ASTContext.cpp revision b2f812165676230bce5d0215e49a4749c451ca9c
1//===--- ASTContext.cpp - Context to hold long-lived AST nodes ------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements the ASTContext interface.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/AST/ASTContext.h"
15#include "clang/AST/CharUnits.h"
16#include "clang/AST/DeclCXX.h"
17#include "clang/AST/DeclObjC.h"
18#include "clang/AST/DeclTemplate.h"
19#include "clang/AST/TypeLoc.h"
20#include "clang/AST/Expr.h"
21#include "clang/AST/ExternalASTSource.h"
22#include "clang/AST/RecordLayout.h"
23#include "clang/Basic/Builtins.h"
24#include "clang/Basic/SourceManager.h"
25#include "clang/Basic/TargetInfo.h"
26#include "llvm/ADT/SmallString.h"
27#include "llvm/ADT/StringExtras.h"
28#include "llvm/Support/MathExtras.h"
29#include "llvm/Support/raw_ostream.h"
30#include "RecordLayoutBuilder.h"
31
32using namespace clang;
33
34enum FloatingRank {
35  FloatRank, DoubleRank, LongDoubleRank
36};
37
38ASTContext::ASTContext(const LangOptions& LOpts, SourceManager &SM,
39                       const TargetInfo &t,
40                       IdentifierTable &idents, SelectorTable &sels,
41                       Builtin::Context &builtins,
42                       bool FreeMem, unsigned size_reserve) :
43  GlobalNestedNameSpecifier(0), CFConstantStringTypeDecl(0),
44  ObjCFastEnumerationStateTypeDecl(0), FILEDecl(0), jmp_bufDecl(0),
45  sigjmp_bufDecl(0), BlockDescriptorType(0), BlockDescriptorExtendedType(0),
46  SourceMgr(SM), LangOpts(LOpts),
47  LoadedExternalComments(false), FreeMemory(FreeMem), Target(t),
48  Idents(idents), Selectors(sels),
49  BuiltinInfo(builtins), ExternalSource(0), PrintingPolicy(LOpts) {
50  ObjCIdRedefinitionType = QualType();
51  ObjCClassRedefinitionType = QualType();
52  ObjCSelRedefinitionType = QualType();
53  if (size_reserve > 0) Types.reserve(size_reserve);
54  TUDecl = TranslationUnitDecl::Create(*this);
55  InitBuiltinTypes();
56}
57
58ASTContext::~ASTContext() {
59  // Release the DenseMaps associated with DeclContext objects.
60  // FIXME: Is this the ideal solution?
61  ReleaseDeclContextMaps();
62
63  if (FreeMemory) {
64    // Deallocate all the types.
65    while (!Types.empty()) {
66      Types.back()->Destroy(*this);
67      Types.pop_back();
68    }
69
70    for (llvm::FoldingSet<ExtQuals>::iterator
71         I = ExtQualNodes.begin(), E = ExtQualNodes.end(); I != E; ) {
72      // Increment in loop to prevent using deallocated memory.
73      Deallocate(&*I++);
74    }
75  }
76
77  for (llvm::DenseMap<const RecordDecl*, const ASTRecordLayout*>::iterator
78       I = ASTRecordLayouts.begin(), E = ASTRecordLayouts.end(); I != E; ) {
79    // Increment in loop to prevent using deallocated memory.
80    ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second);
81    delete R;
82  }
83
84  for (llvm::DenseMap<const ObjCContainerDecl*,
85                      const ASTRecordLayout*>::iterator
86       I = ObjCLayouts.begin(), E = ObjCLayouts.end(); I != E; ) {
87    // Increment in loop to prevent using deallocated memory.
88    ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second);
89    delete R;
90  }
91
92  // Destroy nested-name-specifiers.
93  for (llvm::FoldingSet<NestedNameSpecifier>::iterator
94         NNS = NestedNameSpecifiers.begin(),
95         NNSEnd = NestedNameSpecifiers.end();
96       NNS != NNSEnd; ) {
97    // Increment in loop to prevent using deallocated memory.
98    (*NNS++).Destroy(*this);
99  }
100
101  if (GlobalNestedNameSpecifier)
102    GlobalNestedNameSpecifier->Destroy(*this);
103
104  TUDecl->Destroy(*this);
105}
106
107void
108ASTContext::setExternalSource(llvm::OwningPtr<ExternalASTSource> &Source) {
109  ExternalSource.reset(Source.take());
110}
111
112void ASTContext::PrintStats() const {
113  fprintf(stderr, "*** AST Context Stats:\n");
114  fprintf(stderr, "  %d types total.\n", (int)Types.size());
115
116  unsigned counts[] = {
117#define TYPE(Name, Parent) 0,
118#define ABSTRACT_TYPE(Name, Parent)
119#include "clang/AST/TypeNodes.def"
120    0 // Extra
121  };
122
123  for (unsigned i = 0, e = Types.size(); i != e; ++i) {
124    Type *T = Types[i];
125    counts[(unsigned)T->getTypeClass()]++;
126  }
127
128  unsigned Idx = 0;
129  unsigned TotalBytes = 0;
130#define TYPE(Name, Parent)                                              \
131  if (counts[Idx])                                                      \
132    fprintf(stderr, "    %d %s types\n", (int)counts[Idx], #Name);      \
133  TotalBytes += counts[Idx] * sizeof(Name##Type);                       \
134  ++Idx;
135#define ABSTRACT_TYPE(Name, Parent)
136#include "clang/AST/TypeNodes.def"
137
138  fprintf(stderr, "Total bytes = %d\n", int(TotalBytes));
139
140  if (ExternalSource.get()) {
141    fprintf(stderr, "\n");
142    ExternalSource->PrintStats();
143  }
144}
145
146
147void ASTContext::InitBuiltinType(CanQualType &R, BuiltinType::Kind K) {
148  BuiltinType *Ty = new (*this, TypeAlignment) BuiltinType(K);
149  R = CanQualType::CreateUnsafe(QualType(Ty, 0));
150  Types.push_back(Ty);
151}
152
153void ASTContext::InitBuiltinTypes() {
154  assert(VoidTy.isNull() && "Context reinitialized?");
155
156  // C99 6.2.5p19.
157  InitBuiltinType(VoidTy,              BuiltinType::Void);
158
159  // C99 6.2.5p2.
160  InitBuiltinType(BoolTy,              BuiltinType::Bool);
161  // C99 6.2.5p3.
162  if (LangOpts.CharIsSigned)
163    InitBuiltinType(CharTy,            BuiltinType::Char_S);
164  else
165    InitBuiltinType(CharTy,            BuiltinType::Char_U);
166  // C99 6.2.5p4.
167  InitBuiltinType(SignedCharTy,        BuiltinType::SChar);
168  InitBuiltinType(ShortTy,             BuiltinType::Short);
169  InitBuiltinType(IntTy,               BuiltinType::Int);
170  InitBuiltinType(LongTy,              BuiltinType::Long);
171  InitBuiltinType(LongLongTy,          BuiltinType::LongLong);
172
173  // C99 6.2.5p6.
174  InitBuiltinType(UnsignedCharTy,      BuiltinType::UChar);
175  InitBuiltinType(UnsignedShortTy,     BuiltinType::UShort);
176  InitBuiltinType(UnsignedIntTy,       BuiltinType::UInt);
177  InitBuiltinType(UnsignedLongTy,      BuiltinType::ULong);
178  InitBuiltinType(UnsignedLongLongTy,  BuiltinType::ULongLong);
179
180  // C99 6.2.5p10.
181  InitBuiltinType(FloatTy,             BuiltinType::Float);
182  InitBuiltinType(DoubleTy,            BuiltinType::Double);
183  InitBuiltinType(LongDoubleTy,        BuiltinType::LongDouble);
184
185  // GNU extension, 128-bit integers.
186  InitBuiltinType(Int128Ty,            BuiltinType::Int128);
187  InitBuiltinType(UnsignedInt128Ty,    BuiltinType::UInt128);
188
189  if (LangOpts.CPlusPlus) // C++ 3.9.1p5
190    InitBuiltinType(WCharTy,           BuiltinType::WChar);
191  else // C99
192    WCharTy = getFromTargetType(Target.getWCharType());
193
194  if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
195    InitBuiltinType(Char16Ty,           BuiltinType::Char16);
196  else // C99
197    Char16Ty = getFromTargetType(Target.getChar16Type());
198
199  if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
200    InitBuiltinType(Char32Ty,           BuiltinType::Char32);
201  else // C99
202    Char32Ty = getFromTargetType(Target.getChar32Type());
203
204  // Placeholder type for functions.
205  InitBuiltinType(OverloadTy,          BuiltinType::Overload);
206
207  // Placeholder type for type-dependent expressions whose type is
208  // completely unknown. No code should ever check a type against
209  // DependentTy and users should never see it; however, it is here to
210  // help diagnose failures to properly check for type-dependent
211  // expressions.
212  InitBuiltinType(DependentTy,         BuiltinType::Dependent);
213
214  // Placeholder type for C++0x auto declarations whose real type has
215  // not yet been deduced.
216  InitBuiltinType(UndeducedAutoTy, BuiltinType::UndeducedAuto);
217
218  // C99 6.2.5p11.
219  FloatComplexTy      = getComplexType(FloatTy);
220  DoubleComplexTy     = getComplexType(DoubleTy);
221  LongDoubleComplexTy = getComplexType(LongDoubleTy);
222
223  BuiltinVaListType = QualType();
224
225  // "Builtin" typedefs set by Sema::ActOnTranslationUnitScope().
226  ObjCIdTypedefType = QualType();
227  ObjCClassTypedefType = QualType();
228  ObjCSelTypedefType = QualType();
229
230  // Builtin types for 'id', 'Class', and 'SEL'.
231  InitBuiltinType(ObjCBuiltinIdTy, BuiltinType::ObjCId);
232  InitBuiltinType(ObjCBuiltinClassTy, BuiltinType::ObjCClass);
233  InitBuiltinType(ObjCBuiltinSelTy, BuiltinType::ObjCSel);
234
235  ObjCConstantStringType = QualType();
236
237  // void * type
238  VoidPtrTy = getPointerType(VoidTy);
239
240  // nullptr type (C++0x 2.14.7)
241  InitBuiltinType(NullPtrTy,           BuiltinType::NullPtr);
242}
243
244MemberSpecializationInfo *
245ASTContext::getInstantiatedFromStaticDataMember(const VarDecl *Var) {
246  assert(Var->isStaticDataMember() && "Not a static data member");
247  llvm::DenseMap<const VarDecl *, MemberSpecializationInfo *>::iterator Pos
248    = InstantiatedFromStaticDataMember.find(Var);
249  if (Pos == InstantiatedFromStaticDataMember.end())
250    return 0;
251
252  return Pos->second;
253}
254
255void
256ASTContext::setInstantiatedFromStaticDataMember(VarDecl *Inst, VarDecl *Tmpl,
257                                                TemplateSpecializationKind TSK) {
258  assert(Inst->isStaticDataMember() && "Not a static data member");
259  assert(Tmpl->isStaticDataMember() && "Not a static data member");
260  assert(!InstantiatedFromStaticDataMember[Inst] &&
261         "Already noted what static data member was instantiated from");
262  InstantiatedFromStaticDataMember[Inst]
263    = new (*this) MemberSpecializationInfo(Tmpl, TSK);
264}
265
266NamedDecl *
267ASTContext::getInstantiatedFromUsingDecl(UsingDecl *UUD) {
268  llvm::DenseMap<UsingDecl *, NamedDecl *>::const_iterator Pos
269    = InstantiatedFromUsingDecl.find(UUD);
270  if (Pos == InstantiatedFromUsingDecl.end())
271    return 0;
272
273  return Pos->second;
274}
275
276void
277ASTContext::setInstantiatedFromUsingDecl(UsingDecl *Inst, NamedDecl *Pattern) {
278  assert((isa<UsingDecl>(Pattern) ||
279          isa<UnresolvedUsingValueDecl>(Pattern) ||
280          isa<UnresolvedUsingTypenameDecl>(Pattern)) &&
281         "pattern decl is not a using decl");
282  assert(!InstantiatedFromUsingDecl[Inst] && "pattern already exists");
283  InstantiatedFromUsingDecl[Inst] = Pattern;
284}
285
286UsingShadowDecl *
287ASTContext::getInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst) {
288  llvm::DenseMap<UsingShadowDecl*, UsingShadowDecl*>::const_iterator Pos
289    = InstantiatedFromUsingShadowDecl.find(Inst);
290  if (Pos == InstantiatedFromUsingShadowDecl.end())
291    return 0;
292
293  return Pos->second;
294}
295
296void
297ASTContext::setInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst,
298                                               UsingShadowDecl *Pattern) {
299  assert(!InstantiatedFromUsingShadowDecl[Inst] && "pattern already exists");
300  InstantiatedFromUsingShadowDecl[Inst] = Pattern;
301}
302
303FieldDecl *ASTContext::getInstantiatedFromUnnamedFieldDecl(FieldDecl *Field) {
304  llvm::DenseMap<FieldDecl *, FieldDecl *>::iterator Pos
305    = InstantiatedFromUnnamedFieldDecl.find(Field);
306  if (Pos == InstantiatedFromUnnamedFieldDecl.end())
307    return 0;
308
309  return Pos->second;
310}
311
312void ASTContext::setInstantiatedFromUnnamedFieldDecl(FieldDecl *Inst,
313                                                     FieldDecl *Tmpl) {
314  assert(!Inst->getDeclName() && "Instantiated field decl is not unnamed");
315  assert(!Tmpl->getDeclName() && "Template field decl is not unnamed");
316  assert(!InstantiatedFromUnnamedFieldDecl[Inst] &&
317         "Already noted what unnamed field was instantiated from");
318
319  InstantiatedFromUnnamedFieldDecl[Inst] = Tmpl;
320}
321
322namespace {
323  class BeforeInTranslationUnit
324    : std::binary_function<SourceRange, SourceRange, bool> {
325    SourceManager *SourceMgr;
326
327  public:
328    explicit BeforeInTranslationUnit(SourceManager *SM) : SourceMgr(SM) { }
329
330    bool operator()(SourceRange X, SourceRange Y) {
331      return SourceMgr->isBeforeInTranslationUnit(X.getBegin(), Y.getBegin());
332    }
333  };
334}
335
336/// \brief Determine whether the given comment is a Doxygen-style comment.
337///
338/// \param Start the start of the comment text.
339///
340/// \param End the end of the comment text.
341///
342/// \param Member whether we want to check whether this is a member comment
343/// (which requires a < after the Doxygen-comment delimiter). Otherwise,
344/// we only return true when we find a non-member comment.
345static bool
346isDoxygenComment(SourceManager &SourceMgr, SourceRange Comment,
347                 bool Member = false) {
348  const char *BufferStart
349    = SourceMgr.getBufferData(SourceMgr.getFileID(Comment.getBegin())).first;
350  const char *Start = BufferStart + SourceMgr.getFileOffset(Comment.getBegin());
351  const char* End = BufferStart + SourceMgr.getFileOffset(Comment.getEnd());
352
353  if (End - Start < 4)
354    return false;
355
356  assert(Start[0] == '/' && "Not a comment?");
357  if (Start[1] == '*' && !(Start[2] == '!' || Start[2] == '*'))
358    return false;
359  if (Start[1] == '/' && !(Start[2] == '!' || Start[2] == '/'))
360    return false;
361
362  return (Start[3] == '<') == Member;
363}
364
365/// \brief Retrieve the comment associated with the given declaration, if
366/// it has one.
367const char *ASTContext::getCommentForDecl(const Decl *D) {
368  if (!D)
369    return 0;
370
371  // Check whether we have cached a comment string for this declaration
372  // already.
373  llvm::DenseMap<const Decl *, std::string>::iterator Pos
374    = DeclComments.find(D);
375  if (Pos != DeclComments.end())
376    return Pos->second.c_str();
377
378  // If we have an external AST source and have not yet loaded comments from
379  // that source, do so now.
380  if (ExternalSource && !LoadedExternalComments) {
381    std::vector<SourceRange> LoadedComments;
382    ExternalSource->ReadComments(LoadedComments);
383
384    if (!LoadedComments.empty())
385      Comments.insert(Comments.begin(), LoadedComments.begin(),
386                      LoadedComments.end());
387
388    LoadedExternalComments = true;
389  }
390
391  // If there are no comments anywhere, we won't find anything.
392  if (Comments.empty())
393    return 0;
394
395  // If the declaration doesn't map directly to a location in a file, we
396  // can't find the comment.
397  SourceLocation DeclStartLoc = D->getLocStart();
398  if (DeclStartLoc.isInvalid() || !DeclStartLoc.isFileID())
399    return 0;
400
401  // Find the comment that occurs just before this declaration.
402  std::vector<SourceRange>::iterator LastComment
403    = std::lower_bound(Comments.begin(), Comments.end(),
404                       SourceRange(DeclStartLoc),
405                       BeforeInTranslationUnit(&SourceMgr));
406
407  // Decompose the location for the start of the declaration and find the
408  // beginning of the file buffer.
409  std::pair<FileID, unsigned> DeclStartDecomp
410    = SourceMgr.getDecomposedLoc(DeclStartLoc);
411  const char *FileBufferStart
412    = SourceMgr.getBufferData(DeclStartDecomp.first).first;
413
414  // First check whether we have a comment for a member.
415  if (LastComment != Comments.end() &&
416      !isa<TagDecl>(D) && !isa<NamespaceDecl>(D) &&
417      isDoxygenComment(SourceMgr, *LastComment, true)) {
418    std::pair<FileID, unsigned> LastCommentEndDecomp
419      = SourceMgr.getDecomposedLoc(LastComment->getEnd());
420    if (DeclStartDecomp.first == LastCommentEndDecomp.first &&
421        SourceMgr.getLineNumber(DeclStartDecomp.first, DeclStartDecomp.second)
422          == SourceMgr.getLineNumber(LastCommentEndDecomp.first,
423                                     LastCommentEndDecomp.second)) {
424      // The Doxygen member comment comes after the declaration starts and
425      // is on the same line and in the same file as the declaration. This
426      // is the comment we want.
427      std::string &Result = DeclComments[D];
428      Result.append(FileBufferStart +
429                      SourceMgr.getFileOffset(LastComment->getBegin()),
430                    FileBufferStart + LastCommentEndDecomp.second + 1);
431      return Result.c_str();
432    }
433  }
434
435  if (LastComment == Comments.begin())
436    return 0;
437  --LastComment;
438
439  // Decompose the end of the comment.
440  std::pair<FileID, unsigned> LastCommentEndDecomp
441    = SourceMgr.getDecomposedLoc(LastComment->getEnd());
442
443  // If the comment and the declaration aren't in the same file, then they
444  // aren't related.
445  if (DeclStartDecomp.first != LastCommentEndDecomp.first)
446    return 0;
447
448  // Check that we actually have a Doxygen comment.
449  if (!isDoxygenComment(SourceMgr, *LastComment))
450    return 0;
451
452  // Compute the starting line for the declaration and for the end of the
453  // comment (this is expensive).
454  unsigned DeclStartLine
455    = SourceMgr.getLineNumber(DeclStartDecomp.first, DeclStartDecomp.second);
456  unsigned CommentEndLine
457    = SourceMgr.getLineNumber(LastCommentEndDecomp.first,
458                              LastCommentEndDecomp.second);
459
460  // If the comment does not end on the line prior to the declaration, then
461  // the comment is not associated with the declaration at all.
462  if (CommentEndLine + 1 != DeclStartLine)
463    return 0;
464
465  // We have a comment, but there may be more comments on the previous lines.
466  // Keep looking so long as the comments are still Doxygen comments and are
467  // still adjacent.
468  unsigned ExpectedLine
469    = SourceMgr.getSpellingLineNumber(LastComment->getBegin()) - 1;
470  std::vector<SourceRange>::iterator FirstComment = LastComment;
471  while (FirstComment != Comments.begin()) {
472    // Look at the previous comment
473    --FirstComment;
474    std::pair<FileID, unsigned> Decomp
475      = SourceMgr.getDecomposedLoc(FirstComment->getEnd());
476
477    // If this previous comment is in a different file, we're done.
478    if (Decomp.first != DeclStartDecomp.first) {
479      ++FirstComment;
480      break;
481    }
482
483    // If this comment is not a Doxygen comment, we're done.
484    if (!isDoxygenComment(SourceMgr, *FirstComment)) {
485      ++FirstComment;
486      break;
487    }
488
489    // If the line number is not what we expected, we're done.
490    unsigned Line = SourceMgr.getLineNumber(Decomp.first, Decomp.second);
491    if (Line != ExpectedLine) {
492      ++FirstComment;
493      break;
494    }
495
496    // Set the next expected line number.
497    ExpectedLine
498      = SourceMgr.getSpellingLineNumber(FirstComment->getBegin()) - 1;
499  }
500
501  // The iterator range [FirstComment, LastComment] contains all of the
502  // BCPL comments that, together, are associated with this declaration.
503  // Form a single comment block string for this declaration that concatenates
504  // all of these comments.
505  std::string &Result = DeclComments[D];
506  while (FirstComment != LastComment) {
507    std::pair<FileID, unsigned> DecompStart
508      = SourceMgr.getDecomposedLoc(FirstComment->getBegin());
509    std::pair<FileID, unsigned> DecompEnd
510      = SourceMgr.getDecomposedLoc(FirstComment->getEnd());
511    Result.append(FileBufferStart + DecompStart.second,
512                  FileBufferStart + DecompEnd.second + 1);
513    ++FirstComment;
514  }
515
516  // Append the last comment line.
517  Result.append(FileBufferStart +
518                  SourceMgr.getFileOffset(LastComment->getBegin()),
519                FileBufferStart + LastCommentEndDecomp.second + 1);
520  return Result.c_str();
521}
522
523//===----------------------------------------------------------------------===//
524//                         Type Sizing and Analysis
525//===----------------------------------------------------------------------===//
526
527/// getFloatTypeSemantics - Return the APFloat 'semantics' for the specified
528/// scalar floating point type.
529const llvm::fltSemantics &ASTContext::getFloatTypeSemantics(QualType T) const {
530  const BuiltinType *BT = T->getAs<BuiltinType>();
531  assert(BT && "Not a floating point type!");
532  switch (BT->getKind()) {
533  default: assert(0 && "Not a floating point type!");
534  case BuiltinType::Float:      return Target.getFloatFormat();
535  case BuiltinType::Double:     return Target.getDoubleFormat();
536  case BuiltinType::LongDouble: return Target.getLongDoubleFormat();
537  }
538}
539
540/// getDeclAlign - Return a conservative estimate of the alignment of the
541/// specified decl.  Note that bitfields do not have a valid alignment, so
542/// this method will assert on them.
543/// If @p RefAsPointee, references are treated like their underlying type
544/// (for alignof), else they're treated like pointers (for CodeGen).
545CharUnits ASTContext::getDeclAlign(const Decl *D, bool RefAsPointee) {
546  unsigned Align = Target.getCharWidth();
547
548  if (const AlignedAttr* AA = D->getAttr<AlignedAttr>())
549    Align = std::max(Align, AA->getMaxAlignment());
550
551  if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
552    QualType T = VD->getType();
553    if (const ReferenceType* RT = T->getAs<ReferenceType>()) {
554      if (RefAsPointee)
555        T = RT->getPointeeType();
556      else
557        T = getPointerType(RT->getPointeeType());
558    }
559    if (!T->isIncompleteType() && !T->isFunctionType()) {
560      // Incomplete or function types default to 1.
561      while (isa<VariableArrayType>(T) || isa<IncompleteArrayType>(T))
562        T = cast<ArrayType>(T)->getElementType();
563
564      Align = std::max(Align, getPreferredTypeAlign(T.getTypePtr()));
565    }
566    if (const FieldDecl *FD = dyn_cast<FieldDecl>(VD)) {
567      // In the case of a field in a packed struct, we want the minimum
568      // of the alignment of the field and the alignment of the struct.
569      Align = std::min(Align,
570        getPreferredTypeAlign(FD->getParent()->getTypeForDecl()));
571    }
572  }
573
574  return CharUnits::fromQuantity(Align / Target.getCharWidth());
575}
576
577/// getTypeSize - Return the size of the specified type, in bits.  This method
578/// does not work on incomplete types.
579///
580/// FIXME: Pointers into different addr spaces could have different sizes and
581/// alignment requirements: getPointerInfo should take an AddrSpace, this
582/// should take a QualType, &c.
583std::pair<uint64_t, unsigned>
584ASTContext::getTypeInfo(const Type *T) {
585  uint64_t Width=0;
586  unsigned Align=8;
587  switch (T->getTypeClass()) {
588#define TYPE(Class, Base)
589#define ABSTRACT_TYPE(Class, Base)
590#define NON_CANONICAL_TYPE(Class, Base)
591#define DEPENDENT_TYPE(Class, Base) case Type::Class:
592#include "clang/AST/TypeNodes.def"
593    assert(false && "Should not see dependent types");
594    break;
595
596  case Type::FunctionNoProto:
597  case Type::FunctionProto:
598    // GCC extension: alignof(function) = 32 bits
599    Width = 0;
600    Align = 32;
601    break;
602
603  case Type::IncompleteArray:
604  case Type::VariableArray:
605    Width = 0;
606    Align = getTypeAlign(cast<ArrayType>(T)->getElementType());
607    break;
608
609  case Type::ConstantArray: {
610    const ConstantArrayType *CAT = cast<ConstantArrayType>(T);
611
612    std::pair<uint64_t, unsigned> EltInfo = getTypeInfo(CAT->getElementType());
613    Width = EltInfo.first*CAT->getSize().getZExtValue();
614    Align = EltInfo.second;
615    break;
616  }
617  case Type::ExtVector:
618  case Type::Vector: {
619    const VectorType *VT = cast<VectorType>(T);
620    std::pair<uint64_t, unsigned> EltInfo = getTypeInfo(VT->getElementType());
621    Width = EltInfo.first*VT->getNumElements();
622    Align = Width;
623    // If the alignment is not a power of 2, round up to the next power of 2.
624    // This happens for non-power-of-2 length vectors.
625    if (VT->getNumElements() & (VT->getNumElements()-1)) {
626      Align = llvm::NextPowerOf2(Align);
627      Width = llvm::RoundUpToAlignment(Width, Align);
628    }
629    break;
630  }
631
632  case Type::Builtin:
633    switch (cast<BuiltinType>(T)->getKind()) {
634    default: assert(0 && "Unknown builtin type!");
635    case BuiltinType::Void:
636      // GCC extension: alignof(void) = 8 bits.
637      Width = 0;
638      Align = 8;
639      break;
640
641    case BuiltinType::Bool:
642      Width = Target.getBoolWidth();
643      Align = Target.getBoolAlign();
644      break;
645    case BuiltinType::Char_S:
646    case BuiltinType::Char_U:
647    case BuiltinType::UChar:
648    case BuiltinType::SChar:
649      Width = Target.getCharWidth();
650      Align = Target.getCharAlign();
651      break;
652    case BuiltinType::WChar:
653      Width = Target.getWCharWidth();
654      Align = Target.getWCharAlign();
655      break;
656    case BuiltinType::Char16:
657      Width = Target.getChar16Width();
658      Align = Target.getChar16Align();
659      break;
660    case BuiltinType::Char32:
661      Width = Target.getChar32Width();
662      Align = Target.getChar32Align();
663      break;
664    case BuiltinType::UShort:
665    case BuiltinType::Short:
666      Width = Target.getShortWidth();
667      Align = Target.getShortAlign();
668      break;
669    case BuiltinType::UInt:
670    case BuiltinType::Int:
671      Width = Target.getIntWidth();
672      Align = Target.getIntAlign();
673      break;
674    case BuiltinType::ULong:
675    case BuiltinType::Long:
676      Width = Target.getLongWidth();
677      Align = Target.getLongAlign();
678      break;
679    case BuiltinType::ULongLong:
680    case BuiltinType::LongLong:
681      Width = Target.getLongLongWidth();
682      Align = Target.getLongLongAlign();
683      break;
684    case BuiltinType::Int128:
685    case BuiltinType::UInt128:
686      Width = 128;
687      Align = 128; // int128_t is 128-bit aligned on all targets.
688      break;
689    case BuiltinType::Float:
690      Width = Target.getFloatWidth();
691      Align = Target.getFloatAlign();
692      break;
693    case BuiltinType::Double:
694      Width = Target.getDoubleWidth();
695      Align = Target.getDoubleAlign();
696      break;
697    case BuiltinType::LongDouble:
698      Width = Target.getLongDoubleWidth();
699      Align = Target.getLongDoubleAlign();
700      break;
701    case BuiltinType::NullPtr:
702      Width = Target.getPointerWidth(0); // C++ 3.9.1p11: sizeof(nullptr_t)
703      Align = Target.getPointerAlign(0); //   == sizeof(void*)
704      break;
705    }
706    break;
707  case Type::ObjCObjectPointer:
708    Width = Target.getPointerWidth(0);
709    Align = Target.getPointerAlign(0);
710    break;
711  case Type::BlockPointer: {
712    unsigned AS = cast<BlockPointerType>(T)->getPointeeType().getAddressSpace();
713    Width = Target.getPointerWidth(AS);
714    Align = Target.getPointerAlign(AS);
715    break;
716  }
717  case Type::LValueReference:
718  case Type::RValueReference: {
719    // alignof and sizeof should never enter this code path here, so we go
720    // the pointer route.
721    unsigned AS = cast<ReferenceType>(T)->getPointeeType().getAddressSpace();
722    Width = Target.getPointerWidth(AS);
723    Align = Target.getPointerAlign(AS);
724    break;
725  }
726  case Type::Pointer: {
727    unsigned AS = cast<PointerType>(T)->getPointeeType().getAddressSpace();
728    Width = Target.getPointerWidth(AS);
729    Align = Target.getPointerAlign(AS);
730    break;
731  }
732  case Type::MemberPointer: {
733    QualType Pointee = cast<MemberPointerType>(T)->getPointeeType();
734    std::pair<uint64_t, unsigned> PtrDiffInfo =
735      getTypeInfo(getPointerDiffType());
736    Width = PtrDiffInfo.first;
737    if (Pointee->isFunctionType())
738      Width *= 2;
739    Align = PtrDiffInfo.second;
740    break;
741  }
742  case Type::Complex: {
743    // Complex types have the same alignment as their elements, but twice the
744    // size.
745    std::pair<uint64_t, unsigned> EltInfo =
746      getTypeInfo(cast<ComplexType>(T)->getElementType());
747    Width = EltInfo.first*2;
748    Align = EltInfo.second;
749    break;
750  }
751  case Type::ObjCInterface: {
752    const ObjCInterfaceType *ObjCI = cast<ObjCInterfaceType>(T);
753    const ASTRecordLayout &Layout = getASTObjCInterfaceLayout(ObjCI->getDecl());
754    Width = Layout.getSize();
755    Align = Layout.getAlignment();
756    break;
757  }
758  case Type::Record:
759  case Type::Enum: {
760    const TagType *TT = cast<TagType>(T);
761
762    if (TT->getDecl()->isInvalidDecl()) {
763      Width = 1;
764      Align = 1;
765      break;
766    }
767
768    if (const EnumType *ET = dyn_cast<EnumType>(TT))
769      return getTypeInfo(ET->getDecl()->getIntegerType());
770
771    const RecordType *RT = cast<RecordType>(TT);
772    const ASTRecordLayout &Layout = getASTRecordLayout(RT->getDecl());
773    Width = Layout.getSize();
774    Align = Layout.getAlignment();
775    break;
776  }
777
778  case Type::SubstTemplateTypeParm:
779    return getTypeInfo(cast<SubstTemplateTypeParmType>(T)->
780                       getReplacementType().getTypePtr());
781
782  case Type::Elaborated:
783    return getTypeInfo(cast<ElaboratedType>(T)->getUnderlyingType()
784                         .getTypePtr());
785
786  case Type::Typedef: {
787    const TypedefDecl *Typedef = cast<TypedefType>(T)->getDecl();
788    if (const AlignedAttr *Aligned = Typedef->getAttr<AlignedAttr>()) {
789      Align = std::max(Aligned->getMaxAlignment(),
790                       getTypeAlign(Typedef->getUnderlyingType().getTypePtr()));
791      Width = getTypeSize(Typedef->getUnderlyingType().getTypePtr());
792    } else
793      return getTypeInfo(Typedef->getUnderlyingType().getTypePtr());
794    break;
795  }
796
797  case Type::TypeOfExpr:
798    return getTypeInfo(cast<TypeOfExprType>(T)->getUnderlyingExpr()->getType()
799                         .getTypePtr());
800
801  case Type::TypeOf:
802    return getTypeInfo(cast<TypeOfType>(T)->getUnderlyingType().getTypePtr());
803
804  case Type::Decltype:
805    return getTypeInfo(cast<DecltypeType>(T)->getUnderlyingExpr()->getType()
806                        .getTypePtr());
807
808  case Type::QualifiedName:
809    return getTypeInfo(cast<QualifiedNameType>(T)->getNamedType().getTypePtr());
810
811  case Type::TemplateSpecialization:
812    assert(getCanonicalType(T) != T &&
813           "Cannot request the size of a dependent type");
814    // FIXME: this is likely to be wrong once we support template
815    // aliases, since a template alias could refer to a typedef that
816    // has an __aligned__ attribute on it.
817    return getTypeInfo(getCanonicalType(T));
818  }
819
820  assert(Align && (Align & (Align-1)) == 0 && "Alignment must be power of 2");
821  return std::make_pair(Width, Align);
822}
823
824/// getTypeSizeInChars - Return the size of the specified type, in characters.
825/// This method does not work on incomplete types.
826CharUnits ASTContext::getTypeSizeInChars(QualType T) {
827  return CharUnits::fromQuantity(getTypeSize(T) / getCharWidth());
828}
829CharUnits ASTContext::getTypeSizeInChars(const Type *T) {
830  return CharUnits::fromQuantity(getTypeSize(T) / getCharWidth());
831}
832
833/// getTypeAlignInChars - Return the ABI-specified alignment of a type, in
834/// characters. This method does not work on incomplete types.
835CharUnits ASTContext::getTypeAlignInChars(QualType T) {
836  return CharUnits::fromQuantity(getTypeAlign(T) / getCharWidth());
837}
838CharUnits ASTContext::getTypeAlignInChars(const Type *T) {
839  return CharUnits::fromQuantity(getTypeAlign(T) / getCharWidth());
840}
841
842/// getPreferredTypeAlign - Return the "preferred" alignment of the specified
843/// type for the current target in bits.  This can be different than the ABI
844/// alignment in cases where it is beneficial for performance to overalign
845/// a data type.
846unsigned ASTContext::getPreferredTypeAlign(const Type *T) {
847  unsigned ABIAlign = getTypeAlign(T);
848
849  // Double and long long should be naturally aligned if possible.
850  if (const ComplexType* CT = T->getAs<ComplexType>())
851    T = CT->getElementType().getTypePtr();
852  if (T->isSpecificBuiltinType(BuiltinType::Double) ||
853      T->isSpecificBuiltinType(BuiltinType::LongLong))
854    return std::max(ABIAlign, (unsigned)getTypeSize(T));
855
856  return ABIAlign;
857}
858
859static void CollectLocalObjCIvars(ASTContext *Ctx,
860                                  const ObjCInterfaceDecl *OI,
861                                  llvm::SmallVectorImpl<FieldDecl*> &Fields) {
862  for (ObjCInterfaceDecl::ivar_iterator I = OI->ivar_begin(),
863       E = OI->ivar_end(); I != E; ++I) {
864    ObjCIvarDecl *IVDecl = *I;
865    if (!IVDecl->isInvalidDecl())
866      Fields.push_back(cast<FieldDecl>(IVDecl));
867  }
868}
869
870void ASTContext::CollectObjCIvars(const ObjCInterfaceDecl *OI,
871                             llvm::SmallVectorImpl<FieldDecl*> &Fields) {
872  if (const ObjCInterfaceDecl *SuperClass = OI->getSuperClass())
873    CollectObjCIvars(SuperClass, Fields);
874  CollectLocalObjCIvars(this, OI, Fields);
875}
876
877/// ShallowCollectObjCIvars -
878/// Collect all ivars, including those synthesized, in the current class.
879///
880void ASTContext::ShallowCollectObjCIvars(const ObjCInterfaceDecl *OI,
881                                 llvm::SmallVectorImpl<ObjCIvarDecl*> &Ivars) {
882  for (ObjCInterfaceDecl::ivar_iterator I = OI->ivar_begin(),
883         E = OI->ivar_end(); I != E; ++I) {
884     Ivars.push_back(*I);
885  }
886
887  CollectNonClassIvars(OI, Ivars);
888}
889
890void ASTContext::CollectProtocolSynthesizedIvars(const ObjCProtocolDecl *PD,
891                                llvm::SmallVectorImpl<ObjCIvarDecl*> &Ivars) {
892  for (ObjCContainerDecl::prop_iterator I = PD->prop_begin(),
893       E = PD->prop_end(); I != E; ++I)
894    if (ObjCIvarDecl *Ivar = (*I)->getPropertyIvarDecl())
895      Ivars.push_back(Ivar);
896
897  // Also look into nested protocols.
898  for (ObjCProtocolDecl::protocol_iterator P = PD->protocol_begin(),
899       E = PD->protocol_end(); P != E; ++P)
900    CollectProtocolSynthesizedIvars(*P, Ivars);
901}
902
903/// CollectNonClassIvars -
904/// This routine collects all other ivars which are not declared in the class.
905/// This includes synthesized ivars and those in class's implementation.
906///
907void ASTContext::CollectNonClassIvars(const ObjCInterfaceDecl *OI,
908                                llvm::SmallVectorImpl<ObjCIvarDecl*> &Ivars) {
909  // Find ivars declared in class extension.
910  if (const ObjCCategoryDecl *CDecl = OI->getClassExtension()) {
911    for (ObjCCategoryDecl::ivar_iterator I = CDecl->ivar_begin(),
912         E = CDecl->ivar_end(); I != E; ++I) {
913      Ivars.push_back(*I);
914    }
915  }
916
917  for (ObjCInterfaceDecl::prop_iterator I = OI->prop_begin(),
918       E = OI->prop_end(); I != E; ++I) {
919    if (ObjCIvarDecl *Ivar = (*I)->getPropertyIvarDecl())
920      Ivars.push_back(Ivar);
921  }
922  // Also look into interface's protocol list for properties declared
923  // in the protocol and whose ivars are synthesized.
924  for (ObjCInterfaceDecl::protocol_iterator P = OI->protocol_begin(),
925       PE = OI->protocol_end(); P != PE; ++P) {
926    ObjCProtocolDecl *PD = (*P);
927    CollectProtocolSynthesizedIvars(PD, Ivars);
928  }
929
930  // Also add any ivar defined in this class's implementation
931  if (ObjCImplementationDecl *ImplDecl = OI->getImplementation()) {
932    for (ObjCImplementationDecl::ivar_iterator I = ImplDecl->ivar_begin(),
933         E = ImplDecl->ivar_end(); I != E; ++I)
934      Ivars.push_back(*I);
935  }
936}
937
938/// CollectInheritedProtocols - Collect all protocols in current class and
939/// those inherited by it.
940void ASTContext::CollectInheritedProtocols(const Decl *CDecl,
941                          llvm::SmallPtrSet<ObjCProtocolDecl*, 8> &Protocols) {
942  if (const ObjCInterfaceDecl *OI = dyn_cast<ObjCInterfaceDecl>(CDecl)) {
943    for (ObjCInterfaceDecl::protocol_iterator P = OI->protocol_begin(),
944         PE = OI->protocol_end(); P != PE; ++P) {
945      ObjCProtocolDecl *Proto = (*P);
946      Protocols.insert(Proto);
947      for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
948           PE = Proto->protocol_end(); P != PE; ++P) {
949        Protocols.insert(*P);
950        CollectInheritedProtocols(*P, Protocols);
951      }
952    }
953
954    // Categories of this Interface.
955    for (const ObjCCategoryDecl *CDeclChain = OI->getCategoryList();
956         CDeclChain; CDeclChain = CDeclChain->getNextClassCategory())
957      CollectInheritedProtocols(CDeclChain, Protocols);
958    if (ObjCInterfaceDecl *SD = OI->getSuperClass())
959      while (SD) {
960        CollectInheritedProtocols(SD, Protocols);
961        SD = SD->getSuperClass();
962      }
963    return;
964  }
965  if (const ObjCCategoryDecl *OC = dyn_cast<ObjCCategoryDecl>(CDecl)) {
966    for (ObjCInterfaceDecl::protocol_iterator P = OC->protocol_begin(),
967         PE = OC->protocol_end(); P != PE; ++P) {
968      ObjCProtocolDecl *Proto = (*P);
969      Protocols.insert(Proto);
970      for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
971           PE = Proto->protocol_end(); P != PE; ++P)
972        CollectInheritedProtocols(*P, Protocols);
973    }
974    return;
975  }
976  if (const ObjCProtocolDecl *OP = dyn_cast<ObjCProtocolDecl>(CDecl)) {
977    for (ObjCProtocolDecl::protocol_iterator P = OP->protocol_begin(),
978         PE = OP->protocol_end(); P != PE; ++P) {
979      ObjCProtocolDecl *Proto = (*P);
980      Protocols.insert(Proto);
981      for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
982           PE = Proto->protocol_end(); P != PE; ++P)
983        CollectInheritedProtocols(*P, Protocols);
984    }
985    return;
986  }
987}
988
989unsigned ASTContext::CountProtocolSynthesizedIvars(const ObjCProtocolDecl *PD) {
990  unsigned count = 0;
991  for (ObjCContainerDecl::prop_iterator I = PD->prop_begin(),
992       E = PD->prop_end(); I != E; ++I)
993    if ((*I)->getPropertyIvarDecl())
994      ++count;
995
996  // Also look into nested protocols.
997  for (ObjCProtocolDecl::protocol_iterator P = PD->protocol_begin(),
998       E = PD->protocol_end(); P != E; ++P)
999    count += CountProtocolSynthesizedIvars(*P);
1000  return count;
1001}
1002
1003unsigned ASTContext::CountSynthesizedIvars(const ObjCInterfaceDecl *OI) {
1004  unsigned count = 0;
1005  for (ObjCInterfaceDecl::prop_iterator I = OI->prop_begin(),
1006       E = OI->prop_end(); I != E; ++I) {
1007    if ((*I)->getPropertyIvarDecl())
1008      ++count;
1009  }
1010  // Also look into interface's protocol list for properties declared
1011  // in the protocol and whose ivars are synthesized.
1012  for (ObjCInterfaceDecl::protocol_iterator P = OI->protocol_begin(),
1013       PE = OI->protocol_end(); P != PE; ++P) {
1014    ObjCProtocolDecl *PD = (*P);
1015    count += CountProtocolSynthesizedIvars(PD);
1016  }
1017  return count;
1018}
1019
1020/// \brief Get the implementation of ObjCInterfaceDecl,or NULL if none exists.
1021ObjCImplementationDecl *ASTContext::getObjCImplementation(ObjCInterfaceDecl *D) {
1022  llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
1023    I = ObjCImpls.find(D);
1024  if (I != ObjCImpls.end())
1025    return cast<ObjCImplementationDecl>(I->second);
1026  return 0;
1027}
1028/// \brief Get the implementation of ObjCCategoryDecl, or NULL if none exists.
1029ObjCCategoryImplDecl *ASTContext::getObjCImplementation(ObjCCategoryDecl *D) {
1030  llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
1031    I = ObjCImpls.find(D);
1032  if (I != ObjCImpls.end())
1033    return cast<ObjCCategoryImplDecl>(I->second);
1034  return 0;
1035}
1036
1037/// \brief Set the implementation of ObjCInterfaceDecl.
1038void ASTContext::setObjCImplementation(ObjCInterfaceDecl *IFaceD,
1039                           ObjCImplementationDecl *ImplD) {
1040  assert(IFaceD && ImplD && "Passed null params");
1041  ObjCImpls[IFaceD] = ImplD;
1042}
1043/// \brief Set the implementation of ObjCCategoryDecl.
1044void ASTContext::setObjCImplementation(ObjCCategoryDecl *CatD,
1045                           ObjCCategoryImplDecl *ImplD) {
1046  assert(CatD && ImplD && "Passed null params");
1047  ObjCImpls[CatD] = ImplD;
1048}
1049
1050/// \brief Allocate an uninitialized TypeSourceInfo.
1051///
1052/// The caller should initialize the memory held by TypeSourceInfo using
1053/// the TypeLoc wrappers.
1054///
1055/// \param T the type that will be the basis for type source info. This type
1056/// should refer to how the declarator was written in source code, not to
1057/// what type semantic analysis resolved the declarator to.
1058TypeSourceInfo *ASTContext::CreateTypeSourceInfo(QualType T,
1059                                                 unsigned DataSize) {
1060  if (!DataSize)
1061    DataSize = TypeLoc::getFullDataSizeForType(T);
1062  else
1063    assert(DataSize == TypeLoc::getFullDataSizeForType(T) &&
1064           "incorrect data size provided to CreateTypeSourceInfo!");
1065
1066  TypeSourceInfo *TInfo =
1067    (TypeSourceInfo*)BumpAlloc.Allocate(sizeof(TypeSourceInfo) + DataSize, 8);
1068  new (TInfo) TypeSourceInfo(T);
1069  return TInfo;
1070}
1071
1072TypeSourceInfo *ASTContext::getTrivialTypeSourceInfo(QualType T,
1073                                                     SourceLocation L) {
1074  TypeSourceInfo *DI = CreateTypeSourceInfo(T);
1075  DI->getTypeLoc().initialize(L);
1076  return DI;
1077}
1078
1079/// getInterfaceLayoutImpl - Get or compute information about the
1080/// layout of the given interface.
1081///
1082/// \param Impl - If given, also include the layout of the interface's
1083/// implementation. This may differ by including synthesized ivars.
1084const ASTRecordLayout &
1085ASTContext::getObjCLayout(const ObjCInterfaceDecl *D,
1086                          const ObjCImplementationDecl *Impl) {
1087  assert(!D->isForwardDecl() && "Invalid interface decl!");
1088
1089  // Look up this layout, if already laid out, return what we have.
1090  ObjCContainerDecl *Key =
1091    Impl ? (ObjCContainerDecl*) Impl : (ObjCContainerDecl*) D;
1092  if (const ASTRecordLayout *Entry = ObjCLayouts[Key])
1093    return *Entry;
1094
1095  // Add in synthesized ivar count if laying out an implementation.
1096  if (Impl) {
1097    unsigned SynthCount = CountSynthesizedIvars(D);
1098    // If there aren't any sythesized ivars then reuse the interface
1099    // entry. Note we can't cache this because we simply free all
1100    // entries later; however we shouldn't look up implementations
1101    // frequently.
1102    if (SynthCount == 0)
1103      return getObjCLayout(D, 0);
1104  }
1105
1106  const ASTRecordLayout *NewEntry =
1107    ASTRecordLayoutBuilder::ComputeLayout(*this, D, Impl);
1108  ObjCLayouts[Key] = NewEntry;
1109
1110  return *NewEntry;
1111}
1112
1113const ASTRecordLayout &
1114ASTContext::getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D) {
1115  return getObjCLayout(D, 0);
1116}
1117
1118const ASTRecordLayout &
1119ASTContext::getASTObjCImplementationLayout(const ObjCImplementationDecl *D) {
1120  return getObjCLayout(D->getClassInterface(), D);
1121}
1122
1123/// getASTRecordLayout - Get or compute information about the layout of the
1124/// specified record (struct/union/class), which indicates its size and field
1125/// position information.
1126const ASTRecordLayout &ASTContext::getASTRecordLayout(const RecordDecl *D) {
1127  D = D->getDefinition();
1128  assert(D && "Cannot get layout of forward declarations!");
1129
1130  // Look up this layout, if already laid out, return what we have.
1131  // Note that we can't save a reference to the entry because this function
1132  // is recursive.
1133  const ASTRecordLayout *Entry = ASTRecordLayouts[D];
1134  if (Entry) return *Entry;
1135
1136  const ASTRecordLayout *NewEntry =
1137    ASTRecordLayoutBuilder::ComputeLayout(*this, D);
1138  ASTRecordLayouts[D] = NewEntry;
1139
1140  return *NewEntry;
1141}
1142
1143const CXXMethodDecl *ASTContext::getKeyFunction(const CXXRecordDecl *RD) {
1144  RD = cast<CXXRecordDecl>(RD->getDefinition());
1145  assert(RD && "Cannot get key function for forward declarations!");
1146
1147  const CXXMethodDecl *&Entry = KeyFunctions[RD];
1148  if (!Entry)
1149    Entry = ASTRecordLayoutBuilder::ComputeKeyFunction(RD);
1150  else
1151    assert(Entry == ASTRecordLayoutBuilder::ComputeKeyFunction(RD) &&
1152           "Key function changed!");
1153
1154  return Entry;
1155}
1156
1157//===----------------------------------------------------------------------===//
1158//                   Type creation/memoization methods
1159//===----------------------------------------------------------------------===//
1160
1161QualType ASTContext::getExtQualType(const Type *TypeNode, Qualifiers Quals) {
1162  unsigned Fast = Quals.getFastQualifiers();
1163  Quals.removeFastQualifiers();
1164
1165  // Check if we've already instantiated this type.
1166  llvm::FoldingSetNodeID ID;
1167  ExtQuals::Profile(ID, TypeNode, Quals);
1168  void *InsertPos = 0;
1169  if (ExtQuals *EQ = ExtQualNodes.FindNodeOrInsertPos(ID, InsertPos)) {
1170    assert(EQ->getQualifiers() == Quals);
1171    QualType T = QualType(EQ, Fast);
1172    return T;
1173  }
1174
1175  ExtQuals *New = new (*this, TypeAlignment) ExtQuals(*this, TypeNode, Quals);
1176  ExtQualNodes.InsertNode(New, InsertPos);
1177  QualType T = QualType(New, Fast);
1178  return T;
1179}
1180
1181QualType ASTContext::getVolatileType(QualType T) {
1182  QualType CanT = getCanonicalType(T);
1183  if (CanT.isVolatileQualified()) return T;
1184
1185  QualifierCollector Quals;
1186  const Type *TypeNode = Quals.strip(T);
1187  Quals.addVolatile();
1188
1189  return getExtQualType(TypeNode, Quals);
1190}
1191
1192QualType ASTContext::getAddrSpaceQualType(QualType T, unsigned AddressSpace) {
1193  QualType CanT = getCanonicalType(T);
1194  if (CanT.getAddressSpace() == AddressSpace)
1195    return T;
1196
1197  // If we are composing extended qualifiers together, merge together
1198  // into one ExtQuals node.
1199  QualifierCollector Quals;
1200  const Type *TypeNode = Quals.strip(T);
1201
1202  // If this type already has an address space specified, it cannot get
1203  // another one.
1204  assert(!Quals.hasAddressSpace() &&
1205         "Type cannot be in multiple addr spaces!");
1206  Quals.addAddressSpace(AddressSpace);
1207
1208  return getExtQualType(TypeNode, Quals);
1209}
1210
1211QualType ASTContext::getObjCGCQualType(QualType T,
1212                                       Qualifiers::GC GCAttr) {
1213  QualType CanT = getCanonicalType(T);
1214  if (CanT.getObjCGCAttr() == GCAttr)
1215    return T;
1216
1217  if (T->isPointerType()) {
1218    QualType Pointee = T->getAs<PointerType>()->getPointeeType();
1219    if (Pointee->isAnyPointerType()) {
1220      QualType ResultType = getObjCGCQualType(Pointee, GCAttr);
1221      return getPointerType(ResultType);
1222    }
1223  }
1224
1225  // If we are composing extended qualifiers together, merge together
1226  // into one ExtQuals node.
1227  QualifierCollector Quals;
1228  const Type *TypeNode = Quals.strip(T);
1229
1230  // If this type already has an ObjCGC specified, it cannot get
1231  // another one.
1232  assert(!Quals.hasObjCGCAttr() &&
1233         "Type cannot have multiple ObjCGCs!");
1234  Quals.addObjCGCAttr(GCAttr);
1235
1236  return getExtQualType(TypeNode, Quals);
1237}
1238
1239static QualType getNoReturnCallConvType(ASTContext& Context, QualType T,
1240                                        bool AddNoReturn,
1241                                        CallingConv CallConv) {
1242  QualType ResultType;
1243  if (const PointerType *Pointer = T->getAs<PointerType>()) {
1244    QualType Pointee = Pointer->getPointeeType();
1245    ResultType = getNoReturnCallConvType(Context, Pointee, AddNoReturn,
1246                                         CallConv);
1247    if (ResultType == Pointee)
1248      return T;
1249
1250    ResultType = Context.getPointerType(ResultType);
1251  } else if (const BlockPointerType *BlockPointer
1252                                              = T->getAs<BlockPointerType>()) {
1253    QualType Pointee = BlockPointer->getPointeeType();
1254    ResultType = getNoReturnCallConvType(Context, Pointee, AddNoReturn,
1255                                         CallConv);
1256    if (ResultType == Pointee)
1257      return T;
1258
1259    ResultType = Context.getBlockPointerType(ResultType);
1260   } else if (const FunctionType *F = T->getAs<FunctionType>()) {
1261    if (F->getNoReturnAttr() == AddNoReturn && F->getCallConv() == CallConv)
1262      return T;
1263
1264    if (const FunctionNoProtoType *FNPT = dyn_cast<FunctionNoProtoType>(F)) {
1265      ResultType = Context.getFunctionNoProtoType(FNPT->getResultType(),
1266                                                  AddNoReturn, CallConv);
1267    } else {
1268      const FunctionProtoType *FPT = cast<FunctionProtoType>(F);
1269      ResultType
1270        = Context.getFunctionType(FPT->getResultType(), FPT->arg_type_begin(),
1271                                  FPT->getNumArgs(), FPT->isVariadic(),
1272                                  FPT->getTypeQuals(),
1273                                  FPT->hasExceptionSpec(),
1274                                  FPT->hasAnyExceptionSpec(),
1275                                  FPT->getNumExceptions(),
1276                                  FPT->exception_begin(),
1277                                  AddNoReturn, CallConv);
1278    }
1279  } else
1280    return T;
1281
1282  return Context.getQualifiedType(ResultType, T.getLocalQualifiers());
1283}
1284
1285QualType ASTContext::getNoReturnType(QualType T, bool AddNoReturn) {
1286  return getNoReturnCallConvType(*this, T, AddNoReturn, T.getCallConv());
1287}
1288
1289QualType ASTContext::getCallConvType(QualType T, CallingConv CallConv) {
1290  return getNoReturnCallConvType(*this, T, T.getNoReturnAttr(), CallConv);
1291}
1292
1293/// getComplexType - Return the uniqued reference to the type for a complex
1294/// number with the specified element type.
1295QualType ASTContext::getComplexType(QualType T) {
1296  // Unique pointers, to guarantee there is only one pointer of a particular
1297  // structure.
1298  llvm::FoldingSetNodeID ID;
1299  ComplexType::Profile(ID, T);
1300
1301  void *InsertPos = 0;
1302  if (ComplexType *CT = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos))
1303    return QualType(CT, 0);
1304
1305  // If the pointee type isn't canonical, this won't be a canonical type either,
1306  // so fill in the canonical type field.
1307  QualType Canonical;
1308  if (!T.isCanonical()) {
1309    Canonical = getComplexType(getCanonicalType(T));
1310
1311    // Get the new insert position for the node we care about.
1312    ComplexType *NewIP = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos);
1313    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1314  }
1315  ComplexType *New = new (*this, TypeAlignment) ComplexType(T, Canonical);
1316  Types.push_back(New);
1317  ComplexTypes.InsertNode(New, InsertPos);
1318  return QualType(New, 0);
1319}
1320
1321/// getPointerType - Return the uniqued reference to the type for a pointer to
1322/// the specified type.
1323QualType ASTContext::getPointerType(QualType T) {
1324  // Unique pointers, to guarantee there is only one pointer of a particular
1325  // structure.
1326  llvm::FoldingSetNodeID ID;
1327  PointerType::Profile(ID, T);
1328
1329  void *InsertPos = 0;
1330  if (PointerType *PT = PointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1331    return QualType(PT, 0);
1332
1333  // If the pointee type isn't canonical, this won't be a canonical type either,
1334  // so fill in the canonical type field.
1335  QualType Canonical;
1336  if (!T.isCanonical()) {
1337    Canonical = getPointerType(getCanonicalType(T));
1338
1339    // Get the new insert position for the node we care about.
1340    PointerType *NewIP = PointerTypes.FindNodeOrInsertPos(ID, InsertPos);
1341    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1342  }
1343  PointerType *New = new (*this, TypeAlignment) PointerType(T, Canonical);
1344  Types.push_back(New);
1345  PointerTypes.InsertNode(New, InsertPos);
1346  return QualType(New, 0);
1347}
1348
1349/// getBlockPointerType - Return the uniqued reference to the type for
1350/// a pointer to the specified block.
1351QualType ASTContext::getBlockPointerType(QualType T) {
1352  assert(T->isFunctionType() && "block of function types only");
1353  // Unique pointers, to guarantee there is only one block of a particular
1354  // structure.
1355  llvm::FoldingSetNodeID ID;
1356  BlockPointerType::Profile(ID, T);
1357
1358  void *InsertPos = 0;
1359  if (BlockPointerType *PT =
1360        BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1361    return QualType(PT, 0);
1362
1363  // If the block pointee type isn't canonical, this won't be a canonical
1364  // type either so fill in the canonical type field.
1365  QualType Canonical;
1366  if (!T.isCanonical()) {
1367    Canonical = getBlockPointerType(getCanonicalType(T));
1368
1369    // Get the new insert position for the node we care about.
1370    BlockPointerType *NewIP =
1371      BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
1372    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1373  }
1374  BlockPointerType *New
1375    = new (*this, TypeAlignment) BlockPointerType(T, Canonical);
1376  Types.push_back(New);
1377  BlockPointerTypes.InsertNode(New, InsertPos);
1378  return QualType(New, 0);
1379}
1380
1381/// getLValueReferenceType - Return the uniqued reference to the type for an
1382/// lvalue reference to the specified type.
1383QualType ASTContext::getLValueReferenceType(QualType T, bool SpelledAsLValue) {
1384  // Unique pointers, to guarantee there is only one pointer of a particular
1385  // structure.
1386  llvm::FoldingSetNodeID ID;
1387  ReferenceType::Profile(ID, T, SpelledAsLValue);
1388
1389  void *InsertPos = 0;
1390  if (LValueReferenceType *RT =
1391        LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
1392    return QualType(RT, 0);
1393
1394  const ReferenceType *InnerRef = T->getAs<ReferenceType>();
1395
1396  // If the referencee type isn't canonical, this won't be a canonical type
1397  // either, so fill in the canonical type field.
1398  QualType Canonical;
1399  if (!SpelledAsLValue || InnerRef || !T.isCanonical()) {
1400    QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
1401    Canonical = getLValueReferenceType(getCanonicalType(PointeeType));
1402
1403    // Get the new insert position for the node we care about.
1404    LValueReferenceType *NewIP =
1405      LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
1406    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1407  }
1408
1409  LValueReferenceType *New
1410    = new (*this, TypeAlignment) LValueReferenceType(T, Canonical,
1411                                                     SpelledAsLValue);
1412  Types.push_back(New);
1413  LValueReferenceTypes.InsertNode(New, InsertPos);
1414
1415  return QualType(New, 0);
1416}
1417
1418/// getRValueReferenceType - Return the uniqued reference to the type for an
1419/// rvalue reference to the specified type.
1420QualType ASTContext::getRValueReferenceType(QualType T) {
1421  // Unique pointers, to guarantee there is only one pointer of a particular
1422  // structure.
1423  llvm::FoldingSetNodeID ID;
1424  ReferenceType::Profile(ID, T, false);
1425
1426  void *InsertPos = 0;
1427  if (RValueReferenceType *RT =
1428        RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
1429    return QualType(RT, 0);
1430
1431  const ReferenceType *InnerRef = T->getAs<ReferenceType>();
1432
1433  // If the referencee type isn't canonical, this won't be a canonical type
1434  // either, so fill in the canonical type field.
1435  QualType Canonical;
1436  if (InnerRef || !T.isCanonical()) {
1437    QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
1438    Canonical = getRValueReferenceType(getCanonicalType(PointeeType));
1439
1440    // Get the new insert position for the node we care about.
1441    RValueReferenceType *NewIP =
1442      RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
1443    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1444  }
1445
1446  RValueReferenceType *New
1447    = new (*this, TypeAlignment) RValueReferenceType(T, Canonical);
1448  Types.push_back(New);
1449  RValueReferenceTypes.InsertNode(New, InsertPos);
1450  return QualType(New, 0);
1451}
1452
1453/// getMemberPointerType - Return the uniqued reference to the type for a
1454/// member pointer to the specified type, in the specified class.
1455QualType ASTContext::getMemberPointerType(QualType T, const Type *Cls) {
1456  // Unique pointers, to guarantee there is only one pointer of a particular
1457  // structure.
1458  llvm::FoldingSetNodeID ID;
1459  MemberPointerType::Profile(ID, T, Cls);
1460
1461  void *InsertPos = 0;
1462  if (MemberPointerType *PT =
1463      MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1464    return QualType(PT, 0);
1465
1466  // If the pointee or class type isn't canonical, this won't be a canonical
1467  // type either, so fill in the canonical type field.
1468  QualType Canonical;
1469  if (!T.isCanonical() || !Cls->isCanonicalUnqualified()) {
1470    Canonical = getMemberPointerType(getCanonicalType(T),getCanonicalType(Cls));
1471
1472    // Get the new insert position for the node we care about.
1473    MemberPointerType *NewIP =
1474      MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
1475    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1476  }
1477  MemberPointerType *New
1478    = new (*this, TypeAlignment) MemberPointerType(T, Cls, Canonical);
1479  Types.push_back(New);
1480  MemberPointerTypes.InsertNode(New, InsertPos);
1481  return QualType(New, 0);
1482}
1483
1484/// getConstantArrayType - Return the unique reference to the type for an
1485/// array of the specified element type.
1486QualType ASTContext::getConstantArrayType(QualType EltTy,
1487                                          const llvm::APInt &ArySizeIn,
1488                                          ArrayType::ArraySizeModifier ASM,
1489                                          unsigned EltTypeQuals) {
1490  assert((EltTy->isDependentType() ||
1491          EltTy->isIncompleteType() || EltTy->isConstantSizeType()) &&
1492         "Constant array of VLAs is illegal!");
1493
1494  // Convert the array size into a canonical width matching the pointer size for
1495  // the target.
1496  llvm::APInt ArySize(ArySizeIn);
1497  ArySize.zextOrTrunc(Target.getPointerWidth(EltTy.getAddressSpace()));
1498
1499  llvm::FoldingSetNodeID ID;
1500  ConstantArrayType::Profile(ID, EltTy, ArySize, ASM, EltTypeQuals);
1501
1502  void *InsertPos = 0;
1503  if (ConstantArrayType *ATP =
1504      ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
1505    return QualType(ATP, 0);
1506
1507  // If the element type isn't canonical, this won't be a canonical type either,
1508  // so fill in the canonical type field.
1509  QualType Canonical;
1510  if (!EltTy.isCanonical()) {
1511    Canonical = getConstantArrayType(getCanonicalType(EltTy), ArySize,
1512                                     ASM, EltTypeQuals);
1513    // Get the new insert position for the node we care about.
1514    ConstantArrayType *NewIP =
1515      ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
1516    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1517  }
1518
1519  ConstantArrayType *New = new(*this,TypeAlignment)
1520    ConstantArrayType(EltTy, Canonical, ArySize, ASM, EltTypeQuals);
1521  ConstantArrayTypes.InsertNode(New, InsertPos);
1522  Types.push_back(New);
1523  return QualType(New, 0);
1524}
1525
1526/// getVariableArrayType - Returns a non-unique reference to the type for a
1527/// variable array of the specified element type.
1528QualType ASTContext::getVariableArrayType(QualType EltTy,
1529                                          Expr *NumElts,
1530                                          ArrayType::ArraySizeModifier ASM,
1531                                          unsigned EltTypeQuals,
1532                                          SourceRange Brackets) {
1533  // Since we don't unique expressions, it isn't possible to unique VLA's
1534  // that have an expression provided for their size.
1535
1536  VariableArrayType *New = new(*this, TypeAlignment)
1537    VariableArrayType(EltTy, QualType(), NumElts, ASM, EltTypeQuals, Brackets);
1538
1539  VariableArrayTypes.push_back(New);
1540  Types.push_back(New);
1541  return QualType(New, 0);
1542}
1543
1544/// getDependentSizedArrayType - Returns a non-unique reference to
1545/// the type for a dependently-sized array of the specified element
1546/// type.
1547QualType ASTContext::getDependentSizedArrayType(QualType EltTy,
1548                                                Expr *NumElts,
1549                                                ArrayType::ArraySizeModifier ASM,
1550                                                unsigned EltTypeQuals,
1551                                                SourceRange Brackets) {
1552  assert((!NumElts || NumElts->isTypeDependent() ||
1553          NumElts->isValueDependent()) &&
1554         "Size must be type- or value-dependent!");
1555
1556  void *InsertPos = 0;
1557  DependentSizedArrayType *Canon = 0;
1558  llvm::FoldingSetNodeID ID;
1559
1560  if (NumElts) {
1561    // Dependently-sized array types that do not have a specified
1562    // number of elements will have their sizes deduced from an
1563    // initializer.
1564    DependentSizedArrayType::Profile(ID, *this, getCanonicalType(EltTy), ASM,
1565                                     EltTypeQuals, NumElts);
1566
1567    Canon = DependentSizedArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
1568  }
1569
1570  DependentSizedArrayType *New;
1571  if (Canon) {
1572    // We already have a canonical version of this array type; use it as
1573    // the canonical type for a newly-built type.
1574    New = new (*this, TypeAlignment)
1575      DependentSizedArrayType(*this, EltTy, QualType(Canon, 0),
1576                              NumElts, ASM, EltTypeQuals, Brackets);
1577  } else {
1578    QualType CanonEltTy = getCanonicalType(EltTy);
1579    if (CanonEltTy == EltTy) {
1580      New = new (*this, TypeAlignment)
1581        DependentSizedArrayType(*this, EltTy, QualType(),
1582                                NumElts, ASM, EltTypeQuals, Brackets);
1583
1584      if (NumElts) {
1585        DependentSizedArrayType *CanonCheck
1586          = DependentSizedArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
1587        assert(!CanonCheck && "Dependent-sized canonical array type broken");
1588        (void)CanonCheck;
1589        DependentSizedArrayTypes.InsertNode(New, InsertPos);
1590      }
1591    } else {
1592      QualType Canon = getDependentSizedArrayType(CanonEltTy, NumElts,
1593                                                  ASM, EltTypeQuals,
1594                                                  SourceRange());
1595      New = new (*this, TypeAlignment)
1596        DependentSizedArrayType(*this, EltTy, Canon,
1597                                NumElts, ASM, EltTypeQuals, Brackets);
1598    }
1599  }
1600
1601  Types.push_back(New);
1602  return QualType(New, 0);
1603}
1604
1605QualType ASTContext::getIncompleteArrayType(QualType EltTy,
1606                                            ArrayType::ArraySizeModifier ASM,
1607                                            unsigned EltTypeQuals) {
1608  llvm::FoldingSetNodeID ID;
1609  IncompleteArrayType::Profile(ID, EltTy, ASM, EltTypeQuals);
1610
1611  void *InsertPos = 0;
1612  if (IncompleteArrayType *ATP =
1613       IncompleteArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
1614    return QualType(ATP, 0);
1615
1616  // If the element type isn't canonical, this won't be a canonical type
1617  // either, so fill in the canonical type field.
1618  QualType Canonical;
1619
1620  if (!EltTy.isCanonical()) {
1621    Canonical = getIncompleteArrayType(getCanonicalType(EltTy),
1622                                       ASM, EltTypeQuals);
1623
1624    // Get the new insert position for the node we care about.
1625    IncompleteArrayType *NewIP =
1626      IncompleteArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
1627    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1628  }
1629
1630  IncompleteArrayType *New = new (*this, TypeAlignment)
1631    IncompleteArrayType(EltTy, Canonical, ASM, EltTypeQuals);
1632
1633  IncompleteArrayTypes.InsertNode(New, InsertPos);
1634  Types.push_back(New);
1635  return QualType(New, 0);
1636}
1637
1638/// getVectorType - Return the unique reference to a vector type of
1639/// the specified element type and size. VectorType must be a built-in type.
1640QualType ASTContext::getVectorType(QualType vecType, unsigned NumElts,
1641                                   bool IsAltiVec, bool IsPixel) {
1642  BuiltinType *baseType;
1643
1644  baseType = dyn_cast<BuiltinType>(getCanonicalType(vecType).getTypePtr());
1645  assert(baseType != 0 && "getVectorType(): Expecting a built-in type");
1646
1647  // Check if we've already instantiated a vector of this type.
1648  llvm::FoldingSetNodeID ID;
1649  VectorType::Profile(ID, vecType, NumElts, Type::Vector,
1650    IsAltiVec, IsPixel);
1651  void *InsertPos = 0;
1652  if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
1653    return QualType(VTP, 0);
1654
1655  // If the element type isn't canonical, this won't be a canonical type either,
1656  // so fill in the canonical type field.
1657  QualType Canonical;
1658  if (!vecType.isCanonical() || IsAltiVec || IsPixel) {
1659    Canonical = getVectorType(getCanonicalType(vecType),
1660      NumElts, false, false);
1661
1662    // Get the new insert position for the node we care about.
1663    VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
1664    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1665  }
1666  VectorType *New = new (*this, TypeAlignment)
1667    VectorType(vecType, NumElts, Canonical, IsAltiVec, IsPixel);
1668  VectorTypes.InsertNode(New, InsertPos);
1669  Types.push_back(New);
1670  return QualType(New, 0);
1671}
1672
1673/// getExtVectorType - Return the unique reference to an extended vector type of
1674/// the specified element type and size. VectorType must be a built-in type.
1675QualType ASTContext::getExtVectorType(QualType vecType, unsigned NumElts) {
1676  BuiltinType *baseType;
1677
1678  baseType = dyn_cast<BuiltinType>(getCanonicalType(vecType).getTypePtr());
1679  assert(baseType != 0 && "getExtVectorType(): Expecting a built-in type");
1680
1681  // Check if we've already instantiated a vector of this type.
1682  llvm::FoldingSetNodeID ID;
1683  VectorType::Profile(ID, vecType, NumElts, Type::ExtVector, false, false);
1684  void *InsertPos = 0;
1685  if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
1686    return QualType(VTP, 0);
1687
1688  // If the element type isn't canonical, this won't be a canonical type either,
1689  // so fill in the canonical type field.
1690  QualType Canonical;
1691  if (!vecType.isCanonical()) {
1692    Canonical = getExtVectorType(getCanonicalType(vecType), NumElts);
1693
1694    // Get the new insert position for the node we care about.
1695    VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
1696    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1697  }
1698  ExtVectorType *New = new (*this, TypeAlignment)
1699    ExtVectorType(vecType, NumElts, Canonical);
1700  VectorTypes.InsertNode(New, InsertPos);
1701  Types.push_back(New);
1702  return QualType(New, 0);
1703}
1704
1705QualType ASTContext::getDependentSizedExtVectorType(QualType vecType,
1706                                                    Expr *SizeExpr,
1707                                                    SourceLocation AttrLoc) {
1708  llvm::FoldingSetNodeID ID;
1709  DependentSizedExtVectorType::Profile(ID, *this, getCanonicalType(vecType),
1710                                       SizeExpr);
1711
1712  void *InsertPos = 0;
1713  DependentSizedExtVectorType *Canon
1714    = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
1715  DependentSizedExtVectorType *New;
1716  if (Canon) {
1717    // We already have a canonical version of this array type; use it as
1718    // the canonical type for a newly-built type.
1719    New = new (*this, TypeAlignment)
1720      DependentSizedExtVectorType(*this, vecType, QualType(Canon, 0),
1721                                  SizeExpr, AttrLoc);
1722  } else {
1723    QualType CanonVecTy = getCanonicalType(vecType);
1724    if (CanonVecTy == vecType) {
1725      New = new (*this, TypeAlignment)
1726        DependentSizedExtVectorType(*this, vecType, QualType(), SizeExpr,
1727                                    AttrLoc);
1728
1729      DependentSizedExtVectorType *CanonCheck
1730        = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
1731      assert(!CanonCheck && "Dependent-sized ext_vector canonical type broken");
1732      (void)CanonCheck;
1733      DependentSizedExtVectorTypes.InsertNode(New, InsertPos);
1734    } else {
1735      QualType Canon = getDependentSizedExtVectorType(CanonVecTy, SizeExpr,
1736                                                      SourceLocation());
1737      New = new (*this, TypeAlignment)
1738        DependentSizedExtVectorType(*this, vecType, Canon, SizeExpr, AttrLoc);
1739    }
1740  }
1741
1742  Types.push_back(New);
1743  return QualType(New, 0);
1744}
1745
1746/// getFunctionNoProtoType - Return a K&R style C function type like 'int()'.
1747///
1748QualType ASTContext::getFunctionNoProtoType(QualType ResultTy, bool NoReturn,
1749                                            CallingConv CallConv) {
1750  // Unique functions, to guarantee there is only one function of a particular
1751  // structure.
1752  llvm::FoldingSetNodeID ID;
1753  FunctionNoProtoType::Profile(ID, ResultTy, NoReturn, CallConv);
1754
1755  void *InsertPos = 0;
1756  if (FunctionNoProtoType *FT =
1757        FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
1758    return QualType(FT, 0);
1759
1760  QualType Canonical;
1761  if (!ResultTy.isCanonical() ||
1762      getCanonicalCallConv(CallConv) != CallConv) {
1763    Canonical = getFunctionNoProtoType(getCanonicalType(ResultTy), NoReturn,
1764                                       getCanonicalCallConv(CallConv));
1765
1766    // Get the new insert position for the node we care about.
1767    FunctionNoProtoType *NewIP =
1768      FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
1769    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1770  }
1771
1772  FunctionNoProtoType *New = new (*this, TypeAlignment)
1773    FunctionNoProtoType(ResultTy, Canonical, NoReturn, CallConv);
1774  Types.push_back(New);
1775  FunctionNoProtoTypes.InsertNode(New, InsertPos);
1776  return QualType(New, 0);
1777}
1778
1779/// getFunctionType - Return a normal function type with a typed argument
1780/// list.  isVariadic indicates whether the argument list includes '...'.
1781QualType ASTContext::getFunctionType(QualType ResultTy,const QualType *ArgArray,
1782                                     unsigned NumArgs, bool isVariadic,
1783                                     unsigned TypeQuals, bool hasExceptionSpec,
1784                                     bool hasAnyExceptionSpec, unsigned NumExs,
1785                                     const QualType *ExArray, bool NoReturn,
1786                                     CallingConv CallConv) {
1787  // Unique functions, to guarantee there is only one function of a particular
1788  // structure.
1789  llvm::FoldingSetNodeID ID;
1790  FunctionProtoType::Profile(ID, ResultTy, ArgArray, NumArgs, isVariadic,
1791                             TypeQuals, hasExceptionSpec, hasAnyExceptionSpec,
1792                             NumExs, ExArray, NoReturn, CallConv);
1793
1794  void *InsertPos = 0;
1795  if (FunctionProtoType *FTP =
1796        FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
1797    return QualType(FTP, 0);
1798
1799  // Determine whether the type being created is already canonical or not.
1800  bool isCanonical = !hasExceptionSpec && ResultTy.isCanonical();
1801  for (unsigned i = 0; i != NumArgs && isCanonical; ++i)
1802    if (!ArgArray[i].isCanonicalAsParam())
1803      isCanonical = false;
1804
1805  // If this type isn't canonical, get the canonical version of it.
1806  // The exception spec is not part of the canonical type.
1807  QualType Canonical;
1808  if (!isCanonical || getCanonicalCallConv(CallConv) != CallConv) {
1809    llvm::SmallVector<QualType, 16> CanonicalArgs;
1810    CanonicalArgs.reserve(NumArgs);
1811    for (unsigned i = 0; i != NumArgs; ++i)
1812      CanonicalArgs.push_back(getCanonicalParamType(ArgArray[i]));
1813
1814    Canonical = getFunctionType(getCanonicalType(ResultTy),
1815                                CanonicalArgs.data(), NumArgs,
1816                                isVariadic, TypeQuals, false,
1817                                false, 0, 0, NoReturn,
1818                                getCanonicalCallConv(CallConv));
1819
1820    // Get the new insert position for the node we care about.
1821    FunctionProtoType *NewIP =
1822      FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
1823    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1824  }
1825
1826  // FunctionProtoType objects are allocated with extra bytes after them
1827  // for two variable size arrays (for parameter and exception types) at the
1828  // end of them.
1829  FunctionProtoType *FTP =
1830    (FunctionProtoType*)Allocate(sizeof(FunctionProtoType) +
1831                                 NumArgs*sizeof(QualType) +
1832                                 NumExs*sizeof(QualType), TypeAlignment);
1833  new (FTP) FunctionProtoType(ResultTy, ArgArray, NumArgs, isVariadic,
1834                              TypeQuals, hasExceptionSpec, hasAnyExceptionSpec,
1835                              ExArray, NumExs, Canonical, NoReturn, CallConv);
1836  Types.push_back(FTP);
1837  FunctionProtoTypes.InsertNode(FTP, InsertPos);
1838  return QualType(FTP, 0);
1839}
1840
1841/// getTypeDeclType - Return the unique reference to the type for the
1842/// specified type declaration.
1843QualType ASTContext::getTypeDeclType(const TypeDecl *Decl,
1844                                     const TypeDecl* PrevDecl) {
1845  assert(Decl && "Passed null for Decl param");
1846  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
1847
1848  if (const TypedefDecl *Typedef = dyn_cast<TypedefDecl>(Decl))
1849    return getTypedefType(Typedef);
1850  else if (isa<TemplateTypeParmDecl>(Decl)) {
1851    assert(false && "Template type parameter types are always available.");
1852  } else if (const ObjCInterfaceDecl *ObjCInterface
1853               = dyn_cast<ObjCInterfaceDecl>(Decl))
1854    return getObjCInterfaceType(ObjCInterface);
1855
1856  if (const RecordDecl *Record = dyn_cast<RecordDecl>(Decl)) {
1857    if (PrevDecl)
1858      Decl->TypeForDecl = PrevDecl->TypeForDecl;
1859    else
1860      Decl->TypeForDecl = new (*this, TypeAlignment) RecordType(Record);
1861  } else if (const EnumDecl *Enum = dyn_cast<EnumDecl>(Decl)) {
1862    if (PrevDecl)
1863      Decl->TypeForDecl = PrevDecl->TypeForDecl;
1864    else
1865      Decl->TypeForDecl = new (*this, TypeAlignment) EnumType(Enum);
1866  } else if (const UnresolvedUsingTypenameDecl *Using =
1867               dyn_cast<UnresolvedUsingTypenameDecl>(Decl)) {
1868    Decl->TypeForDecl = new (*this, TypeAlignment) UnresolvedUsingType(Using);
1869  } else
1870    assert(false && "TypeDecl without a type?");
1871
1872  if (!PrevDecl) Types.push_back(Decl->TypeForDecl);
1873  return QualType(Decl->TypeForDecl, 0);
1874}
1875
1876/// getTypedefType - Return the unique reference to the type for the
1877/// specified typename decl.
1878QualType ASTContext::getTypedefType(const TypedefDecl *Decl) {
1879  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
1880
1881  QualType Canonical = getCanonicalType(Decl->getUnderlyingType());
1882  Decl->TypeForDecl = new(*this, TypeAlignment)
1883    TypedefType(Type::Typedef, Decl, Canonical);
1884  Types.push_back(Decl->TypeForDecl);
1885  return QualType(Decl->TypeForDecl, 0);
1886}
1887
1888/// \brief Retrieve a substitution-result type.
1889QualType
1890ASTContext::getSubstTemplateTypeParmType(const TemplateTypeParmType *Parm,
1891                                         QualType Replacement) {
1892  assert(Replacement.isCanonical()
1893         && "replacement types must always be canonical");
1894
1895  llvm::FoldingSetNodeID ID;
1896  SubstTemplateTypeParmType::Profile(ID, Parm, Replacement);
1897  void *InsertPos = 0;
1898  SubstTemplateTypeParmType *SubstParm
1899    = SubstTemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
1900
1901  if (!SubstParm) {
1902    SubstParm = new (*this, TypeAlignment)
1903      SubstTemplateTypeParmType(Parm, Replacement);
1904    Types.push_back(SubstParm);
1905    SubstTemplateTypeParmTypes.InsertNode(SubstParm, InsertPos);
1906  }
1907
1908  return QualType(SubstParm, 0);
1909}
1910
1911/// \brief Retrieve the template type parameter type for a template
1912/// parameter or parameter pack with the given depth, index, and (optionally)
1913/// name.
1914QualType ASTContext::getTemplateTypeParmType(unsigned Depth, unsigned Index,
1915                                             bool ParameterPack,
1916                                             IdentifierInfo *Name) {
1917  llvm::FoldingSetNodeID ID;
1918  TemplateTypeParmType::Profile(ID, Depth, Index, ParameterPack, Name);
1919  void *InsertPos = 0;
1920  TemplateTypeParmType *TypeParm
1921    = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
1922
1923  if (TypeParm)
1924    return QualType(TypeParm, 0);
1925
1926  if (Name) {
1927    QualType Canon = getTemplateTypeParmType(Depth, Index, ParameterPack);
1928    TypeParm = new (*this, TypeAlignment)
1929      TemplateTypeParmType(Depth, Index, ParameterPack, Name, Canon);
1930
1931    TemplateTypeParmType *TypeCheck
1932      = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
1933    assert(!TypeCheck && "Template type parameter canonical type broken");
1934    (void)TypeCheck;
1935  } else
1936    TypeParm = new (*this, TypeAlignment)
1937      TemplateTypeParmType(Depth, Index, ParameterPack);
1938
1939  Types.push_back(TypeParm);
1940  TemplateTypeParmTypes.InsertNode(TypeParm, InsertPos);
1941
1942  return QualType(TypeParm, 0);
1943}
1944
1945QualType
1946ASTContext::getTemplateSpecializationType(TemplateName Template,
1947                                          const TemplateArgumentListInfo &Args,
1948                                          QualType Canon) {
1949  unsigned NumArgs = Args.size();
1950
1951  llvm::SmallVector<TemplateArgument, 4> ArgVec;
1952  ArgVec.reserve(NumArgs);
1953  for (unsigned i = 0; i != NumArgs; ++i)
1954    ArgVec.push_back(Args[i].getArgument());
1955
1956  return getTemplateSpecializationType(Template, ArgVec.data(), NumArgs, Canon);
1957}
1958
1959QualType
1960ASTContext::getTemplateSpecializationType(TemplateName Template,
1961                                          const TemplateArgument *Args,
1962                                          unsigned NumArgs,
1963                                          QualType Canon) {
1964  if (!Canon.isNull())
1965    Canon = getCanonicalType(Canon);
1966  else {
1967    // Build the canonical template specialization type.
1968    TemplateName CanonTemplate = getCanonicalTemplateName(Template);
1969    llvm::SmallVector<TemplateArgument, 4> CanonArgs;
1970    CanonArgs.reserve(NumArgs);
1971    for (unsigned I = 0; I != NumArgs; ++I)
1972      CanonArgs.push_back(getCanonicalTemplateArgument(Args[I]));
1973
1974    // Determine whether this canonical template specialization type already
1975    // exists.
1976    llvm::FoldingSetNodeID ID;
1977    TemplateSpecializationType::Profile(ID, CanonTemplate,
1978                                        CanonArgs.data(), NumArgs, *this);
1979
1980    void *InsertPos = 0;
1981    TemplateSpecializationType *Spec
1982      = TemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
1983
1984    if (!Spec) {
1985      // Allocate a new canonical template specialization type.
1986      void *Mem = Allocate((sizeof(TemplateSpecializationType) +
1987                            sizeof(TemplateArgument) * NumArgs),
1988                           TypeAlignment);
1989      Spec = new (Mem) TemplateSpecializationType(*this, CanonTemplate,
1990                                                  CanonArgs.data(), NumArgs,
1991                                                  Canon);
1992      Types.push_back(Spec);
1993      TemplateSpecializationTypes.InsertNode(Spec, InsertPos);
1994    }
1995
1996    if (Canon.isNull())
1997      Canon = QualType(Spec, 0);
1998    assert(Canon->isDependentType() &&
1999           "Non-dependent template-id type must have a canonical type");
2000  }
2001
2002  // Allocate the (non-canonical) template specialization type, but don't
2003  // try to unique it: these types typically have location information that
2004  // we don't unique and don't want to lose.
2005  void *Mem = Allocate((sizeof(TemplateSpecializationType) +
2006                        sizeof(TemplateArgument) * NumArgs),
2007                       TypeAlignment);
2008  TemplateSpecializationType *Spec
2009    = new (Mem) TemplateSpecializationType(*this, Template, Args, NumArgs,
2010                                           Canon);
2011
2012  Types.push_back(Spec);
2013  return QualType(Spec, 0);
2014}
2015
2016QualType
2017ASTContext::getQualifiedNameType(NestedNameSpecifier *NNS,
2018                                 QualType NamedType) {
2019  llvm::FoldingSetNodeID ID;
2020  QualifiedNameType::Profile(ID, NNS, NamedType);
2021
2022  void *InsertPos = 0;
2023  QualifiedNameType *T
2024    = QualifiedNameTypes.FindNodeOrInsertPos(ID, InsertPos);
2025  if (T)
2026    return QualType(T, 0);
2027
2028  QualType Canon = NamedType;
2029  if (!Canon.isCanonical()) {
2030    Canon = getCanonicalType(NamedType);
2031    QualifiedNameType *CheckT
2032      = QualifiedNameTypes.FindNodeOrInsertPos(ID, InsertPos);
2033    assert(!CheckT && "Qualified name canonical type broken");
2034    (void)CheckT;
2035  }
2036
2037  T = new (*this) QualifiedNameType(NNS, NamedType, Canon);
2038  Types.push_back(T);
2039  QualifiedNameTypes.InsertNode(T, InsertPos);
2040  return QualType(T, 0);
2041}
2042
2043QualType ASTContext::getTypenameType(NestedNameSpecifier *NNS,
2044                                     const IdentifierInfo *Name,
2045                                     QualType Canon) {
2046  assert(NNS->isDependent() && "nested-name-specifier must be dependent");
2047
2048  if (Canon.isNull()) {
2049    NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
2050    if (CanonNNS != NNS)
2051      Canon = getTypenameType(CanonNNS, Name);
2052  }
2053
2054  llvm::FoldingSetNodeID ID;
2055  TypenameType::Profile(ID, NNS, Name);
2056
2057  void *InsertPos = 0;
2058  TypenameType *T
2059    = TypenameTypes.FindNodeOrInsertPos(ID, InsertPos);
2060  if (T)
2061    return QualType(T, 0);
2062
2063  T = new (*this) TypenameType(NNS, Name, Canon);
2064  Types.push_back(T);
2065  TypenameTypes.InsertNode(T, InsertPos);
2066  return QualType(T, 0);
2067}
2068
2069QualType
2070ASTContext::getTypenameType(NestedNameSpecifier *NNS,
2071                            const TemplateSpecializationType *TemplateId,
2072                            QualType Canon) {
2073  assert(NNS->isDependent() && "nested-name-specifier must be dependent");
2074
2075  llvm::FoldingSetNodeID ID;
2076  TypenameType::Profile(ID, NNS, TemplateId);
2077
2078  void *InsertPos = 0;
2079  TypenameType *T
2080    = TypenameTypes.FindNodeOrInsertPos(ID, InsertPos);
2081  if (T)
2082    return QualType(T, 0);
2083
2084  if (Canon.isNull()) {
2085    NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
2086    QualType CanonType = getCanonicalType(QualType(TemplateId, 0));
2087    if (CanonNNS != NNS || CanonType != QualType(TemplateId, 0)) {
2088      const TemplateSpecializationType *CanonTemplateId
2089        = CanonType->getAs<TemplateSpecializationType>();
2090      assert(CanonTemplateId &&
2091             "Canonical type must also be a template specialization type");
2092      Canon = getTypenameType(CanonNNS, CanonTemplateId);
2093    }
2094
2095    TypenameType *CheckT
2096      = TypenameTypes.FindNodeOrInsertPos(ID, InsertPos);
2097    assert(!CheckT && "Typename canonical type is broken"); (void)CheckT;
2098  }
2099
2100  T = new (*this) TypenameType(NNS, TemplateId, Canon);
2101  Types.push_back(T);
2102  TypenameTypes.InsertNode(T, InsertPos);
2103  return QualType(T, 0);
2104}
2105
2106QualType
2107ASTContext::getElaboratedType(QualType UnderlyingType,
2108                              ElaboratedType::TagKind Tag) {
2109  llvm::FoldingSetNodeID ID;
2110  ElaboratedType::Profile(ID, UnderlyingType, Tag);
2111
2112  void *InsertPos = 0;
2113  ElaboratedType *T = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
2114  if (T)
2115    return QualType(T, 0);
2116
2117  QualType Canon = UnderlyingType;
2118  if (!Canon.isCanonical()) {
2119    Canon = getCanonicalType(Canon);
2120    ElaboratedType *CheckT = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
2121    assert(!CheckT && "Elaborated canonical type is broken"); (void)CheckT;
2122  }
2123
2124  T = new (*this) ElaboratedType(UnderlyingType, Tag, Canon);
2125  Types.push_back(T);
2126  ElaboratedTypes.InsertNode(T, InsertPos);
2127  return QualType(T, 0);
2128}
2129
2130/// CmpProtocolNames - Comparison predicate for sorting protocols
2131/// alphabetically.
2132static bool CmpProtocolNames(const ObjCProtocolDecl *LHS,
2133                            const ObjCProtocolDecl *RHS) {
2134  return LHS->getDeclName() < RHS->getDeclName();
2135}
2136
2137static bool areSortedAndUniqued(ObjCProtocolDecl **Protocols,
2138                                unsigned NumProtocols) {
2139  if (NumProtocols == 0) return true;
2140
2141  for (unsigned i = 1; i != NumProtocols; ++i)
2142    if (!CmpProtocolNames(Protocols[i-1], Protocols[i]))
2143      return false;
2144  return true;
2145}
2146
2147static void SortAndUniqueProtocols(ObjCProtocolDecl **Protocols,
2148                                   unsigned &NumProtocols) {
2149  ObjCProtocolDecl **ProtocolsEnd = Protocols+NumProtocols;
2150
2151  // Sort protocols, keyed by name.
2152  std::sort(Protocols, Protocols+NumProtocols, CmpProtocolNames);
2153
2154  // Remove duplicates.
2155  ProtocolsEnd = std::unique(Protocols, ProtocolsEnd);
2156  NumProtocols = ProtocolsEnd-Protocols;
2157}
2158
2159/// getObjCObjectPointerType - Return a ObjCObjectPointerType type for
2160/// the given interface decl and the conforming protocol list.
2161QualType ASTContext::getObjCObjectPointerType(QualType InterfaceT,
2162                                              ObjCProtocolDecl **Protocols,
2163                                              unsigned NumProtocols) {
2164  llvm::FoldingSetNodeID ID;
2165  ObjCObjectPointerType::Profile(ID, InterfaceT, Protocols, NumProtocols);
2166
2167  void *InsertPos = 0;
2168  if (ObjCObjectPointerType *QT =
2169              ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
2170    return QualType(QT, 0);
2171
2172  // Sort the protocol list alphabetically to canonicalize it.
2173  QualType Canonical;
2174  if (!InterfaceT.isCanonical() ||
2175      !areSortedAndUniqued(Protocols, NumProtocols)) {
2176    if (!areSortedAndUniqued(Protocols, NumProtocols)) {
2177      llvm::SmallVector<ObjCProtocolDecl*, 8> Sorted(NumProtocols);
2178      unsigned UniqueCount = NumProtocols;
2179
2180      std::copy(Protocols, Protocols + NumProtocols, Sorted.begin());
2181      SortAndUniqueProtocols(&Sorted[0], UniqueCount);
2182
2183      Canonical = getObjCObjectPointerType(getCanonicalType(InterfaceT),
2184                                           &Sorted[0], UniqueCount);
2185    } else {
2186      Canonical = getObjCObjectPointerType(getCanonicalType(InterfaceT),
2187                                           Protocols, NumProtocols);
2188    }
2189
2190    // Regenerate InsertPos.
2191    ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
2192  }
2193
2194  // No match.
2195  unsigned Size = sizeof(ObjCObjectPointerType)
2196                + NumProtocols * sizeof(ObjCProtocolDecl *);
2197  void *Mem = Allocate(Size, TypeAlignment);
2198  ObjCObjectPointerType *QType = new (Mem) ObjCObjectPointerType(Canonical,
2199                                                                 InterfaceT,
2200                                                                 Protocols,
2201                                                                 NumProtocols);
2202
2203  Types.push_back(QType);
2204  ObjCObjectPointerTypes.InsertNode(QType, InsertPos);
2205  return QualType(QType, 0);
2206}
2207
2208/// getObjCInterfaceType - Return the unique reference to the type for the
2209/// specified ObjC interface decl. The list of protocols is optional.
2210QualType ASTContext::getObjCInterfaceType(const ObjCInterfaceDecl *Decl,
2211                       ObjCProtocolDecl **Protocols, unsigned NumProtocols) {
2212  llvm::FoldingSetNodeID ID;
2213  ObjCInterfaceType::Profile(ID, Decl, Protocols, NumProtocols);
2214
2215  void *InsertPos = 0;
2216  if (ObjCInterfaceType *QT =
2217      ObjCInterfaceTypes.FindNodeOrInsertPos(ID, InsertPos))
2218    return QualType(QT, 0);
2219
2220  // Sort the protocol list alphabetically to canonicalize it.
2221  QualType Canonical;
2222  if (NumProtocols && !areSortedAndUniqued(Protocols, NumProtocols)) {
2223    llvm::SmallVector<ObjCProtocolDecl*, 8> Sorted(NumProtocols);
2224    std::copy(Protocols, Protocols + NumProtocols, Sorted.begin());
2225
2226    unsigned UniqueCount = NumProtocols;
2227    SortAndUniqueProtocols(&Sorted[0], UniqueCount);
2228
2229    Canonical = getObjCInterfaceType(Decl, &Sorted[0], UniqueCount);
2230
2231    ObjCInterfaceTypes.FindNodeOrInsertPos(ID, InsertPos);
2232  }
2233
2234  unsigned Size = sizeof(ObjCInterfaceType)
2235    + NumProtocols * sizeof(ObjCProtocolDecl *);
2236  void *Mem = Allocate(Size, TypeAlignment);
2237  ObjCInterfaceType *QType = new (Mem) ObjCInterfaceType(Canonical,
2238                                        const_cast<ObjCInterfaceDecl*>(Decl),
2239                                                         Protocols,
2240                                                         NumProtocols);
2241
2242  Types.push_back(QType);
2243  ObjCInterfaceTypes.InsertNode(QType, InsertPos);
2244  return QualType(QType, 0);
2245}
2246
2247/// getTypeOfExprType - Unlike many "get<Type>" functions, we can't unique
2248/// TypeOfExprType AST's (since expression's are never shared). For example,
2249/// multiple declarations that refer to "typeof(x)" all contain different
2250/// DeclRefExpr's. This doesn't effect the type checker, since it operates
2251/// on canonical type's (which are always unique).
2252QualType ASTContext::getTypeOfExprType(Expr *tofExpr) {
2253  TypeOfExprType *toe;
2254  if (tofExpr->isTypeDependent()) {
2255    llvm::FoldingSetNodeID ID;
2256    DependentTypeOfExprType::Profile(ID, *this, tofExpr);
2257
2258    void *InsertPos = 0;
2259    DependentTypeOfExprType *Canon
2260      = DependentTypeOfExprTypes.FindNodeOrInsertPos(ID, InsertPos);
2261    if (Canon) {
2262      // We already have a "canonical" version of an identical, dependent
2263      // typeof(expr) type. Use that as our canonical type.
2264      toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr,
2265                                          QualType((TypeOfExprType*)Canon, 0));
2266    }
2267    else {
2268      // Build a new, canonical typeof(expr) type.
2269      Canon
2270        = new (*this, TypeAlignment) DependentTypeOfExprType(*this, tofExpr);
2271      DependentTypeOfExprTypes.InsertNode(Canon, InsertPos);
2272      toe = Canon;
2273    }
2274  } else {
2275    QualType Canonical = getCanonicalType(tofExpr->getType());
2276    toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr, Canonical);
2277  }
2278  Types.push_back(toe);
2279  return QualType(toe, 0);
2280}
2281
2282/// getTypeOfType -  Unlike many "get<Type>" functions, we don't unique
2283/// TypeOfType AST's. The only motivation to unique these nodes would be
2284/// memory savings. Since typeof(t) is fairly uncommon, space shouldn't be
2285/// an issue. This doesn't effect the type checker, since it operates
2286/// on canonical type's (which are always unique).
2287QualType ASTContext::getTypeOfType(QualType tofType) {
2288  QualType Canonical = getCanonicalType(tofType);
2289  TypeOfType *tot = new (*this, TypeAlignment) TypeOfType(tofType, Canonical);
2290  Types.push_back(tot);
2291  return QualType(tot, 0);
2292}
2293
2294/// getDecltypeForExpr - Given an expr, will return the decltype for that
2295/// expression, according to the rules in C++0x [dcl.type.simple]p4
2296static QualType getDecltypeForExpr(const Expr *e, ASTContext &Context) {
2297  if (e->isTypeDependent())
2298    return Context.DependentTy;
2299
2300  // If e is an id expression or a class member access, decltype(e) is defined
2301  // as the type of the entity named by e.
2302  if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(e)) {
2303    if (const ValueDecl *VD = dyn_cast<ValueDecl>(DRE->getDecl()))
2304      return VD->getType();
2305  }
2306  if (const MemberExpr *ME = dyn_cast<MemberExpr>(e)) {
2307    if (const FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl()))
2308      return FD->getType();
2309  }
2310  // If e is a function call or an invocation of an overloaded operator,
2311  // (parentheses around e are ignored), decltype(e) is defined as the
2312  // return type of that function.
2313  if (const CallExpr *CE = dyn_cast<CallExpr>(e->IgnoreParens()))
2314    return CE->getCallReturnType();
2315
2316  QualType T = e->getType();
2317
2318  // Otherwise, where T is the type of e, if e is an lvalue, decltype(e) is
2319  // defined as T&, otherwise decltype(e) is defined as T.
2320  if (e->isLvalue(Context) == Expr::LV_Valid)
2321    T = Context.getLValueReferenceType(T);
2322
2323  return T;
2324}
2325
2326/// getDecltypeType -  Unlike many "get<Type>" functions, we don't unique
2327/// DecltypeType AST's. The only motivation to unique these nodes would be
2328/// memory savings. Since decltype(t) is fairly uncommon, space shouldn't be
2329/// an issue. This doesn't effect the type checker, since it operates
2330/// on canonical type's (which are always unique).
2331QualType ASTContext::getDecltypeType(Expr *e) {
2332  DecltypeType *dt;
2333  if (e->isTypeDependent()) {
2334    llvm::FoldingSetNodeID ID;
2335    DependentDecltypeType::Profile(ID, *this, e);
2336
2337    void *InsertPos = 0;
2338    DependentDecltypeType *Canon
2339      = DependentDecltypeTypes.FindNodeOrInsertPos(ID, InsertPos);
2340    if (Canon) {
2341      // We already have a "canonical" version of an equivalent, dependent
2342      // decltype type. Use that as our canonical type.
2343      dt = new (*this, TypeAlignment) DecltypeType(e, DependentTy,
2344                                       QualType((DecltypeType*)Canon, 0));
2345    }
2346    else {
2347      // Build a new, canonical typeof(expr) type.
2348      Canon = new (*this, TypeAlignment) DependentDecltypeType(*this, e);
2349      DependentDecltypeTypes.InsertNode(Canon, InsertPos);
2350      dt = Canon;
2351    }
2352  } else {
2353    QualType T = getDecltypeForExpr(e, *this);
2354    dt = new (*this, TypeAlignment) DecltypeType(e, T, getCanonicalType(T));
2355  }
2356  Types.push_back(dt);
2357  return QualType(dt, 0);
2358}
2359
2360/// getTagDeclType - Return the unique reference to the type for the
2361/// specified TagDecl (struct/union/class/enum) decl.
2362QualType ASTContext::getTagDeclType(const TagDecl *Decl) {
2363  assert (Decl);
2364  // FIXME: What is the design on getTagDeclType when it requires casting
2365  // away const?  mutable?
2366  return getTypeDeclType(const_cast<TagDecl*>(Decl));
2367}
2368
2369/// getSizeType - Return the unique type for "size_t" (C99 7.17), the result
2370/// of the sizeof operator (C99 6.5.3.4p4). The value is target dependent and
2371/// needs to agree with the definition in <stddef.h>.
2372CanQualType ASTContext::getSizeType() const {
2373  return getFromTargetType(Target.getSizeType());
2374}
2375
2376/// getSignedWCharType - Return the type of "signed wchar_t".
2377/// Used when in C++, as a GCC extension.
2378QualType ASTContext::getSignedWCharType() const {
2379  // FIXME: derive from "Target" ?
2380  return WCharTy;
2381}
2382
2383/// getUnsignedWCharType - Return the type of "unsigned wchar_t".
2384/// Used when in C++, as a GCC extension.
2385QualType ASTContext::getUnsignedWCharType() const {
2386  // FIXME: derive from "Target" ?
2387  return UnsignedIntTy;
2388}
2389
2390/// getPointerDiffType - Return the unique type for "ptrdiff_t" (ref?)
2391/// defined in <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9).
2392QualType ASTContext::getPointerDiffType() const {
2393  return getFromTargetType(Target.getPtrDiffType(0));
2394}
2395
2396//===----------------------------------------------------------------------===//
2397//                              Type Operators
2398//===----------------------------------------------------------------------===//
2399
2400CanQualType ASTContext::getCanonicalParamType(QualType T) {
2401  // Push qualifiers into arrays, and then discard any remaining
2402  // qualifiers.
2403  T = getCanonicalType(T);
2404  const Type *Ty = T.getTypePtr();
2405
2406  QualType Result;
2407  if (isa<ArrayType>(Ty)) {
2408    Result = getArrayDecayedType(QualType(Ty,0));
2409  } else if (isa<FunctionType>(Ty)) {
2410    Result = getPointerType(QualType(Ty, 0));
2411  } else {
2412    Result = QualType(Ty, 0);
2413  }
2414
2415  return CanQualType::CreateUnsafe(Result);
2416}
2417
2418/// getCanonicalType - Return the canonical (structural) type corresponding to
2419/// the specified potentially non-canonical type.  The non-canonical version
2420/// of a type may have many "decorated" versions of types.  Decorators can
2421/// include typedefs, 'typeof' operators, etc. The returned type is guaranteed
2422/// to be free of any of these, allowing two canonical types to be compared
2423/// for exact equality with a simple pointer comparison.
2424CanQualType ASTContext::getCanonicalType(QualType T) {
2425  QualifierCollector Quals;
2426  const Type *Ptr = Quals.strip(T);
2427  QualType CanType = Ptr->getCanonicalTypeInternal();
2428
2429  // The canonical internal type will be the canonical type *except*
2430  // that we push type qualifiers down through array types.
2431
2432  // If there are no new qualifiers to push down, stop here.
2433  if (!Quals.hasQualifiers())
2434    return CanQualType::CreateUnsafe(CanType);
2435
2436  // If the type qualifiers are on an array type, get the canonical
2437  // type of the array with the qualifiers applied to the element
2438  // type.
2439  ArrayType *AT = dyn_cast<ArrayType>(CanType);
2440  if (!AT)
2441    return CanQualType::CreateUnsafe(getQualifiedType(CanType, Quals));
2442
2443  // Get the canonical version of the element with the extra qualifiers on it.
2444  // This can recursively sink qualifiers through multiple levels of arrays.
2445  QualType NewEltTy = getQualifiedType(AT->getElementType(), Quals);
2446  NewEltTy = getCanonicalType(NewEltTy);
2447
2448  if (ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
2449    return CanQualType::CreateUnsafe(
2450             getConstantArrayType(NewEltTy, CAT->getSize(),
2451                                  CAT->getSizeModifier(),
2452                                  CAT->getIndexTypeCVRQualifiers()));
2453  if (IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT))
2454    return CanQualType::CreateUnsafe(
2455             getIncompleteArrayType(NewEltTy, IAT->getSizeModifier(),
2456                                    IAT->getIndexTypeCVRQualifiers()));
2457
2458  if (DependentSizedArrayType *DSAT = dyn_cast<DependentSizedArrayType>(AT))
2459    return CanQualType::CreateUnsafe(
2460             getDependentSizedArrayType(NewEltTy,
2461                                        DSAT->getSizeExpr() ?
2462                                          DSAT->getSizeExpr()->Retain() : 0,
2463                                        DSAT->getSizeModifier(),
2464                                        DSAT->getIndexTypeCVRQualifiers(),
2465                        DSAT->getBracketsRange())->getCanonicalTypeInternal());
2466
2467  VariableArrayType *VAT = cast<VariableArrayType>(AT);
2468  return CanQualType::CreateUnsafe(getVariableArrayType(NewEltTy,
2469                                                        VAT->getSizeExpr() ?
2470                                              VAT->getSizeExpr()->Retain() : 0,
2471                                                        VAT->getSizeModifier(),
2472                                              VAT->getIndexTypeCVRQualifiers(),
2473                                                     VAT->getBracketsRange()));
2474}
2475
2476QualType ASTContext::getUnqualifiedArrayType(QualType T,
2477                                             Qualifiers &Quals) {
2478  Quals = T.getQualifiers();
2479  if (!isa<ArrayType>(T)) {
2480    return T.getUnqualifiedType();
2481  }
2482
2483  const ArrayType *AT = cast<ArrayType>(T);
2484  QualType Elt = AT->getElementType();
2485  QualType UnqualElt = getUnqualifiedArrayType(Elt, Quals);
2486  if (Elt == UnqualElt)
2487    return T;
2488
2489  if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(T)) {
2490    return getConstantArrayType(UnqualElt, CAT->getSize(),
2491                                CAT->getSizeModifier(), 0);
2492  }
2493
2494  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(T)) {
2495    return getIncompleteArrayType(UnqualElt, IAT->getSizeModifier(), 0);
2496  }
2497
2498  const DependentSizedArrayType *DSAT = cast<DependentSizedArrayType>(T);
2499  return getDependentSizedArrayType(UnqualElt, DSAT->getSizeExpr()->Retain(),
2500                                    DSAT->getSizeModifier(), 0,
2501                                    SourceRange());
2502}
2503
2504DeclarationName ASTContext::getNameForTemplate(TemplateName Name) {
2505  if (TemplateDecl *TD = Name.getAsTemplateDecl())
2506    return TD->getDeclName();
2507
2508  if (DependentTemplateName *DTN = Name.getAsDependentTemplateName()) {
2509    if (DTN->isIdentifier()) {
2510      return DeclarationNames.getIdentifier(DTN->getIdentifier());
2511    } else {
2512      return DeclarationNames.getCXXOperatorName(DTN->getOperator());
2513    }
2514  }
2515
2516  OverloadedTemplateStorage *Storage = Name.getAsOverloadedTemplate();
2517  assert(Storage);
2518  return (*Storage->begin())->getDeclName();
2519}
2520
2521TemplateName ASTContext::getCanonicalTemplateName(TemplateName Name) {
2522  // If this template name refers to a template, the canonical
2523  // template name merely stores the template itself.
2524  if (TemplateDecl *Template = Name.getAsTemplateDecl())
2525    return TemplateName(cast<TemplateDecl>(Template->getCanonicalDecl()));
2526
2527  assert(!Name.getAsOverloadedTemplate());
2528
2529  DependentTemplateName *DTN = Name.getAsDependentTemplateName();
2530  assert(DTN && "Non-dependent template names must refer to template decls.");
2531  return DTN->CanonicalTemplateName;
2532}
2533
2534bool ASTContext::hasSameTemplateName(TemplateName X, TemplateName Y) {
2535  X = getCanonicalTemplateName(X);
2536  Y = getCanonicalTemplateName(Y);
2537  return X.getAsVoidPointer() == Y.getAsVoidPointer();
2538}
2539
2540TemplateArgument
2541ASTContext::getCanonicalTemplateArgument(const TemplateArgument &Arg) {
2542  switch (Arg.getKind()) {
2543    case TemplateArgument::Null:
2544      return Arg;
2545
2546    case TemplateArgument::Expression:
2547      return Arg;
2548
2549    case TemplateArgument::Declaration:
2550      return TemplateArgument(Arg.getAsDecl()->getCanonicalDecl());
2551
2552    case TemplateArgument::Template:
2553      return TemplateArgument(getCanonicalTemplateName(Arg.getAsTemplate()));
2554
2555    case TemplateArgument::Integral:
2556      return TemplateArgument(*Arg.getAsIntegral(),
2557                              getCanonicalType(Arg.getIntegralType()));
2558
2559    case TemplateArgument::Type:
2560      return TemplateArgument(getCanonicalType(Arg.getAsType()));
2561
2562    case TemplateArgument::Pack: {
2563      // FIXME: Allocate in ASTContext
2564      TemplateArgument *CanonArgs = new TemplateArgument[Arg.pack_size()];
2565      unsigned Idx = 0;
2566      for (TemplateArgument::pack_iterator A = Arg.pack_begin(),
2567                                        AEnd = Arg.pack_end();
2568           A != AEnd; (void)++A, ++Idx)
2569        CanonArgs[Idx] = getCanonicalTemplateArgument(*A);
2570
2571      TemplateArgument Result;
2572      Result.setArgumentPack(CanonArgs, Arg.pack_size(), false);
2573      return Result;
2574    }
2575  }
2576
2577  // Silence GCC warning
2578  assert(false && "Unhandled template argument kind");
2579  return TemplateArgument();
2580}
2581
2582NestedNameSpecifier *
2583ASTContext::getCanonicalNestedNameSpecifier(NestedNameSpecifier *NNS) {
2584  if (!NNS)
2585    return 0;
2586
2587  switch (NNS->getKind()) {
2588  case NestedNameSpecifier::Identifier:
2589    // Canonicalize the prefix but keep the identifier the same.
2590    return NestedNameSpecifier::Create(*this,
2591                         getCanonicalNestedNameSpecifier(NNS->getPrefix()),
2592                                       NNS->getAsIdentifier());
2593
2594  case NestedNameSpecifier::Namespace:
2595    // A namespace is canonical; build a nested-name-specifier with
2596    // this namespace and no prefix.
2597    return NestedNameSpecifier::Create(*this, 0, NNS->getAsNamespace());
2598
2599  case NestedNameSpecifier::TypeSpec:
2600  case NestedNameSpecifier::TypeSpecWithTemplate: {
2601    QualType T = getCanonicalType(QualType(NNS->getAsType(), 0));
2602    return NestedNameSpecifier::Create(*this, 0,
2603                 NNS->getKind() == NestedNameSpecifier::TypeSpecWithTemplate,
2604                                       T.getTypePtr());
2605  }
2606
2607  case NestedNameSpecifier::Global:
2608    // The global specifier is canonical and unique.
2609    return NNS;
2610  }
2611
2612  // Required to silence a GCC warning
2613  return 0;
2614}
2615
2616
2617const ArrayType *ASTContext::getAsArrayType(QualType T) {
2618  // Handle the non-qualified case efficiently.
2619  if (!T.hasLocalQualifiers()) {
2620    // Handle the common positive case fast.
2621    if (const ArrayType *AT = dyn_cast<ArrayType>(T))
2622      return AT;
2623  }
2624
2625  // Handle the common negative case fast.
2626  QualType CType = T->getCanonicalTypeInternal();
2627  if (!isa<ArrayType>(CType))
2628    return 0;
2629
2630  // Apply any qualifiers from the array type to the element type.  This
2631  // implements C99 6.7.3p8: "If the specification of an array type includes
2632  // any type qualifiers, the element type is so qualified, not the array type."
2633
2634  // If we get here, we either have type qualifiers on the type, or we have
2635  // sugar such as a typedef in the way.  If we have type qualifiers on the type
2636  // we must propagate them down into the element type.
2637
2638  QualifierCollector Qs;
2639  const Type *Ty = Qs.strip(T.getDesugaredType());
2640
2641  // If we have a simple case, just return now.
2642  const ArrayType *ATy = dyn_cast<ArrayType>(Ty);
2643  if (ATy == 0 || Qs.empty())
2644    return ATy;
2645
2646  // Otherwise, we have an array and we have qualifiers on it.  Push the
2647  // qualifiers into the array element type and return a new array type.
2648  // Get the canonical version of the element with the extra qualifiers on it.
2649  // This can recursively sink qualifiers through multiple levels of arrays.
2650  QualType NewEltTy = getQualifiedType(ATy->getElementType(), Qs);
2651
2652  if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(ATy))
2653    return cast<ArrayType>(getConstantArrayType(NewEltTy, CAT->getSize(),
2654                                                CAT->getSizeModifier(),
2655                                           CAT->getIndexTypeCVRQualifiers()));
2656  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(ATy))
2657    return cast<ArrayType>(getIncompleteArrayType(NewEltTy,
2658                                                  IAT->getSizeModifier(),
2659                                           IAT->getIndexTypeCVRQualifiers()));
2660
2661  if (const DependentSizedArrayType *DSAT
2662        = dyn_cast<DependentSizedArrayType>(ATy))
2663    return cast<ArrayType>(
2664                     getDependentSizedArrayType(NewEltTy,
2665                                                DSAT->getSizeExpr() ?
2666                                              DSAT->getSizeExpr()->Retain() : 0,
2667                                                DSAT->getSizeModifier(),
2668                                              DSAT->getIndexTypeCVRQualifiers(),
2669                                                DSAT->getBracketsRange()));
2670
2671  const VariableArrayType *VAT = cast<VariableArrayType>(ATy);
2672  return cast<ArrayType>(getVariableArrayType(NewEltTy,
2673                                              VAT->getSizeExpr() ?
2674                                              VAT->getSizeExpr()->Retain() : 0,
2675                                              VAT->getSizeModifier(),
2676                                              VAT->getIndexTypeCVRQualifiers(),
2677                                              VAT->getBracketsRange()));
2678}
2679
2680
2681/// getArrayDecayedType - Return the properly qualified result of decaying the
2682/// specified array type to a pointer.  This operation is non-trivial when
2683/// handling typedefs etc.  The canonical type of "T" must be an array type,
2684/// this returns a pointer to a properly qualified element of the array.
2685///
2686/// See C99 6.7.5.3p7 and C99 6.3.2.1p3.
2687QualType ASTContext::getArrayDecayedType(QualType Ty) {
2688  // Get the element type with 'getAsArrayType' so that we don't lose any
2689  // typedefs in the element type of the array.  This also handles propagation
2690  // of type qualifiers from the array type into the element type if present
2691  // (C99 6.7.3p8).
2692  const ArrayType *PrettyArrayType = getAsArrayType(Ty);
2693  assert(PrettyArrayType && "Not an array type!");
2694
2695  QualType PtrTy = getPointerType(PrettyArrayType->getElementType());
2696
2697  // int x[restrict 4] ->  int *restrict
2698  return getQualifiedType(PtrTy, PrettyArrayType->getIndexTypeQualifiers());
2699}
2700
2701QualType ASTContext::getBaseElementType(QualType QT) {
2702  QualifierCollector Qs;
2703  while (true) {
2704    const Type *UT = Qs.strip(QT);
2705    if (const ArrayType *AT = getAsArrayType(QualType(UT,0))) {
2706      QT = AT->getElementType();
2707    } else {
2708      return Qs.apply(QT);
2709    }
2710  }
2711}
2712
2713QualType ASTContext::getBaseElementType(const ArrayType *AT) {
2714  QualType ElemTy = AT->getElementType();
2715
2716  if (const ArrayType *AT = getAsArrayType(ElemTy))
2717    return getBaseElementType(AT);
2718
2719  return ElemTy;
2720}
2721
2722/// getConstantArrayElementCount - Returns number of constant array elements.
2723uint64_t
2724ASTContext::getConstantArrayElementCount(const ConstantArrayType *CA)  const {
2725  uint64_t ElementCount = 1;
2726  do {
2727    ElementCount *= CA->getSize().getZExtValue();
2728    CA = dyn_cast<ConstantArrayType>(CA->getElementType());
2729  } while (CA);
2730  return ElementCount;
2731}
2732
2733/// getFloatingRank - Return a relative rank for floating point types.
2734/// This routine will assert if passed a built-in type that isn't a float.
2735static FloatingRank getFloatingRank(QualType T) {
2736  if (const ComplexType *CT = T->getAs<ComplexType>())
2737    return getFloatingRank(CT->getElementType());
2738
2739  assert(T->getAs<BuiltinType>() && "getFloatingRank(): not a floating type");
2740  switch (T->getAs<BuiltinType>()->getKind()) {
2741  default: assert(0 && "getFloatingRank(): not a floating type");
2742  case BuiltinType::Float:      return FloatRank;
2743  case BuiltinType::Double:     return DoubleRank;
2744  case BuiltinType::LongDouble: return LongDoubleRank;
2745  }
2746}
2747
2748/// getFloatingTypeOfSizeWithinDomain - Returns a real floating
2749/// point or a complex type (based on typeDomain/typeSize).
2750/// 'typeDomain' is a real floating point or complex type.
2751/// 'typeSize' is a real floating point or complex type.
2752QualType ASTContext::getFloatingTypeOfSizeWithinDomain(QualType Size,
2753                                                       QualType Domain) const {
2754  FloatingRank EltRank = getFloatingRank(Size);
2755  if (Domain->isComplexType()) {
2756    switch (EltRank) {
2757    default: assert(0 && "getFloatingRank(): illegal value for rank");
2758    case FloatRank:      return FloatComplexTy;
2759    case DoubleRank:     return DoubleComplexTy;
2760    case LongDoubleRank: return LongDoubleComplexTy;
2761    }
2762  }
2763
2764  assert(Domain->isRealFloatingType() && "Unknown domain!");
2765  switch (EltRank) {
2766  default: assert(0 && "getFloatingRank(): illegal value for rank");
2767  case FloatRank:      return FloatTy;
2768  case DoubleRank:     return DoubleTy;
2769  case LongDoubleRank: return LongDoubleTy;
2770  }
2771}
2772
2773/// getFloatingTypeOrder - Compare the rank of the two specified floating
2774/// point types, ignoring the domain of the type (i.e. 'double' ==
2775/// '_Complex double').  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
2776/// LHS < RHS, return -1.
2777int ASTContext::getFloatingTypeOrder(QualType LHS, QualType RHS) {
2778  FloatingRank LHSR = getFloatingRank(LHS);
2779  FloatingRank RHSR = getFloatingRank(RHS);
2780
2781  if (LHSR == RHSR)
2782    return 0;
2783  if (LHSR > RHSR)
2784    return 1;
2785  return -1;
2786}
2787
2788/// getIntegerRank - Return an integer conversion rank (C99 6.3.1.1p1). This
2789/// routine will assert if passed a built-in type that isn't an integer or enum,
2790/// or if it is not canonicalized.
2791unsigned ASTContext::getIntegerRank(Type *T) {
2792  assert(T->isCanonicalUnqualified() && "T should be canonicalized");
2793  if (EnumType* ET = dyn_cast<EnumType>(T))
2794    T = ET->getDecl()->getPromotionType().getTypePtr();
2795
2796  if (T->isSpecificBuiltinType(BuiltinType::WChar))
2797    T = getFromTargetType(Target.getWCharType()).getTypePtr();
2798
2799  if (T->isSpecificBuiltinType(BuiltinType::Char16))
2800    T = getFromTargetType(Target.getChar16Type()).getTypePtr();
2801
2802  if (T->isSpecificBuiltinType(BuiltinType::Char32))
2803    T = getFromTargetType(Target.getChar32Type()).getTypePtr();
2804
2805  switch (cast<BuiltinType>(T)->getKind()) {
2806  default: assert(0 && "getIntegerRank(): not a built-in integer");
2807  case BuiltinType::Bool:
2808    return 1 + (getIntWidth(BoolTy) << 3);
2809  case BuiltinType::Char_S:
2810  case BuiltinType::Char_U:
2811  case BuiltinType::SChar:
2812  case BuiltinType::UChar:
2813    return 2 + (getIntWidth(CharTy) << 3);
2814  case BuiltinType::Short:
2815  case BuiltinType::UShort:
2816    return 3 + (getIntWidth(ShortTy) << 3);
2817  case BuiltinType::Int:
2818  case BuiltinType::UInt:
2819    return 4 + (getIntWidth(IntTy) << 3);
2820  case BuiltinType::Long:
2821  case BuiltinType::ULong:
2822    return 5 + (getIntWidth(LongTy) << 3);
2823  case BuiltinType::LongLong:
2824  case BuiltinType::ULongLong:
2825    return 6 + (getIntWidth(LongLongTy) << 3);
2826  case BuiltinType::Int128:
2827  case BuiltinType::UInt128:
2828    return 7 + (getIntWidth(Int128Ty) << 3);
2829  }
2830}
2831
2832/// \brief Whether this is a promotable bitfield reference according
2833/// to C99 6.3.1.1p2, bullet 2 (and GCC extensions).
2834///
2835/// \returns the type this bit-field will promote to, or NULL if no
2836/// promotion occurs.
2837QualType ASTContext::isPromotableBitField(Expr *E) {
2838  FieldDecl *Field = E->getBitField();
2839  if (!Field)
2840    return QualType();
2841
2842  QualType FT = Field->getType();
2843
2844  llvm::APSInt BitWidthAP = Field->getBitWidth()->EvaluateAsInt(*this);
2845  uint64_t BitWidth = BitWidthAP.getZExtValue();
2846  uint64_t IntSize = getTypeSize(IntTy);
2847  // GCC extension compatibility: if the bit-field size is less than or equal
2848  // to the size of int, it gets promoted no matter what its type is.
2849  // For instance, unsigned long bf : 4 gets promoted to signed int.
2850  if (BitWidth < IntSize)
2851    return IntTy;
2852
2853  if (BitWidth == IntSize)
2854    return FT->isSignedIntegerType() ? IntTy : UnsignedIntTy;
2855
2856  // Types bigger than int are not subject to promotions, and therefore act
2857  // like the base type.
2858  // FIXME: This doesn't quite match what gcc does, but what gcc does here
2859  // is ridiculous.
2860  return QualType();
2861}
2862
2863/// getPromotedIntegerType - Returns the type that Promotable will
2864/// promote to: C99 6.3.1.1p2, assuming that Promotable is a promotable
2865/// integer type.
2866QualType ASTContext::getPromotedIntegerType(QualType Promotable) {
2867  assert(!Promotable.isNull());
2868  assert(Promotable->isPromotableIntegerType());
2869  if (const EnumType *ET = Promotable->getAs<EnumType>())
2870    return ET->getDecl()->getPromotionType();
2871  if (Promotable->isSignedIntegerType())
2872    return IntTy;
2873  uint64_t PromotableSize = getTypeSize(Promotable);
2874  uint64_t IntSize = getTypeSize(IntTy);
2875  assert(Promotable->isUnsignedIntegerType() && PromotableSize <= IntSize);
2876  return (PromotableSize != IntSize) ? IntTy : UnsignedIntTy;
2877}
2878
2879/// getIntegerTypeOrder - Returns the highest ranked integer type:
2880/// C99 6.3.1.8p1.  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
2881/// LHS < RHS, return -1.
2882int ASTContext::getIntegerTypeOrder(QualType LHS, QualType RHS) {
2883  Type *LHSC = getCanonicalType(LHS).getTypePtr();
2884  Type *RHSC = getCanonicalType(RHS).getTypePtr();
2885  if (LHSC == RHSC) return 0;
2886
2887  bool LHSUnsigned = LHSC->isUnsignedIntegerType();
2888  bool RHSUnsigned = RHSC->isUnsignedIntegerType();
2889
2890  unsigned LHSRank = getIntegerRank(LHSC);
2891  unsigned RHSRank = getIntegerRank(RHSC);
2892
2893  if (LHSUnsigned == RHSUnsigned) {  // Both signed or both unsigned.
2894    if (LHSRank == RHSRank) return 0;
2895    return LHSRank > RHSRank ? 1 : -1;
2896  }
2897
2898  // Otherwise, the LHS is signed and the RHS is unsigned or visa versa.
2899  if (LHSUnsigned) {
2900    // If the unsigned [LHS] type is larger, return it.
2901    if (LHSRank >= RHSRank)
2902      return 1;
2903
2904    // If the signed type can represent all values of the unsigned type, it
2905    // wins.  Because we are dealing with 2's complement and types that are
2906    // powers of two larger than each other, this is always safe.
2907    return -1;
2908  }
2909
2910  // If the unsigned [RHS] type is larger, return it.
2911  if (RHSRank >= LHSRank)
2912    return -1;
2913
2914  // If the signed type can represent all values of the unsigned type, it
2915  // wins.  Because we are dealing with 2's complement and types that are
2916  // powers of two larger than each other, this is always safe.
2917  return 1;
2918}
2919
2920static RecordDecl *
2921CreateRecordDecl(ASTContext &Ctx, RecordDecl::TagKind TK, DeclContext *DC,
2922                 SourceLocation L, IdentifierInfo *Id) {
2923  if (Ctx.getLangOptions().CPlusPlus)
2924    return CXXRecordDecl::Create(Ctx, TK, DC, L, Id);
2925  else
2926    return RecordDecl::Create(Ctx, TK, DC, L, Id);
2927}
2928
2929// getCFConstantStringType - Return the type used for constant CFStrings.
2930QualType ASTContext::getCFConstantStringType() {
2931  if (!CFConstantStringTypeDecl) {
2932    CFConstantStringTypeDecl =
2933      CreateRecordDecl(*this, TagDecl::TK_struct, TUDecl, SourceLocation(),
2934                       &Idents.get("NSConstantString"));
2935    CFConstantStringTypeDecl->startDefinition();
2936
2937    QualType FieldTypes[4];
2938
2939    // const int *isa;
2940    FieldTypes[0] = getPointerType(IntTy.withConst());
2941    // int flags;
2942    FieldTypes[1] = IntTy;
2943    // const char *str;
2944    FieldTypes[2] = getPointerType(CharTy.withConst());
2945    // long length;
2946    FieldTypes[3] = LongTy;
2947
2948    // Create fields
2949    for (unsigned i = 0; i < 4; ++i) {
2950      FieldDecl *Field = FieldDecl::Create(*this, CFConstantStringTypeDecl,
2951                                           SourceLocation(), 0,
2952                                           FieldTypes[i], /*TInfo=*/0,
2953                                           /*BitWidth=*/0,
2954                                           /*Mutable=*/false);
2955      CFConstantStringTypeDecl->addDecl(Field);
2956    }
2957
2958    CFConstantStringTypeDecl->completeDefinition();
2959  }
2960
2961  return getTagDeclType(CFConstantStringTypeDecl);
2962}
2963
2964void ASTContext::setCFConstantStringType(QualType T) {
2965  const RecordType *Rec = T->getAs<RecordType>();
2966  assert(Rec && "Invalid CFConstantStringType");
2967  CFConstantStringTypeDecl = Rec->getDecl();
2968}
2969
2970QualType ASTContext::getObjCFastEnumerationStateType() {
2971  if (!ObjCFastEnumerationStateTypeDecl) {
2972    ObjCFastEnumerationStateTypeDecl =
2973      CreateRecordDecl(*this, TagDecl::TK_struct, TUDecl, SourceLocation(),
2974                       &Idents.get("__objcFastEnumerationState"));
2975    ObjCFastEnumerationStateTypeDecl->startDefinition();
2976
2977    QualType FieldTypes[] = {
2978      UnsignedLongTy,
2979      getPointerType(ObjCIdTypedefType),
2980      getPointerType(UnsignedLongTy),
2981      getConstantArrayType(UnsignedLongTy,
2982                           llvm::APInt(32, 5), ArrayType::Normal, 0)
2983    };
2984
2985    for (size_t i = 0; i < 4; ++i) {
2986      FieldDecl *Field = FieldDecl::Create(*this,
2987                                           ObjCFastEnumerationStateTypeDecl,
2988                                           SourceLocation(), 0,
2989                                           FieldTypes[i], /*TInfo=*/0,
2990                                           /*BitWidth=*/0,
2991                                           /*Mutable=*/false);
2992      ObjCFastEnumerationStateTypeDecl->addDecl(Field);
2993    }
2994
2995    ObjCFastEnumerationStateTypeDecl->completeDefinition();
2996  }
2997
2998  return getTagDeclType(ObjCFastEnumerationStateTypeDecl);
2999}
3000
3001QualType ASTContext::getBlockDescriptorType() {
3002  if (BlockDescriptorType)
3003    return getTagDeclType(BlockDescriptorType);
3004
3005  RecordDecl *T;
3006  // FIXME: Needs the FlagAppleBlock bit.
3007  T = CreateRecordDecl(*this, TagDecl::TK_struct, TUDecl, SourceLocation(),
3008                       &Idents.get("__block_descriptor"));
3009  T->startDefinition();
3010
3011  QualType FieldTypes[] = {
3012    UnsignedLongTy,
3013    UnsignedLongTy,
3014  };
3015
3016  const char *FieldNames[] = {
3017    "reserved",
3018    "Size"
3019  };
3020
3021  for (size_t i = 0; i < 2; ++i) {
3022    FieldDecl *Field = FieldDecl::Create(*this,
3023                                         T,
3024                                         SourceLocation(),
3025                                         &Idents.get(FieldNames[i]),
3026                                         FieldTypes[i], /*TInfo=*/0,
3027                                         /*BitWidth=*/0,
3028                                         /*Mutable=*/false);
3029    T->addDecl(Field);
3030  }
3031
3032  T->completeDefinition();
3033
3034  BlockDescriptorType = T;
3035
3036  return getTagDeclType(BlockDescriptorType);
3037}
3038
3039void ASTContext::setBlockDescriptorType(QualType T) {
3040  const RecordType *Rec = T->getAs<RecordType>();
3041  assert(Rec && "Invalid BlockDescriptorType");
3042  BlockDescriptorType = Rec->getDecl();
3043}
3044
3045QualType ASTContext::getBlockDescriptorExtendedType() {
3046  if (BlockDescriptorExtendedType)
3047    return getTagDeclType(BlockDescriptorExtendedType);
3048
3049  RecordDecl *T;
3050  // FIXME: Needs the FlagAppleBlock bit.
3051  T = CreateRecordDecl(*this, TagDecl::TK_struct, TUDecl, SourceLocation(),
3052                       &Idents.get("__block_descriptor_withcopydispose"));
3053  T->startDefinition();
3054
3055  QualType FieldTypes[] = {
3056    UnsignedLongTy,
3057    UnsignedLongTy,
3058    getPointerType(VoidPtrTy),
3059    getPointerType(VoidPtrTy)
3060  };
3061
3062  const char *FieldNames[] = {
3063    "reserved",
3064    "Size",
3065    "CopyFuncPtr",
3066    "DestroyFuncPtr"
3067  };
3068
3069  for (size_t i = 0; i < 4; ++i) {
3070    FieldDecl *Field = FieldDecl::Create(*this,
3071                                         T,
3072                                         SourceLocation(),
3073                                         &Idents.get(FieldNames[i]),
3074                                         FieldTypes[i], /*TInfo=*/0,
3075                                         /*BitWidth=*/0,
3076                                         /*Mutable=*/false);
3077    T->addDecl(Field);
3078  }
3079
3080  T->completeDefinition();
3081
3082  BlockDescriptorExtendedType = T;
3083
3084  return getTagDeclType(BlockDescriptorExtendedType);
3085}
3086
3087void ASTContext::setBlockDescriptorExtendedType(QualType T) {
3088  const RecordType *Rec = T->getAs<RecordType>();
3089  assert(Rec && "Invalid BlockDescriptorType");
3090  BlockDescriptorExtendedType = Rec->getDecl();
3091}
3092
3093bool ASTContext::BlockRequiresCopying(QualType Ty) {
3094  if (Ty->isBlockPointerType())
3095    return true;
3096  if (isObjCNSObjectType(Ty))
3097    return true;
3098  if (Ty->isObjCObjectPointerType())
3099    return true;
3100  return false;
3101}
3102
3103QualType ASTContext::BuildByRefType(const char *DeclName, QualType Ty) {
3104  //  type = struct __Block_byref_1_X {
3105  //    void *__isa;
3106  //    struct __Block_byref_1_X *__forwarding;
3107  //    unsigned int __flags;
3108  //    unsigned int __size;
3109  //    void *__copy_helper;		// as needed
3110  //    void *__destroy_help		// as needed
3111  //    int X;
3112  //  } *
3113
3114  bool HasCopyAndDispose = BlockRequiresCopying(Ty);
3115
3116  // FIXME: Move up
3117  static unsigned int UniqueBlockByRefTypeID = 0;
3118  llvm::SmallString<36> Name;
3119  llvm::raw_svector_ostream(Name) << "__Block_byref_" <<
3120                                  ++UniqueBlockByRefTypeID << '_' << DeclName;
3121  RecordDecl *T;
3122  T = CreateRecordDecl(*this, TagDecl::TK_struct, TUDecl, SourceLocation(),
3123                       &Idents.get(Name.str()));
3124  T->startDefinition();
3125  QualType Int32Ty = IntTy;
3126  assert(getIntWidth(IntTy) == 32 && "non-32bit int not supported");
3127  QualType FieldTypes[] = {
3128    getPointerType(VoidPtrTy),
3129    getPointerType(getTagDeclType(T)),
3130    Int32Ty,
3131    Int32Ty,
3132    getPointerType(VoidPtrTy),
3133    getPointerType(VoidPtrTy),
3134    Ty
3135  };
3136
3137  const char *FieldNames[] = {
3138    "__isa",
3139    "__forwarding",
3140    "__flags",
3141    "__size",
3142    "__copy_helper",
3143    "__destroy_helper",
3144    DeclName,
3145  };
3146
3147  for (size_t i = 0; i < 7; ++i) {
3148    if (!HasCopyAndDispose && i >=4 && i <= 5)
3149      continue;
3150    FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(),
3151                                         &Idents.get(FieldNames[i]),
3152                                         FieldTypes[i], /*TInfo=*/0,
3153                                         /*BitWidth=*/0, /*Mutable=*/false);
3154    T->addDecl(Field);
3155  }
3156
3157  T->completeDefinition();
3158
3159  return getPointerType(getTagDeclType(T));
3160}
3161
3162
3163QualType ASTContext::getBlockParmType(
3164  bool BlockHasCopyDispose,
3165  llvm::SmallVector<const Expr *, 8> &BlockDeclRefDecls) {
3166  // FIXME: Move up
3167  static unsigned int UniqueBlockParmTypeID = 0;
3168  llvm::SmallString<36> Name;
3169  llvm::raw_svector_ostream(Name) << "__block_literal_"
3170                                  << ++UniqueBlockParmTypeID;
3171  RecordDecl *T;
3172  T = CreateRecordDecl(*this, TagDecl::TK_struct, TUDecl, SourceLocation(),
3173                       &Idents.get(Name.str()));
3174  T->startDefinition();
3175  QualType FieldTypes[] = {
3176    getPointerType(VoidPtrTy),
3177    IntTy,
3178    IntTy,
3179    getPointerType(VoidPtrTy),
3180    (BlockHasCopyDispose ?
3181     getPointerType(getBlockDescriptorExtendedType()) :
3182     getPointerType(getBlockDescriptorType()))
3183  };
3184
3185  const char *FieldNames[] = {
3186    "__isa",
3187    "__flags",
3188    "__reserved",
3189    "__FuncPtr",
3190    "__descriptor"
3191  };
3192
3193  for (size_t i = 0; i < 5; ++i) {
3194    FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(),
3195                                         &Idents.get(FieldNames[i]),
3196                                         FieldTypes[i], /*TInfo=*/0,
3197                                         /*BitWidth=*/0, /*Mutable=*/false);
3198    T->addDecl(Field);
3199  }
3200
3201  for (size_t i = 0; i < BlockDeclRefDecls.size(); ++i) {
3202    const Expr *E = BlockDeclRefDecls[i];
3203    const BlockDeclRefExpr *BDRE = dyn_cast<BlockDeclRefExpr>(E);
3204    clang::IdentifierInfo *Name = 0;
3205    if (BDRE) {
3206      const ValueDecl *D = BDRE->getDecl();
3207      Name = &Idents.get(D->getName());
3208    }
3209    QualType FieldType = E->getType();
3210
3211    if (BDRE && BDRE->isByRef())
3212      FieldType = BuildByRefType(BDRE->getDecl()->getNameAsCString(),
3213                                 FieldType);
3214
3215    FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(),
3216                                         Name, FieldType, /*TInfo=*/0,
3217                                         /*BitWidth=*/0, /*Mutable=*/false);
3218    T->addDecl(Field);
3219  }
3220
3221  T->completeDefinition();
3222
3223  return getPointerType(getTagDeclType(T));
3224}
3225
3226void ASTContext::setObjCFastEnumerationStateType(QualType T) {
3227  const RecordType *Rec = T->getAs<RecordType>();
3228  assert(Rec && "Invalid ObjCFAstEnumerationStateType");
3229  ObjCFastEnumerationStateTypeDecl = Rec->getDecl();
3230}
3231
3232// This returns true if a type has been typedefed to BOOL:
3233// typedef <type> BOOL;
3234static bool isTypeTypedefedAsBOOL(QualType T) {
3235  if (const TypedefType *TT = dyn_cast<TypedefType>(T))
3236    if (IdentifierInfo *II = TT->getDecl()->getIdentifier())
3237      return II->isStr("BOOL");
3238
3239  return false;
3240}
3241
3242/// getObjCEncodingTypeSize returns size of type for objective-c encoding
3243/// purpose.
3244CharUnits ASTContext::getObjCEncodingTypeSize(QualType type) {
3245  CharUnits sz = getTypeSizeInChars(type);
3246
3247  // Make all integer and enum types at least as large as an int
3248  if (sz.isPositive() && type->isIntegralType())
3249    sz = std::max(sz, getTypeSizeInChars(IntTy));
3250  // Treat arrays as pointers, since that's how they're passed in.
3251  else if (type->isArrayType())
3252    sz = getTypeSizeInChars(VoidPtrTy);
3253  return sz;
3254}
3255
3256static inline
3257std::string charUnitsToString(const CharUnits &CU) {
3258  return llvm::itostr(CU.getQuantity());
3259}
3260
3261/// getObjCEncodingForBlockDecl - Return the encoded type for this method
3262/// declaration.
3263void ASTContext::getObjCEncodingForBlock(const BlockExpr *Expr,
3264                                             std::string& S) {
3265  const BlockDecl *Decl = Expr->getBlockDecl();
3266  QualType BlockTy =
3267      Expr->getType()->getAs<BlockPointerType>()->getPointeeType();
3268  // Encode result type.
3269  getObjCEncodingForType(cast<FunctionType>(BlockTy)->getResultType(), S);
3270  // Compute size of all parameters.
3271  // Start with computing size of a pointer in number of bytes.
3272  // FIXME: There might(should) be a better way of doing this computation!
3273  SourceLocation Loc;
3274  CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy);
3275  CharUnits ParmOffset = PtrSize;
3276  for (ObjCMethodDecl::param_iterator PI = Decl->param_begin(),
3277       E = Decl->param_end(); PI != E; ++PI) {
3278    QualType PType = (*PI)->getType();
3279    CharUnits sz = getObjCEncodingTypeSize(PType);
3280    assert (sz.isPositive() && "BlockExpr - Incomplete param type");
3281    ParmOffset += sz;
3282  }
3283  // Size of the argument frame
3284  S += charUnitsToString(ParmOffset);
3285  // Block pointer and offset.
3286  S += "@?0";
3287  ParmOffset = PtrSize;
3288
3289  // Argument types.
3290  ParmOffset = PtrSize;
3291  for (BlockDecl::param_const_iterator PI = Decl->param_begin(), E =
3292       Decl->param_end(); PI != E; ++PI) {
3293    ParmVarDecl *PVDecl = *PI;
3294    QualType PType = PVDecl->getOriginalType();
3295    if (const ArrayType *AT =
3296          dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
3297      // Use array's original type only if it has known number of
3298      // elements.
3299      if (!isa<ConstantArrayType>(AT))
3300        PType = PVDecl->getType();
3301    } else if (PType->isFunctionType())
3302      PType = PVDecl->getType();
3303    getObjCEncodingForType(PType, S);
3304    S += charUnitsToString(ParmOffset);
3305    ParmOffset += getObjCEncodingTypeSize(PType);
3306  }
3307}
3308
3309/// getObjCEncodingForMethodDecl - Return the encoded type for this method
3310/// declaration.
3311void ASTContext::getObjCEncodingForMethodDecl(const ObjCMethodDecl *Decl,
3312                                              std::string& S) {
3313  // FIXME: This is not very efficient.
3314  // Encode type qualifer, 'in', 'inout', etc. for the return type.
3315  getObjCEncodingForTypeQualifier(Decl->getObjCDeclQualifier(), S);
3316  // Encode result type.
3317  getObjCEncodingForType(Decl->getResultType(), S);
3318  // Compute size of all parameters.
3319  // Start with computing size of a pointer in number of bytes.
3320  // FIXME: There might(should) be a better way of doing this computation!
3321  SourceLocation Loc;
3322  CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy);
3323  // The first two arguments (self and _cmd) are pointers; account for
3324  // their size.
3325  CharUnits ParmOffset = 2 * PtrSize;
3326  for (ObjCMethodDecl::param_iterator PI = Decl->param_begin(),
3327       E = Decl->param_end(); PI != E; ++PI) {
3328    QualType PType = (*PI)->getType();
3329    CharUnits sz = getObjCEncodingTypeSize(PType);
3330    assert (sz.isPositive() &&
3331        "getObjCEncodingForMethodDecl - Incomplete param type");
3332    ParmOffset += sz;
3333  }
3334  S += charUnitsToString(ParmOffset);
3335  S += "@0:";
3336  S += charUnitsToString(PtrSize);
3337
3338  // Argument types.
3339  ParmOffset = 2 * PtrSize;
3340  for (ObjCMethodDecl::param_iterator PI = Decl->param_begin(),
3341       E = Decl->param_end(); PI != E; ++PI) {
3342    ParmVarDecl *PVDecl = *PI;
3343    QualType PType = PVDecl->getOriginalType();
3344    if (const ArrayType *AT =
3345          dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
3346      // Use array's original type only if it has known number of
3347      // elements.
3348      if (!isa<ConstantArrayType>(AT))
3349        PType = PVDecl->getType();
3350    } else if (PType->isFunctionType())
3351      PType = PVDecl->getType();
3352    // Process argument qualifiers for user supplied arguments; such as,
3353    // 'in', 'inout', etc.
3354    getObjCEncodingForTypeQualifier(PVDecl->getObjCDeclQualifier(), S);
3355    getObjCEncodingForType(PType, S);
3356    S += charUnitsToString(ParmOffset);
3357    ParmOffset += getObjCEncodingTypeSize(PType);
3358  }
3359}
3360
3361/// getObjCEncodingForPropertyDecl - Return the encoded type for this
3362/// property declaration. If non-NULL, Container must be either an
3363/// ObjCCategoryImplDecl or ObjCImplementationDecl; it should only be
3364/// NULL when getting encodings for protocol properties.
3365/// Property attributes are stored as a comma-delimited C string. The simple
3366/// attributes readonly and bycopy are encoded as single characters. The
3367/// parametrized attributes, getter=name, setter=name, and ivar=name, are
3368/// encoded as single characters, followed by an identifier. Property types
3369/// are also encoded as a parametrized attribute. The characters used to encode
3370/// these attributes are defined by the following enumeration:
3371/// @code
3372/// enum PropertyAttributes {
3373/// kPropertyReadOnly = 'R',   // property is read-only.
3374/// kPropertyBycopy = 'C',     // property is a copy of the value last assigned
3375/// kPropertyByref = '&',  // property is a reference to the value last assigned
3376/// kPropertyDynamic = 'D',    // property is dynamic
3377/// kPropertyGetter = 'G',     // followed by getter selector name
3378/// kPropertySetter = 'S',     // followed by setter selector name
3379/// kPropertyInstanceVariable = 'V'  // followed by instance variable  name
3380/// kPropertyType = 't'              // followed by old-style type encoding.
3381/// kPropertyWeak = 'W'              // 'weak' property
3382/// kPropertyStrong = 'P'            // property GC'able
3383/// kPropertyNonAtomic = 'N'         // property non-atomic
3384/// };
3385/// @endcode
3386void ASTContext::getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD,
3387                                                const Decl *Container,
3388                                                std::string& S) {
3389  // Collect information from the property implementation decl(s).
3390  bool Dynamic = false;
3391  ObjCPropertyImplDecl *SynthesizePID = 0;
3392
3393  // FIXME: Duplicated code due to poor abstraction.
3394  if (Container) {
3395    if (const ObjCCategoryImplDecl *CID =
3396        dyn_cast<ObjCCategoryImplDecl>(Container)) {
3397      for (ObjCCategoryImplDecl::propimpl_iterator
3398             i = CID->propimpl_begin(), e = CID->propimpl_end();
3399           i != e; ++i) {
3400        ObjCPropertyImplDecl *PID = *i;
3401        if (PID->getPropertyDecl() == PD) {
3402          if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) {
3403            Dynamic = true;
3404          } else {
3405            SynthesizePID = PID;
3406          }
3407        }
3408      }
3409    } else {
3410      const ObjCImplementationDecl *OID=cast<ObjCImplementationDecl>(Container);
3411      for (ObjCCategoryImplDecl::propimpl_iterator
3412             i = OID->propimpl_begin(), e = OID->propimpl_end();
3413           i != e; ++i) {
3414        ObjCPropertyImplDecl *PID = *i;
3415        if (PID->getPropertyDecl() == PD) {
3416          if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) {
3417            Dynamic = true;
3418          } else {
3419            SynthesizePID = PID;
3420          }
3421        }
3422      }
3423    }
3424  }
3425
3426  // FIXME: This is not very efficient.
3427  S = "T";
3428
3429  // Encode result type.
3430  // GCC has some special rules regarding encoding of properties which
3431  // closely resembles encoding of ivars.
3432  getObjCEncodingForTypeImpl(PD->getType(), S, true, true, 0,
3433                             true /* outermost type */,
3434                             true /* encoding for property */);
3435
3436  if (PD->isReadOnly()) {
3437    S += ",R";
3438  } else {
3439    switch (PD->getSetterKind()) {
3440    case ObjCPropertyDecl::Assign: break;
3441    case ObjCPropertyDecl::Copy:   S += ",C"; break;
3442    case ObjCPropertyDecl::Retain: S += ",&"; break;
3443    }
3444  }
3445
3446  // It really isn't clear at all what this means, since properties
3447  // are "dynamic by default".
3448  if (Dynamic)
3449    S += ",D";
3450
3451  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_nonatomic)
3452    S += ",N";
3453
3454  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_getter) {
3455    S += ",G";
3456    S += PD->getGetterName().getAsString();
3457  }
3458
3459  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_setter) {
3460    S += ",S";
3461    S += PD->getSetterName().getAsString();
3462  }
3463
3464  if (SynthesizePID) {
3465    const ObjCIvarDecl *OID = SynthesizePID->getPropertyIvarDecl();
3466    S += ",V";
3467    S += OID->getNameAsString();
3468  }
3469
3470  // FIXME: OBJCGC: weak & strong
3471}
3472
3473/// getLegacyIntegralTypeEncoding -
3474/// Another legacy compatibility encoding: 32-bit longs are encoded as
3475/// 'l' or 'L' , but not always.  For typedefs, we need to use
3476/// 'i' or 'I' instead if encoding a struct field, or a pointer!
3477///
3478void ASTContext::getLegacyIntegralTypeEncoding (QualType &PointeeTy) const {
3479  if (isa<TypedefType>(PointeeTy.getTypePtr())) {
3480    if (const BuiltinType *BT = PointeeTy->getAs<BuiltinType>()) {
3481      if (BT->getKind() == BuiltinType::ULong &&
3482          ((const_cast<ASTContext *>(this))->getIntWidth(PointeeTy) == 32))
3483        PointeeTy = UnsignedIntTy;
3484      else
3485        if (BT->getKind() == BuiltinType::Long &&
3486            ((const_cast<ASTContext *>(this))->getIntWidth(PointeeTy) == 32))
3487          PointeeTy = IntTy;
3488    }
3489  }
3490}
3491
3492void ASTContext::getObjCEncodingForType(QualType T, std::string& S,
3493                                        const FieldDecl *Field) {
3494  // We follow the behavior of gcc, expanding structures which are
3495  // directly pointed to, and expanding embedded structures. Note that
3496  // these rules are sufficient to prevent recursive encoding of the
3497  // same type.
3498  getObjCEncodingForTypeImpl(T, S, true, true, Field,
3499                             true /* outermost type */);
3500}
3501
3502static void EncodeBitField(const ASTContext *Context, std::string& S,
3503                           const FieldDecl *FD) {
3504  const Expr *E = FD->getBitWidth();
3505  assert(E && "bitfield width not there - getObjCEncodingForTypeImpl");
3506  ASTContext *Ctx = const_cast<ASTContext*>(Context);
3507  unsigned N = E->EvaluateAsInt(*Ctx).getZExtValue();
3508  S += 'b';
3509  S += llvm::utostr(N);
3510}
3511
3512// FIXME: Use SmallString for accumulating string.
3513void ASTContext::getObjCEncodingForTypeImpl(QualType T, std::string& S,
3514                                            bool ExpandPointedToStructures,
3515                                            bool ExpandStructures,
3516                                            const FieldDecl *FD,
3517                                            bool OutermostType,
3518                                            bool EncodingProperty) {
3519  if (const BuiltinType *BT = T->getAs<BuiltinType>()) {
3520    if (FD && FD->isBitField())
3521      return EncodeBitField(this, S, FD);
3522    char encoding;
3523    switch (BT->getKind()) {
3524    default: assert(0 && "Unhandled builtin type kind");
3525    case BuiltinType::Void:       encoding = 'v'; break;
3526    case BuiltinType::Bool:       encoding = 'B'; break;
3527    case BuiltinType::Char_U:
3528    case BuiltinType::UChar:      encoding = 'C'; break;
3529    case BuiltinType::UShort:     encoding = 'S'; break;
3530    case BuiltinType::UInt:       encoding = 'I'; break;
3531    case BuiltinType::ULong:
3532        encoding =
3533          (const_cast<ASTContext *>(this))->getIntWidth(T) == 32 ? 'L' : 'Q';
3534        break;
3535    case BuiltinType::UInt128:    encoding = 'T'; break;
3536    case BuiltinType::ULongLong:  encoding = 'Q'; break;
3537    case BuiltinType::Char_S:
3538    case BuiltinType::SChar:      encoding = 'c'; break;
3539    case BuiltinType::Short:      encoding = 's'; break;
3540    case BuiltinType::Int:        encoding = 'i'; break;
3541    case BuiltinType::Long:
3542      encoding =
3543        (const_cast<ASTContext *>(this))->getIntWidth(T) == 32 ? 'l' : 'q';
3544      break;
3545    case BuiltinType::LongLong:   encoding = 'q'; break;
3546    case BuiltinType::Int128:     encoding = 't'; break;
3547    case BuiltinType::Float:      encoding = 'f'; break;
3548    case BuiltinType::Double:     encoding = 'd'; break;
3549    case BuiltinType::LongDouble: encoding = 'd'; break;
3550    }
3551
3552    S += encoding;
3553    return;
3554  }
3555
3556  if (const ComplexType *CT = T->getAs<ComplexType>()) {
3557    S += 'j';
3558    getObjCEncodingForTypeImpl(CT->getElementType(), S, false, false, 0, false,
3559                               false);
3560    return;
3561  }
3562
3563  if (const PointerType *PT = T->getAs<PointerType>()) {
3564    if (PT->isObjCSelType()) {
3565      S += ':';
3566      return;
3567    }
3568    QualType PointeeTy = PT->getPointeeType();
3569
3570    bool isReadOnly = false;
3571    // For historical/compatibility reasons, the read-only qualifier of the
3572    // pointee gets emitted _before_ the '^'.  The read-only qualifier of
3573    // the pointer itself gets ignored, _unless_ we are looking at a typedef!
3574    // Also, do not emit the 'r' for anything but the outermost type!
3575    if (isa<TypedefType>(T.getTypePtr())) {
3576      if (OutermostType && T.isConstQualified()) {
3577        isReadOnly = true;
3578        S += 'r';
3579      }
3580    } else if (OutermostType) {
3581      QualType P = PointeeTy;
3582      while (P->getAs<PointerType>())
3583        P = P->getAs<PointerType>()->getPointeeType();
3584      if (P.isConstQualified()) {
3585        isReadOnly = true;
3586        S += 'r';
3587      }
3588    }
3589    if (isReadOnly) {
3590      // Another legacy compatibility encoding. Some ObjC qualifier and type
3591      // combinations need to be rearranged.
3592      // Rewrite "in const" from "nr" to "rn"
3593      const char * s = S.c_str();
3594      int len = S.length();
3595      if (len >= 2 && s[len-2] == 'n' && s[len-1] == 'r') {
3596        std::string replace = "rn";
3597        S.replace(S.end()-2, S.end(), replace);
3598      }
3599    }
3600
3601    if (PointeeTy->isCharType()) {
3602      // char pointer types should be encoded as '*' unless it is a
3603      // type that has been typedef'd to 'BOOL'.
3604      if (!isTypeTypedefedAsBOOL(PointeeTy)) {
3605        S += '*';
3606        return;
3607      }
3608    } else if (const RecordType *RTy = PointeeTy->getAs<RecordType>()) {
3609      // GCC binary compat: Need to convert "struct objc_class *" to "#".
3610      if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_class")) {
3611        S += '#';
3612        return;
3613      }
3614      // GCC binary compat: Need to convert "struct objc_object *" to "@".
3615      if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_object")) {
3616        S += '@';
3617        return;
3618      }
3619      // fall through...
3620    }
3621    S += '^';
3622    getLegacyIntegralTypeEncoding(PointeeTy);
3623
3624    getObjCEncodingForTypeImpl(PointeeTy, S, false, ExpandPointedToStructures,
3625                               NULL);
3626    return;
3627  }
3628
3629  if (const ArrayType *AT =
3630      // Ignore type qualifiers etc.
3631        dyn_cast<ArrayType>(T->getCanonicalTypeInternal())) {
3632    if (isa<IncompleteArrayType>(AT)) {
3633      // Incomplete arrays are encoded as a pointer to the array element.
3634      S += '^';
3635
3636      getObjCEncodingForTypeImpl(AT->getElementType(), S,
3637                                 false, ExpandStructures, FD);
3638    } else {
3639      S += '[';
3640
3641      if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
3642        S += llvm::utostr(CAT->getSize().getZExtValue());
3643      else {
3644        //Variable length arrays are encoded as a regular array with 0 elements.
3645        assert(isa<VariableArrayType>(AT) && "Unknown array type!");
3646        S += '0';
3647      }
3648
3649      getObjCEncodingForTypeImpl(AT->getElementType(), S,
3650                                 false, ExpandStructures, FD);
3651      S += ']';
3652    }
3653    return;
3654  }
3655
3656  if (T->getAs<FunctionType>()) {
3657    S += '?';
3658    return;
3659  }
3660
3661  if (const RecordType *RTy = T->getAs<RecordType>()) {
3662    RecordDecl *RDecl = RTy->getDecl();
3663    S += RDecl->isUnion() ? '(' : '{';
3664    // Anonymous structures print as '?'
3665    if (const IdentifierInfo *II = RDecl->getIdentifier()) {
3666      S += II->getName();
3667    } else {
3668      S += '?';
3669    }
3670    if (ExpandStructures) {
3671      S += '=';
3672      for (RecordDecl::field_iterator Field = RDecl->field_begin(),
3673                                   FieldEnd = RDecl->field_end();
3674           Field != FieldEnd; ++Field) {
3675        if (FD) {
3676          S += '"';
3677          S += Field->getNameAsString();
3678          S += '"';
3679        }
3680
3681        // Special case bit-fields.
3682        if (Field->isBitField()) {
3683          getObjCEncodingForTypeImpl(Field->getType(), S, false, true,
3684                                     (*Field));
3685        } else {
3686          QualType qt = Field->getType();
3687          getLegacyIntegralTypeEncoding(qt);
3688          getObjCEncodingForTypeImpl(qt, S, false, true,
3689                                     FD);
3690        }
3691      }
3692    }
3693    S += RDecl->isUnion() ? ')' : '}';
3694    return;
3695  }
3696
3697  if (T->isEnumeralType()) {
3698    if (FD && FD->isBitField())
3699      EncodeBitField(this, S, FD);
3700    else
3701      S += 'i';
3702    return;
3703  }
3704
3705  if (T->isBlockPointerType()) {
3706    S += "@?"; // Unlike a pointer-to-function, which is "^?".
3707    return;
3708  }
3709
3710  if (const ObjCInterfaceType *OIT = T->getAs<ObjCInterfaceType>()) {
3711    // @encode(class_name)
3712    ObjCInterfaceDecl *OI = OIT->getDecl();
3713    S += '{';
3714    const IdentifierInfo *II = OI->getIdentifier();
3715    S += II->getName();
3716    S += '=';
3717    llvm::SmallVector<FieldDecl*, 32> RecFields;
3718    CollectObjCIvars(OI, RecFields);
3719    for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
3720      if (RecFields[i]->isBitField())
3721        getObjCEncodingForTypeImpl(RecFields[i]->getType(), S, false, true,
3722                                   RecFields[i]);
3723      else
3724        getObjCEncodingForTypeImpl(RecFields[i]->getType(), S, false, true,
3725                                   FD);
3726    }
3727    S += '}';
3728    return;
3729  }
3730
3731  if (const ObjCObjectPointerType *OPT = T->getAs<ObjCObjectPointerType>()) {
3732    if (OPT->isObjCIdType()) {
3733      S += '@';
3734      return;
3735    }
3736
3737    if (OPT->isObjCClassType() || OPT->isObjCQualifiedClassType()) {
3738      // FIXME: Consider if we need to output qualifiers for 'Class<p>'.
3739      // Since this is a binary compatibility issue, need to consult with runtime
3740      // folks. Fortunately, this is a *very* obsure construct.
3741      S += '#';
3742      return;
3743    }
3744
3745    if (OPT->isObjCQualifiedIdType()) {
3746      getObjCEncodingForTypeImpl(getObjCIdType(), S,
3747                                 ExpandPointedToStructures,
3748                                 ExpandStructures, FD);
3749      if (FD || EncodingProperty) {
3750        // Note that we do extended encoding of protocol qualifer list
3751        // Only when doing ivar or property encoding.
3752        S += '"';
3753        for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(),
3754             E = OPT->qual_end(); I != E; ++I) {
3755          S += '<';
3756          S += (*I)->getNameAsString();
3757          S += '>';
3758        }
3759        S += '"';
3760      }
3761      return;
3762    }
3763
3764    QualType PointeeTy = OPT->getPointeeType();
3765    if (!EncodingProperty &&
3766        isa<TypedefType>(PointeeTy.getTypePtr())) {
3767      // Another historical/compatibility reason.
3768      // We encode the underlying type which comes out as
3769      // {...};
3770      S += '^';
3771      getObjCEncodingForTypeImpl(PointeeTy, S,
3772                                 false, ExpandPointedToStructures,
3773                                 NULL);
3774      return;
3775    }
3776
3777    S += '@';
3778    if (OPT->getInterfaceDecl() && (FD || EncodingProperty)) {
3779      S += '"';
3780      S += OPT->getInterfaceDecl()->getIdentifier()->getName();
3781      for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(),
3782           E = OPT->qual_end(); I != E; ++I) {
3783        S += '<';
3784        S += (*I)->getNameAsString();
3785        S += '>';
3786      }
3787      S += '"';
3788    }
3789    return;
3790  }
3791
3792  assert(0 && "@encode for type not implemented!");
3793}
3794
3795void ASTContext::getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT,
3796                                                 std::string& S) const {
3797  if (QT & Decl::OBJC_TQ_In)
3798    S += 'n';
3799  if (QT & Decl::OBJC_TQ_Inout)
3800    S += 'N';
3801  if (QT & Decl::OBJC_TQ_Out)
3802    S += 'o';
3803  if (QT & Decl::OBJC_TQ_Bycopy)
3804    S += 'O';
3805  if (QT & Decl::OBJC_TQ_Byref)
3806    S += 'R';
3807  if (QT & Decl::OBJC_TQ_Oneway)
3808    S += 'V';
3809}
3810
3811void ASTContext::setBuiltinVaListType(QualType T) {
3812  assert(BuiltinVaListType.isNull() && "__builtin_va_list type already set!");
3813
3814  BuiltinVaListType = T;
3815}
3816
3817void ASTContext::setObjCIdType(QualType T) {
3818  ObjCIdTypedefType = T;
3819}
3820
3821void ASTContext::setObjCSelType(QualType T) {
3822  ObjCSelTypedefType = T;
3823}
3824
3825void ASTContext::setObjCProtoType(QualType QT) {
3826  ObjCProtoType = QT;
3827}
3828
3829void ASTContext::setObjCClassType(QualType T) {
3830  ObjCClassTypedefType = T;
3831}
3832
3833void ASTContext::setObjCConstantStringInterface(ObjCInterfaceDecl *Decl) {
3834  assert(ObjCConstantStringType.isNull() &&
3835         "'NSConstantString' type already set!");
3836
3837  ObjCConstantStringType = getObjCInterfaceType(Decl);
3838}
3839
3840/// \brief Retrieve the template name that corresponds to a non-empty
3841/// lookup.
3842TemplateName ASTContext::getOverloadedTemplateName(UnresolvedSetIterator Begin,
3843                                                   UnresolvedSetIterator End) {
3844  unsigned size = End - Begin;
3845  assert(size > 1 && "set is not overloaded!");
3846
3847  void *memory = Allocate(sizeof(OverloadedTemplateStorage) +
3848                          size * sizeof(FunctionTemplateDecl*));
3849  OverloadedTemplateStorage *OT = new(memory) OverloadedTemplateStorage(size);
3850
3851  NamedDecl **Storage = OT->getStorage();
3852  for (UnresolvedSetIterator I = Begin; I != End; ++I) {
3853    NamedDecl *D = *I;
3854    assert(isa<FunctionTemplateDecl>(D) ||
3855           (isa<UsingShadowDecl>(D) &&
3856            isa<FunctionTemplateDecl>(D->getUnderlyingDecl())));
3857    *Storage++ = D;
3858  }
3859
3860  return TemplateName(OT);
3861}
3862
3863/// \brief Retrieve the template name that represents a qualified
3864/// template name such as \c std::vector.
3865TemplateName ASTContext::getQualifiedTemplateName(NestedNameSpecifier *NNS,
3866                                                  bool TemplateKeyword,
3867                                                  TemplateDecl *Template) {
3868  // FIXME: Canonicalization?
3869  llvm::FoldingSetNodeID ID;
3870  QualifiedTemplateName::Profile(ID, NNS, TemplateKeyword, Template);
3871
3872  void *InsertPos = 0;
3873  QualifiedTemplateName *QTN =
3874    QualifiedTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
3875  if (!QTN) {
3876    QTN = new (*this,4) QualifiedTemplateName(NNS, TemplateKeyword, Template);
3877    QualifiedTemplateNames.InsertNode(QTN, InsertPos);
3878  }
3879
3880  return TemplateName(QTN);
3881}
3882
3883/// \brief Retrieve the template name that represents a dependent
3884/// template name such as \c MetaFun::template apply.
3885TemplateName ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
3886                                                  const IdentifierInfo *Name) {
3887  assert((!NNS || NNS->isDependent()) &&
3888         "Nested name specifier must be dependent");
3889
3890  llvm::FoldingSetNodeID ID;
3891  DependentTemplateName::Profile(ID, NNS, Name);
3892
3893  void *InsertPos = 0;
3894  DependentTemplateName *QTN =
3895    DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
3896
3897  if (QTN)
3898    return TemplateName(QTN);
3899
3900  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
3901  if (CanonNNS == NNS) {
3902    QTN = new (*this,4) DependentTemplateName(NNS, Name);
3903  } else {
3904    TemplateName Canon = getDependentTemplateName(CanonNNS, Name);
3905    QTN = new (*this,4) DependentTemplateName(NNS, Name, Canon);
3906    DependentTemplateName *CheckQTN =
3907      DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
3908    assert(!CheckQTN && "Dependent type name canonicalization broken");
3909    (void)CheckQTN;
3910  }
3911
3912  DependentTemplateNames.InsertNode(QTN, InsertPos);
3913  return TemplateName(QTN);
3914}
3915
3916/// \brief Retrieve the template name that represents a dependent
3917/// template name such as \c MetaFun::template operator+.
3918TemplateName
3919ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
3920                                     OverloadedOperatorKind Operator) {
3921  assert((!NNS || NNS->isDependent()) &&
3922         "Nested name specifier must be dependent");
3923
3924  llvm::FoldingSetNodeID ID;
3925  DependentTemplateName::Profile(ID, NNS, Operator);
3926
3927  void *InsertPos = 0;
3928  DependentTemplateName *QTN
3929    = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
3930
3931  if (QTN)
3932    return TemplateName(QTN);
3933
3934  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
3935  if (CanonNNS == NNS) {
3936    QTN = new (*this,4) DependentTemplateName(NNS, Operator);
3937  } else {
3938    TemplateName Canon = getDependentTemplateName(CanonNNS, Operator);
3939    QTN = new (*this,4) DependentTemplateName(NNS, Operator, Canon);
3940
3941    DependentTemplateName *CheckQTN
3942      = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
3943    assert(!CheckQTN && "Dependent template name canonicalization broken");
3944    (void)CheckQTN;
3945  }
3946
3947  DependentTemplateNames.InsertNode(QTN, InsertPos);
3948  return TemplateName(QTN);
3949}
3950
3951/// getFromTargetType - Given one of the integer types provided by
3952/// TargetInfo, produce the corresponding type. The unsigned @p Type
3953/// is actually a value of type @c TargetInfo::IntType.
3954CanQualType ASTContext::getFromTargetType(unsigned Type) const {
3955  switch (Type) {
3956  case TargetInfo::NoInt: return CanQualType();
3957  case TargetInfo::SignedShort: return ShortTy;
3958  case TargetInfo::UnsignedShort: return UnsignedShortTy;
3959  case TargetInfo::SignedInt: return IntTy;
3960  case TargetInfo::UnsignedInt: return UnsignedIntTy;
3961  case TargetInfo::SignedLong: return LongTy;
3962  case TargetInfo::UnsignedLong: return UnsignedLongTy;
3963  case TargetInfo::SignedLongLong: return LongLongTy;
3964  case TargetInfo::UnsignedLongLong: return UnsignedLongLongTy;
3965  }
3966
3967  assert(false && "Unhandled TargetInfo::IntType value");
3968  return CanQualType();
3969}
3970
3971//===----------------------------------------------------------------------===//
3972//                        Type Predicates.
3973//===----------------------------------------------------------------------===//
3974
3975/// isObjCNSObjectType - Return true if this is an NSObject object using
3976/// NSObject attribute on a c-style pointer type.
3977/// FIXME - Make it work directly on types.
3978/// FIXME: Move to Type.
3979///
3980bool ASTContext::isObjCNSObjectType(QualType Ty) const {
3981  if (TypedefType *TDT = dyn_cast<TypedefType>(Ty)) {
3982    if (TypedefDecl *TD = TDT->getDecl())
3983      if (TD->getAttr<ObjCNSObjectAttr>())
3984        return true;
3985  }
3986  return false;
3987}
3988
3989/// getObjCGCAttr - Returns one of GCNone, Weak or Strong objc's
3990/// garbage collection attribute.
3991///
3992Qualifiers::GC ASTContext::getObjCGCAttrKind(const QualType &Ty) const {
3993  Qualifiers::GC GCAttrs = Qualifiers::GCNone;
3994  if (getLangOptions().ObjC1 &&
3995      getLangOptions().getGCMode() != LangOptions::NonGC) {
3996    GCAttrs = Ty.getObjCGCAttr();
3997    // Default behavious under objective-c's gc is for objective-c pointers
3998    // (or pointers to them) be treated as though they were declared
3999    // as __strong.
4000    if (GCAttrs == Qualifiers::GCNone) {
4001      if (Ty->isObjCObjectPointerType() || Ty->isBlockPointerType())
4002        GCAttrs = Qualifiers::Strong;
4003      else if (Ty->isPointerType())
4004        return getObjCGCAttrKind(Ty->getAs<PointerType>()->getPointeeType());
4005    }
4006    // Non-pointers have none gc'able attribute regardless of the attribute
4007    // set on them.
4008    else if (!Ty->isAnyPointerType() && !Ty->isBlockPointerType())
4009      return Qualifiers::GCNone;
4010  }
4011  return GCAttrs;
4012}
4013
4014//===----------------------------------------------------------------------===//
4015//                        Type Compatibility Testing
4016//===----------------------------------------------------------------------===//
4017
4018/// areCompatVectorTypes - Return true if the two specified vector types are
4019/// compatible.
4020static bool areCompatVectorTypes(const VectorType *LHS,
4021                                 const VectorType *RHS) {
4022  assert(LHS->isCanonicalUnqualified() && RHS->isCanonicalUnqualified());
4023  return LHS->getElementType() == RHS->getElementType() &&
4024         LHS->getNumElements() == RHS->getNumElements();
4025}
4026
4027//===----------------------------------------------------------------------===//
4028// ObjCQualifiedIdTypesAreCompatible - Compatibility testing for qualified id's.
4029//===----------------------------------------------------------------------===//
4030
4031/// ProtocolCompatibleWithProtocol - return 'true' if 'lProto' is in the
4032/// inheritance hierarchy of 'rProto'.
4033bool ASTContext::ProtocolCompatibleWithProtocol(ObjCProtocolDecl *lProto,
4034                                                ObjCProtocolDecl *rProto) {
4035  if (lProto == rProto)
4036    return true;
4037  for (ObjCProtocolDecl::protocol_iterator PI = rProto->protocol_begin(),
4038       E = rProto->protocol_end(); PI != E; ++PI)
4039    if (ProtocolCompatibleWithProtocol(lProto, *PI))
4040      return true;
4041  return false;
4042}
4043
4044/// QualifiedIdConformsQualifiedId - compare id<p,...> with id<p1,...>
4045/// return true if lhs's protocols conform to rhs's protocol; false
4046/// otherwise.
4047bool ASTContext::QualifiedIdConformsQualifiedId(QualType lhs, QualType rhs) {
4048  if (lhs->isObjCQualifiedIdType() && rhs->isObjCQualifiedIdType())
4049    return ObjCQualifiedIdTypesAreCompatible(lhs, rhs, false);
4050  return false;
4051}
4052
4053/// ObjCQualifiedIdTypesAreCompatible - We know that one of lhs/rhs is an
4054/// ObjCQualifiedIDType.
4055bool ASTContext::ObjCQualifiedIdTypesAreCompatible(QualType lhs, QualType rhs,
4056                                                   bool compare) {
4057  // Allow id<P..> and an 'id' or void* type in all cases.
4058  if (lhs->isVoidPointerType() ||
4059      lhs->isObjCIdType() || lhs->isObjCClassType())
4060    return true;
4061  else if (rhs->isVoidPointerType() ||
4062           rhs->isObjCIdType() || rhs->isObjCClassType())
4063    return true;
4064
4065  if (const ObjCObjectPointerType *lhsQID = lhs->getAsObjCQualifiedIdType()) {
4066    const ObjCObjectPointerType *rhsOPT = rhs->getAs<ObjCObjectPointerType>();
4067
4068    if (!rhsOPT) return false;
4069
4070    if (rhsOPT->qual_empty()) {
4071      // If the RHS is a unqualified interface pointer "NSString*",
4072      // make sure we check the class hierarchy.
4073      if (ObjCInterfaceDecl *rhsID = rhsOPT->getInterfaceDecl()) {
4074        for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
4075             E = lhsQID->qual_end(); I != E; ++I) {
4076          // when comparing an id<P> on lhs with a static type on rhs,
4077          // see if static class implements all of id's protocols, directly or
4078          // through its super class and categories.
4079          if (!rhsID->ClassImplementsProtocol(*I, true))
4080            return false;
4081        }
4082      }
4083      // If there are no qualifiers and no interface, we have an 'id'.
4084      return true;
4085    }
4086    // Both the right and left sides have qualifiers.
4087    for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
4088         E = lhsQID->qual_end(); I != E; ++I) {
4089      ObjCProtocolDecl *lhsProto = *I;
4090      bool match = false;
4091
4092      // when comparing an id<P> on lhs with a static type on rhs,
4093      // see if static class implements all of id's protocols, directly or
4094      // through its super class and categories.
4095      for (ObjCObjectPointerType::qual_iterator J = rhsOPT->qual_begin(),
4096           E = rhsOPT->qual_end(); J != E; ++J) {
4097        ObjCProtocolDecl *rhsProto = *J;
4098        if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
4099            (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
4100          match = true;
4101          break;
4102        }
4103      }
4104      // If the RHS is a qualified interface pointer "NSString<P>*",
4105      // make sure we check the class hierarchy.
4106      if (ObjCInterfaceDecl *rhsID = rhsOPT->getInterfaceDecl()) {
4107        for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
4108             E = lhsQID->qual_end(); I != E; ++I) {
4109          // when comparing an id<P> on lhs with a static type on rhs,
4110          // see if static class implements all of id's protocols, directly or
4111          // through its super class and categories.
4112          if (rhsID->ClassImplementsProtocol(*I, true)) {
4113            match = true;
4114            break;
4115          }
4116        }
4117      }
4118      if (!match)
4119        return false;
4120    }
4121
4122    return true;
4123  }
4124
4125  const ObjCObjectPointerType *rhsQID = rhs->getAsObjCQualifiedIdType();
4126  assert(rhsQID && "One of the LHS/RHS should be id<x>");
4127
4128  if (const ObjCObjectPointerType *lhsOPT =
4129        lhs->getAsObjCInterfacePointerType()) {
4130    if (lhsOPT->qual_empty()) {
4131      bool match = false;
4132      if (ObjCInterfaceDecl *lhsID = lhsOPT->getInterfaceDecl()) {
4133        for (ObjCObjectPointerType::qual_iterator I = rhsQID->qual_begin(),
4134             E = rhsQID->qual_end(); I != E; ++I) {
4135          // when comparing an id<P> on lhs with a static type on rhs,
4136          // see if static class implements all of id's protocols, directly or
4137          // through its super class and categories.
4138          if (lhsID->ClassImplementsProtocol(*I, true)) {
4139            match = true;
4140            break;
4141          }
4142        }
4143        if (!match)
4144          return false;
4145      }
4146      return true;
4147    }
4148    // Both the right and left sides have qualifiers.
4149    for (ObjCObjectPointerType::qual_iterator I = lhsOPT->qual_begin(),
4150         E = lhsOPT->qual_end(); I != E; ++I) {
4151      ObjCProtocolDecl *lhsProto = *I;
4152      bool match = false;
4153
4154      // when comparing an id<P> on lhs with a static type on rhs,
4155      // see if static class implements all of id's protocols, directly or
4156      // through its super class and categories.
4157      for (ObjCObjectPointerType::qual_iterator J = rhsQID->qual_begin(),
4158           E = rhsQID->qual_end(); J != E; ++J) {
4159        ObjCProtocolDecl *rhsProto = *J;
4160        if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
4161            (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
4162          match = true;
4163          break;
4164        }
4165      }
4166      if (!match)
4167        return false;
4168    }
4169    return true;
4170  }
4171  return false;
4172}
4173
4174/// canAssignObjCInterfaces - Return true if the two interface types are
4175/// compatible for assignment from RHS to LHS.  This handles validation of any
4176/// protocol qualifiers on the LHS or RHS.
4177///
4178bool ASTContext::canAssignObjCInterfaces(const ObjCObjectPointerType *LHSOPT,
4179                                         const ObjCObjectPointerType *RHSOPT) {
4180  // If either type represents the built-in 'id' or 'Class' types, return true.
4181  if (LHSOPT->isObjCBuiltinType() || RHSOPT->isObjCBuiltinType())
4182    return true;
4183
4184  if (LHSOPT->isObjCQualifiedIdType() || RHSOPT->isObjCQualifiedIdType())
4185    return ObjCQualifiedIdTypesAreCompatible(QualType(LHSOPT,0),
4186                                             QualType(RHSOPT,0),
4187                                             false);
4188
4189  const ObjCInterfaceType* LHS = LHSOPT->getInterfaceType();
4190  const ObjCInterfaceType* RHS = RHSOPT->getInterfaceType();
4191  if (LHS && RHS) // We have 2 user-defined types.
4192    return canAssignObjCInterfaces(LHS, RHS);
4193
4194  return false;
4195}
4196
4197/// getIntersectionOfProtocols - This routine finds the intersection of set
4198/// of protocols inherited from two distinct objective-c pointer objects.
4199/// It is used to build composite qualifier list of the composite type of
4200/// the conditional expression involving two objective-c pointer objects.
4201static
4202void getIntersectionOfProtocols(ASTContext &Context,
4203                                const ObjCObjectPointerType *LHSOPT,
4204                                const ObjCObjectPointerType *RHSOPT,
4205      llvm::SmallVectorImpl<ObjCProtocolDecl *> &IntersectionOfProtocols) {
4206
4207  const ObjCInterfaceType* LHS = LHSOPT->getInterfaceType();
4208  const ObjCInterfaceType* RHS = RHSOPT->getInterfaceType();
4209
4210  llvm::SmallPtrSet<ObjCProtocolDecl *, 8> InheritedProtocolSet;
4211  unsigned LHSNumProtocols = LHS->getNumProtocols();
4212  if (LHSNumProtocols > 0)
4213    InheritedProtocolSet.insert(LHS->qual_begin(), LHS->qual_end());
4214  else {
4215    llvm::SmallPtrSet<ObjCProtocolDecl *, 8> LHSInheritedProtocols;
4216    Context.CollectInheritedProtocols(LHS->getDecl(), LHSInheritedProtocols);
4217    InheritedProtocolSet.insert(LHSInheritedProtocols.begin(),
4218                                LHSInheritedProtocols.end());
4219  }
4220
4221  unsigned RHSNumProtocols = RHS->getNumProtocols();
4222  if (RHSNumProtocols > 0) {
4223    ObjCProtocolDecl **RHSProtocols = (ObjCProtocolDecl **)RHS->qual_begin();
4224    for (unsigned i = 0; i < RHSNumProtocols; ++i)
4225      if (InheritedProtocolSet.count(RHSProtocols[i]))
4226        IntersectionOfProtocols.push_back(RHSProtocols[i]);
4227  }
4228  else {
4229    llvm::SmallPtrSet<ObjCProtocolDecl *, 8> RHSInheritedProtocols;
4230    Context.CollectInheritedProtocols(RHS->getDecl(), RHSInheritedProtocols);
4231    for (llvm::SmallPtrSet<ObjCProtocolDecl*,8>::iterator I =
4232         RHSInheritedProtocols.begin(),
4233         E = RHSInheritedProtocols.end(); I != E; ++I)
4234      if (InheritedProtocolSet.count((*I)))
4235        IntersectionOfProtocols.push_back((*I));
4236  }
4237}
4238
4239/// areCommonBaseCompatible - Returns common base class of the two classes if
4240/// one found. Note that this is O'2 algorithm. But it will be called as the
4241/// last type comparison in a ?-exp of ObjC pointer types before a
4242/// warning is issued. So, its invokation is extremely rare.
4243QualType ASTContext::areCommonBaseCompatible(
4244                                          const ObjCObjectPointerType *LHSOPT,
4245                                          const ObjCObjectPointerType *RHSOPT) {
4246  const ObjCInterfaceType* LHS = LHSOPT->getInterfaceType();
4247  const ObjCInterfaceType* RHS = RHSOPT->getInterfaceType();
4248  if (!LHS || !RHS)
4249    return QualType();
4250
4251  while (const ObjCInterfaceDecl *LHSIDecl = LHS->getDecl()->getSuperClass()) {
4252    QualType LHSTy = getObjCInterfaceType(LHSIDecl);
4253    LHS = LHSTy->getAs<ObjCInterfaceType>();
4254    if (canAssignObjCInterfaces(LHS, RHS)) {
4255      llvm::SmallVector<ObjCProtocolDecl *, 8> IntersectionOfProtocols;
4256      getIntersectionOfProtocols(*this,
4257                                 LHSOPT, RHSOPT, IntersectionOfProtocols);
4258      if (IntersectionOfProtocols.empty())
4259        LHSTy = getObjCObjectPointerType(LHSTy);
4260      else
4261        LHSTy = getObjCObjectPointerType(LHSTy, &IntersectionOfProtocols[0],
4262                                                IntersectionOfProtocols.size());
4263      return LHSTy;
4264    }
4265  }
4266
4267  return QualType();
4268}
4269
4270bool ASTContext::canAssignObjCInterfaces(const ObjCInterfaceType *LHS,
4271                                         const ObjCInterfaceType *RHS) {
4272  // Verify that the base decls are compatible: the RHS must be a subclass of
4273  // the LHS.
4274  if (!LHS->getDecl()->isSuperClassOf(RHS->getDecl()))
4275    return false;
4276
4277  // RHS must have a superset of the protocols in the LHS.  If the LHS is not
4278  // protocol qualified at all, then we are good.
4279  if (LHS->getNumProtocols() == 0)
4280    return true;
4281
4282  // Okay, we know the LHS has protocol qualifiers.  If the RHS doesn't, then it
4283  // isn't a superset.
4284  if (RHS->getNumProtocols() == 0)
4285    return true;  // FIXME: should return false!
4286
4287  for (ObjCInterfaceType::qual_iterator LHSPI = LHS->qual_begin(),
4288                                        LHSPE = LHS->qual_end();
4289       LHSPI != LHSPE; LHSPI++) {
4290    bool RHSImplementsProtocol = false;
4291
4292    // If the RHS doesn't implement the protocol on the left, the types
4293    // are incompatible.
4294    for (ObjCInterfaceType::qual_iterator RHSPI = RHS->qual_begin(),
4295                                          RHSPE = RHS->qual_end();
4296         RHSPI != RHSPE; RHSPI++) {
4297      if ((*RHSPI)->lookupProtocolNamed((*LHSPI)->getIdentifier())) {
4298        RHSImplementsProtocol = true;
4299        break;
4300      }
4301    }
4302    // FIXME: For better diagnostics, consider passing back the protocol name.
4303    if (!RHSImplementsProtocol)
4304      return false;
4305  }
4306  // The RHS implements all protocols listed on the LHS.
4307  return true;
4308}
4309
4310bool ASTContext::areComparableObjCPointerTypes(QualType LHS, QualType RHS) {
4311  // get the "pointed to" types
4312  const ObjCObjectPointerType *LHSOPT = LHS->getAs<ObjCObjectPointerType>();
4313  const ObjCObjectPointerType *RHSOPT = RHS->getAs<ObjCObjectPointerType>();
4314
4315  if (!LHSOPT || !RHSOPT)
4316    return false;
4317
4318  return canAssignObjCInterfaces(LHSOPT, RHSOPT) ||
4319         canAssignObjCInterfaces(RHSOPT, LHSOPT);
4320}
4321
4322/// typesAreCompatible - C99 6.7.3p9: For two qualified types to be compatible,
4323/// both shall have the identically qualified version of a compatible type.
4324/// C99 6.2.7p1: Two types have compatible types if their types are the
4325/// same. See 6.7.[2,3,5] for additional rules.
4326bool ASTContext::typesAreCompatible(QualType LHS, QualType RHS) {
4327  if (getLangOptions().CPlusPlus)
4328    return hasSameType(LHS, RHS);
4329
4330  return !mergeTypes(LHS, RHS).isNull();
4331}
4332
4333QualType ASTContext::mergeFunctionTypes(QualType lhs, QualType rhs) {
4334  const FunctionType *lbase = lhs->getAs<FunctionType>();
4335  const FunctionType *rbase = rhs->getAs<FunctionType>();
4336  const FunctionProtoType *lproto = dyn_cast<FunctionProtoType>(lbase);
4337  const FunctionProtoType *rproto = dyn_cast<FunctionProtoType>(rbase);
4338  bool allLTypes = true;
4339  bool allRTypes = true;
4340
4341  // Check return type
4342  QualType retType = mergeTypes(lbase->getResultType(), rbase->getResultType());
4343  if (retType.isNull()) return QualType();
4344  if (getCanonicalType(retType) != getCanonicalType(lbase->getResultType()))
4345    allLTypes = false;
4346  if (getCanonicalType(retType) != getCanonicalType(rbase->getResultType()))
4347    allRTypes = false;
4348  // FIXME: double check this
4349  bool NoReturn = lbase->getNoReturnAttr() || rbase->getNoReturnAttr();
4350  if (NoReturn != lbase->getNoReturnAttr())
4351    allLTypes = false;
4352  if (NoReturn != rbase->getNoReturnAttr())
4353    allRTypes = false;
4354  CallingConv lcc = lbase->getCallConv();
4355  CallingConv rcc = rbase->getCallConv();
4356  // Compatible functions must have compatible calling conventions
4357  if (!isSameCallConv(lcc, rcc))
4358    return QualType();
4359
4360  if (lproto && rproto) { // two C99 style function prototypes
4361    assert(!lproto->hasExceptionSpec() && !rproto->hasExceptionSpec() &&
4362           "C++ shouldn't be here");
4363    unsigned lproto_nargs = lproto->getNumArgs();
4364    unsigned rproto_nargs = rproto->getNumArgs();
4365
4366    // Compatible functions must have the same number of arguments
4367    if (lproto_nargs != rproto_nargs)
4368      return QualType();
4369
4370    // Variadic and non-variadic functions aren't compatible
4371    if (lproto->isVariadic() != rproto->isVariadic())
4372      return QualType();
4373
4374    if (lproto->getTypeQuals() != rproto->getTypeQuals())
4375      return QualType();
4376
4377    // Check argument compatibility
4378    llvm::SmallVector<QualType, 10> types;
4379    for (unsigned i = 0; i < lproto_nargs; i++) {
4380      QualType largtype = lproto->getArgType(i).getUnqualifiedType();
4381      QualType rargtype = rproto->getArgType(i).getUnqualifiedType();
4382      QualType argtype = mergeTypes(largtype, rargtype);
4383      if (argtype.isNull()) return QualType();
4384      types.push_back(argtype);
4385      if (getCanonicalType(argtype) != getCanonicalType(largtype))
4386        allLTypes = false;
4387      if (getCanonicalType(argtype) != getCanonicalType(rargtype))
4388        allRTypes = false;
4389    }
4390    if (allLTypes) return lhs;
4391    if (allRTypes) return rhs;
4392    return getFunctionType(retType, types.begin(), types.size(),
4393                           lproto->isVariadic(), lproto->getTypeQuals(),
4394                           false, false, 0, 0, NoReturn, lcc);
4395  }
4396
4397  if (lproto) allRTypes = false;
4398  if (rproto) allLTypes = false;
4399
4400  const FunctionProtoType *proto = lproto ? lproto : rproto;
4401  if (proto) {
4402    assert(!proto->hasExceptionSpec() && "C++ shouldn't be here");
4403    if (proto->isVariadic()) return QualType();
4404    // Check that the types are compatible with the types that
4405    // would result from default argument promotions (C99 6.7.5.3p15).
4406    // The only types actually affected are promotable integer
4407    // types and floats, which would be passed as a different
4408    // type depending on whether the prototype is visible.
4409    unsigned proto_nargs = proto->getNumArgs();
4410    for (unsigned i = 0; i < proto_nargs; ++i) {
4411      QualType argTy = proto->getArgType(i);
4412
4413      // Look at the promotion type of enum types, since that is the type used
4414      // to pass enum values.
4415      if (const EnumType *Enum = argTy->getAs<EnumType>())
4416        argTy = Enum->getDecl()->getPromotionType();
4417
4418      if (argTy->isPromotableIntegerType() ||
4419          getCanonicalType(argTy).getUnqualifiedType() == FloatTy)
4420        return QualType();
4421    }
4422
4423    if (allLTypes) return lhs;
4424    if (allRTypes) return rhs;
4425    return getFunctionType(retType, proto->arg_type_begin(),
4426                           proto->getNumArgs(), proto->isVariadic(),
4427                           proto->getTypeQuals(),
4428                           false, false, 0, 0, NoReturn, lcc);
4429  }
4430
4431  if (allLTypes) return lhs;
4432  if (allRTypes) return rhs;
4433  return getFunctionNoProtoType(retType, NoReturn, lcc);
4434}
4435
4436QualType ASTContext::mergeTypes(QualType LHS, QualType RHS) {
4437  // C++ [expr]: If an expression initially has the type "reference to T", the
4438  // type is adjusted to "T" prior to any further analysis, the expression
4439  // designates the object or function denoted by the reference, and the
4440  // expression is an lvalue unless the reference is an rvalue reference and
4441  // the expression is a function call (possibly inside parentheses).
4442  assert(!LHS->getAs<ReferenceType>() && "LHS is a reference type?");
4443  assert(!RHS->getAs<ReferenceType>() && "RHS is a reference type?");
4444
4445  QualType LHSCan = getCanonicalType(LHS),
4446           RHSCan = getCanonicalType(RHS);
4447
4448  // If two types are identical, they are compatible.
4449  if (LHSCan == RHSCan)
4450    return LHS;
4451
4452  // If the qualifiers are different, the types aren't compatible... mostly.
4453  Qualifiers LQuals = LHSCan.getLocalQualifiers();
4454  Qualifiers RQuals = RHSCan.getLocalQualifiers();
4455  if (LQuals != RQuals) {
4456    // If any of these qualifiers are different, we have a type
4457    // mismatch.
4458    if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() ||
4459        LQuals.getAddressSpace() != RQuals.getAddressSpace())
4460      return QualType();
4461
4462    // Exactly one GC qualifier difference is allowed: __strong is
4463    // okay if the other type has no GC qualifier but is an Objective
4464    // C object pointer (i.e. implicitly strong by default).  We fix
4465    // this by pretending that the unqualified type was actually
4466    // qualified __strong.
4467    Qualifiers::GC GC_L = LQuals.getObjCGCAttr();
4468    Qualifiers::GC GC_R = RQuals.getObjCGCAttr();
4469    assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements");
4470
4471    if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak)
4472      return QualType();
4473
4474    if (GC_L == Qualifiers::Strong && RHSCan->isObjCObjectPointerType()) {
4475      return mergeTypes(LHS, getObjCGCQualType(RHS, Qualifiers::Strong));
4476    }
4477    if (GC_R == Qualifiers::Strong && LHSCan->isObjCObjectPointerType()) {
4478      return mergeTypes(getObjCGCQualType(LHS, Qualifiers::Strong), RHS);
4479    }
4480    return QualType();
4481  }
4482
4483  // Okay, qualifiers are equal.
4484
4485  Type::TypeClass LHSClass = LHSCan->getTypeClass();
4486  Type::TypeClass RHSClass = RHSCan->getTypeClass();
4487
4488  // We want to consider the two function types to be the same for these
4489  // comparisons, just force one to the other.
4490  if (LHSClass == Type::FunctionProto) LHSClass = Type::FunctionNoProto;
4491  if (RHSClass == Type::FunctionProto) RHSClass = Type::FunctionNoProto;
4492
4493  // Same as above for arrays
4494  if (LHSClass == Type::VariableArray || LHSClass == Type::IncompleteArray)
4495    LHSClass = Type::ConstantArray;
4496  if (RHSClass == Type::VariableArray || RHSClass == Type::IncompleteArray)
4497    RHSClass = Type::ConstantArray;
4498
4499  // Canonicalize ExtVector -> Vector.
4500  if (LHSClass == Type::ExtVector) LHSClass = Type::Vector;
4501  if (RHSClass == Type::ExtVector) RHSClass = Type::Vector;
4502
4503  // If the canonical type classes don't match.
4504  if (LHSClass != RHSClass) {
4505    // C99 6.7.2.2p4: Each enumerated type shall be compatible with char,
4506    // a signed integer type, or an unsigned integer type.
4507    // Compatibility is based on the underlying type, not the promotion
4508    // type.
4509    if (const EnumType* ETy = LHS->getAs<EnumType>()) {
4510      if (ETy->getDecl()->getIntegerType() == RHSCan.getUnqualifiedType())
4511        return RHS;
4512    }
4513    if (const EnumType* ETy = RHS->getAs<EnumType>()) {
4514      if (ETy->getDecl()->getIntegerType() == LHSCan.getUnqualifiedType())
4515        return LHS;
4516    }
4517
4518    return QualType();
4519  }
4520
4521  // The canonical type classes match.
4522  switch (LHSClass) {
4523#define TYPE(Class, Base)
4524#define ABSTRACT_TYPE(Class, Base)
4525#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
4526#define DEPENDENT_TYPE(Class, Base) case Type::Class:
4527#include "clang/AST/TypeNodes.def"
4528    assert(false && "Non-canonical and dependent types shouldn't get here");
4529    return QualType();
4530
4531  case Type::LValueReference:
4532  case Type::RValueReference:
4533  case Type::MemberPointer:
4534    assert(false && "C++ should never be in mergeTypes");
4535    return QualType();
4536
4537  case Type::IncompleteArray:
4538  case Type::VariableArray:
4539  case Type::FunctionProto:
4540  case Type::ExtVector:
4541    assert(false && "Types are eliminated above");
4542    return QualType();
4543
4544  case Type::Pointer:
4545  {
4546    // Merge two pointer types, while trying to preserve typedef info
4547    QualType LHSPointee = LHS->getAs<PointerType>()->getPointeeType();
4548    QualType RHSPointee = RHS->getAs<PointerType>()->getPointeeType();
4549    QualType ResultType = mergeTypes(LHSPointee, RHSPointee);
4550    if (ResultType.isNull()) return QualType();
4551    if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
4552      return LHS;
4553    if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
4554      return RHS;
4555    return getPointerType(ResultType);
4556  }
4557  case Type::BlockPointer:
4558  {
4559    // Merge two block pointer types, while trying to preserve typedef info
4560    QualType LHSPointee = LHS->getAs<BlockPointerType>()->getPointeeType();
4561    QualType RHSPointee = RHS->getAs<BlockPointerType>()->getPointeeType();
4562    QualType ResultType = mergeTypes(LHSPointee, RHSPointee);
4563    if (ResultType.isNull()) return QualType();
4564    if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
4565      return LHS;
4566    if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
4567      return RHS;
4568    return getBlockPointerType(ResultType);
4569  }
4570  case Type::ConstantArray:
4571  {
4572    const ConstantArrayType* LCAT = getAsConstantArrayType(LHS);
4573    const ConstantArrayType* RCAT = getAsConstantArrayType(RHS);
4574    if (LCAT && RCAT && RCAT->getSize() != LCAT->getSize())
4575      return QualType();
4576
4577    QualType LHSElem = getAsArrayType(LHS)->getElementType();
4578    QualType RHSElem = getAsArrayType(RHS)->getElementType();
4579    QualType ResultType = mergeTypes(LHSElem, RHSElem);
4580    if (ResultType.isNull()) return QualType();
4581    if (LCAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
4582      return LHS;
4583    if (RCAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
4584      return RHS;
4585    if (LCAT) return getConstantArrayType(ResultType, LCAT->getSize(),
4586                                          ArrayType::ArraySizeModifier(), 0);
4587    if (RCAT) return getConstantArrayType(ResultType, RCAT->getSize(),
4588                                          ArrayType::ArraySizeModifier(), 0);
4589    const VariableArrayType* LVAT = getAsVariableArrayType(LHS);
4590    const VariableArrayType* RVAT = getAsVariableArrayType(RHS);
4591    if (LVAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
4592      return LHS;
4593    if (RVAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
4594      return RHS;
4595    if (LVAT) {
4596      // FIXME: This isn't correct! But tricky to implement because
4597      // the array's size has to be the size of LHS, but the type
4598      // has to be different.
4599      return LHS;
4600    }
4601    if (RVAT) {
4602      // FIXME: This isn't correct! But tricky to implement because
4603      // the array's size has to be the size of RHS, but the type
4604      // has to be different.
4605      return RHS;
4606    }
4607    if (getCanonicalType(LHSElem) == getCanonicalType(ResultType)) return LHS;
4608    if (getCanonicalType(RHSElem) == getCanonicalType(ResultType)) return RHS;
4609    return getIncompleteArrayType(ResultType,
4610                                  ArrayType::ArraySizeModifier(), 0);
4611  }
4612  case Type::FunctionNoProto:
4613    return mergeFunctionTypes(LHS, RHS);
4614  case Type::Record:
4615  case Type::Enum:
4616    return QualType();
4617  case Type::Builtin:
4618    // Only exactly equal builtin types are compatible, which is tested above.
4619    return QualType();
4620  case Type::Complex:
4621    // Distinct complex types are incompatible.
4622    return QualType();
4623  case Type::Vector:
4624    // FIXME: The merged type should be an ExtVector!
4625    if (areCompatVectorTypes(LHS->getAs<VectorType>(), RHS->getAs<VectorType>()))
4626      return LHS;
4627    return QualType();
4628  case Type::ObjCInterface: {
4629    // Check if the interfaces are assignment compatible.
4630    // FIXME: This should be type compatibility, e.g. whether
4631    // "LHS x; RHS x;" at global scope is legal.
4632    const ObjCInterfaceType* LHSIface = LHS->getAs<ObjCInterfaceType>();
4633    const ObjCInterfaceType* RHSIface = RHS->getAs<ObjCInterfaceType>();
4634    if (LHSIface && RHSIface &&
4635        canAssignObjCInterfaces(LHSIface, RHSIface))
4636      return LHS;
4637
4638    return QualType();
4639  }
4640  case Type::ObjCObjectPointer: {
4641    if (canAssignObjCInterfaces(LHS->getAs<ObjCObjectPointerType>(),
4642                                RHS->getAs<ObjCObjectPointerType>()))
4643      return LHS;
4644
4645    return QualType();
4646  }
4647  case Type::TemplateSpecialization:
4648    assert(false && "Dependent types have no size");
4649    break;
4650  }
4651
4652  return QualType();
4653}
4654
4655//===----------------------------------------------------------------------===//
4656//                         Integer Predicates
4657//===----------------------------------------------------------------------===//
4658
4659unsigned ASTContext::getIntWidth(QualType T) {
4660  if (T->isBooleanType())
4661    return 1;
4662  if (EnumType *ET = dyn_cast<EnumType>(T))
4663    T = ET->getDecl()->getIntegerType();
4664  // For builtin types, just use the standard type sizing method
4665  return (unsigned)getTypeSize(T);
4666}
4667
4668QualType ASTContext::getCorrespondingUnsignedType(QualType T) {
4669  assert(T->isSignedIntegerType() && "Unexpected type");
4670
4671  // Turn <4 x signed int> -> <4 x unsigned int>
4672  if (const VectorType *VTy = T->getAs<VectorType>())
4673    return getVectorType(getCorrespondingUnsignedType(VTy->getElementType()),
4674             VTy->getNumElements(), VTy->isAltiVec(), VTy->isPixel());
4675
4676  // For enums, we return the unsigned version of the base type.
4677  if (const EnumType *ETy = T->getAs<EnumType>())
4678    T = ETy->getDecl()->getIntegerType();
4679
4680  const BuiltinType *BTy = T->getAs<BuiltinType>();
4681  assert(BTy && "Unexpected signed integer type");
4682  switch (BTy->getKind()) {
4683  case BuiltinType::Char_S:
4684  case BuiltinType::SChar:
4685    return UnsignedCharTy;
4686  case BuiltinType::Short:
4687    return UnsignedShortTy;
4688  case BuiltinType::Int:
4689    return UnsignedIntTy;
4690  case BuiltinType::Long:
4691    return UnsignedLongTy;
4692  case BuiltinType::LongLong:
4693    return UnsignedLongLongTy;
4694  case BuiltinType::Int128:
4695    return UnsignedInt128Ty;
4696  default:
4697    assert(0 && "Unexpected signed integer type");
4698    return QualType();
4699  }
4700}
4701
4702ExternalASTSource::~ExternalASTSource() { }
4703
4704void ExternalASTSource::PrintStats() { }
4705
4706
4707//===----------------------------------------------------------------------===//
4708//                          Builtin Type Computation
4709//===----------------------------------------------------------------------===//
4710
4711/// DecodeTypeFromStr - This decodes one type descriptor from Str, advancing the
4712/// pointer over the consumed characters.  This returns the resultant type.
4713static QualType DecodeTypeFromStr(const char *&Str, ASTContext &Context,
4714                                  ASTContext::GetBuiltinTypeError &Error,
4715                                  bool AllowTypeModifiers = true) {
4716  // Modifiers.
4717  int HowLong = 0;
4718  bool Signed = false, Unsigned = false;
4719
4720  // Read the modifiers first.
4721  bool Done = false;
4722  while (!Done) {
4723    switch (*Str++) {
4724    default: Done = true; --Str; break;
4725    case 'S':
4726      assert(!Unsigned && "Can't use both 'S' and 'U' modifiers!");
4727      assert(!Signed && "Can't use 'S' modifier multiple times!");
4728      Signed = true;
4729      break;
4730    case 'U':
4731      assert(!Signed && "Can't use both 'S' and 'U' modifiers!");
4732      assert(!Unsigned && "Can't use 'S' modifier multiple times!");
4733      Unsigned = true;
4734      break;
4735    case 'L':
4736      assert(HowLong <= 2 && "Can't have LLLL modifier");
4737      ++HowLong;
4738      break;
4739    }
4740  }
4741
4742  QualType Type;
4743
4744  // Read the base type.
4745  switch (*Str++) {
4746  default: assert(0 && "Unknown builtin type letter!");
4747  case 'v':
4748    assert(HowLong == 0 && !Signed && !Unsigned &&
4749           "Bad modifiers used with 'v'!");
4750    Type = Context.VoidTy;
4751    break;
4752  case 'f':
4753    assert(HowLong == 0 && !Signed && !Unsigned &&
4754           "Bad modifiers used with 'f'!");
4755    Type = Context.FloatTy;
4756    break;
4757  case 'd':
4758    assert(HowLong < 2 && !Signed && !Unsigned &&
4759           "Bad modifiers used with 'd'!");
4760    if (HowLong)
4761      Type = Context.LongDoubleTy;
4762    else
4763      Type = Context.DoubleTy;
4764    break;
4765  case 's':
4766    assert(HowLong == 0 && "Bad modifiers used with 's'!");
4767    if (Unsigned)
4768      Type = Context.UnsignedShortTy;
4769    else
4770      Type = Context.ShortTy;
4771    break;
4772  case 'i':
4773    if (HowLong == 3)
4774      Type = Unsigned ? Context.UnsignedInt128Ty : Context.Int128Ty;
4775    else if (HowLong == 2)
4776      Type = Unsigned ? Context.UnsignedLongLongTy : Context.LongLongTy;
4777    else if (HowLong == 1)
4778      Type = Unsigned ? Context.UnsignedLongTy : Context.LongTy;
4779    else
4780      Type = Unsigned ? Context.UnsignedIntTy : Context.IntTy;
4781    break;
4782  case 'c':
4783    assert(HowLong == 0 && "Bad modifiers used with 'c'!");
4784    if (Signed)
4785      Type = Context.SignedCharTy;
4786    else if (Unsigned)
4787      Type = Context.UnsignedCharTy;
4788    else
4789      Type = Context.CharTy;
4790    break;
4791  case 'b': // boolean
4792    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'b'!");
4793    Type = Context.BoolTy;
4794    break;
4795  case 'z':  // size_t.
4796    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'z'!");
4797    Type = Context.getSizeType();
4798    break;
4799  case 'F':
4800    Type = Context.getCFConstantStringType();
4801    break;
4802  case 'a':
4803    Type = Context.getBuiltinVaListType();
4804    assert(!Type.isNull() && "builtin va list type not initialized!");
4805    break;
4806  case 'A':
4807    // This is a "reference" to a va_list; however, what exactly
4808    // this means depends on how va_list is defined. There are two
4809    // different kinds of va_list: ones passed by value, and ones
4810    // passed by reference.  An example of a by-value va_list is
4811    // x86, where va_list is a char*. An example of by-ref va_list
4812    // is x86-64, where va_list is a __va_list_tag[1]. For x86,
4813    // we want this argument to be a char*&; for x86-64, we want
4814    // it to be a __va_list_tag*.
4815    Type = Context.getBuiltinVaListType();
4816    assert(!Type.isNull() && "builtin va list type not initialized!");
4817    if (Type->isArrayType()) {
4818      Type = Context.getArrayDecayedType(Type);
4819    } else {
4820      Type = Context.getLValueReferenceType(Type);
4821    }
4822    break;
4823  case 'V': {
4824    char *End;
4825    unsigned NumElements = strtoul(Str, &End, 10);
4826    assert(End != Str && "Missing vector size");
4827
4828    Str = End;
4829
4830    QualType ElementType = DecodeTypeFromStr(Str, Context, Error, false);
4831    // FIXME: Don't know what to do about AltiVec.
4832    Type = Context.getVectorType(ElementType, NumElements, false, false);
4833    break;
4834  }
4835  case 'X': {
4836    QualType ElementType = DecodeTypeFromStr(Str, Context, Error, false);
4837    Type = Context.getComplexType(ElementType);
4838    break;
4839  }
4840  case 'P':
4841    Type = Context.getFILEType();
4842    if (Type.isNull()) {
4843      Error = ASTContext::GE_Missing_stdio;
4844      return QualType();
4845    }
4846    break;
4847  case 'J':
4848    if (Signed)
4849      Type = Context.getsigjmp_bufType();
4850    else
4851      Type = Context.getjmp_bufType();
4852
4853    if (Type.isNull()) {
4854      Error = ASTContext::GE_Missing_setjmp;
4855      return QualType();
4856    }
4857    break;
4858  }
4859
4860  if (!AllowTypeModifiers)
4861    return Type;
4862
4863  Done = false;
4864  while (!Done) {
4865    switch (*Str++) {
4866      default: Done = true; --Str; break;
4867      case '*':
4868        Type = Context.getPointerType(Type);
4869        break;
4870      case '&':
4871        Type = Context.getLValueReferenceType(Type);
4872        break;
4873      // FIXME: There's no way to have a built-in with an rvalue ref arg.
4874      case 'C':
4875        Type = Type.withConst();
4876        break;
4877      case 'D':
4878        Type = Context.getVolatileType(Type);
4879        break;
4880    }
4881  }
4882
4883  return Type;
4884}
4885
4886/// GetBuiltinType - Return the type for the specified builtin.
4887QualType ASTContext::GetBuiltinType(unsigned id,
4888                                    GetBuiltinTypeError &Error) {
4889  const char *TypeStr = BuiltinInfo.GetTypeString(id);
4890
4891  llvm::SmallVector<QualType, 8> ArgTypes;
4892
4893  Error = GE_None;
4894  QualType ResType = DecodeTypeFromStr(TypeStr, *this, Error);
4895  if (Error != GE_None)
4896    return QualType();
4897  while (TypeStr[0] && TypeStr[0] != '.') {
4898    QualType Ty = DecodeTypeFromStr(TypeStr, *this, Error);
4899    if (Error != GE_None)
4900      return QualType();
4901
4902    // Do array -> pointer decay.  The builtin should use the decayed type.
4903    if (Ty->isArrayType())
4904      Ty = getArrayDecayedType(Ty);
4905
4906    ArgTypes.push_back(Ty);
4907  }
4908
4909  assert((TypeStr[0] != '.' || TypeStr[1] == 0) &&
4910         "'.' should only occur at end of builtin type list!");
4911
4912  // handle untyped/variadic arguments "T c99Style();" or "T cppStyle(...);".
4913  if (ArgTypes.size() == 0 && TypeStr[0] == '.')
4914    return getFunctionNoProtoType(ResType);
4915
4916  // FIXME: Should we create noreturn types?
4917  return getFunctionType(ResType, ArgTypes.data(), ArgTypes.size(),
4918                         TypeStr[0] == '.', 0, false, false, 0, 0,
4919                         false, CC_Default);
4920}
4921
4922QualType
4923ASTContext::UsualArithmeticConversionsType(QualType lhs, QualType rhs) {
4924  // Perform the usual unary conversions. We do this early so that
4925  // integral promotions to "int" can allow us to exit early, in the
4926  // lhs == rhs check. Also, for conversion purposes, we ignore any
4927  // qualifiers.  For example, "const float" and "float" are
4928  // equivalent.
4929  if (lhs->isPromotableIntegerType())
4930    lhs = getPromotedIntegerType(lhs);
4931  else
4932    lhs = lhs.getUnqualifiedType();
4933  if (rhs->isPromotableIntegerType())
4934    rhs = getPromotedIntegerType(rhs);
4935  else
4936    rhs = rhs.getUnqualifiedType();
4937
4938  // If both types are identical, no conversion is needed.
4939  if (lhs == rhs)
4940    return lhs;
4941
4942  // If either side is a non-arithmetic type (e.g. a pointer), we are done.
4943  // The caller can deal with this (e.g. pointer + int).
4944  if (!lhs->isArithmeticType() || !rhs->isArithmeticType())
4945    return lhs;
4946
4947  // At this point, we have two different arithmetic types.
4948
4949  // Handle complex types first (C99 6.3.1.8p1).
4950  if (lhs->isComplexType() || rhs->isComplexType()) {
4951    // if we have an integer operand, the result is the complex type.
4952    if (rhs->isIntegerType() || rhs->isComplexIntegerType()) {
4953      // convert the rhs to the lhs complex type.
4954      return lhs;
4955    }
4956    if (lhs->isIntegerType() || lhs->isComplexIntegerType()) {
4957      // convert the lhs to the rhs complex type.
4958      return rhs;
4959    }
4960    // This handles complex/complex, complex/float, or float/complex.
4961    // When both operands are complex, the shorter operand is converted to the
4962    // type of the longer, and that is the type of the result. This corresponds
4963    // to what is done when combining two real floating-point operands.
4964    // The fun begins when size promotion occur across type domains.
4965    // From H&S 6.3.4: When one operand is complex and the other is a real
4966    // floating-point type, the less precise type is converted, within it's
4967    // real or complex domain, to the precision of the other type. For example,
4968    // when combining a "long double" with a "double _Complex", the
4969    // "double _Complex" is promoted to "long double _Complex".
4970    int result = getFloatingTypeOrder(lhs, rhs);
4971
4972    if (result > 0) { // The left side is bigger, convert rhs.
4973      rhs = getFloatingTypeOfSizeWithinDomain(lhs, rhs);
4974    } else if (result < 0) { // The right side is bigger, convert lhs.
4975      lhs = getFloatingTypeOfSizeWithinDomain(rhs, lhs);
4976    }
4977    // At this point, lhs and rhs have the same rank/size. Now, make sure the
4978    // domains match. This is a requirement for our implementation, C99
4979    // does not require this promotion.
4980    if (lhs != rhs) { // Domains don't match, we have complex/float mix.
4981      if (lhs->isRealFloatingType()) { // handle "double, _Complex double".
4982        return rhs;
4983      } else { // handle "_Complex double, double".
4984        return lhs;
4985      }
4986    }
4987    return lhs; // The domain/size match exactly.
4988  }
4989  // Now handle "real" floating types (i.e. float, double, long double).
4990  if (lhs->isRealFloatingType() || rhs->isRealFloatingType()) {
4991    // if we have an integer operand, the result is the real floating type.
4992    if (rhs->isIntegerType()) {
4993      // convert rhs to the lhs floating point type.
4994      return lhs;
4995    }
4996    if (rhs->isComplexIntegerType()) {
4997      // convert rhs to the complex floating point type.
4998      return getComplexType(lhs);
4999    }
5000    if (lhs->isIntegerType()) {
5001      // convert lhs to the rhs floating point type.
5002      return rhs;
5003    }
5004    if (lhs->isComplexIntegerType()) {
5005      // convert lhs to the complex floating point type.
5006      return getComplexType(rhs);
5007    }
5008    // We have two real floating types, float/complex combos were handled above.
5009    // Convert the smaller operand to the bigger result.
5010    int result = getFloatingTypeOrder(lhs, rhs);
5011    if (result > 0) // convert the rhs
5012      return lhs;
5013    assert(result < 0 && "illegal float comparison");
5014    return rhs;   // convert the lhs
5015  }
5016  if (lhs->isComplexIntegerType() || rhs->isComplexIntegerType()) {
5017    // Handle GCC complex int extension.
5018    const ComplexType *lhsComplexInt = lhs->getAsComplexIntegerType();
5019    const ComplexType *rhsComplexInt = rhs->getAsComplexIntegerType();
5020
5021    if (lhsComplexInt && rhsComplexInt) {
5022      if (getIntegerTypeOrder(lhsComplexInt->getElementType(),
5023                              rhsComplexInt->getElementType()) >= 0)
5024        return lhs; // convert the rhs
5025      return rhs;
5026    } else if (lhsComplexInt && rhs->isIntegerType()) {
5027      // convert the rhs to the lhs complex type.
5028      return lhs;
5029    } else if (rhsComplexInt && lhs->isIntegerType()) {
5030      // convert the lhs to the rhs complex type.
5031      return rhs;
5032    }
5033  }
5034  // Finally, we have two differing integer types.
5035  // The rules for this case are in C99 6.3.1.8
5036  int compare = getIntegerTypeOrder(lhs, rhs);
5037  bool lhsSigned = lhs->isSignedIntegerType(),
5038       rhsSigned = rhs->isSignedIntegerType();
5039  QualType destType;
5040  if (lhsSigned == rhsSigned) {
5041    // Same signedness; use the higher-ranked type
5042    destType = compare >= 0 ? lhs : rhs;
5043  } else if (compare != (lhsSigned ? 1 : -1)) {
5044    // The unsigned type has greater than or equal rank to the
5045    // signed type, so use the unsigned type
5046    destType = lhsSigned ? rhs : lhs;
5047  } else if (getIntWidth(lhs) != getIntWidth(rhs)) {
5048    // The two types are different widths; if we are here, that
5049    // means the signed type is larger than the unsigned type, so
5050    // use the signed type.
5051    destType = lhsSigned ? lhs : rhs;
5052  } else {
5053    // The signed type is higher-ranked than the unsigned type,
5054    // but isn't actually any bigger (like unsigned int and long
5055    // on most 32-bit systems).  Use the unsigned type corresponding
5056    // to the signed type.
5057    destType = getCorrespondingUnsignedType(lhsSigned ? lhs : rhs);
5058  }
5059  return destType;
5060}
5061