ASTContext.cpp revision a34267595534a72703290153a6f7e3da1adcec59
1//===--- ASTContext.cpp - Context to hold long-lived AST nodes ------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements the ASTContext interface.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/AST/ASTContext.h"
15#include "clang/AST/DeclCXX.h"
16#include "clang/AST/DeclObjC.h"
17#include "clang/AST/DeclTemplate.h"
18#include "clang/AST/Expr.h"
19#include "clang/AST/ExternalASTSource.h"
20#include "clang/AST/RecordLayout.h"
21#include "clang/Basic/Builtins.h"
22#include "clang/Basic/SourceManager.h"
23#include "clang/Basic/TargetInfo.h"
24#include "llvm/ADT/StringExtras.h"
25#include "llvm/Support/MathExtras.h"
26#include "llvm/Support/MemoryBuffer.h"
27using namespace clang;
28
29enum FloatingRank {
30  FloatRank, DoubleRank, LongDoubleRank
31};
32
33ASTContext::ASTContext(const LangOptions& LOpts, SourceManager &SM,
34                       TargetInfo &t,
35                       IdentifierTable &idents, SelectorTable &sels,
36                       Builtin::Context &builtins,
37                       bool FreeMem, unsigned size_reserve) :
38  GlobalNestedNameSpecifier(0), CFConstantStringTypeDecl(0),
39  ObjCFastEnumerationStateTypeDecl(0), SourceMgr(SM), LangOpts(LOpts),
40  LoadedExternalComments(false), FreeMemory(FreeMem), Target(t),
41  Idents(idents), Selectors(sels),
42  BuiltinInfo(builtins), ExternalSource(0), PrintingPolicy(LOpts) {
43  if (size_reserve > 0) Types.reserve(size_reserve);
44  InitBuiltinTypes();
45  TUDecl = TranslationUnitDecl::Create(*this);
46}
47
48ASTContext::~ASTContext() {
49  // Deallocate all the types.
50  while (!Types.empty()) {
51    Types.back()->Destroy(*this);
52    Types.pop_back();
53  }
54
55  {
56    llvm::DenseMap<const RecordDecl*, const ASTRecordLayout*>::iterator
57      I = ASTRecordLayouts.begin(), E = ASTRecordLayouts.end();
58    while (I != E) {
59      ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second);
60      delete R;
61    }
62  }
63
64  {
65    llvm::DenseMap<const ObjCContainerDecl*, const ASTRecordLayout*>::iterator
66      I = ObjCLayouts.begin(), E = ObjCLayouts.end();
67    while (I != E) {
68      ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second);
69      delete R;
70    }
71  }
72
73  // Destroy nested-name-specifiers.
74  for (llvm::FoldingSet<NestedNameSpecifier>::iterator
75         NNS = NestedNameSpecifiers.begin(),
76         NNSEnd = NestedNameSpecifiers.end();
77       NNS != NNSEnd;
78       /* Increment in loop */)
79    (*NNS++).Destroy(*this);
80
81  if (GlobalNestedNameSpecifier)
82    GlobalNestedNameSpecifier->Destroy(*this);
83
84  TUDecl->Destroy(*this);
85}
86
87void
88ASTContext::setExternalSource(llvm::OwningPtr<ExternalASTSource> &Source) {
89  ExternalSource.reset(Source.take());
90}
91
92void ASTContext::PrintStats() const {
93  fprintf(stderr, "*** AST Context Stats:\n");
94  fprintf(stderr, "  %d types total.\n", (int)Types.size());
95
96  unsigned counts[] = {
97#define TYPE(Name, Parent) 0,
98#define ABSTRACT_TYPE(Name, Parent)
99#include "clang/AST/TypeNodes.def"
100    0 // Extra
101  };
102
103  for (unsigned i = 0, e = Types.size(); i != e; ++i) {
104    Type *T = Types[i];
105    counts[(unsigned)T->getTypeClass()]++;
106  }
107
108  unsigned Idx = 0;
109  unsigned TotalBytes = 0;
110#define TYPE(Name, Parent)                                              \
111  if (counts[Idx])                                                      \
112    fprintf(stderr, "    %d %s types\n", (int)counts[Idx], #Name);      \
113  TotalBytes += counts[Idx] * sizeof(Name##Type);                       \
114  ++Idx;
115#define ABSTRACT_TYPE(Name, Parent)
116#include "clang/AST/TypeNodes.def"
117
118  fprintf(stderr, "Total bytes = %d\n", int(TotalBytes));
119
120  if (ExternalSource.get()) {
121    fprintf(stderr, "\n");
122    ExternalSource->PrintStats();
123  }
124}
125
126
127void ASTContext::InitBuiltinType(QualType &R, BuiltinType::Kind K) {
128  Types.push_back((R = QualType(new (*this,8) BuiltinType(K),0)).getTypePtr());
129}
130
131void ASTContext::InitBuiltinTypes() {
132  assert(VoidTy.isNull() && "Context reinitialized?");
133
134  // C99 6.2.5p19.
135  InitBuiltinType(VoidTy,              BuiltinType::Void);
136
137  // C99 6.2.5p2.
138  InitBuiltinType(BoolTy,              BuiltinType::Bool);
139  // C99 6.2.5p3.
140  if (LangOpts.CharIsSigned)
141    InitBuiltinType(CharTy,            BuiltinType::Char_S);
142  else
143    InitBuiltinType(CharTy,            BuiltinType::Char_U);
144  // C99 6.2.5p4.
145  InitBuiltinType(SignedCharTy,        BuiltinType::SChar);
146  InitBuiltinType(ShortTy,             BuiltinType::Short);
147  InitBuiltinType(IntTy,               BuiltinType::Int);
148  InitBuiltinType(LongTy,              BuiltinType::Long);
149  InitBuiltinType(LongLongTy,          BuiltinType::LongLong);
150
151  // C99 6.2.5p6.
152  InitBuiltinType(UnsignedCharTy,      BuiltinType::UChar);
153  InitBuiltinType(UnsignedShortTy,     BuiltinType::UShort);
154  InitBuiltinType(UnsignedIntTy,       BuiltinType::UInt);
155  InitBuiltinType(UnsignedLongTy,      BuiltinType::ULong);
156  InitBuiltinType(UnsignedLongLongTy,  BuiltinType::ULongLong);
157
158  // C99 6.2.5p10.
159  InitBuiltinType(FloatTy,             BuiltinType::Float);
160  InitBuiltinType(DoubleTy,            BuiltinType::Double);
161  InitBuiltinType(LongDoubleTy,        BuiltinType::LongDouble);
162
163  // GNU extension, 128-bit integers.
164  InitBuiltinType(Int128Ty,            BuiltinType::Int128);
165  InitBuiltinType(UnsignedInt128Ty,    BuiltinType::UInt128);
166
167  if (LangOpts.CPlusPlus) // C++ 3.9.1p5
168    InitBuiltinType(WCharTy,           BuiltinType::WChar);
169  else // C99
170    WCharTy = getFromTargetType(Target.getWCharType());
171
172  // Placeholder type for functions.
173  InitBuiltinType(OverloadTy,          BuiltinType::Overload);
174
175  // Placeholder type for type-dependent expressions whose type is
176  // completely unknown. No code should ever check a type against
177  // DependentTy and users should never see it; however, it is here to
178  // help diagnose failures to properly check for type-dependent
179  // expressions.
180  InitBuiltinType(DependentTy,         BuiltinType::Dependent);
181
182  // Placeholder type for C++0x auto declarations whose real type has
183  // not yet been deduced.
184  InitBuiltinType(UndeducedAutoTy, BuiltinType::UndeducedAuto);
185
186  // C99 6.2.5p11.
187  FloatComplexTy      = getComplexType(FloatTy);
188  DoubleComplexTy     = getComplexType(DoubleTy);
189  LongDoubleComplexTy = getComplexType(LongDoubleTy);
190
191  BuiltinVaListType = QualType();
192  ObjCIdType = QualType();
193  IdStructType = 0;
194  ObjCClassType = QualType();
195  ClassStructType = 0;
196
197  ObjCConstantStringType = QualType();
198
199  // void * type
200  VoidPtrTy = getPointerType(VoidTy);
201
202  // nullptr type (C++0x 2.14.7)
203  InitBuiltinType(NullPtrTy,           BuiltinType::NullPtr);
204}
205
206namespace {
207  class BeforeInTranslationUnit
208    : std::binary_function<SourceRange, SourceRange, bool> {
209    SourceManager *SourceMgr;
210
211  public:
212    explicit BeforeInTranslationUnit(SourceManager *SM) : SourceMgr(SM) { }
213
214    bool operator()(SourceRange X, SourceRange Y) {
215      return SourceMgr->isBeforeInTranslationUnit(X.getBegin(), Y.getBegin());
216    }
217  };
218}
219
220/// \brief Determine whether the given comment is a Doxygen-style comment.
221///
222/// \param Start the start of the comment text.
223///
224/// \param End the end of the comment text.
225///
226/// \param Member whether we want to check whether this is a member comment
227/// (which requires a < after the Doxygen-comment delimiter). Otherwise,
228/// we only return true when we find a non-member comment.
229static bool
230isDoxygenComment(SourceManager &SourceMgr, SourceRange Comment,
231                 bool Member = false) {
232  const char *BufferStart
233    = SourceMgr.getBufferData(SourceMgr.getFileID(Comment.getBegin())).first;
234  const char *Start = BufferStart + SourceMgr.getFileOffset(Comment.getBegin());
235  const char* End = BufferStart + SourceMgr.getFileOffset(Comment.getEnd());
236
237  if (End - Start < 4)
238    return false;
239
240  assert(Start[0] == '/' && "Not a comment?");
241  if (Start[1] == '*' && !(Start[2] == '!' || Start[2] == '*'))
242    return false;
243  if (Start[1] == '/' && !(Start[2] == '!' || Start[2] == '/'))
244    return false;
245
246  return (Start[3] == '<') == Member;
247}
248
249/// \brief Retrieve the comment associated with the given declaration, if
250/// it has one.
251const char *ASTContext::getCommentForDecl(const Decl *D) {
252  if (!D)
253    return 0;
254
255  // Check whether we have cached a comment string for this declaration
256  // already.
257  llvm::DenseMap<const Decl *, std::string>::iterator Pos
258    = DeclComments.find(D);
259  if (Pos != DeclComments.end())
260    return Pos->second.c_str();
261
262  // If we have an external AST source and have not yet loaded comments from
263  // that source, do so now.
264  if (ExternalSource && !LoadedExternalComments) {
265    std::vector<SourceRange> LoadedComments;
266    ExternalSource->ReadComments(LoadedComments);
267
268    if (!LoadedComments.empty())
269      Comments.insert(Comments.begin(), LoadedComments.begin(),
270                      LoadedComments.end());
271
272    LoadedExternalComments = true;
273  }
274
275  // If there are no comments anywhere, we won't find anything.
276  if (Comments.empty())
277    return 0;
278
279  // If the declaration doesn't map directly to a location in a file, we
280  // can't find the comment.
281  SourceLocation DeclStartLoc = D->getLocStart();
282  if (DeclStartLoc.isInvalid() || !DeclStartLoc.isFileID())
283    return 0;
284
285  // Find the comment that occurs just before this declaration.
286  std::vector<SourceRange>::iterator LastComment
287    = std::lower_bound(Comments.begin(), Comments.end(),
288                       SourceRange(DeclStartLoc),
289                       BeforeInTranslationUnit(&SourceMgr));
290
291  // Decompose the location for the start of the declaration and find the
292  // beginning of the file buffer.
293  std::pair<FileID, unsigned> DeclStartDecomp
294    = SourceMgr.getDecomposedLoc(DeclStartLoc);
295  const char *FileBufferStart
296    = SourceMgr.getBufferData(DeclStartDecomp.first).first;
297
298  // First check whether we have a comment for a member.
299  if (LastComment != Comments.end() &&
300      !isa<TagDecl>(D) && !isa<NamespaceDecl>(D) &&
301      isDoxygenComment(SourceMgr, *LastComment, true)) {
302    std::pair<FileID, unsigned> LastCommentEndDecomp
303      = SourceMgr.getDecomposedLoc(LastComment->getEnd());
304    if (DeclStartDecomp.first == LastCommentEndDecomp.first &&
305        SourceMgr.getLineNumber(DeclStartDecomp.first, DeclStartDecomp.second)
306          == SourceMgr.getLineNumber(LastCommentEndDecomp.first,
307                                     LastCommentEndDecomp.second)) {
308      // The Doxygen member comment comes after the declaration starts and
309      // is on the same line and in the same file as the declaration. This
310      // is the comment we want.
311      std::string &Result = DeclComments[D];
312      Result.append(FileBufferStart +
313                      SourceMgr.getFileOffset(LastComment->getBegin()),
314                    FileBufferStart + LastCommentEndDecomp.second + 1);
315      return Result.c_str();
316    }
317  }
318
319  if (LastComment == Comments.begin())
320    return 0;
321  --LastComment;
322
323  // Decompose the end of the comment.
324  std::pair<FileID, unsigned> LastCommentEndDecomp
325    = SourceMgr.getDecomposedLoc(LastComment->getEnd());
326
327  // If the comment and the declaration aren't in the same file, then they
328  // aren't related.
329  if (DeclStartDecomp.first != LastCommentEndDecomp.first)
330    return 0;
331
332  // Check that we actually have a Doxygen comment.
333  if (!isDoxygenComment(SourceMgr, *LastComment))
334    return 0;
335
336  // Compute the starting line for the declaration and for the end of the
337  // comment (this is expensive).
338  unsigned DeclStartLine
339    = SourceMgr.getLineNumber(DeclStartDecomp.first, DeclStartDecomp.second);
340  unsigned CommentEndLine
341    = SourceMgr.getLineNumber(LastCommentEndDecomp.first,
342                              LastCommentEndDecomp.second);
343
344  // If the comment does not end on the line prior to the declaration, then
345  // the comment is not associated with the declaration at all.
346  if (CommentEndLine + 1 != DeclStartLine)
347    return 0;
348
349  // We have a comment, but there may be more comments on the previous lines.
350  // Keep looking so long as the comments are still Doxygen comments and are
351  // still adjacent.
352  unsigned ExpectedLine
353    = SourceMgr.getSpellingLineNumber(LastComment->getBegin()) - 1;
354  std::vector<SourceRange>::iterator FirstComment = LastComment;
355  while (FirstComment != Comments.begin()) {
356    // Look at the previous comment
357    --FirstComment;
358    std::pair<FileID, unsigned> Decomp
359      = SourceMgr.getDecomposedLoc(FirstComment->getEnd());
360
361    // If this previous comment is in a different file, we're done.
362    if (Decomp.first != DeclStartDecomp.first) {
363      ++FirstComment;
364      break;
365    }
366
367    // If this comment is not a Doxygen comment, we're done.
368    if (!isDoxygenComment(SourceMgr, *FirstComment)) {
369      ++FirstComment;
370      break;
371    }
372
373    // If the line number is not what we expected, we're done.
374    unsigned Line = SourceMgr.getLineNumber(Decomp.first, Decomp.second);
375    if (Line != ExpectedLine) {
376      ++FirstComment;
377      break;
378    }
379
380    // Set the next expected line number.
381    ExpectedLine
382      = SourceMgr.getSpellingLineNumber(FirstComment->getBegin()) - 1;
383  }
384
385  // The iterator range [FirstComment, LastComment] contains all of the
386  // BCPL comments that, together, are associated with this declaration.
387  // Form a single comment block string for this declaration that concatenates
388  // all of these comments.
389  std::string &Result = DeclComments[D];
390  while (FirstComment != LastComment) {
391    std::pair<FileID, unsigned> DecompStart
392      = SourceMgr.getDecomposedLoc(FirstComment->getBegin());
393    std::pair<FileID, unsigned> DecompEnd
394      = SourceMgr.getDecomposedLoc(FirstComment->getEnd());
395    Result.append(FileBufferStart + DecompStart.second,
396                  FileBufferStart + DecompEnd.second + 1);
397    ++FirstComment;
398  }
399
400  // Append the last comment line.
401  Result.append(FileBufferStart +
402                  SourceMgr.getFileOffset(LastComment->getBegin()),
403                FileBufferStart + LastCommentEndDecomp.second + 1);
404  return Result.c_str();
405}
406
407//===----------------------------------------------------------------------===//
408//                         Type Sizing and Analysis
409//===----------------------------------------------------------------------===//
410
411/// getFloatTypeSemantics - Return the APFloat 'semantics' for the specified
412/// scalar floating point type.
413const llvm::fltSemantics &ASTContext::getFloatTypeSemantics(QualType T) const {
414  const BuiltinType *BT = T->getAsBuiltinType();
415  assert(BT && "Not a floating point type!");
416  switch (BT->getKind()) {
417  default: assert(0 && "Not a floating point type!");
418  case BuiltinType::Float:      return Target.getFloatFormat();
419  case BuiltinType::Double:     return Target.getDoubleFormat();
420  case BuiltinType::LongDouble: return Target.getLongDoubleFormat();
421  }
422}
423
424/// getDeclAlign - Return a conservative estimate of the alignment of the
425/// specified decl.  Note that bitfields do not have a valid alignment, so
426/// this method will assert on them.
427unsigned ASTContext::getDeclAlignInBytes(const Decl *D) {
428  unsigned Align = Target.getCharWidth();
429
430  if (const AlignedAttr* AA = D->getAttr<AlignedAttr>())
431    Align = std::max(Align, AA->getAlignment());
432
433  if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
434    QualType T = VD->getType();
435    if (const ReferenceType* RT = T->getAsReferenceType()) {
436      unsigned AS = RT->getPointeeType().getAddressSpace();
437      Align = Target.getPointerAlign(AS);
438    } else if (!T->isIncompleteType() && !T->isFunctionType()) {
439      // Incomplete or function types default to 1.
440      while (isa<VariableArrayType>(T) || isa<IncompleteArrayType>(T))
441        T = cast<ArrayType>(T)->getElementType();
442
443      Align = std::max(Align, getPreferredTypeAlign(T.getTypePtr()));
444    }
445  }
446
447  return Align / Target.getCharWidth();
448}
449
450/// getTypeSize - Return the size of the specified type, in bits.  This method
451/// does not work on incomplete types.
452std::pair<uint64_t, unsigned>
453ASTContext::getTypeInfo(const Type *T) {
454  uint64_t Width=0;
455  unsigned Align=8;
456  switch (T->getTypeClass()) {
457#define TYPE(Class, Base)
458#define ABSTRACT_TYPE(Class, Base)
459#define NON_CANONICAL_TYPE(Class, Base)
460#define DEPENDENT_TYPE(Class, Base) case Type::Class:
461#include "clang/AST/TypeNodes.def"
462    assert(false && "Should not see dependent types");
463    break;
464
465  case Type::FunctionNoProto:
466  case Type::FunctionProto:
467    // GCC extension: alignof(function) = 32 bits
468    Width = 0;
469    Align = 32;
470    break;
471
472  case Type::IncompleteArray:
473  case Type::VariableArray:
474    Width = 0;
475    Align = getTypeAlign(cast<ArrayType>(T)->getElementType());
476    break;
477
478  case Type::ConstantArray: {
479    const ConstantArrayType *CAT = cast<ConstantArrayType>(T);
480
481    std::pair<uint64_t, unsigned> EltInfo = getTypeInfo(CAT->getElementType());
482    Width = EltInfo.first*CAT->getSize().getZExtValue();
483    Align = EltInfo.second;
484    break;
485  }
486  case Type::ExtVector:
487  case Type::Vector: {
488    std::pair<uint64_t, unsigned> EltInfo =
489      getTypeInfo(cast<VectorType>(T)->getElementType());
490    Width = EltInfo.first*cast<VectorType>(T)->getNumElements();
491    Align = Width;
492    // If the alignment is not a power of 2, round up to the next power of 2.
493    // This happens for non-power-of-2 length vectors.
494    // FIXME: this should probably be a target property.
495    Align = 1 << llvm::Log2_32_Ceil(Align);
496    break;
497  }
498
499  case Type::Builtin:
500    switch (cast<BuiltinType>(T)->getKind()) {
501    default: assert(0 && "Unknown builtin type!");
502    case BuiltinType::Void:
503      // GCC extension: alignof(void) = 8 bits.
504      Width = 0;
505      Align = 8;
506      break;
507
508    case BuiltinType::Bool:
509      Width = Target.getBoolWidth();
510      Align = Target.getBoolAlign();
511      break;
512    case BuiltinType::Char_S:
513    case BuiltinType::Char_U:
514    case BuiltinType::UChar:
515    case BuiltinType::SChar:
516      Width = Target.getCharWidth();
517      Align = Target.getCharAlign();
518      break;
519    case BuiltinType::WChar:
520      Width = Target.getWCharWidth();
521      Align = Target.getWCharAlign();
522      break;
523    case BuiltinType::UShort:
524    case BuiltinType::Short:
525      Width = Target.getShortWidth();
526      Align = Target.getShortAlign();
527      break;
528    case BuiltinType::UInt:
529    case BuiltinType::Int:
530      Width = Target.getIntWidth();
531      Align = Target.getIntAlign();
532      break;
533    case BuiltinType::ULong:
534    case BuiltinType::Long:
535      Width = Target.getLongWidth();
536      Align = Target.getLongAlign();
537      break;
538    case BuiltinType::ULongLong:
539    case BuiltinType::LongLong:
540      Width = Target.getLongLongWidth();
541      Align = Target.getLongLongAlign();
542      break;
543    case BuiltinType::Int128:
544    case BuiltinType::UInt128:
545      Width = 128;
546      Align = 128; // int128_t is 128-bit aligned on all targets.
547      break;
548    case BuiltinType::Float:
549      Width = Target.getFloatWidth();
550      Align = Target.getFloatAlign();
551      break;
552    case BuiltinType::Double:
553      Width = Target.getDoubleWidth();
554      Align = Target.getDoubleAlign();
555      break;
556    case BuiltinType::LongDouble:
557      Width = Target.getLongDoubleWidth();
558      Align = Target.getLongDoubleAlign();
559      break;
560    case BuiltinType::NullPtr:
561      Width = Target.getPointerWidth(0); // C++ 3.9.1p11: sizeof(nullptr_t)
562      Align = Target.getPointerAlign(0); //   == sizeof(void*)
563      break;
564    }
565    break;
566  case Type::FixedWidthInt:
567    // FIXME: This isn't precisely correct; the width/alignment should depend
568    // on the available types for the target
569    Width = cast<FixedWidthIntType>(T)->getWidth();
570    Width = std::max(llvm::NextPowerOf2(Width - 1), (uint64_t)8);
571    Align = Width;
572    break;
573  case Type::ExtQual:
574    // FIXME: Pointers into different addr spaces could have different sizes and
575    // alignment requirements: getPointerInfo should take an AddrSpace.
576    return getTypeInfo(QualType(cast<ExtQualType>(T)->getBaseType(), 0));
577  case Type::ObjCObjectPointer:
578  case Type::ObjCQualifiedInterface:
579    Width = Target.getPointerWidth(0);
580    Align = Target.getPointerAlign(0);
581    break;
582  case Type::BlockPointer: {
583    unsigned AS = cast<BlockPointerType>(T)->getPointeeType().getAddressSpace();
584    Width = Target.getPointerWidth(AS);
585    Align = Target.getPointerAlign(AS);
586    break;
587  }
588  case Type::Pointer: {
589    unsigned AS = cast<PointerType>(T)->getPointeeType().getAddressSpace();
590    Width = Target.getPointerWidth(AS);
591    Align = Target.getPointerAlign(AS);
592    break;
593  }
594  case Type::LValueReference:
595  case Type::RValueReference:
596    // "When applied to a reference or a reference type, the result is the size
597    // of the referenced type." C++98 5.3.3p2: expr.sizeof.
598    // FIXME: This is wrong for struct layout: a reference in a struct has
599    // pointer size.
600    return getTypeInfo(cast<ReferenceType>(T)->getPointeeType());
601  case Type::MemberPointer: {
602    // FIXME: This is ABI dependent. We use the Itanium C++ ABI.
603    // http://www.codesourcery.com/public/cxx-abi/abi.html#member-pointers
604    // If we ever want to support other ABIs this needs to be abstracted.
605
606    QualType Pointee = cast<MemberPointerType>(T)->getPointeeType();
607    std::pair<uint64_t, unsigned> PtrDiffInfo =
608      getTypeInfo(getPointerDiffType());
609    Width = PtrDiffInfo.first;
610    if (Pointee->isFunctionType())
611      Width *= 2;
612    Align = PtrDiffInfo.second;
613    break;
614  }
615  case Type::Complex: {
616    // Complex types have the same alignment as their elements, but twice the
617    // size.
618    std::pair<uint64_t, unsigned> EltInfo =
619      getTypeInfo(cast<ComplexType>(T)->getElementType());
620    Width = EltInfo.first*2;
621    Align = EltInfo.second;
622    break;
623  }
624  case Type::ObjCInterface: {
625    const ObjCInterfaceType *ObjCI = cast<ObjCInterfaceType>(T);
626    const ASTRecordLayout &Layout = getASTObjCInterfaceLayout(ObjCI->getDecl());
627    Width = Layout.getSize();
628    Align = Layout.getAlignment();
629    break;
630  }
631  case Type::Record:
632  case Type::Enum: {
633    const TagType *TT = cast<TagType>(T);
634
635    if (TT->getDecl()->isInvalidDecl()) {
636      Width = 1;
637      Align = 1;
638      break;
639    }
640
641    if (const EnumType *ET = dyn_cast<EnumType>(TT))
642      return getTypeInfo(ET->getDecl()->getIntegerType());
643
644    const RecordType *RT = cast<RecordType>(TT);
645    const ASTRecordLayout &Layout = getASTRecordLayout(RT->getDecl());
646    Width = Layout.getSize();
647    Align = Layout.getAlignment();
648    break;
649  }
650
651  case Type::Typedef: {
652    const TypedefDecl *Typedef = cast<TypedefType>(T)->getDecl();
653    if (const AlignedAttr *Aligned = Typedef->getAttr<AlignedAttr>()) {
654      Align = Aligned->getAlignment();
655      Width = getTypeSize(Typedef->getUnderlyingType().getTypePtr());
656    } else
657      return getTypeInfo(Typedef->getUnderlyingType().getTypePtr());
658    break;
659  }
660
661  case Type::TypeOfExpr:
662    return getTypeInfo(cast<TypeOfExprType>(T)->getUnderlyingExpr()->getType()
663                         .getTypePtr());
664
665  case Type::TypeOf:
666    return getTypeInfo(cast<TypeOfType>(T)->getUnderlyingType().getTypePtr());
667
668  case Type::Decltype:
669    return getTypeInfo(cast<DecltypeType>(T)->getUnderlyingExpr()->getType()
670                        .getTypePtr());
671
672  case Type::QualifiedName:
673    return getTypeInfo(cast<QualifiedNameType>(T)->getNamedType().getTypePtr());
674
675  case Type::TemplateSpecialization:
676    assert(getCanonicalType(T) != T &&
677           "Cannot request the size of a dependent type");
678    // FIXME: this is likely to be wrong once we support template
679    // aliases, since a template alias could refer to a typedef that
680    // has an __aligned__ attribute on it.
681    return getTypeInfo(getCanonicalType(T));
682  }
683
684  assert(Align && (Align & (Align-1)) == 0 && "Alignment must be power of 2");
685  return std::make_pair(Width, Align);
686}
687
688/// getPreferredTypeAlign - Return the "preferred" alignment of the specified
689/// type for the current target in bits.  This can be different than the ABI
690/// alignment in cases where it is beneficial for performance to overalign
691/// a data type.
692unsigned ASTContext::getPreferredTypeAlign(const Type *T) {
693  unsigned ABIAlign = getTypeAlign(T);
694
695  // Double and long long should be naturally aligned if possible.
696  if (const ComplexType* CT = T->getAsComplexType())
697    T = CT->getElementType().getTypePtr();
698  if (T->isSpecificBuiltinType(BuiltinType::Double) ||
699      T->isSpecificBuiltinType(BuiltinType::LongLong))
700    return std::max(ABIAlign, (unsigned)getTypeSize(T));
701
702  return ABIAlign;
703}
704
705
706/// LayoutField - Field layout.
707void ASTRecordLayout::LayoutField(const FieldDecl *FD, unsigned FieldNo,
708                                  bool IsUnion, unsigned StructPacking,
709                                  ASTContext &Context) {
710  unsigned FieldPacking = StructPacking;
711  uint64_t FieldOffset = IsUnion ? 0 : Size;
712  uint64_t FieldSize;
713  unsigned FieldAlign;
714
715  // FIXME: Should this override struct packing? Probably we want to
716  // take the minimum?
717  if (const PackedAttr *PA = FD->getAttr<PackedAttr>())
718    FieldPacking = PA->getAlignment();
719
720  if (const Expr *BitWidthExpr = FD->getBitWidth()) {
721    // TODO: Need to check this algorithm on other targets!
722    //       (tested on Linux-X86)
723    FieldSize = BitWidthExpr->EvaluateAsInt(Context).getZExtValue();
724
725    std::pair<uint64_t, unsigned> FieldInfo =
726      Context.getTypeInfo(FD->getType());
727    uint64_t TypeSize = FieldInfo.first;
728
729    // Determine the alignment of this bitfield. The packing
730    // attributes define a maximum and the alignment attribute defines
731    // a minimum.
732    // FIXME: What is the right behavior when the specified alignment
733    // is smaller than the specified packing?
734    FieldAlign = FieldInfo.second;
735    if (FieldPacking)
736      FieldAlign = std::min(FieldAlign, FieldPacking);
737    if (const AlignedAttr *AA = FD->getAttr<AlignedAttr>())
738      FieldAlign = std::max(FieldAlign, AA->getAlignment());
739
740    // Check if we need to add padding to give the field the correct
741    // alignment.
742    if (FieldSize == 0 || (FieldOffset & (FieldAlign-1)) + FieldSize > TypeSize)
743      FieldOffset = (FieldOffset + (FieldAlign-1)) & ~(FieldAlign-1);
744
745    // Padding members don't affect overall alignment
746    if (!FD->getIdentifier())
747      FieldAlign = 1;
748  } else {
749    if (FD->getType()->isIncompleteArrayType()) {
750      // This is a flexible array member; we can't directly
751      // query getTypeInfo about these, so we figure it out here.
752      // Flexible array members don't have any size, but they
753      // have to be aligned appropriately for their element type.
754      FieldSize = 0;
755      const ArrayType* ATy = Context.getAsArrayType(FD->getType());
756      FieldAlign = Context.getTypeAlign(ATy->getElementType());
757    } else if (const ReferenceType *RT = FD->getType()->getAsReferenceType()) {
758      unsigned AS = RT->getPointeeType().getAddressSpace();
759      FieldSize = Context.Target.getPointerWidth(AS);
760      FieldAlign = Context.Target.getPointerAlign(AS);
761    } else {
762      std::pair<uint64_t, unsigned> FieldInfo =
763        Context.getTypeInfo(FD->getType());
764      FieldSize = FieldInfo.first;
765      FieldAlign = FieldInfo.second;
766    }
767
768    // Determine the alignment of this bitfield. The packing
769    // attributes define a maximum and the alignment attribute defines
770    // a minimum. Additionally, the packing alignment must be at least
771    // a byte for non-bitfields.
772    //
773    // FIXME: What is the right behavior when the specified alignment
774    // is smaller than the specified packing?
775    if (FieldPacking)
776      FieldAlign = std::min(FieldAlign, std::max(8U, FieldPacking));
777    if (const AlignedAttr *AA = FD->getAttr<AlignedAttr>())
778      FieldAlign = std::max(FieldAlign, AA->getAlignment());
779
780    // Round up the current record size to the field's alignment boundary.
781    FieldOffset = (FieldOffset + (FieldAlign-1)) & ~(FieldAlign-1);
782  }
783
784  // Place this field at the current location.
785  FieldOffsets[FieldNo] = FieldOffset;
786
787  // Reserve space for this field.
788  if (IsUnion) {
789    Size = std::max(Size, FieldSize);
790  } else {
791    Size = FieldOffset + FieldSize;
792  }
793
794  // Remember the next available offset.
795  NextOffset = Size;
796
797  // Remember max struct/class alignment.
798  Alignment = std::max(Alignment, FieldAlign);
799}
800
801static void CollectLocalObjCIvars(ASTContext *Ctx,
802                                  const ObjCInterfaceDecl *OI,
803                                  llvm::SmallVectorImpl<FieldDecl*> &Fields) {
804  for (ObjCInterfaceDecl::ivar_iterator I = OI->ivar_begin(),
805       E = OI->ivar_end(); I != E; ++I) {
806    ObjCIvarDecl *IVDecl = *I;
807    if (!IVDecl->isInvalidDecl())
808      Fields.push_back(cast<FieldDecl>(IVDecl));
809  }
810}
811
812void ASTContext::CollectObjCIvars(const ObjCInterfaceDecl *OI,
813                             llvm::SmallVectorImpl<FieldDecl*> &Fields) {
814  if (const ObjCInterfaceDecl *SuperClass = OI->getSuperClass())
815    CollectObjCIvars(SuperClass, Fields);
816  CollectLocalObjCIvars(this, OI, Fields);
817}
818
819/// ShallowCollectObjCIvars -
820/// Collect all ivars, including those synthesized, in the current class.
821///
822void ASTContext::ShallowCollectObjCIvars(const ObjCInterfaceDecl *OI,
823                                 llvm::SmallVectorImpl<ObjCIvarDecl*> &Ivars,
824                                 bool CollectSynthesized) {
825  for (ObjCInterfaceDecl::ivar_iterator I = OI->ivar_begin(),
826         E = OI->ivar_end(); I != E; ++I) {
827     Ivars.push_back(*I);
828  }
829  if (CollectSynthesized)
830    CollectSynthesizedIvars(OI, Ivars);
831}
832
833void ASTContext::CollectProtocolSynthesizedIvars(const ObjCProtocolDecl *PD,
834                                llvm::SmallVectorImpl<ObjCIvarDecl*> &Ivars) {
835  for (ObjCContainerDecl::prop_iterator I = PD->prop_begin(),
836       E = PD->prop_end(); I != E; ++I)
837    if (ObjCIvarDecl *Ivar = (*I)->getPropertyIvarDecl())
838      Ivars.push_back(Ivar);
839
840  // Also look into nested protocols.
841  for (ObjCProtocolDecl::protocol_iterator P = PD->protocol_begin(),
842       E = PD->protocol_end(); P != E; ++P)
843    CollectProtocolSynthesizedIvars(*P, Ivars);
844}
845
846/// CollectSynthesizedIvars -
847/// This routine collect synthesized ivars for the designated class.
848///
849void ASTContext::CollectSynthesizedIvars(const ObjCInterfaceDecl *OI,
850                                llvm::SmallVectorImpl<ObjCIvarDecl*> &Ivars) {
851  for (ObjCInterfaceDecl::prop_iterator I = OI->prop_begin(),
852       E = OI->prop_end(); I != E; ++I) {
853    if (ObjCIvarDecl *Ivar = (*I)->getPropertyIvarDecl())
854      Ivars.push_back(Ivar);
855  }
856  // Also look into interface's protocol list for properties declared
857  // in the protocol and whose ivars are synthesized.
858  for (ObjCInterfaceDecl::protocol_iterator P = OI->protocol_begin(),
859       PE = OI->protocol_end(); P != PE; ++P) {
860    ObjCProtocolDecl *PD = (*P);
861    CollectProtocolSynthesizedIvars(PD, Ivars);
862  }
863}
864
865unsigned ASTContext::CountProtocolSynthesizedIvars(const ObjCProtocolDecl *PD) {
866  unsigned count = 0;
867  for (ObjCContainerDecl::prop_iterator I = PD->prop_begin(),
868       E = PD->prop_end(); I != E; ++I)
869    if ((*I)->getPropertyIvarDecl())
870      ++count;
871
872  // Also look into nested protocols.
873  for (ObjCProtocolDecl::protocol_iterator P = PD->protocol_begin(),
874       E = PD->protocol_end(); P != E; ++P)
875    count += CountProtocolSynthesizedIvars(*P);
876  return count;
877}
878
879unsigned ASTContext::CountSynthesizedIvars(const ObjCInterfaceDecl *OI)
880{
881  unsigned count = 0;
882  for (ObjCInterfaceDecl::prop_iterator I = OI->prop_begin(),
883       E = OI->prop_end(); I != E; ++I) {
884    if ((*I)->getPropertyIvarDecl())
885      ++count;
886  }
887  // Also look into interface's protocol list for properties declared
888  // in the protocol and whose ivars are synthesized.
889  for (ObjCInterfaceDecl::protocol_iterator P = OI->protocol_begin(),
890       PE = OI->protocol_end(); P != PE; ++P) {
891    ObjCProtocolDecl *PD = (*P);
892    count += CountProtocolSynthesizedIvars(PD);
893  }
894  return count;
895}
896
897/// getInterfaceLayoutImpl - Get or compute information about the
898/// layout of the given interface.
899///
900/// \param Impl - If given, also include the layout of the interface's
901/// implementation. This may differ by including synthesized ivars.
902const ASTRecordLayout &
903ASTContext::getObjCLayout(const ObjCInterfaceDecl *D,
904                          const ObjCImplementationDecl *Impl) {
905  assert(!D->isForwardDecl() && "Invalid interface decl!");
906
907  // Look up this layout, if already laid out, return what we have.
908  ObjCContainerDecl *Key =
909    Impl ? (ObjCContainerDecl*) Impl : (ObjCContainerDecl*) D;
910  if (const ASTRecordLayout *Entry = ObjCLayouts[Key])
911    return *Entry;
912
913  unsigned FieldCount = D->ivar_size();
914  // Add in synthesized ivar count if laying out an implementation.
915  if (Impl) {
916    unsigned SynthCount = CountSynthesizedIvars(D);
917    FieldCount += SynthCount;
918    // If there aren't any sythesized ivars then reuse the interface
919    // entry. Note we can't cache this because we simply free all
920    // entries later; however we shouldn't look up implementations
921    // frequently.
922    if (SynthCount == 0)
923      return getObjCLayout(D, 0);
924  }
925
926  ASTRecordLayout *NewEntry = NULL;
927  if (ObjCInterfaceDecl *SD = D->getSuperClass()) {
928    const ASTRecordLayout &SL = getASTObjCInterfaceLayout(SD);
929    unsigned Alignment = SL.getAlignment();
930
931    // We start laying out ivars not at the end of the superclass
932    // structure, but at the next byte following the last field.
933    uint64_t Size = llvm::RoundUpToAlignment(SL.NextOffset, 8);
934
935    ObjCLayouts[Key] = NewEntry = new ASTRecordLayout(Size, Alignment);
936    NewEntry->InitializeLayout(FieldCount);
937  } else {
938    ObjCLayouts[Key] = NewEntry = new ASTRecordLayout();
939    NewEntry->InitializeLayout(FieldCount);
940  }
941
942  unsigned StructPacking = 0;
943  if (const PackedAttr *PA = D->getAttr<PackedAttr>())
944    StructPacking = PA->getAlignment();
945
946  if (const AlignedAttr *AA = D->getAttr<AlignedAttr>())
947    NewEntry->SetAlignment(std::max(NewEntry->getAlignment(),
948                                    AA->getAlignment()));
949
950  // Layout each ivar sequentially.
951  unsigned i = 0;
952  llvm::SmallVector<ObjCIvarDecl*, 16> Ivars;
953  ShallowCollectObjCIvars(D, Ivars, Impl);
954  for (unsigned k = 0, e = Ivars.size(); k != e; ++k)
955       NewEntry->LayoutField(Ivars[k], i++, false, StructPacking, *this);
956
957  // Finally, round the size of the total struct up to the alignment of the
958  // struct itself.
959  NewEntry->FinalizeLayout();
960  return *NewEntry;
961}
962
963const ASTRecordLayout &
964ASTContext::getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D) {
965  return getObjCLayout(D, 0);
966}
967
968const ASTRecordLayout &
969ASTContext::getASTObjCImplementationLayout(const ObjCImplementationDecl *D) {
970  return getObjCLayout(D->getClassInterface(), D);
971}
972
973/// getASTRecordLayout - Get or compute information about the layout of the
974/// specified record (struct/union/class), which indicates its size and field
975/// position information.
976const ASTRecordLayout &ASTContext::getASTRecordLayout(const RecordDecl *D) {
977  D = D->getDefinition(*this);
978  assert(D && "Cannot get layout of forward declarations!");
979
980  // Look up this layout, if already laid out, return what we have.
981  const ASTRecordLayout *&Entry = ASTRecordLayouts[D];
982  if (Entry) return *Entry;
983
984  // Allocate and assign into ASTRecordLayouts here.  The "Entry" reference can
985  // be invalidated (dangle) if the ASTRecordLayouts hashtable is inserted into.
986  ASTRecordLayout *NewEntry = new ASTRecordLayout();
987  Entry = NewEntry;
988
989  // FIXME: Avoid linear walk through the fields, if possible.
990  NewEntry->InitializeLayout(std::distance(D->field_begin(), D->field_end()));
991  bool IsUnion = D->isUnion();
992
993  unsigned StructPacking = 0;
994  if (const PackedAttr *PA = D->getAttr<PackedAttr>())
995    StructPacking = PA->getAlignment();
996
997  if (const AlignedAttr *AA = D->getAttr<AlignedAttr>())
998    NewEntry->SetAlignment(std::max(NewEntry->getAlignment(),
999                                    AA->getAlignment()));
1000
1001  // Layout each field, for now, just sequentially, respecting alignment.  In
1002  // the future, this will need to be tweakable by targets.
1003  unsigned FieldIdx = 0;
1004  for (RecordDecl::field_iterator Field = D->field_begin(),
1005                               FieldEnd = D->field_end();
1006       Field != FieldEnd; (void)++Field, ++FieldIdx)
1007    NewEntry->LayoutField(*Field, FieldIdx, IsUnion, StructPacking, *this);
1008
1009  // Finally, round the size of the total struct up to the alignment of the
1010  // struct itself.
1011  NewEntry->FinalizeLayout(getLangOptions().CPlusPlus);
1012  return *NewEntry;
1013}
1014
1015//===----------------------------------------------------------------------===//
1016//                   Type creation/memoization methods
1017//===----------------------------------------------------------------------===//
1018
1019QualType ASTContext::getAddrSpaceQualType(QualType T, unsigned AddressSpace) {
1020  QualType CanT = getCanonicalType(T);
1021  if (CanT.getAddressSpace() == AddressSpace)
1022    return T;
1023
1024  // If we are composing extended qualifiers together, merge together into one
1025  // ExtQualType node.
1026  unsigned CVRQuals = T.getCVRQualifiers();
1027  QualType::GCAttrTypes GCAttr = QualType::GCNone;
1028  Type *TypeNode = T.getTypePtr();
1029
1030  if (ExtQualType *EQT = dyn_cast<ExtQualType>(TypeNode)) {
1031    // If this type already has an address space specified, it cannot get
1032    // another one.
1033    assert(EQT->getAddressSpace() == 0 &&
1034           "Type cannot be in multiple addr spaces!");
1035    GCAttr = EQT->getObjCGCAttr();
1036    TypeNode = EQT->getBaseType();
1037  }
1038
1039  // Check if we've already instantiated this type.
1040  llvm::FoldingSetNodeID ID;
1041  ExtQualType::Profile(ID, TypeNode, AddressSpace, GCAttr);
1042  void *InsertPos = 0;
1043  if (ExtQualType *EXTQy = ExtQualTypes.FindNodeOrInsertPos(ID, InsertPos))
1044    return QualType(EXTQy, CVRQuals);
1045
1046  // If the base type isn't canonical, this won't be a canonical type either,
1047  // so fill in the canonical type field.
1048  QualType Canonical;
1049  if (!TypeNode->isCanonical()) {
1050    Canonical = getAddrSpaceQualType(CanT, AddressSpace);
1051
1052    // Update InsertPos, the previous call could have invalidated it.
1053    ExtQualType *NewIP = ExtQualTypes.FindNodeOrInsertPos(ID, InsertPos);
1054    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1055  }
1056  ExtQualType *New =
1057    new (*this, 8) ExtQualType(TypeNode, Canonical, AddressSpace, GCAttr);
1058  ExtQualTypes.InsertNode(New, InsertPos);
1059  Types.push_back(New);
1060  return QualType(New, CVRQuals);
1061}
1062
1063QualType ASTContext::getObjCGCQualType(QualType T,
1064                                       QualType::GCAttrTypes GCAttr) {
1065  QualType CanT = getCanonicalType(T);
1066  if (CanT.getObjCGCAttr() == GCAttr)
1067    return T;
1068
1069  if (T->isPointerType()) {
1070    QualType Pointee = T->getAsPointerType()->getPointeeType();
1071    if (Pointee->isPointerType()) {
1072      QualType ResultType = getObjCGCQualType(Pointee, GCAttr);
1073      return getPointerType(ResultType);
1074    }
1075  }
1076  // If we are composing extended qualifiers together, merge together into one
1077  // ExtQualType node.
1078  unsigned CVRQuals = T.getCVRQualifiers();
1079  Type *TypeNode = T.getTypePtr();
1080  unsigned AddressSpace = 0;
1081
1082  if (ExtQualType *EQT = dyn_cast<ExtQualType>(TypeNode)) {
1083    // If this type already has an address space specified, it cannot get
1084    // another one.
1085    assert(EQT->getObjCGCAttr() == QualType::GCNone &&
1086           "Type cannot be in multiple addr spaces!");
1087    AddressSpace = EQT->getAddressSpace();
1088    TypeNode = EQT->getBaseType();
1089  }
1090
1091  // Check if we've already instantiated an gc qual'd type of this type.
1092  llvm::FoldingSetNodeID ID;
1093  ExtQualType::Profile(ID, TypeNode, AddressSpace, GCAttr);
1094  void *InsertPos = 0;
1095  if (ExtQualType *EXTQy = ExtQualTypes.FindNodeOrInsertPos(ID, InsertPos))
1096    return QualType(EXTQy, CVRQuals);
1097
1098  // If the base type isn't canonical, this won't be a canonical type either,
1099  // so fill in the canonical type field.
1100  // FIXME: Isn't this also not canonical if the base type is a array
1101  // or pointer type?  I can't find any documentation for objc_gc, though...
1102  QualType Canonical;
1103  if (!T->isCanonical()) {
1104    Canonical = getObjCGCQualType(CanT, GCAttr);
1105
1106    // Update InsertPos, the previous call could have invalidated it.
1107    ExtQualType *NewIP = ExtQualTypes.FindNodeOrInsertPos(ID, InsertPos);
1108    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1109  }
1110  ExtQualType *New =
1111    new (*this, 8) ExtQualType(TypeNode, Canonical, AddressSpace, GCAttr);
1112  ExtQualTypes.InsertNode(New, InsertPos);
1113  Types.push_back(New);
1114  return QualType(New, CVRQuals);
1115}
1116
1117/// getComplexType - Return the uniqued reference to the type for a complex
1118/// number with the specified element type.
1119QualType ASTContext::getComplexType(QualType T) {
1120  // Unique pointers, to guarantee there is only one pointer of a particular
1121  // structure.
1122  llvm::FoldingSetNodeID ID;
1123  ComplexType::Profile(ID, T);
1124
1125  void *InsertPos = 0;
1126  if (ComplexType *CT = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos))
1127    return QualType(CT, 0);
1128
1129  // If the pointee type isn't canonical, this won't be a canonical type either,
1130  // so fill in the canonical type field.
1131  QualType Canonical;
1132  if (!T->isCanonical()) {
1133    Canonical = getComplexType(getCanonicalType(T));
1134
1135    // Get the new insert position for the node we care about.
1136    ComplexType *NewIP = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos);
1137    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1138  }
1139  ComplexType *New = new (*this,8) ComplexType(T, Canonical);
1140  Types.push_back(New);
1141  ComplexTypes.InsertNode(New, InsertPos);
1142  return QualType(New, 0);
1143}
1144
1145QualType ASTContext::getFixedWidthIntType(unsigned Width, bool Signed) {
1146  llvm::DenseMap<unsigned, FixedWidthIntType*> &Map = Signed ?
1147     SignedFixedWidthIntTypes : UnsignedFixedWidthIntTypes;
1148  FixedWidthIntType *&Entry = Map[Width];
1149  if (!Entry)
1150    Entry = new FixedWidthIntType(Width, Signed);
1151  return QualType(Entry, 0);
1152}
1153
1154/// getPointerType - Return the uniqued reference to the type for a pointer to
1155/// the specified type.
1156QualType ASTContext::getPointerType(QualType T) {
1157  // Unique pointers, to guarantee there is only one pointer of a particular
1158  // structure.
1159  llvm::FoldingSetNodeID ID;
1160  PointerType::Profile(ID, T);
1161
1162  void *InsertPos = 0;
1163  if (PointerType *PT = PointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1164    return QualType(PT, 0);
1165
1166  // If the pointee type isn't canonical, this won't be a canonical type either,
1167  // so fill in the canonical type field.
1168  QualType Canonical;
1169  if (!T->isCanonical()) {
1170    Canonical = getPointerType(getCanonicalType(T));
1171
1172    // Get the new insert position for the node we care about.
1173    PointerType *NewIP = PointerTypes.FindNodeOrInsertPos(ID, InsertPos);
1174    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1175  }
1176  PointerType *New = new (*this,8) PointerType(T, Canonical);
1177  Types.push_back(New);
1178  PointerTypes.InsertNode(New, InsertPos);
1179  return QualType(New, 0);
1180}
1181
1182/// getBlockPointerType - Return the uniqued reference to the type for
1183/// a pointer to the specified block.
1184QualType ASTContext::getBlockPointerType(QualType T) {
1185  assert(T->isFunctionType() && "block of function types only");
1186  // Unique pointers, to guarantee there is only one block of a particular
1187  // structure.
1188  llvm::FoldingSetNodeID ID;
1189  BlockPointerType::Profile(ID, T);
1190
1191  void *InsertPos = 0;
1192  if (BlockPointerType *PT =
1193        BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1194    return QualType(PT, 0);
1195
1196  // If the block pointee type isn't canonical, this won't be a canonical
1197  // type either so fill in the canonical type field.
1198  QualType Canonical;
1199  if (!T->isCanonical()) {
1200    Canonical = getBlockPointerType(getCanonicalType(T));
1201
1202    // Get the new insert position for the node we care about.
1203    BlockPointerType *NewIP =
1204      BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
1205    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1206  }
1207  BlockPointerType *New = new (*this,8) BlockPointerType(T, Canonical);
1208  Types.push_back(New);
1209  BlockPointerTypes.InsertNode(New, InsertPos);
1210  return QualType(New, 0);
1211}
1212
1213/// getLValueReferenceType - Return the uniqued reference to the type for an
1214/// lvalue reference to the specified type.
1215QualType ASTContext::getLValueReferenceType(QualType T) {
1216  // Unique pointers, to guarantee there is only one pointer of a particular
1217  // structure.
1218  llvm::FoldingSetNodeID ID;
1219  ReferenceType::Profile(ID, T);
1220
1221  void *InsertPos = 0;
1222  if (LValueReferenceType *RT =
1223        LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
1224    return QualType(RT, 0);
1225
1226  // If the referencee type isn't canonical, this won't be a canonical type
1227  // either, so fill in the canonical type field.
1228  QualType Canonical;
1229  if (!T->isCanonical()) {
1230    Canonical = getLValueReferenceType(getCanonicalType(T));
1231
1232    // Get the new insert position for the node we care about.
1233    LValueReferenceType *NewIP =
1234      LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
1235    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1236  }
1237
1238  LValueReferenceType *New = new (*this,8) LValueReferenceType(T, Canonical);
1239  Types.push_back(New);
1240  LValueReferenceTypes.InsertNode(New, InsertPos);
1241  return QualType(New, 0);
1242}
1243
1244/// getRValueReferenceType - Return the uniqued reference to the type for an
1245/// rvalue reference to the specified type.
1246QualType ASTContext::getRValueReferenceType(QualType T) {
1247  // Unique pointers, to guarantee there is only one pointer of a particular
1248  // structure.
1249  llvm::FoldingSetNodeID ID;
1250  ReferenceType::Profile(ID, T);
1251
1252  void *InsertPos = 0;
1253  if (RValueReferenceType *RT =
1254        RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
1255    return QualType(RT, 0);
1256
1257  // If the referencee type isn't canonical, this won't be a canonical type
1258  // either, so fill in the canonical type field.
1259  QualType Canonical;
1260  if (!T->isCanonical()) {
1261    Canonical = getRValueReferenceType(getCanonicalType(T));
1262
1263    // Get the new insert position for the node we care about.
1264    RValueReferenceType *NewIP =
1265      RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
1266    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1267  }
1268
1269  RValueReferenceType *New = new (*this,8) RValueReferenceType(T, Canonical);
1270  Types.push_back(New);
1271  RValueReferenceTypes.InsertNode(New, InsertPos);
1272  return QualType(New, 0);
1273}
1274
1275/// getMemberPointerType - Return the uniqued reference to the type for a
1276/// member pointer to the specified type, in the specified class.
1277QualType ASTContext::getMemberPointerType(QualType T, const Type *Cls)
1278{
1279  // Unique pointers, to guarantee there is only one pointer of a particular
1280  // structure.
1281  llvm::FoldingSetNodeID ID;
1282  MemberPointerType::Profile(ID, T, Cls);
1283
1284  void *InsertPos = 0;
1285  if (MemberPointerType *PT =
1286      MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1287    return QualType(PT, 0);
1288
1289  // If the pointee or class type isn't canonical, this won't be a canonical
1290  // type either, so fill in the canonical type field.
1291  QualType Canonical;
1292  if (!T->isCanonical()) {
1293    Canonical = getMemberPointerType(getCanonicalType(T),getCanonicalType(Cls));
1294
1295    // Get the new insert position for the node we care about.
1296    MemberPointerType *NewIP =
1297      MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
1298    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1299  }
1300  MemberPointerType *New = new (*this,8) MemberPointerType(T, Cls, Canonical);
1301  Types.push_back(New);
1302  MemberPointerTypes.InsertNode(New, InsertPos);
1303  return QualType(New, 0);
1304}
1305
1306/// getConstantArrayType - Return the unique reference to the type for an
1307/// array of the specified element type.
1308QualType ASTContext::getConstantArrayType(QualType EltTy,
1309                                          const llvm::APInt &ArySizeIn,
1310                                          ArrayType::ArraySizeModifier ASM,
1311                                          unsigned EltTypeQuals) {
1312  assert((EltTy->isDependentType() || EltTy->isConstantSizeType()) &&
1313         "Constant array of VLAs is illegal!");
1314
1315  // Convert the array size into a canonical width matching the pointer size for
1316  // the target.
1317  llvm::APInt ArySize(ArySizeIn);
1318  ArySize.zextOrTrunc(Target.getPointerWidth(EltTy.getAddressSpace()));
1319
1320  llvm::FoldingSetNodeID ID;
1321  ConstantArrayType::Profile(ID, EltTy, ArySize, ASM, EltTypeQuals);
1322
1323  void *InsertPos = 0;
1324  if (ConstantArrayType *ATP =
1325      ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
1326    return QualType(ATP, 0);
1327
1328  // If the element type isn't canonical, this won't be a canonical type either,
1329  // so fill in the canonical type field.
1330  QualType Canonical;
1331  if (!EltTy->isCanonical()) {
1332    Canonical = getConstantArrayType(getCanonicalType(EltTy), ArySize,
1333                                     ASM, EltTypeQuals);
1334    // Get the new insert position for the node we care about.
1335    ConstantArrayType *NewIP =
1336      ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
1337    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1338  }
1339
1340  ConstantArrayType *New =
1341    new(*this,8)ConstantArrayType(EltTy, Canonical, ArySize, ASM, EltTypeQuals);
1342  ConstantArrayTypes.InsertNode(New, InsertPos);
1343  Types.push_back(New);
1344  return QualType(New, 0);
1345}
1346
1347/// getVariableArrayType - Returns a non-unique reference to the type for a
1348/// variable array of the specified element type.
1349QualType ASTContext::getVariableArrayType(QualType EltTy, Expr *NumElts,
1350                                          ArrayType::ArraySizeModifier ASM,
1351                                          unsigned EltTypeQuals) {
1352  // Since we don't unique expressions, it isn't possible to unique VLA's
1353  // that have an expression provided for their size.
1354
1355  VariableArrayType *New =
1356    new(*this,8)VariableArrayType(EltTy,QualType(), NumElts, ASM, EltTypeQuals);
1357
1358  VariableArrayTypes.push_back(New);
1359  Types.push_back(New);
1360  return QualType(New, 0);
1361}
1362
1363/// getDependentSizedArrayType - Returns a non-unique reference to
1364/// the type for a dependently-sized array of the specified element
1365/// type. FIXME: We will need these to be uniqued, or at least
1366/// comparable, at some point.
1367QualType ASTContext::getDependentSizedArrayType(QualType EltTy, Expr *NumElts,
1368                                                ArrayType::ArraySizeModifier ASM,
1369                                                unsigned EltTypeQuals) {
1370  assert((NumElts->isTypeDependent() || NumElts->isValueDependent()) &&
1371         "Size must be type- or value-dependent!");
1372
1373  // Since we don't unique expressions, it isn't possible to unique
1374  // dependently-sized array types.
1375
1376  DependentSizedArrayType *New =
1377      new (*this,8) DependentSizedArrayType(EltTy, QualType(), NumElts,
1378                                            ASM, EltTypeQuals);
1379
1380  DependentSizedArrayTypes.push_back(New);
1381  Types.push_back(New);
1382  return QualType(New, 0);
1383}
1384
1385QualType ASTContext::getIncompleteArrayType(QualType EltTy,
1386                                            ArrayType::ArraySizeModifier ASM,
1387                                            unsigned EltTypeQuals) {
1388  llvm::FoldingSetNodeID ID;
1389  IncompleteArrayType::Profile(ID, EltTy, ASM, EltTypeQuals);
1390
1391  void *InsertPos = 0;
1392  if (IncompleteArrayType *ATP =
1393       IncompleteArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
1394    return QualType(ATP, 0);
1395
1396  // If the element type isn't canonical, this won't be a canonical type
1397  // either, so fill in the canonical type field.
1398  QualType Canonical;
1399
1400  if (!EltTy->isCanonical()) {
1401    Canonical = getIncompleteArrayType(getCanonicalType(EltTy),
1402                                       ASM, EltTypeQuals);
1403
1404    // Get the new insert position for the node we care about.
1405    IncompleteArrayType *NewIP =
1406      IncompleteArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
1407    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1408  }
1409
1410  IncompleteArrayType *New = new (*this,8) IncompleteArrayType(EltTy, Canonical,
1411                                                           ASM, EltTypeQuals);
1412
1413  IncompleteArrayTypes.InsertNode(New, InsertPos);
1414  Types.push_back(New);
1415  return QualType(New, 0);
1416}
1417
1418/// getVectorType - Return the unique reference to a vector type of
1419/// the specified element type and size. VectorType must be a built-in type.
1420QualType ASTContext::getVectorType(QualType vecType, unsigned NumElts) {
1421  BuiltinType *baseType;
1422
1423  baseType = dyn_cast<BuiltinType>(getCanonicalType(vecType).getTypePtr());
1424  assert(baseType != 0 && "getVectorType(): Expecting a built-in type");
1425
1426  // Check if we've already instantiated a vector of this type.
1427  llvm::FoldingSetNodeID ID;
1428  VectorType::Profile(ID, vecType, NumElts, Type::Vector);
1429  void *InsertPos = 0;
1430  if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
1431    return QualType(VTP, 0);
1432
1433  // If the element type isn't canonical, this won't be a canonical type either,
1434  // so fill in the canonical type field.
1435  QualType Canonical;
1436  if (!vecType->isCanonical()) {
1437    Canonical = getVectorType(getCanonicalType(vecType), NumElts);
1438
1439    // Get the new insert position for the node we care about.
1440    VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
1441    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1442  }
1443  VectorType *New = new (*this,8) VectorType(vecType, NumElts, Canonical);
1444  VectorTypes.InsertNode(New, InsertPos);
1445  Types.push_back(New);
1446  return QualType(New, 0);
1447}
1448
1449/// getExtVectorType - Return the unique reference to an extended vector type of
1450/// the specified element type and size. VectorType must be a built-in type.
1451QualType ASTContext::getExtVectorType(QualType vecType, unsigned NumElts) {
1452  BuiltinType *baseType;
1453
1454  baseType = dyn_cast<BuiltinType>(getCanonicalType(vecType).getTypePtr());
1455  assert(baseType != 0 && "getExtVectorType(): Expecting a built-in type");
1456
1457  // Check if we've already instantiated a vector of this type.
1458  llvm::FoldingSetNodeID ID;
1459  VectorType::Profile(ID, vecType, NumElts, Type::ExtVector);
1460  void *InsertPos = 0;
1461  if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
1462    return QualType(VTP, 0);
1463
1464  // If the element type isn't canonical, this won't be a canonical type either,
1465  // so fill in the canonical type field.
1466  QualType Canonical;
1467  if (!vecType->isCanonical()) {
1468    Canonical = getExtVectorType(getCanonicalType(vecType), NumElts);
1469
1470    // Get the new insert position for the node we care about.
1471    VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
1472    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1473  }
1474  ExtVectorType *New = new (*this,8) ExtVectorType(vecType, NumElts, Canonical);
1475  VectorTypes.InsertNode(New, InsertPos);
1476  Types.push_back(New);
1477  return QualType(New, 0);
1478}
1479
1480QualType ASTContext::getDependentSizedExtVectorType(QualType vecType,
1481                                                    Expr *SizeExpr,
1482                                                    SourceLocation AttrLoc) {
1483  DependentSizedExtVectorType *New =
1484      new (*this,8) DependentSizedExtVectorType(vecType, QualType(),
1485                                                SizeExpr, AttrLoc);
1486
1487  DependentSizedExtVectorTypes.push_back(New);
1488  Types.push_back(New);
1489  return QualType(New, 0);
1490}
1491
1492/// getFunctionNoProtoType - Return a K&R style C function type like 'int()'.
1493///
1494QualType ASTContext::getFunctionNoProtoType(QualType ResultTy) {
1495  // Unique functions, to guarantee there is only one function of a particular
1496  // structure.
1497  llvm::FoldingSetNodeID ID;
1498  FunctionNoProtoType::Profile(ID, ResultTy);
1499
1500  void *InsertPos = 0;
1501  if (FunctionNoProtoType *FT =
1502        FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
1503    return QualType(FT, 0);
1504
1505  QualType Canonical;
1506  if (!ResultTy->isCanonical()) {
1507    Canonical = getFunctionNoProtoType(getCanonicalType(ResultTy));
1508
1509    // Get the new insert position for the node we care about.
1510    FunctionNoProtoType *NewIP =
1511      FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
1512    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1513  }
1514
1515  FunctionNoProtoType *New =new(*this,8)FunctionNoProtoType(ResultTy,Canonical);
1516  Types.push_back(New);
1517  FunctionNoProtoTypes.InsertNode(New, InsertPos);
1518  return QualType(New, 0);
1519}
1520
1521/// getFunctionType - Return a normal function type with a typed argument
1522/// list.  isVariadic indicates whether the argument list includes '...'.
1523QualType ASTContext::getFunctionType(QualType ResultTy,const QualType *ArgArray,
1524                                     unsigned NumArgs, bool isVariadic,
1525                                     unsigned TypeQuals, bool hasExceptionSpec,
1526                                     bool hasAnyExceptionSpec, unsigned NumExs,
1527                                     const QualType *ExArray) {
1528  // Unique functions, to guarantee there is only one function of a particular
1529  // structure.
1530  llvm::FoldingSetNodeID ID;
1531  FunctionProtoType::Profile(ID, ResultTy, ArgArray, NumArgs, isVariadic,
1532                             TypeQuals, hasExceptionSpec, hasAnyExceptionSpec,
1533                             NumExs, ExArray);
1534
1535  void *InsertPos = 0;
1536  if (FunctionProtoType *FTP =
1537        FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
1538    return QualType(FTP, 0);
1539
1540  // Determine whether the type being created is already canonical or not.
1541  bool isCanonical = ResultTy->isCanonical();
1542  if (hasExceptionSpec)
1543    isCanonical = false;
1544  for (unsigned i = 0; i != NumArgs && isCanonical; ++i)
1545    if (!ArgArray[i]->isCanonical())
1546      isCanonical = false;
1547
1548  // If this type isn't canonical, get the canonical version of it.
1549  // The exception spec is not part of the canonical type.
1550  QualType Canonical;
1551  if (!isCanonical) {
1552    llvm::SmallVector<QualType, 16> CanonicalArgs;
1553    CanonicalArgs.reserve(NumArgs);
1554    for (unsigned i = 0; i != NumArgs; ++i)
1555      CanonicalArgs.push_back(getCanonicalType(ArgArray[i]));
1556
1557    Canonical = getFunctionType(getCanonicalType(ResultTy),
1558                                CanonicalArgs.data(), NumArgs,
1559                                isVariadic, TypeQuals);
1560
1561    // Get the new insert position for the node we care about.
1562    FunctionProtoType *NewIP =
1563      FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
1564    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1565  }
1566
1567  // FunctionProtoType objects are allocated with extra bytes after them
1568  // for two variable size arrays (for parameter and exception types) at the
1569  // end of them.
1570  FunctionProtoType *FTP =
1571    (FunctionProtoType*)Allocate(sizeof(FunctionProtoType) +
1572                                 NumArgs*sizeof(QualType) +
1573                                 NumExs*sizeof(QualType), 8);
1574  new (FTP) FunctionProtoType(ResultTy, ArgArray, NumArgs, isVariadic,
1575                              TypeQuals, hasExceptionSpec, hasAnyExceptionSpec,
1576                              ExArray, NumExs, Canonical);
1577  Types.push_back(FTP);
1578  FunctionProtoTypes.InsertNode(FTP, InsertPos);
1579  return QualType(FTP, 0);
1580}
1581
1582/// getTypeDeclType - Return the unique reference to the type for the
1583/// specified type declaration.
1584QualType ASTContext::getTypeDeclType(TypeDecl *Decl, TypeDecl* PrevDecl) {
1585  assert(Decl && "Passed null for Decl param");
1586  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
1587
1588  if (TypedefDecl *Typedef = dyn_cast<TypedefDecl>(Decl))
1589    return getTypedefType(Typedef);
1590  else if (isa<TemplateTypeParmDecl>(Decl)) {
1591    assert(false && "Template type parameter types are always available.");
1592  } else if (ObjCInterfaceDecl *ObjCInterface = dyn_cast<ObjCInterfaceDecl>(Decl))
1593    return getObjCInterfaceType(ObjCInterface);
1594
1595  if (RecordDecl *Record = dyn_cast<RecordDecl>(Decl)) {
1596    if (PrevDecl)
1597      Decl->TypeForDecl = PrevDecl->TypeForDecl;
1598    else
1599      Decl->TypeForDecl = new (*this,8) RecordType(Record);
1600  }
1601  else if (EnumDecl *Enum = dyn_cast<EnumDecl>(Decl)) {
1602    if (PrevDecl)
1603      Decl->TypeForDecl = PrevDecl->TypeForDecl;
1604    else
1605      Decl->TypeForDecl = new (*this,8) EnumType(Enum);
1606  }
1607  else
1608    assert(false && "TypeDecl without a type?");
1609
1610  if (!PrevDecl) Types.push_back(Decl->TypeForDecl);
1611  return QualType(Decl->TypeForDecl, 0);
1612}
1613
1614/// getTypedefType - Return the unique reference to the type for the
1615/// specified typename decl.
1616QualType ASTContext::getTypedefType(TypedefDecl *Decl) {
1617  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
1618
1619  QualType Canonical = getCanonicalType(Decl->getUnderlyingType());
1620  Decl->TypeForDecl = new(*this,8) TypedefType(Type::Typedef, Decl, Canonical);
1621  Types.push_back(Decl->TypeForDecl);
1622  return QualType(Decl->TypeForDecl, 0);
1623}
1624
1625/// getObjCInterfaceType - Return the unique reference to the type for the
1626/// specified ObjC interface decl.
1627QualType ASTContext::getObjCInterfaceType(const ObjCInterfaceDecl *Decl) {
1628  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
1629
1630  ObjCInterfaceDecl *OID = const_cast<ObjCInterfaceDecl*>(Decl);
1631  Decl->TypeForDecl = new(*this,8) ObjCInterfaceType(Type::ObjCInterface, OID);
1632  Types.push_back(Decl->TypeForDecl);
1633  return QualType(Decl->TypeForDecl, 0);
1634}
1635
1636/// \brief Retrieve the template type parameter type for a template
1637/// parameter or parameter pack with the given depth, index, and (optionally)
1638/// name.
1639QualType ASTContext::getTemplateTypeParmType(unsigned Depth, unsigned Index,
1640                                             bool ParameterPack,
1641                                             IdentifierInfo *Name) {
1642  llvm::FoldingSetNodeID ID;
1643  TemplateTypeParmType::Profile(ID, Depth, Index, ParameterPack, Name);
1644  void *InsertPos = 0;
1645  TemplateTypeParmType *TypeParm
1646    = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
1647
1648  if (TypeParm)
1649    return QualType(TypeParm, 0);
1650
1651  if (Name) {
1652    QualType Canon = getTemplateTypeParmType(Depth, Index, ParameterPack);
1653    TypeParm = new (*this, 8) TemplateTypeParmType(Depth, Index, ParameterPack,
1654                                                   Name, Canon);
1655  } else
1656    TypeParm = new (*this, 8) TemplateTypeParmType(Depth, Index, ParameterPack);
1657
1658  Types.push_back(TypeParm);
1659  TemplateTypeParmTypes.InsertNode(TypeParm, InsertPos);
1660
1661  return QualType(TypeParm, 0);
1662}
1663
1664QualType
1665ASTContext::getTemplateSpecializationType(TemplateName Template,
1666                                          const TemplateArgument *Args,
1667                                          unsigned NumArgs,
1668                                          QualType Canon) {
1669  if (!Canon.isNull())
1670    Canon = getCanonicalType(Canon);
1671
1672  llvm::FoldingSetNodeID ID;
1673  TemplateSpecializationType::Profile(ID, Template, Args, NumArgs);
1674
1675  void *InsertPos = 0;
1676  TemplateSpecializationType *Spec
1677    = TemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
1678
1679  if (Spec)
1680    return QualType(Spec, 0);
1681
1682  void *Mem = Allocate((sizeof(TemplateSpecializationType) +
1683                        sizeof(TemplateArgument) * NumArgs),
1684                       8);
1685  Spec = new (Mem) TemplateSpecializationType(Template, Args, NumArgs, Canon);
1686  Types.push_back(Spec);
1687  TemplateSpecializationTypes.InsertNode(Spec, InsertPos);
1688
1689  return QualType(Spec, 0);
1690}
1691
1692QualType
1693ASTContext::getQualifiedNameType(NestedNameSpecifier *NNS,
1694                                 QualType NamedType) {
1695  llvm::FoldingSetNodeID ID;
1696  QualifiedNameType::Profile(ID, NNS, NamedType);
1697
1698  void *InsertPos = 0;
1699  QualifiedNameType *T
1700    = QualifiedNameTypes.FindNodeOrInsertPos(ID, InsertPos);
1701  if (T)
1702    return QualType(T, 0);
1703
1704  T = new (*this) QualifiedNameType(NNS, NamedType,
1705                                    getCanonicalType(NamedType));
1706  Types.push_back(T);
1707  QualifiedNameTypes.InsertNode(T, InsertPos);
1708  return QualType(T, 0);
1709}
1710
1711QualType ASTContext::getTypenameType(NestedNameSpecifier *NNS,
1712                                     const IdentifierInfo *Name,
1713                                     QualType Canon) {
1714  assert(NNS->isDependent() && "nested-name-specifier must be dependent");
1715
1716  if (Canon.isNull()) {
1717    NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
1718    if (CanonNNS != NNS)
1719      Canon = getTypenameType(CanonNNS, Name);
1720  }
1721
1722  llvm::FoldingSetNodeID ID;
1723  TypenameType::Profile(ID, NNS, Name);
1724
1725  void *InsertPos = 0;
1726  TypenameType *T
1727    = TypenameTypes.FindNodeOrInsertPos(ID, InsertPos);
1728  if (T)
1729    return QualType(T, 0);
1730
1731  T = new (*this) TypenameType(NNS, Name, Canon);
1732  Types.push_back(T);
1733  TypenameTypes.InsertNode(T, InsertPos);
1734  return QualType(T, 0);
1735}
1736
1737QualType
1738ASTContext::getTypenameType(NestedNameSpecifier *NNS,
1739                            const TemplateSpecializationType *TemplateId,
1740                            QualType Canon) {
1741  assert(NNS->isDependent() && "nested-name-specifier must be dependent");
1742
1743  if (Canon.isNull()) {
1744    NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
1745    QualType CanonType = getCanonicalType(QualType(TemplateId, 0));
1746    if (CanonNNS != NNS || CanonType != QualType(TemplateId, 0)) {
1747      const TemplateSpecializationType *CanonTemplateId
1748        = CanonType->getAsTemplateSpecializationType();
1749      assert(CanonTemplateId &&
1750             "Canonical type must also be a template specialization type");
1751      Canon = getTypenameType(CanonNNS, CanonTemplateId);
1752    }
1753  }
1754
1755  llvm::FoldingSetNodeID ID;
1756  TypenameType::Profile(ID, NNS, TemplateId);
1757
1758  void *InsertPos = 0;
1759  TypenameType *T
1760    = TypenameTypes.FindNodeOrInsertPos(ID, InsertPos);
1761  if (T)
1762    return QualType(T, 0);
1763
1764  T = new (*this) TypenameType(NNS, TemplateId, Canon);
1765  Types.push_back(T);
1766  TypenameTypes.InsertNode(T, InsertPos);
1767  return QualType(T, 0);
1768}
1769
1770/// CmpProtocolNames - Comparison predicate for sorting protocols
1771/// alphabetically.
1772static bool CmpProtocolNames(const ObjCProtocolDecl *LHS,
1773                            const ObjCProtocolDecl *RHS) {
1774  return LHS->getDeclName() < RHS->getDeclName();
1775}
1776
1777static void SortAndUniqueProtocols(ObjCProtocolDecl **&Protocols,
1778                                   unsigned &NumProtocols) {
1779  ObjCProtocolDecl **ProtocolsEnd = Protocols+NumProtocols;
1780
1781  // Sort protocols, keyed by name.
1782  std::sort(Protocols, Protocols+NumProtocols, CmpProtocolNames);
1783
1784  // Remove duplicates.
1785  ProtocolsEnd = std::unique(Protocols, ProtocolsEnd);
1786  NumProtocols = ProtocolsEnd-Protocols;
1787}
1788
1789/// getObjCObjectPointerType - Return a ObjCObjectPointerType type for
1790/// the given interface decl and the conforming protocol list.
1791QualType ASTContext::getObjCObjectPointerType(ObjCInterfaceDecl *Decl,
1792                                              ObjCProtocolDecl **Protocols,
1793                                              unsigned NumProtocols) {
1794  // Sort the protocol list alphabetically to canonicalize it.
1795  if (NumProtocols)
1796    SortAndUniqueProtocols(Protocols, NumProtocols);
1797
1798  llvm::FoldingSetNodeID ID;
1799  ObjCObjectPointerType::Profile(ID, Decl, Protocols, NumProtocols);
1800
1801  void *InsertPos = 0;
1802  if (ObjCObjectPointerType *QT =
1803              ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1804    return QualType(QT, 0);
1805
1806  // No Match;
1807  ObjCObjectPointerType *QType =
1808    new (*this,8) ObjCObjectPointerType(Decl, Protocols, NumProtocols);
1809
1810  Types.push_back(QType);
1811  ObjCObjectPointerTypes.InsertNode(QType, InsertPos);
1812  return QualType(QType, 0);
1813}
1814
1815/// getObjCQualifiedInterfaceType - Return a ObjCQualifiedInterfaceType type for
1816/// the given interface decl and the conforming protocol list.
1817QualType ASTContext::getObjCQualifiedInterfaceType(ObjCInterfaceDecl *Decl,
1818                       ObjCProtocolDecl **Protocols, unsigned NumProtocols) {
1819  // Sort the protocol list alphabetically to canonicalize it.
1820  SortAndUniqueProtocols(Protocols, NumProtocols);
1821
1822  llvm::FoldingSetNodeID ID;
1823  ObjCQualifiedInterfaceType::Profile(ID, Decl, Protocols, NumProtocols);
1824
1825  void *InsertPos = 0;
1826  if (ObjCQualifiedInterfaceType *QT =
1827      ObjCQualifiedInterfaceTypes.FindNodeOrInsertPos(ID, InsertPos))
1828    return QualType(QT, 0);
1829
1830  // No Match;
1831  ObjCQualifiedInterfaceType *QType =
1832    new (*this,8) ObjCQualifiedInterfaceType(Decl, Protocols, NumProtocols);
1833
1834  Types.push_back(QType);
1835  ObjCQualifiedInterfaceTypes.InsertNode(QType, InsertPos);
1836  return QualType(QType, 0);
1837}
1838
1839/// getTypeOfExprType - Unlike many "get<Type>" functions, we can't unique
1840/// TypeOfExprType AST's (since expression's are never shared). For example,
1841/// multiple declarations that refer to "typeof(x)" all contain different
1842/// DeclRefExpr's. This doesn't effect the type checker, since it operates
1843/// on canonical type's (which are always unique).
1844QualType ASTContext::getTypeOfExprType(Expr *tofExpr) {
1845  QualType Canonical = getCanonicalType(tofExpr->getType());
1846  TypeOfExprType *toe = new (*this,8) TypeOfExprType(tofExpr, Canonical);
1847  Types.push_back(toe);
1848  return QualType(toe, 0);
1849}
1850
1851/// getTypeOfType -  Unlike many "get<Type>" functions, we don't unique
1852/// TypeOfType AST's. The only motivation to unique these nodes would be
1853/// memory savings. Since typeof(t) is fairly uncommon, space shouldn't be
1854/// an issue. This doesn't effect the type checker, since it operates
1855/// on canonical type's (which are always unique).
1856QualType ASTContext::getTypeOfType(QualType tofType) {
1857  QualType Canonical = getCanonicalType(tofType);
1858  TypeOfType *tot = new (*this,8) TypeOfType(tofType, Canonical);
1859  Types.push_back(tot);
1860  return QualType(tot, 0);
1861}
1862
1863/// getDecltypeForExpr - Given an expr, will return the decltype for that
1864/// expression, according to the rules in C++0x [dcl.type.simple]p4
1865static QualType getDecltypeForExpr(const Expr *e, ASTContext &Context) {
1866  if (e->isTypeDependent())
1867    return Context.DependentTy;
1868
1869  // If e is an id expression or a class member access, decltype(e) is defined
1870  // as the type of the entity named by e.
1871  if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(e)) {
1872    if (const ValueDecl *VD = dyn_cast<ValueDecl>(DRE->getDecl()))
1873      return VD->getType();
1874  }
1875  if (const MemberExpr *ME = dyn_cast<MemberExpr>(e)) {
1876    if (const FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl()))
1877      return FD->getType();
1878  }
1879  // If e is a function call or an invocation of an overloaded operator,
1880  // (parentheses around e are ignored), decltype(e) is defined as the
1881  // return type of that function.
1882  if (const CallExpr *CE = dyn_cast<CallExpr>(e->IgnoreParens()))
1883    return CE->getCallReturnType();
1884
1885  QualType T = e->getType();
1886
1887  // Otherwise, where T is the type of e, if e is an lvalue, decltype(e) is
1888  // defined as T&, otherwise decltype(e) is defined as T.
1889  if (e->isLvalue(Context) == Expr::LV_Valid)
1890    T = Context.getLValueReferenceType(T);
1891
1892  return T;
1893}
1894
1895/// getDecltypeType -  Unlike many "get<Type>" functions, we don't unique
1896/// DecltypeType AST's. The only motivation to unique these nodes would be
1897/// memory savings. Since decltype(t) is fairly uncommon, space shouldn't be
1898/// an issue. This doesn't effect the type checker, since it operates
1899/// on canonical type's (which are always unique).
1900QualType ASTContext::getDecltypeType(Expr *e) {
1901  QualType T = getDecltypeForExpr(e, *this);
1902  DecltypeType *dt = new (*this, 8) DecltypeType(e, getCanonicalType(T));
1903  Types.push_back(dt);
1904  return QualType(dt, 0);
1905}
1906
1907/// getTagDeclType - Return the unique reference to the type for the
1908/// specified TagDecl (struct/union/class/enum) decl.
1909QualType ASTContext::getTagDeclType(TagDecl *Decl) {
1910  assert (Decl);
1911  return getTypeDeclType(Decl);
1912}
1913
1914/// getSizeType - Return the unique type for "size_t" (C99 7.17), the result
1915/// of the sizeof operator (C99 6.5.3.4p4). The value is target dependent and
1916/// needs to agree with the definition in <stddef.h>.
1917QualType ASTContext::getSizeType() const {
1918  return getFromTargetType(Target.getSizeType());
1919}
1920
1921/// getSignedWCharType - Return the type of "signed wchar_t".
1922/// Used when in C++, as a GCC extension.
1923QualType ASTContext::getSignedWCharType() const {
1924  // FIXME: derive from "Target" ?
1925  return WCharTy;
1926}
1927
1928/// getUnsignedWCharType - Return the type of "unsigned wchar_t".
1929/// Used when in C++, as a GCC extension.
1930QualType ASTContext::getUnsignedWCharType() const {
1931  // FIXME: derive from "Target" ?
1932  return UnsignedIntTy;
1933}
1934
1935/// getPointerDiffType - Return the unique type for "ptrdiff_t" (ref?)
1936/// defined in <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9).
1937QualType ASTContext::getPointerDiffType() const {
1938  return getFromTargetType(Target.getPtrDiffType(0));
1939}
1940
1941//===----------------------------------------------------------------------===//
1942//                              Type Operators
1943//===----------------------------------------------------------------------===//
1944
1945/// getCanonicalType - Return the canonical (structural) type corresponding to
1946/// the specified potentially non-canonical type.  The non-canonical version
1947/// of a type may have many "decorated" versions of types.  Decorators can
1948/// include typedefs, 'typeof' operators, etc. The returned type is guaranteed
1949/// to be free of any of these, allowing two canonical types to be compared
1950/// for exact equality with a simple pointer comparison.
1951QualType ASTContext::getCanonicalType(QualType T) {
1952  QualType CanType = T.getTypePtr()->getCanonicalTypeInternal();
1953
1954  // If the result has type qualifiers, make sure to canonicalize them as well.
1955  unsigned TypeQuals = T.getCVRQualifiers() | CanType.getCVRQualifiers();
1956  if (TypeQuals == 0) return CanType;
1957
1958  // If the type qualifiers are on an array type, get the canonical type of the
1959  // array with the qualifiers applied to the element type.
1960  ArrayType *AT = dyn_cast<ArrayType>(CanType);
1961  if (!AT)
1962    return CanType.getQualifiedType(TypeQuals);
1963
1964  // Get the canonical version of the element with the extra qualifiers on it.
1965  // This can recursively sink qualifiers through multiple levels of arrays.
1966  QualType NewEltTy=AT->getElementType().getWithAdditionalQualifiers(TypeQuals);
1967  NewEltTy = getCanonicalType(NewEltTy);
1968
1969  if (ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
1970    return getConstantArrayType(NewEltTy, CAT->getSize(),CAT->getSizeModifier(),
1971                                CAT->getIndexTypeQualifier());
1972  if (IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT))
1973    return getIncompleteArrayType(NewEltTy, IAT->getSizeModifier(),
1974                                  IAT->getIndexTypeQualifier());
1975
1976  if (DependentSizedArrayType *DSAT = dyn_cast<DependentSizedArrayType>(AT))
1977    return getDependentSizedArrayType(NewEltTy, DSAT->getSizeExpr(),
1978                                      DSAT->getSizeModifier(),
1979                                      DSAT->getIndexTypeQualifier());
1980
1981  VariableArrayType *VAT = cast<VariableArrayType>(AT);
1982  return getVariableArrayType(NewEltTy, VAT->getSizeExpr(),
1983                              VAT->getSizeModifier(),
1984                              VAT->getIndexTypeQualifier());
1985}
1986
1987Decl *ASTContext::getCanonicalDecl(Decl *D) {
1988  if (!D)
1989    return 0;
1990
1991  if (TagDecl *Tag = dyn_cast<TagDecl>(D)) {
1992    QualType T = getTagDeclType(Tag);
1993    return cast<TagDecl>(cast<TagType>(T.getTypePtr()->CanonicalType)
1994                         ->getDecl());
1995  }
1996
1997  if (ClassTemplateDecl *Template = dyn_cast<ClassTemplateDecl>(D)) {
1998    while (Template->getPreviousDeclaration())
1999      Template = Template->getPreviousDeclaration();
2000    return Template;
2001  }
2002
2003  if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) {
2004    while (Function->getPreviousDeclaration())
2005      Function = Function->getPreviousDeclaration();
2006    return const_cast<FunctionDecl *>(Function);
2007  }
2008
2009  if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D)) {
2010    while (FunTmpl->getPreviousDeclaration())
2011      FunTmpl = FunTmpl->getPreviousDeclaration();
2012    return FunTmpl;
2013  }
2014
2015  if (const VarDecl *Var = dyn_cast<VarDecl>(D)) {
2016    while (Var->getPreviousDeclaration())
2017      Var = Var->getPreviousDeclaration();
2018    return const_cast<VarDecl *>(Var);
2019  }
2020
2021  return D;
2022}
2023
2024TemplateName ASTContext::getCanonicalTemplateName(TemplateName Name) {
2025  // If this template name refers to a template, the canonical
2026  // template name merely stores the template itself.
2027  if (TemplateDecl *Template = Name.getAsTemplateDecl())
2028    return TemplateName(cast<TemplateDecl>(getCanonicalDecl(Template)));
2029
2030  DependentTemplateName *DTN = Name.getAsDependentTemplateName();
2031  assert(DTN && "Non-dependent template names must refer to template decls.");
2032  return DTN->CanonicalTemplateName;
2033}
2034
2035NestedNameSpecifier *
2036ASTContext::getCanonicalNestedNameSpecifier(NestedNameSpecifier *NNS) {
2037  if (!NNS)
2038    return 0;
2039
2040  switch (NNS->getKind()) {
2041  case NestedNameSpecifier::Identifier:
2042    // Canonicalize the prefix but keep the identifier the same.
2043    return NestedNameSpecifier::Create(*this,
2044                         getCanonicalNestedNameSpecifier(NNS->getPrefix()),
2045                                       NNS->getAsIdentifier());
2046
2047  case NestedNameSpecifier::Namespace:
2048    // A namespace is canonical; build a nested-name-specifier with
2049    // this namespace and no prefix.
2050    return NestedNameSpecifier::Create(*this, 0, NNS->getAsNamespace());
2051
2052  case NestedNameSpecifier::TypeSpec:
2053  case NestedNameSpecifier::TypeSpecWithTemplate: {
2054    QualType T = getCanonicalType(QualType(NNS->getAsType(), 0));
2055    NestedNameSpecifier *Prefix = 0;
2056
2057    // FIXME: This isn't the right check!
2058    if (T->isDependentType())
2059      Prefix = getCanonicalNestedNameSpecifier(NNS->getPrefix());
2060
2061    return NestedNameSpecifier::Create(*this, Prefix,
2062                 NNS->getKind() == NestedNameSpecifier::TypeSpecWithTemplate,
2063                                       T.getTypePtr());
2064  }
2065
2066  case NestedNameSpecifier::Global:
2067    // The global specifier is canonical and unique.
2068    return NNS;
2069  }
2070
2071  // Required to silence a GCC warning
2072  return 0;
2073}
2074
2075
2076const ArrayType *ASTContext::getAsArrayType(QualType T) {
2077  // Handle the non-qualified case efficiently.
2078  if (T.getCVRQualifiers() == 0) {
2079    // Handle the common positive case fast.
2080    if (const ArrayType *AT = dyn_cast<ArrayType>(T))
2081      return AT;
2082  }
2083
2084  // Handle the common negative case fast, ignoring CVR qualifiers.
2085  QualType CType = T->getCanonicalTypeInternal();
2086
2087  // Make sure to look through type qualifiers (like ExtQuals) for the negative
2088  // test.
2089  if (!isa<ArrayType>(CType) &&
2090      !isa<ArrayType>(CType.getUnqualifiedType()))
2091    return 0;
2092
2093  // Apply any CVR qualifiers from the array type to the element type.  This
2094  // implements C99 6.7.3p8: "If the specification of an array type includes
2095  // any type qualifiers, the element type is so qualified, not the array type."
2096
2097  // If we get here, we either have type qualifiers on the type, or we have
2098  // sugar such as a typedef in the way.  If we have type qualifiers on the type
2099  // we must propagate them down into the elemeng type.
2100  unsigned CVRQuals = T.getCVRQualifiers();
2101  unsigned AddrSpace = 0;
2102  Type *Ty = T.getTypePtr();
2103
2104  // Rip through ExtQualType's and typedefs to get to a concrete type.
2105  while (1) {
2106    if (const ExtQualType *EXTQT = dyn_cast<ExtQualType>(Ty)) {
2107      AddrSpace = EXTQT->getAddressSpace();
2108      Ty = EXTQT->getBaseType();
2109    } else {
2110      T = Ty->getDesugaredType();
2111      if (T.getTypePtr() == Ty && T.getCVRQualifiers() == 0)
2112        break;
2113      CVRQuals |= T.getCVRQualifiers();
2114      Ty = T.getTypePtr();
2115    }
2116  }
2117
2118  // If we have a simple case, just return now.
2119  const ArrayType *ATy = dyn_cast<ArrayType>(Ty);
2120  if (ATy == 0 || (AddrSpace == 0 && CVRQuals == 0))
2121    return ATy;
2122
2123  // Otherwise, we have an array and we have qualifiers on it.  Push the
2124  // qualifiers into the array element type and return a new array type.
2125  // Get the canonical version of the element with the extra qualifiers on it.
2126  // This can recursively sink qualifiers through multiple levels of arrays.
2127  QualType NewEltTy = ATy->getElementType();
2128  if (AddrSpace)
2129    NewEltTy = getAddrSpaceQualType(NewEltTy, AddrSpace);
2130  NewEltTy = NewEltTy.getWithAdditionalQualifiers(CVRQuals);
2131
2132  if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(ATy))
2133    return cast<ArrayType>(getConstantArrayType(NewEltTy, CAT->getSize(),
2134                                                CAT->getSizeModifier(),
2135                                                CAT->getIndexTypeQualifier()));
2136  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(ATy))
2137    return cast<ArrayType>(getIncompleteArrayType(NewEltTy,
2138                                                  IAT->getSizeModifier(),
2139                                                 IAT->getIndexTypeQualifier()));
2140
2141  if (const DependentSizedArrayType *DSAT
2142        = dyn_cast<DependentSizedArrayType>(ATy))
2143    return cast<ArrayType>(
2144                     getDependentSizedArrayType(NewEltTy,
2145                                                DSAT->getSizeExpr(),
2146                                                DSAT->getSizeModifier(),
2147                                                DSAT->getIndexTypeQualifier()));
2148
2149  const VariableArrayType *VAT = cast<VariableArrayType>(ATy);
2150  return cast<ArrayType>(getVariableArrayType(NewEltTy, VAT->getSizeExpr(),
2151                                              VAT->getSizeModifier(),
2152                                              VAT->getIndexTypeQualifier()));
2153}
2154
2155
2156/// getArrayDecayedType - Return the properly qualified result of decaying the
2157/// specified array type to a pointer.  This operation is non-trivial when
2158/// handling typedefs etc.  The canonical type of "T" must be an array type,
2159/// this returns a pointer to a properly qualified element of the array.
2160///
2161/// See C99 6.7.5.3p7 and C99 6.3.2.1p3.
2162QualType ASTContext::getArrayDecayedType(QualType Ty) {
2163  // Get the element type with 'getAsArrayType' so that we don't lose any
2164  // typedefs in the element type of the array.  This also handles propagation
2165  // of type qualifiers from the array type into the element type if present
2166  // (C99 6.7.3p8).
2167  const ArrayType *PrettyArrayType = getAsArrayType(Ty);
2168  assert(PrettyArrayType && "Not an array type!");
2169
2170  QualType PtrTy = getPointerType(PrettyArrayType->getElementType());
2171
2172  // int x[restrict 4] ->  int *restrict
2173  return PtrTy.getQualifiedType(PrettyArrayType->getIndexTypeQualifier());
2174}
2175
2176QualType ASTContext::getBaseElementType(const VariableArrayType *VAT) {
2177  QualType ElemTy = VAT->getElementType();
2178
2179  if (const VariableArrayType *VAT = getAsVariableArrayType(ElemTy))
2180    return getBaseElementType(VAT);
2181
2182  return ElemTy;
2183}
2184
2185/// getFloatingRank - Return a relative rank for floating point types.
2186/// This routine will assert if passed a built-in type that isn't a float.
2187static FloatingRank getFloatingRank(QualType T) {
2188  if (const ComplexType *CT = T->getAsComplexType())
2189    return getFloatingRank(CT->getElementType());
2190
2191  assert(T->getAsBuiltinType() && "getFloatingRank(): not a floating type");
2192  switch (T->getAsBuiltinType()->getKind()) {
2193  default: assert(0 && "getFloatingRank(): not a floating type");
2194  case BuiltinType::Float:      return FloatRank;
2195  case BuiltinType::Double:     return DoubleRank;
2196  case BuiltinType::LongDouble: return LongDoubleRank;
2197  }
2198}
2199
2200/// getFloatingTypeOfSizeWithinDomain - Returns a real floating
2201/// point or a complex type (based on typeDomain/typeSize).
2202/// 'typeDomain' is a real floating point or complex type.
2203/// 'typeSize' is a real floating point or complex type.
2204QualType ASTContext::getFloatingTypeOfSizeWithinDomain(QualType Size,
2205                                                       QualType Domain) const {
2206  FloatingRank EltRank = getFloatingRank(Size);
2207  if (Domain->isComplexType()) {
2208    switch (EltRank) {
2209    default: assert(0 && "getFloatingRank(): illegal value for rank");
2210    case FloatRank:      return FloatComplexTy;
2211    case DoubleRank:     return DoubleComplexTy;
2212    case LongDoubleRank: return LongDoubleComplexTy;
2213    }
2214  }
2215
2216  assert(Domain->isRealFloatingType() && "Unknown domain!");
2217  switch (EltRank) {
2218  default: assert(0 && "getFloatingRank(): illegal value for rank");
2219  case FloatRank:      return FloatTy;
2220  case DoubleRank:     return DoubleTy;
2221  case LongDoubleRank: return LongDoubleTy;
2222  }
2223}
2224
2225/// getFloatingTypeOrder - Compare the rank of the two specified floating
2226/// point types, ignoring the domain of the type (i.e. 'double' ==
2227/// '_Complex double').  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
2228/// LHS < RHS, return -1.
2229int ASTContext::getFloatingTypeOrder(QualType LHS, QualType RHS) {
2230  FloatingRank LHSR = getFloatingRank(LHS);
2231  FloatingRank RHSR = getFloatingRank(RHS);
2232
2233  if (LHSR == RHSR)
2234    return 0;
2235  if (LHSR > RHSR)
2236    return 1;
2237  return -1;
2238}
2239
2240/// getIntegerRank - Return an integer conversion rank (C99 6.3.1.1p1). This
2241/// routine will assert if passed a built-in type that isn't an integer or enum,
2242/// or if it is not canonicalized.
2243unsigned ASTContext::getIntegerRank(Type *T) {
2244  assert(T->isCanonical() && "T should be canonicalized");
2245  if (EnumType* ET = dyn_cast<EnumType>(T))
2246    T = ET->getDecl()->getIntegerType().getTypePtr();
2247
2248  if (T->isSpecificBuiltinType(BuiltinType::WChar))
2249    T = getFromTargetType(Target.getWCharType()).getTypePtr();
2250
2251  // There are two things which impact the integer rank: the width, and
2252  // the ordering of builtins.  The builtin ordering is encoded in the
2253  // bottom three bits; the width is encoded in the bits above that.
2254  if (FixedWidthIntType* FWIT = dyn_cast<FixedWidthIntType>(T))
2255    return FWIT->getWidth() << 3;
2256
2257  switch (cast<BuiltinType>(T)->getKind()) {
2258  default: assert(0 && "getIntegerRank(): not a built-in integer");
2259  case BuiltinType::Bool:
2260    return 1 + (getIntWidth(BoolTy) << 3);
2261  case BuiltinType::Char_S:
2262  case BuiltinType::Char_U:
2263  case BuiltinType::SChar:
2264  case BuiltinType::UChar:
2265    return 2 + (getIntWidth(CharTy) << 3);
2266  case BuiltinType::Short:
2267  case BuiltinType::UShort:
2268    return 3 + (getIntWidth(ShortTy) << 3);
2269  case BuiltinType::Int:
2270  case BuiltinType::UInt:
2271    return 4 + (getIntWidth(IntTy) << 3);
2272  case BuiltinType::Long:
2273  case BuiltinType::ULong:
2274    return 5 + (getIntWidth(LongTy) << 3);
2275  case BuiltinType::LongLong:
2276  case BuiltinType::ULongLong:
2277    return 6 + (getIntWidth(LongLongTy) << 3);
2278  case BuiltinType::Int128:
2279  case BuiltinType::UInt128:
2280    return 7 + (getIntWidth(Int128Ty) << 3);
2281  }
2282}
2283
2284/// getIntegerTypeOrder - Returns the highest ranked integer type:
2285/// C99 6.3.1.8p1.  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
2286/// LHS < RHS, return -1.
2287int ASTContext::getIntegerTypeOrder(QualType LHS, QualType RHS) {
2288  Type *LHSC = getCanonicalType(LHS).getTypePtr();
2289  Type *RHSC = getCanonicalType(RHS).getTypePtr();
2290  if (LHSC == RHSC) return 0;
2291
2292  bool LHSUnsigned = LHSC->isUnsignedIntegerType();
2293  bool RHSUnsigned = RHSC->isUnsignedIntegerType();
2294
2295  unsigned LHSRank = getIntegerRank(LHSC);
2296  unsigned RHSRank = getIntegerRank(RHSC);
2297
2298  if (LHSUnsigned == RHSUnsigned) {  // Both signed or both unsigned.
2299    if (LHSRank == RHSRank) return 0;
2300    return LHSRank > RHSRank ? 1 : -1;
2301  }
2302
2303  // Otherwise, the LHS is signed and the RHS is unsigned or visa versa.
2304  if (LHSUnsigned) {
2305    // If the unsigned [LHS] type is larger, return it.
2306    if (LHSRank >= RHSRank)
2307      return 1;
2308
2309    // If the signed type can represent all values of the unsigned type, it
2310    // wins.  Because we are dealing with 2's complement and types that are
2311    // powers of two larger than each other, this is always safe.
2312    return -1;
2313  }
2314
2315  // If the unsigned [RHS] type is larger, return it.
2316  if (RHSRank >= LHSRank)
2317    return -1;
2318
2319  // If the signed type can represent all values of the unsigned type, it
2320  // wins.  Because we are dealing with 2's complement and types that are
2321  // powers of two larger than each other, this is always safe.
2322  return 1;
2323}
2324
2325// getCFConstantStringType - Return the type used for constant CFStrings.
2326QualType ASTContext::getCFConstantStringType() {
2327  if (!CFConstantStringTypeDecl) {
2328    CFConstantStringTypeDecl =
2329      RecordDecl::Create(*this, TagDecl::TK_struct, TUDecl, SourceLocation(),
2330                         &Idents.get("NSConstantString"));
2331    QualType FieldTypes[4];
2332
2333    // const int *isa;
2334    FieldTypes[0] = getPointerType(IntTy.getQualifiedType(QualType::Const));
2335    // int flags;
2336    FieldTypes[1] = IntTy;
2337    // const char *str;
2338    FieldTypes[2] = getPointerType(CharTy.getQualifiedType(QualType::Const));
2339    // long length;
2340    FieldTypes[3] = LongTy;
2341
2342    // Create fields
2343    for (unsigned i = 0; i < 4; ++i) {
2344      FieldDecl *Field = FieldDecl::Create(*this, CFConstantStringTypeDecl,
2345                                           SourceLocation(), 0,
2346                                           FieldTypes[i], /*BitWidth=*/0,
2347                                           /*Mutable=*/false);
2348      CFConstantStringTypeDecl->addDecl(Field);
2349    }
2350
2351    CFConstantStringTypeDecl->completeDefinition(*this);
2352  }
2353
2354  return getTagDeclType(CFConstantStringTypeDecl);
2355}
2356
2357void ASTContext::setCFConstantStringType(QualType T) {
2358  const RecordType *Rec = T->getAsRecordType();
2359  assert(Rec && "Invalid CFConstantStringType");
2360  CFConstantStringTypeDecl = Rec->getDecl();
2361}
2362
2363QualType ASTContext::getObjCFastEnumerationStateType()
2364{
2365  if (!ObjCFastEnumerationStateTypeDecl) {
2366    ObjCFastEnumerationStateTypeDecl =
2367      RecordDecl::Create(*this, TagDecl::TK_struct, TUDecl, SourceLocation(),
2368                         &Idents.get("__objcFastEnumerationState"));
2369
2370    QualType FieldTypes[] = {
2371      UnsignedLongTy,
2372      getPointerType(ObjCIdType),
2373      getPointerType(UnsignedLongTy),
2374      getConstantArrayType(UnsignedLongTy,
2375                           llvm::APInt(32, 5), ArrayType::Normal, 0)
2376    };
2377
2378    for (size_t i = 0; i < 4; ++i) {
2379      FieldDecl *Field = FieldDecl::Create(*this,
2380                                           ObjCFastEnumerationStateTypeDecl,
2381                                           SourceLocation(), 0,
2382                                           FieldTypes[i], /*BitWidth=*/0,
2383                                           /*Mutable=*/false);
2384      ObjCFastEnumerationStateTypeDecl->addDecl(Field);
2385    }
2386
2387    ObjCFastEnumerationStateTypeDecl->completeDefinition(*this);
2388  }
2389
2390  return getTagDeclType(ObjCFastEnumerationStateTypeDecl);
2391}
2392
2393void ASTContext::setObjCFastEnumerationStateType(QualType T) {
2394  const RecordType *Rec = T->getAsRecordType();
2395  assert(Rec && "Invalid ObjCFAstEnumerationStateType");
2396  ObjCFastEnumerationStateTypeDecl = Rec->getDecl();
2397}
2398
2399// This returns true if a type has been typedefed to BOOL:
2400// typedef <type> BOOL;
2401static bool isTypeTypedefedAsBOOL(QualType T) {
2402  if (const TypedefType *TT = dyn_cast<TypedefType>(T))
2403    if (IdentifierInfo *II = TT->getDecl()->getIdentifier())
2404      return II->isStr("BOOL");
2405
2406  return false;
2407}
2408
2409/// getObjCEncodingTypeSize returns size of type for objective-c encoding
2410/// purpose.
2411int ASTContext::getObjCEncodingTypeSize(QualType type) {
2412  uint64_t sz = getTypeSize(type);
2413
2414  // Make all integer and enum types at least as large as an int
2415  if (sz > 0 && type->isIntegralType())
2416    sz = std::max(sz, getTypeSize(IntTy));
2417  // Treat arrays as pointers, since that's how they're passed in.
2418  else if (type->isArrayType())
2419    sz = getTypeSize(VoidPtrTy);
2420  return sz / getTypeSize(CharTy);
2421}
2422
2423/// getObjCEncodingForMethodDecl - Return the encoded type for this method
2424/// declaration.
2425void ASTContext::getObjCEncodingForMethodDecl(const ObjCMethodDecl *Decl,
2426                                              std::string& S) {
2427  // FIXME: This is not very efficient.
2428  // Encode type qualifer, 'in', 'inout', etc. for the return type.
2429  getObjCEncodingForTypeQualifier(Decl->getObjCDeclQualifier(), S);
2430  // Encode result type.
2431  getObjCEncodingForType(Decl->getResultType(), S);
2432  // Compute size of all parameters.
2433  // Start with computing size of a pointer in number of bytes.
2434  // FIXME: There might(should) be a better way of doing this computation!
2435  SourceLocation Loc;
2436  int PtrSize = getTypeSize(VoidPtrTy) / getTypeSize(CharTy);
2437  // The first two arguments (self and _cmd) are pointers; account for
2438  // their size.
2439  int ParmOffset = 2 * PtrSize;
2440  for (ObjCMethodDecl::param_iterator PI = Decl->param_begin(),
2441       E = Decl->param_end(); PI != E; ++PI) {
2442    QualType PType = (*PI)->getType();
2443    int sz = getObjCEncodingTypeSize(PType);
2444    assert (sz > 0 && "getObjCEncodingForMethodDecl - Incomplete param type");
2445    ParmOffset += sz;
2446  }
2447  S += llvm::utostr(ParmOffset);
2448  S += "@0:";
2449  S += llvm::utostr(PtrSize);
2450
2451  // Argument types.
2452  ParmOffset = 2 * PtrSize;
2453  for (ObjCMethodDecl::param_iterator PI = Decl->param_begin(),
2454       E = Decl->param_end(); PI != E; ++PI) {
2455    ParmVarDecl *PVDecl = *PI;
2456    QualType PType = PVDecl->getOriginalType();
2457    if (const ArrayType *AT =
2458          dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
2459      // Use array's original type only if it has known number of
2460      // elements.
2461      if (!isa<ConstantArrayType>(AT))
2462        PType = PVDecl->getType();
2463    } else if (PType->isFunctionType())
2464      PType = PVDecl->getType();
2465    // Process argument qualifiers for user supplied arguments; such as,
2466    // 'in', 'inout', etc.
2467    getObjCEncodingForTypeQualifier(PVDecl->getObjCDeclQualifier(), S);
2468    getObjCEncodingForType(PType, S);
2469    S += llvm::utostr(ParmOffset);
2470    ParmOffset += getObjCEncodingTypeSize(PType);
2471  }
2472}
2473
2474/// getObjCEncodingForPropertyDecl - Return the encoded type for this
2475/// property declaration. If non-NULL, Container must be either an
2476/// ObjCCategoryImplDecl or ObjCImplementationDecl; it should only be
2477/// NULL when getting encodings for protocol properties.
2478/// Property attributes are stored as a comma-delimited C string. The simple
2479/// attributes readonly and bycopy are encoded as single characters. The
2480/// parametrized attributes, getter=name, setter=name, and ivar=name, are
2481/// encoded as single characters, followed by an identifier. Property types
2482/// are also encoded as a parametrized attribute. The characters used to encode
2483/// these attributes are defined by the following enumeration:
2484/// @code
2485/// enum PropertyAttributes {
2486/// kPropertyReadOnly = 'R',   // property is read-only.
2487/// kPropertyBycopy = 'C',     // property is a copy of the value last assigned
2488/// kPropertyByref = '&',  // property is a reference to the value last assigned
2489/// kPropertyDynamic = 'D',    // property is dynamic
2490/// kPropertyGetter = 'G',     // followed by getter selector name
2491/// kPropertySetter = 'S',     // followed by setter selector name
2492/// kPropertyInstanceVariable = 'V'  // followed by instance variable  name
2493/// kPropertyType = 't'              // followed by old-style type encoding.
2494/// kPropertyWeak = 'W'              // 'weak' property
2495/// kPropertyStrong = 'P'            // property GC'able
2496/// kPropertyNonAtomic = 'N'         // property non-atomic
2497/// };
2498/// @endcode
2499void ASTContext::getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD,
2500                                                const Decl *Container,
2501                                                std::string& S) {
2502  // Collect information from the property implementation decl(s).
2503  bool Dynamic = false;
2504  ObjCPropertyImplDecl *SynthesizePID = 0;
2505
2506  // FIXME: Duplicated code due to poor abstraction.
2507  if (Container) {
2508    if (const ObjCCategoryImplDecl *CID =
2509        dyn_cast<ObjCCategoryImplDecl>(Container)) {
2510      for (ObjCCategoryImplDecl::propimpl_iterator
2511             i = CID->propimpl_begin(), e = CID->propimpl_end();
2512           i != e; ++i) {
2513        ObjCPropertyImplDecl *PID = *i;
2514        if (PID->getPropertyDecl() == PD) {
2515          if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) {
2516            Dynamic = true;
2517          } else {
2518            SynthesizePID = PID;
2519          }
2520        }
2521      }
2522    } else {
2523      const ObjCImplementationDecl *OID=cast<ObjCImplementationDecl>(Container);
2524      for (ObjCCategoryImplDecl::propimpl_iterator
2525             i = OID->propimpl_begin(), e = OID->propimpl_end();
2526           i != e; ++i) {
2527        ObjCPropertyImplDecl *PID = *i;
2528        if (PID->getPropertyDecl() == PD) {
2529          if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) {
2530            Dynamic = true;
2531          } else {
2532            SynthesizePID = PID;
2533          }
2534        }
2535      }
2536    }
2537  }
2538
2539  // FIXME: This is not very efficient.
2540  S = "T";
2541
2542  // Encode result type.
2543  // GCC has some special rules regarding encoding of properties which
2544  // closely resembles encoding of ivars.
2545  getObjCEncodingForTypeImpl(PD->getType(), S, true, true, 0,
2546                             true /* outermost type */,
2547                             true /* encoding for property */);
2548
2549  if (PD->isReadOnly()) {
2550    S += ",R";
2551  } else {
2552    switch (PD->getSetterKind()) {
2553    case ObjCPropertyDecl::Assign: break;
2554    case ObjCPropertyDecl::Copy:   S += ",C"; break;
2555    case ObjCPropertyDecl::Retain: S += ",&"; break;
2556    }
2557  }
2558
2559  // It really isn't clear at all what this means, since properties
2560  // are "dynamic by default".
2561  if (Dynamic)
2562    S += ",D";
2563
2564  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_nonatomic)
2565    S += ",N";
2566
2567  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_getter) {
2568    S += ",G";
2569    S += PD->getGetterName().getAsString();
2570  }
2571
2572  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_setter) {
2573    S += ",S";
2574    S += PD->getSetterName().getAsString();
2575  }
2576
2577  if (SynthesizePID) {
2578    const ObjCIvarDecl *OID = SynthesizePID->getPropertyIvarDecl();
2579    S += ",V";
2580    S += OID->getNameAsString();
2581  }
2582
2583  // FIXME: OBJCGC: weak & strong
2584}
2585
2586/// getLegacyIntegralTypeEncoding -
2587/// Another legacy compatibility encoding: 32-bit longs are encoded as
2588/// 'l' or 'L' , but not always.  For typedefs, we need to use
2589/// 'i' or 'I' instead if encoding a struct field, or a pointer!
2590///
2591void ASTContext::getLegacyIntegralTypeEncoding (QualType &PointeeTy) const {
2592  if (dyn_cast<TypedefType>(PointeeTy.getTypePtr())) {
2593    if (const BuiltinType *BT = PointeeTy->getAsBuiltinType()) {
2594      if (BT->getKind() == BuiltinType::ULong &&
2595          ((const_cast<ASTContext *>(this))->getIntWidth(PointeeTy) == 32))
2596        PointeeTy = UnsignedIntTy;
2597      else
2598        if (BT->getKind() == BuiltinType::Long &&
2599            ((const_cast<ASTContext *>(this))->getIntWidth(PointeeTy) == 32))
2600          PointeeTy = IntTy;
2601    }
2602  }
2603}
2604
2605void ASTContext::getObjCEncodingForType(QualType T, std::string& S,
2606                                        const FieldDecl *Field) {
2607  // We follow the behavior of gcc, expanding structures which are
2608  // directly pointed to, and expanding embedded structures. Note that
2609  // these rules are sufficient to prevent recursive encoding of the
2610  // same type.
2611  getObjCEncodingForTypeImpl(T, S, true, true, Field,
2612                             true /* outermost type */);
2613}
2614
2615static void EncodeBitField(const ASTContext *Context, std::string& S,
2616                           const FieldDecl *FD) {
2617  const Expr *E = FD->getBitWidth();
2618  assert(E && "bitfield width not there - getObjCEncodingForTypeImpl");
2619  ASTContext *Ctx = const_cast<ASTContext*>(Context);
2620  unsigned N = E->EvaluateAsInt(*Ctx).getZExtValue();
2621  S += 'b';
2622  S += llvm::utostr(N);
2623}
2624
2625void ASTContext::getObjCEncodingForTypeImpl(QualType T, std::string& S,
2626                                            bool ExpandPointedToStructures,
2627                                            bool ExpandStructures,
2628                                            const FieldDecl *FD,
2629                                            bool OutermostType,
2630                                            bool EncodingProperty) {
2631  if (const BuiltinType *BT = T->getAsBuiltinType()) {
2632    if (FD && FD->isBitField()) {
2633      EncodeBitField(this, S, FD);
2634    }
2635    else {
2636      char encoding;
2637      switch (BT->getKind()) {
2638      default: assert(0 && "Unhandled builtin type kind");
2639      case BuiltinType::Void:       encoding = 'v'; break;
2640      case BuiltinType::Bool:       encoding = 'B'; break;
2641      case BuiltinType::Char_U:
2642      case BuiltinType::UChar:      encoding = 'C'; break;
2643      case BuiltinType::UShort:     encoding = 'S'; break;
2644      case BuiltinType::UInt:       encoding = 'I'; break;
2645      case BuiltinType::ULong:
2646          encoding =
2647            (const_cast<ASTContext *>(this))->getIntWidth(T) == 32 ? 'L' : 'Q';
2648          break;
2649      case BuiltinType::UInt128:    encoding = 'T'; break;
2650      case BuiltinType::ULongLong:  encoding = 'Q'; break;
2651      case BuiltinType::Char_S:
2652      case BuiltinType::SChar:      encoding = 'c'; break;
2653      case BuiltinType::Short:      encoding = 's'; break;
2654      case BuiltinType::Int:        encoding = 'i'; break;
2655      case BuiltinType::Long:
2656        encoding =
2657          (const_cast<ASTContext *>(this))->getIntWidth(T) == 32 ? 'l' : 'q';
2658        break;
2659      case BuiltinType::LongLong:   encoding = 'q'; break;
2660      case BuiltinType::Int128:     encoding = 't'; break;
2661      case BuiltinType::Float:      encoding = 'f'; break;
2662      case BuiltinType::Double:     encoding = 'd'; break;
2663      case BuiltinType::LongDouble: encoding = 'd'; break;
2664      }
2665
2666      S += encoding;
2667    }
2668  } else if (const ComplexType *CT = T->getAsComplexType()) {
2669    S += 'j';
2670    getObjCEncodingForTypeImpl(CT->getElementType(), S, false, false, 0, false,
2671                               false);
2672  } else if (T->isObjCQualifiedIdType()) {
2673    getObjCEncodingForTypeImpl(getObjCIdType(), S,
2674                               ExpandPointedToStructures,
2675                               ExpandStructures, FD);
2676    if (FD || EncodingProperty) {
2677      // Note that we do extended encoding of protocol qualifer list
2678      // Only when doing ivar or property encoding.
2679      const ObjCObjectPointerType *QIDT = T->getAsObjCQualifiedIdType();
2680      S += '"';
2681      for (ObjCObjectPointerType::qual_iterator I = QIDT->qual_begin(),
2682           E = QIDT->qual_end(); I != E; ++I) {
2683        S += '<';
2684        S += (*I)->getNameAsString();
2685        S += '>';
2686      }
2687      S += '"';
2688    }
2689    return;
2690  }
2691  else if (const PointerType *PT = T->getAsPointerType()) {
2692    QualType PointeeTy = PT->getPointeeType();
2693    bool isReadOnly = false;
2694    // For historical/compatibility reasons, the read-only qualifier of the
2695    // pointee gets emitted _before_ the '^'.  The read-only qualifier of
2696    // the pointer itself gets ignored, _unless_ we are looking at a typedef!
2697    // Also, do not emit the 'r' for anything but the outermost type!
2698    if (dyn_cast<TypedefType>(T.getTypePtr())) {
2699      if (OutermostType && T.isConstQualified()) {
2700        isReadOnly = true;
2701        S += 'r';
2702      }
2703    }
2704    else if (OutermostType) {
2705      QualType P = PointeeTy;
2706      while (P->getAsPointerType())
2707        P = P->getAsPointerType()->getPointeeType();
2708      if (P.isConstQualified()) {
2709        isReadOnly = true;
2710        S += 'r';
2711      }
2712    }
2713    if (isReadOnly) {
2714      // Another legacy compatibility encoding. Some ObjC qualifier and type
2715      // combinations need to be rearranged.
2716      // Rewrite "in const" from "nr" to "rn"
2717      const char * s = S.c_str();
2718      int len = S.length();
2719      if (len >= 2 && s[len-2] == 'n' && s[len-1] == 'r') {
2720        std::string replace = "rn";
2721        S.replace(S.end()-2, S.end(), replace);
2722      }
2723    }
2724    if (isObjCIdStructType(PointeeTy)) {
2725      S += '@';
2726      return;
2727    }
2728    else if (PointeeTy->isObjCInterfaceType()) {
2729      if (!EncodingProperty &&
2730          isa<TypedefType>(PointeeTy.getTypePtr())) {
2731        // Another historical/compatibility reason.
2732        // We encode the underlying type which comes out as
2733        // {...};
2734        S += '^';
2735        getObjCEncodingForTypeImpl(PointeeTy, S,
2736                                   false, ExpandPointedToStructures,
2737                                   NULL);
2738        return;
2739      }
2740      S += '@';
2741      if (FD || EncodingProperty) {
2742        const ObjCInterfaceType *OIT =
2743                PointeeTy.getUnqualifiedType()->getAsObjCInterfaceType();
2744        ObjCInterfaceDecl *OI = OIT->getDecl();
2745        S += '"';
2746        S += OI->getNameAsCString();
2747        for (ObjCInterfaceType::qual_iterator I = OIT->qual_begin(),
2748             E = OIT->qual_end(); I != E; ++I) {
2749          S += '<';
2750          S += (*I)->getNameAsString();
2751          S += '>';
2752        }
2753        S += '"';
2754      }
2755      return;
2756    } else if (isObjCClassStructType(PointeeTy)) {
2757      S += '#';
2758      return;
2759    } else if (isObjCSelType(PointeeTy)) {
2760      S += ':';
2761      return;
2762    }
2763
2764    if (PointeeTy->isCharType()) {
2765      // char pointer types should be encoded as '*' unless it is a
2766      // type that has been typedef'd to 'BOOL'.
2767      if (!isTypeTypedefedAsBOOL(PointeeTy)) {
2768        S += '*';
2769        return;
2770      }
2771    }
2772
2773    S += '^';
2774    getLegacyIntegralTypeEncoding(PointeeTy);
2775
2776    getObjCEncodingForTypeImpl(PointeeTy, S,
2777                               false, ExpandPointedToStructures,
2778                               NULL);
2779  } else if (const ArrayType *AT =
2780               // Ignore type qualifiers etc.
2781               dyn_cast<ArrayType>(T->getCanonicalTypeInternal())) {
2782    if (isa<IncompleteArrayType>(AT)) {
2783      // Incomplete arrays are encoded as a pointer to the array element.
2784      S += '^';
2785
2786      getObjCEncodingForTypeImpl(AT->getElementType(), S,
2787                                 false, ExpandStructures, FD);
2788    } else {
2789      S += '[';
2790
2791      if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
2792        S += llvm::utostr(CAT->getSize().getZExtValue());
2793      else {
2794        //Variable length arrays are encoded as a regular array with 0 elements.
2795        assert(isa<VariableArrayType>(AT) && "Unknown array type!");
2796        S += '0';
2797      }
2798
2799      getObjCEncodingForTypeImpl(AT->getElementType(), S,
2800                                 false, ExpandStructures, FD);
2801      S += ']';
2802    }
2803  } else if (T->getAsFunctionType()) {
2804    S += '?';
2805  } else if (const RecordType *RTy = T->getAsRecordType()) {
2806    RecordDecl *RDecl = RTy->getDecl();
2807    S += RDecl->isUnion() ? '(' : '{';
2808    // Anonymous structures print as '?'
2809    if (const IdentifierInfo *II = RDecl->getIdentifier()) {
2810      S += II->getName();
2811    } else {
2812      S += '?';
2813    }
2814    if (ExpandStructures) {
2815      S += '=';
2816      for (RecordDecl::field_iterator Field = RDecl->field_begin(),
2817                                   FieldEnd = RDecl->field_end();
2818           Field != FieldEnd; ++Field) {
2819        if (FD) {
2820          S += '"';
2821          S += Field->getNameAsString();
2822          S += '"';
2823        }
2824
2825        // Special case bit-fields.
2826        if (Field->isBitField()) {
2827          getObjCEncodingForTypeImpl(Field->getType(), S, false, true,
2828                                     (*Field));
2829        } else {
2830          QualType qt = Field->getType();
2831          getLegacyIntegralTypeEncoding(qt);
2832          getObjCEncodingForTypeImpl(qt, S, false, true,
2833                                     FD);
2834        }
2835      }
2836    }
2837    S += RDecl->isUnion() ? ')' : '}';
2838  } else if (T->isEnumeralType()) {
2839    if (FD && FD->isBitField())
2840      EncodeBitField(this, S, FD);
2841    else
2842      S += 'i';
2843  } else if (T->isBlockPointerType()) {
2844    S += "@?"; // Unlike a pointer-to-function, which is "^?".
2845  } else if (T->isObjCInterfaceType()) {
2846    // @encode(class_name)
2847    ObjCInterfaceDecl *OI = T->getAsObjCInterfaceType()->getDecl();
2848    S += '{';
2849    const IdentifierInfo *II = OI->getIdentifier();
2850    S += II->getName();
2851    S += '=';
2852    llvm::SmallVector<FieldDecl*, 32> RecFields;
2853    CollectObjCIvars(OI, RecFields);
2854    for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
2855      if (RecFields[i]->isBitField())
2856        getObjCEncodingForTypeImpl(RecFields[i]->getType(), S, false, true,
2857                                   RecFields[i]);
2858      else
2859        getObjCEncodingForTypeImpl(RecFields[i]->getType(), S, false, true,
2860                                   FD);
2861    }
2862    S += '}';
2863  }
2864  else
2865    assert(0 && "@encode for type not implemented!");
2866}
2867
2868void ASTContext::getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT,
2869                                                 std::string& S) const {
2870  if (QT & Decl::OBJC_TQ_In)
2871    S += 'n';
2872  if (QT & Decl::OBJC_TQ_Inout)
2873    S += 'N';
2874  if (QT & Decl::OBJC_TQ_Out)
2875    S += 'o';
2876  if (QT & Decl::OBJC_TQ_Bycopy)
2877    S += 'O';
2878  if (QT & Decl::OBJC_TQ_Byref)
2879    S += 'R';
2880  if (QT & Decl::OBJC_TQ_Oneway)
2881    S += 'V';
2882}
2883
2884void ASTContext::setBuiltinVaListType(QualType T)
2885{
2886  assert(BuiltinVaListType.isNull() && "__builtin_va_list type already set!");
2887
2888  BuiltinVaListType = T;
2889}
2890
2891void ASTContext::setObjCIdType(QualType T)
2892{
2893  ObjCIdType = T;
2894
2895  const TypedefType *TT = T->getAsTypedefType();
2896  if (!TT)
2897    return;
2898
2899  TypedefDecl *TD = TT->getDecl();
2900
2901  // typedef struct objc_object *id;
2902  const PointerType *ptr = TD->getUnderlyingType()->getAsPointerType();
2903  // User error - caller will issue diagnostics.
2904  if (!ptr)
2905    return;
2906  const RecordType *rec = ptr->getPointeeType()->getAsStructureType();
2907  // User error - caller will issue diagnostics.
2908  if (!rec)
2909    return;
2910  IdStructType = rec;
2911}
2912
2913void ASTContext::setObjCSelType(QualType T)
2914{
2915  ObjCSelType = T;
2916
2917  const TypedefType *TT = T->getAsTypedefType();
2918  if (!TT)
2919    return;
2920  TypedefDecl *TD = TT->getDecl();
2921
2922  // typedef struct objc_selector *SEL;
2923  const PointerType *ptr = TD->getUnderlyingType()->getAsPointerType();
2924  if (!ptr)
2925    return;
2926  const RecordType *rec = ptr->getPointeeType()->getAsStructureType();
2927  if (!rec)
2928    return;
2929  SelStructType = rec;
2930}
2931
2932void ASTContext::setObjCProtoType(QualType QT)
2933{
2934  ObjCProtoType = QT;
2935}
2936
2937void ASTContext::setObjCClassType(QualType T)
2938{
2939  ObjCClassType = T;
2940
2941  const TypedefType *TT = T->getAsTypedefType();
2942  if (!TT)
2943    return;
2944  TypedefDecl *TD = TT->getDecl();
2945
2946  // typedef struct objc_class *Class;
2947  const PointerType *ptr = TD->getUnderlyingType()->getAsPointerType();
2948  assert(ptr && "'Class' incorrectly typed");
2949  const RecordType *rec = ptr->getPointeeType()->getAsStructureType();
2950  assert(rec && "'Class' incorrectly typed");
2951  ClassStructType = rec;
2952}
2953
2954void ASTContext::setObjCConstantStringInterface(ObjCInterfaceDecl *Decl) {
2955  assert(ObjCConstantStringType.isNull() &&
2956         "'NSConstantString' type already set!");
2957
2958  ObjCConstantStringType = getObjCInterfaceType(Decl);
2959}
2960
2961/// \brief Retrieve the template name that represents a qualified
2962/// template name such as \c std::vector.
2963TemplateName ASTContext::getQualifiedTemplateName(NestedNameSpecifier *NNS,
2964                                                  bool TemplateKeyword,
2965                                                  TemplateDecl *Template) {
2966  llvm::FoldingSetNodeID ID;
2967  QualifiedTemplateName::Profile(ID, NNS, TemplateKeyword, Template);
2968
2969  void *InsertPos = 0;
2970  QualifiedTemplateName *QTN =
2971    QualifiedTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
2972  if (!QTN) {
2973    QTN = new (*this,4) QualifiedTemplateName(NNS, TemplateKeyword, Template);
2974    QualifiedTemplateNames.InsertNode(QTN, InsertPos);
2975  }
2976
2977  return TemplateName(QTN);
2978}
2979
2980/// \brief Retrieve the template name that represents a dependent
2981/// template name such as \c MetaFun::template apply.
2982TemplateName ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
2983                                                  const IdentifierInfo *Name) {
2984  assert(NNS->isDependent() && "Nested name specifier must be dependent");
2985
2986  llvm::FoldingSetNodeID ID;
2987  DependentTemplateName::Profile(ID, NNS, Name);
2988
2989  void *InsertPos = 0;
2990  DependentTemplateName *QTN =
2991    DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
2992
2993  if (QTN)
2994    return TemplateName(QTN);
2995
2996  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
2997  if (CanonNNS == NNS) {
2998    QTN = new (*this,4) DependentTemplateName(NNS, Name);
2999  } else {
3000    TemplateName Canon = getDependentTemplateName(CanonNNS, Name);
3001    QTN = new (*this,4) DependentTemplateName(NNS, Name, Canon);
3002  }
3003
3004  DependentTemplateNames.InsertNode(QTN, InsertPos);
3005  return TemplateName(QTN);
3006}
3007
3008/// getFromTargetType - Given one of the integer types provided by
3009/// TargetInfo, produce the corresponding type. The unsigned @p Type
3010/// is actually a value of type @c TargetInfo::IntType.
3011QualType ASTContext::getFromTargetType(unsigned Type) const {
3012  switch (Type) {
3013  case TargetInfo::NoInt: return QualType();
3014  case TargetInfo::SignedShort: return ShortTy;
3015  case TargetInfo::UnsignedShort: return UnsignedShortTy;
3016  case TargetInfo::SignedInt: return IntTy;
3017  case TargetInfo::UnsignedInt: return UnsignedIntTy;
3018  case TargetInfo::SignedLong: return LongTy;
3019  case TargetInfo::UnsignedLong: return UnsignedLongTy;
3020  case TargetInfo::SignedLongLong: return LongLongTy;
3021  case TargetInfo::UnsignedLongLong: return UnsignedLongLongTy;
3022  }
3023
3024  assert(false && "Unhandled TargetInfo::IntType value");
3025  return QualType();
3026}
3027
3028//===----------------------------------------------------------------------===//
3029//                        Type Predicates.
3030//===----------------------------------------------------------------------===//
3031
3032/// isObjCNSObjectType - Return true if this is an NSObject object using
3033/// NSObject attribute on a c-style pointer type.
3034/// FIXME - Make it work directly on types.
3035///
3036bool ASTContext::isObjCNSObjectType(QualType Ty) const {
3037  if (TypedefType *TDT = dyn_cast<TypedefType>(Ty)) {
3038    if (TypedefDecl *TD = TDT->getDecl())
3039      if (TD->getAttr<ObjCNSObjectAttr>())
3040        return true;
3041  }
3042  return false;
3043}
3044
3045/// isObjCObjectPointerType - Returns true if type is an Objective-C pointer
3046/// to an object type.  This includes "id" and "Class" (two 'special' pointers
3047/// to struct), Interface* (pointer to ObjCInterfaceType) and id<P> (qualified
3048/// ID type).
3049bool ASTContext::isObjCObjectPointerType(QualType Ty) const {
3050  if (Ty->isObjCQualifiedIdType())
3051    return true;
3052
3053  // Blocks are objects.
3054  if (Ty->isBlockPointerType())
3055    return true;
3056
3057  // All other object types are pointers.
3058  const PointerType *PT = Ty->getAsPointerType();
3059  if (PT == 0)
3060    return false;
3061
3062  // If this a pointer to an interface (e.g. NSString*), it is ok.
3063  if (PT->getPointeeType()->isObjCInterfaceType() ||
3064      // If is has NSObject attribute, OK as well.
3065      isObjCNSObjectType(Ty))
3066    return true;
3067
3068  // Check to see if this is 'id' or 'Class', both of which are typedefs for
3069  // pointer types.  This looks for the typedef specifically, not for the
3070  // underlying type.  Iteratively strip off typedefs so that we can handle
3071  // typedefs of typedefs.
3072  while (TypedefType *TDT = dyn_cast<TypedefType>(Ty)) {
3073    if (Ty.getUnqualifiedType() == getObjCIdType() ||
3074        Ty.getUnqualifiedType() == getObjCClassType())
3075      return true;
3076
3077    Ty = TDT->getDecl()->getUnderlyingType();
3078  }
3079
3080  return false;
3081}
3082
3083/// getObjCGCAttr - Returns one of GCNone, Weak or Strong objc's
3084/// garbage collection attribute.
3085///
3086QualType::GCAttrTypes ASTContext::getObjCGCAttrKind(const QualType &Ty) const {
3087  QualType::GCAttrTypes GCAttrs = QualType::GCNone;
3088  if (getLangOptions().ObjC1 &&
3089      getLangOptions().getGCMode() != LangOptions::NonGC) {
3090    GCAttrs = Ty.getObjCGCAttr();
3091    // Default behavious under objective-c's gc is for objective-c pointers
3092    // (or pointers to them) be treated as though they were declared
3093    // as __strong.
3094    if (GCAttrs == QualType::GCNone) {
3095      if (isObjCObjectPointerType(Ty))
3096        GCAttrs = QualType::Strong;
3097      else if (Ty->isPointerType())
3098        return getObjCGCAttrKind(Ty->getAsPointerType()->getPointeeType());
3099    }
3100    // Non-pointers have none gc'able attribute regardless of the attribute
3101    // set on them.
3102    else if (!Ty->isPointerType() && !isObjCObjectPointerType(Ty))
3103      return QualType::GCNone;
3104  }
3105  return GCAttrs;
3106}
3107
3108//===----------------------------------------------------------------------===//
3109//                        Type Compatibility Testing
3110//===----------------------------------------------------------------------===//
3111
3112/// areCompatVectorTypes - Return true if the two specified vector types are
3113/// compatible.
3114static bool areCompatVectorTypes(const VectorType *LHS,
3115                                 const VectorType *RHS) {
3116  assert(LHS->isCanonical() && RHS->isCanonical());
3117  return LHS->getElementType() == RHS->getElementType() &&
3118         LHS->getNumElements() == RHS->getNumElements();
3119}
3120
3121/// canAssignObjCInterfaces - Return true if the two interface types are
3122/// compatible for assignment from RHS to LHS.  This handles validation of any
3123/// protocol qualifiers on the LHS or RHS.
3124///
3125bool ASTContext::canAssignObjCInterfaces(const ObjCInterfaceType *LHS,
3126                                         const ObjCInterfaceType *RHS) {
3127  // Verify that the base decls are compatible: the RHS must be a subclass of
3128  // the LHS.
3129  if (!LHS->getDecl()->isSuperClassOf(RHS->getDecl()))
3130    return false;
3131
3132  // RHS must have a superset of the protocols in the LHS.  If the LHS is not
3133  // protocol qualified at all, then we are good.
3134  if (!isa<ObjCQualifiedInterfaceType>(LHS))
3135    return true;
3136
3137  // Okay, we know the LHS has protocol qualifiers.  If the RHS doesn't, then it
3138  // isn't a superset.
3139  if (!isa<ObjCQualifiedInterfaceType>(RHS))
3140    return true;  // FIXME: should return false!
3141
3142  // Finally, we must have two protocol-qualified interfaces.
3143  const ObjCQualifiedInterfaceType *LHSP =cast<ObjCQualifiedInterfaceType>(LHS);
3144  const ObjCQualifiedInterfaceType *RHSP =cast<ObjCQualifiedInterfaceType>(RHS);
3145
3146  // All LHS protocols must have a presence on the RHS.
3147  assert(LHSP->qual_begin() != LHSP->qual_end() && "Empty LHS protocol list?");
3148
3149  for (ObjCQualifiedInterfaceType::qual_iterator LHSPI = LHSP->qual_begin(),
3150                                                 LHSPE = LHSP->qual_end();
3151       LHSPI != LHSPE; LHSPI++) {
3152    bool RHSImplementsProtocol = false;
3153
3154    // If the RHS doesn't implement the protocol on the left, the types
3155    // are incompatible.
3156    for (ObjCQualifiedInterfaceType::qual_iterator RHSPI = RHSP->qual_begin(),
3157                                                   RHSPE = RHSP->qual_end();
3158         !RHSImplementsProtocol && (RHSPI != RHSPE); RHSPI++) {
3159      if ((*RHSPI)->lookupProtocolNamed((*LHSPI)->getIdentifier()))
3160        RHSImplementsProtocol = true;
3161    }
3162    // FIXME: For better diagnostics, consider passing back the protocol name.
3163    if (!RHSImplementsProtocol)
3164      return false;
3165  }
3166  // The RHS implements all protocols listed on the LHS.
3167  return true;
3168}
3169
3170bool ASTContext::areComparableObjCPointerTypes(QualType LHS, QualType RHS) {
3171  // get the "pointed to" types
3172  const PointerType *LHSPT = LHS->getAsPointerType();
3173  const PointerType *RHSPT = RHS->getAsPointerType();
3174
3175  if (!LHSPT || !RHSPT)
3176    return false;
3177
3178  QualType lhptee = LHSPT->getPointeeType();
3179  QualType rhptee = RHSPT->getPointeeType();
3180  const ObjCInterfaceType* LHSIface = lhptee->getAsObjCInterfaceType();
3181  const ObjCInterfaceType* RHSIface = rhptee->getAsObjCInterfaceType();
3182  // ID acts sort of like void* for ObjC interfaces
3183  if (LHSIface && isObjCIdStructType(rhptee))
3184    return true;
3185  if (RHSIface && isObjCIdStructType(lhptee))
3186    return true;
3187  if (!LHSIface || !RHSIface)
3188    return false;
3189  return canAssignObjCInterfaces(LHSIface, RHSIface) ||
3190         canAssignObjCInterfaces(RHSIface, LHSIface);
3191}
3192
3193/// typesAreCompatible - C99 6.7.3p9: For two qualified types to be compatible,
3194/// both shall have the identically qualified version of a compatible type.
3195/// C99 6.2.7p1: Two types have compatible types if their types are the
3196/// same. See 6.7.[2,3,5] for additional rules.
3197bool ASTContext::typesAreCompatible(QualType LHS, QualType RHS) {
3198  return !mergeTypes(LHS, RHS).isNull();
3199}
3200
3201QualType ASTContext::mergeFunctionTypes(QualType lhs, QualType rhs) {
3202  const FunctionType *lbase = lhs->getAsFunctionType();
3203  const FunctionType *rbase = rhs->getAsFunctionType();
3204  const FunctionProtoType *lproto = dyn_cast<FunctionProtoType>(lbase);
3205  const FunctionProtoType *rproto = dyn_cast<FunctionProtoType>(rbase);
3206  bool allLTypes = true;
3207  bool allRTypes = true;
3208
3209  // Check return type
3210  QualType retType = mergeTypes(lbase->getResultType(), rbase->getResultType());
3211  if (retType.isNull()) return QualType();
3212  if (getCanonicalType(retType) != getCanonicalType(lbase->getResultType()))
3213    allLTypes = false;
3214  if (getCanonicalType(retType) != getCanonicalType(rbase->getResultType()))
3215    allRTypes = false;
3216
3217  if (lproto && rproto) { // two C99 style function prototypes
3218    assert(!lproto->hasExceptionSpec() && !rproto->hasExceptionSpec() &&
3219           "C++ shouldn't be here");
3220    unsigned lproto_nargs = lproto->getNumArgs();
3221    unsigned rproto_nargs = rproto->getNumArgs();
3222
3223    // Compatible functions must have the same number of arguments
3224    if (lproto_nargs != rproto_nargs)
3225      return QualType();
3226
3227    // Variadic and non-variadic functions aren't compatible
3228    if (lproto->isVariadic() != rproto->isVariadic())
3229      return QualType();
3230
3231    if (lproto->getTypeQuals() != rproto->getTypeQuals())
3232      return QualType();
3233
3234    // Check argument compatibility
3235    llvm::SmallVector<QualType, 10> types;
3236    for (unsigned i = 0; i < lproto_nargs; i++) {
3237      QualType largtype = lproto->getArgType(i).getUnqualifiedType();
3238      QualType rargtype = rproto->getArgType(i).getUnqualifiedType();
3239      QualType argtype = mergeTypes(largtype, rargtype);
3240      if (argtype.isNull()) return QualType();
3241      types.push_back(argtype);
3242      if (getCanonicalType(argtype) != getCanonicalType(largtype))
3243        allLTypes = false;
3244      if (getCanonicalType(argtype) != getCanonicalType(rargtype))
3245        allRTypes = false;
3246    }
3247    if (allLTypes) return lhs;
3248    if (allRTypes) return rhs;
3249    return getFunctionType(retType, types.begin(), types.size(),
3250                           lproto->isVariadic(), lproto->getTypeQuals());
3251  }
3252
3253  if (lproto) allRTypes = false;
3254  if (rproto) allLTypes = false;
3255
3256  const FunctionProtoType *proto = lproto ? lproto : rproto;
3257  if (proto) {
3258    assert(!proto->hasExceptionSpec() && "C++ shouldn't be here");
3259    if (proto->isVariadic()) return QualType();
3260    // Check that the types are compatible with the types that
3261    // would result from default argument promotions (C99 6.7.5.3p15).
3262    // The only types actually affected are promotable integer
3263    // types and floats, which would be passed as a different
3264    // type depending on whether the prototype is visible.
3265    unsigned proto_nargs = proto->getNumArgs();
3266    for (unsigned i = 0; i < proto_nargs; ++i) {
3267      QualType argTy = proto->getArgType(i);
3268      if (argTy->isPromotableIntegerType() ||
3269          getCanonicalType(argTy).getUnqualifiedType() == FloatTy)
3270        return QualType();
3271    }
3272
3273    if (allLTypes) return lhs;
3274    if (allRTypes) return rhs;
3275    return getFunctionType(retType, proto->arg_type_begin(),
3276                           proto->getNumArgs(), lproto->isVariadic(),
3277                           lproto->getTypeQuals());
3278  }
3279
3280  if (allLTypes) return lhs;
3281  if (allRTypes) return rhs;
3282  return getFunctionNoProtoType(retType);
3283}
3284
3285QualType ASTContext::mergeTypes(QualType LHS, QualType RHS) {
3286  // C++ [expr]: If an expression initially has the type "reference to T", the
3287  // type is adjusted to "T" prior to any further analysis, the expression
3288  // designates the object or function denoted by the reference, and the
3289  // expression is an lvalue unless the reference is an rvalue reference and
3290  // the expression is a function call (possibly inside parentheses).
3291  // FIXME: C++ shouldn't be going through here!  The rules are different
3292  // enough that they should be handled separately.
3293  // FIXME: Merging of lvalue and rvalue references is incorrect. C++ *really*
3294  // shouldn't be going through here!
3295  if (const ReferenceType *RT = LHS->getAsReferenceType())
3296    LHS = RT->getPointeeType();
3297  if (const ReferenceType *RT = RHS->getAsReferenceType())
3298    RHS = RT->getPointeeType();
3299
3300  QualType LHSCan = getCanonicalType(LHS),
3301           RHSCan = getCanonicalType(RHS);
3302
3303  // If two types are identical, they are compatible.
3304  if (LHSCan == RHSCan)
3305    return LHS;
3306
3307  // If the qualifiers are different, the types aren't compatible
3308  // Note that we handle extended qualifiers later, in the
3309  // case for ExtQualType.
3310  if (LHSCan.getCVRQualifiers() != RHSCan.getCVRQualifiers())
3311    return QualType();
3312
3313  Type::TypeClass LHSClass = LHSCan->getTypeClass();
3314  Type::TypeClass RHSClass = RHSCan->getTypeClass();
3315
3316  // We want to consider the two function types to be the same for these
3317  // comparisons, just force one to the other.
3318  if (LHSClass == Type::FunctionProto) LHSClass = Type::FunctionNoProto;
3319  if (RHSClass == Type::FunctionProto) RHSClass = Type::FunctionNoProto;
3320
3321  // Strip off objc_gc attributes off the top level so they can be merged.
3322  // This is a complete mess, but the attribute itself doesn't make much sense.
3323  if (RHSClass == Type::ExtQual) {
3324    QualType::GCAttrTypes GCAttr = RHSCan.getObjCGCAttr();
3325    if (GCAttr != QualType::GCNone) {
3326      QualType::GCAttrTypes GCLHSAttr = LHSCan.getObjCGCAttr();
3327      // __weak attribute must appear on both declarations.
3328      // __strong attribue is redundant if other decl is an objective-c
3329      // object pointer (or decorated with __strong attribute); otherwise
3330      // issue error.
3331      if ((GCAttr == QualType::Weak && GCLHSAttr != GCAttr) ||
3332          (GCAttr == QualType::Strong && GCLHSAttr != GCAttr &&
3333           LHSCan->isPointerType() && !isObjCObjectPointerType(LHSCan) &&
3334           !isObjCIdStructType(LHSCan->getAsPointerType()->getPointeeType())))
3335        return QualType();
3336
3337      RHS = QualType(cast<ExtQualType>(RHS.getDesugaredType())->getBaseType(),
3338                     RHS.getCVRQualifiers());
3339      QualType Result = mergeTypes(LHS, RHS);
3340      if (!Result.isNull()) {
3341        if (Result.getObjCGCAttr() == QualType::GCNone)
3342          Result = getObjCGCQualType(Result, GCAttr);
3343        else if (Result.getObjCGCAttr() != GCAttr)
3344          Result = QualType();
3345      }
3346      return Result;
3347    }
3348  }
3349  if (LHSClass == Type::ExtQual) {
3350    QualType::GCAttrTypes GCAttr = LHSCan.getObjCGCAttr();
3351    if (GCAttr != QualType::GCNone) {
3352      QualType::GCAttrTypes GCRHSAttr = RHSCan.getObjCGCAttr();
3353      // __weak attribute must appear on both declarations. __strong
3354      // __strong attribue is redundant if other decl is an objective-c
3355      // object pointer (or decorated with __strong attribute); otherwise
3356      // issue error.
3357      if ((GCAttr == QualType::Weak && GCRHSAttr != GCAttr) ||
3358          (GCAttr == QualType::Strong && GCRHSAttr != GCAttr &&
3359           RHSCan->isPointerType() && !isObjCObjectPointerType(RHSCan) &&
3360           !isObjCIdStructType(RHSCan->getAsPointerType()->getPointeeType())))
3361        return QualType();
3362
3363      LHS = QualType(cast<ExtQualType>(LHS.getDesugaredType())->getBaseType(),
3364                     LHS.getCVRQualifiers());
3365      QualType Result = mergeTypes(LHS, RHS);
3366      if (!Result.isNull()) {
3367        if (Result.getObjCGCAttr() == QualType::GCNone)
3368          Result = getObjCGCQualType(Result, GCAttr);
3369        else if (Result.getObjCGCAttr() != GCAttr)
3370          Result = QualType();
3371      }
3372      return Result;
3373    }
3374  }
3375
3376  // Same as above for arrays
3377  if (LHSClass == Type::VariableArray || LHSClass == Type::IncompleteArray)
3378    LHSClass = Type::ConstantArray;
3379  if (RHSClass == Type::VariableArray || RHSClass == Type::IncompleteArray)
3380    RHSClass = Type::ConstantArray;
3381
3382  // Canonicalize ExtVector -> Vector.
3383  if (LHSClass == Type::ExtVector) LHSClass = Type::Vector;
3384  if (RHSClass == Type::ExtVector) RHSClass = Type::Vector;
3385
3386  // Consider qualified interfaces and interfaces the same.
3387  if (LHSClass == Type::ObjCQualifiedInterface) LHSClass = Type::ObjCInterface;
3388  if (RHSClass == Type::ObjCQualifiedInterface) RHSClass = Type::ObjCInterface;
3389
3390  // If the canonical type classes don't match.
3391  if (LHSClass != RHSClass) {
3392    const ObjCInterfaceType* LHSIface = LHS->getAsObjCInterfaceType();
3393    const ObjCInterfaceType* RHSIface = RHS->getAsObjCInterfaceType();
3394
3395    // 'id' and 'Class' act sort of like void* for ObjC interfaces
3396    if (LHSIface && (isObjCIdStructType(RHS) || isObjCClassStructType(RHS)))
3397      return LHS;
3398    if (RHSIface && (isObjCIdStructType(LHS) || isObjCClassStructType(LHS)))
3399      return RHS;
3400
3401    // ID is compatible with all qualified id types.
3402    if (LHS->isObjCQualifiedIdType()) {
3403      if (const PointerType *PT = RHS->getAsPointerType()) {
3404        QualType pType = PT->getPointeeType();
3405        if (isObjCIdStructType(pType) || isObjCClassStructType(pType))
3406          return LHS;
3407        // FIXME: need to use ObjCQualifiedIdTypesAreCompatible(LHS, RHS, true).
3408        // Unfortunately, this API is part of Sema (which we don't have access
3409        // to. Need to refactor. The following check is insufficient, since we
3410        // need to make sure the class implements the protocol.
3411        if (pType->isObjCInterfaceType())
3412          return LHS;
3413      }
3414    }
3415    if (RHS->isObjCQualifiedIdType()) {
3416      if (const PointerType *PT = LHS->getAsPointerType()) {
3417        QualType pType = PT->getPointeeType();
3418        if (isObjCIdStructType(pType) || isObjCClassStructType(pType))
3419          return RHS;
3420        // FIXME: need to use ObjCQualifiedIdTypesAreCompatible(LHS, RHS, true).
3421        // Unfortunately, this API is part of Sema (which we don't have access
3422        // to. Need to refactor. The following check is insufficient, since we
3423        // need to make sure the class implements the protocol.
3424        if (pType->isObjCInterfaceType())
3425          return RHS;
3426      }
3427    }
3428    // C99 6.7.2.2p4: Each enumerated type shall be compatible with char,
3429    // a signed integer type, or an unsigned integer type.
3430    if (const EnumType* ETy = LHS->getAsEnumType()) {
3431      if (ETy->getDecl()->getIntegerType() == RHSCan.getUnqualifiedType())
3432        return RHS;
3433    }
3434    if (const EnumType* ETy = RHS->getAsEnumType()) {
3435      if (ETy->getDecl()->getIntegerType() == LHSCan.getUnqualifiedType())
3436        return LHS;
3437    }
3438
3439    return QualType();
3440  }
3441
3442  // The canonical type classes match.
3443  switch (LHSClass) {
3444#define TYPE(Class, Base)
3445#define ABSTRACT_TYPE(Class, Base)
3446#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
3447#define DEPENDENT_TYPE(Class, Base) case Type::Class:
3448#include "clang/AST/TypeNodes.def"
3449    assert(false && "Non-canonical and dependent types shouldn't get here");
3450    return QualType();
3451
3452  case Type::LValueReference:
3453  case Type::RValueReference:
3454  case Type::MemberPointer:
3455    assert(false && "C++ should never be in mergeTypes");
3456    return QualType();
3457
3458  case Type::IncompleteArray:
3459  case Type::VariableArray:
3460  case Type::FunctionProto:
3461  case Type::ExtVector:
3462  case Type::ObjCQualifiedInterface:
3463    assert(false && "Types are eliminated above");
3464    return QualType();
3465
3466  case Type::Pointer:
3467  {
3468    // Merge two pointer types, while trying to preserve typedef info
3469    QualType LHSPointee = LHS->getAsPointerType()->getPointeeType();
3470    QualType RHSPointee = RHS->getAsPointerType()->getPointeeType();
3471    QualType ResultType = mergeTypes(LHSPointee, RHSPointee);
3472    if (ResultType.isNull()) return QualType();
3473    if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
3474      return LHS;
3475    if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
3476      return RHS;
3477    return getPointerType(ResultType);
3478  }
3479  case Type::BlockPointer:
3480  {
3481    // Merge two block pointer types, while trying to preserve typedef info
3482    QualType LHSPointee = LHS->getAsBlockPointerType()->getPointeeType();
3483    QualType RHSPointee = RHS->getAsBlockPointerType()->getPointeeType();
3484    QualType ResultType = mergeTypes(LHSPointee, RHSPointee);
3485    if (ResultType.isNull()) return QualType();
3486    if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
3487      return LHS;
3488    if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
3489      return RHS;
3490    return getBlockPointerType(ResultType);
3491  }
3492  case Type::ConstantArray:
3493  {
3494    const ConstantArrayType* LCAT = getAsConstantArrayType(LHS);
3495    const ConstantArrayType* RCAT = getAsConstantArrayType(RHS);
3496    if (LCAT && RCAT && RCAT->getSize() != LCAT->getSize())
3497      return QualType();
3498
3499    QualType LHSElem = getAsArrayType(LHS)->getElementType();
3500    QualType RHSElem = getAsArrayType(RHS)->getElementType();
3501    QualType ResultType = mergeTypes(LHSElem, RHSElem);
3502    if (ResultType.isNull()) return QualType();
3503    if (LCAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
3504      return LHS;
3505    if (RCAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
3506      return RHS;
3507    if (LCAT) return getConstantArrayType(ResultType, LCAT->getSize(),
3508                                          ArrayType::ArraySizeModifier(), 0);
3509    if (RCAT) return getConstantArrayType(ResultType, RCAT->getSize(),
3510                                          ArrayType::ArraySizeModifier(), 0);
3511    const VariableArrayType* LVAT = getAsVariableArrayType(LHS);
3512    const VariableArrayType* RVAT = getAsVariableArrayType(RHS);
3513    if (LVAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
3514      return LHS;
3515    if (RVAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
3516      return RHS;
3517    if (LVAT) {
3518      // FIXME: This isn't correct! But tricky to implement because
3519      // the array's size has to be the size of LHS, but the type
3520      // has to be different.
3521      return LHS;
3522    }
3523    if (RVAT) {
3524      // FIXME: This isn't correct! But tricky to implement because
3525      // the array's size has to be the size of RHS, but the type
3526      // has to be different.
3527      return RHS;
3528    }
3529    if (getCanonicalType(LHSElem) == getCanonicalType(ResultType)) return LHS;
3530    if (getCanonicalType(RHSElem) == getCanonicalType(ResultType)) return RHS;
3531    return getIncompleteArrayType(ResultType, ArrayType::ArraySizeModifier(),0);
3532  }
3533  case Type::FunctionNoProto:
3534    return mergeFunctionTypes(LHS, RHS);
3535  case Type::Record:
3536  case Type::Enum:
3537    // FIXME: Why are these compatible?
3538    if (isObjCIdStructType(LHS) && isObjCClassStructType(RHS)) return LHS;
3539    if (isObjCClassStructType(LHS) && isObjCIdStructType(RHS)) return LHS;
3540    return QualType();
3541  case Type::Builtin:
3542    // Only exactly equal builtin types are compatible, which is tested above.
3543    return QualType();
3544  case Type::Complex:
3545    // Distinct complex types are incompatible.
3546    return QualType();
3547  case Type::Vector:
3548    // FIXME: The merged type should be an ExtVector!
3549    if (areCompatVectorTypes(LHS->getAsVectorType(), RHS->getAsVectorType()))
3550      return LHS;
3551    return QualType();
3552  case Type::ObjCInterface: {
3553    // Check if the interfaces are assignment compatible.
3554    // FIXME: This should be type compatibility, e.g. whether
3555    // "LHS x; RHS x;" at global scope is legal.
3556    const ObjCInterfaceType* LHSIface = LHS->getAsObjCInterfaceType();
3557    const ObjCInterfaceType* RHSIface = RHS->getAsObjCInterfaceType();
3558    if (LHSIface && RHSIface &&
3559        canAssignObjCInterfaces(LHSIface, RHSIface))
3560      return LHS;
3561
3562    return QualType();
3563  }
3564  case Type::ObjCObjectPointer:
3565    // FIXME: finish
3566    // Distinct qualified id's are not compatible.
3567    return QualType();
3568  case Type::FixedWidthInt:
3569    // Distinct fixed-width integers are not compatible.
3570    return QualType();
3571  case Type::ExtQual:
3572    // FIXME: ExtQual types can be compatible even if they're not
3573    // identical!
3574    return QualType();
3575    // First attempt at an implementation, but I'm not really sure it's
3576    // right...
3577#if 0
3578    ExtQualType* LQual = cast<ExtQualType>(LHSCan);
3579    ExtQualType* RQual = cast<ExtQualType>(RHSCan);
3580    if (LQual->getAddressSpace() != RQual->getAddressSpace() ||
3581        LQual->getObjCGCAttr() != RQual->getObjCGCAttr())
3582      return QualType();
3583    QualType LHSBase, RHSBase, ResultType, ResCanUnqual;
3584    LHSBase = QualType(LQual->getBaseType(), 0);
3585    RHSBase = QualType(RQual->getBaseType(), 0);
3586    ResultType = mergeTypes(LHSBase, RHSBase);
3587    if (ResultType.isNull()) return QualType();
3588    ResCanUnqual = getCanonicalType(ResultType).getUnqualifiedType();
3589    if (LHSCan.getUnqualifiedType() == ResCanUnqual)
3590      return LHS;
3591    if (RHSCan.getUnqualifiedType() == ResCanUnqual)
3592      return RHS;
3593    ResultType = getAddrSpaceQualType(ResultType, LQual->getAddressSpace());
3594    ResultType = getObjCGCQualType(ResultType, LQual->getObjCGCAttr());
3595    ResultType.setCVRQualifiers(LHSCan.getCVRQualifiers());
3596    return ResultType;
3597#endif
3598
3599  case Type::TemplateSpecialization:
3600    assert(false && "Dependent types have no size");
3601    break;
3602  }
3603
3604  return QualType();
3605}
3606
3607//===----------------------------------------------------------------------===//
3608//                         Integer Predicates
3609//===----------------------------------------------------------------------===//
3610
3611unsigned ASTContext::getIntWidth(QualType T) {
3612  if (T == BoolTy)
3613    return 1;
3614  if (FixedWidthIntType* FWIT = dyn_cast<FixedWidthIntType>(T)) {
3615    return FWIT->getWidth();
3616  }
3617  // For builtin types, just use the standard type sizing method
3618  return (unsigned)getTypeSize(T);
3619}
3620
3621QualType ASTContext::getCorrespondingUnsignedType(QualType T) {
3622  assert(T->isSignedIntegerType() && "Unexpected type");
3623  if (const EnumType* ETy = T->getAsEnumType())
3624    T = ETy->getDecl()->getIntegerType();
3625  const BuiltinType* BTy = T->getAsBuiltinType();
3626  assert (BTy && "Unexpected signed integer type");
3627  switch (BTy->getKind()) {
3628  case BuiltinType::Char_S:
3629  case BuiltinType::SChar:
3630    return UnsignedCharTy;
3631  case BuiltinType::Short:
3632    return UnsignedShortTy;
3633  case BuiltinType::Int:
3634    return UnsignedIntTy;
3635  case BuiltinType::Long:
3636    return UnsignedLongTy;
3637  case BuiltinType::LongLong:
3638    return UnsignedLongLongTy;
3639  case BuiltinType::Int128:
3640    return UnsignedInt128Ty;
3641  default:
3642    assert(0 && "Unexpected signed integer type");
3643    return QualType();
3644  }
3645}
3646
3647ExternalASTSource::~ExternalASTSource() { }
3648
3649void ExternalASTSource::PrintStats() { }
3650
3651
3652//===----------------------------------------------------------------------===//
3653//                          Builtin Type Computation
3654//===----------------------------------------------------------------------===//
3655
3656/// DecodeTypeFromStr - This decodes one type descriptor from Str, advancing the
3657/// pointer over the consumed characters.  This returns the resultant type.
3658static QualType DecodeTypeFromStr(const char *&Str, ASTContext &Context,
3659                                  ASTContext::GetBuiltinTypeError &Error,
3660                                  bool AllowTypeModifiers = true) {
3661  // Modifiers.
3662  int HowLong = 0;
3663  bool Signed = false, Unsigned = false;
3664
3665  // Read the modifiers first.
3666  bool Done = false;
3667  while (!Done) {
3668    switch (*Str++) {
3669    default: Done = true; --Str; break;
3670    case 'S':
3671      assert(!Unsigned && "Can't use both 'S' and 'U' modifiers!");
3672      assert(!Signed && "Can't use 'S' modifier multiple times!");
3673      Signed = true;
3674      break;
3675    case 'U':
3676      assert(!Signed && "Can't use both 'S' and 'U' modifiers!");
3677      assert(!Unsigned && "Can't use 'S' modifier multiple times!");
3678      Unsigned = true;
3679      break;
3680    case 'L':
3681      assert(HowLong <= 2 && "Can't have LLLL modifier");
3682      ++HowLong;
3683      break;
3684    }
3685  }
3686
3687  QualType Type;
3688
3689  // Read the base type.
3690  switch (*Str++) {
3691  default: assert(0 && "Unknown builtin type letter!");
3692  case 'v':
3693    assert(HowLong == 0 && !Signed && !Unsigned &&
3694           "Bad modifiers used with 'v'!");
3695    Type = Context.VoidTy;
3696    break;
3697  case 'f':
3698    assert(HowLong == 0 && !Signed && !Unsigned &&
3699           "Bad modifiers used with 'f'!");
3700    Type = Context.FloatTy;
3701    break;
3702  case 'd':
3703    assert(HowLong < 2 && !Signed && !Unsigned &&
3704           "Bad modifiers used with 'd'!");
3705    if (HowLong)
3706      Type = Context.LongDoubleTy;
3707    else
3708      Type = Context.DoubleTy;
3709    break;
3710  case 's':
3711    assert(HowLong == 0 && "Bad modifiers used with 's'!");
3712    if (Unsigned)
3713      Type = Context.UnsignedShortTy;
3714    else
3715      Type = Context.ShortTy;
3716    break;
3717  case 'i':
3718    if (HowLong == 3)
3719      Type = Unsigned ? Context.UnsignedInt128Ty : Context.Int128Ty;
3720    else if (HowLong == 2)
3721      Type = Unsigned ? Context.UnsignedLongLongTy : Context.LongLongTy;
3722    else if (HowLong == 1)
3723      Type = Unsigned ? Context.UnsignedLongTy : Context.LongTy;
3724    else
3725      Type = Unsigned ? Context.UnsignedIntTy : Context.IntTy;
3726    break;
3727  case 'c':
3728    assert(HowLong == 0 && "Bad modifiers used with 'c'!");
3729    if (Signed)
3730      Type = Context.SignedCharTy;
3731    else if (Unsigned)
3732      Type = Context.UnsignedCharTy;
3733    else
3734      Type = Context.CharTy;
3735    break;
3736  case 'b': // boolean
3737    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'b'!");
3738    Type = Context.BoolTy;
3739    break;
3740  case 'z':  // size_t.
3741    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'z'!");
3742    Type = Context.getSizeType();
3743    break;
3744  case 'F':
3745    Type = Context.getCFConstantStringType();
3746    break;
3747  case 'a':
3748    Type = Context.getBuiltinVaListType();
3749    assert(!Type.isNull() && "builtin va list type not initialized!");
3750    break;
3751  case 'A':
3752    // This is a "reference" to a va_list; however, what exactly
3753    // this means depends on how va_list is defined. There are two
3754    // different kinds of va_list: ones passed by value, and ones
3755    // passed by reference.  An example of a by-value va_list is
3756    // x86, where va_list is a char*. An example of by-ref va_list
3757    // is x86-64, where va_list is a __va_list_tag[1]. For x86,
3758    // we want this argument to be a char*&; for x86-64, we want
3759    // it to be a __va_list_tag*.
3760    Type = Context.getBuiltinVaListType();
3761    assert(!Type.isNull() && "builtin va list type not initialized!");
3762    if (Type->isArrayType()) {
3763      Type = Context.getArrayDecayedType(Type);
3764    } else {
3765      Type = Context.getLValueReferenceType(Type);
3766    }
3767    break;
3768  case 'V': {
3769    char *End;
3770
3771    unsigned NumElements = strtoul(Str, &End, 10);
3772    assert(End != Str && "Missing vector size");
3773
3774    Str = End;
3775
3776    QualType ElementType = DecodeTypeFromStr(Str, Context, Error, false);
3777    Type = Context.getVectorType(ElementType, NumElements);
3778    break;
3779  }
3780  case 'P': {
3781    IdentifierInfo *II = &Context.Idents.get("FILE");
3782    DeclContext::lookup_result Lookup
3783      = Context.getTranslationUnitDecl()->lookup(II);
3784    if (Lookup.first != Lookup.second && isa<TypeDecl>(*Lookup.first)) {
3785      Type = Context.getTypeDeclType(cast<TypeDecl>(*Lookup.first));
3786      break;
3787    }
3788    else {
3789      Error = ASTContext::GE_Missing_FILE;
3790      return QualType();
3791    }
3792  }
3793  }
3794
3795  if (!AllowTypeModifiers)
3796    return Type;
3797
3798  Done = false;
3799  while (!Done) {
3800    switch (*Str++) {
3801      default: Done = true; --Str; break;
3802      case '*':
3803        Type = Context.getPointerType(Type);
3804        break;
3805      case '&':
3806        Type = Context.getLValueReferenceType(Type);
3807        break;
3808      // FIXME: There's no way to have a built-in with an rvalue ref arg.
3809      case 'C':
3810        Type = Type.getQualifiedType(QualType::Const);
3811        break;
3812    }
3813  }
3814
3815  return Type;
3816}
3817
3818/// GetBuiltinType - Return the type for the specified builtin.
3819QualType ASTContext::GetBuiltinType(unsigned id,
3820                                    GetBuiltinTypeError &Error) {
3821  const char *TypeStr = BuiltinInfo.GetTypeString(id);
3822
3823  llvm::SmallVector<QualType, 8> ArgTypes;
3824
3825  Error = GE_None;
3826  QualType ResType = DecodeTypeFromStr(TypeStr, *this, Error);
3827  if (Error != GE_None)
3828    return QualType();
3829  while (TypeStr[0] && TypeStr[0] != '.') {
3830    QualType Ty = DecodeTypeFromStr(TypeStr, *this, Error);
3831    if (Error != GE_None)
3832      return QualType();
3833
3834    // Do array -> pointer decay.  The builtin should use the decayed type.
3835    if (Ty->isArrayType())
3836      Ty = getArrayDecayedType(Ty);
3837
3838    ArgTypes.push_back(Ty);
3839  }
3840
3841  assert((TypeStr[0] != '.' || TypeStr[1] == 0) &&
3842         "'.' should only occur at end of builtin type list!");
3843
3844  // handle untyped/variadic arguments "T c99Style();" or "T cppStyle(...);".
3845  if (ArgTypes.size() == 0 && TypeStr[0] == '.')
3846    return getFunctionNoProtoType(ResType);
3847  return getFunctionType(ResType, ArgTypes.data(), ArgTypes.size(),
3848                         TypeStr[0] == '.', 0);
3849}
3850