ASTContext.cpp revision a444f1856459130bd3a1bb8995331c9e367db04f
1//===--- ASTContext.cpp - Context to hold long-lived AST nodes ------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements the ASTContext interface.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/AST/ASTContext.h"
15#include "clang/AST/CharUnits.h"
16#include "clang/AST/CommentLexer.h"
17#include "clang/AST/CommentSema.h"
18#include "clang/AST/CommentParser.h"
19#include "clang/AST/DeclCXX.h"
20#include "clang/AST/DeclObjC.h"
21#include "clang/AST/DeclTemplate.h"
22#include "clang/AST/TypeLoc.h"
23#include "clang/AST/Expr.h"
24#include "clang/AST/ExprCXX.h"
25#include "clang/AST/ExternalASTSource.h"
26#include "clang/AST/ASTMutationListener.h"
27#include "clang/AST/RecordLayout.h"
28#include "clang/AST/Mangle.h"
29#include "clang/Basic/Builtins.h"
30#include "clang/Basic/SourceManager.h"
31#include "clang/Basic/TargetInfo.h"
32#include "llvm/ADT/SmallString.h"
33#include "llvm/ADT/StringExtras.h"
34#include "llvm/Support/MathExtras.h"
35#include "llvm/Support/raw_ostream.h"
36#include "llvm/Support/Capacity.h"
37#include "CXXABI.h"
38#include <map>
39
40using namespace clang;
41
42unsigned ASTContext::NumImplicitDefaultConstructors;
43unsigned ASTContext::NumImplicitDefaultConstructorsDeclared;
44unsigned ASTContext::NumImplicitCopyConstructors;
45unsigned ASTContext::NumImplicitCopyConstructorsDeclared;
46unsigned ASTContext::NumImplicitMoveConstructors;
47unsigned ASTContext::NumImplicitMoveConstructorsDeclared;
48unsigned ASTContext::NumImplicitCopyAssignmentOperators;
49unsigned ASTContext::NumImplicitCopyAssignmentOperatorsDeclared;
50unsigned ASTContext::NumImplicitMoveAssignmentOperators;
51unsigned ASTContext::NumImplicitMoveAssignmentOperatorsDeclared;
52unsigned ASTContext::NumImplicitDestructors;
53unsigned ASTContext::NumImplicitDestructorsDeclared;
54
55enum FloatingRank {
56  HalfRank, FloatRank, DoubleRank, LongDoubleRank
57};
58
59RawComment *ASTContext::getRawCommentForDeclNoCache(const Decl *D) const {
60  if (!CommentsLoaded && ExternalSource) {
61    ExternalSource->ReadComments();
62    CommentsLoaded = true;
63  }
64
65  assert(D);
66
67  // User can not attach documentation to implicit declarations.
68  if (D->isImplicit())
69    return NULL;
70
71  // TODO: handle comments for function parameters properly.
72  if (isa<ParmVarDecl>(D))
73    return NULL;
74
75  ArrayRef<RawComment *> RawComments = Comments.getComments();
76
77  // If there are no comments anywhere, we won't find anything.
78  if (RawComments.empty())
79    return NULL;
80
81  // Find declaration location.
82  // For Objective-C declarations we generally don't expect to have multiple
83  // declarators, thus use declaration starting location as the "declaration
84  // location".
85  // For all other declarations multiple declarators are used quite frequently,
86  // so we use the location of the identifier as the "declaration location".
87  SourceLocation DeclLoc;
88  if (isa<ObjCMethodDecl>(D) || isa<ObjCContainerDecl>(D) ||
89      isa<ObjCPropertyDecl>(D))
90    DeclLoc = D->getLocStart();
91  else
92    DeclLoc = D->getLocation();
93
94  // If the declaration doesn't map directly to a location in a file, we
95  // can't find the comment.
96  if (DeclLoc.isInvalid() || !DeclLoc.isFileID())
97    return NULL;
98
99  // Find the comment that occurs just after this declaration.
100  ArrayRef<RawComment *>::iterator Comment;
101  {
102    // When searching for comments during parsing, the comment we are looking
103    // for is usually among the last two comments we parsed -- check them
104    // first.
105    RawComment CommentAtDeclLoc(SourceMgr, SourceRange(DeclLoc));
106    BeforeThanCompare<RawComment> Compare(SourceMgr);
107    ArrayRef<RawComment *>::iterator MaybeBeforeDecl = RawComments.end() - 1;
108    bool Found = Compare(*MaybeBeforeDecl, &CommentAtDeclLoc);
109    if (!Found && RawComments.size() >= 2) {
110      MaybeBeforeDecl--;
111      Found = Compare(*MaybeBeforeDecl, &CommentAtDeclLoc);
112    }
113
114    if (Found) {
115      Comment = MaybeBeforeDecl + 1;
116      assert(Comment == std::lower_bound(RawComments.begin(), RawComments.end(),
117                                         &CommentAtDeclLoc, Compare));
118    } else {
119      // Slow path.
120      Comment = std::lower_bound(RawComments.begin(), RawComments.end(),
121                                 &CommentAtDeclLoc, Compare);
122    }
123  }
124
125  // Decompose the location for the declaration and find the beginning of the
126  // file buffer.
127  std::pair<FileID, unsigned> DeclLocDecomp = SourceMgr.getDecomposedLoc(DeclLoc);
128
129  // First check whether we have a trailing comment.
130  if (Comment != RawComments.end() &&
131      (*Comment)->isDocumentation() && (*Comment)->isTrailingComment() &&
132      (isa<FieldDecl>(D) || isa<EnumConstantDecl>(D) || isa<VarDecl>(D))) {
133    std::pair<FileID, unsigned> CommentBeginDecomp
134      = SourceMgr.getDecomposedLoc((*Comment)->getSourceRange().getBegin());
135    // Check that Doxygen trailing comment comes after the declaration, starts
136    // on the same line and in the same file as the declaration.
137    if (DeclLocDecomp.first == CommentBeginDecomp.first &&
138        SourceMgr.getLineNumber(DeclLocDecomp.first, DeclLocDecomp.second)
139          == SourceMgr.getLineNumber(CommentBeginDecomp.first,
140                                     CommentBeginDecomp.second)) {
141      return *Comment;
142    }
143  }
144
145  // The comment just after the declaration was not a trailing comment.
146  // Let's look at the previous comment.
147  if (Comment == RawComments.begin())
148    return NULL;
149  --Comment;
150
151  // Check that we actually have a non-member Doxygen comment.
152  if (!(*Comment)->isDocumentation() || (*Comment)->isTrailingComment())
153    return NULL;
154
155  // Decompose the end of the comment.
156  std::pair<FileID, unsigned> CommentEndDecomp
157    = SourceMgr.getDecomposedLoc((*Comment)->getSourceRange().getEnd());
158
159  // If the comment and the declaration aren't in the same file, then they
160  // aren't related.
161  if (DeclLocDecomp.first != CommentEndDecomp.first)
162    return NULL;
163
164  // Get the corresponding buffer.
165  bool Invalid = false;
166  const char *Buffer = SourceMgr.getBufferData(DeclLocDecomp.first,
167                                               &Invalid).data();
168  if (Invalid)
169    return NULL;
170
171  // Extract text between the comment and declaration.
172  StringRef Text(Buffer + CommentEndDecomp.second,
173                 DeclLocDecomp.second - CommentEndDecomp.second);
174
175  // There should be no other declarations or preprocessor directives between
176  // comment and declaration.
177  if (Text.find_first_of(",;{}#@") != StringRef::npos)
178    return NULL;
179
180  return *Comment;
181}
182
183const RawComment *ASTContext::getRawCommentForDecl(const Decl *D) const {
184  // Check whether we have cached a comment string for this declaration
185  // already.
186  llvm::DenseMap<const Decl *, RawAndParsedComment>::iterator Pos
187      = DeclComments.find(D);
188  if (Pos != DeclComments.end()) {
189    RawAndParsedComment C = Pos->second;
190    return C.first;
191  }
192
193  RawComment *RC = getRawCommentForDeclNoCache(D);
194  // If we found a comment, it should be a documentation comment.
195  assert(!RC || RC->isDocumentation());
196  DeclComments[D] =
197      RawAndParsedComment(RC, static_cast<comments::FullComment *>(NULL));
198  if (RC)
199    RC->setAttached();
200  return RC;
201}
202
203comments::FullComment *ASTContext::getCommentForDecl(const Decl *D) const {
204  llvm::DenseMap<const Decl *, RawAndParsedComment>::iterator Pos
205      = DeclComments.find(D);
206  const RawComment *RC;
207  if (Pos != DeclComments.end()) {
208    RawAndParsedComment C = Pos->second;
209    if (comments::FullComment *FC = C.second)
210      return FC;
211    RC = C.first;
212  } else
213    RC = getRawCommentForDecl(D);
214
215  if (!RC)
216    return NULL;
217
218  const StringRef RawText = RC->getRawText(SourceMgr);
219  comments::Lexer L(RC->getSourceRange().getBegin(), comments::CommentOptions(),
220                    RawText.begin(), RawText.end());
221
222  comments::Sema S(getAllocator(), getSourceManager(), getDiagnostics());
223  S.setDecl(D);
224  comments::Parser P(L, S, getAllocator(), getSourceManager(),
225                     getDiagnostics());
226
227  comments::FullComment *FC = P.parseFullComment();
228  DeclComments[D].second = FC;
229  return FC;
230}
231
232void
233ASTContext::CanonicalTemplateTemplateParm::Profile(llvm::FoldingSetNodeID &ID,
234                                               TemplateTemplateParmDecl *Parm) {
235  ID.AddInteger(Parm->getDepth());
236  ID.AddInteger(Parm->getPosition());
237  ID.AddBoolean(Parm->isParameterPack());
238
239  TemplateParameterList *Params = Parm->getTemplateParameters();
240  ID.AddInteger(Params->size());
241  for (TemplateParameterList::const_iterator P = Params->begin(),
242                                          PEnd = Params->end();
243       P != PEnd; ++P) {
244    if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*P)) {
245      ID.AddInteger(0);
246      ID.AddBoolean(TTP->isParameterPack());
247      continue;
248    }
249
250    if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(*P)) {
251      ID.AddInteger(1);
252      ID.AddBoolean(NTTP->isParameterPack());
253      ID.AddPointer(NTTP->getType().getCanonicalType().getAsOpaquePtr());
254      if (NTTP->isExpandedParameterPack()) {
255        ID.AddBoolean(true);
256        ID.AddInteger(NTTP->getNumExpansionTypes());
257        for (unsigned I = 0, N = NTTP->getNumExpansionTypes(); I != N; ++I) {
258          QualType T = NTTP->getExpansionType(I);
259          ID.AddPointer(T.getCanonicalType().getAsOpaquePtr());
260        }
261      } else
262        ID.AddBoolean(false);
263      continue;
264    }
265
266    TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(*P);
267    ID.AddInteger(2);
268    Profile(ID, TTP);
269  }
270}
271
272TemplateTemplateParmDecl *
273ASTContext::getCanonicalTemplateTemplateParmDecl(
274                                          TemplateTemplateParmDecl *TTP) const {
275  // Check if we already have a canonical template template parameter.
276  llvm::FoldingSetNodeID ID;
277  CanonicalTemplateTemplateParm::Profile(ID, TTP);
278  void *InsertPos = 0;
279  CanonicalTemplateTemplateParm *Canonical
280    = CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos);
281  if (Canonical)
282    return Canonical->getParam();
283
284  // Build a canonical template parameter list.
285  TemplateParameterList *Params = TTP->getTemplateParameters();
286  SmallVector<NamedDecl *, 4> CanonParams;
287  CanonParams.reserve(Params->size());
288  for (TemplateParameterList::const_iterator P = Params->begin(),
289                                          PEnd = Params->end();
290       P != PEnd; ++P) {
291    if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*P))
292      CanonParams.push_back(
293                  TemplateTypeParmDecl::Create(*this, getTranslationUnitDecl(),
294                                               SourceLocation(),
295                                               SourceLocation(),
296                                               TTP->getDepth(),
297                                               TTP->getIndex(), 0, false,
298                                               TTP->isParameterPack()));
299    else if (NonTypeTemplateParmDecl *NTTP
300             = dyn_cast<NonTypeTemplateParmDecl>(*P)) {
301      QualType T = getCanonicalType(NTTP->getType());
302      TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(T);
303      NonTypeTemplateParmDecl *Param;
304      if (NTTP->isExpandedParameterPack()) {
305        SmallVector<QualType, 2> ExpandedTypes;
306        SmallVector<TypeSourceInfo *, 2> ExpandedTInfos;
307        for (unsigned I = 0, N = NTTP->getNumExpansionTypes(); I != N; ++I) {
308          ExpandedTypes.push_back(getCanonicalType(NTTP->getExpansionType(I)));
309          ExpandedTInfos.push_back(
310                                getTrivialTypeSourceInfo(ExpandedTypes.back()));
311        }
312
313        Param = NonTypeTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
314                                                SourceLocation(),
315                                                SourceLocation(),
316                                                NTTP->getDepth(),
317                                                NTTP->getPosition(), 0,
318                                                T,
319                                                TInfo,
320                                                ExpandedTypes.data(),
321                                                ExpandedTypes.size(),
322                                                ExpandedTInfos.data());
323      } else {
324        Param = NonTypeTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
325                                                SourceLocation(),
326                                                SourceLocation(),
327                                                NTTP->getDepth(),
328                                                NTTP->getPosition(), 0,
329                                                T,
330                                                NTTP->isParameterPack(),
331                                                TInfo);
332      }
333      CanonParams.push_back(Param);
334
335    } else
336      CanonParams.push_back(getCanonicalTemplateTemplateParmDecl(
337                                           cast<TemplateTemplateParmDecl>(*P)));
338  }
339
340  TemplateTemplateParmDecl *CanonTTP
341    = TemplateTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
342                                       SourceLocation(), TTP->getDepth(),
343                                       TTP->getPosition(),
344                                       TTP->isParameterPack(),
345                                       0,
346                         TemplateParameterList::Create(*this, SourceLocation(),
347                                                       SourceLocation(),
348                                                       CanonParams.data(),
349                                                       CanonParams.size(),
350                                                       SourceLocation()));
351
352  // Get the new insert position for the node we care about.
353  Canonical = CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos);
354  assert(Canonical == 0 && "Shouldn't be in the map!");
355  (void)Canonical;
356
357  // Create the canonical template template parameter entry.
358  Canonical = new (*this) CanonicalTemplateTemplateParm(CanonTTP);
359  CanonTemplateTemplateParms.InsertNode(Canonical, InsertPos);
360  return CanonTTP;
361}
362
363CXXABI *ASTContext::createCXXABI(const TargetInfo &T) {
364  if (!LangOpts.CPlusPlus) return 0;
365
366  switch (T.getCXXABI()) {
367  case CXXABI_ARM:
368    return CreateARMCXXABI(*this);
369  case CXXABI_Itanium:
370    return CreateItaniumCXXABI(*this);
371  case CXXABI_Microsoft:
372    return CreateMicrosoftCXXABI(*this);
373  }
374  llvm_unreachable("Invalid CXXABI type!");
375}
376
377static const LangAS::Map *getAddressSpaceMap(const TargetInfo &T,
378                                             const LangOptions &LOpts) {
379  if (LOpts.FakeAddressSpaceMap) {
380    // The fake address space map must have a distinct entry for each
381    // language-specific address space.
382    static const unsigned FakeAddrSpaceMap[] = {
383      1, // opencl_global
384      2, // opencl_local
385      3, // opencl_constant
386      4, // cuda_device
387      5, // cuda_constant
388      6  // cuda_shared
389    };
390    return &FakeAddrSpaceMap;
391  } else {
392    return &T.getAddressSpaceMap();
393  }
394}
395
396ASTContext::ASTContext(LangOptions& LOpts, SourceManager &SM,
397                       const TargetInfo *t,
398                       IdentifierTable &idents, SelectorTable &sels,
399                       Builtin::Context &builtins,
400                       unsigned size_reserve,
401                       bool DelayInitialization)
402  : FunctionProtoTypes(this_()),
403    TemplateSpecializationTypes(this_()),
404    DependentTemplateSpecializationTypes(this_()),
405    SubstTemplateTemplateParmPacks(this_()),
406    GlobalNestedNameSpecifier(0),
407    Int128Decl(0), UInt128Decl(0),
408    BuiltinVaListDecl(0),
409    ObjCIdDecl(0), ObjCSelDecl(0), ObjCClassDecl(0), ObjCProtocolClassDecl(0),
410    CFConstantStringTypeDecl(0), ObjCInstanceTypeDecl(0),
411    FILEDecl(0),
412    jmp_bufDecl(0), sigjmp_bufDecl(0), ucontext_tDecl(0),
413    BlockDescriptorType(0), BlockDescriptorExtendedType(0),
414    cudaConfigureCallDecl(0),
415    NullTypeSourceInfo(QualType()),
416    FirstLocalImport(), LastLocalImport(),
417    SourceMgr(SM), LangOpts(LOpts),
418    AddrSpaceMap(0), Target(t), PrintingPolicy(LOpts),
419    Idents(idents), Selectors(sels),
420    BuiltinInfo(builtins),
421    DeclarationNames(*this),
422    ExternalSource(0), Listener(0),
423    Comments(SM), CommentsLoaded(false),
424    LastSDM(0, 0),
425    UniqueBlockByRefTypeID(0)
426{
427  if (size_reserve > 0) Types.reserve(size_reserve);
428  TUDecl = TranslationUnitDecl::Create(*this);
429
430  if (!DelayInitialization) {
431    assert(t && "No target supplied for ASTContext initialization");
432    InitBuiltinTypes(*t);
433  }
434}
435
436ASTContext::~ASTContext() {
437  // Release the DenseMaps associated with DeclContext objects.
438  // FIXME: Is this the ideal solution?
439  ReleaseDeclContextMaps();
440
441  // Call all of the deallocation functions.
442  for (unsigned I = 0, N = Deallocations.size(); I != N; ++I)
443    Deallocations[I].first(Deallocations[I].second);
444
445  // ASTRecordLayout objects in ASTRecordLayouts must always be destroyed
446  // because they can contain DenseMaps.
447  for (llvm::DenseMap<const ObjCContainerDecl*,
448       const ASTRecordLayout*>::iterator
449       I = ObjCLayouts.begin(), E = ObjCLayouts.end(); I != E; )
450    // Increment in loop to prevent using deallocated memory.
451    if (ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second))
452      R->Destroy(*this);
453
454  for (llvm::DenseMap<const RecordDecl*, const ASTRecordLayout*>::iterator
455       I = ASTRecordLayouts.begin(), E = ASTRecordLayouts.end(); I != E; ) {
456    // Increment in loop to prevent using deallocated memory.
457    if (ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second))
458      R->Destroy(*this);
459  }
460
461  for (llvm::DenseMap<const Decl*, AttrVec*>::iterator A = DeclAttrs.begin(),
462                                                    AEnd = DeclAttrs.end();
463       A != AEnd; ++A)
464    A->second->~AttrVec();
465}
466
467void ASTContext::AddDeallocation(void (*Callback)(void*), void *Data) {
468  Deallocations.push_back(std::make_pair(Callback, Data));
469}
470
471void
472ASTContext::setExternalSource(OwningPtr<ExternalASTSource> &Source) {
473  ExternalSource.reset(Source.take());
474}
475
476void ASTContext::PrintStats() const {
477  llvm::errs() << "\n*** AST Context Stats:\n";
478  llvm::errs() << "  " << Types.size() << " types total.\n";
479
480  unsigned counts[] = {
481#define TYPE(Name, Parent) 0,
482#define ABSTRACT_TYPE(Name, Parent)
483#include "clang/AST/TypeNodes.def"
484    0 // Extra
485  };
486
487  for (unsigned i = 0, e = Types.size(); i != e; ++i) {
488    Type *T = Types[i];
489    counts[(unsigned)T->getTypeClass()]++;
490  }
491
492  unsigned Idx = 0;
493  unsigned TotalBytes = 0;
494#define TYPE(Name, Parent)                                              \
495  if (counts[Idx])                                                      \
496    llvm::errs() << "    " << counts[Idx] << " " << #Name               \
497                 << " types\n";                                         \
498  TotalBytes += counts[Idx] * sizeof(Name##Type);                       \
499  ++Idx;
500#define ABSTRACT_TYPE(Name, Parent)
501#include "clang/AST/TypeNodes.def"
502
503  llvm::errs() << "Total bytes = " << TotalBytes << "\n";
504
505  // Implicit special member functions.
506  llvm::errs() << NumImplicitDefaultConstructorsDeclared << "/"
507               << NumImplicitDefaultConstructors
508               << " implicit default constructors created\n";
509  llvm::errs() << NumImplicitCopyConstructorsDeclared << "/"
510               << NumImplicitCopyConstructors
511               << " implicit copy constructors created\n";
512  if (getLangOpts().CPlusPlus)
513    llvm::errs() << NumImplicitMoveConstructorsDeclared << "/"
514                 << NumImplicitMoveConstructors
515                 << " implicit move constructors created\n";
516  llvm::errs() << NumImplicitCopyAssignmentOperatorsDeclared << "/"
517               << NumImplicitCopyAssignmentOperators
518               << " implicit copy assignment operators created\n";
519  if (getLangOpts().CPlusPlus)
520    llvm::errs() << NumImplicitMoveAssignmentOperatorsDeclared << "/"
521                 << NumImplicitMoveAssignmentOperators
522                 << " implicit move assignment operators created\n";
523  llvm::errs() << NumImplicitDestructorsDeclared << "/"
524               << NumImplicitDestructors
525               << " implicit destructors created\n";
526
527  if (ExternalSource.get()) {
528    llvm::errs() << "\n";
529    ExternalSource->PrintStats();
530  }
531
532  BumpAlloc.PrintStats();
533}
534
535TypedefDecl *ASTContext::getInt128Decl() const {
536  if (!Int128Decl) {
537    TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(Int128Ty);
538    Int128Decl = TypedefDecl::Create(const_cast<ASTContext &>(*this),
539                                     getTranslationUnitDecl(),
540                                     SourceLocation(),
541                                     SourceLocation(),
542                                     &Idents.get("__int128_t"),
543                                     TInfo);
544  }
545
546  return Int128Decl;
547}
548
549TypedefDecl *ASTContext::getUInt128Decl() const {
550  if (!UInt128Decl) {
551    TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(UnsignedInt128Ty);
552    UInt128Decl = TypedefDecl::Create(const_cast<ASTContext &>(*this),
553                                     getTranslationUnitDecl(),
554                                     SourceLocation(),
555                                     SourceLocation(),
556                                     &Idents.get("__uint128_t"),
557                                     TInfo);
558  }
559
560  return UInt128Decl;
561}
562
563void ASTContext::InitBuiltinType(CanQualType &R, BuiltinType::Kind K) {
564  BuiltinType *Ty = new (*this, TypeAlignment) BuiltinType(K);
565  R = CanQualType::CreateUnsafe(QualType(Ty, 0));
566  Types.push_back(Ty);
567}
568
569void ASTContext::InitBuiltinTypes(const TargetInfo &Target) {
570  assert((!this->Target || this->Target == &Target) &&
571         "Incorrect target reinitialization");
572  assert(VoidTy.isNull() && "Context reinitialized?");
573
574  this->Target = &Target;
575
576  ABI.reset(createCXXABI(Target));
577  AddrSpaceMap = getAddressSpaceMap(Target, LangOpts);
578
579  // C99 6.2.5p19.
580  InitBuiltinType(VoidTy,              BuiltinType::Void);
581
582  // C99 6.2.5p2.
583  InitBuiltinType(BoolTy,              BuiltinType::Bool);
584  // C99 6.2.5p3.
585  if (LangOpts.CharIsSigned)
586    InitBuiltinType(CharTy,            BuiltinType::Char_S);
587  else
588    InitBuiltinType(CharTy,            BuiltinType::Char_U);
589  // C99 6.2.5p4.
590  InitBuiltinType(SignedCharTy,        BuiltinType::SChar);
591  InitBuiltinType(ShortTy,             BuiltinType::Short);
592  InitBuiltinType(IntTy,               BuiltinType::Int);
593  InitBuiltinType(LongTy,              BuiltinType::Long);
594  InitBuiltinType(LongLongTy,          BuiltinType::LongLong);
595
596  // C99 6.2.5p6.
597  InitBuiltinType(UnsignedCharTy,      BuiltinType::UChar);
598  InitBuiltinType(UnsignedShortTy,     BuiltinType::UShort);
599  InitBuiltinType(UnsignedIntTy,       BuiltinType::UInt);
600  InitBuiltinType(UnsignedLongTy,      BuiltinType::ULong);
601  InitBuiltinType(UnsignedLongLongTy,  BuiltinType::ULongLong);
602
603  // C99 6.2.5p10.
604  InitBuiltinType(FloatTy,             BuiltinType::Float);
605  InitBuiltinType(DoubleTy,            BuiltinType::Double);
606  InitBuiltinType(LongDoubleTy,        BuiltinType::LongDouble);
607
608  // GNU extension, 128-bit integers.
609  InitBuiltinType(Int128Ty,            BuiltinType::Int128);
610  InitBuiltinType(UnsignedInt128Ty,    BuiltinType::UInt128);
611
612  if (LangOpts.CPlusPlus) { // C++ 3.9.1p5
613    if (TargetInfo::isTypeSigned(Target.getWCharType()))
614      InitBuiltinType(WCharTy,           BuiltinType::WChar_S);
615    else  // -fshort-wchar makes wchar_t be unsigned.
616      InitBuiltinType(WCharTy,           BuiltinType::WChar_U);
617  } else // C99
618    WCharTy = getFromTargetType(Target.getWCharType());
619
620  WIntTy = getFromTargetType(Target.getWIntType());
621
622  if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
623    InitBuiltinType(Char16Ty,           BuiltinType::Char16);
624  else // C99
625    Char16Ty = getFromTargetType(Target.getChar16Type());
626
627  if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
628    InitBuiltinType(Char32Ty,           BuiltinType::Char32);
629  else // C99
630    Char32Ty = getFromTargetType(Target.getChar32Type());
631
632  // Placeholder type for type-dependent expressions whose type is
633  // completely unknown. No code should ever check a type against
634  // DependentTy and users should never see it; however, it is here to
635  // help diagnose failures to properly check for type-dependent
636  // expressions.
637  InitBuiltinType(DependentTy,         BuiltinType::Dependent);
638
639  // Placeholder type for functions.
640  InitBuiltinType(OverloadTy,          BuiltinType::Overload);
641
642  // Placeholder type for bound members.
643  InitBuiltinType(BoundMemberTy,       BuiltinType::BoundMember);
644
645  // Placeholder type for pseudo-objects.
646  InitBuiltinType(PseudoObjectTy,      BuiltinType::PseudoObject);
647
648  // "any" type; useful for debugger-like clients.
649  InitBuiltinType(UnknownAnyTy,        BuiltinType::UnknownAny);
650
651  // Placeholder type for unbridged ARC casts.
652  InitBuiltinType(ARCUnbridgedCastTy,  BuiltinType::ARCUnbridgedCast);
653
654  // C99 6.2.5p11.
655  FloatComplexTy      = getComplexType(FloatTy);
656  DoubleComplexTy     = getComplexType(DoubleTy);
657  LongDoubleComplexTy = getComplexType(LongDoubleTy);
658
659  // Builtin types for 'id', 'Class', and 'SEL'.
660  InitBuiltinType(ObjCBuiltinIdTy, BuiltinType::ObjCId);
661  InitBuiltinType(ObjCBuiltinClassTy, BuiltinType::ObjCClass);
662  InitBuiltinType(ObjCBuiltinSelTy, BuiltinType::ObjCSel);
663
664  // Builtin type for __objc_yes and __objc_no
665  ObjCBuiltinBoolTy = (Target.useSignedCharForObjCBool() ?
666                       SignedCharTy : BoolTy);
667
668  ObjCConstantStringType = QualType();
669
670  // void * type
671  VoidPtrTy = getPointerType(VoidTy);
672
673  // nullptr type (C++0x 2.14.7)
674  InitBuiltinType(NullPtrTy,           BuiltinType::NullPtr);
675
676  // half type (OpenCL 6.1.1.1) / ARM NEON __fp16
677  InitBuiltinType(HalfTy, BuiltinType::Half);
678
679  // Builtin type used to help define __builtin_va_list.
680  VaListTagTy = QualType();
681}
682
683DiagnosticsEngine &ASTContext::getDiagnostics() const {
684  return SourceMgr.getDiagnostics();
685}
686
687AttrVec& ASTContext::getDeclAttrs(const Decl *D) {
688  AttrVec *&Result = DeclAttrs[D];
689  if (!Result) {
690    void *Mem = Allocate(sizeof(AttrVec));
691    Result = new (Mem) AttrVec;
692  }
693
694  return *Result;
695}
696
697/// \brief Erase the attributes corresponding to the given declaration.
698void ASTContext::eraseDeclAttrs(const Decl *D) {
699  llvm::DenseMap<const Decl*, AttrVec*>::iterator Pos = DeclAttrs.find(D);
700  if (Pos != DeclAttrs.end()) {
701    Pos->second->~AttrVec();
702    DeclAttrs.erase(Pos);
703  }
704}
705
706MemberSpecializationInfo *
707ASTContext::getInstantiatedFromStaticDataMember(const VarDecl *Var) {
708  assert(Var->isStaticDataMember() && "Not a static data member");
709  llvm::DenseMap<const VarDecl *, MemberSpecializationInfo *>::iterator Pos
710    = InstantiatedFromStaticDataMember.find(Var);
711  if (Pos == InstantiatedFromStaticDataMember.end())
712    return 0;
713
714  return Pos->second;
715}
716
717void
718ASTContext::setInstantiatedFromStaticDataMember(VarDecl *Inst, VarDecl *Tmpl,
719                                                TemplateSpecializationKind TSK,
720                                          SourceLocation PointOfInstantiation) {
721  assert(Inst->isStaticDataMember() && "Not a static data member");
722  assert(Tmpl->isStaticDataMember() && "Not a static data member");
723  assert(!InstantiatedFromStaticDataMember[Inst] &&
724         "Already noted what static data member was instantiated from");
725  InstantiatedFromStaticDataMember[Inst]
726    = new (*this) MemberSpecializationInfo(Tmpl, TSK, PointOfInstantiation);
727}
728
729FunctionDecl *ASTContext::getClassScopeSpecializationPattern(
730                                                     const FunctionDecl *FD){
731  assert(FD && "Specialization is 0");
732  llvm::DenseMap<const FunctionDecl*, FunctionDecl *>::const_iterator Pos
733    = ClassScopeSpecializationPattern.find(FD);
734  if (Pos == ClassScopeSpecializationPattern.end())
735    return 0;
736
737  return Pos->second;
738}
739
740void ASTContext::setClassScopeSpecializationPattern(FunctionDecl *FD,
741                                        FunctionDecl *Pattern) {
742  assert(FD && "Specialization is 0");
743  assert(Pattern && "Class scope specialization pattern is 0");
744  ClassScopeSpecializationPattern[FD] = Pattern;
745}
746
747NamedDecl *
748ASTContext::getInstantiatedFromUsingDecl(UsingDecl *UUD) {
749  llvm::DenseMap<UsingDecl *, NamedDecl *>::const_iterator Pos
750    = InstantiatedFromUsingDecl.find(UUD);
751  if (Pos == InstantiatedFromUsingDecl.end())
752    return 0;
753
754  return Pos->second;
755}
756
757void
758ASTContext::setInstantiatedFromUsingDecl(UsingDecl *Inst, NamedDecl *Pattern) {
759  assert((isa<UsingDecl>(Pattern) ||
760          isa<UnresolvedUsingValueDecl>(Pattern) ||
761          isa<UnresolvedUsingTypenameDecl>(Pattern)) &&
762         "pattern decl is not a using decl");
763  assert(!InstantiatedFromUsingDecl[Inst] && "pattern already exists");
764  InstantiatedFromUsingDecl[Inst] = Pattern;
765}
766
767UsingShadowDecl *
768ASTContext::getInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst) {
769  llvm::DenseMap<UsingShadowDecl*, UsingShadowDecl*>::const_iterator Pos
770    = InstantiatedFromUsingShadowDecl.find(Inst);
771  if (Pos == InstantiatedFromUsingShadowDecl.end())
772    return 0;
773
774  return Pos->second;
775}
776
777void
778ASTContext::setInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst,
779                                               UsingShadowDecl *Pattern) {
780  assert(!InstantiatedFromUsingShadowDecl[Inst] && "pattern already exists");
781  InstantiatedFromUsingShadowDecl[Inst] = Pattern;
782}
783
784FieldDecl *ASTContext::getInstantiatedFromUnnamedFieldDecl(FieldDecl *Field) {
785  llvm::DenseMap<FieldDecl *, FieldDecl *>::iterator Pos
786    = InstantiatedFromUnnamedFieldDecl.find(Field);
787  if (Pos == InstantiatedFromUnnamedFieldDecl.end())
788    return 0;
789
790  return Pos->second;
791}
792
793void ASTContext::setInstantiatedFromUnnamedFieldDecl(FieldDecl *Inst,
794                                                     FieldDecl *Tmpl) {
795  assert(!Inst->getDeclName() && "Instantiated field decl is not unnamed");
796  assert(!Tmpl->getDeclName() && "Template field decl is not unnamed");
797  assert(!InstantiatedFromUnnamedFieldDecl[Inst] &&
798         "Already noted what unnamed field was instantiated from");
799
800  InstantiatedFromUnnamedFieldDecl[Inst] = Tmpl;
801}
802
803bool ASTContext::ZeroBitfieldFollowsNonBitfield(const FieldDecl *FD,
804                                    const FieldDecl *LastFD) const {
805  return (FD->isBitField() && LastFD && !LastFD->isBitField() &&
806          FD->getBitWidthValue(*this) == 0);
807}
808
809bool ASTContext::ZeroBitfieldFollowsBitfield(const FieldDecl *FD,
810                                             const FieldDecl *LastFD) const {
811  return (FD->isBitField() && LastFD && LastFD->isBitField() &&
812          FD->getBitWidthValue(*this) == 0 &&
813          LastFD->getBitWidthValue(*this) != 0);
814}
815
816bool ASTContext::BitfieldFollowsBitfield(const FieldDecl *FD,
817                                         const FieldDecl *LastFD) const {
818  return (FD->isBitField() && LastFD && LastFD->isBitField() &&
819          FD->getBitWidthValue(*this) &&
820          LastFD->getBitWidthValue(*this));
821}
822
823bool ASTContext::NonBitfieldFollowsBitfield(const FieldDecl *FD,
824                                         const FieldDecl *LastFD) const {
825  return (!FD->isBitField() && LastFD && LastFD->isBitField() &&
826          LastFD->getBitWidthValue(*this));
827}
828
829bool ASTContext::BitfieldFollowsNonBitfield(const FieldDecl *FD,
830                                             const FieldDecl *LastFD) const {
831  return (FD->isBitField() && LastFD && !LastFD->isBitField() &&
832          FD->getBitWidthValue(*this));
833}
834
835ASTContext::overridden_cxx_method_iterator
836ASTContext::overridden_methods_begin(const CXXMethodDecl *Method) const {
837  llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
838    = OverriddenMethods.find(Method);
839  if (Pos == OverriddenMethods.end())
840    return 0;
841
842  return Pos->second.begin();
843}
844
845ASTContext::overridden_cxx_method_iterator
846ASTContext::overridden_methods_end(const CXXMethodDecl *Method) const {
847  llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
848    = OverriddenMethods.find(Method);
849  if (Pos == OverriddenMethods.end())
850    return 0;
851
852  return Pos->second.end();
853}
854
855unsigned
856ASTContext::overridden_methods_size(const CXXMethodDecl *Method) const {
857  llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
858    = OverriddenMethods.find(Method);
859  if (Pos == OverriddenMethods.end())
860    return 0;
861
862  return Pos->second.size();
863}
864
865void ASTContext::addOverriddenMethod(const CXXMethodDecl *Method,
866                                     const CXXMethodDecl *Overridden) {
867  OverriddenMethods[Method].push_back(Overridden);
868}
869
870void ASTContext::addedLocalImportDecl(ImportDecl *Import) {
871  assert(!Import->NextLocalImport && "Import declaration already in the chain");
872  assert(!Import->isFromASTFile() && "Non-local import declaration");
873  if (!FirstLocalImport) {
874    FirstLocalImport = Import;
875    LastLocalImport = Import;
876    return;
877  }
878
879  LastLocalImport->NextLocalImport = Import;
880  LastLocalImport = Import;
881}
882
883//===----------------------------------------------------------------------===//
884//                         Type Sizing and Analysis
885//===----------------------------------------------------------------------===//
886
887/// getFloatTypeSemantics - Return the APFloat 'semantics' for the specified
888/// scalar floating point type.
889const llvm::fltSemantics &ASTContext::getFloatTypeSemantics(QualType T) const {
890  const BuiltinType *BT = T->getAs<BuiltinType>();
891  assert(BT && "Not a floating point type!");
892  switch (BT->getKind()) {
893  default: llvm_unreachable("Not a floating point type!");
894  case BuiltinType::Half:       return Target->getHalfFormat();
895  case BuiltinType::Float:      return Target->getFloatFormat();
896  case BuiltinType::Double:     return Target->getDoubleFormat();
897  case BuiltinType::LongDouble: return Target->getLongDoubleFormat();
898  }
899}
900
901/// getDeclAlign - Return a conservative estimate of the alignment of the
902/// specified decl.  Note that bitfields do not have a valid alignment, so
903/// this method will assert on them.
904/// If @p RefAsPointee, references are treated like their underlying type
905/// (for alignof), else they're treated like pointers (for CodeGen).
906CharUnits ASTContext::getDeclAlign(const Decl *D, bool RefAsPointee) const {
907  unsigned Align = Target->getCharWidth();
908
909  bool UseAlignAttrOnly = false;
910  if (unsigned AlignFromAttr = D->getMaxAlignment()) {
911    Align = AlignFromAttr;
912
913    // __attribute__((aligned)) can increase or decrease alignment
914    // *except* on a struct or struct member, where it only increases
915    // alignment unless 'packed' is also specified.
916    //
917    // It is an error for alignas to decrease alignment, so we can
918    // ignore that possibility;  Sema should diagnose it.
919    if (isa<FieldDecl>(D)) {
920      UseAlignAttrOnly = D->hasAttr<PackedAttr>() ||
921        cast<FieldDecl>(D)->getParent()->hasAttr<PackedAttr>();
922    } else {
923      UseAlignAttrOnly = true;
924    }
925  }
926  else if (isa<FieldDecl>(D))
927      UseAlignAttrOnly =
928        D->hasAttr<PackedAttr>() ||
929        cast<FieldDecl>(D)->getParent()->hasAttr<PackedAttr>();
930
931  // If we're using the align attribute only, just ignore everything
932  // else about the declaration and its type.
933  if (UseAlignAttrOnly) {
934    // do nothing
935
936  } else if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
937    QualType T = VD->getType();
938    if (const ReferenceType* RT = T->getAs<ReferenceType>()) {
939      if (RefAsPointee)
940        T = RT->getPointeeType();
941      else
942        T = getPointerType(RT->getPointeeType());
943    }
944    if (!T->isIncompleteType() && !T->isFunctionType()) {
945      // Adjust alignments of declarations with array type by the
946      // large-array alignment on the target.
947      unsigned MinWidth = Target->getLargeArrayMinWidth();
948      const ArrayType *arrayType;
949      if (MinWidth && (arrayType = getAsArrayType(T))) {
950        if (isa<VariableArrayType>(arrayType))
951          Align = std::max(Align, Target->getLargeArrayAlign());
952        else if (isa<ConstantArrayType>(arrayType) &&
953                 MinWidth <= getTypeSize(cast<ConstantArrayType>(arrayType)))
954          Align = std::max(Align, Target->getLargeArrayAlign());
955
956        // Walk through any array types while we're at it.
957        T = getBaseElementType(arrayType);
958      }
959      Align = std::max(Align, getPreferredTypeAlign(T.getTypePtr()));
960    }
961
962    // Fields can be subject to extra alignment constraints, like if
963    // the field is packed, the struct is packed, or the struct has a
964    // a max-field-alignment constraint (#pragma pack).  So calculate
965    // the actual alignment of the field within the struct, and then
966    // (as we're expected to) constrain that by the alignment of the type.
967    if (const FieldDecl *field = dyn_cast<FieldDecl>(VD)) {
968      // So calculate the alignment of the field.
969      const ASTRecordLayout &layout = getASTRecordLayout(field->getParent());
970
971      // Start with the record's overall alignment.
972      unsigned fieldAlign = toBits(layout.getAlignment());
973
974      // Use the GCD of that and the offset within the record.
975      uint64_t offset = layout.getFieldOffset(field->getFieldIndex());
976      if (offset > 0) {
977        // Alignment is always a power of 2, so the GCD will be a power of 2,
978        // which means we get to do this crazy thing instead of Euclid's.
979        uint64_t lowBitOfOffset = offset & (~offset + 1);
980        if (lowBitOfOffset < fieldAlign)
981          fieldAlign = static_cast<unsigned>(lowBitOfOffset);
982      }
983
984      Align = std::min(Align, fieldAlign);
985    }
986  }
987
988  return toCharUnitsFromBits(Align);
989}
990
991std::pair<CharUnits, CharUnits>
992ASTContext::getTypeInfoInChars(const Type *T) const {
993  std::pair<uint64_t, unsigned> Info = getTypeInfo(T);
994  return std::make_pair(toCharUnitsFromBits(Info.first),
995                        toCharUnitsFromBits(Info.second));
996}
997
998std::pair<CharUnits, CharUnits>
999ASTContext::getTypeInfoInChars(QualType T) const {
1000  return getTypeInfoInChars(T.getTypePtr());
1001}
1002
1003std::pair<uint64_t, unsigned> ASTContext::getTypeInfo(const Type *T) const {
1004  TypeInfoMap::iterator it = MemoizedTypeInfo.find(T);
1005  if (it != MemoizedTypeInfo.end())
1006    return it->second;
1007
1008  std::pair<uint64_t, unsigned> Info = getTypeInfoImpl(T);
1009  MemoizedTypeInfo.insert(std::make_pair(T, Info));
1010  return Info;
1011}
1012
1013/// getTypeInfoImpl - Return the size of the specified type, in bits.  This
1014/// method does not work on incomplete types.
1015///
1016/// FIXME: Pointers into different addr spaces could have different sizes and
1017/// alignment requirements: getPointerInfo should take an AddrSpace, this
1018/// should take a QualType, &c.
1019std::pair<uint64_t, unsigned>
1020ASTContext::getTypeInfoImpl(const Type *T) const {
1021  uint64_t Width=0;
1022  unsigned Align=8;
1023  switch (T->getTypeClass()) {
1024#define TYPE(Class, Base)
1025#define ABSTRACT_TYPE(Class, Base)
1026#define NON_CANONICAL_TYPE(Class, Base)
1027#define DEPENDENT_TYPE(Class, Base) case Type::Class:
1028#include "clang/AST/TypeNodes.def"
1029    llvm_unreachable("Should not see dependent types");
1030
1031  case Type::FunctionNoProto:
1032  case Type::FunctionProto:
1033    // GCC extension: alignof(function) = 32 bits
1034    Width = 0;
1035    Align = 32;
1036    break;
1037
1038  case Type::IncompleteArray:
1039  case Type::VariableArray:
1040    Width = 0;
1041    Align = getTypeAlign(cast<ArrayType>(T)->getElementType());
1042    break;
1043
1044  case Type::ConstantArray: {
1045    const ConstantArrayType *CAT = cast<ConstantArrayType>(T);
1046
1047    std::pair<uint64_t, unsigned> EltInfo = getTypeInfo(CAT->getElementType());
1048    uint64_t Size = CAT->getSize().getZExtValue();
1049    assert((Size == 0 || EltInfo.first <= (uint64_t)(-1)/Size) &&
1050           "Overflow in array type bit size evaluation");
1051    Width = EltInfo.first*Size;
1052    Align = EltInfo.second;
1053    Width = llvm::RoundUpToAlignment(Width, Align);
1054    break;
1055  }
1056  case Type::ExtVector:
1057  case Type::Vector: {
1058    const VectorType *VT = cast<VectorType>(T);
1059    std::pair<uint64_t, unsigned> EltInfo = getTypeInfo(VT->getElementType());
1060    Width = EltInfo.first*VT->getNumElements();
1061    Align = Width;
1062    // If the alignment is not a power of 2, round up to the next power of 2.
1063    // This happens for non-power-of-2 length vectors.
1064    if (Align & (Align-1)) {
1065      Align = llvm::NextPowerOf2(Align);
1066      Width = llvm::RoundUpToAlignment(Width, Align);
1067    }
1068    // Adjust the alignment based on the target max.
1069    uint64_t TargetVectorAlign = Target->getMaxVectorAlign();
1070    if (TargetVectorAlign && TargetVectorAlign < Align)
1071      Align = TargetVectorAlign;
1072    break;
1073  }
1074
1075  case Type::Builtin:
1076    switch (cast<BuiltinType>(T)->getKind()) {
1077    default: llvm_unreachable("Unknown builtin type!");
1078    case BuiltinType::Void:
1079      // GCC extension: alignof(void) = 8 bits.
1080      Width = 0;
1081      Align = 8;
1082      break;
1083
1084    case BuiltinType::Bool:
1085      Width = Target->getBoolWidth();
1086      Align = Target->getBoolAlign();
1087      break;
1088    case BuiltinType::Char_S:
1089    case BuiltinType::Char_U:
1090    case BuiltinType::UChar:
1091    case BuiltinType::SChar:
1092      Width = Target->getCharWidth();
1093      Align = Target->getCharAlign();
1094      break;
1095    case BuiltinType::WChar_S:
1096    case BuiltinType::WChar_U:
1097      Width = Target->getWCharWidth();
1098      Align = Target->getWCharAlign();
1099      break;
1100    case BuiltinType::Char16:
1101      Width = Target->getChar16Width();
1102      Align = Target->getChar16Align();
1103      break;
1104    case BuiltinType::Char32:
1105      Width = Target->getChar32Width();
1106      Align = Target->getChar32Align();
1107      break;
1108    case BuiltinType::UShort:
1109    case BuiltinType::Short:
1110      Width = Target->getShortWidth();
1111      Align = Target->getShortAlign();
1112      break;
1113    case BuiltinType::UInt:
1114    case BuiltinType::Int:
1115      Width = Target->getIntWidth();
1116      Align = Target->getIntAlign();
1117      break;
1118    case BuiltinType::ULong:
1119    case BuiltinType::Long:
1120      Width = Target->getLongWidth();
1121      Align = Target->getLongAlign();
1122      break;
1123    case BuiltinType::ULongLong:
1124    case BuiltinType::LongLong:
1125      Width = Target->getLongLongWidth();
1126      Align = Target->getLongLongAlign();
1127      break;
1128    case BuiltinType::Int128:
1129    case BuiltinType::UInt128:
1130      Width = 128;
1131      Align = 128; // int128_t is 128-bit aligned on all targets.
1132      break;
1133    case BuiltinType::Half:
1134      Width = Target->getHalfWidth();
1135      Align = Target->getHalfAlign();
1136      break;
1137    case BuiltinType::Float:
1138      Width = Target->getFloatWidth();
1139      Align = Target->getFloatAlign();
1140      break;
1141    case BuiltinType::Double:
1142      Width = Target->getDoubleWidth();
1143      Align = Target->getDoubleAlign();
1144      break;
1145    case BuiltinType::LongDouble:
1146      Width = Target->getLongDoubleWidth();
1147      Align = Target->getLongDoubleAlign();
1148      break;
1149    case BuiltinType::NullPtr:
1150      Width = Target->getPointerWidth(0); // C++ 3.9.1p11: sizeof(nullptr_t)
1151      Align = Target->getPointerAlign(0); //   == sizeof(void*)
1152      break;
1153    case BuiltinType::ObjCId:
1154    case BuiltinType::ObjCClass:
1155    case BuiltinType::ObjCSel:
1156      Width = Target->getPointerWidth(0);
1157      Align = Target->getPointerAlign(0);
1158      break;
1159    }
1160    break;
1161  case Type::ObjCObjectPointer:
1162    Width = Target->getPointerWidth(0);
1163    Align = Target->getPointerAlign(0);
1164    break;
1165  case Type::BlockPointer: {
1166    unsigned AS = getTargetAddressSpace(
1167        cast<BlockPointerType>(T)->getPointeeType());
1168    Width = Target->getPointerWidth(AS);
1169    Align = Target->getPointerAlign(AS);
1170    break;
1171  }
1172  case Type::LValueReference:
1173  case Type::RValueReference: {
1174    // alignof and sizeof should never enter this code path here, so we go
1175    // the pointer route.
1176    unsigned AS = getTargetAddressSpace(
1177        cast<ReferenceType>(T)->getPointeeType());
1178    Width = Target->getPointerWidth(AS);
1179    Align = Target->getPointerAlign(AS);
1180    break;
1181  }
1182  case Type::Pointer: {
1183    unsigned AS = getTargetAddressSpace(cast<PointerType>(T)->getPointeeType());
1184    Width = Target->getPointerWidth(AS);
1185    Align = Target->getPointerAlign(AS);
1186    break;
1187  }
1188  case Type::MemberPointer: {
1189    const MemberPointerType *MPT = cast<MemberPointerType>(T);
1190    std::pair<uint64_t, unsigned> PtrDiffInfo =
1191      getTypeInfo(getPointerDiffType());
1192    Width = PtrDiffInfo.first * ABI->getMemberPointerSize(MPT);
1193    Align = PtrDiffInfo.second;
1194    break;
1195  }
1196  case Type::Complex: {
1197    // Complex types have the same alignment as their elements, but twice the
1198    // size.
1199    std::pair<uint64_t, unsigned> EltInfo =
1200      getTypeInfo(cast<ComplexType>(T)->getElementType());
1201    Width = EltInfo.first*2;
1202    Align = EltInfo.second;
1203    break;
1204  }
1205  case Type::ObjCObject:
1206    return getTypeInfo(cast<ObjCObjectType>(T)->getBaseType().getTypePtr());
1207  case Type::ObjCInterface: {
1208    const ObjCInterfaceType *ObjCI = cast<ObjCInterfaceType>(T);
1209    const ASTRecordLayout &Layout = getASTObjCInterfaceLayout(ObjCI->getDecl());
1210    Width = toBits(Layout.getSize());
1211    Align = toBits(Layout.getAlignment());
1212    break;
1213  }
1214  case Type::Record:
1215  case Type::Enum: {
1216    const TagType *TT = cast<TagType>(T);
1217
1218    if (TT->getDecl()->isInvalidDecl()) {
1219      Width = 8;
1220      Align = 8;
1221      break;
1222    }
1223
1224    if (const EnumType *ET = dyn_cast<EnumType>(TT))
1225      return getTypeInfo(ET->getDecl()->getIntegerType());
1226
1227    const RecordType *RT = cast<RecordType>(TT);
1228    const ASTRecordLayout &Layout = getASTRecordLayout(RT->getDecl());
1229    Width = toBits(Layout.getSize());
1230    Align = toBits(Layout.getAlignment());
1231    break;
1232  }
1233
1234  case Type::SubstTemplateTypeParm:
1235    return getTypeInfo(cast<SubstTemplateTypeParmType>(T)->
1236                       getReplacementType().getTypePtr());
1237
1238  case Type::Auto: {
1239    const AutoType *A = cast<AutoType>(T);
1240    assert(A->isDeduced() && "Cannot request the size of a dependent type");
1241    return getTypeInfo(A->getDeducedType().getTypePtr());
1242  }
1243
1244  case Type::Paren:
1245    return getTypeInfo(cast<ParenType>(T)->getInnerType().getTypePtr());
1246
1247  case Type::Typedef: {
1248    const TypedefNameDecl *Typedef = cast<TypedefType>(T)->getDecl();
1249    std::pair<uint64_t, unsigned> Info
1250      = getTypeInfo(Typedef->getUnderlyingType().getTypePtr());
1251    // If the typedef has an aligned attribute on it, it overrides any computed
1252    // alignment we have.  This violates the GCC documentation (which says that
1253    // attribute(aligned) can only round up) but matches its implementation.
1254    if (unsigned AttrAlign = Typedef->getMaxAlignment())
1255      Align = AttrAlign;
1256    else
1257      Align = Info.second;
1258    Width = Info.first;
1259    break;
1260  }
1261
1262  case Type::TypeOfExpr:
1263    return getTypeInfo(cast<TypeOfExprType>(T)->getUnderlyingExpr()->getType()
1264                         .getTypePtr());
1265
1266  case Type::TypeOf:
1267    return getTypeInfo(cast<TypeOfType>(T)->getUnderlyingType().getTypePtr());
1268
1269  case Type::Decltype:
1270    return getTypeInfo(cast<DecltypeType>(T)->getUnderlyingExpr()->getType()
1271                        .getTypePtr());
1272
1273  case Type::UnaryTransform:
1274    return getTypeInfo(cast<UnaryTransformType>(T)->getUnderlyingType());
1275
1276  case Type::Elaborated:
1277    return getTypeInfo(cast<ElaboratedType>(T)->getNamedType().getTypePtr());
1278
1279  case Type::Attributed:
1280    return getTypeInfo(
1281                  cast<AttributedType>(T)->getEquivalentType().getTypePtr());
1282
1283  case Type::TemplateSpecialization: {
1284    assert(getCanonicalType(T) != T &&
1285           "Cannot request the size of a dependent type");
1286    const TemplateSpecializationType *TST = cast<TemplateSpecializationType>(T);
1287    // A type alias template specialization may refer to a typedef with the
1288    // aligned attribute on it.
1289    if (TST->isTypeAlias())
1290      return getTypeInfo(TST->getAliasedType().getTypePtr());
1291    else
1292      return getTypeInfo(getCanonicalType(T));
1293  }
1294
1295  case Type::Atomic: {
1296    std::pair<uint64_t, unsigned> Info
1297      = getTypeInfo(cast<AtomicType>(T)->getValueType());
1298    Width = Info.first;
1299    Align = Info.second;
1300    if (Width != 0 && Width <= Target->getMaxAtomicPromoteWidth() &&
1301        llvm::isPowerOf2_64(Width)) {
1302      // We can potentially perform lock-free atomic operations for this
1303      // type; promote the alignment appropriately.
1304      // FIXME: We could potentially promote the width here as well...
1305      // is that worthwhile?  (Non-struct atomic types generally have
1306      // power-of-two size anyway, but structs might not.  Requires a bit
1307      // of implementation work to make sure we zero out the extra bits.)
1308      Align = static_cast<unsigned>(Width);
1309    }
1310  }
1311
1312  }
1313
1314  assert(llvm::isPowerOf2_32(Align) && "Alignment must be power of 2");
1315  return std::make_pair(Width, Align);
1316}
1317
1318/// toCharUnitsFromBits - Convert a size in bits to a size in characters.
1319CharUnits ASTContext::toCharUnitsFromBits(int64_t BitSize) const {
1320  return CharUnits::fromQuantity(BitSize / getCharWidth());
1321}
1322
1323/// toBits - Convert a size in characters to a size in characters.
1324int64_t ASTContext::toBits(CharUnits CharSize) const {
1325  return CharSize.getQuantity() * getCharWidth();
1326}
1327
1328/// getTypeSizeInChars - Return the size of the specified type, in characters.
1329/// This method does not work on incomplete types.
1330CharUnits ASTContext::getTypeSizeInChars(QualType T) const {
1331  return toCharUnitsFromBits(getTypeSize(T));
1332}
1333CharUnits ASTContext::getTypeSizeInChars(const Type *T) const {
1334  return toCharUnitsFromBits(getTypeSize(T));
1335}
1336
1337/// getTypeAlignInChars - Return the ABI-specified alignment of a type, in
1338/// characters. This method does not work on incomplete types.
1339CharUnits ASTContext::getTypeAlignInChars(QualType T) const {
1340  return toCharUnitsFromBits(getTypeAlign(T));
1341}
1342CharUnits ASTContext::getTypeAlignInChars(const Type *T) const {
1343  return toCharUnitsFromBits(getTypeAlign(T));
1344}
1345
1346/// getPreferredTypeAlign - Return the "preferred" alignment of the specified
1347/// type for the current target in bits.  This can be different than the ABI
1348/// alignment in cases where it is beneficial for performance to overalign
1349/// a data type.
1350unsigned ASTContext::getPreferredTypeAlign(const Type *T) const {
1351  unsigned ABIAlign = getTypeAlign(T);
1352
1353  // Double and long long should be naturally aligned if possible.
1354  if (const ComplexType* CT = T->getAs<ComplexType>())
1355    T = CT->getElementType().getTypePtr();
1356  if (T->isSpecificBuiltinType(BuiltinType::Double) ||
1357      T->isSpecificBuiltinType(BuiltinType::LongLong) ||
1358      T->isSpecificBuiltinType(BuiltinType::ULongLong))
1359    return std::max(ABIAlign, (unsigned)getTypeSize(T));
1360
1361  return ABIAlign;
1362}
1363
1364/// DeepCollectObjCIvars -
1365/// This routine first collects all declared, but not synthesized, ivars in
1366/// super class and then collects all ivars, including those synthesized for
1367/// current class. This routine is used for implementation of current class
1368/// when all ivars, declared and synthesized are known.
1369///
1370void ASTContext::DeepCollectObjCIvars(const ObjCInterfaceDecl *OI,
1371                                      bool leafClass,
1372                            SmallVectorImpl<const ObjCIvarDecl*> &Ivars) const {
1373  if (const ObjCInterfaceDecl *SuperClass = OI->getSuperClass())
1374    DeepCollectObjCIvars(SuperClass, false, Ivars);
1375  if (!leafClass) {
1376    for (ObjCInterfaceDecl::ivar_iterator I = OI->ivar_begin(),
1377         E = OI->ivar_end(); I != E; ++I)
1378      Ivars.push_back(*I);
1379  } else {
1380    ObjCInterfaceDecl *IDecl = const_cast<ObjCInterfaceDecl *>(OI);
1381    for (const ObjCIvarDecl *Iv = IDecl->all_declared_ivar_begin(); Iv;
1382         Iv= Iv->getNextIvar())
1383      Ivars.push_back(Iv);
1384  }
1385}
1386
1387/// CollectInheritedProtocols - Collect all protocols in current class and
1388/// those inherited by it.
1389void ASTContext::CollectInheritedProtocols(const Decl *CDecl,
1390                          llvm::SmallPtrSet<ObjCProtocolDecl*, 8> &Protocols) {
1391  if (const ObjCInterfaceDecl *OI = dyn_cast<ObjCInterfaceDecl>(CDecl)) {
1392    // We can use protocol_iterator here instead of
1393    // all_referenced_protocol_iterator since we are walking all categories.
1394    for (ObjCInterfaceDecl::all_protocol_iterator P = OI->all_referenced_protocol_begin(),
1395         PE = OI->all_referenced_protocol_end(); P != PE; ++P) {
1396      ObjCProtocolDecl *Proto = (*P);
1397      Protocols.insert(Proto->getCanonicalDecl());
1398      for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
1399           PE = Proto->protocol_end(); P != PE; ++P) {
1400        Protocols.insert((*P)->getCanonicalDecl());
1401        CollectInheritedProtocols(*P, Protocols);
1402      }
1403    }
1404
1405    // Categories of this Interface.
1406    for (const ObjCCategoryDecl *CDeclChain = OI->getCategoryList();
1407         CDeclChain; CDeclChain = CDeclChain->getNextClassCategory())
1408      CollectInheritedProtocols(CDeclChain, Protocols);
1409    if (ObjCInterfaceDecl *SD = OI->getSuperClass())
1410      while (SD) {
1411        CollectInheritedProtocols(SD, Protocols);
1412        SD = SD->getSuperClass();
1413      }
1414  } else if (const ObjCCategoryDecl *OC = dyn_cast<ObjCCategoryDecl>(CDecl)) {
1415    for (ObjCCategoryDecl::protocol_iterator P = OC->protocol_begin(),
1416         PE = OC->protocol_end(); P != PE; ++P) {
1417      ObjCProtocolDecl *Proto = (*P);
1418      Protocols.insert(Proto->getCanonicalDecl());
1419      for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
1420           PE = Proto->protocol_end(); P != PE; ++P)
1421        CollectInheritedProtocols(*P, Protocols);
1422    }
1423  } else if (const ObjCProtocolDecl *OP = dyn_cast<ObjCProtocolDecl>(CDecl)) {
1424    for (ObjCProtocolDecl::protocol_iterator P = OP->protocol_begin(),
1425         PE = OP->protocol_end(); P != PE; ++P) {
1426      ObjCProtocolDecl *Proto = (*P);
1427      Protocols.insert(Proto->getCanonicalDecl());
1428      for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
1429           PE = Proto->protocol_end(); P != PE; ++P)
1430        CollectInheritedProtocols(*P, Protocols);
1431    }
1432  }
1433}
1434
1435unsigned ASTContext::CountNonClassIvars(const ObjCInterfaceDecl *OI) const {
1436  unsigned count = 0;
1437  // Count ivars declared in class extension.
1438  for (const ObjCCategoryDecl *CDecl = OI->getFirstClassExtension(); CDecl;
1439       CDecl = CDecl->getNextClassExtension())
1440    count += CDecl->ivar_size();
1441
1442  // Count ivar defined in this class's implementation.  This
1443  // includes synthesized ivars.
1444  if (ObjCImplementationDecl *ImplDecl = OI->getImplementation())
1445    count += ImplDecl->ivar_size();
1446
1447  return count;
1448}
1449
1450bool ASTContext::isSentinelNullExpr(const Expr *E) {
1451  if (!E)
1452    return false;
1453
1454  // nullptr_t is always treated as null.
1455  if (E->getType()->isNullPtrType()) return true;
1456
1457  if (E->getType()->isAnyPointerType() &&
1458      E->IgnoreParenCasts()->isNullPointerConstant(*this,
1459                                                Expr::NPC_ValueDependentIsNull))
1460    return true;
1461
1462  // Unfortunately, __null has type 'int'.
1463  if (isa<GNUNullExpr>(E)) return true;
1464
1465  return false;
1466}
1467
1468/// \brief Get the implementation of ObjCInterfaceDecl,or NULL if none exists.
1469ObjCImplementationDecl *ASTContext::getObjCImplementation(ObjCInterfaceDecl *D) {
1470  llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
1471    I = ObjCImpls.find(D);
1472  if (I != ObjCImpls.end())
1473    return cast<ObjCImplementationDecl>(I->second);
1474  return 0;
1475}
1476/// \brief Get the implementation of ObjCCategoryDecl, or NULL if none exists.
1477ObjCCategoryImplDecl *ASTContext::getObjCImplementation(ObjCCategoryDecl *D) {
1478  llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
1479    I = ObjCImpls.find(D);
1480  if (I != ObjCImpls.end())
1481    return cast<ObjCCategoryImplDecl>(I->second);
1482  return 0;
1483}
1484
1485/// \brief Set the implementation of ObjCInterfaceDecl.
1486void ASTContext::setObjCImplementation(ObjCInterfaceDecl *IFaceD,
1487                           ObjCImplementationDecl *ImplD) {
1488  assert(IFaceD && ImplD && "Passed null params");
1489  ObjCImpls[IFaceD] = ImplD;
1490}
1491/// \brief Set the implementation of ObjCCategoryDecl.
1492void ASTContext::setObjCImplementation(ObjCCategoryDecl *CatD,
1493                           ObjCCategoryImplDecl *ImplD) {
1494  assert(CatD && ImplD && "Passed null params");
1495  ObjCImpls[CatD] = ImplD;
1496}
1497
1498ObjCInterfaceDecl *ASTContext::getObjContainingInterface(NamedDecl *ND) const {
1499  if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(ND->getDeclContext()))
1500    return ID;
1501  if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(ND->getDeclContext()))
1502    return CD->getClassInterface();
1503  if (ObjCImplDecl *IMD = dyn_cast<ObjCImplDecl>(ND->getDeclContext()))
1504    return IMD->getClassInterface();
1505
1506  return 0;
1507}
1508
1509/// \brief Get the copy initialization expression of VarDecl,or NULL if
1510/// none exists.
1511Expr *ASTContext::getBlockVarCopyInits(const VarDecl*VD) {
1512  assert(VD && "Passed null params");
1513  assert(VD->hasAttr<BlocksAttr>() &&
1514         "getBlockVarCopyInits - not __block var");
1515  llvm::DenseMap<const VarDecl*, Expr*>::iterator
1516    I = BlockVarCopyInits.find(VD);
1517  return (I != BlockVarCopyInits.end()) ? cast<Expr>(I->second) : 0;
1518}
1519
1520/// \brief Set the copy inialization expression of a block var decl.
1521void ASTContext::setBlockVarCopyInits(VarDecl*VD, Expr* Init) {
1522  assert(VD && Init && "Passed null params");
1523  assert(VD->hasAttr<BlocksAttr>() &&
1524         "setBlockVarCopyInits - not __block var");
1525  BlockVarCopyInits[VD] = Init;
1526}
1527
1528TypeSourceInfo *ASTContext::CreateTypeSourceInfo(QualType T,
1529                                                 unsigned DataSize) const {
1530  if (!DataSize)
1531    DataSize = TypeLoc::getFullDataSizeForType(T);
1532  else
1533    assert(DataSize == TypeLoc::getFullDataSizeForType(T) &&
1534           "incorrect data size provided to CreateTypeSourceInfo!");
1535
1536  TypeSourceInfo *TInfo =
1537    (TypeSourceInfo*)BumpAlloc.Allocate(sizeof(TypeSourceInfo) + DataSize, 8);
1538  new (TInfo) TypeSourceInfo(T);
1539  return TInfo;
1540}
1541
1542TypeSourceInfo *ASTContext::getTrivialTypeSourceInfo(QualType T,
1543                                                     SourceLocation L) const {
1544  TypeSourceInfo *DI = CreateTypeSourceInfo(T);
1545  DI->getTypeLoc().initialize(const_cast<ASTContext &>(*this), L);
1546  return DI;
1547}
1548
1549const ASTRecordLayout &
1550ASTContext::getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D) const {
1551  return getObjCLayout(D, 0);
1552}
1553
1554const ASTRecordLayout &
1555ASTContext::getASTObjCImplementationLayout(
1556                                        const ObjCImplementationDecl *D) const {
1557  return getObjCLayout(D->getClassInterface(), D);
1558}
1559
1560//===----------------------------------------------------------------------===//
1561//                   Type creation/memoization methods
1562//===----------------------------------------------------------------------===//
1563
1564QualType
1565ASTContext::getExtQualType(const Type *baseType, Qualifiers quals) const {
1566  unsigned fastQuals = quals.getFastQualifiers();
1567  quals.removeFastQualifiers();
1568
1569  // Check if we've already instantiated this type.
1570  llvm::FoldingSetNodeID ID;
1571  ExtQuals::Profile(ID, baseType, quals);
1572  void *insertPos = 0;
1573  if (ExtQuals *eq = ExtQualNodes.FindNodeOrInsertPos(ID, insertPos)) {
1574    assert(eq->getQualifiers() == quals);
1575    return QualType(eq, fastQuals);
1576  }
1577
1578  // If the base type is not canonical, make the appropriate canonical type.
1579  QualType canon;
1580  if (!baseType->isCanonicalUnqualified()) {
1581    SplitQualType canonSplit = baseType->getCanonicalTypeInternal().split();
1582    canonSplit.Quals.addConsistentQualifiers(quals);
1583    canon = getExtQualType(canonSplit.Ty, canonSplit.Quals);
1584
1585    // Re-find the insert position.
1586    (void) ExtQualNodes.FindNodeOrInsertPos(ID, insertPos);
1587  }
1588
1589  ExtQuals *eq = new (*this, TypeAlignment) ExtQuals(baseType, canon, quals);
1590  ExtQualNodes.InsertNode(eq, insertPos);
1591  return QualType(eq, fastQuals);
1592}
1593
1594QualType
1595ASTContext::getAddrSpaceQualType(QualType T, unsigned AddressSpace) const {
1596  QualType CanT = getCanonicalType(T);
1597  if (CanT.getAddressSpace() == AddressSpace)
1598    return T;
1599
1600  // If we are composing extended qualifiers together, merge together
1601  // into one ExtQuals node.
1602  QualifierCollector Quals;
1603  const Type *TypeNode = Quals.strip(T);
1604
1605  // If this type already has an address space specified, it cannot get
1606  // another one.
1607  assert(!Quals.hasAddressSpace() &&
1608         "Type cannot be in multiple addr spaces!");
1609  Quals.addAddressSpace(AddressSpace);
1610
1611  return getExtQualType(TypeNode, Quals);
1612}
1613
1614QualType ASTContext::getObjCGCQualType(QualType T,
1615                                       Qualifiers::GC GCAttr) const {
1616  QualType CanT = getCanonicalType(T);
1617  if (CanT.getObjCGCAttr() == GCAttr)
1618    return T;
1619
1620  if (const PointerType *ptr = T->getAs<PointerType>()) {
1621    QualType Pointee = ptr->getPointeeType();
1622    if (Pointee->isAnyPointerType()) {
1623      QualType ResultType = getObjCGCQualType(Pointee, GCAttr);
1624      return getPointerType(ResultType);
1625    }
1626  }
1627
1628  // If we are composing extended qualifiers together, merge together
1629  // into one ExtQuals node.
1630  QualifierCollector Quals;
1631  const Type *TypeNode = Quals.strip(T);
1632
1633  // If this type already has an ObjCGC specified, it cannot get
1634  // another one.
1635  assert(!Quals.hasObjCGCAttr() &&
1636         "Type cannot have multiple ObjCGCs!");
1637  Quals.addObjCGCAttr(GCAttr);
1638
1639  return getExtQualType(TypeNode, Quals);
1640}
1641
1642const FunctionType *ASTContext::adjustFunctionType(const FunctionType *T,
1643                                                   FunctionType::ExtInfo Info) {
1644  if (T->getExtInfo() == Info)
1645    return T;
1646
1647  QualType Result;
1648  if (const FunctionNoProtoType *FNPT = dyn_cast<FunctionNoProtoType>(T)) {
1649    Result = getFunctionNoProtoType(FNPT->getResultType(), Info);
1650  } else {
1651    const FunctionProtoType *FPT = cast<FunctionProtoType>(T);
1652    FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
1653    EPI.ExtInfo = Info;
1654    Result = getFunctionType(FPT->getResultType(), FPT->arg_type_begin(),
1655                             FPT->getNumArgs(), EPI);
1656  }
1657
1658  return cast<FunctionType>(Result.getTypePtr());
1659}
1660
1661/// getComplexType - Return the uniqued reference to the type for a complex
1662/// number with the specified element type.
1663QualType ASTContext::getComplexType(QualType T) const {
1664  // Unique pointers, to guarantee there is only one pointer of a particular
1665  // structure.
1666  llvm::FoldingSetNodeID ID;
1667  ComplexType::Profile(ID, T);
1668
1669  void *InsertPos = 0;
1670  if (ComplexType *CT = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos))
1671    return QualType(CT, 0);
1672
1673  // If the pointee type isn't canonical, this won't be a canonical type either,
1674  // so fill in the canonical type field.
1675  QualType Canonical;
1676  if (!T.isCanonical()) {
1677    Canonical = getComplexType(getCanonicalType(T));
1678
1679    // Get the new insert position for the node we care about.
1680    ComplexType *NewIP = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos);
1681    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1682  }
1683  ComplexType *New = new (*this, TypeAlignment) ComplexType(T, Canonical);
1684  Types.push_back(New);
1685  ComplexTypes.InsertNode(New, InsertPos);
1686  return QualType(New, 0);
1687}
1688
1689/// getPointerType - Return the uniqued reference to the type for a pointer to
1690/// the specified type.
1691QualType ASTContext::getPointerType(QualType T) const {
1692  // Unique pointers, to guarantee there is only one pointer of a particular
1693  // structure.
1694  llvm::FoldingSetNodeID ID;
1695  PointerType::Profile(ID, T);
1696
1697  void *InsertPos = 0;
1698  if (PointerType *PT = PointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1699    return QualType(PT, 0);
1700
1701  // If the pointee type isn't canonical, this won't be a canonical type either,
1702  // so fill in the canonical type field.
1703  QualType Canonical;
1704  if (!T.isCanonical()) {
1705    Canonical = getPointerType(getCanonicalType(T));
1706
1707    // Get the new insert position for the node we care about.
1708    PointerType *NewIP = PointerTypes.FindNodeOrInsertPos(ID, InsertPos);
1709    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1710  }
1711  PointerType *New = new (*this, TypeAlignment) PointerType(T, Canonical);
1712  Types.push_back(New);
1713  PointerTypes.InsertNode(New, InsertPos);
1714  return QualType(New, 0);
1715}
1716
1717/// getBlockPointerType - Return the uniqued reference to the type for
1718/// a pointer to the specified block.
1719QualType ASTContext::getBlockPointerType(QualType T) const {
1720  assert(T->isFunctionType() && "block of function types only");
1721  // Unique pointers, to guarantee there is only one block of a particular
1722  // structure.
1723  llvm::FoldingSetNodeID ID;
1724  BlockPointerType::Profile(ID, T);
1725
1726  void *InsertPos = 0;
1727  if (BlockPointerType *PT =
1728        BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1729    return QualType(PT, 0);
1730
1731  // If the block pointee type isn't canonical, this won't be a canonical
1732  // type either so fill in the canonical type field.
1733  QualType Canonical;
1734  if (!T.isCanonical()) {
1735    Canonical = getBlockPointerType(getCanonicalType(T));
1736
1737    // Get the new insert position for the node we care about.
1738    BlockPointerType *NewIP =
1739      BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
1740    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1741  }
1742  BlockPointerType *New
1743    = new (*this, TypeAlignment) BlockPointerType(T, Canonical);
1744  Types.push_back(New);
1745  BlockPointerTypes.InsertNode(New, InsertPos);
1746  return QualType(New, 0);
1747}
1748
1749/// getLValueReferenceType - Return the uniqued reference to the type for an
1750/// lvalue reference to the specified type.
1751QualType
1752ASTContext::getLValueReferenceType(QualType T, bool SpelledAsLValue) const {
1753  assert(getCanonicalType(T) != OverloadTy &&
1754         "Unresolved overloaded function type");
1755
1756  // Unique pointers, to guarantee there is only one pointer of a particular
1757  // structure.
1758  llvm::FoldingSetNodeID ID;
1759  ReferenceType::Profile(ID, T, SpelledAsLValue);
1760
1761  void *InsertPos = 0;
1762  if (LValueReferenceType *RT =
1763        LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
1764    return QualType(RT, 0);
1765
1766  const ReferenceType *InnerRef = T->getAs<ReferenceType>();
1767
1768  // If the referencee type isn't canonical, this won't be a canonical type
1769  // either, so fill in the canonical type field.
1770  QualType Canonical;
1771  if (!SpelledAsLValue || InnerRef || !T.isCanonical()) {
1772    QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
1773    Canonical = getLValueReferenceType(getCanonicalType(PointeeType));
1774
1775    // Get the new insert position for the node we care about.
1776    LValueReferenceType *NewIP =
1777      LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
1778    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1779  }
1780
1781  LValueReferenceType *New
1782    = new (*this, TypeAlignment) LValueReferenceType(T, Canonical,
1783                                                     SpelledAsLValue);
1784  Types.push_back(New);
1785  LValueReferenceTypes.InsertNode(New, InsertPos);
1786
1787  return QualType(New, 0);
1788}
1789
1790/// getRValueReferenceType - Return the uniqued reference to the type for an
1791/// rvalue reference to the specified type.
1792QualType ASTContext::getRValueReferenceType(QualType T) const {
1793  // Unique pointers, to guarantee there is only one pointer of a particular
1794  // structure.
1795  llvm::FoldingSetNodeID ID;
1796  ReferenceType::Profile(ID, T, false);
1797
1798  void *InsertPos = 0;
1799  if (RValueReferenceType *RT =
1800        RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
1801    return QualType(RT, 0);
1802
1803  const ReferenceType *InnerRef = T->getAs<ReferenceType>();
1804
1805  // If the referencee type isn't canonical, this won't be a canonical type
1806  // either, so fill in the canonical type field.
1807  QualType Canonical;
1808  if (InnerRef || !T.isCanonical()) {
1809    QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
1810    Canonical = getRValueReferenceType(getCanonicalType(PointeeType));
1811
1812    // Get the new insert position for the node we care about.
1813    RValueReferenceType *NewIP =
1814      RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
1815    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1816  }
1817
1818  RValueReferenceType *New
1819    = new (*this, TypeAlignment) RValueReferenceType(T, Canonical);
1820  Types.push_back(New);
1821  RValueReferenceTypes.InsertNode(New, InsertPos);
1822  return QualType(New, 0);
1823}
1824
1825/// getMemberPointerType - Return the uniqued reference to the type for a
1826/// member pointer to the specified type, in the specified class.
1827QualType ASTContext::getMemberPointerType(QualType T, const Type *Cls) const {
1828  // Unique pointers, to guarantee there is only one pointer of a particular
1829  // structure.
1830  llvm::FoldingSetNodeID ID;
1831  MemberPointerType::Profile(ID, T, Cls);
1832
1833  void *InsertPos = 0;
1834  if (MemberPointerType *PT =
1835      MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1836    return QualType(PT, 0);
1837
1838  // If the pointee or class type isn't canonical, this won't be a canonical
1839  // type either, so fill in the canonical type field.
1840  QualType Canonical;
1841  if (!T.isCanonical() || !Cls->isCanonicalUnqualified()) {
1842    Canonical = getMemberPointerType(getCanonicalType(T),getCanonicalType(Cls));
1843
1844    // Get the new insert position for the node we care about.
1845    MemberPointerType *NewIP =
1846      MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
1847    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1848  }
1849  MemberPointerType *New
1850    = new (*this, TypeAlignment) MemberPointerType(T, Cls, Canonical);
1851  Types.push_back(New);
1852  MemberPointerTypes.InsertNode(New, InsertPos);
1853  return QualType(New, 0);
1854}
1855
1856/// getConstantArrayType - Return the unique reference to the type for an
1857/// array of the specified element type.
1858QualType ASTContext::getConstantArrayType(QualType EltTy,
1859                                          const llvm::APInt &ArySizeIn,
1860                                          ArrayType::ArraySizeModifier ASM,
1861                                          unsigned IndexTypeQuals) const {
1862  assert((EltTy->isDependentType() ||
1863          EltTy->isIncompleteType() || EltTy->isConstantSizeType()) &&
1864         "Constant array of VLAs is illegal!");
1865
1866  // Convert the array size into a canonical width matching the pointer size for
1867  // the target.
1868  llvm::APInt ArySize(ArySizeIn);
1869  ArySize =
1870    ArySize.zextOrTrunc(Target->getPointerWidth(getTargetAddressSpace(EltTy)));
1871
1872  llvm::FoldingSetNodeID ID;
1873  ConstantArrayType::Profile(ID, EltTy, ArySize, ASM, IndexTypeQuals);
1874
1875  void *InsertPos = 0;
1876  if (ConstantArrayType *ATP =
1877      ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
1878    return QualType(ATP, 0);
1879
1880  // If the element type isn't canonical or has qualifiers, this won't
1881  // be a canonical type either, so fill in the canonical type field.
1882  QualType Canon;
1883  if (!EltTy.isCanonical() || EltTy.hasLocalQualifiers()) {
1884    SplitQualType canonSplit = getCanonicalType(EltTy).split();
1885    Canon = getConstantArrayType(QualType(canonSplit.Ty, 0), ArySize,
1886                                 ASM, IndexTypeQuals);
1887    Canon = getQualifiedType(Canon, canonSplit.Quals);
1888
1889    // Get the new insert position for the node we care about.
1890    ConstantArrayType *NewIP =
1891      ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
1892    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1893  }
1894
1895  ConstantArrayType *New = new(*this,TypeAlignment)
1896    ConstantArrayType(EltTy, Canon, ArySize, ASM, IndexTypeQuals);
1897  ConstantArrayTypes.InsertNode(New, InsertPos);
1898  Types.push_back(New);
1899  return QualType(New, 0);
1900}
1901
1902/// getVariableArrayDecayedType - Turns the given type, which may be
1903/// variably-modified, into the corresponding type with all the known
1904/// sizes replaced with [*].
1905QualType ASTContext::getVariableArrayDecayedType(QualType type) const {
1906  // Vastly most common case.
1907  if (!type->isVariablyModifiedType()) return type;
1908
1909  QualType result;
1910
1911  SplitQualType split = type.getSplitDesugaredType();
1912  const Type *ty = split.Ty;
1913  switch (ty->getTypeClass()) {
1914#define TYPE(Class, Base)
1915#define ABSTRACT_TYPE(Class, Base)
1916#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
1917#include "clang/AST/TypeNodes.def"
1918    llvm_unreachable("didn't desugar past all non-canonical types?");
1919
1920  // These types should never be variably-modified.
1921  case Type::Builtin:
1922  case Type::Complex:
1923  case Type::Vector:
1924  case Type::ExtVector:
1925  case Type::DependentSizedExtVector:
1926  case Type::ObjCObject:
1927  case Type::ObjCInterface:
1928  case Type::ObjCObjectPointer:
1929  case Type::Record:
1930  case Type::Enum:
1931  case Type::UnresolvedUsing:
1932  case Type::TypeOfExpr:
1933  case Type::TypeOf:
1934  case Type::Decltype:
1935  case Type::UnaryTransform:
1936  case Type::DependentName:
1937  case Type::InjectedClassName:
1938  case Type::TemplateSpecialization:
1939  case Type::DependentTemplateSpecialization:
1940  case Type::TemplateTypeParm:
1941  case Type::SubstTemplateTypeParmPack:
1942  case Type::Auto:
1943  case Type::PackExpansion:
1944    llvm_unreachable("type should never be variably-modified");
1945
1946  // These types can be variably-modified but should never need to
1947  // further decay.
1948  case Type::FunctionNoProto:
1949  case Type::FunctionProto:
1950  case Type::BlockPointer:
1951  case Type::MemberPointer:
1952    return type;
1953
1954  // These types can be variably-modified.  All these modifications
1955  // preserve structure except as noted by comments.
1956  // TODO: if we ever care about optimizing VLAs, there are no-op
1957  // optimizations available here.
1958  case Type::Pointer:
1959    result = getPointerType(getVariableArrayDecayedType(
1960                              cast<PointerType>(ty)->getPointeeType()));
1961    break;
1962
1963  case Type::LValueReference: {
1964    const LValueReferenceType *lv = cast<LValueReferenceType>(ty);
1965    result = getLValueReferenceType(
1966                 getVariableArrayDecayedType(lv->getPointeeType()),
1967                                    lv->isSpelledAsLValue());
1968    break;
1969  }
1970
1971  case Type::RValueReference: {
1972    const RValueReferenceType *lv = cast<RValueReferenceType>(ty);
1973    result = getRValueReferenceType(
1974                 getVariableArrayDecayedType(lv->getPointeeType()));
1975    break;
1976  }
1977
1978  case Type::Atomic: {
1979    const AtomicType *at = cast<AtomicType>(ty);
1980    result = getAtomicType(getVariableArrayDecayedType(at->getValueType()));
1981    break;
1982  }
1983
1984  case Type::ConstantArray: {
1985    const ConstantArrayType *cat = cast<ConstantArrayType>(ty);
1986    result = getConstantArrayType(
1987                 getVariableArrayDecayedType(cat->getElementType()),
1988                                  cat->getSize(),
1989                                  cat->getSizeModifier(),
1990                                  cat->getIndexTypeCVRQualifiers());
1991    break;
1992  }
1993
1994  case Type::DependentSizedArray: {
1995    const DependentSizedArrayType *dat = cast<DependentSizedArrayType>(ty);
1996    result = getDependentSizedArrayType(
1997                 getVariableArrayDecayedType(dat->getElementType()),
1998                                        dat->getSizeExpr(),
1999                                        dat->getSizeModifier(),
2000                                        dat->getIndexTypeCVRQualifiers(),
2001                                        dat->getBracketsRange());
2002    break;
2003  }
2004
2005  // Turn incomplete types into [*] types.
2006  case Type::IncompleteArray: {
2007    const IncompleteArrayType *iat = cast<IncompleteArrayType>(ty);
2008    result = getVariableArrayType(
2009                 getVariableArrayDecayedType(iat->getElementType()),
2010                                  /*size*/ 0,
2011                                  ArrayType::Normal,
2012                                  iat->getIndexTypeCVRQualifiers(),
2013                                  SourceRange());
2014    break;
2015  }
2016
2017  // Turn VLA types into [*] types.
2018  case Type::VariableArray: {
2019    const VariableArrayType *vat = cast<VariableArrayType>(ty);
2020    result = getVariableArrayType(
2021                 getVariableArrayDecayedType(vat->getElementType()),
2022                                  /*size*/ 0,
2023                                  ArrayType::Star,
2024                                  vat->getIndexTypeCVRQualifiers(),
2025                                  vat->getBracketsRange());
2026    break;
2027  }
2028  }
2029
2030  // Apply the top-level qualifiers from the original.
2031  return getQualifiedType(result, split.Quals);
2032}
2033
2034/// getVariableArrayType - Returns a non-unique reference to the type for a
2035/// variable array of the specified element type.
2036QualType ASTContext::getVariableArrayType(QualType EltTy,
2037                                          Expr *NumElts,
2038                                          ArrayType::ArraySizeModifier ASM,
2039                                          unsigned IndexTypeQuals,
2040                                          SourceRange Brackets) const {
2041  // Since we don't unique expressions, it isn't possible to unique VLA's
2042  // that have an expression provided for their size.
2043  QualType Canon;
2044
2045  // Be sure to pull qualifiers off the element type.
2046  if (!EltTy.isCanonical() || EltTy.hasLocalQualifiers()) {
2047    SplitQualType canonSplit = getCanonicalType(EltTy).split();
2048    Canon = getVariableArrayType(QualType(canonSplit.Ty, 0), NumElts, ASM,
2049                                 IndexTypeQuals, Brackets);
2050    Canon = getQualifiedType(Canon, canonSplit.Quals);
2051  }
2052
2053  VariableArrayType *New = new(*this, TypeAlignment)
2054    VariableArrayType(EltTy, Canon, NumElts, ASM, IndexTypeQuals, Brackets);
2055
2056  VariableArrayTypes.push_back(New);
2057  Types.push_back(New);
2058  return QualType(New, 0);
2059}
2060
2061/// getDependentSizedArrayType - Returns a non-unique reference to
2062/// the type for a dependently-sized array of the specified element
2063/// type.
2064QualType ASTContext::getDependentSizedArrayType(QualType elementType,
2065                                                Expr *numElements,
2066                                                ArrayType::ArraySizeModifier ASM,
2067                                                unsigned elementTypeQuals,
2068                                                SourceRange brackets) const {
2069  assert((!numElements || numElements->isTypeDependent() ||
2070          numElements->isValueDependent()) &&
2071         "Size must be type- or value-dependent!");
2072
2073  // Dependently-sized array types that do not have a specified number
2074  // of elements will have their sizes deduced from a dependent
2075  // initializer.  We do no canonicalization here at all, which is okay
2076  // because they can't be used in most locations.
2077  if (!numElements) {
2078    DependentSizedArrayType *newType
2079      = new (*this, TypeAlignment)
2080          DependentSizedArrayType(*this, elementType, QualType(),
2081                                  numElements, ASM, elementTypeQuals,
2082                                  brackets);
2083    Types.push_back(newType);
2084    return QualType(newType, 0);
2085  }
2086
2087  // Otherwise, we actually build a new type every time, but we
2088  // also build a canonical type.
2089
2090  SplitQualType canonElementType = getCanonicalType(elementType).split();
2091
2092  void *insertPos = 0;
2093  llvm::FoldingSetNodeID ID;
2094  DependentSizedArrayType::Profile(ID, *this,
2095                                   QualType(canonElementType.Ty, 0),
2096                                   ASM, elementTypeQuals, numElements);
2097
2098  // Look for an existing type with these properties.
2099  DependentSizedArrayType *canonTy =
2100    DependentSizedArrayTypes.FindNodeOrInsertPos(ID, insertPos);
2101
2102  // If we don't have one, build one.
2103  if (!canonTy) {
2104    canonTy = new (*this, TypeAlignment)
2105      DependentSizedArrayType(*this, QualType(canonElementType.Ty, 0),
2106                              QualType(), numElements, ASM, elementTypeQuals,
2107                              brackets);
2108    DependentSizedArrayTypes.InsertNode(canonTy, insertPos);
2109    Types.push_back(canonTy);
2110  }
2111
2112  // Apply qualifiers from the element type to the array.
2113  QualType canon = getQualifiedType(QualType(canonTy,0),
2114                                    canonElementType.Quals);
2115
2116  // If we didn't need extra canonicalization for the element type,
2117  // then just use that as our result.
2118  if (QualType(canonElementType.Ty, 0) == elementType)
2119    return canon;
2120
2121  // Otherwise, we need to build a type which follows the spelling
2122  // of the element type.
2123  DependentSizedArrayType *sugaredType
2124    = new (*this, TypeAlignment)
2125        DependentSizedArrayType(*this, elementType, canon, numElements,
2126                                ASM, elementTypeQuals, brackets);
2127  Types.push_back(sugaredType);
2128  return QualType(sugaredType, 0);
2129}
2130
2131QualType ASTContext::getIncompleteArrayType(QualType elementType,
2132                                            ArrayType::ArraySizeModifier ASM,
2133                                            unsigned elementTypeQuals) const {
2134  llvm::FoldingSetNodeID ID;
2135  IncompleteArrayType::Profile(ID, elementType, ASM, elementTypeQuals);
2136
2137  void *insertPos = 0;
2138  if (IncompleteArrayType *iat =
2139       IncompleteArrayTypes.FindNodeOrInsertPos(ID, insertPos))
2140    return QualType(iat, 0);
2141
2142  // If the element type isn't canonical, this won't be a canonical type
2143  // either, so fill in the canonical type field.  We also have to pull
2144  // qualifiers off the element type.
2145  QualType canon;
2146
2147  if (!elementType.isCanonical() || elementType.hasLocalQualifiers()) {
2148    SplitQualType canonSplit = getCanonicalType(elementType).split();
2149    canon = getIncompleteArrayType(QualType(canonSplit.Ty, 0),
2150                                   ASM, elementTypeQuals);
2151    canon = getQualifiedType(canon, canonSplit.Quals);
2152
2153    // Get the new insert position for the node we care about.
2154    IncompleteArrayType *existing =
2155      IncompleteArrayTypes.FindNodeOrInsertPos(ID, insertPos);
2156    assert(!existing && "Shouldn't be in the map!"); (void) existing;
2157  }
2158
2159  IncompleteArrayType *newType = new (*this, TypeAlignment)
2160    IncompleteArrayType(elementType, canon, ASM, elementTypeQuals);
2161
2162  IncompleteArrayTypes.InsertNode(newType, insertPos);
2163  Types.push_back(newType);
2164  return QualType(newType, 0);
2165}
2166
2167/// getVectorType - Return the unique reference to a vector type of
2168/// the specified element type and size. VectorType must be a built-in type.
2169QualType ASTContext::getVectorType(QualType vecType, unsigned NumElts,
2170                                   VectorType::VectorKind VecKind) const {
2171  assert(vecType->isBuiltinType());
2172
2173  // Check if we've already instantiated a vector of this type.
2174  llvm::FoldingSetNodeID ID;
2175  VectorType::Profile(ID, vecType, NumElts, Type::Vector, VecKind);
2176
2177  void *InsertPos = 0;
2178  if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
2179    return QualType(VTP, 0);
2180
2181  // If the element type isn't canonical, this won't be a canonical type either,
2182  // so fill in the canonical type field.
2183  QualType Canonical;
2184  if (!vecType.isCanonical()) {
2185    Canonical = getVectorType(getCanonicalType(vecType), NumElts, VecKind);
2186
2187    // Get the new insert position for the node we care about.
2188    VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
2189    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2190  }
2191  VectorType *New = new (*this, TypeAlignment)
2192    VectorType(vecType, NumElts, Canonical, VecKind);
2193  VectorTypes.InsertNode(New, InsertPos);
2194  Types.push_back(New);
2195  return QualType(New, 0);
2196}
2197
2198/// getExtVectorType - Return the unique reference to an extended vector type of
2199/// the specified element type and size. VectorType must be a built-in type.
2200QualType
2201ASTContext::getExtVectorType(QualType vecType, unsigned NumElts) const {
2202  assert(vecType->isBuiltinType() || vecType->isDependentType());
2203
2204  // Check if we've already instantiated a vector of this type.
2205  llvm::FoldingSetNodeID ID;
2206  VectorType::Profile(ID, vecType, NumElts, Type::ExtVector,
2207                      VectorType::GenericVector);
2208  void *InsertPos = 0;
2209  if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
2210    return QualType(VTP, 0);
2211
2212  // If the element type isn't canonical, this won't be a canonical type either,
2213  // so fill in the canonical type field.
2214  QualType Canonical;
2215  if (!vecType.isCanonical()) {
2216    Canonical = getExtVectorType(getCanonicalType(vecType), NumElts);
2217
2218    // Get the new insert position for the node we care about.
2219    VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
2220    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2221  }
2222  ExtVectorType *New = new (*this, TypeAlignment)
2223    ExtVectorType(vecType, NumElts, Canonical);
2224  VectorTypes.InsertNode(New, InsertPos);
2225  Types.push_back(New);
2226  return QualType(New, 0);
2227}
2228
2229QualType
2230ASTContext::getDependentSizedExtVectorType(QualType vecType,
2231                                           Expr *SizeExpr,
2232                                           SourceLocation AttrLoc) const {
2233  llvm::FoldingSetNodeID ID;
2234  DependentSizedExtVectorType::Profile(ID, *this, getCanonicalType(vecType),
2235                                       SizeExpr);
2236
2237  void *InsertPos = 0;
2238  DependentSizedExtVectorType *Canon
2239    = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
2240  DependentSizedExtVectorType *New;
2241  if (Canon) {
2242    // We already have a canonical version of this array type; use it as
2243    // the canonical type for a newly-built type.
2244    New = new (*this, TypeAlignment)
2245      DependentSizedExtVectorType(*this, vecType, QualType(Canon, 0),
2246                                  SizeExpr, AttrLoc);
2247  } else {
2248    QualType CanonVecTy = getCanonicalType(vecType);
2249    if (CanonVecTy == vecType) {
2250      New = new (*this, TypeAlignment)
2251        DependentSizedExtVectorType(*this, vecType, QualType(), SizeExpr,
2252                                    AttrLoc);
2253
2254      DependentSizedExtVectorType *CanonCheck
2255        = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
2256      assert(!CanonCheck && "Dependent-sized ext_vector canonical type broken");
2257      (void)CanonCheck;
2258      DependentSizedExtVectorTypes.InsertNode(New, InsertPos);
2259    } else {
2260      QualType Canon = getDependentSizedExtVectorType(CanonVecTy, SizeExpr,
2261                                                      SourceLocation());
2262      New = new (*this, TypeAlignment)
2263        DependentSizedExtVectorType(*this, vecType, Canon, SizeExpr, AttrLoc);
2264    }
2265  }
2266
2267  Types.push_back(New);
2268  return QualType(New, 0);
2269}
2270
2271/// getFunctionNoProtoType - Return a K&R style C function type like 'int()'.
2272///
2273QualType
2274ASTContext::getFunctionNoProtoType(QualType ResultTy,
2275                                   const FunctionType::ExtInfo &Info) const {
2276  const CallingConv DefaultCC = Info.getCC();
2277  const CallingConv CallConv = (LangOpts.MRTD && DefaultCC == CC_Default) ?
2278                               CC_X86StdCall : DefaultCC;
2279  // Unique functions, to guarantee there is only one function of a particular
2280  // structure.
2281  llvm::FoldingSetNodeID ID;
2282  FunctionNoProtoType::Profile(ID, ResultTy, Info);
2283
2284  void *InsertPos = 0;
2285  if (FunctionNoProtoType *FT =
2286        FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
2287    return QualType(FT, 0);
2288
2289  QualType Canonical;
2290  if (!ResultTy.isCanonical() ||
2291      getCanonicalCallConv(CallConv) != CallConv) {
2292    Canonical =
2293      getFunctionNoProtoType(getCanonicalType(ResultTy),
2294                     Info.withCallingConv(getCanonicalCallConv(CallConv)));
2295
2296    // Get the new insert position for the node we care about.
2297    FunctionNoProtoType *NewIP =
2298      FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
2299    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2300  }
2301
2302  FunctionProtoType::ExtInfo newInfo = Info.withCallingConv(CallConv);
2303  FunctionNoProtoType *New = new (*this, TypeAlignment)
2304    FunctionNoProtoType(ResultTy, Canonical, newInfo);
2305  Types.push_back(New);
2306  FunctionNoProtoTypes.InsertNode(New, InsertPos);
2307  return QualType(New, 0);
2308}
2309
2310/// getFunctionType - Return a normal function type with a typed argument
2311/// list.  isVariadic indicates whether the argument list includes '...'.
2312QualType
2313ASTContext::getFunctionType(QualType ResultTy,
2314                            const QualType *ArgArray, unsigned NumArgs,
2315                            const FunctionProtoType::ExtProtoInfo &EPI) const {
2316  // Unique functions, to guarantee there is only one function of a particular
2317  // structure.
2318  llvm::FoldingSetNodeID ID;
2319  FunctionProtoType::Profile(ID, ResultTy, ArgArray, NumArgs, EPI, *this);
2320
2321  void *InsertPos = 0;
2322  if (FunctionProtoType *FTP =
2323        FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
2324    return QualType(FTP, 0);
2325
2326  // Determine whether the type being created is already canonical or not.
2327  bool isCanonical =
2328    EPI.ExceptionSpecType == EST_None && ResultTy.isCanonical() &&
2329    !EPI.HasTrailingReturn;
2330  for (unsigned i = 0; i != NumArgs && isCanonical; ++i)
2331    if (!ArgArray[i].isCanonicalAsParam())
2332      isCanonical = false;
2333
2334  const CallingConv DefaultCC = EPI.ExtInfo.getCC();
2335  const CallingConv CallConv = (LangOpts.MRTD && DefaultCC == CC_Default) ?
2336                               CC_X86StdCall : DefaultCC;
2337
2338  // If this type isn't canonical, get the canonical version of it.
2339  // The exception spec is not part of the canonical type.
2340  QualType Canonical;
2341  if (!isCanonical || getCanonicalCallConv(CallConv) != CallConv) {
2342    SmallVector<QualType, 16> CanonicalArgs;
2343    CanonicalArgs.reserve(NumArgs);
2344    for (unsigned i = 0; i != NumArgs; ++i)
2345      CanonicalArgs.push_back(getCanonicalParamType(ArgArray[i]));
2346
2347    FunctionProtoType::ExtProtoInfo CanonicalEPI = EPI;
2348    CanonicalEPI.HasTrailingReturn = false;
2349    CanonicalEPI.ExceptionSpecType = EST_None;
2350    CanonicalEPI.NumExceptions = 0;
2351    CanonicalEPI.ExtInfo
2352      = CanonicalEPI.ExtInfo.withCallingConv(getCanonicalCallConv(CallConv));
2353
2354    Canonical = getFunctionType(getCanonicalType(ResultTy),
2355                                CanonicalArgs.data(), NumArgs,
2356                                CanonicalEPI);
2357
2358    // Get the new insert position for the node we care about.
2359    FunctionProtoType *NewIP =
2360      FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
2361    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2362  }
2363
2364  // FunctionProtoType objects are allocated with extra bytes after
2365  // them for three variable size arrays at the end:
2366  //  - parameter types
2367  //  - exception types
2368  //  - consumed-arguments flags
2369  // Instead of the exception types, there could be a noexcept
2370  // expression.
2371  size_t Size = sizeof(FunctionProtoType) +
2372                NumArgs * sizeof(QualType);
2373  if (EPI.ExceptionSpecType == EST_Dynamic)
2374    Size += EPI.NumExceptions * sizeof(QualType);
2375  else if (EPI.ExceptionSpecType == EST_ComputedNoexcept) {
2376    Size += sizeof(Expr*);
2377  } else if (EPI.ExceptionSpecType == EST_Uninstantiated) {
2378    Size += 2 * sizeof(FunctionDecl*);
2379  }
2380  if (EPI.ConsumedArguments)
2381    Size += NumArgs * sizeof(bool);
2382
2383  FunctionProtoType *FTP = (FunctionProtoType*) Allocate(Size, TypeAlignment);
2384  FunctionProtoType::ExtProtoInfo newEPI = EPI;
2385  newEPI.ExtInfo = EPI.ExtInfo.withCallingConv(CallConv);
2386  new (FTP) FunctionProtoType(ResultTy, ArgArray, NumArgs, Canonical, newEPI);
2387  Types.push_back(FTP);
2388  FunctionProtoTypes.InsertNode(FTP, InsertPos);
2389  return QualType(FTP, 0);
2390}
2391
2392#ifndef NDEBUG
2393static bool NeedsInjectedClassNameType(const RecordDecl *D) {
2394  if (!isa<CXXRecordDecl>(D)) return false;
2395  const CXXRecordDecl *RD = cast<CXXRecordDecl>(D);
2396  if (isa<ClassTemplatePartialSpecializationDecl>(RD))
2397    return true;
2398  if (RD->getDescribedClassTemplate() &&
2399      !isa<ClassTemplateSpecializationDecl>(RD))
2400    return true;
2401  return false;
2402}
2403#endif
2404
2405/// getInjectedClassNameType - Return the unique reference to the
2406/// injected class name type for the specified templated declaration.
2407QualType ASTContext::getInjectedClassNameType(CXXRecordDecl *Decl,
2408                                              QualType TST) const {
2409  assert(NeedsInjectedClassNameType(Decl));
2410  if (Decl->TypeForDecl) {
2411    assert(isa<InjectedClassNameType>(Decl->TypeForDecl));
2412  } else if (CXXRecordDecl *PrevDecl = Decl->getPreviousDecl()) {
2413    assert(PrevDecl->TypeForDecl && "previous declaration has no type");
2414    Decl->TypeForDecl = PrevDecl->TypeForDecl;
2415    assert(isa<InjectedClassNameType>(Decl->TypeForDecl));
2416  } else {
2417    Type *newType =
2418      new (*this, TypeAlignment) InjectedClassNameType(Decl, TST);
2419    Decl->TypeForDecl = newType;
2420    Types.push_back(newType);
2421  }
2422  return QualType(Decl->TypeForDecl, 0);
2423}
2424
2425/// getTypeDeclType - Return the unique reference to the type for the
2426/// specified type declaration.
2427QualType ASTContext::getTypeDeclTypeSlow(const TypeDecl *Decl) const {
2428  assert(Decl && "Passed null for Decl param");
2429  assert(!Decl->TypeForDecl && "TypeForDecl present in slow case");
2430
2431  if (const TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Decl))
2432    return getTypedefType(Typedef);
2433
2434  assert(!isa<TemplateTypeParmDecl>(Decl) &&
2435         "Template type parameter types are always available.");
2436
2437  if (const RecordDecl *Record = dyn_cast<RecordDecl>(Decl)) {
2438    assert(!Record->getPreviousDecl() &&
2439           "struct/union has previous declaration");
2440    assert(!NeedsInjectedClassNameType(Record));
2441    return getRecordType(Record);
2442  } else if (const EnumDecl *Enum = dyn_cast<EnumDecl>(Decl)) {
2443    assert(!Enum->getPreviousDecl() &&
2444           "enum has previous declaration");
2445    return getEnumType(Enum);
2446  } else if (const UnresolvedUsingTypenameDecl *Using =
2447               dyn_cast<UnresolvedUsingTypenameDecl>(Decl)) {
2448    Type *newType = new (*this, TypeAlignment) UnresolvedUsingType(Using);
2449    Decl->TypeForDecl = newType;
2450    Types.push_back(newType);
2451  } else
2452    llvm_unreachable("TypeDecl without a type?");
2453
2454  return QualType(Decl->TypeForDecl, 0);
2455}
2456
2457/// getTypedefType - Return the unique reference to the type for the
2458/// specified typedef name decl.
2459QualType
2460ASTContext::getTypedefType(const TypedefNameDecl *Decl,
2461                           QualType Canonical) const {
2462  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
2463
2464  if (Canonical.isNull())
2465    Canonical = getCanonicalType(Decl->getUnderlyingType());
2466  TypedefType *newType = new(*this, TypeAlignment)
2467    TypedefType(Type::Typedef, Decl, Canonical);
2468  Decl->TypeForDecl = newType;
2469  Types.push_back(newType);
2470  return QualType(newType, 0);
2471}
2472
2473QualType ASTContext::getRecordType(const RecordDecl *Decl) const {
2474  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
2475
2476  if (const RecordDecl *PrevDecl = Decl->getPreviousDecl())
2477    if (PrevDecl->TypeForDecl)
2478      return QualType(Decl->TypeForDecl = PrevDecl->TypeForDecl, 0);
2479
2480  RecordType *newType = new (*this, TypeAlignment) RecordType(Decl);
2481  Decl->TypeForDecl = newType;
2482  Types.push_back(newType);
2483  return QualType(newType, 0);
2484}
2485
2486QualType ASTContext::getEnumType(const EnumDecl *Decl) const {
2487  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
2488
2489  if (const EnumDecl *PrevDecl = Decl->getPreviousDecl())
2490    if (PrevDecl->TypeForDecl)
2491      return QualType(Decl->TypeForDecl = PrevDecl->TypeForDecl, 0);
2492
2493  EnumType *newType = new (*this, TypeAlignment) EnumType(Decl);
2494  Decl->TypeForDecl = newType;
2495  Types.push_back(newType);
2496  return QualType(newType, 0);
2497}
2498
2499QualType ASTContext::getAttributedType(AttributedType::Kind attrKind,
2500                                       QualType modifiedType,
2501                                       QualType equivalentType) {
2502  llvm::FoldingSetNodeID id;
2503  AttributedType::Profile(id, attrKind, modifiedType, equivalentType);
2504
2505  void *insertPos = 0;
2506  AttributedType *type = AttributedTypes.FindNodeOrInsertPos(id, insertPos);
2507  if (type) return QualType(type, 0);
2508
2509  QualType canon = getCanonicalType(equivalentType);
2510  type = new (*this, TypeAlignment)
2511           AttributedType(canon, attrKind, modifiedType, equivalentType);
2512
2513  Types.push_back(type);
2514  AttributedTypes.InsertNode(type, insertPos);
2515
2516  return QualType(type, 0);
2517}
2518
2519
2520/// \brief Retrieve a substitution-result type.
2521QualType
2522ASTContext::getSubstTemplateTypeParmType(const TemplateTypeParmType *Parm,
2523                                         QualType Replacement) const {
2524  assert(Replacement.isCanonical()
2525         && "replacement types must always be canonical");
2526
2527  llvm::FoldingSetNodeID ID;
2528  SubstTemplateTypeParmType::Profile(ID, Parm, Replacement);
2529  void *InsertPos = 0;
2530  SubstTemplateTypeParmType *SubstParm
2531    = SubstTemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
2532
2533  if (!SubstParm) {
2534    SubstParm = new (*this, TypeAlignment)
2535      SubstTemplateTypeParmType(Parm, Replacement);
2536    Types.push_back(SubstParm);
2537    SubstTemplateTypeParmTypes.InsertNode(SubstParm, InsertPos);
2538  }
2539
2540  return QualType(SubstParm, 0);
2541}
2542
2543/// \brief Retrieve a
2544QualType ASTContext::getSubstTemplateTypeParmPackType(
2545                                          const TemplateTypeParmType *Parm,
2546                                              const TemplateArgument &ArgPack) {
2547#ifndef NDEBUG
2548  for (TemplateArgument::pack_iterator P = ArgPack.pack_begin(),
2549                                    PEnd = ArgPack.pack_end();
2550       P != PEnd; ++P) {
2551    assert(P->getKind() == TemplateArgument::Type &&"Pack contains a non-type");
2552    assert(P->getAsType().isCanonical() && "Pack contains non-canonical type");
2553  }
2554#endif
2555
2556  llvm::FoldingSetNodeID ID;
2557  SubstTemplateTypeParmPackType::Profile(ID, Parm, ArgPack);
2558  void *InsertPos = 0;
2559  if (SubstTemplateTypeParmPackType *SubstParm
2560        = SubstTemplateTypeParmPackTypes.FindNodeOrInsertPos(ID, InsertPos))
2561    return QualType(SubstParm, 0);
2562
2563  QualType Canon;
2564  if (!Parm->isCanonicalUnqualified()) {
2565    Canon = getCanonicalType(QualType(Parm, 0));
2566    Canon = getSubstTemplateTypeParmPackType(cast<TemplateTypeParmType>(Canon),
2567                                             ArgPack);
2568    SubstTemplateTypeParmPackTypes.FindNodeOrInsertPos(ID, InsertPos);
2569  }
2570
2571  SubstTemplateTypeParmPackType *SubstParm
2572    = new (*this, TypeAlignment) SubstTemplateTypeParmPackType(Parm, Canon,
2573                                                               ArgPack);
2574  Types.push_back(SubstParm);
2575  SubstTemplateTypeParmTypes.InsertNode(SubstParm, InsertPos);
2576  return QualType(SubstParm, 0);
2577}
2578
2579/// \brief Retrieve the template type parameter type for a template
2580/// parameter or parameter pack with the given depth, index, and (optionally)
2581/// name.
2582QualType ASTContext::getTemplateTypeParmType(unsigned Depth, unsigned Index,
2583                                             bool ParameterPack,
2584                                             TemplateTypeParmDecl *TTPDecl) const {
2585  llvm::FoldingSetNodeID ID;
2586  TemplateTypeParmType::Profile(ID, Depth, Index, ParameterPack, TTPDecl);
2587  void *InsertPos = 0;
2588  TemplateTypeParmType *TypeParm
2589    = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
2590
2591  if (TypeParm)
2592    return QualType(TypeParm, 0);
2593
2594  if (TTPDecl) {
2595    QualType Canon = getTemplateTypeParmType(Depth, Index, ParameterPack);
2596    TypeParm = new (*this, TypeAlignment) TemplateTypeParmType(TTPDecl, Canon);
2597
2598    TemplateTypeParmType *TypeCheck
2599      = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
2600    assert(!TypeCheck && "Template type parameter canonical type broken");
2601    (void)TypeCheck;
2602  } else
2603    TypeParm = new (*this, TypeAlignment)
2604      TemplateTypeParmType(Depth, Index, ParameterPack);
2605
2606  Types.push_back(TypeParm);
2607  TemplateTypeParmTypes.InsertNode(TypeParm, InsertPos);
2608
2609  return QualType(TypeParm, 0);
2610}
2611
2612TypeSourceInfo *
2613ASTContext::getTemplateSpecializationTypeInfo(TemplateName Name,
2614                                              SourceLocation NameLoc,
2615                                        const TemplateArgumentListInfo &Args,
2616                                              QualType Underlying) const {
2617  assert(!Name.getAsDependentTemplateName() &&
2618         "No dependent template names here!");
2619  QualType TST = getTemplateSpecializationType(Name, Args, Underlying);
2620
2621  TypeSourceInfo *DI = CreateTypeSourceInfo(TST);
2622  TemplateSpecializationTypeLoc TL
2623    = cast<TemplateSpecializationTypeLoc>(DI->getTypeLoc());
2624  TL.setTemplateKeywordLoc(SourceLocation());
2625  TL.setTemplateNameLoc(NameLoc);
2626  TL.setLAngleLoc(Args.getLAngleLoc());
2627  TL.setRAngleLoc(Args.getRAngleLoc());
2628  for (unsigned i = 0, e = TL.getNumArgs(); i != e; ++i)
2629    TL.setArgLocInfo(i, Args[i].getLocInfo());
2630  return DI;
2631}
2632
2633QualType
2634ASTContext::getTemplateSpecializationType(TemplateName Template,
2635                                          const TemplateArgumentListInfo &Args,
2636                                          QualType Underlying) const {
2637  assert(!Template.getAsDependentTemplateName() &&
2638         "No dependent template names here!");
2639
2640  unsigned NumArgs = Args.size();
2641
2642  SmallVector<TemplateArgument, 4> ArgVec;
2643  ArgVec.reserve(NumArgs);
2644  for (unsigned i = 0; i != NumArgs; ++i)
2645    ArgVec.push_back(Args[i].getArgument());
2646
2647  return getTemplateSpecializationType(Template, ArgVec.data(), NumArgs,
2648                                       Underlying);
2649}
2650
2651#ifndef NDEBUG
2652static bool hasAnyPackExpansions(const TemplateArgument *Args,
2653                                 unsigned NumArgs) {
2654  for (unsigned I = 0; I != NumArgs; ++I)
2655    if (Args[I].isPackExpansion())
2656      return true;
2657
2658  return true;
2659}
2660#endif
2661
2662QualType
2663ASTContext::getTemplateSpecializationType(TemplateName Template,
2664                                          const TemplateArgument *Args,
2665                                          unsigned NumArgs,
2666                                          QualType Underlying) const {
2667  assert(!Template.getAsDependentTemplateName() &&
2668         "No dependent template names here!");
2669  // Look through qualified template names.
2670  if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName())
2671    Template = TemplateName(QTN->getTemplateDecl());
2672
2673  bool IsTypeAlias =
2674    Template.getAsTemplateDecl() &&
2675    isa<TypeAliasTemplateDecl>(Template.getAsTemplateDecl());
2676  QualType CanonType;
2677  if (!Underlying.isNull())
2678    CanonType = getCanonicalType(Underlying);
2679  else {
2680    // We can get here with an alias template when the specialization contains
2681    // a pack expansion that does not match up with a parameter pack.
2682    assert((!IsTypeAlias || hasAnyPackExpansions(Args, NumArgs)) &&
2683           "Caller must compute aliased type");
2684    IsTypeAlias = false;
2685    CanonType = getCanonicalTemplateSpecializationType(Template, Args,
2686                                                       NumArgs);
2687  }
2688
2689  // Allocate the (non-canonical) template specialization type, but don't
2690  // try to unique it: these types typically have location information that
2691  // we don't unique and don't want to lose.
2692  void *Mem = Allocate(sizeof(TemplateSpecializationType) +
2693                       sizeof(TemplateArgument) * NumArgs +
2694                       (IsTypeAlias? sizeof(QualType) : 0),
2695                       TypeAlignment);
2696  TemplateSpecializationType *Spec
2697    = new (Mem) TemplateSpecializationType(Template, Args, NumArgs, CanonType,
2698                                         IsTypeAlias ? Underlying : QualType());
2699
2700  Types.push_back(Spec);
2701  return QualType(Spec, 0);
2702}
2703
2704QualType
2705ASTContext::getCanonicalTemplateSpecializationType(TemplateName Template,
2706                                                   const TemplateArgument *Args,
2707                                                   unsigned NumArgs) const {
2708  assert(!Template.getAsDependentTemplateName() &&
2709         "No dependent template names here!");
2710
2711  // Look through qualified template names.
2712  if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName())
2713    Template = TemplateName(QTN->getTemplateDecl());
2714
2715  // Build the canonical template specialization type.
2716  TemplateName CanonTemplate = getCanonicalTemplateName(Template);
2717  SmallVector<TemplateArgument, 4> CanonArgs;
2718  CanonArgs.reserve(NumArgs);
2719  for (unsigned I = 0; I != NumArgs; ++I)
2720    CanonArgs.push_back(getCanonicalTemplateArgument(Args[I]));
2721
2722  // Determine whether this canonical template specialization type already
2723  // exists.
2724  llvm::FoldingSetNodeID ID;
2725  TemplateSpecializationType::Profile(ID, CanonTemplate,
2726                                      CanonArgs.data(), NumArgs, *this);
2727
2728  void *InsertPos = 0;
2729  TemplateSpecializationType *Spec
2730    = TemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
2731
2732  if (!Spec) {
2733    // Allocate a new canonical template specialization type.
2734    void *Mem = Allocate((sizeof(TemplateSpecializationType) +
2735                          sizeof(TemplateArgument) * NumArgs),
2736                         TypeAlignment);
2737    Spec = new (Mem) TemplateSpecializationType(CanonTemplate,
2738                                                CanonArgs.data(), NumArgs,
2739                                                QualType(), QualType());
2740    Types.push_back(Spec);
2741    TemplateSpecializationTypes.InsertNode(Spec, InsertPos);
2742  }
2743
2744  assert(Spec->isDependentType() &&
2745         "Non-dependent template-id type must have a canonical type");
2746  return QualType(Spec, 0);
2747}
2748
2749QualType
2750ASTContext::getElaboratedType(ElaboratedTypeKeyword Keyword,
2751                              NestedNameSpecifier *NNS,
2752                              QualType NamedType) const {
2753  llvm::FoldingSetNodeID ID;
2754  ElaboratedType::Profile(ID, Keyword, NNS, NamedType);
2755
2756  void *InsertPos = 0;
2757  ElaboratedType *T = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
2758  if (T)
2759    return QualType(T, 0);
2760
2761  QualType Canon = NamedType;
2762  if (!Canon.isCanonical()) {
2763    Canon = getCanonicalType(NamedType);
2764    ElaboratedType *CheckT = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
2765    assert(!CheckT && "Elaborated canonical type broken");
2766    (void)CheckT;
2767  }
2768
2769  T = new (*this) ElaboratedType(Keyword, NNS, NamedType, Canon);
2770  Types.push_back(T);
2771  ElaboratedTypes.InsertNode(T, InsertPos);
2772  return QualType(T, 0);
2773}
2774
2775QualType
2776ASTContext::getParenType(QualType InnerType) const {
2777  llvm::FoldingSetNodeID ID;
2778  ParenType::Profile(ID, InnerType);
2779
2780  void *InsertPos = 0;
2781  ParenType *T = ParenTypes.FindNodeOrInsertPos(ID, InsertPos);
2782  if (T)
2783    return QualType(T, 0);
2784
2785  QualType Canon = InnerType;
2786  if (!Canon.isCanonical()) {
2787    Canon = getCanonicalType(InnerType);
2788    ParenType *CheckT = ParenTypes.FindNodeOrInsertPos(ID, InsertPos);
2789    assert(!CheckT && "Paren canonical type broken");
2790    (void)CheckT;
2791  }
2792
2793  T = new (*this) ParenType(InnerType, Canon);
2794  Types.push_back(T);
2795  ParenTypes.InsertNode(T, InsertPos);
2796  return QualType(T, 0);
2797}
2798
2799QualType ASTContext::getDependentNameType(ElaboratedTypeKeyword Keyword,
2800                                          NestedNameSpecifier *NNS,
2801                                          const IdentifierInfo *Name,
2802                                          QualType Canon) const {
2803  assert(NNS->isDependent() && "nested-name-specifier must be dependent");
2804
2805  if (Canon.isNull()) {
2806    NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
2807    ElaboratedTypeKeyword CanonKeyword = Keyword;
2808    if (Keyword == ETK_None)
2809      CanonKeyword = ETK_Typename;
2810
2811    if (CanonNNS != NNS || CanonKeyword != Keyword)
2812      Canon = getDependentNameType(CanonKeyword, CanonNNS, Name);
2813  }
2814
2815  llvm::FoldingSetNodeID ID;
2816  DependentNameType::Profile(ID, Keyword, NNS, Name);
2817
2818  void *InsertPos = 0;
2819  DependentNameType *T
2820    = DependentNameTypes.FindNodeOrInsertPos(ID, InsertPos);
2821  if (T)
2822    return QualType(T, 0);
2823
2824  T = new (*this) DependentNameType(Keyword, NNS, Name, Canon);
2825  Types.push_back(T);
2826  DependentNameTypes.InsertNode(T, InsertPos);
2827  return QualType(T, 0);
2828}
2829
2830QualType
2831ASTContext::getDependentTemplateSpecializationType(
2832                                 ElaboratedTypeKeyword Keyword,
2833                                 NestedNameSpecifier *NNS,
2834                                 const IdentifierInfo *Name,
2835                                 const TemplateArgumentListInfo &Args) const {
2836  // TODO: avoid this copy
2837  SmallVector<TemplateArgument, 16> ArgCopy;
2838  for (unsigned I = 0, E = Args.size(); I != E; ++I)
2839    ArgCopy.push_back(Args[I].getArgument());
2840  return getDependentTemplateSpecializationType(Keyword, NNS, Name,
2841                                                ArgCopy.size(),
2842                                                ArgCopy.data());
2843}
2844
2845QualType
2846ASTContext::getDependentTemplateSpecializationType(
2847                                 ElaboratedTypeKeyword Keyword,
2848                                 NestedNameSpecifier *NNS,
2849                                 const IdentifierInfo *Name,
2850                                 unsigned NumArgs,
2851                                 const TemplateArgument *Args) const {
2852  assert((!NNS || NNS->isDependent()) &&
2853         "nested-name-specifier must be dependent");
2854
2855  llvm::FoldingSetNodeID ID;
2856  DependentTemplateSpecializationType::Profile(ID, *this, Keyword, NNS,
2857                                               Name, NumArgs, Args);
2858
2859  void *InsertPos = 0;
2860  DependentTemplateSpecializationType *T
2861    = DependentTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
2862  if (T)
2863    return QualType(T, 0);
2864
2865  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
2866
2867  ElaboratedTypeKeyword CanonKeyword = Keyword;
2868  if (Keyword == ETK_None) CanonKeyword = ETK_Typename;
2869
2870  bool AnyNonCanonArgs = false;
2871  SmallVector<TemplateArgument, 16> CanonArgs(NumArgs);
2872  for (unsigned I = 0; I != NumArgs; ++I) {
2873    CanonArgs[I] = getCanonicalTemplateArgument(Args[I]);
2874    if (!CanonArgs[I].structurallyEquals(Args[I]))
2875      AnyNonCanonArgs = true;
2876  }
2877
2878  QualType Canon;
2879  if (AnyNonCanonArgs || CanonNNS != NNS || CanonKeyword != Keyword) {
2880    Canon = getDependentTemplateSpecializationType(CanonKeyword, CanonNNS,
2881                                                   Name, NumArgs,
2882                                                   CanonArgs.data());
2883
2884    // Find the insert position again.
2885    DependentTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
2886  }
2887
2888  void *Mem = Allocate((sizeof(DependentTemplateSpecializationType) +
2889                        sizeof(TemplateArgument) * NumArgs),
2890                       TypeAlignment);
2891  T = new (Mem) DependentTemplateSpecializationType(Keyword, NNS,
2892                                                    Name, NumArgs, Args, Canon);
2893  Types.push_back(T);
2894  DependentTemplateSpecializationTypes.InsertNode(T, InsertPos);
2895  return QualType(T, 0);
2896}
2897
2898QualType ASTContext::getPackExpansionType(QualType Pattern,
2899                                      llvm::Optional<unsigned> NumExpansions) {
2900  llvm::FoldingSetNodeID ID;
2901  PackExpansionType::Profile(ID, Pattern, NumExpansions);
2902
2903  assert(Pattern->containsUnexpandedParameterPack() &&
2904         "Pack expansions must expand one or more parameter packs");
2905  void *InsertPos = 0;
2906  PackExpansionType *T
2907    = PackExpansionTypes.FindNodeOrInsertPos(ID, InsertPos);
2908  if (T)
2909    return QualType(T, 0);
2910
2911  QualType Canon;
2912  if (!Pattern.isCanonical()) {
2913    Canon = getCanonicalType(Pattern);
2914    // The canonical type might not contain an unexpanded parameter pack, if it
2915    // contains an alias template specialization which ignores one of its
2916    // parameters.
2917    if (Canon->containsUnexpandedParameterPack()) {
2918      Canon = getPackExpansionType(getCanonicalType(Pattern), NumExpansions);
2919
2920      // Find the insert position again, in case we inserted an element into
2921      // PackExpansionTypes and invalidated our insert position.
2922      PackExpansionTypes.FindNodeOrInsertPos(ID, InsertPos);
2923    }
2924  }
2925
2926  T = new (*this) PackExpansionType(Pattern, Canon, NumExpansions);
2927  Types.push_back(T);
2928  PackExpansionTypes.InsertNode(T, InsertPos);
2929  return QualType(T, 0);
2930}
2931
2932/// CmpProtocolNames - Comparison predicate for sorting protocols
2933/// alphabetically.
2934static bool CmpProtocolNames(const ObjCProtocolDecl *LHS,
2935                            const ObjCProtocolDecl *RHS) {
2936  return LHS->getDeclName() < RHS->getDeclName();
2937}
2938
2939static bool areSortedAndUniqued(ObjCProtocolDecl * const *Protocols,
2940                                unsigned NumProtocols) {
2941  if (NumProtocols == 0) return true;
2942
2943  if (Protocols[0]->getCanonicalDecl() != Protocols[0])
2944    return false;
2945
2946  for (unsigned i = 1; i != NumProtocols; ++i)
2947    if (!CmpProtocolNames(Protocols[i-1], Protocols[i]) ||
2948        Protocols[i]->getCanonicalDecl() != Protocols[i])
2949      return false;
2950  return true;
2951}
2952
2953static void SortAndUniqueProtocols(ObjCProtocolDecl **Protocols,
2954                                   unsigned &NumProtocols) {
2955  ObjCProtocolDecl **ProtocolsEnd = Protocols+NumProtocols;
2956
2957  // Sort protocols, keyed by name.
2958  std::sort(Protocols, Protocols+NumProtocols, CmpProtocolNames);
2959
2960  // Canonicalize.
2961  for (unsigned I = 0, N = NumProtocols; I != N; ++I)
2962    Protocols[I] = Protocols[I]->getCanonicalDecl();
2963
2964  // Remove duplicates.
2965  ProtocolsEnd = std::unique(Protocols, ProtocolsEnd);
2966  NumProtocols = ProtocolsEnd-Protocols;
2967}
2968
2969QualType ASTContext::getObjCObjectType(QualType BaseType,
2970                                       ObjCProtocolDecl * const *Protocols,
2971                                       unsigned NumProtocols) const {
2972  // If the base type is an interface and there aren't any protocols
2973  // to add, then the interface type will do just fine.
2974  if (!NumProtocols && isa<ObjCInterfaceType>(BaseType))
2975    return BaseType;
2976
2977  // Look in the folding set for an existing type.
2978  llvm::FoldingSetNodeID ID;
2979  ObjCObjectTypeImpl::Profile(ID, BaseType, Protocols, NumProtocols);
2980  void *InsertPos = 0;
2981  if (ObjCObjectType *QT = ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos))
2982    return QualType(QT, 0);
2983
2984  // Build the canonical type, which has the canonical base type and
2985  // a sorted-and-uniqued list of protocols.
2986  QualType Canonical;
2987  bool ProtocolsSorted = areSortedAndUniqued(Protocols, NumProtocols);
2988  if (!ProtocolsSorted || !BaseType.isCanonical()) {
2989    if (!ProtocolsSorted) {
2990      SmallVector<ObjCProtocolDecl*, 8> Sorted(Protocols,
2991                                                     Protocols + NumProtocols);
2992      unsigned UniqueCount = NumProtocols;
2993
2994      SortAndUniqueProtocols(&Sorted[0], UniqueCount);
2995      Canonical = getObjCObjectType(getCanonicalType(BaseType),
2996                                    &Sorted[0], UniqueCount);
2997    } else {
2998      Canonical = getObjCObjectType(getCanonicalType(BaseType),
2999                                    Protocols, NumProtocols);
3000    }
3001
3002    // Regenerate InsertPos.
3003    ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos);
3004  }
3005
3006  unsigned Size = sizeof(ObjCObjectTypeImpl);
3007  Size += NumProtocols * sizeof(ObjCProtocolDecl *);
3008  void *Mem = Allocate(Size, TypeAlignment);
3009  ObjCObjectTypeImpl *T =
3010    new (Mem) ObjCObjectTypeImpl(Canonical, BaseType, Protocols, NumProtocols);
3011
3012  Types.push_back(T);
3013  ObjCObjectTypes.InsertNode(T, InsertPos);
3014  return QualType(T, 0);
3015}
3016
3017/// getObjCObjectPointerType - Return a ObjCObjectPointerType type for
3018/// the given object type.
3019QualType ASTContext::getObjCObjectPointerType(QualType ObjectT) const {
3020  llvm::FoldingSetNodeID ID;
3021  ObjCObjectPointerType::Profile(ID, ObjectT);
3022
3023  void *InsertPos = 0;
3024  if (ObjCObjectPointerType *QT =
3025              ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
3026    return QualType(QT, 0);
3027
3028  // Find the canonical object type.
3029  QualType Canonical;
3030  if (!ObjectT.isCanonical()) {
3031    Canonical = getObjCObjectPointerType(getCanonicalType(ObjectT));
3032
3033    // Regenerate InsertPos.
3034    ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
3035  }
3036
3037  // No match.
3038  void *Mem = Allocate(sizeof(ObjCObjectPointerType), TypeAlignment);
3039  ObjCObjectPointerType *QType =
3040    new (Mem) ObjCObjectPointerType(Canonical, ObjectT);
3041
3042  Types.push_back(QType);
3043  ObjCObjectPointerTypes.InsertNode(QType, InsertPos);
3044  return QualType(QType, 0);
3045}
3046
3047/// getObjCInterfaceType - Return the unique reference to the type for the
3048/// specified ObjC interface decl. The list of protocols is optional.
3049QualType ASTContext::getObjCInterfaceType(const ObjCInterfaceDecl *Decl,
3050                                          ObjCInterfaceDecl *PrevDecl) const {
3051  if (Decl->TypeForDecl)
3052    return QualType(Decl->TypeForDecl, 0);
3053
3054  if (PrevDecl) {
3055    assert(PrevDecl->TypeForDecl && "previous decl has no TypeForDecl");
3056    Decl->TypeForDecl = PrevDecl->TypeForDecl;
3057    return QualType(PrevDecl->TypeForDecl, 0);
3058  }
3059
3060  // Prefer the definition, if there is one.
3061  if (const ObjCInterfaceDecl *Def = Decl->getDefinition())
3062    Decl = Def;
3063
3064  void *Mem = Allocate(sizeof(ObjCInterfaceType), TypeAlignment);
3065  ObjCInterfaceType *T = new (Mem) ObjCInterfaceType(Decl);
3066  Decl->TypeForDecl = T;
3067  Types.push_back(T);
3068  return QualType(T, 0);
3069}
3070
3071/// getTypeOfExprType - Unlike many "get<Type>" functions, we can't unique
3072/// TypeOfExprType AST's (since expression's are never shared). For example,
3073/// multiple declarations that refer to "typeof(x)" all contain different
3074/// DeclRefExpr's. This doesn't effect the type checker, since it operates
3075/// on canonical type's (which are always unique).
3076QualType ASTContext::getTypeOfExprType(Expr *tofExpr) const {
3077  TypeOfExprType *toe;
3078  if (tofExpr->isTypeDependent()) {
3079    llvm::FoldingSetNodeID ID;
3080    DependentTypeOfExprType::Profile(ID, *this, tofExpr);
3081
3082    void *InsertPos = 0;
3083    DependentTypeOfExprType *Canon
3084      = DependentTypeOfExprTypes.FindNodeOrInsertPos(ID, InsertPos);
3085    if (Canon) {
3086      // We already have a "canonical" version of an identical, dependent
3087      // typeof(expr) type. Use that as our canonical type.
3088      toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr,
3089                                          QualType((TypeOfExprType*)Canon, 0));
3090    } else {
3091      // Build a new, canonical typeof(expr) type.
3092      Canon
3093        = new (*this, TypeAlignment) DependentTypeOfExprType(*this, tofExpr);
3094      DependentTypeOfExprTypes.InsertNode(Canon, InsertPos);
3095      toe = Canon;
3096    }
3097  } else {
3098    QualType Canonical = getCanonicalType(tofExpr->getType());
3099    toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr, Canonical);
3100  }
3101  Types.push_back(toe);
3102  return QualType(toe, 0);
3103}
3104
3105/// getTypeOfType -  Unlike many "get<Type>" functions, we don't unique
3106/// TypeOfType AST's. The only motivation to unique these nodes would be
3107/// memory savings. Since typeof(t) is fairly uncommon, space shouldn't be
3108/// an issue. This doesn't effect the type checker, since it operates
3109/// on canonical type's (which are always unique).
3110QualType ASTContext::getTypeOfType(QualType tofType) const {
3111  QualType Canonical = getCanonicalType(tofType);
3112  TypeOfType *tot = new (*this, TypeAlignment) TypeOfType(tofType, Canonical);
3113  Types.push_back(tot);
3114  return QualType(tot, 0);
3115}
3116
3117
3118/// getDecltypeType -  Unlike many "get<Type>" functions, we don't unique
3119/// DecltypeType AST's. The only motivation to unique these nodes would be
3120/// memory savings. Since decltype(t) is fairly uncommon, space shouldn't be
3121/// an issue. This doesn't effect the type checker, since it operates
3122/// on canonical types (which are always unique).
3123QualType ASTContext::getDecltypeType(Expr *e, QualType UnderlyingType) const {
3124  DecltypeType *dt;
3125
3126  // C++0x [temp.type]p2:
3127  //   If an expression e involves a template parameter, decltype(e) denotes a
3128  //   unique dependent type. Two such decltype-specifiers refer to the same
3129  //   type only if their expressions are equivalent (14.5.6.1).
3130  if (e->isInstantiationDependent()) {
3131    llvm::FoldingSetNodeID ID;
3132    DependentDecltypeType::Profile(ID, *this, e);
3133
3134    void *InsertPos = 0;
3135    DependentDecltypeType *Canon
3136      = DependentDecltypeTypes.FindNodeOrInsertPos(ID, InsertPos);
3137    if (Canon) {
3138      // We already have a "canonical" version of an equivalent, dependent
3139      // decltype type. Use that as our canonical type.
3140      dt = new (*this, TypeAlignment) DecltypeType(e, DependentTy,
3141                                       QualType((DecltypeType*)Canon, 0));
3142    } else {
3143      // Build a new, canonical typeof(expr) type.
3144      Canon = new (*this, TypeAlignment) DependentDecltypeType(*this, e);
3145      DependentDecltypeTypes.InsertNode(Canon, InsertPos);
3146      dt = Canon;
3147    }
3148  } else {
3149    dt = new (*this, TypeAlignment) DecltypeType(e, UnderlyingType,
3150                                      getCanonicalType(UnderlyingType));
3151  }
3152  Types.push_back(dt);
3153  return QualType(dt, 0);
3154}
3155
3156/// getUnaryTransformationType - We don't unique these, since the memory
3157/// savings are minimal and these are rare.
3158QualType ASTContext::getUnaryTransformType(QualType BaseType,
3159                                           QualType UnderlyingType,
3160                                           UnaryTransformType::UTTKind Kind)
3161    const {
3162  UnaryTransformType *Ty =
3163    new (*this, TypeAlignment) UnaryTransformType (BaseType, UnderlyingType,
3164                                                   Kind,
3165                                 UnderlyingType->isDependentType() ?
3166                                 QualType() : getCanonicalType(UnderlyingType));
3167  Types.push_back(Ty);
3168  return QualType(Ty, 0);
3169}
3170
3171/// getAutoType - We only unique auto types after they've been deduced.
3172QualType ASTContext::getAutoType(QualType DeducedType) const {
3173  void *InsertPos = 0;
3174  if (!DeducedType.isNull()) {
3175    // Look in the folding set for an existing type.
3176    llvm::FoldingSetNodeID ID;
3177    AutoType::Profile(ID, DeducedType);
3178    if (AutoType *AT = AutoTypes.FindNodeOrInsertPos(ID, InsertPos))
3179      return QualType(AT, 0);
3180  }
3181
3182  AutoType *AT = new (*this, TypeAlignment) AutoType(DeducedType);
3183  Types.push_back(AT);
3184  if (InsertPos)
3185    AutoTypes.InsertNode(AT, InsertPos);
3186  return QualType(AT, 0);
3187}
3188
3189/// getAtomicType - Return the uniqued reference to the atomic type for
3190/// the given value type.
3191QualType ASTContext::getAtomicType(QualType T) const {
3192  // Unique pointers, to guarantee there is only one pointer of a particular
3193  // structure.
3194  llvm::FoldingSetNodeID ID;
3195  AtomicType::Profile(ID, T);
3196
3197  void *InsertPos = 0;
3198  if (AtomicType *AT = AtomicTypes.FindNodeOrInsertPos(ID, InsertPos))
3199    return QualType(AT, 0);
3200
3201  // If the atomic value type isn't canonical, this won't be a canonical type
3202  // either, so fill in the canonical type field.
3203  QualType Canonical;
3204  if (!T.isCanonical()) {
3205    Canonical = getAtomicType(getCanonicalType(T));
3206
3207    // Get the new insert position for the node we care about.
3208    AtomicType *NewIP = AtomicTypes.FindNodeOrInsertPos(ID, InsertPos);
3209    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
3210  }
3211  AtomicType *New = new (*this, TypeAlignment) AtomicType(T, Canonical);
3212  Types.push_back(New);
3213  AtomicTypes.InsertNode(New, InsertPos);
3214  return QualType(New, 0);
3215}
3216
3217/// getAutoDeductType - Get type pattern for deducing against 'auto'.
3218QualType ASTContext::getAutoDeductType() const {
3219  if (AutoDeductTy.isNull())
3220    AutoDeductTy = getAutoType(QualType());
3221  assert(!AutoDeductTy.isNull() && "can't build 'auto' pattern");
3222  return AutoDeductTy;
3223}
3224
3225/// getAutoRRefDeductType - Get type pattern for deducing against 'auto &&'.
3226QualType ASTContext::getAutoRRefDeductType() const {
3227  if (AutoRRefDeductTy.isNull())
3228    AutoRRefDeductTy = getRValueReferenceType(getAutoDeductType());
3229  assert(!AutoRRefDeductTy.isNull() && "can't build 'auto &&' pattern");
3230  return AutoRRefDeductTy;
3231}
3232
3233/// getTagDeclType - Return the unique reference to the type for the
3234/// specified TagDecl (struct/union/class/enum) decl.
3235QualType ASTContext::getTagDeclType(const TagDecl *Decl) const {
3236  assert (Decl);
3237  // FIXME: What is the design on getTagDeclType when it requires casting
3238  // away const?  mutable?
3239  return getTypeDeclType(const_cast<TagDecl*>(Decl));
3240}
3241
3242/// getSizeType - Return the unique type for "size_t" (C99 7.17), the result
3243/// of the sizeof operator (C99 6.5.3.4p4). The value is target dependent and
3244/// needs to agree with the definition in <stddef.h>.
3245CanQualType ASTContext::getSizeType() const {
3246  return getFromTargetType(Target->getSizeType());
3247}
3248
3249/// getIntMaxType - Return the unique type for "intmax_t" (C99 7.18.1.5).
3250CanQualType ASTContext::getIntMaxType() const {
3251  return getFromTargetType(Target->getIntMaxType());
3252}
3253
3254/// getUIntMaxType - Return the unique type for "uintmax_t" (C99 7.18.1.5).
3255CanQualType ASTContext::getUIntMaxType() const {
3256  return getFromTargetType(Target->getUIntMaxType());
3257}
3258
3259/// getSignedWCharType - Return the type of "signed wchar_t".
3260/// Used when in C++, as a GCC extension.
3261QualType ASTContext::getSignedWCharType() const {
3262  // FIXME: derive from "Target" ?
3263  return WCharTy;
3264}
3265
3266/// getUnsignedWCharType - Return the type of "unsigned wchar_t".
3267/// Used when in C++, as a GCC extension.
3268QualType ASTContext::getUnsignedWCharType() const {
3269  // FIXME: derive from "Target" ?
3270  return UnsignedIntTy;
3271}
3272
3273/// getPointerDiffType - Return the unique type for "ptrdiff_t" (C99 7.17)
3274/// defined in <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9).
3275QualType ASTContext::getPointerDiffType() const {
3276  return getFromTargetType(Target->getPtrDiffType(0));
3277}
3278
3279//===----------------------------------------------------------------------===//
3280//                              Type Operators
3281//===----------------------------------------------------------------------===//
3282
3283CanQualType ASTContext::getCanonicalParamType(QualType T) const {
3284  // Push qualifiers into arrays, and then discard any remaining
3285  // qualifiers.
3286  T = getCanonicalType(T);
3287  T = getVariableArrayDecayedType(T);
3288  const Type *Ty = T.getTypePtr();
3289  QualType Result;
3290  if (isa<ArrayType>(Ty)) {
3291    Result = getArrayDecayedType(QualType(Ty,0));
3292  } else if (isa<FunctionType>(Ty)) {
3293    Result = getPointerType(QualType(Ty, 0));
3294  } else {
3295    Result = QualType(Ty, 0);
3296  }
3297
3298  return CanQualType::CreateUnsafe(Result);
3299}
3300
3301QualType ASTContext::getUnqualifiedArrayType(QualType type,
3302                                             Qualifiers &quals) {
3303  SplitQualType splitType = type.getSplitUnqualifiedType();
3304
3305  // FIXME: getSplitUnqualifiedType() actually walks all the way to
3306  // the unqualified desugared type and then drops it on the floor.
3307  // We then have to strip that sugar back off with
3308  // getUnqualifiedDesugaredType(), which is silly.
3309  const ArrayType *AT =
3310    dyn_cast<ArrayType>(splitType.Ty->getUnqualifiedDesugaredType());
3311
3312  // If we don't have an array, just use the results in splitType.
3313  if (!AT) {
3314    quals = splitType.Quals;
3315    return QualType(splitType.Ty, 0);
3316  }
3317
3318  // Otherwise, recurse on the array's element type.
3319  QualType elementType = AT->getElementType();
3320  QualType unqualElementType = getUnqualifiedArrayType(elementType, quals);
3321
3322  // If that didn't change the element type, AT has no qualifiers, so we
3323  // can just use the results in splitType.
3324  if (elementType == unqualElementType) {
3325    assert(quals.empty()); // from the recursive call
3326    quals = splitType.Quals;
3327    return QualType(splitType.Ty, 0);
3328  }
3329
3330  // Otherwise, add in the qualifiers from the outermost type, then
3331  // build the type back up.
3332  quals.addConsistentQualifiers(splitType.Quals);
3333
3334  if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) {
3335    return getConstantArrayType(unqualElementType, CAT->getSize(),
3336                                CAT->getSizeModifier(), 0);
3337  }
3338
3339  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) {
3340    return getIncompleteArrayType(unqualElementType, IAT->getSizeModifier(), 0);
3341  }
3342
3343  if (const VariableArrayType *VAT = dyn_cast<VariableArrayType>(AT)) {
3344    return getVariableArrayType(unqualElementType,
3345                                VAT->getSizeExpr(),
3346                                VAT->getSizeModifier(),
3347                                VAT->getIndexTypeCVRQualifiers(),
3348                                VAT->getBracketsRange());
3349  }
3350
3351  const DependentSizedArrayType *DSAT = cast<DependentSizedArrayType>(AT);
3352  return getDependentSizedArrayType(unqualElementType, DSAT->getSizeExpr(),
3353                                    DSAT->getSizeModifier(), 0,
3354                                    SourceRange());
3355}
3356
3357/// UnwrapSimilarPointerTypes - If T1 and T2 are pointer types  that
3358/// may be similar (C++ 4.4), replaces T1 and T2 with the type that
3359/// they point to and return true. If T1 and T2 aren't pointer types
3360/// or pointer-to-member types, or if they are not similar at this
3361/// level, returns false and leaves T1 and T2 unchanged. Top-level
3362/// qualifiers on T1 and T2 are ignored. This function will typically
3363/// be called in a loop that successively "unwraps" pointer and
3364/// pointer-to-member types to compare them at each level.
3365bool ASTContext::UnwrapSimilarPointerTypes(QualType &T1, QualType &T2) {
3366  const PointerType *T1PtrType = T1->getAs<PointerType>(),
3367                    *T2PtrType = T2->getAs<PointerType>();
3368  if (T1PtrType && T2PtrType) {
3369    T1 = T1PtrType->getPointeeType();
3370    T2 = T2PtrType->getPointeeType();
3371    return true;
3372  }
3373
3374  const MemberPointerType *T1MPType = T1->getAs<MemberPointerType>(),
3375                          *T2MPType = T2->getAs<MemberPointerType>();
3376  if (T1MPType && T2MPType &&
3377      hasSameUnqualifiedType(QualType(T1MPType->getClass(), 0),
3378                             QualType(T2MPType->getClass(), 0))) {
3379    T1 = T1MPType->getPointeeType();
3380    T2 = T2MPType->getPointeeType();
3381    return true;
3382  }
3383
3384  if (getLangOpts().ObjC1) {
3385    const ObjCObjectPointerType *T1OPType = T1->getAs<ObjCObjectPointerType>(),
3386                                *T2OPType = T2->getAs<ObjCObjectPointerType>();
3387    if (T1OPType && T2OPType) {
3388      T1 = T1OPType->getPointeeType();
3389      T2 = T2OPType->getPointeeType();
3390      return true;
3391    }
3392  }
3393
3394  // FIXME: Block pointers, too?
3395
3396  return false;
3397}
3398
3399DeclarationNameInfo
3400ASTContext::getNameForTemplate(TemplateName Name,
3401                               SourceLocation NameLoc) const {
3402  switch (Name.getKind()) {
3403  case TemplateName::QualifiedTemplate:
3404  case TemplateName::Template:
3405    // DNInfo work in progress: CHECKME: what about DNLoc?
3406    return DeclarationNameInfo(Name.getAsTemplateDecl()->getDeclName(),
3407                               NameLoc);
3408
3409  case TemplateName::OverloadedTemplate: {
3410    OverloadedTemplateStorage *Storage = Name.getAsOverloadedTemplate();
3411    // DNInfo work in progress: CHECKME: what about DNLoc?
3412    return DeclarationNameInfo((*Storage->begin())->getDeclName(), NameLoc);
3413  }
3414
3415  case TemplateName::DependentTemplate: {
3416    DependentTemplateName *DTN = Name.getAsDependentTemplateName();
3417    DeclarationName DName;
3418    if (DTN->isIdentifier()) {
3419      DName = DeclarationNames.getIdentifier(DTN->getIdentifier());
3420      return DeclarationNameInfo(DName, NameLoc);
3421    } else {
3422      DName = DeclarationNames.getCXXOperatorName(DTN->getOperator());
3423      // DNInfo work in progress: FIXME: source locations?
3424      DeclarationNameLoc DNLoc;
3425      DNLoc.CXXOperatorName.BeginOpNameLoc = SourceLocation().getRawEncoding();
3426      DNLoc.CXXOperatorName.EndOpNameLoc = SourceLocation().getRawEncoding();
3427      return DeclarationNameInfo(DName, NameLoc, DNLoc);
3428    }
3429  }
3430
3431  case TemplateName::SubstTemplateTemplateParm: {
3432    SubstTemplateTemplateParmStorage *subst
3433      = Name.getAsSubstTemplateTemplateParm();
3434    return DeclarationNameInfo(subst->getParameter()->getDeclName(),
3435                               NameLoc);
3436  }
3437
3438  case TemplateName::SubstTemplateTemplateParmPack: {
3439    SubstTemplateTemplateParmPackStorage *subst
3440      = Name.getAsSubstTemplateTemplateParmPack();
3441    return DeclarationNameInfo(subst->getParameterPack()->getDeclName(),
3442                               NameLoc);
3443  }
3444  }
3445
3446  llvm_unreachable("bad template name kind!");
3447}
3448
3449TemplateName ASTContext::getCanonicalTemplateName(TemplateName Name) const {
3450  switch (Name.getKind()) {
3451  case TemplateName::QualifiedTemplate:
3452  case TemplateName::Template: {
3453    TemplateDecl *Template = Name.getAsTemplateDecl();
3454    if (TemplateTemplateParmDecl *TTP
3455          = dyn_cast<TemplateTemplateParmDecl>(Template))
3456      Template = getCanonicalTemplateTemplateParmDecl(TTP);
3457
3458    // The canonical template name is the canonical template declaration.
3459    return TemplateName(cast<TemplateDecl>(Template->getCanonicalDecl()));
3460  }
3461
3462  case TemplateName::OverloadedTemplate:
3463    llvm_unreachable("cannot canonicalize overloaded template");
3464
3465  case TemplateName::DependentTemplate: {
3466    DependentTemplateName *DTN = Name.getAsDependentTemplateName();
3467    assert(DTN && "Non-dependent template names must refer to template decls.");
3468    return DTN->CanonicalTemplateName;
3469  }
3470
3471  case TemplateName::SubstTemplateTemplateParm: {
3472    SubstTemplateTemplateParmStorage *subst
3473      = Name.getAsSubstTemplateTemplateParm();
3474    return getCanonicalTemplateName(subst->getReplacement());
3475  }
3476
3477  case TemplateName::SubstTemplateTemplateParmPack: {
3478    SubstTemplateTemplateParmPackStorage *subst
3479                                  = Name.getAsSubstTemplateTemplateParmPack();
3480    TemplateTemplateParmDecl *canonParameter
3481      = getCanonicalTemplateTemplateParmDecl(subst->getParameterPack());
3482    TemplateArgument canonArgPack
3483      = getCanonicalTemplateArgument(subst->getArgumentPack());
3484    return getSubstTemplateTemplateParmPack(canonParameter, canonArgPack);
3485  }
3486  }
3487
3488  llvm_unreachable("bad template name!");
3489}
3490
3491bool ASTContext::hasSameTemplateName(TemplateName X, TemplateName Y) {
3492  X = getCanonicalTemplateName(X);
3493  Y = getCanonicalTemplateName(Y);
3494  return X.getAsVoidPointer() == Y.getAsVoidPointer();
3495}
3496
3497TemplateArgument
3498ASTContext::getCanonicalTemplateArgument(const TemplateArgument &Arg) const {
3499  switch (Arg.getKind()) {
3500    case TemplateArgument::Null:
3501      return Arg;
3502
3503    case TemplateArgument::Expression:
3504      return Arg;
3505
3506    case TemplateArgument::Declaration: {
3507      if (Decl *D = Arg.getAsDecl())
3508          return TemplateArgument(D->getCanonicalDecl());
3509      return TemplateArgument((Decl*)0);
3510    }
3511
3512    case TemplateArgument::Template:
3513      return TemplateArgument(getCanonicalTemplateName(Arg.getAsTemplate()));
3514
3515    case TemplateArgument::TemplateExpansion:
3516      return TemplateArgument(getCanonicalTemplateName(
3517                                         Arg.getAsTemplateOrTemplatePattern()),
3518                              Arg.getNumTemplateExpansions());
3519
3520    case TemplateArgument::Integral:
3521      return TemplateArgument(Arg, getCanonicalType(Arg.getIntegralType()));
3522
3523    case TemplateArgument::Type:
3524      return TemplateArgument(getCanonicalType(Arg.getAsType()));
3525
3526    case TemplateArgument::Pack: {
3527      if (Arg.pack_size() == 0)
3528        return Arg;
3529
3530      TemplateArgument *CanonArgs
3531        = new (*this) TemplateArgument[Arg.pack_size()];
3532      unsigned Idx = 0;
3533      for (TemplateArgument::pack_iterator A = Arg.pack_begin(),
3534                                        AEnd = Arg.pack_end();
3535           A != AEnd; (void)++A, ++Idx)
3536        CanonArgs[Idx] = getCanonicalTemplateArgument(*A);
3537
3538      return TemplateArgument(CanonArgs, Arg.pack_size());
3539    }
3540  }
3541
3542  // Silence GCC warning
3543  llvm_unreachable("Unhandled template argument kind");
3544}
3545
3546NestedNameSpecifier *
3547ASTContext::getCanonicalNestedNameSpecifier(NestedNameSpecifier *NNS) const {
3548  if (!NNS)
3549    return 0;
3550
3551  switch (NNS->getKind()) {
3552  case NestedNameSpecifier::Identifier:
3553    // Canonicalize the prefix but keep the identifier the same.
3554    return NestedNameSpecifier::Create(*this,
3555                         getCanonicalNestedNameSpecifier(NNS->getPrefix()),
3556                                       NNS->getAsIdentifier());
3557
3558  case NestedNameSpecifier::Namespace:
3559    // A namespace is canonical; build a nested-name-specifier with
3560    // this namespace and no prefix.
3561    return NestedNameSpecifier::Create(*this, 0,
3562                                 NNS->getAsNamespace()->getOriginalNamespace());
3563
3564  case NestedNameSpecifier::NamespaceAlias:
3565    // A namespace is canonical; build a nested-name-specifier with
3566    // this namespace and no prefix.
3567    return NestedNameSpecifier::Create(*this, 0,
3568                                    NNS->getAsNamespaceAlias()->getNamespace()
3569                                                      ->getOriginalNamespace());
3570
3571  case NestedNameSpecifier::TypeSpec:
3572  case NestedNameSpecifier::TypeSpecWithTemplate: {
3573    QualType T = getCanonicalType(QualType(NNS->getAsType(), 0));
3574
3575    // If we have some kind of dependent-named type (e.g., "typename T::type"),
3576    // break it apart into its prefix and identifier, then reconsititute those
3577    // as the canonical nested-name-specifier. This is required to canonicalize
3578    // a dependent nested-name-specifier involving typedefs of dependent-name
3579    // types, e.g.,
3580    //   typedef typename T::type T1;
3581    //   typedef typename T1::type T2;
3582    if (const DependentNameType *DNT = T->getAs<DependentNameType>())
3583      return NestedNameSpecifier::Create(*this, DNT->getQualifier(),
3584                           const_cast<IdentifierInfo *>(DNT->getIdentifier()));
3585
3586    // Otherwise, just canonicalize the type, and force it to be a TypeSpec.
3587    // FIXME: Why are TypeSpec and TypeSpecWithTemplate distinct in the
3588    // first place?
3589    return NestedNameSpecifier::Create(*this, 0, false,
3590                                       const_cast<Type*>(T.getTypePtr()));
3591  }
3592
3593  case NestedNameSpecifier::Global:
3594    // The global specifier is canonical and unique.
3595    return NNS;
3596  }
3597
3598  llvm_unreachable("Invalid NestedNameSpecifier::Kind!");
3599}
3600
3601
3602const ArrayType *ASTContext::getAsArrayType(QualType T) const {
3603  // Handle the non-qualified case efficiently.
3604  if (!T.hasLocalQualifiers()) {
3605    // Handle the common positive case fast.
3606    if (const ArrayType *AT = dyn_cast<ArrayType>(T))
3607      return AT;
3608  }
3609
3610  // Handle the common negative case fast.
3611  if (!isa<ArrayType>(T.getCanonicalType()))
3612    return 0;
3613
3614  // Apply any qualifiers from the array type to the element type.  This
3615  // implements C99 6.7.3p8: "If the specification of an array type includes
3616  // any type qualifiers, the element type is so qualified, not the array type."
3617
3618  // If we get here, we either have type qualifiers on the type, or we have
3619  // sugar such as a typedef in the way.  If we have type qualifiers on the type
3620  // we must propagate them down into the element type.
3621
3622  SplitQualType split = T.getSplitDesugaredType();
3623  Qualifiers qs = split.Quals;
3624
3625  // If we have a simple case, just return now.
3626  const ArrayType *ATy = dyn_cast<ArrayType>(split.Ty);
3627  if (ATy == 0 || qs.empty())
3628    return ATy;
3629
3630  // Otherwise, we have an array and we have qualifiers on it.  Push the
3631  // qualifiers into the array element type and return a new array type.
3632  QualType NewEltTy = getQualifiedType(ATy->getElementType(), qs);
3633
3634  if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(ATy))
3635    return cast<ArrayType>(getConstantArrayType(NewEltTy, CAT->getSize(),
3636                                                CAT->getSizeModifier(),
3637                                           CAT->getIndexTypeCVRQualifiers()));
3638  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(ATy))
3639    return cast<ArrayType>(getIncompleteArrayType(NewEltTy,
3640                                                  IAT->getSizeModifier(),
3641                                           IAT->getIndexTypeCVRQualifiers()));
3642
3643  if (const DependentSizedArrayType *DSAT
3644        = dyn_cast<DependentSizedArrayType>(ATy))
3645    return cast<ArrayType>(
3646                     getDependentSizedArrayType(NewEltTy,
3647                                                DSAT->getSizeExpr(),
3648                                                DSAT->getSizeModifier(),
3649                                              DSAT->getIndexTypeCVRQualifiers(),
3650                                                DSAT->getBracketsRange()));
3651
3652  const VariableArrayType *VAT = cast<VariableArrayType>(ATy);
3653  return cast<ArrayType>(getVariableArrayType(NewEltTy,
3654                                              VAT->getSizeExpr(),
3655                                              VAT->getSizeModifier(),
3656                                              VAT->getIndexTypeCVRQualifiers(),
3657                                              VAT->getBracketsRange()));
3658}
3659
3660QualType ASTContext::getAdjustedParameterType(QualType T) const {
3661  // C99 6.7.5.3p7:
3662  //   A declaration of a parameter as "array of type" shall be
3663  //   adjusted to "qualified pointer to type", where the type
3664  //   qualifiers (if any) are those specified within the [ and ] of
3665  //   the array type derivation.
3666  if (T->isArrayType())
3667    return getArrayDecayedType(T);
3668
3669  // C99 6.7.5.3p8:
3670  //   A declaration of a parameter as "function returning type"
3671  //   shall be adjusted to "pointer to function returning type", as
3672  //   in 6.3.2.1.
3673  if (T->isFunctionType())
3674    return getPointerType(T);
3675
3676  return T;
3677}
3678
3679QualType ASTContext::getSignatureParameterType(QualType T) const {
3680  T = getVariableArrayDecayedType(T);
3681  T = getAdjustedParameterType(T);
3682  return T.getUnqualifiedType();
3683}
3684
3685/// getArrayDecayedType - Return the properly qualified result of decaying the
3686/// specified array type to a pointer.  This operation is non-trivial when
3687/// handling typedefs etc.  The canonical type of "T" must be an array type,
3688/// this returns a pointer to a properly qualified element of the array.
3689///
3690/// See C99 6.7.5.3p7 and C99 6.3.2.1p3.
3691QualType ASTContext::getArrayDecayedType(QualType Ty) const {
3692  // Get the element type with 'getAsArrayType' so that we don't lose any
3693  // typedefs in the element type of the array.  This also handles propagation
3694  // of type qualifiers from the array type into the element type if present
3695  // (C99 6.7.3p8).
3696  const ArrayType *PrettyArrayType = getAsArrayType(Ty);
3697  assert(PrettyArrayType && "Not an array type!");
3698
3699  QualType PtrTy = getPointerType(PrettyArrayType->getElementType());
3700
3701  // int x[restrict 4] ->  int *restrict
3702  return getQualifiedType(PtrTy, PrettyArrayType->getIndexTypeQualifiers());
3703}
3704
3705QualType ASTContext::getBaseElementType(const ArrayType *array) const {
3706  return getBaseElementType(array->getElementType());
3707}
3708
3709QualType ASTContext::getBaseElementType(QualType type) const {
3710  Qualifiers qs;
3711  while (true) {
3712    SplitQualType split = type.getSplitDesugaredType();
3713    const ArrayType *array = split.Ty->getAsArrayTypeUnsafe();
3714    if (!array) break;
3715
3716    type = array->getElementType();
3717    qs.addConsistentQualifiers(split.Quals);
3718  }
3719
3720  return getQualifiedType(type, qs);
3721}
3722
3723/// getConstantArrayElementCount - Returns number of constant array elements.
3724uint64_t
3725ASTContext::getConstantArrayElementCount(const ConstantArrayType *CA)  const {
3726  uint64_t ElementCount = 1;
3727  do {
3728    ElementCount *= CA->getSize().getZExtValue();
3729    CA = dyn_cast<ConstantArrayType>(CA->getElementType());
3730  } while (CA);
3731  return ElementCount;
3732}
3733
3734/// getFloatingRank - Return a relative rank for floating point types.
3735/// This routine will assert if passed a built-in type that isn't a float.
3736static FloatingRank getFloatingRank(QualType T) {
3737  if (const ComplexType *CT = T->getAs<ComplexType>())
3738    return getFloatingRank(CT->getElementType());
3739
3740  assert(T->getAs<BuiltinType>() && "getFloatingRank(): not a floating type");
3741  switch (T->getAs<BuiltinType>()->getKind()) {
3742  default: llvm_unreachable("getFloatingRank(): not a floating type");
3743  case BuiltinType::Half:       return HalfRank;
3744  case BuiltinType::Float:      return FloatRank;
3745  case BuiltinType::Double:     return DoubleRank;
3746  case BuiltinType::LongDouble: return LongDoubleRank;
3747  }
3748}
3749
3750/// getFloatingTypeOfSizeWithinDomain - Returns a real floating
3751/// point or a complex type (based on typeDomain/typeSize).
3752/// 'typeDomain' is a real floating point or complex type.
3753/// 'typeSize' is a real floating point or complex type.
3754QualType ASTContext::getFloatingTypeOfSizeWithinDomain(QualType Size,
3755                                                       QualType Domain) const {
3756  FloatingRank EltRank = getFloatingRank(Size);
3757  if (Domain->isComplexType()) {
3758    switch (EltRank) {
3759    case HalfRank: llvm_unreachable("Complex half is not supported");
3760    case FloatRank:      return FloatComplexTy;
3761    case DoubleRank:     return DoubleComplexTy;
3762    case LongDoubleRank: return LongDoubleComplexTy;
3763    }
3764  }
3765
3766  assert(Domain->isRealFloatingType() && "Unknown domain!");
3767  switch (EltRank) {
3768  case HalfRank: llvm_unreachable("Half ranks are not valid here");
3769  case FloatRank:      return FloatTy;
3770  case DoubleRank:     return DoubleTy;
3771  case LongDoubleRank: return LongDoubleTy;
3772  }
3773  llvm_unreachable("getFloatingRank(): illegal value for rank");
3774}
3775
3776/// getFloatingTypeOrder - Compare the rank of the two specified floating
3777/// point types, ignoring the domain of the type (i.e. 'double' ==
3778/// '_Complex double').  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
3779/// LHS < RHS, return -1.
3780int ASTContext::getFloatingTypeOrder(QualType LHS, QualType RHS) const {
3781  FloatingRank LHSR = getFloatingRank(LHS);
3782  FloatingRank RHSR = getFloatingRank(RHS);
3783
3784  if (LHSR == RHSR)
3785    return 0;
3786  if (LHSR > RHSR)
3787    return 1;
3788  return -1;
3789}
3790
3791/// getIntegerRank - Return an integer conversion rank (C99 6.3.1.1p1). This
3792/// routine will assert if passed a built-in type that isn't an integer or enum,
3793/// or if it is not canonicalized.
3794unsigned ASTContext::getIntegerRank(const Type *T) const {
3795  assert(T->isCanonicalUnqualified() && "T should be canonicalized");
3796
3797  switch (cast<BuiltinType>(T)->getKind()) {
3798  default: llvm_unreachable("getIntegerRank(): not a built-in integer");
3799  case BuiltinType::Bool:
3800    return 1 + (getIntWidth(BoolTy) << 3);
3801  case BuiltinType::Char_S:
3802  case BuiltinType::Char_U:
3803  case BuiltinType::SChar:
3804  case BuiltinType::UChar:
3805    return 2 + (getIntWidth(CharTy) << 3);
3806  case BuiltinType::Short:
3807  case BuiltinType::UShort:
3808    return 3 + (getIntWidth(ShortTy) << 3);
3809  case BuiltinType::Int:
3810  case BuiltinType::UInt:
3811    return 4 + (getIntWidth(IntTy) << 3);
3812  case BuiltinType::Long:
3813  case BuiltinType::ULong:
3814    return 5 + (getIntWidth(LongTy) << 3);
3815  case BuiltinType::LongLong:
3816  case BuiltinType::ULongLong:
3817    return 6 + (getIntWidth(LongLongTy) << 3);
3818  case BuiltinType::Int128:
3819  case BuiltinType::UInt128:
3820    return 7 + (getIntWidth(Int128Ty) << 3);
3821  }
3822}
3823
3824/// \brief Whether this is a promotable bitfield reference according
3825/// to C99 6.3.1.1p2, bullet 2 (and GCC extensions).
3826///
3827/// \returns the type this bit-field will promote to, or NULL if no
3828/// promotion occurs.
3829QualType ASTContext::isPromotableBitField(Expr *E) const {
3830  if (E->isTypeDependent() || E->isValueDependent())
3831    return QualType();
3832
3833  FieldDecl *Field = E->getBitField();
3834  if (!Field)
3835    return QualType();
3836
3837  QualType FT = Field->getType();
3838
3839  uint64_t BitWidth = Field->getBitWidthValue(*this);
3840  uint64_t IntSize = getTypeSize(IntTy);
3841  // GCC extension compatibility: if the bit-field size is less than or equal
3842  // to the size of int, it gets promoted no matter what its type is.
3843  // For instance, unsigned long bf : 4 gets promoted to signed int.
3844  if (BitWidth < IntSize)
3845    return IntTy;
3846
3847  if (BitWidth == IntSize)
3848    return FT->isSignedIntegerType() ? IntTy : UnsignedIntTy;
3849
3850  // Types bigger than int are not subject to promotions, and therefore act
3851  // like the base type.
3852  // FIXME: This doesn't quite match what gcc does, but what gcc does here
3853  // is ridiculous.
3854  return QualType();
3855}
3856
3857/// getPromotedIntegerType - Returns the type that Promotable will
3858/// promote to: C99 6.3.1.1p2, assuming that Promotable is a promotable
3859/// integer type.
3860QualType ASTContext::getPromotedIntegerType(QualType Promotable) const {
3861  assert(!Promotable.isNull());
3862  assert(Promotable->isPromotableIntegerType());
3863  if (const EnumType *ET = Promotable->getAs<EnumType>())
3864    return ET->getDecl()->getPromotionType();
3865
3866  if (const BuiltinType *BT = Promotable->getAs<BuiltinType>()) {
3867    // C++ [conv.prom]: A prvalue of type char16_t, char32_t, or wchar_t
3868    // (3.9.1) can be converted to a prvalue of the first of the following
3869    // types that can represent all the values of its underlying type:
3870    // int, unsigned int, long int, unsigned long int, long long int, or
3871    // unsigned long long int [...]
3872    // FIXME: Is there some better way to compute this?
3873    if (BT->getKind() == BuiltinType::WChar_S ||
3874        BT->getKind() == BuiltinType::WChar_U ||
3875        BT->getKind() == BuiltinType::Char16 ||
3876        BT->getKind() == BuiltinType::Char32) {
3877      bool FromIsSigned = BT->getKind() == BuiltinType::WChar_S;
3878      uint64_t FromSize = getTypeSize(BT);
3879      QualType PromoteTypes[] = { IntTy, UnsignedIntTy, LongTy, UnsignedLongTy,
3880                                  LongLongTy, UnsignedLongLongTy };
3881      for (size_t Idx = 0; Idx < llvm::array_lengthof(PromoteTypes); ++Idx) {
3882        uint64_t ToSize = getTypeSize(PromoteTypes[Idx]);
3883        if (FromSize < ToSize ||
3884            (FromSize == ToSize &&
3885             FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType()))
3886          return PromoteTypes[Idx];
3887      }
3888      llvm_unreachable("char type should fit into long long");
3889    }
3890  }
3891
3892  // At this point, we should have a signed or unsigned integer type.
3893  if (Promotable->isSignedIntegerType())
3894    return IntTy;
3895  uint64_t PromotableSize = getTypeSize(Promotable);
3896  uint64_t IntSize = getTypeSize(IntTy);
3897  assert(Promotable->isUnsignedIntegerType() && PromotableSize <= IntSize);
3898  return (PromotableSize != IntSize) ? IntTy : UnsignedIntTy;
3899}
3900
3901/// \brief Recurses in pointer/array types until it finds an objc retainable
3902/// type and returns its ownership.
3903Qualifiers::ObjCLifetime ASTContext::getInnerObjCOwnership(QualType T) const {
3904  while (!T.isNull()) {
3905    if (T.getObjCLifetime() != Qualifiers::OCL_None)
3906      return T.getObjCLifetime();
3907    if (T->isArrayType())
3908      T = getBaseElementType(T);
3909    else if (const PointerType *PT = T->getAs<PointerType>())
3910      T = PT->getPointeeType();
3911    else if (const ReferenceType *RT = T->getAs<ReferenceType>())
3912      T = RT->getPointeeType();
3913    else
3914      break;
3915  }
3916
3917  return Qualifiers::OCL_None;
3918}
3919
3920/// getIntegerTypeOrder - Returns the highest ranked integer type:
3921/// C99 6.3.1.8p1.  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
3922/// LHS < RHS, return -1.
3923int ASTContext::getIntegerTypeOrder(QualType LHS, QualType RHS) const {
3924  const Type *LHSC = getCanonicalType(LHS).getTypePtr();
3925  const Type *RHSC = getCanonicalType(RHS).getTypePtr();
3926  if (LHSC == RHSC) return 0;
3927
3928  bool LHSUnsigned = LHSC->isUnsignedIntegerType();
3929  bool RHSUnsigned = RHSC->isUnsignedIntegerType();
3930
3931  unsigned LHSRank = getIntegerRank(LHSC);
3932  unsigned RHSRank = getIntegerRank(RHSC);
3933
3934  if (LHSUnsigned == RHSUnsigned) {  // Both signed or both unsigned.
3935    if (LHSRank == RHSRank) return 0;
3936    return LHSRank > RHSRank ? 1 : -1;
3937  }
3938
3939  // Otherwise, the LHS is signed and the RHS is unsigned or visa versa.
3940  if (LHSUnsigned) {
3941    // If the unsigned [LHS] type is larger, return it.
3942    if (LHSRank >= RHSRank)
3943      return 1;
3944
3945    // If the signed type can represent all values of the unsigned type, it
3946    // wins.  Because we are dealing with 2's complement and types that are
3947    // powers of two larger than each other, this is always safe.
3948    return -1;
3949  }
3950
3951  // If the unsigned [RHS] type is larger, return it.
3952  if (RHSRank >= LHSRank)
3953    return -1;
3954
3955  // If the signed type can represent all values of the unsigned type, it
3956  // wins.  Because we are dealing with 2's complement and types that are
3957  // powers of two larger than each other, this is always safe.
3958  return 1;
3959}
3960
3961static RecordDecl *
3962CreateRecordDecl(const ASTContext &Ctx, RecordDecl::TagKind TK,
3963                 DeclContext *DC, IdentifierInfo *Id) {
3964  SourceLocation Loc;
3965  if (Ctx.getLangOpts().CPlusPlus)
3966    return CXXRecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id);
3967  else
3968    return RecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id);
3969}
3970
3971// getCFConstantStringType - Return the type used for constant CFStrings.
3972QualType ASTContext::getCFConstantStringType() const {
3973  if (!CFConstantStringTypeDecl) {
3974    CFConstantStringTypeDecl =
3975      CreateRecordDecl(*this, TTK_Struct, TUDecl,
3976                       &Idents.get("NSConstantString"));
3977    CFConstantStringTypeDecl->startDefinition();
3978
3979    QualType FieldTypes[4];
3980
3981    // const int *isa;
3982    FieldTypes[0] = getPointerType(IntTy.withConst());
3983    // int flags;
3984    FieldTypes[1] = IntTy;
3985    // const char *str;
3986    FieldTypes[2] = getPointerType(CharTy.withConst());
3987    // long length;
3988    FieldTypes[3] = LongTy;
3989
3990    // Create fields
3991    for (unsigned i = 0; i < 4; ++i) {
3992      FieldDecl *Field = FieldDecl::Create(*this, CFConstantStringTypeDecl,
3993                                           SourceLocation(),
3994                                           SourceLocation(), 0,
3995                                           FieldTypes[i], /*TInfo=*/0,
3996                                           /*BitWidth=*/0,
3997                                           /*Mutable=*/false,
3998                                           ICIS_NoInit);
3999      Field->setAccess(AS_public);
4000      CFConstantStringTypeDecl->addDecl(Field);
4001    }
4002
4003    CFConstantStringTypeDecl->completeDefinition();
4004  }
4005
4006  return getTagDeclType(CFConstantStringTypeDecl);
4007}
4008
4009void ASTContext::setCFConstantStringType(QualType T) {
4010  const RecordType *Rec = T->getAs<RecordType>();
4011  assert(Rec && "Invalid CFConstantStringType");
4012  CFConstantStringTypeDecl = Rec->getDecl();
4013}
4014
4015QualType ASTContext::getBlockDescriptorType() const {
4016  if (BlockDescriptorType)
4017    return getTagDeclType(BlockDescriptorType);
4018
4019  RecordDecl *T;
4020  // FIXME: Needs the FlagAppleBlock bit.
4021  T = CreateRecordDecl(*this, TTK_Struct, TUDecl,
4022                       &Idents.get("__block_descriptor"));
4023  T->startDefinition();
4024
4025  QualType FieldTypes[] = {
4026    UnsignedLongTy,
4027    UnsignedLongTy,
4028  };
4029
4030  const char *FieldNames[] = {
4031    "reserved",
4032    "Size"
4033  };
4034
4035  for (size_t i = 0; i < 2; ++i) {
4036    FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(),
4037                                         SourceLocation(),
4038                                         &Idents.get(FieldNames[i]),
4039                                         FieldTypes[i], /*TInfo=*/0,
4040                                         /*BitWidth=*/0,
4041                                         /*Mutable=*/false,
4042                                         ICIS_NoInit);
4043    Field->setAccess(AS_public);
4044    T->addDecl(Field);
4045  }
4046
4047  T->completeDefinition();
4048
4049  BlockDescriptorType = T;
4050
4051  return getTagDeclType(BlockDescriptorType);
4052}
4053
4054QualType ASTContext::getBlockDescriptorExtendedType() const {
4055  if (BlockDescriptorExtendedType)
4056    return getTagDeclType(BlockDescriptorExtendedType);
4057
4058  RecordDecl *T;
4059  // FIXME: Needs the FlagAppleBlock bit.
4060  T = CreateRecordDecl(*this, TTK_Struct, TUDecl,
4061                       &Idents.get("__block_descriptor_withcopydispose"));
4062  T->startDefinition();
4063
4064  QualType FieldTypes[] = {
4065    UnsignedLongTy,
4066    UnsignedLongTy,
4067    getPointerType(VoidPtrTy),
4068    getPointerType(VoidPtrTy)
4069  };
4070
4071  const char *FieldNames[] = {
4072    "reserved",
4073    "Size",
4074    "CopyFuncPtr",
4075    "DestroyFuncPtr"
4076  };
4077
4078  for (size_t i = 0; i < 4; ++i) {
4079    FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(),
4080                                         SourceLocation(),
4081                                         &Idents.get(FieldNames[i]),
4082                                         FieldTypes[i], /*TInfo=*/0,
4083                                         /*BitWidth=*/0,
4084                                         /*Mutable=*/false,
4085                                         ICIS_NoInit);
4086    Field->setAccess(AS_public);
4087    T->addDecl(Field);
4088  }
4089
4090  T->completeDefinition();
4091
4092  BlockDescriptorExtendedType = T;
4093
4094  return getTagDeclType(BlockDescriptorExtendedType);
4095}
4096
4097bool ASTContext::BlockRequiresCopying(QualType Ty) const {
4098  if (Ty->isObjCRetainableType())
4099    return true;
4100  if (getLangOpts().CPlusPlus) {
4101    if (const RecordType *RT = Ty->getAs<RecordType>()) {
4102      CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
4103      return RD->hasConstCopyConstructor();
4104
4105    }
4106  }
4107  return false;
4108}
4109
4110QualType
4111ASTContext::BuildByRefType(StringRef DeclName, QualType Ty) const {
4112  //  type = struct __Block_byref_1_X {
4113  //    void *__isa;
4114  //    struct __Block_byref_1_X *__forwarding;
4115  //    unsigned int __flags;
4116  //    unsigned int __size;
4117  //    void *__copy_helper;            // as needed
4118  //    void *__destroy_help            // as needed
4119  //    int X;
4120  //  } *
4121
4122  bool HasCopyAndDispose = BlockRequiresCopying(Ty);
4123
4124  // FIXME: Move up
4125  SmallString<36> Name;
4126  llvm::raw_svector_ostream(Name) << "__Block_byref_" <<
4127                                  ++UniqueBlockByRefTypeID << '_' << DeclName;
4128  RecordDecl *T;
4129  T = CreateRecordDecl(*this, TTK_Struct, TUDecl, &Idents.get(Name.str()));
4130  T->startDefinition();
4131  QualType Int32Ty = IntTy;
4132  assert(getIntWidth(IntTy) == 32 && "non-32bit int not supported");
4133  QualType FieldTypes[] = {
4134    getPointerType(VoidPtrTy),
4135    getPointerType(getTagDeclType(T)),
4136    Int32Ty,
4137    Int32Ty,
4138    getPointerType(VoidPtrTy),
4139    getPointerType(VoidPtrTy),
4140    Ty
4141  };
4142
4143  StringRef FieldNames[] = {
4144    "__isa",
4145    "__forwarding",
4146    "__flags",
4147    "__size",
4148    "__copy_helper",
4149    "__destroy_helper",
4150    DeclName,
4151  };
4152
4153  for (size_t i = 0; i < 7; ++i) {
4154    if (!HasCopyAndDispose && i >=4 && i <= 5)
4155      continue;
4156    FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(),
4157                                         SourceLocation(),
4158                                         &Idents.get(FieldNames[i]),
4159                                         FieldTypes[i], /*TInfo=*/0,
4160                                         /*BitWidth=*/0, /*Mutable=*/false,
4161                                         ICIS_NoInit);
4162    Field->setAccess(AS_public);
4163    T->addDecl(Field);
4164  }
4165
4166  T->completeDefinition();
4167
4168  return getPointerType(getTagDeclType(T));
4169}
4170
4171TypedefDecl *ASTContext::getObjCInstanceTypeDecl() {
4172  if (!ObjCInstanceTypeDecl)
4173    ObjCInstanceTypeDecl = TypedefDecl::Create(*this,
4174                                               getTranslationUnitDecl(),
4175                                               SourceLocation(),
4176                                               SourceLocation(),
4177                                               &Idents.get("instancetype"),
4178                                     getTrivialTypeSourceInfo(getObjCIdType()));
4179  return ObjCInstanceTypeDecl;
4180}
4181
4182// This returns true if a type has been typedefed to BOOL:
4183// typedef <type> BOOL;
4184static bool isTypeTypedefedAsBOOL(QualType T) {
4185  if (const TypedefType *TT = dyn_cast<TypedefType>(T))
4186    if (IdentifierInfo *II = TT->getDecl()->getIdentifier())
4187      return II->isStr("BOOL");
4188
4189  return false;
4190}
4191
4192/// getObjCEncodingTypeSize returns size of type for objective-c encoding
4193/// purpose.
4194CharUnits ASTContext::getObjCEncodingTypeSize(QualType type) const {
4195  if (!type->isIncompleteArrayType() && type->isIncompleteType())
4196    return CharUnits::Zero();
4197
4198  CharUnits sz = getTypeSizeInChars(type);
4199
4200  // Make all integer and enum types at least as large as an int
4201  if (sz.isPositive() && type->isIntegralOrEnumerationType())
4202    sz = std::max(sz, getTypeSizeInChars(IntTy));
4203  // Treat arrays as pointers, since that's how they're passed in.
4204  else if (type->isArrayType())
4205    sz = getTypeSizeInChars(VoidPtrTy);
4206  return sz;
4207}
4208
4209static inline
4210std::string charUnitsToString(const CharUnits &CU) {
4211  return llvm::itostr(CU.getQuantity());
4212}
4213
4214/// getObjCEncodingForBlock - Return the encoded type for this block
4215/// declaration.
4216std::string ASTContext::getObjCEncodingForBlock(const BlockExpr *Expr) const {
4217  std::string S;
4218
4219  const BlockDecl *Decl = Expr->getBlockDecl();
4220  QualType BlockTy =
4221      Expr->getType()->getAs<BlockPointerType>()->getPointeeType();
4222  // Encode result type.
4223  getObjCEncodingForType(BlockTy->getAs<FunctionType>()->getResultType(), S);
4224  // Compute size of all parameters.
4225  // Start with computing size of a pointer in number of bytes.
4226  // FIXME: There might(should) be a better way of doing this computation!
4227  SourceLocation Loc;
4228  CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy);
4229  CharUnits ParmOffset = PtrSize;
4230  for (BlockDecl::param_const_iterator PI = Decl->param_begin(),
4231       E = Decl->param_end(); PI != E; ++PI) {
4232    QualType PType = (*PI)->getType();
4233    CharUnits sz = getObjCEncodingTypeSize(PType);
4234    if (sz.isZero())
4235      continue;
4236    assert (sz.isPositive() && "BlockExpr - Incomplete param type");
4237    ParmOffset += sz;
4238  }
4239  // Size of the argument frame
4240  S += charUnitsToString(ParmOffset);
4241  // Block pointer and offset.
4242  S += "@?0";
4243
4244  // Argument types.
4245  ParmOffset = PtrSize;
4246  for (BlockDecl::param_const_iterator PI = Decl->param_begin(), E =
4247       Decl->param_end(); PI != E; ++PI) {
4248    ParmVarDecl *PVDecl = *PI;
4249    QualType PType = PVDecl->getOriginalType();
4250    if (const ArrayType *AT =
4251          dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
4252      // Use array's original type only if it has known number of
4253      // elements.
4254      if (!isa<ConstantArrayType>(AT))
4255        PType = PVDecl->getType();
4256    } else if (PType->isFunctionType())
4257      PType = PVDecl->getType();
4258    getObjCEncodingForType(PType, S);
4259    S += charUnitsToString(ParmOffset);
4260    ParmOffset += getObjCEncodingTypeSize(PType);
4261  }
4262
4263  return S;
4264}
4265
4266bool ASTContext::getObjCEncodingForFunctionDecl(const FunctionDecl *Decl,
4267                                                std::string& S) {
4268  // Encode result type.
4269  getObjCEncodingForType(Decl->getResultType(), S);
4270  CharUnits ParmOffset;
4271  // Compute size of all parameters.
4272  for (FunctionDecl::param_const_iterator PI = Decl->param_begin(),
4273       E = Decl->param_end(); PI != E; ++PI) {
4274    QualType PType = (*PI)->getType();
4275    CharUnits sz = getObjCEncodingTypeSize(PType);
4276    if (sz.isZero())
4277      continue;
4278
4279    assert (sz.isPositive() &&
4280        "getObjCEncodingForFunctionDecl - Incomplete param type");
4281    ParmOffset += sz;
4282  }
4283  S += charUnitsToString(ParmOffset);
4284  ParmOffset = CharUnits::Zero();
4285
4286  // Argument types.
4287  for (FunctionDecl::param_const_iterator PI = Decl->param_begin(),
4288       E = Decl->param_end(); PI != E; ++PI) {
4289    ParmVarDecl *PVDecl = *PI;
4290    QualType PType = PVDecl->getOriginalType();
4291    if (const ArrayType *AT =
4292          dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
4293      // Use array's original type only if it has known number of
4294      // elements.
4295      if (!isa<ConstantArrayType>(AT))
4296        PType = PVDecl->getType();
4297    } else if (PType->isFunctionType())
4298      PType = PVDecl->getType();
4299    getObjCEncodingForType(PType, S);
4300    S += charUnitsToString(ParmOffset);
4301    ParmOffset += getObjCEncodingTypeSize(PType);
4302  }
4303
4304  return false;
4305}
4306
4307/// getObjCEncodingForMethodParameter - Return the encoded type for a single
4308/// method parameter or return type. If Extended, include class names and
4309/// block object types.
4310void ASTContext::getObjCEncodingForMethodParameter(Decl::ObjCDeclQualifier QT,
4311                                                   QualType T, std::string& S,
4312                                                   bool Extended) const {
4313  // Encode type qualifer, 'in', 'inout', etc. for the parameter.
4314  getObjCEncodingForTypeQualifier(QT, S);
4315  // Encode parameter type.
4316  getObjCEncodingForTypeImpl(T, S, true, true, 0,
4317                             true     /*OutermostType*/,
4318                             false    /*EncodingProperty*/,
4319                             false    /*StructField*/,
4320                             Extended /*EncodeBlockParameters*/,
4321                             Extended /*EncodeClassNames*/);
4322}
4323
4324/// getObjCEncodingForMethodDecl - Return the encoded type for this method
4325/// declaration.
4326bool ASTContext::getObjCEncodingForMethodDecl(const ObjCMethodDecl *Decl,
4327                                              std::string& S,
4328                                              bool Extended) const {
4329  // FIXME: This is not very efficient.
4330  // Encode return type.
4331  getObjCEncodingForMethodParameter(Decl->getObjCDeclQualifier(),
4332                                    Decl->getResultType(), S, Extended);
4333  // Compute size of all parameters.
4334  // Start with computing size of a pointer in number of bytes.
4335  // FIXME: There might(should) be a better way of doing this computation!
4336  SourceLocation Loc;
4337  CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy);
4338  // The first two arguments (self and _cmd) are pointers; account for
4339  // their size.
4340  CharUnits ParmOffset = 2 * PtrSize;
4341  for (ObjCMethodDecl::param_const_iterator PI = Decl->param_begin(),
4342       E = Decl->sel_param_end(); PI != E; ++PI) {
4343    QualType PType = (*PI)->getType();
4344    CharUnits sz = getObjCEncodingTypeSize(PType);
4345    if (sz.isZero())
4346      continue;
4347
4348    assert (sz.isPositive() &&
4349        "getObjCEncodingForMethodDecl - Incomplete param type");
4350    ParmOffset += sz;
4351  }
4352  S += charUnitsToString(ParmOffset);
4353  S += "@0:";
4354  S += charUnitsToString(PtrSize);
4355
4356  // Argument types.
4357  ParmOffset = 2 * PtrSize;
4358  for (ObjCMethodDecl::param_const_iterator PI = Decl->param_begin(),
4359       E = Decl->sel_param_end(); PI != E; ++PI) {
4360    const ParmVarDecl *PVDecl = *PI;
4361    QualType PType = PVDecl->getOriginalType();
4362    if (const ArrayType *AT =
4363          dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
4364      // Use array's original type only if it has known number of
4365      // elements.
4366      if (!isa<ConstantArrayType>(AT))
4367        PType = PVDecl->getType();
4368    } else if (PType->isFunctionType())
4369      PType = PVDecl->getType();
4370    getObjCEncodingForMethodParameter(PVDecl->getObjCDeclQualifier(),
4371                                      PType, S, Extended);
4372    S += charUnitsToString(ParmOffset);
4373    ParmOffset += getObjCEncodingTypeSize(PType);
4374  }
4375
4376  return false;
4377}
4378
4379/// getObjCEncodingForPropertyDecl - Return the encoded type for this
4380/// property declaration. If non-NULL, Container must be either an
4381/// ObjCCategoryImplDecl or ObjCImplementationDecl; it should only be
4382/// NULL when getting encodings for protocol properties.
4383/// Property attributes are stored as a comma-delimited C string. The simple
4384/// attributes readonly and bycopy are encoded as single characters. The
4385/// parametrized attributes, getter=name, setter=name, and ivar=name, are
4386/// encoded as single characters, followed by an identifier. Property types
4387/// are also encoded as a parametrized attribute. The characters used to encode
4388/// these attributes are defined by the following enumeration:
4389/// @code
4390/// enum PropertyAttributes {
4391/// kPropertyReadOnly = 'R',   // property is read-only.
4392/// kPropertyBycopy = 'C',     // property is a copy of the value last assigned
4393/// kPropertyByref = '&',  // property is a reference to the value last assigned
4394/// kPropertyDynamic = 'D',    // property is dynamic
4395/// kPropertyGetter = 'G',     // followed by getter selector name
4396/// kPropertySetter = 'S',     // followed by setter selector name
4397/// kPropertyInstanceVariable = 'V'  // followed by instance variable  name
4398/// kPropertyType = 'T'              // followed by old-style type encoding.
4399/// kPropertyWeak = 'W'              // 'weak' property
4400/// kPropertyStrong = 'P'            // property GC'able
4401/// kPropertyNonAtomic = 'N'         // property non-atomic
4402/// };
4403/// @endcode
4404void ASTContext::getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD,
4405                                                const Decl *Container,
4406                                                std::string& S) const {
4407  // Collect information from the property implementation decl(s).
4408  bool Dynamic = false;
4409  ObjCPropertyImplDecl *SynthesizePID = 0;
4410
4411  // FIXME: Duplicated code due to poor abstraction.
4412  if (Container) {
4413    if (const ObjCCategoryImplDecl *CID =
4414        dyn_cast<ObjCCategoryImplDecl>(Container)) {
4415      for (ObjCCategoryImplDecl::propimpl_iterator
4416             i = CID->propimpl_begin(), e = CID->propimpl_end();
4417           i != e; ++i) {
4418        ObjCPropertyImplDecl *PID = *i;
4419        if (PID->getPropertyDecl() == PD) {
4420          if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) {
4421            Dynamic = true;
4422          } else {
4423            SynthesizePID = PID;
4424          }
4425        }
4426      }
4427    } else {
4428      const ObjCImplementationDecl *OID=cast<ObjCImplementationDecl>(Container);
4429      for (ObjCCategoryImplDecl::propimpl_iterator
4430             i = OID->propimpl_begin(), e = OID->propimpl_end();
4431           i != e; ++i) {
4432        ObjCPropertyImplDecl *PID = *i;
4433        if (PID->getPropertyDecl() == PD) {
4434          if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) {
4435            Dynamic = true;
4436          } else {
4437            SynthesizePID = PID;
4438          }
4439        }
4440      }
4441    }
4442  }
4443
4444  // FIXME: This is not very efficient.
4445  S = "T";
4446
4447  // Encode result type.
4448  // GCC has some special rules regarding encoding of properties which
4449  // closely resembles encoding of ivars.
4450  getObjCEncodingForTypeImpl(PD->getType(), S, true, true, 0,
4451                             true /* outermost type */,
4452                             true /* encoding for property */);
4453
4454  if (PD->isReadOnly()) {
4455    S += ",R";
4456  } else {
4457    switch (PD->getSetterKind()) {
4458    case ObjCPropertyDecl::Assign: break;
4459    case ObjCPropertyDecl::Copy:   S += ",C"; break;
4460    case ObjCPropertyDecl::Retain: S += ",&"; break;
4461    case ObjCPropertyDecl::Weak:   S += ",W"; break;
4462    }
4463  }
4464
4465  // It really isn't clear at all what this means, since properties
4466  // are "dynamic by default".
4467  if (Dynamic)
4468    S += ",D";
4469
4470  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_nonatomic)
4471    S += ",N";
4472
4473  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_getter) {
4474    S += ",G";
4475    S += PD->getGetterName().getAsString();
4476  }
4477
4478  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_setter) {
4479    S += ",S";
4480    S += PD->getSetterName().getAsString();
4481  }
4482
4483  if (SynthesizePID) {
4484    const ObjCIvarDecl *OID = SynthesizePID->getPropertyIvarDecl();
4485    S += ",V";
4486    S += OID->getNameAsString();
4487  }
4488
4489  // FIXME: OBJCGC: weak & strong
4490}
4491
4492/// getLegacyIntegralTypeEncoding -
4493/// Another legacy compatibility encoding: 32-bit longs are encoded as
4494/// 'l' or 'L' , but not always.  For typedefs, we need to use
4495/// 'i' or 'I' instead if encoding a struct field, or a pointer!
4496///
4497void ASTContext::getLegacyIntegralTypeEncoding (QualType &PointeeTy) const {
4498  if (isa<TypedefType>(PointeeTy.getTypePtr())) {
4499    if (const BuiltinType *BT = PointeeTy->getAs<BuiltinType>()) {
4500      if (BT->getKind() == BuiltinType::ULong && getIntWidth(PointeeTy) == 32)
4501        PointeeTy = UnsignedIntTy;
4502      else
4503        if (BT->getKind() == BuiltinType::Long && getIntWidth(PointeeTy) == 32)
4504          PointeeTy = IntTy;
4505    }
4506  }
4507}
4508
4509void ASTContext::getObjCEncodingForType(QualType T, std::string& S,
4510                                        const FieldDecl *Field) const {
4511  // We follow the behavior of gcc, expanding structures which are
4512  // directly pointed to, and expanding embedded structures. Note that
4513  // these rules are sufficient to prevent recursive encoding of the
4514  // same type.
4515  getObjCEncodingForTypeImpl(T, S, true, true, Field,
4516                             true /* outermost type */);
4517}
4518
4519static char ObjCEncodingForPrimitiveKind(const ASTContext *C, QualType T) {
4520    switch (T->getAs<BuiltinType>()->getKind()) {
4521    default: llvm_unreachable("Unhandled builtin type kind");
4522    case BuiltinType::Void:       return 'v';
4523    case BuiltinType::Bool:       return 'B';
4524    case BuiltinType::Char_U:
4525    case BuiltinType::UChar:      return 'C';
4526    case BuiltinType::UShort:     return 'S';
4527    case BuiltinType::UInt:       return 'I';
4528    case BuiltinType::ULong:
4529        return C->getIntWidth(T) == 32 ? 'L' : 'Q';
4530    case BuiltinType::UInt128:    return 'T';
4531    case BuiltinType::ULongLong:  return 'Q';
4532    case BuiltinType::Char_S:
4533    case BuiltinType::SChar:      return 'c';
4534    case BuiltinType::Short:      return 's';
4535    case BuiltinType::WChar_S:
4536    case BuiltinType::WChar_U:
4537    case BuiltinType::Int:        return 'i';
4538    case BuiltinType::Long:
4539      return C->getIntWidth(T) == 32 ? 'l' : 'q';
4540    case BuiltinType::LongLong:   return 'q';
4541    case BuiltinType::Int128:     return 't';
4542    case BuiltinType::Float:      return 'f';
4543    case BuiltinType::Double:     return 'd';
4544    case BuiltinType::LongDouble: return 'D';
4545    }
4546}
4547
4548static char ObjCEncodingForEnumType(const ASTContext *C, const EnumType *ET) {
4549  EnumDecl *Enum = ET->getDecl();
4550
4551  // The encoding of an non-fixed enum type is always 'i', regardless of size.
4552  if (!Enum->isFixed())
4553    return 'i';
4554
4555  // The encoding of a fixed enum type matches its fixed underlying type.
4556  return ObjCEncodingForPrimitiveKind(C, Enum->getIntegerType());
4557}
4558
4559static void EncodeBitField(const ASTContext *Ctx, std::string& S,
4560                           QualType T, const FieldDecl *FD) {
4561  assert(FD->isBitField() && "not a bitfield - getObjCEncodingForTypeImpl");
4562  S += 'b';
4563  // The NeXT runtime encodes bit fields as b followed by the number of bits.
4564  // The GNU runtime requires more information; bitfields are encoded as b,
4565  // then the offset (in bits) of the first element, then the type of the
4566  // bitfield, then the size in bits.  For example, in this structure:
4567  //
4568  // struct
4569  // {
4570  //    int integer;
4571  //    int flags:2;
4572  // };
4573  // On a 32-bit system, the encoding for flags would be b2 for the NeXT
4574  // runtime, but b32i2 for the GNU runtime.  The reason for this extra
4575  // information is not especially sensible, but we're stuck with it for
4576  // compatibility with GCC, although providing it breaks anything that
4577  // actually uses runtime introspection and wants to work on both runtimes...
4578  if (Ctx->getLangOpts().ObjCRuntime.isGNUFamily()) {
4579    const RecordDecl *RD = FD->getParent();
4580    const ASTRecordLayout &RL = Ctx->getASTRecordLayout(RD);
4581    S += llvm::utostr(RL.getFieldOffset(FD->getFieldIndex()));
4582    if (const EnumType *ET = T->getAs<EnumType>())
4583      S += ObjCEncodingForEnumType(Ctx, ET);
4584    else
4585      S += ObjCEncodingForPrimitiveKind(Ctx, T);
4586  }
4587  S += llvm::utostr(FD->getBitWidthValue(*Ctx));
4588}
4589
4590// FIXME: Use SmallString for accumulating string.
4591void ASTContext::getObjCEncodingForTypeImpl(QualType T, std::string& S,
4592                                            bool ExpandPointedToStructures,
4593                                            bool ExpandStructures,
4594                                            const FieldDecl *FD,
4595                                            bool OutermostType,
4596                                            bool EncodingProperty,
4597                                            bool StructField,
4598                                            bool EncodeBlockParameters,
4599                                            bool EncodeClassNames) const {
4600  if (T->getAs<BuiltinType>()) {
4601    if (FD && FD->isBitField())
4602      return EncodeBitField(this, S, T, FD);
4603    S += ObjCEncodingForPrimitiveKind(this, T);
4604    return;
4605  }
4606
4607  if (const ComplexType *CT = T->getAs<ComplexType>()) {
4608    S += 'j';
4609    getObjCEncodingForTypeImpl(CT->getElementType(), S, false, false, 0, false,
4610                               false);
4611    return;
4612  }
4613
4614  // encoding for pointer or r3eference types.
4615  QualType PointeeTy;
4616  if (const PointerType *PT = T->getAs<PointerType>()) {
4617    if (PT->isObjCSelType()) {
4618      S += ':';
4619      return;
4620    }
4621    PointeeTy = PT->getPointeeType();
4622  }
4623  else if (const ReferenceType *RT = T->getAs<ReferenceType>())
4624    PointeeTy = RT->getPointeeType();
4625  if (!PointeeTy.isNull()) {
4626    bool isReadOnly = false;
4627    // For historical/compatibility reasons, the read-only qualifier of the
4628    // pointee gets emitted _before_ the '^'.  The read-only qualifier of
4629    // the pointer itself gets ignored, _unless_ we are looking at a typedef!
4630    // Also, do not emit the 'r' for anything but the outermost type!
4631    if (isa<TypedefType>(T.getTypePtr())) {
4632      if (OutermostType && T.isConstQualified()) {
4633        isReadOnly = true;
4634        S += 'r';
4635      }
4636    } else if (OutermostType) {
4637      QualType P = PointeeTy;
4638      while (P->getAs<PointerType>())
4639        P = P->getAs<PointerType>()->getPointeeType();
4640      if (P.isConstQualified()) {
4641        isReadOnly = true;
4642        S += 'r';
4643      }
4644    }
4645    if (isReadOnly) {
4646      // Another legacy compatibility encoding. Some ObjC qualifier and type
4647      // combinations need to be rearranged.
4648      // Rewrite "in const" from "nr" to "rn"
4649      if (StringRef(S).endswith("nr"))
4650        S.replace(S.end()-2, S.end(), "rn");
4651    }
4652
4653    if (PointeeTy->isCharType()) {
4654      // char pointer types should be encoded as '*' unless it is a
4655      // type that has been typedef'd to 'BOOL'.
4656      if (!isTypeTypedefedAsBOOL(PointeeTy)) {
4657        S += '*';
4658        return;
4659      }
4660    } else if (const RecordType *RTy = PointeeTy->getAs<RecordType>()) {
4661      // GCC binary compat: Need to convert "struct objc_class *" to "#".
4662      if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_class")) {
4663        S += '#';
4664        return;
4665      }
4666      // GCC binary compat: Need to convert "struct objc_object *" to "@".
4667      if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_object")) {
4668        S += '@';
4669        return;
4670      }
4671      // fall through...
4672    }
4673    S += '^';
4674    getLegacyIntegralTypeEncoding(PointeeTy);
4675
4676    getObjCEncodingForTypeImpl(PointeeTy, S, false, ExpandPointedToStructures,
4677                               NULL);
4678    return;
4679  }
4680
4681  if (const ArrayType *AT =
4682      // Ignore type qualifiers etc.
4683        dyn_cast<ArrayType>(T->getCanonicalTypeInternal())) {
4684    if (isa<IncompleteArrayType>(AT) && !StructField) {
4685      // Incomplete arrays are encoded as a pointer to the array element.
4686      S += '^';
4687
4688      getObjCEncodingForTypeImpl(AT->getElementType(), S,
4689                                 false, ExpandStructures, FD);
4690    } else {
4691      S += '[';
4692
4693      if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) {
4694        if (getTypeSize(CAT->getElementType()) == 0)
4695          S += '0';
4696        else
4697          S += llvm::utostr(CAT->getSize().getZExtValue());
4698      } else {
4699        //Variable length arrays are encoded as a regular array with 0 elements.
4700        assert((isa<VariableArrayType>(AT) || isa<IncompleteArrayType>(AT)) &&
4701               "Unknown array type!");
4702        S += '0';
4703      }
4704
4705      getObjCEncodingForTypeImpl(AT->getElementType(), S,
4706                                 false, ExpandStructures, FD);
4707      S += ']';
4708    }
4709    return;
4710  }
4711
4712  if (T->getAs<FunctionType>()) {
4713    S += '?';
4714    return;
4715  }
4716
4717  if (const RecordType *RTy = T->getAs<RecordType>()) {
4718    RecordDecl *RDecl = RTy->getDecl();
4719    S += RDecl->isUnion() ? '(' : '{';
4720    // Anonymous structures print as '?'
4721    if (const IdentifierInfo *II = RDecl->getIdentifier()) {
4722      S += II->getName();
4723      if (ClassTemplateSpecializationDecl *Spec
4724          = dyn_cast<ClassTemplateSpecializationDecl>(RDecl)) {
4725        const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
4726        std::string TemplateArgsStr
4727          = TemplateSpecializationType::PrintTemplateArgumentList(
4728                                            TemplateArgs.data(),
4729                                            TemplateArgs.size(),
4730                                            (*this).getPrintingPolicy());
4731
4732        S += TemplateArgsStr;
4733      }
4734    } else {
4735      S += '?';
4736    }
4737    if (ExpandStructures) {
4738      S += '=';
4739      if (!RDecl->isUnion()) {
4740        getObjCEncodingForStructureImpl(RDecl, S, FD);
4741      } else {
4742        for (RecordDecl::field_iterator Field = RDecl->field_begin(),
4743                                     FieldEnd = RDecl->field_end();
4744             Field != FieldEnd; ++Field) {
4745          if (FD) {
4746            S += '"';
4747            S += Field->getNameAsString();
4748            S += '"';
4749          }
4750
4751          // Special case bit-fields.
4752          if (Field->isBitField()) {
4753            getObjCEncodingForTypeImpl(Field->getType(), S, false, true,
4754                                       *Field);
4755          } else {
4756            QualType qt = Field->getType();
4757            getLegacyIntegralTypeEncoding(qt);
4758            getObjCEncodingForTypeImpl(qt, S, false, true,
4759                                       FD, /*OutermostType*/false,
4760                                       /*EncodingProperty*/false,
4761                                       /*StructField*/true);
4762          }
4763        }
4764      }
4765    }
4766    S += RDecl->isUnion() ? ')' : '}';
4767    return;
4768  }
4769
4770  if (const EnumType *ET = T->getAs<EnumType>()) {
4771    if (FD && FD->isBitField())
4772      EncodeBitField(this, S, T, FD);
4773    else
4774      S += ObjCEncodingForEnumType(this, ET);
4775    return;
4776  }
4777
4778  if (const BlockPointerType *BT = T->getAs<BlockPointerType>()) {
4779    S += "@?"; // Unlike a pointer-to-function, which is "^?".
4780    if (EncodeBlockParameters) {
4781      const FunctionType *FT = BT->getPointeeType()->getAs<FunctionType>();
4782
4783      S += '<';
4784      // Block return type
4785      getObjCEncodingForTypeImpl(FT->getResultType(), S,
4786                                 ExpandPointedToStructures, ExpandStructures,
4787                                 FD,
4788                                 false /* OutermostType */,
4789                                 EncodingProperty,
4790                                 false /* StructField */,
4791                                 EncodeBlockParameters,
4792                                 EncodeClassNames);
4793      // Block self
4794      S += "@?";
4795      // Block parameters
4796      if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(FT)) {
4797        for (FunctionProtoType::arg_type_iterator I = FPT->arg_type_begin(),
4798               E = FPT->arg_type_end(); I && (I != E); ++I) {
4799          getObjCEncodingForTypeImpl(*I, S,
4800                                     ExpandPointedToStructures,
4801                                     ExpandStructures,
4802                                     FD,
4803                                     false /* OutermostType */,
4804                                     EncodingProperty,
4805                                     false /* StructField */,
4806                                     EncodeBlockParameters,
4807                                     EncodeClassNames);
4808        }
4809      }
4810      S += '>';
4811    }
4812    return;
4813  }
4814
4815  // Ignore protocol qualifiers when mangling at this level.
4816  if (const ObjCObjectType *OT = T->getAs<ObjCObjectType>())
4817    T = OT->getBaseType();
4818
4819  if (const ObjCInterfaceType *OIT = T->getAs<ObjCInterfaceType>()) {
4820    // @encode(class_name)
4821    ObjCInterfaceDecl *OI = OIT->getDecl();
4822    S += '{';
4823    const IdentifierInfo *II = OI->getIdentifier();
4824    S += II->getName();
4825    S += '=';
4826    SmallVector<const ObjCIvarDecl*, 32> Ivars;
4827    DeepCollectObjCIvars(OI, true, Ivars);
4828    for (unsigned i = 0, e = Ivars.size(); i != e; ++i) {
4829      const FieldDecl *Field = cast<FieldDecl>(Ivars[i]);
4830      if (Field->isBitField())
4831        getObjCEncodingForTypeImpl(Field->getType(), S, false, true, Field);
4832      else
4833        getObjCEncodingForTypeImpl(Field->getType(), S, false, true, FD);
4834    }
4835    S += '}';
4836    return;
4837  }
4838
4839  if (const ObjCObjectPointerType *OPT = T->getAs<ObjCObjectPointerType>()) {
4840    if (OPT->isObjCIdType()) {
4841      S += '@';
4842      return;
4843    }
4844
4845    if (OPT->isObjCClassType() || OPT->isObjCQualifiedClassType()) {
4846      // FIXME: Consider if we need to output qualifiers for 'Class<p>'.
4847      // Since this is a binary compatibility issue, need to consult with runtime
4848      // folks. Fortunately, this is a *very* obsure construct.
4849      S += '#';
4850      return;
4851    }
4852
4853    if (OPT->isObjCQualifiedIdType()) {
4854      getObjCEncodingForTypeImpl(getObjCIdType(), S,
4855                                 ExpandPointedToStructures,
4856                                 ExpandStructures, FD);
4857      if (FD || EncodingProperty || EncodeClassNames) {
4858        // Note that we do extended encoding of protocol qualifer list
4859        // Only when doing ivar or property encoding.
4860        S += '"';
4861        for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(),
4862             E = OPT->qual_end(); I != E; ++I) {
4863          S += '<';
4864          S += (*I)->getNameAsString();
4865          S += '>';
4866        }
4867        S += '"';
4868      }
4869      return;
4870    }
4871
4872    QualType PointeeTy = OPT->getPointeeType();
4873    if (!EncodingProperty &&
4874        isa<TypedefType>(PointeeTy.getTypePtr())) {
4875      // Another historical/compatibility reason.
4876      // We encode the underlying type which comes out as
4877      // {...};
4878      S += '^';
4879      getObjCEncodingForTypeImpl(PointeeTy, S,
4880                                 false, ExpandPointedToStructures,
4881                                 NULL);
4882      return;
4883    }
4884
4885    S += '@';
4886    if (OPT->getInterfaceDecl() &&
4887        (FD || EncodingProperty || EncodeClassNames)) {
4888      S += '"';
4889      S += OPT->getInterfaceDecl()->getIdentifier()->getName();
4890      for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(),
4891           E = OPT->qual_end(); I != E; ++I) {
4892        S += '<';
4893        S += (*I)->getNameAsString();
4894        S += '>';
4895      }
4896      S += '"';
4897    }
4898    return;
4899  }
4900
4901  // gcc just blithely ignores member pointers.
4902  // TODO: maybe there should be a mangling for these
4903  if (T->getAs<MemberPointerType>())
4904    return;
4905
4906  if (T->isVectorType()) {
4907    // This matches gcc's encoding, even though technically it is
4908    // insufficient.
4909    // FIXME. We should do a better job than gcc.
4910    return;
4911  }
4912
4913  llvm_unreachable("@encode for type not implemented!");
4914}
4915
4916void ASTContext::getObjCEncodingForStructureImpl(RecordDecl *RDecl,
4917                                                 std::string &S,
4918                                                 const FieldDecl *FD,
4919                                                 bool includeVBases) const {
4920  assert(RDecl && "Expected non-null RecordDecl");
4921  assert(!RDecl->isUnion() && "Should not be called for unions");
4922  if (!RDecl->getDefinition())
4923    return;
4924
4925  CXXRecordDecl *CXXRec = dyn_cast<CXXRecordDecl>(RDecl);
4926  std::multimap<uint64_t, NamedDecl *> FieldOrBaseOffsets;
4927  const ASTRecordLayout &layout = getASTRecordLayout(RDecl);
4928
4929  if (CXXRec) {
4930    for (CXXRecordDecl::base_class_iterator
4931           BI = CXXRec->bases_begin(),
4932           BE = CXXRec->bases_end(); BI != BE; ++BI) {
4933      if (!BI->isVirtual()) {
4934        CXXRecordDecl *base = BI->getType()->getAsCXXRecordDecl();
4935        if (base->isEmpty())
4936          continue;
4937        uint64_t offs = toBits(layout.getBaseClassOffset(base));
4938        FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
4939                                  std::make_pair(offs, base));
4940      }
4941    }
4942  }
4943
4944  unsigned i = 0;
4945  for (RecordDecl::field_iterator Field = RDecl->field_begin(),
4946                               FieldEnd = RDecl->field_end();
4947       Field != FieldEnd; ++Field, ++i) {
4948    uint64_t offs = layout.getFieldOffset(i);
4949    FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
4950                              std::make_pair(offs, *Field));
4951  }
4952
4953  if (CXXRec && includeVBases) {
4954    for (CXXRecordDecl::base_class_iterator
4955           BI = CXXRec->vbases_begin(),
4956           BE = CXXRec->vbases_end(); BI != BE; ++BI) {
4957      CXXRecordDecl *base = BI->getType()->getAsCXXRecordDecl();
4958      if (base->isEmpty())
4959        continue;
4960      uint64_t offs = toBits(layout.getVBaseClassOffset(base));
4961      if (FieldOrBaseOffsets.find(offs) == FieldOrBaseOffsets.end())
4962        FieldOrBaseOffsets.insert(FieldOrBaseOffsets.end(),
4963                                  std::make_pair(offs, base));
4964    }
4965  }
4966
4967  CharUnits size;
4968  if (CXXRec) {
4969    size = includeVBases ? layout.getSize() : layout.getNonVirtualSize();
4970  } else {
4971    size = layout.getSize();
4972  }
4973
4974  uint64_t CurOffs = 0;
4975  std::multimap<uint64_t, NamedDecl *>::iterator
4976    CurLayObj = FieldOrBaseOffsets.begin();
4977
4978  if (CXXRec && CXXRec->isDynamicClass() &&
4979      (CurLayObj == FieldOrBaseOffsets.end() || CurLayObj->first != 0)) {
4980    if (FD) {
4981      S += "\"_vptr$";
4982      std::string recname = CXXRec->getNameAsString();
4983      if (recname.empty()) recname = "?";
4984      S += recname;
4985      S += '"';
4986    }
4987    S += "^^?";
4988    CurOffs += getTypeSize(VoidPtrTy);
4989  }
4990
4991  if (!RDecl->hasFlexibleArrayMember()) {
4992    // Mark the end of the structure.
4993    uint64_t offs = toBits(size);
4994    FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
4995                              std::make_pair(offs, (NamedDecl*)0));
4996  }
4997
4998  for (; CurLayObj != FieldOrBaseOffsets.end(); ++CurLayObj) {
4999    assert(CurOffs <= CurLayObj->first);
5000
5001    if (CurOffs < CurLayObj->first) {
5002      uint64_t padding = CurLayObj->first - CurOffs;
5003      // FIXME: There doesn't seem to be a way to indicate in the encoding that
5004      // packing/alignment of members is different that normal, in which case
5005      // the encoding will be out-of-sync with the real layout.
5006      // If the runtime switches to just consider the size of types without
5007      // taking into account alignment, we could make padding explicit in the
5008      // encoding (e.g. using arrays of chars). The encoding strings would be
5009      // longer then though.
5010      CurOffs += padding;
5011    }
5012
5013    NamedDecl *dcl = CurLayObj->second;
5014    if (dcl == 0)
5015      break; // reached end of structure.
5016
5017    if (CXXRecordDecl *base = dyn_cast<CXXRecordDecl>(dcl)) {
5018      // We expand the bases without their virtual bases since those are going
5019      // in the initial structure. Note that this differs from gcc which
5020      // expands virtual bases each time one is encountered in the hierarchy,
5021      // making the encoding type bigger than it really is.
5022      getObjCEncodingForStructureImpl(base, S, FD, /*includeVBases*/false);
5023      assert(!base->isEmpty());
5024      CurOffs += toBits(getASTRecordLayout(base).getNonVirtualSize());
5025    } else {
5026      FieldDecl *field = cast<FieldDecl>(dcl);
5027      if (FD) {
5028        S += '"';
5029        S += field->getNameAsString();
5030        S += '"';
5031      }
5032
5033      if (field->isBitField()) {
5034        EncodeBitField(this, S, field->getType(), field);
5035        CurOffs += field->getBitWidthValue(*this);
5036      } else {
5037        QualType qt = field->getType();
5038        getLegacyIntegralTypeEncoding(qt);
5039        getObjCEncodingForTypeImpl(qt, S, false, true, FD,
5040                                   /*OutermostType*/false,
5041                                   /*EncodingProperty*/false,
5042                                   /*StructField*/true);
5043        CurOffs += getTypeSize(field->getType());
5044      }
5045    }
5046  }
5047}
5048
5049void ASTContext::getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT,
5050                                                 std::string& S) const {
5051  if (QT & Decl::OBJC_TQ_In)
5052    S += 'n';
5053  if (QT & Decl::OBJC_TQ_Inout)
5054    S += 'N';
5055  if (QT & Decl::OBJC_TQ_Out)
5056    S += 'o';
5057  if (QT & Decl::OBJC_TQ_Bycopy)
5058    S += 'O';
5059  if (QT & Decl::OBJC_TQ_Byref)
5060    S += 'R';
5061  if (QT & Decl::OBJC_TQ_Oneway)
5062    S += 'V';
5063}
5064
5065TypedefDecl *ASTContext::getObjCIdDecl() const {
5066  if (!ObjCIdDecl) {
5067    QualType T = getObjCObjectType(ObjCBuiltinIdTy, 0, 0);
5068    T = getObjCObjectPointerType(T);
5069    TypeSourceInfo *IdInfo = getTrivialTypeSourceInfo(T);
5070    ObjCIdDecl = TypedefDecl::Create(const_cast<ASTContext &>(*this),
5071                                     getTranslationUnitDecl(),
5072                                     SourceLocation(), SourceLocation(),
5073                                     &Idents.get("id"), IdInfo);
5074  }
5075
5076  return ObjCIdDecl;
5077}
5078
5079TypedefDecl *ASTContext::getObjCSelDecl() const {
5080  if (!ObjCSelDecl) {
5081    QualType SelT = getPointerType(ObjCBuiltinSelTy);
5082    TypeSourceInfo *SelInfo = getTrivialTypeSourceInfo(SelT);
5083    ObjCSelDecl = TypedefDecl::Create(const_cast<ASTContext &>(*this),
5084                                      getTranslationUnitDecl(),
5085                                      SourceLocation(), SourceLocation(),
5086                                      &Idents.get("SEL"), SelInfo);
5087  }
5088  return ObjCSelDecl;
5089}
5090
5091TypedefDecl *ASTContext::getObjCClassDecl() const {
5092  if (!ObjCClassDecl) {
5093    QualType T = getObjCObjectType(ObjCBuiltinClassTy, 0, 0);
5094    T = getObjCObjectPointerType(T);
5095    TypeSourceInfo *ClassInfo = getTrivialTypeSourceInfo(T);
5096    ObjCClassDecl = TypedefDecl::Create(const_cast<ASTContext &>(*this),
5097                                        getTranslationUnitDecl(),
5098                                        SourceLocation(), SourceLocation(),
5099                                        &Idents.get("Class"), ClassInfo);
5100  }
5101
5102  return ObjCClassDecl;
5103}
5104
5105ObjCInterfaceDecl *ASTContext::getObjCProtocolDecl() const {
5106  if (!ObjCProtocolClassDecl) {
5107    ObjCProtocolClassDecl
5108      = ObjCInterfaceDecl::Create(*this, getTranslationUnitDecl(),
5109                                  SourceLocation(),
5110                                  &Idents.get("Protocol"),
5111                                  /*PrevDecl=*/0,
5112                                  SourceLocation(), true);
5113  }
5114
5115  return ObjCProtocolClassDecl;
5116}
5117
5118//===----------------------------------------------------------------------===//
5119// __builtin_va_list Construction Functions
5120//===----------------------------------------------------------------------===//
5121
5122static TypedefDecl *CreateCharPtrBuiltinVaListDecl(const ASTContext *Context) {
5123  // typedef char* __builtin_va_list;
5124  QualType CharPtrType = Context->getPointerType(Context->CharTy);
5125  TypeSourceInfo *TInfo
5126    = Context->getTrivialTypeSourceInfo(CharPtrType);
5127
5128  TypedefDecl *VaListTypeDecl
5129    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
5130                          Context->getTranslationUnitDecl(),
5131                          SourceLocation(), SourceLocation(),
5132                          &Context->Idents.get("__builtin_va_list"),
5133                          TInfo);
5134  return VaListTypeDecl;
5135}
5136
5137static TypedefDecl *CreateVoidPtrBuiltinVaListDecl(const ASTContext *Context) {
5138  // typedef void* __builtin_va_list;
5139  QualType VoidPtrType = Context->getPointerType(Context->VoidTy);
5140  TypeSourceInfo *TInfo
5141    = Context->getTrivialTypeSourceInfo(VoidPtrType);
5142
5143  TypedefDecl *VaListTypeDecl
5144    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
5145                          Context->getTranslationUnitDecl(),
5146                          SourceLocation(), SourceLocation(),
5147                          &Context->Idents.get("__builtin_va_list"),
5148                          TInfo);
5149  return VaListTypeDecl;
5150}
5151
5152static TypedefDecl *CreatePowerABIBuiltinVaListDecl(const ASTContext *Context) {
5153  // typedef struct __va_list_tag {
5154  RecordDecl *VaListTagDecl;
5155
5156  VaListTagDecl = CreateRecordDecl(*Context, TTK_Struct,
5157                                   Context->getTranslationUnitDecl(),
5158                                   &Context->Idents.get("__va_list_tag"));
5159  VaListTagDecl->startDefinition();
5160
5161  const size_t NumFields = 5;
5162  QualType FieldTypes[NumFields];
5163  const char *FieldNames[NumFields];
5164
5165  //   unsigned char gpr;
5166  FieldTypes[0] = Context->UnsignedCharTy;
5167  FieldNames[0] = "gpr";
5168
5169  //   unsigned char fpr;
5170  FieldTypes[1] = Context->UnsignedCharTy;
5171  FieldNames[1] = "fpr";
5172
5173  //   unsigned short reserved;
5174  FieldTypes[2] = Context->UnsignedShortTy;
5175  FieldNames[2] = "reserved";
5176
5177  //   void* overflow_arg_area;
5178  FieldTypes[3] = Context->getPointerType(Context->VoidTy);
5179  FieldNames[3] = "overflow_arg_area";
5180
5181  //   void* reg_save_area;
5182  FieldTypes[4] = Context->getPointerType(Context->VoidTy);
5183  FieldNames[4] = "reg_save_area";
5184
5185  // Create fields
5186  for (unsigned i = 0; i < NumFields; ++i) {
5187    FieldDecl *Field = FieldDecl::Create(*Context, VaListTagDecl,
5188                                         SourceLocation(),
5189                                         SourceLocation(),
5190                                         &Context->Idents.get(FieldNames[i]),
5191                                         FieldTypes[i], /*TInfo=*/0,
5192                                         /*BitWidth=*/0,
5193                                         /*Mutable=*/false,
5194                                         ICIS_NoInit);
5195    Field->setAccess(AS_public);
5196    VaListTagDecl->addDecl(Field);
5197  }
5198  VaListTagDecl->completeDefinition();
5199  QualType VaListTagType = Context->getRecordType(VaListTagDecl);
5200  Context->VaListTagTy = VaListTagType;
5201
5202  // } __va_list_tag;
5203  TypedefDecl *VaListTagTypedefDecl
5204    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
5205                          Context->getTranslationUnitDecl(),
5206                          SourceLocation(), SourceLocation(),
5207                          &Context->Idents.get("__va_list_tag"),
5208                          Context->getTrivialTypeSourceInfo(VaListTagType));
5209  QualType VaListTagTypedefType =
5210    Context->getTypedefType(VaListTagTypedefDecl);
5211
5212  // typedef __va_list_tag __builtin_va_list[1];
5213  llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 1);
5214  QualType VaListTagArrayType
5215    = Context->getConstantArrayType(VaListTagTypedefType,
5216                                    Size, ArrayType::Normal, 0);
5217  TypeSourceInfo *TInfo
5218    = Context->getTrivialTypeSourceInfo(VaListTagArrayType);
5219  TypedefDecl *VaListTypedefDecl
5220    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
5221                          Context->getTranslationUnitDecl(),
5222                          SourceLocation(), SourceLocation(),
5223                          &Context->Idents.get("__builtin_va_list"),
5224                          TInfo);
5225
5226  return VaListTypedefDecl;
5227}
5228
5229static TypedefDecl *
5230CreateX86_64ABIBuiltinVaListDecl(const ASTContext *Context) {
5231  // typedef struct __va_list_tag {
5232  RecordDecl *VaListTagDecl;
5233  VaListTagDecl = CreateRecordDecl(*Context, TTK_Struct,
5234                                   Context->getTranslationUnitDecl(),
5235                                   &Context->Idents.get("__va_list_tag"));
5236  VaListTagDecl->startDefinition();
5237
5238  const size_t NumFields = 4;
5239  QualType FieldTypes[NumFields];
5240  const char *FieldNames[NumFields];
5241
5242  //   unsigned gp_offset;
5243  FieldTypes[0] = Context->UnsignedIntTy;
5244  FieldNames[0] = "gp_offset";
5245
5246  //   unsigned fp_offset;
5247  FieldTypes[1] = Context->UnsignedIntTy;
5248  FieldNames[1] = "fp_offset";
5249
5250  //   void* overflow_arg_area;
5251  FieldTypes[2] = Context->getPointerType(Context->VoidTy);
5252  FieldNames[2] = "overflow_arg_area";
5253
5254  //   void* reg_save_area;
5255  FieldTypes[3] = Context->getPointerType(Context->VoidTy);
5256  FieldNames[3] = "reg_save_area";
5257
5258  // Create fields
5259  for (unsigned i = 0; i < NumFields; ++i) {
5260    FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context),
5261                                         VaListTagDecl,
5262                                         SourceLocation(),
5263                                         SourceLocation(),
5264                                         &Context->Idents.get(FieldNames[i]),
5265                                         FieldTypes[i], /*TInfo=*/0,
5266                                         /*BitWidth=*/0,
5267                                         /*Mutable=*/false,
5268                                         ICIS_NoInit);
5269    Field->setAccess(AS_public);
5270    VaListTagDecl->addDecl(Field);
5271  }
5272  VaListTagDecl->completeDefinition();
5273  QualType VaListTagType = Context->getRecordType(VaListTagDecl);
5274  Context->VaListTagTy = VaListTagType;
5275
5276  // } __va_list_tag;
5277  TypedefDecl *VaListTagTypedefDecl
5278    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
5279                          Context->getTranslationUnitDecl(),
5280                          SourceLocation(), SourceLocation(),
5281                          &Context->Idents.get("__va_list_tag"),
5282                          Context->getTrivialTypeSourceInfo(VaListTagType));
5283  QualType VaListTagTypedefType =
5284    Context->getTypedefType(VaListTagTypedefDecl);
5285
5286  // typedef __va_list_tag __builtin_va_list[1];
5287  llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 1);
5288  QualType VaListTagArrayType
5289    = Context->getConstantArrayType(VaListTagTypedefType,
5290                                      Size, ArrayType::Normal,0);
5291  TypeSourceInfo *TInfo
5292    = Context->getTrivialTypeSourceInfo(VaListTagArrayType);
5293  TypedefDecl *VaListTypedefDecl
5294    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
5295                          Context->getTranslationUnitDecl(),
5296                          SourceLocation(), SourceLocation(),
5297                          &Context->Idents.get("__builtin_va_list"),
5298                          TInfo);
5299
5300  return VaListTypedefDecl;
5301}
5302
5303static TypedefDecl *CreatePNaClABIBuiltinVaListDecl(const ASTContext *Context) {
5304  // typedef int __builtin_va_list[4];
5305  llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 4);
5306  QualType IntArrayType
5307    = Context->getConstantArrayType(Context->IntTy,
5308				    Size, ArrayType::Normal, 0);
5309  TypedefDecl *VaListTypedefDecl
5310    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
5311                          Context->getTranslationUnitDecl(),
5312                          SourceLocation(), SourceLocation(),
5313                          &Context->Idents.get("__builtin_va_list"),
5314                          Context->getTrivialTypeSourceInfo(IntArrayType));
5315
5316  return VaListTypedefDecl;
5317}
5318
5319static TypedefDecl *CreateVaListDecl(const ASTContext *Context,
5320                                     TargetInfo::BuiltinVaListKind Kind) {
5321  switch (Kind) {
5322  case TargetInfo::CharPtrBuiltinVaList:
5323    return CreateCharPtrBuiltinVaListDecl(Context);
5324  case TargetInfo::VoidPtrBuiltinVaList:
5325    return CreateVoidPtrBuiltinVaListDecl(Context);
5326  case TargetInfo::PowerABIBuiltinVaList:
5327    return CreatePowerABIBuiltinVaListDecl(Context);
5328  case TargetInfo::X86_64ABIBuiltinVaList:
5329    return CreateX86_64ABIBuiltinVaListDecl(Context);
5330  case TargetInfo::PNaClABIBuiltinVaList:
5331    return CreatePNaClABIBuiltinVaListDecl(Context);
5332  }
5333
5334  llvm_unreachable("Unhandled __builtin_va_list type kind");
5335}
5336
5337TypedefDecl *ASTContext::getBuiltinVaListDecl() const {
5338  if (!BuiltinVaListDecl)
5339    BuiltinVaListDecl = CreateVaListDecl(this, Target->getBuiltinVaListKind());
5340
5341  return BuiltinVaListDecl;
5342}
5343
5344QualType ASTContext::getVaListTagType() const {
5345  // Force the creation of VaListTagTy by building the __builtin_va_list
5346  // declaration.
5347  if (VaListTagTy.isNull())
5348    (void) getBuiltinVaListDecl();
5349
5350  return VaListTagTy;
5351}
5352
5353void ASTContext::setObjCConstantStringInterface(ObjCInterfaceDecl *Decl) {
5354  assert(ObjCConstantStringType.isNull() &&
5355         "'NSConstantString' type already set!");
5356
5357  ObjCConstantStringType = getObjCInterfaceType(Decl);
5358}
5359
5360/// \brief Retrieve the template name that corresponds to a non-empty
5361/// lookup.
5362TemplateName
5363ASTContext::getOverloadedTemplateName(UnresolvedSetIterator Begin,
5364                                      UnresolvedSetIterator End) const {
5365  unsigned size = End - Begin;
5366  assert(size > 1 && "set is not overloaded!");
5367
5368  void *memory = Allocate(sizeof(OverloadedTemplateStorage) +
5369                          size * sizeof(FunctionTemplateDecl*));
5370  OverloadedTemplateStorage *OT = new(memory) OverloadedTemplateStorage(size);
5371
5372  NamedDecl **Storage = OT->getStorage();
5373  for (UnresolvedSetIterator I = Begin; I != End; ++I) {
5374    NamedDecl *D = *I;
5375    assert(isa<FunctionTemplateDecl>(D) ||
5376           (isa<UsingShadowDecl>(D) &&
5377            isa<FunctionTemplateDecl>(D->getUnderlyingDecl())));
5378    *Storage++ = D;
5379  }
5380
5381  return TemplateName(OT);
5382}
5383
5384/// \brief Retrieve the template name that represents a qualified
5385/// template name such as \c std::vector.
5386TemplateName
5387ASTContext::getQualifiedTemplateName(NestedNameSpecifier *NNS,
5388                                     bool TemplateKeyword,
5389                                     TemplateDecl *Template) const {
5390  assert(NNS && "Missing nested-name-specifier in qualified template name");
5391
5392  // FIXME: Canonicalization?
5393  llvm::FoldingSetNodeID ID;
5394  QualifiedTemplateName::Profile(ID, NNS, TemplateKeyword, Template);
5395
5396  void *InsertPos = 0;
5397  QualifiedTemplateName *QTN =
5398    QualifiedTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
5399  if (!QTN) {
5400    QTN = new (*this,4) QualifiedTemplateName(NNS, TemplateKeyword, Template);
5401    QualifiedTemplateNames.InsertNode(QTN, InsertPos);
5402  }
5403
5404  return TemplateName(QTN);
5405}
5406
5407/// \brief Retrieve the template name that represents a dependent
5408/// template name such as \c MetaFun::template apply.
5409TemplateName
5410ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
5411                                     const IdentifierInfo *Name) const {
5412  assert((!NNS || NNS->isDependent()) &&
5413         "Nested name specifier must be dependent");
5414
5415  llvm::FoldingSetNodeID ID;
5416  DependentTemplateName::Profile(ID, NNS, Name);
5417
5418  void *InsertPos = 0;
5419  DependentTemplateName *QTN =
5420    DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
5421
5422  if (QTN)
5423    return TemplateName(QTN);
5424
5425  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
5426  if (CanonNNS == NNS) {
5427    QTN = new (*this,4) DependentTemplateName(NNS, Name);
5428  } else {
5429    TemplateName Canon = getDependentTemplateName(CanonNNS, Name);
5430    QTN = new (*this,4) DependentTemplateName(NNS, Name, Canon);
5431    DependentTemplateName *CheckQTN =
5432      DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
5433    assert(!CheckQTN && "Dependent type name canonicalization broken");
5434    (void)CheckQTN;
5435  }
5436
5437  DependentTemplateNames.InsertNode(QTN, InsertPos);
5438  return TemplateName(QTN);
5439}
5440
5441/// \brief Retrieve the template name that represents a dependent
5442/// template name such as \c MetaFun::template operator+.
5443TemplateName
5444ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
5445                                     OverloadedOperatorKind Operator) const {
5446  assert((!NNS || NNS->isDependent()) &&
5447         "Nested name specifier must be dependent");
5448
5449  llvm::FoldingSetNodeID ID;
5450  DependentTemplateName::Profile(ID, NNS, Operator);
5451
5452  void *InsertPos = 0;
5453  DependentTemplateName *QTN
5454    = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
5455
5456  if (QTN)
5457    return TemplateName(QTN);
5458
5459  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
5460  if (CanonNNS == NNS) {
5461    QTN = new (*this,4) DependentTemplateName(NNS, Operator);
5462  } else {
5463    TemplateName Canon = getDependentTemplateName(CanonNNS, Operator);
5464    QTN = new (*this,4) DependentTemplateName(NNS, Operator, Canon);
5465
5466    DependentTemplateName *CheckQTN
5467      = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
5468    assert(!CheckQTN && "Dependent template name canonicalization broken");
5469    (void)CheckQTN;
5470  }
5471
5472  DependentTemplateNames.InsertNode(QTN, InsertPos);
5473  return TemplateName(QTN);
5474}
5475
5476TemplateName
5477ASTContext::getSubstTemplateTemplateParm(TemplateTemplateParmDecl *param,
5478                                         TemplateName replacement) const {
5479  llvm::FoldingSetNodeID ID;
5480  SubstTemplateTemplateParmStorage::Profile(ID, param, replacement);
5481
5482  void *insertPos = 0;
5483  SubstTemplateTemplateParmStorage *subst
5484    = SubstTemplateTemplateParms.FindNodeOrInsertPos(ID, insertPos);
5485
5486  if (!subst) {
5487    subst = new (*this) SubstTemplateTemplateParmStorage(param, replacement);
5488    SubstTemplateTemplateParms.InsertNode(subst, insertPos);
5489  }
5490
5491  return TemplateName(subst);
5492}
5493
5494TemplateName
5495ASTContext::getSubstTemplateTemplateParmPack(TemplateTemplateParmDecl *Param,
5496                                       const TemplateArgument &ArgPack) const {
5497  ASTContext &Self = const_cast<ASTContext &>(*this);
5498  llvm::FoldingSetNodeID ID;
5499  SubstTemplateTemplateParmPackStorage::Profile(ID, Self, Param, ArgPack);
5500
5501  void *InsertPos = 0;
5502  SubstTemplateTemplateParmPackStorage *Subst
5503    = SubstTemplateTemplateParmPacks.FindNodeOrInsertPos(ID, InsertPos);
5504
5505  if (!Subst) {
5506    Subst = new (*this) SubstTemplateTemplateParmPackStorage(Param,
5507                                                           ArgPack.pack_size(),
5508                                                         ArgPack.pack_begin());
5509    SubstTemplateTemplateParmPacks.InsertNode(Subst, InsertPos);
5510  }
5511
5512  return TemplateName(Subst);
5513}
5514
5515/// getFromTargetType - Given one of the integer types provided by
5516/// TargetInfo, produce the corresponding type. The unsigned @p Type
5517/// is actually a value of type @c TargetInfo::IntType.
5518CanQualType ASTContext::getFromTargetType(unsigned Type) const {
5519  switch (Type) {
5520  case TargetInfo::NoInt: return CanQualType();
5521  case TargetInfo::SignedShort: return ShortTy;
5522  case TargetInfo::UnsignedShort: return UnsignedShortTy;
5523  case TargetInfo::SignedInt: return IntTy;
5524  case TargetInfo::UnsignedInt: return UnsignedIntTy;
5525  case TargetInfo::SignedLong: return LongTy;
5526  case TargetInfo::UnsignedLong: return UnsignedLongTy;
5527  case TargetInfo::SignedLongLong: return LongLongTy;
5528  case TargetInfo::UnsignedLongLong: return UnsignedLongLongTy;
5529  }
5530
5531  llvm_unreachable("Unhandled TargetInfo::IntType value");
5532}
5533
5534//===----------------------------------------------------------------------===//
5535//                        Type Predicates.
5536//===----------------------------------------------------------------------===//
5537
5538/// getObjCGCAttr - Returns one of GCNone, Weak or Strong objc's
5539/// garbage collection attribute.
5540///
5541Qualifiers::GC ASTContext::getObjCGCAttrKind(QualType Ty) const {
5542  if (getLangOpts().getGC() == LangOptions::NonGC)
5543    return Qualifiers::GCNone;
5544
5545  assert(getLangOpts().ObjC1);
5546  Qualifiers::GC GCAttrs = Ty.getObjCGCAttr();
5547
5548  // Default behaviour under objective-C's gc is for ObjC pointers
5549  // (or pointers to them) be treated as though they were declared
5550  // as __strong.
5551  if (GCAttrs == Qualifiers::GCNone) {
5552    if (Ty->isObjCObjectPointerType() || Ty->isBlockPointerType())
5553      return Qualifiers::Strong;
5554    else if (Ty->isPointerType())
5555      return getObjCGCAttrKind(Ty->getAs<PointerType>()->getPointeeType());
5556  } else {
5557    // It's not valid to set GC attributes on anything that isn't a
5558    // pointer.
5559#ifndef NDEBUG
5560    QualType CT = Ty->getCanonicalTypeInternal();
5561    while (const ArrayType *AT = dyn_cast<ArrayType>(CT))
5562      CT = AT->getElementType();
5563    assert(CT->isAnyPointerType() || CT->isBlockPointerType());
5564#endif
5565  }
5566  return GCAttrs;
5567}
5568
5569//===----------------------------------------------------------------------===//
5570//                        Type Compatibility Testing
5571//===----------------------------------------------------------------------===//
5572
5573/// areCompatVectorTypes - Return true if the two specified vector types are
5574/// compatible.
5575static bool areCompatVectorTypes(const VectorType *LHS,
5576                                 const VectorType *RHS) {
5577  assert(LHS->isCanonicalUnqualified() && RHS->isCanonicalUnqualified());
5578  return LHS->getElementType() == RHS->getElementType() &&
5579         LHS->getNumElements() == RHS->getNumElements();
5580}
5581
5582bool ASTContext::areCompatibleVectorTypes(QualType FirstVec,
5583                                          QualType SecondVec) {
5584  assert(FirstVec->isVectorType() && "FirstVec should be a vector type");
5585  assert(SecondVec->isVectorType() && "SecondVec should be a vector type");
5586
5587  if (hasSameUnqualifiedType(FirstVec, SecondVec))
5588    return true;
5589
5590  // Treat Neon vector types and most AltiVec vector types as if they are the
5591  // equivalent GCC vector types.
5592  const VectorType *First = FirstVec->getAs<VectorType>();
5593  const VectorType *Second = SecondVec->getAs<VectorType>();
5594  if (First->getNumElements() == Second->getNumElements() &&
5595      hasSameType(First->getElementType(), Second->getElementType()) &&
5596      First->getVectorKind() != VectorType::AltiVecPixel &&
5597      First->getVectorKind() != VectorType::AltiVecBool &&
5598      Second->getVectorKind() != VectorType::AltiVecPixel &&
5599      Second->getVectorKind() != VectorType::AltiVecBool)
5600    return true;
5601
5602  return false;
5603}
5604
5605//===----------------------------------------------------------------------===//
5606// ObjCQualifiedIdTypesAreCompatible - Compatibility testing for qualified id's.
5607//===----------------------------------------------------------------------===//
5608
5609/// ProtocolCompatibleWithProtocol - return 'true' if 'lProto' is in the
5610/// inheritance hierarchy of 'rProto'.
5611bool
5612ASTContext::ProtocolCompatibleWithProtocol(ObjCProtocolDecl *lProto,
5613                                           ObjCProtocolDecl *rProto) const {
5614  if (declaresSameEntity(lProto, rProto))
5615    return true;
5616  for (ObjCProtocolDecl::protocol_iterator PI = rProto->protocol_begin(),
5617       E = rProto->protocol_end(); PI != E; ++PI)
5618    if (ProtocolCompatibleWithProtocol(lProto, *PI))
5619      return true;
5620  return false;
5621}
5622
5623/// QualifiedIdConformsQualifiedId - compare id<p,...> with id<p1,...>
5624/// return true if lhs's protocols conform to rhs's protocol; false
5625/// otherwise.
5626bool ASTContext::QualifiedIdConformsQualifiedId(QualType lhs, QualType rhs) {
5627  if (lhs->isObjCQualifiedIdType() && rhs->isObjCQualifiedIdType())
5628    return ObjCQualifiedIdTypesAreCompatible(lhs, rhs, false);
5629  return false;
5630}
5631
5632/// ObjCQualifiedClassTypesAreCompatible - compare  Class<p,...> and
5633/// Class<p1, ...>.
5634bool ASTContext::ObjCQualifiedClassTypesAreCompatible(QualType lhs,
5635                                                      QualType rhs) {
5636  const ObjCObjectPointerType *lhsQID = lhs->getAs<ObjCObjectPointerType>();
5637  const ObjCObjectPointerType *rhsOPT = rhs->getAs<ObjCObjectPointerType>();
5638  assert ((lhsQID && rhsOPT) && "ObjCQualifiedClassTypesAreCompatible");
5639
5640  for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
5641       E = lhsQID->qual_end(); I != E; ++I) {
5642    bool match = false;
5643    ObjCProtocolDecl *lhsProto = *I;
5644    for (ObjCObjectPointerType::qual_iterator J = rhsOPT->qual_begin(),
5645         E = rhsOPT->qual_end(); J != E; ++J) {
5646      ObjCProtocolDecl *rhsProto = *J;
5647      if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto)) {
5648        match = true;
5649        break;
5650      }
5651    }
5652    if (!match)
5653      return false;
5654  }
5655  return true;
5656}
5657
5658/// ObjCQualifiedIdTypesAreCompatible - We know that one of lhs/rhs is an
5659/// ObjCQualifiedIDType.
5660bool ASTContext::ObjCQualifiedIdTypesAreCompatible(QualType lhs, QualType rhs,
5661                                                   bool compare) {
5662  // Allow id<P..> and an 'id' or void* type in all cases.
5663  if (lhs->isVoidPointerType() ||
5664      lhs->isObjCIdType() || lhs->isObjCClassType())
5665    return true;
5666  else if (rhs->isVoidPointerType() ||
5667           rhs->isObjCIdType() || rhs->isObjCClassType())
5668    return true;
5669
5670  if (const ObjCObjectPointerType *lhsQID = lhs->getAsObjCQualifiedIdType()) {
5671    const ObjCObjectPointerType *rhsOPT = rhs->getAs<ObjCObjectPointerType>();
5672
5673    if (!rhsOPT) return false;
5674
5675    if (rhsOPT->qual_empty()) {
5676      // If the RHS is a unqualified interface pointer "NSString*",
5677      // make sure we check the class hierarchy.
5678      if (ObjCInterfaceDecl *rhsID = rhsOPT->getInterfaceDecl()) {
5679        for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
5680             E = lhsQID->qual_end(); I != E; ++I) {
5681          // when comparing an id<P> on lhs with a static type on rhs,
5682          // see if static class implements all of id's protocols, directly or
5683          // through its super class and categories.
5684          if (!rhsID->ClassImplementsProtocol(*I, true))
5685            return false;
5686        }
5687      }
5688      // If there are no qualifiers and no interface, we have an 'id'.
5689      return true;
5690    }
5691    // Both the right and left sides have qualifiers.
5692    for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
5693         E = lhsQID->qual_end(); I != E; ++I) {
5694      ObjCProtocolDecl *lhsProto = *I;
5695      bool match = false;
5696
5697      // when comparing an id<P> on lhs with a static type on rhs,
5698      // see if static class implements all of id's protocols, directly or
5699      // through its super class and categories.
5700      for (ObjCObjectPointerType::qual_iterator J = rhsOPT->qual_begin(),
5701           E = rhsOPT->qual_end(); J != E; ++J) {
5702        ObjCProtocolDecl *rhsProto = *J;
5703        if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
5704            (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
5705          match = true;
5706          break;
5707        }
5708      }
5709      // If the RHS is a qualified interface pointer "NSString<P>*",
5710      // make sure we check the class hierarchy.
5711      if (ObjCInterfaceDecl *rhsID = rhsOPT->getInterfaceDecl()) {
5712        for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
5713             E = lhsQID->qual_end(); I != E; ++I) {
5714          // when comparing an id<P> on lhs with a static type on rhs,
5715          // see if static class implements all of id's protocols, directly or
5716          // through its super class and categories.
5717          if (rhsID->ClassImplementsProtocol(*I, true)) {
5718            match = true;
5719            break;
5720          }
5721        }
5722      }
5723      if (!match)
5724        return false;
5725    }
5726
5727    return true;
5728  }
5729
5730  const ObjCObjectPointerType *rhsQID = rhs->getAsObjCQualifiedIdType();
5731  assert(rhsQID && "One of the LHS/RHS should be id<x>");
5732
5733  if (const ObjCObjectPointerType *lhsOPT =
5734        lhs->getAsObjCInterfacePointerType()) {
5735    // If both the right and left sides have qualifiers.
5736    for (ObjCObjectPointerType::qual_iterator I = lhsOPT->qual_begin(),
5737         E = lhsOPT->qual_end(); I != E; ++I) {
5738      ObjCProtocolDecl *lhsProto = *I;
5739      bool match = false;
5740
5741      // when comparing an id<P> on rhs with a static type on lhs,
5742      // see if static class implements all of id's protocols, directly or
5743      // through its super class and categories.
5744      // First, lhs protocols in the qualifier list must be found, direct
5745      // or indirect in rhs's qualifier list or it is a mismatch.
5746      for (ObjCObjectPointerType::qual_iterator J = rhsQID->qual_begin(),
5747           E = rhsQID->qual_end(); J != E; ++J) {
5748        ObjCProtocolDecl *rhsProto = *J;
5749        if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
5750            (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
5751          match = true;
5752          break;
5753        }
5754      }
5755      if (!match)
5756        return false;
5757    }
5758
5759    // Static class's protocols, or its super class or category protocols
5760    // must be found, direct or indirect in rhs's qualifier list or it is a mismatch.
5761    if (ObjCInterfaceDecl *lhsID = lhsOPT->getInterfaceDecl()) {
5762      llvm::SmallPtrSet<ObjCProtocolDecl *, 8> LHSInheritedProtocols;
5763      CollectInheritedProtocols(lhsID, LHSInheritedProtocols);
5764      // This is rather dubious but matches gcc's behavior. If lhs has
5765      // no type qualifier and its class has no static protocol(s)
5766      // assume that it is mismatch.
5767      if (LHSInheritedProtocols.empty() && lhsOPT->qual_empty())
5768        return false;
5769      for (llvm::SmallPtrSet<ObjCProtocolDecl*,8>::iterator I =
5770           LHSInheritedProtocols.begin(),
5771           E = LHSInheritedProtocols.end(); I != E; ++I) {
5772        bool match = false;
5773        ObjCProtocolDecl *lhsProto = (*I);
5774        for (ObjCObjectPointerType::qual_iterator J = rhsQID->qual_begin(),
5775             E = rhsQID->qual_end(); J != E; ++J) {
5776          ObjCProtocolDecl *rhsProto = *J;
5777          if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
5778              (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
5779            match = true;
5780            break;
5781          }
5782        }
5783        if (!match)
5784          return false;
5785      }
5786    }
5787    return true;
5788  }
5789  return false;
5790}
5791
5792/// canAssignObjCInterfaces - Return true if the two interface types are
5793/// compatible for assignment from RHS to LHS.  This handles validation of any
5794/// protocol qualifiers on the LHS or RHS.
5795///
5796bool ASTContext::canAssignObjCInterfaces(const ObjCObjectPointerType *LHSOPT,
5797                                         const ObjCObjectPointerType *RHSOPT) {
5798  const ObjCObjectType* LHS = LHSOPT->getObjectType();
5799  const ObjCObjectType* RHS = RHSOPT->getObjectType();
5800
5801  // If either type represents the built-in 'id' or 'Class' types, return true.
5802  if (LHS->isObjCUnqualifiedIdOrClass() ||
5803      RHS->isObjCUnqualifiedIdOrClass())
5804    return true;
5805
5806  if (LHS->isObjCQualifiedId() || RHS->isObjCQualifiedId())
5807    return ObjCQualifiedIdTypesAreCompatible(QualType(LHSOPT,0),
5808                                             QualType(RHSOPT,0),
5809                                             false);
5810
5811  if (LHS->isObjCQualifiedClass() && RHS->isObjCQualifiedClass())
5812    return ObjCQualifiedClassTypesAreCompatible(QualType(LHSOPT,0),
5813                                                QualType(RHSOPT,0));
5814
5815  // If we have 2 user-defined types, fall into that path.
5816  if (LHS->getInterface() && RHS->getInterface())
5817    return canAssignObjCInterfaces(LHS, RHS);
5818
5819  return false;
5820}
5821
5822/// canAssignObjCInterfacesInBlockPointer - This routine is specifically written
5823/// for providing type-safety for objective-c pointers used to pass/return
5824/// arguments in block literals. When passed as arguments, passing 'A*' where
5825/// 'id' is expected is not OK. Passing 'Sub *" where 'Super *" is expected is
5826/// not OK. For the return type, the opposite is not OK.
5827bool ASTContext::canAssignObjCInterfacesInBlockPointer(
5828                                         const ObjCObjectPointerType *LHSOPT,
5829                                         const ObjCObjectPointerType *RHSOPT,
5830                                         bool BlockReturnType) {
5831  if (RHSOPT->isObjCBuiltinType() || LHSOPT->isObjCIdType())
5832    return true;
5833
5834  if (LHSOPT->isObjCBuiltinType()) {
5835    return RHSOPT->isObjCBuiltinType() || RHSOPT->isObjCQualifiedIdType();
5836  }
5837
5838  if (LHSOPT->isObjCQualifiedIdType() || RHSOPT->isObjCQualifiedIdType())
5839    return ObjCQualifiedIdTypesAreCompatible(QualType(LHSOPT,0),
5840                                             QualType(RHSOPT,0),
5841                                             false);
5842
5843  const ObjCInterfaceType* LHS = LHSOPT->getInterfaceType();
5844  const ObjCInterfaceType* RHS = RHSOPT->getInterfaceType();
5845  if (LHS && RHS)  { // We have 2 user-defined types.
5846    if (LHS != RHS) {
5847      if (LHS->getDecl()->isSuperClassOf(RHS->getDecl()))
5848        return BlockReturnType;
5849      if (RHS->getDecl()->isSuperClassOf(LHS->getDecl()))
5850        return !BlockReturnType;
5851    }
5852    else
5853      return true;
5854  }
5855  return false;
5856}
5857
5858/// getIntersectionOfProtocols - This routine finds the intersection of set
5859/// of protocols inherited from two distinct objective-c pointer objects.
5860/// It is used to build composite qualifier list of the composite type of
5861/// the conditional expression involving two objective-c pointer objects.
5862static
5863void getIntersectionOfProtocols(ASTContext &Context,
5864                                const ObjCObjectPointerType *LHSOPT,
5865                                const ObjCObjectPointerType *RHSOPT,
5866      SmallVectorImpl<ObjCProtocolDecl *> &IntersectionOfProtocols) {
5867
5868  const ObjCObjectType* LHS = LHSOPT->getObjectType();
5869  const ObjCObjectType* RHS = RHSOPT->getObjectType();
5870  assert(LHS->getInterface() && "LHS must have an interface base");
5871  assert(RHS->getInterface() && "RHS must have an interface base");
5872
5873  llvm::SmallPtrSet<ObjCProtocolDecl *, 8> InheritedProtocolSet;
5874  unsigned LHSNumProtocols = LHS->getNumProtocols();
5875  if (LHSNumProtocols > 0)
5876    InheritedProtocolSet.insert(LHS->qual_begin(), LHS->qual_end());
5877  else {
5878    llvm::SmallPtrSet<ObjCProtocolDecl *, 8> LHSInheritedProtocols;
5879    Context.CollectInheritedProtocols(LHS->getInterface(),
5880                                      LHSInheritedProtocols);
5881    InheritedProtocolSet.insert(LHSInheritedProtocols.begin(),
5882                                LHSInheritedProtocols.end());
5883  }
5884
5885  unsigned RHSNumProtocols = RHS->getNumProtocols();
5886  if (RHSNumProtocols > 0) {
5887    ObjCProtocolDecl **RHSProtocols =
5888      const_cast<ObjCProtocolDecl **>(RHS->qual_begin());
5889    for (unsigned i = 0; i < RHSNumProtocols; ++i)
5890      if (InheritedProtocolSet.count(RHSProtocols[i]))
5891        IntersectionOfProtocols.push_back(RHSProtocols[i]);
5892  } else {
5893    llvm::SmallPtrSet<ObjCProtocolDecl *, 8> RHSInheritedProtocols;
5894    Context.CollectInheritedProtocols(RHS->getInterface(),
5895                                      RHSInheritedProtocols);
5896    for (llvm::SmallPtrSet<ObjCProtocolDecl*,8>::iterator I =
5897         RHSInheritedProtocols.begin(),
5898         E = RHSInheritedProtocols.end(); I != E; ++I)
5899      if (InheritedProtocolSet.count((*I)))
5900        IntersectionOfProtocols.push_back((*I));
5901  }
5902}
5903
5904/// areCommonBaseCompatible - Returns common base class of the two classes if
5905/// one found. Note that this is O'2 algorithm. But it will be called as the
5906/// last type comparison in a ?-exp of ObjC pointer types before a
5907/// warning is issued. So, its invokation is extremely rare.
5908QualType ASTContext::areCommonBaseCompatible(
5909                                          const ObjCObjectPointerType *Lptr,
5910                                          const ObjCObjectPointerType *Rptr) {
5911  const ObjCObjectType *LHS = Lptr->getObjectType();
5912  const ObjCObjectType *RHS = Rptr->getObjectType();
5913  const ObjCInterfaceDecl* LDecl = LHS->getInterface();
5914  const ObjCInterfaceDecl* RDecl = RHS->getInterface();
5915  if (!LDecl || !RDecl || (declaresSameEntity(LDecl, RDecl)))
5916    return QualType();
5917
5918  do {
5919    LHS = cast<ObjCInterfaceType>(getObjCInterfaceType(LDecl));
5920    if (canAssignObjCInterfaces(LHS, RHS)) {
5921      SmallVector<ObjCProtocolDecl *, 8> Protocols;
5922      getIntersectionOfProtocols(*this, Lptr, Rptr, Protocols);
5923
5924      QualType Result = QualType(LHS, 0);
5925      if (!Protocols.empty())
5926        Result = getObjCObjectType(Result, Protocols.data(), Protocols.size());
5927      Result = getObjCObjectPointerType(Result);
5928      return Result;
5929    }
5930  } while ((LDecl = LDecl->getSuperClass()));
5931
5932  return QualType();
5933}
5934
5935bool ASTContext::canAssignObjCInterfaces(const ObjCObjectType *LHS,
5936                                         const ObjCObjectType *RHS) {
5937  assert(LHS->getInterface() && "LHS is not an interface type");
5938  assert(RHS->getInterface() && "RHS is not an interface type");
5939
5940  // Verify that the base decls are compatible: the RHS must be a subclass of
5941  // the LHS.
5942  if (!LHS->getInterface()->isSuperClassOf(RHS->getInterface()))
5943    return false;
5944
5945  // RHS must have a superset of the protocols in the LHS.  If the LHS is not
5946  // protocol qualified at all, then we are good.
5947  if (LHS->getNumProtocols() == 0)
5948    return true;
5949
5950  // Okay, we know the LHS has protocol qualifiers.  If the RHS doesn't,
5951  // more detailed analysis is required.
5952  if (RHS->getNumProtocols() == 0) {
5953    // OK, if LHS is a superclass of RHS *and*
5954    // this superclass is assignment compatible with LHS.
5955    // false otherwise.
5956    bool IsSuperClass =
5957      LHS->getInterface()->isSuperClassOf(RHS->getInterface());
5958    if (IsSuperClass) {
5959      // OK if conversion of LHS to SuperClass results in narrowing of types
5960      // ; i.e., SuperClass may implement at least one of the protocols
5961      // in LHS's protocol list. Example, SuperObj<P1> = lhs<P1,P2> is ok.
5962      // But not SuperObj<P1,P2,P3> = lhs<P1,P2>.
5963      llvm::SmallPtrSet<ObjCProtocolDecl *, 8> SuperClassInheritedProtocols;
5964      CollectInheritedProtocols(RHS->getInterface(), SuperClassInheritedProtocols);
5965      // If super class has no protocols, it is not a match.
5966      if (SuperClassInheritedProtocols.empty())
5967        return false;
5968
5969      for (ObjCObjectType::qual_iterator LHSPI = LHS->qual_begin(),
5970           LHSPE = LHS->qual_end();
5971           LHSPI != LHSPE; LHSPI++) {
5972        bool SuperImplementsProtocol = false;
5973        ObjCProtocolDecl *LHSProto = (*LHSPI);
5974
5975        for (llvm::SmallPtrSet<ObjCProtocolDecl*,8>::iterator I =
5976             SuperClassInheritedProtocols.begin(),
5977             E = SuperClassInheritedProtocols.end(); I != E; ++I) {
5978          ObjCProtocolDecl *SuperClassProto = (*I);
5979          if (SuperClassProto->lookupProtocolNamed(LHSProto->getIdentifier())) {
5980            SuperImplementsProtocol = true;
5981            break;
5982          }
5983        }
5984        if (!SuperImplementsProtocol)
5985          return false;
5986      }
5987      return true;
5988    }
5989    return false;
5990  }
5991
5992  for (ObjCObjectType::qual_iterator LHSPI = LHS->qual_begin(),
5993                                     LHSPE = LHS->qual_end();
5994       LHSPI != LHSPE; LHSPI++) {
5995    bool RHSImplementsProtocol = false;
5996
5997    // If the RHS doesn't implement the protocol on the left, the types
5998    // are incompatible.
5999    for (ObjCObjectType::qual_iterator RHSPI = RHS->qual_begin(),
6000                                       RHSPE = RHS->qual_end();
6001         RHSPI != RHSPE; RHSPI++) {
6002      if ((*RHSPI)->lookupProtocolNamed((*LHSPI)->getIdentifier())) {
6003        RHSImplementsProtocol = true;
6004        break;
6005      }
6006    }
6007    // FIXME: For better diagnostics, consider passing back the protocol name.
6008    if (!RHSImplementsProtocol)
6009      return false;
6010  }
6011  // The RHS implements all protocols listed on the LHS.
6012  return true;
6013}
6014
6015bool ASTContext::areComparableObjCPointerTypes(QualType LHS, QualType RHS) {
6016  // get the "pointed to" types
6017  const ObjCObjectPointerType *LHSOPT = LHS->getAs<ObjCObjectPointerType>();
6018  const ObjCObjectPointerType *RHSOPT = RHS->getAs<ObjCObjectPointerType>();
6019
6020  if (!LHSOPT || !RHSOPT)
6021    return false;
6022
6023  return canAssignObjCInterfaces(LHSOPT, RHSOPT) ||
6024         canAssignObjCInterfaces(RHSOPT, LHSOPT);
6025}
6026
6027bool ASTContext::canBindObjCObjectType(QualType To, QualType From) {
6028  return canAssignObjCInterfaces(
6029                getObjCObjectPointerType(To)->getAs<ObjCObjectPointerType>(),
6030                getObjCObjectPointerType(From)->getAs<ObjCObjectPointerType>());
6031}
6032
6033/// typesAreCompatible - C99 6.7.3p9: For two qualified types to be compatible,
6034/// both shall have the identically qualified version of a compatible type.
6035/// C99 6.2.7p1: Two types have compatible types if their types are the
6036/// same. See 6.7.[2,3,5] for additional rules.
6037bool ASTContext::typesAreCompatible(QualType LHS, QualType RHS,
6038                                    bool CompareUnqualified) {
6039  if (getLangOpts().CPlusPlus)
6040    return hasSameType(LHS, RHS);
6041
6042  return !mergeTypes(LHS, RHS, false, CompareUnqualified).isNull();
6043}
6044
6045bool ASTContext::propertyTypesAreCompatible(QualType LHS, QualType RHS) {
6046  return typesAreCompatible(LHS, RHS);
6047}
6048
6049bool ASTContext::typesAreBlockPointerCompatible(QualType LHS, QualType RHS) {
6050  return !mergeTypes(LHS, RHS, true).isNull();
6051}
6052
6053/// mergeTransparentUnionType - if T is a transparent union type and a member
6054/// of T is compatible with SubType, return the merged type, else return
6055/// QualType()
6056QualType ASTContext::mergeTransparentUnionType(QualType T, QualType SubType,
6057                                               bool OfBlockPointer,
6058                                               bool Unqualified) {
6059  if (const RecordType *UT = T->getAsUnionType()) {
6060    RecordDecl *UD = UT->getDecl();
6061    if (UD->hasAttr<TransparentUnionAttr>()) {
6062      for (RecordDecl::field_iterator it = UD->field_begin(),
6063           itend = UD->field_end(); it != itend; ++it) {
6064        QualType ET = it->getType().getUnqualifiedType();
6065        QualType MT = mergeTypes(ET, SubType, OfBlockPointer, Unqualified);
6066        if (!MT.isNull())
6067          return MT;
6068      }
6069    }
6070  }
6071
6072  return QualType();
6073}
6074
6075/// mergeFunctionArgumentTypes - merge two types which appear as function
6076/// argument types
6077QualType ASTContext::mergeFunctionArgumentTypes(QualType lhs, QualType rhs,
6078                                                bool OfBlockPointer,
6079                                                bool Unqualified) {
6080  // GNU extension: two types are compatible if they appear as a function
6081  // argument, one of the types is a transparent union type and the other
6082  // type is compatible with a union member
6083  QualType lmerge = mergeTransparentUnionType(lhs, rhs, OfBlockPointer,
6084                                              Unqualified);
6085  if (!lmerge.isNull())
6086    return lmerge;
6087
6088  QualType rmerge = mergeTransparentUnionType(rhs, lhs, OfBlockPointer,
6089                                              Unqualified);
6090  if (!rmerge.isNull())
6091    return rmerge;
6092
6093  return mergeTypes(lhs, rhs, OfBlockPointer, Unqualified);
6094}
6095
6096QualType ASTContext::mergeFunctionTypes(QualType lhs, QualType rhs,
6097                                        bool OfBlockPointer,
6098                                        bool Unqualified) {
6099  const FunctionType *lbase = lhs->getAs<FunctionType>();
6100  const FunctionType *rbase = rhs->getAs<FunctionType>();
6101  const FunctionProtoType *lproto = dyn_cast<FunctionProtoType>(lbase);
6102  const FunctionProtoType *rproto = dyn_cast<FunctionProtoType>(rbase);
6103  bool allLTypes = true;
6104  bool allRTypes = true;
6105
6106  // Check return type
6107  QualType retType;
6108  if (OfBlockPointer) {
6109    QualType RHS = rbase->getResultType();
6110    QualType LHS = lbase->getResultType();
6111    bool UnqualifiedResult = Unqualified;
6112    if (!UnqualifiedResult)
6113      UnqualifiedResult = (!RHS.hasQualifiers() && LHS.hasQualifiers());
6114    retType = mergeTypes(LHS, RHS, true, UnqualifiedResult, true);
6115  }
6116  else
6117    retType = mergeTypes(lbase->getResultType(), rbase->getResultType(), false,
6118                         Unqualified);
6119  if (retType.isNull()) return QualType();
6120
6121  if (Unqualified)
6122    retType = retType.getUnqualifiedType();
6123
6124  CanQualType LRetType = getCanonicalType(lbase->getResultType());
6125  CanQualType RRetType = getCanonicalType(rbase->getResultType());
6126  if (Unqualified) {
6127    LRetType = LRetType.getUnqualifiedType();
6128    RRetType = RRetType.getUnqualifiedType();
6129  }
6130
6131  if (getCanonicalType(retType) != LRetType)
6132    allLTypes = false;
6133  if (getCanonicalType(retType) != RRetType)
6134    allRTypes = false;
6135
6136  // FIXME: double check this
6137  // FIXME: should we error if lbase->getRegParmAttr() != 0 &&
6138  //                           rbase->getRegParmAttr() != 0 &&
6139  //                           lbase->getRegParmAttr() != rbase->getRegParmAttr()?
6140  FunctionType::ExtInfo lbaseInfo = lbase->getExtInfo();
6141  FunctionType::ExtInfo rbaseInfo = rbase->getExtInfo();
6142
6143  // Compatible functions must have compatible calling conventions
6144  if (!isSameCallConv(lbaseInfo.getCC(), rbaseInfo.getCC()))
6145    return QualType();
6146
6147  // Regparm is part of the calling convention.
6148  if (lbaseInfo.getHasRegParm() != rbaseInfo.getHasRegParm())
6149    return QualType();
6150  if (lbaseInfo.getRegParm() != rbaseInfo.getRegParm())
6151    return QualType();
6152
6153  if (lbaseInfo.getProducesResult() != rbaseInfo.getProducesResult())
6154    return QualType();
6155
6156  // functypes which return are preferred over those that do not.
6157  if (lbaseInfo.getNoReturn() && !rbaseInfo.getNoReturn())
6158    allLTypes = false;
6159  else if (!lbaseInfo.getNoReturn() && rbaseInfo.getNoReturn())
6160    allRTypes = false;
6161  // FIXME: some uses, e.g. conditional exprs, really want this to be 'both'.
6162  bool NoReturn = lbaseInfo.getNoReturn() || rbaseInfo.getNoReturn();
6163
6164  FunctionType::ExtInfo einfo = lbaseInfo.withNoReturn(NoReturn);
6165
6166  if (lproto && rproto) { // two C99 style function prototypes
6167    assert(!lproto->hasExceptionSpec() && !rproto->hasExceptionSpec() &&
6168           "C++ shouldn't be here");
6169    unsigned lproto_nargs = lproto->getNumArgs();
6170    unsigned rproto_nargs = rproto->getNumArgs();
6171
6172    // Compatible functions must have the same number of arguments
6173    if (lproto_nargs != rproto_nargs)
6174      return QualType();
6175
6176    // Variadic and non-variadic functions aren't compatible
6177    if (lproto->isVariadic() != rproto->isVariadic())
6178      return QualType();
6179
6180    if (lproto->getTypeQuals() != rproto->getTypeQuals())
6181      return QualType();
6182
6183    if (LangOpts.ObjCAutoRefCount &&
6184        !FunctionTypesMatchOnNSConsumedAttrs(rproto, lproto))
6185      return QualType();
6186
6187    // Check argument compatibility
6188    SmallVector<QualType, 10> types;
6189    for (unsigned i = 0; i < lproto_nargs; i++) {
6190      QualType largtype = lproto->getArgType(i).getUnqualifiedType();
6191      QualType rargtype = rproto->getArgType(i).getUnqualifiedType();
6192      QualType argtype = mergeFunctionArgumentTypes(largtype, rargtype,
6193                                                    OfBlockPointer,
6194                                                    Unqualified);
6195      if (argtype.isNull()) return QualType();
6196
6197      if (Unqualified)
6198        argtype = argtype.getUnqualifiedType();
6199
6200      types.push_back(argtype);
6201      if (Unqualified) {
6202        largtype = largtype.getUnqualifiedType();
6203        rargtype = rargtype.getUnqualifiedType();
6204      }
6205
6206      if (getCanonicalType(argtype) != getCanonicalType(largtype))
6207        allLTypes = false;
6208      if (getCanonicalType(argtype) != getCanonicalType(rargtype))
6209        allRTypes = false;
6210    }
6211
6212    if (allLTypes) return lhs;
6213    if (allRTypes) return rhs;
6214
6215    FunctionProtoType::ExtProtoInfo EPI = lproto->getExtProtoInfo();
6216    EPI.ExtInfo = einfo;
6217    return getFunctionType(retType, types.begin(), types.size(), EPI);
6218  }
6219
6220  if (lproto) allRTypes = false;
6221  if (rproto) allLTypes = false;
6222
6223  const FunctionProtoType *proto = lproto ? lproto : rproto;
6224  if (proto) {
6225    assert(!proto->hasExceptionSpec() && "C++ shouldn't be here");
6226    if (proto->isVariadic()) return QualType();
6227    // Check that the types are compatible with the types that
6228    // would result from default argument promotions (C99 6.7.5.3p15).
6229    // The only types actually affected are promotable integer
6230    // types and floats, which would be passed as a different
6231    // type depending on whether the prototype is visible.
6232    unsigned proto_nargs = proto->getNumArgs();
6233    for (unsigned i = 0; i < proto_nargs; ++i) {
6234      QualType argTy = proto->getArgType(i);
6235
6236      // Look at the promotion type of enum types, since that is the type used
6237      // to pass enum values.
6238      if (const EnumType *Enum = argTy->getAs<EnumType>())
6239        argTy = Enum->getDecl()->getPromotionType();
6240
6241      if (argTy->isPromotableIntegerType() ||
6242          getCanonicalType(argTy).getUnqualifiedType() == FloatTy)
6243        return QualType();
6244    }
6245
6246    if (allLTypes) return lhs;
6247    if (allRTypes) return rhs;
6248
6249    FunctionProtoType::ExtProtoInfo EPI = proto->getExtProtoInfo();
6250    EPI.ExtInfo = einfo;
6251    return getFunctionType(retType, proto->arg_type_begin(),
6252                           proto->getNumArgs(), EPI);
6253  }
6254
6255  if (allLTypes) return lhs;
6256  if (allRTypes) return rhs;
6257  return getFunctionNoProtoType(retType, einfo);
6258}
6259
6260QualType ASTContext::mergeTypes(QualType LHS, QualType RHS,
6261                                bool OfBlockPointer,
6262                                bool Unqualified, bool BlockReturnType) {
6263  // C++ [expr]: If an expression initially has the type "reference to T", the
6264  // type is adjusted to "T" prior to any further analysis, the expression
6265  // designates the object or function denoted by the reference, and the
6266  // expression is an lvalue unless the reference is an rvalue reference and
6267  // the expression is a function call (possibly inside parentheses).
6268  assert(!LHS->getAs<ReferenceType>() && "LHS is a reference type?");
6269  assert(!RHS->getAs<ReferenceType>() && "RHS is a reference type?");
6270
6271  if (Unqualified) {
6272    LHS = LHS.getUnqualifiedType();
6273    RHS = RHS.getUnqualifiedType();
6274  }
6275
6276  QualType LHSCan = getCanonicalType(LHS),
6277           RHSCan = getCanonicalType(RHS);
6278
6279  // If two types are identical, they are compatible.
6280  if (LHSCan == RHSCan)
6281    return LHS;
6282
6283  // If the qualifiers are different, the types aren't compatible... mostly.
6284  Qualifiers LQuals = LHSCan.getLocalQualifiers();
6285  Qualifiers RQuals = RHSCan.getLocalQualifiers();
6286  if (LQuals != RQuals) {
6287    // If any of these qualifiers are different, we have a type
6288    // mismatch.
6289    if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() ||
6290        LQuals.getAddressSpace() != RQuals.getAddressSpace() ||
6291        LQuals.getObjCLifetime() != RQuals.getObjCLifetime())
6292      return QualType();
6293
6294    // Exactly one GC qualifier difference is allowed: __strong is
6295    // okay if the other type has no GC qualifier but is an Objective
6296    // C object pointer (i.e. implicitly strong by default).  We fix
6297    // this by pretending that the unqualified type was actually
6298    // qualified __strong.
6299    Qualifiers::GC GC_L = LQuals.getObjCGCAttr();
6300    Qualifiers::GC GC_R = RQuals.getObjCGCAttr();
6301    assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements");
6302
6303    if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak)
6304      return QualType();
6305
6306    if (GC_L == Qualifiers::Strong && RHSCan->isObjCObjectPointerType()) {
6307      return mergeTypes(LHS, getObjCGCQualType(RHS, Qualifiers::Strong));
6308    }
6309    if (GC_R == Qualifiers::Strong && LHSCan->isObjCObjectPointerType()) {
6310      return mergeTypes(getObjCGCQualType(LHS, Qualifiers::Strong), RHS);
6311    }
6312    return QualType();
6313  }
6314
6315  // Okay, qualifiers are equal.
6316
6317  Type::TypeClass LHSClass = LHSCan->getTypeClass();
6318  Type::TypeClass RHSClass = RHSCan->getTypeClass();
6319
6320  // We want to consider the two function types to be the same for these
6321  // comparisons, just force one to the other.
6322  if (LHSClass == Type::FunctionProto) LHSClass = Type::FunctionNoProto;
6323  if (RHSClass == Type::FunctionProto) RHSClass = Type::FunctionNoProto;
6324
6325  // Same as above for arrays
6326  if (LHSClass == Type::VariableArray || LHSClass == Type::IncompleteArray)
6327    LHSClass = Type::ConstantArray;
6328  if (RHSClass == Type::VariableArray || RHSClass == Type::IncompleteArray)
6329    RHSClass = Type::ConstantArray;
6330
6331  // ObjCInterfaces are just specialized ObjCObjects.
6332  if (LHSClass == Type::ObjCInterface) LHSClass = Type::ObjCObject;
6333  if (RHSClass == Type::ObjCInterface) RHSClass = Type::ObjCObject;
6334
6335  // Canonicalize ExtVector -> Vector.
6336  if (LHSClass == Type::ExtVector) LHSClass = Type::Vector;
6337  if (RHSClass == Type::ExtVector) RHSClass = Type::Vector;
6338
6339  // If the canonical type classes don't match.
6340  if (LHSClass != RHSClass) {
6341    // C99 6.7.2.2p4: Each enumerated type shall be compatible with char,
6342    // a signed integer type, or an unsigned integer type.
6343    // Compatibility is based on the underlying type, not the promotion
6344    // type.
6345    if (const EnumType* ETy = LHS->getAs<EnumType>()) {
6346      QualType TINT = ETy->getDecl()->getIntegerType();
6347      if (!TINT.isNull() && hasSameType(TINT, RHSCan.getUnqualifiedType()))
6348        return RHS;
6349    }
6350    if (const EnumType* ETy = RHS->getAs<EnumType>()) {
6351      QualType TINT = ETy->getDecl()->getIntegerType();
6352      if (!TINT.isNull() && hasSameType(TINT, LHSCan.getUnqualifiedType()))
6353        return LHS;
6354    }
6355    // allow block pointer type to match an 'id' type.
6356    if (OfBlockPointer && !BlockReturnType) {
6357       if (LHS->isObjCIdType() && RHS->isBlockPointerType())
6358         return LHS;
6359      if (RHS->isObjCIdType() && LHS->isBlockPointerType())
6360        return RHS;
6361    }
6362
6363    return QualType();
6364  }
6365
6366  // The canonical type classes match.
6367  switch (LHSClass) {
6368#define TYPE(Class, Base)
6369#define ABSTRACT_TYPE(Class, Base)
6370#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
6371#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
6372#define DEPENDENT_TYPE(Class, Base) case Type::Class:
6373#include "clang/AST/TypeNodes.def"
6374    llvm_unreachable("Non-canonical and dependent types shouldn't get here");
6375
6376  case Type::LValueReference:
6377  case Type::RValueReference:
6378  case Type::MemberPointer:
6379    llvm_unreachable("C++ should never be in mergeTypes");
6380
6381  case Type::ObjCInterface:
6382  case Type::IncompleteArray:
6383  case Type::VariableArray:
6384  case Type::FunctionProto:
6385  case Type::ExtVector:
6386    llvm_unreachable("Types are eliminated above");
6387
6388  case Type::Pointer:
6389  {
6390    // Merge two pointer types, while trying to preserve typedef info
6391    QualType LHSPointee = LHS->getAs<PointerType>()->getPointeeType();
6392    QualType RHSPointee = RHS->getAs<PointerType>()->getPointeeType();
6393    if (Unqualified) {
6394      LHSPointee = LHSPointee.getUnqualifiedType();
6395      RHSPointee = RHSPointee.getUnqualifiedType();
6396    }
6397    QualType ResultType = mergeTypes(LHSPointee, RHSPointee, false,
6398                                     Unqualified);
6399    if (ResultType.isNull()) return QualType();
6400    if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
6401      return LHS;
6402    if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
6403      return RHS;
6404    return getPointerType(ResultType);
6405  }
6406  case Type::BlockPointer:
6407  {
6408    // Merge two block pointer types, while trying to preserve typedef info
6409    QualType LHSPointee = LHS->getAs<BlockPointerType>()->getPointeeType();
6410    QualType RHSPointee = RHS->getAs<BlockPointerType>()->getPointeeType();
6411    if (Unqualified) {
6412      LHSPointee = LHSPointee.getUnqualifiedType();
6413      RHSPointee = RHSPointee.getUnqualifiedType();
6414    }
6415    QualType ResultType = mergeTypes(LHSPointee, RHSPointee, OfBlockPointer,
6416                                     Unqualified);
6417    if (ResultType.isNull()) return QualType();
6418    if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
6419      return LHS;
6420    if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
6421      return RHS;
6422    return getBlockPointerType(ResultType);
6423  }
6424  case Type::Atomic:
6425  {
6426    // Merge two pointer types, while trying to preserve typedef info
6427    QualType LHSValue = LHS->getAs<AtomicType>()->getValueType();
6428    QualType RHSValue = RHS->getAs<AtomicType>()->getValueType();
6429    if (Unqualified) {
6430      LHSValue = LHSValue.getUnqualifiedType();
6431      RHSValue = RHSValue.getUnqualifiedType();
6432    }
6433    QualType ResultType = mergeTypes(LHSValue, RHSValue, false,
6434                                     Unqualified);
6435    if (ResultType.isNull()) return QualType();
6436    if (getCanonicalType(LHSValue) == getCanonicalType(ResultType))
6437      return LHS;
6438    if (getCanonicalType(RHSValue) == getCanonicalType(ResultType))
6439      return RHS;
6440    return getAtomicType(ResultType);
6441  }
6442  case Type::ConstantArray:
6443  {
6444    const ConstantArrayType* LCAT = getAsConstantArrayType(LHS);
6445    const ConstantArrayType* RCAT = getAsConstantArrayType(RHS);
6446    if (LCAT && RCAT && RCAT->getSize() != LCAT->getSize())
6447      return QualType();
6448
6449    QualType LHSElem = getAsArrayType(LHS)->getElementType();
6450    QualType RHSElem = getAsArrayType(RHS)->getElementType();
6451    if (Unqualified) {
6452      LHSElem = LHSElem.getUnqualifiedType();
6453      RHSElem = RHSElem.getUnqualifiedType();
6454    }
6455
6456    QualType ResultType = mergeTypes(LHSElem, RHSElem, false, Unqualified);
6457    if (ResultType.isNull()) return QualType();
6458    if (LCAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
6459      return LHS;
6460    if (RCAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
6461      return RHS;
6462    if (LCAT) return getConstantArrayType(ResultType, LCAT->getSize(),
6463                                          ArrayType::ArraySizeModifier(), 0);
6464    if (RCAT) return getConstantArrayType(ResultType, RCAT->getSize(),
6465                                          ArrayType::ArraySizeModifier(), 0);
6466    const VariableArrayType* LVAT = getAsVariableArrayType(LHS);
6467    const VariableArrayType* RVAT = getAsVariableArrayType(RHS);
6468    if (LVAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
6469      return LHS;
6470    if (RVAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
6471      return RHS;
6472    if (LVAT) {
6473      // FIXME: This isn't correct! But tricky to implement because
6474      // the array's size has to be the size of LHS, but the type
6475      // has to be different.
6476      return LHS;
6477    }
6478    if (RVAT) {
6479      // FIXME: This isn't correct! But tricky to implement because
6480      // the array's size has to be the size of RHS, but the type
6481      // has to be different.
6482      return RHS;
6483    }
6484    if (getCanonicalType(LHSElem) == getCanonicalType(ResultType)) return LHS;
6485    if (getCanonicalType(RHSElem) == getCanonicalType(ResultType)) return RHS;
6486    return getIncompleteArrayType(ResultType,
6487                                  ArrayType::ArraySizeModifier(), 0);
6488  }
6489  case Type::FunctionNoProto:
6490    return mergeFunctionTypes(LHS, RHS, OfBlockPointer, Unqualified);
6491  case Type::Record:
6492  case Type::Enum:
6493    return QualType();
6494  case Type::Builtin:
6495    // Only exactly equal builtin types are compatible, which is tested above.
6496    return QualType();
6497  case Type::Complex:
6498    // Distinct complex types are incompatible.
6499    return QualType();
6500  case Type::Vector:
6501    // FIXME: The merged type should be an ExtVector!
6502    if (areCompatVectorTypes(LHSCan->getAs<VectorType>(),
6503                             RHSCan->getAs<VectorType>()))
6504      return LHS;
6505    return QualType();
6506  case Type::ObjCObject: {
6507    // Check if the types are assignment compatible.
6508    // FIXME: This should be type compatibility, e.g. whether
6509    // "LHS x; RHS x;" at global scope is legal.
6510    const ObjCObjectType* LHSIface = LHS->getAs<ObjCObjectType>();
6511    const ObjCObjectType* RHSIface = RHS->getAs<ObjCObjectType>();
6512    if (canAssignObjCInterfaces(LHSIface, RHSIface))
6513      return LHS;
6514
6515    return QualType();
6516  }
6517  case Type::ObjCObjectPointer: {
6518    if (OfBlockPointer) {
6519      if (canAssignObjCInterfacesInBlockPointer(
6520                                          LHS->getAs<ObjCObjectPointerType>(),
6521                                          RHS->getAs<ObjCObjectPointerType>(),
6522                                          BlockReturnType))
6523        return LHS;
6524      return QualType();
6525    }
6526    if (canAssignObjCInterfaces(LHS->getAs<ObjCObjectPointerType>(),
6527                                RHS->getAs<ObjCObjectPointerType>()))
6528      return LHS;
6529
6530    return QualType();
6531  }
6532  }
6533
6534  llvm_unreachable("Invalid Type::Class!");
6535}
6536
6537bool ASTContext::FunctionTypesMatchOnNSConsumedAttrs(
6538                   const FunctionProtoType *FromFunctionType,
6539                   const FunctionProtoType *ToFunctionType) {
6540  if (FromFunctionType->hasAnyConsumedArgs() !=
6541      ToFunctionType->hasAnyConsumedArgs())
6542    return false;
6543  FunctionProtoType::ExtProtoInfo FromEPI =
6544    FromFunctionType->getExtProtoInfo();
6545  FunctionProtoType::ExtProtoInfo ToEPI =
6546    ToFunctionType->getExtProtoInfo();
6547  if (FromEPI.ConsumedArguments && ToEPI.ConsumedArguments)
6548    for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumArgs();
6549         ArgIdx != NumArgs; ++ArgIdx)  {
6550      if (FromEPI.ConsumedArguments[ArgIdx] !=
6551          ToEPI.ConsumedArguments[ArgIdx])
6552        return false;
6553    }
6554  return true;
6555}
6556
6557/// mergeObjCGCQualifiers - This routine merges ObjC's GC attribute of 'LHS' and
6558/// 'RHS' attributes and returns the merged version; including for function
6559/// return types.
6560QualType ASTContext::mergeObjCGCQualifiers(QualType LHS, QualType RHS) {
6561  QualType LHSCan = getCanonicalType(LHS),
6562  RHSCan = getCanonicalType(RHS);
6563  // If two types are identical, they are compatible.
6564  if (LHSCan == RHSCan)
6565    return LHS;
6566  if (RHSCan->isFunctionType()) {
6567    if (!LHSCan->isFunctionType())
6568      return QualType();
6569    QualType OldReturnType =
6570      cast<FunctionType>(RHSCan.getTypePtr())->getResultType();
6571    QualType NewReturnType =
6572      cast<FunctionType>(LHSCan.getTypePtr())->getResultType();
6573    QualType ResReturnType =
6574      mergeObjCGCQualifiers(NewReturnType, OldReturnType);
6575    if (ResReturnType.isNull())
6576      return QualType();
6577    if (ResReturnType == NewReturnType || ResReturnType == OldReturnType) {
6578      // id foo(); ... __strong id foo(); or: __strong id foo(); ... id foo();
6579      // In either case, use OldReturnType to build the new function type.
6580      const FunctionType *F = LHS->getAs<FunctionType>();
6581      if (const FunctionProtoType *FPT = cast<FunctionProtoType>(F)) {
6582        FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
6583        EPI.ExtInfo = getFunctionExtInfo(LHS);
6584        QualType ResultType
6585          = getFunctionType(OldReturnType, FPT->arg_type_begin(),
6586                            FPT->getNumArgs(), EPI);
6587        return ResultType;
6588      }
6589    }
6590    return QualType();
6591  }
6592
6593  // If the qualifiers are different, the types can still be merged.
6594  Qualifiers LQuals = LHSCan.getLocalQualifiers();
6595  Qualifiers RQuals = RHSCan.getLocalQualifiers();
6596  if (LQuals != RQuals) {
6597    // If any of these qualifiers are different, we have a type mismatch.
6598    if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() ||
6599        LQuals.getAddressSpace() != RQuals.getAddressSpace())
6600      return QualType();
6601
6602    // Exactly one GC qualifier difference is allowed: __strong is
6603    // okay if the other type has no GC qualifier but is an Objective
6604    // C object pointer (i.e. implicitly strong by default).  We fix
6605    // this by pretending that the unqualified type was actually
6606    // qualified __strong.
6607    Qualifiers::GC GC_L = LQuals.getObjCGCAttr();
6608    Qualifiers::GC GC_R = RQuals.getObjCGCAttr();
6609    assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements");
6610
6611    if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak)
6612      return QualType();
6613
6614    if (GC_L == Qualifiers::Strong)
6615      return LHS;
6616    if (GC_R == Qualifiers::Strong)
6617      return RHS;
6618    return QualType();
6619  }
6620
6621  if (LHSCan->isObjCObjectPointerType() && RHSCan->isObjCObjectPointerType()) {
6622    QualType LHSBaseQT = LHS->getAs<ObjCObjectPointerType>()->getPointeeType();
6623    QualType RHSBaseQT = RHS->getAs<ObjCObjectPointerType>()->getPointeeType();
6624    QualType ResQT = mergeObjCGCQualifiers(LHSBaseQT, RHSBaseQT);
6625    if (ResQT == LHSBaseQT)
6626      return LHS;
6627    if (ResQT == RHSBaseQT)
6628      return RHS;
6629  }
6630  return QualType();
6631}
6632
6633//===----------------------------------------------------------------------===//
6634//                         Integer Predicates
6635//===----------------------------------------------------------------------===//
6636
6637unsigned ASTContext::getIntWidth(QualType T) const {
6638  if (const EnumType *ET = dyn_cast<EnumType>(T))
6639    T = ET->getDecl()->getIntegerType();
6640  if (T->isBooleanType())
6641    return 1;
6642  // For builtin types, just use the standard type sizing method
6643  return (unsigned)getTypeSize(T);
6644}
6645
6646QualType ASTContext::getCorrespondingUnsignedType(QualType T) {
6647  assert(T->hasSignedIntegerRepresentation() && "Unexpected type");
6648
6649  // Turn <4 x signed int> -> <4 x unsigned int>
6650  if (const VectorType *VTy = T->getAs<VectorType>())
6651    return getVectorType(getCorrespondingUnsignedType(VTy->getElementType()),
6652                         VTy->getNumElements(), VTy->getVectorKind());
6653
6654  // For enums, we return the unsigned version of the base type.
6655  if (const EnumType *ETy = T->getAs<EnumType>())
6656    T = ETy->getDecl()->getIntegerType();
6657
6658  const BuiltinType *BTy = T->getAs<BuiltinType>();
6659  assert(BTy && "Unexpected signed integer type");
6660  switch (BTy->getKind()) {
6661  case BuiltinType::Char_S:
6662  case BuiltinType::SChar:
6663    return UnsignedCharTy;
6664  case BuiltinType::Short:
6665    return UnsignedShortTy;
6666  case BuiltinType::Int:
6667    return UnsignedIntTy;
6668  case BuiltinType::Long:
6669    return UnsignedLongTy;
6670  case BuiltinType::LongLong:
6671    return UnsignedLongLongTy;
6672  case BuiltinType::Int128:
6673    return UnsignedInt128Ty;
6674  default:
6675    llvm_unreachable("Unexpected signed integer type");
6676  }
6677}
6678
6679ASTMutationListener::~ASTMutationListener() { }
6680
6681
6682//===----------------------------------------------------------------------===//
6683//                          Builtin Type Computation
6684//===----------------------------------------------------------------------===//
6685
6686/// DecodeTypeFromStr - This decodes one type descriptor from Str, advancing the
6687/// pointer over the consumed characters.  This returns the resultant type.  If
6688/// AllowTypeModifiers is false then modifier like * are not parsed, just basic
6689/// types.  This allows "v2i*" to be parsed as a pointer to a v2i instead of
6690/// a vector of "i*".
6691///
6692/// RequiresICE is filled in on return to indicate whether the value is required
6693/// to be an Integer Constant Expression.
6694static QualType DecodeTypeFromStr(const char *&Str, const ASTContext &Context,
6695                                  ASTContext::GetBuiltinTypeError &Error,
6696                                  bool &RequiresICE,
6697                                  bool AllowTypeModifiers) {
6698  // Modifiers.
6699  int HowLong = 0;
6700  bool Signed = false, Unsigned = false;
6701  RequiresICE = false;
6702
6703  // Read the prefixed modifiers first.
6704  bool Done = false;
6705  while (!Done) {
6706    switch (*Str++) {
6707    default: Done = true; --Str; break;
6708    case 'I':
6709      RequiresICE = true;
6710      break;
6711    case 'S':
6712      assert(!Unsigned && "Can't use both 'S' and 'U' modifiers!");
6713      assert(!Signed && "Can't use 'S' modifier multiple times!");
6714      Signed = true;
6715      break;
6716    case 'U':
6717      assert(!Signed && "Can't use both 'S' and 'U' modifiers!");
6718      assert(!Unsigned && "Can't use 'S' modifier multiple times!");
6719      Unsigned = true;
6720      break;
6721    case 'L':
6722      assert(HowLong <= 2 && "Can't have LLLL modifier");
6723      ++HowLong;
6724      break;
6725    }
6726  }
6727
6728  QualType Type;
6729
6730  // Read the base type.
6731  switch (*Str++) {
6732  default: llvm_unreachable("Unknown builtin type letter!");
6733  case 'v':
6734    assert(HowLong == 0 && !Signed && !Unsigned &&
6735           "Bad modifiers used with 'v'!");
6736    Type = Context.VoidTy;
6737    break;
6738  case 'f':
6739    assert(HowLong == 0 && !Signed && !Unsigned &&
6740           "Bad modifiers used with 'f'!");
6741    Type = Context.FloatTy;
6742    break;
6743  case 'd':
6744    assert(HowLong < 2 && !Signed && !Unsigned &&
6745           "Bad modifiers used with 'd'!");
6746    if (HowLong)
6747      Type = Context.LongDoubleTy;
6748    else
6749      Type = Context.DoubleTy;
6750    break;
6751  case 's':
6752    assert(HowLong == 0 && "Bad modifiers used with 's'!");
6753    if (Unsigned)
6754      Type = Context.UnsignedShortTy;
6755    else
6756      Type = Context.ShortTy;
6757    break;
6758  case 'i':
6759    if (HowLong == 3)
6760      Type = Unsigned ? Context.UnsignedInt128Ty : Context.Int128Ty;
6761    else if (HowLong == 2)
6762      Type = Unsigned ? Context.UnsignedLongLongTy : Context.LongLongTy;
6763    else if (HowLong == 1)
6764      Type = Unsigned ? Context.UnsignedLongTy : Context.LongTy;
6765    else
6766      Type = Unsigned ? Context.UnsignedIntTy : Context.IntTy;
6767    break;
6768  case 'c':
6769    assert(HowLong == 0 && "Bad modifiers used with 'c'!");
6770    if (Signed)
6771      Type = Context.SignedCharTy;
6772    else if (Unsigned)
6773      Type = Context.UnsignedCharTy;
6774    else
6775      Type = Context.CharTy;
6776    break;
6777  case 'b': // boolean
6778    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'b'!");
6779    Type = Context.BoolTy;
6780    break;
6781  case 'z':  // size_t.
6782    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'z'!");
6783    Type = Context.getSizeType();
6784    break;
6785  case 'F':
6786    Type = Context.getCFConstantStringType();
6787    break;
6788  case 'G':
6789    Type = Context.getObjCIdType();
6790    break;
6791  case 'H':
6792    Type = Context.getObjCSelType();
6793    break;
6794  case 'a':
6795    Type = Context.getBuiltinVaListType();
6796    assert(!Type.isNull() && "builtin va list type not initialized!");
6797    break;
6798  case 'A':
6799    // This is a "reference" to a va_list; however, what exactly
6800    // this means depends on how va_list is defined. There are two
6801    // different kinds of va_list: ones passed by value, and ones
6802    // passed by reference.  An example of a by-value va_list is
6803    // x86, where va_list is a char*. An example of by-ref va_list
6804    // is x86-64, where va_list is a __va_list_tag[1]. For x86,
6805    // we want this argument to be a char*&; for x86-64, we want
6806    // it to be a __va_list_tag*.
6807    Type = Context.getBuiltinVaListType();
6808    assert(!Type.isNull() && "builtin va list type not initialized!");
6809    if (Type->isArrayType())
6810      Type = Context.getArrayDecayedType(Type);
6811    else
6812      Type = Context.getLValueReferenceType(Type);
6813    break;
6814  case 'V': {
6815    char *End;
6816    unsigned NumElements = strtoul(Str, &End, 10);
6817    assert(End != Str && "Missing vector size");
6818    Str = End;
6819
6820    QualType ElementType = DecodeTypeFromStr(Str, Context, Error,
6821                                             RequiresICE, false);
6822    assert(!RequiresICE && "Can't require vector ICE");
6823
6824    // TODO: No way to make AltiVec vectors in builtins yet.
6825    Type = Context.getVectorType(ElementType, NumElements,
6826                                 VectorType::GenericVector);
6827    break;
6828  }
6829  case 'E': {
6830    char *End;
6831
6832    unsigned NumElements = strtoul(Str, &End, 10);
6833    assert(End != Str && "Missing vector size");
6834
6835    Str = End;
6836
6837    QualType ElementType = DecodeTypeFromStr(Str, Context, Error, RequiresICE,
6838                                             false);
6839    Type = Context.getExtVectorType(ElementType, NumElements);
6840    break;
6841  }
6842  case 'X': {
6843    QualType ElementType = DecodeTypeFromStr(Str, Context, Error, RequiresICE,
6844                                             false);
6845    assert(!RequiresICE && "Can't require complex ICE");
6846    Type = Context.getComplexType(ElementType);
6847    break;
6848  }
6849  case 'Y' : {
6850    Type = Context.getPointerDiffType();
6851    break;
6852  }
6853  case 'P':
6854    Type = Context.getFILEType();
6855    if (Type.isNull()) {
6856      Error = ASTContext::GE_Missing_stdio;
6857      return QualType();
6858    }
6859    break;
6860  case 'J':
6861    if (Signed)
6862      Type = Context.getsigjmp_bufType();
6863    else
6864      Type = Context.getjmp_bufType();
6865
6866    if (Type.isNull()) {
6867      Error = ASTContext::GE_Missing_setjmp;
6868      return QualType();
6869    }
6870    break;
6871  case 'K':
6872    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'K'!");
6873    Type = Context.getucontext_tType();
6874
6875    if (Type.isNull()) {
6876      Error = ASTContext::GE_Missing_ucontext;
6877      return QualType();
6878    }
6879    break;
6880  }
6881
6882  // If there are modifiers and if we're allowed to parse them, go for it.
6883  Done = !AllowTypeModifiers;
6884  while (!Done) {
6885    switch (char c = *Str++) {
6886    default: Done = true; --Str; break;
6887    case '*':
6888    case '&': {
6889      // Both pointers and references can have their pointee types
6890      // qualified with an address space.
6891      char *End;
6892      unsigned AddrSpace = strtoul(Str, &End, 10);
6893      if (End != Str && AddrSpace != 0) {
6894        Type = Context.getAddrSpaceQualType(Type, AddrSpace);
6895        Str = End;
6896      }
6897      if (c == '*')
6898        Type = Context.getPointerType(Type);
6899      else
6900        Type = Context.getLValueReferenceType(Type);
6901      break;
6902    }
6903    // FIXME: There's no way to have a built-in with an rvalue ref arg.
6904    case 'C':
6905      Type = Type.withConst();
6906      break;
6907    case 'D':
6908      Type = Context.getVolatileType(Type);
6909      break;
6910    case 'R':
6911      Type = Type.withRestrict();
6912      break;
6913    }
6914  }
6915
6916  assert((!RequiresICE || Type->isIntegralOrEnumerationType()) &&
6917         "Integer constant 'I' type must be an integer");
6918
6919  return Type;
6920}
6921
6922/// GetBuiltinType - Return the type for the specified builtin.
6923QualType ASTContext::GetBuiltinType(unsigned Id,
6924                                    GetBuiltinTypeError &Error,
6925                                    unsigned *IntegerConstantArgs) const {
6926  const char *TypeStr = BuiltinInfo.GetTypeString(Id);
6927
6928  SmallVector<QualType, 8> ArgTypes;
6929
6930  bool RequiresICE = false;
6931  Error = GE_None;
6932  QualType ResType = DecodeTypeFromStr(TypeStr, *this, Error,
6933                                       RequiresICE, true);
6934  if (Error != GE_None)
6935    return QualType();
6936
6937  assert(!RequiresICE && "Result of intrinsic cannot be required to be an ICE");
6938
6939  while (TypeStr[0] && TypeStr[0] != '.') {
6940    QualType Ty = DecodeTypeFromStr(TypeStr, *this, Error, RequiresICE, true);
6941    if (Error != GE_None)
6942      return QualType();
6943
6944    // If this argument is required to be an IntegerConstantExpression and the
6945    // caller cares, fill in the bitmask we return.
6946    if (RequiresICE && IntegerConstantArgs)
6947      *IntegerConstantArgs |= 1 << ArgTypes.size();
6948
6949    // Do array -> pointer decay.  The builtin should use the decayed type.
6950    if (Ty->isArrayType())
6951      Ty = getArrayDecayedType(Ty);
6952
6953    ArgTypes.push_back(Ty);
6954  }
6955
6956  assert((TypeStr[0] != '.' || TypeStr[1] == 0) &&
6957         "'.' should only occur at end of builtin type list!");
6958
6959  FunctionType::ExtInfo EI;
6960  if (BuiltinInfo.isNoReturn(Id)) EI = EI.withNoReturn(true);
6961
6962  bool Variadic = (TypeStr[0] == '.');
6963
6964  // We really shouldn't be making a no-proto type here, especially in C++.
6965  if (ArgTypes.empty() && Variadic)
6966    return getFunctionNoProtoType(ResType, EI);
6967
6968  FunctionProtoType::ExtProtoInfo EPI;
6969  EPI.ExtInfo = EI;
6970  EPI.Variadic = Variadic;
6971
6972  return getFunctionType(ResType, ArgTypes.data(), ArgTypes.size(), EPI);
6973}
6974
6975GVALinkage ASTContext::GetGVALinkageForFunction(const FunctionDecl *FD) {
6976  GVALinkage External = GVA_StrongExternal;
6977
6978  Linkage L = FD->getLinkage();
6979  switch (L) {
6980  case NoLinkage:
6981  case InternalLinkage:
6982  case UniqueExternalLinkage:
6983    return GVA_Internal;
6984
6985  case ExternalLinkage:
6986    switch (FD->getTemplateSpecializationKind()) {
6987    case TSK_Undeclared:
6988    case TSK_ExplicitSpecialization:
6989      External = GVA_StrongExternal;
6990      break;
6991
6992    case TSK_ExplicitInstantiationDefinition:
6993      return GVA_ExplicitTemplateInstantiation;
6994
6995    case TSK_ExplicitInstantiationDeclaration:
6996    case TSK_ImplicitInstantiation:
6997      External = GVA_TemplateInstantiation;
6998      break;
6999    }
7000  }
7001
7002  if (!FD->isInlined())
7003    return External;
7004
7005  if (!getLangOpts().CPlusPlus || FD->hasAttr<GNUInlineAttr>()) {
7006    // GNU or C99 inline semantics. Determine whether this symbol should be
7007    // externally visible.
7008    if (FD->isInlineDefinitionExternallyVisible())
7009      return External;
7010
7011    // C99 inline semantics, where the symbol is not externally visible.
7012    return GVA_C99Inline;
7013  }
7014
7015  // C++0x [temp.explicit]p9:
7016  //   [ Note: The intent is that an inline function that is the subject of
7017  //   an explicit instantiation declaration will still be implicitly
7018  //   instantiated when used so that the body can be considered for
7019  //   inlining, but that no out-of-line copy of the inline function would be
7020  //   generated in the translation unit. -- end note ]
7021  if (FD->getTemplateSpecializationKind()
7022                                       == TSK_ExplicitInstantiationDeclaration)
7023    return GVA_C99Inline;
7024
7025  return GVA_CXXInline;
7026}
7027
7028GVALinkage ASTContext::GetGVALinkageForVariable(const VarDecl *VD) {
7029  // If this is a static data member, compute the kind of template
7030  // specialization. Otherwise, this variable is not part of a
7031  // template.
7032  TemplateSpecializationKind TSK = TSK_Undeclared;
7033  if (VD->isStaticDataMember())
7034    TSK = VD->getTemplateSpecializationKind();
7035
7036  Linkage L = VD->getLinkage();
7037  if (L == ExternalLinkage && getLangOpts().CPlusPlus &&
7038      VD->getType()->getLinkage() == UniqueExternalLinkage)
7039    L = UniqueExternalLinkage;
7040
7041  switch (L) {
7042  case NoLinkage:
7043  case InternalLinkage:
7044  case UniqueExternalLinkage:
7045    return GVA_Internal;
7046
7047  case ExternalLinkage:
7048    switch (TSK) {
7049    case TSK_Undeclared:
7050    case TSK_ExplicitSpecialization:
7051      return GVA_StrongExternal;
7052
7053    case TSK_ExplicitInstantiationDeclaration:
7054      llvm_unreachable("Variable should not be instantiated");
7055      // Fall through to treat this like any other instantiation.
7056
7057    case TSK_ExplicitInstantiationDefinition:
7058      return GVA_ExplicitTemplateInstantiation;
7059
7060    case TSK_ImplicitInstantiation:
7061      return GVA_TemplateInstantiation;
7062    }
7063  }
7064
7065  llvm_unreachable("Invalid Linkage!");
7066}
7067
7068bool ASTContext::DeclMustBeEmitted(const Decl *D) {
7069  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
7070    if (!VD->isFileVarDecl())
7071      return false;
7072  } else if (!isa<FunctionDecl>(D))
7073    return false;
7074
7075  // Weak references don't produce any output by themselves.
7076  if (D->hasAttr<WeakRefAttr>())
7077    return false;
7078
7079  // Aliases and used decls are required.
7080  if (D->hasAttr<AliasAttr>() || D->hasAttr<UsedAttr>())
7081    return true;
7082
7083  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
7084    // Forward declarations aren't required.
7085    if (!FD->doesThisDeclarationHaveABody())
7086      return FD->doesDeclarationForceExternallyVisibleDefinition();
7087
7088    // Constructors and destructors are required.
7089    if (FD->hasAttr<ConstructorAttr>() || FD->hasAttr<DestructorAttr>())
7090      return true;
7091
7092    // The key function for a class is required.
7093    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
7094      const CXXRecordDecl *RD = MD->getParent();
7095      if (MD->isOutOfLine() && RD->isDynamicClass()) {
7096        const CXXMethodDecl *KeyFunc = getKeyFunction(RD);
7097        if (KeyFunc && KeyFunc->getCanonicalDecl() == MD->getCanonicalDecl())
7098          return true;
7099      }
7100    }
7101
7102    GVALinkage Linkage = GetGVALinkageForFunction(FD);
7103
7104    // static, static inline, always_inline, and extern inline functions can
7105    // always be deferred.  Normal inline functions can be deferred in C99/C++.
7106    // Implicit template instantiations can also be deferred in C++.
7107    if (Linkage == GVA_Internal  || Linkage == GVA_C99Inline ||
7108        Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation)
7109      return false;
7110    return true;
7111  }
7112
7113  const VarDecl *VD = cast<VarDecl>(D);
7114  assert(VD->isFileVarDecl() && "Expected file scoped var");
7115
7116  if (VD->isThisDeclarationADefinition() == VarDecl::DeclarationOnly)
7117    return false;
7118
7119  // Structs that have non-trivial constructors or destructors are required.
7120
7121  // FIXME: Handle references.
7122  // FIXME: Be more selective about which constructors we care about.
7123  if (const RecordType *RT = VD->getType()->getAs<RecordType>()) {
7124    if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
7125      if (RD->hasDefinition() && !(RD->hasTrivialDefaultConstructor() &&
7126                                   RD->hasTrivialCopyConstructor() &&
7127                                   RD->hasTrivialMoveConstructor() &&
7128                                   RD->hasTrivialDestructor()))
7129        return true;
7130    }
7131  }
7132
7133  GVALinkage L = GetGVALinkageForVariable(VD);
7134  if (L == GVA_Internal || L == GVA_TemplateInstantiation) {
7135    if (!(VD->getInit() && VD->getInit()->HasSideEffects(*this)))
7136      return false;
7137  }
7138
7139  return true;
7140}
7141
7142CallingConv ASTContext::getDefaultCXXMethodCallConv(bool isVariadic) {
7143  // Pass through to the C++ ABI object
7144  return ABI->getDefaultMethodCallConv(isVariadic);
7145}
7146
7147CallingConv ASTContext::getCanonicalCallConv(CallingConv CC) const {
7148  if (CC == CC_C && !LangOpts.MRTD && getTargetInfo().getCXXABI() != CXXABI_Microsoft)
7149    return CC_Default;
7150  return CC;
7151}
7152
7153bool ASTContext::isNearlyEmpty(const CXXRecordDecl *RD) const {
7154  // Pass through to the C++ ABI object
7155  return ABI->isNearlyEmpty(RD);
7156}
7157
7158MangleContext *ASTContext::createMangleContext() {
7159  switch (Target->getCXXABI()) {
7160  case CXXABI_ARM:
7161  case CXXABI_Itanium:
7162    return createItaniumMangleContext(*this, getDiagnostics());
7163  case CXXABI_Microsoft:
7164    return createMicrosoftMangleContext(*this, getDiagnostics());
7165  }
7166  llvm_unreachable("Unsupported ABI");
7167}
7168
7169CXXABI::~CXXABI() {}
7170
7171size_t ASTContext::getSideTableAllocatedMemory() const {
7172  return ASTRecordLayouts.getMemorySize()
7173    + llvm::capacity_in_bytes(ObjCLayouts)
7174    + llvm::capacity_in_bytes(KeyFunctions)
7175    + llvm::capacity_in_bytes(ObjCImpls)
7176    + llvm::capacity_in_bytes(BlockVarCopyInits)
7177    + llvm::capacity_in_bytes(DeclAttrs)
7178    + llvm::capacity_in_bytes(InstantiatedFromStaticDataMember)
7179    + llvm::capacity_in_bytes(InstantiatedFromUsingDecl)
7180    + llvm::capacity_in_bytes(InstantiatedFromUsingShadowDecl)
7181    + llvm::capacity_in_bytes(InstantiatedFromUnnamedFieldDecl)
7182    + llvm::capacity_in_bytes(OverriddenMethods)
7183    + llvm::capacity_in_bytes(Types)
7184    + llvm::capacity_in_bytes(VariableArrayTypes)
7185    + llvm::capacity_in_bytes(ClassScopeSpecializationPattern);
7186}
7187
7188unsigned ASTContext::getLambdaManglingNumber(CXXMethodDecl *CallOperator) {
7189  CXXRecordDecl *Lambda = CallOperator->getParent();
7190  return LambdaMangleContexts[Lambda->getDeclContext()]
7191           .getManglingNumber(CallOperator);
7192}
7193
7194
7195void ASTContext::setParameterIndex(const ParmVarDecl *D, unsigned int index) {
7196  ParamIndices[D] = index;
7197}
7198
7199unsigned ASTContext::getParameterIndex(const ParmVarDecl *D) const {
7200  ParameterIndexTable::const_iterator I = ParamIndices.find(D);
7201  assert(I != ParamIndices.end() &&
7202         "ParmIndices lacks entry set by ParmVarDecl");
7203  return I->second;
7204}
7205