifier->Destroy(*this);
89
90  TUDecl->Destroy(*this);
91}
92
93void
94ASTContext::setExternalSource(llvm::OwningPtr<ExternalASTSource> &Source) {
95  ExternalSource.reset(Source.take());
96}
97
98void ASTContext::PrintStats() const {
99  fprintf(stderr, "*** AST Context Stats:\n");
100  fprintf(stderr, "  %d types total.\n", (int)Types.size());
101
102  unsigned counts[] = {
103#define TYPE(Name, Parent) 0,
104#define ABSTRACT_TYPE(Name, Parent)
105#include "clang/AST/TypeNodes.def"
106    0 // Extra
107  };
108
109  for (unsigned i = 0, e = Types.size(); i != e; ++i) {
110    Type *T = Types[i];
111    counts[(unsigned)T->getTypeClass()]++;
112  }
113
114  unsigned Idx = 0;
115  unsigned TotalBytes = 0;
116#define TYPE(Name, Parent)                                              \
117  if (counts[Idx])                                                      \
118    fprintf(stderr, "    %d %s types\n", (int)counts[Idx], #Name);      \
119  TotalBytes += counts[Idx] * sizeof(Name##Type);                       \
120  ++Idx;
121#define ABSTRACT_TYPE(Name, Parent)
122#include "clang/AST/TypeNodes.def"
123
124  fprintf(stderr, "Total bytes = %d\n", int(TotalBytes));
125
126  if (ExternalSource.get()) {
127    fprintf(stderr, "\n");
128    ExternalSource->PrintStats();
129  }
130}
131
132
133void ASTContext::InitBuiltinType(QualType &R, BuiltinType::Kind K) {
134  Types.push_back((R = QualType(new (*this,8) BuiltinType(K),0)).getTypePtr());
135}
136
137void ASTContext::InitBuiltinTypes() {
138  assert(VoidTy.isNull() && "Context reinitialized?");
139
140  // C99 6.2.5p19.
141  InitBuiltinType(VoidTy,              BuiltinType::Void);
142
143  // C99 6.2.5p2.
144  InitBuiltinType(BoolTy,              BuiltinType::Bool);
145  // C99 6.2.5p3.
146  if (LangOpts.CharIsSigned)
147    InitBuiltinType(CharTy,            BuiltinType::Char_S);
148  else
149    InitBuiltinType(CharTy,            BuiltinType::Char_U);
150  // C99 6.2.5p4.
151  InitBuiltinType(SignedCharTy,        BuiltinType::SChar);
152  InitBuiltinType(ShortTy,             BuiltinType::Short);
153  InitBuiltinType(IntTy,               BuiltinType::Int);
154  InitBuiltinType(LongTy,              BuiltinType::Long);
155  InitBuiltinType(LongLongTy,          BuiltinType::LongLong);
156
157  // C99 6.2.5p6.
158  InitBuiltinType(UnsignedCharTy,      BuiltinType::UChar);
159  InitBuiltinType(UnsignedShortTy,     BuiltinType::UShort);
160  InitBuiltinType(UnsignedIntTy,       BuiltinType::UInt);
161  InitBuiltinType(UnsignedLongTy,      BuiltinType::ULong);
162  InitBuiltinType(UnsignedLongLongTy,  BuiltinType::ULongLong);
163
164  // C99 6.2.5p10.
165  InitBuiltinType(FloatTy,             BuiltinType::Float);
166  InitBuiltinType(DoubleTy,            BuiltinType::Double);
167  InitBuiltinType(LongDoubleTy,        BuiltinType::LongDouble);
168
169  // GNU extension, 128-bit integers.
170  InitBuiltinType(Int128Ty,            BuiltinType::Int128);
171  InitBuiltinType(UnsignedInt128Ty,    BuiltinType::UInt128);
172
173  if (LangOpts.CPlusPlus) // C++ 3.9.1p5
174    InitBuiltinType(WCharTy,           BuiltinType::WChar);
175  else // C99
176    WCharTy = getFromTargetType(Target.getWCharType());
177
178  if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
179    InitBuiltinType(Char16Ty,           BuiltinType::Char16);
180  else // C99
181    Char16Ty = getFromTargetType(Target.getChar16Type());
182
183  if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
184    InitBuiltinType(Char32Ty,           BuiltinType::Char32);
185  else // C99
186    Char32Ty = getFromTargetType(Target.getChar32Type());
187
188  // Placeholder type for functions.
189  InitBuiltinType(OverloadTy,          BuiltinType::Overload);
190
191  // Placeholder type for type-dependent expressions whose type is
192  // completely unknown. No code should ever check a type against
193  // DependentTy and users should never see it; however, it is here to
194  // help diagnose failures to properly check for type-dependent
195  // expressions.
196  InitBuiltinType(DependentTy,         BuiltinType::Dependent);
197
198  // Placeholder type for C++0x auto declarations whose real type has
199  // not yet been deduced.
200  InitBuiltinType(UndeducedAutoTy, BuiltinType::UndeducedAuto);
201
202  // C99 6.2.5p11.
203  FloatComplexTy      = getComplexType(FloatTy);
204  DoubleComplexTy     = getComplexType(DoubleTy);
205  LongDoubleComplexTy = getComplexType(LongDoubleTy);
206
207  BuiltinVaListType = QualType();
208
209  // "Builtin" typedefs set by Sema::ActOnTranslationUnitScope().
210  ObjCIdTypedefType = QualType();
211  ObjCClassTypedefType = QualType();
212
213  // Builtin types for 'id' and 'Class'.
214  InitBuiltinType(ObjCBuiltinIdTy, BuiltinType::ObjCId);
215  InitBuiltinType(ObjCBuiltinClassTy, BuiltinType::ObjCClass);
216
217  ObjCConstantStringType = QualType();
218
219  // void * type
220  VoidPtrTy = getPointerType(VoidTy);
221
222  // nullptr type (C++0x 2.14.7)
223  InitBuiltinType(NullPtrTy,           BuiltinType::NullPtr);
224}
225
226VarDecl *ASTContext::getInstantiatedFromStaticDataMember(VarDecl *Var) {
227  assert(Var->isStaticDataMember() && "Not a static data member");
228  llvm::DenseMap<VarDecl *, VarDecl *>::iterator Pos
229    = InstantiatedFromStaticDataMember.find(Var);
230  if (Pos == InstantiatedFromStaticDataMember.end())
231    return 0;
232
233  return Pos->second;
234}
235
236void
237ASTContext::setInstantiatedFromStaticDataMember(VarDecl *Inst, VarDecl *Tmpl) {
238  assert(Inst->isStaticDataMember() && "Not a static data member");
239  assert(Tmpl->isStaticDataMember() && "Not a static data member");
240  assert(!InstantiatedFromStaticDataMember[Inst] &&
241         "Already noted what static data member was instantiated from");
242  InstantiatedFromStaticDataMember[Inst] = Tmpl;
243}
244
245namespace {
246  class BeforeInTranslationUnit
247    : std::binary_function<SourceRange, SourceRange, bool> {
248    SourceManager *SourceMgr;
249
250  public:
251    explicit BeforeInTranslationUnit(SourceManager *SM) : SourceMgr(SM) { }
252
253    bool operator()(SourceRange X, SourceRange Y) {
254      return SourceMgr->isBeforeInTranslationUnit(X.getBegin(), Y.getBegin());
255    }
256  };
257}
258
259/// \brief Determine whether the given comment is a Doxygen-style comment.
260///
261/// \param Start the start of the comment text.
262///
263/// \param End the end of the comment text.
264///
265/// \param Member whether we want to check whether this is a member comment
266/// (which requires a < after the Doxygen-comment delimiter). Otherwise,
267/// we only return true when we find a non-member comment.
268static bool
269isDoxygenComment(SourceManager &SourceMgr, SourceRange Comment,
270                 bool Member = false) {
271  const char *BufferStart
272    = SourceMgr.getBufferData(SourceMgr.getFileID(Comment.getBegin())).first;
273  const char *Start = BufferStart + SourceMgr.getFileOffset(Comment.getBegin());
274  const char* End = BufferStart + SourceMgr.getFileOffset(Comment.getEnd());
275
276  if (End - Start < 4)
277    return false;
278
279  assert(Start[0] == '/' && "Not a comment?");
280  if (Start[1] == '*' && !(Start[2] == '!' || Start[2] == '*'))
281    return false;
282  if (Start[1] == '/' && !(Start[2] == '!' || Start[2] == '/'))
283    return false;
284
285  return (Start[3] == '<') == Member;
286}
287
288/// \brief Retrieve the comment associated with the given declaration, if
289/// it has one.
290const char *ASTContext::getCommentForDecl(const Decl *D) {
291  if (!D)
292    return 0;
293
294  // Check whether we have cached a comment string for this declaration
295  // already.
296  llvm::DenseMap<const Decl *, std::string>::iterator Pos
297    = DeclComments.find(D);
298  if (Pos != DeclComments.end())
299    return Pos->second.c_str();
300
301  // If we have an external AST source and have not yet loaded comments from
302  // that source, do so now.
303  if (ExternalSource && !LoadedExternalComments) {
304    std::vector<SourceRange> LoadedComments;
305    ExternalSource->ReadComments(LoadedComments);
306
307    if (!LoadedComments.empty())
308      Comments.insert(Comments.begin(), LoadedComments.begin(),
309                      LoadedComments.end());
310
311    LoadedExternalComments = true;
312  }
313
314  // If there are no comments anywhere, we won't find anything.
315  if (Comments.empty())
316    return 0;
317
318  // If the declaration doesn't map directly to a location in a file, we
319  // can't find the comment.
320  SourceLocation DeclStartLoc = D->getLocStart();
321  if (DeclStartLoc.isInvalid() || !DeclStartLoc.isFileID())
322    return 0;
323
324  // Find the comment that occurs just before this declaration.
325  std::vector<SourceRange>::iterator LastComment
326    = std::lower_bound(Comments.begin(), Comments.end(),
327                       SourceRange(DeclStartLoc),
328                       BeforeInTranslationUnit(&SourceMgr));
329
330  // Decompose the location for the start of the declaration and find the
331  // beginning of the file buffer.
332  std::pair<FileID, unsigned> DeclStartDecomp
333    = SourceMgr.getDecomposedLoc(DeclStartLoc);
334  const char *FileBufferStart
335    = SourceMgr.getBufferData(DeclStartDecomp.first).first;
336
337  // First check whether we have a comment for a member.
338  if (LastComment != Comments.end() &&
339      !isa<TagDecl>(D) && !isa<NamespaceDecl>(D) &&
340      isDoxygenComment(SourceMgr, *LastComment, true)) {
341    std::pair<FileID, unsigned> LastCommentEndDecomp
342      = SourceMgr.getDecomposedLoc(LastComment->getEnd());
343    if (DeclStartDecomp.first == LastCommentEndDecomp.first &&
344        SourceMgr.getLineNumber(DeclStartDecomp.first, DeclStartDecomp.second)
345          == SourceMgr.getLineNumber(LastCommentEndDecomp.first,
346                                     LastCommentEndDecomp.second)) {
347      // The Doxygen member comment comes after the declaration starts and
348      // is on the same line and in the same file as the declaration. This
349      // is the comment we want.
350      std::string &Result = DeclComments[D];
351      Result.append(FileBufferStart +
352                      SourceMgr.getFileOffset(LastComment->getBegin()),
353                    FileBufferStart + LastCommentEndDecomp.second + 1);
354      return Result.c_str();
355    }
356  }
357
358  if (LastComment == Comments.begin())
359    return 0;
360  --LastComment;
361
362  // Decompose the end of the comment.
363  std::pair<FileID, unsigned> LastCommentEndDecomp
364    = SourceMgr.getDecomposedLoc(LastComment->getEnd());
365
366  // If the comment and the declaration aren't in the same file, then they
367  // aren't related.
368  if (DeclStartDecomp.first != LastCommentEndDecomp.first)
369    return 0;
370
371  // Check that we actually have a Doxygen comment.
372  if (!isDoxygenComment(SourceMgr, *LastComment))
373    return 0;
374
375  // Compute the starting line for the declaration and for the end of the
376  // comment (this is expensive).
377  unsigned DeclStartLine
378    = SourceMgr.getLineNumber(DeclStartDecomp.first, DeclStartDecomp.second);
379  unsigned CommentEndLine
380    = SourceMgr.getLineNumber(LastCommentEndDecomp.first,
381                              LastCommentEndDecomp.second);
382
383  // If the comment does not end on the line prior to the declaration, then
384  // the comment is not associated with the declaration at all.
385  if (CommentEndLine + 1 != DeclStartLine)
386    return 0;
387
388  // We have a comment, but there may be more comments on the previous lines.
389  // Keep looking so long as the comments are still Doxygen comments and are
390  // still adjacent.
391  unsigned ExpectedLine
392    = SourceMgr.getSpellingLineNumber(LastComment->getBegin()) - 1;
393  std::vector<SourceRange>::iterator FirstComment = LastComment;
394  while (FirstComment != Comments.begin()) {
395    // Look at the previous comment
396    --FirstComment;
397    std::pair<FileID, unsigned> Decomp
398      = SourceMgr.getDecomposedLoc(FirstComment->getEnd());
399
400    // If this previous comment is in a different file, we're done.
401    if (Decomp.first != DeclStartDecomp.first) {
402      ++FirstComment;
403      break;
404    }
405
406    // If this comment is not a Doxygen comment, we're done.
407    if (!isDoxygenComment(SourceMgr, *FirstComment)) {
408      ++FirstComment;
409      break;
410    }
411
412    // If the line number is not what we expected, we're done.
413    unsigned Line = SourceMgr.getLineNumber(Decomp.first, Decomp.second);
414    if (Line != ExpectedLine) {
415      ++FirstComment;
416      break;
417    }
418
419    // Set the next expected line number.
420    ExpectedLine
421      = SourceMgr.getSpellingLineNumber(FirstComment->getBegin()) - 1;
422  }
423
424  // The iterator range [FirstComment, LastComment] contains all of the
425  // BCPL comments that, together, are associated with this declaration.
426  // Form a single comment block string for this declaration that concatenates
427  // all of these comments.
428  std::string &Result = DeclComments[D];
429  while (FirstComment != LastComment) {
430    std::pair<FileID, unsigned> DecompStart
431      = SourceMgr.getDecomposedLoc(FirstComment->getBegin());
432    std::pair<FileID, unsigned> DecompEnd
433      = SourceMgr.getDecomposedLoc(FirstComment->getEnd());
434    Result.append(FileBufferStart + DecompStart.second,
435                  FileBufferStart + DecompEnd.second + 1);
436    ++FirstComment;
437  }
438
439  // Append the last comment line.
440  Result.append(FileBufferStart +
441                  SourceMgr.getFileOffset(LastComment->getBegin()),
442                FileBufferStart + LastCommentEndDecomp.second + 1);
443  return Result.c_str();
444}
445
446//===----------------------------------------------------------------------===//
447//                         Type Sizing and Analysis
448//===----------------------------------------------------------------------===//
449
450/// getFloatTypeSemantics - Return the APFloat 'semantics' for the specified
451/// scalar floating point type.
452const llvm::fltSemantics &ASTContext::getFloatTypeSemantics(QualType T) const {
453  const BuiltinType *BT = T->getAsBuiltinType();
454  assert(BT && "Not a floating point type!");
455  switch (BT->getKind()) {
456  default: assert(0 && "Not a floating point type!");
457  case BuiltinType::Float:      return Target.getFloatFormat();
458  case BuiltinType::Double:     return Target.getDoubleFormat();
459  case BuiltinType::LongDouble: return Target.getLongDoubleFormat();
460  }
461}
462
463/// getDeclAlign - Return a conservative estimate of the alignment of the
464/// specified decl.  Note that bitfields do not have a valid alignment, so
465/// this method will assert on them.
466unsigned ASTContext::getDeclAlignInBytes(const Decl *D) {
467  unsigned Align = Target.getCharWidth();
468
469  if (const AlignedAttr* AA = D->getAttr<AlignedAttr>())
470    Align = std::max(Align, AA->getAlignment());
471
472  if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
473    QualType T = VD->getType();
474    if (const ReferenceType* RT = T->getAs<ReferenceType>()) {
475      unsigned AS = RT->getPointeeType().getAddressSpace();
476      Align = Target.getPointerAlign(AS);
477    } else if (!T->isIncompleteType() && !T->isFunctionType()) {
478      // Incomplete or function types default to 1.
479      while (isa<VariableArrayType>(T) || isa<IncompleteArrayType>(T))
480        T = cast<ArrayType>(T)->getElementType();
481
482      Align = std::max(Align, getPreferredTypeAlign(T.getTypePtr()));
483    }
484  }
485
486  return Align / Target.getCharWidth();
487}
488
489/// getTypeSize - Return the size of the specified type, in bits.  This method
490/// does not work on incomplete types.
491std::pair<uint64_t, unsigned>
492ASTContext::getTypeInfo(const Type *T) {
493  uint64_t Width=0;
494  unsigned Align=8;
495  switch (T->getTypeClass()) {
496#define TYPE(Class, Base)
497#define ABSTRACT_TYPE(Class, Base)
498#define NON_CANONICAL_TYPE(Class, Base)
499#define DEPENDENT_TYPE(Class, Base) case Type::Class:
500#include "clang/AST/TypeNodes.def"
501    assert(false && "Should not see dependent types");
502    break;
503
504  case Type::FunctionNoProto:
505  case Type::FunctionProto:
506    // GCC extension: alignof(function) = 32 bits
507    Width = 0;
508    Align = 32;
509    break;
510
511  case Type::IncompleteArray:
512  case Type::VariableArray:
513    Width = 0;
514    Align = getTypeAlign(cast<ArrayType>(T)->getElementType());
515    break;
516
517  case Type::ConstantArrayWithExpr:
518  case Type::ConstantArrayWithoutExpr:
519  case Type::ConstantArray: {
520    const ConstantArrayType *CAT = cast<ConstantArrayType>(T);
521
522    std::pair<uint64_t, unsigned> EltInfo = getTypeInfo(CAT->getElementType());
523    Width = EltInfo.first*CAT->getSize().getZExtValue();
524    Align = EltInfo.second;
525    break;
526  }
527  case Type::ExtVector:
528  case Type::Vector: {
529    std::pair<uint64_t, unsigned> EltInfo =
530      getTypeInfo(cast<VectorType>(T)->getElementType());
531    Width = EltInfo.first*cast<VectorType>(T)->getNumElements();
532    Align = Width;
533    // If the alignment is not a power of 2, round up to the next power of 2.
534    // This happens for non-power-of-2 length vectors.
535    // FIXME: this should probably be a target property.
536    Align = 1 << llvm::Log2_32_Ceil(Align);
537    break;
538  }
539
540  case Type::Builtin:
541    switch (cast<BuiltinType>(T)->getKind()) {
542    default: assert(0 && "Unknown builtin type!");
543    case BuiltinType::Void:
544      // GCC extension: alignof(void) = 8 bits.
545      Width = 0;
546      Align = 8;
547      break;
548
549    case BuiltinType::Bool:
550      Width = Target.getBoolWidth();
551      Align = Target.getBoolAlign();
552      break;
553    case BuiltinType::Char_S:
554    case BuiltinType::Char_U:
555    case BuiltinType::UChar:
556    case BuiltinType::SChar:
557      Width = Target.getCharWidth();
558      Align = Target.getCharAlign();
559      break;
560    case BuiltinType::WChar:
561      Width = Target.getWCharWidth();
562      Align = Target.getWCharAlign();
563      break;
564    case BuiltinType::Char16:
565      Width = Target.getChar16Width();
566      Align = Target.getChar16Align();
567      break;
568    case BuiltinType::Char32:
569      Width = Target.getChar32Width();
570      Align = Target.getChar32Align();
571      break;
572    case BuiltinType::UShort:
573    case BuiltinType::Short:
574      Width = Target.getShortWidth();
575      Align = Target.getShortAlign();
576      break;
577    case BuiltinType::UInt:
578    case BuiltinType::Int:
579      Width = Target.getIntWidth();
580      Align = Target.getIntAlign();
581      break;
582    case BuiltinType::ULong:
583    case BuiltinType::Long:
584      Width = Target.getLongWidth();
585      Align = Target.getLongAlign();
586      break;
587    case BuiltinType::ULongLong:
588    case BuiltinType::LongLong:
589      Width = Target.getLongLongWidth();
590      Align = Target.getLongLongAlign();
591      break;
592    case BuiltinType::Int128:
593    case BuiltinType::UInt128:
594      Width = 128;
595      Align = 128; // int128_t is 128-bit aligned on all targets.
596      break;
597    case BuiltinType::Float:
598      Width = Target.getFloatWidth();
599      Align = Target.getFloatAlign();
600      break;
601    case BuiltinType::Double:
602      Width = Target.getDoubleWidth();
603      Align = Target.getDoubleAlign();
604      break;
605    case BuiltinType::LongDouble:
606      Width = Target.getLongDoubleWidth();
607      Align = Target.getLongDoubleAlign();
608      break;
609    case BuiltinType::NullPtr:
610      Width = Target.getPointerWidth(0); // C++ 3.9.1p11: sizeof(nullptr_t)
611      Align = Target.getPointerAlign(0); //   == sizeof(void*)
612      break;
613    }
614    break;
615  case Type::FixedWidthInt:
616    // FIXME: This isn't precisely correct; the width/alignment should depend
617    // on the available types for the target
618    Width = cast<FixedWidthIntType>(T)->getWidth();
619    Width = std::max(llvm::NextPowerOf2(Width - 1), (uint64_t)8);
620    Align = Width;
621    break;
622  case Type::ExtQual:
623    // FIXME: Pointers into different addr spaces could have different sizes and
624    // alignment requirements: getPointerInfo should take an AddrSpace.
625    return getTypeInfo(QualType(cast<ExtQualType>(T)->getBaseType(), 0));
626  case Type::ObjCObjectPointer:
627    Width = Target.getPointerWidth(0);
628    Align = Target.getPointerAlign(0);
629    break;
630  case Type::BlockPointer: {
631    unsigned AS = cast<BlockPointerType>(T)->getPointeeType().getAddressSpace();
632    Width = Target.getPointerWidth(AS);
633    Align = Target.getPointerAlign(AS);
634    break;
635  }
636  case Type::Pointer: {
637    unsigned AS = cast<PointerType>(T)->getPointeeType().getAddressSpace();
638    Width = Target.getPointerWidth(AS);
639    Align = Target.getPointerAlign(AS);
640    break;
641  }
642  case Type::LValueReference:
643  case Type::RValueReference:
644    // "When applied to a reference or a reference type, the result is the size
645    // of the referenced type." C++98 5.3.3p2: expr.sizeof.
646    // FIXME: This is wrong for struct layout: a reference in a struct has
647    // pointer size.
648    return getTypeInfo(cast<ReferenceType>(T)->getPointeeType());
649  case Type::MemberPointer: {
650    // FIXME: This is ABI dependent. We use the Itanium C++ ABI.
651    // http://www.codesourcery.com/public/cxx-abi/abi.html#member-pointers
652    // If we ever want to support other ABIs this needs to be abstracted.
653
654    QualType Pointee = cast<MemberPointerType>(T)->getPointeeType();
655    std::pair<uint64_t, unsigned> PtrDiffInfo =
656      getTypeInfo(getPointerDiffType());
657    Width = PtrDiffInfo.first;
658    if (Pointee->isFunctionType())
659      Width *= 2;
660    Align = PtrDiffInfo.second;
661    break;
662  }
663  case Type::Complex: {
664    // Complex types have the same alignment as their elements, but twice the
665    // size.
666    std::pair<uint64_t, unsigned> EltInfo =
667      getTypeInfo(cast<ComplexType>(T)->getElementType());
668    Width = EltInfo.first*2;
669    Align = EltInfo.second;
670    break;
671  }
672  case Type::ObjCInterface: {
673    const ObjCInterfaceType *ObjCI = cast<ObjCInterfaceType>(T);
674    const ASTRecordLayout &Layout = getASTObjCInterfaceLayout(ObjCI->getDecl());
675    Width = Layout.getSize();
676    Align = Layout.getAlignment();
677    break;
678  }
679  case Type::Record:
680  case Type::Enum: {
681    const TagType *TT = cast<TagType>(T);
682
683    if (TT->getDecl()->isInvalidDecl()) {
684      Width = 1;
685      Align = 1;
686      break;
687    }
688
689    if (const EnumType *ET = dyn_cast<EnumType>(TT))
690      return getTypeInfo(ET->getDecl()->getIntegerType());
691
692    const RecordType *RT = cast<RecordType>(TT);
693    const ASTRecordLayout &Layout = getASTRecordLayout(RT->getDecl());
694    Width = Layout.getSize();
695    Align = Layout.getAlignment();
696    break;
697  }
698
699  case Type::Typedef: {
700    const TypedefDecl *Typedef = cast<TypedefType>(T)->getDecl();
701    if (const AlignedAttr *Aligned = Typedef->getAttr<AlignedAttr>()) {
702      Align = Aligned->getAlignment();
703      Width = getTypeSize(Typedef->getUnderlyingType().getTypePtr());
704    } else
705      return getTypeInfo(Typedef->getUnderlyingType().getTypePtr());
706    break;
707  }
708
709  case Type::TypeOfExpr:
710    return getTypeInfo(cast<TypeOfExprType>(T)->getUnderlyingExpr()->getType()
711                         .getTypePtr());
712
713  case Type::TypeOf:
714    return getTypeInfo(cast<TypeOfType>(T)->getUnderlyingType().getTypePtr());
715
716  case Type::Decltype:
717    return getTypeInfo(cast<DecltypeType>(T)->getUnderlyingExpr()->getType()
718                        .getTypePtr());
719
720  case Type::QualifiedName:
721    return getTypeInfo(cast<QualifiedNameType>(T)->getNamedType().getTypePtr());
722
723  case Type::TemplateSpecialization:
724    assert(getCanonicalType(T) != T &&
725           "Cannot request the size of a dependent type");
726    // FIXME: this is likely to be wrong once we support template
727    // aliases, since a template alias could refer to a typedef that
728    // has an __aligned__ attribute on it.
729    return getTypeInfo(getCanonicalType(T));
730  }
731
732  assert(Align && (Align & (Align-1)) == 0 && "Alignment must be power of 2");
733  return std::make_pair(Width, Align);
734}
735
736/// getPreferredTypeAlign - Return the "preferred" alignment of the specified
737/// type for the current target in bits.  This can be different than the ABI
738/// alignment in cases where it is beneficial for performance to overalign
739/// a data type.
740unsigned ASTContext::getPreferredTypeAlign(const Type *T) {
741  unsigned ABIAlign = getTypeAlign(T);
742
743  // Double and long long should be naturally aligned if possible.
744  if (const ComplexType* CT = T->getAsComplexType())
745    T = CT->getElementType().getTypePtr();
746  if (T->isSpecificBuiltinType(BuiltinType::Double) ||
747      T->isSpecificBuiltinType(BuiltinType::LongLong))
748    return std::max(ABIAlign, (unsigned)getTypeSize(T));
749
750  return ABIAlign;
751}
752
753static void CollectLocalObjCIvars(ASTContext *Ctx,
754                                  const ObjCInterfaceDecl *OI,
755                                  llvm::SmallVectorImpl<FieldDecl*> &Fields) {
756  for (ObjCInterfaceDecl::ivar_iterator I = OI->ivar_begin(),
757       E = OI->ivar_end(); I != E; ++I) {
758    ObjCIvarDecl *IVDecl = *I;
759    if (!IVDecl->isInvalidDecl())
760      Fields.push_back(cast<FieldDecl>(IVDecl));
761  }
762}
763
764void ASTContext::CollectObjCIvars(const ObjCInterfaceDecl *OI,
765                             llvm::SmallVectorImpl<FieldDecl*> &Fields) {
766  if (const ObjCInterfaceDecl *SuperClass = OI->getSuperClass())
767    CollectObjCIvars(SuperClass, Fields);
768  CollectLocalObjCIvars(this, OI, Fields);
769}
770
771/// ShallowCollectObjCIvars -
772/// Collect all ivars, including those synthesized, in the current class.
773///
774void ASTContext::ShallowCollectObjCIvars(const ObjCInterfaceDecl *OI,
775                                 llvm::SmallVectorImpl<ObjCIvarDecl*> &Ivars,
776                                 bool CollectSynthesized) {
777  for (ObjCInterfaceDecl::ivar_iterator I = OI->ivar_begin(),
778         E = OI->ivar_end(); I != E; ++I) {
779     Ivars.push_back(*I);
780  }
781  if (CollectSynthesized)
782    CollectSynthesizedIvars(OI, Ivars);
783}
784
785void ASTContext::CollectProtocolSynthesizedIvars(const ObjCProtocolDecl *PD,
786                                llvm::SmallVectorImpl<ObjCIvarDecl*> &Ivars) {
787  for (ObjCContainerDecl::prop_iterator I = PD->prop_begin(),
788       E = PD->prop_end(); I != E; ++I)
789    if (ObjCIvarDecl *Ivar = (*I)->getPropertyIvarDecl())
790      Ivars.push_back(Ivar);
791
792  // Also look into nested protocols.
793  for (ObjCProtocolDecl::protocol_iterator P = PD->protocol_begin(),
794       E = PD->protocol_end(); P != E; ++P)
795    CollectProtocolSynthesizedIvars(*P, Ivars);
796}
797
798/// CollectSynthesizedIvars -
799/// This routine collect synthesized ivars for the designated class.
800///
801void ASTContext::CollectSynthesizedIvars(const ObjCInterfaceDecl *OI,
802                                llvm::SmallVectorImpl<ObjCIvarDecl*> &Ivars) {
803  for (ObjCInterfaceDecl::prop_iterator I = OI->prop_begin(),
804       E = OI->prop_end(); I != E; ++I) {
805    if (ObjCIvarDecl *Ivar = (*I)->getPropertyIvarDecl())
806      Ivars.push_back(Ivar);
807  }
808  // Also look into interface's protocol list for properties declared
809  // in the protocol and whose ivars are synthesized.
810  for (ObjCInterfaceDecl::protocol_iterator P = OI->protocol_begin(),
811       PE = OI->protocol_end(); P != PE; ++P) {
812    ObjCProtocolDecl *PD = (*P);
813    CollectProtocolSynthesizedIvars(PD, Ivars);
814  }
815}
816
817unsigned ASTContext::CountProtocolSynthesizedIvars(const ObjCProtocolDecl *PD) {
818  unsigned count = 0;
819  for (ObjCContainerDecl::prop_iterator I = PD->prop_begin(),
820       E = PD->prop_end(); I != E; ++I)
821    if ((*I)->getPropertyIvarDecl())
822      ++count;
823
824  // Also look into nested protocols.
825  for (ObjCProtocolDecl::protocol_iterator P = PD->protocol_begin(),
826       E = PD->protocol_end(); P != E; ++P)
827    count += CountProtocolSynthesizedIvars(*P);
828  return count;
829}
830
831unsigned ASTContext::CountSynthesizedIvars(const ObjCInterfaceDecl *OI)
832{
833  unsigned count = 0;
834  for (ObjCInterfaceDecl::prop_iterator I = OI->prop_begin(),
835       E = OI->prop_end(); I != E; ++I) {
836    if ((*I)->getPropertyIvarDecl())
837      ++count;
838  }
839  // Also look into interface's protocol list for properties declared
840  // in the protocol and whose ivars are synthesized.
841  for (ObjCInterfaceDecl::protocol_iterator P = OI->protocol_begin(),
842       PE = OI->protocol_end(); P != PE; ++P) {
843    ObjCProtocolDecl *PD = (*P);
844    count += CountProtocolSynthesizedIvars(PD);
845  }
846  return count;
847}
848
849/// \brief Get the implementation of ObjCInterfaceDecl,or NULL if none exists.
850ObjCImplementationDecl *ASTContext::getObjCImplementation(ObjCInterfaceDecl *D) {
851  llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
852    I = ObjCImpls.find(D);
853  if (I != ObjCImpls.end())
854    return cast<ObjCImplementationDecl>(I->second);
855  return 0;
856}
857/// \brief Get the implementation of ObjCCategoryDecl, or NULL if none exists.
858ObjCCategoryImplDecl *ASTContext::getObjCImplementation(ObjCCategoryDecl *D) {
859  llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
860    I = ObjCImpls.find(D);
861  if (I != ObjCImpls.end())
862    return cast<ObjCCategoryImplDecl>(I->second);
863  return 0;
864}
865
866/// \brief Set the implementation of ObjCInterfaceDecl.
867void ASTContext::setObjCImplementation(ObjCInterfaceDecl *IFaceD,
868                           ObjCImplementationDecl *ImplD) {
869  assert(IFaceD && ImplD && "Passed null params");
870  ObjCImpls[IFaceD] = ImplD;
871}
872/// \brief Set the implementation of ObjCCategoryDecl.
873void ASTContext::setObjCImplementation(ObjCCategoryDecl *CatD,
874                           ObjCCategoryImplDecl *ImplD) {
875  assert(CatD && ImplD && "Passed null params");
876  ObjCImpls[CatD] = ImplD;
877}
878
879/// \brief Allocate an uninitialized DeclaratorInfo.
880///
881/// The caller should initialize the memory held by DeclaratorInfo using
882/// the TypeLoc wrappers.
883///
884/// \param T the type that will be the basis for type source info. This type
885/// should refer to how the declarator was written in source code, not to
886/// what type semantic analysis resolved the declarator to.
887DeclaratorInfo *ASTContext::CreateDeclaratorInfo(QualType T) {
888  unsigned DataSize = TypeLoc::getFullDataSizeForType(T);
889  DeclaratorInfo *DInfo =
890    (DeclaratorInfo*)BumpAlloc.Allocate(sizeof(DeclaratorInfo) + DataSize, 8);
891  new (DInfo) DeclaratorInfo(T);
892  return DInfo;
893}
894
895/// getInterfaceLayoutImpl - Get or compute information about the
896/// layout of the given interface.
897///
898/// \param Impl - If given, also include the layout of the interface's
899/// implementation. This may differ by including synthesized ivars.
900const ASTRecordLayout &
901ASTContext::getObjCLayout(const ObjCInterfaceDecl *D,
902                          const ObjCImplementationDecl *Impl) {
903  assert(!D->isForwardDecl() && "Invalid interface decl!");
904
905  // Look up this layout, if already laid out, return what we have.
906  ObjCContainerDecl *Key =
907    Impl ? (ObjCContainerDecl*) Impl : (ObjCContainerDecl*) D;
908  if (const ASTRecordLayout *Entry = ObjCLayouts[Key])
909    return *Entry;
910
911  // Add in synthesized ivar count if laying out an implementation.
912  if (Impl) {
913    unsigned FieldCount = D->ivar_size();
914    unsigned SynthCount = CountSynthesizedIvars(D);
915    FieldCount += SynthCount;
916    // If there aren't any sythesized ivars then reuse the interface
917    // entry. Note we can't cache this because we simply free all
918    // entries later; however we shouldn't look up implementations
919    // frequently.
920    if (SynthCount == 0)
921      return getObjCLayout(D, 0);
922  }
923
924  const ASTRecordLayout *NewEntry =
925    ASTRecordLayoutBuilder::ComputeLayout(*this, D, Impl);
926  ObjCLayouts[Key] = NewEntry;
927
928  return *NewEntry;
929}
930
931const ASTRecordLayout &
932ASTContext::getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D) {
933  return getObjCLayout(D, 0);
934}
935
936const ASTRecordLayout &
937ASTContext::getASTObjCImplementationLayout(const ObjCImplementationDecl *D) {
938  return getObjCLayout(D->getClassInterface(), D);
939}
940
941/// getASTRecordLayout - Get or compute information about the layout of the
942/// specified record (struct/union/class), which indicates its size and field
943/// position information.
944const ASTRecordLayout &ASTContext::getASTRecordLayout(const RecordDecl *D) {
945  D = D->getDefinition(*this);
946  assert(D && "Cannot get layout of forward declarations!");
947
948  // Look up this layout, if already laid out, return what we have.
949  // Note that we can't save a reference to the entry because this function
950  // is recursive.
951  const ASTRecordLayout *Entry = ASTRecordLayouts[D];
952  if (Entry) return *Entry;
953
954  const ASTRecordLayout *NewEntry =
955    ASTRecordLayoutBuilder::ComputeLayout(*this, D);
956  ASTRecordLayouts[D] = NewEntry;
957
958  return *NewEntry;
959}
960
961//===----------------------------------------------------------------------===//
962//                   Type creation/memoization methods
963//===----------------------------------------------------------------------===//
964
965QualType ASTContext::getAddrSpaceQualType(QualType T, unsigned AddressSpace) {
966  QualType CanT = getCanonicalType(T);
967  if (CanT.getAddressSpace() == AddressSpace)
968    return T;
969
970  // If we are composing extended qualifiers together, merge together into one
971  // ExtQualType node.
972  unsigned CVRQuals = T.getCVRQualifiers();
973  QualType::GCAttrTypes GCAttr = QualType::GCNone;
974  Type *TypeNode = T.getTypePtr();
975
976  if (ExtQualType *EQT = dyn_cast<ExtQualType>(TypeNode)) {
977    // If this type already has an address space specified, it cannot get
978    // another one.
979    assert(EQT->getAddressSpace() == 0 &&
980           "Type cannot be in multiple addr spaces!");
981    GCAttr = EQT->getObjCGCAttr();
982    TypeNode = EQT->getBaseType();
983  }
984
985  // Check if we've already instantiated this type.
986  llvm::FoldingSetNodeID ID;
987  ExtQualType::Profile(ID, TypeNode, AddressSpace, GCAttr);
988  void *InsertPos = 0;
989  if (ExtQualType *EXTQy = ExtQualTypes.FindNodeOrInsertPos(ID, InsertPos))
990    return QualType(EXTQy, CVRQuals);
991
992  // If the base type isn't canonical, this won't be a canonical type either,
993  // so fill in the canonical type field.
994  QualType Canonical;
995  if (!TypeNode->isCanonical()) {
996    Canonical = getAddrSpaceQualType(CanT, AddressSpace);
997
998    // Update InsertPos, the previous call could have invalidated it.
999    ExtQualType *NewIP = ExtQualTypes.FindNodeOrInsertPos(ID, InsertPos);
1000    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1001  }
1002  ExtQualType *New =
1003    new (*this, 8) ExtQualType(TypeNode, Canonical, AddressSpace, GCAttr);
1004  ExtQualTypes.InsertNode(New, InsertPos);
1005  Types.push_back(New);
1006  return QualType(New, CVRQuals);
1007}
1008
1009QualType ASTContext::getObjCGCQualType(QualType T,
1010                                       QualType::GCAttrTypes GCAttr) {
1011  QualType CanT = getCanonicalType(T);
1012  if (CanT.getObjCGCAttr() == GCAttr)
1013    return T;
1014
1015  if (T->isPointerType()) {
1016    QualType Pointee = T->getAs<PointerType>()->getPointeeType();
1017    if (Pointee->isAnyPointerType()) {
1018      QualType ResultType = getObjCGCQualType(Pointee, GCAttr);
1019      return getPointerType(ResultType);
1020    }
1021  }
1022  // If we are composing extended qualifiers together, merge together into one
1023  // ExtQualType node.
1024  unsigned CVRQuals = T.getCVRQualifiers();
1025  Type *TypeNode = T.getTypePtr();
1026  unsigned AddressSpace = 0;
1027
1028  if (ExtQualType *EQT = dyn_cast<ExtQualType>(TypeNode)) {
1029    // If this type already has an ObjCGC specified, it cannot get
1030    // another one.
1031    assert(EQT->getObjCGCAttr() == QualType::GCNone &&
1032           "Type cannot have multiple ObjCGCs!");
1033    AddressSpace = EQT->getAddressSpace();
1034    TypeNode = EQT->getBaseType();
1035  }
1036
1037  // Check if we've already instantiated an gc qual'd type of this type.
1038  llvm::FoldingSetNodeID ID;
1039  ExtQualType::Profile(ID, TypeNode, AddressSpace, GCAttr);
1040  void *InsertPos = 0;
1041  if (ExtQualType *EXTQy = ExtQualTypes.FindNodeOrInsertPos(ID, InsertPos))
1042    return QualType(EXTQy, CVRQuals);
1043
1044  // If the base type isn't canonical, this won't be a canonical type either,
1045  // so fill in the canonical type field.
1046  // FIXME: Isn't this also not canonical if the base type is a array
1047  // or pointer type?  I can't find any documentation for objc_gc, though...
1048  QualType Canonical;
1049  if (!T->isCanonical()) {
1050    Canonical = getObjCGCQualType(CanT, GCAttr);
1051
1052    // Update InsertPos, the previous call could have invalidated it.
1053    ExtQualType *NewIP = ExtQualTypes.FindNodeOrInsertPos(ID, InsertPos);
1054    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1055  }
1056  ExtQualType *New =
1057    new (*this, 8) ExtQualType(TypeNode, Canonical, AddressSpace, GCAttr);
1058  ExtQualTypes.InsertNode(New, InsertPos);
1059  Types.push_back(New);
1060  return QualType(New, CVRQuals);
1061}
1062
1063QualType ASTContext::getNoReturnType(QualType T) {
1064  QualifierSet qs;
1065  qs.strip(T);
1066  if (T->isPointerType()) {
1067    QualType Pointee = T->getAs<PointerType>()->getPointeeType();
1068    QualType ResultType = getNoReturnType(Pointee);
1069    ResultType = getPointerType(ResultType);
1070    ResultType.setCVRQualifiers(T.getCVRQualifiers());
1071    return qs.apply(ResultType, *this);
1072  }
1073  if (T->isBlockPointerType()) {
1074    QualType Pointee = T->getAs<BlockPointerType>()->getPointeeType();
1075    QualType ResultType = getNoReturnType(Pointee);
1076    ResultType = getBlockPointerType(ResultType);
1077    ResultType.setCVRQualifiers(T.getCVRQualifiers());
1078    return qs.apply(ResultType, *this);
1079  }
1080  if (!T->isFunctionType())
1081    assert(0 && "can't noreturn qualify non-pointer to function or block type");
1082
1083  if (const FunctionNoProtoType *F = T->getAsFunctionNoProtoType()) {
1084    return getFunctionNoProtoType(F->getResultType(), true);
1085  }
1086  const FunctionProtoType *F = T->getAsFunctionProtoType();
1087  return getFunctionType(F->getResultType(), F->arg_type_begin(),
1088                         F->getNumArgs(), F->isVariadic(), F->getTypeQuals(),
1089                         F->hasExceptionSpec(), F->hasAnyExceptionSpec(),
1090                         F->getNumExceptions(), F->exception_begin(), true);
1091}
1092
1093/// getComplexType - Return the uniqued reference to the type for a complex
1094/// number with the specified element type.
1095QualType ASTContext::getComplexType(QualType T) {
1096  // Unique pointers, to guarantee there is only one pointer of a particular
1097  // structure.
1098  llvm::FoldingSetNodeID ID;
1099  ComplexType::Profile(ID, T);
1100
1101  void *InsertPos = 0;
1102  if (ComplexType *CT = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos))
1103    return QualType(CT, 0);
1104
1105  // If the pointee type isn't canonical, this won't be a canonical type either,
1106  // so fill in the canonical type field.
1107  QualType Canonical;
1108  if (!T->isCanonical()) {
1109    Canonical = getComplexType(getCanonicalType(T));
1110
1111    // Get the new insert position for the node we care about.
1112    ComplexType *NewIP = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos);
1113    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1114  }
1115  ComplexType *New = new (*this,8) ComplexType(T, Canonical);
1116  Types.push_back(New);
1117  ComplexTypes.InsertNode(New, InsertPos);
1118  return QualType(New, 0);
1119}
1120
1121QualType ASTContext::getFixedWidthIntType(unsigned Width, bool Signed) {
1122  llvm::DenseMap<unsigned, FixedWidthIntType*> &Map = Signed ?
1123     SignedFixedWidthIntTypes : UnsignedFixedWidthIntTypes;
1124  FixedWidthIntType *&Entry = Map[Width];
1125  if (!Entry)
1126    Entry = new FixedWidthIntType(Width, Signed);
1127  return QualType(Entry, 0);
1128}
1129
1130/// getPointerType - Return the uniqued reference to the type for a pointer to
1131/// the specified type.
1132QualType ASTContext::getPointerType(QualType T) {
1133  // Unique pointers, to guarantee there is only one pointer of a particular
1134  // structure.
1135  llvm::FoldingSetNodeID ID;
1136  PointerType::Profile(ID, T);
1137
1138  void *InsertPos = 0;
1139  if (PointerType *PT = PointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1140    return QualType(PT, 0);
1141
1142  // If the pointee type isn't canonical, this won't be a canonical type either,
1143  // so fill in the canonical type field.
1144  QualType Canonical;
1145  if (!T->isCanonical()) {
1146    Canonical = getPointerType(getCanonicalType(T));
1147
1148    // Get the new insert position for the node we care about.
1149    PointerType *NewIP = PointerTypes.FindNodeOrInsertPos(ID, InsertPos);
1150    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1151  }
1152  PointerType *New = new (*this,8) PointerType(T, Canonical);
1153  Types.push_back(New);
1154  PointerTypes.InsertNode(New, InsertPos);
1155  return QualType(New, 0);
1156}
1157
1158/// getBlockPointerType - Return the uniqued reference to the type for
1159/// a pointer to the specified block.
1160QualType ASTContext::getBlockPointerType(QualType T) {
1161  assert(T->isFunctionType() && "block of function types only");
1162  // Unique pointers, to guarantee there is only one block of a particular
1163  // structure.
1164  llvm::FoldingSetNodeID ID;
1165  BlockPointerType::Profile(ID, T);
1166
1167  void *InsertPos = 0;
1168  if (BlockPointerType *PT =
1169        BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1170    return QualType(PT, 0);
1171
1172  // If the block pointee type isn't canonical, this won't be a canonical
1173  // type either so fill in the canonical type field.
1174  QualType Canonical;
1175  if (!T->isCanonical()) {
1176    Canonical = getBlockPointerType(getCanonicalType(T));
1177
1178    // Get the new insert position for the node we care about.
1179    BlockPointerType *NewIP =
1180      BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
1181    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1182  }
1183  BlockPointerType *New = new (*this,8) BlockPointerType(T, Canonical);
1184  Types.push_back(New);
1185  BlockPointerTypes.InsertNode(New, InsertPos);
1186  return QualType(New, 0);
1187}
1188
1189/// getLValueReferenceType - Return the uniqued reference to the type for an
1190/// lvalue reference to the specified type.
1191QualType ASTContext::getLValueReferenceType(QualType T) {
1192  // Unique pointers, to guarantee there is only one pointer of a particular
1193  // structure.
1194  llvm::FoldingSetNodeID ID;
1195  ReferenceType::Profile(ID, T);
1196
1197  void *InsertPos = 0;
1198  if (LValueReferenceType *RT =
1199        LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
1200    return QualType(RT, 0);
1201
1202  // If the referencee type isn't canonical, this won't be a canonical type
1203  // either, so fill in the canonical type field.
1204  QualType Canonical;
1205  if (!T->isCanonical()) {
1206    Canonical = getLValueReferenceType(getCanonicalType(T));
1207
1208    // Get the new insert position for the node we care about.
1209    LValueReferenceType *NewIP =
1210      LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
1211    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1212  }
1213
1214  LValueReferenceType *New = new (*this,8) LValueReferenceType(T, Canonical);
1215  Types.push_back(New);
1216  LValueReferenceTypes.InsertNode(New, InsertPos);
1217  return QualType(New, 0);
1218}
1219
1220/// getRValueReferenceType - Return the uniqued reference to the type for an
1221/// rvalue reference to the specified type.
1222QualType ASTContext::getRValueReferenceType(QualType T) {
1223  // Unique pointers, to guarantee there is only one pointer of a particular
1224  // structure.
1225  llvm::FoldingSetNodeID ID;
1226  ReferenceType::Profile(ID, T);
1227
1228  void *InsertPos = 0;
1229  if (RValueReferenceType *RT =
1230        RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
1231    return QualType(RT, 0);
1232
1233  // If the referencee type isn't canonical, this won't be a canonical type
1234  // either, so fill in the canonical type field.
1235  QualType Canonical;
1236  if (!T->isCanonical()) {
1237    Canonical = getRValueReferenceType(getCanonicalType(T));
1238
1239    // Get the new insert position for the node we care about.
1240    RValueReferenceType *NewIP =
1241      RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
1242    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1243  }
1244
1245  RValueReferenceType *New = new (*this,8) RValueReferenceType(T, Canonical);
1246  Types.push_back(New);
1247  RValueReferenceTypes.InsertNode(New, InsertPos);
1248  return QualType(New, 0);
1249}
1250
1251/// getMemberPointerType - Return the uniqued reference to the type for a
1252/// member pointer to the specified type, in the specified class.
1253QualType ASTContext::getMemberPointerType(QualType T, const Type *Cls)
1254{
1255  // Unique pointers, to guarantee there is only one pointer of a particular
1256  // structure.
1257  llvm::FoldingSetNodeID ID;
1258  MemberPointerType::Profile(ID, T, Cls);
1259
1260  void *InsertPos = 0;
1261  if (MemberPointerType *PT =
1262      MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1263    return QualType(PT, 0);
1264
1265  // If the pointee or class type isn't canonical, this won't be a canonical
1266  // type either, so fill in the canonical type field.
1267  QualType Canonical;
1268  if (!T->isCanonical()) {
1269    Canonical = getMemberPointerType(getCanonicalType(T),getCanonicalType(Cls));
1270
1271    // Get the new insert position for the node we care about.
1272    MemberPointerType *NewIP =
1273      MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
1274    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1275  }
1276  MemberPointerType *New = new (*this,8) MemberPointerType(T, Cls, Canonical);
1277  Types.push_back(New);
1278  MemberPointerTypes.InsertNode(New, InsertPos);
1279  return QualType(New, 0);
1280}
1281
1282/// getConstantArrayType - Return the unique reference to the type for an
1283/// array of the specified element type.
1284QualType ASTContext::getConstantArrayType(QualType EltTy,
1285                                          const llvm::APInt &ArySizeIn,
1286                                          ArrayType::ArraySizeModifier ASM,
1287                                          unsigned EltTypeQuals) {
1288  assert((EltTy->isDependentType() || EltTy->isConstantSizeType()) &&
1289         "Constant array of VLAs is illegal!");
1290
1291  // Convert the array size into a canonical width matching the pointer size for
1292  // the target.
1293  llvm::APInt ArySize(ArySizeIn);
1294  ArySize.zextOrTrunc(Target.getPointerWidth(EltTy.getAddressSpace()));
1295
1296  llvm::FoldingSetNodeID ID;
1297  ConstantArrayType::Profile(ID, EltTy, ArySize, ASM, EltTypeQuals);
1298
1299  void *InsertPos = 0;
1300  if (ConstantArrayType *ATP =
1301      ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
1302    return QualType(ATP, 0);
1303
1304  // If the element type isn't canonical, this won't be a canonical type either,
1305  // so fill in the canonical type field.
1306  QualType Canonical;
1307  if (!EltTy->isCanonical()) {
1308    Canonical = getConstantArrayType(getCanonicalType(EltTy), ArySize,
1309                                     ASM, EltTypeQuals);
1310    // Get the new insert position for the node we care about.
1311    ConstantArrayType *NewIP =
1312      ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
1313    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1314  }
1315
1316  ConstantArrayType *New =
1317    new(*this,8)ConstantArrayType(EltTy, Canonical, ArySize, ASM, EltTypeQuals);
1318  ConstantArrayTypes.InsertNode(New, InsertPos);
1319  Types.push_back(New);
1320  return QualType(New, 0);
1321}
1322
1323/// getConstantArrayWithExprType - Return a reference to the type for
1324/// an array of the specified element type.
1325QualType
1326ASTContext::getConstantArrayWithExprType(QualType EltTy,
1327                                         const llvm::APInt &ArySizeIn,
1328                                         Expr *ArySizeExpr,
1329                                         ArrayType::ArraySizeModifier ASM,
1330                                         unsigned EltTypeQuals,
1331                                         SourceRange Brackets) {
1332  // Convert the array size into a canonical width matching the pointer
1333  // size for the target.
1334  llvm::APInt ArySize(ArySizeIn);
1335  ArySize.zextOrTrunc(Target.getPointerWidth(EltTy.getAddressSpace()));
1336
1337  // Compute the canonical ConstantArrayType.
1338  QualType Canonical = getConstantArrayType(getCanonicalType(EltTy),
1339                                            ArySize, ASM, EltTypeQuals);
1340  // Since we don't unique expressions, it isn't possible to unique VLA's
1341  // that have an expression provided for their size.
1342  ConstantArrayWithExprType *New =
1343    new(*this,8)ConstantArrayWithExprType(EltTy, Canonical,
1344                                          ArySize, ArySizeExpr,
1345                                          ASM, EltTypeQuals, Brackets);
1346  Types.push_back(New);
1347  return QualType(New, 0);
1348}
1349
1350/// getConstantArrayWithoutExprType - Return a reference to the type for
1351/// an array of the specified element type.
1352QualType
1353ASTContext::getConstantArrayWithoutExprType(QualType EltTy,
1354                                            const llvm::APInt &ArySizeIn,
1355                                            ArrayType::ArraySizeModifier ASM,
1356                                            unsigned EltTypeQuals) {
1357  // Convert the array size into a canonical width matching the pointer
1358  // size for the target.
1359  llvm::APInt ArySize(ArySizeIn);
1360  ArySize.zextOrTrunc(Target.getPointerWidth(EltTy.getAddressSpace()));
1361
1362  // Compute the canonical ConstantArrayType.
1363  QualType Canonical = getConstantArrayType(getCanonicalType(EltTy),
1364                                            ArySize, ASM, EltTypeQuals);
1365  ConstantArrayWithoutExprType *New =
1366    new(*this,8)ConstantArrayWithoutExprType(EltTy, Canonical,
1367                                             ArySize, ASM, EltTypeQuals);
1368  Types.push_back(New);
1369  return QualType(New, 0);
1370}
1371
1372/// getVariableArrayType - Returns a non-unique reference to the type for a
1373/// variable array of the specified element type.
1374QualType ASTContext::getVariableArrayType(QualType EltTy,
1375                                          Expr *NumElts,
1376                                          ArrayType::ArraySizeModifier ASM,
1377                                          unsigned EltTypeQuals,
1378                                          SourceRange Brackets) {
1379  // Since we don't unique expressions, it isn't possible to unique VLA's
1380  // that have an expression provided for their size.
1381
1382  VariableArrayType *New =
1383    new(*this,8)VariableArrayType(EltTy, QualType(),
1384                                  NumElts, ASM, EltTypeQuals, Brackets);
1385
1386  VariableArrayTypes.push_back(New);
1387  Types.push_back(New);
1388  return QualType(New, 0);
1389}
1390
1391/// getDependentSizedArrayType - Returns a non-unique reference to
1392/// the type for a dependently-sized array of the specified element
1393/// type.
1394QualType ASTContext::getDependentSizedArrayType(QualType EltTy,
1395                                                Expr *NumElts,
1396                                                ArrayType::ArraySizeModifier ASM,
1397                                                unsigned EltTypeQuals,
1398                                                SourceRange Brackets) {
1399  assert((NumElts->isTypeDependent() || NumElts->isValueDependent()) &&
1400         "Size must be type- or value-dependent!");
1401
1402  llvm::FoldingSetNodeID ID;
1403  DependentSizedArrayType::Profile(ID, *this, getCanonicalType(EltTy), ASM,
1404                                   EltTypeQuals, NumElts);
1405
1406  void *InsertPos = 0;
1407  DependentSizedArrayType *Canon
1408    = DependentSizedArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
1409  DependentSizedArrayType *New;
1410  if (Canon) {
1411    // We already have a canonical version of this array type; use it as
1412    // the canonical type for a newly-built type.
1413    New = new (*this,8) DependentSizedArrayType(*this, EltTy,
1414                                                QualType(Canon, 0),
1415                                                NumElts, ASM, EltTypeQuals,
1416                                                Brackets);
1417  } else {
1418    QualType CanonEltTy = getCanonicalType(EltTy);
1419    if (CanonEltTy == EltTy) {
1420      New = new (*this,8) DependentSizedArrayType(*this, EltTy, QualType(),
1421                                                  NumElts, ASM, EltTypeQuals,
1422                                                  Brackets);
1423      DependentSizedArrayTypes.InsertNode(New, InsertPos);
1424    } else {
1425      QualType Canon = getDependentSizedArrayType(CanonEltTy, NumElts,
1426                                                  ASM, EltTypeQuals,
1427                                                  SourceRange());
1428      New = new (*this,8) DependentSizedArrayType(*this, EltTy, Canon,
1429                                                  NumElts, ASM, EltTypeQuals,
1430                                                  Brackets);
1431    }
1432  }
1433
1434  Types.push_back(New);
1435  return QualType(New, 0);
1436}
1437
1438QualType ASTContext::getIncompleteArrayType(QualType EltTy,
1439                                            ArrayType::ArraySizeModifier ASM,
1440                                            unsigned EltTypeQuals) {
1441  llvm::FoldingSetNodeID ID;
1442  IncompleteArrayType::Profile(ID, EltTy, ASM, EltTypeQuals);
1443
1444  void *InsertPos = 0;
1445  if (IncompleteArrayType *ATP =
1446       IncompleteArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
1447    return QualType(ATP, 0);
1448
1449  // If the element type isn't canonical, this won't be a canonical type
1450  // either, so fill in the canonical type field.
1451  QualType Canonical;
1452
1453  if (!EltTy->isCanonical()) {
1454    Canonical = getIncompleteArrayType(getCanonicalType(EltTy),
1455                                       ASM, EltTypeQuals);
1456
1457    // Get the new insert position for the node we care about.
1458    IncompleteArrayType *NewIP =
1459      IncompleteArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
1460    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1461  }
1462
1463  IncompleteArrayType *New
1464    = new (*this,8) IncompleteArrayType(EltTy, Canonical,
1465                                        ASM, EltTypeQuals);
1466
1467  IncompleteArrayTypes.InsertNode(New, InsertPos);
1468  Types.push_back(New);
1469  return QualType(New, 0);
1470}
1471
1472/// getVectorType - Return the unique reference to a vector type of
1473/// the specified element type and size. VectorType must be a built-in type.
1474QualType ASTContext::getVectorType(QualType vecType, unsigned NumElts) {
1475  BuiltinType *baseType;
1476
1477  baseType = dyn_cast<BuiltinType>(getCanonicalType(vecType).getTypePtr());
1478  assert(baseType != 0 && "getVectorType(): Expecting a built-in type");
1479
1480  // Check if we've already instantiated a vector of this type.
1481  llvm::FoldingSetNodeID ID;
1482  VectorType::Profile(ID, vecType, NumElts, Type::Vector);
1483  void *InsertPos = 0;
1484  if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
1485    return QualType(VTP, 0);
1486
1487  // If the element type isn't canonical, this won't be a canonical type either,
1488  // so fill in the canonical type field.
1489  QualType Canonical;
1490  if (!vecType->isCanonical()) {
1491    Canonical = getVectorType(getCanonicalType(vecType), NumElts);
1492
1493    // Get the new insert position for the node we care about.
1494    VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
1495    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1496  }
1497  VectorType *New = new (*this,8) VectorType(vecType, NumElts, Canonical);
1498  VectorTypes.InsertNode(New, InsertPos);
1499  Types.push_back(New);
1500  return QualType(New, 0);
1501}
1502
1503/// getExtVectorType - Return the unique reference to an extended vector type of
1504/// the specified element type and size. VectorType must be a built-in type.
1505QualType ASTContext::getExtVectorType(QualType vecType, unsigned NumElts) {
1506  BuiltinType *baseType;
1507
1508  baseType = dyn_cast<BuiltinType>(getCanonicalType(vecType).getTypePtr());
1509  assert(baseType != 0 && "getExtVectorType(): Expecting a built-in type");
1510
1511  // Check if we've already instantiated a vector of this type.
1512  llvm::FoldingSetNodeID ID;
1513  VectorType::Profile(ID, vecType, NumElts, Type::ExtVector);
1514  void *InsertPos = 0;
1515  if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
1516    return QualType(VTP, 0);
1517
1518  // If the element type isn't canonical, this won't be a canonical type either,
1519  // so fill in the canonical type field.
1520  QualType Canonical;
1521  if (!vecType->isCanonical()) {
1522    Canonical = getExtVectorType(getCanonicalType(vecType), NumElts);
1523
1524    // Get the new insert position for the node we care about.
1525    VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
1526    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1527  }
1528  ExtVectorType *New = new (*this,8) ExtVectorType(vecType, NumElts, Canonical);
1529  VectorTypes.InsertNode(New, InsertPos);
1530  Types.push_back(New);
1531  return QualType(New, 0);
1532}
1533
1534QualType ASTContext::getDependentSizedExtVectorType(QualType vecType,
1535                                                    Expr *SizeExpr,
1536                                                    SourceLocation AttrLoc) {
1537  llvm::FoldingSetNodeID ID;
1538  DependentSizedExtVectorType::Profile(ID, *this, getCanonicalType(vecType),
1539                                       SizeExpr);
1540
1541  void *InsertPos = 0;
1542  DependentSizedExtVectorType *Canon
1543    = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
1544  DependentSizedExtVectorType *New;
1545  if (Canon) {
1546    // We already have a canonical version of this array type; use it as
1547    // the canonical type for a newly-built type.
1548    New = new (*this,8) DependentSizedExtVectorType(*this, vecType,
1549                                                    QualType(Canon, 0),
1550                                                    SizeExpr, AttrLoc);
1551  } else {
1552    QualType CanonVecTy = getCanonicalType(vecType);
1553    if (CanonVecTy == vecType) {
1554      New = new (*this,8) DependentSizedExtVectorType(*this, vecType,
1555                                                      QualType(), SizeExpr,
1556                                                      AttrLoc);
1557      DependentSizedExtVectorTypes.InsertNode(New, InsertPos);
1558    } else {
1559      QualType Canon = getDependentSizedExtVectorType(CanonVecTy, SizeExpr,
1560                                                      SourceLocation());
1561      New = new (*this,8) DependentSizedExtVectorType(*this, vecType, Canon,
1562                                                      SizeExpr, AttrLoc);
1563    }
1564  }
1565
1566  Types.push_back(New);
1567  return QualType(New, 0);
1568}
1569
1570/// getFunctionNoProtoType - Return a K&R style C function type like 'int()'.
1571///
1572QualType ASTContext::getFunctionNoProtoType(QualType ResultTy, bool NoReturn) {
1573  // Unique functions, to guarantee there is only one function of a particular
1574  // structure.
1575  llvm::FoldingSetNodeID ID;
1576  FunctionNoProtoType::Profile(ID, ResultTy, NoReturn);
1577
1578  void *InsertPos = 0;
1579  if (FunctionNoProtoType *FT =
1580        FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
1581    return QualType(FT, 0);
1582
1583  QualType Canonical;
1584  if (!ResultTy->isCanonical()) {
1585    Canonical = getFunctionNoProtoType(getCanonicalType(ResultTy), NoReturn);
1586
1587    // Get the new insert position for the node we care about.
1588    FunctionNoProtoType *NewIP =
1589      FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
1590    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1591  }
1592
1593  FunctionNoProtoType *New
1594    = new (*this,8) FunctionNoProtoType(ResultTy, Canonical, NoReturn);
1595  Types.push_back(New);
1596  FunctionNoProtoTypes.InsertNode(New, InsertPos);
1597  return QualType(New, 0);
1598}
1599
1600/// getFunctionType - Return a normal function type with a typed argument
1601/// list.  isVariadic indicates whether the argument list includes '...'.
1602QualType ASTContext::getFunctionType(QualType ResultTy,const QualType *ArgArray,
1603                                     unsigned NumArgs, bool isVariadic,
1604                                     unsigned TypeQuals, bool hasExceptionSpec,
1605                                     bool hasAnyExceptionSpec, unsigned NumExs,
1606                                     const QualType *ExArray, bool NoReturn) {
1607  // Unique functions, to guarantee there is only one function of a particular
1608  // structure.
1609  llvm::FoldingSetNodeID ID;
1610  FunctionProtoType::Profile(ID, ResultTy, ArgArray, NumArgs, isVariadic,
1611                             TypeQuals, hasExceptionSpec, hasAnyExceptionSpec,
1612                             NumExs, ExArray, NoReturn);
1613
1614  void *InsertPos = 0;
1615  if (FunctionProtoType *FTP =
1616        FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
1617    return QualType(FTP, 0);
1618
1619  // Determine whether the type being created is already canonical or not.
1620  bool isCanonical = ResultTy->isCanonical();
1621  if (hasExceptionSpec)
1622    isCanonical = false;
1623  for (unsigned i = 0; i != NumArgs && isCanonical; ++i)
1624    if (!ArgArray[i]->isCanonical())
1625      isCanonical = false;
1626
1627  // If this type isn't canonical, get the canonical version of it.
1628  // The exception spec is not part of the canonical type.
1629  QualType Canonical;
1630  if (!isCanonical) {
1631    llvm::SmallVector<QualType, 16> CanonicalArgs;
1632    CanonicalArgs.reserve(NumArgs);
1633    for (unsigned i = 0; i != NumArgs; ++i)
1634      CanonicalArgs.push_back(getCanonicalType(ArgArray[i]));
1635
1636    Canonical = getFunctionType(getCanonicalType(ResultTy),
1637                                CanonicalArgs.data(), NumArgs,
1638                                isVariadic, TypeQuals, false,
1639                                false, 0, 0, NoReturn);
1640
1641    // Get the new insert position for the node we care about.
1642    FunctionProtoType *NewIP =
1643      FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
1644    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1645  }
1646
1647  // FunctionProtoType objects are allocated with extra bytes after them
1648  // for two variable size arrays (for parameter and exception types) at the
1649  // end of them.
1650  FunctionProtoType *FTP =
1651    (FunctionProtoType*)Allocate(sizeof(FunctionProtoType) +
1652                                 NumArgs*sizeof(QualType) +
1653                                 NumExs*sizeof(QualType), 8);
1654  new (FTP) FunctionProtoType(ResultTy, ArgArray, NumArgs, isVariadic,
1655                              TypeQuals, hasExceptionSpec, hasAnyExceptionSpec,
1656                              ExArray, NumExs, Canonical, NoReturn);
1657  Types.push_back(FTP);
1658  FunctionProtoTypes.InsertNode(FTP, InsertPos);
1659  return QualType(FTP, 0);
1660}
1661
1662/// getTypeDeclType - Return the unique reference to the type for the
1663/// specified type declaration.
1664QualType ASTContext::getTypeDeclType(TypeDecl *Decl, TypeDecl* PrevDecl) {
1665  assert(Decl && "Passed null for Decl param");
1666  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
1667
1668  if (TypedefDecl *Typedef = dyn_cast<TypedefDecl>(Decl))
1669    return getTypedefType(Typedef);
1670  else if (isa<TemplateTypeParmDecl>(Decl)) {
1671    assert(false && "Template type parameter types are always available.");
1672  } else if (ObjCInterfaceDecl *ObjCInterface
1673               = dyn_cast<ObjCInterfaceDecl>(Decl))
1674    return getObjCInterfaceType(ObjCInterface);
1675
1676  if (RecordDecl *Record = dyn_cast<RecordDecl>(Decl)) {
1677    if (PrevDecl)
1678      Decl->TypeForDecl = PrevDecl->TypeForDecl;
1679    else
1680      Decl->TypeForDecl = new (*this,8) RecordType(Record);
1681  } else if (EnumDecl *Enum = dyn_cast<EnumDecl>(Decl)) {
1682    if (PrevDecl)
1683      Decl->TypeForDecl = PrevDecl->TypeForDecl;
1684    else
1685      Decl->TypeForDecl = new (*this,8) EnumType(Enum);
1686  } else
1687    assert(false && "TypeDecl without a type?");
1688
1689  if (!PrevDecl) Types.push_back(Decl->TypeForDecl);
1690  return QualType(Decl->TypeForDecl, 0);
1691}
1692
1693/// getTypedefType - Return the unique reference to the type for the
1694/// specified typename decl.
1695QualType ASTContext::getTypedefType(TypedefDecl *Decl) {
1696  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
1697
1698  QualType Canonical = getCanonicalType(Decl->getUnderlyingType());
1699  Decl->TypeForDecl = new(*this,8) TypedefType(Type::Typedef, Decl, Canonical);
1700  Types.push_back(Decl->TypeForDecl);
1701  return QualType(Decl->TypeForDecl, 0);
1702}
1703
1704/// \brief Retrieve the template type parameter type for a template
1705/// parameter or parameter pack with the given depth, index, and (optionally)
1706/// name.
1707QualType ASTContext::getTemplateTypeParmType(unsigned Depth, unsigned Index,
1708                                             bool ParameterPack,
1709                                             IdentifierInfo *Name) {
1710  llvm::FoldingSetNodeID ID;
1711  TemplateTypeParmType::Profile(ID, Depth, Index, ParameterPack, Name);
1712  void *InsertPos = 0;
1713  TemplateTypeParmType *TypeParm
1714    = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
1715
1716  if (TypeParm)
1717    return QualType(TypeParm, 0);
1718
1719  if (Name) {
1720    QualType Canon = getTemplateTypeParmType(Depth, Index, ParameterPack);
1721    TypeParm = new (*this, 8) TemplateTypeParmType(Depth, Index, ParameterPack,
1722                                                   Name, Canon);
1723  } else
1724    TypeParm = new (*this, 8) TemplateTypeParmType(Depth, Index, ParameterPack);
1725
1726  Types.push_back(TypeParm);
1727  TemplateTypeParmTypes.InsertNode(TypeParm, InsertPos);
1728
1729  return QualType(TypeParm, 0);
1730}
1731
1732QualType
1733ASTContext::getTemplateSpecializationType(TemplateName Template,
1734                                          const TemplateArgument *Args,
1735                                          unsigned NumArgs,
1736                                          QualType Canon) {
1737  if (!Canon.isNull())
1738    Canon = getCanonicalType(Canon);
1739  else {
1740    // Build the canonical template specialization type.
1741    TemplateName CanonTemplate = getCanonicalTemplateName(Template);
1742    llvm::SmallVector<TemplateArgument, 4> CanonArgs;
1743    CanonArgs.reserve(NumArgs);
1744    for (unsigned I = 0; I != NumArgs; ++I)
1745      CanonArgs.push_back(getCanonicalTemplateArgument(Args[I]));
1746
1747    // Determine whether this canonical template specialization type already
1748    // exists.
1749    llvm::FoldingSetNodeID ID;
1750    TemplateSpecializationType::Profile(ID, CanonTemplate,
1751                                        CanonArgs.data(), NumArgs, *this);
1752
1753    void *InsertPos = 0;
1754    TemplateSpecializationType *Spec
1755      = TemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
1756
1757    if (!Spec) {
1758      // Allocate a new canonical template specialization type.
1759      void *Mem = Allocate((sizeof(TemplateSpecializationType) +
1760                            sizeof(TemplateArgument) * NumArgs),
1761                           8);
1762      Spec = new (Mem) TemplateSpecializationType(*this, CanonTemplate,
1763                                                  CanonArgs.data(), NumArgs,
1764                                                  Canon);
1765      Types.push_back(Spec);
1766      TemplateSpecializationTypes.InsertNode(Spec, InsertPos);
1767    }
1768
1769    if (Canon.isNull())
1770      Canon = QualType(Spec, 0);
1771    assert(Canon->isDependentType() &&
1772           "Non-dependent template-id type must have a canonical type");
1773  }
1774
1775  // Allocate the (non-canonical) template specialization type, but don't
1776  // try to unique it: these types typically have location information that
1777  // we don't unique and don't want to lose.
1778  void *Mem = Allocate((sizeof(TemplateSpecializationType) +
1779                        sizeof(TemplateArgument) * NumArgs),
1780                       8);
1781  TemplateSpecializationType *Spec
1782    = new (Mem) TemplateSpecializationType(*this, Template, Args, NumArgs,
1783                                           Canon);
1784
1785  Types.push_back(Spec);
1786  return QualType(Spec, 0);
1787}
1788
1789QualType
1790ASTContext::getQualifiedNameType(NestedNameSpecifier *NNS,
1791                                 QualType NamedType) {
1792  llvm::FoldingSetNodeID ID;
1793  QualifiedNameType::Profile(ID, NNS, NamedType);
1794
1795  void *InsertPos = 0;
1796  QualifiedNameType *T
1797    = QualifiedNameTypes.FindNodeOrInsertPos(ID, InsertPos);
1798  if (T)
1799    return QualType(T, 0);
1800
1801  T = new (*this) QualifiedNameType(NNS, NamedType,
1802                                    getCanonicalType(NamedType));
1803  Types.push_back(T);
1804  QualifiedNameTypes.InsertNode(T, InsertPos);
1805  return QualType(T, 0);
1806}
1807
1808QualType ASTContext::getTypenameType(NestedNameSpecifier *NNS,
1809                                     const IdentifierInfo *Name,
1810                                     QualType Canon) {
1811  assert(NNS->isDependent() && "nested-name-specifier must be dependent");
1812
1813  if (Canon.isNull()) {
1814    NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
1815    if (CanonNNS != NNS)
1816      Canon = getTypenameType(CanonNNS, Name);
1817  }
1818
1819  llvm::FoldingSetNodeID ID;
1820  TypenameType::Profile(ID, NNS, Name);
1821
1822  void *InsertPos = 0;
1823  TypenameType *T
1824    = TypenameTypes.FindNodeOrInsertPos(ID, InsertPos);
1825  if (T)
1826    return QualType(T, 0);
1827
1828  T = new (*this) TypenameType(NNS, Name, Canon);
1829  Types.push_back(T);
1830  TypenameTypes.InsertNode(T, InsertPos);
1831  return QualType(T, 0);
1832}
1833
1834QualType
1835ASTContext::getTypenameType(NestedNameSpecifier *NNS,
1836                            const TemplateSpecializationType *TemplateId,
1837                            QualType Canon) {
1838  assert(NNS->isDependent() && "nested-name-specifier must be dependent");
1839
1840  if (Canon.isNull()) {
1841    NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
1842    QualType CanonType = getCanonicalType(QualType(TemplateId, 0));
1843    if (CanonNNS != NNS || CanonType != QualType(TemplateId, 0)) {
1844      const TemplateSpecializationType *CanonTemplateId
1845        = CanonType->getAsTemplateSpecializationType();
1846      assert(CanonTemplateId &&
1847             "Canonical type must also be a template specialization type");
1848      Canon = getTypenameType(CanonNNS, CanonTemplateId);
1849    }
1850  }
1851
1852  llvm::FoldingSetNodeID ID;
1853  TypenameType::Profile(ID, NNS, TemplateId);
1854
1855  void *InsertPos = 0;
1856  TypenameType *T
1857    = TypenameTypes.FindNodeOrInsertPos(ID, InsertPos);
1858  if (T)
1859    return QualType(T, 0);
1860
1861  T = new (*this) TypenameType(NNS, TemplateId, Canon);
1862  Types.push_back(T);
1863  TypenameTypes.InsertNode(T, InsertPos);
1864  return QualType(T, 0);
1865}
1866
1867/// CmpProtocolNames - Comparison predicate for sorting protocols
1868/// alphabetically.
1869static bool CmpProtocolNames(const ObjCProtocolDecl *LHS,
1870                            const ObjCProtocolDecl *RHS) {
1871  return LHS->getDeclName() < RHS->getDeclName();
1872}
1873
1874static void SortAndUniqueProtocols(ObjCProtocolDecl **&Protocols,
1875                                   unsigned &NumProtocols) {
1876  ObjCProtocolDecl **ProtocolsEnd = Protocols+NumProtocols;
1877
1878  // Sort protocols, keyed by name.
1879  std::sort(Protocols, Protocols+NumProtocols, CmpProtocolNames);
1880
1881  // Remove duplicates.
1882  ProtocolsEnd = std::unique(Protocols, ProtocolsEnd);
1883  NumProtocols = ProtocolsEnd-Protocols;
1884}
1885
1886/// getObjCObjectPointerType - Return a ObjCObjectPointerType type for
1887/// the given interface decl and the conforming protocol list.
1888QualType ASTContext::getObjCObjectPointerType(QualType InterfaceT,
1889                                              ObjCProtocolDecl **Protocols,
1890                                              unsigned NumProtocols) {
1891  // Sort the protocol list alphabetically to canonicalize it.
1892  if (NumProtocols)
1893    SortAndUniqueProtocols(Protocols, NumProtocols);
1894
1895  llvm::FoldingSetNodeID ID;
1896  ObjCObjectPointerType::Profile(ID, InterfaceT, Protocols, NumProtocols);
1897
1898  void *InsertPos = 0;
1899  if (ObjCObjectPointerType *QT =
1900              ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1901    return QualType(QT, 0);
1902
1903  // No Match;
1904  ObjCObjectPointerType *QType =
1905    new (*this,8) ObjCObjectPointerType(InterfaceT, Protocols, NumProtocols);
1906
1907  Types.push_back(QType);
1908  ObjCObjectPointerTypes.InsertNode(QType, InsertPos);
1909  return QualType(QType, 0);
1910}
1911
1912/// getObjCInterfaceType - Return the unique reference to the type for the
1913/// specified ObjC interface decl. The list of protocols is optional.
1914QualType ASTContext::getObjCInterfaceType(const ObjCInterfaceDecl *Decl,
1915                       ObjCProtocolDecl **Protocols, unsigned NumProtocols) {
1916  if (NumProtocols)
1917    // Sort the protocol list alphabetically to canonicalize it.
1918    SortAndUniqueProtocols(Protocols, NumProtocols);
1919
1920  llvm::FoldingSetNodeID ID;
1921  ObjCInterfaceType::Profile(ID, Decl, Protocols, NumProtocols);
1922
1923  void *InsertPos = 0;
1924  if (ObjCInterfaceType *QT =
1925      ObjCInterfaceTypes.FindNodeOrInsertPos(ID, InsertPos))
1926    return QualType(QT, 0);
1927
1928  // No Match;
1929  ObjCInterfaceType *QType =
1930    new (*this,8) ObjCInterfaceType(const_cast<ObjCInterfaceDecl*>(Decl),
1931                                    Protocols, NumProtocols);
1932  Types.push_back(QType);
1933  ObjCInterfaceTypes.InsertNode(QType, InsertPos);
1934  return QualType(QType, 0);
1935}
1936
1937/// getTypeOfExprType - Unlike many "get<Type>" functions, we can't unique
1938/// TypeOfExprType AST's (since expression's are never shared). For example,
1939/// multiple declarations that refer to "typeof(x)" all contain different
1940/// DeclRefExpr's. This doesn't effect the type checker, since it operates
1941/// on canonical type's (which are always unique).
1942QualType ASTContext::getTypeOfExprType(Expr *tofExpr) {
1943  TypeOfExprType *toe;
1944  if (tofExpr->isTypeDependent()) {
1945    llvm::FoldingSetNodeID ID;
1946    DependentTypeOfExprType::Profile(ID, *this, tofExpr);
1947
1948    void *InsertPos = 0;
1949    DependentTypeOfExprType *Canon
1950      = DependentTypeOfExprTypes.FindNodeOrInsertPos(ID, InsertPos);
1951    if (Canon) {
1952      // We already have a "canonical" version of an identical, dependent
1953      // typeof(expr) type. Use that as our canonical type.
1954      toe = new (*this, 8) TypeOfExprType(tofExpr,
1955                                          QualType((TypeOfExprType*)Canon, 0));
1956    }
1957    else {
1958      // Build a new, canonical typeof(expr) type.
1959      Canon = new (*this, 8) DependentTypeOfExprType(*this, tofExpr);
1960      DependentTypeOfExprTypes.InsertNode(Canon, InsertPos);
1961      toe = Canon;
1962    }
1963  } else {
1964    QualType Canonical = getCanonicalType(tofExpr->getType());
1965    toe = new (*this,8) TypeOfExprType(tofExpr, Canonical);
1966  }
1967  Types.push_back(toe);
1968  return QualType(toe, 0);
1969}
1970
1971/// getTypeOfType -  Unlike many "get<Type>" functions, we don't unique
1972/// TypeOfType AST's. The only motivation to unique these nodes would be
1973/// memory savings. Since typeof(t) is fairly uncommon, space shouldn't be
1974/// an issue. This doesn't effect the type checker, since it operates
1975/// on canonical type's (which are always unique).
1976QualType ASTContext::getTypeOfType(QualType tofType) {
1977  QualType Canonical = getCanonicalType(tofType);
1978  TypeOfType *tot = new (*this,8) TypeOfType(tofType, Canonical);
1979  Types.push_back(tot);
1980  return QualType(tot, 0);
1981}
1982
1983/// getDecltypeForExpr - Given an expr, will return the decltype for that
1984/// expression, according to the rules in C++0x [dcl.type.simple]p4
1985static QualType getDecltypeForExpr(const Expr *e, ASTContext &Context) {
1986  if (e->isTypeDependent())
1987    return Context.DependentTy;
1988
1989  // If e is an id expression or a class member access, decltype(e) is defined
1990  // as the type of the entity named by e.
1991  if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(e)) {
1992    if (const ValueDecl *VD = dyn_cast<ValueDecl>(DRE->getDecl()))
1993      return VD->getType();
1994  }
1995  if (const MemberExpr *ME = dyn_cast<MemberExpr>(e)) {
1996    if (const FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl()))
1997      return FD->getType();
1998  }
1999  // If e is a function call or an invocation of an overloaded operator,
2000  // (parentheses around e are ignored), decltype(e) is defined as the
2001  // return type of that function.
2002  if (const CallExpr *CE = dyn_cast<CallExpr>(e->IgnoreParens()))
2003    return CE->getCallReturnType();
2004
2005  QualType T = e->getType();
2006
2007  // Otherwise, where T is the type of e, if e is an lvalue, decltype(e) is
2008  // defined as T&, otherwise decltype(e) is defined as T.
2009  if (e->isLvalue(Context) == Expr::LV_Valid)
2010    T = Context.getLValueReferenceType(T);
2011
2012  return T;
2013}
2014
2015/// getDecltypeType -  Unlike many "get<Type>" functions, we don't unique
2016/// DecltypeType AST's. The only motivation to unique these nodes would be
2017/// memory savings. Since decltype(t) is fairly uncommon, space shouldn't be
2018/// an issue. This doesn't effect the type checker, since it operates
2019/// on canonical type's (which are always unique).
2020QualType ASTContext::getDecltypeType(Expr *e) {
2021  DecltypeType *dt;
2022  if (e->isTypeDependent()) {
2023    llvm::FoldingSetNodeID ID;
2024    DependentDecltypeType::Profile(ID, *this, e);
2025
2026    void *InsertPos = 0;
2027    DependentDecltypeType *Canon
2028      = DependentDecltypeTypes.FindNodeOrInsertPos(ID, InsertPos);
2029    if (Canon) {
2030      // We already have a "canonical" version of an equivalent, dependent
2031      // decltype type. Use that as our canonical type.
2032      dt = new (*this, 8) DecltypeType(e, DependentTy,
2033                                       QualType((DecltypeType*)Canon, 0));
2034    }
2035    else {
2036      // Build a new, canonical typeof(expr) type.
2037      Canon = new (*this, 8) DependentDecltypeType(*this, e);
2038      DependentDecltypeTypes.InsertNode(Canon, InsertPos);
2039      dt = Canon;
2040    }
2041  } else {
2042    QualType T = getDecltypeForExpr(e, *this);
2043    dt = new (*this, 8) DecltypeType(e, T, getCanonicalType(T));
2044  }
2045  Types.push_back(dt);
2046  return QualType(dt, 0);
2047}
2048
2049/// getTagDeclType - Return the unique reference to the type for the
2050/// specified TagDecl (struct/union/class/enum) decl.
2051QualType ASTContext::getTagDeclType(const TagDecl *Decl) {
2052  assert (Decl);
2053  // FIXME: What is the design on getTagDeclType when it requires casting
2054  // away const?  mutable?
2055  return getTypeDeclType(const_cast<TagDecl*>(Decl));
2056}
2057
2058/// getSizeType - Return the unique type for "size_t" (C99 7.17), the result
2059/// of the sizeof operator (C99 6.5.3.4p4). The value is target dependent and
2060/// needs to agree with the definition in <stddef.h>.
2061QualType ASTContext::getSizeType() const {
2062  return getFromTargetType(Target.getSizeType());
2063}
2064
2065/// getSignedWCharType - Return the type of "signed wchar_t".
2066/// Used when in C++, as a GCC extension.
2067QualType ASTContext::getSignedWCharType() const {
2068  // FIXME: derive from "Target" ?
2069  return WCharTy;
2070}
2071
2072/// getUnsignedWCharType - Return the type of "unsigned wchar_t".
2073/// Used when in C++, as a GCC extension.
2074QualType ASTContext::getUnsignedWCharType() const {
2075  // FIXME: derive from "Target" ?
2076  return UnsignedIntTy;
2077}
2078
2079/// getPointerDiffType - Return the unique type for "ptrdiff_t" (ref?)
2080/// defined in <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9).
2081QualType ASTContext::getPointerDiffType() const {
2082  return getFromTargetType(Target.getPtrDiffType(0));
2083}
2084
2085//===----------------------------------------------------------------------===//
2086//                              Type Operators
2087//===----------------------------------------------------------------------===//
2088
2089/// getCanonicalType - Return the canonical (structural) type corresponding to
2090/// the specified potentially non-canonical type.  The non-canonical version
2091/// of a type may have many "decorated" versions of types.  Decorators can
2092/// include typedefs, 'typeof' operators, etc. The returned type is guaranteed
2093/// to be free of any of these, allowing two canonical types to be compared
2094/// for exact equality with a simple pointer comparison.
2095CanQualType ASTContext::getCanonicalType(QualType T) {
2096  QualType CanType = T.getTypePtr()->getCanonicalTypeInternal();
2097
2098  // If the result has type qualifiers, make sure to canonicalize them as well.
2099  unsigned TypeQuals = T.getCVRQualifiers() | CanType.getCVRQualifiers();
2100  if (TypeQuals == 0)
2101    return CanQualType::CreateUnsafe(CanType);
2102
2103  // If the type qualifiers are on an array type, get the canonical type of the
2104  // array with the qualifiers applied to the element type.
2105  ArrayType *AT = dyn_cast<ArrayType>(CanType);
2106  if (!AT)
2107    return CanQualType::CreateUnsafe(CanType.getQualifiedType(TypeQuals));
2108
2109  // Get the canonical version of the element with the extra qualifiers on it.
2110  // This can recursively sink qualifiers through multiple levels of arrays.
2111  QualType NewEltTy=AT->getElementType().getWithAdditionalQualifiers(TypeQuals);
2112  NewEltTy = getCanonicalType(NewEltTy);
2113
2114  if (ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
2115    return CanQualType::CreateUnsafe(
2116             getConstantArrayType(NewEltTy, CAT->getSize(),
2117                                  CAT->getSizeModifier(),
2118                                  CAT->getIndexTypeQualifier()));
2119  if (IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT))
2120    return CanQualType::CreateUnsafe(
2121             getIncompleteArrayType(NewEltTy, IAT->getSizeModifier(),
2122                                    IAT->getIndexTypeQualifier()));
2123
2124  if (DependentSizedArrayType *DSAT = dyn_cast<DependentSizedArrayType>(AT))
2125    return CanQualType::CreateUnsafe(
2126             getDependentSizedArrayType(NewEltTy,
2127                                        DSAT->getSizeExpr() ?
2128                                          DSAT->getSizeExpr()->Retain() : 0,
2129                                        DSAT->getSizeModifier(),
2130                                        DSAT->getIndexTypeQualifier(),
2131                                        DSAT->getBracketsRange()));
2132
2133  VariableArrayType *VAT = cast<VariableArrayType>(AT);
2134  return CanQualType::CreateUnsafe(getVariableArrayType(NewEltTy,
2135                                                        VAT->getSizeExpr() ?
2136                                              VAT->getSizeExpr()->Retain() : 0,
2137                                                        VAT->getSizeModifier(),
2138                                                  VAT->getIndexTypeQualifier(),
2139                                                     VAT->getBracketsRange()));
2140}
2141
2142TemplateName ASTContext::getCanonicalTemplateName(TemplateName Name) {
2143  // If this template name refers to a template, the canonical
2144  // template name merely stores the template itself.
2145  if (TemplateDecl *Template = Name.getAsTemplateDecl())
2146    return TemplateName(cast<TemplateDecl>(Template->getCanonicalDecl()));
2147
2148  // If this template name refers to a set of overloaded function templates,
2149  /// the canonical template name merely stores the set of function templates.
2150  if (OverloadedFunctionDecl *Ovl = Name.getAsOverloadedFunctionDecl()) {
2151    OverloadedFunctionDecl *CanonOvl = 0;
2152    for (OverloadedFunctionDecl::function_iterator F = Ovl->function_begin(),
2153                                                FEnd = Ovl->function_end();
2154         F != FEnd; ++F) {
2155      Decl *Canon = F->get()->getCanonicalDecl();
2156      if (CanonOvl || Canon != F->get()) {
2157        if (!CanonOvl)
2158          CanonOvl = OverloadedFunctionDecl::Create(*this,
2159                                                    Ovl->getDeclContext(),
2160                                                    Ovl->getDeclName());
2161
2162        CanonOvl->addOverload(
2163                    AnyFunctionDecl::getFromNamedDecl(cast<NamedDecl>(Canon)));
2164      }
2165    }
2166
2167    return TemplateName(CanonOvl? CanonOvl : Ovl);
2168  }
2169
2170  DependentTemplateName *DTN = Name.getAsDependentTemplateName();
2171  assert(DTN && "Non-dependent template names must refer to template decls.");
2172  return DTN->CanonicalTemplateName;
2173}
2174
2175TemplateArgument
2176ASTContext::getCanonicalTemplateArgument(const TemplateArgument &Arg) {
2177  switch (Arg.getKind()) {
2178    case TemplateArgument::Null:
2179      return Arg;
2180
2181    case TemplateArgument::Expression:
2182      // FIXME: Build canonical expression?
2183      return Arg;
2184
2185    case TemplateArgument::Declaration:
2186      return TemplateArgument(SourceLocation(),
2187                              Arg.getAsDecl()->getCanonicalDecl());
2188
2189    case TemplateArgument::Integral:
2190      return TemplateArgument(SourceLocation(),
2191                              *Arg.getAsIntegral(),
2192                              getCanonicalType(Arg.getIntegralType()));
2193
2194    case TemplateArgument::Type:
2195      return TemplateArgument(SourceLocation(),
2196                              getCanonicalType(Arg.getAsType()));
2197
2198    case TemplateArgument::Pack: {
2199      // FIXME: Allocate in ASTContext
2200      TemplateArgument *CanonArgs = new TemplateArgument[Arg.pack_size()];
2201      unsigned Idx = 0;
2202      for (TemplateArgument::pack_iterator A = Arg.pack_begin(),
2203                                        AEnd = Arg.pack_end();
2204           A != AEnd; (void)++A, ++Idx)
2205        CanonArgs[Idx] = getCanonicalTemplateArgument(*A);
2206
2207      TemplateArgument Result;
2208      Result.setArgumentPack(CanonArgs, Arg.pack_size(), false);
2209      return Result;
2210    }
2211  }
2212
2213  // Silence GCC warning
2214  assert(false && "Unhandled template argument kind");
2215  return TemplateArgument();
2216}
2217
2218NestedNameSpecifier *
2219ASTContext::getCanonicalNestedNameSpecifier(NestedNameSpecifier *NNS) {
2220  if (!NNS)
2221    return 0;
2222
2223  switch (NNS->getKind()) {
2224  case NestedNameSpecifier::Identifier:
2225    // Canonicalize the prefix but keep the identifier the same.
2226    return NestedNameSpecifier::Create(*this,
2227                         getCanonicalNestedNameSpecifier(NNS->getPrefix()),
2228                                       NNS->getAsIdentifier());
2229
2230  case NestedNameSpecifier::Namespace:
2231    // A namespace is canonical; build a nested-name-specifier with
2232    // this namespace and no prefix.
2233    return NestedNameSpecifier::Create(*this, 0, NNS->getAsNamespace());
2234
2235  case NestedNameSpecifier::TypeSpec:
2236  case NestedNameSpecifier::TypeSpecWithTemplate: {
2237    QualType T = getCanonicalType(QualType(NNS->getAsType(), 0));
2238    NestedNameSpecifier *Prefix = 0;
2239
2240    // FIXME: This isn't the right check!
2241    if (T->isDependentType())
2242      Prefix = getCanonicalNestedNameSpecifier(NNS->getPrefix());
2243
2244    return NestedNameSpecifier::Create(*this, Prefix,
2245                 NNS->getKind() == NestedNameSpecifier::TypeSpecWithTemplate,
2246                                       T.getTypePtr());
2247  }
2248
2249  case NestedNameSpecifier::Global:
2250    // The global specifier is canonical and unique.
2251    return NNS;
2252  }
2253
2254  // Required to silence a GCC warning
2255  return 0;
2256}
2257
2258
2259const ArrayType *ASTContext::getAsArrayType(QualType T) {
2260  // Handle the non-qualified case efficiently.
2261  if (T.getCVRQualifiers() == 0) {
2262    // Handle the common positive case fast.
2263    if (const ArrayType *AT = dyn_cast<ArrayType>(T))
2264      return AT;
2265  }
2266
2267  // Handle the common negative case fast, ignoring CVR qualifiers.
2268  QualType CType = T->getCanonicalTypeInternal();
2269
2270  // Make sure to look through type qualifiers (like ExtQuals) for the negative
2271  // test.
2272  if (!isa<ArrayType>(CType) &&
2273      !isa<ArrayType>(CType.getUnqualifiedType()))
2274    return 0;
2275
2276  // Apply any CVR qualifiers from the array type to the element type.  This
2277  // implements C99 6.7.3p8: "If the specification of an array type includes
2278  // any type qualifiers, the element type is so qualified, not the array type."
2279
2280  // If we get here, we either have type qualifiers on the type, or we have
2281  // sugar such as a typedef in the way.  If we have type qualifiers on the type
2282  // we must propagate them down into the element type.
2283  unsigned CVRQuals = T.getCVRQualifiers();
2284  unsigned AddrSpace = 0;
2285  Type *Ty = T.getTypePtr();
2286
2287  // Rip through ExtQualType's and typedefs to get to a concrete type.
2288  while (1) {
2289    if (const ExtQualType *EXTQT = dyn_cast<ExtQualType>(Ty)) {
2290      AddrSpace = EXTQT->getAddressSpace();
2291      Ty = EXTQT->getBaseType();
2292    } else {
2293      T = Ty->getDesugaredType();
2294      if (T.getTypePtr() == Ty && T.getCVRQualifiers() == 0)
2295        break;
2296      CVRQuals |= T.getCVRQualifiers();
2297      Ty = T.getTypePtr();
2298    }
2299  }
2300
2301  // If we have a simple case, just return now.
2302  const ArrayType *ATy = dyn_cast<ArrayType>(Ty);
2303  if (ATy == 0 || (AddrSpace == 0 && CVRQuals == 0))
2304    return ATy;
2305
2306  // Otherwise, we have an array and we have qualifiers on it.  Push the
2307  // qualifiers into the array element type and return a new array type.
2308  // Get the canonical version of the element with the extra qualifiers on it.
2309  // This can recursively sink qualifiers through multiple levels of arrays.
2310  QualType NewEltTy = ATy->getElementType();
2311  if (AddrSpace)
2312    NewEltTy = getAddrSpaceQualType(NewEltTy, AddrSpace);
2313  NewEltTy = NewEltTy.getWithAdditionalQualifiers(CVRQuals);
2314
2315  if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(ATy))
2316    return cast<ArrayType>(getConstantArrayType(NewEltTy, CAT->getSize(),
2317                                                CAT->getSizeModifier(),
2318                                                CAT->getIndexTypeQualifier()));
2319  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(ATy))
2320    return cast<ArrayType>(getIncompleteArrayType(NewEltTy,
2321                                                  IAT->getSizeModifier(),
2322                                                  IAT->getIndexTypeQualifier()));
2323
2324  if (const DependentSizedArrayType *DSAT
2325        = dyn_cast<DependentSizedArrayType>(ATy))
2326    return cast<ArrayType>(
2327                     getDependentSizedArrayType(NewEltTy,
2328                                                DSAT->getSizeExpr() ?
2329                                              DSAT->getSizeExpr()->Retain() : 0,
2330                                                DSAT->getSizeModifier(),
2331                                                DSAT->getIndexTypeQualifier(),
2332                                                DSAT->getBracketsRange()));
2333
2334  const VariableArrayType *VAT = cast<VariableArrayType>(ATy);
2335  return cast<ArrayType>(getVariableArrayType(NewEltTy,
2336                                              VAT->getSizeExpr() ?
2337                                               VAT->getSizeExpr()->Retain() : 0,
2338                                              VAT->getSizeModifier(),
2339                                              VAT->getIndexTypeQualifier(),
2340                                              VAT->getBracketsRange()));
2341}
2342
2343
2344/// getArrayDecayedType - Return the properly qualified result of decaying the
2345/// specified array type to a pointer.  This operation is non-trivial when
2346/// handling typedefs etc.  The canonical type of "T" must be an array type,
2347/// this returns a pointer to a properly qualified element of the array.
2348///
2349/// See C99 6.7.5.3p7 and C99 6.3.2.1p3.
2350QualType ASTContext::getArrayDecayedType(QualType Ty) {
2351  // Get the element type with 'getAsArrayType' so that we don't lose any
2352  // typedefs in the element type of the array.  This also handles propagation
2353  // of type qualifiers from the array type into the element type if present
2354  // (C99 6.7.3p8).
2355  const ArrayType *PrettyArrayType = getAsArrayType(Ty);
2356  assert(PrettyArrayType && "Not an array type!");
2357
2358  QualType PtrTy = getPointerType(PrettyArrayType->getElementType());
2359
2360  // int x[restrict 4] ->  int *restrict
2361  return PtrTy.getQualifiedType(PrettyArrayType->getIndexTypeQualifier());
2362}
2363
2364QualType ASTContext::getBaseElementType(QualType QT) {
2365  QualifierSet qualifiers;
2366  while (true) {
2367    const Type *UT = qualifiers.strip(QT);
2368    if (const ArrayType *AT = getAsArrayType(QualType(UT,0))) {
2369      QT = AT->getElementType();
2370    } else {
2371      return qualifiers.apply(QT, *this);
2372    }
2373  }
2374}
2375
2376QualType ASTContext::getBaseElementType(const VariableArrayType *VAT) {
2377  QualType ElemTy = VAT->getElementType();
2378
2379  if (const VariableArrayType *VAT = getAsVariableArrayType(ElemTy))
2380    return getBaseElementType(VAT);
2381
2382  return ElemTy;
2383}
2384
2385/// getFloatingRank - Return a relative rank for floating point types.
2386/// This routine will assert if passed a built-in type that isn't a float.
2387static FloatingRank getFloatingRank(QualType T) {
2388  if (const ComplexType *CT = T->getAsComplexType())
2389    return getFloatingRank(CT->getElementType());
2390
2391  assert(T->getAsBuiltinType() && "getFloatingRank(): not a floating type");
2392  switch (T->getAsBuiltinType()->getKind()) {
2393  default: assert(0 && "getFloatingRank(): not a floating type");
2394  case BuiltinType::Float:      return FloatRank;
2395  case BuiltinType::Double:     return DoubleRank;
2396  case BuiltinType::LongDouble: return LongDoubleRank;
2397  }
2398}
2399
2400/// getFloatingTypeOfSizeWithinDomain - Returns a real floating
2401/// point or a complex type (based on typeDomain/typeSize).
2402/// 'typeDomain' is a real floating point or complex type.
2403/// 'typeSize' is a real floating point or complex type.
2404QualType ASTContext::getFloatingTypeOfSizeWithinDomain(QualType Size,
2405                                                       QualType Domain) const {
2406  FloatingRank EltRank = getFloatingRank(Size);
2407  if (Domain->isComplexType()) {
2408    switch (EltRank) {
2409    default: assert(0 && "getFloatingRank(): illegal value for rank");
2410    case FloatRank:      return FloatComplexTy;
2411    case DoubleRank:     return DoubleComplexTy;
2412    case LongDoubleRank: return LongDoubleComplexTy;
2413    }
2414  }
2415
2416  assert(Domain->isRealFloatingType() && "Unknown domain!");
2417  switch (EltRank) {
2418  default: assert(0 && "getFloatingRank(): illegal value for rank");
2419  case FloatRank:      return FloatTy;
2420  case DoubleRank:     return DoubleTy;
2421  case LongDoubleRank: return LongDoubleTy;
2422  }
2423}
2424
2425/// getFloatingTypeOrder - Compare the rank of the two specified floating
2426/// point types, ignoring the domain of the type (i.e. 'double' ==
2427/// '_Complex double').  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
2428/// LHS < RHS, return -1.
2429int ASTContext::getFloatingTypeOrder(QualType LHS, QualType RHS) {
2430  FloatingRank LHSR = getFloatingRank(LHS);
2431  FloatingRank RHSR = getFloatingRank(RHS);
2432
2433  if (LHSR == RHSR)
2434    return 0;
2435  if (LHSR > RHSR)
2436    return 1;
2437  return -1;
2438}
2439
2440/// getIntegerRank - Return an integer conversion rank (C99 6.3.1.1p1). This
2441/// routine will assert if passed a built-in type that isn't an integer or enum,
2442/// or if it is not canonicalized.
2443unsigned ASTContext::getIntegerRank(Type *T) {
2444  assert(T->isCanonical() && "T should be canonicalized");
2445  if (EnumType* ET = dyn_cast<EnumType>(T))
2446    T = ET->getDecl()->getIntegerType().getTypePtr();
2447
2448  if (T->isSpecificBuiltinType(BuiltinType::WChar))
2449    T = getFromTargetType(Target.getWCharType()).getTypePtr();
2450
2451  if (T->isSpecificBuiltinType(BuiltinType::Char16))
2452    T = getFromTargetType(Target.getChar16Type()).getTypePtr();
2453
2454  if (T->isSpecificBuiltinType(BuiltinType::Char32))
2455    T = getFromTargetType(Target.getChar32Type()).getTypePtr();
2456
2457  // There are two things which impact the integer rank: the width, and
2458  // the ordering of builtins.  The builtin ordering is encoded in the
2459  // bottom three bits; the width is encoded in the bits above that.
2460  if (FixedWidthIntType* FWIT = dyn_cast<FixedWidthIntType>(T))
2461    return FWIT->getWidth() << 3;
2462
2463  switch (cast<BuiltinType>(T)->getKind()) {
2464  default: assert(0 && "getIntegerRank(): not a built-in integer");
2465  case BuiltinType::Bool:
2466    return 1 + (getIntWidth(BoolTy) << 3);
2467  case BuiltinType::Char_S:
2468  case BuiltinType::Char_U:
2469  case BuiltinType::SChar:
2470  case BuiltinType::UChar:
2471    return 2 + (getIntWidth(CharTy) << 3);
2472  case BuiltinType::Short:
2473  case BuiltinType::UShort:
2474    return 3 + (getIntWidth(ShortTy) << 3);
2475  case BuiltinType::Int:
2476  case BuiltinType::UInt:
2477    return 4 + (getIntWidth(IntTy) << 3);
2478  case BuiltinType::Long:
2479  case BuiltinType::ULong:
2480    return 5 + (getIntWidth(LongTy) << 3);
2481  case BuiltinType::LongLong:
2482  case BuiltinType::ULongLong:
2483    return 6 + (getIntWidth(LongLongTy) << 3);
2484  case BuiltinType::Int128:
2485  case BuiltinType::UInt128:
2486    return 7 + (getIntWidth(Int128Ty) << 3);
2487  }
2488}
2489
2490/// getIntegerTypeOrder - Returns the highest ranked integer type:
2491/// C99 6.3.1.8p1.  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
2492/// LHS < RHS, return -1.
2493int ASTContext::getIntegerTypeOrder(QualType LHS, QualType RHS) {
2494  Type *LHSC = getCanonicalType(LHS).getTypePtr();
2495  Type *RHSC = getCanonicalType(RHS).getTypePtr();
2496  if (LHSC == RHSC) return 0;
2497
2498  bool LHSUnsigned = LHSC->isUnsignedIntegerType();
2499  bool RHSUnsigned = RHSC->isUnsignedIntegerType();
2500
2501  unsigned LHSRank = getIntegerRank(LHSC);
2502  unsigned RHSRank = getIntegerRank(RHSC);
2503
2504  if (LHSUnsigned == RHSUnsigned) {  // Both signed or both unsigned.
2505    if (LHSRank == RHSRank) return 0;
2506    return LHSRank > RHSRank ? 1 : -1;
2507  }
2508
2509  // Otherwise, the LHS is signed and the RHS is unsigned or visa versa.
2510  if (LHSUnsigned) {
2511    // If the unsigned [LHS] type is larger, return it.
2512    if (LHSRank >= RHSRank)
2513      return 1;
2514
2515    // If the signed type can represent all values of the unsigned type, it
2516    // wins.  Because we are dealing with 2's complement and types that are
2517    // powers of two larger than each other, this is always safe.
2518    return -1;
2519  }
2520
2521  // If the unsigned [RHS] type is larger, return it.
2522  if (RHSRank >= LHSRank)
2523    return -1;
2524
2525  // If the signed type can represent all values of the unsigned type, it
2526  // wins.  Because we are dealing with 2's complement and types that are
2527  // powers of two larger than each other, this is always safe.
2528  return 1;
2529}
2530
2531// getCFConstantStringType - Return the type used for constant CFStrings.
2532QualType ASTContext::getCFConstantStringType() {
2533  if (!CFConstantStringTypeDecl) {
2534    CFConstantStringTypeDecl =
2535      RecordDecl::Create(*this, TagDecl::TK_struct, TUDecl, SourceLocation(),
2536                         &Idents.get("NSConstantString"));
2537    QualType FieldTypes[4];
2538
2539    // const int *isa;
2540    FieldTypes[0] = getPointerType(IntTy.getQualifiedType(QualType::Const));
2541    // int flags;
2542    FieldTypes[1] = IntTy;
2543    // const char *str;
2544    FieldTypes[2] = getPointerType(CharTy.getQualifiedType(QualType::Const));
2545    // long length;
2546    FieldTypes[3] = LongTy;
2547
2548    // Create fields
2549    for (unsigned i = 0; i < 4; ++i) {
2550      FieldDecl *Field = FieldDecl::Create(*this, CFConstantStringTypeDecl,
2551                                           SourceLocation(), 0,
2552                                           FieldTypes[i], /*DInfo=*/0,
2553                                           /*BitWidth=*/0,
2554                                           /*Mutable=*/false);
2555      CFConstantStringTypeDecl->addDecl(Field);
2556    }
2557
2558    CFConstantStringTypeDecl->completeDefinition(*this);
2559  }
2560
2561  return getTagDeclType(CFConstantStringTypeDecl);
2562}
2563
2564void ASTContext::setCFConstantStringType(QualType T) {
2565  const RecordType *Rec = T->getAs<RecordType>();
2566  assert(Rec && "Invalid CFConstantStringType");
2567  CFConstantStringTypeDecl = Rec->getDecl();
2568}
2569
2570QualType ASTContext::getObjCFastEnumerationStateType()
2571{
2572  if (!ObjCFastEnumerationStateTypeDecl) {
2573    ObjCFastEnumerationStateTypeDecl =
2574      RecordDecl::Create(*this, TagDecl::TK_struct, TUDecl, SourceLocation(),
2575                         &Idents.get("__objcFastEnumerationState"));
2576
2577    QualType FieldTypes[] = {
2578      UnsignedLongTy,
2579      getPointerType(ObjCIdTypedefType),
2580      getPointerType(UnsignedLongTy),
2581      getConstantArrayType(UnsignedLongTy,
2582                           llvm::APInt(32, 5), ArrayType::Normal, 0)
2583    };
2584
2585    for (size_t i = 0; i < 4; ++i) {
2586      FieldDecl *Field = FieldDecl::Create(*this,
2587                                           ObjCFastEnumerationStateTypeDecl,
2588                                           SourceLocation(), 0,
2589                                           FieldTypes[i], /*DInfo=*/0,
2590                                           /*BitWidth=*/0,
2591                                           /*Mutable=*/false);
2592      ObjCFastEnumerationStateTypeDecl->addDecl(Field);
2593    }
2594
2595    ObjCFastEnumerationStateTypeDecl->completeDefinition(*this);
2596  }
2597
2598  return getTagDeclType(ObjCFastEnumerationStateTypeDecl);
2599}
2600
2601void ASTContext::setObjCFastEnumerationStateType(QualType T) {
2602  const RecordType *Rec = T->getAs<RecordType>();
2603  assert(Rec && "Invalid ObjCFAstEnumerationStateType");
2604  ObjCFastEnumerationStateTypeDecl = Rec->getDecl();
2605}
2606
2607// This returns true if a type has been typedefed to BOOL:
2608// typedef <type> BOOL;
2609static bool isTypeTypedefedAsBOOL(QualType T) {
2610  if (const TypedefType *TT = dyn_cast<TypedefType>(T))
2611    if (IdentifierInfo *II = TT->getDecl()->getIdentifier())
2612      return II->isStr("BOOL");
2613
2614  return false;
2615}
2616
2617/// getObjCEncodingTypeSize returns size of type for objective-c encoding
2618/// purpose.
2619int ASTContext::getObjCEncodingTypeSize(QualType type) {
2620  uint64_t sz = getTypeSize(type);
2621
2622  // Make all integer and enum types at least as large as an int
2623  if (sz > 0 && type->isIntegralType())
2624    sz = std::max(sz, getTypeSize(IntTy));
2625  // Treat arrays as pointers, since that's how they're passed in.
2626  else if (type->isArrayType())
2627    sz = getTypeSize(VoidPtrTy);
2628  return sz / getTypeSize(CharTy);
2629}
2630
2631/// getObjCEncodingForMethodDecl - Return the encoded type for this method
2632/// declaration.
2633void ASTContext::getObjCEncodingForMethodDecl(const ObjCMethodDecl *Decl,
2634                                              std::string& S) {
2635  // FIXME: This is not very efficient.
2636  // Encode type qualifer, 'in', 'inout', etc. for the return type.
2637  getObjCEncodingForTypeQualifier(Decl->getObjCDeclQualifier(), S);
2638  // Encode result type.
2639  getObjCEncodingForType(Decl->getResultType(), S);
2640  // Compute size of all parameters.
2641  // Start with computing size of a pointer in number of bytes.
2642  // FIXME: There might(should) be a better way of doing this computation!
2643  SourceLocation Loc;
2644  int PtrSize = getTypeSize(VoidPtrTy) / getTypeSize(CharTy);
2645  // The first two arguments (self and _cmd) are pointers; account for
2646  // their size.
2647  int ParmOffset = 2 * PtrSize;
2648  for (ObjCMethodDecl::param_iterator PI = Decl->param_begin(),
2649       E = Decl->param_end(); PI != E; ++PI) {
2650    QualType PType = (*PI)->getType();
2651    int sz = getObjCEncodingTypeSize(PType);
2652    assert (sz > 0 && "getObjCEncodingForMethodDecl - Incomplete param type");
2653    ParmOffset += sz;
2654  }
2655  S += llvm::utostr(ParmOffset);
2656  S += "@0:";
2657  S += llvm::utostr(PtrSize);
2658
2659  // Argument types.
2660  ParmOffset = 2 * PtrSize;
2661  for (ObjCMethodDecl::param_iterator PI = Decl->param_begin(),
2662       E = Decl->param_end(); PI != E; ++PI) {
2663    ParmVarDecl *PVDecl = *PI;
2664    QualType PType = PVDecl->getOriginalType();
2665    if (const ArrayType *AT =
2666          dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
2667      // Use array's original type only if it has known number of
2668      // elements.
2669      if (!isa<ConstantArrayType>(AT))
2670        PType = PVDecl->getType();
2671    } else if (PType->isFunctionType())
2672      PType = PVDecl->getType();
2673    // Process argument qualifiers for user supplied arguments; such as,
2674    // 'in', 'inout', etc.
2675    getObjCEncodingForTypeQualifier(PVDecl->getObjCDeclQualifier(), S);
2676    getObjCEncodingForType(PType, S);
2677    S += llvm::utostr(ParmOffset);
2678    ParmOffset += getObjCEncodingTypeSize(PType);
2679  }
2680}
2681
2682/// getObjCEncodingForPropertyDecl - Return the encoded type for this
2683/// property declaration. If non-NULL, Container must be either an
2684/// ObjCCategoryImplDecl or ObjCImplementationDecl; it should only be
2685/// NULL when getting encodings for protocol properties.
2686/// Property attributes are stored as a comma-delimited C string. The simple
2687/// attributes readonly and bycopy are encoded as single characters. The
2688/// parametrized attributes, getter=name, setter=name, and ivar=name, are
2689/// encoded as single characters, followed by an identifier. Property types
2690/// are also encoded as a parametrized attribute. The characters used to encode
2691/// these attributes are defined by the following enumeration:
2692/// @code
2693/// enum PropertyAttributes {
2694/// kPropertyReadOnly = 'R',   // property is read-only.
2695/// kPropertyBycopy = 'C',     // property is a copy of the value last assigned
2696/// kPropertyByref = '&',  // property is a reference to the value last assigned
2697/// kPropertyDynamic = 'D',    // property is dynamic
2698/// kPropertyGetter = 'G',     // followed by getter selector name
2699/// kPropertySetter = 'S',     // followed by setter selector name
2700/// kPropertyInstanceVariable = 'V'  // followed by instance variable  name
2701/// kPropertyType = 't'              // followed by old-style type encoding.
2702/// kPropertyWeak = 'W'              // 'weak' property
2703/// kPropertyStrong = 'P'            // property GC'able
2704/// kPropertyNonAtomic = 'N'         // property non-atomic
2705/// };
2706/// @endcode
2707void ASTContext::getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD,
2708                                                const Decl *Container,
2709                                                std::string& S) {
2710  // Collect information from the property implementation decl(s).
2711  bool Dynamic = false;
2712  ObjCPropertyImplDecl *SynthesizePID = 0;
2713
2714  // FIXME: Duplicated code due to poor abstraction.
2715  if (Container) {
2716    if (const ObjCCategoryImplDecl *CID =
2717        dyn_cast<ObjCCategoryImplDecl>(Container)) {
2718      for (ObjCCategoryImplDecl::propimpl_iterator
2719             i = CID->propimpl_begin(), e = CID->propimpl_end();
2720           i != e; ++i) {
2721        ObjCPropertyImplDecl *PID = *i;
2722        if (PID->getPropertyDecl() == PD) {
2723          if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) {
2724            Dynamic = true;
2725          } else {
2726            SynthesizePID = PID;
2727          }
2728        }
2729      }
2730    } else {
2731      const ObjCImplementationDecl *OID=cast<ObjCImplementationDecl>(Container);
2732      for (ObjCCategoryImplDecl::propimpl_iterator
2733             i = OID->propimpl_begin(), e = OID->propimpl_end();
2734           i != e; ++i) {
2735        ObjCPropertyImplDecl *PID = *i;
2736        if (PID->getPropertyDecl() == PD) {
2737          if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) {
2738            Dynamic = true;
2739          } else {
2740            SynthesizePID = PID;
2741          }
2742        }
2743      }
2744    }
2745  }
2746
2747  // FIXME: This is not very efficient.
2748  S = "T";
2749
2750  // Encode result type.
2751  // GCC has some special rules regarding encoding of properties which
2752  // closely resembles encoding of ivars.
2753  getObjCEncodingForTypeImpl(PD->getType(), S, true, true, 0,
2754                             true /* outermost type */,
2755                             true /* encoding for property */);
2756
2757  if (PD->isReadOnly()) {
2758    S += ",R";
2759  } else {
2760    switch (PD->getSetterKind()) {
2761    case ObjCPropertyDecl::Assign: break;
2762    case ObjCPropertyDecl::Copy:   S += ",C"; break;
2763    case ObjCPropertyDecl::Retain: S += ",&"; break;
2764    }
2765  }
2766
2767  // It really isn't clear at all what this means, since properties
2768  // are "dynamic by default".
2769  if (Dynamic)
2770    S += ",D";
2771
2772  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_nonatomic)
2773    S += ",N";
2774
2775  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_getter) {
2776    S += ",G";
2777    S += PD->getGetterName().getAsString();
2778  }
2779
2780  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_setter) {
2781    S += ",S";
2782    S += PD->getSetterName().getAsString();
2783  }
2784
2785  if (SynthesizePID) {
2786    const ObjCIvarDecl *OID = SynthesizePID->getPropertyIvarDecl();
2787    S += ",V";
2788    S += OID->getNameAsString();
2789  }
2790
2791  // FIXME: OBJCGC: weak & strong
2792}
2793
2794/// getLegacyIntegralTypeEncoding -
2795/// Another legacy compatibility encoding: 32-bit longs are encoded as
2796/// 'l' or 'L' , but not always.  For typedefs, we need to use
2797/// 'i' or 'I' instead if encoding a struct field, or a pointer!
2798///
2799void ASTContext::getLegacyIntegralTypeEncoding (QualType &PointeeTy) const {
2800  if (isa<TypedefType>(PointeeTy.getTypePtr())) {
2801    if (const BuiltinType *BT = PointeeTy->getAsBuiltinType()) {
2802      if (BT->getKind() == BuiltinType::ULong &&
2803          ((const_cast<ASTContext *>(this))->getIntWidth(PointeeTy) == 32))
2804        PointeeTy = UnsignedIntTy;
2805      else
2806        if (BT->getKind() == BuiltinType::Long &&
2807            ((const_cast<ASTContext *>(this))->getIntWidth(PointeeTy) == 32))
2808          PointeeTy = IntTy;
2809    }
2810  }
2811}
2812
2813void ASTContext::getObjCEncodingForType(QualType T, std::string& S,
2814                                        const FieldDecl *Field) {
2815  // We follow the behavior of gcc, expanding structures which are
2816  // directly pointed to, and expanding embedded structures. Note that
2817  // these rules are sufficient to prevent recursive encoding of the
2818  // same type.
2819  getObjCEncodingForTypeImpl(T, S, true, true, Field,
2820                             true /* outermost type */);
2821}
2822
2823static void EncodeBitField(const ASTContext *Context, std::string& S,
2824                           const FieldDecl *FD) {
2825  const Expr *E = FD->getBitWidth();
2826  assert(E && "bitfield width not there - getObjCEncodingForTypeImpl");
2827  ASTContext *Ctx = const_cast<ASTContext*>(Context);
2828  unsigned N = E->EvaluateAsInt(*Ctx).getZExtValue();
2829  S += 'b';
2830  S += llvm::utostr(N);
2831}
2832
2833void ASTContext::getObjCEncodingForTypeImpl(QualType T, std::string& S,
2834                                            bool ExpandPointedToStructures,
2835                                            bool ExpandStructures,
2836                                            const FieldDecl *FD,
2837                                            bool OutermostType,
2838                                            bool EncodingProperty) {
2839  if (const BuiltinType *BT = T->getAsBuiltinType()) {
2840    if (FD && FD->isBitField())
2841      return EncodeBitField(this, S, FD);
2842    char encoding;
2843    switch (BT->getKind()) {
2844    default: assert(0 && "Unhandled builtin type kind");
2845    case BuiltinType::Void:       encoding = 'v'; break;
2846    case BuiltinType::Bool:       encoding = 'B'; break;
2847    case BuiltinType::Char_U:
2848    case BuiltinType::UChar:      encoding = 'C'; break;
2849    case BuiltinType::UShort:     encoding = 'S'; break;
2850    case BuiltinType::UInt:       encoding = 'I'; break;
2851    case BuiltinType::ULong:
2852        encoding =
2853          (const_cast<ASTContext *>(this))->getIntWidth(T) == 32 ? 'L' : 'Q';
2854        break;
2855    case BuiltinType::UInt128:    encoding = 'T'; break;
2856    case BuiltinType::ULongLong:  encoding = 'Q'; break;
2857    case BuiltinType::Char_S:
2858    case BuiltinType::SChar:      encoding = 'c'; break;
2859    case BuiltinType::Short:      encoding = 's'; break;
2860    case BuiltinType::Int:        encoding = 'i'; break;
2861    case BuiltinType::Long:
2862      encoding =
2863        (const_cast<ASTContext *>(this))->getIntWidth(T) == 32 ? 'l' : 'q';
2864      break;
2865    case BuiltinType::LongLong:   encoding = 'q'; break;
2866    case BuiltinType::Int128:     encoding = 't'; break;
2867    case BuiltinType::Float:      encoding = 'f'; break;
2868    case BuiltinType::Double:     encoding = 'd'; break;
2869    case BuiltinType::LongDouble: encoding = 'd'; break;
2870    }
2871
2872    S += encoding;
2873    return;
2874  }
2875
2876  if (const ComplexType *CT = T->getAsComplexType()) {
2877    S += 'j';
2878    getObjCEncodingForTypeImpl(CT->getElementType(), S, false, false, 0, false,
2879                               false);
2880    return;
2881  }
2882
2883  if (const PointerType *PT = T->getAs<PointerType>()) {
2884    QualType PointeeTy = PT->getPointeeType();
2885    bool isReadOnly = false;
2886    // For historical/compatibility reasons, the read-only qualifier of the
2887    // pointee gets emitted _before_ the '^'.  The read-only qualifier of
2888    // the pointer itself gets ignored, _unless_ we are looking at a typedef!
2889    // Also, do not emit the 'r' for anything but the outermost type!
2890    if (isa<TypedefType>(T.getTypePtr())) {
2891      if (OutermostType && T.isConstQualified()) {
2892        isReadOnly = true;
2893        S += 'r';
2894      }
2895    } else if (OutermostType) {
2896      QualType P = PointeeTy;
2897      while (P->getAs<PointerType>())
2898        P = P->getAs<PointerType>()->getPointeeType();
2899      if (P.isConstQualified()) {
2900        isReadOnly = true;
2901        S += 'r';
2902      }
2903    }
2904    if (isReadOnly) {
2905      // Another legacy compatibility encoding. Some ObjC qualifier and type
2906      // combinations need to be rearranged.
2907      // Rewrite "in const" from "nr" to "rn"
2908      const char * s = S.c_str();
2909      int len = S.length();
2910      if (len >= 2 && s[len-2] == 'n' && s[len-1] == 'r') {
2911        std::string replace = "rn";
2912        S.replace(S.end()-2, S.end(), replace);
2913      }
2914    }
2915    if (isObjCSelType(PointeeTy)) {
2916      S += ':';
2917      return;
2918    }
2919
2920    if (PointeeTy->isCharType()) {
2921      // char pointer types should be encoded as '*' unless it is a
2922      // type that has been typedef'd to 'BOOL'.
2923      if (!isTypeTypedefedAsBOOL(PointeeTy)) {
2924        S += '*';
2925        return;
2926      }
2927    } else if (const RecordType *RTy = PointeeTy->getAs<RecordType>()) {
2928      // GCC binary compat: Need to convert "struct objc_class *" to "#".
2929      if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_class")) {
2930        S += '#';
2931        return;
2932      }
2933      // GCC binary compat: Need to convert "struct objc_object *" to "@".
2934      if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_object")) {
2935        S += '@';
2936        return;
2937      }
2938      // fall through...
2939    }
2940    S += '^';
2941    getLegacyIntegralTypeEncoding(PointeeTy);
2942
2943    getObjCEncodingForTypeImpl(PointeeTy, S, false, ExpandPointedToStructures,
2944                               NULL);
2945    return;
2946  }
2947
2948  if (const ArrayType *AT =
2949      // Ignore type qualifiers etc.
2950        dyn_cast<ArrayType>(T->getCanonicalTypeInternal())) {
2951    if (isa<IncompleteArrayType>(AT)) {
2952      // Incomplete arrays are encoded as a pointer to the array element.
2953      S += '^';
2954
2955      getObjCEncodingForTypeImpl(AT->getElementType(), S,
2956                                 false, ExpandStructures, FD);
2957    } else {
2958      S += '[';
2959
2960      if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
2961        S += llvm::utostr(CAT->getSize().getZExtValue());
2962      else {
2963        //Variable length arrays are encoded as a regular array with 0 elements.
2964        assert(isa<VariableArrayType>(AT) && "Unknown array type!");
2965        S += '0';
2966      }
2967
2968      getObjCEncodingForTypeImpl(AT->getElementType(), S,
2969                                 false, ExpandStructures, FD);
2970      S += ']';
2971    }
2972    return;
2973  }
2974
2975  if (T->getAsFunctionType()) {
2976    S += '?';
2977    return;
2978  }
2979
2980  if (const RecordType *RTy = T->getAs<RecordType>()) {
2981    RecordDecl *RDecl = RTy->getDecl();
2982    S += RDecl->isUnion() ? '(' : '{';
2983    // Anonymous structures print as '?'
2984    if (const IdentifierInfo *II = RDecl->getIdentifier()) {
2985      S += II->getName();
2986    } else {
2987      S += '?';
2988    }
2989    if (ExpandStructures) {
2990      S += '=';
2991      for (RecordDecl::field_iterator Field = RDecl->field_begin(),
2992                                   FieldEnd = RDecl->field_end();
2993           Field != FieldEnd; ++Field) {
2994        if (FD) {
2995          S += '"';
2996          S += Field->getNameAsString();
2997          S += '"';
2998        }
2999
3000        // Special case bit-fields.
3001        if (Field->isBitField()) {
3002          getObjCEncodingForTypeImpl(Field->getType(), S, false, true,
3003                                     (*Field));
3004        } else {
3005          QualType qt = Field->getType();
3006          getLegacyIntegralTypeEncoding(qt);
3007          getObjCEncodingForTypeImpl(qt, S, false, true,
3008                                     FD);
3009        }
3010      }
3011    }
3012    S += RDecl->isUnion() ? ')' : '}';
3013    return;
3014  }
3015
3016  if (T->isEnumeralType()) {
3017    if (FD && FD->isBitField())
3018      EncodeBitField(this, S, FD);
3019    else
3020      S += 'i';
3021    return;
3022  }
3023
3024  if (T->isBlockPointerType()) {
3025    S += "@?"; // Unlike a pointer-to-function, which is "^?".
3026    return;
3027  }
3028
3029  if (T->isObjCInterfaceType()) {
3030    // @encode(class_name)
3031    ObjCInterfaceDecl *OI = T->getAsObjCInterfaceType()->getDecl();
3032    S += '{';
3033    const IdentifierInfo *II = OI->getIdentifier();
3034    S += II->getName();
3035    S += '=';
3036    llvm::SmallVector<FieldDecl*, 32> RecFields;
3037    CollectObjCIvars(OI, RecFields);
3038    for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
3039      if (RecFields[i]->isBitField())
3040        getObjCEncodingForTypeImpl(RecFields[i]->getType(), S, false, true,
3041                                   RecFields[i]);
3042      else
3043        getObjCEncodingForTypeImpl(RecFields[i]->getType(), S, false, true,
3044                                   FD);
3045    }
3046    S += '}';
3047    return;
3048  }
3049
3050  if (const ObjCObjectPointerType *OPT = T->getAsObjCObjectPointerType()) {
3051    if (OPT->isObjCIdType()) {
3052      S += '@';
3053      return;
3054    }
3055
3056    if (OPT->isObjCClassType()) {
3057      S += '#';
3058      return;
3059    }
3060
3061    if (OPT->isObjCQualifiedIdType()) {
3062      getObjCEncodingForTypeImpl(getObjCIdType(), S,
3063                                 ExpandPointedToStructures,
3064                                 ExpandStructures, FD);
3065      if (FD || EncodingProperty) {
3066        // Note that we do extended encoding of protocol qualifer list
3067        // Only when doing ivar or property encoding.
3068        S += '"';
3069        for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(),
3070             E = OPT->qual_end(); I != E; ++I) {
3071          S += '<';
3072          S += (*I)->getNameAsString();
3073          S += '>';
3074        }
3075        S += '"';
3076      }
3077      return;
3078    }
3079
3080    QualType PointeeTy = OPT->getPointeeType();
3081    if (!EncodingProperty &&
3082        isa<TypedefType>(PointeeTy.getTypePtr())) {
3083      // Another historical/compatibility reason.
3084      // We encode the underlying type which comes out as
3085      // {...};
3086      S += '^';
3087      getObjCEncodingForTypeImpl(PointeeTy, S,
3088                                 false, ExpandPointedToStructures,
3089                                 NULL);
3090      return;
3091    }
3092
3093    S += '@';
3094    if (FD || EncodingProperty) {
3095      S += '"';
3096      S += OPT->getInterfaceDecl()->getNameAsCString();
3097      for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(),
3098           E = OPT->qual_end(); I != E; ++I) {
3099        S += '<';
3100        S += (*I)->getNameAsString();
3101        S += '>';
3102      }
3103      S += '"';
3104    }
3105    return;
3106  }
3107
3108  assert(0 && "@encode for type not implemented!");
3109}
3110
3111void ASTContext::getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT,
3112                                                 std::string& S) const {
3113  if (QT & Decl::OBJC_TQ_In)
3114    S += 'n';
3115  if (QT & Decl::OBJC_TQ_Inout)
3116    S += 'N';
3117  if (QT & Decl::OBJC_TQ_Out)
3118    S += 'o';
3119  if (QT & Decl::OBJC_TQ_Bycopy)
3120    S += 'O';
3121  if (QT & Decl::OBJC_TQ_Byref)
3122    S += 'R';
3123  if (QT & Decl::OBJC_TQ_Oneway)
3124    S += 'V';
3125}
3126
3127void ASTContext::setBuiltinVaListType(QualType T) {
3128  assert(BuiltinVaListType.isNull() && "__builtin_va_list type already set!");
3129
3130  BuiltinVaListType = T;
3131}
3132
3133void ASTContext::setObjCIdType(QualType T) {
3134  ObjCIdTypedefType = T;
3135}
3136
3137void ASTContext::setObjCSelType(QualType T) {
3138  ObjCSelType = T;
3139
3140  const TypedefType *TT = T->getAsTypedefType();
3141  if (!TT)
3142    return;
3143  TypedefDecl *TD = TT->getDecl();
3144
3145  // typedef struct objc_selector *SEL;
3146  const PointerType *ptr = TD->getUnderlyingType()->getAs<PointerType>();
3147  if (!ptr)
3148    return;
3149  const RecordType *rec = ptr->getPointeeType()->getAsStructureType();
3150  if (!rec)
3151    return;
3152  SelStructType = rec;
3153}
3154
3155void ASTContext::setObjCProtoType(QualType QT) {
3156  ObjCProtoType = QT;
3157}
3158
3159void ASTContext::setObjCClassType(QualType T) {
3160  ObjCClassTypedefType = T;
3161}
3162
3163void ASTContext::setObjCConstantStringInterface(ObjCInterfaceDecl *Decl) {
3164  assert(ObjCConstantStringType.isNull() &&
3165         "'NSConstantString' type already set!");
3166
3167  ObjCConstantStringType = getObjCInterfaceType(Decl);
3168}
3169
3170/// \brief Retrieve the template name that represents a qualified
3171/// template name such as \c std::vector.
3172TemplateName ASTContext::getQualifiedTemplateName(NestedNameSpecifier *NNS,
3173                                                  bool TemplateKeyword,
3174                                                  TemplateDecl *Template) {
3175  llvm::FoldingSetNodeID ID;
3176  QualifiedTemplateName::Profile(ID, NNS, TemplateKeyword, Template);
3177
3178  void *InsertPos = 0;
3179  QualifiedTemplateName *QTN =
3180    QualifiedTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
3181  if (!QTN) {
3182    QTN = new (*this,4) QualifiedTemplateName(NNS, TemplateKeyword, Template);
3183    QualifiedTemplateNames.InsertNode(QTN, InsertPos);
3184  }
3185
3186  return TemplateName(QTN);
3187}
3188
3189/// \brief Retrieve the template name that represents a qualified
3190/// template name such as \c std::vector.
3191TemplateName ASTContext::getQualifiedTemplateName(NestedNameSpecifier *NNS,
3192                                                  bool TemplateKeyword,
3193                                            OverloadedFunctionDecl *Template) {
3194  llvm::FoldingSetNodeID ID;
3195  QualifiedTemplateName::Profile(ID, NNS, TemplateKeyword, Template);
3196
3197  void *InsertPos = 0;
3198  QualifiedTemplateName *QTN =
3199  QualifiedTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
3200  if (!QTN) {
3201    QTN = new (*this,4) QualifiedTemplateName(NNS, TemplateKeyword, Template);
3202    QualifiedTemplateNames.InsertNode(QTN, InsertPos);
3203  }
3204
3205  return TemplateName(QTN);
3206}
3207
3208/// \brief Retrieve the template name that represents a dependent
3209/// template name such as \c MetaFun::template apply.
3210TemplateName ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
3211                                                  const IdentifierInfo *Name) {
3212  assert(NNS->isDependent() && "Nested name specifier must be dependent");
3213
3214  llvm::FoldingSetNodeID ID;
3215  DependentTemplateName::Profile(ID, NNS, Name);
3216
3217  void *InsertPos = 0;
3218  DependentTemplateName *QTN =
3219    DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
3220
3221  if (QTN)
3222    return TemplateName(QTN);
3223
3224  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
3225  if (CanonNNS == NNS) {
3226    QTN = new (*this,4) DependentTemplateName(NNS, Name);
3227  } else {
3228    TemplateName Canon = getDependentTemplateName(CanonNNS, Name);
3229    QTN = new (*this,4) DependentTemplateName(NNS, Name, Canon);
3230  }
3231
3232  DependentTemplateNames.InsertNode(QTN, InsertPos);
3233  return TemplateName(QTN);
3234}
3235
3236/// getFromTargetType - Given one of the integer types provided by
3237/// TargetInfo, produce the corresponding type. The unsigned @p Type
3238/// is actually a value of type @c TargetInfo::IntType.
3239QualType ASTContext::getFromTargetType(unsigned Type) const {
3240  switch (Type) {
3241  case TargetInfo::NoInt: return QualType();
3242  case TargetInfo::SignedShort: return ShortTy;
3243  case TargetInfo::UnsignedShort: return UnsignedShortTy;
3244  case TargetInfo::SignedInt: return IntTy;
3245  case TargetInfo::UnsignedInt: return UnsignedIntTy;
3246  case TargetInfo::SignedLong: return LongTy;
3247  case TargetInfo::UnsignedLong: return UnsignedLongTy;
3248  case TargetInfo::SignedLongLong: return LongLongTy;
3249  case TargetInfo::UnsignedLongLong: return UnsignedLongLongTy;
3250  }
3251
3252  assert(false && "Unhandled TargetInfo::IntType value");
3253  return QualType();
3254}
3255
3256//===----------------------------------------------------------------------===//
3257//                        Type Predicates.
3258//===----------------------------------------------------------------------===//
3259
3260/// isObjCNSObjectType - Return true if this is an NSObject object using
3261/// NSObject attribute on a c-style pointer type.
3262/// FIXME - Make it work directly on types.
3263/// FIXME: Move to Type.
3264///
3265bool ASTContext::isObjCNSObjectType(QualType Ty) const {
3266  if (TypedefType *TDT = dyn_cast<TypedefType>(Ty)) {
3267    if (TypedefDecl *TD = TDT->getDecl())
3268      if (TD->getAttr<ObjCNSObjectAttr>())
3269        return true;
3270  }
3271  return false;
3272}
3273
3274/// getObjCGCAttr - Returns one of GCNone, Weak or Strong objc's
3275/// garbage collection attribute.
3276///
3277QualType::GCAttrTypes ASTContext::getObjCGCAttrKind(const QualType &Ty) const {
3278  QualType::GCAttrTypes GCAttrs = QualType::GCNone;
3279  if (getLangOptions().ObjC1 &&
3280      getLangOptions().getGCMode() != LangOptions::NonGC) {
3281    GCAttrs = Ty.getObjCGCAttr();
3282    // Default behavious under objective-c's gc is for objective-c pointers
3283    // (or pointers to them) be treated as though they were declared
3284    // as __strong.
3285    if (GCAttrs == QualType::GCNone) {
3286      if (Ty->isObjCObjectPointerType())
3287        GCAttrs = QualType::Strong;
3288      else if (Ty->isPointerType())
3289        return getObjCGCAttrKind(Ty->getAs<PointerType>()->getPointeeType());
3290    }
3291    // Non-pointers have none gc'able attribute regardless of the attribute
3292    // set on them.
3293    else if (!Ty->isAnyPointerType() && !Ty->isBlockPointerType())
3294      return QualType::GCNone;
3295  }
3296  return GCAttrs;
3297}
3298
3299//===----------------------------------------------------------------------===//
3300//                        Type Compatibility Testing
3301//===----------------------------------------------------------------------===//
3302
3303/// areCompatVectorTypes - Return true if the two specified vector types are
3304/// compatible.
3305static bool areCompatVectorTypes(const VectorType *LHS,
3306                                 const VectorType *RHS) {
3307  assert(LHS->isCanonical() && RHS->isCanonical());
3308  return LHS->getElementType() == RHS->getElementType() &&
3309         LHS->getNumElements() == RHS->getNumElements();
3310}
3311
3312//===----------------------------------------------------------------------===//
3313// ObjCQualifiedIdTypesAreCompatible - Compatibility testing for qualified id's.
3314//===----------------------------------------------------------------------===//
3315
3316/// ProtocolCompatibleWithProtocol - return 'true' if 'lProto' is in the
3317/// inheritance hierarchy of 'rProto'.
3318bool ASTContext::ProtocolCompatibleWithProtocol(ObjCProtocolDecl *lProto,
3319                                                ObjCProtocolDecl *rProto) {
3320  if (lProto == rProto)
3321    return true;
3322  for (ObjCProtocolDecl::protocol_iterator PI = rProto->protocol_begin(),
3323       E = rProto->protocol_end(); PI != E; ++PI)
3324    if (ProtocolCompatibleWithProtocol(lProto, *PI))
3325      return true;
3326  return false;
3327}
3328
3329/// QualifiedIdConformsQualifiedId - compare id<p,...> with id<p1,...>
3330/// return true if lhs's protocols conform to rhs's protocol; false
3331/// otherwise.
3332bool ASTContext::QualifiedIdConformsQualifiedId(QualType lhs, QualType rhs) {
3333  if (lhs->isObjCQualifiedIdType() && rhs->isObjCQualifiedIdType())
3334    return ObjCQualifiedIdTypesAreCompatible(lhs, rhs, false);
3335  return false;
3336}
3337
3338/// ObjCQualifiedIdTypesAreCompatible - We know that one of lhs/rhs is an
3339/// ObjCQualifiedIDType.
3340bool ASTContext::ObjCQualifiedIdTypesAreCompatible(QualType lhs, QualType rhs,
3341                                                   bool compare) {
3342  // Allow id<P..> and an 'id' or void* type in all cases.
3343  if (lhs->isVoidPointerType() ||
3344      lhs->isObjCIdType() || lhs->isObjCClassType())
3345    return true;
3346  else if (rhs->isVoidPointerType() ||
3347           rhs->isObjCIdType() || rhs->isObjCClassType())
3348    return true;
3349
3350  if (const ObjCObjectPointerType *lhsQID = lhs->getAsObjCQualifiedIdType()) {
3351    const ObjCObjectPointerType *rhsOPT = rhs->getAsObjCObjectPointerType();
3352
3353    if (!rhsOPT) return false;
3354
3355    if (rhsOPT->qual_empty()) {
3356      // If the RHS is a unqualified interface pointer "NSString*",
3357      // make sure we check the class hierarchy.
3358      if (ObjCInterfaceDecl *rhsID = rhsOPT->getInterfaceDecl()) {
3359        for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
3360             E = lhsQID->qual_end(); I != E; ++I) {
3361          // when comparing an id<P> on lhs with a static type on rhs,
3362          // see if static class implements all of id's protocols, directly or
3363          // through its super class and categories.
3364          if (!rhsID->ClassImplementsProtocol(*I, true))
3365            return false;
3366        }
3367      }
3368      // If there are no qualifiers and no interface, we have an 'id'.
3369      return true;
3370    }
3371    // Both the right and left sides have qualifiers.
3372    for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
3373         E = lhsQID->qual_end(); I != E; ++I) {
3374      ObjCProtocolDecl *lhsProto = *I;
3375      bool match = false;
3376
3377      // when comparing an id<P> on lhs with a static type on rhs,
3378      // see if static class implements all of id's protocols, directly or
3379      // through its super class and categories.
3380      for (ObjCObjectPointerType::qual_iterator J = rhsOPT->qual_begin(),
3381           E = rhsOPT->qual_end(); J != E; ++J) {
3382        ObjCProtocolDecl *rhsProto = *J;
3383        if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
3384            (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
3385          match = true;
3386          break;
3387        }
3388      }
3389      // If the RHS is a qualified interface pointer "NSString<P>*",
3390      // make sure we check the class hierarchy.
3391      if (ObjCInterfaceDecl *rhsID = rhsOPT->getInterfaceDecl()) {
3392        for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
3393             E = lhsQID->qual_end(); I != E; ++I) {
3394          // when comparing an id<P> on lhs with a static type on rhs,
3395          // see if static class implements all of id's protocols, directly or
3396          // through its super class and categories.
3397          if (rhsID->ClassImplementsProtocol(*I, true)) {
3398            match = true;
3399            break;
3400          }
3401        }
3402      }
3403      if (!match)
3404        return false;
3405    }
3406
3407    return true;
3408  }
3409
3410  const ObjCObjectPointerType *rhsQID = rhs->getAsObjCQualifiedIdType();
3411  assert(rhsQID && "One of the LHS/RHS should be id<x>");
3412
3413  if (const ObjCObjectPointerType *lhsOPT =
3414        lhs->getAsObjCInterfacePointerType()) {
3415    if (lhsOPT->qual_empty()) {
3416      bool match = false;
3417      if (ObjCInterfaceDecl *lhsID = lhsOPT->getInterfaceDecl()) {
3418        for (ObjCObjectPointerType::qual_iterator I = rhsQID->qual_begin(),
3419             E = rhsQID->qual_end(); I != E; ++I) {
3420          // when comparing an id<P> on lhs with a static type on rhs,
3421          // see if static class implements all of id's protocols, directly or
3422          // through its super class and categories.
3423          if (lhsID->ClassImplementsProtocol(*I, true)) {
3424            match = true;
3425            break;
3426          }
3427        }
3428        if (!match)
3429          return false;
3430      }
3431      return true;
3432    }
3433    // Both the right and left sides have qualifiers.
3434    for (ObjCObjectPointerType::qual_iterator I = lhsOPT->qual_begin(),
3435         E = lhsOPT->qual_end(); I != E; ++I) {
3436      ObjCProtocolDecl *lhsProto = *I;
3437      bool match = false;
3438
3439      // when comparing an id<P> on lhs with a static type on rhs,
3440      // see if static class implements all of id's protocols, directly or
3441      // through its super class and categories.
3442      for (ObjCObjectPointerType::qual_iterator J = rhsQID->qual_begin(),
3443           E = rhsQID->qual_end(); J != E; ++J) {
3444        ObjCProtocolDecl *rhsProto = *J;
3445        if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
3446            (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
3447          match = true;
3448          break;
3449        }
3450      }
3451      if (!match)
3452        return false;
3453    }
3454    return true;
3455  }
3456  return false;
3457}
3458
3459/// canAssignObjCInterfaces - Return true if the two interface types are
3460/// compatible for assignment from RHS to LHS.  This handles validation of any
3461/// protocol qualifiers on the LHS or RHS.
3462///
3463bool ASTContext::canAssignObjCInterfaces(const ObjCObjectPointerType *LHSOPT,
3464                                         const ObjCObjectPointerType *RHSOPT) {
3465  // If either type represents the built-in 'id' or 'Class' types, return true.
3466  if (LHSOPT->isObjCBuiltinType() || RHSOPT->isObjCBuiltinType())
3467    return true;
3468
3469  if (LHSOPT->isObjCQualifiedIdType() || RHSOPT->isObjCQualifiedIdType())
3470    return ObjCQualifiedIdTypesAreCompatible(QualType(LHSOPT,0),
3471                                             QualType(RHSOPT,0),
3472                                             false);
3473
3474  const ObjCInterfaceType* LHS = LHSOPT->getInterfaceType();
3475  const ObjCInterfaceType* RHS = RHSOPT->getInterfaceType();
3476  if (LHS && RHS) // We have 2 user-defined types.
3477    return canAssignObjCInterfaces(LHS, RHS);
3478
3479  return false;
3480}
3481
3482bool ASTContext::canAssignObjCInterfaces(const ObjCInterfaceType *LHS,
3483                                         const ObjCInterfaceType *RHS) {
3484  // Verify that the base decls are compatible: the RHS must be a subclass of
3485  // the LHS.
3486  if (!LHS->getDecl()->isSuperClassOf(RHS->getDecl()))
3487    return false;
3488
3489  // RHS must have a superset of the protocols in the LHS.  If the LHS is not
3490  // protocol qualified at all, then we are good.
3491  if (LHS->getNumProtocols() == 0)
3492    return true;
3493
3494  // Okay, we know the LHS has protocol qualifiers.  If the RHS doesn't, then it
3495  // isn't a superset.
3496  if (RHS->getNumProtocols() == 0)
3497    return true;  // FIXME: should return false!
3498
3499  for (ObjCInterfaceType::qual_iterator LHSPI = LHS->qual_begin(),
3500                                        LHSPE = LHS->qual_end();
3501       LHSPI != LHSPE; LHSPI++) {
3502    bool RHSImplementsProtocol = false;
3503
3504    // If the RHS doesn't implement the protocol on the left, the types
3505    // are incompatible.
3506    for (ObjCInterfaceType::qual_iterator RHSPI = RHS->qual_begin(),
3507                                          RHSPE = RHS->qual_end();
3508         RHSPI != RHSPE; RHSPI++) {
3509      if ((*RHSPI)->lookupProtocolNamed((*LHSPI)->getIdentifier())) {
3510        RHSImplementsProtocol = true;
3511        break;
3512      }
3513    }
3514    // FIXME: For better diagnostics, consider passing back the protocol name.
3515    if (!RHSImplementsProtocol)
3516      return false;
3517  }
3518  // The RHS implements all protocols listed on the LHS.
3519  return true;
3520}
3521
3522bool ASTContext::areComparableObjCPointerTypes(QualType LHS, QualType RHS) {
3523  // get the "pointed to" types
3524  const ObjCObjectPointerType *LHSOPT = LHS->getAsObjCObjectPointerType();
3525  const ObjCObjectPointerType *RHSOPT = RHS->getAsObjCObjectPointerType();
3526
3527  if (!LHSOPT || !RHSOPT)
3528    return false;
3529
3530  return canAssignObjCInterfaces(LHSOPT, RHSOPT) ||
3531         canAssignObjCInterfaces(RHSOPT, LHSOPT);
3532}
3533
3534/// typesAreCompatible - C99 6.7.3p9: For two qualified types to be compatible,
3535/// both shall have the identically qualified version of a compatible type.
3536/// C99 6.2.7p1: Two types have compatible types if their types are the
3537/// same. See 6.7.[2,3,5] for additional rules.
3538bool ASTContext::typesAreCompatible(QualType LHS, QualType RHS) {
3539  return !mergeTypes(LHS, RHS).isNull();
3540}
3541
3542QualType ASTContext::mergeFunctionTypes(QualType lhs, QualType rhs) {
3543  const FunctionType *lbase = lhs->getAsFunctionType();
3544  const FunctionType *rbase = rhs->getAsFunctionType();
3545  const FunctionProtoType *lproto = dyn_cast<FunctionProtoType>(lbase);
3546  const FunctionProtoType *rproto = dyn_cast<FunctionProtoType>(rbase);
3547  bool allLTypes = true;
3548  bool allRTypes = true;
3549
3550  // Check return type
3551  QualType retType = mergeTypes(lbase->getResultType(), rbase->getResultType());
3552  if (retType.isNull()) return QualType();
3553  if (getCanonicalType(retType) != getCanonicalType(lbase->getResultType()))
3554    allLTypes = false;
3555  if (getCanonicalType(retType) != getCanonicalType(rbase->getResultType()))
3556    allRTypes = false;
3557  // FIXME: double check this
3558  bool NoReturn = lbase->getNoReturnAttr() || rbase->getNoReturnAttr();
3559  if (NoReturn != lbase->getNoReturnAttr())
3560    allLTypes = false;
3561  if (NoReturn != rbase->getNoReturnAttr())
3562    allRTypes = false;
3563
3564  if (lproto && rproto) { // two C99 style function prototypes
3565    assert(!lproto->hasExceptionSpec() && !rproto->hasExceptionSpec() &&
3566           "C++ shouldn't be here");
3567    unsigned lproto_nargs = lproto->getNumArgs();
3568    unsigned rproto_nargs = rproto->getNumArgs();
3569
3570    // Compatible functions must have the same number of arguments
3571    if (lproto_nargs != rproto_nargs)
3572      return QualType();
3573
3574    // Variadic and non-variadic functions aren't compatible
3575    if (lproto->isVariadic() != rproto->isVariadic())
3576      return QualType();
3577
3578    if (lproto->getTypeQuals() != rproto->getTypeQuals())
3579      return QualType();
3580
3581    // Check argument compatibility
3582    llvm::SmallVector<QualType, 10> types;
3583    for (unsigned i = 0; i < lproto_nargs; i++) {
3584      QualType largtype = lproto->getArgType(i).getUnqualifiedType();
3585      QualType rargtype = rproto->getArgType(i).getUnqualifiedType();
3586      QualType argtype = mergeTypes(largtype, rargtype);
3587      if (argtype.isNull()) return QualType();
3588      types.push_back(argtype);
3589      if (getCanonicalType(argtype) != getCanonicalType(largtype))
3590        allLTypes = false;
3591      if (getCanonicalType(argtype) != getCanonicalType(rargtype))
3592        allRTypes = false;
3593    }
3594    if (allLTypes) return lhs;
3595    if (allRTypes) return rhs;
3596    return getFunctionType(retType, types.begin(), types.size(),
3597                           lproto->isVariadic(), lproto->getTypeQuals(),
3598                           NoReturn);
3599  }
3600
3601  if (lproto) allRTypes = false;
3602  if (rproto) allLTypes = false;
3603
3604  const FunctionProtoType *proto = lproto ? lproto : rproto;
3605  if (proto) {
3606    assert(!proto->hasExceptionSpec() && "C++ shouldn't be here");
3607    if (proto->isVariadic()) return QualType();
3608    // Check that the types are compatible with the types that
3609    // would result from default argument promotions (C99 6.7.5.3p15).
3610    // The only types actually affected are promotable integer
3611    // types and floats, which would be passed as a different
3612    // type depending on whether the prototype is visible.
3613    unsigned proto_nargs = proto->getNumArgs();
3614    for (unsigned i = 0; i < proto_nargs; ++i) {
3615      QualType argTy = proto->getArgType(i);
3616      if (argTy->isPromotableIntegerType() ||
3617          getCanonicalType(argTy).getUnqualifiedType() == FloatTy)
3618        return QualType();
3619    }
3620
3621    if (allLTypes) return lhs;
3622    if (allRTypes) return rhs;
3623    return getFunctionType(retType, proto->arg_type_begin(),
3624                           proto->getNumArgs(), proto->isVariadic(),
3625                           proto->getTypeQuals(), NoReturn);
3626  }
3627
3628  if (allLTypes) return lhs;
3629  if (allRTypes) return rhs;
3630  return getFunctionNoProtoType(retType, NoReturn);
3631}
3632
3633QualType ASTContext::mergeTypes(QualType LHS, QualType RHS) {
3634  // C++ [expr]: If an expression initially has the type "reference to T", the
3635  // type is adjusted to "T" prior to any further analysis, the expression
3636  // designates the object or function denoted by the reference, and the
3637  // expression is an lvalue unless the reference is an rvalue reference and
3638  // the expression is a function call (possibly inside parentheses).
3639  // FIXME: C++ shouldn't be going through here!  The rules are different
3640  // enough that they should be handled separately.
3641  // FIXME: Merging of lvalue and rvalue references is incorrect. C++ *really*
3642  // shouldn't be going through here!
3643  if (const ReferenceType *RT = LHS->getAs<ReferenceType>())
3644    LHS = RT->getPointeeType();
3645  if (const ReferenceType *RT = RHS->getAs<ReferenceType>())
3646    RHS = RT->getPointeeType();
3647
3648  QualType LHSCan = getCanonicalType(LHS),
3649           RHSCan = getCanonicalType(RHS);
3650
3651  // If two types are identical, they are compatible.
3652  if (LHSCan == RHSCan)
3653    return LHS;
3654
3655  // If the qualifiers are different, the types aren't compatible
3656  // Note that we handle extended qualifiers later, in the
3657  // case for ExtQualType.
3658  if (LHSCan.getCVRQualifiers() != RHSCan.getCVRQualifiers())
3659    return QualType();
3660
3661  Type::TypeClass LHSClass = LHSCan->getTypeClass();
3662  Type::TypeClass RHSClass = RHSCan->getTypeClass();
3663
3664  // We want to consider the two function types to be the same for these
3665  // comparisons, just force one to the other.
3666  if (LHSClass == Type::FunctionProto) LHSClass = Type::FunctionNoProto;
3667  if (RHSClass == Type::FunctionProto) RHSClass = Type::FunctionNoProto;
3668
3669  // Strip off objc_gc attributes off the top level so they can be merged.
3670  // This is a complete mess, but the attribute itself doesn't make much sense.
3671  if (RHSClass == Type::ExtQual) {
3672    QualType::GCAttrTypes GCAttr = RHSCan.getObjCGCAttr();
3673    if (GCAttr != QualType::GCNone) {
3674      QualType::GCAttrTypes GCLHSAttr = LHSCan.getObjCGCAttr();
3675      // __weak attribute must appear on both declarations.
3676      // __strong attribue is redundant if other decl is an objective-c
3677      // object pointer (or decorated with __strong attribute); otherwise
3678      // issue error.
3679      if ((GCAttr == QualType::Weak && GCLHSAttr != GCAttr) ||
3680          (GCAttr == QualType::Strong && GCLHSAttr != GCAttr &&
3681           !LHSCan->isObjCObjectPointerType()))
3682        return QualType();
3683
3684      RHS = QualType(cast<ExtQualType>(RHS.getDesugaredType())->getBaseType(),
3685                     RHS.getCVRQualifiers());
3686      QualType Result = mergeTypes(LHS, RHS);
3687      if (!Result.isNull()) {
3688        if (Result.getObjCGCAttr() == QualType::GCNone)
3689          Result = getObjCGCQualType(Result, GCAttr);
3690        else if (Result.getObjCGCAttr() != GCAttr)
3691          Result = QualType();
3692      }
3693      return Result;
3694    }
3695  }
3696  if (LHSClass == Type::ExtQual) {
3697    QualType::GCAttrTypes GCAttr = LHSCan.getObjCGCAttr();
3698    if (GCAttr != QualType::GCNone) {
3699      QualType::GCAttrTypes GCRHSAttr = RHSCan.getObjCGCAttr();
3700      // __weak attribute must appear on both declarations. __strong
3701      // __strong attribue is redundant if other decl is an objective-c
3702      // object pointer (or decorated with __strong attribute); otherwise
3703      // issue error.
3704      if ((GCAttr == QualType::Weak && GCRHSAttr != GCAttr) ||
3705          (GCAttr == QualType::Strong && GCRHSAttr != GCAttr &&
3706           !RHSCan->isObjCObjectPointerType()))
3707        return QualType();
3708
3709      LHS = QualType(cast<ExtQualType>(LHS.getDesugaredType())->getBaseType(),
3710                     LHS.getCVRQualifiers());
3711      QualType Result = mergeTypes(LHS, RHS);
3712      if (!Result.isNull()) {
3713        if (Result.getObjCGCAttr() == QualType::GCNone)
3714          Result = getObjCGCQualType(Result, GCAttr);
3715        else if (Result.getObjCGCAttr() != GCAttr)
3716          Result = QualType();
3717      }
3718      return Result;
3719    }
3720  }
3721
3722  // Same as above for arrays
3723  if (LHSClass == Type::VariableArray || LHSClass == Type::IncompleteArray)
3724    LHSClass = Type::ConstantArray;
3725  if (RHSClass == Type::VariableArray || RHSClass == Type::IncompleteArray)
3726    RHSClass = Type::ConstantArray;
3727
3728  // Canonicalize ExtVector -> Vector.
3729  if (LHSClass == Type::ExtVector) LHSClass = Type::Vector;
3730  if (RHSClass == Type::ExtVector) RHSClass = Type::Vector;
3731
3732  // If the canonical type classes don't match.
3733  if (LHSClass != RHSClass) {
3734    // C99 6.7.2.2p4: Each enumerated type shall be compatible with char,
3735    // a signed integer type, or an unsigned integer type.
3736    if (const EnumType* ETy = LHS->getAsEnumType()) {
3737      if (ETy->getDecl()->getIntegerType() == RHSCan.getUnqualifiedType())
3738        return RHS;
3739    }
3740    if (const EnumType* ETy = RHS->getAsEnumType()) {
3741      if (ETy->getDecl()->getIntegerType() == LHSCan.getUnqualifiedType())
3742        return LHS;
3743    }
3744
3745    return QualType();
3746  }
3747
3748  // The canonical type classes match.
3749  switch (LHSClass) {
3750#define TYPE(Class, Base)
3751#define ABSTRACT_TYPE(Class, Base)
3752#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
3753#define DEPENDENT_TYPE(Class, Base) case Type::Class:
3754#include "clang/AST/TypeNodes.def"
3755    assert(false && "Non-canonical and dependent types shouldn't get here");
3756    return QualType();
3757
3758  case Type::LValueReference:
3759  case Type::RValueReference:
3760  case Type::MemberPointer:
3761    assert(false && "C++ should never be in mergeTypes");
3762    return QualType();
3763
3764  case Type::IncompleteArray:
3765  case Type::VariableArray:
3766  case Type::FunctionProto:
3767  case Type::ExtVector:
3768    assert(false && "Types are eliminated above");
3769    return QualType();
3770
3771  case Type::Pointer:
3772  {
3773    // Merge two pointer types, while trying to preserve typedef info
3774    QualType LHSPointee = LHS->getAs<PointerType>()->getPointeeType();
3775    QualType RHSPointee = RHS->getAs<PointerType>()->getPointeeType();
3776    QualType ResultType = mergeTypes(LHSPointee, RHSPointee);
3777    if (ResultType.isNull()) return QualType();
3778    if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
3779      return LHS;
3780    if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
3781      return RHS;
3782    return getPointerType(ResultType);
3783  }
3784  case Type::BlockPointer:
3785  {
3786    // Merge two block pointer types, while trying to preserve typedef info
3787    QualType LHSPointee = LHS->getAs<BlockPointerType>()->getPointeeType();
3788    QualType RHSPointee = RHS->getAs<BlockPointerType>()->getPointeeType();
3789    QualType ResultType = mergeTypes(LHSPointee, RHSPointee);
3790    if (ResultType.isNull()) return QualType();
3791    if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
3792      return LHS;
3793    if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
3794      return RHS;
3795    return getBlockPointerType(ResultType);
3796  }
3797  case Type::ConstantArray:
3798  {
3799    const ConstantArrayType* LCAT = getAsConstantArrayType(LHS);
3800    const ConstantArrayType* RCAT = getAsConstantArrayType(RHS);
3801    if (LCAT && RCAT && RCAT->getSize() != LCAT->getSize())
3802      return QualType();
3803
3804    QualType LHSElem = getAsArrayType(LHS)->getElementType();
3805    QualType RHSElem = getAsArrayType(RHS)->getElementType();
3806    QualType ResultType = mergeTypes(LHSElem, RHSElem);
3807    if (ResultType.isNull()) return QualType();
3808    if (LCAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
3809      return LHS;
3810    if (RCAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
3811      return RHS;
3812    if (LCAT) return getConstantArrayType(ResultType, LCAT->getSize(),
3813                                          ArrayType::ArraySizeModifier(), 0);
3814    if (RCAT) return getConstantArrayType(ResultType, RCAT->getSize(),
3815                                          ArrayType::ArraySizeModifier(), 0);
3816    const VariableArrayType* LVAT = getAsVariableArrayType(LHS);
3817    const VariableArrayType* RVAT = getAsVariableArrayType(RHS);
3818    if (LVAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
3819      return LHS;
3820    if (RVAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
3821      return RHS;
3822    if (LVAT) {
3823      // FIXME: This isn't correct! But tricky to implement because
3824      // the array's size has to be the size of LHS, but the type
3825      // has to be different.
3826      return LHS;
3827    }
3828    if (RVAT) {
3829      // FIXME: This isn't correct! But tricky to implement because
3830      // the array's size has to be the size of RHS, but the type
3831      // has to be different.
3832      return RHS;
3833    }
3834    if (getCanonicalType(LHSElem) == getCanonicalType(ResultType)) return LHS;
3835    if (getCanonicalType(RHSElem) == getCanonicalType(ResultType)) return RHS;
3836    return getIncompleteArrayType(ResultType,
3837                                  ArrayType::ArraySizeModifier(), 0);
3838  }
3839  case Type::FunctionNoProto:
3840    return mergeFunctionTypes(LHS, RHS);
3841  case Type::Record:
3842  case Type::Enum:
3843    return QualType();
3844  case Type::Builtin:
3845    // Only exactly equal builtin types are compatible, which is tested above.
3846    return QualType();
3847  case Type::Complex:
3848    // Distinct complex types are incompatible.
3849    return QualType();
3850  case Type::Vector:
3851    // FIXME: The merged type should be an ExtVector!
3852    if (areCompatVectorTypes(LHS->getAsVectorType(), RHS->getAsVectorType()))
3853      return LHS;
3854    return QualType();
3855  case Type::ObjCInterface: {
3856    // Check if the interfaces are assignment compatible.
3857    // FIXME: This should be type compatibility, e.g. whether
3858    // "LHS x; RHS x;" at global scope is legal.
3859    const ObjCInterfaceType* LHSIface = LHS->getAsObjCInterfaceType();
3860    const ObjCInterfaceType* RHSIface = RHS->getAsObjCInterfaceType();
3861    if (LHSIface && RHSIface &&
3862        canAssignObjCInterfaces(LHSIface, RHSIface))
3863      return LHS;
3864
3865    return QualType();
3866  }
3867  case Type::ObjCObjectPointer: {
3868    if (canAssignObjCInterfaces(LHS->getAsObjCObjectPointerType(),
3869                                RHS->getAsObjCObjectPointerType()))
3870      return LHS;
3871
3872    return QualType();
3873  }
3874  case Type::FixedWidthInt:
3875    // Distinct fixed-width integers are not compatible.
3876    return QualType();
3877  case Type::ExtQual:
3878    // FIXME: ExtQual types can be compatible even if they're not
3879    // identical!
3880    return QualType();
3881    // First attempt at an implementation, but I'm not really sure it's
3882    // right...
3883#if 0
3884    ExtQualType* LQual = cast<ExtQualType>(LHSCan);
3885    ExtQualType* RQual = cast<ExtQualType>(RHSCan);
3886    if (LQual->getAddressSpace() != RQual->getAddressSpace() ||
3887        LQual->getObjCGCAttr() != RQual->getObjCGCAttr())
3888      return QualType();
3889    QualType LHSBase, RHSBase, ResultType, ResCanUnqual;
3890    LHSBase = QualType(LQual->getBaseType(), 0);
3891    RHSBase = QualType(RQual->getBaseType(), 0);
3892    ResultType = mergeTypes(LHSBase, RHSBase);
3893    if (ResultType.isNull()) return QualType();
3894    ResCanUnqual = getCanonicalType(ResultType).getUnqualifiedType();
3895    if (LHSCan.getUnqualifiedType() == ResCanUnqual)
3896      return LHS;
3897    if (RHSCan.getUnqualifiedType() == ResCanUnqual)
3898      return RHS;
3899    ResultType = getAddrSpaceQualType(ResultType, LQual->getAddressSpace());
3900    ResultType = getObjCGCQualType(ResultType, LQual->getObjCGCAttr());
3901    ResultType.setCVRQualifiers(LHSCan.getCVRQualifiers());
3902    return ResultType;
3903#endif
3904
3905  case Type::TemplateSpecialization:
3906    assert(false && "Dependent types have no size");
3907    break;
3908  }
3909
3910  return QualType();
3911}
3912
3913//===----------------------------------------------------------------------===//
3914//                         Integer Predicates
3915//===----------------------------------------------------------------------===//
3916
3917unsigned ASTContext::getIntWidth(QualType T) {
3918  if (T == BoolTy)
3919    return 1;
3920  if (FixedWidthIntType* FWIT = dyn_cast<FixedWidthIntType>(T)) {
3921    return FWIT->getWidth();
3922  }
3923  // For builtin types, just use the standard type sizing method
3924  return (unsigned)getTypeSize(T);
3925}
3926
3927QualType ASTContext::getCorrespondingUnsignedType(QualType T) {
3928  assert(T->isSignedIntegerType() && "Unexpected type");
3929  if (const EnumType* ETy = T->getAsEnumType())
3930    T = ETy->getDecl()->getIntegerType();
3931  const BuiltinType* BTy = T->getAsBuiltinType();
3932  assert (BTy && "Unexpected signed integer type");
3933  switch (BTy->getKind()) {
3934  case BuiltinType::Char_S:
3935  case BuiltinType::SChar:
3936    return UnsignedCharTy;
3937  case BuiltinType::Short:
3938    return UnsignedShortTy;
3939  case BuiltinType::Int:
3940    return UnsignedIntTy;
3941  case BuiltinType::Long:
3942    return UnsignedLongTy;
3943  case BuiltinType::LongLong:
3944    return UnsignedLongLongTy;
3945  case BuiltinType::Int128:
3946    return UnsignedInt128Ty;
3947  default:
3948    assert(0 && "Unexpected signed integer type");
3949    return QualType();
3950  }
3951}
3952
3953ExternalASTSource::~ExternalASTSource() { }
3954
3955void ExternalASTSource::PrintStats() { }
3956
3957
3958//===----------------------------------------------------------------------===//
3959//                          Builtin Type Computation
3960//===----------------------------------------------------------------------===//
3961
3962/// DecodeTypeFromStr - This decodes one type descriptor from Str, advancing the
3963/// pointer over the consumed characters.  This returns the resultant type.
3964static QualType DecodeTypeFromStr(const char *&Str, ASTContext &Context,
3965                                  ASTContext::GetBuiltinTypeError &Error,
3966                                  bool AllowTypeModifiers = true) {
3967  // Modifiers.
3968  int HowLong = 0;
3969  bool Signed = false, Unsigned = false;
3970
3971  // Read the modifiers first.
3972  bool Done = false;
3973  while (!Done) {
3974    switch (*Str++) {
3975    default: Done = true; --Str; break;
3976    case 'S':
3977      assert(!Unsigned && "Can't use both 'S' and 'U' modifiers!");
3978      assert(!Signed && "Can't use 'S' modifier multiple times!");
3979      Signed = true;
3980      break;
3981    case 'U':
3982      assert(!Signed && "Can't use both 'S' and 'U' modifiers!");
3983      assert(!Unsigned && "Can't use 'S' modifier multiple times!");
3984      Unsigned = true;
3985      break;
3986    case 'L':
3987      assert(HowLong <= 2 && "Can't have LLLL modifier");
3988      ++HowLong;
3989      break;
3990    }
3991  }
3992
3993  QualType Type;
3994
3995  // Read the base type.
3996  switch (*Str++) {
3997  default: assert(0 && "Unknown builtin type letter!");
3998  case 'v':
3999    assert(HowLong == 0 && !Signed && !Unsigned &&
4000           "Bad modifiers used with 'v'!");
4001    Type = Context.VoidTy;
4002    break;
4003  case 'f':
4004    assert(HowLong == 0 && !Signed && !Unsigned &&
4005           "Bad modifiers used with 'f'!");
4006    Type = Context.FloatTy;
4007    break;
4008  case 'd':
4009    assert(HowLong < 2 && !Signed && !Unsigned &&
4010           "Bad modifiers used with 'd'!");
4011    if (HowLong)
4012      Type = Context.LongDoubleTy;
4013    else
4014      Type = Context.DoubleTy;
4015    break;
4016  case 's':
4017    assert(HowLong == 0 && "Bad modifiers used with 's'!");
4018    if (Unsigned)
4019      Type = Context.UnsignedShortTy;
4020    else
4021      Type = Context.ShortTy;
4022    break;
4023  case 'i':
4024    if (HowLong == 3)
4025      Type = Unsigned ? Context.UnsignedInt128Ty : Context.Int128Ty;
4026    else if (HowLong == 2)
4027      Type = Unsigned ? Context.UnsignedLongLongTy : Context.LongLongTy;
4028    else if (HowLong == 1)
4029      Type = Unsigned ? Context.UnsignedLongTy : Context.LongTy;
4030    else
4031      Type = Unsigned ? Context.UnsignedIntTy : Context.IntTy;
4032    break;
4033  case 'c':
4034    assert(HowLong == 0 && "Bad modifiers used with 'c'!");
4035    if (Signed)
4036      Type = Context.SignedCharTy;
4037    else if (Unsigned)
4038      Type = Context.UnsignedCharTy;
4039    else
4040      Type = Context.CharTy;
4041    break;
4042  case 'b': // boolean
4043    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'b'!");
4044    Type = Context.BoolTy;
4045    break;
4046  case 'z':  // size_t.
4047    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'z'!");
4048    Type = Context.getSizeType();
4049    break;
4050  case 'F':
4051    Type = Context.getCFConstantStringType();
4052    break;
4053  case 'a':
4054    Type = Context.getBuiltinVaListType();
4055    assert(!Type.isNull() && "builtin va list type not initialized!");
4056    break;
4057  case 'A':
4058    // This is a "reference" to a va_list; however, what exactly
4059    // this means depends on how va_list is defined. There are two
4060    // different kinds of va_list: ones passed by value, and ones
4061    // passed by reference.  An example of a by-value va_list is
4062    // x86, where va_list is a char*. An example of by-ref va_list
4063    // is x86-64, where va_list is a __va_list_tag[1]. For x86,
4064    // we want this argument to be a char*&; for x86-64, we want
4065    // it to be a __va_list_tag*.
4066    Type = Context.getBuiltinVaListType();
4067    assert(!Type.isNull() && "builtin va list type not initialized!");
4068    if (Type->isArrayType()) {
4069      Type = Context.getArrayDecayedType(Type);
4070    } else {
4071      Type = Context.getLValueReferenceType(Type);
4072    }
4073    break;
4074  case 'V': {
4075    char *End;
4076    unsigned NumElements = strtoul(Str, &End, 10);
4077    assert(End != Str && "Missing vector size");
4078
4079    Str = End;
4080
4081    QualType ElementType = DecodeTypeFromStr(Str, Context, Error, false);
4082    Type = Context.getVectorType(ElementType, NumElements);
4083    break;
4084  }
4085  case 'P':
4086    Type = Context.getFILEType();
4087    if (Type.isNull()) {
4088      Error = ASTContext::GE_Missing_stdio;
4089      return QualType();
4090    }
4091    break;
4092  case 'J':
4093    if (Signed)
4094      Type = Context.getsigjmp_bufType();
4095    else
4096      Type = Context.getjmp_bufType();
4097
4098    if (Type.isNull()) {
4099      Error = ASTContext::GE_Missing_setjmp;
4100      return QualType();
4101    }
4102    break;
4103  }
4104
4105  if (!AllowTypeModifiers)
4106    return Type;
4107
4108  Done = false;
4109  while (!Done) {
4110    switch (*Str++) {
4111      default: Done = true; --Str; break;
4112      case '*':
4113        Type = Context.getPointerType(Type);
4114        break;
4115      case '&':
4116        Type = Context.getLValueReferenceType(Type);
4117        break;
4118      // FIXME: There's no way to have a built-in with an rvalue ref arg.
4119      case 'C':
4120        Type = Type.getQualifiedType(QualType::Const);
4121        break;
4122    }
4123  }
4124
4125  return Type;
4126}
4127
4128/// GetBuiltinType - Return the type for the specified builtin.
4129QualType ASTContext::GetBuiltinType(unsigned id,
4130                                    GetBuiltinTypeError &Error) {
4131  const char *TypeStr = BuiltinInfo.GetTypeString(id);
4132
4133  llvm::SmallVector<QualType, 8> ArgTypes;
4134
4135  Error = GE_None;
4136  QualType ResType = DecodeTypeFromStr(TypeStr, *this, Error);
4137  if (Error != GE_None)
4138    return QualType();
4139  while (TypeStr[0] && TypeStr[0] != '.') {
4140    QualType Ty = DecodeTypeFromStr(TypeStr, *this, Error);
4141    if (Error != GE_None)
4142      return QualType();
4143
4144    // Do array -> pointer decay.  The builtin should use the decayed type.
4145    if (Ty->isArrayType())
4146      Ty = getArrayDecayedType(Ty);
4147
4148    ArgTypes.push_back(Ty);
4149  }
4150
4151  assert((TypeStr[0] != '.' || TypeStr[1] == 0) &&
4152         "'.' should only occur at end of builtin type list!");
4153
4154  // handle untyped/variadic arguments "T c99Style();" or "T cppStyle(...);".
4155  if (ArgTypes.size() == 0 && TypeStr[0] == '.')
4156    return getFunctionNoProtoType(ResType);
4157  return getFunctionType(ResType, ArgTypes.data(), ArgTypes.size(),
4158                         TypeStr[0] == '.', 0);
4159}
4160